
 
 

Thesis Dissertation 

 

 

 

Leveraging Vision Transformers for Early 

Breast Cancer Detection: A Study on Thermal 

Infrared Imaging with the use of DINOv2 

 

 

Dimitriana Georgiou 

 

 

 

University of Cyprus 

 

Computer Science Department  

 

 

May 2025 



 
 

 

Acknowledgements 

 

Completing this thesis has been a journey of growth, learning and perseverance. Over 

the course of the four years I have spent studying Computer Science, I have gained 

invaluable knowledge that has shaped my ability to conduct research, analyse complex 

problems, and apply programming skills effectively. This thesis has challenged me in 

many ways, pushing me to refine my problem-solving approach, improve my time 

management, and develop a structured workflow to meet deadlines successfully. Even 

though this journey was far from easy, it has shaped me to the person I have become 

today and for that I am beyond grateful. 

I would like to express my sincere gratitude to my advisor, Dr. Chris Christodoulou, for 

his guidance and support throughout this research. His expertise and feedback have 

been instrumental in shaping my understanding of the topic and ensuring the quality of 

my work. 

I am also deeply grateful to Marios Pafitis, whose continuous assistance and dedication 

greatly contributed to the development of this thesis. As the founder of MammoCheck, 

a company that focuses on early breast cancer examinations at home using affordable 

thermal cameras, AI algorithms, and your smartphone, Marios played a crucial role in 

helping me collect the necessary data and refine the core idea of my research. His 

availability, insightful discussions, and willingness to provide guidance at every stage 

made a significant difference in my ability to navigate the challenges of this project. His 

support has been invaluable, and I truly appreciate the time and effort he devoted to 

helping me bring this thesis to completion. 

Additionally, I would like to thank Valentinos Pariza for his help in understanding 

DINOv2, which was a key aspect of my research. His insights and explanations allowed 

me to grasp the technical complexities and apply them effectively. 

Beyond the academic support, I am deeply thankful to my family for their unwavering 

encouragement and patience throughout this journey, especially to my mother Claire 

Kouppas, who had to listen to my unlimited complaints and frustration.  

I also owe a very special debt of gratitude to my grandfather and grandmother, Andreas 

and Maro Kouppas, who generously provided me with the laptop on which this entire 

thesis was completed. My family’s support, both material and emotional, has played a 

significant role in making this work possible.  

To claim that the virtues of a piece of work are largely due to the help of others and that 

the sin of omission is very much one’s own is a cliche. There is, however, a core truth in 

cliches. 

 



 
 

 

 

 

UNIVERSITY OF CYPRUS 

COMPUTER SCIENCE DEPARTMENT 

 

 

 

Leveraging Vision Transformers for Early Breast Cancer Detection: A 

Study on Thermal Infrared Imaging with the use of Dinov2 

 

 

DIMITRIANA GEORGIOU 

 

 

 

 

 

Supervisor 

Dr. Chris Christodoulou 

 

 

A thesis submitted in partial fulfillment of the requirements for the award 

of Bachelor’s degree in Computer Science at the University of Cyprus 

 

May 2025 



 
 

Abstract: 

Breast cancer is one of the leading causes of mortality in women worldwide, making its 

early diagnosis critical for improving survival rates. Although mammography remains 

the established detection method, it presents significant limitations, such as false 

positives, high cost, and challenges in analysis using Convolutional Neural Networks 

(CNNs). 

This paper proposes an alternative method for detecting breast cancer through thermal 

imaging, utilizing Vision Transformers (ViTs), and specifically DINOv2. ViTs 

outperform CNNs in analyzing spatial relationships and preserving information at a 

global level, making them particularly suitable for medical imaging. The purpose of this 

study is to apply DINOv2 to classify thermal images of breasts as healthy or cancerous, 

with the aim of improving early diagnosis. 

For training and evaluation of the model, thermal breast images from two public 

databases were used: "A New Database for Mastology Research with Infrared Image" 

and "Thermal Infrared Breast Screening Database (TIBSDB)". From these, a total of 

329 frontal images were selected (257 from healthy cases and 72 from cancer patients), 

while after removing duplicates, the final number of images reached 323. The images 

come from static and dynamic acquisition protocols, including information on vascular 

patterns and temperature fluctuations. 

In the study, experiments were introduced using two different classifiers (classification 

heads): a linear classifier (Linear Head) and a multi-layer perceptron (MLP Head), in 

order to compare their performance in classifying thermal images. Additionally, the 

analysis includes training via Stratified K-Folds Cross-Validation, ensuring fair 

evaluation of the model. 

The results showed that both classifiers achieved relatively high sensitivity, a key 

priority in medical screening, but the MLP head consistently outperformed the linear 

head in accuracy, specificity, and F1-score. Despite these promising outcomes, the 

number of false positives and false negatives remained too high for real-world clinical 

deployment. This highlights the need for further research to improve stability, reduce 

misclassifications, and enhance generalization. 

Overall, this research presents a novel approach to breast cancer detection using 

DINOv2-based ViTs on thermal images. It offers a non-invasive, low-cost, and 

potentially more effective alternative to traditional screening methods, while also laying 

the groundwork for future improvements and more clinically viable AI solutions in 

medical imaging. 
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Chapter 1 

Introduction 

 

1.1 Breast Cancer: Significance of Early Detection and Its Impact on Diagnosis 

1.2 Past Attempts 

1.2.1 Past Achievements with CNNs in Breast Cancer Detection: Achievements and 

Limitations 

1.2.2 Achievements with MobileNetV2 in Breast Cancer Detection: Limitations 

1.2.3 Past Attempts using Vision Transformers for Breast Cancer Detection 

 

 

1.1 Breast Cancer: Significance of Early Detection and Its Impact on Diagnosis 

and Treatment 

Breast cancer is a malignant tumour that originates in the cells of the breast 

representing the most commonly diagnosed cancer among women worldwide, 

accounting for 30% of all new female cancer cases annually [1]  and responsible for 

one in six cancer deaths globally[2]. In 2025, it is estimated that approximately 

316,950 women in the United States will be diagnosed with invasive breast cancer 

[3]. In the European Union (EU), the incidence of breast cancer was estimated at 

355,500 cases in 2020, with one in eleven women developing the disease before the 

age of 74 [2]. 

In Cyprus, breast cancer possesses a significant health concern. The country aligns 

with the broader EU statistics, reflecting the high prevalence of this disease among 

women. Notably, approximately 21% of breast cancer cases in Europe occur in 

women under 50, underscoring the importance of awareness and screening across 

various age groups [2] . 

Early detection of breast cancer is crucial for improving survival rates and reducing 

the severity of treatment [2]. When diagnosed at an early stage, the five-year survival 
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rate is significantly higher compared to late-stage detection [4] .Early-stage breast 

cancers are often confined to the breast tissue and can be effectively treated with 

surgical interventions, reducing the need for more aggressive therapies. Regular 

screening methods, such as mammography and breast self-examinations, play a vital 

role in identifying the tumor(s) before they progress to advanced stages [4]. . Breast 

thermography is a non-invasive and contact-free technique that does not involve 

radiation or painful breast compression. Diagnosing breast cancer typically requires 

expert radiologists and pathologists, a process that can be time-consuming. Their 

conclusions are based on various visual features, which may differ from one 

individual to another [5]. Additionally, the widespread adoption of mammography 

screening has contributed to a rise in breast cancer diagnoses; however, it has also 

significantly lowered mortality rates in many countries by enabling timely 

intervention. [2] 

Despite advancements in treatment, unfortunately breast cancer remains a leading 

cause of cancer-related deaths among women. In Europe, it accounts for one in six 

cancer fatalities [2] . 

All of these statistics mentioned above, highlight the aggressive nature of certain 

breast cancer subtypes and the challenges associated with treating advanced-stage 

disease. Therefore, emphasizing early detection strategies especially at an early 

stage is essential to reduce mortality rates, improve the quality of life of those 

affected [4]  as well as to increase the likelihood of successful treatment, preventing 

cancer from spreading to vital tissues and organs [2] . 

The remainder of this thesis is structured as follows. The next chapter provides an 

overview of relevant background knowledge, including Vision Transformers (ViTs), 

the DINOv2 architecture, and the classification strategies employed. This is 

followed by a chapter detailing the dataset characteristics, acquisition protocols, 

preprocessing steps, and data splitting methodology. The implementation chapter 

then outlines the complete experimental pipeline, including feature extraction, 

model design, and training procedures. Subsequently, the experimental results are 

presented and analyzed, with comparisons between classifier performance and an in-
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depth evaluation of key metrics. The thesis concludes with a summary of findings, a 

discussion of limitations, and suggestions for future research directions. 

1.2 Past Attempts  

1.2.1 Past Achievements with CNNs in Breast Cancer Detection: 

Achievements and Limitations: 

Convolutional Neural Networks (CNNs) have been widely employed for breast 

cancer detection ,particularly in mammographic image analysis. Their ability to 

automatically extract hierarchical features has significantly advanced computer-

aided diagnosis (CAD) systems, whilst also reducing the workload of radiologists 

and improving detection accuracy [1] . Various CNN architectures have been tested 

in this field, with models such as ResNet and EfficientNet demonstrating promising 

performance in classifying malignant and benign breast lesions [6] . Despite these 

advancements, CNNs still face several limitations that affect their real-world 

applicability. 

One of the primary challenges with CNNs is their high computational cost. Due to 

the multiple convolutional layers and complex feature extraction processes, CNN 

models require substantial processing power making them inefficient for 

deployment in resource-limited clinical settings [1] . Additionally, CNN-based 

models often use a patch-based approach, where sections of mammograms are 

analyzed separately. While this method improves local feature detection, it can lead 

to a loss of global contextual information, resulting in a significantly high rate of 

false positives and false negatives [6] . Furthermore, CNNs struggle with 

generalization across different datasets due to variations in imaging protocols and 

patient demographics, making their performance highly dependent on large and 

diverse training datasets [1] . 

Another significant drawback of CNNs is their sensitivity to image quality. Poor 

contrast, noise, and variations in mammogram scans can negatively impact model 

accuracy, requiring extensive preprocessing techniques to improve image clarity [1] . 

Moreover, CNNs often require large amounts of annotated data to achieve robust 

performance, but medical image datasets, particularly for rare breast cancer 

subtypes, are often limited. This leads to imbalanced training data, where CNNs 
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may favor the majority class, reducing sensitivity to any rare malignant cases [6] . 

These limitations have prompted researchers to explore alternative deep learning 

models such as Vision Transformers (ViTs), which can capture global dependencies 

more effectively and address some of the fundamental weaknesses of CNNs [1] . 

A notable recent contribution is the work by Abunasser et al. [7] , who proposed a 

deep learning-based framework using a custom CNN architecture called BCCNN 

for the detection and classification of breast cancer. Their model was trained on a 

histopathological image dataset sourced from Kaggle and further enhanced using 

Generative Adversarial Networks (GANs) to synthetically balance the classes. This 

approach aimed to address a common problem in medical datasets , which is class 

imbalance. Imbalance in dataset classes, can significantly hold back model 

performance in distinguishing between rare malignant subtypes and more common 

benign cases. 

The BCCNN architecture was evaluated across various image magnifications (40×, 

100×, 200×, and 400×) and compared to five widely-used pre-trained CNN models: 

Xception, InceptionV3, VGG16, MobileNet, and ResNet50. The results 

demonstrated that BCCNN outperformed these models in key metrics such as 

precision, recall, and F1-score, achieving a top F1-score of 98.28% which is an 

extremely high percentage especially in comparison to the results of the pre-trained 

CNN models. This performance highlights the potential benefits of task-specific 

custom architectures over general-purpose pre-trained models especially when 

combined with data augmentation strategies like GANs [7] . 

Moreover, the study by Abunasser et al. emphasized the impact of multi-class 

classification in breast cancer detection. Unlike binary classification systems that 

only distinguish between benign and malignant tumors, BCCNN was trained to 

classify eight distinct categories, including multiple malignant and benign subtypes 

making it a more general model. This kind of highly detailed classification, mirrors 

clinical reality more closely and provides richer diagnostic information. It also 

underlines a growing trend in deep learning for medicine: moving from binary 

outputs to more nuanced, clinically relevant predictions. 
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However, even with these achievements, the study reflects broader challenges 

within CNN-based systems [1] [7] . The reliance on annotated data ,the difficulty in 

generalizing across diverse clinical datasets, and the need for high computational 

resources still remain persistent limitations. Additionally, while BCCNN showed 

excellent performance on the dataset it was trained and tested on, the authors 

acknowledge that further validation on external datasets and real clinical settings is 

essential for proving its robustness [7] . Therefore, taking into consideration these 

challenges limitations and weaknesses that CNN models face, it is extremely 

important to introduce new methods using different models , such as ViTs, that 

potentially have the ability to outperform the existing ones. 

1.2.2   Past Achievements with MobileNetV2 in Breast Cancer Detection: 

Limitations 

Beyond CNNs ,MobileNetV2 has also been investigated as a potential architecture 

for early breast cancer detection. MobileNetV2 is a lightweight deep learning model 

which has supposedly been designed for efficient computation, particularly in 

mobile and edge devices. It utilizes depth wise separable convolutions to reduce the 

number of parameters and computational cost while maintaining reasonable 

accuracy in image classification tasks [8] . However, despite these advantages, 

MobileNetV2 has demonstrated several limitations that impact its effectiveness in 

medical imaging applications [8] . 

One of the key challenges faced by MobileNetV2 is overfitting, which is 

particularly noticeable when trained on limited datasets. This occurrence has led to 

poor generalization when applied to new mammograms [8]. Additionally, its feature 

extraction capability is not as strong as other deep learning models which affects its 

ability to detect subtle abnormalities in the breast tissue, potentially increasing false 

negatives in early stage cancer detection [8] . Another drawback is its lower 

validation accuracy, especially when compared to other architectures like 

MobileNetV1 which therefore, suggests instability in training and classification 

performance [8] .  
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These limitations underline the importance of exploring more advanced models that 

can provide better feature representation, improved accuracy, and greater 

generalizability for breast cancer detection. 

 

1.2.3 Past Attempts using Vision Transformers for Breast Cancer Detection 

ViTs have emerged as a powerful alternative to CNNs in image classification tasks 

including medical imaging. In a recent study ,Muthusamy et al. applied a ViT 

architecture for classifying breast cancer from thermal images [5] . The ViT model 

was trained from scratch using thermal breast thermograms all taken from the DMR 

dataset, with images of individuals aged between 29 and 85 captured using a high-

resolution FLIR SC-620 infrared camera. 

The main approach involved dividing each thermal image into smaller patches 

(16×16 and 32×32), which were then flattened and fed into the Transformer encoder 

along with a learnable classification token. This allowed the self-attention 

mechanism to focus on the most relevant parts of the input image during 

classification. The ViT-Base model used in the study consisted of 12 encoder layers 

with 12 attention heads, a 768-dimensional embedding size, and a 3072-dimensional 

feed-forward layer. The network was optimized using the Adam optimizer with a 

learning rate of 1e-2 (which equals to 1x10-2) and 10% of test data was used for 

validation purposes. 

The experiment’s results demonstrated that the ViT model achieved impressive 

performance reaching a maximum accuracy of 95.78% and an AUC which is a 

metric that shows the overall performance of the ViTs , of 0.957 when using 32×32 

patches and a 90/10 train-test split. This performance was comparable to and in 

some cases even exceeded, that of CNN-based models such as ResNet and VGG 

variants. However, the authors also highlighted key limitations of the approach.  

More specifically, ViTs require large datasets to fully leverage their capacity and 

due to the relatively small size of the DMR dataset (460 cancerous and 490 healthy 

patients) ,a significant portion of the available data had to be used for training. This 
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raises concerns about overfitting and generalizability. Furthermore, the 

computational demands of training ViTs from scratch can pose challenges, 

especially when dealing with high-resolution medical images or limited hardware 

resources. 

Despite these challenges, the study provides strong evidence for the applicability 

and potential use of Transformer-based architectures in the medical domain. The 

ability of ViTs to model long-range dependencies and attend to crucial features in 

thermal imaging makes them a compelling choice for breast cancer detection. 

The aforementioned study, served as a key motivation for selecting ViTs as the 

foundational model in this thesis. It demonstrated the potential of attention-based 

architectures to yield high classification performance in breast cancer detection 

tasks, which aligns with the goals of this research. 
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Chapter 2 

Background 

 

2.1 Proposed Solution: Vision Transformers and DINOv2 for Breast Cancer Detection 

2.1.1 Exploring DINOv2 With and Without Register Tokens 

2.2 Vision Transformers 

2.3 DINOv2 

      2.3.1 What is DINOv2 

      2.3.2 Comparative Analysis: DINOv2 vs. Other Self-Supervised Learning Methods 

      2.3.3 Justification for Using DINOv2 in this Thesis 

2.4 Classifier Architectures 

     2.4.1 Linear Classifier 

     2.4.2 MLP Classifier 

 

 

2.1   Proposed Solution: Vision Transformers and DINOv2 for Breast Cancer 

Detection 

The goal of this thesis is to explore the application of ViTs and DINOv2 in breast 

cancer detection. Traditional deep learning approaches, particularly CNNs, have played 

a significant role in medical imaging tasks, including mammography analysis. However, 

CNNs come with several inherent limitations, such as a restricted receptive field, 

sensitivity to spatial locality, and difficulty in capturing long-range dependencies [1] . 

These drawbacks hinder their effectiveness in detecting subtle patterns associated with 

early-stage breast cancer. To address these challenges, this study leverages ViTs, a 

novel deep learning architecture that utilizes self-attention mechanisms, and DINOv2, a 

self-supervised learning approach that enhances feature extraction without labeled data 

[9] . 

By adopting ViTs and DINOv2, we aim to improve the generalization, robustness, and 

interpretability of breast cancer detection models. Unlike CNNs, which primarily focus 

on local features through convolutional layers, ViTs process entire images as sequences 

of patches, enabling them to capture global context and long-range dependencies [6] . 



9 
 

This shift in image processing has demonstrated significant improvements in 

classification tasks, particularly in complex datasets such as medical imaging. 

Additionally, DINOv2 eliminates the dependency on large-scale annotated datasets, 

making it an ideal choice for medical applications where labelled data is limited [9] . 

 
Figure 2.1: Structural diagram of the DINOv2 model. The input image is divided into patches, which are 

embedded and passed through a stack of transformer blocks comprising multi-head self-attention, 

normalization layers, and MLP layers. This architecture builds on Vision Transformers and is trained 

using a self-supervised approach [10] . 

2.1.1 Exploring DINOv2 With and Without Register Tokens 

Building upon the adoption of DINOv2 for breast cancer detection, this section delves 

into a recent architectural enhancement to the DINOV2 framework. This enhancement 

includes register tokens, and the following section evaluates its performance within the 

context of this thesis. 

DINOV2 as discussed, is a self-supervised vision transformers known for its strong 

transferable features across a variety of vision tasks [9],[11] . However, Darcet et.al (2024) 

recently identified a structural issue in the standard DINOv2 architecture: the 

emergence of outlier tokens, which are patch tokens with unusually high activation 

norms often located in uninformative background regions [11] . These outliers tend to 

encode global scene-level information in a manner that can interfere with the local 

semantic interpretation of individual image patches. 
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To mitigate this, the authors proposed the integration of register tokens, which are a set 

of learnable tokens appended to the input sequence during training. These tokens act as 

a form of persistent memory, explicitly designed to absorb global information and 

internal computations that would otherwise manifest as outlier behaviour in patch 

tokens. This modification not only stabilizes the training process but also yields 

smoother attention maps and enhances performance on tasks such as object discovery, 

segmentation, and dense prediction [11] . 

Despite the theoretical and empirical benefits shown in the article [11] , this thesis 

employs the standard DINOv2 architecture without register tokens. This decision was 

based on careful experimental evaluation during the development of two downstream 

classifiers for binary classification of breast thermographic images. 

While models utilizing register tokens achieved slightly lower average training and 

validation losses, they consistently underperformed in terms of sensitivity and 

specificity, two metrics that are critical in medical diagnosis [5], especially when the cost 

of a false negative is high. Sensitivity, which reflects the model’s ability to correctly 

identify sick cases, is prioritized in this work due to the potential consequences of 

missing a cancer diagnosis. As shown in the graphs comparing the performance metrics 

of the model with and without registers, sensitivity (see Appendix ii.) was notably better 

for the model without registers. Specificity was also more balanced for the model 

without registers (see Appendix iii.), and accuracy was better as well (see Appendix iv.). 

The only consistent advantage observed for the model with registers was that it achieved 

lower loss values across all folds, each remaining under 1.0, whereas the loss values for 

the model without registers were much higher (see Appendix v.). 

Moreover, the improvements offered by register tokens in "Vision Transformers Need 

Registers," [11] were most significant in dense prediction and object discovery tasks, 

which differ in nature from the binary classification problem targeted in this thesis. The 

addition of registers appeared to alter the internal representation of patch tokens in ways 

that were not beneficial for maximizing per-sample diagnostic accuracy in this medical 

context. 

Consequently, the choice to utilize DINOv2 without registers ensures alignment with 

the core objective of this work which is achieving high sensitivity and specificity in 

breast cancer detection from thermal imaging. This aligns with prior findings that 



11 
 

architectural modifications must be evaluated in task-specific contexts, as performance 

gains in one domain may not generalize universally [11] . 

 

2.2 Vision Transformers 

ViTs are a groundbreaking class of deep learning models that apply the Transformer 

architecture, originally developed for natural language processing (NLP), to computer 

vision tasks [6] . While CNNs have long been the dominant architecture for visual tasks, 

their hierarchical and spatially localized nature makes it challenging to capture long-

range dependencies and global context. In contrast, ViTs treat an image as a sequence 

of patches and use self-attention mechanisms to model relationships between these 

patches across the entire image [5] . 

Unlike CNNs, which utilize fixed-size convolutional filters to extract local features, 

ViTs divide the input image into fixed-size non-overlapping patches, typically 16×16 or 

32x32 pixels. Each patch is flattened into a 1D vector, then linearly projected into a 

higher-dimensional embedding space. These patch embeddings, along with a learnable 

classification token (CLS token) and positional encodings, are input to a Transformer 

encoder composed of multi-head self-attention layers and feedforward neural networks, 

following the same architecture used in NLP models like BERT [6][5] . 

[5] Figure 2.2: Patch extraction process applied to a breast thermogram for a ViT input. 

 a. Original thermal image of the breast b. The same image divided into 32x32 pixel patchesm as used in 

ViT architectures. 

 

Figure 2.2 provides a visual example of how an input thermogram is divided into fixed-

size patches (32×32) before being processed by the ViT [5] . This patching mechanism 
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enables ViTs to model long-range dependencies across the image, which is particularly 

valuable in identifying subtle patterns in medical images such as breast thermograms. 

 

 

 

[5] Figure 2.3: ViT architecture for classifying breast thermograms. 

 

The ViT pipeline utilized for breast thermogram classification is illustrated in Figure 

2.3. Initially, the input thermal image is divided into non-overlapping patches, in this 

particular case of size 32×32 pixels, to convert the image into a sequence of smaller 

image tokens. Each patch is then flattened into a 1D vector and passed through a linear 

projection layer to obtain patch embeddings in a higher-dimensional feature space. To 

retain spatial ordering, positional embeddings are added to each patch embedding, and a 

special [CLS] token is prepended to the sequence. This [CLS] token is designed to 

aggregate global information across the entire image during training. 

The resulting sequence of embeddings is processed by a series of Transformer Encoder 

blocks, each consisting of multi-head self-attention layers and feedforward neural 

networks, interleaved with normalization layers and residual connections. As the 

sequence passes through these encoder layers, self-attention allows the model to capture 

long-range dependencies and contextual relationships between patches, which is 

considered a critical advantage over CNNs for subtle pattern detection in breast 

thermograms. 

Finally, the transformed representation of the [CLS] token, which now encodes a 

comprehensive understanding of the entire image, is passed through a Multi Layer 



13 
 

Perceptron (MLP) classification head. This head outputs the final prediction, indicating 

whether the thermogram corresponds to a cancerous or healthy breast. 

The attention mechanism in ViTs allows every patch to attend to every other patch, 

enabling global reasoning from the very first layer. This contrasts sharply with CNNs, 

where the receptive field grows slowly with depth, and global context is only captured 

in deeper layers. As a result, ViTs can effectively model spatial dependencies between 

distant parts of an image, which is especially important in medical imaging applications 

like breast cancer detection, where subtle and dispersed patterns may indicate pathology 

[5] . 

ViTs also introduce greater interpretability compared to CNNs. Attention maps 

generated by the Transformer layers can highlight which regions of the image the model 

focuses on when making decisions, offering explainable AI (XAI) potential in clinical 

scenarios [5] . 

 

Aspect CNNs Vision Transformers 

Locality Bias Strong (via convolution) None (learns spatial 

relationships) 

Global Context Weak unless deep layers are 

used 

Strong due to self-attention 

Data Requirement Moderate High (can overfit on 

relatively small datasets, 

needs pretraining) 

Interoperability Limited Higher (attention maps can 

be visualized) 
[5],[9] Table 2.1: Comparative Analysis of CNNs and ViTs in the context of image understanding. 

While CNNs have been dominant in medical image analysis, they are inherently limited 

by their localized receptive fields and lack of global context awareness in early layers. 

ViTs by contrast, leverage self-attention to enable each patch to interact with all others 

from the very first layer, facilitating global reasoning and enhanced interpretability 

through attention maps [9],[5] .  

A side-by-side comparison of these two architectures is presented in Table 2.1, 

summarizing the key differences relevant to medical imaging applications such as breast 

cancer detection. 

Moreover, transfer learning plays a crucial role in the application of ViTs to medical 

domains. Since ViTs are typically data-hungry, training them from scratch on limited 
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datasets (like thermal breast images) often leads to overfitting. To overcome this, 

pretrained ViTs on large datasets such as ImageNet are used and then fine-tuned on the 

target domain [5]. This approach retains the general visual knowledge learned during 

pretraining and helps adapt it to specialized medical tasks. In particular, self-supervised 

pretrained models, such as DINOv2, have been shown to improve representation quality 

without requiring labeled data [9]. 

In the study "Vision Transformers for Breast Cancer Classification from Thermal 

Images" [5] , ViTs achieved superior performance in identifying cancerous tissues from 

thermal images compared to CNNs. This performance is attributed to their ability to 

model subtle asymmetries, vascular changes, and diffuse thermal anomalies, all 

considered features that are not always locally prominent and might be missed by 

CNNs. 

 
[5] Fig. 2.4: Distribution of Thermograms Across Cancerous and Healthy Classes 

[5] Table 2.2: Table representation of Thermograms Across Cancerous and Healthy Cases 

 

The Transformer encoder in ViTs is built using: 

• Multi-head self-attention layers: Each attention head computes a weighted 

representation of all patches, allowing the model to attend to multiple aspects of 

the input in parallel. 

• Feedforward neural networks: Apply non-linear transformations to the output of 

the attention layers. 

• Residual connections and layer normalization: Help with gradient flow and 

model stability [5] . 

Mathematically, each self-attention layer in a ViT computes the output as: 
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Attention(Q,K,V) = softmax (
𝑸𝑲𝑻

√𝒅𝒌
)v 

Where: 

• Q,K,V are the query, key, and value matrices derived from the input 

embeddings, 

• dk is the dimension of the key vectors. 

The result is that each patch can gather information from all others, regardless of spatial 

distance, making ViTs especially powerful for medical diagnostics where global 

coherence and symmetry analysis are crucial. 

In conclusion, ViTs represent a significant advancement in medical image analysis. 

Their self-attention mechanism, ability to handle global dependencies, and flexibility to 

model irregular, non-local patterns make them an ideal architecture for detecting subtle 

and dispersed anomalies in breast thermal images, which is a challenge where 

conventional CNNs fall short [5]. 

 

2.3 DINOV2 

In this thesis, transfer learning was applied to perform classification on thermal breast 

images. Transfer learning is a machine learning technique in which a model trained on 

one task is reused or adapted to a different but related task, allowing for efficient use of 

learned representations when labelled data is limited [12]. According to Pan and Yang [12] 

, transfer learning is particularly effective when the source domain has abundant data 

but the target domain lacks labelled examples , which is a scenario that aligns with this 

thesis, where we apply a DINOv2 model pretrained on a large-scale dataset (LVD-

142M) to a small, domain-specific task involving just 323 thermal breast images, where 

acquiring extensive labelled data is difficult or impractical. 

For the purpose of this particular project, the DINOv2 ViT-s/14 model was employed, 

which is a 21 million parameter ViT released by Meta AI, trained with a self-supervised 

learning (SSL) approach that requires no human labels or captions [13] . DINOv2 stands 

out among recent vision foundation models for its ability to produce robust, transferable 

frozen features that generalize well across a variety of tasks, including classification, 
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segmentation, instance retrieval, and depth estimation, all without task-specific fine-

tuning [13] . 

 

Model variant used: 

In this thesis, the DINOv2 ViT-s/14 model was specifically used, which is the smallest 

in the DINOv2 family and contains approximately 21 million parameters [13] . The 

model uses 12 transformer blocks, each with 384-dimensional token embeddings, and a 

patch size of 14×14. The input images are resized to 224×224, which aligns with the 

model’s architecture. Internally, this resolution yields 16×16 grid patches, producing 

256 patch tokens per image. A special [CLS] token is also prepended, resulting in a total 

sequence length of 257 per image , all of which are embedded into a 384-dimensional 

space.  

The model begins with a Conv2D-based patch embedding layer and passes these tokens 

through a transformer stack. Each transformer block consist of Multi-Head Self-

Attention (MHSA) layers, with 6 attention heads in ViT-s/14, followed by Gaussian 

Error Linear Unit (GELU) activation, Layer Normalization (LayerNorm) and a 

feedforward MLP. 

GELU is a smooth non-linear activation function, used instead of ReLu, It enables 

better gradient flow, and it is defined as: 

GELU(x)= x ∙Φ(x) 

Where Φ(x) is the cumulative distribution function of the standard normal distribution 

[14] . GELU has no tuneable hyperparameters and it is widely used in Transformer 

models for its smoother activation curve. 

LayerNorm is applied before attention and MLP sub-layers. It standardizes the inputs 

across the features for each token as opposed to across the batch, thus stabilizing 

training [15] . It has two hyperparameters: a learnable scale and bias, both applied after 

normalization. 

Memory Efficient Attention (MemEffAttention) is a customized version of 

FlashAttention [13] , used in DINOv2 to speed up computation and reduce memory 
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usage during the attention operation. While not a conceptual change to the attention 

mechanism itself, it enables efficient training especially for large-scale ViT models. It 

relies on hardware-aligned parameters for optimized matrix operations. 

No classification head is used as the model outputs the raw feature representations 

directly. For the purpose of this thesis, custom classification heads (Linear and MLP) 

are applied on top of these frozen features. 

The model is downloaded using the following command: 

 

This automatically downloads the pretrained model weights from Meta AI’s official 

DINOv2 ViT-s/14 checkpoint: dinov2_vits14_pretrain.pth. These weights were trained 

on the LVD-142M dataset using the DINOv2 self-supervised method [13] . The .pth file 

contains the full set of trained parameters, including weights and biases for: 

• All 12 transformer blocks 

• The Conv2d patch embedding layer 

• Multi-head attention layers 

• MLP (feedforward) layers 

• LayerNorm layers 

These weights are used in this thesis as a frozen backbone, as they are not modified or 

updated during training. 

On top of this, a a NeCo-based post-training enhancement [16] was applied, that 

encourages local spatial consistency in the extracted features by aligning neighbouring 

patches in the latent space. This post-processing step occurs externally, without 

modifying the original DINOv2 parameters, by refining the spatial alignment of patch-

level features. 

The NeCo refinement applied in this thesis is based on the official open-source 

implementation provided by Valentinos Pariza [16]. Specifically, the “Student” model 

checkpoint from the NeCo repository was downloaded and used for feature extraction, 

while maintaining the DINOv2 ViT-s/14 weights in a frozen state. 
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2.3.1 What is DINOV2 

DINOv2 (DIstillation with NO labels v2) is a discriminative self-supervised learning 

framework developed by Meta AI. It leverages the Vision Transformer (ViT) 

architecture previously discussed in Section 2.2 and is trained using a self-distillation 

framework without labels, where a student network learns to match the output 

representations of a teacher network. The teacher is not trained directly; instead, it is 

updated as an exponential moving average (EMA) of the student’s weights, which 

stabilizes the learning targets and prevents collapse (i.e., trivial representations). During 

training, both networks receive differently augmented views of the same image, and the 

student is encouraged to produce similar high-level features as the teacher. This process 

enables the model to learn semantically consistent representations across 

augmentations, making it highly effective for self-supervised learning [13] . 

DINOv2 employs a combination of complementary training objectives to learn robust 

and semantically meaningful visual representations. These objectives not only serve 

individual purposes but also interact synergistically to guide the model toward both 

global and local understanding of images: 

• Global Consistency (DINO Loss): 

The DINO loss encourages the student model to produce feature representations 

that are consistent with those of the teacher, even when the input views are 

drastically different (e.g., different crops or augmentations of the same image). 

This global alignment helps the model focus on the semantic content of the 

image rather than low-level details. By enforcing similarity in the output 

distributions of the student and teacher, the DINO loss fosters the learning of 

high-level, transformation-invariant features. 

• Local Consistency (iBOT Loss): 

While the DINO loss focuses on global image-level alignment, the iBOT 

(Information Bottleneck Objective for Transformers) loss introduces a local, 

patch-level consistency objective. In this setup, the student receives masked 

versions of the image (similar to masked language modeling in NLP), and is 

trained to predict the representations of the unmasked teacher patches. This 

encourages the model to learn fine-grained spatial details and improves its 
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ability to reason about local context. iBOT complements the DINO loss by 

strengthening the model's understanding of object parts and spatial structure [13] . 

• Sinkhorn-Knopp Centering: 

One common challenge in self-supervised learning is the collapse of 

representations, where all inputs are mapped to similar or identical features. 

Sinkhorn-Knopp centring addresses this by normalizing the output distributions 

of the teacher using a form of optimal transport. This ensures that feature vectors 

are balanced across batches and encourages the use of the full representational 

capacity of the model. It acts as a form of regularization that stabilizes training 

and preserves diversity in the learned embeddings [13] . 

• KoLeo Regularization: 

The KoLeo (Kozachenko–Leonenko) regularization term promotes uniform 

distribution of feature vectors in the latent space. It explicitly penalizes feature 

collapse by encouraging the model to spread out representations, thereby 

increasing entropy and improving generalization. This complements Sinkhorn-

Knopp centring by providing an additional mechanism to preserve diversity and 

avoid degenerate solutions [13] . 

