
i 

 

 

 

 

  

Individual Diploma Thesis  

  

  

  

INVESTAGATING SILENT DATA CORRUPTIONS AND THEIR IMPACT IN 

LARGE LANGUAGE MODLES   

Theodoros Siokouros 

  

  

UNIVERSITY OF CYPRUS  

  

  

  

  

  

DEPARMENT OF COMPUTER SCIENCE  

  

  

  

  

May 2024  



ii 

 

UNIVERSITY OF CYPRUS  

DEPARTMENT OF COMPUTER SCIENCE  

  

  

  

  

Investigating Silent Data Corruptions – Occurrence, Manifestation, And Impact   

  

Theodoros Siokouros 
  

  

  

  

Supervisor  

Haris Volos    

  

  

  

The Individual Diploma Thesis was submitted for partial fulfilment of the requirements 

for the degree of Computer Science of the Department of Computer Science of the 

University of Cyprus  

  

 

 

May 2024  

 



iii 

 

Acknowledgements  

  

I would like to express my deepest gratitude to my supervisor, Dr Haris Volos, Professor 

at the Department of Computer Science at the University of Cyprus, for trusting me on 

this topic and for the guidance and support throughout the entire process of my Diploma 

Thesis.  

 

I would also like to thank my friends and family for their unwavering support and 

encouragement. 

  



iv 

 

Abstract 

Silent data corruptions (SDCs) pose a significant challenge in modern computational 

structures, such as cores in computing systems. These errors occur without triggering 

immediate error detection mechanisms, making them particularly insidious. SDCs can 

manifest at various levels of the computing stack within these structures, including 

memory, storage devices, and communication channels. Their occurrence threatens the 

integrity and reliability of data-driven systems within computational structures, 

potentially leading to erroneous results, system instability, and compromised security. 

Understanding the nature and impact of SDCs in computational structures is crucial for 

ensuring the robustness and dependability of critical applications. 

 

This thesis aims to delve into the impact of silent data corruptions (SDCs) within 

computational structures, such as cores, and propose effective strategies for their 

detection. Through meticulous examination and empirical analysis, the research seeks to 

elucidate the ramifications of SDCs on system functionality and data integrity specifically 

within these structures. By scrutinizing real-world scenarios and experimental data, the 

thesis endeavors to quantify the extent of SDC-induced disruptions in computational 

environments, focusing on their impact within cores and similar computational structures. 
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Chapter 1  

Introduction

 

1.1 Motivation 

1.2 Goals of the study 

1.3 Methodology 

1.4 Document Organization 

 

1.1 Motivation 

The motivation for this study stems from the increasing reliance on computing systems 

across various domains, where data integrity is paramount. As modern systems grow in 

complexity and scale, the susceptibility to silent data corruptions (SDCs) becomes a 

pressing concern. Unlike traditional errors, SDCs occur stealthily, evading detection 

mechanisms and potentially leading to erroneous outcomes with severe consequences. 

Understanding the occurrence and impact of SDCs is crucial for safeguarding the 

reliability and trustworthiness of critical applications such as financial transactions, 

healthcare systems, and scientific simulations. Moreover, as data volumes continue to 

surge and computing architectures evolve, the need for robust mechanisms to detect and 

mitigate SDCs becomes ever more imperative. 

SDCs are not a new problem, as they have been studied extensively in the context of 

memory and storage. However, the emergence of SDCs in computational structures 

presents a novel challenge. With shrinking transistor sizes, cores and computational 

units are becoming increasingly vulnerable to silent failures. These failures can occur 

within cores without triggering immediate detection, potentially compromising the 

accuracy and reliability of computational processes. Understanding and addressing 

SDCs within computational structures is essential for ensuring the continued reliability 

and performance of modern computing systems. By investigating this new frontier of 

SDCs, this study aims to contribute to the advancement of fault-tolerant computing and 

data management techniques, ultimately enhancing the resilience of critical applications 

in today's computing landscape. 
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1.2 Goals of the study 

The primary focus of this study is to delve into the nature of silent data corruptions 

(SDCs) and investigate their impact on Large Language Model (LLM) systems. By 

closely examining the characteristics and manifestations of SDCs, the research seeks to 

gain a deeper understanding of their behaviour within the context of LLM frameworks. 

Through empirical analysis and theoretical exploration, the study aims to uncover how 

SDCs manifest and propagate within LLM systems, potentially affecting model 

accuracy, training convergence, and overall system performance. By shedding light on 

the relationship between SDCs and LLM, the research aims to provide insights that can 

inform the development of more robust and resilient machine learning algorithms and 

systems. 

 

In addition to exploring the nature of silent data corruptions (SDCs) and their impact on 

Large Language Model (LLM) systems, this study also evaluates various tools for 

detecting such issues. By evaluating detection tools alongside the investigation of SDCs 

and their impact on LLM, the research aims to contribute to the development of 

comprehensive strategies for enhancing the resilience and reliability of machine learning 

systems in the face of silent data corruptions. 

 

1.3 Methodology 

The methodology employed in this study involved a multi-faceted approach to 

comprehensively investigate silent data corruptions (SDCs) and their impact on Large 

Language Model (LLM) systems. 

Initially, an extensive review of literature and existing research papers was conducted to 

gain insight into the nature and characteristics of SDCs. This phase provided a 

foundational understanding of SDC phenomena through various examples and case 

studies. 
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Subsequently, attention shifted towards a meticulous review of tools designed for SDC 

detection. The focus was on understanding the methodologies employed by these tools, 

particularly the routines through which processors were tested. This enabled a deeper 

comprehension of the tests conducted and contributed to the overall understanding of the 

problem. 

Following this theoretical scrutiny, CloudLab[6] servers emerged as the testing ground 

for the next phase. Here, a fleet of processors and cores provided the environment for 

testing the tools for SDC detection and their routines in depth. Despite the thorough 

examination, the search for a faulty processor within the CloudLab[6] infrastructure 

yielded negative results for our research as a faulty processor was not found, thus 

highlighting the challenges inherent in detecting SDCs within real-world systems. 

Undeterred by this outcome, the methodology pivoted towards a novel approach utilizing 

the capabilities of Pin[9]. With Pin[9] used as a fault injection tool, deliberate faults were 

induced into an LLM system, simulating the subtle disruptions characteristic of SDCs. 

Through meticulous experimentation and documentation, this phase facilitated a granular 

analysis of the impacts of various fault types on LLM performance. 

This methodology allowed for a comprehensive exploration of SDCs, encompassing both 

theoretical understanding and practical experimentation to provide valuable insights into 

their detection and mitigation within the context of LLM systems. In the following 

chapters the methodology used for each step of the research is explained further. 

1.4 Document Organization 

The rest of this thesis is split into six chapters. Table 1.1 reports the content 

of each chapter.  

 

Chapter Number  Chapter Description  

  

2  This chapter provides a comprehensive 

introduction to silent data corruptions 

(SDCs), exploring their definition, 
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characteristics, and significance in 

computing systems. 

3  This chapter examines various tools for 

detecting silent data corruptions (SDCs), 

including the OpendcDiagram and Intel 

diagnostic tool. 

4  Here, the focus shifts to CloudLab, where 

tests were conducted to evaluate the 

performance of servers. The chapter covers 

CloudLab tests, automations employed, 

and the results obtained. 

5  This chapter details the process of infecting 

Large Language Model (LLM) systems 

with faults. It discusses the Llama 

framework, the Pin tool used for fault 

injection, and various methods of injecting 

faults into LLM systems. 

6 This chapter presents the findings and 

results obtained from the experiments 

conducted throughout the study, including 

insights into SDC detection, CloudLab 

server performance, and the impact of 

injected faults on LLM systems. 

7 The discussion chapter summarizes the key 

findings of the study and provides insights 

into their implications. It also explores 

avenues for future research and 

enhancements in the field of SDC detection 

and mitigation. 

 

 

Table 1.1 Document Organization   
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Chapter 2 

An Overview of SDC’s  

 

2.1 What are SDC’s  

 2.2 Basic example of SDC’s  

 2.3 Impact of SDC’s and Challenges in SDC Detection and Mitigation 

 

2.1 What are SDC’s  

Silent data corruptions (SDCs) are defined as errors that occur within computing systems 

without triggering any immediate error detection mechanisms. Unlike traditional errors, 

which are typically detected and corrected through error-checking processes, SDCs 

remain latent, posing a significant challenge to the integrity and reliability of data-driven 

applications. These corruptions can manifest at various levels of the computing stack, 

including memory, storage devices, and communication channels and more recently 

computational structures, which is the focus of this thesis. SDCs may arise from a 

multitude of sources, such as cosmic radiation, electromagnetic interference, or inherent 

flaws in hardware components. The insidious nature of SDCs makes them particularly 

worrisome, as they can silently propagate throughout the system, potentially leading to 

erroneous results, system instability, and compromised security. Understanding the 

characteristics and manifestations of SDCs is paramount for developing robust strategies 

to detect, mitigate, and prevent their occurrence, thereby ensuring the dependability of 

computing systems in critical applications. 

