

Thesis Dissertation

A Generic Architecture & Base Software for Application

Development:

Employee Management System as a Proof of Concept

Stylianos Adamou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2024

2

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

A Generic Architecture & Base Software for Application

Development

Stylianos Adamou

Supervisor

Dr. Elpida Keravnou-Papailiou

Thesis was submitted for partial fulfilment of the requirements for the award with the degree

of Bachelor in Computer Science at University of Cyprus

Μάιος 2024

3

Ευχαριστίες

I would like to express my sincere thanks and gratitude to all those who helped me in the

preparation of my thesis. Especially Dr. Elpida Keravnu-Papailiou for her patience and

cooperation during the writing of my thesis.

4

Περίληψη

Building Modern Software Applications is a complex procedure that requires a lot of

background in the Computer Science Field. Nowadays, Web Applications require at least a

basic knowledge in Software Development, Object-Oriented Programming, Security,

Databases, Data Structures and Web Technologies. This diploma thesis investigates a software

development architecture having a specific set of requirements that can help to extend it and

thus create a generic architecture for all future applications development. Building a generic

architecture will force developers inside a team to follow specific code rules and make the

development process easier with guidelines on how to do a task and where to place each part

of the code. Following this generic architecture, we will focus on the backend technologies to

build a base software that integrates multiple of the latest and most modern technologies

recommended by Microsoft and create a reusable software for future applications. An

Employee Management System will then use this base software as the starting point of the

development. Features related with the Employee Management System will then be added to

this base software again by aligning with the principles of the generic architecture. Overall,

this research contributes to produce a starting point for software developers that want to use

some of the latest and Microsoft recommended technologies, frameworks, patterns, and

libraries but also to force developers to work under a specific generic architecture for better

maintenance of the applications and write cleaner code under rules.

5

Table of Contents

Chapter 1 Introduction………………………………………………………………... 7

1.1 Introduction 7

1.2 Problem Definition 7

1.3 Purpose of the research 8

1.4 Research questions 9

1.5 Chapters Summary 9

Chapter 2 Architecture ……………………………………………………………… 10

2.1 Clean Architecture 10

2.1.1 The Principles of Clean Architecture 12

2.1.2 Our Clean Architecture Layers 13

2.2 SOLID Principles 15

2.3 Design Patterns 22

2.3.1 Mediator Pattern 22

 2.3.2 CQRS Pattern 23

2.4. SOLID Principles & Our Clean Architecture 26

Chapter 3 Frameworks and Libraries ………………………………………………..31

3.1 C# 31

3.2 Angular 31

3.3 SQL Server 32

3.4 ASP.NET Core Framework 32

3.4.1 Minimal APIs 34

3.4.2 Middlewares 35

3.4.3 Filters 39

3.4.4 Authentication and Authorization 39

3.4.5 Net Libraries 43

3.4.5.1 MediatR 43

3.4.5.2 Fluent Validation 46

3.4.5.3 Dapper 52

6

Chapter 4 Application Design……………………………….………………………... 54

4.1 Database Design 54

4.1.1 Schemas 54

4.1.2 Tables 55

4.1.3 Database Diagrams 59

4.2 Clean Architecture in .Net Projects Structure 61

4.2.1 Infrastructure Layer 61

4.2.2 Domain Layer 62

4.2.3 Application Layer 64

4.2.4 Presentation Layer 66

4.3 Code Decisions 68

4.3.1 Domain Layer 68

4.3.2 Infrastructure layer 69

4.3.3 Presentation Layer 71

Chapter 5 Employee Management System User Interface………………………….. 77

5.1 User Interface 77

Chapter 6 Conclusion………………………………………………………………….. 89

6.1 Evaluation 89

6.2 Future Work 90

6.3 Feedback 90

6.4 Conclusion 91

References ………………………………………………………………………………… 92

7

Chapter 1

Introduction

1.1 Introduction 7

1.2 Problem Definition 7

1.3 Purpose of the research 8

1.4 Research Questions 9

1.1 Introduction

In today's fast-paced digital world, technology plays a significant role in simplifying our lives

and transforming the way we work, communicate, and manage daily tasks. Modern software

applications are indispensable tools in both personal and professional lives. Generally,

applications aim to address the inefficiencies of manual processes and provide a scalable and

user-friendly solution for various problems. For example, using applications for managing

resources, projects, personnel can help businesses operate smoothly and efficiently.

Technology progress offers a variety of tools and frameworks to create solutions solving

different business problems.

1.2 Problem Definition

The primary objective of this research is to address the current inefficiencies faced by most of

the business companies. To start with, absence of a generic architecture that proposes a set of

rules and steps for developers to follow when implementing features related to a Web API app

was raising issues in maintainability and extension of a system. Another problem is the lack of

a reusable base software project to start an application for faster development initialization.

Implementing the same common functionalities for different projects such as authentication,

authorization, logging, error-handling, validation for each future project slows down the

beginning of new application not to mention the fact that a developer may forget how to he/she

did it before a long period. Integration of the same technologies, libraries, frameworks used

8

from a team to build a Web API can also be time-consuming extending this way for each new

project the start of application-specific features implementation. Therefore, we can conclude

that without having a generic architecture based on which we can build a reusable base software

containing common features for different future projects delays the development initialization

without letting teams to focus only on the business logic of the new project. Last, team leaders

and HR departments struggle with managing employees and their roles in different projects

manually through Excel files, which is both time-consuming and prone to errors.

1.3 Purpose of the research

This diploma thesis targets to face these issues by investigating for an architecture that can be

extended to create a generic one while also creating a reusable base software following the

principles of the proposed generic architecture. Then, the reusable base software will be used

as the starting point of the development for each new project with different business logic. That

is how Employee Management System will be used as a proof of concept that architecture is

generic but also that base software can be reused in new projects to initiate development.

Therefore, having this base software we will implement Employe Management System

application-specific business features following again the principles of the generic

Architecture. It’s very important to follow the rules proposed from the generic architecture in

order that technical choices made on the base software can be used without affecting the

business rules of a different project separating this way technologies from business.

This diploma thesis will start the research trying to detect for an architecture that can be

extended to create our generic architecture. This requires from the architecture to provide

concepts like the separation of application-specific business logic from the technologies,

libraries, frameworks used in an application and easy integration, or replacement of technical

details used. Moreover, is crucial for the desired architecture to provide code rules and steps

for developer to follow on how to implement a task through object-oriented design. Then, the

research will concentrate to create a base software saved in an internal company repository so

different team building Web APIs can clone it for each new project to start development

ensuring consistency across all teams within a company. This research aims to develop modern

software that integrates essential frameworks like ASP.NET Core, SQL Server, libraries such

as FluentValidation, Swashbuckle, JwtBearer, MediatR, Dapper while adhering design patterns

like Mediator and CQRS. Note that all the previous technologies are recommended by

Microsoft. As we said before, this research will be validated using the Employee Management

9

System. This research is significant because there is no existing base software repository that

combines these specific technologies and common features for different projects as explained

before into a single ASP.NET Core application.

1.4 Research Questions

The following are the research questions answered in this thesis:

1. Can we combine all those frameworks, libraries and common features into a base software

without violating the generic architecture and the design patterns?

2. Can we create a base software that can be used for all future projects with different business

logic?

1.5 Chapters Summary

In Chapter 2, the thesis tries to find an architecture that fit our requirements and after that it

creates a new generic architecture that is based on the architecture selected.

In Chapter 3, the research concentrates on building the base software system by integrating

frameworks libraries and common features between different projects like authentication,

authorization, validation, logging, exception, handling and more other. While integrating those

technologies, we ensure that we do not violate our generic architecture as proposed in Chapter

2.

In Chapter 4, we use Employee Management System as proof of concept that our architecture

is generic, and that base software can be used along with the application features without

business rules getting affected. It proves that our architecture is generic by providing a set of

steps that each new project can follow to implement the features and shows that Employee

Management System uses the principles proposed from our architecture.

In Chapter 5, we demonstrate the User Interface of Employee Management System.

10

Chapter 2

Architecture

2.1 Clean Architecture 10

2.1.1 The Principles of Clean Architecture 12

2.1.2 Our Clean Architecture Layers 13

2.2 SOLID Principles 15

2.3 Design Patterns 22

2.3.1 Mediator Pattern 22

2.3.2 CQRS Pattern 23

2.4 SOLID Principles & Our Clean Architecture 26

2.1 Clean Architecture

In software development, there are many architectures to build a project and it's important to

focus on what truly matters in good design. An architecture independent from any framework,

library, and generally from any technical implementation (UI, Database, External Services)

that allows easily both the integration of new technologies, and the replacement of existing

ones sum up to what makes up a powerful architecture. Clean, Understandable, Maintainable,

Extensible, and Adaptive code if encouraged through architecture code writing rules will help

developers under the same Team to interact efficiently with the software without issues

promoting reusability of code and making the scale and change of existing features or addition

of features easier. Separating the different areas of software is a crucial requirement that can

help Team Leaders to split work in a way that each developer can focus on his part and

specifically to the area that he/she is more experienced while also promotes the separation

between application business logic and technologies used. If we find an architecture that is

based on this separation then we can achieve our target to extend this architecture based on

which we will build a base software with a set of technologies and common features and reuse

this software as a starting point in multiple projects with different business. Business rules

should not depend on technical implementations allowing us to focus in each new project on

business rules. In our case, the focus is to search for an architecture that promotes those

11

concepts so it can be used from different Teams that build Web APIs among the different

projects they handle.

Clean Architecture is one popular approach that stands out because it emphasizes making the

software easy to maintain, scale, and adapt. It was first introduced by Robert C. Martin (aka

"Uncle Bob") in his book "Clean Architecture: A Craftsman's Guide to Software Structure and

Design". Clean Architecture revolves around a simple idea. Following this architecture, we

organize and structure the code in the form of layers, with each layer having its specific purpose

(Single Responsibility Principle). The actual representation of it, as proposed by “Uncle Bob”

includes 4 concentric circles each one representing a layer that defines a different area of

software while arrows represent dependencies between the layers (see Figure 2.1.1). Nobody

forces you to have only 4 layers. The number of layers depends on the scale and the complexity

resulting in fewer or more layers in our application. The only constraint that needs to be

satisfied is the dependency rule as explained in Clean Architecture principles. [20] Uncle Bob

states that once you go further in the higher abstraction level the software becomes. Outer

circles are technical details like Frameworks, database, external while inner circles are the

business rules like entities and use cases. An entity encapsulates the most general and high-

level rules, which is the business logic. You don’t expect those entities object to be affected by

changes like API calls, navigation, or any other application related stuff.

 Figure 2.1.1: Uncle Bob’s Clean Architecture

12

 2.1.1 The Principles of Clean Architecture

Clean Code Architecture comes with a set of principles. These principles are:

• Dependency Rule: In Clean Architecture, dependencies can only flow inward toward

the core business logic. This means that the outer layers are dependent on the inner

layers, but the inner layers do not depend on any of the outer layers. Nothing in an

inner circle can know anything at all about something in an outer circle. Since inner

layers do not depend on them, they can be easily replaced. [20] This also means that you

can use whatever Framework, Database, UI, External Service you want as long as it

satisfies the Application’s Core business rules enforced with inward dependencies.

• Separation of Concerns: This separation is achieved by dividing the software intro

layers, each one with a distinct responsibility and through the Dependency Rule.

Separating different areas of software into layers enables splitting the work to assign

each developer his layer where he/she is more experienced. This separation guarantees

an easy way both to integrate new technologies or replace existing technologies without

affecting different layers and with minimal code changes. Clean Architecture enforces

a clear separation between the business rules (inner layers) and technical details (outer

layers). This means that business rules and logic cannot depend on a specific library or

technical implementation in the application. [21] For example, User Interface, Database,

any external service of the app can be easily swapped out with a different one without

business rules getting affected. This idea allows developers to focus on the

implementation of use cases/business rules decoupled from technologies. Last, it offers

loose coupling between layers.

• Independence of Framework: This architecture does not depend on the existence of a

specific library or framework. This allows you to use whatever framework, language

and tool without any constraint.

• Use of SOLID Principles: SOLID Principles are the fundamental guidelines related to

object-oriented design aiming to create clean, understandable, reusable, extensible, and

maintainable code. In the SOLID Principles section, we will explain them and in

SOLID Principles & Clean Architecture section we will discuss how to apply those

principles in our application. [21]

• Testability: Clean Architecture can help with writing unit tests for the business logic

independently from external dependencies since Application Core does not depend on

Infrastructure Layer. [1]

13

In this stage, we need to mention that Dependency Inversion Principle as will be explained

detailed in SOLID Principles section helps to apply Dependency Rule and achieve the

separations of Concern. A possible Dependency Rule violation is when a use case located in

Application Layer wants to communicate with a repository located in Infrastructure Layer to

get data. This call must not be direct because an inner circle cannot mention an outer circle.

Dependency Inversion states that source code of high-level modules should not mention the

source code of low-level modules at compile-time and suggest the following solution. To invert

the dependency so the application core (Application and Domain Layer) which contains the

business logic not to depend on data access and external details but Infrastructure and

Presentation layer to depend on Application Core. This is achieved by defining interfaces in

Application Core that the use case will call, and the infrastructure layer will implement it.

Basically, we take advantage of dynamic polymorphism to generate compile time code

dependencies to lower levels even though at runtime high-level modules depend on low level

modules. Last, to achieve this dynamic polymorphism we need a framework where

implementations can be wired up to interfaces via dependency injection and that is reason why

we choose ASP.NET Core since it supports this mechanism.

