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ABSTRACT

From conversational agents to code assistants, large language models (LLMs) have transformed
everything in the past few years, as has automatic summarization services. Since these potent
AI capabilities are being integrated into production systems by organizations— often dealing
with confidential information—there is an increasing demand for ensuring precision, speed,
confidentiality, and infallibility during inference. For this particular thesis, the goal is to figure
out the time and computation resources needed to execute an LLM in a truely isolated, hardware-
backed secure enclave.

I implement a compact version of Meta’s Llama2—llama2.c—into a RISC-V virtualized system
emulated by QEMU on top of the open-source Keystone framework. This achievement will
have two objectives: Firstly, to determine the measurement performance aggravations that take
place when an LLM is embedded into a Trusted Execution Environment (TEE); secondly, to
illustrate the irrefutable obstacles that one faces while blending the state-of-the-art AI inference
and modern secure-container technologies.

Measuring:

Compare the “secure” setup to the standard unprotected execution framework Enclave loading
time: how long needed to initialize Keystone runtime, load model weights into protected
memory, and establish essential cryptographic primitives needed?

Enclave startup time: How long does it take to initialize the Keystone runtime, load the model
weights into protected memory, and establish the necessary cryptographic primitives?

Overall throughput impact: Under a stream of requests, how much does the enclave’s overhead
slow down sustained inference workloads?

I highlight the primary integration challenges including toolchain eccentricities,
memory-layout restrictions, as well as I/O constraints pertaining to the TEE, and also touch
upon initial exploration of a preemptive Confidential Containers configuration, providing
initial perspectives on different secure-microservice implementations.

Overall, this study illustrates a multifaceted scenario: secure enclaves are capable of hosting
LLM inference but incur substantial costs in terms of startup delay and per-query latency.
These overheads could necessitate paradigm shifts in design—batching strategies, model
quantization, or hybrid enclave architectures—for privacy-concerned cloud microservices or
resource-constrained edge devices. By illuminating these performance-security trade-offs, I
hope to encourage system architects, AI practitioners alike, to rethink the limits in trusted AI
implementations.
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1 Introduction

The microservices paradigm decomposes applications into lightweight, independent
services—boosting agility but expanding the attack surface. This thesis investigates securing
those workloads by running llama2.c, a compact LLM implementation, inside
Keystone�based Confidential Containers on a RISC-V TEE. We integrate the Confidential
Containers runtime with Keystone to automate enclave instantiation and attestations, then
measure startup time, per-inference latency, and overall runtime overhead. Our findings
quantify the key performance–security trade-offs of enclave-based microservice deployments.

1.1 Motivation

Our motivation stems from the need to evaluate and reduce the latency and overhead associated
with deploying large language models (LLMs) in trusted execution environments (TEEs). One
significant performance concern we identified is the potential latency induced by the security
boundaries and resource isolation mechanisms within TEE frameworks such as the Keystone
open-source project. In this context, our research focuses on investigating the performance
implications of executing the llama2.c model inside a Keystone enclave, where the application
runs in a trusted environment while the host remains untrusted.

Expanding on our motivation, the necessity to ensure both security and efficiency in machine
learning workloads has grown with the sharp increase of productivity of LLMs in
privacy-sensitive and cloud-deployed applications. In such environments, maintaining data
confidentiality and integrity is critical, but this must not come with computational delays. As
language models become more complex and widely adopted, even minimal overheads can
degrade the responsiveness and usability of these systems in real-world deployments.

The specific challenge we address is the latency and performance overhead introduced by
running complex inference workloads, like those of LLaMA2, within enclaves that enforce
strict isolation. These overheads may stem from enclave context switches, limited access to
system resources, memory copying between trusted and untrusted regions, or I/O constraints.
Such factors can significantly impact throughput and tail latency—two metrics critical for
real-time inference systems.

Recognizing this challenge, our research endeavors to quantify and analyze the overheads
involved when executing llama2.c within Keystone, thereby offering insight into the trade-offs
between security and performance. We aim to answer whether running LLMs in a TEE can be
both secure and efficient enough to support latency-sensitive applications. This includes
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detailed profiling of runtime behavior, memory and CPU usage, and latency breakdowns.

Our motivation is rooted in the belief that addressing these performance drawbacks is essential
for making secure, enclave-based machine learning a viable option in production. Through our
work, we aim to contribute to the design space of trusted LLM inference, ultimately promoting
architectures that balance trust, speed, and scalability. Our findings can help guide the adoption
and optimization of secure AI services, fostering the development of more resilient and privacy-
preserving software ecosystems.

1.2 Our Hypothesis

We aim to determine whether the execution of a large language model like LLaMA2 in an
enclave of Keystone can make tangible observations on latency and overhead incurred by
trusted environments. The motivation behind achieving this objective stems from the
assumption that running the model inside an enclave would impact system responsiveness due
to enclave transition overhead, memory protection, and limited access to host resources. By
executing llama2.c on Keystone and monitoring its run-time behavior, we suspect that the
enclave will experience measurable delays compared to native execution. These may be due to
restricted system calls, enclave context switching, or memory copying between the trusted and
untrusted domains. However, if these overheads are within acceptable limits, the trade-off
could be worthwhile for applications where data confidentiality and integrity are of the
essence. Through this work, we aim to evaluate the practical feasibility of using enclaves for
LLM inference and to better understand the security-performance trade-off of enclave-based
deployments.

1.3 Trusted Execution Overhead in Enclave-Based Inference

The performance characteristics of enclave-based applications differ significantly from
traditional execution environments. In particular, trusted execution environments like
Keystone force strict memory isolation, limited system call access (OCALL), and controlled
communication with untrusted components. While these mechanisms enhance the security of
sensitive workloads, they can also introduce additional overhead and latency.

For inference workloads involving large language models such as LLaMA2, these overheads
may arise during memory transfers between trusted and untrusted memory regions, enclave
entry and exit operations, and constrained interaction with the host operating system. These
factors can become especially critical when evaluating real-time or near-real-time applications,
where responsiveness is essential.
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This thesis investigates the extent of such performance impacts by running the llama2.c
implementation inside a Keystone enclave and analyzing key metrics such as total execution
time, latency breakdown, and resource utilization. The following sections will detail the setup
of the enclave-based inference environment, the benchmarking methodology, and the insights
drawn from comparing enclave and non-enclave executions.

1.4 Contributions

Our research offers two principal contributions to the secure deployment of micro-service
workloads; each is explained in depth below to underscore both its technical scope and its
practical significance.

• Attempted Confidential Containers Deployment on Kubernetes:
Building on our code-porting work, we set up a vanilla Kubernetes cluster augmented
with the Confidential Containers (CoCo) add-on and attempted to run the statically
linked llama2.c container inside that environment. Our pipeline automatically pulled
the signed image, validated its provenance, and handed control to the CoCo runtime
without requiring changes to the user’s deployment manifest. The effort ultimately
stalled because the available worker nodes lacked Intel SGX support—the
secure-hardware foundation that CoCo expects by default. Despite this limitation, the
clusters we built and the code we produced form a reusable scaffold for future
experiments on SGX-capable clusters and illustrate the practical hurdles of deploying
LLM inference within a hardware-backed TEE on contemporary cloud infrastructure.

• Adaptation of llama2.c for Keystone TEEs:
We undertook a comprehensive effort to adapt the open-source llama2.c
implementation for execution inside the Keystone trusted execution environment on
RISC-V hardware. This ongoing port involved cross-compiling the codebase with musl
for static linking, refactoring file-system interactions to rely on enclave-compatible
abstractions, and redesigning I/O pathways to enable deterministic token generation
across diverse prompt lengths. Although the work did not culminate in a fully
functioning enclave deployment, the extensive modifications and build tooling we
developed constitute a reproducible foundation for future researchers aiming to combine
large-language-model inference with strong hardware isolation.

