
ABSTRACT

Process variability in future technology nodes is expected to severely limit the benefits from

dynamic voltage scaling. To keep power at bay, low voltage operation has been proposed. Be-

cause of the cubic relation between voltage,frequency and power, when operating at low voltage,

significant power and energy savings can be achieved. However, at this mode of operation some

devices fail. SRAM cells, used to built caches, are the most sensitive to low voltage operation

since they are built with minimal geometry in order to save area. As a result, when operating at

low voltage large numbers of faults occur in the caches. Traditional reliability techniques, such

as sparing and ECC, are unable to deal with large numbers of faults. Because of this, novel relia-

bility mechanisms have been proposed that are able to protect caches in high fault rate scenarios.

However, most of these techniques are costly in terms of area or very complex to implement.

In this work we provide a new approach for dealing with high fault rates in caches. We propose

to use a simple, well known reliability technique - block disabling - and combine it with perfor-

mance enhancing mechanisms, such as prefetching and victim caching, and with careful selection

of cache parameters such as block size and associativity. This approach is easy to implement since

it uses technology that already exists in modern processors and requires little area overhead.

To select the optimal cache configuration for block disabling we use a combination of prob-

ability analysis and accurate performance simulation. Using probability analysis we show that a

smaller block size is preferable since more cache capacity is available(72% for a 32B cache over

54% for a 64B cache). Also, we show that by using a smaller block size and higher associativity,

the probability of having clustered faults in the same set is reduced. Using simulations we show

that the capacity benefit from the smaller block size is beneficial to performance. Furthermore, we

show that prefetching and victim caching can be useful to reduce performance losses caused by

faults. The victim cache is especially useful for reducing performance non-determinism caused

by the random placement of faults in the cache.

Our best performing block disabling configuration is shown to outperform word disabling/bit-

fix, a recently proposed mechanism for low voltage operation, by 7%. Furthermore, our low-

cost block disabling configuration performs similarly to word disabling/bit-fix, requires less area

overhead and is simpler to implement.

2

CACHE RELIABILITY FOR LARGE NUMBERS OF PERMANENT FAULTS

Nikolas Ladas

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

December, 2010

APPROVAL PAGE

Master of Science Thesis

CACHE RELIABILITY FOR LARGE NUMBERS OF PERMANENT FAULTS

Presented by

Nikolas Ladas

Research Supervisor
Research Supervisor’s Name

Committee Member
Committee Member’s Name

Committee Member
Committee Member’s Name

University of Cyprus

December, 2010

ii

ACKNOWLEDGEMENTS

iii

CREDITS

iv

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 High Fault Rates in Caches . 1

1.1.1 Static Process Variation in Future Technology Nodes 1

1.1.2 Below Vccmin Operation . 2

1.2 Our Approach . 4

1.3 Prior Work . 5

Chapter 2: Related Work 7

2.1 Word Disabling . 7

2.2 Bit-Fix . 8

2.3 Word-Disable vs Bit-Fix . 9

2.4 Other Techniques For High Fault Rates . 10

2.5 Other Relevant Work . 12

Chapter 3: Proposed Technique 13

3.1 Overview of Block Disabling . 13

3.2 Block Disabling, Word Disabling and Bit-Fix 14

3.3 Improving Block Disabling . 16

Chapter 4: Analytical Evaluation and Comparison 17

4.1 Capacity Analysis . 17

4.2 Yield Analysis . 19

4.3 Probability of Set Failure . 21

4.4 Extending the Methodology for Other Mechanisms 26

v

4.5 Overview . 28

Chapter 5: Experimental Evaluation and Comparison 30

5.1 Experimental Framework . 30

5.2 Fault Free Operation at High Voltage . 33

5.3 Low Voltage Operation without Faults . 37

5.4 Low Voltage Operation with Faults Present . 38

5.4.1 Block Disabling 32B VS 64B . 39

5.4.2 Block Disabling with Prefetching and Victim Caching 40

5.5 Comparison of Block Disabling, Word Disabling and Bit-fix in Low Voltage Op-

eration . 46

5.6 Implications of Set Failure . 48

Chapter 6: Conclusions and Future Work 52

6.1 Conclusions . 52

6.2 Future Work . 54

Appendix A: Selecting the Prefetching Strategy 56

A.1 Description of Baseline Prefetching Mechanism 56

A.2 Our Prefetching Configuration . 58

Appendix B: Simulator Code Changes 61

Bibliography 63

vi

LIST OF TABLES

1 Comparison of block disabling, word disabling and bit-fix 15

2 Description of cache configurations . 23

3 Probability of multiple set failures for pfail=0.001 23

4 Number of heavily accessed sets per cache . 24

5 Processor parameters that are constant for all configurations 31

6 Configuration dependent parameters . 31

7 Comparison of block disabling, word disabling and bit-fix in terms of area overhead 33

8 I-cache misses per 1K instructions with and without faults 43

vii

LIST OF FIGURES

1 Voltage Scaling vs Power and Performance . 3

2 Left: Word disabling mechanism. Right: Block disabling mechanism. Bottom:

Bit-fix mechanism . 14

3 Capacity as a function of pfail . 18

4 Probability of cache failure for word disabling 21

5 Probability of set failure as a function of pfail 22

6 Probability of set failure occurring on a frequently accessed set 25

7 Probability of accessing a failed L1 set for varying number of programs 26

8 Probability of accessing a failed L2 set for varying number of programs 27

9 Capacity as a function of pfail for the incremental word-disabling scheme 28

10 Performance improvements from using a victim cache, prefetching and the com-

bination of both for a 64B block cache. Results are normalized to a 64B block

cache configuration with prefetching and victim caching disabled. 34

11 Performance improvements from using a victim cache, prefetching and the com-

bination of both for a 32B block cache. Results are normalized to a 32B block

cache configuration with prefetching and victim caching disabled. 35

12 Performance improvements from using a 32B block cache over a 64B block cache 36

13 Performance degradation from using word disabling and bit-fix 37

14 Performance improvement due to prefetching at low voltage operation 38

15 Block disabling with 64B block and 32B block. Results are normalized to a 64B

block cache configuration without faults. 39

viii

16 Block disabling with 64B block, with and without prefetching. Results are nor-

malized to a fault-free 64B block cache configuration without prefetching. 41

17 Block disabling with 32B block, with and without prefetching. Results are nor-

malized to a fault-free 32B block cache configuration without prefetching. 42

18 Block disabling with 64B block, with prefetching(pref) and victim caching(V$).

Results are normalized to a fault-free 64B block cache configuration without prefetch-

ing or victim caching. 44

19 Block disabling with 32B block, with prefetching(pref) and victim caching(V$).

Results are normalized to a fault-free 32B block cache configuration without prefetch-

ing or victim caching. 45

20 Comparison of block disabling and word-disabling/bit-fix for a 64B cache. Results

are normalized to a fault-free 64B block cache configuration without prefetching

or victim caching. 47

21 Comparison of block disabling and word-disabling/bit-fix for a 32B cache. Results

are normalized to a fault-free 32B block cache configuration without prefetching

or victim caching. 48

22 Effect of set failure on the L1 data cache . 49

23 Effect of set failure on the L1 instruction cache 50

24 Effect of set failure on the L2 cache . 51

ix

Chapter 1

Introduction

1.1 High Fault Rates in Caches

The goal of this work is to provide reliable cache operation when operating in the presence

of many permanent-like faults. These conditions can occur due to increased process variation

in future technology nodes(e.g. 12nm process) or when operating below the minimum volt-

age(Vccmin) where correct operation is ensured. We describe these two scenarios in more detail

in the following subsections.

1.1.1 Static Process Variation in Future Technology Nodes

Due to imperfections in the manufacturing process, on chip devices(wires, transistors etc) may

have different physical and operational properties than their design specications [4, 7, 5, 3]. For

example, the length, width, oxide thickness and doping of a transistor may vary. These varia-

tions can occur at different granularity [6] wafer-to-wafer, die-to-die and within-die. Large scale

variations, across wafers and between dies, are more predictable and can be addressed with manu-

facturing tuning or post-manufacturing techniques like body-biasing [7, 5]. The most challenging

1

2

variations are within-die variations that occur either as systematic or random [4, 7, 3, 6]. System-

atic within-die variations can be addressed using solutions capable of tuning differently parts of

the same chip [18, 31, 26]. Random process variations can occur at very fine granularities. For

example, neighboring transistors may have completely different supply voltage requirements.

These effects are especially pronounced for caches [19] since they are built with minimal ge-

ometry in order to maximize area efficiency. Random process variations can be handled by setting

the supply voltage to the highest value required by the slowest device on the chip. Additionally,

voltage guard bands must also be applied in order to address voltage, frequency and temperature

fluctuations that may appear during operation.

As devices continue to scale, this approach becomes infeasible. In future technology nodes

process variation phenomena are expected to become more pronounced [30, 19]. Increasing the

supply voltage to compensate for process variations will cause unrestrained increase in power.

Because power must be kept in check, supply voltage has to be constrained to acceptable values.

As a result, some devices will fail due to process variation. To sustain technology scaling, future

processors will need to be able to handle large numbers of faults caused by process variation.

1.1.2 Below Vccmin Operation

Below Vccmin operation [32] is a technique that can be used to reduce power and save en-

ergy. This technique allows the supply voltage to drop below the value where correct operation is

guaranteed(Vccmin) so that more power savings can be achieved. However, because of process

variation, some devices will fail at this voltage. As a result, reliability methods must be applied

in order to ensure reliable operation. The technique is applied to caches since they occupy a large

portion of the chip area and are a major contributor to static and dynamic power consumption.

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Voltage
Power
Performance

Normalized frequency

N
o

rm
a

liz
e

d
 v

o
lta

g
e

, p
o

w
e

r,
 p

e
rf

o
rm

a
n

ce

PV

Cubic
zone

Vccmin

(a) Voltage scaling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Voltage
Power
Performance

Normalized frequency

N
o

rm
a

liz
e

d
 v

o
lta

g
e

, p
o

w
e

r,
 p

e
rf

o
rm

a
n

ce

Cubic
zone

Vccmin

(b) Voltage scaling below Vcc min

Figure 1: Voltage Scaling vs Power and Performance

Figure 1(a) illustrates the relation between voltage, power, frequency and performance. As

voltage decreases, cubic reductions in power occur. This reduction, however, stops when Vccmin

is reached. Because of process variation, the zone of cubic power reductions(marked gray in the

figure) is reduced as Vccmin is forced to remain at a value where correct operation is ensured.

Figure 1(b) shows the effects of scaling voltage below Vccmin. Again the figure illustrates the re-

lation between voltage, power, frequency and performance. By scaling voltage below Vccmin, we

achieve further reductions in power(the cubic zone is extended). However, to ensure reliable oper-

ation when operating below Vccmin, reliability techniques must be applied. Reliability techniques

have overheads which can translate to degraded performance. This is illustrated in the figure by

the sharp drop in performance when the low voltage region is entered. For voltage scaling to be

effective, the performance cost of operating below Vccmin must be kept as low as possible.

In the following section we describe our approach for ensuring reliable operation under the

presence of faults in caches.

4

1.2 Our Approach

Traditional reliability techniques such as spare parts or error correcting codes are not suited for

scenarios where faults are numerous. When operating below Vccmin, for example, hundreds of

faults could be present in the cache. As a result, spares cannot be used since the area cost will be

prohibitive. At the same time, when many faults are present, the probability of multiple errors in

the same region increases. Multi-bit errors cannot be handled by error correcting codes unless the

number of code bits is increased which results in large area overhead. Furthermore, by using error

correcting codes to correct permanent faults, soft error detection and correction is compromised.

To address the reliability problems that occur due to process variation or from below Vccmin

operation, novel reliability techniques have been proposed that are able to handle large numbers

of faults. Like our method, most of these techniques focus on cache reliability since caches are

the components most likely to be affected by process variation. However, as we will see in the

following chapter, currently proposed techniques have significant shortcomings:

• Require significant area/power overhead

• Require extensive modifications to the baseline cache operation

• Too complex to implement on real hardware

• Do not take important cache hierarchy parameters into account(block size, associativity,

prefetching etc)

In contrast, our approach is to use a very simple, low cost, reliability technique: block dis-

abling. Block disabling [20] is a well known technique that disables faulty parts of the cache at

the granularity of the cache block. It known to be implementable [8] and requires very little area

overhead (1 bit per cache block). We describe word disabling in detail in Chapter 3.