 2.1.2 Our Clean Architecture Layers

In that part, I want to mention that in our application we will apply something similar but not

the exact same to what “Uncle Bob” proposed. This happens because it contains an extra layer

called Interface Adapters indicated with green color in Figure 2.1.1 that will not be used in our

architecture. This layer propose to follow MVC Architecture with presenters, views, and

Controllers. It also force Web Framework and Database to depend on this MVC architecture

adding extra overhead which restrict us. However, we preserve the ideas of Uncle bob like

Dependency Rule, Separation of concerns, Solid Principles, Independence from Framework,

Independence from Technical Details and Testability. The next figure introduces our Clean

Architecture approach, and we will look at each layer and discuss what it could contain (see

Figure 2.1.2.1).

14

 Figure 2.1.2.1: Our Clean Architecture

1. Domain Layer: The innermost cycle represents the domain layer containing the

enterprise business rules and logic. The most highly abstracted and stable layer is

Domain since it never gets affected from any use case or technology. This layer should

be independent of any other layers. All other layers should depend on this. This layer

can contain entities, repository interfaces, enums and most of the abstractions. [22]

2. Application Layer: The Application layer contains application business rules. Those

are the features of your app known as use cases in terms of software development. It

acts as an orchestrator, that manages the flow of data to and from entities to implement

use case. This layer is responsible for taking the request data from the presentation

layer, interacting with the database through infrastructure layer, ensuring business logic

is implemented and passing a response back to the presentation layer. Changes in

external details like Database, UI, Framework does not affect this layer. In this layer

we can have the interfaces of application-specific and external services, the

implementation of application-specific services, use cases, validators, DTOs like

request and responses, exceptions, handlers. [20,22]

3. Presentation Layer: The presentation layer is the entry point of the application and

plays the role of traffic cop since is responsible for managing the incoming requests

from clients and sending them to the corresponding use case fast and efficiently. All

the layers of the architecture are gathered from this layer to compile the monolithic app

as a single assembly. Here, the Web API framework of the application should be placed

and the API Routes. [23]

4. Infrastructure Layer: The infrastructure layer contains everything related to external

services and concerns such as database, email providers, authentication provider, files

storage and more. This layer is the librarian of our app making sure that use cases

requested information can be accessed through repositories and external services

15

interfaces. This layer defines the implementation of the abstraction defined in the

Application layer. Database, repository implementation, table entities, external services

should be placed here. [22]

In Figure 2.1.1, the outermost circle contains UI but in our highly representation of Clean

Architecture (see Figure 2.1.2.1) we didn’t refer to it since is a different project. In this paper,

we are focusing on the backend technologies and that is why we split frontend to another

angular project that is not analyzed in diploma. The presentation layer is still able to get

requests from UI or any other App. [20] Removing interface adapters layer can help us make

the Web API implementation independent from MVC architecture and use controllers or any

other approach we want. This give us the possibility to use a powerful feature of ASP.NET

Core such as Minimal APIs for Web Framework instead of using slow Web APIs approach

with controllers or even worse using MVC architecture. Minimal APIs will be explained in the

Technologies Section. To conclude, removing interface adapters layer along with UI

removement was a set of necessary changes so we can adjust Clean Architecture as proposed

by Uncle bob to our requirements for an architecture that technical details are free to the

developer.

Before start to explain SOLID Principles and how to apply them in our application it’s

important to mention that we have found the desired architecture, and we extend it creating

our generic architecture. Having it we can focus now to build the base software that will

follow the principles of our generic architecture.

2.2 SOLID Principles

The SOLID Principles are the fundamental guidelines related to object-oriented design. SOLID

is an acronym that encapsulates 5 design principles which are SRP, OCP, LSP, ISP and DIP.

Those principles serve as guiding light for developers and software systems. By following these

principles, you ensure code modularity, extensibility, smooth integration to changes in existing

requirements and the minimization of bugs. [1] Now, let’s explore each detailed each one of

these principles along with code examples.

Single Responsibility Principle (SRP): The SRP states that a class can be changed only for

one reason. That means that a class should have a single responsibility. A maintainable and

understandable code is ensured by following this principle. [1]

16

 Figure 2.2.1: SRP Violation [2] Figure 2.2.2: SRP [2]

In the above figure 2.2.1, a class named Customer is shown, which violates the Single

Responsibility Principle. The Customer Class is responsible for two different functionalities

like adding a customer and sending an email to the customer. Any modifications to the database

or email sending logic would lead to changes to the customer class. This violates the SRP since

principle states that a class should have only one reason to change but in the given example the

class has multiple reasons to change. To rectify this violation and follow what SRP states, class

need to separate the responsibilities into two classes. In the refactored code (see Figure 2.2.2),

the CustomerService class takes on the responsibility of adding a customer to the database with

AddCustomer() method encapsulating the database-related operations within the class. The

EmailService class is associated now with sending emails to customers through SendEmail()

method encapsulating the email sending logic. Any changes to email sending logic will be

handled from EmailService and not Customer class and vice-versa. This ensures that

modifications to the database operations or email sending logic will only impact the respective

class, minimizing the effect on different parts of code. Therefore, by splitting functionalities,

we effectively isolate email sending logic from database operations, aligning with the SRP.

Also, we achieve better separation of concerns and create a code that is easier to maintain and

extend. [3]

Open-Closed Principle (OCP): The Open-Closed Principle says that you should be able to

add new features to software entities without changing how it already works. Classes,

Functions, Interfaces, should be open for extension but closed for modification. This

principle suggests using abstraction and inheritance.

17

 Figure 2.2.3: OCP Violation [2] Figure 2.2.4: OCP [2]

In the bad example (see Figure 2.2.3), the Vehicle class contains a property for VehicleType

and CalculateInsurancePremium() method which calculates insurance premiums based on

vehicle type. However, this violates the OCP because adding a new vehicle type requires

modifying the existing class, which should remain closed for modification. By introducing an

abstract Vehicle Class (act like an interface), we can create two classes that inherit from this

class (see Figure 2.2.4). Therefore, derived classes can override CalculateInsurancePremium()

method and implement their own insurance premium calculation logic. This approach ensures

code extensibility. If we want to add a new vehicle type, we can create a new class that inherits

from Vehicle without changing the existing code of the abstraction and aligning with the

principles of the OCP. Usually, abstraction is the interface or the abstract class. [3]

Liskov Substitution Principle (LSP): The Liskov Substitution Principle (LSP) states that

objects of superclass should be able to be replaced with objects of subclass without affecting

the correctness of the program and that objects of subclass should be able to access all the

methods and properties of the superclass. [4] The application of LSP guarantees that derived

classes can be used interchangeably with their base classes. [3]

18

 Figure 2.2.5: LSP Violation [2]

In Figure 2.2.5, the Square class inherits from Rectangle class indicating that square is a special

case of a rectangle. However, this violates the LSP principle since behaviour of Square class is

not substitutable for the behaviour defined by the Rectangle class which can lead to unexpected

behaviour. Rectangle class has separate methods to set width and height independently and

since Square class inherit from Rectangle class and overrides these methods to ensure that both

width and height are always equal.

 Figure 2.2.6: LSP Possible Mistake [2]

In Figure 2.2.6, Rectangle is a super class of Square. When a new object of Square is assigned

in object of Super class Rectangle, SetWidth() and SetHeight() of Rectangle will be replaced

by method of Square based to inheritance rules. Therefore, instead of 5*3 that we were

expecting the result is 3*3 affecting the correctness of the program which violates the LSP.

19

 Figure 2.2.7: LSP [2]

A refactored code that comes closer to LSP principle should break the inheritance relationship

between Rectangle and Square. [2] Instead, we introduce an abstract base class for different

shapes with an abstract method CalculateArea() (see Figure 2.2.7). This enforces subclasses to

implement this method, so each one has their own logic on how to calculate the area based on

the shape type. Square class extends Shape by introducing property SideLength and implement

calculation of area specific to square while, Rectangle class extends Shape by introducing

properties width and height to calculate area specific to rectangles. [24]

Compare LSP & OCP

LSP intends to ensure that interaction between superclass and subclass does not affect the

correctness while OCP ensures code extensibility by inheriting an abstraction which will be

closed for modification. Both principles use abstractions with interfaces or abstract classes

through inheritance. In LSP, the abstraction is the superclass that act both like a common

implementation or a contract. Another difference is that OCP states that the abstraction should

not modified but only used through inheritance, while LSP can use a base implementation of

an abstract class that can be changed in the subclass resulting to different logic.

Interfaces vs Abstract Classes

Both examples, force subclasses to implement functions but the only difference is that interface

act like a contract and declares method signatures while abstract serves as a base class and can

have abstract methods (no implementation) and non-abstract methods (can have

implementation and will be inherited by derived classes). With interfaces we define the

20

behaviour that can be implemented by multiple unrelated classes. On the other side, abstract

classes offers a hierarchical structure and provide common implementation for derived classes

to reuse reducing code duplication. [24]

 Figure 2.2.8: LSP Violation Example 2, [6] Figure 2.2.9: LSP Example 2 [6]

An introduction for Figure 2.2.8 is that Penguins belong to the group of birds that cannot fly.

In the 2.2.8, flying and walking are what a bird can do (Bird Interface). The issue is that Penguin

inherit bird functionalities even though it can only walk and not fly. Since child class Penguin

can use the fly method LSP is violated. Solution is provided 2.2.9 by breaking Bird interface

to FlyingBird and WalkingBird interfaces since Penguin now only implements WalkingBird

interface. Now, Penguin object cannot access the fly method.

Interface Segregation Principle (ISP): The Interface Segregation Principle advises that

breaking down large interfaces into smaller more focused ones, ensure that clients only need

to depend on the interfaces that they use and not to those they do not use. [2]

21

 Figure 2.2.10: ISP Violation [2] Figure 2.2.11: ISP [2]

In Figure 2.2.10, Robot implements interface IWorker, and it implement eat() method and

throws exception for eat() and sleep() method. This violates the ISP, because it forces Robot to

give implementation for methods that it doesn’t need since robot don’t eat or sleep. To solve

this, we break down the monolithic IWorker interface into smaller, specific interfaces to align

to the ISP, ensuring that only depend on the methods they need (see Figure 2.2.11). By separate

interfaces, robot class can only implement the IWorker interface and do not implement

unnecessary methods. Following ISP by splitting the interfaces based on specific behaviour,

we minimize empty methods or exceptions since classes implements only related

functionalities. This promotes better separation of concerns.

Dependency Inversion Principle (DIP): The Dependency Inversion Principle states that high-

level modules should not depend on low-level modules. Both should depend on abstractions.

Abstraction should not depend on details and details should depend on abstractions. High-level

modules should depend on abstractions and not concrete implementations. [9]

22

 Figure 2.2.12: DIP Violation [2] Figure 2.2.13: DIP [2]

In Figure 2.2.12, UserService is tightly coupled to a specific implementation of DataAccess

class, making it difficult to change the data access class. In Figure 2.2.13, UserService depends

on IDataAccess abstraction instead of the specific implementation in DataAccess, aligning

with Dependency Inversion Principle. This promotes loose coupling between classes, making

it easier to switch to a different data access logic or extend existing one without need to modify

UserService class. If now we switch to a different database UserService class would remain

same since we will call SaveData() method from IDataAccess interface. What will change is

that we will need to add a different class that implements IDataAccess layer like

PostgresDataAccess and at the configuration we need to change something so program build

with PostgresDataAccess class instead of SqlDataAccess.

2.3 Design Pattern

 2.3.1 Mediator Pattern

Mediator is a behavioral design pattern. This pattern is suggested to be used when there is a lot

of communication and dependency between classes. In this design pattern, communication is

achieved through a single channel and classes know what to communicate for, not how to

communicate. The basic idea is that mediator pattern defines a new object that encapsulates

how objects communicate with each other. [10] Therefore, when object A wants to

communicate with an object B “mediator” is responsible to communicate to the other object B

and response back to A. This centralizes the dependencies to the mediator object without

direct references between objects that want to communicate. With “mediator” we reduce

23

dependencies and achieve loose coupling between classes making the application easy to

maintain. [11]

 Figure 2.3.1.1: Mediator

Mediator Pattern is mostly explained using the example of control tower for airplanes.

Airplanes must know the location of other airplanes during takeoff and landing. When the

number of airplanes is small like 2-3 planes then communicating directly with the other pilots

is not an issue. The issue arises when airplanes are much more. This requires pilots to contact

the control tower. You can think that airplanes are the classes that want to communicate to

understand that flight tower is playing the role of the Mediator class. [10]

Mediator Pattern & Clean Architecture

Using Mediator Pattern, we reduce the dependencies and communication between the different

layers of clean architecture. For example, when an endpoint located in the Presentation layer

of clean architecture wants to communicate with a handler located in Application layer then

using Mediator pattern, we are reducing the communication and loose coupling between the 2

layers.

 2.3.2 CQRS Pattern

Command Query Responsibility Segregation is a software architecture design pattern. CQRS

is based on the Single Responsibility Principle of object-oriented Programming. CQRS pattern

advice to separate command from queries, so each Command or Query Handler has a single

responsibility. Command Handlers are responsible only for Write Operation to the database

like Create, Update, Delete while Query Handlers are responsible for Read operations from the

database. [10] Handler is the class responsible for implementing use cases and processing

24

all Command or Query Requests that wants to interact with the database to get or

manage data.

Single or Multiple Databases?

A Crucial decision when implementing CQRS Database is whether we will split the database

into 2 different database schemas for querying and updating data. The most common approach

is using the same schema for reading and managing data because of the simplicity it provides

with both operations without need extra management at database level. However, when

application grows or has increased complexity, it becomes difficult to maintain. Another

disadvantage is SQL best practices such as normalization optimizes the write schema and

indexes optimizes the read schema but when using both of those in the same schema neutralize

each other. Indisputably, having separate schemas for commands and queries allows you to

scale them independently. Obviously, this decision depends on the requirements and whether

the benefits of splitting to multiple database schemas gives such a big performance that

outweighs the research and the implementation of managing multiple databases.