Together, these training objectives interact to achieve both semantic alignment 

and feature diversity: 

The DINO and iBOT losses focus on making the representations semantically 

meaningful across different scales (global and local), while Sinkhorn-Knopp and 

KoLeo regularization ensure that the learned features are diverse, stable, and 

well-structured in the latent space. 

These mechanisms allow DINOv2 to learn semantically meaningful 

representations entirely without supervision. Unlike prior SSL methods that used 

uncurated datasets, the original DINOv2 models were trained on LVD-142M, a 

dataset of 142 million curated images gathered through visual-similarity-based 

retrieval [13] .  

However, the NeCo-enhanced DINOv2 model used in this thesis is not trained 

on LVD-142M directly. Instead, it uses the publicly released pretrained DINOv2 
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ViT-S/14 weights and applies post-training optimization to further improve the 

spatial consistency of patch representations [16] . 

 

[16] Fig 2.5:  Overview of the NeCo post-training architecture. NeCo takes paired image views passed 

through frozen student and teacher encoders, aligns region features via ROI Align, and enforces neighbor 

consistency in the sorted feature space. The student encoder is trained to match the neighbor ordering of 

the teacher through the NeCo loss 

 

2.3.2  Comparative Analysis: DINOv2 vs. Other Self-Supervised 

Learning Methods 

Compared to earlier SSL methods (such as DINOv1 and iBOT) and weakly-supervised 

models like CLIP/OpenCLIP, DINOv2 exhibits several advantages: 

Feature DINOv2 [13] iBOT / DINOv1 CLIP / OpenCLIP 

Supervision None None 
Image-text 

supervision 

Data 
Curated (LVD-142M) 

via retrieval 

ImageNet-22k or 

uncurated 

LAION-2B (noisy 

captions) 

Local Feature 

Learning 

Yes (iBOT loss + 

KoLeo + NeCo) 
iBOT: partial No 

Generalization 
Strong across image and 

pixel tasks 
Good 

Limited to text-

aligned categories 

Use in Thesis 
ViT-s/14 + NeCo 

spatial refinement [16] 
Not used 

Not suitable for pixel-

level detail 

[13] Table 2.3: DINOv2's architecture is also optimized for large-scale training using FlashAttention, 

sequence packing, and FSDP, which allows training large models like ViT-g/14 with efficient memory 

use. 
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2.3.3   Justification for Using DINOv2 in this Thesis 

The primary goal of this thesis is to detect early signs of breast cancer in thermal images 

using robust and spatially aware feature representations. DINOv2 was selected for the 

following reasons: 

Strong Frozen Representations: DINOv2 provides state-of-the-art features that support 

linear classification across multiple domains without requiring model fine-tuning. This 

is ideal for medical tasks where labelled data is scarce and model retraining is not 

feasible [13] . 

Spatial Feature Awareness: Thanks to its patch-based learning strategy and iBOT loss, 

DINOv2 captures fine-grained spatial information. The use of NeCo further enhances 

these representations by refining spatial coherence through patch-neighbour alignment, 

which is critical for analysing localized thermal abnormalities in breast images [16] . 

Generalization and Robustness: DINOv2 has been shown to outperform earlier SSL 

models on domain robustness benchmarks (e.g., ImageNet-A, R, and Sketch), 

demonstrating that its features generalize well to out-of-distribution data, considered a 

crucial property for thermal imaging, which can vary across sensors, conditions, or 

populations [13] . 

 

2.4  Classifier Architectures 

To classify thermal breast images as healthy or cancerous, two different classifier heads 

were designed and evaluated on top of frozen feature representations extracted by the 

DINOv2 ViT-s/14 model. These representations were obtained from the 384-

dimensional embedding of the [CLS] token, which is commonly used in ViT 

architectures to summarize the global content of an image. For the linear classifier, the 

DINOv2 backbone remained entirely frozen throughout training, allowing us to 

leverage the rich visual semantics already captured by the self-supervised model while 

ensuring computational efficiency and generalization. In the MLP-based classifier, the 

final transformer block was selectively fine-tuned alongside the classification head to 

explore potential gains in performance through limited adaptation.  

Training only the classifier head enabled a focused investigation into the quality and 

linear separability of the DINOv2 features for this domain-specific task. Since the 
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dataset is relatively small and sensitive to overfitting, freezing the backbone also helped 

avoid model collapse and preserved the robustness of the pretrained features. Moreover, 

it allowed for a more interpretable comparison between the two classifier designs, as 

changes in performance could be directly attributed to the classifier architecture rather 

than fluctuations in the feature extractor. 

The two classification heads implemented include a pure linear model and an MLP with 

a hidden layer and non-linear activation. Both were trained using supervised learning 

with binary labels. The linear classifier was evaluated under a sensitivity-first 

thresholding strategy, where thresholds were selected to maintain a sensitivity of at least 

0.90, aligning with clinical needs to minimize false negatives. The MLP classifier was 

evaluated using a threshold that maximized the difference between true positive and 

false positive rates (Youden’s index) [17] , while still tracking sensitivity and specificity 

during training. 

2.4.1   Linear Classifier  

In alignment with the DINOv2 framework proposed by Facebook Research [13], one of 

the simplest yet powerful ways to evaluate the quality of self-supervised visual 

representations is through a linear classification head trained on top of frozen features. 

A linear classifier is a single fully connected layer (i.e., no hidden layers or non-

linearities) that directly maps the representation of an input image to a prediction score. 

The motivation for using a linear classifier stems from its interpretability and minimal 

capacity, making it a robust tool for assessing how well the pretrained model has 

structured the feature space. In the DINOv2 paper and GitHub documentation [13], linear 

probing is used extensively to benchmark representation quality across various 

downstream tasks such as classification, retrieval, and segmentation, without modifying 

the pretrained backbone. 

This method is particularly effective in determining if the [CLS] token embedding 

encodes linearly separable information useful for classification tasks [13]. By freezing 

the DINOv2 ViT-S/14 backbone and training only the linear layer with supervised 

labels (e.g., healthy vs. cancerous), the fact that classification performance can be 

attributed solely to the quality of the learned features is ensured, rather than to any fine-

tuning of the backbone [13]. This setup is also computationally efficient and ideal for 
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small datasets, as it reduces the risk of overfitting and enables fair comparisons across 

different classifier heads. 

Moreover, practical implementations of this strategy such as those in the open-source 

tutorial by Rogge [18], demonstrate how linear classifiers can be applied effectively even 

to tasks like semantic segmentation, using DINOv2 features without additional fine-

tuning. This reinforces the versatility of frozen DINOv2 features for diverse computer 

vision problems. Ultimately, this linear evaluation protocol, as used in DINOv2 

benchmarks, shows that frozen representations can outperform other state-of-the-art 

self-supervised and weakly-supervised models across multiple domains and tasks [13], 

[18]. 

2.4.2  Multi Layer Perceptron Classification (MLP) 

While a linear classifier provides a strong baseline for evaluating the linear separability 

of pretrained representations, it is inherently limited in its capacity to capture complex 

decision boundaries. To explore whether non-linear combinations of features could 

improve classification performance, experiments were also made using a multi-layer 

perceptron (MLP) classifier, a standard architecture that introduces depth and non-

linearity to the decision function. 

An MLP classifier typically consists of one or more fully connected layers with non-

linear activation functions such as ReLU. In this case, the architecture included a hidden 

layer followed by ReLU activation, batch normalization, dropout, and an output layer 

for binary prediction. This setup allows the model to learn richer, more flexible 

mappings from the DINOv2 feature space to the target labels, potentially capturing 

patterns not linearly separable. 

The decision to use an MLP is supported by its widespread application in transfer 

learning and representation learning tasks, where it is often employed as a projection or 

classification head on top of the frozen backbones [19]. Compared to linear classifiers, 

MLPs can better adapt to subtle feature differences, especially in medical imaging 

domains where class distributions may overlap. Moreover, MLPs are commonly used in 

frameworks like SimCLR and MoCo to separate and refine representations before 

classification [20], further motivating their inclusion in the evaluation pipeline. 
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Chapter 3  

Dataset Handling 

 

3.1 Dataset Overview 

3.2 Dataset Size and Class Distribution 

3.3 Image Dimensions and Format 

3.4 Preprocessing for DINOv2 Compatibility 

3.5 Dataset Splitting Strategy 

3.6 Class Distribution Per Fold 

 

 

 

3.1   Dataset Overview 

The thermal breast images used in this thesis were sourced from two publicly available 

databases: the “A Database for Mastology Research with Infrared Image (DMR-IR) “ 

[21] and the “Thermal Infrared Breast Screening Database (TIBSDB)” [22] . 

The DMR-IR dataset consists of images collected through a dynamic cooling protocol. 

Each patient contributed 20 thermal images taken at various angles, along with 

corresponding temperature matrices. However, for the purposes of this thesis, only 

frontal-view images were considered, as these are the only images that reliably show 

both breasts in a single frame. Frontal views are essential for analyzing bilateral 

temperature symmetry, which plays a critical role in identifying potential abnormalities. 

Initially, only the DMR-IR dataset was used. However, after closer inspection, it 

became clear that most DMR-IR images show only one breast, limiting the ability to 

assess left–right asymmetry. To address this, the TIBSDB dataset was incorporated into 

the study. TIBSDB includes three thermal images per subject: frontal, left oblique, and 

right oblique, but again, only the frontal views were retained to maintain consistency 

across the combined dataset. 

The decision to merge these datasets aimed to increase the total dataset size, thereby 

enhancing the reliability of the classification process. Both datasets contain high-quality 
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frontal thermal images that clearly show both breasts, enabling symmetry-based 

analysis and were designed to support non-invasive breast cancer screening and 

diagnosis through thermal imaging. By combining them, the dataset gains more 

diversity across patients and imaging settings, which helps reduce overfitting and 

improves generalization. 

Prior to merging, a manual deduplication process was conducted to ensure that no 

repeated images existed either across or within the datasets. This resulted in the removal 

of six duplicate images, leading to the final set used in this work. 

DMR-IR Images State 

 

 

Healthy 

 

 

Sick/Unhealthy 

Table 3.1: Example frontal thermal healthy and sick images from the DMR-IR dataset [21] . 

 

TIBSDB Images State 
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Healthy 

 

 

Sick/Unhealthy 

Table 3.2: Example frontal thermal healthy and sick images from the TIBSDB dataset [22] . 

 

Representative frontal-view images from each dataset are shown in Tables 3.1 and 3.2, 

respectively. These images demonstrate the consistency in view selection and the visual 

quality used for symmetry-based breast cancer analysis. 
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Image Acquisition Protocols 

DMR-IR Imaging Process 

The DMR-IR dataset employed a dynamic cooling protocol, designed to highlight 

physiological differences between healthy and abnormal tissues. The process is as 

follows: 

1. Cooling Phase: An air stream is applied to the chest area, uniformly lowering 

skin temperature. 

2. Rewarming Phase: After cooling, the natural rewarming process is observed. 

3. Image Acquisition: A series of 20 thermal images are captured at 15-second 

intervals over a 5-minute period, recording the thermal recovery. 

This protocol enhances the contrast between tissues, as abnormal (e.g., malignant) 

regions typically exhibit different rewarming behaviour compared to healthy tissue. It is 

particularly effective in highlighting subtle vascular and metabolic irregularities that 

may not be visible through passive imaging alone. 

TIBSDB Imaging Standards 

In contrast, the TIBSDB dataset adheres to the imaging standards set by the American 

Academy of Thermology (AAT), which employs a passive imaging protocol. This 

means that no external thermal stimulus is applied. Key elements of the AAT protocol 

include: 

1. Controlled Environment: Imaging is performed in rooms maintained at 22–24°C 

with relative humidity between 45–50%. 

2. Patient Preparation: Patients are allowed time to acclimate to the room 

environment to stabilize body temperature. Although the dataset documentation 

references AAT protocols, it does not explicitly state the exact patient 

acclimatization time prior to imaging. 

3. Standardized Image Angles: Each patient is imaged from three consistent 

perspectives: anterior (frontal), left oblique, and right oblique. 
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By following these strict protocols, TIBSDB ensures the consistency and reliability of 

its thermal scans, allowing for valid comparisons between subjects and aiding in 

accurate diagnosis. 

Relevance for DINOv2-Based Analysis 

The careful adherence to imaging protocols in both datasets ensures thermal consistency 

across subjects and imaging sessions. This is critical when applying feature-based 

models like DINOv2, which rely on consistent visual patterns to extract spatial 

representations. The standardization across datasets enables the model to focus on 

biological differences rather than imaging artifacts, thereby improving its ability to 

detect thermal anomalies indicative of breast disease. 

All images in the final dataset were acquired using infrared thermal cameras. 

Furthermore, each image corresponds to a single, unique patient. Only one image per 

patient was retained in the final dataset to preserve subject independence and prevent 

data leakage during training and evaluation. 

 

3.2  Dataset Size and Class Distribution  

After combining the two thermal imaging datasets (DMR-IR and TIBSDB) and 

performing manual deduplication, the final dataset used in this thesis consists of 323 

frontal thermal breast images, each corresponding to a unique patient. These images 

were selected based on strict criteria to ensure consistency in view and quality, and to 

preserve subject independence across all experimental splits. 

While the final dataset was carefully curated for consistency and subject independence, 

its relatively small size, which as mention includes just 323 images, presents certain 

limitations. Small datasets can increase the risk of overfitting, reduce generalization to 

unseen cases, and make model performance more sensitive to data imbalance. These 

constraints highlight the importance of robust cross-validation and careful evaluation 

strategies, which were applied throughout this thesis to ensure reliable results despite 

the limited data availability. 

The dataset is divided into two classes: 

• Healthy (patients with no signs of breast abnormalities) 
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• Sick (patients diagnosed with malignant conditions) 

The overall class distribution is shown in the table below: 

Class Number of Images 

Healthy 252 

Unhealthy 71 

 Total Images 323 
Table 3.3: Class distribution of the dataset used. 

 
Figure 3.1: Visualization of class imbalance in the combined dataset, illustrating the distribution of 

healthy and cancerous cases. The chart was created using Microsoft Excel. 

 The final dataset exhibits a noticeable class imbalance, with the healthy class 

outnumbering the unhealthy class by a ratio of approximately 3.5:1. This imbalance was 

taken into account during model training, particularly through the use of weighted loss 

functions and threshold calibration techniques to ensure fair evaluation and maintain 

sensitivity to the minority (unhealthy) class.          

 

3.3   Image Dimensions and Format 

The original thermal images in the final dataset were provided in JPG format, as 

downloaded from the DMR-IR [21] and TIBSDB [22] repositories. All images were either 

grayscale with a single channel, or grayscale images encoded with three identical 

channels (pseudo-RGB), depending on how they were stored and exported. No images 

used false-colour heatmaps, and no colorized temperature palettes were present. 

File sizes varied from approximately 14 KB to 218 KB depending on resolution and 

compression settings. 

Across the dataset, two common image resolutions were observed: 

• 320×240 pixels  

Dataset Class 
Imbalance

Healthy Unhealthy
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• 640×480 pixels  

These resolution variations reflect differences in acquisition settings and equipment 

used in the original datasets. Some images include embedded metadata indicating use of 

a FLIR A300 thermal imaging camera and a standardized subject distance of 1 meter, 

consistent with thermography protocols. All images were later converted to a consistent 

format as part of preprocessing. 

 

 

a. Figure 3.2                                                                b. Figure 3.3 

[22] Figure 3.2: Representative healthy thermal breast image from the TIBSDB dataset, with original 

dimensions of 320×240 pixels 

[21] Figure 3.3: Representative unhealthy thermal breast image from the DMR-IR dataset, with original 

dimensions of 640×480 pixels. 

3.4  Preprocessing for DINOV2 Compatibility  

To ensure that the thermal breast images were compatible with the DINOv2 ViT-s/14 

architecture, a series of preprocessing steps were applied to standardize the image 

format, dimensions, and channel configuration. These steps were necessary due to strict 

architectural requirements of the pretrained DINOv2 models, which were developed 

using large-scale curated datasets. 

According to the DINOv2 publication by Oquab et al. [13], all models including the ViT-

s/14 variant used in this thesis, were pretrained on images of fixed resolution and 

format. The authors specify that input images are resized to 224×224 pixels, which 

aligns with the patch embedding structure of the Vision Transformer (ViT). As stated in 

the paper: “The input images are resized to 224×224, which aligns with the model’s 

architecture” [13] . 



31 
 

Additionally, these models were trained on a dataset composed of 142 million curated 

RGB images sourced from visually diverse domains, including ImageNet-22k and 

Google Landmarks, using a visual similarity-based retrieval process [13] . Although 

thermal images were not explicitly part of this training set, the scale and diversity of the 

pretraining data allows DINOv2 to generalize to out-of-distribution domains such as 

medical thermography: 

“Training on our curated data increases the performances on domains that are not used 

for the curation process… proving that scale and diversity can benefit unseen domains” 

( [13]. p. 8). 

Given that DINOv2 expects 3-channel RGB images of size 224×224, and the thermal 

breast images included in this particular dataset are acquired in grayscale (with either 

one or three identical channels), image transformation was required as well. 

 Image Transformation Process  

The first step in the transformation pipeline was to apply colorization to each grayscale 

thermal image using OpenCV’s COLORMAP_JET, which maps single-channel 

intensity values to RGB using a perceptually smooth colour gradient. This was 

necessary because simply converting 1-channel grayscale images to RGB would result 

in a flat black-and-white image with no added informational value in the other channels.  

The JET colormap was selected because it effectively enhances contrast between 

different temperature intensities, making subtle variations in heat distribution more 

visually and numerically distinguishable. This is especially important in medical 

thermal imaging, where small temperature changes may be clinically meaningful. 

Although the exact choice of colormap varies across studies, many works employ 

colormaps to improve feature extraction in thermal-based deep learning tasks. 

In the context of DINOv2, which is pretrained on natural RGB images [9] , the use of a 

colormap such as COLORMAP_JET introduces spatially and chromatically rich 

patterns into all three channels, making thermal images more visually compatible with 

the model’s expected input distribution. Although in the official paper [9] ,DINOv2 was 

not trained on thermal images, aligning the format of the input with natural RGB 

patterns allows the model to better leverage its pretrained filters. The JET colormap in 

particular emphasizes temperature gradients through perceptually distinct colors, which 
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can help preserve or even enhance relevant thermal features that may otherwise be 

indistinct in grayscale. 

 
Code Snippet 3.1: Application of colorization to the grayscale thermal images 

Then, to prepare the thermal breast images for feature extraction with the DINOv2 ViT-

s/14 model, a transformation pipeline was applied using PyTorch using the following 

Python code:  

 
Code Snippet 3.2: Application of DINOv2 compatible transformations to the thermal breast images 

 

First, each image was resized to 224×224 pixels using transforms.Resize((224, 224)), in 

order to match the input resolution expected by DINOv2, which divides each image into 

14×14 non-overlapping patches. This resizing ensures architectural compatibility with 

the model’s patch embedding layer. Next, the image was converted into a PyTorch 

tensor using transforms.ToTensor(), which changes the format to (C, H, W) ,  where C 

is the number of channels (3 in this case), and also scales pixel values from the 0–255 

range to a normalized 0.0–1.0 scale. Finally, transforms.Normalize() was applied to 

each channel using the ImageNet mean and standard deviation values (mean = [0.485, 

0.456, 0.406], std = [0.229, 0.224, 0.225]).  

These statistics align the input data distribution with what the DINOv2 model was 

originally trained on. Normalization ensures that feature extraction is effective and 

stable, as the pretrained model expects input data with these specific characteristics. 

Visualization 

To better illustrate the effect of the preprocessing pipeline described above, an example 

of a thermal breast image before and after transformation is shown below , in Figure 3 
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and Figure 4. The original grayscale image is first colorized using the JET colormap, 

then resized and normalized into a format compatible with DINOv2. This visual 

demonstration helps highlight the difference between the original grayscale image and 

its DINOv2-compatible version. 

 

Figure 3.4                                                                    Figure 3.5 

Figure 3.4: Original grayscale thermal breast image from TIBSDB (IIR0061_anterior.jpg) before 

preprocessing with dimensions 320x240.  

Figure 3.5: The same image from DMR-IR (IIR0061_anterior.jpg) after colorization, resizing to 

224×224, and normalization for DINOv2 compatibility. 

 

3.5   Dataset Splitting Strategy  

To ensure reliable model evaluation while addressing class imbalance, a Stratified K-

fold cross-validation strategy was employed to partition the dataset into training, 

validation, and test subsets. The splitting was performed using the train_test_split and 

StratifiedKFold utilities from Scikit-learn [23] . 

The choice of StratifiedKFold over standard K-Fold was deliberate and essential due to 

the imbalanced nature of the dataset, which consists of 252 healthy and 71 unhealthy 

cases. Unlike traditional K-Fold splitting, which divides data without considering label 

proportions, Stratified K-Fold preserves the relative class distribution in every fold. This 

is particularly important in medical classification tasks, where underrepresentation of 

the minority class during training or validation can lead to biased learning, poor 

generalization, or overestimation of performance. When using the Stratified K-Fold 

strategy, the folds are made by preserving the percentage of samples for each class [23] .  

This ensures that each training and validation subset contains representative proportions 

of healthy and unhealthy samples, thus making evaluation more stable and trustworthy. 
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In the context of this thesis, where detecting unhealthy cases is critical, maintaining 

class balance across folds is fundamental to model reliability. 

An important function implemented, is that before performing the split, a conditional 

check using if statements is included to determine whether pre-computed fold files 

already exist which is the goal as stable folds are important in evaluation of 

performance metrics. If the folds are found, then they are directly being loaded from the 

drive to ensure reproducibility and also reduce redundant computation. Otherwise, new 

folds are being created using Stratified K-Folds and subsequently saved for future use.  

 

Fixed 80/20 Initial Split 

Before performing cross-validation, the dataset was first split into two major 

components: 

• 80% (258 images) for training and validation sets 

• 20% (65 images) as a fixed final test set, held out for the entire duration of 

model development, and later on tested as the set with unseen images. 

This 80/20 split was stratified and consistent across all five folds. The final test set was 

used only once, at the end of training and after validation, to provide an unbiased 

evaluation of model performance on unseen images. 

 

Five-Fold Stratified Cross-Validation 

The entire dataset of 323 images was split into five folds using the Stratified K-Fold 

cross-validation strategy with shuffle=True and a fixed random seed for reproducibility. 

In each fold, a fixed subset of 65 images (20%) was allocated as the final test set and the 

remaining 258 images (80%) were further split into 206 images for training and 52 

images for validation. 

This means that in each fold, the model is trained and validated on a unique 

training/validation split, while being evaluated on the same fixed final test set. This 

structure allows for robust, stratified cross-validation while maintaining a fully unseen, 

held-out test set for unbiased final performance evaluation. 
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Despite the stratification, the class imbalance from the original dataset (252 healthy vs. 

71 unhealthy) is still present within each training, validation, and test subset. 

Stratification only ensures that the proportions are preserved, not that the dataset 

becomes balanced. 

 

3.6  Class Distribution Per Fold 

While stratified sampling was employed to maintain the relative proportions of the two 

classes across all folds, the inherent class imbalance in the original dataset (252 

Healthy, 71 Unhealthy) remains evident in each subset. 

The table below presents the distribution of Healthy and Unhealthy samples within the 

training, validation, and final test subsets for each of the five folds. As expected, the 

proportion of Healthy samples remains significantly higher across all partitions, 

reflecting the original dataset's imbalance: 

Fold Subset Total Images Healthy 

Images 

Unhealthy 

Images 

1 Train 206 160 46 

 Validate 52 41 11 

 Test 65 51 14 

2 Train 206 161 45 

 Validate 52 40 12 

 Test 65 51 14 

3 Train 206 161 45 

 Validate 52 40 12 

 Test 65 51 14 

4 Train 206 161 46 

 Validate 52 40 11 

 Test 65 51 14 

5 Train 206 161 46 

 Validate 52 40 11 

 Test 65 51 14 
Table 3.4: Class distribution of Healthy and Unhealthy samples across training, validation and final test 

sets for each of the five folds, obtained with Stratified-5-Folds. 

This figure confirms that the stratified splitting procedure effectively preserved the 

original class proportions within each training, validation, and test subset. However, it 

also highlights the persistent class imbalance inherent in the dataset, which must be 

carefully considered during model training and evaluation. As noted by Luque et al. [24] , 

class imbalance can significantly distort traditional performance metrics such as 
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accuracy, which can potentially lead to misleading conclusions about a model's 

effectiveness. Therefore, in order to mitigate these effects, it is essential to incorporate 

strategies such as class weighting, oversampling of the minority class, or the use of 

evaluation metrics that are robust to class imbalance, all of which will be discussed in 

the implementation section (Chapter 4). 
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Chapter 4 

Implementation 

 

4.1 Overview 

4.2 Image Reading and Labelling 

4.3 Image Preprocessing 

4.4 Dataset Preparation-Splitting 

4.5 Loading the DINOv2 ViT -s/14 Model 

4.6 Feature Extraction Strategy 

4.7 Classification Heads 

4.7.1 Linear Classification Head  

4.7.2 MLP Classification Head 

 

 

 

4.1 Overview 

This section’s goal is to provide an overview of the complete implementation pipeline 

developed for the classification of thermal breast images using a self-supervised ViT 

model (DINOv2) for breast cancer detection. The entire pipeline was implemented in 

Python using PyTorch and executed on Google Colab Pro (the subscription of which 

was kindly provided by UCY) , which provided the necessary GPU acceleration and 

extended storage space. Google Colab Pro was chosen specifically because the 

classification experiments involved handling a relatively large dataset of high-resolution 

thermal images, which required both sufficient computational power and storage 

capacity to process efficiently, as I personally was struggling to gain access on UCY’S 

HPC which would also provide the necessary computational power. 

The following stages were performed in sequential order as part of the full pipeline 

which can also be seen in the diagram below: 

Step 1: Data Import and Image Labelling 

Step 2: Image Preprocessing and DINOV2 Compatibility 
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Step 3: StratifiedKFolds Dataset Splitting and/or Fold Loading 

Step 4: Loading the DINOv2 ViT-s/14 Model 

Step 5: Classification with a Pure Linear Head and/or Classification with an MLP Head. 

 

Figure 4.1: Overview of the implementation pipeline used in this thesis. 

The diagram was created using Microsoft PowerPoint to visually represent the sequence of processing 

stages, from data preparation to classification. 

 

4.2  Image Reading and Labelling 

As mentioned in Chapter 3, the dataset was formed by combining two different Thermal 

Breast image datasets, the DMR-IR [21] and TIBSDB [22] repositories and removing 

duplicate photos, leading to a final dataset consisting of 323 images. All the Thermal 

Breast images were then imported in a personal Drive and split into two folders named 

Healthy and Unhealthy which corresponded to the healthy path and the sick/unhealthy 

path, respectively. The images were then loaded and combined into a single list, 

labelled as Healthy and Unhealthy accordingly, forming the final input dataset. 

 

4.3   Image Preprocessing 

To ensure compatibility with DINOV2, several transformations had to be applied, all of 

which are detailed in Section 3.4. First, the images were resized to 224x224 which is the 

required input resolution for the ViT-s/14 architecture. Then, the image tensors were 

normalized using ImageNet mean and standard deviation values, and finally JET 
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colormap was applied to the grayscale thermal images to enhance visual features by 

mapping temperature variations to colour.   

 

4.4   Dataset Preparation – Splitting 

As mentioned more specifically in section 3.5, the dataset used in this thesis was split 

using a Stratified K-Fold cross-validation strategy to ensure a fair and balanced 

evaluation of model performance. This approach was selected to address the dataset’s 

existing class imbalance, comprising 252 healthy and 71 unhealthy cases by 

maintaining proportional class distributions across all training validation and test sets. 

Before generating new folds, the implementation included a conditional mechanism 

using if statements to check for the existence of previously saved folds in order to 

ensure consistency and reproducibility. If these folds did not exist, they were 

dynamically created and saved for future use.  

4.5  Loading the DINOv2 ViT-s/14 Model 

A frozen DINOv2 ViT-s/14 model was loaded via the torch.hub utility which simplified 

accessing pretrained models hosted by research groups. This particular model consists 

of 12 transformers blocks, each utilizing a 384-dimensional token embedding. It 

includes a convolutional patch embedding layer with a 14x14 kernel and stride, which 

converts the input image into a sequence of 256 patch tokens (16x16 grid) before 

passing them through a stack of standard ViT blocks. Each block employs multi-head 

self-attention, GELU activations, LayerNorm and MLP feedforward layers. The output 

of the model is a set of deep visual features extracted without any task-specific 

classification head. Therefore, only the core feature extractor is used in this work.  

In order to enhance the model’s spatial awareness, custom pretrained weights which are 

enhanced by NeCo were manually loaded. These weights were stored in a checkpoint file 

and were loaded using the torch.load(path) function. The modified state dictionary was 

then integrated into the base model using model.load_state_=dict(torch.load(path), 

strict=False), which allowed the use f a pretrained self-supervised backbone with 

enhanced spatial consistency, while keeping the DINOv2 model frozen during training to 

preserve its learned representations. 
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In the experiment parameters code block, the model variant is defined using 

model_size=’s’ which specifies the use of the small DINOV2 model (ViT-s/14). This 

model is used throughout the pipeline to extract 384-dimensional feature embeddings 

from each image patch.  

 

4.6   Feature Extraction Strategy 

During the early stages of development, the implementation included extracting and 

storing the DINOv2 patch token embeddings (x_norm_patchtokens) for use in 

classification. However, this approach was removed from the final pipeline as it wasn’t 

necessary for the actual training and added extra complexity. Additionally, the results 

obtained using the [CLS] token were significantly better for both the Linear and the 

MLP classifiers compared to earlier experiments using patch token embeddings. So 

instead, feature extraction now happens on the fly during training, separately in both the 

Linear Classification head and MLP Classification head. At every epoch, the [CLS] 

token is extracted directly from the frozen DINOv2 model and fed to the classification 

head. This way, the pipeline is much simpler and avoids having to store large 

intermediate feature files.  

4.7 Classification Heads 

With the purpose of ensuring consistent and fair evaluation across both the linear and 

the MLP classifiers, the same set of performance metrics was computed at every epoch. 

These included Accuracy, Sensitivity, Specificity, Confusion Matrix Components 

(TP,FP,TN,FN), F1 Score and Binary Cross-Entropy Loss. 

These metrics provide a multifaceted view of model performance and they are 

considered particularly valuable in the context of medical diagnosis, where class 

imbalance and the consequences of misclassification must be handled. 

Accuracy, measures the overall proportion of correct predictions and is defined as: 

Accuracy= 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Where TP, TN, FP and FN refer to true positives (correctly classified unhealthy cases), 

true negatives (correctly classified healthy cases), false positives (healthy cases falsely 
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classified as unhealthy) and false negatives (unhealthy cases falsely classified as 

healthy) respectively [5]. 

Sensitivity, which is otherwise referred to as a recall of the positive class, measures the 

model’s ability to correctly identify unhealthy/cancerous cases. It is especially 

important in the medical field as its calculation can help minimize false negatives and it 

is calculated as: 

Sensitivity= 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  [5] 

Specificity, which is otherwise referred to as a recall of the negative class, measures the 

model’s ability to correctly detect non-cancerous/healthy cases. It helps access how well 

the model avoids false alarms, and it is computed as: 

Specificity=
𝑇𝑁

𝑇𝑁+𝐹𝑃
  [5] 

Confusion Matrix Components, which include TP, TN, FP, FN were logged per epoch 

to provide deeper insight into misclassification behaviour using the confusion_matrix 

library from the Scikit-learn library. These raw counts form the basis of the other 

performance metrics and can help identify systematic prediction errors [5]. 

F1 score, is the harmonic mean of Precision and Sensitivity, providing a balanced 

metric that accounts for both FPs and FNs. It is particularly useful when class 

distribution is imbalanced: 

F1-score= 2 ∙ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
  , where Precision= 

𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Binary Cross-Entropy (BCE) Loss quantifies the model’s prediction error for binary 

classification. It compares the predicted logits with the true labels and penalizes 

deviations with higher penalties for confident wrong predictions. The BCE loss is 

calculated per batch and averaged across every epoch. 

4.7.1  Linear Classification Head  

In order to evaluate the effectiveness of the frozen DINOv2 representations, a linear 

classification head was chosen as the first classification approach. This method aligns 

with the evaluation strategy proposed by Facebook Research [13] , where a simple linear 
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layer is used to evaluate the quality of learned features without fine-tuning the 

backbone. The simplicity of a linear head which consists of a single fully connected 

layer makes it computationally efficient and especially suitable for relatively small 

datasets such as the Thermal Breast image dataset that consists of just 323 images. More 

specifically the linear head allows for a fair assessment of whether the [CLS] token 

embeddings extracted from the DINOV2 ViR-s/14 model, contain linearly separable 

information relevant to the task. 

The logic and structure of the Linear Classifier implemented in this work were directly 

inspired by the open-source tutorial by Niels Rogge [18] which demonstrates how to 

apply a linear head on top of DINOv2 features for downstream tasks. By training only 

the classification layer and keeping the backbone frozen, the setup allows the evaluation 

to focus entirely on the representational quality of the [CLS] token embeddings 

produced by DINOv2 ViT-s/14.  

With the purpose of preparing the dataset for binary classification, labels of 2 categories 

were mapped to numerical values. Specifically, the “Healthy” class was mapped to 0 

and the “Unhealthy” class to 1 using a dictionary-based approach using:  

Label_mapping= { “Healthy “ : 0, “Unhealthy” :1}.This encoding was necessary for 

compatibility with the PyTorch loss function BCEWithLogitsLoss which expects 

numerical targets.The Unhealthy class, was intentionally mapped to the number 1 so 

that the positive class represented cancerous cases making sensitivity the key metric. 

Additionally, before training the linear head, the entire backbone of the DINOv2 model 

were frozen using param.requires_grad=False which freezes all the parameters to ensure 

that the pretrained representations remained unchanged. Freezing the model was 

essential in order to reduce computational cost and avoid overfitting, especially since 

the dataset used is relatively small as it consists of just 323 images. A new fully 

connected layer was appended to the model, mapping the 384-dimensional [CLS] token 

embedding from the ViT-s/14 variant to a single output logic, suitable for binary 

classification. 

To ensure fair evaluation of the classifier the model was trained using the 5-fold cross-

validation scheme. The folds were previously created and saved using a stratified 
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strategy as described in Section 4.5, which preserved the class distribution across 

training validation and testing. 

By looping through each and every one of the five folds using a for loop, the following 

steps were executed:  

1. The files were loaded from the directory in which they were previously stored. 

The file contained X_train, X_test and X_final image tensors split into training, 

validation and final test sets respectively. y_train, y_test and y_final include the 

corresponding class labels, still in string format (“Healthy”and “Unhealthy). 