5

The main contribution our work is not the notion of block disabling but the analysis that

explains why it can be an attractive option to consider for high fault rate scenarios. This analysis

explains how to tune cache parameters such as block size and associativity in order to increase

resilience to faults. By using a smaller block size(32 bytes instead of 64), more capacity can

be achieved. Furthermore, the smaller block size helps reduce clustering of faults into heavily

accessed sets. We show, using simulations, that these two advantages translate into increased

performance. In addition to the analysis, we show that by leveraging performance mechanisms,

such as victim caching and prefetching, we can remedy the performance losses caused by faults.

Specifically, we show that a victim cache is beneficial as it relieves heavily accessed sets that

have many faults. This is particularly useful for reducing performance variation -caused by the

random placement of faults- among different processors. Prefetching was also found to be useful

for increasing performance in the presence of faults.

Our best performing block disabling configuration is shown to perform significantly better

than word disabling and bit-fix [32], two recently proposed, reliability techniques targeting high

failure rate caches. Also, our minimum-cost block disabling configuration performs similarly to

word disabling/bit-fix while being simpler to implement and requiring less area overhead.

1.3 Prior Work

In [16] we evaluated block disabling as a way to protect L1 caches when operating below

Vccmin. Using probability analysis we showed that for a wide range of probability of failure,

block disabling has more capacity than word disabling, a recently proposed technique for low

voltage operation. Using experiments we showed that block disabling performs better than word

disabling. Furthermore we showed that using a victim cache, performance variability caused

by the random placement of faults was greatly reduced. This thesis builds upon the work in

6

[16] and extends the analytical and experimental analysis of block disabling for the whole cache

hierarchy(L1 and L2 caches). Additionally, we evaluate caches equipped with prefetching and

show that it is beneficial in reducing the performance overhead of faults.

During the course of this thesis we performed other work that is not directly related to this

thesis. In [15] we explored the effects of faults in non-architectural arrays such as the branch

predictor the return address stack the line predictor and the LRU bits of the caches. This work

showed that performance can drop significantly(up to 53%) because of faults in the prediction

arrays. Also, the return address stack was shown to be the most sensitive to faults while the LRU

bits of the caches did not significantly affect performance when faulty. In [28],we proposed a

reliability scheme based on address remapping that is able to recover the performance loss caused

by faults in the line predictor. When up to 5% entries in the line predictor are faulty our mechanism

recovers most performance loss and when no faults exist it does not degrade performance.

Chapter 2

Related Work

In this chapter we review various cache reliability techniques that are suitable for high fault

rate scenarios. Most of these techniques treat low voltage failures and process variation induced

faults as permanent faults. The common assumption, which we also share for this work, is that

faults can be identified a priori using low voltage tests after manufacturing or during system boot.

We focus our review on word-disabling and bit-fix as these are the techniques that we will compare

our method against.

2.1 Word Disabling

This section reviews the word-disable scheme proposed in [32] to enable correct cache opera-

tion below Vcc-min.

The word-disable scheme tracks low-voltage faults at word granularity. It maintains a fault

mask per block in the tag array. The fault mask contains as many bits as words in a block and each

bit indicates whether its corresponding word contains a fault. The fault mask is initialized during

the boot sequence of a processor using low voltage memory tests.

7

8

During high voltage operation the fault-mask is ignored and cache operates normally. When

operating at low-voltage a pair of physical blocks in a set is merged into one logical block. This

divides by two the cache capacity and associativity1 .

The first physical block is responsible to provide only the first half of the logical block while

the other half is provided by the second block of the pair. This means that up to n/2 faulty words

can be tolerated for a subblock with n words. If a subblock has more than n/2 faulty words it turns

the whole cache defective and not suitable for low-voltage operation. Chapter 4 analyzes how

fault distribution affects the likelihood of a word-disable cache to be classified as faulty.

To read out in aligned form the valid half block contained in each physical block, the data in

each block need to pass through a shift-multiplexer network controlled by each block’s fault-mask.

This alignment network increases the access latency of the cache in low-voltage mode and may

even increase the cache latency during high-voltage operation.

For this work when using word-disabling the subblock size is 8 words and, therefore, no more

than 4 faulty words can be tolerated in each subblock. The paper by [32] shows that for an 8 word

subblock size the alignment network increases cache latency by 1 cycle.

Word-disabling is only applied to the data array of a cache. The tag array where the fault-mask

is stored uses 10-transistor Schmitt trigger cells (10T) which are known [13] to be robust even at

low-voltage. These transistors have roughly twice the area overhead of a regular 6-transistor (6T)

cell.

2.2 Bit-Fix

This section reviews the bit-fix scheme proposed together with word disabling in [32].
1This scheme is only applicable to associative caches.

9

This scheme repairs faults at the granularity of bit-pairs. In low-voltage mode a subset of

the blocks in each set are devoted to maintain a list of repair entries. The entries in the repair

blocks are used to correct the faults in the remaining blocks of a set. Therefore, bit-fix, unlike

word-disable, does not require additional space in the tag array to store the repair entries.

Each repair entry contains a pointer field that specifies a block position with a fault and a

value field that contains the correct 2-bit value that replaces the faulty value. Additionally, each

repair entry includes error correction codes to protect it from faults. When the number of faulty

bit-pairs of any block is greater than the maximum allowed number of repair entries per block the

whole cache becomes unsuitable for low-voltage operation. This can be made very rare, based on

probability analysis in [32], by using one repair block for every three blocks. Therefore, the finer

repair granularity of bit-fix decreases cache associativity and size by only 1/4 as compared to 1/2

of word-disable.

Bit-fix added complexity is that during low voltage operation any access that hits in the cache

needs to access both the matching block as well as its repair block and merge them to produce

the correct data. This block merging requires many shift-multiplexer stages that can increase the

cache access latency by several cycles. The operation during high voltage remains unaffected

except possibly longer latency due to the shift-multiplexer logic.

For both word-disable and bit-fix schemes a cache flush is needed when switching to low

voltage mode to initialize the cache for low voltage operation.

2.3 Word-Disable vs Bit-Fix

The performance analysis in [32], for a specific processor configuration, revealed that word-

disabling is more suitable, as compared to bit-fix, for a first-level cache. The fastest access latency

of word-disable makes up for its lower capacity as compared to the slower but with larger capacity

10

bit-fix scheme. For the second level cache the two schemes provide the same performance but the

bit-fix consumes less of-chip bandwidth and thus may be preferable. Overall, the best configura-

tion degrades average performance for high-voltage operation by 4% and low-voltage operation

by 10%.

2.4 Other Techniques For High Fault Rates

Roberts et al. proposed a technique that can deal with cache memories with high cell defect

probabilities[25]. Their technique is similar to word-disabling[32] in that it merges pairs of blocks

together to produce fault-free blocks. Their mechanism however, only merges blocks if there is

fault(while word-disabling always merges adjacent blocks in low voltage mode). Additionally, a

selector table is used that allows the mechanism to pair together any combination of blocks(where

word-disabling paired together adjacent blocks). These two improvements allow for significantly

higher capacity but increase the complexity of the cache access mechanism.

Koh et al. proposed the Buddy cache mechanism[12] that also aims to protect caches at high

fault rates. In the Buddy cache mechanism, cache blocks are divided into smaller segments(bytes,

half-words, words etc.).The mechanism keeps a fault map and a Buddy map for each block in

the cache. The fault map tracks the segments in the block that are faulty while the buddy map

associates each block with another block in the cache. When reading a faulty block, its associated

buddy block is read as well. The two blocks are merged together using information from their

fault maps to give a working, fault-free block. Blocks that do not contain faults are associated with

themselves. In order to keep the area overhead of the fault map and the Buddy map reasonable,

block segmentation needs to be coarse and the number of blocks that any block can be associated

with must be limited.

11

Another work that also deals with high defect rate caches was by Ansari et al[2]. They as-

sumed the presence of spares for the protection of faulty cache lines. Their mechanism, called

ZerehCache(ZC), allows to use spares optimally in order to increase yield. Spare lines are stat-

ically assigned to a group of logically adjacent cache blocks. The ZC mechanism uses a Benes

network to rearrange the physical-logical mapping of caches lines so that spares are better uti-

lized. Additionally spares are segmented by the mechanism into smaller sections(bytes, words

etc.). This allows to use segments of the spare to fix different cache lines that can be faulty in the

same cache line grouping.

Abella et al. [1] showed how to use subblock disabling without sacrificing performance pre-

dictability. They keep one bit per subblock(disable bit) that signals whether the subblock contains

fault or not. When a subblock is accessed, if its corresponding disable bit is set the subblock

is discarded and the access results in a miss. Subblock disabling can provide high capacity but

suffers from the problem of unpredictable performance. Depending on the locations of the faults

in the cache, performance may vary significantly. To remedy this, the authors proposed to use an

XOR-based address remapping scheme. By using address remapping, heavily accessed cache sets

can avoid being mapped in locations with many faults. The authors also show how remapping can

be implemented without increasing the cache access time.

Sasan et al. [27] used Monte Carlo simulation to estimate the cache failure rate for different

supply voltage values. They also introduced the RDC-cache, a reliability mechanism for enabling

low voltage operation. The RDC-cache keeps a defect map at the cache word granularity. In

contrast to word-disabling however, this defect map is stored inside the data array of the cache so

as to not require additional storage. The mechanism allows for non-adjacent blocks to be merged

together to give a fault free block. Furthermore, fault free blocks do not have to be merged. This

approach achieves higher capacity than word disabling at the expense of increased complexity.

12

An alternative to using cache deconfiguration mechanisms is to design memories using tran-

sistors that are built specifically for operation below Vccmin. An example of such a transistor is

described in the work by Kulkarni et al. [14]. This approach, however, is only applicable to small

SRAM memories since the area overhead for using this type of transistors is very high(as much as

100% area overhead).

Many of the above techniques have been shown to outperform word disabling and bit-fix.

However, the additional performance comes at the expense of higher area overhead and increased

complexity. We chose to compare our technique against word disabling and bit-fix as we believe

they are more suited for implementation on an actual processor.

2.5 Other Relevant Work

In [29], Sohi et al. explored how tolerating cache faults(using block disabling) affects perfor-

mance. In the presence of few defects they concluded that performance is not significantly affected

and so block disabling can be used to enhance processor yield. Pour et al. [21] performed analyti-

cal evaluation of cache block disabling and concluded that few disabled blocks do not affect miss

ratio considerably unless a whole set happens to be disabled. Lee et al. [17] also concluded that

amongst cache lines, sets and ways, deleting cache sets has the most severe performance impact

as a whole portion of the address space cannot be mapped to the cache.

Chapter 3

Proposed Technique

In this chapter we describe block disabling, which is the basis of our proposed configuration

for protecting caches against faults. We provide a high level comparison between block disabling

and the two mechanisms, word disabling and bit-fix, that we will use to compare our approach

with. Also, we discuss possible limitations of the block disabling mechanism and our approach

for dealing with these limitations.

3.1 Overview of Block Disabling

Block disabling is a well-known technique that was proposed in [20] for increasing yield. One

extra bit per cache block is required by the mechanism. The faulty blocks in a cache are identified

using standard memory tests(e.g. march tests) or low voltage tests if operating below Vccmin.

This can be done during manufacturing or at-field using built in self test(BIST) hardware. When a

block is identified as faulty, its matching disable bit is enabled and that block never gets allocated.

This allows correct operation in the presence of permanent faults at the expense of reduced cache

capacity.

13

14

disa
ble b

its

Tag Data

Tag Index

Alignment
Network

=

Hit Data

Tag

word disable bits (16 bits per block)

Offset

... Tag

way1 way2 wayN

Tag

Tag Data

Tag Index

=

Hit Data
disable

 bits

block disable bits (1 bit per block)

Tag Tag Tag...