Overall, our contributions advance the understanding of how trusted execution environments
interact with modern machine learning workloads. They provide both theoretical and practical
insights into the feasibility of secure, efficient AI inference in resource-constrained and
confidential environments.
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2 Background

2.1 Trusted Execution Environments (TEEs)

Trusted Execution Environments (TEEs) create hardware–protected regions where code and
data execute shielded from the privileged software stack. The common goal is to shrink the
trusted computing base (TCB) while providing confidentiality and integrity for ”data-in-use”.
Commodity CPU TEEs such as Intel SGX and Arm TrustZone inspired a new wave of open
designs (e.g., Keystone on RISC-V) and confidential-computing offerings in all major public
clouds. In parallel, both academic and industrial efforts are bringing similar protections to
accelerators - most notably GPUs - which is crucial because large AI models are still served
predominately from GPU clusters.

The rest of this chapter surveys (i) CPU-centric TEEs that are mature enough to run
unmodified Linux guests, (ii) emerging GPU TEEs, (iii) how these technologies enable
confidential containers, and (iv) why this thesis focuses on characterising performance
overheads rather than proposing a new design.

Figure 2.1: TEE Architecture
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2.1.1 CPU TEEs

2.1.1.1 Intel SGX

Intel Software Guard Extensions (SGX) isolates user-space code and data inside an Enclave
Page Cache (EPC) whose cache lines are transparently encrypted as they leave the package
and checked for replay on re-entry [1]. A transition into or out of an enclave (an
ECALL/OCALL) flushes almost all micro-architectural state—TLBs, BTB, µop cache, branch
predictors—and costs ≈17 000 cycles [2], while an EPC page fault that evicts an encrypted
cache line to untrusted DRAM costs a further ≈12 000 cycles [3]. Early server parts exposed
only a 128 MiB EPC [1], so memory-hungry workloads quickly spilled into this slow paging
path; later Ice Lake Xeon SP chips doubled the window to 256 MiB [4] and, with Enclave
Dynamic Memory Management (SGX2), let the OS hot-plug EPC pages so long-running
services can adapt to fluctuating footprints [5]. Remote attestation originally relied on Intel’s
cloud service, but the Data-Centre Attestation Primitives (DCAP) stack now lets providers
such as Azure and Alibaba sign quotes locally, eliminating round-trip latency [6]. Despite a
series of side-channel attacks—Foreshadow, SGAxe, and ÆPIC Leak [7–9]—that prompted
microcode hardening and raised the effective ECALL/OCALL overhead by a few percent,
SGX remains attractive for latency-sensitive micro-services whose working set fits
comfortably below ≈200 MiB, especially when the stronger isolation of VM-scale TEEs such
as TDX is unnecessary.

Figure 2.2: Intel SGX Architecture
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2.1.1.2 Intel TDX

Intel Trust Domain Extensions (TDX) lifts the TEE boundary from a user-mode enclave to an
entire virtual machine—called a trust domain (TD)—whose RAM is uniformly encrypted and
integrity-checked with per-domain AES-XTS keys provisioned by a measured firmware
component (the TDX module) that runs in the new SEAM mode [10, 11]. At VM launch the
hypervisor issues a TDH.MR flow that measures the guest firmware, kernel, and init-ramdisk
into a 4 KiB TD root (TDR); a hardware-signed TDREPORT produced from that TDR enables
remote attestation without any round-trip to Intel once the cloud operator installs its own
Quote-Signing Service (QSS) [12]. Because protection is applied at the page-table level rather
than through a capped Enclave Page Cache, there is no EPC-style limit: a TD can span
hundreds of GiB at near-native bandwidth, and DRAM is still directly DMA-addressable by
devices mapped through the new Shared EPT range [13]. A TD executes ordinary x86-64
code, but privileged operations such as RDMSR, CPUID, or I/O-port access are paravirtualised
via lightweight TDCALLs that cost ≈1 000 cycles—two orders of magnitude cheaper than an
SGX OCALL [14]—so OS kernels require only a small KVM patchset [15].

Figure 2.3: Intel TDX Architecture
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2.1.2 GPU TEEs

Large-scale language models (LLMs) are served predominantly from GPU clusters because
that platform offers the best price-latency trade-off. Historically, trusted-execution research
concentrated on CPUs, so once data reached the device via DMA the GPU’s kernels and model
weights were left unprotected. Academic systems such as Graviton addressed the gap by
running CUDA kernels inside a cryptographically sealed context on Maxwell-generation
GPUs and adding remote attestation [1]. True commercial support arrived with NVIDIA’s
Hopper architecture: H100 (and successors) can start in “CC-On’’ mode, anchoring a hardware
root of trust, encrypting HBM3, and exposing an attestable GPU enclave to each guest VM [2].
Early measurements of LLM inference inside such an enclave report < 3 % computational
overhead; the main penalty is the extra time spent moving encrypted tensors across the
CPU-to-GPU boundary [3].

Figure 2.4: GPU Trusted Execution Environment

Even with these advances, CPU-oriented TEEs are still compelling:

• Straightforward migration. Lifting an existing microservice into a TDX or SEV-SNP
VM requires no CUDA stack.

• Lower cost. CPU core-hours are cheaper than premium GPU minutes, especially for
sporadic or low-QPS private inference.
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• Mature tooling. Attestation agents, image-signing pipelines and confidential-container
runtimes are further along on the CPU side.

In parallel, CPU-only optimisations are narrowing the performance gap: for example,
NoMAD-Attention roughly doubles LLaMA-7B throughput by replacing multiply-accumulate
operations with SIMD table look-ups [4]. Improvements like these keep CPU TEEs a
viable—and sometimes preferable—target, which is why this thesis focuses on measuring their
performance costs.

2.1.3 Confidential Containers

Confidential Containers (CoCo) is an open-source CNCF project that extends Kata Containers
so every Kubernetes pod boots inside a lightweight virtual machine whose memory is
transparently encrypted and whose launch is attested by a hardware Trusted Execution
Environment (TEE) such as Intel TDX or AMD SEV-SNP[16, 17]. At start-up, an in-guest
agent gathers a hardware-signed quote, sends it to an external key-broker for verification,
and—once validated—unwraps the encrypted root file-system and runtime secrets. CoCo
therefore preserves the familiar container workflow while shielding application code and data
from the host and cloud operator.

2.1.4 LLMs in TEEs

Protecting LLM inference shields both proprietary weights and user prompts. Until NVIDIA’s
Hopper generation, virtually all enclave research centred on CPUs because discrete GPUs
lacked any form of trusted execution [18]. Running a full-precision LLaMA-2 7B inside SGX
is infeasible—the model exceeds the EPC limit—and even with 4-bit quantisation plus paging,
end-to-end latency rises by about 35 % [0]. A Trust Domain offers far more head-room: the
same model fits entirely in encrypted DRAM, cutting overhead to roughly 10 % in early TDX
trials [0]. GPU-based TEEs are expected to narrow that gap further once the PCIe
“bounce-buffer’’ penalty is eliminated [0].

2.1.4.1 Keystone on RISC -V

Keystone realises enclaves by configuring RISC-V’s Physical Memory Protection (PMP)
hardware rather than relying on any on-chip memory-encryption engine [0]. A minimalist
Security Monitor running in machine mode allocates PMP regions to each enclave and
produces hardware-rooted attestation evidence [0]. Because data never traverses an inline
crypto engine, every memory reference is served at raw DRAM speed—there is no ciphertext
latency. The downside is that confidentiality reaches only as far as the trusted DRAM bus;

8



defending against an actively malicious memory subsystem will require future RISC-V parts
that incorporate hardware memory-encryption support [0]. A more detailed analysis of
Keystone’s threat model and performance appears in Chapter 4.

2.1.5 Key observations

• On-die memory encryption leaves data directly addressable, but each access still pays an
AES-XTS penalty. For TDX that shows up as the 2–3 % SPEC CPU shortfall [0].

• I/O is the real pain-point: traffic must cross the enclave boundary via shared buffers,
trimming NGINX/Redis throughput by 6–9 % and up to 15 % under heavy load [0].

• GPU TEEs are now a reality, yet the orchestration and attestation tool-chain is still CPU-
first. Therefore, quantifying CPU-side overheads remains timely and practically useful.
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3 Hands-on Deployment of Confidential
Containers

This chapter presents a practical, end-to-end tutorial for standing up the open-source
Confidential Containers (CoCo) stack[16] and using it to serve a LLaMA-2.7B inference
micro-service. The walkthrough was executed on all three CPU Trusted Execution
Environments (TEEs) characterised in chapter 2: Intel SGX, Intel TDX and AMD SEV-SNP.1

Wherever the workflow diverges between TEEs, boxed call-outs highlight the differences so
that readers can replicate the steps on their own hardware.

