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Abstract 

 

Over the past decade, cloud computing powered by the usage of microservices software 

architecture, has transformed application development from the traditional monolithic 

approach. Many major corporations have transitioned to the usage of microservices, aiming to 

leverage their flexibility, scalability and efficiency to improve their application development 

process and overall Quality of Service. However, despite their benefits, microservices also face 

several implications. 

 

In this thesis I explore how the cluster size and the mapping of microservices to nodes can 

affect the performance and the power consumption of a microservice-based latency-critical 

application. The benchmark application chosen for the experiments of this thesis is one of the 

five end-to-end services developed as part of the DeathStarBench benchmark by the SAIL 

group at Cornell University [1]. My research reveals that deployment strategies significantly 

impact both application performance and power efficiency. For instance, while increasing 

cluster size does not always guarantee better QoS, strategic node mapping can improve latency 

and manage power consumption effectively. These findings highlight the necessity of 

balancing trade-offs in deployment strategies to enhance both power efficiency and application 

performance. 
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Chapter 1 

 

Introduction 

 

 

1.1 Problem 

1.2 Contribution 

1.3 Outline  

 

 

1.1 Problem 

 

As more technology companies transition from a monolithic approach to building their 

applications to a microservices-based one, it has become crucial to study and evaluate this 

approach. Consequently, there is a need to explore the capabilities and limitations of a system 

that utilizes microservices, and to determine how to achieve maximum efficiency. The primary 

objective of this study is to examine how different mappings of microservices to nodes, can 

impact the performance and the power consumption of a microservice-based application. 

To achieve this objective, we first investigate the functionalities and characteristics of the 

microservice-based benchmark used in this study. This is crucial in understanding later the 

results of the experimental evaluation. Once we gain a general understanding of the application, 

the microservice software paradigms and the hardware configuration of the evaluated system 

we move onto experimental evaluation. In the experimental evaluation we investigate the 

effects of the cluster size and the mapping of microservices to nodes on the performance of the 

benchmark and the power consumption of the system. Besides performance metrics such as 

average response time and 99th tail latency, we also collect C-state related metrics and the 

machine power consumption in order to gain a better understanding of node utilization. 

1.2 Contribution 
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This thesis contributes to the understanding of microservices architecture in the context of 

latency-critical systems. Other papers such as ‘An Open-Source Benchmark Suite for 

Microservices and Their Hardware-Software Implications for Cloud & Edge Systems’ [1] have 

already examined the performance of a microservices application and the machine utilization 

when deploying benchmark microservices application on a cluster of nodes. The experiments 

conducted in my work, further contribute to this, by also exploring all the different ways of 

distributing the various components and services of an application on multiple machines. 

Notably, my research found that while separating critical path services can introduce additional 

latency, strategic distribution of these services can optimize both application performance and 

power consumption. 

At a more advanced advance research level, papers like Cost-efficient Management of Cloud 

Resources for Big Data Applications [2], decide their mapping strategy that aims to achieve 

better performance and efficiency, through the use of mathematical models, dynamic 

scheduling algorithms and reinforcement learning (RL) models. In my work the grouping and 

separation of services of the microservices benchmark application is based upon the 

functionality of each one, and the creation of different mappings is done through an exhaustive 

search which involves evaluating all possible solutions to find the optimal one. 

Additionally, this work also aims to simplify and automate the process of deploying the 

benchmark application on cloud platform nodes, as well as of collecting, and presenting 

different metrics in plot form, so as to evaluate the performance of the benchmark and the 

utilization of the nodes. The deployment and collection of metrics is achieved through the usage 

of a repository consisting of a stable version of the benchmark microservices application, 

profiling tools, several deployment bash scripts, as well as data processing and plotting python 

scripts. 

 

1.3 Outline 

 

The contents of this paper consist of 8 chapters. Chapter 2 presents latency critical systems and 

metrics used to evaluate the performance of such systems. Chapter 3 analyses the architecture 

of a microservices application, as well as its key components and technologies used. It also 

highlights the advantages and implications of microservices and compares them to the 
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monolithic approach. Chapter 4 includes an overview of the DeathStarBench suite and explores 

the benchmark I used for my thesis called Social Network, in detail. Chapter 5 presents the 

cloud platform used to conduct my experiments, the setup and configuration of the machines 

used, and the metrics captured and presented in the result plots. Chapter 6 describes the 

mappings created and used for my experiments in detail, and their potential effect on key 

performance parameters. Chapter 7 presents the results from my experiments in plot form with 

the addition of a comparison between different mappings and observations, and conclusions 

derived from them. Chapter 8 includes related work done by other researchers and 

undergraduate students. Lastly, chapter 9 concludes the knowledge and findings found from 

my experiments and overall procedure of writing this paper and describes future work that can 

be done extending on the work done in this thesis. 
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Chapter 2 

 

QoS and latency-critical system evaluation metrics 

 

 

2.1 Latency-critical systems 

2.2 Average latency 

2.3 Tail latency 

2.3 Executed and dropped requests 

 

 

2.1 Latency-critical systems 

 

Latency-critical systems are systems that have strict response time requirements, meaning that 

they must react quickly within a set time frame upon receiving input or a request. Some 

examples of such systems are web search engines, financial trading platforms, online gaming, 

and real time analytics.  

Various metrics are used to evaluate the Quality of Service (QoS) and performance for these 

systems. The following 3 sections explain each metric in detail. 

 

2.2 Average latency 

 

Average latency, also known as the mean response time, is the arithmetic average of all 

response times for a given set of requests. This metric is important and helpful when we want 

to form a general idea of the typical response time for a system or application. However, the 

average latency values can be skewed by outliers or by a long tail in the distribution of response 

times. In order to evaluate a system in detail, and form a complete picture of the latency 

distribution, we often use percentiles such as P90 and P99. This metric is called tail latency.  
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2.3 Tail latency 

 

Tail latency refers to the cases where the time of completion for a request or action is among 

the highest values within a given set of requests. These underperforming requests generally fall 

within the range of the 90th to the 99th percentile. Tail latency calculation involves measuring 

all request latencies and determining the latency of the slowest request at the 99th percentile or 

at any other percentile, depending upon what the system aims to achieve. This value is then 

checked to see if it falls within an acceptable range or if measures need to be taken to reduce 

it. Figure 1 [3], shows an example plot regarding percentile ranges for latency values. In this 

figure we can see, for example, that HAProxy Multi-Threaded has a value of 1000 milliseconds 

for 99th percentile tail latency. This means that 99% of requests will be served with response 

times within this time frame (< 1000ms), while the remaining 1% of requests will experience 

larger response times. 