Offset

1 2 N

Tag Data

Tag Index

Repair
Logic

=

Hit Data

Tag

Offset

...Tag Tag

1 2 N

= cells assumed
fault free

re p ai r
en tri es

Figure 2: Left: Word disabling mechanism. Right: Block disabling mechanism. Bottom: Bit-fix
mechanism

3.2 Block Disabling, Word Disabling and Bit-Fix

Figure 2 shows a high-level comparison of word disabling, block disabling and bit-fix. The

figure indicates that block disabling is a simpler mechanism. It requires one extra bit per block

whereas word disabling requires 1 extra bit per word. Additionally, word disabling requires an

alignment network to shift out faulty words. This further increases area cost and implementation

complexity while adding extra latency to the cache access time. The parts shaded in the figure(tag

bits and fault bits for word-disable, disable bits for block disabling and tag bits for bit-fix) are as-

sumed to be fault free by the mechanisms. To ensure that these bits to fault free, special transistors

15

Block Disable Word Disable Bit-fix
Advantages Simple to implement Deterministic capacity(50%) Deterministic capacity(75%)

Small area overhead Deterministic associativity(50%) Deterministic associativity(75%)
Limitations Possibly low capacity High area cost Complex

Non deterministic Complex Big increase in cache latency
associativity Small increase in cache latency

Table 1: Comparison of block disabling, word disabling and bit-fix

must be used that are resilient to process variation [14]. This further increases the area cost for

word disabling while it is less of a problem for block disabling since it requires fewer protected

bits. Bit-fix requires the cache data to pass through multiple stages of repair logic in order to repair

faulty bit pairs. Also, as in word disabling it requires the tag bits to be fault-free. The advantage of

bit-fix is that it does not require extra storage as it stores its repair entries inside the cache(taking

up 25% of cache capacity). The above complexities of word disabling and bit-fix make block

disabling the simpler and less expensive mechanism to use.

However, block disabling has some disadvantages. It disables the cache at a coarse granular-

ity(cache block). This may have adverse effects on cache capacity if the number of faults in the

cache is high. Furthermore, block disabling behaviour is non deterministic. Depending on the

location of faults in the cache, different cache blocks may be disabled. As a results some sets may

have significantly less available blocks than other sets. In worst case scenarios a whole set may

be completely disabled requiring the complete bypass of the cache when that block is accessed.

This can lead to significant performance variations from processor to processor. In contrast, this is

not a problem for word disabling and bit-fix since capacity and associativity is guaranteed by the

mechanisms to be constant(50% and 75% respectively).

Table 1 shows an overview of the benefits and limitations of each mechanism. From this

qualitative comparison it is not clear which mechanism is better. In the following section we

describe how we propose to compensate for the limitations of the block disabling mechanism

making it a more attractive solution than the other methods.

16

3.3 Improving Block Disabling

Block disabling suffers from the following limitations: capacity is dependent on the number

of faults and associativity(and as a result performance) is non deterministic as it depends on the

location of faults. In Chapter 4 we will show, using probability analysis, that by selecting the

correct cache block size, block disabling capacity can be similar or higher to word disabling and

bit-fix. Also, we will show that when very large numbers of faults are present, word disabling

cannot operate whereas block disabling can(albeit with reduced capacity). Furthermore, we show

that by increasing the associativity of the L2 cache we can greatly reduce the chance of having a

set that is completely faulty.

For the L1 caches we cannot increase the associativity since it can affect the cache access

time. To remedy possible performance non determinism, for 64B caches, we propose to use a

victim cache [11]. As we will see in Chapter 5, using a victim cache relieves accessed sets that

happen to have many disabled sets and makes performance more deterministic. For 32B caches

we will show both analytically and experimentally that performance is more deterministic since

faults are less likely to cluster on few sets. Furthermore, we will show that by using prefetching

much of the performance loss occurred due to faults can be recovered.

Chapter 4

Analytical Evaluation and Comparison

In many cases, reliability problems for regular structures, such as caches, can be abstracted

and studied analytically. This approach allows to quickly explore parameters without the need for

numerous time consuming simulations. In this chapter, we use probability analysis to evaluate and

compare the capacity and yield of block disabling, word disabling and bit-fix for varying numbers

of cache faults.

For the analysis in the next sections we assume that faults occur with uniform random distribu-

tion at the granularity of a cell. Random process variation faults vary at such fine granularity [6].

The work that we compare against [32] also makes the same assumptions. In our analysis we use

the term pfail which is the probability of cell failure. For example, if pfail is 0.01, a cell has 10%

chance to be faulty or, put otherwise, 1 out of 10 cells will be faulty on average.

4.1 Capacity Analysis

The block disabling mechanism guarantees that cache capacity will be 50% in the presence

of faults. Similarly, bit-fix enables 75% of the capacity when operating under faults. For block

disabling however, capacity is dependent on the number of faults in the cache. The number of

17

18

0.
0

0
0

1

0.
0

0
02

0.
0

0
0

3

0.
0

0
0

4

0.
0

0
0

6

0
.0

0
1

0

0.
0

0
1

6

0.
0

0
2

5

0.
0

0
4

0

0.
0

0
63

0.
0

1
0

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Block dis.
32B
Block dis.
64B
Block dis.
128 B
Word dis.
Bit-fix

pfail

ca
pa

ci
ty

Figure 3: Capacity as a function of pfail

faults in the cache is in turn dependent on the probability of cell failure - pfail. Using the following

expression we can determine the capacity for a given pfail.

capacity = (1− pfail)k (1)

In the above expression k is the number of bits that, when faulty, the block in the cache is

disabled. For our work k = number of bits in a block + tag bits + ECC bits + dirty bit + valid bit.

This allows block disabling to protect against all faults that would compromise correctness. ECC

bits are also included so that soft error protection is not compromised by low voltage operation

or by process variation faults. Other bits, such as LRU bits, are ignored since they do not affect

correctness. Using equation 1 we plot Figure 3 that shows capacity for block disabling, word

disabling and bit-fix for varying pfail. For block disabling we plot three lines for varying block

sizes: 32B, 64B and 128B.

Since k in equation 1 is dependent on the number of bits per block, reducing the block size

results in increased capacity. This happens because when the block size is small, a single fault

19

disables less cache area compared to when the block size is bigger. Figure 3 shows that the effect

of block size in capacity is significant. When pfail is 0.001 for example, a 32B block cache will

have 72% capacity while a 128B cache will only have 30%. These results suggest that for a block

disabling scheme, selecting a smaller block size is crucial.

When we compare block disabling to word disabling we can see that depending on pfail, either

mechanism can have higher capacity. For pfail up to 0.002, block disabling(with 32B block) has

higher capacity. For pfail values higher than 0.002, word disabling offers more capacity. For pfail

up to 0.0009, block disabling offers more capacity than bit-fix as well. From this analysis, it is not

clear which mechanism performs better since capacity depends on pfail.

4.2 Yield Analysis

As described in Section 2.1, the word disable mechanism can only tolerate up to n/2 faulty

words in each subblock of n words. This means that when the number of faults in a subblock is

greater than n/2 the mechanism cannot operate and the chip has to be tossed(assuming no other

deconfiguration mechanisms are in place). Bit-fix cannot operate when more than 10 bit-pairs are

faulty in a block. In contrast, block disabling can operate despite high numbers of clustered faults.

This is a potential disadvantage for the word disable and bit-fix mechanisms. To determine the

probability of the word disabling mechanism to be inoperable we used the following expression.

pword dis fail = 1− (1− psubblock fail)blocks×2 (2)

Where blocks is the number of blocks in the cache and psubblock fail is the probability that a

subblock will have more than n/2 faulty words(n is the number of words in a subblock). psubblock fail

is given by the following equation.

20

n∑
i=n/2+1

(
n

i

)
(pwf)i(1− pwf)n−i (3)

Where pwf = 1 − (1 − pfail)32 is the probability that a word will be faulty (assuming 32 bit

words). Note that the above equations do not take the tag bits into account since for the word-

disabling scheme, the tag bits are assumed to be built using reliable 10T cells and are therefore

always fault free.

For bit-fix, we determine the probability that mechanism is inoperable using the following

expression.

pbitfix fail = 1− (1− pblock fail)blocks (4)

A block fails when it contains more than 10 faulty bit pairs. The probability of having more

than 10 faulty bit pairs in a block is given by the following.

a∑
i=11

(
a

i

)
(pbpf)i(1− pbpf)a−i (5)

Here, a is the number of bit pairs in a block and pbpf = 1− (1− pfail)2 is the probability that

a bit pair will be faulty.

Using equation 2 we plot Figure 4 which shows the probability of cache failure for 32Kb,64B

block L1 cache equipped with the word disable mechanism. As the pfail increases, the probability

of whole cache failure increases dramatically. After pfail 0.0015, yield starts to be significantly

affected(1/100 caches will be faulty). The 64B block block disabling configuration has a capacity

advantage over word disabling for pfail up to 0.0012. This means that word disabling has the

capacity advantage for only a small fraction of pfail before yield starts to be affected(illustrated

with gray in Figure 4). For pfail=0.0022, word disabling offers more capacity than both block

21

0.
0

0
0

0

0.
0

0
0

5

0.
0

0
10

0.
0

0
1

5

0.
0

0
2

0

0
.0

0
2

5

0.
0

0
3

0

0.000000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

pfail

P
ro

ba
bi

lit
y

of
 w

ho
le

 c
ac

he
 f

ai
lu

re
block dis(32B)
more capacity

block disable(64B)
more capacity

word disable
more capacity

word disable
low yield

Figure 4: Probability of cache failure for word disabling

disabling configurations(32/64B block). However, at this pfail the probability of whole cache

failure is 6.7%. This means that for the probabilities of cell failure that word disabling has a

capacity advantage, yield is significantly affected due to the limitations of the mechanism. This,

however, is not a problem for the bit-fix mechanism. As stated in [32], for pfail=0.001, only 1

out 1 billion caches are expected to fail.

In this section we have established that for a wide range of pfail block disabling offers more

capacity than word disabling or bit-fix. Furthermore, for high probabilities of failure, block dis-

abling continues to operate whereas word disabling may render the cache inoperable. However,

when pfail is high, block disabling may suffer severe performance degradation if many(or all)

blocks are disabled in a frequently accessed set. In the following section we will determine ana-

lytically the likelihood of such a scenario.

4.3 Probability of Set Failure

We define psetfail as the probability that of cache set having all of its blocks disabled due

to faults. When a set failure happens, performance is likely to degrade, especially if the failing

22

0.
0

0
00

0.
0

0
0

1
0.

0
0

0
2

0.
0

0
0

3
0.

0
0

0
4

0.
0

0
0

5
0.

0
0

0
6

0.
0

0
07

0
.0

0
0

8
0.

0
0

09
0.

0
0

1
0

0.
0

0
1

1
0.

0
0

1
2

0.
0

0
1

3
0.

0
0

14
0.

0
0

1
5

0.
0

0
1

6
0.

0
0

1
7

0.
0

0
1

8
0.

0
0

1
9

0.
0

0
2

0
0.

0
0

2
1

0.
0

0
2

2
0.

0
0

23
0

.0
0

2
4

0.
0

0
2

5
0.

0
0

2
6

0.
0

0
2

7
0.

0
0

28
0.

0
0

2
9

0.
0

0
30

0.
0

0
3

1
0.

0
0

3
2

0.
0

0
3

3
0.

0
0

3
4

0.
0

0
3

5
0.

0
0

3
6

0.
0

0
37

0
.0

0
3

8
0.

0
0

39
0.

0
0

4
0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 L1 32b
 L1 64b
 L2 32b 16w
 L2 32b 8w
 L2 64b 16w
 L2 64b 8w

pfail

P
ro

ba
bi

lit
y

o f
 s

et
 fa

ilu
re

Figure 5: Probability of set failure as a function of pfail

set happens to be frequently accessed. This is a potential shortcoming of the block disabling

mechanism. Using the following expression we can determine how likely set-failures are.

psetfail = 1− (1− psf)sets (6)

Where sets is the number of sets in the cache, and psf = pbf
ways is the probability of a

single set having all blocks disabled. pbf is the probability that a block is faulty and can be easily

obtained using equation 1. Using equation 6 we produced Figure 5 which shows the probability

of set failure for varying cache configurations. A description of each configuration can be found

in Table 2. As the figure illustrates, decreasing the block size and increasing the associativity

results in smaller probability of set failure. When pfail is 0.001 the 1 out of 250 L1 caches with

32B blocks will experience whole set failure. For L2 caches however, using a 32B block alone is

not sufficient. The 8-way L2 configuration will experience 1 set failure in every 5 caches which

may not be acceptable in terms of performance variation. To remedy this we can use a 16-way L2

cache. With the 16-way, 32B block configuration, L2 caches virtually never experience set failure.