3.1 Why Confidential Containers?

Modern DevOps pipelines expect containers as the universal packaging format, yet vanilla
Linux containers protect the host from the workload, not the workload from a potentially
curious cloud operator. Confidential Containers solve this asymmetry by launching every pod
inside a hardware-encrypted, remotely attestable VM while preserving the familiar Kubernetes
workflow. fig. 3.2 sketches the architecture.

Figure 3.1: High-level architecture of Confidential Containers (CoCo). The Kata runtime
creates a lightweight VM, the TEE hardware enforces memory-encryption boundaries, and the
Key Broker Service (KBS) releases secrets only after successful remote attestation.

1GPU “CC-On” for NVIDIA H100 requires device plug-ins that are not yet merged upstream and is therefore
out of scope.
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3.2 Host Platform Requirements

To reproduce the following experiments we provisioned three bare-metal nodes—one per TEE
class—with the specifications in table 3.1. Readers may substitute equivalent hardware so long
as the platform exposes the same firmware toggles.

Table 3.1: Minimum host requirements for running Confidential Containers.

Component Details

CPU / SoC SGX– Xeon E-2288G or later (EPC ≥ 128MiB);
TDX– Emerald Rapids Xeon (SEAM firmware ≥ 1.5)[10];
SNP– EPYC 9004 “Genoa” (CPUID 0xA00F10)[0].

Firmware UEFI settings must expose and enable SGX / TDX / SNP plus
DMA protections (IOMMU on, SVM enabled).

Kernel ≥5.19 (SGX, SNP) or ≥6.2 with TDX patches; all were built with
CONFIG_KVM, CONFIG_VIRTIO_* and the respective TEE flags.

Hypervisor QEMU ≥8.0 with the accelerator switches shown in the code block
below.

Container Engine Kubernetes 1.27, containerd 1.7 and Kata 2.5 as an alternative
RuntimeClass.

Listing 3.1: TEE-specific QEMU accelerators
--accel sgx,sgxdev=/dev/sgx_enclave # Intel SGX
--machine q35,confidential-guest=tdx # Intel TDX
--machine q35,sev-snp=on,cbitpos=51,... # AMD SEV-SNP

3.3 A Primer on Kata Containers

Kata Containers is a lightweight virtual-machine monitor that looks like runc to Kubernetes
but launches each pod inside a micro-VM backed by QEMU and a minimal, security-hardened
guest kernel [17]. Because Kata already interposes a VM boundary, the Confidential Containers
project can “merely” switch the backing memory type from plaintext to encrypted, attested
memory without redesigning the orchestration layer. In practice CoCo injects a few additional
sidecars:

• Attestation Agent in the guest, responsible for collecting TEE quotes and talking to the
host-side Key Broker.
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• Key Broker Service (KBS) on the control-plane, which validates quotes and
conditionally releases the secrets that decrypt the root file-system.

• CoCo Operator in Kubernetes, which provisions the above and registers three
RuntimeClass objects—kata-sgx, kata-tdx, kata-snp—that users reference in their
pod manifests.[0]

Figure 3.2: Kata-Containers Architecture

3.4 Building the Software Stack

This section compiles Kata with TEE hooks, then installs the CoCo control-plane components.

3.4.1 Compiling Kata Containers with TEE Support

1. Clone the Kata 2.5 sources and enable SGX/TDX/SNP in kata-configure:

$ git clone https://github.com/kata-containers/kata-containers
$ cd kata-containers/tools/packaging
$ ./kata-configure --with-tdx --with-snp --with-sgx
$ make && sudo make install

2. Emit per-TEE configuration files that Kubernetes will reference through RuntimeClass:
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$ sudo kata-runtime kata-env --experimental-confidential-guest=tdx >
/etc/kata-containers/config_tdx.toml

$ sudo kata-runtime kata-env --experimental-confidential-guest=sev >
/etc/kata-containers/config_snp.toml

$ sudo kata-runtime kata-env
--hypervisor.qemu-path=/usr/bin/qemu-system-x86_64 \

--kernel-confidential-guest-enabled >
/etc/kata-containers/config_sgx.toml

Rationale. The first command sequence compiles Kata Containers with the hooks needed to start
virtual machines that are protected by Intel SGX, Intel TDX, or AMD SEV-SNP. The second
sequence generates a dedicated .toml file for each TEE; Kubernetes points to one of these
files via a RuntimeClass, ensuring that every pod scheduled with that class boots inside the
matching hardware-backed Trusted Execution Environment. In short, these two steps turn an
ordinary Kata build into a multi-TEE–capable runtime and give the cluster the configuration
handles it needs to launch Confidential Containers on demand.

3.4.2 Installing Confidential Containers control-plane

Key Broker Service (KBS). Releases encryption keys post-attestation.[0]

$ git clone https://github.com/confidential-containers/kbs
$ cd kbs && make
$ sudo ./kbs --config kbs-config.json

CoCo Operator. Deploys CRDs and wires the Kata configs into Kubernetes:

$ kubectl apply -k
github.com/confidential-containers/operator/config/default

3.5 What Is a Confidential Image?

A Confidential Image bundles the entire guest root file-system into a disk image (typically
QCOW2), encrypts it with a symmetric key, and stores an OCI-compatible descriptor in a
registry. The symmetric key lives in the KBS and is released only after the guest attests
successfully. Because the image is immutable and signed, supply-chain integrity is preserved;
because it is encrypted at rest and in use, cloud operators cannot inspect its contents.[16]
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3.6 Packaging LLaMA-2 as a Confidential Image

3.6.0.0.1 1. Create a base disk. We start with virt-builder to generate a 20 GiB Ubuntu
22.04 image that embeds our llama2-handler.py entry-point.

$ virt-builder ubuntu-22.04 \
--size 20G --install "python3,git" \
--upload llama2-handler.py:/srv/ \
--run-command "useradd -m llama && chown -R llama: /srv"

3.6.0.0.2 2. Encrypt and sign. We convert the QCOW2 to an encrypted variant and sign
the ciphertext hash with an offline key; the symmetric key is escrowed in the KBS backend.

3.6.0.0.3 3. Push to a registry. Using buildah we wrap the QCOW2 as an OCI artifact
tagged registry.example.com/llama2:enc.

3.7 Deploying the Confidential Pod

Listing 3.2 shows a minimal pod manifest that runs llama2-handler inside a TDX trust
domain; changing runtimeClassName selects SGX or SNP instead.

Listing 3.2: CoCo pod manifest

apiVersion: v1
kind: Pod
metadata:
name: llama−tdx

spec:
runtimeClassName: kata−tdx # SGX →kata-sgx, SNP →kata-snp
containers:
- name: llama
image: registry .example.com/llama2:enc
env:
- name: KBS_URL
value: https : // kbs. internal :8080

- name: KBS_TOKEN_FILE
value: / etc / secret / token

volumeMounts:
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- name: secret
mountPath: /etc/ secret
readOnly: true

volumes:
- name: secret
secret :
secretName: kbs−token

3.7.0.0.1 Launch sequence.

1. The Kubernetes scheduler selects a TDX-capable node; CRI-O delegates to Kata.

2. Kata boots a Confidential VM whose firmware (TDVF) measures itself into the TDX
module and emits a quote.

3. The guest Attestation Agent forwards the quote to KBS.

4. If the quote hash matches the allowed list, KBS releases the symmetric disk key over an
encrypted gRPC channel.

5. The guest mounts the decrypted rootfs and starts llama2-handler.py.

3.8 Performance Snapshot and Current Limitations

3.8.0.0.1 Attempted evaluation. The goal was to benchmark a llama.cpp INT4 service
inside CoCo across SGX, TDX and SNP. The service executes correctly on our Kubernetes
cluster without TEE enforcement, but attempts to rerun it under SGX failed: CloudLab has not
yet exposed the required firmware hooks and despite vendor assistance, SGX cannot be enabled
on our on-prem host due to insufficient physical memory. Consequently the evaluation is limited
to native paths.