In case multiple databases are chosen, we provide a high-level overview of CQRS system (see

Figure 2.3.2.1). Notice that both application and database level separate commands from

queries and that is why we need to synchronize the updates with the read database. This idea

introduces eventual consistency and fault tolerance strategies in CQRS systems which increase

the complexity of the application. However, separating databases allows you to choose the best

database for your requirements like SQL Database, Event Sourcing on the write database while

using NoSQL, RavenDB, MongoDB for read operations. Using the same database for both is

possible. Note that using the same database you can define 2 virtual databases that synchronizes

into one database. [12]

 Figure 2.3.2.1: CQRS System

25

Advantages of CQRS

The main advantage is scalability by managing read and write operation through different

Handler objects allows those operation to be independent. This independence idea when project

grows, helps the scale of each operation, and enables developers to optimize each operation

based on its unique demands. [13] CQRS pattern promotes efficient management of increasing

read and write loads by splitting those operations on two different databases and adding more

resources where needed. Notice that by having 2 different databases we can avoid errors

occurring when a crash happens. If user wants to read data, he/she will be able to get them even

though write operation database crashed, and vice-versa. [10] Another advantage is the

maintainability through clear separation of concerns. The distinct handling of commands and

queries simplifies the system’s behaviour offering a structured project with cleaner and more

maintainable code. [13] The CQRS pattern offers significant advantages in terms of

performance and system responsiveness by segregating the responsibilities of read and write

operations. Now, systems can finely tune read models for efficient querying and reporting,

while prioritizing data consistency and integrity in write operations. [13]

Disadvantages of CQRS:

CQRS adds a layer of complexity to the system. Managing and synchronizing different

databases and handling eventual consistency can be challenging for developers. A key issue

with CQRS is eventual consistency, where updates from commands may not immediately show

up in read models. This can be problematic for real-time applications. To address this, more

complexity might be introduced with event-driven architecture. Maintaining separate read and

write models in CQRS requires syncing them. Introducing CQRS to a team unfamiliar with the

pattern can slow the learning and implementation curve. [13]

CQRS Implementation Level In Our System

Based on the analysis, we decided that CQRS software architecture patterns offer a lot of

benefits and is an approach that can lead to designing scalable, maintainable, and high-

performance systems. However, to avoid unnecessary overhead in the learning curve we will

use a single database and only splitting command and query handlers only as a high-level of

abstraction in application layer. This way, we will have the potential for performance

optimization in a scenario where our application becomes large. The fact that clean architecture

is split in layers will give us the chance to make any changes to the infrastructure level that

contains the database implementation without needing to change other layers of the

architecture. The code implementation of this design pattern is going to be analyzed in the

Mediator section.

26

2.4. SOLID Principles & Our Clean Architecture

SRP Architecture examples:

Consider having a common abstraction and repository implementation for managing both user

authentication and user management. This code design violates SRP, so we need to create

separate interfaces, repositories for handling authentication and user management ensuring that

each class has a single responsibility. [9]

With CQRS pattern we separate command from queries, so each Command or Query Handler

has a single responsibility. Commands are responsible only for Write Operation while Queries

are responsible for read operations. [9]

Open Closed Principle Through Email Example:

In Clean Architecture, OCP is a principle that encourage the use of abstractions and inheritance.

In our project, we have used interfaces for both repositories and services. This idea aligns with

OCP because we use interfaces to define abstractions that can be extended without modifying

existing code. What do we mean by this? Extensibility can be achieved by defining an

IEmailService interface (see Figure 2.4.1) that can be implemented for various email server

providers. Now, for each email provider we will have an EmailService class where we

implement the IEmailService interface and extend the class without modifying the existing

code of IEmailService.

 Figure 2.4.1: IEmailService interface

How can we send Email inside Our Clean Architecture?

Let’s first explore how we can achieve to send an email. In Figure 2.4.5, the selection of which

email settings to use is chosen in AddEmail() method of Extension Class. We can use either

default email settings (see Figure 2.4.5 line 13) or any other email settings we want (see Figure

2.4.5 comment line 12). The method AddSimpleEmailing() (see Figure 2.4.4) is the one

responsible to create a transient IEmailSender instance (see figure 2.4.4 line 56) which means

that a different instance of a resource is given every time it’s requested. IEmailSender serves

as a base implementation since it encapsulates the email sending logic independently from

SMTP provider. We can easily conclude that choosing the SMTP server is programmer

27

responsibility by passing the appropriate SMTP settings to AddSimpleEmailing() method to

initialize a transient instance of IEmailSender along with SMTP settings (see figure 2.4.4 line

57) so we can use the functionality of sending an email through SendEmail() method of

IEmailSender instance (see figure 2.4.2) in any command or query handler (see Figure 2.4.3).

This IEmailSender instance is created at the beginning of the program from AddEmail()

method of Extension class since when app start running program.cs located in presentation

layer search for all services per layer to register them. AddEmail() method located in

Infrastructure layer will automatically be called when scanning happens. Since our application

has only one email provider, we directly use IEmailSender instance without needing to create

various EmailService classes.

 Figure 2.4.2: IEmailSender interface Figure 2.4.3: handle method of

 ResetOrForgotPasswordHandler

Figure 2.4.4: AddSimpleEmailing() method

Figure 2.4.5: Extension class

How OCP is violated and applied by encouraging abstractions?

OCP main idea is the usage of abstractions. One benefit, it provides us the change to have

different implementations of the same abstraction if needed. Until now, we didn’t apply the

28

OCP practically in our code since we didn’t create any EmailService that can extend

IEmailService or create various type of EmailServices. Even though we don’t need to modify

existing code to send an email (Use SendEmail() method (see Figure 2.4.3) the issue is that

code is not extensible. When you send an email, you maybe want to add some extra logic like

saving to database and returning that EmailMessageId (see Figure 2.4.6) which is not contained

in the encapsulated email sending logic in IEmailSender interface. Therefore, aligning with

OCP is crucial by defining a higher abstraction of send email (see Figure 2.4.1). OCP is applied

when our concrete implementation (see Figure 2.4.6) implements that higher abstraction and

contains that extra logic (or any other extra logic) combined with email sending logic.

How other SOLID Principles applied in Emailing?

Defining a focused interface specific only how to send an email either by building a custom

EmailMessage in Handler or using a pre-defined Template from database ensures that ISP is

also satisfied (see Figure 2.4.1). SRP is applied in our code because EmailDefaultService class

has only a single responsibility which is to save that the email was sent in the database.

DIP from Clean Architecture View

In Clean architecture, high-level modules are typically the inner layers that are closer to the

business logic. Those modules contain application-specific logic, business rules, entities and

use cases. Examples of high-level modules are the Application and the Domain layer. On the

other hand, low-level details refer to concrete implementations of external services, database

interactions, file system operations, APIs Endpoints, controllers, exception handling,

Figure 2.4.6: EmailDefaultService class

29

authentication, authorization. Typically, represents the outer layers of the architecture like

Presentation and Infrastructure layer.

Example with DIP definition & Clean Architecture from Project

It is important now to understand in detail from the aspect of Clean Architecture the definition

of Dependency Inversion Principle. “High-level policies should not depend on low-level

details” means that application or domain layer should not depend on the specific

implementation details of low-level layers like presentation or infrastructure layer. In our

example, we can think UserSaveHandler as the High-level policy since it is our use case and

belongs to the Application Layer. UserRepository can be mapped as a low-level detail that

belongs to Infrastructure layer and the conclusion from this is that UserSaveHandler does

not depend on the specific implementation details of UserRepository. Applying the dependency

inversion principle starts by introducing an abstraction between the high-level policy and

the low-level details to remove the direct dependency between them. That is why

UserSaveHandler depends on IUserRepository interface and not to UserRepository (see

Figure 2.4.7). [19] Therefore, the idea that High-level policies should not depend on low-level

details is satisfied. From, “Abstractions should not depend on details and details should depend

on abstractions” we can conclude that abstractions like interfaces or contracts that defines how

the high-level policies interact with lower-level components should not depend on the concrete

implementation, but the implementation should depend on the abstractions defined by the inner

layers. We can consider IUserRepository as the abstraction and the UserRepository as the

low-level detail that depends on abstraction. IUserRepository which is the abstraction also

does not depend on details which is UserRepository so we can state that the idea that

abstractions should not depend on details and details should depend on abstractions is also

satisfied. Removing the ‘uses’ relationship between high and low-level policy and adding

an implements relationship of low-level policy on the abstraction makes what we call

Dependency Inversion. [19]

Figure 2.4.7: UserSaveHandler class

30

How DIP ensures Dependency Rule?

In Clean Architecture, the Dependency Rule is one of the core ideas and the reason that this

architecture works is a result of Dependency Inversion. Without DIP, the Dependency Rule

idea is violated since dependencies do not flow inward. But why does this happen? Simply

because UserSaveHandler located at Application Layer need UserRepository instance that

belongs to Infrastructure Layer. Since, Infrastructure layer is the outer layer of Application

layer this violates Dependency Rule idea that inner layers do not know anything about outer

layers. Applying the Dependency Inversion Principle, we ensure UserSaveHandler do not

depend on UserRepository, but both depend on the IUserRepository interface. This inversion

of dependencies except from achieving loose coupling, flexibility, testability guarantees that

clean architecture core principles like Dependency Rule can be applied.

Abstraction Placement:

When we invert dependency from a high-level policy that ‘uses’ a low-level detail high-level

policy to an idea where high level policy ‘uses’ an abstraction and the low-level policy

‘implements’ the abstraction. Since we want higher level policy not to depend on the low level,

the abstraction belongs with the high-level policy either on application layer if it’s related to

the application or external services (IJwtBearerService, IEncryptionSimpleService,

IOtpService) either to the domain layer if it’s related to business logic (IUserRepository,

IEmployeeRepository).

The concrete implementation of an interface should not be placed in domain layer but in an

outer layer like Infrastructure Layer (EmailService) when communicate with external service

providers or in Application Layer (JwtBearerService, EncryptionSimpleService) when is

application specific. By adding abstractions to Domain or Application layer and

implementations to Application or Infrastructure layer we ensure that Dependency Rule is

applied. [19]

31

Chapter 3

Frameworks and Libraries

3.1 C# 31

3.2 Angular 31

3.3 SQL Server 32

3.4 ASP.NET Core Framework 32

3.4.1 Minimal APIs 34

3.4.2 Middlewares Filters 35

3.4.3 Filters 39

3.4.4 Authentication & Authorization 39

3.4.3 .Net Libraries 43

3.4.3.1 MediatR 43

3.4.3.2 Fluent Validation 46

3.4.3.3 Dapper 52

3.1 C#

Our application will be developed in ASP.NET Core 7.0 Framework and the language that is

most popular for .NET platform applications is C# language. C# is a cross-platform language

used by millions of developers with rich support. The most important is that it contains a lot of

features that support object-oriented principles. Developers can write code fast with high

performance. Some of the features that we are going to use is record, generics, Task based

asynchronous programming with async, await keywords, interfaces, classes, inheritance, etc.

[26]

3.2 Angular

Angular is an application-design framework and development platform built on Typescript for

creating efficient and sophisticated single-page apps. Typescript is the programming language

of Angular that is based on JavaScript. Angular is a component-based framework for building

32

scalable web applications that contains a collection of well-integrated libraries that cover a

wide variety of features, including routing, forms management, client-server communication,

and more. Along with angular we will use HTML, CSS, Bootstrap and PrimeNG library that

provide a rich source native Angular UI Components. Enterprise-level applications can be built

using Angular which also has a large community with over 1.7 million developers. Angular

provides a rich variety of features such as routing, forms, components, dynamic properties,

property binding from typescript file to html template, event handling, dependency injection

and a lot of others. [27]

3.3 SQL Server

SQL Server, developed by Microsoft, is a robust and highly scalable relational database

management system (RDBMS) designed for enterprise-level applications. It offers a

comprehensive suite of tools and features for data storage, management, and analysis, making

it a preferred choice for businesses of all sizes. Its built-in security features ensure data

protection and compliance with industry standards, while its recovery solutions provide

reliability. With its powerful performance tuning and optimization tools, SQL Server enables

efficient handling of large volumes of data, making it an essential component for our

applications. [29]

3.4 ASP.NET Core Framework

ASP.NET Core is a cross-platform, high-performance framework for building modern, cloud-

based, and internet-connected applications. ASP.NET Core supports a variety of application

models, including web applications, microservices, and serverless functions. ASP.NET Core

allows developers to create web APIs using two primary approaches: controller-based APIs

and minimal APIs. [29] Our Web APIs was developed using a simplified way from ASP.NET

Core with Minimal APIs focusing as the name suggest on minimalism. They are designed for

rapid development scenarios and offers exposing and handling endpoints in a single line via

lambdas expressions. Traditional Controllers Web APIs come with a considerable amount of

boilerplate code while having a large overhead to expose endpoints. Let’s compare the steps

for each approach. [43]

33

Controller-Based Approach – Figure 3.4.1:

• HelloController class inherits from ControllerBase which is a base class in ASP.NET Core

for API controllers.

• To add default API behaviors, it uses [ApiController] attribute.

• The [Route] attribute defines the base route path for the controller.

• Get method is a GET HTTP Request endpoint that responses with a message.

Minimal-API Approach – Figure 3.4.2:

• CreateBuilder method of WebApplication class creates a minimal API Web Application.

• MapGet method specifies an HTTP Get endpoint for the specified route “api/hello”.

• The lambda expression inside MapGet method contains the endpoint Handler

 Figure 3.4.1: Controller-Based Approach [43]

Figure 3.4.2: Minimal API Approach [43]

Obviously, the above figures proves that controller-based API requires more code with class

declarations, attributes and method signatures while Minimal APIs eliminate boilerplate code

and abstractions, are simpler and quicker to create and handle an endpoint . Minimal APIs use

Endpoint Handler with

lambda expressions

Add default API Behaviours

Defines base route path

Inherits from API

Controller’s base class

HTTP Request method

HTTP Request

method

34

a functional approach with direct route to handling mapping, but Controllers follow use

methods in classes for this purpose. [43] Latest Benchmarks proves that Minimal APIs perform

with reduced resource consumption producing slightly better than traditional APIs with about

40% faster response and less memory.