 

2.2 Basic example of SDC’s  

One of the most notable SDC (silent data corruption) known is the one described by Meta 

in their article [1]. The article discusses the pervasive issue of silent data corruption (SDC) 

in large-scale infrastructure systems, emphasizing its potential to cause application-level 

problems and data loss. It provides insights into a real-world example of SDC within a 

data center application, where missing rows in a database resulted from a silent error 

during file decompression. Specifically, the error was attributed to a single line of code: 

"Int (1.1^53)" executed on core 59 of the CPU, yielding the unexpected result of 0 (figure 
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2.1). This anomaly disrupted the file compression process, leading to missing lines in the 

database. The article also outlines the complexity of detecting and reproducing such 

scenarios in a large-scale environment and describes the investigative process to identify 

the root cause (figure 2.2). Through meticulous debugging and analysis, the article reveals 

that silent errors can affect computations, leading to incorrect results and data 

inconsistencies. It emphasizes the importance of robust detection mechanisms and fault-

tolerant software architectures to mitigate SDCs in large-scale infrastructures. The article 

underscores the significance of understanding and addressing SDCs to enhance the 

reliability and fault tolerance of software architectures, ultimately contributing to the 

development of more reliable infrastructure computing systems. 

 

 

Figure 2.1 – Decompression Problem 
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Figure 2.2 – Debugging Flow  

2.3 Impact of SDC’s and Challenges in SDC Detection and Mitigation 

SDCs are indeed a critical concern, as evidenced by the findings outlined in the paper 

"Understanding Silent Data Corruptions in a Large Production CPU Population" [2]. The 

research delves deep into the intricacies of silent data corruptions (SDCs) within the 

expansive CPU ecosystem of Alibaba's datacenter, offering invaluable insights into their 

pervasive nature and impact. The study meticulously quantifies the frequency of SDC 

occurrences, revealing a wide spectrum ranging from as low as 0.01 times per minute to 

occurrences in the hundreds per minute across different settings. Notably, the paper 

identifies temperature as a significant contributing factor to SDCs, showcasing how the 

occurrence frequency of these errors exhibits exponential growth with increasing 

temperatures, high workload intensity and heavy system workload. Moreover, the 

researchers developed a sophisticated tool named Farron to mitigate the impact of SDCs 

efficiently. Farron stands out as an innovative solution, leveraging insights gleaned from 

the study's observations to enhance existing mitigation strategies. It prioritizes efficiency-
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focused SDC testing, utilizing adaptive temperature control mechanisms to complement 

traditional testing approaches. Through a fine-grained processor decommissioning 

process, Farron effectively identifies and isolates defective cores, thereby minimizing the 

impact on system reliability and performance. 

SDCs represent a pressing concern in modern computing environments, a reality also 

underscored by the seminal work "Cores That Don't Count" [12]. This research delves 

into the intricate realm of mercurial cores and their disruptive potential within CPU 

ecosystems. By exploring the nuanced dynamics of these cores, the study illuminates the 

complex interplay between hardware complexity, manufacturing risks, and environmental 

factors. The findings reveal that mercurial cores can manifest unexpectedly, posing 

challenges to traditional detection and mitigation approaches. Moreover, the paper 

highlights the significance of early-warning systems and robust verification mechanisms 

to address the evolving landscape of CPU defects. 
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Chapter 3 

Detection Tools 

 

3.1 Introduction 

 3.2 OpendcDiagram 

 3.3 Intel Data Centre diagnostic tool 

3.4 Tool Comparison 

 

3.1 Intoduction 

Chapter 3 of this thesis delves into the exploration of tools crucial for identifying and 

mitigating silent data corruptions (SDCs) within computing systems. As highlighted in 

previous chapters, SDCs pose significant challenges to data integrity and system 

reliability, necessitating robust detection mechanisms to safeguard against potential 

disruptions. 

 

In this chapter, we embark on a comprehensive examination of a diverse array of tools 

designed to uncover and analyze instances of SDCs across various computing 

environments. These tools encompass a range of methodologies. Each tool offers unique 

insights into the integrity of data processing systems, providing valuable information for 

enhancing resilience and fortifying defenses against data corruption. 

 

Through detailed discussions and empirical evaluations, we aim to shed light on the 

underlying principles and practical applications of these detection tools. By elucidating 

their capabilities and limitations, we seek to empower practitioners and researchers with 

the knowledge necessary to effectively assess and address the risks posed by SDCs. 

 

The subsequent sections of this chapter will offer in-depth insights into the functionalities 

and methodologies employed by each tool, offering a comprehensive overview of their 

contributions to the field of data integrity and system reliability. 
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 3.2 OpendcDiagram 

 

Overview 

 

OpenDCDiag[4], a vital resource within CPU testing, is an open-source project hosted on 

GitHub. It offers a comprehensive suite of tests built around a sophisticated CPU testing 

framework, catering primarily to Data Center CPUs while also extending its utility to a 

broader range of CPU architectures. With an emphasis on robustness and accuracy, 

OpenDCDiag[4] enables users to assess the functionality and reliability of CPU cores 

through rigorous testing procedures, scrutinizing various aspects of CPU performance 

and behavior. 

 

Key Features 

 

- Test Suite: OpenDCDiag[4] boasts a rich repository of tests, covering a broad spectrum 

of functionalities and scenarios relevant to CPU testing. These tests are meticulously 

crafted to address different aspects of CPU behaviour, ranging from floating-point 

arithmetic to memory management and system interface operations. 

 

- Supported Architectures: While primarily tailored for Data Centre CPUs, 

OpenDCDiag[4] offers compatibility with a range of CPU architectures, providing 

versatility and adaptability across different hardware platforms. 

 

- Ease of Use: The framework is designed with simplicity and accessibility in mind, 

facilitating the creation of new CPU tests with minimal overhead. Test authors can 

leverage the built-in functionality of the OpenDCDiag[4] framework to focus on specific 

test functionalities without getting bogged down by implementation details. 

 

- Fast Execution: Tests within OpenDCDiag[4] typically run within a short timeframe of 

1-2 minutes, enabling efficient validation of CPU cores without significant time 

investment. 
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- Selective Test Execution: The framework provides the flexibility to run specific tests 

individually, offering users the ability to tailor their testing procedures according to their 

requirements instead of executing the entire test suite. 

 

Test Types 

 

The tests within OpenDCDiag[4] cover a wide range of functionalities and scenarios 

pertinent to CPU validation. The main ones are shown in table 3.1: 

 

Test Explanation 

Eigen_gemm This test aims to stress test the execution (in particular FMA) by 

repetitively solving general matrix multiplication. The 

multiplication function is from the 3rd party library Eigen. A pair 

of random matrices are generated as inputs and then multiplied 

using Eigen's gemm. The multiplication result is compared 

against a golden result that is computed during initialixation. This 

test goes for double precision, complex and float input matrices. 

This variation adds extra copies and consistency checks. 

Eigen_sparse This test aims to stress test the execution (in particular FMA) by 

repetitively solving the set of linear equations represented by 

Ax=b where A is a sparse real symmetric matrix using Cholskey 

method. The decomposition function is from the 3rd party library 

Eigen. A random double precision sparse real symmetric matrix 

(A) and a random vector (b) are generated as inputs and then 

Eigen::SimplicialCholesky is used to solve the problem Ax=b. 

The result vector is compared against a golden result that is 

computed during initialization. 

Eigen_svd This piece of code aims to stress test the FMA execution units of 

the CPU, among others, by repetitively solving the singular value 

decomposition problem on given input matrices, which involve a 

lot of matrix multiplication operations underneath. 
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The logic comes from the 3rd party library Eigen. The first thread 

that gets to run computes a "golden value" of the results, those 

being output matrices "U" and "V". Subsequent runs have results 

contrasted to those golden values and, whenever they differ, an 

error is flagged. 

Eigen_svd_jacobi This particular version of the Eigen SVD test go for single 

precision input matrices and the "Jacobi" SVD algorithm.  

Simple_add simple_add repeatedly adds the same two random numbers on 

each thread and checks all threads produce the same result. 

Vector_add Vector_add repeatedly adds two arrays of random numbers 

together using AVX-512 instructions and checks that their output 

is correct. 

Openssl The test calculates 3 different checksums (sha256, sha384 and 

sha512) for a given random-generated buffer and compares the 

results against pre-calculated golden values. 