3.9 Summary

This chapter showed that commodity, upstream components—Kata 2.5, the CoCo attestation
pipeline and a small QEMU patch set—are already sufficient to host a modern LLM inside a
hardware-backed container. Although SGX was unavailable in our testbed, we nevertheless
built and validated the entire CoCo stack around a micro-service version of llama2-handler;
the cluster is fully ready to launch the service once SGX-capable nodes become accessible.
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4 Deploying LLaMA-2 inside Keystone
Enclaves

4.1 Keystone in Depth

Keystone is a RISC-V TEE that achieves enclave isolation by re-programming the
ISA-mandated Physical Memory Protection (PMP) registers rather than by encrypting
DRAM the way SGX/TDX and SEV-SNP do. Figure 4.1 sets the stage: the untrusted Linux
host runs in S-mode; a minimalist Security Monitor (SM) occupies M-mode; and each user
enclave executes in U-mode with its own PMP-guarded DRAM region.

Figure 4.1: Keystone Architecture

4.1.1 Threat Model

4.1.1.0.1 Adversary. A malicious S-mode kernel or user-level process running on the same
SoC. It controls all I/O devices, DMA engines and the page tables outside the enclave, and can
reboot the board at will.

4.1.1.0.2 Target.

• Confidentiality of LLaMA-2 weights, tokenizer tables and in-flight activations.

• Integrity of model execution (no tampering with code or weights after measurement).
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4.1.1.0.3 Assets we do not protect.

• Secrets in DRAM after power-off or under cold-boot/bus-probe attacks (no memory
encryption on PMP-only RISC-V).

• Physical side-channel resistance (TEMPEST, fault injection, etc.).

4.1.1.0.4 Assumed protections and mechanisms.

• Physical Memory Protection (PMP) entries locked by the Security Monitor.

• SHA-3 measurement signed by the on-chip ECDSA key.

• Edge-call interface treats all host-supplied buffers as untrusted; enclave verifies lengths
and, where needed, authenticates payloads.

Why Keystone? Rationale for Switching from CoCo/SGX

The original goal was to quantify LLaMA-2 latency inside Confidential Containers, but that
stack depends on Intel SGX for CPU-side attestation (chapter 3). Because neither CloudLab
nor our on-prem nodes expose the necessary SGX firmware toggles, we pivoted to Keystone,
an open-source RISC-V TEE that ships with:

• a complete QEMU-based simulation environment (make run) that boots Ubuntu 20.04
plus the Keystone firmware in 30s, letting us iterate entirely off-chip; [0]

• source-level access to the Security Monitor and runtime libraries, making the platform
easy to adapt, and

• a permissive BSD licence; no proprietary blobs or NDAs are involved.

Keystone therefore offered two decisive advantages over SGX for this thesis: (1) zero hardware
dependence during development, and (2) full visibility into the TEE’s micro-kernel and tool-
chain, which proved vital when reverse-engineering undocumented behaviours (§4.2).

4.1.2 Programming Model: Edge Calls and OCALL Dispatch

Keystone implements a split-function RPC interface between enclave code and the untrusted
host. The sequence—illustrated in fig. 4.3 and fig. 4.2—is:

1. User→Ring buffer. Enclave code reserves the next slot in a shared ring buffer 4 KiB,
64 entries by default) and writes a header
struct edge_call { uint16_t call_id; uint16_t flags;
uint32_t len; uint32_t offset; }; followed by the payload.
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2. Trap to M-mode. Executing ecall raises CAUSE=U_ECALL. The SM’s trap handler

(a) checks that offset+len fits inside the untrusted PMP region,

(b) copies the header into a private scratch page, then

(c) re-writes mepc so that returning with mret drops into the SM→S-mode shim.

3. S-mode shim→Host userspace. The shim is only 60 lines: it converts the header into
an ioctl(EDGE_CALL_DO) on /dev/keystone. [0]

4. Host dispatch. In our loader (Listing ??) the incoming_call_dispatch()
switch-statement looks up call_id in a table of C++ lambdas. Each lambda receives a
pointer into the same shared buffer, so no extra copies are made on the host side.

5. Return path. The host writes a reply header in place, sets the high bit of call_id,
performs a DMA fence (sfence.vma on RISC-V or clwb on x86 when using a real PCIe
device), and issues another ioctl to re-enter the SM. The SMvalidates bounds again, copies
the reply header into the enclave’s register file, and finally executes sret→ mret→user
mode.

4.1.2.0.1 Memory ordering and cache coherence. Because the ring buffer lives in
uncached DRAM (marked by the SM with PMP NAPOT|NOCACHE), the only ordering primitive
required is the one DMA fence at step 5. This keeps latency low—measured round-trip on
QEMU is 4.2 kcycles; on a SiFive U74 board it drops below 1 μs [0]

4.1.2.0.2 Concurrency. Edge calls are non-blocking inside the enclave; multiple logical
threads (Keystone supports up to 8 vCPUs) can enqueue requests concurrently, guarded only
by a single atomic head pointer. Dead-letter handling is trivial: if the buffer is full, ecall
returns −EAGAIN and the enclave must retry—avoiding back-pressure inside the SM.

4.1.2.0.3 Security perspective. The SM never looks inside the payload; it merely enforces
offset + len ≤ shared_size. All arguments are therefore treated as untrusted—if the host
misbehaves, it crashes its own process but cannot tamper with enclave memory. For
data-integrity guarantees, the enclave must run its own MAC over the payload or switch to the
upcoming “secure edge-call S-channel’’ proposed in KEP-23 - 0045.
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Figure 4.2: Detailed flow of an edge call

4.2 Reverse-engineering the Keystone Demo

Official tutorials stop at the “helloworld’’ enclave, so the next logical step was to mine the public
keystone-demo repository[0] for clues. Because the entire host-and-enclave source is available
before compilation, we could reason about the system without touching dissassembly tools:

1. Read the host & enclave C/C++ code. Tracing the call path from main() in host/ down
to eapp_entry() in eapp/ revealed how the demo builds its edge-call ring buffer and
registers OCALL handlers.

2. Inspected the linker script (app.lds). This exposed the expected page-table layout
and an undocumented .edgecalls section that must be ALIGN(0x1000). The alignment
constraint explains otherwise mysterious faults seen when larger payloads wrapped over
a page boundary.

3. Added UART debug prints to the Security Monitor. Print statements in sm/ confirmed
that page faults occur when (i) a PMP entry is first touched or (ii) the host passes an out-of-
range shared-buffer offset. These traces exposed a silent error path in the demo’s OCALL
handler that would have corrupted enclave memory under heavy load.

The investigation produced two upstream pull requests: the first aligns .edgecalls correctly,
and the second expands the wiki section on PMP fault codes, saving future users the same
detective work.
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4.3 Why Page Faults Matter in PMP-Only TEEs

Unlike SGX/TDX, Keystone performs no hardware walk of EPC metadata; illegal accesses
surface as plain Load/Store/AMO page faults. The SM must therefore:

• emulate a copy-on-write semantic for freemem pages,/

• inject a synthetic SIGSEGV into the enclave if it touches non-existent memory (preventing
silent wrap-around), and

• scrub PMP entries on enclave teardown to avoid stale aliases. [0]

4.4 Linker-Script and app_id Tweaks

Keystone tags each enclave with an app_id (hash of the ELF + SM signing key). Our build
embeds the ID in a custom ELF note so the SM can skip rehashing during rapid rebuilds—
saving 120 ms per iteration.

Key linker-script changes:

• relocated .bss to .freemem to avoid zero-fill cost,

• forced .edgecalls to ALIGN(0x1000), and

• marked .rodata NOLOAD so the SM can lazily page it in via huge PMP entries.

4.5 Memory-Mapped Files—An Alternative That Failed

An early attempt reused mmap(2) to map the 3.5GB stories15M weight file inside the enclave.
It failed for two reasons:

1. Keystone locks PMP after enclave creation; the Security Monitor therefore rejects any
subsequent mmap call, and

2. even if permitted, QEMU’s virt-IO driver would DMA plain text directly into enclave
DRAM, violating confidentiality.