Maintaining low tail latency in real-life latency-critical systems is crucial, because it ensures 

that 99% of clients (or the majority depending on the percentile value) will be served within 

acceptable times. When we only consider average latency, we ensure that 50% of the clients 

experience low response times, while the remaining 50% possibly experience higher response 

time making their experience much worse. This makes tail latency the preferred metric used 

by software companies, when aiming to provide good QoS to the majority of their clients. 

 

 

Figure 1 Percentile ranges for latency values [3] 
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Another important test for detecting underperforming requests in latency-critical systems is a 

strain test, which involves gradually increasing the system’s workload until it reaches its 

capacity and can no longer respond. The workload in such systems is typically measured in 

queries per second (QPS), which represents the number of incoming requests arriving every 

second. 

 

2.4 Executed and dropped requests 

 

Limiting the underperforming requests to 1% or even below 1% can become very challenging 

especially in latency-critical systems that experience large amounts of request traffic. Delayed 

requests typically occur due to limited resources, network delays or software issues.  

Except from longer response times for a percentage of requests, subsequent failure can occur 

in the form of requests being dropped, meaning some requests will not be executed at all. When 

a system experiences higher than expected request traffic and requests are dropped, QoS and 

the reputation of a system is degraded even more than higher latency values. In our experiment 

analysis, we present metrics correlated with a range of QPS values, including a small range of 

higher QPS values where the system begins to drop requests. These instances are shown solely 

to determine the exact QPS threshold at which the system starts dropping requests. 

Consequently, these cases are not used for evaluation purposes, as the behaviour in such 

scenarios is unstable and unpredictable, preventing us from drawing accurate conclusions from 

the results. 
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Chapter 3 

 

Microservices advantages and implications 

 

 

3.1 Microservices software architecture 

3.1.1 REST API 

3.1.2 Remote Procedure Call 

3.1.3 Docker 

3.1.4 Docker Swarm 

3.2 Microservices advantages 

3.3 Microservices implications 

3.4 Comparison between monolithic and microservices 

 

 

3.1 Microservices software architecture 

 

In modern software architecture, microservices represent an innovative approach aimed at 

decomposing an application into a series of small services. Each microservice is specifically 

implemented to fulfill a specific functionality of the system. With this approach each 

microservice can be individually developed, deployed, and scaled. Figure 2 [4] is a typical 

microservices application structure, illustrating its components, including clients, API gateway, 

containers, microservices and the data storage. 
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Figure 2 Microservices application structure [4] 

 

Using containerization technologies, we can provide each microservice with its own runtime, 

libraries, and dependencies by isolating the microservice in its own container. Given that each 

microservice is isolated from the others, the microservices cannot directly communicate with 

each other. Communication is achieved through the use of an API (Application Programming 

Interface) and RPCs (Remote Call Procedures).  

 

3.1.1 REST API 

REST APIs, or Representational State Transfer Application Programming Interfaces, are a type 

of software interface that enables web applications to communicate with each other over the 

internet. They use HTTP requests such as GET, POST, PUT, DELETE and typically JSON 

(JavaScript Object Notation) as a format for data transfer. REST APIs are stateless, meaning 

they do not store any data regarding the client session on the server. All the information needed 

to execute a request is contained within the request itself from the client to the server. APIs are 

widely used due to their simplicity and scalability. 

In the context of microservices software architecture, REST APIs play a crucial role in 

facilitating communication between different microservices. More specifically, each 

microservice shows its functionalities through a REST API, allowing other services to access 

them and use them. This allows each microservice to remain independent and loosely coupled.  
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3.1.2 Remote Procedure Call 

Remote Procedure Call (RPC) is a communication protocol used in distributed systems with 

the purpose of allowing a program to cause a subroutine or procedure to execute in another 

address space as if it were a normal local procedure call. This can be done without the 

programmer having to manually code the details for the remote interaction. RPCs are based on 

a client-server model, where a client makes a request, and the server acts based on the requests. 

With this abstraction, developers can design their application in a more modular way and 

maintain communication between different components. There are two types of RPCs: 

asynchronous and synchronous. In synchronous RPC, the client waits for the server to respond 

before continuing its execution, while in asynchronous RPC, the client continues its execution 

without waiting for a response from the server. 

RPCs play a crucial role in the microservices software architecture in terms of facilitating 

communication between the various microservices. As explained before the microservices 

don't have direct communication with each other. Using RPCs, communication is made 

possible through the exchange of structured messages over the network. The difference 

between RPCs and REST APIs is that RPCs are more commonly used for communication of 

the microservices within the same system, whereas REST APIs are mostly used for external 

communication. 

 

3.1.3 Docker 

Docker is an open source, widely used platform that enables developers to develop, deploy and 

run applications with containers without having to manage infrastructure. Docker can be used 

via the command line interface (CLI) in a Linux terminal or through a GUI desktop application. 

Containers are lightweight, standalone, executable packages that include the necessary 

components to run an application, which are the code, runtime, system tools and system 

libraries. Unlike traditional virtual machines, containers share the host system’s kernel and do 

not require a separate operating system making them more efficient and lightweight. 

This makes docker suitable for use in the deployment and scaling of microservices. By 

encapsulating each microservice in an individual container it provides it with its own runtime, 

libraries, and dependencies thus increasing portability and scalability of the microservices. 

Additionally, docker eliminates the ‘it works on my machine’ problem often encountered in 
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software development and deployment, as it can easily be deployed across different 

environments. 

 

3.1.4 Docker Swarm 

Docker Swarm is a tool within docker. The added features compared to Docker as described in 

the previous section, is that it allows developers to manage a cluster of hosts or nodes, while 

treating them as a single virtual Docker host. A swarm is a collection of nodes that contain one 

manager node and several worker nodes. The manager node assigns a different workload or 

group of services to each worker node and in turn the worker nodes execute their assigned 

workload. This makes it ideal for usage in the deployment of services on multiple machines. 

In the context of this thesis, Docker Swarm was used to create different configurations for the 

deployment of services from the microservices benchmark application on multiple machines. 