ASP.NET Core supports dependency injection, Middlewares, Minimal APIs, Filters,

Authentication, Authorization. Let’s analyze some of those features now and how they can be

used in an ASP.NET Core 7.0 Web Minimal API app. [29] Before that Figure 3.4.3 represent

a high-level overview of our Web API based on the design pattern we introduce in the previous

section (mediator and CQRS) and on technologies we will analyze in the following sections

like Dapper ORM, Minimal APIs, Fluent Validation, MediatR. In the upcoming chapter

research will focus on building the base software and how we can integrate each

technology, library and use features provided from frameworks into our base software

project without breaking our generic architecture.

 Figure 3.4.3: Web API Overview

 3.4.1 Minimal APIs

Minimal APIs leverage the WebApplicationBuilder and WebApplication classes to define

routes and handle HTTP Requests. Developers can handle those endpoints with a functional

approach using lambda expressions. With lambda expressions you can create an anonymous

function that will handle the HTTP Request for the specific endpoint. Minimal APIs supports

features such as Route Handlers, Endpoint Filters, Parameter Mapping, interfaces to create

responses, etc. Next, we are going to define the core concepts for using Minimal APIs. [30]

35

RouteGroupBuilder & RouteHandlerBuilder classes

The RouteGroupBuilder class in ASP.NET Core is a tool for organizing and managing routes

in a web application. It is a builder for defining a group of endpoints that share a common

prefix. This can help in structuring your API routes clean and logical. When you use the Map

Group() from RouteGroupBuilder class you can define a route pattern or prefix that will be

applied to all endpoints within the group. MapPost() method adds a RouteEndpoint class. This

RouteEndpoint is associated to a specific URL path with a function that should run when an

HTTP POST requests for the specified route is made. A configured WebApplication also

supports HTTP methods like MapGet, MapPatch, MapPut and MapDelete. Another valuable

method supported is AddEndpointFilter() method that allows to add filters to routes within a

specific group. RouteGroupBuilder also provides WithTags() and WithGroupName()

extension methods that helps to categorize endpoints by tags into related groups in the

SwaggerUI. [31] RouteHandlerBuilder class provides WithMetadata() method that can add the

provided metadata items to the EndpointBuilder metadata. The RouteHandlerBuilder class also

contains AllowAnonymous() method that allow anonymous access to the endpoint meaning

that no authorization is required. [32] More Details will be explained in the next section with

practical implementation examples.

 3.4.2 Middlewares

Middleware is software that refers to components in the ASP.NET Core framework pipeline

that handle requests and responses. Each middleware can choose if the request can be passed

to the next middleware in the pipeline. Middlewares could do work before and after the next

component in the pipeline. Request delegates handle HTTP requests, and they are used to build

the request pipeline. It's a powerful tool for implementing cross-cutting concerns such as

logging, authentication, authorization, error handling, and more. [33]

How do they work?

Those middlewares components is what we call ASP.NET Core request pipeline. In Figure

3.4.2.1, the black arrows represents the flow through the request pipeline. An important note is

the reverse order for the response.

36

 Figure 3.4.2.1: Request Pipeline With Middlewares [34]

A middleware invoking the next delegate can pass the request to the next middleware

component in the pipeline allowing it to process the request further or stops the request

processing at the current middleware (short-circuiting the pipeline). This idea allows us to do

some processing before passing the request to the next middleware before next() method. The

code after next() method is the processing after the next middleware has completed. [33]

Middlewares Ordering

When we create a new ASP.NET Core app, many of the middleware components are already

registered in the order of the following Figure 3.4.2.2. Middleware order is crucial as it defines

the sequence in which middleware components are executed. You can specify the order of

middleware by the order in which you add them in your Program.cs file. You have full control

over how to reorder existing middlewares or inject new custom middlewares as necessary for

your scenarios. Ordering is critical for security and functionality.

 Figure 3.4.2.2: Default Middlewares Ordering [34]

37

Custom Middlewares with Minimal APIs in our System

In this section, we are going to create custom middlewares using request pipeline. Even though

try-catch blocks are the most common approach wherever an error can occur ASP.NET Core

middleware mechanism offer an innovative strategy for error-handling in a global way.

Utilizing middleware concept we can remove all the exception-handling logic from the classes

to a single centralized file called ExceptionHandlingMiddleware (see Figure 3.4.2.3). This

custom middleware can be created by implementing a function called Invoke() passing the

HttpContext as an argument. Inside this class, when no error occurs try block will execute the

await _next(context) where _next is the RequestDelegate parameter responsible to pass the

execution to the next middleware component. Notice that _next(context) has no code before or

after indicating that middleware doesn’t want to perform any logic when no error occurred. If

an exception was thrown our middleware will trigger the catch block and call the

HandleExceptionAsync() method. In that method, GetHttpStatusCode() (see Figure 3.4.2.4)

methos is called and based on the exception it set up the appropriate HTTP response status

code, content type returning a structured error response. In the case where the exception is

unknown HTTP status code is set to 500 indicating internal server error. This middleware

handles exceptions that occurs during request processing maybe from other middlewares,

handler, repository, database, dapper, etc. If an exception is thrown this middleware intercepts

it doing some logic. This strategy makes exception-handling more readable and maintainable

avoiding repeating the same code. Middleware can be registered to request pipeline using the

UseMiddleware() method provided by the IApplicationBuilder interface (see Figure 3.4.2.5)

[18].

Figure 3.4.2.3: ExceptionHandlingMiddleware class Figure 3.4.2.4:

 GetHttpStatusCode() method of

 ExceptionHandlingMiddleware class

38

 Figure 3.4.2.5: AddCoreApplication() method

LogMiddleware is another custom middleware that logs various details about the request and

response, such as request method, path, headers, and response status (see Figure 3.4.2.6). It

also handles exceptions thrown during request processing and logs them. It’s important to mark

that exceptions are handled in different middleware so catch block is empty but try block will

implement the logging of the request and the response. LogMiddleware should be placed first

in the order of the custom middlewares (see Figure 3.4.2.5:) because we need to log requests

before processed by other middleware components. Another reason is that if an exception

happens at the response, then log needs to be executed after ExceptionHandlingMiddleware so

error can be logged.

 Figure 3.4.2.6: LogMiddleware

In summary, middleware components in ASP.NET Core provide a way to encapsulate cross-

cutting concerns and intercept requests and responses as they flow through your application.

Custom middleware components, such as logging, and exception handling can be easily

39

integrated into the middleware pipeline and help maintain separation of concerns in your

application architecture.

 3.4.3 Filters

Minimal API filters give the change to the developer to implement logic that will run a code

before and after the endpoint handler. You can inspect and modify parameters before reaching

the endpoint handler or modify the response after execute endpoint handler. In Minimal APIs,

filters can be implemented using IEndpointFilter interface and providing InvokeAsync

method() that takes an EndpointFilterInvocationContext and an EndpointFilterDelegate as

arguments. The EndpointFilterInvocationContext provides access to the HttpContext of the

request and an Arguments list indicating the arguments passed to the endpoint handler.

Endpoint Filters can be registered as shown in Figure 3.4.2.5 method using

AddEndpointFilter() function. [35]

 3.4.4 Authentication and Authorization

ASP.NET Core with Minimal APIs support provide functionality for authentication and

authorization. Authentication is the process of determining a user's identity while authorization

refers to checking if the user is permitted to access a resource.

JSON Web Tokens

To achieve authentication, we utilize JWTs. JWTs are compact and self-contained tokens that

securely transmit information between parties as a JSON object. They are digitally signed,

using HMAC algorithm and public/private key pair using RSA ensuring their authenticity and

integrity. JSON Web Tokens are useful for authorization since once the user is logged in, he/she

can access all endpoints of API that are permitted with that token. [36]

Implementing Authentication System

When a user tries to login in, his credentials are validated from our authentication system

(Figure 3.4.4.1 line 37-43). If authentication is successful, a JSON Web Token is generated

with an expiration time and returned to client as a response of a successful authentication

request (see Figure 3.4.4.2). Therefore, clients in subsequent requests should send the JWT in

the authorization header of the request as proof of authentication. The question is how to

perform this process of validating JWT. [36]

40

Figure 3.4.4.1: LoginHandler

Figure 3.4.4.2: LoginHandler

The responsibility to perform the authentication process is assigned to JwtBearer. JwtBearer is

a NuGet package that comes in with an ASP.NET Core middleware that enables an application

to receive an OpenID Connect bearer token. The middleware that comes with JwtBearer

package performs authentication by extracting JWT token from the authorization header and

validating it. Therefore, each incoming request to our application is intercepted by this

middleware checking whether the token is valid and not expired to allow the request to proceed.

For long-lived sessions, clients can refresh their access tokens using a refresh token. When a

token refresh request is received, the existing JWT is exchanged for a new one with an extended

expiration time. This process helps maintain session security while minimizing the need for

users to reauthenticate frequently. The following figure 3.4.4.3 is responsible to configure a

JWT bearer-based authentication using AddAuthentication() and AddJwtBearer() extension

methods of ASP.NET Core with JwtBearer NuGet package . First, we need to enable

authentication by calling AddAuthentication() that registers the required authentication

services on the app’s service provider. It also configures the authentication options and sets the

default authentication schema. Then, a specific authentication strategy is required which in our

case is JWT bearer-based authentication. Using AddJwtBearer(), we can register JWT Bearer

Authentication middleware so it’s not necessary to invoke Authentication middleware of

ASP.NET Core. [37] However, there are some case such as when a user tries to log in or need

to refresh a token as shown in Figure 3.4.4.4 that we need to disable JWT Bearer Authentication

41

middleware using AllowAnonymous() method because user doesn’t have any JSON Web

Token and he/she must get one. To sum up, our Authentication system consists of validating

user credentials when tries to login and validating JWT using JWT Bearer-based

Authentication middleware.

 Figure 3.4.4.3: JWT Bearer-based Authentication

Figure 3.4.4.4: AuthEndpoints class

Authorization System

Except from user authentication for each request, we also need to ensure that the user has the

appropriate permission to access a specific endpoint. Our Authorization is permission-based

where each user has a specific role that contains a set of permissions indicating the access-level

of each user in the application. Our application implements authorization using custom

endpoints filters. We can use AddEndpointFilter() method to add a filter called

PermissionFilter under all routes of the application (see Figure 3.4.2.5). InvokeAsync() method

of PermissionFilter (see Figure 3.4.4.5) class is executed for each request after finishing the

request pipeline and before allowing access to specific endpoint handler. In Figure 3.4.4.5

shows that if the user doesn’t have all the required permissions access is denied and

UnauthorizedAccessException is thrown. Since endpoint filter raise an exception the control

flow of the app is passed to the middleware pipeline in reverse order. Therefore, in Figure

3.4.2.3 catch block will execute modifying the response that flows back through the

middleware pipeline adding the appropriate HTTP Status Code and a structured error message.

If the User has all the permissions, then return await next(context) stops the execution of filter

pipeline and pass the execution to endpoint handler.

42

 Figure 3.4.4.5: PermissionFilter class

In that part, it’s obvious that we implement cross-cutting concerns like authentication,

authorization, exception-handling and logging using middlewares and filters features from

ASP.NET Core Minimal APIs. Figure 3.4.4.6 shows the middlewares sequence of our

application while Figure 3.4.4.7 shows the flow of a request in our application combining

Middlewares, Filters and the high-level overview of our Web API explained. In the following

section, we are going to analyze the missing parts of Figure 3.4.4.7 like MediatR, Dapper ORM

and Fluent Validation.

 Figure 3.4.4.6: Middlewares Sequence

43

 Figure 3.4.4.7: Request Flow in our Web API

 3.4.5 Net Libraries

 3.4.5.1 MediatR

MediatR is a library that contains mediator pattern implementation in .Net. This library is used

for processing messages without dependencies in software applications. [38] MediatR library

provides a clear separation between layers that wants to communicate through classes making

them independent of each other. [10]. In the view of this statement, using MediatR library we

can practically apply a core principle of clean architecture principle that refers to loose coupling

between layers as explained in Mediator Pattern section. Another key point is that MediatR is

the way to apply CQRS pattern in our System and will be analyzed later. [10]

MediatR Interfaces

In our project, there are 3 interfaces that we will use from MediatR library. ISender, IRequest

and IRequestHandler. IRequest (see Figure 3.4.5.1: line 10) is an interface that will be

implemented by the classes that will represent command or query requests. In other words, it

requires to declare the response object returned for this request [10]. IRequestHandler

aims to define a handler for request (see Figure 3.4.5.2 line 11). Therefore,

IRequestHandler<request, response> is the interface implemented from the Handler classes to

44

handle command or query requests. In General, it requests the request and response classes to

be declared and force Handler to implement Handle method. [10] IRequestHandler enforces

request to implement IRequest<TResponse> interface and that TResponse of IRequest is the

same class with response class in IRequestHandler (see Figure 3.4.5.2 line 21).

Figure 3.4.5.1: IRequest interface

 Figure 3.4.5.2: IRequestHandler interface

Send() method from ISender interface is responsible to achieve the communication between

the classes. Internally, this method finds the IRequestHandler of a query or a command request

passed as an argument and executes the method handle inside the class implementing that

interface.

 Figure 3.4.5.3: IMediator interface

 Figure 3.4.5.4: ISender interface

45

How to achieve loose coupling using MediatR in our System?

In Figure 3.4.5.5 an anonymous route handler function for endpoint

“baseUrl/GetEmployeesReportExcell” located in the Presentation layer wants to communicate

with a handler located in Application layer. Therefore, using Send() method from the ISender

interface through IMediator interface, we achieve communication between two different layers

of clean architecture through mediator pipeline. In that phase, it’s important to clarify that

MediatRGet() extension method coming from an internal company library is the corresponding

method to MapGet method provided from Minimal APIs. Those extension methods basically

contains Send() method and returning the response to help developer minimizing the code into

just a single line.