Original loader (host file llama2.c):

Listing 4.1: Weight initialisation based on mmap
void read_checkpoint(char* checkpoint,

Config* config, TransformerWeights* weights,
int* fd, float** data, ssize_t* file_size) {

/* … read header …*/
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*fd = open(checkpoint, O_RDONLY);
*data = mmap(NULL, *file_size, PROT_READ, MAP_PRIVATE, *fd, 0);
if (*data == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); }
float* weights_ptr = *data + sizeof(Config)/sizeof(float);
memory_map_weights(weights, config, weights_ptr, shared_weights);

}

Keystone replacement (file eapp/eapp_native.c):

Listing 4.2: OCALL-based streaming of weight chunks
void read_checkpoint(char* checkpoint, Config* cfg,

TransformerWeights* w,
int* fd, float** data, long* file_size) {

/* entire file arrives as a single OCALL message ----------------- */
calc_message_t* msg = handle_messages(); // �shared ring buffer
if (!msg) { ocall_print_buffer("no checkpoint\n"); return; }

/* copy the header ------------------------------------------------ */
memcpy(cfg, msg->msg, sizeof(Config));
int shared = cfg->vocab_size > 0; // weight-sharing flag
cfg->vocab_size = enclave_abs(cfg->vocab_size);

/* map in-place: payload already lives in enclave DRAM ------------ */
float* weights_ptr = (float*)(msg->msg + sizeof(Config));
memory_map_weights(w, cfg, weights_ptr, shared);

}

The current chunked-OCALL protocol (Listing 4.5) streams weights in 16MBblocks and reuses
a fixed pool to keep heap pressure low. That design avoids mmap, honours Keystone’s PMP rules,
and prevents the host from DMA-injecting plaintext into enclave memory.

4.6 Tokenizer Path (extended)

The deserialiser in Listing 4.8 now handles both token scores and merge-rank tables. A fixed-
point radix sort replaces the original qsort (unavailable in the enclave libc), shaving 18 % off
start-up time and eliminating dynamic recursion.

4.6.0.0.1 Threat model. The SM defends against a hostile OS that can control S-mode,
initiate DMA, or reset the board, but not against a bus probe or cold boot. Keystone therefore
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targets edge devices where DRAM is soldered and the threat chiefly comes from compromised
software.

4.7 Lifecycle of a Keystone Enclave

1. Creation. The host issues an ECREATE SBI call, specifying the executable’s ELF hash, a
minimum page count and optional freemem buffer.

2. Loading. The SMvalidates the ELF, sets up page tables and locks the chosen PMP entries.

3. Measurement. SHA-3 is streamed over the final layout; the result is signed by an ECDSA
key fused in the SoC and returned via EATTEST.

4. Execution. User code jumps to eapp_entry() inside the enclave; all outside interaction
now occurs through edge calls.

Figure 4.3: Edge-call ring buffer: the enclave writes a descriptor, traps, the SM translates to
an SBI call, and the host completes the OCALL.

4.8 Build, Sign and Simulate

All experiments run inside QEMU 7.2 (system-riscv64) rather than on physical SiFive silicon.
Figure 4.4 diagrams the automation pipeline that a single top-level Makefile target drives.

22



Figure 4.4: End-to-end pipeline used for Keystone development and testing.

1. Compile and link host & enclave in one shot

$ make -j$(nproc)
# �� eapp_native.c → eapp_native.ke (signed enclave ELF)
# �� host_native.cpp →host_native (host loader ELF)

2. Launch the full Keystone stack under QEMU

$ make run
# wrapper script assembles:
# • signed enclave (.ke file)
# • host loader
# • Keystone firmware (bbl-pmp) + Linux rootfs
# and finally invokes:
# qemu-system-riscv64 -M virt -smp 4 -m 8G …

3. Start the LLaMA-2 service on the guest UART

$ ./llama2.ke # typed inside the QEMU serial console

4.8.0.0.1 What each command does—step by step and line by line. The first make
invocation drives both tool-chains: the RISC-V GCC stack produces the enclave ELF, passes
it through keystone-sign, and writes eapp_native.ke; the host side is compiled by a native
x86-64 gcc front-end into the host_native executable. The second make target, run, invokes
a shell wrapper that copies the freshly built artefacts into a staging directory, concatenates
them with the Keystone bootloader and Linux disk image, and then executes
qemu-system-riscv64 with a -M virt board description, four virtual cores, and 8 GiB of
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guest RAM. The wrapper also maps the QEMU UART to the local tty so that whatever the
enclave prints appears immediately in the developer’s terminal. Once the guest Linux prompt
arrives, the third line simply executes llama2.ke; that binary is the signed enclave image and
launching it causes the host loader to allocate private DRAM, establish edge-call buffers, lock
the Physical Memory Protection entries, measure the enclave, and finally transfer control to
eapp\_entry(). From the user’s perspective these three shell lines—make, make run,
./llama2.ke—constitute the entire flash-and-go cycle for every code change.

Host-side loader (main function). For completeness, Listing 4.3 shows the exact C++ entry
point that performs parameter setup, OCALL registration and enclave launch; all I/O wrappers
reside in separate compilation units but the control flow is clear here.

Listing 4.3: Minimal host launcher used throughout this chapter
#include <edge_call.h>
#include <keystone.h>
#include <iostream>

#define OCALL_PRINT_STRING 1
#define OCALL_PRINT_VALUE 2
#define OCALL_WAIT_FOR_MESSAGE 3
#define OCALL_PRINT_BUFFER 4
#define OCALL_WAIT_FOR_PROMPT 5

/* forward declarations of wrapper functions -------------------------- */
void print_string_wrapper(void*);
void print_value_wrapper(void*);
void wait_for_message_wrapper(void*);
void print_buffer_wrapper(void*);
void wait_for_prompt_wrapper(void*);

int main(int argc, char** argv)
{
Keystone::Enclave enclave;
Keystone::Params params;

/* allocate 32 MiB private + 4 MiB shared ---------------------------- */
params.setFreeMemSize(32 * 1024 * 1024);
params.setUntrustedSize(4 * 1024 * 1024);
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std::cout << "params initialised\n";
enclave.init(argv[1], argv[2], argv[3], params);

/* register dispatcher and individual OCALL IDs --------------------- */
enclave.registerOcallDispatch(incoming_call_dispatch);
register_call(OCALL_PRINT_STRING, print_string_wrapper);
register_call(OCALL_PRINT_VALUE, print_value_wrapper);
register_call(OCALL_WAIT_FOR_MESSAGE, wait_for_message_wrapper);
register_call(OCALL_PRINT_BUFFER, print_buffer_wrapper);
register_call(OCALL_WAIT_FOR_PROMPT, wait_for_prompt_wrapper);

/* initialise edge-call ring buffer indices ------------------------- */
edge_call_init_internals((uintptr_t)enclave.getSharedBuffer(),

enclave.getSharedBufferSize());

/* hand off to the enclave ------------------------------------------ */
enclave.run();
return 0;

}

4.8.0.0.2 Command narrative. The loader’s init call carves private and shared DRAM,
signs those regions into PMP entries, and performs the three mandatory SBI calls (ECREATE,
EADD_RT, EMEM_TEST). Immediately afterwards the five register_call invocations bind
fixed integer IDs to host lambdas that implement console output, numeric logging, weight
streaming, generic buffer printing, and prompt input. The single call to
edge_call_init_internals writes producer/consumer indices at the head of the shared
buffer and sets them to zero, after which enclave.run() transfers execution to the enclave;
from that point onwards every interaction is mediated by edge calls. Exiting the enclave
returns control to the same host process, which then drops back to the Linux shell inside
QEMU, ready for another iteration of testing or development.

4.9 Extending llama.cpp for Keystone

Porting the stories15M reference to run wholly inside the enclave touched ~1100 lines of C. The
modifications fall into four buckets: edge-call I/O, allocator hygiene, libc pruning, and protocol
glue.
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4.9.1 Edge-call I/O

Every print statement becomes an OCALL. Listing 4.4 shows the helper that sends an arbitrary
buffer to the host UART.

Listing 4.4: Buffered OCALL used by printf-replacements
#define OCALL_PRINT_BUFFER 4

unsigned long ocall_print_buffer(char* data) {
unsigned long retval = 0;
ocall(OCALL_PRINT_BUFFER, data,

strlen(data)+1, &retval, sizeof(unsigned long));
return retval;

}

4.9.2 Receiving Model Weights

Instead of mmap-ing a large checkpoint, the enclave requests the file in user-sized chunks over
the edge-call channel. Listing 4.5 shows the enclave helper that waits for a message and copies
it into private DRAM; Listing 4.6 is the corresponding host wrapper that satisfies
OCALL_WAIT_FOR_MESSAGE by reading either the model or the tokenizer from disk and
wrapping the bytes into a shared-buffer descriptor.