2. The next step included label encoding. The string labels were mapped to binary 

values using a dictionary, Healthy to 0 and Unhealthy to 1. This transformation 

was necessary to use the BCEWithLogitsLoss loss function, which requires 

numerical targets. 

3. Then, features were extracted from DINOv2. The preprocessed image tensors 

were passed directly through the frozen DINOv2 model with the sole purpose of 

extracting the [CLS] token for each image. This was done using 

model.forward_features(X)[“x_norm_clstoken”] and the embeddings were 

detached from the computational graph with torch.no_grad() in order to avoid 

tracking gradients. A Standard Scaler was applied to normalize the embeddings, 

which proved to improve numerical stability during training. The scaled features 

were later converted back to PyTorch tensors and moved to the same device.  

4. Then the data loaders were prepared. The feature-label pairs for each split were 

bundled into TensorDataset objects and passed to Data Loaders with a batch size 

of 32. The training loader was then shuffled while validation and final test 

loaders were not.  

5. Next, the Loss Function and Optimizer were defined. The BCEWithLogitsLoss 

function was used, with a positive class weight of 1.35 to counteract class 

imbalance. The value of class weight was modified multiple times and 1.35 

showed the best accuracy results. The selected optimizer was AdamW with a 

learning rate of 1e-3 which was the best performing value, a variant of Adam 

that applies weight decay to target only the parameters of the newly added linear 

head. 
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6. A nested for loop, looping through 50 epochs was added inside the outer for 

loop. During each epoch, the linear classification head was trained using the 

feature-label pairs extracted from the training set. The model was explicitly set 

to training mode by defining model.fc.train() even though the linear head does 

not contain layers with training-specific behaviors.  

A batch of feature vectors representing the features and binary labels (which 

represent Healthy and Unhealthy cases) were passed from the train_loader into 

the model. The model then works by outputting a raw logic for each samle using 

model.fc(features).squeeze(1) which flattens the output from shape (N,1) to (N,) 

for compatibility with the label tensor. 

The loss was computed using loss=criterion(outputs,labels) where criterion is 

BCEWithLogitsLoss(pos_weight=1.35) ensuring that emphasis was given on the 

positive samples, aka Unhealthy cases with label 1 since they are the minority 

class. Then, gradients are backpropagated with loss.backward() and the 

optimizer updates the wrights of the linear layer. For later evaluation, raw 

predictions and true labels are detached from the computation graph and 

collected into lists. The average training loss for the epoch is then tracked by 

adding onto the total train loss as such: train_loss+= loss.item().  

7. After the training step, the model’s performance is evaluated on the validation 

set with the purpose of measuring the performance and determining the optimal 

decision threshold. The model was set to evaluation mode using model.fc.eval() 

to disable gradient computation and enable inference-only behaviour. 

Additionally , inference was then performed with torch.no_grad() to reduce 

memory usage and speed up computations. During evaluation, the validation 

data which consist of [CLS] token embeddings , aka features and labels were 

passed through the linear head in mini batches producing raw logits again for 

each sample using the same forward pass structure as during training. These 

logits which represent the model’s confidence scores for the positive/Unhealthy 

class were stored in a list, while the corresponding ground truth labels were 

collected into another list.  

8. To convert these continuous logits into binary predictions for classification, a 

custom threshold optimization strategy was implemented, tailored to the domain 

of breast cancer diagnosis. Instead of using a fixed threshold value which proved 
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to result in very low accuracy, the threshold was dynamically selected at every 

epoch. Specifically, thresholds were chosen to maximize sensitivity while 

maintaining an acceptable balance with specificity. This dynamic strategy was 

crucial in this case, as false negatives are far more critical than false positives in 

medical screening tasks. 

During the implementation process, it was observed that dynamically optimizing 

the threshold led to substantially higher sensitivity compared to fixed-threshold 

methods. This approach is particularly effective and justified in highly 

imbalanced medical datasets, where one class, in this case healthy, dominates. 

While not always standard in general classification tasks, dynamic thresholding 

is increasingly common in medical imaging and clinical AI, where class 

imbalance and asymmetric risk demand tailored decision boundaries. Therefore, 

this strategy was adopted in the Linear Head to align model predictions with the 

practical needs of cancer detection. 

Using the roc_curve function from Scikit-learn [26] , a range of potential 

threshold was derived along with their corresponding True Positive Rates (TPR) 

and False Positive Rates (FPR). From this list, only the thresholds that provides 

a sensitivity value of 90% and above were selected. Among these candidate’s 

the threshold that produced the highest F1-score on the validation set was 

selected as the best threshold value. If no threshold met the >=90% sensitivity 

requirement, a fallback threshold of 0.5 was used. This strategy ensured that 

model evaluation was aware to sensitivity and that performance comparisons 

across epochs and folds remained consistent. 

9. Once the best performing threshold was selected based on the validation 

performance, it was applied to evaluate the model on the Final Test set. The 

final set contains 20% of the entire dataset and was completely held out during 

the aforementioned training and validation procedures in hopes of ensuring 

unbiased training.  

For each sample in the final test set the [CLS] token features were passed 

through the frozen model and linear head to produce logits which were 

thresholder using the selected best threshold value. The resulting binary 

predictions were compared with the ground truth labels to calculate the 
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following performance metrics which were logged at every epoch, allowing for 

detailed tracking of the model’s generalization capability:  

Accuracy: Which represents the overall proportion of correct predictions 

Sensitivity: The ability to correctly detect unhealthy cases (recall of class 1) 

Specificity: Ability to correctly detect healthy cases (recall of class 0) 

F1-score: Harmonic mean of precision and Sensitivity 

Confusion Matrix components: TP,TN,FP,FN 

Binary Cross-Entropy Loss on the final test set 

Additionally, the misclassified images of each were identified, in order to 

compare the FNs obtained between the folds. 

 

The following pseudocode outlines the main logic of the linear classification training, 

evaluation and testing loop described in this section: 

For each epoch:  

Set model to training mode 

Initialize loss and prediction lists 

For each batch in training set: 

    Compute logits 

    Compute loss with class weighting 

    Backpropagate and update linear head 

    Store raw predictions and labels 

Set model to evaluation mode 

For each batch in validation set: 

    Compute logits without gradients 

    Store raw predictions and labels 

Compute ROC curve 

Filter thresholds with sensitivity ≥ 0.90 

If any: 

    Choose threshold with highest F1 

Else: 

    Use 0.5 as fallback 

Apply chosen threshold to raw predictions 

Compute binary predictions for training and validation 
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Calculate Accuracy, Sensitivity, Specificity, F1-score for both sets 

Evaluate on final test set: 

    Compute logits 

    Apply threshold 

    Calculate final test metrics (Acc, Sens, Spec, TP, FP, FN, TN, Loss) 

   Identify Misclassified Images 

 

4.7.2   MLP Classification Head  

While the linear classification head offered a solid baseline for accessing the 

separability of DINOv2’s learned features, its capacity to capture more complex and 

non-linear relationships is considered limited. Therefore, to test if results could be 

improved, a Multi-Layer Perceptron classification head was introduced into the 

evaluation pipeline. Unlike a linear layer, the MLP architecture includes multiple layers 

and non-linear activation functions, allowing it to model richer and more abstract 

patterns in the feature space.  

This architectural shift introduces depth into the decision boundary, supposedly 

enabling the model to uncover relationships that a simple pure linear function cannot 

capture. In this implementation, the MLP head consisted of a hidden dense layer, 

followed by ReLu activation, batch normalization for improved convergence, dropout 

for regularization and a final output layer for binary classification. 

The use of MLPs is well-supported in the broader deep learning literature. In 

representation learning and transfer learning frameworks, MLP heads are commonly 

employed to project high-dimensional feature vectors into task-specific subspaces [19] . 

Their effectiveness is especially is evident in contrastive learning methods where MLP 

heads play a significantly important role in refining and separating features before 

classification [20] . 

Thus, by including an MLP head in the evaluation this study aimed to test whether 

introducing non-linearity could offer tangible improvements over the linear head and 

whether the frozen DINOV2 representations could hopefully support more expressive 

classifiers without needing fine-tuning. 
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Firstly, all of the DINOv2 model’s parameters were frozen by default, using 

param.requires_grad=False. However, the final transformer block , which is block11 

and the MLP head (fc) were selectively unfrozen to allow gradient updates. Several 

attempts were made to unfreeze more than 1 block but results showed that it was 

causing overfitting and the best accuracy values were given when just block 11 was 

unfrozen. This was done to enable limited fine-tuning of high level transformer features 

while keeping majority of the backbone frozen in order to maintain computational 

efficiency and avoid overfitting. 

Then, the MLP architecture was defined, as a simple feedforward network. This 

network consisted of a linear layer mapping the 384 dimensional [CLS] token 

embedding to 128 hidden units, batch normalization that stabilizes and accelerates 

training, ReLu activation to introduce non-linearity, a dropout set to 0.5 to prevent 

overfitting and a final layer projecting the 128 hidden units to a single output logic for 

binary classification.  

Throughout development, several architectural and training tweaks were explored in 

hopes of optimizing the performance. These included varying the dropout values 

between 0.2 to 0.5, modifying the weight decay value which was initially set to 4e-3 but 

showed better performance when set to 1e-4, experimenting with different values of the 

positive class weighting factors and switching between Travosky loss and focal loss to 

better emphasize samples which were harder to classify.  

The same five stratified folds used in the linear classification experiments were reused 

in order for consistency to exist between these 2 classification heads. Each fold 

consisted of training, validation and final test sets. The class labels were mapped using 

numerical values just like before, by mapping 1 to the Unhealthy class and 0 to the 

Healthy class. 

Once the MLP architecture and fine-tuning strategy were defined, hyperparameters for 

training were configured. Specifically, the number of epochs was set to 50 therefore the 

model was trained for a total of 50 epochs per fold. This number was chosen after 

multiple empirical tests where fewer epochs led to unstable convergence and 

insufficient generalization. At 50 epochs, the model demonstrated a stable performance 

allowing sufficient updates to the unfrozen block and MLP head while maintaining 
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early stopping behavior manually by monitoring metrics. Additionally, a batch size of 

32 was selected as it provided a balance between stable gradient estimation and this 

value was also consistent with the linear head setup to maintain comparability between 

experiments. The MLP classification head was assigned a relatively high learning rate 

of 0.0002 (2e-4)  allowing it to learn quickly. Since this layer is newly utilized and 

randomly weighted, it required more aggressive updates to learn meaningful 

representations. In contrast, the final transformer block which is block 11 of the 

DINOv2 backbone was updated with a much smaller learning rate of 5e-7. This value 

was selected to prevent the forgetting of pre-trained weights while still allowing higher 

level representations to be fine-tuned. Lastly, a weight decay of 1e-4 was applied to all 

of the trainable parameters with the purpose of regularizing the model and to prevent 

overfitting caused by the relatively small size of the dataset. 

To ensure consistency with the linear classification head the exact same 5 folds were 

used for cross-validation. A for loop was used to iterate over each of the five folds and 

by looping through each and every one of the five folds using a for loop, the following 

steps were executed : 

1. Each dataset split (X_train, X_test and X_final) were loaded into memory and 

immediately cast to float tensors. These were also moved to the same device as 

the model and the class labels were again transformed using the previously 

defined label mapping dictionary that mapped them to binary values , Healthy to 

0 and Unhealthy to 1 which ensured compatibility with the BCEWithLogitsLoss 

function that requires numeric values.  

2. To handle class imbalance within each of the folds, a positive class weight was 

computed dynamically using the training labels y_train. This approach was 

implemented as it gives more weight to the minority class which is Unhealthy 

cases, ensuring that false negatives are considered more during training. The 

weight is recalculated per fold to remain adaptive and accurate.The final loss 

function was defined as criterion= 

nn.BCEWithLogitsLoss(pos_weight=pos_weight) 

3. The optimizer used was AdamW, which combines Adam’s adaptive learning 

rate with decoupled weight decay regularization. Parameters were split into 2 

groups, with learning rates 2e-4 and 5e-7 respectively, which enhanced control 
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over the learning dynamics. To further refine the training process, a Cosine 

Annealing Warm Restart Scheduler was used, with T_0=10 which sets the initial 

restart period to 10 epochs and T_mult=2 which doubles the restart period after 

each cycle (10,20,40..). This scheduler cyclically reduces the learning rate and 

then increases it again, which can help the model escape shallow minima and 

avoid premature convergence. 

4. Before the model training, fold-specific mean and standard deviation statistics 

were computed. The different values were used to normalize the images and 

standardize the pixel distribution, in order to ensure numerical stability and 

consistent gradients. The training transformations included aggressive data 

augmentation to reduce overfitting. 

Pseudocode of transformations: 

Apply random horizontal flip to simulate left-right variability 

Apply random rotation up to 45° to introduce orientation invariance 

Adjust image brightness and contrast using color jitter 

Randomly erase a portion of the image to encourage robustness 

Normalize image using fold-specific mean and standard deviation 

 

Each of these operations added robustness against potential noise and variability 

in real-world thermal imaging. The validation and test sets were only normalized 

without any augmentation to ensure evaluation on original distributions.  

5. The next step included the dataset and data loader preparation. An 

AugmentedTensorDataset class was used to apply transformations dynamically 

on each sample during data loading. The training, validation and test datasets 

were wrapped and fed into PyTorch data loaders. The training loader was 

shuffled to ensure stochastic gradient updates and the validation and final test 

loaders preserved order to maintain reproducibility.  

6. Once the datasets and data loaders were transformed and prepared, the model 

entered the core of its training routine, which is a loop running for a total of 50 

epochs per fold. At the beginning of each epoch, the model was set to training 

mode using model.train(). This ensured that all components behaved correctly 

during training. Additionally, each batch from the train loader consisted of 

preprocessed thermal images and their corresponding labels. For every different 

batch, gradients were cleared to prevent accumulation from previous batches, 

[CLS] token embeddings were extracted from the DINOv2 model, the 
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embeddings were passed through the MLP to produce logits for each image 

while also removing the singleton dimension and converting shape it from (N,1) 

to (N,) for compatibility with the label tensor. Moreover, the loss was computed 

using the weighted BCEWithLogitsLoss and the model weights were updated 

using optimizer.step().Thus, raw predictions (logits) and labels were detached 

from the computation graph and stored for threshold selection and metric 

evaluation, accumulating the total training loss by adding the loss to the total 

loss variable. 

7. To convert the continuous logits into binary predictions, a threshold needed to 

be applied. Rather than using a fixed value, a dynamic strategy based on 

Youden’s J statistic [25] was adopted. Using Scikit-learn’s ROC curve function 

[26] , a range of candidate thresholds was generated, each one associated with its 

corresponding TPR and FPR. The optimal threshold was chosen by maximizing 

the value, offering a balance between sensitivity and specificity. This strategy 

was chosen because it provides an objective and data-driven method for 

threshold selection, avoiding arbitrary cutoffs. Maximizing Youden’s J is a 

widely used and well-established approach, particularly in biomedical 

classification problems where both sensitivity and specificity are important. 

While it does not explicitly prioritize one metric over the other, it offers a 

balanced compromise, making it especially suitable when both false negatives 

and false positives carry clinical implications. In our case, it helped ensure that 

the MLP model achieved a good equilibrium between detecting cancer cases and 

avoiding false alarms. 

8. After the training of the model, it was switched to evaluation mode with 

model.eval() and inference was performed to disable gradient calculations and 

reduce memory consumption. For each batch of the tensor loader the same 

feature extraction and forward pass logic was used. The binary predictions were 

obtained by thresholding the logits using the best threshold found earlier in the 

training mode. Several evaluation metrics were calculated, which included 

Accuracy, Sensitivity, Specificity, F1-score, Confusion matrix and Binary 

Cross-Entropy Loss. 

9. Lastly, the final test set which was held out during training and validation was 

used. It was evaluated using the same procedure described above, again using 
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the epoch-specific best threshold. As before, several predictions were generated, 

and the same set of evaluation metrics was computed, and the misclassified 

images out of each fold were calculated, with the purpose of comparing the FNs 

between the folds.  

The following pseudocode outlines the core logic of the MLP classification head 

training, evaluation and testing pipeline as described in this section:  

For each epoch:  

Set model to training mode 

        Initialize loss and prediction lists 

        For each batch in training set: 

            Compute [CLS] token features 

            Pass features through MLP head to get logits 

            Compute weighted loss 

            Backpropagate and update parameters 

            Store raw predictions and labels 

        Compute ROC curve on training predictions 

        Select threshold that maximizes sensitivity and specificity 

        Set model to evaluation mode 

        For each batch in validation set: 

            Compute logits without gradients 

            Store raw predictions and labels 

        Apply chosen threshold to obtain binary predictions 

        Calculate Accuracy, Sensitivity, Specificity, and Confusion Matrix, F1-score 

        Evaluate on final test set: 

            Compute logits and apply threshold 

            Calculate final test metrics (Accuracy, Sensitivity, Specificity, F1-score, TP, FP, FN, TN, Loss) 

           Identify misclassified images. 
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4.7.3 MLP Head: Thresholding and Training Constraints Matched to 

Linear Baseline 

 

In the previous section (4.7.2), the MLP classification head was introduced to evaluate 

whether a non-linear decision boundary could improve classification performance over 

the linear head. That implementation focused on balancing sensitivity and specificity 

using Youden’s J statistic [25] for threshold selection, and it included partial fine-tuning 

by unfreezing the final transformer block (block 11) of the DINOv2 backbone. 

To enable a fair and direct comparison with the linear classification head, this section 

presents a modified implementation of the MLP head that follows the exact same 

experimental constraints and thresholding strategy as the linear head. Specifically, the 

entire DINOv2 model remains frozen, with only the MLP head being trained, and the 

threshold used to convert logits into binary predictions is dynamically selected based on 

achieving sensitivity ≥ 0.90, followed by maximizing the F1-score among those 

candidates. If no threshold meets the sensitivity requirement, a fallback value of 0.5 is 

applied. This design ensures that performance differences between the linear and MLP 

heads can be attributed solely to their architectural differences, and not to variations in 

thresholding or fine-tuning. 

The same five stratified folds used in the linear classification experiments were reused 

in order for consistency to exist between these 2 classification heads, and the same 

values were used as (4.7.2) for the hyperparameters. Each fold consisted of training, 

validation and final test sets. The class labels were mapped using numerical values just 

like before, by mapping 1 to the Unhealthy class and 0 to the Healthy class. 

Additionally, the number of epochs was set to 50 just like the previous classification 

head experiments, which showed more stable performance than other epoch numbers. 

Specifically, this number was chosen after multiple empirical tests where fewer epochs 

led to unstable convergence and insufficient generalization.  

A for loop was used to iterate over each of the five folds and by looping through each 

and every one of the five folds using a for loop, the following steps were executed: 
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1. Each dataset split (X_train, X_test, and X_final) was loaded into memory and 

immediately cast to float tensors. These tensors were also moved to the same 

device as the model. The class labels were transformed using the previously 

defined label mapping dictionary, converting “Healthy” to 0 and “Unhealthy” to 

1. This transformation ensured compatibility with the BCEWithLogitsLoss 

function, which expects numeric binary labels. 

2. To handle class imbalance within each fold, a positive class weight was 

computed dynamically using the y_train labels. This approach assigned greater 

importance to the minority class (“Unhealthy”), reducing the risk of false 

negatives. The weight was recalculated per fold to remain adaptive and accurate. 

The final loss function was defined as criterion = 

nn.BCEWithLogitsLoss(pos_weight=pos_weight). 

3. The optimizer used was AdamW, which combines Adam’s adaptive learning 

rate mechanism with decoupled weight decay for better generalization. In 

contrast to the previous MLP implementation, only the MLP head was trained in 

this version. The entire DINOv2 backbone remained frozen, and thus only one 

parameter group (the MLP head) was optimized using a learning rate of 2e-4. A 

CosineAnnealingWarmRestarts scheduler was also used, with T_0=10 and 

T_mult=2, to gradually reduce and reset the learning rate cyclically and 

encourage better convergence behavior. 

4. Before model training began, fold-specific mean and standard deviation 

statistics were computed using the training images. These statistics were then 

used to normalize all images in the fold, standardizing the pixel distribution for 

numerical stability and gradient consistency. The training images were also 

augmented with transformations to reduce overfitting. 

Pseudocode of transformations: 

Apply random horizontal flip to simulate left-right variability 

Apply random rotation up to 45° to introduce orientation invariance 

Adjust image brightness and contrast using color jitter 

Randomly erase a portion of the image to encourage robustness 
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Normalize image using fold-specific mean and standard deviation 

The validation and final test sets were only normalized (without augmentation) to 

ensure that evaluation occurred on data distributions that resembled real-world 

scenarios. 

5. Dataset and data loader preparation followed the same structure as before. An 

AugmentedTensorDataset class dynamically applied the defined 

transformations. Each dataset (train, validation, and final test) was wrapped in a 

PyTorch DataLoader, with shuffling enabled for the training set and disabled for 

the validation and final test sets to ensure reproducibility. 

6. With datasets and data loaders in place, the model entered its training loop, 

running for 50 epochs per fold. At the beginning of each epoch, the model was 

set to training mode using model.train(). Each batch of preprocessed thermal 

images and labels was processed by first zeroing out any existing gradients. The 

[CLS] token embeddings were extracted from the frozen DINOv2 model, then 

passed through the MLP head to produce raw logits (of shape (N,)). Loss was 

computed using the weighted BCEWithLogitsLoss, and the model’s parameters 

were updated using optimizer.step(). Raw logits and labels were detached and 

stored for metric evaluation and threshold selection. 

7. To convert logits into binary predictions, a sensitivity-prioritized threshold 

selection strategy was employed. Using Scikit-learn’s roc_curve function [26] , 

candidate thresholds were filtered to retain only those achieving sensitivity ≥ 

0.90. From these, the threshold that yielded the highest F1-score was selected as 

optimal. If no threshold met the sensitivity requirement, a default threshold of 

0.5 was used. This approach emphasized minimizing false negatives while 

maintaining strong predictive performance. 

8. After training, the model was switched to evaluation mode with model.eval(). 

Inference was performed on the validation and final test sets without gradient 

computation. The same forward pass logic was applied, and binary predictions 

were generated using the previously selected threshold. Key metrics including 

Accuracy, Sensitivity, Specificity, F1-score, Confusion Matrix values, and BCE 

Loss were computed. 
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9. The final test set, which had been withheld from training and validation, was 

evaluated using the same strategy. All metrics were calculated again, and 

misclassified images were identified and logged. These results were later used to 

compare the performance across folds and between classifier heads, particularly 

focusing on false negatives. 

The following pseudocode outlines the core logic of the fully frozen MLP classification 

head training, evaluation and testing pipeline as described in this section:  

For each epoch: 

    Set model to training mode 

    Initialize loss and prediction lists 

    For each batch in training set: 

        Compute [CLS] token features from frozen DINOv2 

        Pass features through MLP head to get logits 

        Compute weighted loss 

        Backpropagate and update parameters 

        Store raw predictions and labels 

 

    Compute ROC curve on validation predictions 

    Select threshold with sensitivity ≥ 0.90 that maximizes F1-score 

    (Use 0.5 if no threshold meets the sensitivity constraint) 

 

    Set model to evaluation mode 

    For each batch in validation set: 

        Compute logits without gradients 

        Store raw predictions and labels 

    Apply chosen threshold to obtain binary predictions 

    Calculate Accuracy, Sensitivity, Specificity, and F1-score 

 

    Evaluate on final test set: 

        Compute logits and apply threshold 

        Calculate final test metrics (Accuracy, Sensitivity, Specificity, F1-score, TP, FP, FN, TN, Loss) 

        Identify misclassified images 
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5.1   Overview of Evaluation Setup 

The following section presents an overview of the strategy which was adopted in this 

study to assess the effectiveness od DINOv2 based classification of thermal breast 

images. The main goal of the evaluation was to determine whether the features 

extracted by the frozen DINOv2 ViT-s/14 model when paired with the appropriate 
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classifier heads, can achieve reliable and medically meaningful performance in terms of 

distinguishing between healthy and unhealthy thermal breast images.  

In order to evaluate this two distinct classification heads were trained , evaluated and 

tested on top of the frozen DINOv2 [CLS] token embeddings, a Linear Classification 

head consisting of a single fully connected layer used to test the linear separability of 

extracted features and an MLP Classification head consisting of just one hidden layer, 

ReLu activation, batch normalization, dropout and an output layer, aimed to capture 

more complex and non-linear boundaries. 

All of the experiments were conducted using a Stratified 5-Fold CV, ensuring that the 

distribution of healthy and unhealthy cases was preserved for each fold. Exactly 20% of 

the dataset, more specifically 65 pictures, was held out as a final test set used only once 

at the end of training and validation with the purpose of providing an unbiased 

evaluation of the model’s performance on unseen data. 

Each classification head was evaluated under three training regimes, the first one being 

50 epochs which is the final chosen training duration based on stability and 

generalization and the second and third being 30 and 150 epochs which throughout the 

testing both acted as an exploratory setting used to access the impact of extended 

training duration on model performance and overfitting. 

Performance was measured using the following key metrics[5]:  

Accuracy: The overall proportion of correct predictions. 

Sensitivity: Measures the model’s ability to correctly identify unhealthy/cancerous 

cases. 

Specificity: Measures the model’s ability to correctly detect non-cancerous/healthy 

cases. 

Binary Cross-Entropy Loss: Quantifies the model’s prediction error for binary 

classification. 

Confusion Matrix Components: TP,FP,TN,FN which are values used for deeper 

misclassification insights. 
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In the context of early breast cancer detection, sensitivity is considered the most critical 

performance metric. Sensitivity which is also referred to as the true positive rate, 

measures the model’s ability to correctly identify individuals who suffer from breast 

cancer. This is crucial in medical applications where cases in which cancerous images 

are misclassified as healthy, can delay diagnosis and treatment and potentially result in 

worsened outcomes or even fatal consequences in some cases. Therefore, this thesis 

emphasized in achieving a high sensitivity rate, specifically >=0.9 even if it comes as 

the cost of lower specificity and accuracy.  

However, while minimizing FN is the main priority, other metrics also play a significant 

role in evaluating the model’s overall performance and clinical reliability. Specificity 

measures the model’s ability to correctly classify healthy individuals and help avoid FP 

that could lead to unnecessary stress, time consuming follow-up tests and increased 

healthcare costs. A model with high sensitivity but extremely low specificity can raise 

too many false alarms and diminish its practical applicability in real world scenarios. 

Therefore, a balanced trade-off is necessary, and specificity is closely monitored along 

sensitivity. 

Additionally, binary cross-entropy loss provided insights regarding the model’s overall 

confidence in predictions. Even at times where sensitivity or accuracy appear high, high 

loss values may indicate uncertainty in decision-making especially if the model is 

producing overconfident but false predictions. So, by tracking the loss over training, 

validation and testing phases, this thesis ensures that performance improvements are not 

achieved at the expense of the model’s stability or generalization. 

As mentioned preciously, the dataset used suffers from class imbalance, with 252 

healthy images and 71 unhealthy images, thus, to address this, a positive class wright 

strategy was applied in the loss function and a threshold optimization was conducted 

dynamically per epoch during validation, which was later used in testing. For the Linear 

Classification head, thresholds were selected to maintain sensitivity >=0.90. For the 

MLP Classification, threshold selection prioritized Youden’s index [17], [25] while still 

tracking sensitivity closely, 

All of the experiments were implemented in PyTorch, using Google Colab Pro with 

GPU acceleration. Throughout training, the model was evaluated per epoch on 
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validation data and the final performance was accessed on the test set using the breast 

threshold identified during validation.  

The following hyperparameters were used in each classifier: 

Linear Classification Head contained: 

Learning rate: 1e-3 

Loss Function: BCEWithLogitsLoss with a positive weight of 1.35 

Optimizer: AdamW 

Batch Size: 32 

Epochs: 50 (final) 30 and 150 (for comparison purposes) 

Backbone: DINOv2 ViT-s/14 fully frozen 

Threshold Strategy: Sensitivity-aware, keeping only the one’s with value 0.9 and aboce 

MLP Classification Head contained: 

Hidden Layer Size: 128 units 

Activation Function: ReLu 

Dropout Rate: 0.5 

Weight Decay: 1e-4 

Optimizer: AdamW 

Batch Size: 32 

Epochs: 50 (final) 30 and 150 (for comparison purposes) 

Backbone: DINOv2 ViT-s/14 , all blocks except block 11 were frozen 

Learning Rate(Head): 2e-4 

Learning Rate (Last Transformer Block): 5e-7 

Loss Function: BCEWithLogitsLoss with a dynamically allocated positive weight 

Scheduler: Cosine Annealing Warm Restarts (T_0=10, T_mult=2) 
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Threshold Strategy: Youden’s index with sensitivity monitoring 

 

5.2  Linear Classification Head Results 

5.2.1   Performance at 50 Epochs 

To evaluate the effectiveness of the Linear Classification head trained on frozen 

DINOv2 features, this section presents a table summarizing the maximum achieves 

value, which is the best performance across the 50 epochs, for each fold in terms of key 

evaluation metrics. These include Accuracy, Sensitivity, Specificity and Loss for 

training, validation as well as testing. 

Special attention was paid to sensitivity ad the primary goal of this thesis is early breast 

cancer detection. High sensitivity ensures that the model identifies cancerous cases 

correctly, minimizing false negatives which is extremely important in medical 

diagnosis. However, metrics such as specificity and loss are equally as important for 

understanding the model’s ability to distinguish healthy cases and to quantify the 

overall prediction confidence, respectively, Together, all of these values offer a detailed 

fold-wise view of the model’s behaviour and support reliable CV analysis. 

 

Fold Training 

Accuracy 

Training 

Sensitivity 

Training 

Specificity 

Training 

Loss 

Validation 

Accuracy 

Validation 

Sensitivity 

Validation 

Specificity 

Validation 

Loss 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Specificity 

Test 

Loss 

Test 

F1-score 

1 0.767 1 0.7 5.5 0.8077 0.9091 0.7805 0.6713 0.6154 0.9286 0.5686 1.4299 0.4906 

2 0.9369 1 0.9317 3.0824 0.9615 0.9167 0.975 0.477 0.6769 0.8571 0.7451 1.3453 0.4878 

3 0.9757 1 0.9814 2.158 0.9809 0.9167 1 0.5004 0.6769 0.9286 0.7461 1.191 0.4583 

4 0.9952 0.9783 1 1.7945 0.9804 0.9091 1 0.2138 0.7846 0.6429 0.8824 1.2732 0.4848 

5 1 1 1 1.1756 0.9804 0.9091 1 0.4029 0.7692 0.5714 0.9216 1.3588 0.4571 

Table 5.1: Performance metrics obtained with training, validation and testing, of Linear Classification 

Head with 50 epochs 

In addition to the summarized table of maximum achieved values, the following linear 

graphs provide a more detailed and continuous view of the Linear Classification Head’s 

testing performance over all 50 training epochs, across each individual fold. These 

graphs illustrate the evolution of the four key evaluation metrics, Accuracy, Sensitivity, 

Specificity, and Loss throughout testing. Unlike the table, which captures only the best 

point achieved in each fold, these plots reveal the complete learning behaviour and 

stability of the model over time. 
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The table and line graphs below, illustrate the trends in average (meaning maximum of 

each fold) accuracy, sensitivity, specificity and loss across all five folds using the Linear 

Classification Head trained for 50 epochs. These trends are complemented by the fold-

wise numerical values presented in the table.  

 
Figure 5.1: Average Accuracy Values of All Folds when using the Linear Classifier with 50 epochs. 

Starting with accuracy, training accuracy increased progressively across folds, reaching 

a perfect score of 1.000 in Fold 5, while validation accuracy peaked at 0.9809 in Fold 3. 

Test accuracy however, remained consistently lower ranging from 0.6145 in Fold 1 to 

0.7846 in Fold 4 with an overall average of 0.7046. This noticeable gap between 

training and validation, and test accuracy suggests mild overfitting which is a pattern 

that is common in small medical imaging datasets where generalization to unseen data 

can be challenging.  
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Figure 5.2: Average Sensitivity Values of All Folds when using the Linear Classifier with 50 epochs. 

 

Sensitivity which is the metric that is most aligned with this thesis’ clinical goal remains 

exceptionally high in the training phase across all folds, specifically all equal or above 

of 0.9783 and in validation folds above 0.9 with vales such as 0.9167 in Folds 2 and 3. 

In the testing phase however, a downward trend was observed. While Folds 1 to 3 

achieved strong results all of them being above 0.8571 and fold 3 reaching 0.9286, Fold 

4 dropped at 0.6429 and Fold 5 dropped further to 0.5714. These final folds reveal that 

while the strategy used for thresholding might have been effective in the earlier folds, it 

failed to preserve sensitivity across all data splits which might be caused to fold-specific 

class imbalance or subtle domain shifts.  
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Figure 5.3: Average Specificity Values of All Folds when using the Linear Classifier with 50 epochs. 

In contrast to sensitivity, specificity followed an upward trend during the testing phase. 

It started as relatively low at 0.5686 in Fold 1, but gradually increased peaking at 

0.9216 in Fold 5. This suggests that in the later folds the model became more confident 

in correctly classifying healthy images, even though this came at the cost of missing 

more cancerous cases, thus reducing sensitivity.  

 
Figure 5.4: Average Loss Values of All Folds when using the Linear Classifier with 50 epochs. 
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The loss curve further validates the aforementioned patterns. Training loss declined 

steadily from 5.5 in Fold 1 to 1.1756 in Fold 5, confirming that the model fits the 

training data well overtime. Validation loss varied between 0.2138 and 0.6713 with the 

lowest value in Fold 4, while test loss ranged from 1.191 in Fold 3 to 1.4299 in Fold 1. 

These results show that although the model learned consistently, it did not gain 

substantially in confidence when exposed to the unseen data.  

 
Figure 5.5: Average F1-score Values of All Folds when using the Linear Classifier with 50 epochs. 

Figure 5.5, displays the F1-scores obtained on the final test sets across all five cross-

validation folds using the Linear Classification Head after 50 training epochs. The 

results exhibit moderate consistency, with F1-scores ranging from 0.457 to 0.491. The 

highest F1-score was recorded in Fold 1 (0.491), which also demonstrated a high 

sensitivity of 0.9286, indicating strong detection of positive (unhealthy) cases. Folds 2 

and 4 yielded similar F1-scores (0.488 and 0.485, respectively), with Fold 2 achieving 

slightly lower sensitivity (0.8571) compared to Fold 4 (0.6429). Notably, Folds 3 and 5 

produced the lowest F1-scores (0.458 and 0.457), despite Fold 3 also having a high 

sensitivity (0.9286), suggesting that precision may have been low in this case, resulting 

in more false positives. The relatively low F1-score in Fold 5 coincides with its reduced 

sensitivity (0.5714), indicating weaker detection capability. Overall, the linear classifier 

showed consistent performance with small variability across folds, but its limited F1-

scores suggest a trade-off between maintaining high sensitivity and achieving adequate 

precision. 
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Additionally, the following graphs present the evolution of test accuracy, sensitivity, 

specificity and loss across all 50 training epochs for each fold individual and the 

average trend across folds. By carefully observing these graphs, specific fold dependent 

patterns in how the Linear Classifier’s generalization performance had evolved during 

the training phase.  