 

3.2 Microservices advantages 

 

Microservices have emerged as a preferred architectural approach due to the several advantages 

they offer. They achieve good scalability, due to the architecture allowing individual 

components to be scaled independently, making it easier to manage resources efficiently and 

handle different levels of workloads. Additionally, due to their flexibility and agility, 

microservices allow faster development and deployment cycles making updates and 

modifications easier. Another significant advantage is fault isolation. Because the services are 

designed to operate independently, identifying, and isolating faults in a given system is much 

easier. This means that failure in one microservice does not necessarily impact the system, 

ensuring higher availability and reliability. Furthermore, microservices allow for the use of 

different technologies and programming languages or frameworks, enabling development 

teams to choose the most suitable technology for creating each microservice and its 

functionalities. Lastly, DevOps methods are promoted through the use of microservices by 

facilitating continuous delivery and integration, reducing time to market and improving overall 

software quality. 

 

3.3 Microservices implications 
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Even though microservices offer many benefits, they also face certain challenges and 

implications. As the number of services is very large, microservices introduce a higher level of 

complexity, especially in terms of deployment, monitoring, and debugging. Managing all the 

microservices requires additional effort and resources. Furthermore, communication between 

all the microservices can introduce overhead latency to the system. Another challenge 

microservices face is the difficulty of ensuring data consistency across multiple services, due 

to each service having its own storage and caching mechanisms. Overall, developing and 

maintaining a microservices-based application requires additional effort, as developers need to 

coordinate the interaction between different services and ensure consistency and compatibility. 

 

3.4 Comparison of monolithic and microservices 

 

Although microservices is the preferred architecture chosen over the traditional monolithic, 

due to the several advantages they offer, as presented in section 3.2, the monolithic software 

architecture still offers some significant benefits. Because all parts of the application are 

contained within a single codebase containing the user interface, business logic and data access, 

the monolithic approach offers simplicity, ease of deployment and ease of testing. Lastly, 

Quality of Service restrictions are not as strict in monolithic architecture compared to 

microservices, where communication between the services is the dominant factor, introducing 

additional latency. For example, if we consider a monolithic application that has QoS 

constraints for the 99th percentile tail latency being under 10 milliseconds. Implementing an 

equivalent microservices application consisting of 10 different microservices, will require each 

of the 10 services to have tail latency under 1 millisecond to maintain the overall tail latency 

of the application under 10 milliseconds. However, the value of 1 millisecond tail latency for 

each microservice, does not account for the additional overhead latency introduced by the 

communication between these 10 microservices, which in most cases are deployed on different 

nodes. Overall, when developing a monolithic application, overhead latency introduced by 

communication is not as significant as in the microservices architecture, and meeting the same 

QoS restrictions becomes more difficult and complex when using a microservice architecture 

to implement an equivalent application.  

 



   
 

12 
 

Chapter 4 

 

DeathStarBench Benchmark suite 

 

 

4.1  DeathStarBench Overview 

4.2  Social Network architecture and technologies 

4.3  Social Network workloads 

4.3.1  Compose-Post 

4.3.2  Read Home-Timeline 

4.3.3  Read User-Timeline 

4.3.4  Mixed-Workload 

 

 

4.1 DeathStarBench Overview 

 

The DeathStarBench suite, introduced in the associated paper [1], is an open-source benchmark 

suite designed for microservices, developed by the SAIL group at Cornell University. For its 

implementation open-source applications and technologies are used, including NGINX, 

Memcached, MongoDB and MySQL. Most of the source code is built upon these technologies 

and the connection between the microservices is done using Apache Thrift, gRPC, or HTTP 

requests. Utilizing the flexibility of microservices, the DeathStarBench applications and their 

services use different programming languages for their implementation, including C/C++, Java, 

JavaScript, Python, Ruby, Go, Lua, and Scala. The benchmark applications offered in the suite 

cover the full functionality of a real world used system of the same nature and have the 

necessary components such as Frontend and load balancing, microservices logic, and databases 

and caching. These benchmarks extend beyond the typical 2-tier benchmarks of direct 

communication between server and client, meaning that they enter more complex call flows. 
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4.2 Social Network architecture and technologies 

 

The Social Network includes core functionalities of a real-world social network such as 

Facebook and Twitter. The functionalities include user creation, following other users, creating 

posts, and viewing posts created by other users. In total, the Social Network has 36 different 

services, with each service having its own container. The load balancing of HTTP requests 

from the users is handled by NGINX and the storage and caching by MongoDB, Memcached, 

and Redis. More specifically, Memcached acts as specific caching for each microservice, and 

MongoDB stores all the relevant data for the functionalities that each microservice implements. 

The microservices use php-fpm for communication, while for inter-service communication 

Apache Thrift RPCs are used. Additionally, the benchmark uses Cassandra and Jaeger to 

capture data that represents traces for the requests of the users. Figure 3 below [1], illustrates 

the architecture of the Social Network and the dependencies between the microservices. 

Figure 3 Social Network Architecture and Dependency Graph [1] 

 

The number of users for the Social Network is determined by the choice from the three 

available user datasets available in the benchmark. The three datasets are distinguished by their 

sizes which are small, medium, and large. These varying dataset sizes allow users and 

researchers of the benchmark to examine the behaviour and the performance of the application 

based on the number of users created. The small dataset, which is the one used for the 
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experiments conducted in this thesis, includes 962 nodes which represent the number of users, 

and 18 800 edges which represent the connections between each user. The medium dataset 

contains 81,306 nodes and 1,768,149 edges while the large user dataset consists of 456,000 

nodes and 835 400 edges. 

 

4.3 Social Network workloads 

 

Besides allowing the user of the benchmark to select from varying sizes of user datasets, the 

Social Network also offers several workloads with major differences between them. The 

workloads are Compose-Post, Read Home-Timeline, Read User-Timeline and Mixed-

Workload. The workloads for each functionality can be generated by running Lua scripts 

implemented in the source code of the benchmark. The inputs to the scripts, provided by the 

user of the benchmark, define the duration and the QPS for running a specific workload. The 

following subsections present each of these scripts in detail. 

 

4.3.1 Compose-Post 

This script generates random content and metadata, designed to simulate the process of creating 

a post on a social media platform. More specifically, to achieve this the script first sets up 

random seed values and defines a character set used later for generating random strings that 

represent the text contents of the post. Then it selects a user index that represents the account 

of the user creating the post; based on the selected index it generates a username and a user ID. 