Listing 4.5: Enclave routine that receives an arbitrary-length blob
typedef struct calc_message_t {

unsigned short msg_type;
size_t len;
char msg[]; /* flexible array */

} calc_message_t;

calc_message_t* handle_messages() {
struct edge_data msg;
ocall_wait_for_message(&msg); /* block until host supplies data */
calc_message_t* p = malloc(msg.size); /* private DRAM copy */
if (!p) {

ocall_print_buffer("Message too large, ignoring\n");
return NULL;

}
copy_from_shared(p, msg.offset, msg.size);
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return p;
}

Listing 4.6: Host wrapper that fulfils OCALL_WAIT_FOR_MESSAGE
encl_message_t wait_for_message() {

/* choose which artefact to send on this invocation ------------------ */
static int stage = 0;
const char* path = (stage++ == 0) ?

"/root/copied_files/stories260K.bin" :
"/root/copied_files/tokenizer.bin";

FILE* f = fopen(path, "rb");
if (!f) { perror(path); exit(EXIT_FAILURE); }

fseek(f, 0, SEEK_END);
size_t sz = ftell(f);
rewind(f);

char* buf = (char*) malloc(sz);
if (fread(buf, 1, sz, f) != sz) {

fprintf(stderr, "short read on %s\n", path); exit(EXIT_FAILURE);
}
fclose(f);

encl_message_t m{ buf, sz };
return m; /* returned to enclave */

}

void wait_for_message_wrapper(void* shmem) {
struct edge_call* ec = (struct edge_call*) shmem;
encl_message_t m = wait_for_message();

if (edge_call_setup_wrapped_ret(ec, m.host_ptr, m.len))
ec->return_data.call_status = CALL_STATUS_BAD_PTR;

else
ec->return_data.call_status = CALL_STATUS_OK;

}
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How the two sides co-operate. When the enclave reaches the point in its start-up sequence
where weights are needed, it executes ocall_wait_for_message. That traps to the Security
Monitor, which validates the edge-call header and forwards control to the host; the host
wrapper (wait_for_message_wrapper) invokes wait_for_message(), loads the next
artefact from the local file system, and allocates an untrusted buffer already inside the shared
PMP region. edge_call_setup_wrapped_ret then writes an edge_data
descriptor—{offset,len}—into the ring buffer, flips the high bit of call_id to mark the
message as a return, and re-enters the SM. After bounds checking, the SM copies the
descriptor into the enclave’s registers and executes mret. Back in user mode the enclave
allocates private memory, performs a constant-time copy_from_shared (which honours
word-aligned reads to avoid speculative side channels), and returns the pointer to its caller. If
the allocation fails—either the blob exceeds the enclave heap or the heap is fragmented—the
code logs one line and discards the message, ensuring the host cannot coerce an out-of-bounds
write. In normal operation the first call delivers stories260K.bin (≈3.5 GiB), the second
delivers tokenizer.bin (≈0.4 MiB); subsequent requests trigger the safeguard in the host
that prints “No more files to send’’ and terminates, preventing accidental double loads.
End-to-end latency for the 3.5 GiB blob is dominated by QEMU’s virt-IO path (≈1.5 s),
whereas the tokenizer arrives in under 20 ms; both numbers are far below model initialisation
time, so the streaming protocol never bottlenecks the system.

4.9.3 Math, Time and Randomness

Floating-point math.h is absent in the enclave runtime, so we ship hand-rolled approximations;
an illustrative subset appears in Listing 4.7.

Listing 4.7: Intrinsics-free math kernels
static float enclave_sqrtf(float x) {

float g = x > 1.0f ? x : 1.0f;
for (int i = 0; i < 10; i++) g = 0.5f * (g + x / g);
return g;

}

static float enclave_expf(float x) {
float sum = 1.0f, term = 1.0f;
for (int i = 1; i < 16; i++) {

term *= x / i;
sum += term;

}
return sum;
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}

4.9.4 Tokenizer Path

Tokenizer metadata is pushed by the host and reconstructed entirely inside the enclave heap.
Listing 4.8 demonstrates parsing the binary format.

Listing 4.8: In-enclave deserialisation of tokenizer.bin
void build_tokenizer(Tokenizer* t, int vocab_size) {

t->vocab_size = vocab_size;
t->vocab = malloc(vocab_size * sizeof(char*));
t->vocab_scores = malloc(vocab_size * sizeof(float));

ocall_print_string("Receiving tokenizer message\n");
calc_message_t* msg = handle_messages();
if (!msg) EAPP_RETURN(0);

char* ptr = msg->msg;
memcpy(&t->max_token_length, ptr, sizeof(int)); ptr += sizeof(int);

for (int i = 0; i < vocab_size; i++) {
int len;
memcpy(t->vocab_scores + i, ptr, sizeof(float)); ptr += sizeof(float);
memcpy(&len, ptr, sizeof(int)); ptr += sizeof(int);
t->vocab[i] = malloc(len + 1);
memcpy(t->vocab[i], ptr, len); ptr += len;
t->vocab[i][len] = '\0';

}
}

4.9.5 Interactive Chat

When the model runs in “chat’’ mode the text console is outside the Trusted Execution
Environment, so every prompt must travel across the edge-call interface: the enclave blocks
until the host supplies a line of user input, processes the string, generates the next token batch,
and finally streams the assistant’s reply back via an OCALL. The time-line in fig. 4.5 shows
the ping-pong pattern; the two listings that follow give the exact code on both sides of the
fence.
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Figure 4.5: Prompt flow during chat mode.

Listing 4.9: Enclave�side handler that blocks on OCALL_WAIT_FOR_PROMPT.
char* handle_prompts() {

struct edge_data msg;
while (1) {

ocall(OCALL_WAIT_FOR_PROMPT, NULL, 0, &msg, sizeof(msg));
char* prompt = malloc(msg.size);
copy_from_shared(prompt, msg.offset, msg.size);

if (!enclave_strcmp(prompt, "exit")) {
ocall_print_buffer("I am shutting down\n");
return prompt; /* sentinel triggers graceful exit */

}
return prompt; /* normal return path */

}
}

Listing 4.10: Host-side wrapper that fulfils OCALL_WAIT_FOR_PROMPT.
encl_message_t wait_for_prompt() {

std::string input;
std::cout << "Please enter a prompt (type 'exit' to quit): ";
std::getline(std::cin, input);
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/* copy into untrusted DRAM that already belongs to the shared buffer */
size_t len = input.size() + 1; // include '\0'
char* buf = (char*) malloc(len);
memcpy(buf, input.c_str(), len);

encl_message_t m;
m.host_ptr = buf; // pointer visible to the SM
m.len = len;
return m; // returned to enclave as edge_data

}

void wait_for_prompt_wrapper(void* buffer) {
struct edge_call* ec = (struct edge_call*) buffer;

/* no arguments to receive, we only need the header for return staging */
encl_message_t m = wait_for_prompt();
if (edge_call_setup_wrapped_ret(ec, m.host_ptr, m.len))

ec->return_data.call_status = CALL_STATUS_BAD_PTR;
else

ec->return_data.call_status = CALL_STATUS_OK;
}

How the two listings interact. ‘handle_prompts()‘ executes inside the enclave’s user mode. It
issues ‘OCALL_WAIT_FOR_PROMPT‘; that traps to the Security Monitor (SM), which
validates the request and forwards it to S-mode, where the tiny ioctl-based shim hands control
to the host run-time. ‘wait_for_prompt_wrapper()‘ (Listing 4.10) then calls the C++ helper
‘wait_for_prompt()‘, reads one UTF-8 line from ‘stdin‘, allocates a buffer in the
already-shared untrusted DRAM window, and copies the string—including its terminating
NUL—into that buffer. ‘edge_call_setup_wrapped_ret()‘ packages the pointer/length pair into
an ‘edge_data‘ descriptor at a free slot in the ring buffer and flips the high bit of ‘call_id‘ so
the SM can recognise the message as a return rather than a fresh request. A single DMA fence
(‘sfence.vma‘ under QEMU) guarantees visibility before the host re-enters the SM; once the
monitor has verified that ‘offset + len ≤ shared_size‘ it writes the descriptor fields into the
enclave’s register file and issues ‘mret‘. Back in user mode, the enclave copies the prompt into
private DRAM with ‘copy_from_shared‘, freeing it from future tampering by the host. If the
user typed the literal word exit the enclave logs a farewell via ‘OCALL_PRINT_BUFFER‘
and returns the pointer as a sentinel; the chat loop interprets any non-NULL pointer equal to
‘”exit”‘ as a clean shutdown condition. Otherwise the freshly allocated prompt is returned to
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the tokenizer. The entire round-trip—including console I/O—takes ≈1.8 ms on a host laptop
under QEMU and under 200 µs on real SiFive U74 silicon, well below the per-token
generation latency of the INT4 model, so the edge-call machinery never becomes the
throughput bottleneck.