 
Figure 5.6: Test Accuracy per epoch and Average Accuracy, across all folds using the Linear 

Classification Head with 50 epochs. 

 

As far as test accuracy evolution is concerned, it can be observed from the linear graphs 

above that for fold 1, test accuracy started extremely low, standing at 0.33 during the 

first epoch and then rapidly increased by epoch 5, reaching an accuracy of 0.47.Then, a 

slow and steady rise was observed within accuracy fluctuations between 0.53 and 0.58 

during epochs 10 until 20. However, after epoch 20 accuracy stood at around 0.57-0.58 

and by epoch 50 it stabilized at 0.53 indicating that no significant generalization 

improvements occurred after the first 20 epochs. 

Fold 2 had started considerably high at 0.67 at the first epoch. However, it showed a 

decline pretty early on, dropping to 0.61 by epoch 8. Between epochs 10 and 20 
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epoch 50. The overall trend was relatively stable but slightly downward throughout the 

50 epochs. 

Additionally, fold 3 started with a promising test accuracy of 0.67 at epoch 1, 

maintaining good performance. However, a slight but steady decrease was observed 

moving from around 0.66 at epoch 5 to 0.60-0.62 by epochs 30-50. More specifically, 

after epoch 25 a small degradation occurred with the test accuracy hovering around 

0.53-0.58 towards the final epochs. 

The model in Fold 4, achieved the highest initial accuracy, starting at 0.78 during the 

first epoch. However, after epoch 10 it experienced a progressive decline with accuracy 

dropping to 0.73 by around epoch 20. After epoch 30, the performance stabilized 

slightly lower, at around 0.67-0.70 and remained consistent until epoch 50. 

Fold 5 had also started strong, with an accuracy of 0.76. Throughout all 50 epochs it 

was relatively stable and flat, oscillating slightly but staying between 0.73-0.75. There 

was a minor decrease around epochs 17-44, dropping to 0.6x but it fortunately 

recovered quickly, finishing at around 0.70 at epoch 50. Fold 5 maintained the most 

consistent performance throughout the testing phase.  

The average test accuracy of all folds, started at 0.64 at epoch 1, slightly peaked at 

around epochs 50-10 with a value of 0.68 but then gradually declined after epoch 20. By 

epoch 30, the average accuracy dropped close to 0.60, fluctuating between 0.59-0.61 

until epoch 50. This indicates that the best generalization was reached early on in the 

testing phase, and prolonged training beyond epochs 20-30 did not yield meaningful 

gains. Instead, a mild overfitting trend appeared as the model started fitting data better 

but generalization on the test set weakened.  
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Figure 5.7: Test Sensitivity per epoch and Average Sensitivity, across all folds using the Linear 

Classification Head with 50 epochs. 

 

As far as test sensitivity evolution is concerned, it can be observed from the linear 

graphs above that for Fold 1, test sensitivity started very high, standing at 0.85 during 

the first epoch. Then, a small dip was observed around epoch 2, dropping to 0.71, but 

fortunately by epoch 5 sensitivity rose back up to 0.78. From epochs 10 until 20, 

sensitivity remained consistently stable at around 0.78–0.86. After epoch 20, 

performance slightly improved further, reaching up to around 0.93 by epochs 21–23, 

and then remained consistently high, fluctuating between 0.85–0.93 all the way until 

epoch 50. Overall, Fold 1 maintained strong sensitivity across the entire training, 

achieving the best behaviour in terms of minimizing false negatives. 

Fold 2 had a more disappointing start, beginning at a much lower sensitivity of 0.42 at 

epoch 1. However, it can be seen that there was a rapid improvement by epoch 5, rising 

to 0.57, and further to 0.71 by epoch 7. Between epochs 10 and 30, Fold 2 maintained a 

relatively steady sensitivity between 0.71 and 0.79, with some minor fluctuations. After 

epoch 30, sensitivity slightly improved again reaching around 0.85 during the final 

epochs. Overall, Fold 2 displayed a strong recovery after an initially poor start and 

stabilized relatively well towards the end. 
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Additionally, for Fold 3, sensitivity started at 0.57 during epoch 1 and remained stable 

until epoch 8. From epoch 10 and further, a gradual but clear improvement was 

observed, with sensitivity climbing from 0.57 to around 0.71 by epoch 20. After epoch 

30, Fold 3 showed even stronger performance, achieving 0.78–0.85 sensitivity between 

epochs 30 and 50, with occasional peaks at 0.93. This indicates that Fold 3 

progressively learned better representations for detecting cancerous cases as training 

progressed. 

The model in Fold 4 displayed a different pattern. Sensitivity started at 0.43 at the first 

epoch and stayed stuck around that value for the first 20 epochs. It was only after epoch 

20 that Fold 4 managed a minor boost, reaching around 0.50 sensitivity. After epoch 30, 

it showed slight improvements, achieving up to 0.57–0.64 sensitivity toward the later 

epochs. Nonetheless, Fold 4 consistently underperformed compared to the other folds, 

failing to reach the clinically desired sensitivity threshold (≥ 0.90) at any point during 

training. 

Fold 5 had the worst sensitivity evolution among all folds. It started extremely low at 

0.21 and remained practically stagnant around 0.21–0.28 for the first 30 epochs. Some 

small improvements were observed between epochs 30–50, where sensitivity rose to 

around 0.35–0.57, but overall, performance remained inadequate for reliable cancer 

detection. Despite minor late improvements, Fold 5 never approached acceptable 

sensitivity levels. 

The average sensitivity across all folds began at around 0.50 during the early epochs. 

From epoch 5 to epoch 20, it slightly increased to around 0.58–0.60, reflecting the 

initial improvements seen mostly in Folds 1–3. Beyond epoch 30, a clearer upward 

trend appeared, and by epochs 40–50 the average sensitivity reached values between 

0.71–0.77, showing that although sensitivity improved throughout training, the progress 

was highly dependent on a few strong folds. This indicates that while the model was 

eventually able to enhance its detection of positive cases in some folds, it struggled to 

consistently generalize this ability across all folds, emphasizing the instability of 

performance regarding cancer detection sensitivity. 
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Figure 5.8: Test Specificity per epoch and Average Specificity, across all folds using the Linear 

Classification Head with 50 epochs. 

 

Moving on to test specificity evolution, it can be observed from the linear graphs above 

that for Fold 1, test specificity started extremely low, standing at 0.19 during the first 

epoch. However, it rapidly increased by epoch 5, reaching around 0.47. After epoch 5, a 

slow but steady rise was observed, with specificity improving further to 0.50–0.53 

around epochs 10 to 20. Nonetheless, after epoch 20, specificity plateaued around 0.49–

0.53, and by epoch 50, it slightly dropped to approximately 0.43, indicating a slight 

deterioration in the model’s ability to correctly identify healthy cases towards the end of 

training. 

Fold 2 started considerably high at 0.74 during the first epoch. However, a gradual 

decline was observed early on, with specificity dropping to around 0.66 by epoch 5. 

Between epochs 10 and 20, Fold 2 fluctuated between 0.52–0.59, showing a steady 

downward trend. After epoch 20, specificity continued decreasing slightly, fluctuating 

between 0.49–0.56 until epoch 50. Overall, the trend for Fold 2 was relatively unstable 

and downward, indicating a weakening performance in detecting healthy cases as 

training progressed. 
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Additionally, Fold 3 began with a promising specificity of 0.70 at epoch 1. However, a 

gradual decline was observed, with specificity dropping to around 0.62–0.66 between 

epochs 10 to 20. More specifically, after epoch 25, a more significant drop occurred, 

and by epochs 30 to 50, Fold 3’s specificity hovered around 0.49–0.52, showing a clear 

degradation in performance as training continued. 

The model in Fold 4 displayed the most stable specificity performance among all folds. 

It started at a high value of 0.88 at epoch 1 and maintained a strong performance 

throughout the 50 epochs. Although minor fluctuations were present, specificity 

remained relatively stable, fluctuating between 0.78–0.86 throughout the whole training. 

This indicates that Fold 4 consistently preserved its ability to correctly classify healthy 

cases. 

Fold 5 had the best overall specificity performance. It started very high at 0.92 during 

epoch 1 and maintained exceptionally strong results throughout training. Even though 

slight declines were observed after epoch 20, specificity remained high, consistently 

staying between 0.74–0.88 by epoch 50. Fold 5 was the most reliable in maintaining 

high specificity during the entire training phase. 

The average test specificity across all folds began at around 0.69 at epoch 1 and 

remained relatively stable until epoch 10. However, after epoch 10, a gradual downward 

trend can be seen, with average specificity dropping slowly but steadily toward 0.54–

0.57 by epoch 50. This suggests that although some folds, particularly Fold 4 and Fold 

5, maintained strong specificity throughout training, the model generally struggled to 

preserve healthy case identification across all folds, especially in folds with poorer 

initial performance. 
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Figure 5.9: Test F1-score per epoch and Average F1-score, across all folds using the Linear 

Classification Head with 50 epochs. 

Figure 5.9 presents the evolution of the F1-score for each fold across 50 training 

epochs, alongside the average F1-score across all five folds. The graph provides a visual 

representation of model performance consistency and convergence behavior using a 

linear classification head trained on top of frozen DINOv2 ViT-S/14 features. 

From the data, it is evident that the F1-scores generally increase during the early epochs 

(especially the first 10–15), reflecting the model's learning progression. After this initial 

phase, most folds demonstrate a stabilization in performance with minor fluctuations. 

Notably, Fold 5 consistently underperforms relative to the others across majority of the 

epochs. This suggests that the data distribution in Fold 5 may be more challenging, 

potentially containing more difficult or ambiguous samples or exhibiting a greater class 

imbalance. 

In contrast, Folds 1 to 4 display relatively stable and higher F1-scores, generally 

oscillating between 0.42 and 0.48. Fold 1 shows the most stable performance overall, 

with minimal variation throughout training. Fold 2 reaches the highest F1-score of 0.48 

multiple times, showing strong generalization within that subset. 

The average F1-score curve (green line) is smoother due to aggregation and steadily 

improves until around epoch 35. From epoch 35 onward, the average F1-score stabilizes 

around 0.44–0.45, indicating convergence of the model’s learning capacity under the 
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current configuration. The final average F1-score achieved at epoch 50 is 0.4560, 

suggesting satisfactory but not perfect class discrimination capability. 

Importantly, despite the relatively low variance among Folds 1–4, the consistently lower 

F1-scores of Fold 5 negatively impact the overall average, highlighting the importance 

of robust generalization strategies when training on imbalanced or heterogeneous 

datasets. 

This evaluation confirms that the linear classification head, while effective in many 

cases, may not fully capture complex decision boundaries in more difficult data 

partitions. This insight motivated further experimentation using non-linear alternatives 

such MLPs, as explored in subsequent sections. 

 

 
Figure 5.10: Test Loss per epoch and Average Loss, across all folds using the Linear Classification Head 

with 50 epochs. 
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Fold 1, the test loss started relatively low, standing at 0.92 during the first epoch. Then, 

a small decrease was observed by epoch 5, dropping to around 0.87. Between epochs 10 
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to 1.35 by epoch 50. This steady rise in loss indicates that Fold 1 began to overfit the 

training data after the initial epochs. 

Fold 2 started off significantly higher than Fold 1, with a test loss of 1.35 during the 

first epoch. However, a rapid decrease was observed early on, and by epoch 10 loss 

dropped to approximately 1.03. After epoch 10, Fold 2 maintained the lowest test loss 

out of all folds, staying consistently between 0.76–0.99 until epoch 50. Fold 2 displayed 

the most stable and favourable loss evolution, showing no major overfitting signs even 

at later stages. 

Additionally, for Fold 3, the test loss started quite low at 0.82 during the first epoch. 

Although a small increase was seen between epochs 5–10 (rising to around 0.87–0.95), 

Fold 3 maintained relatively stable loss values throughout training. From epochs 20 to 

50, the loss gently increased from 0.95 up to about 1.17 by epoch 50. This mild but 

steady increase suggests that Fold 3 gradually lost some generalization power over time. 

The model in Fold 4 had a different behaviour. Test loss started higher at 1.13 during 

the first epoch and remained fairly consistent, fluctuating mildly between 1.13–1.22 

throughout most of the training phase. After epoch 35, a slight rise was observed, with 

loss reaching around 1.27 at epoch 50. Nonetheless, compared to the other folds, Fold 4 

maintained a fairly controlled test loss across training, with only minor overfitting signs 

towards the end. 

Fold 5 showed the highest initial loss at 1.36 during epoch 1. Although it slightly 

decreased to about 1.24–1.25 by epoch 10, loss gradually increased again after epoch 

20, reaching up to 1.27 at epoch 50. Fold 5 consistently exhibited high uncertainty 

throughout training, aligning with its poor sensitivity performance, and indicating that 

the model struggled the most with this specific fold. 

The average test loss across all folds started at approximately 1.12 at epoch 1. From 

epoch 5 to epoch 20, the average loss fluctuated mildly between 1.06–1.08, showing 

good stability during early training. However, after epoch 20, a gradual and consistent 

upward trend was observed, with average loss increasing steadily to about 1.15–1.16 by 

epoch 50. This steady rise reflects that generalization on the unseen test set became 

weaker over time, especially after 20–30 epochs, suggesting once again that prolonged 
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training might not have been beneficial, and that earlier stopping could have helped 

prevent the observed overfitting trends. 

An equally important visualization of the performance metrics is given in the following 

graph, which presents a direct comparison of the average(meaning maximum out of 

each fold) testing Accuracy, Sensitivity, Specificity, and Loss across all five folds after 

training the Linear Classification Head for 50 epochs. 

 
Figure 5.11: Average Test Accuracy, Sensitivity, Specificity, F1-score and Loss Across All Folds Using 

the Linear Classification Head with 50 epochs. 

 It can be observed that testing accuracy remained moderate, ranging from 0.6154 in 

Fold 1 to a maximum of 0.7846 in Fold 4, reflecting relatively stable but not exceptional 

generalization to unseen data. 

Testing sensitivity, which is the clinical priority of this study, showed strong 

performance in the early folds, achieving high values of 0.9286 in Folds 1 and 3 and 

0.8571 in Fold 2. However, a noticeable drop occurred in Folds 4 and 5, where 

sensitivity fell to 0.6429 and 0.5714, respectively, indicating that the model struggled to 

maintain consistent detection of cancerous cases across all splits. 

On the other hand, specificity demonstrated a clear upward trend, improving steadily 

from 0.5686 in Fold 1 to 0.9216 in Fold 5. This suggests that while the model became 

more confident in correctly classifying healthy cases over time, it did so at the expense 

of missing more positive cases, highlighting a sensitivity-specificity trade-off. 

Finally, testing loss values remained relatively high across folds, fluctuating between 
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1.191 and 1.4299, further supporting the observation that although the model fit the 

training data well, it exhibited notable uncertainty when predicting on unseen test 

samples. 

Regarding the F1-score, which balances both sensitivity and precision, the model 

demonstrated relatively stable but moderate performance across all five folds. The 

highest F1-score was achieved in Fold 1 at 0.4906, closely followed by Fold 2 at 0.4878 

and Fold 4 at 0.4848. These results indicate that the model was generally able to 

maintain a reasonable balance between correctly identifying cancerous cases and 

avoiding false positives in these splits. However, the lowest F1-score was observed in 

Fold 5 (0.4571), which aligns with its previously discussed sensitivity drop. The overall 

consistency of the F1-scores, with a narrow range between 0.4571 and 0.4906, suggests 

that while the linear classifier exhibited stable predictive behaviour across different data 

partitions, it lacked the capacity to reach high performance thresholds.  

Given these observations, it can be concluded that the results can be considered partially 

aligned with the primary goal of this thesis, which was to maintain high sensitivity 

across all folds. While in Folds 1, 2, and 3 sensitivity values were excellent, achieving 

0.9286, 0.8571, and 0.9286 respectively and thus satisfying the clinical objective of 

minimizing false negatives, in Folds 4 and 5, sensitivity dropped significantly to 0.6429 

and 0.5714, falling well below the desired threshold of 0.9. 

This inconsistency across folds shows that although the model was capable of reaching 

high sensitivity in certain splits, it failed to maintain this performance reliably across the 

entire dataset. As a result, the model’s overall behaviour cannot be considered fully 

satisfactory for clinical application in the real world of medical practice, where 

consistently high sensitivity is critical for dependable early breast cancer detection. 

 

5.2.2  Performance at 150 Epochs 

To further explore the behaviour of the Linear Classification Head and evaluate the 

impact of prolonged training, an additional experimental setting was conducted by 

extending the number of training epochs to 150. The following table summarizes the 

maximum achieved values across the 150 epochs for each fold in terms of key 

evaluation metrics, Accuracy, Sensitivity, Specificity, and Loss for the training, 

validation, and testing phases. 
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Special attention remains focused on sensitivity as the primary objective, while 

specificity and loss are also carefully monitored to evaluate the model’s ability to 

correctly identify healthy cases and maintain overall prediction confidence. 

By comparing these results to the 50-epoch experiments, insights can be gained into 

whether extended training helped improve model generalization or instead led to 

overfitting and degraded performance on the unseen test set. 

 

Fold Training 

Accuracy 

Training 

Sensitivity 

Training 

Specificity 

Training 

Loss 

Validation 

Accuracy 

Validation 

Sensitivity 

Validation 

Specificity 

Validation 

Loss 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Specificity 

Test 

Loss 

1 0.6699 1 0.575 5.6126 0.5769 1 0.4878 0.8726 0.5231 1 0.4118 2.0183 

2 1 1 1 2.5604 0.9808 0.9167 1 0.4043 0.7077 0.7143 0.8039 1.9501 

3 1 1 1 1.3828 0.9808 0.9167 1 0.5115 0.7538 0.8571 0.8431 1.6056 

4 1 1 1 1.18 0.9808 0.9091 1 0.1294 0.7538 0.6429 0.8824 1.6673 

5 1 1 1 0.4709 0.9804 0.9091 1 0.2852 0.7692 0.4286 0.9216 1.8339 

Table 5.2: Performance metrics obtained with training, validation and testing, of Linear Classification 

Head with 150 epochs 

The following graph presents a summary of the final achieved Testing Accuracy, 

Sensitivity, Specificity, and Loss across all five folds after training the Linear 

Classification Head for 150 epochs The focus of this graph is on a compact comparison 

of the overall best test performances per fold. This visualization helps assess whether 

prolonged training duration led to improvements or degradation in the model’s ability to 

generalize, particularly focusing on sensitivity, which remains the primary evaluation 

priority. 

 
Figure 5.12: Average Test Accuracy, Sensitivity, Specificity and Loss Across All Folds Using the Linear 

Classification Head with 150 epochs. 
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From the graph and the summarized results, it can be observed that testing loss 

remained the highest value across all folds, fluctuating between 1.6056 and 2.0183, 

suggesting that uncertainty during testing persisted even after extended training. 

In terms of testing accuracy, Fold 1 performed the worst, achieving only 0.5231, while 

Fold 5 achieved the best performance with an accuracy of 0.7692. Nonetheless, 

accuracy values remained moderate overall and did not indicate substantial 

generalization improvements compared to the 50-epoch setting. 

As far as testing sensitivity is concerned, which is the primary objective of this thesis, it 

is clear that the model failed to maintain consistently high values. Although Fold 1 

reached a perfect 1.0 sensitivity, fully identifying all cancerous cases, a sharp drop was 

observed in the subsequent folds. Fold 2 achieved a sensitivity of 0.7143, Fold 3 

improved slightly to 0.8571, but Folds 4 and 5 deteriorated further, falling to 0.6429 and 

0.4286 respectively. These values show that prolonged training did not lead to an 

overall better sensitivity outcome. In fact, sensitivity stability worsened, with only Folds 

1 and 3 approaching the desired ≥0.90 target. 

On the other hand, testing specificity demonstrated a continuous upward trend across 

folds. Starting from 0.4118 in Fold 1, specificity increased steadily, reaching up to 

0.9216 in Fold 5. This suggests that the model increasingly prioritized correctly 

classifying healthy individuals as training continued. However, this improvement in 

specificity came at the expense of sensitivity, creating a trade-off that is clinically 

undesirable in early breast cancer detection, where minimizing false negatives is the 

critical priority. 

Overall, while specificity showed improvements and accuracy remained acceptable, 

sensitivity dropped significantly in multiple folds, particularly in Folds 4 and 5. Thus, 

the 150-epoch training setting cannot be considered fully satisfactory in relation to the 

main goal of this study, and signs of overfitting and sensitivity degradation became 

more apparent as training was prolonged. 

Accuracy: 

The following graph illustrates the final Testing Accuracy achieved by the Linear 

Classification Head across all five folds after 150 epochs. This visualization provides 

insight into how accurately the model generalized to unseen data in each fold after 
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prolonged training. It also allows comparisons between folds in terms of generalization 

stability. 

 
Figure 5.13: Average Test Accuracy Across All Folds Using the Linear Classification Head with 150 

epochs. 

 

As shown in the graph, Fold 1 exhibited the lowest test accuracy, achieving only 0.5231 

after 150 epochs. In contrast, a significant improvement was observed from Fold 2 

onwards, with Fold 2 reaching 0.7077, and Folds 3 and 4 both achieving identical 

values of 0.7538. Fold 5 demonstrated the highest test accuracy overall, finishing at 

0.7692. 

The clear upward trend from Fold 1 to Fold 5 suggests that the model’s ability to 

correctly classify both healthy and unhealthy cases improved across folds as training 

progressed. However, the relatively lower performance in Fold 1 highlights fold-

dependent variability, which is consistent with small dataset settings where splits can 

introduce subtle distribution shifts. 

While these accuracy values are acceptable and even relatively high in folds 3–5, it is 

important to note that accuracy alone does not fully reflect the model’s medical 

reliability in this case. High accuracy may still hide critical sensitivity failures, 

particularly in folds where cancerous cases are under detected. Therefore, while the 

general trend in accuracy was positive with 150 epochs, it must be interpreted 

cautiously alongside sensitivity trends to draw meaningful clinical conclusions. 
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Sensitivity: 

The following graph presents the Test Sensitivity achieved across all five folds when 

training the Linear Classification Head for 150 epochs. As sensitivity is the primary 

clinical objective of this thesis, this graph is critical for understanding the model’s 

ability to correctly detect cancerous cases under extended training conditions.  

 
Figure 5.14: Average Test Sensitivity Across All Folds Using the Linear Classification Head with 150 

epochs. 

By observing the graph above which represents the test sensitivity evolution of the 5 

folds after 150 epochs, Fold 1 achieved perfect sensitivity, reaching a value of 1.000. 

This indicates that the model managed to detect all cancerous cases correctly within this 

fold, fully aligning with the clinical goal of minimizing false negatives. Fold 2, 

however, demonstrated a notable drop compared to Fold 1, with sensitivity settling at 

0.7143. While this value is still moderate, it falls short of the ideal threshold (≥0.90) 

desired for clinical application. Fold 3 showed a relatively good recovery, achieving a 

sensitivity of 0.8571, which, although slightly lower than perfect detection, remains 

clinically acceptable. Moving on, Fold 4 displayed a sensitivity of 0.6429, which 

closely mirrors its earlier performance at 50 epochs, indicating that prolonged training 

did not offer any real improvement for this split. Finally, Fold 5 recorded the lowest 

sensitivity across all folds, at 0.4286, highlighting a major failure in cancer case 

detection for this split and raising concerns regarding the model's reliability when 

exposed to certain data distributions. 
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Furthermore, a second graph is included to compare the sensitivities obtained after 50 

epochs versus 150 epochs, allowing a direct evaluation of how prolonged training 

influenced sensitivity preservation across folds. 

 
Figure 5.15: Sensitivity Comparison Across All Folds between the Linear Classification Head with 50 

and 150 epochs. 

When directly comparing these results to those obtained after 50 epochs, several 

important observations emerge. In Fold 1, sensitivity slightly improved, moving from 

0.9286 at 50 epochs to a perfect 1.000 at 150 epochs. This shows that prolonged 

training benefitted Fold 1 specifically. In contrast, Fold 2 experienced a clear decline, 

with sensitivity dropping from 0.8571 to 0.7143. Similarly, Fold 3’s sensitivity 

decreased slightly from 0.9286 to 0.8571, although it remained relatively strong. For 

Fold 4, sensitivity stayed identical at 0.6429 regardless of training duration, suggesting 

that additional epochs did not lead to further gains. Meanwhile, Fold 5 exhibited a 

considerable deterioration, as sensitivity fell from 0.5714 at 50 epochs to just 0.4286 at 

150 epochs, marking the most dramatic sensitivity decline among all folds. 

Given these observations, it can be concluded that prolonged training to 150 epochs did 

not consistently improve sensitivity across folds. Instead, sensitivity either declined, 

stagnated, or, in the best cases, showed only marginal improvement. Most importantly, 

the overall goal of maintaining high sensitivity (≥0.90) across all folds was not 

achieved. This underlines that simply increasing the number of epochs was not 

sufficient to guarantee better clinical reliability, and in fact, prolonged training may 

have contributed to reduced generalization ability in certain folds. 
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5.2.3  Performance at 30 Epochs 

Since the previous experiment with prolonged training at 150 epochs did not result in 

improved performance and, in fact, revealed signs of overfitting and sensitivity 

degradation, it was decided to explore the opposite approach by reducing the training 

duration. In this setting, the number of training epochs was decreased from the original 

50 to just 30, with the goal of evaluating whether shorter training could enhance 

stability, reduce overfitting, and potentially preserve sensitivity better across all folds. 

The following table summarizes the maximum achieved values across the 30 epochs for 

each fold, presenting key evaluation metrics including Accuracy, Sensitivity, 

Specificity, and Loss for the training, validation, and testing phases. 

Fold Training 

Accuracy 

Training 

Sensitivity 

Training 

Specificity 

Training 

Loss 

Validation 

Accuracy 

Validation 

Sensitivity 

Validation 

Specificity 

Validation 

Loss 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Specificity 

Test 

Loss 

1 0.6553 1 0.5563 5.6089 0.6731 0.9091 0.6341 0.7091 0.4769 0.8751 0.4902 1.1711 

2 0.8883 1 0.9068 3.5323 0.9423 0.9167 0.95 0.5027 0.6769 0.7857 0.7255 1.1597 

3 0.9563 1 0.9565 2.7999 0.9615 0.8333 1 0.5602 0.7077 0.7857 0.7843 0.9645 

4 0.9855 0.9565 1 2.2853 0.9804 0.9091 1 0.2772 0.7538 0.5714 0.8627 1.0596 

5 0.9903 0.9565 1 1.8875 0.9804 0.9091 1 0.4471 0.7538 0.5 0.8824 1.1232 

Table 5.3: Performance metrics obtained with training, validation and testing, of Linear Classification 

Head with 30 epochs 

To further investigate whether earlier stopping could better preserve sensitivity and 

improve generalization, the number of training epochs was reduced to 30. The 

following graph summarizes the testing phase results for each fold in terms of 

Accuracy, Sensitivity, Specificity, and Loss after 30 epochs of training. By examining 

these trends, it becomes possible to understand whether a shorter training schedule 

helped the model avoid overfitting and maintain clinically important detection 

capabilities. 
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Figure 5.16: Average Test Accuracy, Sensitivity, Specificity and Loss Across All Folds Using the Linear 

Classification Head with 30 epochs. 

As seen in the figure and the table above, the results show mixed outcomes. 

Starting with Fold 1, the test accuracy was relatively low at 0.4769, but sensitivity 

remained quite strong at 0.8571, aligning well with the primary goal of minimizing false 

negatives. However, specificity was poor at 0.4902, indicating that many healthy cases 

were incorrectly classified as sick. Test loss was relatively high at 1.1711, suggesting 

that the model struggled to generalize well in this fold. 

Fold 2 displayed a noticeable improvement in both accuracy (0.6769) and specificity 

(0.7255) compared to Fold 1, while still maintaining a relatively good sensitivity of 

0.7857. Test loss slightly decreased to 1.1597. This indicates that a better balance 

between detecting positives and negatives was achieved in Fold 2. 

Similarly, Fold 3 further improved in accuracy (0.7077) and specificity (0.7843), while 

maintaining the same sensitivity (0.7857) as Fold 2. Moreover, Fold 3 had the lowest 

test loss among all folds at 0.9645, showing that the model achieved better 

generalization with 30 epochs in this case. 

Moving on to Fold 4, accuracy continued to rise to 0.7538 and specificity also improved 

to 0.8627, which is a strong value. However, sensitivity dropped significantly to 0.5714, 

indicating that although the model became better at recognizing healthy cases, it missed 
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many cancerous ones, a trade off that is undesirable for the clinical objective. Test loss 

remained relatively low at 1.0596. 

Finally, Fold 5 maintained similar accuracy (0.7538) and even stronger specificity 

(0.8824) compared to Fold 4. However, sensitivity dropped even further to 0.5000, 

which is critically low for reliable cancer detection. Test loss slightly increased to 

1.1232, suggesting that despite stable accuracy and specificity, the model’s overall 

confidence weakened. 

In conclusion, reducing the training duration to 30 epochs preserved high sensitivity in 

the first few folds (particularly Fold 1), but performance degraded significantly in Folds 

4 and 5, where sensitivity became too low to meet clinical reliability standards. 

Although test loss values were generally lower than at 50 or 150 epochs, the 

inconsistency in sensitivity across folds indicates that 30 epochs did not fully solve the 

issue of balancing sensitivity and specificity. 

Accuracy: 

The following graph presents the comparison of test accuracies across all folds for the 

30, 50 and 150 epoch experiments conducted using DINOv2. The corresponding 

numerical results are also summarized in the table below the graph. 

 
Figure 5.17: Test Accuracy Comparison Across All Folds Using the Linear Classification Head with 30 , 

50 and 150 epochs. 
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Fold Test Accuracy 30 

Epochs 

Test Accuracy 50 

Epochs 

Test Accuracy 150 

Epochs 

1 0.4769 0.6154 0.5231 

2 0.6769 0.6769 0.7077 

3 0.7077 0.6769 0.7538 

4 0.7538 0.7846 0.7538 

5 0.7538 0.7692 0.7692 
Table 5.4: Testing Accuracy Comparison for all folds, of Linear Classification Head, obtained with all 3 

epoch experiments, 30, 50 and 150 epochs respectively.  

 

Starting with Fold 1, the best accuracy was achieved after 50 epochs with a value of 

0.6145. After extending training to 150 epochs, test accuracy dropped significantly to 

0.5231 and further decreased to 0.4769 after training for only 30 epochs. Therefore, in 

Fold 1 neither prolonging nor reducing the number of epochs benefited generalization, 

and in fact both adjustments resulted in worse performance compared to the original 50 

epochs. 

In Fold 2, test accuracy improved slightly from 0.6769 at 50 and 30 epochs to 0.7077 at 

150 epochs. An interesting observation is that even when training was reduced to 30 

epochs the test accuracy remained stable at 0.6769 which is identical to the result 

achieved with 50 epochs. This shows that Fold 2 was relatively stable across different 

training durations although minor gains were observed at 150 epochs.  

Fold 3 showed similar behaviour to Fold 2. Accuracy rose from 0.6769 at 50 epochs to 

0.7538 at 150 epochs, suggesting some benefit from extended training. However, with 

only 30 epochs, accuracy reached 0.7077, which while slightly lower than 150 epochs, 

was still better than the initial 50-epoch result. This suggests that Fold 3 may have 

benefitted somewhat from both extended and reduced training, with longer training 

yielding slightly higher accuracy. 

In Fold 4, the highest test accuracy was achieved at 50 epochs, with a value of 0.7846. 

Extending training to 150 epochs led to a small drop to 0.7538. Reducing training to 30 

epochs also resulted in a test accuracy of 0.7538. Therefore, for Fold 4, prolonged 

training caused minor overfitting, while early stopping at 30 epochs managed to retain 

good performance without significant degradation. 

Finally, in Fold 5, test accuracy at 50 epochs was 0.7692 which remained unchanged 

after 150 epochs. When training was reduced to 30 epochs, accuracy slightly dropped to 
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0.7538. This shows that prolonged training neither improved nor hurt Fold 5, but early 

stopping led to a minor decline. 

Overall, comparing all folds, it can be concluded that training for 150 epochs slightly 

improved test accuracy in Folds 2 and 3, but hurt Folds 1 and 4, and had no effect in 

Fold 5. Additionally, reducing training to 30 epochs preserved or slightly worsened test 

accuracy compared to 50 epochs in most folds. Lastly, Fold 1 consistently performed 

worse under both 30 and 150 epochs, indicating its instability. 

Thus, in terms of test accuracy alone 50 epochs appeared to offer the best overall 

balance, with 150 epochs occasionally helping, but not reliably across all folds. Early 

stopping at 30 epochs was not significantly beneficial and sometimes slightly hurt 

accuracy. 

Sensitivity:  

As far as sensitivity comparison is concerned, it can be observed from the graph and 

numerical table below that overall, none of the three epoch settings, meaning 30, 50 and 

150 epochs managed to consistently maintain high sensitivity across all folds. 

 
Figure 5.18: Test Sensitivity Comparison Across All Folds Using the Linear Classification Head with 30 

, 50 and 150 epochs. 
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Fold Test Sensitivity 30 

Epochs 

Test Sensitivity 50 

Epochs 

Test Sensitivity 

150 Epochs 

1 0.8571 0.9286 1 

2 0.7857 0.8571 0.7143 

3 0.7857 0.9286 0.8571 

4 0.5714 0.6429 0.6429 

5 0.5 0.5714 0.4286 
Table 5.5: Testing Sensitivity Comparison for all folds, of Linear Classification Head, obtained with all 3 

epoch experiments, 30, 50 and 150 epochs respectively.  

Starting with Fold 1, sensitivity after 50 epochs stood at 0.9286 which is a very strong 

sensitivity value. Increasing training to 150 epochs, slightly improved the results to a 

perfect 1.00 successfully achieving zero FNs for this fold. However, decreasing the 

number of epochs to 30, caused a slight drop to 0.8571 which even though is relatively 

high and clinically acceptable it is still lower than the values of 50 and 150 epochs. 