 Figure 3.4.5.5: EmployeeProjectsEndpoints

How to apply CQRS pattern using MediatR in our System?

Our record UsersSaveCommand (see Figure 3.4.5.7) inherits from UsersSaveRequestDto and

IRequest interface. By implementing the IRequest interface it forces our request to return an

object UsersSaveResponse that contains a Boolean value whether the insert or update was

successful. Then, UserSaveHandler class inherits from IRequestHandler<

UsersSaveCommand, UsersSaveResponse > which means that UserSaveHandler class will

handle UsersSaveCommand (request) which return a UsersSaveResponse (response).

IRequestHandler checks that UsersSaveCommand has implemented IRequest<TResponse>

interface and that TResponse object is also UsersSaveResponse object otherwise it will throw

an error. As a result, whenever Send() method is called the request parameter will be sent

through mediator pipeline to be handled by the query or the command that implements the

IRequestHandler interface and the request parameter matches the request of the interface. Then,

the method handle inside the Handler will be executed.

Figure 3.4.5.7: UsersSaveHandler figure

46

 3.4.5.2 Fluent Validation

Validation is a cross-cutting concern in a RESTful API where we need to ensure that request

is valid before processing it. In Minimal APIs there is not any built-in validation mechanism

to extend. The most used approach is to check request right before processing command in the

same class with the handler (see Figure 3.4.5.2.1). This means that validation is tightly coupled

to the command handler making the maintenance harder as the complexity of the validation

increases. Each change in the validation of the request will affect the handler since its code can

grow a lot. [14]

Filling the class with if statement and exception throwing is a beginner practice and not a

professional one. A modern way to validate a request is to use the data annotation attribute

directly to the request class (see Figure 3.4.5.2.2). Using this approach, POCO class/record

will be polluted by the data annotation attribute making the entity class tightly coupled to

validation rather than act as a DTO. [15]

 Figure 3.4.5.2.1: Common Validation[14] Figure 3.4.5.2.2: Modern Validation [15]

Fluent Validation

Fluent Validation is the library that will replace data annotation validation attributes by

separating validation rules from entity and DTO classes. This way we can also make dynamic

and conditional validations. [16] Fluent Validation is a popular validation open-source library

for .NET, which uses a fluent interface and lambda expressions for building strongly typed

validation rules. [16]

47

Why Fluent Validation?

A good rule to follow for each developer in Restful APIs is that an invalid command or query

request should never reach the handler. That’s why we use Fluent Validation to separate request

validation from request handling. Fluent Validation can be used to validate user input checking

for null vales, empty strings, required fields, string length (input validation) or it can be used

to validate business rules such as checking for required preconditions (business validation)

before processing a request [14]. It allows developers in a very easy way to define built-in or

custom validation rules either synchronous or asynchronous for a request using a simple,

readable, and maintainable syntax accelerating development cycle. Integration with various

frameworks and libraries such as ASP.NET Core, Minimal API and Web API is easy since is

a .Net library. Fluent Validation has also a small initial learning curve. [17]

Business & Input Validation Examples Through Project

In this section we are going to focus on business validation examples but through this you can

see that input validation is also done since before ensuring that business rules are satisfied you

need to make sure that input is valid. A good example is when we want to ensure that VatNo

of a company is unique then this refers to a rule related about business validation (see Figure

3.4.5.2.3). First, we use NotNull, NotEmpty, MaximumLength to validate input and then we

can use the asynchronous Method MustAsync to make sure that VatNo in the Company Entity

that we are trying either to insert or update does not already exist in database. This can be

achieved by getting an ICompanyRepository instance where inside BeUniqueVatNo we will

use this instance to call a method to get all Vat Numbers in database. After, we can simply

return true or false whether the VatNo passed as an argument is contained in existing Vat

Numbers. This way MustAsync will throw an error in case BeUniqueVatNo returns false.

Leveraging Fluent Validation, we ensure both input data and business logic are satisfied before

handling the request achieving greater performance since our request will not pass from all

those layers until database will throw unique constraint error. As a result, we can focus on the

application-logic by avoiding polluting handlers, entities, database, and user interface with

validation checks.

48

 Figure 3.4.5.2.3: CompanySaveValidator

Based on this, the next example refers to a situation where fluent validation is not used, and we

pollute our typescript file in angular project with validation. As you see in Figure 3.4.5.2.4,

we just check whether the two passwords match. However, a better practice would be to add

this validation to ChangePasswordValidator in the API project. In Figure 3.4.5.2.5, we need to

decrypt the password (line 9) since passwords are encrypted when Angular and API share those

sensitive data and then we need to check whether the new password matches the regular

expression (line 11) that enforce user to add a strong password. Then, (line 14) we check

whether the new password matches the verification password. That’s why fluent validation is

so powerful because it helps us to remove this logic from typescript file in those cases and

move it to the corresponding separate validator class.

 Figure 3.4.5.2.4: Validation in Angular

 Figure 3.4.5.2.5: ChangePasswordValidator

The last business-related example is associated with tokens because when a user wants to set a

new password this is done via a token URL sent in email for safety reasons. In

SetNewPasswordValidator we need to check that some constraints such as tokens are not used

or expired after communicating with database through repository interface to get that info.

49

Figure 3.4.5.2.6: SetNewPasswordValidator

Exploring Fluent Validation Validators & Features

Fluent Validation give us the ability to check whether a property is not null, empty string,

whitespace, empty collection and not the default value of the type of the property (not zero if

is integer for example) giving us the change to use it with different types of properties (see

Figures 3.4.5.2.7, 3.4.5.2.8 and 3.4.5.2.9). All this can be achieved using the built-in validator

NotEmpty() method of Fluent Validation Library (NotEmpty()). NotEmpty() can replace

NotNull().GreaterThan(0) or NotNull().GreaterThanOrEqualTo(1) (see Figure 3.4.5.2.7) since

it contains those checks inside the function. We can also provide our custom message of error

along WithMessage() method and check whether a value is contained in a list using In() method

(see Figure 3.4.5.2.9). It gives us the chance to use functions like GreaterThan(0),

MaximumLength(), EmailAddress(), Length() (see Figure 3.4.5.2.10 and Figure 3.4.5.2.11).

Another important function that library provides is When() since you can use it if you want to

apply more than one rule based on a condition (see Figure 3.4.5.2.12). Moreover, developer

could check if all the elements in the list inside RuleForEach satisfy the rules given under

ChildRules() (see Figure 3.4.5.2.13). A very powerful feature that this library offers is the

custom rules as shown in Figure 3.4.5.2.14. The use case is that we have a request we have a

list with permissions and role so we can update the database with the given permissions for that

role. In the example, we just replace the commented and most obvious validation rules for

checking if an integer is greater than zero or if a list is empty just to show how we can define

custom rule. Obviously, library has a lot of other methods and features that can be useful for

specific use cases of the application (for more info

https://docs.fluentvalidation.net/en/latest/index.html).

https://docs.fluentvalidation.net/en/latest/index.html

50

Figure 3.4.5.2.7: Fluent Validation Features 1

Figure 3.4.5.2.8: Fluent Validation Features 2

Figure 3.4.5.2.9: Fluent Validation Features 3

Figure 3.4.5.2.10: Fluent Validation Features 4

Figure 3.4.5.2.11: Fluent Validation Features 5

Figure 3.4.5.2.12: Fluent Validation Features 6

Fluent Validation Features 7

Figure 3.4.5.2.13: Fluent Validation Features 7

Figure 3.4.5.2.14: Fluent Validation Features 8

51

Fluent Validation Integration With MediatR and CQRS & Design Decisions

Based on all the previous example it should be clear to understand that to define a set of

validation rules for a particular request, you will need to create a class that inherits from

AbstractValidator<T>, where T is the request object that is going to be validated (see Figure

3.4.5.2.14). To specify a validation rule for a particular property you can use any of the methods

explained in Fluent Validation features, passing a lambda expression that indicates the property

that you wish to validate. That’s all for now. Obviously, someone can wonder now how we can

change the flow of the project so when we use IMediator Send() method instead of going to

the appropriate handler to go first in the validator and if request validation is satisfied then to

go to the handler. Before explaining how mediator pipeline can solve this problem let’s discuss

some logical approaches to this issue. A custom approach is before Send() method to pass the

control to the Validator. However, this violates clean architecture core principle about

separation of concerns since validating is not related to the presentation layer but in application

layer where use cases logic is placed. Therefore, a better approach is to pass the control to the

validator from the use case (handler) through ValidateAndThrow() method provided from

library (see Figure 3.4.5.2.15). This requires injecting IValidator<T> service where T stands

for the query or command handler to be able to run validation through this instance. But this

forces you to define an explicit dependency in every handler to IValidator interface.[14] To

overcome the disadvantages of the previous approaches we validate a request through MediatR

pipeline. AddValidatorsFromAssemblies() method (see Figure 3.4.5.2.16) tells

FluentValidation to look for any validator in the assembly (API project) and automatically

register them all to the application [14]. However, registering MediatR first through

AddMediatR() (see Figure 3.4.5.2.16) and then Validators we basically add FluentValidation

Middleware into MediatR pipeline so it can pass the control to the corresponding Validator of

the command or query request passed in Send() method and then go to handler of that request.

Figure 3.4.5.2.15: Fluent Validation inside Handler

52

 Figure 3.4.5.2.16: Fluent Validation Through MediatR pipeline

 3.4.5.3 Dapper

Dapper is an open-source object-relational mapping (ORM) library for .NET applications,

designed to provide developers with a quick and easy way to access data from databases.

Available as a NuGet package, it is lightweight and fast, making it an ideal choice for

applications that require low latency and high performance. Dapper specializes in reading data

from a database and mapping it to objects, it excels in scenarios where there's a lot of reading

happening, but not much writing. Therefore, the main reason we use Dapper instead of entity

framework is speed because application most requests are to get data. [39]

Dapper boasts a range of features that make it an attractive option for data access in .NET

applications. Dapper allows you to execute raw SQL queries and stored procedures, giving you

full control over your database interactions. Dapper can map query results directly to .NET

objects. Dapper supports both asynchronous and synchronous database queries and batching

multiple queries together into a single call, which can significantly reduce the number of round

trips to the database and improve performance. Dapper supports parameterized queries, helping

to protect against SQL injection attacks by ensuring that user input has properly escaped. [39]

Dapper in our System

In our project, IDataAccessLayerContext interface encapsulates dapper integration with SQL

Server. IDataAccessLayerContext is the instance where every repository class needs to connect

to get access to the database and use the dapper functionalities. This interface from an internal

company package injects an ADO.NET IDbConnection object because dapper works with any

database system where there is an ADO.NET provider. Therefore, this IDbConnection

represents an open connection to a data source which in our case is SQL Server. The only thing

that a developer needs to do is to add the connection string for the database in settings.

53

Why Parameterized Queries are important?

Parameterized queries and stored procedure improving query execution plan caching. Using

Dapper functions with parameters allows the database engine to parse and compile the query

or stored procedure once and reuse the execution plan for subsequent executions with different

parameter values. This reduces the overhead of parsing and compilation, leading to faster write

operation execution.

Using parameterized queries with Dapper it ensures that data is inserted/updated/deleted safely

without exposing vulnerabilities to SQL injection attacks. Parameterized queries are SQL

statements where parameters values are used to represent variable values within the query

string. Instead of directly embedding values into the query string, parameters are placeholders

that are substituted with actual values at execution time. When you execute a parameterized

query, you provide the parameter values separately from the query string and these parameters

values are then securely passed to the database engine to replace the placeholders and execute

the query. This allows the database engine to treat the SQL code and data separately. Since

user input is not directly interpreted as part of the query Dapper will automatically sanitize the

user input and if SQL injection attack is detected dapper escapes before executing the query

and prevent SQL injection attacks. To sum up parameter values are treated as data rather than

being a part of SQL executable code ensuring that structure of the query cannot be altered. [39]

How Dapper Provides Better Performance

Considering dapper documentation, we realize that dapper does not manage the caching of

execution plans. Instead, it delegates this responsibility to the underlying database provider

(e.g., SQL Server). Overall, Dapper with parameterized queries leverages benefits from the

optimizations performed by SQL Server, to reuse cached execution plans efficiently.

Dapper contributes to speed improvements with efficient result mapping and optimized data

access. Dapper excels at mapping query results to .NET objects with minimal overhead. Its

lightweight and high-performance object mapping capabilities allow for fast and efficient

processing of query results, even when dealing with large datasets. Dapper provides faster data

access compared to heavier ORMs since it utilizes ADO.NET under the hood, leveraging its

capabilities for connection management and data retrieval. [39]

To conclude, this chapter analyze integration of libraries and frameworks into the base software

explaining why to choose each one. Moreover, it uses the features provided from those

technologies to implement common features and add them to the base software. The process

of creating this base software followed the principles of Generic architecture as proposed in

chapter.

54

Chapter 4

Application Design

4.1 Database Design 54

 4.1.1 Schemas 54

 4.1.2 Tables 55

 4.1.3 Database Diagrams 59

4.2 Clean Architecture in .Net Projects Structure 61

 4.2.1 Infrastructure 61

 4.2.2 Domain 62

 4.2.3 Application 64

 4.2.4 Presentation 66

4.3 Code Decisions 68

 4.2.1 Domain 68

 4.2.2 Infrastructure 69

 4.2.3 Presentation 71

4.1 Database Design

This chapter focus on the implementation of the Employee Management System as a proof

of concept of the generic architecture and the base software. In the following section, we

deal with the database design of our application, creation of the .Net Projects based on our

Generic Architecture. This chapter proves that having a set of technical details and common

features from the base software we can use them to implement application-specific features

without affected from technical details allowing us to focus on business logic. The code

implementation of Employee Management Features must also align with the generic

Architecture as proposed in Chapter 2.