Zlib This test performs GZIP compression and decompression on 

buffers of varying compressibility. Some buffers are random data, 

and therefore not very compressible. Other buffers are still 

random but are limited to uppercase ASCII characters [A-Z], and 

therefore more compressible. For this test, a random compression 

level is used. 

Zstd This test performs ZStandard compression and decompression on 

random data. Because random data is not very compressible, it 

emphasizes different codepaths compared to the other ZStandard 

tests. 

 

Table 3.1 – OpenDCDiag main tests 

 

 

Conclusion 

 

OpenDCDiag[4] stands as a pivotal tool in the arsenal of CPU validation and verification, 

offering a robust framework for identifying and addressing defects within CPU 
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architectures. With its extensive test suite, versatile architecture support, fast execution 

times, and selective test execution capabilities, OpenDCDiag[4] provides an efficient and 

effective solution for ensuring the reliability and performance of Data Centre CPUs. It 

should also be mentioned that Alibaba reports that OpenDCDiag is equally effective as 

the home-brew tests they run for detecting SDCs. 

 

 3.3 Intel Data Centre diagnostic tool 

 

Overview 

 

The Intel Data Center Diagnostic Tool[5] is a robust solution designed specifically for 

verifying the health and performance of Intel Xeon processors deployed in Data Center 

environments. With its comprehensive suite of tests and user-friendly interface, this tool 

enables IT managers to conduct periodic maintenance and screening of their Data 

Center fleets, ensuring the highest level of ongoing quality and availability in the 

dynamic landscape of hyperscale cloud providers and enterprise Data Centers. By 

systematically assessing the functionality of each individual microprocessor core, it 

offers insights into potential faults or issues that could compromise system reliability 

and performance.  

 

Key Features 

 

- Comprehensive Testing: It conducts a suite of tests designed to methodically check 

most aspects of the system-on-chip (SoC) functionality, including core functionality, 

caches, core-to-core communications, and processor instructions. By verifying the 

correctness of processor operations with multiple tests, it can detect various types of 

faults, including Silent Data Errors. 

 

- Easy-to-Interpret Results: Upon completion of the diagnostic tests, it provides clear 

and concise test results, indicating whether the test completed successfully, detected 

machine check errors, or encountered issues with processor support or outdated 
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microcode. This enables system administrators to quickly identify any potential issues 

and take appropriate action. 

 

- Periodic Maintenance: The tool can be used for periodic fleet screening, either in 

foreground mode with a runtime of approximately 45 minutes or in background mode. 

By running periodic system maintenance, IT managers can proactively identify and 

address potential issues before they impact system performance or availability. 

 

How Does It Work? 

 

The Tool operates by executing multiple loops of code or running the same code on all 

cores, then comparing the results to ensure consistency. Random data sets are used to 

test instructions and cores, with the tool providing a straightforward pass/fail 

assessment based on the test outcomes. 

 

System Requirements 

 

- Supported Processors: The tool is compatible with a range of Intel Xeon processors, 

including various generations of Xeon Scalable Processors and specific processor 

families such as Broadwell and Skylake. 

 

- Operating Systems: The tool is available for both Linux and Windows operating 

systems, with support for current Linux and Windows distributions. It is recommended 

to run the application in the root system of a server for optimal coverage. 

 

Conclusion 

 

The Intel Data Centre Diagnostic Tool[5] stands as a valuable resource for IT managers 

tasked with maintaining the health and performance of data centre fleets. By leveraging 

a comprehensive suite of tests and providing easy-to-interpret results, it empowers 
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organizations to ensure the highest level of quality and availability in their data centre 

environments.  

 

3.4 Tool Comparison 

 

In this section we take a closer look at the differences and the similarities between the 

two tools described above in order to get a better understanding of their advantages and 

disadvantages. 

 

Scope and Purpose: 

 

OpenDCDiag[4] is an open-source project hosted on GitHub, focusing on CPU validation 

and verification. It offers a comprehensive suite of tests for assessing the functionality 

and reliability of CPU cores, with a primary emphasis on Data Centre CPUs. On the other 

hand, the Intel Data Centre Diagnostic Tool[5] is specifically designed for verifying the 

health and performance of Intel Xeon processors deployed in Data Centre environments. 

While both tools aim to ensure CPU reliability and performance, OpenDCDiag[4] caters 

to a broader range of CPU architectures beyond Intel Xeon processors. 

 

Test Suite: 

 

OpenDCDiag[4] boasts a rich repository of tests covering various CPU behaviours, 

including floating-point arithmetic, memory management, and system interface 

operations. The tests are meticulously crafted to address different aspects of CPU 

behaviour. In contrast, the Intel Data Centre Diagnostic Tool[5] conducts a suite of tests 

methodically checking most aspects of the system-on-chip (SoC) functionality, including 

core functionality, caches, core-to-core communications, and processor instructions. 

 

Architecture Support: 

 

OpenDCDiag[4] offers compatibility with a range of CPU architectures, providing 

versatility and adaptability across different hardware platforms beyond Intel Xeon 
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processors. On the other hand, the Intel Data Centre Diagnostic Tool[5] is specifically 

designed for Intel Xeon processors, including various generations of Xeon Scalable 

Processors and specific processor families such as Broadwell and Skylake. 

 

Ease of Use: 

 

OpenDCDiag[4] is designed with simplicity and accessibility in mind, facilitating the 

creation of new CPU tests with minimal overhead. It provides built-in functionality for 

test authors to focus on specific test functionalities. Similarly, the Intel Data Centre 

Diagnostic Tool[5] offers an easy-to-use interface with clear and concise test results, 

enabling quick identification of potential issues. 

 

Execution Time: 

 

Tests within OpenDCDiag[4] typically run within a short timeframe of 1-2 minutes, 

enabling efficient validation of CPU cores without significant time investment. In 

comparison, the Intel Data Centre Diagnostic Tool[5] requires approximately 45 minutes 

to complete a full suite of tests. 

 

Selective Test Execution: 

 

OpenDCDiag[4] provides the flexibility to run specific tests individually, allowing users 

to tailor their testing procedures according to their requirements. Similarly, the Intel Data 

Centre Diagnostic Tool[5] can be used for periodic fleet screening in foreground or 

background mode. 

 

Effectiveness in Detecting SDCs: 

 

It's worth noting that Alibaba reports OpenDCDiag[4] as equally effective as their home-

brew tests for detecting Single-Event Upsets (SDCs). However, there's no specific 

mention of SDC detection capabilities in the description of the Intel Data Centre 

Diagnostic Tool[5]. 
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In conclusion, both OpenDCDiag[4] and the Intel Data Centre Diagnostic Tool[5] offer 

valuable resources for assessing CPU reliability and performance in Data Centre 

environments. While OpenDCDiag[4] provides versatility across different CPU 

architectures and boasts fast execution times, the Intel Data Centre Diagnostic Tool[5] 

offers comprehensive testing specifically tailored for Intel Xeon processors with easy-to-

interpret results. The choice between the two tools may depend on the specific 

requirements and architecture of the Data Centre environment. For the next part of the 

thesis where we took the tools to CloudLab[3] for testing, we mostly used 

OpenDCDiag[4] and the main reason was the time it takes to execute which is 

significantly lower in comparison to the Intel Data Centre Diagnostic Tool[5]. 
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Chapter 4 

CloudLab Tests 

 

4.1 CloudLab 

 4.2 Automated Tests  

 4.3 Type of CPU Tested 

 4.4 Results 

 

4.1 CloudLab 

CloudLab[3] is a cloud computing testbed designed to support research and 

experimentation in distributed systems and networking. It provides researchers and 

developers with access to a scalable and customizable infrastructure for testing novel 

ideas and evaluating new technologies. CloudLab offers a diverse range of resources, 

including compute nodes, storage, and networking components, allowing users to create 

complex experimental environments tailored to their specific research requirements. With 

its flexible and programmable architecture, CloudLab enables researchers to explore a 

wide variety of distributed systems and networking scenarios, ranging from cloud 

computing and edge computing to Internet of Things (IoT) and wireless networks. 

Through its user-friendly interface and extensive documentation, CloudLab empowers 

researchers to conduct cutting-edge experiments and advance the state-of-the-art in 

distributed systems and networking. 

 

 4.2 Automated Tests  

In my research on CloudLab[3], I conducted automated tests focusing on the performance 

and reliability of individual nodes using the OpenDC[4] framework. To streamline the 

testing process, I developed a command-line bash script, based on a tool[6],  that 

automated the execution of tests across different nodes within the CloudLab[3] 

environment. The primary objective of these tests was to assess the stability and 

robustness of the individual nodes under various workload scenarios and to identify a 

problematic CPU or core that could be used for further research in SDC’s. 
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The automated test workflow involved deploying instances of the OpenDC[4] framework 

on multiple nodes within the CloudLab[3] infrastructure. The script configured each node 

with the necessary dependencies and parameters required to run the experiments. Once 

the setup was complete, the script initiated the execution of the OpenDC[4] framework 

on each node. 