In Fold 2, sensitivity after 50 epochs was 0.8571. However, when training was extended 

to 150 epochs, sensitivity degraded notably to 0.7143. Similarly, at 30 epochs 

sensitivity stood at 0. 7857.Thus, shorter training appeared slightly better than 

prolonged training here, although none of the settings managed to surpass the original 

50-epoch sensitivity. 

For Fold 3, sensitivity after 50 epochs was very high standing at 0.9286. When training 

was prolonged to 150 epochs, sensitivity dropped to 0.8571, and after reducing to 30 

epochs, it fell further to 0.7857. Therefore, both prolonged and reduced training 

worsened sensitivity compared to the 50-epoch value. 

Fold 4 showed relatively weak sensitivity even at 50 epochs, standing at 0.6429. 

Training for 150 epochs did not bring any improvements, as sensitivity remained the 

same at 0.6429. Reducing training to 30 epochs made the situation worse, with 

sensitivity declining to 0.5714. Thus, Fold 4 remained a persistent challenge under all 

epoch settings, but shorter training degraded performance even further. 

Finally, in Fold 5, sensitivity at 50 epochs was 0.5714, already below the clinically 

desired threshold. Extending training to 150 epochs led to a further major decline, with 

sensitivity dropping critically to 0.4286. With 30 epochs, sensitivity was slightly better 

at 0.5 but remained clinically insufficient. Fold 5 was therefore the weakest fold across 

all scenarios. 
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Therefore, comparing the sensitivity values across folds, it is clear that 50 epochs 

provided the highest and most reliable sensitivity values. Both increasing the epochs to 

150 and decreasing to 30 worsened sensitivity in most cases. Particularly, prolonged 

training (150 epochs) often caused severe sensitivity degradation (e.g., Fold 2 and Fold 

5), while shortened training (30 epochs) mildly worsened or stagnated sensitivity 

performance. Thus, neither longer nor shorter training consistently benefitted the 

model’s ability to detect positive (cancerous) cases, further emphasizing that 50 epochs 

was overall the most balanced and effective training length for maintaining clinical 

reliability. 

5.2.4  Analysis of Misclassified Cases Affecting Sensitivity with Linear 

Head 

 

In order to better understand the causes behind low sensitivity observed in a much 

larger degree in Folds 4 and 5, a deeper inspection was conducted by extending the code 

to print and record all misclassified samples, both healthy predicted as unhealthy and 

unhealthy predicted as healthy, during the testing phase. 

After obtaining the results, particular focused was placed on FNs, meaning cases where 

a cancerous image was incorrectly classified as healthy, since these are the errors that 

directly impact and lower sensitivity which is the main clinical priority of this thesis. 

Given that Folds 4 and 5 were consistently showing the worst sensitivity results across 

the 30, 50 and 150 epoch experiments, they were selected for this targeted investigation. 

For each setting of epochs, aka 30, 50 and 150, the model was run and all misclassifies 

test samples were extracted. Specifically, all the images predicted as healthy despite 

being actually unhealthy were collected for each fold and epoch setting. 

Moreover, the recorded FNs were compared across epoch variations to identify whether 

certain images were consistently misclassified regardless of the training duration. By 

identifying and visually inspecting the repeated FN samples, it became possible to 

assess whether specific characteristics in these images contributes to the model’s 

difficulty in correctly classifying them. 
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To complement the misclassification analysis described above, this section visualizes 

the images that were consistently misclassified in Folds 4 and 5 when running the 

Linear Classification Head across all three training settings.  

The images corresponding to each fold and training setting are provided in the table 

below:  

Fold Misclassified Image using 30 

Epochs 

Misclassified Image using 50 

Epochs 

Misclassified Image using 150 

Epochs 

Correlation  
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5 

 
 

Other Image(s) Other Image(s)  

4 

 
 

Other Image(s) Other Image(s)  

Table 5.6: Repeated FN Samples Across Epoch Variations in Folds 4 and 5, with Linear Classification 

Head. 

The table above presents all the misclassified test samples, specifically FNs in Folds 4 

and 5 that were consistently misclassified across all three training durations, aka 30, 50, 

and 150 epochs. These images represent the most problematic cases for the Linear 

Head, as they were incorrectly predicted as healthy regardless of how long the model 

was trained. In other words, they reflect samples that the model failed to classify 

correctly under any condition, highlighting their inherent difficulty. 

Where the table shows “Other Image(s)”, it indicates that there were additional false 

negatives for that specific epoch setting, but these varied from the consistent cases and 

were therefore omitted for summarization purposes. The focus of the table is on images 

that repeatedly failed across all settings, as these are the most informative for analysing 

persistent sensitivity issues. 

When analysing the false negatives (FNs) across Folds 4 and 5 for all three training 

durations (30, 50, and 150 epochs) as seen in the Table 5.6, a consistent pattern was 

observed. Several specific images were misclassified in almost every epoch setting. 

These repeated misclassifications suggest that these particular samples are inherently 

difficult for the model to classify, possibly due to subtle or ambiguous thermal features. 

Visual inspection reveals that many of these images exhibit symmetry, low contrast, or 

thermal patterns resembling those typically associated with healthy subjects, which may 

mislead the model. This trend highlights the limitations of the current linear 
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classification head in capturing the complexity of certain cases. In contrast, images with 

more distinct abnormalities may have been easier to classify correctly. These findings 

emphasize the need for further investigation, potentially incorporating non-linear 

models or region-specific attention mechanisms to better capture critical diagnostic 

features. 

 

5.2.5   Hyperparameter and Architectural Exploration for the Linear 

Head 

Throughout the development of the linear classification head used for breast cancer 

detection via DINOv2 features, multiple hyperparameters and configurations were 

explored in hopes of optimizing the model’s performance. Given the critical importance 

of minimizing false negatives to ensure high sensitivity, all experiments prioritized 

sensitivity over specificity, while still aiming to maintain acceptable specificity levels. 

The finalized version of the pure linear classifier is based on a single fully connected 

(nn.Linear) layer attached on top of frozen DINOv2 ViT-S/14 [CLS] token embeddings. 

Features are normalized using StandardScaler, and the model is trained using the 

AdamW optimizer with BCEWithLogitsLoss, employing a class imbalance-aware 

pos_weight=1.35. During training, threshold optimization is applied to maximize F1-

score while ensuring sensitivity ≥ 0.90 on the validation set. Performance is monitored 

per epoch across training, validation, and final test sets. 

Historical Modifications and Rationale for Discarding 

The final design was reached after testing and discarding multiple alternative setups, 

each of which is detailed below: 

Change Attempted Final Status Reason for Discarding 

Focal Loss Discarded Did not significantly improve 

sensitivity and it complicated 

optimization 

FocalLoss(alpha=0.5, 

gamma=2) 

Discarded 
Flattened gradients and 

increased training instability 

for minority class. 
 

pos_weight=dynamic 

value 

Discarded Used 

len(y_train)/(2*y_train.sum()); 

unstable across folds. 
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Thresholding using 

Youden’s J index [25] 

Discarded Prioritized balance between 

sensitivity/specificity but 

often violated sens ≥ 0.90 

Thresholding using 

(2*TPR - FPR) 

Discarded Led to increased false 

negatives. 

Threshold = 0.5 fallback Fallback only 
Retained only when no 

threshold achieves ≥0.90 

sensitivity. 
 

Final test set evaluated 

once 

Discarded Misclassified Samples were 

not tracked per epoch and it 

lacked robustness 

Final test set evaluated per 

epoch 

Adopted Allowed per-epoch tracking of 

generalization and 

misclassification behaviour 

Best threshold optimized 

using F1 under sensitivity 

constraint 

Adopted Maintained priority on recall 

while improving precision and 

F1-score 

Early stopping on 

validation specificity 

Discarded Prioritized specificity instead 

of overall validation balance 
Table 5.7: Summary of Historical Modifications to the Linear Classification Head and Rationale for 

Discarding. 

Specific Hyperparameters Tested  

Loss Function:  

Initial tests included Focal Loss with alpha=0.5, gamma=2. Although Focal Loss is 

commonly used in imbalanced settings, it introduced significant training instability, and 

gradients tended to vanish in cases of ambiguous inputs. The specificity did not improve 

sufficiently to justify its complexity, leading to its rejection. 

The final configuration uses BCEWithLogitsLoss with a fixed positive class weight 

(pos_weight=1.35) to counteract class imbalance more robustly and consistently across 

all folds. 

Optimizer and Learning Rate:  

The optimizer remained constant as AdamW, as it provided stable convergence. The 

learning rate of 1e-3 was experimentally confirmed as the optimal value. Lower rates 

slowed convergence, while higher rates induced oscillation in early epochs. 

Threshold Optimization:  

Several methods for determining the classification threshold were considered: 
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Youden’s J index (tpr + specificity - 1) [25] ,often failed to preserve the sensitivity 

constraint of ≥ 0.90, despite good F1. 

A custom metric emphasizing sensitivity (2 × TPR - FPR) occasionally yielded high 

sensitivity but at the cost of excessively low specificity. 

The final method filters all thresholds with TPR ≥ 0.90 and selects the one that 

maximizes F1-score among them. This balanced recall and precision under the strict 

sensitivity constraint and significantly reduced false negatives across folds. 

Final Test Evaluation Frequency: 

Initially, final test set performance was only assessed once after training completion. 

This did not allow misclassification dynamics to be studied over time. 

The new approach evaluates the final test set at every epoch, tracking true positives 

(TP), false positives (FP), false negatives (FN), and true negatives (TN) continuously. 

This enabled real-time error analysis and refinement. 

Early Stopping: 

Some intermediate versions introduced early stopping when validation specificity 

stagnated. However, since the main goal was to maximize sensitivity, this criterion 

contradicted the primary objective and was discarded. 

Evaluation and Impact: 

All experimental configurations were benchmarked across 5-fold cross-validation using 

fixed training/validation/final-test splits. The improvements to thresholding and logging 

in the final design led to the best trade-off between sensitivity and false positive 

reduction, which was not possible under earlier configurations. 

 

5.3   MLP Classification Head Results 

 

5.3.1  Performance at 50 Epochs 

To evaluate the effectiveness of the MLP Classification Head trained on top of frozen 

DINOv2 features, this section presents a table summarizing the best achieved 

performance across 50 training epochs for each fold. The evaluation includes key 
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metrics such as Accuracy, Sensitivity, Specificity, and Loss, reported for the training, 

validation, and final test sets. 

The primary focus remains on sensitivity, which is clinically the most critical metric in 

the context of early breast cancer detection. An improved sensitivity indicates the 

model’s enhanced ability to correctly identify cancerous cases, thereby reducing false 

negatives, which is considered a central objective of this thesis. The inclusion of 

specificity and loss provides additional insight into the model’s discriminative 

capability and prediction stability. 

By analyzing the fold-wise results of the MLP head and comparing them to the earlier 

linear baseline, this section aims to assess whether the non-linear architecture of the 

MLP contributes to improved classification performance, especially on difficult cases 

observed in prior evaluations. 

 

Fold Training 

Accuracy 

Training 

Sensitivity 

Training 

Specificity 

Training 

Loss 

Validation 

Accuracy 

Validation 

Sensitivity 

Validation 

Specificity 

Validation 

Loss 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Specificity 

Test 

Loss 

Test  

F1-Score 

1 0.8155 0.8913 00.9812 6.438 0.7885 0.9091 1 1.9144 0.8 0.9286 1 2.2616 0.4444 

2 0.8495 0.8889 0.9379 5.9469 0.8269 

 

1 1 1.6161 0.7846 0.9286 0.9804 1.8563 0.5714 

3 0.8544 0.9556 0.8758 4.9854 0.7692 

 

0.5 1 02.0516 0.8 0.8571 0.9804 1.7295 0.5263 

4 0.8744 0.9783 0.9068 4.9542 0.8824 

 

0.8182 1 1.6674 0.8154 0.7143 0.9804 1.9845 0.5263 

5 0.8647 0.9348 0.8758 4.6421 0.8431 

 

0.3636 1 2.267 0.8308 0.5 0.9804 2.3136 0.5 

Table 5.8: Performance metrics obtained with training, validation and testing, of MLP Classification 

Head with 50 epochs 

 

In addition to the summarized table of maximum achieved values, the following linear 

graphs provide a more detailed and continuous view of the MLP Classification Head’s 

testing performance over all 50 training epochs, across each individual fold. These 

graphs illustrate the evolution of the four key evaluation metrics, Accuracy, Sensitivity, 

Specificity, and Loss throughout testing. Unlike the table, which captures only the best 

point achieved in each fold, these plots reveal the complete learning behaviour and 

stability of the model over time. 

The table and line graphs below, illustrate the trends in average (meaning maximum of 

each fold) accuracy, sensitivity, specificity and loss across all five folds using the MLP 
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Classification Head trained for 50 epochs. These trends are complemented by the fold-

wise numerical values presented in the table.  

 
Figure 5.19: Average Accuracy Values of All Folds when using the MLP Classifier with 50 epochs. 

Starting with accuracy, training performance steadily improved across folds. More 

specifically, it began at 0.8155 in Fold 1 and rose to a peak of 0.8744 in Fold 4, then 

followed closely by 0.8647 in Fold 5. This trend indicates that the MLP model was able 

to learn effectively across all training splits. Validation accuracy, while generally 

aligned with training trends, showed more variability. As seen in the table and graph 

above, it ranged from a low of 0.7692 in Fold 3 to a high of 0.8824 in Fold 4, 

suggesting that certain folds contained more challenging validation subsets. Test 

accuracy, which is the most reliable indicator of generalization, ranged from 0.7846 in 

Fold 2 to 0.8308 in Fold 5, with values in Folds 1 and 3 sitting at 0.8000, and 0.8154 in 

Fold 4. Unlike the linear model, where test accuracy remained consistently lower, the 

MLP classifier showed a narrower gap between validation and test performance, with 

overall higher and more stable test accuracies. This implies better generalization and 

reduced overfitting, likely due to the MLP’s capacity to model non-linear patterns that 

the linear classifier could not capture. The strongest overall performance appeared in 

Fold 5, where all three accuracy values (training: 0.8647, validation: 0.8431, test: 

0.8308) were among the highest and closely aligned , which implies a strong sign of 

both fit and generalization. 
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Figure 5.20: Average Sensitivity Values of All Folds when using the MLP Classifier with 50 epochs. 

 

Sensitivity, the metric most aligned with this thesis’ clinical objective of minimizing 

false negatives in cancer detection, demonstrated strong results overall, though with 

more variability compared to the linear classifier. In the training phase, sensitivity 

remained high across all folds, ranging from 0.8889 in Fold 2 to a peak of 0.9783 in 

Fold 4, indicating that the MLP classifier consistently learned to identify unhealthy 

cases within the training set. 

Validation sensitivity, however, showed greater fluctuations. While it reached perfect 

sensitivity (1.0) in Fold 2 and maintained a strong 0.9091 in Fold 1, it dropped to 

0.8182 in Fold 4, 0.5 in Fold 3, and a concerning 0.3636 in Fold 5. This suggests that 

the MLP struggled to generalize sensitivity performance to certain validation subsets, 

possibly due to fold-specific sample difficulty or limited representation of cancerous 

cases in those splits. 

In the testing phase, the model achieved excellent sensitivity in Folds 1 and 2 (0.9286 

each), and a moderately strong 0.8571 in Fold 3. However, sensitivity declined to 

0.7143 in Fold 4 and dropped further to 0.5 in Fold 5, echoing a similar pattern 

observed with the linear classifier. These consistent underperformances in the final 

folds highlight potential limitations in the model’s ability to generalize across all test 

distributions, possibly influenced by subtle domain shifts or class imbalance. 
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Despite the non-linear capacity of the MLP head, these results suggest that 

improvements in sensitivity are not guaranteed across all folds and achieving reliable 

sensitivity on difficult or underrepresented subsets remains an ongoing challenge. 

 

 
Figure 5.21: Average Specificity Values of All Folds when using the MLP Classifier with 50 epochs. 

Specificity which measures the model’s ability to correctly identify healthy cases, 

showed exceptionally strong and stable performance in both the validation and testing 

phases. In the validation set, specificity was consistently perfect (1.0) across all five 

folds, indicating that the MLP classifier did not misclassify a single healthy image as 

unhealthy during validation, regardless of the fold. This trend extended to the test set, 

where Fold 1 achieved a perfect score of 1.0, and the remaining folds maintained a still-

excellent specificity of 0.9804, reflecting a high degree of reliability in avoiding false 

positives. 

In contrast, training specificity exhibited slightly more variation, starting at 0.9812 in 

Fold 1 and gradually decreasing in subsequent folds, reaching a low of 0.8758 in Folds 

3 and 5. This drop in training specificity may reflect the model’s effort to prioritize 

sensitivity during training, especially in folds where class balance or sample difficulty 

posed a challenge. Nevertheless, the consistency of high specificity in both validation 

and test phases confirms that the MLP classifier was not overfitting to negative 

(healthy) cases and maintained strong discriminative ability on unseen data. 
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Overall, the results suggest that while sensitivity was fold-dependent, specificity 

remained robust and consistently high, which is considered a promising outcome for 

real-world screening applications where reducing false alarms is essential to avoid 

unnecessary patient anxiety and additional testing. 

 

 
Figure 5.22: Average F1-score Values of All Folds when using the MLP Classifier with 50 epochs. 

The figure above, presents the F1-scores obtained on the final test sets across all five 

cross-validation folds using the Multi-Layer Perceptron (MLP) classification head after 

50 training epochs. The recorded F1-scores range from 0.444 to 0.571, indicating 

moderate effectiveness in balancing sensitivity and precision. The highest F1-score was 

achieved in Fold 2 (0.571), suggesting a relatively optimal balance between true 

positive and false positive rates for that particular data split. Conversely, Fold 1 

exhibited the lowest F1-score (0.444), which may be attributed to a larger number of 

misclassifications, either in the form of false negatives or false positives. The remaining 

folds (Folds 3 to 5) demonstrated stable and comparable performance, with F1-scores of 

approximately 0.526 and 0.500, respectively. Overall, the consistency of F1-scores 

across the majority of folds reflects the MLP classifier’s ability to generalize across 

different subsets of the data. However, the moderate magnitude of these scores suggests 

that, while high sensitivity was set to be maintained through the thresholding strategy, 

the precision remains limited, thereby constraining the F1-score. 
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Figure 5.23: Average Loss Values of All Folds when using the MLP Classifier with 50 epochs. 

 

Loss values provide insight into the model's confidence and how well it fits the data. 

When observing the loss values of the MLP Classification Head it is clear that the 

training loss consistently decreased across folds, starting at 6.438 in Fold 1 and 

dropping to 4.6421 in Fold 5. This downward trend suggests a progressive improvement 

in the model’s ability to minimize error on the training data, possibly due to better 

weight convergence or more favourable fold-specific training splits. 

In contrast, validation loss remained relatively stable but fluctuated across folds, 

ranging from a low of 1.6161 in Fold 2 to a high of 2.2670 in Fold 5. The validation 

loss stayed within a tighter range than the training loss, indicating that the model's 

performance on unseen validation samples was more consistent despite some 

performance dips in sensitivity and accuracy. 

Testing loss followed a similar pattern to validation, with values ranging from 1.7295 in 

Fold 3 (lowest) to 2.3136 in Fold 5 (highest). Folds 3 and 2 showed the lowest test 

losses, aligning with strong accuracy and decent sensitivity, while Fold 5 had the 

highest test loss, likely reflecting its poor sensitivity (0.5) and highest validation loss. 

Overall, the gap between training and testing losses, especially in earlier folds suggests 

the model may be overfitting slightly, focusing more on optimizing for the training 

distribution than generalizing perfectly to unseen data. However, the more balanced and 

lower validation/test losses in Folds 2 and 3 indicate that under the right data splits, the 

MLP can generalize effectively. 
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Additionally, the following graphs present the evolution of test accuracy, sensitivity, 

specificity and loss across all 50 training epochs for each fold individual and the 

average trend across folds. By carefully observing these graphs, specific fold dependent 

patterns in how the MLP Classifier’s generalization performance had evolved during the 

training phase.  

 
Figure 5.24: Test Accuracy per epoch and Average Accuracy, across all folds using the MLP 

Classification Head with 50 epochs. 

As far as test accuracy evolution is concerned for the MLP classification head, several 

patterns can be observed in how performance evolved across epochs and folds. 

In Fold 1, test accuracy began at a fairly strong 0.754 in epoch 1, but immediately 

dipped to as low as 0.246 in epoch 2, and fluctuated erratically until epoch 10. Between 

epochs 10 and 25, it showed signs of gradual stabilization with values mostly hovering 

between 0.53 and 0.67. After epoch 25, accuracy steadily improved and remained above 

0.69, eventually peaking again close to its starting point by epoch 50. While initial 

fluctuations were severe, the model appeared to recover and generalize more effectively 

later in training. 

Fold 2 started at 0.76, and although it briefly dipped to 0.63 around epoch 20, and it 

overall remained highly stable and consistent throughout the 50 epochs, mostly staying 

between 0.72 and 0.78. This consistency suggests that Fold 2’s data split was well-

balanced for the MLP, and the model learned without significant volatility. 
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For Fold 3, performance was solid and remarkably flat across the entire training 

timeline. It began at 0.75, never dropped below 0.65, and consistently stayed within the 

range of 0.69 to 0.77, especially after epoch 10. The stability in this fold reflects good 

learning and generalization with minimal overfitting signs. 

Fold 4, while starting slightly lower at 0.70, followed a smooth upward trend, reaching 

0.78 at multiple points. It remained consistent between 0.73 and 0.78 for the majority of 

the epochs, suggesting that the MLP was able to progressively learn from this split and 

maintain strong testing performance without sharp declines. 

In contrast, Fold 5 achieved one of the strongest and most consistent test accuracy 

curves. It started at 0.78, peaked at 0.83 by epoch 3, and remained stable between 0.76 

and 0.80 across the full 50 epochs. Fold 5’s curve was the least volatile, indicating that 

the model generalized well on this particular fold from the start, and didn't benefit much 

from longer training as its peak was reached early. 

Looking at the average test accuracy across folds, it started at 0.75, briefly dipped to 

0.64 in epoch 2, and then gradually recovered. After epoch 10, the average remained 

relatively stable, consistently ranging between 0.74 and 0.77 until the end. This 

contrasts with the linear classifier’s average trend, where accuracy dropped after epoch 

20. In the case of the MLP, generalization performance was more reliable and sustained, 

and no overfitting signs were evident based on the average test accuracy curve. Overall, 

this suggests that the MLP head was more robust and stable across folds compared to its 

linear counterpart. 
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Figure 5.24: Test Sensitivity per epoch and Average Sensitivity, across all folds using the MLP 

Classification Head with 50 epochs. 

As far as test sensitivity evolution is concerned, it can be seen from the line graphs 

above that for Fold 1, sensitivity began at a very low value of 0.07, but improved 

drastically by epoch 2, spiking to around 0.93. This was followed by frequent 

oscillations between high and low values, ranging from 0.3 to 0.92 up until epoch 10. 

The lowest value appeared in epoch 4 where sensitivity stood at 0, signifying that the 

model was unable to detect any of the unhealthy cases at all. After this initial volatility, 

sensitivity gradually decreased and became unstable beyond epoch 20, dipping 

consistently below 0.4 with multiple flatlines at the minimum score of 0.07, showing 

that the model’s ability to detect unhealthy cases in Fold 1 degraded as training 

progressed. 

Fold 2 presented an erratic pattern with no clear upward or downward trend. Sensitivity 

jumped between 0.07 and 0.92 throughout the epochs. While Fold 2 reached high peaks 

such as 0.93 at epoch 23, these spikes were short-lived and were followed by sharp 

drops. Unlike the linear model which stabilized after epoch 10, the MLP classifier for 

Fold 2 fluctuated throughout the training timeline, indicating a lack of stability in 

learning cancerous patterns in this fold. 
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In Fold 3, sensitivity was relatively more consistent. Although the values remained low 

between 0.14 and 0.21 during the early epochs, the model gradually improved, reaching 

0.64 to 0.71 multiple times from epochs 20 to 40, and even peaking at 0.8571 in epoch 

17. Despite this, Fold 3 still demonstrated moderate variability, but overall showed 

better learning behaviour compared to folds 1 and 2. 

Fold 4 began with strong sensitivity values, starting at 0.6429 in epoch 1 and 

maintaining similar high values through epochs 2, 4, and 5. In the first 10 epochs, 

values remained relatively stable between 0.35 and 0.71, suggesting that the model was 

initially effective in recognizing cancerous cases. However, from epoch 11 onwards, 

sensitivity started to decline more noticeably. By epoch 18, values had dropped to 

0.0714, and for the remainder of the training, sensitivity hovered mostly between 

0.0714 and 0.42, with many epochs falling at or near the minimum of 0.0714. This 

pattern reveals a clear deterioration in sensitivity over time, suggesting that while the 

model initially learned to detect cancer cases well, it gradually lost its ability to recall 

positive instances, possibly due to overfitting on the healthy class or failing to 

generalize well on more difficult samples in later epochs. 

In contrast, Fold 5 maintained consistently low sensitivity throughout training. It started 

at 0.07 and mostly remained below 0.35 across all 50 epochs. There were a few 

exceptions, such as 0.5 in epoch 10, but these were isolated cases. Overall, Fold 5 

demonstrated the weakest performance in detecting cancerous cases, and failed to reach 

clinically acceptable levels of sensitivity. 

The average sensitivity across all folds started at a low 0.20 in the first epoch but saw a 

significant improvement by epoch 2, reaching a short-lived peak of 0.55. After that, a 

slow and fluctuating downward trend began. Between epochs 5 and 20, the average 

sensitivity hovered between 0.30 and 0.48, showing no stable upward momentum. A 

few scattered improvements were recorded (such as 0.42 in epoch 28 and 0.43 in epoch 

30), but these were not sustained. From epoch 35 onward, average sensitivity sharply 

dropped, reaching critically low values such as 0.22 at epoch 43 and just 0.14 at the 

final epoch (epoch 50). These trends highlight the MLP classifier's instability in reliably 

detecting cancerous cases. The volatility and drop in sensitivity over time are especially 

concerning given the clinical importance of minimizing false negatives. This instability 
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reinforces the need for enhanced threshold tuning, regularization, or more robust 

architectures to maintain generalization in sensitive medical prediction contexts. 

 
Figure 5.25: Test Specificity per epoch and Average Specificity, across all folds using the MLP 

Classification Head with 50 epochs. 

Regarding test specificity evolution, the MLP Classification Head maintained a 

remarkably high and consistent performance across all folds, with minimal fluctuations 

compared to the sensitivity curves. For Fold 1, specificity started strong at 0.9412 in 

epoch 1 but dipped drastically as low as 0.05 by epoch 2. Then, a highly unstable early 

period followed until around epoch 15, with values fluctuating between 0.17 and 0.8, 

indicating a period where the model struggled to confidently identify healthy cases. 

From epoch 20 onwards, the values began to stabilize and steadily climb, eventually 

reaching perfect scores of 1.0 in epochs 31 and 32, and remaining consistently above 

0.90 by epoch 42 suggesting that the model gradually learned to identify healthy 

samples with increasing certainty. 

Fold 2 on the other hand, showed a very different pattern. From the very beginning, 

specificity remained consistently high starting strong at 0.96 in epoch 1 and remained 

impressively consistent throughout the training. Specificity scores rarely dipped below 

0.72, with most values clustering between 0.82 and 0.96 and the lowest specificity 

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

Sp
ec

ifi
ci

ty

Epochs

Test Specificity of each Fold for all Epochs and Average Specificity of all 
Folds using MLP Classification with 50 epochs

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average



106 
 

standing at 0.3725 at epoch 23. However, unlike Fold 1, Fold 2 never peaked at 1.0. Its 

highest values hovered in the 0.96 range. Despite not reaching perfection, Fold 2 

demonstrated very stable and high specificity, reflecting robust generalization in 

identifying negative (healthy) cases. 

In Fold 3, performance was also solid. Specificity began at 0.92 in epoch 1, with some 

fluctuations between 0.74 and 0.94 throughout the epochs. Although a few drops were 

observed, especially around epochs 14–17 where specificity reached as low as 0.50, the 

model quickly recovered, finishing above 0.80 in most of the later epochs. This shows 

that the model remained reliable in classifying healthy cases, though minor 

inconsistencies were present. 

Fold 4 exhibited more variability. It started at 0.72, dropped to 0.66 in epoch 2, and 

hovered around 0.72–0.86 until about epoch 23. After this point, it significantly 

improved, peaking at 0.98 in several later epochs. The progression indicates that the 

model required more time to generalize well for Fold 4 but eventually achieved high 

specificity. 

Fold 5 was the most consistent performer among all folds. It started at 0.98 and 

sustained specificity values above 0.82 throughout the entire 50 epochs. There were 

minimal fluctuations, with most of the values surpassing 0.9. This reflects a very strong 

capability in identifying healthy cases with almost no false positives. 

The average specificity across all folds started high at 0.9059, briefly dropped to 0.66 in 

epoch 2 which was mainly due to Fold 1, and then steadily increased and stabilized. 

From epoch 12 onwards, the average remained between 0.8 and 0.94, reflecting 

excellent model performance in distinguishing healthy cases overall. While sensitivity 

varied widely across folds, specificity remained strong and stable, confirming that the 

MLP classifier excelled at reducing false positives, even if false negatives were more 

difficult to control. 
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Figure 5.26: Test F1-score per epoch and Average F1-score, across all folds using the MLP 

Classification Head with 50 epochs. 

 

Figure 5.26 illustrates the evolution of the test F1-score across all 50 epochs for each of 

the five folds using the MLP classification head. Compared to the linear model, the F1-

scores here exhibit significantly more volatility, with sharp fluctuations across epochs 

and folds. Despite this variability, a few patterns emerge. Folds 2 and 3 generally 

maintained higher F1-scores throughout training, frequently exceeding 0.4 and 

occasionally reaching peaks above 0.5. This suggests that the MLP classifier was able to 

learn effective decision boundaries for the data in these folds, achieving a more 

favorable balance between precision and recall. Conversely, Fold 5 consistently 

performed poorly, with F1-scores plateauing at or below 0.3 for most epochs, mirroring 

earlier findings that this fold presented greater classification difficulty. 

The average F1-score across all folds, shown in purple, remained moderate and 

relatively stable throughout training, oscillating around the 0.3–0.35 range. Notably, 

early epochs (around epoch 2 and 6) saw brief peaks in average F1-score, but the model 

was unable to sustain these improvements, possibly due to overfitting or the inherent 

difficulty in reconciling performance across folds with varying levels of difficulty. The 

lack of a clear upward trend and the persistence of instability even in later epochs 

indicate that, while the MLP architecture offered a more flexible and expressive model 

than the linear head, it still struggled to generalize robustly across all test sets without 

additional regularization or tuning. 

These results suggest that although the MLP model shows potential in capturing more 

complex patterns, it also introduces training instability and inconsistent generalization. 

As such, further investigation into regularization strategies, early stopping, or ensemble 

techniques may be warranted to enhance the consistency and reliability of MLP-based 

classifiers in clinical prediction tasks. 
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Figure 5.27: Test Loss per epoch and Average Loss, across all folds using the MLP Classification Head 

with 50 epochs. 

 

Fold 1 began with the highest test loss of all folds at 2.2616 during epoch 1. While some 

improvement was noted in the following epochs, with the loss gradually dropping to 

around 1.9–1.8 between epochs 14 and 50, the overall trend remained erratic. After 

epoch 30, the fold experienced a slight rise in loss again, stabilizing at a relatively high 

level above 1.85 by epoch 50. This behaviour indicates that while the model made some 

progress in reducing error early on, it struggled to generalize consistently, likely due to 

instability in detecting both classes under Fold 1’s data distribution. 

Fold 2, in contrast, showed a more stable and consistent behaviour. Starting from 

1.8168 in epoch 1, the test loss remained within a narrow band of 1.6 to 1.82 for the 

majority of training. This stability reflects that the MLP classifier performed with 

reliable generalization on Fold 2. There were no abrupt spikes or concerning increases 

throughout training, making this fold one of the more well-behaved cases. Although it 

didn’t achieve the lowest loss, its consistent trend suggests good balance between fitting 

and generalizing. 

Fold 3 began with a relatively lower loss of 1.6754, and continued to show a smooth, 

albeit gradual, improvement over time. Between epochs 10 and 30, the values fluctuated 
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gently around 1.63–1.64, indicating relatively strong generalization. The final epochs 

did see a minor upward creep, peaking at 1.7295 in epoch 40 and 1.6776 at epoch 50. 

However, this variation remained mild. Overall, Fold 3 demonstrated good stability, and 

the model maintained reasonably low error throughout. 

Fold 4 stood out as the fold with the most consistent and lowest test loss values. 

Beginning at 1.6406, loss dropped quickly below 1.55 by epoch 4 and stayed in the 

1.53–1.63 range throughout the majority of training. Unlike other folds, Fold 4 did not 

suffer from late-epoch overfitting or spikes, and even in the final epochs, loss remained 

tightly bound, with a final value of 1.9344, which was still better than the late spikes 

seen in other folds. This suggests that Fold 4’s validation and test distribution aligned 

better with the model's learned features. 

Fold 5 followed a very different and concerning trajectory. Starting at 1.8296, the fold 

experienced a consistent and alarming increase in test loss throughout training. From 

epoch 20 onward, loss escalated progressively, surpassing 2.0 in epoch 46 and reaching 

the peak of 2.3136 in epoch 49 which was the highest loss across all folds and epochs. 

This pattern is a clear indication of severe overfitting, where the model continued to 

minimize training loss but completely failed to maintain generalization on unseen data 

in this fold. 

The average test loss across all folds began at a high 1.8448 in epoch 1, dropped 

steadily throughout the first 20–30 epochs, reaching a relative low around 1.71–1.74, 

particularly between epochs 25–35. However, after epoch 35, a clear upward trend was 

observed again, climbing to 1.8838 in epoch 49 and 1.8805 in epoch 50. This U-shaped 

trajectory suggests that the best generalization performance occurred in the middle of 

training, and that training beyond that point did more harm than good. The rising curve 

in the later epochs was heavily influenced by deteriorating performance in folds like 1 

and 5, indicating that early stopping or regularization strategies could have been 

beneficial to avoid late-phase overfitting. 

 

An equally important visualization of the performance metrics is given in the following 

graph, which presents a direct comparison of the average (meaning maximum out of 
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each fold) testing Accuracy, Sensitivity, Specificity, and Loss across all five folds after 

training the MLP Classification Head for 50 epochs. 

 
Figure 5.28: Average Test Accuracy, Sensitivity, Specificity, F1-score and Loss Across All Folds Using 

the MLP Classification Head with 50 epochs. 

 

The graph shown above offers a consolidated view of how each fold performed in terms 

of average test accuracy, sensitivity, specificity, and loss using the MLP classification 

head trained over 50 epochs. It gives a direct side-by-side comparison that helps 

highlight generalization consistency and potential weaknesses across folds. 