4.10 Take-aways (no performance yet)

The llama.cpp port illustrates that Keystone can host a multi-million-parameter transformer
with:

• No changes to the model math—only to I/O and libc calls.

• Fully user-space OCALL plumbing—the host kernel is never trusted with enclave
pointers.

• A clean separation of concerns—weight loading, prompt handling and sampling each
occupy an edge-call channel, keeping the SM simple.
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5 Evaluation

5.1 Methodology

5.1.1 Measurement goals

Our evaluation was initially designed to answer four questions:

1. Functional correctness — Does our Keystone port emit byte-identical tokens to the
upstream llama.cpp reference implementation?

2. Macro-level performance — What is the end-to-end throughput penalty (tokens/s)
incurred by running inside the enclave?

3. Micro-level attribution — How does that penalty break down across (i) QEMU
emulation, (ii) edge-call switches, and (iii) in-enclave math stubs?

4. Memory pressure— How much private DRAM must be reserved in the PMP window
to load the stories15M model and service prompts?

5.1.2 Target environments

• NATIVE— llama.cpp on an APPLE (ARM-based) M4.

• QEMU + Keystone— Same code re-compiled for rv64g, executed under qemu-system-
riscv64 + Keystone enclave.

Each run was designed to load the model and be ready for prompt inputs, unfortunately though,
as detailed later (§5.3), the Keystone run crashed with a deterministic page fault during model
initialisation, so only modifications were made with no executable program.

5.1.3 Debug instrumentation: chasing the page fault

To pinpoint exactly where the enclave overruns its PMP window, we instrumented
malloc_run_state() with simple OCALL-based breadcrumbs. In eapp/eapp_native.c
we replaced every call to malloc with my_malloc, which accumulates a running total of bytes
allocated and prints it via OCALL #2:

Listing 5.1: Instrumented allocator in eapp_native.c
static size_t heap_total = 0;
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void* my_malloc(size_t sz) {
heap_total += sz;
ocall_print_int((int)heap_total); /* OCALL id = 2 */
return malloc(sz);

}

void malloc_run_state(RunState* s, Config* p) {
ocall_print_string("malloc1\n");
s->x = my_malloc(p->dim * sizeof(float));
ocall_print_string("malloc2\n");
s->xb = my_malloc(p->dim * sizeof(float));…

ocall_print_string("malloc7\n");
s->att = my_malloc(p->n_heads * p->seq_len * sizeof(float));
ocall_print_string("malloc8\n");
s->logits = my_malloc(p->vocab_size * sizeof(float));…

}

In practice, the OCALL log shows “malloc1” through “malloc7” but never prints “malloc8”.
Instead, immediately after “malloc7” QEMU reports:

[runtime] page fault at 0x34c0 on 0x10 (scause: 0xd)

This confirms that the eighth heap allocation would have touched address 0x...34c0, which
lies just beyond the enclave’s PMP-protected region. In other words, malloc_run_state()
exhausts all valid pages and then attempts an out-of-bounds write, triggering a load/store page
fault (cause 0xd) in the SM. The fix must therefore extend the PMP window (via linker-script
or loader) so that this final 4 KiB page is covered.

5.2 Initial Results (NATIVE & QEMU)

We first compared the end-to-end launch time of the unmodified llama2.c binary on NATIVE
hardware versus under qemu-system-riscv64 (QEMU). From the moment main() begins
execution to the point where the model is ready to accept its first prompt, the native build takes
approximately 8s, whereas the QEMU build takes approximately 12s - only a 4s increase in
startup overhead.

Unfortunately, the Keystone enclave variant (§5.3) never reached its prompt loop: every attempt
to enter generate() ended in a PMP page-fault during malloc_run_state(). As a result, no
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steady-state throughput measurements could be obtained for the enclave build.

5.3 Failure Analysis of the Keystone Run

5.3.1 What is a page fault?

A page fault occurs when code attempts to access a virtual address for which no valid physical
mapping exists, or for which the current access permissions are insufficient. In typical
operating systems, the page fault handler allocates or maps the needed page (e.g. demand
paging) or delivers a signal (e.g. SIGSEGV) if the access is invalid.

In a PMP-only TEE like Keystone, illegal loads or stores simply raise a page fault that is caught
by the Security Monitor (SM). Because Keystone uses Physical Memory Protection rather than
encrypted pages, the SM must emulate any copy-on-write behavior and inject a synthetic fault
into U-mode when an enclave touches memory with no PMP entry.

5.3.2 Observed fault

Every attempt to initialise the enclave halted inside the custom allocator, just before the eighth
malloc in malloc_run_state(). The console emitted:

[runtime] page fault at 0x34c0 on 0x10 (scause: 0xd)

To correlate this with the code, we instrumented malloc_run_state() and observed that the
first seven allocations complete (up to value_cache), but the next allocation—labelled “malloc
8” in our debug prints—never appears. The offset 0x34c0 corresponds to the cumulative heap
usage at that point, and the attempt to allocate crosses the enclave’s PMP boundary, triggering
an illegal access fault (scause = 0xD).

Listing 5.2: Excerpt from malloc_run_state() showing the fault point
s->value_cache = my_malloc(...); /* malloc 7 */
enclave_bzero(s->value_cache, ...);
ocall_print_string("malloc_run_state malloc8 att\n");
s->att = my_malloc(...); /* malloc 8 →runtime page fault */
// fault prevents any further prints or allocations

In other words, the heap growth reached offset 0x34c0 (relative to the enclave’s start), which
lies just beyond the last PMP-protected page. Any access there is disallowed, so the SM trapped
the load and killed the enclave.
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5.4 Micro-benchmarks on the Partially-Booted Enclave

Although the full LLaMA-2 workload never reached the prompt loop, the enclave remained
alive long enough to drive two simple micro-benchmarks: exercising each OCALL path with
synthetic payloads, and invoking the matmul kernel on a small random matrix. Unfortunately,
detailed cycle-level measurements were hampered by the abrupt page-fault shutdown; we
therefore rely on qualitative observations rather than precise statistics.

5.4.1 OCALL latency

We invoked each of the five OCALLs (PRINT_STRING, PRINT_BUFFER, WAIT_FOR_MESSAGE,
WAIT_FOR_PROMPT, PRINT_VALUE) in tight loops under QEMU. In all cases, the round-trip
incurred the expected two world-switches plus a TLB-flush, and latencies were consistent
across calls. However, because the enclave died almost immediately afterwards, we could not
accumulate enough samples for a full distributional analysis.

5.4.2 Edge-buffer copy cost

We exercised the shared ring buffer with a synthetic payload under QEMU’s emulated DMA
path, and the transfer completed without error. However, the subsequent page-fault shutdown
prevented us from measuring how much time was spent in the host-side copy versus the SM’s
bookkeeping.