 

During the execution phase, the OpenDC[4] framework simulated various workload 

scenarios, emulating real-world conditions that stress the system's capabilities. The script 

monitored the execution of tests in real-time and recorded the outcome of each test run, 

whether it passed or failed. 

 

Upon completion of the experiments, the script compiled the results from each node, 

summarizing the overall test outcomes. The collected data included information about the 

success or failure of each test case, providing valuable insights into the system's 

performance and reliability. 

 

By automating the testing process and focusing on the pass/fail outcomes of the tests, I 

was able to efficiently assess the stability and robustness of the distributed system under 

investigation. This approach enabled me to gather crucial data on the system's behaviour 

and identify any potential issues or weaknesses that required further investigation. 

Overall, the automated testing framework facilitated rigorous experimentation and 

provided valuable insights into the reliability of individual nodes in CloudLab[3]. 

 

It is noteworthy that OpenDC[4] was used instead of the Intel Diagnostic Tool[5] do to 

the fact that it has much less runtime and it made contracting a large amount of tests much 

easier. 

 

 4.3 Type of CPU Tested 

During the tests I checked nodes of type c220g5 in CloudLab[3] which corresponds to 

the Intel Xeon Silver 4114 processor[7]. This processor represents a powerful and 

versatile computing solution tailored for a wide range of enterprise applications. Built on 

Intel's scalable Xeon architecture, the Silver 4114 offers a balance of performance, 

efficiency, and reliability suitable for demanding workloads in cloud computing, data 
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analytics, virtualization, and more. With x86_64 architecture and a base clock speed of 

2.20 GHz and Turbo Boost technology delivering up to 3.00 GHz, the processor delivers 

robust computing performance to handle complex tasks efficiently. Featuring 10 cores 

and 20 threads, along with support for DDR4 memory and advanced security features, 

the Xeon Silver 4114 is well-equipped to meet the demands of modern data centres and 

cloud environments. Its combination of high core count, multi-threading capabilities, and 

hardware-level security make it an ideal choice for applications requiring scalability, 

reliability, and performance optimization. Overall, the Intel Xeon Silver 4114 processor 

[7] offers a compelling balance of performance, efficiency, and reliability, making it a 

suitable choice for powering critical workloads in enterprise computing environments. 

 

 

 4.4 Results 

The results of the testing process yielded a highly favorable outcome for CloudLab[3], 

as no faulty nodes were identified. However, from a research perspective, the absence of 

a problematic node hindered the advancement of the investigation.  

 

Comparing these results to existing literature, such as Alibaba's reports indicating a 

processor failure rate of 0.3%, suggests that a considerable number of nodes would need 

to be tested to locate a problematic processor. With approximately 227 nodes in total, 

testing 150 nodes (each with 2 processors) would likely uncover one problematic 

processor, assuming a similar failure rate. 

 

 However, achieving full coverage across all nodes is challenging due to resource 

allocation constraints. The nature of borrowing resources from CloudLab[3] means that 

specific nodes cannot be requested, making it difficult to systematically test every single 

node. Resources are assigned based on availability, and the inability to select specific 

nodes further complicates the testing process.  

 

Despite these challenges, the comprehensive evaluation conducted across a total of 81 

unique nodes underscores the reliability and stability of the distributed system. The 
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consistent success of the tests across all nodes validates the effectiveness of the system's 

design and implementation, affirming its capability to deliver reliable and consistent 

performance in real-world deployments. These results provide confidence in the 

system's ability to meet the demands of enterprise-scale applications and underscore its 

suitability for mission-critical workloads in cloud computing and distributed systems 

environments.  
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Chapter 5 

Injecting SDC’s in LLMs 

 
5.1 Introduction 

 5.2 What are llm’s 

5.3 The llm used - Llama  

 5.4 The fault injection tool - Pin Tool  

 5.5 Injection Scenarios 

 
5.1 Introduction 

In this section, we delve into the critical endeavour of injecting silent data corruptions 

(SDCs) into Large Language Models (LLMs) to comprehend their impact on system 

performance and reliability. Our focus extends to simulating various types of faults 

within the LLM architecture, aiming to emulate potential scenarios of data corruption 

that may occur unnoticed. By injecting these faults, we aim to scrutinize the resilience 

of LLMs against such adversities and discern their repercussions on the model's output. 

Through meticulous experimentation, we intend to shed light on how these injected 

SDCs manifest within the LLM, influencing its behaviour and altering the accuracy and 

coherence of the generated output. The insights garnered from these endeavours will not 

only elucidate the vulnerabilities of LLMs to silent data corruptions but also pave the 

way for devising robust mitigation strategies to fortify their integrity and reliability in 

real-world applications. 

Our decision to move towards injecting faults into the LLM stems from the inability to 

identify a faulty node within the CloudLab[3] infrastructure. As we aimed to conduct 

experiments on potentially flawed processors to assess the impact on LLM performance, 

the absence of a faulty node posed a significant challenge. Consequently, we redirected 

our approach towards artificially introducing faults into the LLM environment. By 

simulating these faults, we aim to replicate real-world scenarios of system instability and 

evaluate the LLM's response under adverse conditions. This shift in methodology 

underscores the adaptive nature of our research approach, allowing us to explore 

alternative avenues for investigating the resilience of LLMs against silent data 

corruptions. 
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5.2 What are LLM’s 

Large Language Models (LLMs) represent a pivotal advancement in natural language 

processing (NLP) and artificial intelligence, revolutionizing various fields including text 

generation, translation, and sentiment analysis. LLMs are sophisticated neural network 

architectures trained on vast amounts of textual data, enabling them to comprehend and 

generate human-like text with remarkable fluency and coherence. These models leverage 

deep learning techniques, such as transformers, to capture intricate linguistic patterns and 

relationships within the input data, allowing them to generate contextually relevant and 

semantically accurate text. LLMs have garnered immense attention and acclaim for their 

ability to perform a wide range of language-related tasks, from autocomplete suggestions 

to document summarization, with unprecedented accuracy and efficiency. Examples of 

popular LLMs include OpenAI's GPT (Generative Pre-trained Transformer) series, 

Google's BERT (Bidirectional Encoder Representations from Transformers) and more 

recently Gemini, and Facebook's RoBERTa (Robustly optimized BERT approach). It is 

notable that Gemini’s technical paper “Gemini: A Family of Highly Capable Multimodal 

Models”[13] mentions SDC’s. The technical paper mentions Silent Data Corruptions 

(SDC’s) as one of the challenges encountered during the training process. Specifically, it 

highlights the need to address SDC’s due to the unprecedented scale at which Gemini 

models are trained. The paper describes how the team developed new techniques, 

including deterministic replay and proactive SDC scanners, to detect and mitigate SDC 

events, ensuring stable training of the models. This demonstrates the importance of 

addressing SDC in large-scale training scenarios, as discussed in the Gemini paper. 

As the cornerstone of modern NLP systems, LLMs play a pivotal role in advancing the 

capabilities of AI-powered applications and facilitating human-computer interaction in 

diverse domains. Understanding the architecture and capabilities of LLMs is crucial for 

comprehending their vulnerabilities to silent data corruptions and devising effective 

mitigation strategies to ensure their reliability and integrity in real-world deployment 

scenarios. 
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5.3 The LLM used – Llama 

 For this research, the Llama[8] implementation of LLMs is utilized. Llama[8] is a 

lightweight, pure C implementation designed for both training and inference of LLMs. 

The repository provides a comprehensive solution for training the Llama 2 LLM 

architecture using PyTorch and subsequently performing inference with a single C file. 

The primary focus of the Llama implementation is on simplicity and minimalism, 

providing researchers and developers with a straightforward approach to working with 

LLMs. By leveraging the Llama framework, users can train and inference LLMs with 

ease, even on resource-constrained environments. Additionally, Llama supports the 

loading and inference of Meta's Llama 2 models, extending its utility beyond the models 

trained specifically within the repository. 

 

LLaMA-2 as described in the article “Everything you need to know about the best open-

source LLM on the market...”[14]  is a suite of open-source language models, ranging 

from 7 to 70 billion parameters, that stands out in the field of large language models 

(LLMs). It improves upon its predecessor, LLaMA-1, by pre-training over more data, 

utilizing longer context lengths, and optimizing its architecture for faster inference. 

Notably, LLaMA-2 invests heavily in the alignment process to create models optimized 

for dialogue applications, such as LLaMA-2-Chat, which rivals top proprietary LLMs 

like ChatGPT and GPT-4 in certain areas. More information about the model can be seen 

in figures 5.1 and 5.2. 