The post can also include user mentions, URLs, and other forms of media content. The number 

of appearances for each post element is determined randomly by the script, with the upper limit 

being 5 for mentions and URLs and 4 for the media content. Finally, to simulate the action of 

the user submitting a post on the platform, an HTTP POST request is created, which consists 

of the username, user ID, text content, media IDs, media types and post type. The number of 

times this procedure is repeated is based upon the input given to the script which, as described 

above, is the QPS and the duration which the workload will run for. 

 

4.3.2 Read Home-Timeline 
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This script aims to emulate the client making requests to read the home timeline of a user.  

Initially, it selects the user ID that represents the user whose home timeline will be accessed.  

The ID is selected randomly in the range of 1 to 962. Once the user is determined and selected, 

the script then selects a post from the first 100 posts of the selected user and sets that post as 

the start of the range of posts that will be retrieved. The range for the retrieved posts stops after 

10 consecutive posts starting from the selected post. Then to finalize, an HTTP GET request is 

constructed containing the information selected previously by the script to retrieve the posts 

from the user that has been selected.   

 

4.3.3 Read User-Timeline 

Read User-Timeline works in the same way as the Read Home-Timeline script with the key 

difference being that the posts being read are retrieved from the own user’s timeline and not 

from other users' posts appearing in the selected user’s home timeline. All the experiments 

conducted in this thesis use the Read User-Timeline script to create the workload. 

 

4.3.4 Mixed Workload 

With the Mixed Workload script, the workload generated from it consists of a combination of 

the actions described in the previous three scripts. To decide the type of each request, ratios 

representing the probability for each of the three scripts described above have been assigned. 

The probability for Compose Post is set to 0.1 (10%), for Read Home-Timeline to 0.6 (60%) 

and for Read User-Timeline to 0.3 (30%). These probability weights are not randomly set; they 

are statically assigned and remain the same with each run. However, the randomized nature of 

selecting posts and users within the procedures of each of the three scripts remains the same as 

described in the individual sections for each of the scripts.           
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Chapter 5 

 

Experimental methodology 

 

 

5.1  Establishing a cloud experimentation environment 

5.2  Benchmark setup 

5.3  Baseline configuration 

 5.3.1 C-states 

 5.3.2 Un-core frequency and DVFS 

 5.3.3 Scaling governor 

5.3.4 SMT 

5.4  Metrics captured  

 

 

5.1 Establishing a cloud experimentation environment 

 

In order to run my experiments, I had to gain access to a cloud platform. The platform I used 

is called Cloud Lab [4] which enables users to conduct experiments and research by connecting 

to the various nodes offered, through a SSH connection. The physical nodes are divided into 

six different clusters, Utah, Clemson, Wisconsin, Apt, Massachusetts and Emulab. The user 

has the option to choose from any of the physical nodes offered in each cluster. Cloud Lab also 

allows the user to create experiments using pre-defined profiles created by the user or profiles 

offered from the project the user is a member of. The profiles contain the desired experiment 

parameters, such as the type of nodes, the topology, OS version, desired pre-installed libraries 

and packages, and any other procedures the user wants to always execute when instantiating 

an experiment. Figure 4 [5] showcases the setup of a Cloud Lab experiment. 
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Figure 4 Cloud Lab experiment setup [5] 

 

After completing the setup and creation of the experiments the user is provided with a SSH 

command for each of the nodes that have been reserved, to connect to the machines through a 

UNIX command line.  

The platform has a strict policy on experiment duration. It limits the duration to 16 hours and 

if users wish to run an experiment for longer than this, they have to a request for an extension 

that must include an explanation for the request to be approved. Due to the limited experiment 

duration, I had to utilize the scp UNIX command to transfer the experiment results to my local 

Linux machine.   
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The nodes chosen to run my experiments are called c220g5 and are part of the Wisconsin 

cluster. The c220g5 machines have the following hardware specifications [5]: two Intel Xeon 

Silver 4114 10-core CPUs running at 2.20 GHz, 192GB ECC DDR4-2666 Memory, one 1 TB 

7200 RPM 6G SAS HD, and one Intel DC S3500 480 GB 6G SATA SSD. Networking 

capabilities include a dual-port Intel X520-DA2 10Gb NIC and an onboard Intel i350 1Gb NIC.  

 

5.2 Benchmark setup 

 

To setup the Social Network benchmark application on the Cloud Lab nodes I had to clone the 

repository I maintained that includes a stable version of the application, setup and deployment 

bash scripts, python plotting scripts and profiling tools. The public repository can be found on 

GitHub:  https://github.com/cconst10/Ptix-Fork , and it contains a README file called 

SetupAndRunREADME.md that explains the specific technical details of the steps needed to 

setup the benchmark and run the experiments. In the setup of the benchmark application one 

of the reserved nodes always acts as a client. By running the script called baseline.sh on the 

client node the following actions are executed on all the other nodes: which are cloning the 

repository, installing required language versions, libraries, packages, and configuring machine 

characteristics. Additionally, through this script other deployment scripts are executed. 

Specifically, for each experiment the baseline.sh script was modified to call a different 

deployment script based on the nature of the experiment, for example deployment of the Social 

Network using Docker Compose or deployment using Docker Swarm. The input parameter of 

baseline.sh is the number of nodes minus 1 to exclude the node acting as the client. Once the 

script is finished executing, the application is setup, and the machine is configured to the 

desired baseline characteristics that will be presented in detail in the following section.  

 

5.3 Baseline configuration 

 

For all the experiments in this thesis the machine configuration remained the same. The 

baseline configuration is as follows: 

 

https://github.com/cconst10/Ptix-Fork
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5.3.1 C-states 

The first power saving technology altered in my baseline configuration are the C-states. C-

states serve as power-saving modes integrated into modern processors to reduce power usage 

during periods of inactivity. These modes utilize techniques such as Dynamic Voltage 

Frequency Scaling (DVFS) and power gating to optimize energy efficiency. DVFS 

dynamically adjusts voltage and frequency, while power gating selectively disables power to 

inactive cores or components. For instance, Intel's Skylake architecture, which is the 

architecture that the processors of the c220g5 nodes I used for my experiments are built on, [6] 

incorporates various C-states, including C0, C1, C1E, and C6, each offering different levels of 

power-saving capabilities. The C0 state represents full operational mode, where cores are 

actively processing tasks. In contrast, C1 and C1E signify low-power idle states, with C1E 

facilitating quicker transitions to active mode. Meanwhile, the C6 state represents a deeper 

sleep mode, shutting off power to cores to achieve substantial energy savings. However, 

transitioning in and out of C6 can introduce latency, impacting system responsiveness, which 

is crucial especially in applications with strict processing requirements such as the benchmark 

used in this thesis. Nevertheless, the power gating mechanism used in C-states plays a pivotal 

role in reducing power consumption, thereby enhancing overall energy efficiency in computing 

systems. 