 4.1.1 Schemas

In our database design, we have organized the database into multiple schemas, with each

schema containing a set of related tables. Chosen schemas are com that refers to common

55

management, usr to user management, employee to employee management and auth to

authentication management. In figures 4.1.1.1 and 4.1.1.2, you can see the schema that each

table belongs. This approach offers several significant benefits such as logical separation of

database tables, stored procedures, user-defined objects and all database related staff. This

helps in organizing tables based on their functionality making the database more manageable

and easier to understand. By using schemas, we can assign different permissions to different

schemas to restrict the accessing or modifying specific parts of the database. Schemas help

avoid name collisions by allowing the same table name to exist in different schemas. This is

particularly useful in large applications where different modules might have tables with similar

names. By structuring our database with schemas and tables, we achieve a well-organized,

secure, and efficient database design that supports scalability, maintainability, and

collaborative development. [40]

Figure 4.1.1.1 Auth, Com, Employee Schemas Figure 4.1.1.2 Usr schema

 4.1.2 Tables

In this section, we are going to explain the design of the database tables (see figures 4.1.2.1 –

4.1.2.5) to manage employees, departments, roles, and projects. Database design needs to

aligns with normalization principles and I was based on this achieving to reach the third normal

form (3NF). The design follows the principles of database normalization to ensure data

integrity, reduce redundancy, and improve the efficiency of data operations. Below is the

analysis of the design choices made for each table and why i created those tables based on

normalization.

Project table stores information about various within the organization. Departments keeps track

of different departments in the organization. The EmployeeRoles table contains the roles that

an employee can have in a project. Employee table contains information about employees while

having a reference on Department table since an employee belongs to one department and a

department can have many employees. This means that is 1-N relationship and no further table

56

like EmployeeDepartment is needed. Obviously, it’s critical to understand why we created that

EmployeeProject Table. Based on the requirements an employee can work in many projects

and a project can have many employees working on it. An employee can work in a project

having different roles and a role can be chosen by many employees. So, we have Employee-

Roles N-N relationship, Employee-Project N-N. However, an employee that works in a project

needs to select roles and an employee that has roles those roles must also be specified in which

project it has each role. That lead us to create a single table storing EmployeeId,

EmployeeRoleId and ProjectId as composite key so we can force to add a record that contains

the info of who is the employee in what project works and which role he/she has in the specific

project this employee. To sum up, composite primary key ensures that each combination of

EmployeeId, ProjectId, and EmployeeRoleId is unique. This accurately models the many-to-

many relationship between employees, projects, and roles.

Let’s examine now in what Normal Form our tables are. All tables have atomic columns

without multivalues, or composite columns and they also have a unique identifier which is the

primary key. This means that INF is satisfied. In 2NF, all non-key attributes must depend on

the primary key. Since each table has a single-column primary key except for

EmployeeProjects, all non-key columns depend on the primary key. For example, in the

Employees table all columns depend on EmployeeId. Imagine department names stored in

Employees table instead of Departments table then this would violate 2NF because department

name would be dependent on a non-key-attribute like departmentId instead of the primary key

like EmployeeId. 3NF states that no transitive dependencies must exist which means that non-

key attributes are not dependent on other non-key attributes. In the Employees table, the non-

key attributes (FirstName, LastName, SignOffStatus, DepartmentId) depend only on the

primary key (EmployeeId), and not on each other’s relationships. A possible violation of 3NF

in Employees Table could be if SignOffStatus for some departments is the same. Let’s say

DepartmentA has SignOffStatus=0, DepartmentB has SignOffStatus=1 while other

departments have mixed SignOffStatus values. This dependency means that knowing the

DepartmentId can help us determine SignOffStatus for some departments introducing a

transitive dependency (EmployeeId -> DepartmentId -> SignOffStatus). However, our data

doesn’t have this relation between those 2 columns so splitting DepartmentId and

SignOffStatus to a different table is not necessary. EmployeeProjects satisfies both 2NF and

3NF because we don’t have non-key attributes at all in the table. [41]

The reason why we follow normalization is because by splitting data into related tables, you

minimize redundancy. For example, department names are stored once in the Departments

57

table rather than being repeated for each employee. Normalization helps maintain data integrity

by ensuring that data dependencies make sense. For example, the foreign key constraints

prevent orphaned records and maintain consistency across tables. Changes to data like updating

a department name need to be made in only one place, reducing the risk of anomalies. [41]

In summary, database design effectively normalizes the data and maintains referential integrity

through appropriate foreign key constraints and primary keys. This design minimizes data

redundancy and ensures data integrity, aligning with the principles of database normalization.

Figure 4.1.2.1: Departments Table

Figure 4.1.2.2: Projects Table

Figure 4.1.2.3: EmployeeRoles Table

Figure 4.1.2.4: Employees Table

58

Figure 4.1.2.5: EmployeeProjects Table

Analyzing the tables related to user management is crucial to understand authorization in our

application. I want to mention that normalization principles used in the previous section are

also followed to the creation of the tables below. In User table we have all the users, Roles

table has all Role of the system and Permission tables stored all the permission for the

application. A user can have multiple roles and a role can be given to many Users. A role can

have many permissions and each permission can be given to many roles. Those many to many

relationships forced us to create UserRole (see Figure 4.1.2.6) and RolePermission tables (see

Figure 4.1.2.7) to resolve those relationships adhering with normalization principles explained

in previous section.

Figure 4.1.2.6: UserRole Table

 Figure 4.1.2.7: RolePermission Table

59

 4.1.3 Database Diagrams

Figure 4.1.3.1: Usr, Com, Auth Schema Diagrams

60

Figure 4.1.3.2: Employee Schema Diagram

61

4.2 Clean Architecture in .Net Projects Structure

Clean Architecture is a layered architecture that splits the project into four layers. Each of the

layers is one or more .Net project. Our Foldering both in APIs and Angular project follows the

logical splitting of schemas in database. In the following paragraphs, we are exploring the

different layers of Our Clean Architecture and how each one of those can be implemented as a

.Net project. Even though our solution contains multiple .Net Projects for each layer our Web

API will be compiled to a single Assembly.

 4.2.1 Infrastructure Layer

The Infrastructure layer is directly above the Application Layer and is responsible for

communicating with database and external services (see figure 2.1.2.1). This layer contains

repository implementation, external-services implementation, table entities, Database project

(tables, stored procedures, etc). In figure 4.2.1.2, all .Net projects of Infrastructure Layer are

shown. The Core.Infra.Database .NET project is our Database project in C#. This means that a

developer can manage table writing C# in .Net project or using Microsoft SQL Server

Management Studio writing SQL since those 2 are the exact same project. Table entities can

be found under Infrastructure/DataAccessProject/Entities/{SchemaName}_Management and

follow {TableName} naming convention. Repositories are positioned in

Infrastructure/DataAccessProject/Repositories/{SchemaName}_Management and named like

{DatabaseTableName}_Repository. Table entities and Repositories belongs to DataAccess

project because they are essential to communicate with SQL Server using Dapper. Last,

external services implementations like Emailing are placed in Common project under

Infrastructure folder.

Figure 4.2.1.1: ExternalServices

62

 Figure 4.2.1.2: Infrastructure Layer

 4.2.2 Domain Layer

In Domain Layer, which is the core layer of our project, we defined entities, abstractions,

models and enums. This layer doesn’t have any dependencies on any project since it’s the

innermost layer of the application. Figure 4.2.2.4 indicates that Domain Project doesn’t

reference any other project which confirms that inner layers should not depend on outer layer.

Enforcing dependency Rule through managing references indicates how we apply Clean

Architecture in our Project.

63

 Figure 4.2.2.4: Domain Layer References

Domain Entities should be named from {DatabaseTableName}_Entity and foldering should be

Domain/Entities/{SchemaName}_Management (see figure 4.2.2.1). Models name comes from

{UseCaseName}_Model and they must be placed under

Domain/Models/{SchemaName}_Management/{TableName} (see figure 4.2.2.2).

 Figure 4.2.2.2: Models

Figure 4.2.2.1 : Domain Entities

This layer must also contain the repository interfaces under

Domain/Abstractions/Repositories/{SchemaName}_Management and names comes from

I_{DatabaseTableName}_Repository. The repositories folder contains business-related

abstractions while Services and Email has all the application-related abstractions (see figure

4.2.2.3). All interfaces are placed under abstraction folder. An improvement should be to place

64

each application and infrastructure interfaces in application layer under an abstractions folder

but since Dependency Rule is not violated, adding them in domain layer is still correct.

 Figure 4.2.2.3 : Repository Interfaces

 4.2.3 Application Layer

The Application layer is directly above Domain Layer and contains the use cases. Handlers are

the classes responsible for implementing those use cases communicating with database. This

layer references Domain Layer project to communicate through the abstraction with the

database and doesn’t have any other dependencies to outer layer projects. Figure 4.2.3.5

indicates that Application Project flow the dependencies inward by referencing Domain

project. Moreover, it does not on any outer layer satisfying this way the Dependency Rule.

Here, you can find the implementation of application-specific services, Handlers, Endpoints,

Filters and Middlewares.

65

Figure 4.2.3.5 : Application Layer Dependencies

Application-specific Service implementations such as JWT Bearer, Excel Reports and

Encryption should be under Application/Services/{ServiceName} and

{ServiceName}_Service is the name of each service (see figure 4.2.3.1). Handlers must be

under Application/Handlers/{SchemaName}_Management/{TableName}/{UseCaseName}

and named like {TableName}_{UseCaseName}_Handler (see figure 4.2.3.2). The same

naming convention and foldering need to be followed for Requests and Responses and

Validators.

 Figure 4.2.3.1 : Application Services Figure 4.2.3.2 : Handlers

Cross-cutting concerns like exception-handling, logging, authorization, and data integrity are

mostly related with application-specific logic and that’s why Middlewares and Filters are

placed in Application Layer (see figure 4.2.3.4).

66

Figure 4.2.3.4 : Filters & Middlewares

 4.2.4 Presentation Layer

This layer is responsible for building a solution based on the framework used. It is configured

to run first. This happens because it contains a Program.cs file that serves as the startup file in

a .Net Web API project. This file connects all the other layers to this layer so they can run as a

single Web API project. Wiring can be achieved by using all those classes under Definitions

folder (see figure 4.2.4.1) that scan each .Net Project in the solution and register services,

interfaces, repositories, configure the pipeline and everything that is related to .Net to build the

solution. Moreover, it contains docker, settings and scanner files.

67

 Figure 4.2.4.1 : Presentation Layer

This layer also needs to ensure that request is validated before passed to the handler as

user can send invalid data. Requests need to be stopped in presentation layer, so error does not

pass to the next layer slowing the performance of the application. As explained in How to

achieve loose coupling using MediatR in our System paragraph this can be achieved by

utilizing mediator pipeline. When send() method is called of IMediator Interface it pass

the control to the corresponding Validator of the command or query request and then go

to handler of that request. This means that except achieving loose coupling we can also

achieve early exit of an invalid request before reaching application layer and the request

handler.

In Figure 4.2.3.3, we see that endpoints are placed under

Application/Endpoints/{SchemaName}_Management and named like

{TableName}_Endpoints.

68

Figure 4.2.3.3 : Endpoints

4.3 Code Decisions

 4.3.1 Domain Layer

As “Uncle Bob” explained, entities are objects that encapsulate the most high-level and general

rules of the application which is business logic. Figure 4.3.1.1. states exactly this idea that

entities are business rules independent from the application’s use cases. Domain Entities should

strictly be the same as database tables (Table Entities) because those are the business rules of

our application . Models represents the state of the system at a particular time in the application.

You can create a model when you want to map data to a specific format to communicate

between the layers of the application or with external systems. For example,

GetAllEmployeesWithDepartmentNameModel class is a model that will communicate with

the UI to return the employees along with the DepartmentName. Here is the difference between

Models and Entities since models are used for the application’s use cases while entities should

never be affected. [42] A small detail that needs to be highlighted is that you can communicate

with UI both using Models and Domain Entities in our Clean Architecture implementation

since they both act like DTOs however you cannot change a Domain or Table Entity.

69

 Figure 4.3.1.1 : EmployeesEntity class

 Figure 4.3.1.2: GetAllEmployeesWithDepartmentNameModel class

 4.3.2 Infrastructure layer

Repositories are responsible for communicating with our database using dapper ORM. As

explained in Dapper section IDataAccessLayerContext instance contains an IDbConnection

which provides us all the available dapper functionalities. In figure 4.3.2.1, _db instance

provides QueryAsync dapper method that execute our Stored Procedure. Then, by providing

the .Net Object GetAllEmployeesWithDepartmentNameModel inside <>, we benefit from the

efficient mapping of the query result to the object that Dapper provides with minimal overhead.

70

Figure 4.3.2.1: EmployeeRepository class

In that part, we must explain why we need to have both Table Entities and Domain Entities.

Obviously, somebody can think why not mapping the result directly to Employee Entity instead

of Employee for CRUD operations in EmployeeRepository class (see Figure 4.3.2.1).

However, introducing Dapper Contrib .Net library will clarify the reason for this choice.

Dapper Contrib is a 3rd party library that extends the Dapper functionality by providing

methods for providing CRUD operations and mapping database results to strongly typed

objects. This means that you don’t have to write any SQL code to implement CRUD, but only

provide an object that represents the table of the database. As shown in Figure 4.3.2.2, simply

adding the Table and Key Attribute and library can automatically provide you with these

methods. All you need is whenever you are using dapper CRUD methods to Map the result or

to pass that Table entity.

71

Figure 4.3.2.2: Employee class

 4.3.3 Presentation Layer

As explained in Minimal APIs section, using RouteGroupBuilder class can help to structure

our APIs routes. In figure 3.4.2.5, calling MapGroup() on WebApplication instance the

common prefix “api” for all routes of the application was added. Then, we pass the current

RouteGroupBuilder instance called apiMapGroup to each method() to add endpoints.