23

Configuration Block Size Associativity
L1 32b 32 Byte 8-way
L1 64b 64 Byte 8-way
L2 32b 16w 32 Byte 16-way
L2 32b 8w 32 Byte 8-way
L2 64b 16w 64 Byte 16-way
L2 64b 8w 64 Byte 8-way

Table 2: Description of cache configurations

Number of failed sets
Configuration 0 1 2 3
L1 32b 0.9955 0.0045 1.01E-005 0.0000
L1 64b 0.8824 0.1105 0.0068 0.0002
L2 32b 16w 1.0000 4.03E-006 0.0000 0.0000
L2 32b 8w 0.7778 0.1953 0.0245 0.0020
L2 64b 16w 0.9930 0.0069 2.44E-005 5.72E-008
L2 64b 8w 0.0005 0.0041 0.0154 0.0387

Table 3: Probability of multiple set failures for pfail=0.001

It is also interesting to know if it is likely to have multiple set failures in the same cache. To

determine this we use the following expression:

(
sets

x

)
(psetfail)x(1− psetfail)sets−x (7)

Where x is the number of failed sets. Using this expression we calculated the probability of

having 0,1,2 and 3 set failures in the same cache for all configurations in Table 2 for pfail=0.001.

The results are shown in Table 3. The results show that for L1 caches and L2 16-way caches the

probability of multiple set failures is small. For 8-way L2 caches, however, multiple set failures are

likely. For this reason we believe it is highly preferable to use 16-way L2 caches in combination

with block disabling as multiple set failures may significantly affect performance.

The above results indicate that unless the correct cache configuration is chosen, set failure is

likely to occur in a block-disabling cache. However, a set failure on a set that is rarely accessed

during program execution will not affect performance. To assess the likelihood of set failure

occurring on a heavily accessed set we use equation 6. We change sets in the equation to be

the number of heavily accessed sets in the cache. In order to determine the number of heavily

24

32 B cache 64 B cache
IL1 DL1 L2 IL1 DL1 L2

ammp 22 40 3 33 30 3
applu 30 8 0 54 64 0
apsi 42 40 0 40 47 0
art 17 5 0 23 64 0
bzip 14 12 0 15 12 0
crafty 27 24 1 48 32 1
eon 34 39 0 44 35 0
equake 42 21 0 22 17 0
facerec 19 17 0 16 37 0
fma3d 26 33 0 33 33 0
galgel 12 2 1 7 64 1
gap 40 26 0 35 21 0
gcc 17 13 0 16 64 0
gzip 34 15 0 21 13 0
lucas 20 4 4 11 4 4
mcf 16 2 3 10 64 3
mesa 40 33 1 42 26 1
mgrid 26 7 0 55 64 0
parser 26 31 0 35 31 0
perlbmk 31 17 1 34 16 1
sixtrack 29 28 0 18 45 0
swim 29 2 0 41 64 0
twolf 30 19 0 29 46 0
vortex 24 31 3 39 26 3
vpr 26 14 3 19 29 3
wupwise 23 31 0 15 19 0
average 26 19 1 29 37 1

Table 4: Number of heavily accessed sets per cache

accessed sets we performed simulations for 2 cache configurations: 1) I-cache/D-cache 8-way,

64B block; L2 8-way, 64B block. 2) I-cache/D-cache 8-way, 32B block ; L2 16-way, 32B block.

Our simulation environment is described in detail in chapter 5. We consider a set as heavily

accessed(or hot) if the number of accesses for that set is greater than 1% of the total number of

accesses for the cache containing the set. Table 4 shows the number of heavily accessed set for

the aforementioned two cache configurations and for each of the 26 SPEC2000 benchmarks that

we simulated.

Using the averages in Table 4 and equation 6, we plot Figure 6 which shows the probability of

having a set failure on a hot set. The probability of set failure happening on hot set is of course

smaller than the probability of set failure happening anywhere in the cache. However, the figure

25

0.
0

0
0

0

0.
0

0
0

5

0.
0

0
1

0

0.
0

0
1

5

0.
0

0
2

0

0.
0

0
25

0.
0

0
3

0

0
.0

0
3

5

0.
0

0
4

0

0.
0

0
45

0.
0

0
5

0

0.
0

0
5

5

0.
0

0
60

0.
0

0
6

5

0.
0

0
7

0

0.
0

0
7

5

0.
0

0
8

0

0.
0

0
85

0.
0

0
9

0

0
.0

0
9

5

0.
0

1
0

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
IL1 32
DL1 32
L2 32
IL1 64
DL1 64
L2 64

pfail

P
ro

ba
bi

lit
y

o f
 a

cc
es

s
to

 a
 fa

ile
d

se
t

Figure 6: Probability of set failure occurring on a frequently accessed set

shows that for the 64B block L1 caches, hot set failure is likely. Specifically, for the 64B-IL1 cache

configuration, 3 out of 100 caches will experience hot set failure. For the 64B-DL1 configuration,

hot set failure happens at a rate of 4/100 caches. In contrast, the 32B caches experience hot set

failure at a rate of 3/1000 caches. The L2-64B cache is also much less likely to have hot set failure

(1/1000 caches) and in L2-32B caches, hot set failure virtually never happens. The above results

indicate that clustering of faults in hot sets is likely for the L1 caches if the block size is 64 bytes.

This can be remedied by using a 32B block.

The above analysis considers the average number of hot sets across all 26 SPEC bench-

marks. This approximates the probability of having set failure on a hot set for a typical pro-

gram. However, most computers run multiple programs(e.g. operating system processes, user

applications). Different programs are likely to have different hot sets. As result, when running

multiple programs the number of hot sets increases and the probability of hot set failure increases

as well. Given a cache that has one set failure, the probability of one program accessing that set

is psfa = program hot entries
sets in cache . When a number of programs m is using the cache, the probability

26

0 5 10 15 20 25 30

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IL1 32
DL1 32
IL1 64
DL1 64

Number of programs

P
ro

ba
bi

lit
y

of
 a

cc
es

s
to

 f
ai

le
d

se
t

Figure 7: Probability of accessing a failed L1 set for varying number of programs

that one of the programs will access the failed set is1 psfa−m = 1 − (1 − psfa)m. Using this

expression and the averages in Table 4 plot Figures 7 and 8. Figure 7 shows, for a varying number

of programs, the probability of accessing a failed L1 set. As the figure shows, even for a small

number of programs, accessing a failed set is very likely. This means that for L1 caches if a set

failure occurs, it is very likely that it will affect a hot entry for some program. Figure 8 shows

the results for L2 caches. The figure shows that even when a very large number of programs is

considered, the probability of set failure on a hot set is small(2.4% for 32B block caches and 4.7%

for 64B block caches at 100 programs). This happens because the ratio of hot sets and total cache

sets(psfa) is very small for L2 caches.

4.4 Extending the Methodology for Other Mechanisms

In this section we demonstrate how the analytical methodology described in this chapter can

be extended to other mechanisms. Specifically, we will perform analytical estimation of cache

capacity for a reliability mechanism similar to the one proposed by Roberts et al. [25]. This
1This analysis assumes that the positions of hot sets for each program are random.

27

0 10 20 30 40 50 60 70 80 90 100

0%

1%

2%

3%

4%

5%

L2 32
L2 64

Number of programs

P
ro

ba
bi

lit
y

of
 a

cc
es

s
to

 f
ai

le
d

se
t

Figure 8: Probability of accessing a failed L2 set for varying number of programs

mechanism, which we will call incremental word disabling, allows pairs of blocks that are fault

free to operate at full capacity even at low voltage operation. Additionally, pairs of blocks that

contain a half-block with more than 4 faulty words are disabled so that the whole chip does not

have to be discarded. Block pairs that contain faults, but do not have to be disabled, operate at

half capacity as in the word-disabling scheme. To estimate the capacity of this scheme we use the

following:

pbpff + (1− pbpff − pbpd)/2 (8)

where pbpff represents the probability that a block-pair is fault-free, and pbpd the probability that

a block-pair is disabled. Therefore, expression 1 − pbpff − pbpd corresponds to the fraction of

block pairs that operate at half capacity. To calculate pbpff we use the following expression:

pbpff = (1 − pfail)k×2 where k is the number of data bits in a block. pbpd is calculated from

1 − (1 − phbf)4 where phbf represents the probability that a half-block will contain more that 4

faulty blocks and is obtained using Eq. 3.

Fig. 9 shows that the incremental word-disabling mechanism for a 32KB 64B/block cache

performs well. At low probabilities of failure, the number of fault free block-pairs is high with

28

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,
00

0

0,
00

1

0,
00

2

0,
00

3

0,
00

3

0,
00

4

0,
00

5

0,
00

6

0,
00

7

0,
00

8

0,
00

9

0,
01

0

pfail

C
ap

ac
ity

Figure 9: Capacity as a function of pfail for the incremental word-disabling scheme

capacity over 50%. As the number of faulty cells increases, more block-pairs will contain faults

and capacity begins to saturate at 50%. When we move to higher probabilities of failure, more

block-pairs are disabled which decreases capacity to a value below 50%. The analysis shows

that the incremental word-disabling scheme degrades more gracefully than word-disabling while

completely avoiding the whole cache failure scenario.

We do note however, that this scheme may not be easy to implement. A block pair can be in

three states: fault-free, disabled, half capacity. A different access path is required for the fault-

free and half capacity blocks since the later requires the block to pass through the word-disabling

shifting network. This can increase the cache access time non-determinism and may complicate

implementation.

4.5 Overview

In this chapter we described an analytical methodology for estimating capacity, yield and clus-

tering of faults. This analysis indicates that with a 32B block configuration, block disabling has a

29

capacity advantage over word disabling and bit-fix for a wide range of pfail. Also, our yield anal-

ysis shows that for very high failure rates(pfail > 0.001), word disabling is likely to be inoperable

since it cannot handle more than a fixed number of faulty words in each subblock. Furthermore,

we have seen that a 64B block cache is more likely to suffer hot set failures (clustering of faults

in a frequently accessed set) whereas a 32B block cache is more resistant. We have also seen

how the methodology described in this chapter can be easily extended to study other reliability

mechanisms.

The analysis in general leads us to believe that when using block disabling, cache configuration

is an important factor that cannot be overlooked. Also, the capacity benefits from using block

disabling indicate that it may be a preferable solution over word disabling and bit-fix.

Chapter 5

Experimental Evaluation and Comparison

In this chapter we will evaluate block disabling, word disabling and bit-fix experimentally.

Experimental evaluation is necessary because analytical evaluation does not take into account all

the parameters that may affect performance in a real processor. For example, more capacity may

not necessarily translate to improved performance if the capacity requirements of a program are

low. Furthermore, probability analysis does not take into account performance mechanisms that

may be present in a processor -such as a victim cache or a prefetcher- that may lessen or worsen

the effects of faults in the cache.