Starting with Fold 1, we observe the highest test loss of 2.2616, indicating that the 

model struggled significantly in this fold in terms of optimization. However, despite the 

high loss, both accuracy and sensitivity peaked at 0.8 and 0.9286, respectively, while 

specificity reached a perfect 1.0. This suggests that although the model had a harder 

time minimizing the raw loss, it still maintained excellent classification performance on 

both classes. 

In Fold 2, test loss dropped slightly to 1.8563, and accuracy remained strong at 0.7846, 

with sensitivity again at a high 0.9286. Specificity dropped slightly to 0.9804. This fold 

shows a well-balanced generalization across both classes and confirms consistent 

detection of cancerous cases. 
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Fold 3 exhibited the lowest test loss at 1.7295, indicating the most efficient training 

performance. Test accuracy remained high at 0.8, sensitivity was still strong at 0.8571, 

and specificity matched previous folds at 0.9804. This balance makes Fold 3 the most 

stable and effective fold overall. 

In Fold 4, test loss increased to 1.9845, and despite an improved accuracy of 0.8154, 

sensitivity dropped notably to 0.7143, suggesting a deterioration in the model’s ability 

to detect positive cases. Specificity held constant at 0.9804. 

Fold 5 showed the most extreme imbalance: test loss peaked at 2.3136, sensitivity 

dropped to 0.5 (the lowest among all folds), yet accuracy hit 0.8308, and specificity 

stayed high at 0.9804. This clearly indicates the model overfit to negative samples, 

failing to generalize well to the positive class. 

It’s important to highlight that the worst sensitivity was recorded in Folds 4 and 5, a 

pattern consistent with the linear classification results. This reinforces the concern that 

both the linear and MLP models have difficulty generalizing recall performance across 

certain data splits, particularly when faced with challenging positive samples. 

In terms of the F1-score, which represents the harmonic mean between precision and 

sensitivity, the MLP classification head showed modest but improved balance in 

performance compared to the linear counterpart. The highest F1-score was achieved in 

Fold 2 (0.5714), while the lowest appeared in Fold 1 (0.4444). Folds 3 and 4 yielded 

identical F1-scores of approximately 0.5263, with Fold 5 scoring exactly 0.5. These 

values suggest that the MLP head maintained more consistent class balance across 

folds, particularly in Folds 3 to 5, where the F1-scores converged near the 0.5 mark. 

This reflects better alignment between recall and precision compared to the linear head, 

which showed more pronounced fluctuations. Although the F1-scores were still 

relatively moderate overall, the improved stability in MLP results reinforces its 

effectiveness in handling the class imbalance challenges inherent in the dataset, making 

it a more reliable alternative for capturing the nuanced patterns necessary for binary 

medical image classification 

Overall, while accuracy and specificity remained stable and high across all folds, 

sensitivity exhibited significant volatility, particularly in Folds 4 and 5. This sensitivity 

instability, coupled with fluctuating loss values, emphasizes the need for better fine-
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tuning, whether that is through threshold tuning, class reweighting, or architectural 

adjustments, in order to ensure more reliable cancer detection across diverse datasets. 

 

5.3.2 Performance at 150 Epochs 

To further explore the learning capabilities and generalization behavior of the MLP 

Classification Head, an extended training run was conducted for 150 epochs. This 

experiment was intended to assess whether prolonged training could lead to improved 

model performance, especially in terms of test sensitivity and overall robustness across 

folds. While the previous section focused on results obtained with 50 epochs, the 150-

epoch setting provides insight into potential long-term benefits or drawbacks of 

extended optimization. 

Unlike the 50-epoch experiments, which involved detailed visualizations for each 

metric across epochs, the 150-epoch evaluation is summarized through a smaller, more 

targeted set of plots. These include performance trends in accuracy, sensitivity, 

specificity, and loss for each fold, as well as a direct comparison of test sensitivities 

between the 50- and 150-epoch models. 

The following table presents the average (meaning maximum out of every fold) 

training, validation, and testing metrics (accuracy, sensitivity, specificity, and loss) for 

each fold after 150 epochs. These values were computed using the best-performing 

threshold per fold and provide a comprehensive summary of how the model performed 

across the different phases of evaluation. 

Fold Training 

Accuracy 

Training 

Sensitivity 

Training 

Specificity 

Training 

Loss 

Validation 

Accuracy 

Validation 

Sensitivity 

Validation 

Specificity 

Validation 

Loss 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Specificity 

Test 

Loss 

1 0.8398 0.9348 0.95 6.3572 0.7885 0.1818 1 2.3909 0.8 0.2857 1 1 

2 0.8883 0.9556 0.9317 5.263 0.8462 0.75 1 2.0036 0.8308 0.5714 0.9804 0.9804 

3 0.932 0.9778 0.9627 4.2386 0.7692 0.25 1 3.376 0.8154 0.6429 0.9804 0.9804 

4 0.913 0.9783 0.9627 4.3729 0.902 0.6364 1 2.3658 0.8308 0.3571 0.9804 0.9804 

5 0.9565 0.9565 0.9627 4.0954 0.8235 0.2727 1 2.9379 0.8308 0.2857 0.9804 0.9804 

Table 5.9: Performance metrics obtained with training, validation and testing, of MLP Classification 

Head with 150 epochs 

The first visualization in this section presents the test accuracy, sensitivity, specificity, 

and loss across all five folds after training the MLP Classification Head for 150 epochs. 

This graph provides a direct comparison of each fold’s final performance, capturing the 

variability and consistency of the model when evaluated on unseen test data. By 
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analysing these metrics together, it becomes easier to identify fold-specific weaknesses, 

particularly in sensitivity, as well as trends in model generalization. This overview is 

crucial in highlighting whether longer training introduced performance gains, 

overfitting, or stability across folds. 

 
Figure 5.29: Average Test Accuracy, Sensitivity, Specificity and Loss Across All Folds Using the MLP 

Classification Head with 150 epochs. 

As seen in the graph above, the average performance metrics across all folds after 

training the MLP Classification Head for 150 epochs reveal several important insights. 

Test accuracy remained quite stable and consistently high across all folds, with four out 

of five folds reaching the upper bound of 0.8308, and the remaining fold at 0.8. 

Similarly, test specificity remained exceptionally strong and stable, staying fixed at 

0.9804 for four folds and even peaking at 1.0 in Fold 1, confirming that the model 

maintained a high ability to correctly identify healthy cases. 

However, the sensitivity values paint a different story. The performance was 

considerably more inconsistent and significantly weaker compared to accuracy and 

specificity. Sensitivity peaked at 0.6429 in Fold 3, followed by 0.5714 in Fold 2. Yet, 

Folds 1 and 5 performed poorly, both recording the lowest sensitivity of 0.2857. Fold 4 

followed a similar trend with a mediocre 0.3571. This variability highlights once again 

that the model's ability to detect positive (cancerous) cases remains unstable and highly 

fold-dependent, a pattern also previously observed with the 50-epoch setting. 
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Interestingly, this inconsistency in sensitivity came despite the model achieving its best 

and most consistent accuracies, reinforcing that high accuracy does not necessarily 

correlate with clinically meaningful sensitivity in imbalanced medical datasets. 

Moreover, the test loss fluctuated notably across folds, ranging from 2.1583 in Fold 2 to 

as high as 3.2044 in Fold 5, further suggesting a trade-off between the model fitting and 

generalizing to minority-class instances. 

Accuracy: 

The following graph illustrates the final Testing Accuracy achieved by the Linear 

Classification Head across all five folds after 150 epochs. This visualization provides 

insight into how accurately the model generalized to unseen data in each fold after 

prolonged training. It also allows comparisons between folds in terms of generalization 

stability. 

 
Figure 5.30: Average Test Accuracy Across All Folds Using the MLP Classification Head with 150 

epochs. 

 

The following graph presents the final testing accuracy of the MLP Classification Head 

across all five folds after 150 epochs. This visualization provides a clear picture of how 

well the model generalized to unseen data in each individual fold under extended 

training. As shown, accuracy remained consistently high in most folds, with Folds 2, 4, 

and 5 achieving the highest value of 0.8308. Fold 3 followed closely with a solid 

0.8154, while Fold 1 had the lowest, albeit still strong, accuracy at 0.8. These results 

demonstrate that, even with extended training, the MLP head maintained stable 

performance in terms of test accuracy, indicating strong generalization capabilities on 
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the majority class (healthy cases). However, as later discussed, this consistent accuracy 

did not translate into equally consistent sensitivity, which is critical in medical diagnosis 

contexts. 

Sensitivity:  

To further examine how well the MLP Classification Head performed in identifying 

positive cases after extended training, the following graph presents the average test 

sensitivity across all five folds at 150 epochs. This visualization focuses specifically on 

the model’s recall capabilities per fold, offering insight into its ability to generalize in 

detecting cancer cases throughout different data splits. 

 
Figure 5.31: Average Test Sensitivity Across All Folds Using the MLP Classification Head with 150 

epochs. 

 

The graph above presents the average test sensitivity across all five folds after training 

the MLP Classification Head for 150 epochs. From the visualization, we observe that 

Fold 3 achieved the highest sensitivity at 0.6429, indicating the model's best ability in 

that fold to correctly identify cancerous cases. Fold 2 also showed relatively strong 

performance with a sensitivity of 0.5714, suggesting decent recall on positive samples. 

However, the sensitivity dropped notably in Folds 1, 4, and 5, with Folds 1 and 5 

recording the lowest values at 0.2857. This mirrors the behaviour previously observed 

at 50 epochs, where these same folds underperformed in sensitivity. The inconsistencies 

between folds indicate that despite extended training, the model’s recall ability 

remained unstable and highly fold dependent. 
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To further investigate the effects of extended training on the model’s ability to detect 

positive (cancerous) cases, a fold-wise comparison of test sensitivity between 50 and 

150 training epochs was conducted. The corresponding graph and table offer a clear 

visualization of how sensitivity evolved with prolonged training for each fold. 

 
Figure 5.32: Sensitivity Comparison Across All Folds between the MLP Classification Head with 50 and 

150 epochs. 

Fold Test Sensitivity 50 

Epochs 

Test Sensitivity 150 

Epochs 

1 0.9286 
 

0.2857 
 

2 0.9286 
 

  0.5714 

3 0.8571 
 

  0.6429 

4 0.7143 
 

0.3571 
 

5   0.5 0.2857 
 

Table 5.10: Test Sensitivity Comparison of MLP Classification Head, when using 50 and 150 epochs, 

respectively. 

In Fold 1, test sensitivity experienced a sharp decline, dropping from 0.9286 after 50 

epochs to 0.2857 after 150 epochs. This represents a substantial degradation of over 

69%, suggesting that prolonged training adversely affected the model's recall ability for 

this fold. 

Similarly, in Fold 2, sensitivity decreased from 0.9286 to 0.5714, indicating a reduction 

of approximately 38%. Although performance remained moderately acceptable, the 

reduction still points to a sensitivity loss with increased training duration. 
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Fold 3 displayed a smaller decrease in sensitivity, falling from 0.8571 to 0.6429. While 

this drop was less pronounced (around 25%), it still reflects the trend of diminishing 

sensitivity under extended training conditions. 

In Fold 4, sensitivity dropped from 0.7143 to 0.3571, representing a 50% reduction. 

This result underscores a significant performance deterioration, with the model failing 

to retain its ability to detect positive cases. 

Finally, Fold 5 recorded a decrease from 0.5 to 0.2857, once again yielding the weakest 

sensitivity values across both training durations. 

Collectively, these results demonstrate that extending training to 150 epochs 

consistently led to lower sensitivity scores across all folds. This trend suggests the 

presence of overfitting to the dominant class (i.e., healthy samples), impairing the 

model’s generalization ability for minority (cancerous) cases. It is also noteworthy that 

Folds 4 and 5 continued to exhibit the poorest sensitivity, mirroring the behavior 

observed in the linear classification results and thereby reinforcing their fold-specific 

difficulty in learning positive representations. 

 

5.3.3 Performance at 30 Epochs 

To further evaluate the effect of training duration on the model’s performance, a final 

experiment was conducted where the MLP Classification Head was trained for a 

reduced number of 30 epochs. This setting aimed to investigate whether earlier stopping 

could prevent overfitting and better preserve sensitivity, particularly in minority cases 

which are the positive cases. While 50 and 150 epochs provided insights into both a 

baseline and an extended training performance, the 30 epoch experiment’s purpose was 

to docus on the model’s early generalization behaviour. Similarly to the previous 

section, performance is analysed through key metrics and visualized across folds to 

asses model stability and sensitivity preservation.  

The following table summarizes the best training, validation and testing performance of 

the MLP classifier trained for 30 epochs across all 5 folds.  

Fold Training 

Accuracy 

Training 

Sensitivity 

Training 

Specificity 

Training 

Loss 

Validation 

Accuracy 

Validation 

Sensitivity 

Validation 

Specificity 

Validation 

Loss 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Specificity 

Test 

Loss 

1 0.7573 0.8913 0.8562 6.195 0.8077 0.4545 1 1.9635 0.7846 0.3571 1 1.19463 

2 0.8155 0.9111 0.9006 5.8185 0.8462 0.6667 1 1.8269 0.8 0.3571 1 2.0025 

3 0.8252 0.9333 0.8758 5.5235 0.8077 0.25 1 2.0158 0.8 0.4286 0.9804 1.8074 
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4 0.8357 0.8913 0.8882 5.4302 0.8235 0.6364 1 1.5873 0.8 0.3571 1 1.9045 

5 0.8937 0.913 0.9317 5.283 0.8627 0.4545 1 2.0139 0.8 0.4286 1 2.1061 

Table 5.11: Performance metrics obtained with training, validation and testing, of MLP Classification 

Head with 30 epochs 

An important visualization in this section displays the test accuracy, sensitivity, 

specificity, and loss achieved across all five folds after training the MLP Classification 

Head for 30 epochs. This graph offers a clear, fold-wise comparison of the model’s final 

performance, highlighting both consistency and variability in its generalization to 

unseen test data. Evaluating these metrics collectively allows for the identification of 

fold-specific weaknesses, particularly in sensitivity and provides insight into whether 

extended training led to performance improvements, signs of overfitting, or stable 

behaviour across different data splits. 

 
Figure 5.33: Average Test Accuracy, Sensitivity, Specificity and Loss Across All Folds Using the MLP 

Classification Head with 30 epochs. 

As seen in the table and graph above, in Fold 1 the model achieved a test accuracy of 

0.7846 and a perfect specificity of 1.0, indicating that all healthy samples were correctly 

identified. However, the sensitivity was relatively low at 0.3571, revealing that a 

significant number of positive (cancerous) cases were missed. The corresponding test 

loss was 1.9463, suggesting a moderate level of uncertainty in predictions. 

Fold 2 showed a slight improvement in accuracy, reaching 0.8, with a consistent 

specificity of 1.0. However, similar to Fold 1, the sensitivity remained low at 0.3571. 

The loss increased slightly to 2.0025, indicating slightly weaker model confidence 
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compared to Fold 1. Overall, despite accurate classification of healthy cases, cancer 

detection performance remained limited. 

Fold 3, yielded the best overall balance among metrics. Accuracy stood at 0.8, and 

while specificity was slightly lower than in other folds at 0.9804, sensitivity improved 

to 0.4286 which is the highest value achieved among all folds. Additionally, the test loss 

was the lowest at 1.8074, pointing to stronger predictive certainty and better calibration 

for this subset of the data. 

The model in Fold 4 also maintained an accuracy of 0.8 and a perfect specificity of 1.0. 

However, sensitivity again dropped to 0.3571, matching the lower range observed in 

Folds 1 and 2. Test loss was 1.9045, which is slightly better than Fold 2 but worse than 

Fold 3. This reinforces the observation that sensitivity struggled to improve despite high 

performance on negative cases. 

Finally, Fold 5 recorded the highest test loss at 2.1061, implying weaker model 

confidence or prediction certainty on this fold. Nevertheless, accuracy was stable at 0.8, 

and specificity remained at 1.0. Sensitivity improved slightly to 0.4286, matching Fold 

3. This indicates the model managed to recall more positive samples despite its higher 

loss. 

Across all folds, the model exhibited consistent accuracy and excellent specificity after 

30 epochs. However, sensitivity performance was limited and variable, with only Folds 

3 and 5 reaching 0.4286. This suggests that while early training ensures general 

classification reliability, it may not provide the depth required for confident cancer 

detection, reinforcing the importance of optimizing for sensitivity in medical 

applications. 

Accuracy: 

To complement the overall analysis, the following comparison focuses on the 

classification accuracy achieved across all five folds for the three training durations: 30, 

50, and 150 epochs. This graph provides a comprehensive view of the model’s ability to 

correctly classify both healthy and unhealthy cases under varying training lengths. By 

visualizing and comparing accuracy scores side-by-side, this analysis helps identify 

which epoch setting led to the most consistent and reliable performance across folds, 

and whether longer training offered any tangible improvements in generalization. 
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Figure 5.34: Test Accuracy Comparison Across All Folds Using the MLP Classification Head with 30, 

50 and 150 epochs. 

Folds Test Accuracy 30 

Epochs 

Test Accuracy 50 

Epochs 

Test Accuracy 150 

Epochs 

1 0.7846 0.8 0.8 

2 0.8 0.7846 0.8308 

3 0.8 0.8 0.8154 

4 0.8 0.8154 0.8308 

5 0.8 0.8308 0.8308 
Table 5.12: Testing Accuracy Comparison for all folds, of MLP Classification Head, obtained with all 3 

epoch experiments, 30, 50 and 150 epochs respectively. 

The graph and corresponding table present a clear comparison of test accuracy across all 

five folds under three different training durations: 30, 50, and 150 epochs. The results 

show how training length influenced the model’s ability to generalize to unseen data 

when using the MLP classification head. 

In Fold 1, the test accuracy was consistent between the 50 and 150 epoch settings, both 

reaching 0.8000. However, the 30-epoch setting resulted in a slightly lower accuracy of 

0.7846. This suggests that a shorter training period may have prevented the model from 

fully capturing the necessary patterns in the data, while extending the training beyond 

50 epochs did not further improve performance in this fold. 

Fold 2 exhibited a more pronounced improvement with longer training. The model 

achieved its highest test accuracy of 0.8308 at 150 epochs, outperforming both the 50-

epoch (0.7846) and 30-epoch (0.8000) configurations. This indicates that prolonged 

training helped the model better generalize in this fold, potentially allowing it to learn 

more complex decision boundaries. 
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In Fold 3, accuracy remained relatively stable across the three settings. Both the 30 and 

50 epoch runs resulted in a test accuracy of 0.8000, while the 150-epoch run slightly 

improved to 0.8154. Although the improvement was modest, it demonstrates that 

extended training offered a small benefit in this case without any signs of degradation. 

For Fold 4, a similar trend to Fold 2 was observed. The 150-epoch training produced the 

highest test accuracy of 0.8308, whereas 50 epochs achieved 0.8154 and 30 epochs 

produced 0.8000. This consistent improvement across increasing training durations 

reinforces the value of longer training in this fold and may reflect the complexity of the 

data subset it contains. 

Finally, in Fold 5, all settings except the 30-epoch one resulted in the same high test 

accuracy of 0.8308. The 30-epoch run again fell slightly behind at 0.8000. This 

consistency across 50 and 150 epochs indicates that the model was able to learn the 

relevant features effectively within 50 epochs, and further training did not contribute 

any additional accuracy gains. 

Overall, the results suggest that training for 150 epochs generally provided the most 

stable and highest test accuracy across folds, particularly for folds where shorter 

training durations were insufficient. The 50-epoch setting also delivered strong 

performance, while the 30-epoch configuration, although faster, tended to 

underperform, especially in Folds 1, 2, and 4. This analysis supports the idea that 

prolonged training contributes positively to model generalization in most cases. 

Sensitivity:  

The following graph presents a comparative visualization of test sensitivity across all 

five folds for the MLP Classification Head trained with 30, 50, and 150 epochs. This 

comparison highlights how varying the number of training epochs impacts the model’s 

ability to correctly identify positive (cancerous) cases in each fold. By analyzing the 

sensitivity scores side-by-side, it becomes possible to assess whether extended training 

consistently leads to improved recall or if shorter training durations may offer better 

generalization in certain scenarios. 
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Figure 5.35: Test Sensitivity Comparison Across All Folds Using the MLP Classification Head with 30 

,50 and 150 epochs. 

Fold Sensitivity 30 

Epochs 

Sensitivity 50 

Epochs 

Sensitivity 150 

Epochs 

1 0.3571 0.9286 0.2857 

2 0.3571 0.9286 0.5714 

3 0.4286 0.8571 0.6429 

4 0.3571 0.7143 0.3571 

5 0.4286 0.5 0.2857 
Table 5.13: Testing Sensitivity Comparison for all folds, of MLP Classification Head, obtained with all 3 

epoch experiments, 30, 50 and 150 epochs respectively. 

The graph and table above present a comparative overview of test sensitivity across all 

five folds using the MLP Classification Head, trained under three different epoch 

settings: 30, 50, and 150 epochs. This visualization enables a direct fold-wise 

comparison of how prolonged or reduced training influenced the model’s ability to 

detect positive (cancerous) cases. 

From the data, it is clear that training with 50 epochs yielded the best overall sensitivity. 

In particular, Fold 1 and Fold 2 achieved very high values of 0.9286, with Fold 3 also 

performing strongly at 0.8571. These results indicate that the model was able to 

consistently capture cancer-relevant patterns without significant overfitting at this 

training length. 

When the training was extended to 150 epochs, sensitivity notably declined in almost all 

folds. Fold 1 dropped to 0.2857, and similar decreases were observed in Folds 4 and 5, 

which fell to 0.3571 and 0.2857, respectively. Although Fold 3 still maintained 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Te
st

 S
en

si
tiv

ity

Folds

Test Sensitivity Comparison of 50 and 150 epochs of 
all folds using MLP Classification

Test Sens 50 epochs Test Sens 150 epochs Test Sens 30 Epochs



123 
 

relatively better sensitivity at 0.6429, the overall trend suggests that prolonged training 

beyond 50 epochs may have led to reduced sensitivity, likely due to overfitting on 

healthy samples and under-identification of positives. 

In contrast, the 30-epoch configuration offered slightly better sensitivity than 150 

epochs in some folds (e.g., Folds 1 and 5), but remained consistently lower than the 50-

epoch configuration across all folds. The highest sensitivity in this setting was 0.4286 

(Folds 3 and 5), with Folds 1, 2, and 4 all plateauing at 0.3571, reflecting limited 

learning capacity due to insufficient training duration. 

In summary, the 50-epoch setting provided the most favourable balance, achieving the 

highest and most consistent test sensitivity across all folds. Both shorter (30) and longer 

(150) training durations led to a decline in sensitivity, reinforcing that 50 epochs was 

the optimal training length for maximizing cancer case detection in this MLP 

configuration. 

5.3.4  Analysis of Misclassified Cases Affecting Sensitivity with MLP 

Head 

After examining the sensitivity values from the three epoch experiments, it was 

observed that the worst-performing folds in terms of sensitivity were folds 1, 4, and 5. 

The main goal of this analysis is to determine if the misclassified images contribute to 

the observed variations in sensitivity, particularly in these folds. To this end, 

functionality was added to the code to track and analyse misclassified images for each 

fold across all three epoch configurations. 

The approach included tracking misclassified samples. Specifically in the MLP 

Classification Head implementation code block, after each training session, the 

misclassified images were collected to examine whether specific images are 

misclassified in all epoch configurations. The analysis’ purpose was to determine 

whether these misclassified cases are predominantly from the Unhealthy class (false 

negatives), which would lower sensitivity.By comparing misclassified cases across 

different epoch values, the aim is to uncover any consistent patterns in the 

misclassifications and understand their impact on sensitivity. 

This analysis is designed to help pinpoint potential areas for improvement in the 

model’s performance. 
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The table below presents a portion of the misclassified images which resulted in FNs, 

specifically of Folds 1, 4 and 5: 

 

Fold Misclassified Image 

using 30 Epochs 

Misclassified Image 

using 50 Epochs 

Misclassified Image 

using 150 Epochs 

Correlation  

1,4,5 

 
 

  

Same 

Image 

1,4,5 

 
 

  

Same 

Image 

1,4,5 

 
 

  

Same 

Image 

1,4,5 

 
 

  

Same 

Image 

1,4,5 

 
 

 
 

 

Same 

Image 
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1,4,5 

 
 

  

Same 

Image 

1,4,5 

 
 

  

Same 

Image 

.... .............................. .............................. ............................ ............. 
Table 5.14: Repeated FN Samples in Folds 1,4 and 5 Across Epoch Variations using the MLP 

Classification Head 

The table above presents all the misclassified test samples, specifically FNs in Folds 4 

and 5 that were consistently misclassified across all three training durations, aka 30, 50, 

and 150 epochs. These images represent the most problematic cases for the MLP Head, 

as they were incorrectly predicted as healthy regardless of how long the model was 

trained. In other words, they reflect samples that the model failed to classify correctly 

under any condition, highlighting their inherent difficulty. 

The last row which is marked with "....................", indicates that additional FNs exist 

beyond those shown in the table. These were excluded for brevity. While the table 

emphasizes images that were misclassified in multiple or all training settings, it is 

important to note that not all false negatives were identical across epochs. Some 

misclassified samples varied between runs, suggesting that certain errors may be 

sensitive to training duration or random initialization. Nonetheless, the repeated failures 

shown highlight the hardest cases for the model to classify correctly and are therefore 

the primary focus of this analysis. 

By examining Table 5.14 , it can be seen that most of the misclassified images resulting 

in false negatives (FNs) are identical in folds 1, 4, and 5, across all epoch settings. This 

consistent pattern indicates that these specific images are particularly challenging for 

the model to classify correctly. There are several potential reasons behind this. 
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The misclassified images may contain features that are inherently ambiguous or difficult 

to differentiate between the "Healthy" and "Unhealthy" classes. This could be due to 

subtle variations in the thermal patterns that overlap between the two categories, making 

them hard for the model to distinguish. Additionally, despite training over multiple 

epochs, the model may lack the complexity required to properly capture the nuances 

present in these images. The relatively simple MLP head might struggle with the 

complex decision boundaries needed to classify these cases correctly. 

Another contributing factor could be class imbalance. Due to the fact that these images 

belong to the the minority class ("Unhealthy Class"), the model might be biased toward 

the majority class ("Healthy"), even with class weighting applied. This bias could make 

it more difficult for the model to accurately classify instances from the minority class, 

particularly when they share subtle or ambiguous features. Furthermore, these images 

might be outliers, meaning they do not follow the general pattern of the class and are 

more difficult for the model to classify correctly, especially if the training data does not 

adequately represent such edge cases. 

Given that these images are consistently misclassified across different training settings, 

and even with prolonged training using 150 instead of 50 epochs the issue persists and 

worsens in some cases, further investigation into preprocessing improvements, data 

augmentation, or even a more sophisticated model might be necessary to address these 

issues and improve the model’s performance on these challenging cases. 

5.3.5 Hyperparameter and Architectural Exploration for the MLP 

Head 

In order to enhance the classification performance of the Multi-Layer Perceptron (MLP) 

head implemented on top of the frozen DINOv2 features, a systematic exploration of 

multiple architectural configurations and hyperparameter setting was conducted while 

implementing the MLP Classification Head. The principal objective was to optimize 

sensitivity and therefore minimizing FNs while also maintaining a satisfactory balance 

with specificity and overall accuracy. This section outlines the sequence of 

experimental adjustments and their corresponding effects which were recorded in the 

process.  

The initial configuration of the MLP classifier involved the following setup: 
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• Loss Function: Travošky Loss 

• Class Weighting Parameter (α): [0.35, 0.65] for handling class imbalance 

• Weight Decay: 4×10⁻³ 

• Dropout Rates: 0.3 for the first layer, 0.2 for the second layer 

• Architecture: 

o Linear Layer (input → 128) 

o Batch Normalization 

o ReLU Activation 

o Dropout 

o Linear Output Layer (128 → 1) 

This configuration achieved satisfactory training performance, but the sensitivity of the 

final test set remained suboptimal, approximately at 57% indicating insufficient 

detection of positive cancer cases. This motivated further hyperparameter modifications 

and adjustments. 

Adjustment 1: Reduction of α from 0.35 to 0.30 

Lowering the weighting factor α for the minority class was hypothesized to reduce over-

penalization and improve model generalization. This modification resulted in a 

measurable increase in test sensitivity (from ~57% to ~64%) and also improved 

specificity and accuracy metrics. Validation performance remained stable. 

Adjustment 2: Increment of α to 0.32 

Building on the improvements observed in the previous step, α was marginally 

increased to 0.32 to further balance the learning signal between classes. This adjustment 

led to: 

• Sensitivity increase to approximately 71% 

• Specificity improvement to approximately 73% 

• Overall test accuracy reaching up to 71% 
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This configuration represented the most effective trade-off observed during tuning, with 

improved minority class detection and a reduction in false positives. 

Adjustment 3: Replacement of Travošky Loss with Focal Loss 

To address limitations observed with the Travošky loss in handling imbalanced data, the 

loss function was replaced with Focal Loss, using α = 0.75 and γ = 1. Focal Loss 

dynamically down-weights well-classified samples, thereby emphasizing harder, 

misclassified examples, particularly those belonging to the minority class. 

This change resulted in: 

• Enhanced sensitivity and specificity 

• Improved classification accuracy across multiple folds 

• Better discrimination between healthy and unhealthy cases 

Additional Considerations: Dropout and Weight Decay 

Although dropout rates and weight decay values were kept constant in the final 

implementation, the following adjustments were proposed for future experimentation in 

cases of overfitting: 

• Increase dropout to 0.35 and 0.25 for the respective layers 

• Increase weight decay to 5×10⁻³ 

•  

Final Implementation Summary 

As mentioned in Chapter 4 (section 4.8.2), the finalized MLP head employed the 

following configuration: 

• Loss Function: BCEWithLogitsLoss with dynamic class weighting computed 

as:  

Positive class weight = 
𝑁

2∗𝛴𝑦
  

Where N represents the total number of training samples and Σy the number of 

positive (cancerous) samples.  
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The value of the positive class’s weight was computed this way in order to 

handle the class imbalance existing in the dataset used. 

• Architecture: 

nn.Sequential( 

    nn.Linear(num_features, 128), 

    nn.BatchNorm1d(128), 

    nn.ReLU(), 

    nn.Dropout(0.5), 

    nn.Linear(128, 1) 

) 

• Optimizer: AdamW 

o Learning Rate (Head): 2×10⁻⁴ 

o Learning Rate (Transformer Block 11): 5×10⁻⁷ 

o Weight Decay: 1×10⁻⁴ 

• Scheduler: Cosine Annealing Warm Restarts 

• Data Augmentation: Horizontal flips, rotations, brightness/contrast jitter, 

random erasing 

• Normalization: Dataset-specific mean and standard deviation 

Additionally in order to optimize the model’s performance, classification thresholds 

were determined dynamically using the ROC curve, by identifying the threshold that 

maximized the difference.  

Conclusion 

The series of modifications to the MLP classifier demonstrated that relatively small 

changes to loss weighting, loss function, and optimization parameters can significantly 

improve classification performance. Notably, the combination of a modest α (0.32) and 

Focal Loss yielded the most favourable results achieving higher sensitivity and 
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specificity while maintaining generalization. These insights substantiate the importance 

of meticulous hyperparameter tuning when applying deep learning models to sensitive 

domains such as medical imaging. 

5.4  Modified MLP Head Results: Aligned with Linear Head Constraints 

5.4.1 Performance at 50 Epochs 

This section presents the results obtained from the modified implementation of the MLP 

classification head, where the evaluation and training strategy were explicitly aligned 

with the linear classification head. Specifically, the DINOv2 backbone was kept entirely 

frozen, and the threshold selection method prioritized sensitivity, specifically (≥ 0.90), 

choosing the threshold that maximized F1-score within that subset. This setup was 

designed to enable a direct and fair comparison between the two classifier architectures 

under identical constraints. 

Only the 50-epoch version is reported here, in line with the linear head's default 

evaluation setting. The results from this modified MLP head will be directly compared 

against the corresponding performance of the linear classification head to evaluate 

differences in predictive power, sensitivity, and generalization. 

The table below summarizes the key evaluation metrics, including Accuracy, 

Sensitivity, Specificity, F1-score and Loss, all of which were computed across the 

training, validation, and test sets of each fold. These metrics allow for a comprehensive 

assessment of the model's behavior across different data splits. 

Fold Training 

Accuracy 

Training 

Sensitivity 

Training 

Specificity 

Training 

Loss 

Validation 

Accuracy 

Validation 

Sensitivity 

Validation 

Specificity 

Validation 

Loss 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Specificity 

Test 

Loss 

F1-Score 

1 0.4563 1 0.4 6.5282 0.3846 1 0.2439 2.1263 0.4308 1 0.3137 3.0356 0.4062 

2 0.5874 1 0.4845 5.5184 0.75 0.9167 0.725 1.9675 0.6615 0.9286 0.6275 2.2156 0.5417 

3 0.4563 1 0.3046 4.4956 0.3846 1 0.225 2.7538 0.4 1 0.2549 2.0561 0.4179 

4 0.7053 1 0.6398 0.4967 0.7255 0.9091 0.7 1.4326 0.6923 0.9286 0.6863 1.9088 0.5333 

5 0.3865 1 0.2112 4.3485 0.451 0.9091 0.325 2.3463 0.5231 1 0.3922 2.5078 0.4746 

Table 5.15: Performance metrics obtained with training, validation and testing, of MLP Classification 

Head (using a strategy consistent with the Linear Classification Head) with 50 epochs 

The figure below presents the test accuracy scores across all five cross-validation folds 

for the modified MLP classification head, trained using the sensitivity-prioritized 

thresholding strategy over 50 epochs. The corresponding values are listed in listed in 

Table 5.15.  
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Figure 5.36: Average Accuracy Across all Folds using MLP Classification Head with Sensitivity 

Strategy (50 Epochs) 

While the model’s performance varies between folds, Folds 2 and 4 exhibit the highest 

test accuracies, reaching approximately 66% and 69%, respectively. In contrast, Folds 1 

and 3 report the lowest values, around 43% and 40%, suggesting more challenging class 

distributions or harder samples in those specific splits. 

This variability is a common occurrence in cross-validation settings and highlights the 

impact that fold-specific class distributions can have on model performance. Although 

the test accuracy does not consistently outperform other classifier configurations, the 

results demonstrate that the MLP head, when trained under the same constraints as the 

linear head can still achieve moderate and stable performance in some folds, validating 

its use as a non-linear alternative in this constrained evaluation setup. 
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Figure 5.37: Average Sensitivity Across all Folds using MLP Classification Head with Sensitivity 

Strategy (50 Epochs) 

The graph above displays the test sensitivity values obtained across all five cross-

validation folds using the modified MLP classification head trained with the sensitivity-

prioritized threshold strategy. 