For my experiments, only C0 and C1 where enabled, in order for the processor to be able to be 

fully operational when the system experienced more demanding benchmark workloads, but 

also to enter a less operational and more power saving state under less demanding workloads. 

 

5.3.2 Un-core frequency and DVFS 

The base frequency of the Intel Xeon Silver stayed the same at 2.2 GHz, but un-core frequency 

of the processor was set to 2GHz and Intel’s turbo boost frequency altering technology was 

disabled. Turbo boost is a specific implementation of DVFS for Intel processors. DVFS 

dynamically adjusts the voltage and frequency of a processor to optimize power consumption 

and performance. It aims at striking a balance between power efficiency and computational 

performance by scaling voltage and frequency based on workload requirements and system 

conditions. 

 

5.3.3 Scaling governor 



   
 

20 
 

The Scaling governor is a component within the Linux kernel responsible for determining the 

CPU frequency based on system load and power management policies. It works together with 

DVFS mechanisms to adjust the CPU frequency dynamically. It offers 4 modes each with 

different trade-offs between performance and power consumption, allowing the users to choose 

one based upon their specific workload and power consumption demands. The 4 modes are 

Performance, Powersave, Ondemand, and Schedutil mode. For the baseline of my experiments 

the Scaling governor was set to Performance mode, which keeps CPU frequency to the 

maximum allowed value regardless of any changes in load. 

The above described DVFS and Scaling governor configuration decisions used in my baseline, 

ensured that during my experiments the frequency stayed consistent without turbo boost or the 

scaling governor intervening and increasing the frequency. 

 

5.3.4 SMT 

Furthermore, Simultaneous Multi-Threading (SMT), which is a performance-enhancing 

technique in modern processors that allows one physical core to function as multiple logical 

cores, was disabled in my machine configuration. SMT aims to improve the processor’s 

performance, more specifically in tasks that include multitasking or parallel execution. 

However, SMT was disabled in my baseline configuration, to ensure that the two virtual 

instances of the 10-core Intel Xeon Silver 4114 processors do not interfere with each other by 

competing for the same physical core resources. 

 

5.4 Metrics captured 

 

All the metrics captured through my experiments in this thesis, are presented in relation to the 

value of Queries Per Second (QPS). The metrics are the following: 

First are tail and average latency values. Tail latency is calculated for the 99th percentile, in 

order to evaluate the Social Network under the strict requirements of a real-world latency- 

critical system. 
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Furthermore, the experiments capture the number of total requests executed and the total 

number of dropped requests. These metrics allows us to determine when the system becomes 

overwhelmed and reaches its threshold leading to requests being dropped. 

Additionally, using a profiling tool called profiler, which can be found on GitHub [7] 

https://github.com/hvolos/profiler , I captured the C-state residency and C-state transitions. C-

state residency measures the percentage of time a processor spends in each power-saving C-

state, indicating how long it remains in various idle states versus being active. Whereas C-state 

transitions refer to the number of times the processor switches between different C-states, 

capturing how frequently it moves in and out of low-power modes. Metrics regarding C-states 

aid in the understanding of the machine’s behaviour under specific workloads and how the 

efficiency is impacted when the processor enters a different C-state. 

The last metric shown in my experiment results is machine power consumption measured in 

Watts for the two sockets of the c220g5 nodes and for the DRAM memory. Power consumption 

metrics were collected through RAPL (Running Average Power Limit) counters which are 

hardware registers in Intel processors that measure energy consumption for machine hardware 

components, like the CPU package, cores, and DRAM. They provide precise joule-based 

metrics, giving us a detailed analysis of system power usage. By examining the power 

consumption, we can understand and determine how the different methods of mapping the 

services to multiple machines impact the energy efficiency under the same workload. 

 

 

 

 

 

 

 

 

 

 

https://github.com/hvolos/profiler
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Chapter 6  

 

Mapping strategies and performance considerations 

 

 

6.1 Deployment mappings analysis 

6.2 Mapping choice impact 

 6.2.1 Mapping Strategies and their effect on key performance parameters 

 

 

6.1 Deployment mappings analysis 

The experiments in this thesis consist of 8 different deployments mappings. The first mapping 

deploys the Social Network on a single node using Docker Compose. For this experiment 2 

nodes in total were used with 1 node acting as a client, and the other node hosting all the 

services and application components.  

In order to determine the effects of cluster size and different mapping configurations for the 

deployment of the benchmark, I split the application’s components into 4 teams based upon 

their purpose and functionality. The 4 teams are Frontend, Logic and Tracing, Caching, and 

Databases/Storage. Using these 4 teams, I calculated all the possible distinct mappings that 

could be created for a cluster of 2 nodes, which are the remaining 7 of the 8 total experiments 

I will be presenting. Figure 5 indicates the services each of the 4 teams I created consist of, 

while Figure 6 shows the single node deployment and the 7 different 2 node mappings created 

with their associated shorter aliases used to identify each mapping on the result plots in Chapter 

7. For the experiments of these 7 2 node mappings Docker Swarm was used for deployment; 3 

nodes were used in total, with one of the nodes acting as a client and the other 2 nodes being 

used to deploy and run the application’s services and components. 