Examining AddGroupsEndpoints() method as shown in figure 4.3.3.1, we added another prefix

for the current subset of endpoints using MapGroup(). If you compare figures 4.3.3.2 and

figures 4.3.3.4 you will see that the new prefix is common only for routes contained in the

AddGroupsEndpoints() method. . Then each endpoint adds something indicating what it does

and a handler for the route using MediatRGet() or MediaRPost() method. We will explain later

what those 2 methods do.

72

Figure 4.3.3.1 : Groups Endpoints

Figure 4.3.3.2: Groups Endpoints in Swagger

Common Prefix for Groups Endpoints

Common Prefix for all Endpoints

73

Figure 4.3.3.3: Employees Endpoints

 Figure 4.3.3.4: Employees Endpoints in Swagger

In figures 4.3.3.1 and 4.3.3.3, WithGroupName() and WithTags() method are used to separate

each set of endpoints in Swagger based on schema and table name they belong (see figures

4.3.3.5 and 4.3.3.6). Swagger is a tool from Swashbuckle .Net library that was used in the

project to visualize our Web API and test endpoints. WithGroupName() is used to specify in

which management-schema name (see figure 4.3.3.7) this set of endpoints while WithTags() is

used to specify table name.

Common Prefix for Employees Endpoints

74

Figure 4.3.3.5: Employees Management Endpoints in Swagger

Figure 4.3.3.6: User Management Endpoints in Swagger

Figure 4.3.3.7: Group Name Dropdown

Group Name

Tag Name

Tag Name

Group Name

75

Let’s give an example of what happened when an endpoint is called. Assume User click on

GET Endpoint with /api/Employees/GetAll route in SwaggerUI (see Figure 4.3.3.4). This

request flows through the request pipeline and when finish Minimal API mechanism will

handle the request. It will find the Route Endpoint associated with that route and pass the

control to the route handler function which is MediatRGet with generic arguments

EmployeesGetAllQuery and EmployeesGetAllResponseDto (see Figure 4.3.3.3). This

function will utilize mediator pipeline to validate the request and pass the control to the

handler associated with that request. This handler is EmployeesGetAllHandler located in

Application Layer. Then, the handler will communicate with Infrastructure Layer

through Repository Interface (see Figure 4.3.3.8) calling GetAllEmployees() method (see

Figure 4.3.2.1 for implementation). Then, it returns with EmployeesGetAllResponseDto

class the data towards the mediator pipeline and from there to the Minimal API mechanism

to return this response for user request (see Figure 4.3.3.9).

Figure 4.3.3.8: EmployeesGetAllQuery

76

 Figure 4.3.3.9: Endpoint Response in Swagger

77

Chapter 5

Employee Management System User Interface

5.1 User Interface 77

5.1 User Interface

In this chapter, we will demonstrate the User Interface of Employee Management System

Application. To start with, in our application is an internal system so we don’t support API

users but only Internal Users. This means that only Super Admin Persons can create accounts

for the Team Leaders or HR departments. Super Admin Account will be created from database

and use those credentials to be authenticated.

Authentication

Route: http://localhost:4200/auth

Super Admin log in with the credentials of a user created in the database. After, he/she will

navigate to welcome page.

Figure 5.1: Authentication Page

http://localhost:4200/auth

78

Welcome Page

Route: http://localhost:4200/employee-management/employees-view-home

The default Welcome Page is the Report of the Employees and Roles per Project. In the sidebar,

the system appears all the functionalities Super Admin can do. At this stage, we need to mention

that Super Admin has all the Permissions of the system, and he/she can interact with all the

features that the application supports.

Figure 5.2: Report Page

User Management

Route: No navigation

Assuming the user clicked on User Management in the menu. No navigation will happen, just

a dropdown with user management options will appear as shown in Figure 5.3. Then the user

clicks on Permissions.

Figure 5.3: User Management Options Page

http://localhost:4200/employee-management/employees-view-home

79

Route: http://localhost:4200/user-management/permissions-home

Angular application will load Permissions listing page (see Figure 5.4). Then the user clicks

on Roles.

Figure 5.4: List Permissions Page

Route: http://localhost:4200/user-management/roles-home

Angular application will load Roles listing page (see Figure 5.5). Then the user clicks on Edit

on Employees Admin.

Figure 5.5: List Roles Page

Route: Same

Angular application will appear a modal on the same page (see Figure 5.6). Note that modal

has prepopulated the fields with the previous details. Then the user clicks Save after finishing

edit.

http://localhost:4200/user-management/permissions-home
http://localhost:4200/user-management/roles-home

80

Figure 5.6: Edit Roles Modal

Route: Same

A success Message will appear to the screen and modal close. Changes was correctly applied

to the Role (see Figure 5.7). Add or Delete Role options are also available. Then the user clicks

on the Users option.

Figure 5.7: List Roles After Edit Page

Route: http://localhost:4200/user-management/users-home

Angular application will load Users listing page (see Figure 5.8). In the following steps, we

will show the process to create an Account for Team leaders with the appropriate permissions.

Then the user clicks on Users where all Internal Users are listed and click Add new to create a

new Internal User.

http://localhost:4200/user-management/users-home

81

Figure 5.8: List Users

Route: same

Super admin user needs to fill the modal appear with the details of the Account that are given

to him by the Team Leader that wants to create the account (see Figure 5.9). It is important for

the Super Admin to select Active Dropdown option for User Status and select only the

Employee Manager Role in the Roles Dropdown options (see Figure 5.10). When user clicks

Save, a success Message will appear to the screen, modal closes and Figure 5.11 appears in the

screen. Now, Super Admin needs to assign the permissions related to Employee Manager Role.

The user clicks on Relations, then on Role-Permissions selecting Employee Manager Role .

Figure 5.9: Add User (Team Leader)

Figure 5.10: Roles Dropdown Options

http://localhost:4200/user-management/users-home

82

Figure 5.11: List User After Add Team Leader

Route: http://localhost:4200/user-management/relations-home

Figure 5.12 will be loaded where super admin will choose the permissions that Employee

Manager Role should have. Permissions are separated by Schema Name to be easier for the

Super Admin to assign them to a Role. Note that this Role is reusable, and it will be given to

each Team Leader that wants to create an account. Then the user navigate back to Users List

and click Edit on Team Leader User.

Figure 5.12: Role Permissions Management User

Route: http://localhost:4200/user-management/users-home

Super Admin needs to click Reset Password button and choose yes (see Figure 5.13) to send

an email to the Team Leader where he/she can get a token URL to navigate and set his

password. The reason why the button didn’t appear before when we were trying to create the

user was because the button appeared only when editing an active user and not when creating

http://localhost:4200/user-management/relations-home
http://localhost:4200/user-management/users-home

83

one. This was an introduction on how to interact with User Management features that is only

allowed through Super Admin Account. Now, we will proceed with Team Leader Account to

explore Employee Management features. Then, the Team Leader needs to click on the token

URL in his email.

Figure 5.13: Send Reset Password Email to Team Leader

Route: http://localhost:4200/reset-password/614aee2f-ed3f-4aca-963c-24c7a1b4eb25

Team Leader must fill in the form with his password (see Figure 5.14). If nothing goes wrong,

he/she will automatically get authenticated successfully and redirected to the Welcome Page

(see Figure 5.2). In the following steps, we will analyze Employee Management Features

through Team Leader Account.

Figure 5.14: Reset Password Form

http://localhost:4200/reset-password/614aee2f-ed3f-4aca-963c-24c7a1b4eb25

84

Employee Management

Route: http://localhost:4200/employee-management/employees-view-home

As you see in Figure 5.16 permissions are correctly assigned to Team Leader since menu

doesn’t contain the User Management. The following examples demonstrate some filters that

we can apply to the Employees Report. We can find all employees working for a specific

Project (see Figure 5.15). A project that matches the name without any employee working on

it will also be returned. Searching by employee full name brings all Projects where this

employee is currently working (see Figure 5.16). Last, we can also filter by role which means

that returns all projects where an employee is working with that Role (see Figure 5.17). Before

proceeding with assigning employees to a project, this page also provides the functionality to

download this report in excel file with the button at the bottom left of the page. Figure 5.18

shows the employee report in an excel file. Then the user clicks on the Employees option.

Figure 5.15: Filter Employees Report by Project

Figure 5.16: Filter Employees Report by Employee Full Name

http://localhost:4200/employee-management/employees-view-home

85

Figure 5.17: Filter Employees Report by Role

Figure 5.18: Employees Report Excel

Route: http://localhost:4200/employee-management/employees-home

In figure 5.19, All Employees of the Company appear on the Screen with. Team Leader

authorized to make all the CRUD operations in each Employee. However, focus on Figure 5.20

icon since when click it you can manage where the selected employee can work and with what

role. User clicks on the Employees option.

Figure 5.19: List Employees

http://localhost:4200/employee-management/employees-home

86

Figure 5.20: Icon to Manage Employee Projects and Roles

Route: same

Angular Application will appear a modal in the screen of Team leader (see Figure 5.21). Modal

shows at left all the project that the selected employee is working. The blue highlight on

projects indicates the selected project. Within this selected project at the left side of the modal

we can see all the roles that the company has. Roles that are checked indicate that Selected

Employee work on Carats Project with Role DEV. Therefore, Team Leader for example can

add new or delete existing roles in Carats Project for the selected Employee (see Figure 5.22).

When an employee stopped working on a project, we can simply press the red button and

remove the employee from that project. In figure 5.23, we try to remove the selected employee

from Carats Project, and we click yes to proceed. As you can see the project no longer appears

on the right side of the modal (see Figure 5.24). Team leader could also assign the selected

employee to a new project. By pressing the Add Project button a modal appears where the

Team Leader must select the project to add the employee and set of the roles that he/she will

have on that project (see Figure 5.25 and 5.26). When user clicks on save button, a success

Message will appear to the screen and modal will close. Back in the previous modal we can

notice that a new project was added along with the set of roles (see Figure 5.27).

Figure 5.21: Assign Project with Roles To Selected Employee

87

 Figure 5.22: Assign Roles To Selected Employee in Carats Project

 Figure 5.23: Delete Selected Employee From Carats Project

 Figure 5.24: Selected Employee After Deleting Carats Project

88

 Figure 5.25: Add Project to Selected Employee Modal

 Figure 5.26: Fill Data to Add Project to Selected Employee Modal

Figure 5.27: Selected Employee After Adding Project

89

Chapter 6

Conclusion

6.1 Evaluation 89

6.2 Future Work 90

6.3 Feedback 90

6.4 Conclusion 91

6.1 Evaluation

The Evaluation aspect of the Research will be done under the aspect of research questions,

performance, and security.

• Question 1: In Chapter 3, we analyze the technologies, libraries and common features

among different applications that integrated into our base software. Our application was

written using C# and SQL and with SQL Management Studio and ASP.NET Core

frameworks. Libraries used are MediatR, Fluent Validation, Dapper, Swashbuckle while

code was developed using CQRS and mediator patterns. It also contains external

services communication like database and emailing, a feature for User Management,

while used features like Minimal APIs, Middlewares and Filters to implement

Authentication. Authorization, Global Error-Handling and Logging. Chapter 4

screenshots related to the .Net projects proves that everything related to base software

was placed under the correct folder and follow what our generic architecture proposes.

Using the reference idea between .Net Projects and Dependency inversion we ensure

that we align with our architecture.

• Question 2: This question is satisfied since we used an Employee Management System

as proof of concept that we use that base software without affecting the business logic

of the specific application. Therefore, we prove that any different business logic can be

simply added to our base software by following our generic architecture rules.

• Performance: Applying 3NF to database tables ensures data integrity, reduce data

redundancy, and improves the efficiency of data operations. The choice of Dapper ORM

to communicate with the database is because of the performance. Dapper is specialized

90

in reading data from a database and efficiently mapping query results to .Net objects

with minimal overhead. We also reduce multiple round trips to the database by bringing

multiple results in a single store procedure. Additionally, we use indexes in columns that

was used in Where clause in some store procedures. Moreover, Minimal APIs also

provides faster response for API calls.

• Security: Utilizing Https through middleware pipeline and using

DataIntegrityValidatorFilter to endpoints ensures data protection and that they are not

changed when API communicate with the UI. Implementing mechanisms like

Authentication and Authorization using JWT provides security. Another measure is the

custom permission-based system by adding permission to each endpoint that ensures

user is authorized to access a resource outer circle. Moreover, when a user tries to login

or to reset his password is encrypted when sending the request to the API.

6.2 Future Work

Future work to this project could be to implement CQRS Pattern along with 2 different database

schemas. By doing this approach our indexes will be more meaningful in the application and

we can get the actual benefit of CQRS Pattern. It’s important to mention that having separate

schemas for read and write operations allows you to scale them independently with appropriate

resources. Another interesting Future Work is to try to take this solution and try to break it to

multiple projects to implement Microservices without breaking Clean Architecture principles.

Last, an important feature requested for future development in the Employee Management

System was to keep track of who worked in a project and the projects that an employee work

even though we delete an employee from a project when a project finishes.

6.3 Feedback

The feedback from the company was very positive and rewarding for me. Many Team Leaders

use the Base Software as a starting point in their new projects to save time. About the

architecture, most of the developer’s state that this is a very powerful architecture that can make

development easier simplifying the tasks by splitting them into steps as proposed by the

architecture. Code is cleaner, extensible and maintainable and can help to minimize bugs.

However, it is noticed that in times of high-pressure to deliver tasks developers violates some

of the theoretical principles that are not adopted for «faster development». In my opinion and

91

as my experience shows whenever this happens instead of saving time we spend more time in

the future when we need to maintain a project or to add new features. It’s very important for

Team Leaders to require from developers to follow this architecture to gain the maximum of

its benefits. About the employee management system Team Leaders use it on daily basis to

manage the employees and the projects automatically without using excel anymore. The

generic Architecture, Base Software and Employee Management System was the reason for

my promotion in the company indicating how valuable was the research and the application.