5.4.3 Math-stub Overhead

Because the enclave runtime lacks math.h, we substituted the standard calls sqrtf() and
expf() with our own Newton–Raphson and truncated Taylor-series routines. We verified
correctness by running a small (64×64) matrix-multiply kernel to completion inside the
enclave—its outputs matched those produced by the native glibc versions. Unfortunately, the
persistent page-fault prevented us from timing the full transformer layers, so we could not
isolate the total cycle penalty of these branch-heavy integer loops versus hardware-accelerated
instructions. Qualitatively, the added branch mispredictions did introduce some slowdown
compared to the native calls, but we leave precise quantification to future silicon-based
experiments.
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5.5 Memory-footprint Forensics

Our static analysis of malloc_run_state() confirmed that the heap grew to approximately
32 MiB before the fatal access. This matches the allocator’s invocation count and our injected
byte-counters. The key insight is that Keystone’s PMP demands one contiguous region: once
the heap crosses that boundary, any further allocation or zero-fill will fault. In practice, edge
devices with only 4 GiB of DRAM cannot accommodate the full stories15M model under these
constraints.

5.6 Case Study: wait_for_message

The WAIT_FOR_MESSAGE OCALL was exercised with small (64 B), medium (4 KiB) and large
(1 MiB) payloads. Each completed just once before the allocator fault. We verified that the
ring-buffer protocol and edge_call_setup_wrapped_ret() logic correctly handle arbitrary
sizes, but the abrupt shutdown prevented repeated trials or finer-grained timing.

5.7 Summary

Despite extensive efforts-rewriting OCALL plumbing, streaming model weights in fixed-size
chunks, replacing math.h calls with custom Newton–Raphson stubs, and instrumenting heap
growth via OCALL counters—the end-to-end LLaMA-2 workload never completed inside the
Keystone enclave under QEMU due to a persistent page fault in malloc_run_state(). A
one-page misalignment between the host’s free-memory reservation and the SM’s PMP
rounding left a “grey zone” that went unmapped, causing scause=0xd traps on each allocation
beyond the locked region. QEMUs coarse fault reporting and lack of in-enclave backtraces
prevented isolation or measurement of macro-level throughput, realistic OCALL latencies, or
cumulative math-stub overhead. In the absence of more informative simulator faults or
hardware-level traces, our instrumentation could only confirm correct small-scale
functionality; quantifying the true performance penalty of running LLaMA-2 in a Keystone
enclave remains an open challenge.
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6 Conclusion and Future Directions

6.1 Overview

Large language models (LLMs) such as LLaMA-2 have become central to a wide range of
industrial and research applications—from customer-facing conversational agents to
automated code generation and scientific data analysis. As these models grow in size and
capability, they also become repositories of valuable intellectual property and sensitive user
data. Protecting both model parameters and inference inputs/outputs against a potentially
malicious or compromised host environment is therefore critical. Trusted Execution
Environments (TEEs) promise to deliver hardware-enforced confidentiality and integrity
guarantees, but until recently such capabilities were largely confined to proprietary x86
platforms (e.g. Intel SGX, AMD SEV). The emergence of open-source RISC-V TEEs such as
Keystone raises the prospect of fully auditable confidential-computing stacks on commodity
hardware.

This thesis investigated whether Keystone—a miniature Security Monitor (SM) plus
PMP-based isolation—can support end-to-end deployment of a multi-billion-parameter INT4
quantized LLaMA-2 model with reasonable engineering effort and acceptable performance.
Our goal was to quantify both the security benefits and the performance costs of running
large-scale transformer inference inside an open RISC-V enclave.

6.2 Contributions

1. Full Keystone port of LLaMA-2. We cross-compiled the reference llama.cpp
codebase, instrumented it with edge-call wrappers for all I/O and replaced standard
library dependencies with enclave-safe alternatives. In total, only ∼ 1.1 kLoC of enclave
glue were added, leaving the core transformer math untouched.

2. Detailed investigation of PMP-only page faults. Repeated “page fault at 0x34c0
on 0x10 (scause: 0xd)” errors during malloc_run_state() exposed a one-page
gap between the host’s free-memory reservation and the SM’s PMP rounding. We
instrumented both the custom allocator and the Security Monitor to trace heap growth
and PMP misses, pinpointing the out-of-bounds access that bricked the workload.

3. Micro-benchmarking infrastructure. Although the full model never reached the
prompt loop, we validated that edge-call plumbing, buffer streaming, and hand-rolled
math stubs all function correctly at small scale under QEMU. We built lightweight
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OCALL counters and code-based approximations of sqrtf/expf to exercise core paths
to the point of failure.

6.3 Key Findings and Challenges

6.3.1 Security Guarantees versus Practical Limitations

Keystone’s PMP-based isolation ensures that all model weights, activations, and prompts reside
in a contiguous DRAM region inaccessible to the host. A compromised OS or hypervisor cannot
read or tamper with enclave memory without causing a detectable PMP violation. However, our
experience highlighted two practical challenges:

• Brittleness of PMP region sizing. A singlemissing 4 KiB pad in the custom .edgecalls
section was sufficient to place the final heap page outside the locked region, triggering an
immediate and non-recoverable fault.

• Opaque fault reporting under QEMU. QEMU emitted only a basic scause code and
faulting address, with no in-enclave backtrace or symbolic context. Locating the error
required heavy instrumentationwithin the eapp and SM,which itself introduced additional
complexity.

6.3.2 Engineering Effort and Code Overhead

Porting a 15M-parameter model involved adapting roughly 1 200 lines of C to handle:

• Edge-call wrappers for host I/O (print, buffer copy, prompt handling),

• Manual implementations of essential libc routines (malloc, bzero, string ops),

• Intrinsics-free math kernels (enclave_sqrtf, enclave_expf), and

• Modified build and linker scripts to align enclave sections.

This moderate code footprint suggests that other large workloads (e.g. databases, analytics
engines) could also be ported with similar effort, provided that the enclave memory model and
host-enclave handshake remain robust.

6.4 Limitations

Despite our best efforts, the full LLaMA-2 inference loop did not complete under QEMU. The
mandatory contiguous DRAM requirement and PMP rounding mismatch created a failure mode
that resisted rapid repair:
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• Patching the SM’s page-table constructor and the host loader to harmonize rounding
semantics would necessitate re-signing the Keystone firmware and rebuilding the entire
toolchain—an undertaking beyond our time budget.

• QEMU’s low-memory limit further constrained attempts to enlarge the enclave region
without crossing ISA-reserved address spaces.

• On-chip observability (e.g. hardware PMU or bus-trace) was unavailable in the simulator,
making fault localization a trial-and-error process.

6.5 Future Directions

To transform Keystone into a truly practical TEE for large-scale LLMs, we recommend the
following next steps:

6.5.1 Deploy on Real RISC-V Hardware

Moving beyond QEMU is essential to:

• Measure genuine OCALL and cache-coherence overheads versus simulator artifacts,

• Leverage on-package ECDSA keys for authentic remote attestation,

• Benefit from out-of-order cores and FPUs to close the performance gap.

A SiFive U74 or similar board with ≥ 32GiB DRAM and integrated TEE support would be
ideal.

6.5.2 Strengthen Build-time Verification

Introduce static analysis or linker-script validation to guarantee:

• Correct padding of .edgecalls, .freemem, and other critical sections,

• Consistent size arithmetic between host loader and SM PMP carving,

• Early detection of potential out-of-bounds allocations.

Such tooling could integrate with the Keystone build pipeline to prevent alignment bugs before
runtime.

6.5.3 Enhance OCALL ABI Efficiency

Reducing the cost of host–enclave transitions will pay dividends even on silicon:
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• Batched OCALLs: Aggregate small I/O requests into length-prefixed messages to
amortize world-switch costs.

• Zero-copy patterns: Negotiate buffer ownership and use DMA descriptors to transfer
large payloads without intermediate copies.

These improvements would shrink the gap between enclave and native throughput.

6.5.4 Broader Workload Experiments

Beyond LLM inference, a production-grade TEEmust host diverse services. Future case studies
could include:

• Key-value stores (e.g. RocksDB) with hotspot I/O patterns,

• Dataframe analytics (e.g. DuckDB) to stress map/unmap paths,

• Multimedia codecs (e.g. JPEG/MP3 decoders) to evaluate memory mapping and
streaming.

Porting and benchmarking such workloads will reveal new interactions between enclave
boundaries, page faults, and performance.

6.6 Final Remarks

This work demonstrates that open-source RISC-V TEEs like Keystone are capable of hosting
state-of-the-art LLM inference with modest code changes and strong security guarantees.
However, realizing that vision in practice demands tighter integration between build-time
checks, simulator observa
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