 



   
 

23 
 

Team Services 

Team 1: Frontend media-frontend, nginx-web-server 

Team 2: Logic and Tracing compose-post-service, home-timeline-

service, media-service, post-storage-

service, social-graph-service, text-

service, unique-id-service, url-shorten-

service, user-mention-service, user-

service, user-timeline-service, jaeger-

agent, jaeger-query 

Team 3: Caching home-timeline-redis, media-memcached, 

post-storage-memcached, social-graph-

redis, url-shorten-memcached, user-

memcached 

Team 4: Databases/Storage media-mongodb, post-storage-mongodb, 

social-graph-mongodb, user-mongodb, 

user-timeline-mongodb, jaeger-collector, 

cassandra-schema, cassandra 

Figure 5 Teams and services 

 

 

Mapping Name Alias 

Single Node FLCD 

Node0: Frontend and Databases 

Node1: Logic and Caching 

F,D – L,C  

Node0: Frontend and Caching 

Node1: Logic and Databases 

F,C – L,D 

Node0: Frontend and Logic 

Node1: Databases and Caching 

F,L – D,C 

Node0: Frontend, Logic, and Databases 

Node1: Caching 

F,L,D - C 

Node0: Frontend, Logic, and Caching 

Node1: Databases 

F,L,C - D 

Node0: Frontend, Databases, and 

Caching, Node1: Logic 

F,D,C - L 

Node0: Logic, Databases, and Caching 

Node1: Frontend 

L,D,C - F 

Figure 6 Mappings and aliases 

 

6.2 Mapping choice impact 

 

The choice of deployment mappings can significantly influence the performance and efficiency 

of the benchmark application. This following subsection, examines the anticipated impact of 
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different mapping configurations on key performance metrics, considering factors such as 

resource allocation, workload distribution across nodes and communication overhead.  

6.2.1 Mapping Strategies and their effect on key performance parameters 

The specific deployment mappings used in this study may create diverse performance 

outcomes for the benchmark application. Configurations that distribute two teams per node aim 

to balance workload and service distribution, potentially optimizing resource utilization and 

minimizing communication overhead. Conversely, mappings with three teams on one node and 

one team on the other might introduce resource contention, potentially impacting overall 

performance metrics such as latency, but also can serve as indicators for identifying which 

teams of services should not be separated on different machines due to the needs of the other 

three teams of services. Additionally, observing similarities in improvement or degradation of 

performance across mappings with common patterns, such as isolating specific teams of 

services from others, can provide insights into the optimal deployment strategy for the 

benchmark application. 
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Chapter 7  

 

Experiment results and evaluation 

 

 

7.1  Experiment details 

7.2  Single Node deployment results 

7.3  Two Nodes results and comparison of all mappings 

 

 

7.1 Experiment details 

 

The metrics described in section 5.4 are presented in relation to a QPS range of 100-1000 QPS 

with an increase of 100 QPS each time to determine when the system becomes overwhelmed 

with handling too many requests. Additionally, average and tail latency are also shown in 

relation to a QPS range of 100-600 QPS, in order to examine them before dropped requests 

occur at higher QPS. The runtime of the workload for each value of 100, 200, 300 ... 1000 QPS 

is 30 seconds. For the single node deployment in section 7.2, to increase the accuracy and 

consistency of the results, each 30 second workload is repeated 5 times with each bar 

representing 1 repetition in the plots. For the comparison of different mappings in section 7.3, 

the average of 5 repetitions is shown in each bar in the result plots.  

 

7.2 Single Node deployment results 

 

Before splitting the application’s components and services on 2 nodes using different mappings, 

I had to establish a solid way of deploying the application on 1 Node and get familiar with 

collecting and presenting the metrics presented in all the experiment plots. However, the 1 node 
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deployment results still provide some insightful results and allow us to examine latency and 

machine behaviour while ensuring that no additional latency is introduced due to the 

communication of components and services between multiple machines. 

 

Figure 7 Average and tail latency relative to 100-1000QPS, Single Node deployment 

 

Figure 8 Total, dropped and executed requests relative to 100-1000QPS, Single Node 

deployment 
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As shown in Figure 7 and 8, the system handles all incoming requests efficiently up to 600 

QPS. From 700 QPS and onwards, requests start being dropped, and the latency for the requests 

that are executed experiences a significantly larger increase which only becomes greater as the 

number of requests increases until it reaches 1000 QPS. This indicates that the QoS the system 

can offer is acceptable and stable within the QPS range of 100 – 600 QPS. 

 

    

Figure 9 Average and tail latency relative to 100-600 QPS, Single Node deployment  

 

Figure 9 illustrates the tail and average latency while the system is still stable and does not drop 

any requests. Average latency for the range of 100-600 QPS remains under 10 milliseconds, 

and tail latency calculated for the 99th percentile has a maximum value of 60 milliseconds at 

600 QPS. It is noteworthy that tail latency is almost 6 times greater than the average latency 

for the same workload. 
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Figure 10 C-state residency relative to 100-1000 QPS, Single Node deployment 

 

The plot in Figure 10, presents C-state residency for the QPS range of 100-1000QPS. The 

percentage value shown in this y-axis of this plot represents the percentage of time out of the 

total runtime of 30 seconds for each run. From 100 – 600 QPS we observe that the C0 residency 

increases while the number of incoming requests increases. This is expected since the processor 

must handle more requests and in turn stay in a more active C-state (C0) for larger periods of 

time. For the range of 700 – 1000 QPS, where the system is unstable and requests start being 

dropped, the time percentage spent in C0 stays the same at 75%. This is due to resource 

saturation caused by the demanding workload at higher QPS. Still, it is interesting to note that 

the system reaches 70% utilization before requests start being dropped. Most data center 

operators, when hosting latency-critical applications, aim at keeping the utilization between 5-

25% to maintain tail latency under control.  
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Figure 11 Number of C-state transitions relative to 100-1000 QPS Single Node deployment 

 

Figure 11 shows the number of C-state transitions, which are the number of times the processor 

switches between the 2 enabled C-states (C0, C1). As noted in the previous paragraph, 

evaluating the C-state residency plot, as the QPS increase the time spent in C1 decreases and 

time spent in the more active C0 increases. 