5.1 Experimental Framework

For our experiments we used the validated, cycle accurate simulator sim-alpha [9] that models

a high-performance out of order superscalar processor. The simulator is extended to support cache

block disabling. Details of all modifications performed on the simulator can be found in Appendix

B. Table 5 contains the processor parameters that are constant for all runs while Table 6 shows

configuration specific parameters. For configurations that use a victim cache, we used a two 16

30

31

Parameter description Setting
Pipeline depth 15 stages
Line Predictor 6.5 KB
RAS 16 entries
Branch Predictor 8 KB gshare (15 bits history)
Fetch/Decode/Issue/Commit up to 4/4/6/4 instr. per cycle
Issue Queue 40 INT entries, 20 FP entries
Functional Units 4 INT ALUs, 4 INT mult/div, 1 FP ALUs, 1 FP mult/div
Reorder buffer 128 entries

Table 5: Processor parameters that are constant for all configurations

Configuration L1(I+D) L2 Victim$ Prefetching Fig
size, associativity, size, associativity,
block, latency block, latency

High Voltage - Frequency:3GHz, DRAM latency:255 cycles
64B 32KB, 8-way, 64B,3 2MB, 16-way, 64B, 20 no no 10
64B-Victim Cache 32KB, 8-way, 64B,3 2MB, 16-way, 64B, 20 yes no 10
64B-Prefetch 32KB, 8-way, 64B,3 2MB, 16-way, 64B, 20 no yes 10,12
64B-Both 32KB, 8-way, 64B,3 2MB, 16-way, 64B, 20 yes yes 10
32B 32KB, 8-way, 32B,3 2MB, 16-way, 32B, 20 no no 11
32B-Victim Cache 32KB, 8-way, 32B,3 2MB, 16-way, 32B, 20 yes no 11
32B-Prefetch 32KB, 8-way, 32B,3 2MB, 16-way, 32B, 20 no yes 11,12
32B-Both 32KB, 8-way, 32B,3 2MB, 16-way, 32B, 20 yes yes 11
64B word-disable/bit-fix 32KB, 8-way, 32B,4 2MB, 16-way, 32B, 23 no yes 13

Low Voltage - Frequency:600MHz, DRAM latency:51 cycles
64B-No Faults 32KB, 8-way, 64B,3 2MB, 16-way, 64B, 20 no no 14
64B-No Faults-Prefetch 32KB, 8-way, 64B,3 2MB, 16-way, 64B, 20 no yes 14
64B 32KB, 8-way, 64B,3 2MB, 16-way, 64B, 20 no no 15,18
64B-Prefetch 32KB, 8-way, 64B,3 2MB, 16-way, 64B, 20 no yes 16,18
64B-Prefetch/V$ 32KB, 8-way, 64B,3 2MB, 16-way, 64B, 20 ye yes 18,20
32B 32KB, 8-way, 32B,3 2MB, 16-way, 32B, 20 no no 15,19
32B-Prefetch 32KB, 8-way, 32B,3 2MB, 16-way, 32B, 20 no yes 17,19,21
32B-Prefetch/V$ 32KB, 8-way, 32B,3 2MB, 16-way, 32B, 20 yes yes 19
64B word-disable/bit-fix 16KB, 4-way, 64B,4 1.5MB,12-way,64B, 23 yes yes 20
32B word-disable/bit-fix 16KB, 4-way, 32B,4 1.5MB,12-way,32B, 23 no yes 21

Table 6: Configuration dependent parameters

entry victim caches, one for each L1 cache(I+D). 1 For configurations that use prefetching, we

used a sequential tagged prefetcher[23] for the L1 caches and a correlating prefetcher [22] in the

L2. More details about the prefetching mechanisms can be found in Appendix A. The word-

disable/bit-fix configurations employ word-disabling for the L1 caches and bit-fix for the L2. For

convenience, Table 6 shows for each configuration, the figure that uses it.
1For simplicity we assume that the victim caches are fault free. Future work will investigate the performance effects

of disabling parts of the victim cache. Preliminary analysis leads us to believe that disabling few entries of the victim
cache will not significantly affect performance.

32

The performance of block-disabling is evaluated with many simulation runs since faults can

occur randomly at any cell. In particular, block-disabling configurations are evaluated with 30

random fault maps for each cache(IL1, DL1 and L2). Each fault map contains an entry for each

set in the cache that it corresponds to. For example, for an L2 cache with 4096 sets, each L2 fault

map will contain 4096 entries. Each entry holds the number of faulty blocks for its associated set.

The number of faulty blocks per set is determined randomly using as input the cell probability of

failure -pfail- and the number of bits associated with each block. For our experiments, the cell

probability of failure is assumed to be 0.001, the same as in [32]. According to the projections in

[19], cell failure rates greater than 0.001 are not likely even for 12nm technologies. Each block

is associated with its data bits(blocksize × 8), the tag bits for that block, ECC bits for that block

(1 bit per byte), a valid bit and a dirty bit. Whenever one of these bits is faulty, the associated

block is considered faulty and its disable bit is set. This grouping of bits allows us to protect from

faults in both the data and tag array of the cache. Also, by including the ECC bits, we make sure

that soft error protection is not compromised by low voltage or process variation faults. In the

next sections we report, for each block-disabling configuration and benchmark, the average and

minimum values for 30 runs using different fault maps.

To simulate the operation of word disabling, we reduced the cache capacity and associativity

by half and increased the cache access time by one cycle. Similarly for bit-fix we reduced cache

capacity and associativity by 25% and increased the cache access time by 3 cycles. Since per-

formance does not depend on the location of faults for these mechanisms, we did not use fault

maps and instead performed one experiment per configuration required. In the next sections, word

disabling and bit-fix are used together. Specifically, word disabling is used for the L1 caches and

bit-fix is used for L2. This configuration was proven to be the best performing in [32].

33

Mechanism Area required(bytes) Area assumed fault free Other overheads
Block disable 64B 4224 4224 N/A
Block disable 32B 125248 8448 N/A
Word disable/bit-fix 2048 118848 Shifting networks

Table 7: Comparison of block disabling, word disabling and bit-fix in terms of area overhead

Table 7 shows the area overheads for block disabling - using 32B and 64B block- and the

word-disable/bit-fix configuration. The area overhead for the 64B block disabling configuration

consists of one extra bit per block for all caches. When using 32B block the tag array doubles.

This is reflected in the area cost of the 32B configuration. The area cost for the word-disable/bit-

fix configuration is one bit per data word for the L1 caches. Since bit-fix stores the correction bits

inside the cache there is no additional area overhead. However, word disabling and bit-fix require

the tag array to be fault free. As a result the tag array bits must be protected using either ECC or re-

liable transistors that take up more area. Additionally, word disabling and bit-fix require a shifting

network to remove/repair faults from the cache. Overall, the least expensive mechanism in terms

of area overhead is block disabling using 64B block while the most expensive is block disabling

with 32B block. It is important to note, however, that the 32B block disabling configuration is

much simpler to implement than word-disable/bit-fix.

For all experiments that we present in the next sections, we run all 26 SPEC CPU 2000 bench-

marks for 100M committed instructions using reference inputs. The simulation regions were se-

lected using an in-house SimPoint-like[10] tool.

5.2 Fault Free Operation at High Voltage

In this section we compare various cache configuration schemes when operating at high volt-

age and no faults are present. Our goal is to select the optimal baseline configuration. Addition-

ally, we compare our optimal configuration to a cache equipped with word disabling and bit-fix.

34

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

victim cache
prefetching
both

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 10: Performance improvements from using a victim cache, prefetching and the combination
of both for a 64B block cache. Results are normalized to a 64B block cache configuration with
prefetching and victim caching disabled.

Since the word disabling and bit-fix mechanisms increase cache access time(even when operat-

ing without faults), we would like to assess if the increased access time has significant impact on

performance.

For the selection of the optimal baseline cache configuration we consider three cache pa-

rameters: block size(32B or 64B), victim cache and prefetching. Figure 10 shows the perfor-

mance benefit from using victim cache, prefetching and the combination of the two for 64B block

caches. The Y axis shows performance(IPC) normalized to a 64B block cache without victim

cache or prefetching and the X axis shows the 26 SPEC 2000 benchmarks. The benchmarks are

divided in floating point(left) and integer(right) and then sorted alphabetically. The figure shows

that prefetching is beneficial for most benchmarks(14 benchmarks benefit). Some benchmarks

are insensitive or have little performance increase or degradation and just three benchmarks ex-

perience performance degradation greater than 1%(lucas,gcc,mcf). Overall, by using prefetching

average performance across all benchmarks increases by 4.9%. Victim caching is less beneficial

with only three benchmarks (apsi, fma3d and crafty) seeing performance increase. The average

35

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

victim cache
prefetching
both

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 11: Performance improvements from using a victim cache, prefetching and the combination
of both for a 32B block cache. Results are normalized to a 32B block cache configuration with
prefetching and victim caching disabled.

performance improvement from victim caching for all benchmarks is 0.5%. This leads us to be-

lieve that, at least for our processor configuration, victim caching is not beneficial to performance.

When victim caching and prefetching are combined, average performance increases by 5.8%. This

is due to the benchmark lucas where victim caching helps alleviate the performance loss caused

by prefetching. In this case, prefetching causes pollution (replacement of useful blocks) in the

L1 data cache and the victim cache helps by providing some of the replaced blocks when they

are later requested. The average performance difference between using prefetching alone or using

prefetching combined with a victim cache is less than 1%. This led us to omit victim caching from

our baseline configuration.

Figure 11 shows a similar comparison for a 32B block cache. The figure shows on the Y axis,

performance normalized to a 32B block cache without victim cache or prefetching while the X axis

holds the 26 SPEC benchmarks. Similarly to the 64B cache, the figure shows that prefetching is

beneficial to performance(5.6% average improvement) while victim caching is not(0.3% average

improvement). As a result, we omit the victim cache from the 32B block cache baseline as well.

36

a
m

m
p

a
p

p
lu

a
p

si a
rt

e
q

u
a

ke

fa
ce

re
c

fm
a

3
d

g
a

lg
e

l

lu
ca

s

m
e

sa

m
g

ri
d

si
xt

ra
ck

sw
im

w
u

p
w

is
e

b
zi

p

cr
a

fty

e
o

n

g
a

p

g
cc

g
zi

p

m
cf

p
a

rs
e

r

p
e

rl
b

m
k

tw
o

lf

vo
rt

e
x

vp
r

a
ve

ra
g

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

150%

P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

Figure 12: Performance improvements from using a 32B block cache over a 64B block cache

Figure 12 shows the performance improvement of using a 32B block cache over a 64B block

cache. Both caches in this comparison utilize prefetching but not victim caching. The graph shows

on the X axis the 26 benchmarks and on the Y axis the IPC improvement of using 32B block cache

over a 64B block cache. Bars that are above 100% show performance benefit in favor of the 32B

cache whereas bars below 100% show performance benefit for the 64B cache. From the figure we

can see that for 3 benchmarks, performance is significantly better when using a 32B block(lucas,

gcc, mcf) while two benchmarks(art, wupwise) benefit more from the 64B block. Overall, the

performance improvement from using the 32B block is 1.8%. However, the 32B block cache is

more costly to implement since double the area has to be allocated for storing block tags. We

calculated that cache area(data bits+tag bits) increases by 5.1% as a result of reducing the block

size from 64B to 32B. Since the performance benefit from the smaller block size is small, we

decided to use the 64B cache as our baseline.

Figure 13 compares our baseline cache configuration to the word disabling/bit-fix configura-

tion. In this scheme, word disabling is used for the L1 caches(I+D) and bit-fix id used for the

L2 cache(this configuration was the best performing in [32]). The figure shows the 26 SPEC

37

a
m
m
p

a
p
p
lu

a
p
si a
rt

e
q
u
a
ke

fa
ce
re
c

fm
a
3
d

g
a
lg
e
l

lu
ca
s

m
e
sa

m
g
ri
d

si
xt
ra
ck

sw
im

w
u
p
w
is
e

b
zi
p

cr
a
fty

e
o
n

g
a
p

g
cc

g
zi
p

m
cf

p
a
rs
e
r

p
e
rl
b
m
k

tw
o
lf

vo
rt
e
x

vp
r

a
ve
ra
g
e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

P
er
fo
rm

an
ce

Figure 13: Performance degradation from using word disabling and bit-fix

benchmarks on the X axis and on the Y axis the performance of the disabling/bit-fix configuration

normalized to the performance of our baseline cache. Both the disabling/bit-fix configuration and

the baseline cache have prefetching enabled. The figure shows that performance suffers when

word disabling and bit-fix are used. The average performance degradation across all benchmarks

is 4.4%. The performance degradation is caused by the increased cache access times that the word

disabling and bit-fix mechanisms require (one and three cycles respectively). This performance

degradation comes at no benefit in high voltage operation where no faults are present.

5.3 Low Voltage Operation without Faults

Having established our baseline configuration in high voltage operation, we move to examine

our cache configuration parameters for low voltage operation. When operating at low voltage,

processor frequency decreases while memory frequency remains constant. As a result, the latency

to access the main memory in terms of processor cycles decreases. This leads some tradeoffs in the

cache hierarchy to shift. In our case, when the main memory access time decreases, prefetching

becomes less beneficial since the penalty of cache misses becomes smaller. This is illustrated in

38

a
m
m
p

a
p
p
lu

a
p
si a
rt

e
q
u
a
ke

fa
ce
re
c

fm
a
3
d

g
a
lg
e
l

lu
ca
s

m
e
sa

m
g
ri
d

si
xt
ra
ck

sw
im

w
u
p
w
is
e

b
zi
p

cr
a
fty

e
o
n

g
a
p

g
cc

g
zi
p

m
cf

p
a
rs
e
r

p
e
rl
b
m
k

tw
o
lf

vo
rt
e
x

vp
r

a
ve
ra
g
e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

P
er
fo
rm

an
ce

Figure 14: Performance improvement due to prefetching at low voltage operation

Figure 14. In this figure, the performance of the cache equipped with prefetching is normalized

to the performance of a cache without prefetching. A 64B block configuration was used for this

comparison. 2 Most benchmarks experience small performance improvements due to prefetching

while for three benchmarks(lucas, gcc and mcf) performance is significantly reduced. The average

performance improvement for all benchmarks is only 0.6%. These results indicate that for low

voltage operation prefetching in not as useful as in normal operation. Because of this, we chose

to switch prefetching off during low voltage operation in order to save energy. It is possible that

a prefetching mechanism can be devised that is beneficial to performance at low voltage mode.