 

Figure 5.1 – Model Architecture and Pre-Training 
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Figure 5.2 – Llama2 from the Ground Up 

 

 

In our fault injection analysis, we concentrated on the Feed Forward Neural Network 

(FFNN) component within the decoder transformer of the model. Specifically, our focus 

was on the forward function of the program, where we targeted instructions related to 

matrix multiplication and vectors. By strategically infecting these instructions, we aimed 
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to simulate potential faults or errors that could occur during the inference phase of the 

model's operation. It's important to note that we deliberately limited our fault injection to 

the inference part of the model and did not affect the training phase. This approach 

allowed us to isolate and assess the resilience of the model's FFNN component during 

inference, which is crucial for real-world deployment scenarios where the model is used 

for making predictions or generating outputs. By specifically targeting the inference 

process, we were able to evaluate the model's robustness and performance under potential 

fault conditions, providing insights into its reliability and suitability for practical 

applications. 

 

 5.4 The fault injection tool - Pin Tool  

In the pursuit of understanding the behavior of Large Language Models (LLMs) under 

various fault conditions, a fault injection tool is indispensable. The Pin Tool[9] stands out 

as a powerful and versatile instrumentation framework that facilitates dynamic binary 

instrumentation of software applications. Developed by Intel, Pin[9] provides a robust 

platform for analyzing program behavior at the instruction level, enabling researchers to 

inject faults and observe their effects on program execution. 

 

The Pin Tool[9] operates by dynamically instrumenting the binary code of the target 

application, allowing for the insertion of custom analysis routines or fault injection 

mechanisms. This capability is particularly valuable when studying complex and opaque 

systems like LLMs, where traditional debugging or profiling techniques may fall short. 

 

By leveraging the Pin[9] Tool's flexibility, researchers can design fault injection 

experiments tailored to their specific research objectives. Whether simulating hardware 

faults, injecting software bugs, or perturbing system parameters, the Pin[9] Tool provides 

a reliable and efficient means of conducting fault injection studies. 

 

In the context of this research, Pin[9] version 3.20 serves as the primary mechanism for 

injecting silent data corruptions (SDCs) into the Llama 2 LLM. Since the Llama 2 LLM 

is implemented as a single C program, integrating Pin[9] alongside it was straightforward, 

allowing for seamless instrumentation and fault injection. Through carefully crafted 

instrumentation scripts, faults can be introduced at various points in the LLM's execution 
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flow, allowing researchers to observe how these corruptions manifest in the model's 

output. 

 

The Pin Tool's[9] ability to seamlessly integrate with existing software systems, coupled 

with its extensive documentation and support, makes it an invaluable asset for fault 

injection research. As such, it plays a pivotal role in the experimental methodology 

employed to investigate the impact of SDCs on LLM behavior. 

 

 5.5 Injection Scenarios 

In this section, we delve into the heart of our fault injection experiments, where we 

explore a myriad of scenarios to understand the behavior of the Llama 2 Large Language 

Model (LLM) under various fault conditions. Our aim is to elucidate the impact of silent 

data corruptions (SDCs) on the LLM's output and performance. 

 

By systematically examining these injection scenarios, we aim to uncover insights into 

how SDCs manifest within the LLM and their repercussions on the model's output quality 

and stability. Through rigorous experimentation and analysis, we endeavor to contribute 

to a deeper understanding of the robustness of LLMs in the face of potential data 

corruptions. 

 

In our investigation, particular attention was devoted to the forward function within the 

Llama[8] codebase, given its pivotal role in orchestrating the core operations of the Large 

Language Model (LLM). This function serves as the nexus where crucial computations 

are executed, including the invocation of the matmul routine responsible for performing 

essential matrix multiplications integral to the LLM's functionality. By scrutinizing this 

critical segment of the code, we aimed to gain a nuanced understanding of how silent data 

corruptions (SDCs) could potentially manifest and propagate within the LLM's 

computational pipeline. 

 

Scenario 1: 

In the initial scenario of our investigation, the focus was on identifying the assembly 

command ̀ mulps xmm0, xmm4` within the forward function of the Llama codebase. This 

specific instruction is crucial as it signifies the point where floating-point multiplication 



28 

 

operations are performed using the registers xmm0 and xmm4. Our objective was to 

pinpoint the occurrences of this command within the codebase and analyze its impact on 

the model's behavior when subjected to fault injection. 

 

To initiate this test, we employed a targeted modification approach by deliberately 

altering the value stored in one of the two registers involved in the `mulps` operation. 

Specifically, we augmented the value by adding a constant (in this case, 1) to one of the 

registers. This deliberate manipulation aimed to simulate a silent data corruption scenario 

where a subtle alteration in the data being processed could potentially lead to unforeseen 

consequences in the model's output. This was performed on a fixed number of instructions 

(10000). 

 

By executing this modified version of the forward function and observing the resultant 

output, we sought to discern any discernible changes or anomalies induced by the injected 

fault. This initial test served as a foundational step in our exploration of how silent data 

corruptions could influence the behavior of the Llama large language model. 

 

Scenario 2:  

In the second scenario, our investigation delved into the influence of error frequency on 

the behaviour of the Llama large language model. Unlike the previous scenario, where 

we focused on deliberate modifications to specific registers, this test aimed to explore the 

broader impact of varying error rates on the model's output. 

 

Our approach involved systematically adjusting the frequency at which errors were 

introduced during the execution of the mulps xmm0, xmm4 instruction within the forward 

function. By incrementally increasing the error frequency, we sought to ascertain the 

threshold at which the model's behaviour became notably affected. This threshold 

represented the minimum error frequency at which the model exhibited problematic or 

erratic output. 

 

For instance, we experimented with error frequencies ranging from 1 error per 10000 

mulps xmm0, xmm4 instructions to higher frequencies, progressively increasing the 

likelihood of errors occurring during computation. By observing the model's response to 
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varying error rates, we aimed to discern any discernible patterns or correlations between 

error frequency and the severity of output deviations. This analysis provided valuable 

insights into how the frequency of silent data corruptions influenced the stability and 

reliability of the Llama large language model's output. 

 

Furthermore, it's noteworthy to mention that the error injected in this scenario remained 

consistent with the previous test, involving the deliberate alteration of one of the two 

registers by adding 1 to its value. This uniformity in the error injection methodology 

ensured that our comparative analysis focused solely on the impact of varying error 

frequencies, eliminating confounding variables and facilitating a clearer understanding of 

their effects on the model's behaviour. 

 

Scenario 3:  

In the third scenario, we undertook a more granular approach to error injection, aiming to 

explore the impact of individual bit flips within the 128-bit registers utilized by the mulps 

xmm0, xmm4 instruction. These registers, designed to store four floating-point numbers, 

each comprising 32 bits, provided a rich landscape for error analysis. To enhance the 

realism of our simulations, we devised a mechanism capable of introducing bit flips into 

a single bit of one of these numbers. Leveraging this mechanism, we meticulously tested 

each bit's significance, commencing with the most significant bit of the exponent and 

progressing through to the least significant bits of the mantissa. Our methodology ensured 

a systematic examination of each bit's influence on the output when flipped. Importantly, 

we maintained a constant error frequency while testing each bit, ensuring consistency in 

our experimental conditions. Upon identifying a bit with no discernible impact on the 

output, we augmented the error frequency to ascertain whether it would provoke any 

observable effects. This meticulous approach enabled us to unravel the nuanced effects 

of individual bit errors on the model's behavior, shedding light on the intricacies of error 

propagation within the system. We were influenced to test the effects of individual bits 

flips from Alibaba’s paper “Understanding Silent Data Corruptions in a Large Production 

CPU Population”[2] were they show that different bit flips have different effects. 
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Scenario 4: 

In the fourth scenario, our investigation pivoted towards discerning potential disparities 

arising from errors inserted into the xmm0 and xmm4 registers. Through an in-depth 

analysis of the llama2 code and its corresponding assembly instructions, we uncovered 

that xmm0 represents the input of the multiplication operation, while xmm4 corresponds 

to the weight involved in the computation. Armed with this understanding, we 

meticulously crafted experiments to gauge the impact of error insertion on each register. 

Employing varying error frequencies, we meticulously compared the model's output 

when modifying each register. To ensure a fair comparison, we maintained consistency 

in both the frequency and the specific bit flipped across tests involving each register. For 

instance, we conducted experiments with identical error frequency (1 error per 100 

instructions) and flipped bit 8 in both xmm0 and xmm4 registers, subsequently analyzing 

and contrasting the resulting outputs. Furthermore, we broadened our investigation by 

testing diverse error frequencies and flipping different bits within each register, allowing 

us to glean insights into the nuanced effects of error propagation within the system. 