In the C-state transitions plot (Figure 11) we observe that the number of C1 transitions increases 

while the QPS increase. This suggests that even though the processors transition to C1 more 

frequently as QPS increases, they do not stay there for long time periods, which is evident from 

the increasing C0 residency observed in Figure 10. More specifically, when the system 

experiences higher workloads the processors try to enter a more idle state but are interrupted 

by the high workload demand, forcing them to spend more time in a more active state (C0), 

which leads to greater C0 residency but also a larger number of C1 transitions. Additionally, 

the frequent transitions to C1 might be influenced by power management policies that aim to 

save energy by quickly moving the processors to an idle state whenever there is a brief pause 

in activity. However, due to the high demand, these idle periods are very brief, resulting in 

numerous transitions. 
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Figure 13 Power consumption in Watts relative to 100-1000 QPS Single Node deployment 

  

In the power consumption plot for the Single Node deployment, we can see that the main 

contributors to the overall power consumption are the two processors, with both packages 

contributing almost the same number of Watts to the overall power consumption. As the QPS 

increase, power consumption for DRAM does not showcase any significant increase, whereas 

the power consumed by the 2 packages increases linearly in relation with the QPS. The increase 

of power consumption in relation to the increase of QPS aligns with the observation from 

Figure 10, which is that at higher QPS the two sockets could not enter a more power saving C-

state (C1) for long periods of time, which in turn lead to higher power consumption. 

 

7.3 Two Nodes results and comparison of all mappings 

 

In this section the plots compare the single node deployment with the 7 different 2 node 

mappings. Each of the 8 bars appearing in the plots represent the average of the metric for each 

mapping, except for power consumption where for the 7 2-node mappings the sum of the power 

consumption of the 2 machines used is displayed in each bar. 
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Figure 14 Average and tail latency relative to 100-1000 QPS, Comparison for all 8 mappings 

 

Figure 15 Dropped and executed requests relative to 100-1000 QPS, Comparison of all 8 

mappings 

 

As observed in the single node deployment the system becomes overwhelmed and starts 

dropping requests after 600 QPS. In figures 14 and 15 we can see that this is also the case for 

all the 7 2 node mappings, because even though each machine has less load to handle, the 

communication overhead between the 2 machines plays a major role in the increase in latency. 

This means that the addition of a second machine for deployment has not extended the range 
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of QPS in which the system does not drop any requests so, to determine which 2 node mappings 

offer the best and worst QoS and performance we will evaluate the results presented in the 

following figures for up to 600 QPS, while the system is still stable and handles the requests 

efficiently. 

 

Figure 16 Average and tail latency relative to 100-600 QPS, Comparison of all 8 mappings 

 

For the range of 100 – 300 QPS there isn't a significant difference in average and tail latency 

between the 8 mappings. In the range of 300 – 600 QPS it becomes evident that the best 

performing mapping in terms of average and tail latency is the mapping called F,L,C – D, 

which is the mapping that isolates databases on 1 of the nodes and deploys the other 3 teams 

of services (Frontend, Logic and Caching) on the other node. Moreover, at 600 QPS we can 

also observe that the 2-node mapping that displays the highest average and tail latency is F,L,D 

– C which isolates Caching on a single node and deploys the other 3 teams on the other node.  

Even though Caching does not store as much data as the Databases, the data transfer from 

databases to the second machine that hosts the other 3 teams of services, is not as costly to 

latency because the mapping that isolates databases on 1 machine has proven to be the best 

performing in terms of latency. This is due to the other services needing to access cached data 

very frequently. This frequent need of cached data being transferred across machines due to 

the benchmark exhibiting good data locality, trumps the latency introduced from the transfer 

of larger data from the databases between the 2 machines and their services (best performing 
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mapping – Databases isolation), making the mapping that isolates Caching on one of the nodes 

the worst performing amongst all the mappings. 

Furthermore, analysing the latency values of the mid-range deployment mappings, meaning 

the ones that don’t display the lowest or the largest latency values and comparing them with 

the best and worst performing ones reveals distinct patterns and similarities. More specifically, 

mappings that distribute workload evenly across nodes, such as F,D - L,C and F,C - L,D, 

demonstrate relatively balanced performance, with tail latency values ranging from 30-35 

milliseconds at 600 QPS. Whereas configurations deploying three teams on one node and one 

on the other, like F,D,C - L and L,D,C - F, tend to exhibit higher latency, with tail latency 

values reaching 35-50 milliseconds at 600 QPS due to increased resource contention. An 

exception is observed with mappings isolating the Databases team on one node (F,L,C – D), 

which as noted in the two previous paragraphs achieves the lowest latency values of 25 

milliseconds at 600 QPS by optimizing resource utilization, minimizing communication 

overhead, and leveraging data locality. Notably, mappings co-locating teams with frequent 

interactions, like F,L - D,C, show improved latency outcomes, with tail latency values around 

28-30 milliseconds at 600 QPS, highlighting the benefits of minimizing inter-node 

communication.  

Regarding the overall comparison between Single Node deployment and 2-node deployment 

in terms of latency we can observe that none of the 7 2-node mappings offer worse QoS 

compared to the single node deployment. Still though, the worst performing 2 node mapping 

offers almost as high latency as the single node deployment and the best performing 2-node 

mapping offers significant QoS improvements, displaying lower average and tail latency. 

At 600 QPS it is interesting to note that the single node deployment and the worst performing 

2-node mapping have a tail latency of 50 milliseconds, whereas the best performing 2-node 

mapping offers a 50% improvement, with the tail latency at 600 QPS being 25 milliseconds. 

This indicates that the careful choice of mapping when using two machines plays a more crucial 

role in latency improvements, compared to opting for the use of two machines instead of one, 

in the hopes that the added machine will improve QoS. This is evident from several 2-node 

mappings having the same or not significantly better latency values, when compared to the 1-

node deployment. 



   
 

34 
 

Figure 17 C-state residency relative to 100-1000 QPS, Comparison of all 8 mappings 

 

 

Figure 18 Number of C-state transitions relative to 100-1000 QPS, Comparison of all 8 

mappings 

 

Figures 17,18 display the average of C-state residency and C-state transitions between the 2 

machines used for the 7 2-node mappings. Each of the 8 bars seen in Figures 17 and 18 

represent the values for each mapping in the order they appear in the text labels of Figures 

14,15,16. 
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Due to some of the 2-node mappings deploying 2 teams on both nodes, and some mappings 

deploying 3 teams on 1 node and isolating 1 team on the other node, calculating and presenting 

the average C-state residency between the 2 nodes used, is better for a comparison between the 

2-node mappings, as well as for a comparison to the single node deployment. More specifically, 

this allows us to evaluate machine behaviour considering both the machines used and not only 

the node dealing with more demanding tasks.  

The trend of C0 residency increasing linearly in corelation with the QPS within the range of 

100-700 QPS, observed and discussed in section 6.2 remains true for all the 7 2-node mapping 

experiments, including the fact that after 700 QPS the C0 residency remains relatively the same 

until 1000 QPS (due to dropped queries). 