Creating such a mechanism, however, was not in the scope of this work.

5.4 Low Voltage Operation with Faults Present

Block disabling deconfigures the cache reducing capacity and associativity depending on the

number and location of faults. Because of this, the optimal cache configuration without faults may
2As with high voltage, there is very little overall performance benefit of using smaller block size when no faults are

present so we use the 64B block configuration as baseline.

39

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

64B block avg
32B block avg
64B block min
32B block min

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 15: Block disabling with 64B block and 32B block. Results are normalized to a 64B block
cache configuration without faults.

not be optimal in the presence of faults. In this section we will evaluate our baseline cache config-

uration in combination with block disabling and select the cache parameters that are beneficial for

operation in the presence of faults. Our optimal block disabling configuration is then compared

against a word disabling/bit-fix configuration.

5.4.1 Block Disabling 32B VS 64B

We begin by comparing our baseline scheme for low voltage operation(64B block) with a

32B block scheme. In both these configurations prefetching is switched off. We have seen in

Chapter 4 that by using a smaller block, more capacity is available when block disabling is used.

Additionally, we predicted analytically that the smaller block size would make performance more

deterministic as it made clustering of faults in highly accessed sets more unlikely. However, it

remained to be seen if these benefits would actually translate to better performance.

Figure 15 compares a 64B block and a 32B block cache configurations, both utilizing the

block disabling mechanism for protection against faults. The figure shows, for each benchmark

40

on the X-axis, the average and minimum performance of 30 random runs for the two configura-

tions. Performance is normalized to a 64B cache without faults. From the figure it is clear that,

when operating under faults, the 32B configuration offers superior performance. For the majority

of benchmarks, performance is greatly increased when a 32B block is used. This happens be-

cause, as described in Chapter 4, the 32B configuration has more capacity available. Furthermore,

performance is more deterministic for the 32B configuration with the minimum values of the ran-

dom runs following more closely at the averages. Across all benchmarks, 64B block-disabling

suffers a 16% drop in performance in the presence of faults while for 32B block-disabling, per-

formance only drops by 8%. The average difference between the minimum and average values is

3.4% for the 64B configuration and 1.3% for the 32B configuration meaning that performance is

significantly more deterministic for the smaller block configuration.

The above results clearly indicate that for block disabling, using a smaller block configura-

tion is preferable. However, using a smaller block may not always be feasible since it increases

the total cache area. When minimum area overhead is the key goal, the 64B configuration may

be preferable. For this reason, we consider both the 32B and 64B configurations as alternatives

to be used depending on whether the design goal is minimum area overhead or maximum per-

formance. In the following subsection we will describe how to improve both configurations to

increase performance in the presence of faults.

5.4.2 Block Disabling with Prefetching and Victim Caching

The analysis in Section 5.3 indicated that little was to gain from prefetching at low voltage

mode. In the presence of faults however, this can change. Cache capacity decreases significantly

when faults are present in a block disabling cache. Program access patterns that could be serviced

efficiently without faults may cause misses when capacity is reduced due to faults. Consider the

41

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

no pref avg
pref avg
no pref min
pref min

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 16: Block disabling with 64B block, with and without prefetching. Results are normalized
to a fault-free 64B block cache configuration without prefetching.

following example. Throughout execution, a program frequently requests data from 7 blocks in the

same cache set. Since the cache associativity is 8, after an initial miss the data will be constantly

present in the cache and subsequent request will result in hits. In low voltage mode, one of the

blocks of that set has a fault and as a result is disabled. Now, this set will consistently produce

misses. Since the misses are consistent, an intelligent prefetching mechanism can identify the

miss pattern and issue prefetches before absent blocks are demanded. On the other hand, issuing

prefetches into sets that have reduced associativity because of faults may cause further misses.

This can happen if the prefetches replace useful data in the cache.

To determine if prefetching is beneficial for our block disabling scheme we performed exper-

iments. We evaluate prefetching with block disabling both for the 64B block and the 32B block

cache configurations. Figure 16 shows the results for the 64B block caches. Both the average and

the minimum of 30 random runs is shown. Results are normalized to a 64B block, fault-free cache

without prefetching. The figure shows that prefetching is beneficial for some benchmarks(15 out

of 26 benchmarks benefit) while for other benchmarks(6 out of 26) performance suffers due to

42

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

no pref avg
pref avg
no pref min
pref min

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 17: Block disabling with 32B block, with and without prefetching. Results are normalized
to a fault-free 32B block cache configuration without prefetching.

prefetching. If we recall the results from Section 5.3, we can see that for benchmarks lucas, mcf

and gcc performance drops even in the absence of faults when prefetching is used. However, for

benchmarks ammp, galgel and vpr performance drops as a result of the combination of prefetching

and faults. In these cases prefetching degrades performance as prefetching requests replace useful

data in cache sets that have reduced associativity due to faults. On average, the performance ben-

efit from using prefetching is less than 1%. However, this is not the case for the 32B block cache.

Figure 17 shows the average and minimum of 30 runs for a 32B cache, with and without prefetch-

ing. Results on this figure are normalized to a 32B block cache without prefetching and without

faults. As the figure shows, prefetching is for the majority of benchmarks beneficial to perfor-

mance. Two benchmarks - lucas and mcf - experience performance degradation with prefetching

enabled. We performed analysis similar to that in Section 5.3 but for a 32B block cache and found

that for these two benchmarks perform badly when prefetching is enabled even in the absence of

faults. In contrast, benchmark apsi sees little performance improvement from prefetching in fault

free operation but when faults are introduced performance increases when prefetching is enabled.

43

Benchmark Fault-free Faults present Difference
ammp 0.001 0.002 0.000
applu 0.022 2.039 2.017
apsi 0.831 9.075 8.244
art 0.002 0.003 0.001
bzip 0.002 0.003 0.000
crafty 2.949 14.014 11.065
eon 0.013 3.233 3.220
equake 0.002 0.241 0.238
facerec 0.002 0.010 0.008
fma3d 5.034 12.735 7.701
galgel 0.001 0.001 0.000
gap 0.006 0.947 0.941
gcc 2.336 5.614 3.278
gzip 0.003 0.003 0.001
lucas 0.000 0.000 0.000
mcf 0.001 0.002 0.001
mesa 0.011 0.798 0.787
mgrid 0.017 0.056 0.039
parser 0.081 0.267 0.186
perlbmk 0.012 0.920 0.908
sixtrack 0.007 0.768 0.761
swim 0.010 0.011 0.001
twolf 0.022 1.424 1.402
vortex 1.613 4.295 2.682
vpr 0.003 0.004 0.001
wupwise 0.007 0.029 0.022

Table 8: I-cache misses per 1K instructions with and without faults

This happens because at fault-free operation this benchmark has few IL1 cache misses so there

is little need for prefetching. When faults are introduced, cache misses increase substantially and

there is opportunity for prefetching to be useful. This effect is also true for benchmarks fma3d and

crafty(for these benchmarks prefetching does not help significantly in fault-free operation). Table

8 shows the difference in misses per 1K instructions in fault-free and faulty operation for the in-

struction cache for all SPEC2000 benchmarks(using the 32B block configuration with prefetching

enabled). As the table shows, the benchmarks that benefit from prefetching in the presence of

faults see a significant increase in I-cache misses due to faults. Overall, for the 32B block cache,

prefetching increases performance by 2.3% compared to not using prefetching. Prefetching is

more useful in the 32B block configuration than in the 64B block configuration because, as we

have seen in Section 4.3, it is less likely for faults to cluster in the same set in the smaller block

44

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

no pref/no V$ avg
pref avg
pref+V$ avg
no pref/no V$ min
pref min
pref+V$ min

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 18: Block disabling with 64B block, with prefetching(pref) and victim caching(V$). Re-
sults are normalized to a fault-free 64B block cache configuration without prefetching or victim
caching.

configuration. As a result, prefetching is less likely to replace useful data since associativity will

likely be higher.

In [16] it was shown that, for a 64B cache configuration using block disabling, using a victim

cache helps reduce performance non determinism caused by the random placement of faults in

the cache. The victim cache helps by relieving pressure from frequently accessed sets that hap-

pen to have reduced associativity due to faults. Although we have seen in Section 5.2 that victim

caching is not substantially beneficial to performance for our baseline configuration, we reexamine

its use in the presence of faults and prefetching. Figure 18 compares block disabling, block dis-

abling with prefetching and block disabling with prefetching and victim caching for a 64B cache

configuration. These results are normalized to a 64B, fault free cache. The figure shows that vic-

tim caching together with prefetching is preferable than using prefetching alone. This happens

because the victim cache helps reduce the misses caused when the prefetching mechanisms issue

prefetches into sets with limited associativity. When compared to the baseline block disabling con-

figuration(prefetching and victim caching disabled), the pref+victim cache configuration performs

45

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

no pref avg
pref avg
pref+V$ avg
no pref min
pref min
pref+V$ min

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 19: Block disabling with 32B block, with prefetching(pref) and victim caching(V$). Re-
sults are normalized to a fault-free 32B block cache configuration without prefetching or victim
caching.

better(4% average improvement) whereas by using prefetching alone performance improvement is

insignificant. Also, the victim cache helps with performance variation. On average the difference

between average and minimum performance for each benchmark is 3.4% for the baseline block

disabling and 1.6% when a victim cache is used. This confirms, as in [16], that the victim cache

is helpful in terms of reducing performance variability.

Similar analysis was performed for the 32B cache configuration and the results are shown in

Figure 19. These results are normalized to a 32B cache without victim caching or prefetching

enabled. The figure shows that there is little performance gain from using a victim cache together

with prefetching. Average performance improvement is less than 1%. However, performance

predictability is increased. On average the difference between average and minimum performance

when no victim cache is present is 1.5%. For the victim cache configuration the difference is

0.9%. The improvement in performance predictability is not as pronounced as in the 64B block

configuration. This happens because, as we have seen from the analysis in Section 4.3, the 32B

46

cache configuration is more resilient to clustered faults and as a result, less prone to performance

variations.

The above results indicate that the optimal block disabling configuration for a 64B cache com-

bines prefetching and victim caching while for 32B caches prefetching alone could be sufficient.

Since the hardware cost for a victim cache is small, we chose to include a victim in the 32B

block configuration as well since it increases performance predictability and acts as an additional

safeguard against performance variation. In the following section we will compare these two

configurations against a cache that is equipped with word disabling and bit-fix.

5.5 Comparison of Block Disabling, Word Disabling and Bit-fix in Low Voltage Operation

In Section 5.2 we have seen that, due to mechanism overheads, a cache equipped with word

disable and bit fix suffers significant performance degradation in fault free operation. This is not

the case for block disabling. In this section we compare the two best performing block disabling

configurations(32B and 64B) against a cache equipped with word disable for the L1 caches and

bit-fix for the L2 cache.

Figure 20 compares word-disable/bit-fix against block disabling for a 64B cache. Both the

block disabling cache and the word-disable/bit-fix cache have prefetching and victim caching

enabled. Results are normalized to a faultless 64B cache with prefetching and victim caching

disabled(which is the best performing configuration for low voltage operation without faults).

From the figure we can see that for some benchmarks(13/26), block disabling performs better

than word-disable/bit-fix. For other benchmarks(5/26), word-disable/bit-fix has the advantage.

For three benchmarks (art, galgel and gcc) word-disable/bit-fix performs significantly better. On

average, the two mechanisms perform equally. Average performance degradation compared to the

fault free cache is 11.6% for both configurations. If we recall the analysis in Section 4.1 we can see

47

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

block disable avg
word-dis/bitfix
block disable min

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 20: Comparison of block disabling and word-disabling/bit-fix for a 64B cache. Results are
normalized to a fault-free 64B block cache configuration without prefetching or victim caching.

that for pfail 0.001, block disabling has a capacity advantage over word disabling. However, for

this pfail, bit-fix has a capacity advantage over block disabling. As a result, neither configuration

has a clear advantage over the other and this is reflected in the results.