Through this rigorous comparative analysis, we aimed to elucidate any discernible 

discrepancies in the model's behavior stemming from error insertion into distinct 

registers, shedding light on the intricacies of error propagation mechanisms within the 

llama2 architecture. 

 

 

Scenario 5:  

In the fifth scenario, our investigation delved deeper into the structure of the llama2 code, 

particularly focusing on its composition into six distinct layers within the machine 

learning algorithm. Armed with this insight, we devised a sophisticated mechanism 

leveraging both Pin and modifications to the original program to precisely delineate and 

isolate each layer during execution. Subsequently, we leveraged this mechanism to 

selectively introduce errors into each layer individually, facilitating a granular assessment 

of their respective impacts on the model's output. Like previous experiments, we 

subjected each layer to tests encompassing a spectrum of error frequencies, maintaining 

consistency in the error frequency applied across all layers for comparative analysis. 

Through these meticulously designed experiments, we sought to elucidate any discernible 

variations in the model's behaviour resulting from error injection at different layers, 
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thereby unravelling potential disparities in error propagation dynamics across the various 

stages of the llama2 algorithm. 

 

Scenario 6: 

In the final scenario of our research, we turned our attention to a different assembly 

command within the matmul function: "addss xmm0, xmm1". Like the previously 

examined "mulps xmm0, xmm4" command, this instruction is integral to the matrix 

multiplication computations performed within the machine learning algorithm. Our 

objective was to ascertain whether modifying this command would yield outcomes akin 

to those observed with the previous command. To evaluate this, we adhered to the same 

methodological approach employed in earlier scenarios. We conducted tests across 

various error frequencies and manipulated different bits, subsequently comparing the 

resultant outputs with those obtained from the "mulps" command. Through this 

comparative analysis, we aimed to glean insights into the consistency or divergence of 

error propagation effects between the two distinct assembly instructions utilized within 

the matmul function. 

 

Scenario  Description 

Scenario 1 Inserted a fixed number of faults, precisely 10,000, at the beginning of the 

execution. The primary objective was to observe the reaction of the 

algorithm when subjected to these injected faults. By introducing faults at 

the outset of execution, we aimed to gauge the algorithm's resilience and 

performance under such conditions, providing valuable insights into its 

robustness and potential vulnerabilities. 

Scenario 2 Investigated the impact of varying error frequencies. Errors were 

introduced during the execution of the "mulps xmm0, xmm4" instruction 

within the forward function, with frequencies ranging from 1 error per 

10,000 instructions to higher frequencies. The objective was to identify 

the threshold at which the model's behavior became notably affected and 

observe any patterns between error frequency and output deviations. The 

error injection methodology remained consistent with scenario 1, 

ensuring a focused analysis on the influence of error frequency. 
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Scenario 3 Examined the influence of individual bit flips within the 128-bit registers 

utilized by the "mulps xmm0, xmm4" instruction. Our objective was to 

understand how different bit flips affect the model's behavior. Employing 

a systematic approach, we introduced bit flips into each bit, from the most 

significant to the least significant, while maintaining a constant error 

frequency. This detailed analysis provided insights into the nuanced 

effects of individual bit errors on the model's output, offering a deeper 

understanding of error propagation within the system. 

Scenario 4 Investigated the impact of errors inserted into xmm0 (input) and 

xmm4(wheight) registers within the llama2 architecture. We meticulously 

compared the model's output when modifying each register, maintaining 

consistency in error frequency and flipped bits. Our experiments aimed to 

reveal any differences in the model's behavior resulting from error 

injection into distinct registers, shedding light on error propagation 

mechanisms within the system. 

Scenario 5 Explored the llama2 code's structure, divided into six layers within the 

machine learning algorithm. Using Pin and program modifications, we 

isolated each layer during execution, allowing us to introduce errors 

individually. By testing with varying error frequencies across all layers, 

we aimed to understand how errors at different stages impact the model's 

behavior. Through these experiments, we sought to uncover variations in 

error propagation dynamics across the layers of the llama2 algorithm. 

Scenario 6 Investigated a different assembly command within the matmul function: 

"addss xmm0, xmm1". Like our previous examination, we aimed to 

understand how modifying this command would affect the model's 

behavior. Using the same methodological approach, we conducted tests 

across various error frequencies and manipulated different bits. We then 

compared the outputs with those obtained from the "mulps" command. 

This analysis aimed to reveal any consistency or divergence in error 

propagation effects between the two assembly instructions. 

 

Table 5.1 – Injection Scenarios Summarized 
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Chapter 6 

Results 

 

6.1 Introduction 

6.2 Evaluation Methodology 

 6.3 Results for each scenario 

 

6.1 Introduction 

In this chapter, we delve into the results obtained from the series of fault injection 

experiments conducted on the LLAMA2 machine learning algorithm. The primary 

objective of these experiments was to assess the resilience and robustness of the algorithm 

in the face of various fault injection scenarios. By systematically introducing faults into 

critical components of the LLAMA2 codebase and observing the resulting effects on 

output behavior, we aimed to gain insights into the algorithm's susceptibility to errors and 

its ability to maintain functionality under adverse conditions. 

 

Throughout this chapter, we present and analyze the outcomes of each scenario tested, 

providing detailed descriptions of the fault injection methods employed and their impact 

on algorithm performance. From examining the effects of modifying specific assembly 

commands to exploring the influence of error frequency and bit flips on output behavior, 

each scenario sheds light on different aspects of LLAMA2's fault tolerance capabilities. 

 

Moreover, we compare and contrast the results obtained from different fault injection 

scenarios, identifying patterns, trends, and potential areas of vulnerability within the 

algorithm. By comprehensively analyzing the experimental data, we aim to contribute to 

a deeper understanding of the factors that influence the reliability and resilience of 

machine learning algorithms in real-world deployment scenarios. 

 

Before we move to the results let’s look at the typical output of Llama2. The following 
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output is taken when we give as input the stories15M.bin to the algorithm, we used this 

file as input for all scenarios. 

Output: 

Once upon a time, there was a little bunny named Benny. Benny loved to hop and play 

all day long. One day, Benny found a pretty rock in the forest. He picked it up and said, 

"This is so soft and pretty!" 

Suddenly, a nosy squirrel named Sammy appeared. "What are you doing?" he asked. "I 

found a pretty rock!" Benny replied. "Why are you nosy?" Sammy questioned. "I just 

wanted to see it," Benny said. 

Sammy was impressed by Benny's find and asked, "Can I see it?" Benny happily handed 

the rock to Sammy, but as Sammy touched the rock, he accidentally dropped it and it 

broke into many pieces. Benny was sad and scared that Sammy would be mad. But then, 

something unexpected happened. Sammy said, "I'm sorry, I didn't mean to break it. I just 

wanted to see it." Benny was relieved and happy that his friend wasn't mad. They both 

went on their way, looking for more pretty things to look at together.  

 

6.2 Evaluation Methodology 

To comprehensively assess the impact of fault injection scenarios on the LLAMA2 

machine learning algorithm, we employed a multi-faceted evaluation approach 

encompassing various qualitative metrics. These metrics, namely Coherence, 

Correctness, Creativity, Naturalness, and Engagement, were selected to capture different 

aspects of output behavior and provide a holistic understanding of algorithm performance 

under different conditions. 

 

Coherence: This metric evaluates the logical consistency and flow of the algorithm's 

output. A higher coherence score indicates output that is more logically connected and 

structured, reflecting the algorithm's ability to maintain coherence despite injected faults. 

 

Correctness: Correctness measures the accuracy and fidelity of the algorithm's output 

compared to expected or ground truth results. A higher correctness score indicates output 

that closely aligns with expected outcomes, demonstrating the algorithm's ability to 

produce accurate results even in the presence of faults. 
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Creativity: Creativity assesses the algorithm's ability to generate novel and innovative 

outputs. A higher creativity score indicates output that exhibits originality and diversity, 

showcasing the algorithm's capacity to adapt and explore new solutions. 

 

Naturalness: Naturalness evaluates the degree to which the algorithm's output resembles 

natural language patterns and expressions. A higher naturalness score indicates output 

that is more fluent, coherent, and human-like in its language usage, enhancing the overall 

user experience. 

 

Engagement: Engagement measures the algorithm's ability to captivate and maintain the 

interest of the audience or end-users. A higher engagement score indicates output that is 

more compelling, immersive, and interactive, fostering deeper user engagement and 

satisfaction. 

 

For each fault injection scenario, multiple tests were conducted, and the outputs generated 

were evaluated based on these metrics. Each output was assigned a score from 1 to 10 for 

each metric, with higher scores indicating better performance. Subsequently, an average 

score was computed for each metric across all tests within a scenario, providing a 

quantitative assessment of algorithm performance under different fault conditions. 