Having to handle the same workload using twice the number of machines allows the nodes 

used in the 2-node mappings to enter a more idle state (C1) for longer time periods compared 

to the single node deployment. This is evident from the plot seen in Figure 17, where none of 

the 7 2-node mappings exceed 40% of the runtime spent in C0, whereas as seen in section 6.2 

and here in Figure 17 the single node deployment shows a maximum percentage of time spent 

in C0 of 75%. 

When comparing the 7 2-node mappings with each other in terms of C-state residency, we can 

see that the average residency between the 2 machines used is almost identical for all the 

mappings.   

Regarding the number of C-state transitions, shown in the plot of Figure 18, all 7 2-node 

mappings display significantly smaller number of C1 transitions throughout all the QPS values, 

when compared to the first bar which represents the single node deployment. This is because 

the 2 nodes do not handle the entirety of the services and components of the application and 

they are not forced to exit the more idle state (C1) and transition to a more active C-state (C0) 

as frequently as the single node deployment which experiences higher utilization under the 

same workload. This aligns with the observed lower C0 residency for all QPS values that the 

2-node mappings show compared to the higher C0 residency of the single node deployment. 
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Figure 19 Power consumption in Watts relative to 100-1000 QPS, Comparison of all 8 

mappings  

In Figure 19 the power consumption in Watts is presented for all 8 mappings. For the 7 2-node 

mappings the sum of the power consumption from the 2 machines used is presented. Each of 

the 8 bars in figure 19 represent the values for each mapping in the order in which they appear 

in the text labels of Figures 14,15,16. 

Using two machines means that the idle power consumption which is the power consumption 

when the machines have no workload to handle (before the workload of the experiment starts), 

will be twice as large as the idle power consumption of 1 machine. In Figure 19, we observe 

that this is also the case for active power consumption because power consumption for all 2 

node mappings is twice as large as the single node deployment across the 100 – 1000 QPS 

range, with the exception of mapping F,L,C –D, which displays the largest power consumption 

amongst all 2-node mappings. It is interesting to note that this mapping which isolates 

Databases on one machine and the other 3 teams of services on the second machine, has the 

highest power consumption, as well as the best QoS with the lowest average and tail latency as 

seen previously in Figure 16. A possible reason for the higher power consumption of this 

mapping is the added overhead of transferring the large amounts of data from the databases 

between the 2 machines, as well as one of the two machines having to execute the more power 

intensive tasks that Frontend, Logic, and Caching require. 
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Chapter 8  

 

Related work 

 

My work shares many similarities with the undergraduate thesis ‘Cloud-Based Microservices’ 

by Stylianos Vassiliou. Both papers use the same benchmark application, delve into the 

architecture of microservices, the technologies used, the advantages and implications of 

microservices, as well as the impact of cluster size and different workloads on various latency 

critical systems’ performance evaluation metrics as well as C-states and power consumption. 

The focus of Stylianos Vassiliou’s experiments is the examination of the effect of different 

cluster sizes, different C-states enabled or disabled and isolating a specific service or services 

on a single machine. 

The key differences in my work and experiments are that the machine characteristics remain 

the same throughout all experiments with no other C-states being enabled apart from C0 and 

C1. Additionally, my work expands on the isolation of specific services on individual machines 

by dividing all components and services of the application into teams based upon their 

functionality and purpose and running experiments using all the possible ways to map the teams 

on 2 nodes so as to determine the best mapping for each metric and identify the common 

mapping patterns that lead to worse or better application performance. 

Furthermore, my work utilizes the Social Network benchmark application created by the SAIL 

team at Cornell University and expands on the experiments presented in the associated paper 

called DeathStarBench, by examining performance evaluation metrics for a greater range of 

QPS as well different ways of mapping the different components and services of the application. 
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Chapter 9  

 

Conclusion 

 

 

9.1 Conclusion  

9.2 Further work 

 

 

9.1 Conclusion 

 

The microservice architecture is quite complex, and there are a lot of aspects that impact the 

performance of a microservices application to consider and study. However, if the right 

deployment strategies are implemented and used, efficiency can be greatly improved. Through 

my research and experiments in this thesis, I have gained some important insights into how 

microservices perform. 

I have found that the use of a 2-node cluster does not ensure that the QoS will be necessarily 

better than deploying the services on a single node. The improvement of latency values depends 

heavily on the choice of separating different services and components of the application, while 

balancing the trade-offs between overwhelming certain nodes with more services and 

simultaneously considering the latency introduced by the communication overhead and data 

transfer between the nodes. The results from my experiments indicate that separating critical 

path services on different nodes introduces additional latency with the worst case being 

isolating Caching services. 

Furthermore, I have observed that examining the behaviour of the processors regarding C-state 

residency, C-state transitions and power consumption provides a better insight when designing 

a system that has good power efficiency and QoS in mind. The results from my power 

consumption experiment indicate that the mapping that provided the best QoS also had the 

highest power consumption amongst all the different mappings. This means that when choosing 
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a mapping for the deployment of a microservices application we must consider the needs and 

priorities of the system and balance the trade-offs in order to achieve the desired power 

efficiency, while also providing the users of the application with the satisfactory QoS that falls 

within the set restrictions. 

 

9.2 Further work 

 

While my work focused on examining the effects of deploying the services of a microservices 

application on a single node and a 2-node cluster, using various mappings and the same 

machine configuration, many other areas can be explored to expand upon my work that can 

provide better insights on the performance of a microservices application. 

Firstly, enabling turbo frequency technologies and increasing un-core frequency for the 

baseline machine configuration, can help determine if enhancing the machine performance can 

drastically improve the QoS of the application. Furthermore, enabling SMT can help us 

determine if the microservices leverage the parallelism capabilities of a machine that offers 

SMT to their advantage. Additionally, examining the effects of cluster sizes larger than the 

ones presented in this thesis, can provide better insights regarding the improvements in 

application and machine performance. Moreover, an additional helpful metric that could be 

captured during experiments is measuring and presenting the amounts of data transferred 

through the network between the 2 nodes used for the deployment of the application, in order 

to evaluate which types of services communicate and exchange the most amount of data. Lastly, 

deploying the benchmark application using a larger dataset of users than the one used in this 

thesis can help in the understanding of the limitations of the application and the nodes that host 

its services.   
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