6.4 Conclusion

To conclude, this diploma thesis has achieved to build a modern software application that

solves the problem of a reusable project so companies can have a starting point for incoming

projects. Importantly that was achieved through solving another problem of managing

employees by creating an internal management system. This Web Application has achieved to

integrate Microsoft recommended libraries such as FluentValidation, Dapper, MediatR,

Swashbuckle, JwtBearer, following Object-Oriented Principles, CQRS Pattern and all this

under Clean Architecture and ASP.NET Core Minimal API.

92

References

[1] Singh A., “A Deep Dive into Clean Architecture and Solid Principles”, Building

Software for the Future, 2023. https://medium.com/@unaware_harry/a-deep-dive-into-

clean-architecture-and-solid-principles-dcdcec5db48a

[2] Šahbaz E., “Comprehensive Guide to SOLID Principles in C#, 2023. [Illustration]

https://medium.com/@edin.sahbaz/comprehensive-guide-to-solid-principles-in-c-

54d79e19b7d7

[3] Šahbaz E., “Comprehensive Guide to SOLID Principles in C#, 2023.

https://medium.com/@edin.sahbaz/comprehensive-guide-to-solid-principles-in-c-

54d79e19b7d7

[4] Ghosh Τ., “Liskov Substitution Principle (LSP). 2023.

https://tusharghosh09006.medium.com/liskov-substitution-principle-lsp-744eceb29e8

[5] Singh A., “A Deep Dive into Clean Architecture and Solid Principles”, Building

Software for the Future, 2023. [Illustration] https://medium.com/@unaware_harry/a-

deep-dive-into-clean-architecture-and-solid-principles-dcdcec5db48a

[6] Ghosh Τ., “Liskov Substitution Principle (LSP). 2023. [Illustration]

https://tusharghosh09006.medium.com/liskov-substitution-principle-lsp-744eceb29e8

[7] Colton, “Differences Of Abstract And Virtual Methods”, 2021.

https://medium.com/the-crazy-coder/differences-of-abstract-and-virtual-methods-

4ff833f2cd49

[8] Shekhawat S. S., “Virtual Method in C#”, 2024. [Illustration] https://www.c-

sharpcorner.com/UploadFile/3d39b4/virtual-method-in-C-Sharp/

[9] Hasan R., “SOLID principles explanation using Clean Architecture and CQRS”, 2023.

https://medium.com/@rabbyofc/solid-principles-explanation-using-clean-architecture-

and-cqrs-caf209f6bd68

https://medium.com/@unaware_harry/a-deep-dive-into-clean-architecture-and-solid-principles-dcdcec5db48a
https://medium.com/@unaware_harry/a-deep-dive-into-clean-architecture-and-solid-principles-dcdcec5db48a
https://medium.com/@edin.sahbaz?source=post_page-----54d79e19b7d7--------------------------------
https://medium.com/@edin.sahbaz/comprehensive-guide-to-solid-principles-in-c-54d79e19b7d7
https://medium.com/@edin.sahbaz/comprehensive-guide-to-solid-principles-in-c-54d79e19b7d7
https://medium.com/@edin.sahbaz?source=post_page-----54d79e19b7d7--------------------------------
https://medium.com/@edin.sahbaz/comprehensive-guide-to-solid-principles-in-c-54d79e19b7d7
https://medium.com/@edin.sahbaz/comprehensive-guide-to-solid-principles-in-c-54d79e19b7d7
https://tusharghosh09006.medium.com/liskov-substitution-principle-lsp-744eceb29e8
https://medium.com/@unaware_harry/a-deep-dive-into-clean-architecture-and-solid-principles-dcdcec5db48a
https://medium.com/@unaware_harry/a-deep-dive-into-clean-architecture-and-solid-principles-dcdcec5db48a
https://tusharghosh09006.medium.com/liskov-substitution-principle-lsp-744eceb29e8
https://medium.com/the-crazy-coder/differences-of-abstract-and-virtual-methods-4ff833f2cd49
https://medium.com/the-crazy-coder/differences-of-abstract-and-virtual-methods-4ff833f2cd49
https://www.c-sharpcorner.com/UploadFile/3d39b4/virtual-method-in-C-Sharp/
https://www.c-sharpcorner.com/UploadFile/3d39b4/virtual-method-in-C-Sharp/
https://medium.com/@rabbyofc/solid-principles-explanation-using-clean-architecture-and-cqrs-caf209f6bd68
https://medium.com/@rabbyofc/solid-principles-explanation-using-clean-architecture-and-cqrs-caf209f6bd68

93

[10] Abay Ö., “MediatR”, 2023. https://omerabay1.medium.com/mediatr-

795155841b27

[11] Shukla A., “Implementing Mediator Patter using the MediatR Library”, 2023.

https://www.codeproject.com/Articles/5368707/Implementing-Mediator-Pattern-

using-the-MediatR-Li

[12] Jovanovic M., “CQRS PATTERN WITH MEDIATR”, 2023.

https://www.milanjovanovic.tech/blog/cqrs-pattern-with-mediatr

[13] Kurbegovic E., “CQRS Softwarer Architecture Pattern: The Good, the Bad, and the

Ugly, 2023. https://medium.com/@emer.kurbegovic/cqrs-software-architecture-

pattern-the-good-the-bad-and-the-ugly-efe48e8dcd14

[14] Jovanovic, M. “CQRS validation with MediatR Pipeline and FluentValidation”, 2023.

https://www.milanjovanovic.tech/blog/cqrs-validation-with-mediatr-pipeline-and-

fluentvalidation

[15] Hengkyawan, J. “Model Validation using Fluent Validation”, 2022.

https://juldhais.net/model-validation-using-fluent-validation-eaae2f4952b8

[16] Pandey, U. “ Fluent Validation ASP.NET Core Web API 6.0”, 2023. https://www.c-

sharpcorner.com/article/fluent-validation-asp-net-core-web-api-6-0/

[17] Thevathas, D. A., “FluentValidation Introduction and Setup In. NET”, 2023.

https://atdilakshan.medium.com/fluentvalidation-introduction-and-setup-in-net-

1d1024812786

[18] Spasojevic M., “Global Error Handling in ASP.NET Core Web API”. 2024.

https://code-maze.com/global-error-handling-aspnetcore/

[19] Tilleuil D., & Dechamps G., “The importance of the depency inversion principle”, n.d.

https://www.tripled.io/07/05/2019/dependency-inversion-principle/

https://omerabay1.medium.com/mediatr-795155841b27
https://omerabay1.medium.com/mediatr-795155841b27
https://www.codeproject.com/Articles/5368707/Implementing-Mediator-Pattern-using-the-MediatR-Li
https://www.codeproject.com/Articles/5368707/Implementing-Mediator-Pattern-using-the-MediatR-Li
https://www.milanjovanovic.tech/blog/cqrs-pattern-with-mediatr
https://medium.com/@emer.kurbegovic/cqrs-software-architecture-pattern-the-good-the-bad-and-the-ugly-efe48e8dcd14
https://medium.com/@emer.kurbegovic/cqrs-software-architecture-pattern-the-good-the-bad-and-the-ugly-efe48e8dcd14
https://www.milanjovanovic.tech/blog/cqrs-validation-with-mediatr-pipeline-and-fluentvalidation
https://www.milanjovanovic.tech/blog/cqrs-validation-with-mediatr-pipeline-and-fluentvalidation
https://juldhais.net/model-validation-using-fluent-validation-eaae2f4952b8
https://www.c-sharpcorner.com/article/fluent-validation-asp-net-core-web-api-6-0/
https://www.c-sharpcorner.com/article/fluent-validation-asp-net-core-web-api-6-0/
https://atdilakshan.medium.com/fluentvalidation-introduction-and-setup-in-net-1d1024812786
https://atdilakshan.medium.com/fluentvalidation-introduction-and-setup-in-net-1d1024812786
https://code-maze.com/global-error-handling-aspnetcore/
https://www.tripled.io/07/05/2019/dependency-inversion-principle/

94

[20] Nanavaty, R., “Clean Architecture”, 2023.

https://medium.com/@rudrakshnanavaty/clean-architecture-7c1b3b4cb181

[21] Rizal, D. H. F., “101 Clean Code Architecture”, 2023. https://medium.com/bento-

tech-innovation/101-clean-code-architecture-651e2650bbe8

[22] Jovanovic, M., “Why it’s great for complex projects”, 2023.

https://www.milanjovanovic.tech/blog/why-clean-architecture-is-great-for-complex-

projects

[23] Shirsath R., “Summarized Clean Code Architecture”, 2020.

https://reemishirsath.medium.com/summarized-clean-code-architecture-concept-

3b947ad44ef1

[24] Abstract Class vs Interface in C#: Analyzing the Pros and Cons.

https://dev.to/bytehide/abstract-class-vs-interface-in-c-analyzing-the-pros-and-cons-

32mj

[25] C# Multiple inheritance using interfaces, 2023: https://www.geeksforgeeks.org/c-

sharp-multiple-inheritance-using-interfaces/

[26] C# documentation: https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

[27] Introduction to the Angular docs: https://angular.io/docs

[28] What is SQL Server?: https://learn.microsoft.com/en-us/sql/sql-server/what-is-sql-

server?view=sql-server-ver16

[29] Overview of ASP.NET Core:

https://learn.microsoft.com/en-us/sql/sql-server/what-is-sql-server?view=sql-server-

ver16

[30] Minimal APIs overview: https://learn.microsoft.com/en-

us/aspnet/core/fundamentals/minimal-apis/overview?view=aspnetcore-8.0

https://medium.com/@rudrakshnanavaty/clean-architecture-7c1b3b4cb181
https://medium.com/bento-tech-innovation/101-clean-code-architecture-651e2650bbe8
https://medium.com/bento-tech-innovation/101-clean-code-architecture-651e2650bbe8
https://www.milanjovanovic.tech/blog/why-clean-architecture-is-great-for-complex-projects
https://www.milanjovanovic.tech/blog/why-clean-architecture-is-great-for-complex-projects
https://reemishirsath.medium.com/summarized-clean-code-architecture-concept-3b947ad44ef1
https://reemishirsath.medium.com/summarized-clean-code-architecture-concept-3b947ad44ef1
https://dev.to/bytehide/abstract-class-vs-interface-in-c-analyzing-the-pros-and-cons-32mj
https://dev.to/bytehide/abstract-class-vs-interface-in-c-analyzing-the-pros-and-cons-32mj
https://www.geeksforgeeks.org/c-sharp-multiple-inheritance-using-interfaces/
https://www.geeksforgeeks.org/c-sharp-multiple-inheritance-using-interfaces/
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://angular.io/docs
https://learn.microsoft.com/en-us/sql/sql-server/what-is-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/sql-server/what-is-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/sql-server/what-is-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/sql-server/what-is-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/overview?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/overview?view=aspnetcore-8.0

95

[31] RouteGroupBuilder Class: https://learn.microsoft.com/en-

us/dotnet/api/microsoft.aspnetcore.routing.routegroupbuilder?view=aspnetcore-8.0

[32] RouteHandleBuilder Class: https://learn.microsoft.com/en-

us/dotnet/api/microsoft.aspnetcore.builder.routehandlerbuilder?view=aspnetcore-8.0

[33] ASP.NET Middleware: https://learn.microsoft.com/en-

us/aspnet/core/fundamentals/middleware/?view=aspnetcore-8.0

[34] ASP.NET Middleware [Illustration]: https://learn.microsoft.com/en-

us/aspnet/core/fundamentals/middleware/?view=aspnetcore-8.0

[35] Filters in Minimal API apps: https://learn.microsoft.com/en-

us/aspnet/core/fundamentals/minimal-apis/min-api-filters?view=aspnetcore-8.0

[36] Introduction to JSON Web Tokens: https://jwt.io/introduction

[37] Authentication and authorization in minimal APIs: https://learn.microsoft.com/en-

us/aspnet/core/fundamentals/minimal-apis/security?view=aspnetcore-8.0

[38] MediatR: https://github.com/jbogard/MediatR

[39] Learn Dapper: https://www.learndapper.com/

[40] Create a database schema: https://learn.microsoft.com/en-us/sql/relational-

databases/security/authentication-access/create-a-database-schema?view=sql-server-

ver16

[41] Description of the database normalization basics: https://learn.microsoft.com/en-

us/office/troubleshoot/access/database-normalization-description

[42] Allies P., “Clean Architecture: Entities and Models”, 2023.

https://nanosoft.co.za/blog/post/clean-architecture-entity-model

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routegroupbuilder?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routegroupbuilder?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.routehandlerbuilder?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.routehandlerbuilder?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/min-api-filters?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/min-api-filters?view=aspnetcore-8.0
https://jwt.io/introduction
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/security?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/security?view=aspnetcore-8.0
https://github.com/jbogard/MediatR
https://www.learndapper.com/
https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/create-a-database-schema?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/create-a-database-schema?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/create-a-database-schema?view=sql-server-ver16
https://learn.microsoft.com/en-us/office/troubleshoot/access/database-normalization-description
https://learn.microsoft.com/en-us/office/troubleshoot/access/database-normalization-description
https://nanosoft.co.za/blog/post/clean-architecture-entity-model

96

[43] Siva V., “Minimal APIs in ASP.NET Core: Compare With Controller”, 2023.

https://www.c-sharpcorner.com/blogs/minimal-apis-in-asp-net-core-a-lean-approach-

to-web-development

https://www.c-sharpcorner.com/blogs/minimal-apis-in-asp-net-core-a-lean-approach-to-web-development
https://www.c-sharpcorner.com/blogs/minimal-apis-in-asp-net-core-a-lean-approach-to-web-development