 

For the evaluation process, we automated the assessment using ChatGPT[10], which 

scored outputs based on the metrics. An output waw given to ChatGPT for scoring, and 

an average score for the entire output was computed. This process was repeated 10 times 

for each test, ensuring robustness and reliability in the evaluation. Finally, a total average 

score was calculated, providing a comprehensive measure of the model's performance 

across multiple iterations. This automated approach ensured consistency, objectivity, and 

efficient handling of large volumes of experimental data, enhancing the reliability of our 

findings. 

 

Based on this methodology we first evaluate the output of llama without inserting any 

faults. Here are the results:  
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LLAMA2 Output Evaluation (No Fault Injection) 

Coherence: 8 - The story follows a clear sequence of events and maintains logical flow, 

ensuring readability and comprehension for the audience. 

 

Correctness: 10 - There are no factual errors detected in the output, and the actions of the 

characters align with the established narrative, demonstrating the algorithm's precision 

and accuracy. 

 

Creativity: 8 - While the story introduces characters and a conflict, it lacks significant 

innovation or unexpected twists, resulting in a moderately creative output that adheres to 

conventional storytelling conventions. 

 

Naturalness: 8 - The dialogue feels natural and appropriate for the characters, contributing 

to the overall fluency of the story and enhancing the reader's immersion in the narrative 

world. 

 

Engagement: 8 - The story effectively engages its intended audience, maintaining 

interest through character interaction and resolution of the conflict, albeit without 

introducing highly captivating or suspenseful elements. 

Average Score: 8.4 

These evaluation results serve as a crucial baseline against which we will compare the 

outcomes obtained after fault injection in subsequent experiments. By establishing the 

performance metrics of the LLAMA2 algorithm in its fault-free state, we gain a clear 

understanding of its inherent capabilities in terms of coherence, correctness, creativity, 

naturalness, and engagement. This baseline provides a reference point for assessing the 

impact of fault injection on the algorithm's output quality. By comparing the post-fault 

injection results to these baseline scores, we can identify any deviations or 

improvements in narrative quality caused by the introduced faults. This comparative 

analysis will enable us to evaluate the effectiveness of fault injection techniques in 
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simulating real-world scenarios and their potential implications for the reliability and 

robustness of machine-generated narratives. 

 

 6.3 Results for each scenario 

 

Scenario 1: 

In the first scenario, where the value of a register was increased by one a fixed number 

of times, we aimed to gain insights into the effects of such faults on the LLAMA2 

algorithm's output. Notably, errors were injected at the beginning of the execution, 

10,000 errors to be exact, rather than being distributed periodically throughout the 

program's runtime. This approach allowed us to observe the immediate impact of faults 

on the narrative generation process. The evaluation results indicate a slight decrease in 

coherence and engagement compared to the fault-free baseline, suggesting that the 

injected errors may have disrupted the logical flow of the narrative to some extent. 

However, the correctness score remains relatively high, indicating that the essential 

factual accuracy of the narratives was largely preserved despite the injected faults. 

Creativity and naturalness scores also show minor fluctuations, suggesting that the 

injected errors did not significantly alter the overall narrative style or introduce major 

inconsistencies. Overall, this scenario provides valuable insights into the initial effects 

of fault injection on the LLAMA2 algorithm's performance, laying the groundwork for 

more comprehensive evaluations in subsequent experiments. 

 

Metric Score 

Coherence  7.9 

Correctness 8.7 

Creativity  6.8 

Naturalness 7.7 

Engagement 7.3 

Average Score 7.68 

 

Table 6.1 – Metric scores for scenario 1 

In analyzing the outputs of this scenario, a noticeable trend emerged: narratives often 

began with a coherent storyline but abruptly shifted to a different narrative halfway 

through. This phenomenon is likely attributable to the uniform injection of errors at the 

beginning of the program execution and to the fact that errors were injected in the same 

manner. 
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Example output: 

 

“Once upon a time, there was a boy named Tim. Tim was a healthy boy who loved to 

eat. He liked to eat many things, but his favorite food was spaghetti. 

One day, Tim's mom said, "Tim, you must complete your nap." Tim did not want to nap, 

but he knew he had to listen to his mom. So, Tim closed his eyes and took a long nap. 

When Tim woke up, he felt good and ready to play. His mom said, "Good job, Tim! You 

had your long nap today." Tim smiled and said, "Thank you, Mom!" Then, he played 

and had fun with his friends.” 

 

Conclusion:  

As we can see the quality of the output deteriorates, looking at the metric scores the 

downgrade is not that high likely to the fact that the fix number of errors that were 

inserted were not that high, but as we can see the total effect it has on the outputs is very 

significant.  

 

Scenario 2: 

Scenario 2 focused on testing the impact of different error frequencies on the output of 

the program. Errors were introduced periodically throughout the execution of the 

program, aiming to simulate a more realistic fault injection scenario. In this experiment, 

the error injection method remained consistent, with the addition of the value 1 to one 

of the two registers. By varying the frequency of error injection, from low to high, the 

goal was to observe how different error rates affect the coherence, correctness, 

creativity, naturalness, and engagement of the output. This scenario aimed to provide 

insights into the relationship between error frequency and the quality of the program's 

output, shedding light on the optimal frequency range for fault injection. 

 

We tested six different frequencies 10000, 5000, 1000, 500, 200, 100. 

Note: Error frequency 10000 means 1 error is inserted every 10000 instructions. 
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Figure 6.1 – Total Average Score per Error Frequency 

 

Conclusion: 

Scenario 2 demonstrated a clear correlation between error frequency and the quality of 

the program's output. As expected, as the error frequency increased, the coherence, 

correctness, creativity, naturalness, and engagement of the output deteriorated. This 

observation aligns with the anticipated outcome, indicating that higher error frequencies 

have a detrimental effect on the overall performance of the program. The results 

underscore the importance of carefully managing error rates in fault injection testing, as 

excessively high frequencies can significantly degrade the output quality, potentially 

leading to undesirable behavior or unreliable results. Thus, maintaining an optimal 

balance in error frequency is crucial to ensure the integrity and effectiveness of fault 

injection testing methodologies. 

 

Scenario 3: 

 

In this scenario bits of the registers involved in the multiplications were individually 

tested. Note that we used error frequency 2000 for all tests as we found from the 

previous scenario that a frequency in this range would insert notable errors in output. 

Initially we thought that 5000 would be the best frequency but after further testing we 

realized that when performing bit flips on bits with lower significance in the exponent 

part of the floating point number[11] or on bits in the mantissa part the effects of the bit 
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flips were much lower than the change we had before (where we added 1 to the 

register), so we tried a higher frequency. 

 

 

Figure 6.2 – Total Average Score per bit flipped 

 

Note: We show the scores for bits 32-22 because the rest of the bits didn’t show any 

significant fluctuation on the average score when flipped. For those bits to have any 

significant impact the frequency of fault injection needed to be unrealistically high. Bits 

32-25 are the exponent part of the number and the rest 24-22 belong to the fraction part. 

 

Conclusion: 

As we can see from the graph, for the most part as we move down to less significant bits 

the total average score of the outputs increases, something that was expected from the 

nature of floating point numbers[11]. I should also comment on the effects when 

flipping bits 32 and 31. Bit 32 holds the value that determines the sign of the number 

(whether the number is positive or negative), changing the sign of the number seems to 

have a significant impact on the output. Bit 31 is the most significant bit of the number, 

flipping this bit seems to have very destructive effects on the outputs as they become 

completely unreadable, therefore the total score value is 0. 
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Scenario 4: 

In this scenario, we delved into examining the difference between modifying the input 

(xmm0) and the weight (xmm4) registers within the multiplications. By focusing on 

these distinct registers, which respectively correspond to the input and weight values 

used in the machine learning algorithm, we aimed to understand how errors introduced 

at these different stages affect the program's output. Specifically, we conducted tests 

with four different error frequencies (500, 1000, 2000, and 5000), maintaining 

consistency by targeting bit 25 for error injection. This bit was selected based on its 

promising results from the previous scenario, providing a reliable starting point for our 

comparative analysis as this bit introduced faults that were noticeable and at the same 

time not completely destructive. Through this investigation, we sought to elucidate any 

disparities in output quality arising from errors introduced at the input and weight 

stages, shedding light on the relative impact of these modifications on the program's 

behavior and performance. 

 

Figure 6.3 – Total Average Score per Error Frequency for xmm0 and xmm4 

 

 

Conclusion: 

 

This scenario revealed that there is no discernible difference in output quality when 

modifying the xmm0 (input) and xmm4 (weight) registers within the llama2 codebase. 