Figure 20 compares word-disable/bit-fix against block disabling for a 32B cache. Both the

block disabling cache and the word-disable/bit-fix cache have prefetching and victim caching

enabled. Results are normalized to a 32B cache without faults and with prefetching and victim

caching disabled. The figure shows that for 32B caches, block disabling outperforms the word-

disable/bit-fix configuration. For the majority of benchmarks, block disabling performs better and

for the rest it closely follows word-disable/bit-fix. Average performance degradation is 4.3% for

block disabling and 11.5% for word-disable/bit-fix. Note that for word-disable/bit-fix performance

is almost unchanged between the 64B and 32B configurations. This happens because capacity and

associativity remain the same regardless of the block size.

From the above results it is clear that when high performance is required, block disabling using

32B block is the preferred solution. However, if minimum cost is the goal, block disabling using

48

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

block disable avg
word-dis/bitfix
block disable min

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 21: Comparison of block disabling and word-disabling/bit-fix for a 32B cache. Results are
normalized to a fault-free 32B block cache configuration without prefetching or victim caching.

64B block may be preferred as it performs similarly to word-disable/bit-fix, is simpler and can be

implemented with minimal area overhead.

5.6 Implications of Set Failure

The results we have presented so far for block disabling where produced using 30 randomly

created fault maps. This approach is useful for capturing average behaviour. However, as we have

seen in Section 4.3, it is possible for a set to be completely faulty(set failure). In the randomly

created fault maps that we produced set failure did not happen. To assess the performance impact

of set failure we created specific fault maps where the most frequently accessed set is completely

faulty(no blocks available). These fault maps have faults only in the most useful(frequently ac-

cessed) set. We present results for each of the caches separately(in each set of experiments we

disable the most useful set of only one cache). For the experiments below, we used our best

performing block disabling configuration for 64B block caches (victim caching and prefetching

where enabled).

49

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

set failure
one block good

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 22: Effect of set failure on the L1 data cache

Figure 22 shows the effect of set failure for the DL1 cache. As the figure shows, set failure

in the DL1 cache can significantly affect performance. Out of 26 benchmarks, four have more

than 10% performance degradation. For benchmark perl, performance drops by more than 15%.

The figure also shows what happens if one block is fault free instead of disabling all blocks in the

set(indicated as one block good in the figure). As the figure shows, when one block is operational

most of the performance degradation is recovered. Benchmark lucas is the odd case where having

one block good actually degrades performance. In this case, having one block available does

reduce DL1 misses. However, the L2 prefetching mechanism is affected since the address stream

that reaches the L2 cache changes and this results in bad prefetching behaviour(many unnecessary

prefetches).

Figure 23 shows the performance degradation from set failure in the IL1 cache. For the IL1,

performance degradation due to set failure is more pronounced. Out of 26 benchmarks, 11 bench-

marks experience more than 10% performance degradation, 5 benchmarks drop more than 20%

and for two benchmarks(art and bzip) performance drops nearly by 50%. This happens because

the IL1 hit ratio is very high and nearly all misses caused by faults cause pipeline stalls. As in the

50

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

set failure
one block good

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 23: Effect of set failure on the L1 instruction cache

DL1 cache, by allowing one block in the set to be fault-free most of the performance degradation

is recovered.

For the L2 cache(Figure24), only 3 benchmarks (lucas, mcf and vpr) see performance degra-

dation due to set failure. This happens because L2 accesses are spread out in all sets(no one set has

many accesses). As in the other caches, when one block is working, the performance degradation

is recovered.

The above results indicate that set failure can significantly affect performance for the L1

caches. Since for a 64B L1 cache the probability of set failure is significant (as we have seen

in Section 4.3), we believe it is important to provide protection against it. One way to protect

against set failure is to make sure that one block is available in each set. As we have seen in

the above figures, when one block is available most of the performance degradation is recovered.

Having one block available can be achieved using spares. The cost of this approach is small since

few spares are needed as the probability of multiple set failures happening at the same chip is very

small. Alternatively, a 32B block cache can be used which reduces the probability of set failure

51

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

set failure
one block good

N
or

m
al

iz
ed

 p
er

fo
rm

an
c e

Figure 24: Effect of set failure on the L2 cache

significantly. For the L2 caches, set failure is more unlikely. At the same time, if set failure hap-

pens the effects are not as pronounced as in the L1 caches. This leads us to believe that set failure

for the L2 caches is not as critical.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work we presented our approach for providing reliable cache operation in the presence

of many faults. We have seen that most of the previously proposed mechanisms that can handle

large numbers of faults in the cache are costly in terms of area and complex to implement. We

proposed to use a very simple reliability mechanism, block disabling, and combine it with care-

ful selection of cache parameters and performance enhancing mechanisms such as prefetching

and victim caching. This approach is both simple to implement -since the technology required is

already present in modern processors- and has little area overhead. We compared our approach

against two recently proposed mechanisms that can handle high fault rates in caches: word dis-

abling and bit-fix.

Using probability analysis, we showed that block disabling capacity is highly dependent on

the cache block size. By using a smaller block, block-disabling capacity was shown to be higher

than word disabling and bit-fix for a wide range of cell probability of failure(pfail). Furthermore,

we have seen that when pfail is high, word disabling suffers from whole cache failure and yield

is affected. In contrast, our block disabling approach does not suffer from this problem. Block

52

53

disabling may suffer from performance degradation if many faults happen to occur in a frequently

accessed set. Using analysis we showed that by selecting a smaller block size and increasing cache

associativity, the probability of performance degradation due to clustered faults is greatly reduced.

Using simulation experiments we showed that block disabling with a 32B block cache per-

forms better than using 64B block cache since more capacity is available and performance varia-

tions are less likely. Additionally, we have shown that performance mechanisms that are not partic-

ularly useful in fault-free operation can be of great assistance when faults are present. Specifically,

using a victim cache in combination with block disabling is beneficial to performance when a 64B

block cache is used. A victim cache is also helpful for all configurations to reduce performance

variability caused by clustered faults. We have also seen that prefetching is not useful in fault-free

low voltage operation since memory access time is reduced making L2 misses less costly(in terms

of performance). In the presence of faults, however, we have seen that prefetching becomes useful.

This happens because reduced associativity caused by faults increases cache misses. Furthermore,

we have shown that prefetching is more useful for the 32B block cache configuration than for the

64B block configuration. This happens because prefetching is less likely to cause pollution as the

associativity in the 32B configuration is higher.

Our best performing block disabling configurations where compared against a cache equipped

with word disabling and bit-fix. We showed that our 32B block disabling configuration consis-

tently outperforms word disabling and bit-fix for roughly equal hardware cost. Furthermore, our

64B block disabling configuration performs similarly to word disabling and bit-fix, requires less

area overhead and is simpler to implement.

54

6.2 Future Work

One direction for future work would be to achieve the benefits of smaller block size but without

the associated extra tag cost. We have seen from our analysis that the best performing configura-

tion is to use block disabling with a cache configuration that uses 32B blocks. This, however, is

costly since it requires that the tag array is doubled. It would be useful if the benefits of the smaller

block size could be achieved without paying the extra area cost. One possible way of doing this

is through the use of subblocking. By disabling subblocks, the same capacity can be achieved as

using a smaller block size without extra tag cost. However, implementing this method efficiently

is not straightforward. For example, an address may request data that is present in the cache(the

tag exists) but the subblock that contains the data is disabled. One way to deal with this problem

is to swap the positions of subblocks inside the block upon a subblock miss caused by disabling.

In Chapter 5 we have seen that prefetching is beneficial to performance when faults are present.

In our experiments we have used two prefetching mechanisms designed and tuned for fault free

operation. A promising direction for future work is to tune or redesign the prefetchers to further

help with performance degradation caused by faults. Ideally, we do not want costly hardware, such

as the prefetcher, to be devoted specifically for dealing with faults. To avoid this, the prefetcher

should be able to switch configurations when operating at high or low voltage(with and without

faults) and be optimally beneficial to performance in both modes.

Another interesting direction for future work is to explore the relation between low voltage

operation and power/energy gains. We know that by operating below Vccmin we can save power.

However, by operating below Vccmin we introduce faults in the caches. To deal with these faults

we use reliability mechanisms that impact performance(e.g. block disabling disables parts of

55

the cache). Because performance is affected, power savings from low voltage operation are re-

duced(e.g. processor cycles are wasted waiting for cache misses). The more we lower voltage the

more power we can save, but at the same time we introduce more faults that may hinder perfor-

mance. Future work can examine this relation with the goal of finding the optimal voltage where

the highest power savings can be achieved.

Appendix A

Selecting the Prefetching Strategy

A.1 Description of Baseline Prefetching Mechanism

One of the goals of this work is to evaluate block disabling in the context of a modern, high-

end cache hierarchy. For this reason we decided to include a state of the art prefetcher to our cache

configuration. We chose the prefetcher proposed in [24], winner of best paper award in the 2009

Data Prefetching Competition. In this section we provide an overview of how this mechanism

works.

The prefetching configuration used in [24] is comprised of an L1 sequential tagged prefetcher(STP)

and an L2 PDFCM prefetcher. The L1 sequential tagged prefetcher [23] is used to prefetch blocks

in the L1 data. It requires one extra bit per cache block called the prefetch bit. When a miss occurs

in the L1 data cache(DL1), a prefetch is issued to fetch the next block in the cache. When this

block is fetched from the lower level cache into DL1, its matching prefetch bit is enabled. A sub-

sequent hit to a block marked as prefetch will initiate further prefetch requests for the next degree

cache blocks. Additionally, after a hit to a block marked as prefetch, the prefetch bit is disabled.

The following is an example of how the mechanism works. Assume we have a miss on cache

block A. The prefetching mechanism will issue a prefetch request for block A+1. When block

56

57

A+1 is inserted in the cache its prefetch bit will be set to 1. Assume that after a series of cache

events block A+1 is requested. Since its prefetch bit is enabled, the prefetching mechanism will

issue additional degree prefetch requests. If degree is 4, the mechanism will issue requests blocks

A+2,A+3,A+4 and A+5. This policy allows the tagged prefetcher to respond to new misses in

the cache (by issuing a prefetch for each cache miss) and to further prefetch blocks that appear

to be useful (by issuing further prefetches for a requested prefetch block). This mechanism is

inexpensive as it requires only a single bit per block and is shown in [23] to be cost-effective.

For the L2 cache, the configuration in [24] used a PDFCM prefetcher [22]. PDFCM is a

correlating prefetcher that keeps a compressed history of addresses for each memory instruction

that misses in the cache or hits on a prefetched block. Prefetch hits and misses are referred as

training addresses. The mechanism uses the address history to identify miss patterns and issue

accurate, useful prefetches. To perform these functions, the PDFCM prefetcher uses a history

table(HT) and a delta table(DT). The history table is indexed using the PC of the memory instruc-

tion accessing the cache and holds, in each field, the PC tag of the memory instruction, the last

training address issued by this memory instruction, the hashed sequence of deltas issued by this

instruction(compressed history) and two confidence bits.

The compressed history is used to index the delta table in order to find out the next delta. When

a memory instruction misses in the cache or hits a prefetched block, the HT is accessed using as

index the PC of the instruction. The corresponding HT entry is then updated using the address of

the accessing memory instruction. A new history is calculated using the last address stored in the

entry and the new address carried by the memory instruction. The last address is then replaced

with the new training address. Next, the new history is used to access the DT in order to give a

prediction about what the next address for this instruction will be. A prefetch is then issued using

this address. On cycles where the cache is idle, the mechanism calculates new miss address using

58

the last address to be prefetched and the DT. These addresses are used to prefetch new blocks in

the cache. A maximum of degree prefetches can be issued this way, where degree is a value that

can be either static or controlled dynamically based on program behaviour.

In the configuration used in [24], degree is increased when the number of L1 accesses in a

period of 64K cycles(one epoch) exceeds the number of L1 accesses in the previous period. Simi-

larly, when the number of L1 accesses in an epoch is less than the number of cycles in the previous

epoch the degree is decreased. This heuristic attempts to capture fluctuations in performance and

adapt the prefetching degree accordingly.