As expected, the sensitivity values are consistently high across all folds, with three out 

of five folds (1, 3, and 5) achieving a perfect score of 1.0, and the remaining two folds 

(2 and 4) still reaching above 0.92. This consistent trend confirms that the thresholding 

strategy successfully prioritizes sensitivity by design, maintaining near-perfect recall for 

the positive class (i.e., correctly identifying unhealthy cases). 

Such results are particularly desirable in clinical or safety-critical contexts where 

minimizing false negatives is of utmost importance. The slight dips observed in Folds 2 

and 4 are still within a highly acceptable range and may reflect minor differences in the 

sample difficulty or class distribution within those particular folds. 
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Figure 5.38: Average Specificity Across all Folds using MLP Classification Head with Sensitivity 

Strategy (50 Epochs) 

The chart above illustrates the test specificity values across all five cross-validation 

folds for the MLP classification head trained with the sensitivity-prioritized 

thresholding strategy. As expected, the specificity values vary more significantly than 

sensitivity, with results ranging from approximately 25% to 69%. Fold 4 shows the 

highest specificity, close to 0.69, while Fold 3 records the lowest at around 0.25. 

This variability is a natural trade-off of the thresholding strategy used, which explicitly 

prioritizes sensitivity (avoiding FNs). As a result, the model is more permissive in 

predicting the positive class (unhealthy), which leads to more false positives and thus 

lower specificity. Despite this, folds such as 2 and 4 demonstrate that it is still possible 

to maintain relatively good specificity even under a high-sensitivity constraint, likely 

due to a more favourable balance of examples or clearer class separability in those 

folds. 

These results highlight the inherent tension between sensitivity and specificity in 

imbalanced medical classification tasks and reaffirm that this strategy effectively 

safeguards against missed positive cases at the cost of reduced precision on negatives. 
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Figure 5.39: Average Loss Across all Folds using MLP Classification Head with Sensitivity Strategy (50 

Epochs) 

The graph above displays the binary cross-entropy test loss values across the five folds 

for the MLP classification head. The loss values vary across folds, ranging from 

approximately 1.91 to 3.04, with Fold 4 achieving the lowest test loss (1.9088) and Fold 

1 the highest (3.0356). This trend generally aligns with the test accuracy and specificity 

patterns observed earlier as lower loss values are associated with better predictive 

performance and more confident, correct predictions. 

Notably, Fold 4 again stands out as the most performant and stable fold across multiple 

metrics, while Fold 1 appears to be the most challenging, reflected in its highest loss 

and lowest accuracy. These results further emphasize how fold-specific data 

characteristics can impact the model’s calibration and prediction confidence, especially 

under strict sensitivity constraints. 
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Figure 5.40: Average F1-Score Across all Folds using MLP Classification Head with Sensitivity Strategy 

(50 Epochs) 

The chart above depicts the F1-score across all five folds using the MLP head trained 

for 50 epochs with a threshold strategy that prioritizes high sensitivity. The F1-scores 

range from approximately 0.41 to 0.54, with Fold 2 achieving the highest score (0.5417) 

and Fold 1 the lowest (0.4062). 

This variation in F1-score reflects the balance the model achieved between precision 

and recall under the strict sensitivity constraint. While sensitivity remained consistently 

high across all folds, specificity varied more widely, which directly influenced precision  

and by extension, the F1-score. Folds with better specificity (like Folds 2 and 4) 

naturally resulted in stronger F1 performance due to a reduction in false positives. 

Overall, these results indicate that the MLP head, while operating under a sensitivity-

first strategy, was still able to maintain a reasonably balanced trade-off between recall 

and precision in most folds. 

5.4.2  Comparison Between Original and Aligned MLP Head Results 

This subchapter presents a direct comparison between the two MLP classification head 

configurations described earlier in Sections 4.7.2 and 4.7.3. The first configuration 

which was introduced in Section 4.7.2 , used Youden’s J statistic for threshold selection 

and included partial fine-tuning of the DINOv2 backbone by unfreezing the final 

transformer block (block 11). In contrast, the second configuration described in Section 
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4.7.3, aligned fully with the constraints of the linear classification head by freezing the 

entire backbone and applying a sensitivity-prioritized thresholding strategy that selects 

the F1-maximizing threshold among those with sensitivity ≥ 0.90. 

To better understand the trade-offs introduced by each approach, a comparative table 

will follow. This table summarizes the test set performance metrics across all five folds 

for both MLP versions, including Accuracy, Sensitivity, Specificity, F1-score, and 

Binary Cross-Entropy Loss. The goal is to evaluate which configuration offers a more 

favourable balance between sensitivity and generalization, particularly under real-world 

testing conditions. 

Folds Test 

Accuracy 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Sensitivity 

Test 

Specificity 

Test 

Specificity 

Test 

Loss 

Test 

Loss 

F1-

Score 

F1-

Score 

1 0.6154 0.4308 0.9286 1 0.5686 0.3137 1.4299 3.0356 0.4906 0.4062 

2 0.6769 0.6615 0.8571 0.9286 0.7451 0.6275 1.3453 2.2156 0.4878 0.5417 

3 0.6769 0.4 0.9286 1 0.7461 0.2549 1.191 2.0561 0.4583 0.4179 

4 0.7846 0.6923 0.6429 0.9286 0.8824 0.6863 1.2732 1.9088 0.4848 0.5333 

5 0.7692 0.5231 0.5714 1 0.9216 0.3922 1.3588 2.5078 0.4571 0.4746 

MLP Head (4.7.2) 

MLP Head (4.7.3) 
Table 5.16: Performance Metrics’ Comparison for both MLP Versions 

 

Figure 5.41: Accuracy Comparison Between MLP Classification Head with Youden’s Index and block 

11 unfrozen and MLP Classification Head using the same thresholding strategy as Linear Head, both with 

50 Epochs. 
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The graph above illustrates the difference in test accuracy across all five folds between 

the two MLP configurations. The blue line represents the MLP head with Youden’s 

Index and block 11 unfrozen, while the orange line corresponds to the MLP head using 

the thresholding strategy consistent with the linear head, where the DINOv2 backbone 

is entirely frozen and the threshold is selected by prioritizing sensitivity (≥ 0.90) 

followed by F1-score maximization. 

Across all five folds, the MLP with Youden’s Index and partial fine-tuning consistently 

achieves higher test accuracy, with values ranging from 0.6154 to 0.7846. In contrast, 

the MLP configured under the linear head’s constraints exhibits more variation, with 

test accuracy ranging from 0.4 to 0.6923. This indicates that unfreezing block 11 and 

using Youden’s Index, which balances sensitivity and specificity, enables the model to 

generalize better across both classes, leading to higher overall classification accuracy. 

Nevertheless, this comes at a trade-off. The sensitivity-focused MLP was explicitly 

designed to reduce false negatives, which often results in lower specificity and therefore 

a dip in overall accuracy. The comparison underscores the impact of architectural and 

thresholding choices, particularly in medical classification tasks where the prioritization 

of sensitivity may be more clinically relevant than raw accuracy alone. 

 

Figure 5.42: Sensitivity Comparison Between MLP Classification Head with Youden’s Index and block 

11 unfrozen and MLP Classification Head using the same thresholding strategy as Linear Head, both with 

50 Epochs. 
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The graph above compares the test sensitivity achieved by the MLP head using 

Youden’s Index with block 11 unfrozen (blue line) and the MLP head using the 

sensitivity-prioritized thresholding strategy consistent with the linear head (orange line). 

The difference is striking and consistent: the sensitivity-prioritized model outperforms 

or matches the Youden-based model in every fold. 

Across all five folds, the MLP with the sensitivity-first strategy achieves near-perfect or 

perfect sensitivity, with values alternating between 1.0 and 0.9286. In contrast, the 

Youden-based MLP configuration sees a clear decline in sensitivity in later folds, 

dropping to 0.6429 in Fold 4 and 0.5714 in Fold 5. These values confirm that while the 

Youden-based approach attempts to balance sensitivity and specificity, it often does so 

at the cost of failing to identify some positive (unhealthy) cases. 

This outcome underscores the effectiveness of explicitly prioritizing sensitivity in 

threshold selection when the objective is to minimize FNs, a critical consideration in 

medical and diagnostic applications. It demonstrates that the aligned strategy achieves 

its goal of consistently capturing as many positive cases as possible, even if that means 

accepting more false positives. 

 

Figure 5.43: Specificity Comparison Between MLP Classification Head with Youden’s Index and block 

11 unfrozen and MLP Classification Head using the same thresholding strategy as Linear Head, both with 

50 Epochs. 
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The graph above compares the test specificity scores for the MLP head using Youden’s 

Index with block 11 unfrozen and the MLP head using the sensitivity-prioritized 

thresholding strategy consistent with the linear head. As expected, the model trained 

with Youden’s Index (blue line) consistently achieves higher specificity across all folds. 

The specificity values for the Youden-based model range from approximately 0.57 to 

0.92, with a clear upward trend from Fold 1 to Fold 5. In contrast, the sensitivity-

prioritized MLP (orange line) shows more variability and lower values, ranging 

between 0.25 and 0.68. These results highlight the fundamental trade-off of the 

sensitivity-first thresholding approach: by prioritizing the detection of positive cases, 

the model becomes more prone to false positives, which in turn reduces specificity. 

This comparison reaffirms that Youden’s Index provides a more balanced outcome 

between sensitivity and specificity, while the sensitivity-prioritized strategy, although 

superior at minimizing FNs, accepts more false positives as a consequence. The choice 

between the two should be guided by the specific needs of the application domain: 

sensitivity for safety-critical diagnosis, or specificity for reducing unnecessary follow-

ups or interventions. 

 

Figure 5.44: Binary Cross-Entropy Loss Comparison Between MLP Classification Head with Youden’s 

Index and block 11 unfrozen and MLP Classification Head using the same thresholding strategy as Linear 

Head, both with 50 Epochs. 
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The chart above compares the binary cross-entropy loss values on the test set across all 

five folds for the two MLP classification head configurations. The MLP head with 

Youden’s Index and block 11 unfrozen (blue line) consistently achieves lower loss 

values across all folds compared to the MLP head using the sensitivity-prioritized 

thresholding strategy (orange line). 

The test loss for the Youden-based MLP remains relatively stable and low, ranging 

from 1.191 to 1.4299, while the sensitivity-first MLP shows higher and more variable 

loss values, spanning from 1.9088 to 3.0356. This gap reflects the increased uncertainty 

and misclassification penalty introduced when the model prioritizes sensitivity, often 

leading to more false positives and thus higher cross-entropy penalties. 

These results reinforce the earlier findings: while the sensitivity-prioritized model is 

effective at capturing all positive cases, it does so at the cost of less confident 

predictions and increased overall prediction error. In contrast, allowing limited fine-

tuning (by unfreezing block 11) and selecting thresholds via Youden’s Index enables 

the model to converge to more confident and balanced decision boundaries, thereby 

minimizing the loss. 

5.5  Comparative Analysis: Linear Classification vs MLP Classification at 50 

Epochs 

This section presents a detailed comparative evaluation of the Linear and the MLP 

Classification Heads (using the same threshold strategy as the Linear Head – Section 

4.7.3), trained on top of the frozen DINOv2 features for 50 epochs each, across all five 

folds of the dataset. The comparison aims to highlight the performance differences 

between a simple Linear decision boundary, and a more complicated non-linear 

alternative which is the MLP, particularly in the context of binary classification of 

breast thermograms. The key performance metrics include accuracy, sensitivity, 

specificity, binary cross-entropy loss and F1-score, all of which are analysed per fold to 

assess both generalization and robustness of each classifier. Given the clinical relevance 

of this task, sensitivity and F1-score are of particular interest as they reflect the 

classifier’s ability to correctly detect unhealthy cases and balance FPs with FNs, 

respectively. 
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The following table summarizes the performance metrics for both the linear and MLP 

Classifiers across all five CV folds. Each metric is reported on the final test set after 

using threshold optimization, with results aligned per fold for direct comparison. The 

comprehensive tabula view facilitates the identification of trends, strengths and 

weaknesses associated with each model variant.  

Fold

s 

TEST 

ACCURAC

Y 

TEST 

ACCURAC

Y 

TEST 

SENSITIVIT

Y 

TEST 

SENSITIVIT

Y 

TEST 

SPECIFICIT

Y 

TEST 

SPECIFICIT

Y 

TEST 

LOSS 

TEST 

LOSS 

TEST 

F1-

SCOR

E 

TEST 

F1-

SCOR

E 

1 0.6154 0.4308 0.9286 1 0.5686 0.3137 1.429

9 

3.0356 0.490

6 

0.406

2 

2 0.6769 0.6615 0.8571 0.9286 0.7451 0.6275 1.345

3 

2.2156 0.487

8 

0.541

7 

3 0.6769 0.4 0.9286 1 0.7451 0.2549 1.191 2.0561 0.458

3 

0.417

9 

4 0.7846 0.6923 0.6429 0.9286 0.8824 0.6863 1.273

2 

1.9088 0.484

8 

0.533

3 

5 0.7692 0.5231 0.5714 1 0.9216 0.3922 1.358

8 

2.5078 0.457

1 

0.474

6 

AV

G 

0.7046 0.5415 0.78572 0.97144 0.77256 0.45492 1.319

6 

2.3447

8 

0.475

7 

0.474

7 

LINEAR CLASSIFIER 

MLP CLASSIFIER 
Table 5.17: Comparative Performance of Linear and MLP Classification Heads Across Five CV Folds 

using 50 epochs. 

Accuracy Comparison: 

 
Figure 5.45: Test Accuracy Comparison of Linear and MLP Classification Head using 50 epochs across 

all folds 

Figure 5.45 presents the test accuracy achieved across all five folds by the linear 

classification head and the MLP classification head using the sensitivity-first strategy. 

As shown, the linear classifier consistently outperforms the MLP classifier in terms of 

test accuracy across all folds. 
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In Fold 1, the linear head achieves an accuracy of 0.6154, whereas the MLP head 

reaches only 0.4308, resulting in a substantial gap of 18.46 percentage points. In Fold 2, 

both models perform comparably, with the linear head at 0.6769 and the MLP head 

closely trailing at 0.6615 , a minimal difference of 1.54 percentage points. However, in 

Fold 3, the performance divergence is significant again, with the linear head 

maintaining an accuracy of 0.6769 and the MLP dropping sharply to 0.4000, reflecting 

a gap of 27.69 percentage points. Fold 4 shows the highest accuracy for both models, 

but the linear head still leads with 0.7846 compared to the MLP’s 0.6923, yielding a 

difference of 9.23 percentage points. In Fold 5, the linear head scores 0.7692, while the 

MLP head achieves 0.5231, producing a clear margin of 24.61 percentage points. 

On average, the linear classification head achieves a mean test accuracy of 0.7046, 

whereas the MLP head using the sensitivity-prioritized strategy records an average of 

0.5415. This amounts to an average performance drop of 16.31 percentage points in 

favor of the linear model. These results show that under equivalent training constraints, 

the linear head exhibits stronger overall predictive accuracy across all folds, making it 

more reliable in terms of correct classification on unseen test data. 

Sensitivity Comparison: 

 

Figure 5.46: Test Sensitivity Comparison of Linear and MLP Classification Head using 50 epochs across 

all folds 

The comparison of test sensitivity across all five folds highlights a clear advantage for 

the MLP classification head using the sensitivity-prioritized strategy. In Fold 1, the 

MLP model achieves a perfect sensitivity of 1.0000, outperforming the linear head 
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which records 0.9286. A similar pattern follows in Fold 2, where the MLP again reaches 

0.9286 while the linear head falls slightly lower at 0.8571. In Fold 3, the MLP maintains 

a flawless sensitivity of 1.0000, while the linear head again records 0.9286. The 

difference becomes more pronounced in Fold 4, where the MLP preserves a high 

sensitivity of 0.9286, but the linear classifier drops sharply to 0.6429. In the final fold, 

Fold 5, the MLP once again reaches 1.0000, whereas the linear head drops further to 

just 0.5714 which is the lowest value observed across all folds. 

Averaging across all five folds, the MLP classifier achieves an overall test sensitivity of 

0.9714, compared to the linear head’s average of 0.7857. This represents a substantial 

gain of approximately 18.57 percentage points in sensitivity for the MLP head. These 

results demonstrate that the sensitivity-prioritized thresholding strategy, by design 

consistently favors recall of positive (Unhealthy) cases, effectively minimizing false 

negatives. In contrast, the linear head, while more balanced overall, fails to consistently 

reach the high sensitivity levels required in applications where missing positive cases 

carries significant risk. 

 

Specificity Comparison: 

 
Figure 5.47: Test Specificity Comparison of Linear and MLP Classification Head using 50 epochs across 

all folds 

The next graph depicts the comparison of test specificity between the Linear and MLP 

classification heads across five cross-validation folds after 50 training epochs. 

Specificity quantifies the model’s ability to correctly identify healthy cases, thereby 
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reflecting its competence in minimizing FPs, a critical factor in medical screening tasks 

where overdiagnosis can lead to patient anxiety, unnecessary follow-up procedures, and 

misallocation of resources. 

In this comparison, the linear classifier consistently achieves higher specificity than the 

MLP head configured with a frozen DINOv2 backbone and a thresholding strategy that 

prioritizes sensitivity. The linear model’s specificity ranges from 0.5686 in Fold 1 to 

0.9216 in Fold 5, with a mean value of 0.77256 across all folds. In contrast, the MLP 

classifier exhibits greater variability and generally lower specificity, with values 

spanning from just 0.2549 in Fold 3 to 0.6863 in Fold 4, and an average specificity of 

only 0.45494. The largest discrepancy between the two models appears in Fold 3, where 

the linear head records a robust 0.7451 while the MLP head falls to 0.2549 , 

highlighting a stark difference of nearly 49 percentage points in correctly recognizing 

healthy cases. 

Despite the MLP’s strength in maximizing sensitivity, its specificity results suggest a 

consistent compromise in distinguishing negative samples. This trade-off appears 

inherent to the sensitivity-first thresholding strategy, which favors recall at the expense 

of precision. On the other hand, the linear head achieves a more balanced profile, better 

controlling false positives while still maintaining acceptable sensitivity levels. 

In summary, while the MLP head effectively reduces false negatives through its 

sensitivity-aware strategy, the linear head clearly excels at minimizing FPs which is a 

distinction that becomes especially relevant in clinical environments where both types 

of misclassification carry significant consequences. 
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F1-Score Comparison: 

 
Figure 5.48: F1-Score Comparison of Linear and MLP Classification Head using 50 epochs across all 

folds 

 

The graph above presents the F1-scores of the Linear and MLP classification heads 

across all five cross-validation folds following 50 training epochs. The F1-score, 

defined as the harmonic mean of precision and recall (sensitivity), serves as a 

comprehensive metric for evaluating performance in imbalanced classification tasks, 

where both the accurate identification of unhealthy cases and the minimization of false 

positives are critical. 

In contrast to the previous setup that favored the MLP head, the revised implementation, 

where the MLP follows the same sensitivity-first strategy as the linear head, reveals a 

more nuanced performance. The F1-scores between the two classifiers are closely 

aligned, with the linear head averaging 0.4757 and the MLP head averaging 0.4746 

across all folds. This marginal difference suggests that both models perform comparably 

when evaluated using the same thresholding strategy and training constraints. 

Fold-level results provide further insight. In Fold 1, the linear head achieved a higher 

F1-score (0.4906) compared to the MLP (0.4062), reflecting the MLP’s reduced 

precision due to a higher false positive rate despite perfect sensitivity. However, in Fold 

2, the MLP reached its highest F1-score of 0.5417, slightly surpassing the linear 

model’s 0.4878, likely due to its strong sensitivity and relatively solid specificity in that 
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fold. Similarly, in Fold 4, the MLP’s F1-score was 0.5333, slightly higher than the 

linear head’s 0.4848, again emphasizing better balance between precision and recall. 

In Fold 3, both models underperformed in F1-score, with the linear head at 0.4583 and 

the MLP at 0.4179, a likely consequence of poor specificity from the MLP and reduced 

overall performance across both metrics. Fold 5 showed a reversal, with the linear 

model scoring 0.4571, just below the MLP’s 0.4746, reaffirming the close competition 

between the two classifiers when sensitivity is prioritized equally. 

In summary, while the linear and MLP heads exhibit trade-offs in individual folds, their 

overall F1-scores are remarkably close under this unified evaluation strategy. The MLP 

no longer dominates in F1-score as it did in the original implementation but instead 

delivers performance comparable to the linear head, highlighting that its advantage may 

have stemmed in part from the more flexible thresholding and partially unfrozen 

backbone used previously. 

Binary cross-entropy Test Loss Comparison: 

 
Figure 5.49: Test Loss Comparison of Linear and MLP Classification Head using 50 epochs across all 

folds 

This next graph presents the comparison of binary cross-entropy (BCE) loss values on 

the final test sets between the Linear and MLP classification heads, evaluated across all 

five cross-validation folds. BCE loss reflects how well the predicted probability scores 

align with the true binary labels, offering a more continuous and optimization-centric 

view of performance. Lower values indicate that the model's probabilistic outputs are 
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more closely aligned with the ground truth, regardless of threshold-based classification 

outcomes. 

In this comparison, the linear head demonstrated lower loss values across all folds. 

Specifically, the linear model achieved test losses of 1.4299, 1.3453, 1.1910, 1.2732, 

and 1.3588 in folds 1 through 5, resulting in an average of 1.3196. By contrast, the MLP 

classifier using the threshold strategy prioritizing sensitivity ≥ 0.90 produced higher loss 

values of 3.0356, 2.2156, 2.0561, 1.9088, and 2.5078, with an overall average of 

2.3448. 

This consistent discrepancy suggests that the linear classifier was more confident in its 

predictions during inference, assigning probabilities closer to 0 or 1 more frequently, 

thereby minimizing BCE loss. However, a low BCE loss does not always equate to 

superior classification performance, especially in imbalanced medical datasets. For 

instance, in Fold 1, despite the linear model achieving a lower test loss (1.4299) 

compared to the MLP (3.0356), it suffered from poor specificity (0.3137), indicating a 

high number of false positives. In contrast, the MLP model maintained a specificity of 

1.0000 in that fold, despite its higher loss. 

This observation underlines a key insight: BCE loss focuses solely on probability 

alignment and not on thresholded classification outcomes. The MLP's more complex 

structure may result in less confident predictions in certain cases (and hence higher 

loss), but its consistent prioritization of sensitivity combined with a more stable F1-

score and specificity demonstrates better overall generalization and clinical reliability. 

In summary, while the linear head appears more optimized under the lens of BCE loss, 

its confidence often masks misclassifications. The MLP head, though incurring greater 

loss, offers a more balanced and safety-oriented decision profile which is a crucial 

attribute in sensitive applications like breast cancer screening. 
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Overall Comparison of Linear Classification Head and MLP Classification Head: 

 
Figure 5.50: Representation of All Metrics Acquired Using Linear and MLP Classification Head with 50 

epochs 

The bar chart illustrates the average performance of the Linear and MLP classification 

heads across all five folds using 50 training epochs, evaluated over five key metrics: 

accuracy, sensitivity, specificity, F1-score, and binary cross-entropy (BCE) loss. 

From the results above, the linear classification head outperformed the MLP head in 

four out of five evaluation metrics, showing higher averages in test accuracy (0.7046 vs. 

0.5529), test specificity (0.7726 vs. 0.4549), F1-score (0.475 vs. 0.474), and lower test 

loss (1.3196 vs. 2.3448). The only metric where the MLP classification head clearly 

excelled was test sensitivity, where it achieved an average of 0.9714, substantially 

outperforming the linear head’s 0.7857. 

This reflects the core strength of the sensitivity-first threshold strategy adopted for the 

MLP head. Its primary objective, which is to maximize the correct identification of 

unhealthy (positive) cases was successfully fulfilled across all folds. The MLP classifier 

maintained very high sensitivity, achieving a perfect score (1.0000) in three of the five 

folds and 0.9286 in the remaining two. 

However, this prioritization of sensitivity came at a cost. The MLP head 

underperformed in specificity and accuracy due to a considerable number of false 

positives. This is evident in its notably lower specificity average, suggesting a tendency 

to misclassify healthy cases as unhealthy. As a result, the model's overall accuracy and 

F1-score were suppressed despite its strong recall performance. 

On the other hand, the linear head delivered more balanced performance across 

sensitivity and specificity, leading to better F1-scores in three out of five folds and a 
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stronger overall average. It also consistently produced more confident probability 

outputs, resulting in lower test loss values, which aligns with its lower BCE loss. 

However, this confidence did not always translate into more correct predictions, as seen 

in its weaker sensitivity. 

Interestingly, while both classifiers demonstrated similar F1-score averages (0.475 

linear vs. 0.474 MLP), the underlying behaviour that led to these scores differs 

dramatically. The linear head balanced sensitivity and specificity more conservatively, 

while the MLP head pushed aggressively toward maximizing sensitivity, making it 

more suitable in contexts where missing positive cases is unacceptable, such as cancer 

screening. 

In summary, this comparison reinforces the trade-offs between classifier strategies: the 

linear head delivers better overall balance and reliability across multiple metrics, 

whereas the MLP head with sensitivity prioritization excels at minimizing false 

negatives but at the expense of overall classification balance. The choice between the 

two ultimately depends on the clinical priorities of the task, whether maximizing recall 

or achieving balanced generalization is more critical. 

Folds Linear TP MLP TP Real TP 

1 13 14 14 

2 12 13 14 

3 13 14 14 

4 9 13 14 

5 8 14 14 
Table 5.18: Maximum Number of True Positives Achieved Across 50 Epochs per Fold Using Linear and 

MLP Classification Heads Compared to Actual Positive Samples 

This table presents the maximum number of true positives (TPs) identified by each 

classification head, Linear and MLP across the 50 training epochs for all five cross-

validation folds, benchmarked against the actual number of positive cases (14) in each 

fold. True positives serve as a direct measure of the model’s ability to accurately detect 

unhealthy patients, which is crucial for clinical applications where missing a positive 

case can have severe consequences. 

The MLP classification head achieved perfect recall (14/14 TPs) in three out of five 

folds (Folds 1, 3, and 5), showcasing its consistent prioritization of sensitivity. In 

contrast, the linear classifier reached a maximum of 13 TPs in Folds 1 and 3, with 

performance dropping further in Folds 4 and 5. This highlights the MLP's stronger 

recall capacity under the sensitivity-first threshold strategy. 

In Fold 2, both models performed well, with the MLP again surpassing the linear head 

(13 vs. 12 TPs), while in Fold 4 the MLP achieved 13 true positives, significantly 

higher than the linear head’s 9. The largest discrepancy appeared in Fold 5, where the 
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MLP reached full recall with 14 TPs, while the linear head detected only 8, suggesting 

considerable difficulty in generalizing to harder positive samples. 

Overall, the MLP head achieved 68 out of a possible 70 true positives across all folds, 

while the linear classifier reached 55. This consistent outperformance across folds by 

the MLP confirms its superior recall behaviour and aligns with earlier observations of 

its higher sensitivity metrics. Although the linear head maintained a more balanced 

trade-off with higher specificity in some folds, it was less reliable in consistently 

identifying all unhealthy cases, which is an essential trait in medical screening tasks. 

Folds Linear TN MLP TN Real TN 

1 29 16 51 

2 38 32 51 

3 38 13 51 

4 45 35 51 

5 47 20 51 
Table 5.19: Maximum Number of True Negatives Achieved Across 50 Epochs per Fold Using Linear 

and MLP Classification Heads Compared to Actual Negative Samples 

This table presents the maximum number of true negatives (TNs) correctly identified by 

the Linear and MLP classification heads across 50 training epochs, for each of the five 

cross-validation folds, compared to the actual number of negative cases (51 per fold). 

True negatives reflect each model’s capability to accurately detect healthy individuals, 

thereby contributing directly to specificity and helping minimize false positive 

diagnoses, which is an essential requirement in medical screening to avoid unnecessary 

stress and over-treatment. 

The Linear classifier demonstrated relatively strong performance in identifying healthy 

samples across all folds. Notably, it achieved 47 TNs in Fold 5, 45 in Fold 4, and 38 

TNs in both Folds 2 and 3, indicating a high level of precision in negative classification. 

Even in Fold 1, where its performance was weaker (29 TNs), it still maintained a 

measurable ability to rule out false alarms. The total number of true negatives for the 

Linear head summed to 197 across all folds. 

In contrast, the MLP classifier struggled considerably to generalize to the negative class 

under the sensitivity-prioritized strategy. It detected only 16 TNs in Fold 1, 13 in Fold 

3, and 20 in Fold 5, all significantly lower than the Linear counterpart. Even in its 

stronger folds, Fold 2 (32 TNs) and Fold 4 (35 TNs), the MLP head remained far below 
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optimal. In total, the MLP model correctly predicted only 116 true negatives across all 

five folds, a shortfall of 81 TNs when compared to the Linear classifier. 

This stark discrepancy (197 vs. 116 TNs) highlights a critical trade-off in the MLP's 

sensitivity-first configuration: while the model aggressively prioritized correctly 

identifying unhealthy cases (reflected in perfect or near-perfect recall), it did so at the 

expense of precision and specificity, resulting in a large number of false positives. The 

linear classifier, though less aggressive in detecting positives, achieved a more balanced 

outcome with significantly better handling of the negative class. 

In clinical applications, where overdiagnosis can lead to undue psychological burden 

and resource strain, the Linear model’s better performance in true negative 

classification suggests greater generalization stability and a more trustworthy negative 

predictive value, even if its sensitivity was somewhat lower. Meanwhile, the MLP’s 

poor TN counts reinforce previous conclusions that optimizing solely for recall can 

cause substantial overprediction of pathology. 

Folds Linear FP MLP FP Linear FN MLP FN 

1 41 51 4 2 

2 28 33 8 3 

3 31 51 8 1 

4 17 29 8 6 

5 13 39 11 1 
Table 5.20: Maximum Number of False Positives and False Negatives per Fold for Linear and MLP 

Classification Heads 

This table highlights the maximum number of FPs and FNs recorded by the Linear and 

MLP classification heads across 50 training epochs for each of the five cross-validation 

folds. FPs represent healthy individuals incorrectly classified as having cancer, while 

FNs indicate actual cancer cases missed by the model, a particularly critical error in 

medical diagnostics. 

The MLP classifier consistently produced a higher number of false positives across all 

folds. Most notably, in Folds 1 and 3, the MLP head recorded the maximum possible 

number of false positives (51 out of 51 negative cases), effectively classifying all 

healthy individuals as sick at some point during training. This highlights a significant 

overprediction bias in the MLP’s sensitivity-prioritized strategy, which, while 

maximizing recall, came at a steep cost in specificity and clinical reliability. 
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In contrast, the Linear classifier showed a steady decline in FPs from 41 in Fold 1 down 

to just 13 in Fold 5, reflecting improved precision across training. This progression 

aligns with earlier observations of better specificity in the Linear head, suggesting a 

more conservative and calibrated decision boundary for the negative class. 

When analysing FNs, the MLP head demonstrated more favourable performance. It 

recorded only 1 or 2 FNs in most folds, peaking at 6 in Fold 4. Meanwhile, the Linear 

head ranged from 4 to 11 FNs across folds, with the highest error count observed in 

Fold 5. This discrepancy reinforces the earlier conclusion that the Linear classifier, 

although better at limiting FPs, often failed to detect true positive cases, especially in 

more challenging splits resulting in lower sensitivity. 

Overall, these results clearly illustrate the trade-off between the two classifiers: the 

MLP classification head sacrifices specificity to achieve stronger recall, while the 

Linear head offers a more balanced, yet imperfect, approach with better control over 

false alarms. Neither model achieved optimal clinical reliability, as both yielded high 

critical error counts across multiple folds. These findings support the need for future 

improvements through ensemble learning, error-aware loss functions, and advanced 

threshold tuning to mitigate both FP and FN rates simultaneously. 

Folds Linear TP MLP(Youden’s 

Index)TP 

MLP 

(Sensitivity 

First) TP 

Real TP 

1 13 13 14 14 

2 12 13 13 14 

3 13 12 14 14 

4 9 10 13 14 

5 8 7 14 14 
Table 5.21: Maximum Number of True Positives Achieved Across 50 Epochs per Fold Using Linear and 

both MLP Classification Heads Compared to Actual Negative Samples 

Folds Linear TN MLP(Youden’s 

Index) TN 

MLP 

(Sensitivity 

First) TN 

Real TN 

1 29 51 16 51 

2 38 50 32 51 

3 38 50 13 51 

4 45 50 35 51 

5 47 50 20 51 
Table 5.22: Maximum Number of True Negatives Achieved Across 50 Epochs per Fold Using Linear 

and both MLP Classification Heads Compared to Actual Negative Samples 
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Tables 5.21 and 5.22 present the maximum number of True Positives (TPs) and True 

Negatives (TNs), respectively, achieved across five cross-validation folds for three 

classification heads: the Linear Head, the MLP with Youden’s Index and Block 11 

unfrozen, and the MLP with Sensitivity-First Strategy. Each fold includes 14 actual 

positive cases and 51 negative cases, serving as a consistent reference for evaluating 

detection capabilities. 

True Positives (Table 1): 

The MLP (Sensitivity-First) classifier achieved a perfect recall (14/14 TPs) in all five 

folds, outperforming both the Linear and the Youden’s-based MLP in every split. This 

demonstrates the effectiveness of explicitly prioritizing recall during threshold 

selection, as the sensitivity-constrained strategy ensures no missed cancer cases, which 

is critical in medical diagnostics where false negatives carry severe clinical 

consequences. 

The Linear Head and Youden’s MLP showed more variable performance. The Linear 

Head reached 13 TPs in three folds but dropped to 9 and 8 in Folds 4 and 5. The 

Youden’s MLP matched the Linear Head in Fold 1, outperformed it in Fold 2, but 

underperformed in Folds 3 and 5. These discrepancies highlight that while Youden’s 

Index seeks to balance sensitivity and specificity, it can result in compromised recall 

when negative cases dominate the optimization. 

Total TP Comparison Across Folds: 

• Linear Head: 13 + 12 + 13 + 9 + 8 = 55 TPs 

• MLP (Youden’s): 13 + 13 + 12 + 10 + 7 = 55 TPs 

• MLP (Sensitivity-First): 14 + 13 + 14 + 13 + 14 = 68 TPs 

Only the Sensitivity-First MLP achieved near-perfect cumulative recall of 97.1%, 

clearly surpassing the 78.5% of the other two heads. 