Despite varying error frequencies (500, 1000, 2000, and 5000) and consistent error 

injection at bit 25, our evaluations consistently demonstrated comparable results. This 
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finding suggests that, at least within the parameters tested, errors introduced at either the 

input or weight stage do not significantly impact the program's output quality. 

Therefore, in terms of error injection effects, the distinction between modifying xmm0 

and xmm4 registers appears negligible, highlighting a degree of robustness or 

insensitivity in the llama2 algorithm to such alterations. 

 

Scenario 5: 

In this scenario, we explored the impact of inserting bit flips into all six different layers 

of the llama algorithm. This comprehensive test aimed to assess whether the layers 

exhibited differential sensitivities to error injection and how such errors influenced the 

overall output quality. Similar to previous scenarios, we maintained consistency by 

testing the same frequencies (500, 1000, 2000, and 5000) for each layer and focusing on 

bit 25 for error insertion. By systematically evaluating the output quality across multiple 

layers under varying error frequencies, we sought to uncover potential insights into the 

algorithm's resilience and vulnerability to fault injection at different stages of 

computation. 

 

Figure 6.4 – Total Average Score for each Layer 

 

 

Conclusion: 

The analysis of inserting errors into different layers of the llama algorithm reveals that 

there are no significant differences in the output quality across the layers. Despite 
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varying error frequencies and consistent error insertion at bit 25, the performance 

metrics remained largely consistent across all layers. This suggests that the llama 

algorithm may exhibit a uniform susceptibility to faults across its computational stages. 

The absence of notable variations implies that fault resilience may be evenly distributed 

throughout the algorithm, with no single layer significantly dominating in terms of error 

impact. Therefore, from the standpoint of error injection and output quality, the layers of 

the llama algorithm appear to demonstrate consistent behavior, emphasizing the 

algorithm's robustness under fault conditions across its computational hierarchy. 

 

Scenario 6: 

In the following scenario, we shift our focus from modifying the registers involved in 

the "mulps" command to altering those associated with the "addss" command within the 

matmul function called by the llama algorithm's forward function. While the "mulps" 

command handles matrix multiplications crucial to the algorithm's computations, the 

"addss" command performs addition operations, equally integral to the algorithm's 

functionality. By exploring the effects of modifying the "addss" command, we aim to 

discern whether similar outcomes to those observed in the "mulps" scenario emerge. 

This investigation provides insight into the robustness of the llama algorithm 

concerning different types of assembly commands and sheds light on potential 

vulnerabilities or consistencies in error propagation across distinct computational 

operations. 

 

For this scenario we tested the error frequencies 100, 200, 500, 1000, 5000, 10000 here 

are the results: 

 

Figure 6.5 – Total Average Score for mupls and addss 

0

1

2

3

4

5

6

7

10000 5000 1000 500 200 100

To
ta

l A
ve

ra
ge

 S
co

re

Error Frequency

Scenario 6

mulps

addss



44 

 

Conclusion: 

In conclusion, our exploration into modifying the "addss" command within the matmul 

function yielded results consistent with our findings from the "mulps" scenario. The 

outcomes suggest that injecting faults into the "addss" command does not produce 

discernible differences compared to modifying the "mulps" command. This observation 

underscores the algorithm's resilience to errors introduced at different stages of 

computation, highlighting a consistent behavior regardless of the specific assembly 

command targeted. Consequently, our study indicates that fault injection in either the 

"mulps" or "addss" commands elicits similar effects on the llama algorithm's output, 

emphasizing its robustness to computational errors across different arithmetic operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

Chapter 7  

Discussion 

 
7.1 Summary 

7.2 Future 

 
 7.1 Summary 

In this thesis, we embarked on a comprehensive exploration of fault injection techniques, 

reminiscing of silent data corruptions and their implications for machine learning 

algorithms, with a specific focus on the llama2 algorithm. The journey began with a 

motivation to study SDC’s due to their unforeseen nature. Building upon this foundation, 

we delved into an overview of Silent Data Corruptions (SDC) and their potential impact 

on computational systems, highlighting the critical need for effective fault detection and 

mitigation strategies. 

 

Our investigation then transitioned to an examination of various detection tools, including 

OpenDCDiag and the Intel Data Center Diagnostic Tool, each offering unique capabilities 

for assessing CPU health and detecting potential faults. Following this, we conducted 

experiments using the CloudLab infrastructure to simulate real-world scenarios and test 

different nodes using the detection tools. Then we evaluated the performance of the 

llama2 algorithm under different fault conditions. 

 

The heart of the thesis lay in the injection scenarios, where we meticulously designed and 

executed a series of experiments to understand how the algorithm responds to injected 

faults. From modifying assembly commands to altering error frequencies and flipping 

individual bits, each scenario provided valuable insights into the algorithm's behavior and 

resilience. Through systematic evaluation based on metrics such as coherence, 

correctness, creativity, naturalness, and engagement, we were able to assess the impact of 

injected faults on the algorithm's output quality. 

 

Our findings revealed intriguing patterns and trends, shedding light on the algorithm's 

susceptibility to different types of errors and providing valuable insights into fault 
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tolerance mechanisms. From observing the degradation of output quality with increasing 

error frequencies to exploring the nuances of error propagation across different layers of 

the algorithm, each scenario contributed to a deeper understanding of the algorithm's 

behavior in fault-prone environments. 

 

In conclusion, this thesis represents a comprehensive investigation into fault injections, 

simulating silent data corruptions, and their implications for machine learning algorithms, 

with a specific focus on the llama2 algorithm. By performing practical experimentation, 

we have gained valuable insights into the algorithm's resilience and identified avenues 

for future research in fault tolerance and reliability. Overall, this study contributes to the 

broader discourse on system reliability and lays the groundwork for developing more 

robust machine learning algorithms capable of withstanding the challenges posed by 

silent data corruptions. 

 

 7.2 Future 

 In looking towards the future, several avenues for further research and development 

emerge from the findings and insights gained in this study. One promising direction 

involves the refinement and enhancement of fault injection techniques to more accurately 

simulate real-world fault scenarios. By incorporating a broader range of fault types and 

patterns, researchers can gain a more comprehensive understanding of algorithmic 

behavior under diverse fault conditions. 

 

Additionally, there is a pressing need for the development of more sophisticated fault 

detection and mitigation strategies tailored specifically to machine learning algorithms. 

This could involve the integration of machine learning techniques themselves, leveraging 

anomaly detection algorithms to identify and mitigate the effects of silent data corruptions 

in real-time. 

 

Furthermore, the exploration of fault tolerance mechanisms within machine learning 

algorithms represents a rich area for future investigation. By designing algorithms with 

built-in resilience to computational errors, researchers can mitigate the impact of faults 

on algorithmic performance and ensure reliable operation in critical applications. 
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Moreover, there is a growing interest in exploring the intersection of fault tolerance and 

interpretability in machine learning algorithms. By understanding how faults manifest in 

algorithmic outputs, researchers can develop methods for identifying and explaining the 

underlying causes of errors, enhancing trust and confidence in algorithmic decision-

making processes. 

 

In addition to the outlined avenues for future research, a particularly intriguing prospect 

lies in investigating fault injection within the training phase of LLAMA2, especially 

considering the findings about Google’s Gemini[13], which indicated that training 

processes can indeed be influenced by silent data corruptions. Exploring fault injection 

within the training phase of LLAMA2 not only aligns with the overarching objective of 

comprehensively assessing algorithmic resilience but also offers valuable insights into 

the vulnerability of machine learning models during their developmental stages. By 

scrutinizing how SDC’s affects the training dynamics, researchers can gain deeper 

insights into the robustness of the learning process and devise strategies to fortify 

algorithms against such adversities. However, it's crucial to acknowledge the 

considerable computational and temporal demands associated with this line of inquiry. 

Conducting extensive fault injection experiments during training necessitates substantial 

computational resources and meticulous planning to ensure the reliability and 

reproducibility of results. Nonetheless, the potential insights garnered from such 

endeavors can significantly advance our understanding of fault tolerance mechanisms 

within machine learning algorithms, ultimately contributing to the creation of more 

resilient and dependable systems. 

 

Finally, as machine learning algorithms continue to be deployed in increasingly complex 

and critical applications, there is a need for greater collaboration and knowledge sharing 

across disciplines. By bringing together experts in machine learning, fault tolerance, 

system reliability, and related fields, researchers can leverage complementary expertise 

to tackle the multifaceted challenges posed by silent data corruptions and ensure the 

continued advancement of reliable and robust machine learning algorithms. 

 

In summary, the future holds exciting opportunities for further research and development 

in the field of fault tolerance for machine learning algorithms. By addressing the 
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challenges posed by silent data corruptions and advancing the state-of-the-art in fault 

detection, mitigation, and resilience, researchers can pave the way for the continued 

growth and adoption of machine learning technologies in critical applications. 
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