A.2 Our Prefetching Configuration

In contrast to configuration used in [24], our simulator accurately models an out of order

pipeline with mispredictions, wrong path execution and speculative cache accesses. As a result, the

parameters used to tune the prefetchers in [24] where not suitable for achieving good performance

in our case. For this reason we performed changes to the prefetchers as well as tuning specific to

our simulation environment. The changes in the prefetching mechanisms are described below.

In [24], the PDFCM prefetcher is trained using addresses that are either L2 demand misses(not

issued by the STP prefetcher) or first references to blocks prefetched by PDFCM. We found this

policy useful when PDFCM is used without an L1 prefetcher present. When we combined STP

and PDFCM, we found that performance suffered. This happens because the L1 prefetcher(STP)

interferes with the miss stream that the L2 prefetcher(PDFCM) receives. As a result, the L2

prefetcher is not properly trained and produces less useful prefetches. This is more of a problem

for our simulation environment since we allow wrong path cache accesses. As a solution to this

problem, we modified PDFCM to be trained using both demand and prefetch L2 misses. By

using this approach, PDFCM receives the whole miss stream from L1 and can produce more

59

meaningful prefetches. Useless L1 prefetches(prefetches that are not consistent over time) are

filtered automatically by PDFCM using confidence counters.

In [24], the PDFCM prefetch degree is controlled by tracking increases and decreases in L1

accesses. We found this heuristic to be inaccurate in our simulation environment. For our imple-

mentation, we changed the degree controller to reflect prefetch usefulness. Specifically, PDFCM

prefetch degree is increased when a number of prefetched blocks are requested in L2. Similarly

when a number of prefetch blocks are replaced, the prefetch degree is reduced. We found this

approach to perform better than the method used in [24].

Additionally, we found that the adaptive degree used in [23] for STP performed better than the

static degree used in [24]. The static degree prefetches 4 blocks after a hit occurs on a prefetched

block. The adaptive degree prefetches degree blocks on a prefetch hit where degree is controlled

by an adaptive degree controller similar to the one we used for PDFCM. In both cases a miss in

the cache triggers a prefetch for the next line in the cache. In our environment we found that this

may degrade performance in benchmarks that are unfriendly to prefetching. For this reason we

modified the STP prefetcher so that it completely turns off if many replacements of prefetched

blocks occur.

Figures 10 and 11 show the performance of 64B and 32B caches equipped with prefetching

relative to a cache without prefetching. An STP prefetcher was used for the L1 caches and PDFCM

was used for L2. The prefetchers in these results contain all of the modifications that we described

above. As the figures show, prefetching is beneficial for many benchmarks and rarely deteriorates

performance. Further enhancements could be made to the prefetching mechanisms. For example,

the prefetchers could be trained only with non-speculative cache accesses or with speculative

accesses for which we have high confidence(using confidence bits from the branch predictor or

60

indirect jump predictor). For the requirements of our work, however, we found the performance

of the prefetching scheme adequate.

Appendix B

Simulator Code Changes

This appendix describes the changes that we made to the sim-alpha simulator as part of this

work. Below is a list of all major code changes performed.

• Block disabling. To simulate block disabling we use a fault map that is generated externally.

Each fault map corresponds to one cache(e.g. IL1, DL1, L2) and contains one entry per set

of the cache. Each entry holds the number of available blocks for that set. The fault map is

given as input to the simulator and is read during the cache initialization method. For each

cache set to be created, instead of creating associativity blocks, we create the number of

blocks specified in the fault map.

• Variable cache latency. By default, sim-alpha does not allow changing the access latency

to the IL1 cache. To properly simulate word disabling, we needed to increase the access

time to IL1. we achieved this by adding extra latency whenever a branch misprediction or

load-store trap happens. The extra latency is controlled by a user specified parameter.

• Bypassing disabled sets. Due to block disabling, a set may become completely faulty(no

blocks available). To continue operation in the presence of a disabled set we implemented

61

62

bypassing. When a block is to be inserted in a disabled set, we insert it in the fast hit buffer

instead. The fast hit buffer in fault free operation holds the data for the last block to hit in

the cache. When operating under faults, the fast hit buffer performs two functions. It can

hold the last block to hit in the cache or a bypassed block. By using this approach multiple

subsequent accesses to a disabled set do not cause multiple cache misses. However, a hit to

another block will evict the bypassed block and a later request for the bypassed block will

result in a miss.

• Counting cache accesses per set. For the needs of the analysis in Section 4.3 we needed

to know the number of accesses for each set in the cache. We achieved this easily using an

array for each cache. Each array has an entry for each set in the cache and is updated when

the corresponding set is accessed.

• Skip write misses. We modified the simulator so that when a write command misses in the

L2 cache it will not initiate a DRAM access. This only happens if the L1 and L2 block sizes

are the same.

• Prefetching. The description of our prefetching configuration is described in Appendix A.

Bibliography

[1] ABELLA, J., CARRETERO, J., CHAPARRO, P., VERA, X., AND GONZÁLEZ, A. Low vc-
cmin fault-tolerant cache with highly predictable performance. In MICRO 42: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (New York,
NY, USA, 2009), ACM, pp. 111–121.

[2] ANSARI, A., GUPTA, S., FENG, S., AND MAHLKE, S. Zerehcache: armoring cache archi-
tectures in high defect density technologies. In MICRO 42: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (2009), pp. 100–110.

[3] ASENOV, A., BROWN, A., DAVIES, J., KAYA, S., AND SLAVCHEVA, G. Simulation of
intrinsic parameter fluctuations in decananometer and nanometer-scale mosfets. Electron
Devices, IEEE Transactions on 50, 9 (sept. 2003), 1837 – 1852.

[4] BHAVNAGARWALA, A., TANG, X., AND MEINDL, J. The impact of intrinsic device fluc-
tuations on cmos sram cell stability. Solid-State Circuits, IEEE Journal of 36, 4 (apr 2001),
658 –665.

[5] BORKAR, S., KARNIK, T., NARENDRA, S., TSCHANZ, J., KESHAVARZI, A., AND DE, V.
Parameter variations and impact on circuits and microarchitecture. In DAC ’03: Proceed-
ings of the 40th annual Design Automation Conference (New York, NY, USA, 2003), ACM,
pp. 338–342.

[6] BOWMAN, K., BROOKS, D., WEI, G.-Y., AND WILKERSON, C. Tutorial on design vari-
ability: Trends, models and design solutions. In Tutorial at MICRO (Nov. 2008).

[7] BOWMAN, K., DUVALL, S., AND MEINDL, J. Impact of die-to-die and within-die pa-
rameter fluctuations on the maximum clock frequency distribution for gigascale integration.
Solid-State Circuits, IEEE Journal of 37, 2 (feb 2002), 183 –190.

[8] CHANG, J., HUANG, M., SHOEMAKER, J., BENOIT, J., CHEN, S.-L., CHEN, W., CHIU,
S., GANESAN, R., LEONG, G., LUKKA, V., RUSU, S., AND SRIVASTAVA, D. The 65-nm
16-mb shared on-die l3 cache for the dual-core intel xeon processor 7100 series. Solid-State
Circuits, IEEE Journal of 42, 4 (2007), 846 –852.

[9] DESIKAN, R., BURGER, D., KECKLER, S., AND AUSTIN, T. Sim-alpha: a validated
execution driven Alpha 21264 simulator. Tech. Rep. TR-01-23, CS Dept., University of
Texas at Austin, 2001.

[10] HAMERLY, G., PERELMAN, E., AND CALDER, B. How to use simpoint to pick simulation
points, 2004.

63

64

[11] JOUPPI, N. P. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. SIGARCH Comput. Archit. News 18 (May 1990),
364–373.

[12] KOH, C.-K., WONG, W.-F., CHEN, Y., AND LI, H. Tolerating process variations in large,
set-associative caches: The buddy cache. ACM Trans. Archit. Code Optim. 6, 2 (2009), 1–34.

[13] KULKARNI, J. P., KIM, K., AND ROY, K. A 160 mv, fully differential, robust schmitt
trigger based sub-threshold sram. pp. 171–176.

[14] KULKARNI, J. P., KIM, K., AND ROY, K. A 160 mv, fully differential, robust schmitt trig-
ger based sub-threshold sram. In ISLPED ’07: Proceedings of the 2007 international sympo-
sium on Low power electronics and design (New York, NY, USA, 2007), ACM, pp. 171–176.

[15] LADAS, N., SAZEIDES, Y., AND DESMET, V. Performance implications of faults in predic-
tion arrays. In 2nd HiPEAC Workshop on Design for Reliability (DFR 2010).

[16] LADAS, N., SAZEIDES, Y., AND DESMET, V. Performance-effective operation below vcc-
min. In ISPASS-2010: 2010 IEEE International Symposium on Performance Analysis of
Systems and Software (2010), pp. 223–234.

[17] LEE, H., CHO, S., AND CHILDERS, B. R. Performance of graceful degradation for cache
faults. In ISVLSI ’07: Proceedings of the IEEE Computer Society Annual Symposium on
VLSI (Washington, DC, USA, 2007), IEEE Computer Society, pp. 409–415.

[18] LIANG, X., WEI, G.-Y., AND BROOKS, D. Revival: A variation-tolerant architecture using
voltage interpolation and variable latency. pp. 191–202.

[19] NASSIF, S. R., MEHTA, N., AND CAO, Y. A resilience roadmap. In DATE (2010),
pp. 1011–1016.

[20] PATTERSON, D. A., GARRISON, P., HILL, M., LIOUPIS, D., NYBERG, C., SIPPEL, T.,
AND DYKE, K. V. Architecture of a vlsi instruction cache for a risc. In Proceedings of
the 10th annual international symposium on Computer architecture (New York, NY, USA,
1983), ISCA ’83, ACM, pp. 108–116.

[21] POUR, A. F., AND HILL, M. D. Performance implications of tolerating cache faults. IEEE
Transactions on Computers 42, 3 (Mar. 1993), 257–267.

[22] RAMOS, L. M., BRIZ, J. L., IBÁÑEZ, P. E., AND VIÑALS, V. Data prefetching in a
cache hierarchy with high bandwidth and capacity. SIGARCH Comput. Archit. News 35
(September 2007), 37–44.

[23] RAMOS, L. M., BRIZ, J. L., IBÁÑEZ, P. E., AND VIÑALS, V. Low-cost adaptive data
prefetching. In Proceedings of the 14th international Euro-Par conference on Parallel Pro-
cessing (Berlin, Heidelberg, 2008), Euro-Par ’08, Springer-Verlag, pp. 327–336.

[24] RAMOS, L. M., BRIZ, JOSÉ LUIS IBÁÑEZ, P. E., AND VIÑALS, V. Multi-level adaptive
prefetching based on performance gradient tracking. In DPC-1: The 1st JILP Data Prefetch-
ing Championship (2009), IEEE JILP.

65

[25] ROBERTS, D., KIM, N. S., AND MUDGE, T. N. On-chip cache device scaling limits and
effective fault repair techniques in future nanoscale technology. Microprocessors and Mi-
crosystems - Embedded Hardware Design 32, 5-6 (May 2008), 244–253.

[26] SARANGI, S., GRESKAMP, B., TIWARI, A., AND TORRELLAS, J. EVAL: Utilizing pro-
cessors with variation-induced timing errors. pp. 423–434.

[27] SASAN, A., HOMAYOUN, H., ELTAWIL, A., AND KURDAHI, F. A fault tolerant cache
architecture for sub 500mv operation: resizable data composer cache (rdc-cache). In Pro-
ceedings of the 2009 international conference on Compilers, architecture, and synthesis for
embedded systems (New York, NY, USA, 2009), CASES ’09, ACM, pp. 251–260.

[28] SAZEIDES, Y., KOUROUYIANNIS, C., LADAS, N., AND DESMET, V. Protecting prediction
arrays against faults. In IEEE Workshop on Silicon Errors in Logic - System Effects (SELSE).

[29] SOHI, G. S. Cache memory organization to enhance the yield of high performance VLSI
processors. IEEE Transactions on Computers 38, 4 (Apr. 1989), 484–492.

[30] THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS. Edition 2009.
Tech. rep., ITRS, 2009.

[31] TIWARI, A., SARANGI, S. R., AND TORRELLAS, J. Recycle: : pipeline adaptation to
tolerate process variation. pp. 323–334.

[32] WILKERSON, C., GAO, H., ALAMELDEEN, A. R., CHISHTI, Z., KHELLAH, M., AND LU,
S.-L. Trading off cache capacity for reliability to enable low voltage operation. pp. 203–
214.