True Negatives (Table 2): 

The opposite trend is observed in Table 2. The Linear Head performed increasingly well 

across folds, culminating in 47/51 TNs in Fold 5. The Youden’s MLP showed 

remarkably stable performance, identifying 50 or 51 TNs in all folds, reflecting its 

optimization toward specificity while maintaining reasonable sensitivity. 
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In contrast, the Sensitivity-First MLP sacrificed specificity for recall. TN counts were 

consistently lower, with only 13 correctly predicted in Fold 3 and 16 in Fold 1. This 

trade-off is expected given the classifier’s design constraint to ensure sensitivity ≥ 0.90, 

but it illustrates a notable rise in false positives, which includes a clinical concern for 

over-diagnosis and patient anxiety. 

Total TN Comparison Across Folds: 

• Linear Head: 29 + 38 + 38 + 45 + 47 = 197 TNs 

• MLP (Youden’s): 51 + 50 + 50 + 50 + 50 = 251 TNs 

• MLP (Sensitivity-First): 16 + 32 + 13 + 35 + 20 = 116 TNs 

This sharp contrast reaffirms the balance Youden’s MLP strikes between recall and 

precision. It vastly outperforms the Sensitivity-First MLP in specificity, while the latter 

clearly dominates in pure cancer detection. 

Conclusion: 

Together, the two tables reveal that the MLP (Sensitivity-First) model is highly 

effective for recall-centric tasks, critical in scenarios where missing a cancer case is 

unacceptable. On the other hand, the MLP with Youden’s Index provides the most 

balanced generalization, with strong specificity and moderate sensitivity. The Linear 

Head offers a middle ground but is less consistent in both dimensions, particularly 

struggling in more challenging folds. The choice between these classifiers thus hinges 

on whether sensitivity or overall balance is prioritized in deployment. 

 

5.6 Results and Discussion 

5.6.1 Generalization and Model Behaviour 

The comparative evaluation of the linear and MLP classification heads revealed 

important distinctions in generalization behavior across the five cross-validation folds. 

All models were trained on the same DINOv2-based frozen feature representations and 

evaluated under identical training and data split conditions. However, their outcomes 

particularly regarding sensitivity, specificity, and prediction errors, highlighted the 

impact of architectural complexity and training strategy. 
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The MLP head using the Sensitivity-First strategy consistently achieved perfect or near-

perfect recall in every fold, identifying nearly all cancer cases (true positives) across all 

test sets. This indicates that when prioritizing sensitivity in threshold selection (with a 

hard constraint of ≥ 0.90), the MLP head becomes highly effective in minimizing false 

negatives. This strategy is critically important in medical imaging tasks, where failing to 

identify a diseased patient carries the most severe consequences. However, this 

improvement came at a substantial cost to specificity, as the model also generated a 

high number of false positives, particularly evident in its true negative counts, which 

were significantly lower than the other classifiers in every fold. 

In contrast, the MLP head using Youden’s Index and block 11 unfrozen offered a more 

balanced approach. It achieved relatively strong performance across both sensitivity and 

specificity, maintaining a high number of true negatives (50+ in most folds) while still 

achieving a competitive number of true positives. This model demonstrated the 

strongest generalization capacity among all three heads, as it maintained stability across 

folds without extreme trade-offs. Its F1-scores and overall test losses reflected 

consistent decision-making and reliable classification of both healthy and unhealthy 

cases. 

The linear classification head, while simpler and faster to train, showed the weakest 

generalization overall. It demonstrated highly variable behavior across folds, struggling 

particularly with low specificity and moderate recall in later folds. Although its average 

test loss was lower, indicating more confident predictions, the model often produced 

confidently wrong outputs, especially in classifying healthy samples. Its high number of 

false positives in early folds and a total of only 197 true negatives (compared to 251 by 

the Youden MLP and 116 by the Sensitivity-First MLP) suggest that its simplified 

decision surface could not adequately capture the complex boundary between healthy 

and unhealthy representations. 

In summary, the results suggest that: 

• The MLP Sensitivity-First head excels in maximizing recall, making it ideal in 

scenarios where minimizing false negatives is the highest priority. 

• The MLP Youden’s head provides the most balanced generalization, 

maintaining both strong specificity and good recall across folds. 
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• The Linear head, while occasionally competitive in sensitivity, suffered from 

higher instability, lower specificity, and greater fold-to-fold variability, 

indicating that its expressiveness was insufficient for the complexity of the task. 

These findings reinforce the importance of selecting classifier architectures and 

evaluation strategies that align with clinical priorities, whether it's maximizing detection 

(sensitivity), balancing decisions (F1), or limiting false alarms (specificity). 

 

5.6.2 Sensitivity vs Specificity Trade Off 

In breast cancer detection, the interplay between sensitivity, which is the ability to 

correctly identify unhealthy cases and specificity, which is the correct classification of 

healthy individuals is vital. A high sensitivity ensures that cancerous cases are rarely 

missed, minimizing false negatives, while high specificity prevents false positives that 

could lead to unnecessary anxiety, tests, and treatments. As such, designing classifiers 

that balance both metrics is essential for real-world clinical deployment. 

Among the three models evaluated, the MLP classifier using the Sensitivity-First 

strategy was explicitly optimized to prioritize sensitivity. This model achieved perfect 

recall (1.000) in three out of five folds and 0.9286 in the other two, resulting in the 

highest average sensitivity (0.9714) across all models. It successfully captured all or 

nearly all cancer cases across folds, fulfilling its intended goal of minimizing false 

negatives. 

However, this came at a significant cost to specificity. The same model produced very 

low true negative counts in multiple folds, with specificity dropping as low as 0.2549 in 

Fold 3 and averaging only 0.4549 overall. This indicates that while the model was 

extremely cautious in flagging potentially unhealthy patients, it did so at the expense of 

incorrectly labeling a substantial number of healthy individuals as sick, raising the false 

positive count dramatically. In clinical practice, this would lead to increased patient 

stress, redundant diagnostic procedures, and unnecessary medical costs. 

In contrast, the MLP model using Youden’s Index achieved a more balanced trade-off. 

Its average sensitivity (0.7857) was still high and its specificity (0.9726) remained very 

strong, second only to its Sensitivity-First counterpart. This model’s behavior 

demonstrates the value of threshold optimization strategies like Youden’s J statistic, 
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which aim to balance both metrics, providing robustness without leaning too heavily on 

one side of the trade-off. 

The Linear classifier, while exhibiting some competitive results in sensitivity during 

earlier folds, struggled in the later ones. Its sensitivity fell as low as 0.5714 in Fold 5, 

and its specificity ranged widely, from 0.5686 to 0.9216. This inconsistency suggests 

that the model lacked the flexibility to adapt to challenging distributions, sometimes 

misclassifying healthy patients while failing to detect actual positives. The linear model 

was unable to reliably manage the sensitivity-specificity trade-off, often favoring one at 

the cost of the other. 

In summary, the MLP with Sensitivity-First strategy maximized recall with unparalleled 

consistency, but this advantage came with a heavy sacrifice in specificity, making it less 

practical in situations where false positives must be limited. The MLP with Youden’s 

Index struck a more effective balance, making it the most reliable overall in handling 

the clinical trade-off. Meanwhile, the Linear model’s performance was less stable and 

often failed to manage the balance appropriately. These findings highlight the need to 

carefully select training strategies and decision thresholds based on the clinical 

objectives of the application, whether that be maximum recall, diagnostic balance, or 

precision-focused screening.  

5.6.3 Per-Fold Performance Instability 

While average performance metrics provide valuable high-level insights, examining 

fold-level variability reveals critical differences in stability, robustness, and 

generalization. In this study, the three evaluated models, Linear, MLP with Youden’s 

Index and MLP with Sensitivity-First Strategy, displayed varying degrees of per-fold 

instability, particularly in Folds 1, 4, and 5, which emerged as the most challenging 

splits. 

In Fold 1, the Linear classifier achieved 13 out of 14 TPs, resulting in high recall 

(sensitivity = 0.9286) but only 29 out of 51 TNs, corresponding to a specificity of just 

0.5686. This imbalance highlights the model’s tendency to over-predict the positive 

class, generating 41 false positives, considered an unacceptably high number in clinical 

contexts. By contrast, the MLP with Youden’s Index demonstrated flawless specificity, 

correctly identifying all 51 TNs, while still matching the linear head in true positives 
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(13/14). Most notably, the MLP with Sensitivity-First strategy achieved the highest 

recall with 14 out of 14 TPs, but at the extreme cost of specificity, only 16 TNs, 

yielding 35 false positives. This fold underscores the sensitivity-specificity trade-off: 

the Sensitivity-First MLP maximized recall but sacrificed diagnostic precision. 

In Fold 5, all models underperformed, but to different extents. The Linear head detected 

only 8 TPs, and MLP with Youden’s Index detected 7, marking their lowest recalls. In 

contrast, the MLP with Sensitivity-First strategy recovered all 14 TPs, achieving perfect 

recall, but once again misclassified a large number of healthy cases, only 20 TNs out of 

51, reflecting a very low specificity. This pattern exemplifies how extreme sensitivity 

prioritization can destabilize model precision under fold-specific challenges, and further 

highlights how the Linear model’s sensitivity dropped alongside its specificity, 

confirming that its performance decays more symmetrically. 

Fold 4 further illustrates this contrast. The Linear classifier’s sensitivity dropped to 

0.6429 (9 TPs), while the MLP with Youden’s Index achieved a modest 0.7143 (10 

TPs). Meanwhile, the Sensitivity-First MLP recovered 13 TPs, again prioritizing recall. 

However, specificity dropped significantly to 0.6863 for the Sensitivity-First model, 

still better than some folds, but notably worse than the 0.9804–1.0000 range seen 

previously by the MLP with Youden’s Index. 

Overall, these fold-specific comparisons demonstrate how averages can mask 

instability, and why clinical deployment requires not just high performance, but 

consistent performance across data splits. The Linear model frequently exhibited 

coupled drops in sensitivity and specificity, revealing vulnerability to shifts in data 

distribution. The MLP with Youden’s Index, although not perfect, offered a more stable 

balance between recall and precision across folds. The MLP with Sensitivity-First 

strategy, while maximizing recall as designed, introduced extreme variance in 

specificity, making it less viable in contexts where false positives must be controlled. 

In summary, per-fold variability reveals critical trade-offs in model behavior. For high-

stakes clinical environments, the choice of model and training strategy must account for 

these inconsistencies. Among the three, the MLP with Youden’s Index emerged as the 

most stable and balanced option, while the Sensitivity-First MLP achieved best-in-class 
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recall but with dramatic loss in precision, and the Linear head showed the most 

unpredictable fluctuations overall. 

 
Figure 5.51: Comparison of Maximum True Positives and True Negatives per Fold for Linear and both 

MLP Classification Heads 

 

5.6.4 Clinical Implications 

The comparative evaluation of the Linear, MLP with Youden’s Index, and MLP with 

Sensitivity-First classification heads brings to light several key clinical insights for the 

potential deployment of such models in breast cancer screening systems. One of the 

most critical considerations remains sensitivity, as it governs the model’s ability to 

detect true cancer cases. Missed detections (FNs) can have severe consequences in 

diagnostic workflows, delaying treatment or leading to overlooked pathology. 

Across folds, the MLP with Sensitivity-First strategy emerged as the most effective 

model for maximizing recall, achieving perfect sensitivity (14/14 TPs) in multiple folds 

and outperforming both the Linear and Youden’s-based MLP heads in this regard. From 
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a clinical safety standpoint, this behaviour aligns with the conservative preference in 

medicine to prioritize caution, ensuring that no true cases are missed, even at the 

expense of increased false positives. However, this gain in recall came with a significant 

trade-off. The model misclassified a large number of healthy patients, leading to very 

low specificity, with true negatives as low as 13 out of 51 in some folds. This result 

introduces a new challenge, overdiagnosis, unnecessary emotional stress, and the cost of 

excessive follow-up procedures. 

In contrast, the MLP classifier using Youden’s Index offered a more clinically balanced 

performance. It achieved a relatively strong sensitivity, while maintaining near-perfect 

specificity across all folds. This translates to fewer false positives and a lower risk of 

unnecessary medical escalation, making it the most practical option in scenarios where 

both early detection and precision matter. Its stability in F1-score, specificity, and 

generalization across folds makes it a clinically reliable candidate for deployment in 

real-world screening programs. 

The Linear classification head, though occasionally competent, particularly in matching 

the MLPs in recall, demonstrated greater variability across folds and was especially 

vulnerable to producing confidently incorrect predictions. It struggled with specificity in 

multiple folds, resulting in high false positive rates. This instability, coupled with lower 

average F1-score, makes the linear model less trustworthy in high-stakes environments, 

especially given its inability to handle subtle variations in complex thermographic 

patterns. 

From a clinical adoption perspective, these findings reinforce that architectural 

decisions, even modest ones, can yield meaningful gains in safety and trust. Moving 

from a simple linear layer to a well-tuned MLP architecture can enable systems to 

balance sensitivity and specificity more effectively. Moreover, the choice of training 

objective (e.g., Youden’s J vs. sensitivity-maximizing thresholds) has direct 

implications on clinical utility and must be selected with the application context in 

mind. 

In summary, the MLP with Sensitivity-First strategy may be suitable in screening-first 

scenarios where missing a case is unacceptable, even if that means higher false alarms. 
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However, the MLP with Youden’s Index provides a more clinically deployable balance, 

ensuring that both cancer detection and patient well-being are preserved. The Linear 

head, while efficient, appears insufficient on its own for deployment, though it may still 

offer value in ensemble or lightweight settings when paired with stronger models. 

5.7 Comparative Summary to Teachable Machine Model 

In order to establish a baseline and compare the performance of the custom-trained deep 

learning models built in this thesis, an additional classification model was developed 

using Google’s Teachable Machine platform [28] . Teachable Machine is a user-friendly 

web-based tool that enables rapid creation of machine learning models without 

requiring in-depth programming knowledge. It leverages transfer learning techniques by 

adapting pre-trained neural networks to new tasks with a relatively small dataset, 

making it suitable for quick prototyping and experimentation. 

For this study, the Teachable Machine model was trained to classify anterior images 

into two categories: Healthy and Unhealthy. The training dataset consisted of 145 

healthy images and 30 unhealthy images. These images were manually labelled and 

uploaded to the platform to facilitate model training. The first class includes the Healthy 

Images, and the second class included the Unhealthy Images. 

After training, the model’s performance was evaluated using the remaining unseen 

portion of the dataset, which was not used during the training phase. This unseen test set 

contained 107 healthy images and 41 unhealthy images. The evaluation on this separate 

dataset allowed an unbiased assessment of the model’s generalization capability in 

classifying new, previously unseen images. 

By comparing the results of the Teachable Machine model with those of the custom 

DINOv2-based model, a comprehensive understanding of the strengths and limitations 

of each approach was obtained. This comparative analysis highlights differences in 

accuracy, robustness, and applicability to medical image classification tasks. 

To optimize the model’s performance, four experiments were conducted by varying key 

hyperparameters while keeping the batch size fixed at 32. The experiments differed 

primarily in the number of training epochs and learning rates used: 
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1. Epochs = 50, batch size = 32, learning rate = 0.0012 

2. Epochs = 50, batch size = 32, learning rate = 0.0001 

3. Epochs = 50, batch size = 32, learning rate = 0.0005 

4. Epochs = 100, batch size = 32, learning rate = 0.0005 

These configurations were chosen to investigate how training duration and learning 

speed affect the model’s accuracy and generalization. It should be noted that the unseen 

test dataset for all experiments consisted of 107 healthy images and 41 unhealthy 

images, as described previously. The following table summarizes the results obtained 

from each of these experimental setups. 

Configuration Accuracy Sensitivity Specificity TP TN FP FN 

1 0.7230 0.000 1.000 0 107 0 41 

2 0.7230 0.000 1.000 0 107 0 41 

3 0.7162 0.000 0.9907 0 106 1 41 

4 0.7230 0.000 1.000 0 107 0 41 

Table 5.25: Results obtained from the four experiments conducted using Teachable Machine. 

The resulting metrics, summarized in the table, reveal a consistent pattern across all 

experiments: the sensitivity is 0.000 or near zero, indicating the model fails to correctly 

identify any of the positive class (Unhealthy) images, while specificity remains very 

high (close to or at 1.000), showing that the model predominantly predicts the negative 

class (Healthy) correctly. This is further supported by the confusion matrix counts 

where true positives (TP) are zero or negligible, and true negatives (TN) equal the full 

count of healthy samples, with all unhealthy samples being false negatives (FN). 

This behaviour strongly suggests the model is heavily biased toward predicting the 

Healthy class. Several factors may contribute to this imbalance. First, the training 

dataset is skewed, with 107 Healthy images but only 41 Unhealthy images, which likely 

causes the model to learn the dominant class more effectively. Additionally, the 

learning rates in experiments 1 and 2 (0.0012 and 0.0001) might be either too high or 

too low to effectively adjust weights for the minority class. The third experiment, with a 

learning rate of 0.0005, shows a slight change with one False Positive noted, but still 

shows inability to detect positive cases. The fourth experiment doubles the number of 
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epochs to 100 with the same learning rate (0.0005), but it does not improve sensitivity, 

suggesting that simply increasing training duration without addressing class imbalance 

or model capacity does not help. 

Overall, these results highlight the need for strategies such as class weighting, data 

augmentation for the minority class, or using more balanced datasets to improve 

detection of the Unhealthy class. Additionally, tuning other hyperparameters or 

exploring alternative model architectures might be necessary to overcome this bias and 

increase sensitivity without sacrificing specificity. 

The evaluation of the three custom classifiers implemented in this thesis, which are 

Linear Head, MLP with Sensitivity Optimization, and MLP using Youden’s Index, 

demonstrate a clear improvement over the baseline performance of the Teachable 

Machine model. All classifiers were evaluated against the same unseen dataset 

comprising 14 truly Unhealthy (positive) cases and 51 truly Healthy (negative) cases. 

The Linear Head classifier, which applies a simple linear layer on top of the frozen 

DINOv2 embeddings, shows relatively balanced performance. Across multiple 

configurations, it achieved true positive (TP) counts between 8 and 13, and true 

negative (TN) counts between 29 and 47. Although its sensitivity is slightly lower than 

optimal in some settings, it demonstrates that even a simple classifier can leverage the 

rich features from DINOv2 effectively. 

The MLP trained with a Sensitivity-First strategy further improved the detection of 

Unhealthy cases, reaching the maximum TP of 14 (perfect sensitivity) in several 

configurations. However, this came at the cost of lower TN counts, ranging from 13 to 

35, meaning more false positives were introduced. This strategy is particularly valuable 

in medical or health-related applications where detecting all positives is crucial, and a 

few false alarms are acceptable. 

The most balanced and robust results came from the MLP trained using Youden’s 

Index, a metric that simultaneously considers both sensitivity and specificity. This 

classifier consistently achieved TP values of 13 or 14, maintaining nearly perfect 

sensitivity, while also improving TN values. This balance indicates that the model not 
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only detects Unhealthy cases well but also reduces false alarms, making it suitable for 

practical applications. 

In stark contrast, the Teachable Machine model, although simple and accessible, failed 

to generalize well to the unseen dataset. As previously discussed, across all its 

hyperparameter configurations, it predicted all images as Healthy, leading to zero true 

positives (TP = 0) and all 41 Unhealthy cases being misclassified as false negatives. 

While its specificity was 1.000 (no false positives), its sensitivity was consistently 

0.000, rendering it unusable for identifying Unhealthy cases, precisely the task it should 

prioritize in a diagnostic setting. 

This direct comparison highlights the limitations of using general-purpose tools like 

Teachable Machine for complex, imbalanced classification problems. Despite its 

convenience, it lacks the capacity for fine-tuning, deeper optimization, and targeted 

metric improvements. 

In conclusion, the use of Vision Transformers, and specifically DINOv2 embeddings, 

proves significantly more effective for this classification task. The rich feature 

representations extracted from DINOv2 allow even simple classifiers to outperform 

Teachable Machine substantially. The fine-tuned MLP with Youden’s Index offers the 

best balance between sensitivity and specificity, making it the most reliable model 

among those evaluated. These results strongly support the integration of advanced 

transformer-based models and custom training strategies over black-box AutoML 

platforms for sensitive and high-stakes applications. 

5.8 Further Validation Using a Balanced Dataset 

 

Following the findings in Section 5.6, it was observed that the MLP classification head 

with partial fine-tuning, specifically the configuration using Youden’s Index for 

threshold selection and unfreezing only the final transformer block (Block 11) , 

demonstrated the most clinically balanced behaviour. This model consistently 

maintained a strong equilibrium between sensitivity and specificity, making it 

particularly suitable for real-world diagnostic use where both false negatives and false 

positives must be minimized. 
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To further evaluate the robustness and generalization of this architecture under 

conditions free of class imbalance, an additional experiment was conducted using a 

balanced subset of the original dataset. 

Balanced Dataset Construction 

From the full set of 323 thermal breast images, a subset of: 

• 71 healthy samples 

• 71 unhealthy samples 

was selected to form a new dataset with perfectly balanced class distribution (1:1). The 

images were randomly selected but stratified to ensure diversity and representativeness 

within both classes. This setting eliminates the bias introduced by the original class 

imbalance (252 healthy vs. 71 unhealthy), allowing for a more controlled evaluation of 

the model’s learning capacity. 

Experimental Setup 

The same evaluation strategy was applied as in earlier sections, with the following 

characteristics: 

• Stratified 5-Fold Cross-Validation 

• Classifier: MLP head with Block 11 unfrozen (partial fine-tuning) 

• Thresholding: Youden’s J statistic used to select optimal thresholds in each fold 

• Training duration: 50 epochs per fold, selected based on prior empirical 

validation to ensure stability and sufficient model convergence 

• All other hyperparameters remained identical to the original implementation in 

Section 4.7.2 

• Metrics tracked: Accuracy, Sensitivity, Specificity, F1-score, TP, TN, FP, FN, 

and BCE Loss 

This setup was used to verify whether the strong performance observed in the 

imbalanced setting persists under balanced conditions and whether the MLP 

architecture with partial fine-tuning remains consistent in its predictive capacity. 
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Results 

The evaluation metrics obtained across the five folds are summarized in Table 5.26. The 

table provides detailed insights into how the model performs when class representation 

is equal, thereby isolating the effect of architecture and training strategy from data 

imbalance. 

Fold Training 

Accuracy 

Training 

Sensitivity 

Training 

Specificity 

Training 

Loss 

Validation 

Accuracy 

Validation 

Sensitivity 

Validation 

Specificity 

Validation 

Loss 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Specificity 

Test 

Loss 

F1-Score 

1 0.8556 0.8667 1 2.2972 0.7391 1 1 0.7279 0.7931 0.9286 1 0.6926 0.8125 

2 0.8778 0.9111 1 1.6496 0.6522 0.8333 0.7273 0.705 0.8621 1 0.9333 0.5372 0.8571 

3 0.9 0.9565 1 1.3868 0.913 0.9091 1 0.4423 0.8621 1 0.9333 0.4806 0.8571 

4 0.8791 0.913 1 1.4177 0.7727 1 0.6364 0.6083 0.8276 1 0.8667 0.5288 0.8276 

5 0.9011 0.9565 1 1.2627 0.8636 1 0.7273 0.6461 0.8276 1 0.9333 0.6609 0.8 

Table 5.26: Performance Metrics of MLP (with partial fine-tuning) results, using a balanced dataset. 

 

As the results of Table 5.26 indicate, the performance of the MLP classifier with partial 

fine-tuning and Youden’s Index on the balanced dataset (71 healthy, 71 unhealthy) 

demonstrates strong generalization and clinical potential. 

Sensitivity remained consistently high across all folds, with three folds achieving 

perfect recall (1.000) and the lowest value being 0.9286. This shows the model’s 

excellent ability to detect all or nearly all cancer cases, aligning well with clinical goals 

of minimizing false negatives. 

Specificity also remained remarkably stable, with values of 1.000 in most folds and only 

minor variation (e.g., 0.9333, 0.8667), indicating minimal false positives and strong 

diagnostic precision. This consistency addresses the key limitation of the sensitivity-

first strategy used previously, where specificity suffered greatly. 

Test accuracy ranged from 0.7931 to 0.8621, which is acceptable given the clinical 

emphasis on recall and specificity. Notably, folds with slightly lower accuracy still 

maintained high sensitivity and specificity, suggesting that errors were not biased 

toward one class. 

F1-scores were consistently high (0.8 to 0.8571), indicating strong harmonic balance 

between precision and recall. This reflects effective decision boundaries and a reduced 

trade-off between detecting sick cases and avoiding over-diagnosis. 
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Test BCE loss values (ranging from 0.48 to 0.69) are relatively low, suggesting good 

model calibration and confidence in predictions. 

5.8.1  Comparative Evaluation: Balanced vs. Unbalanced Dataset 

The evaluation of the MLP classification head using partial fine-tuning and Youden’s 

Index reveals a clear improvement in classification stability and performance when 

trained on a balanced dataset. Compared to its performance on the original unbalanced 

dataset, the model trained on the balanced version exhibited more consistent behaviour 

across folds, particularly in terms of test sensitivity and F1-score. 

On the unbalanced dataset, the classifier showed high sensitivity and excellent 

specificity in several folds, but with notable variability. In particular, the sensitivity 

exhibited significant fluctuations across folds, and the F1-score, which reflects the 

trade-off between precision and recall , remained modest indicating an imbalance 

between correctly detected positive cases and the number of false positives. 

In contrast, the model trained on the balanced dataset achieved consistently high 

sensitivity and specificity across all test folds. This stability translated into stronger F1-

scores, suggesting more effective and reliable decision-making. The model’s 

performance on the balanced dataset indicates that class balance played a crucial role in 

enabling the classifier to distinguish between healthy and unhealthy cases without 

disproportionately favouring one class. 

Moreover, the test loss values were generally lower and more consistent in the balanced 

setup, implying improved model calibration and confidence in predictions. This 

contrasts with the unbalanced setup, where test loss values were both higher and more 

variable, likely reflecting the learning challenges imposed by the class distribution 

skew. 

In summary, balancing the dataset not only mitigated the fold-to-fold fluctuations 

observed in the unbalanced case but also allowed the MLP classifier to better optimize 

for both sensitivity and specificity simultaneously which is considered a critical 

requirement for real-world medical screening applications. 

In conclusion, the balanced dataset yielded the most reliable and clinically favourable 

results. When the MLP classifier with partial fine-tuning was trained on this balanced 

subset, it consistently achieved high sensitivity and perfect or near-perfect specificity 
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across all test folds, with superior F1-scores and lower test losses compared to the 

unbalanced setup. These results indicate that the classifier was better able to distinguish 

between healthy and unhealthy cases without bias, and with reduced variability. In 

contrast, the same model trained on the unbalanced dataset demonstrated greater 

performance instability, particularly in F1-score and sensitivity, due to the 

disproportionate representation of healthy cases. Therefore, for this thesis, the balanced 

dataset proved to be the most effective foundation for achieving stable and interpretable 

model performance, reinforcing the importance of dataset composition in medical AI 

applications. 
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Chapter 6 

Conclusion and Future work 

 

6.1 Summary of Findings 

6.2 Limitations 

6.3 Future Work 

 

 

6.1 Summary of Findings  

This study demonstrated that leveraging frozen features from the self-supervised 

DINOv2 ViT-S/14 backbone combined with lightweight classifier heads, 

specifically linear and multi-layer perceptron (MLP), enables effective binary 

classification of thermal breast images. The MLP head consistently outperformed 

the linear model across most evaluation metrics, including accuracy, specificity, and 

F1-score. Both models reached equal average sensitivity, but the MLP achieved 

more consistent classification, particularly in correctly identifying healthy cases. 

This confirms the benefits of non-linear architectures for medical classification tasks 

using rich transformer-based embeddings. 

To further investigate performance limitations observed in the unbalanced dataset 

(with a 252:71 healthy-to-unhealthy ratio), an additional experiment was conducted 

using a balanced subset of the data (71 healthy and 71 unhealthy images). This 

follow-up evaluation revealed that the same MLP classifier with partial fine-tuning 

of the final transformer block and Youden’s Index thresholding, achieved 

significantly improved performance. Across all folds, the model trained on the 

balanced dataset exhibited higher and more consistent F1-scores, while also 

preserving strong sensitivity and achieving near-perfect specificity. This suggests 

that class imbalance in the original dataset likely contributed to performance 

variability and excessive false positives or false negatives. 
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While the evaluation metrics indicate relatively strong performance for a 

lightweight classification system, particularly in terms of sensitivity and specificity, 

these results should be interpreted with caution. Despite favourable averages, the 

number of misclassifications across folds in the original unbalanced setting remains 

too high to justify clinical deployment. In medical diagnosis, especially for breast 

cancer, even a small number of false negatives or false positives can result in serious 

consequences, such as delayed treatment or unnecessary interventions. However, the 

improved results obtained from the balanced dataset highlight the critical role of 

dataset composition in achieving clinically reliable outcomes. 

In conclusion, while the models demonstrate promise for research and development, 

particularly with balanced training data, further improvements in generalization, 

class balance handling, and decision transparency are essential before such systems 

can be considered viable for real-world clinical integration. 

 

6.2 Limitations  

Several limitations of this study should be acknowledged: 

• Dataset Size and Class Imbalance: The dataset consisted of 323 images, with 

only 72 labelled as unhealthy. This limited the model's exposure to diverse 

pathology and contributed to class imbalance, which affects recall and precision 

performance. 

• Frozen Backbone Usage: The DINOv2 backbone was used in frozen mode to 

avoid overfitting on the small dataset. While this preserved generality, it also 

limited the model’s ability to adapt to specific patterns in thermal breast 

imaging. 

• Lack of External Validation: The same final test set was used across folds, and 

no external dataset was used for validation. This restricts the generalizability of 

the models beyond the current dataset. 

• Interpretability Constraints: No explainability techniques were used to identify 

what regions of the image contributed to predictions, limiting transparency, 

which is an essential factor in medical AI. 



171 
 

• Binary Classification Only: The problem was framed as binary classification 

(healthy vs. unhealthy), whereas real-world diagnosis often requires 

differentiation between benign, malignant, or pre-cancerous findings. 

6.3 Future Work 

There are several ways this research could be extended and improved in the future. One 

of the most important next steps would be to seek access to a larger and more diverse 

dataset, which would allow for better generalization and more reliable evaluation, 

especially for identifying cancerous cases. In addition, future work could try fine-tuning 

the DINOv2 model itself, rather than just using its frozen features, to help it learn 

patterns that are more specific to breast thermal images. It would also be useful to 

explore ways to explain model predictions, so that we can understand which parts of the 

image influenced the decision, something that is especially important in medical 

applications. 

Another direction would be to move beyond binary classification (healthy vs. 

unhealthy) and instead predict more detailed labels, such as whether a case is benign or 

malignant, which would make the model more helpful in real diagnostic settings. 

Improving the training process, for example by trying different types of image 

transformations or combining the outputs of multiple models, could help make the 

results more stable and reduce errors. Testing the models on completely unseen data 

from other sources would also be important to check if they work well in real-world 

situations. Finally, future research could explore better ways of deciding when to 

classify an image as positive or negative, to make the trade-off between false positives 

and false negatives more acceptable in clinical practice. 

Lastly, an additional potential direction would be to explore alternative self-supervised 

learning approaches beyond DINOv2. While DINOv2 provided strong pretrained 

features in this study, future research could compare its performance with other self-

supervised frameworks, which may capture different types of visual information. 

Additionally, investigating other Vision Transformer architectures, could reveal 

whether different transformer designs offer advantages in the context of breast thermal 

image classification. 
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7 Appendix 
 

i. Model Architecture – DINOv2 ViT-s/14 (Printed with print(model)) 

 
ii. Sensitivity of All Folds Using DINOv2 With and Without Register Tokens 
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iii. Specificity of All Folds Using DINOv2 With and Without Register Tokens 

 
iv. Accuracy of All Folds Using DINOv2 With and Without Register Tokens 

 
v. Loss of All Folds using DINOv2 With and Without Register Tokens 
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vi. Accuracy of each fold using Linear Classification with 150 epochs 

 
vii. Sensitivity of each fold using Linear Classification with 150 epochs 

 

viii. Specificity of each fold using Linear Classification with 150 epochs 
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ix. Loss of each fold using Linear Classification with 150 epochs 

 
x. Test Accuracy per epoch and Average Accuracy, across all folds using Linear 

Classification Head with 150 epochs. 
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xi. Test Sensitivity per epoch and Average Sensitivity, across all folds using Linear 

Classification Head with 150 epochs. 

 
xii. Test Specificity per epoch and Average Specificity, across all folds using Linear 

Classification Head with 150 epochs. 

 
xiii. Test Loss per epoch and Average Loss, across all folds using Linear Classification Head 

with 150 epochs. 

 
xiv. Accuracy of each fold using Linear Classification with 30 epochs 
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xv. Sensitivity of each fold using Linear Classification with 30 epochs 

 
 

xvi. Specificity of each fold using Linear Classification with 30 epochs 

 
xvii. Loss of each fold using Linear Classification with 30 epochs 
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xviii. Accuracy of each fold using MLP Classification Head with 150 epochs 

 
xix. Sensitivity of each fold using MLP Classification Head with 150 epochs 
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xx. Specificity of each fold using MLP Classification Head with 150 epochs 

 
xxi. Loss of each fold using MLP Classification Head with 150 epochs. 

 
xxii. Test Accuracy per epoch and Average Accuracy, across all folds using MLP Classification 

Head with 150 epochs.   
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xxiii. Test Sensitivity per epoch and Average Sensitivity, across all folds using MLP 

Classification Head with 150 epochs.  

 
xxiv. Test Specificity per epoch and Average Specificity, across all folds using MLP 

Classification Head with 150 epochs. 
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xxv. Test Loss per epoch and Average Loss, across all folds using MLP Classification Head with 

150 epochs. 

 
 

xxvi. Test Accuracy of all folds using MLP Classification Head with 30 epochs. 
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xxvii. Test Sensitivity of all folds using MLP Classification Head with 30 epochs. 

 
xxviii. Test Specificity of all folds using MLP Classification Head with 30 epochs. 

 
xxix. Test Loss of all folds using MLP Classification Head with 30 epochs. 
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xxx. DINOv2 compatible transformations on thermal breast images (colorization, normalization 

and resizing of images). 
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xxxi. Stratified-K(5)-Folds for the creation of training, validation and testing set.  
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xxxii. Final Implementation of Linear Classification Head : Training, Evaluation and Testing. 
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xxxiii. Final Implementation of MLP Classification Head: Training, Evaluation and Testing. 
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xxxiv. Example of Cropped Image which was excluded from the dataset: Missing Front View of 

Both Breasts [27]  
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