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Abstract 

 

In this thesis, we address the problem of optimizing stress-test generation and enhancing power 

consumption in computer systems. The execution time of stress-test generation is a critical 

factor in system testing, and traditional methods often lack efficiency. Moreover, maximizing 

power consumption in stress-test individuals can provide valuable insights into system 

behavior. To tackle these challenges, we propose a novel approach called GeST-R, which 

integrates Generic Algorithms (GAs) with Euclidean Distance and Regression Models. 

 

In our research, we investigate the accuracy of regression models in predicting the 

characteristics of the “best-virus” after some generations. By analyzing the relationship 

between system characteristics and performance metrics, these models provide valuable 

insights into stress-test optimization. Additionally, we explore the effectiveness of Euclidean 

Distance as an alternative fitness metric, aiming to replace power consumption in the GA 

framework, since it requires a significant amount of time. 

 

Overall, the goal of our thesis is to optimize stress-test generation using GeST-R, a new 

approach that combines GAs, Euclidean Distance, and Regression Models. We aim to improve 

the efficiency and effectiveness of stress-test generation by accurately predicting 

characteristics and enhancing power consumption. Our research contributes to the 

advancement of computer system testing methodologies, providing valuable insights for future 

investigations in the field. 
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Chapter 1  

  

Introduction   

 
  

1.1 Problem definition                      

1.2 Research questions           

1.3 Contributions                                          

1.4 Thesis Structure                      

 
  

1.1 Problem definition  

Stress-tests are an important tool for system reliability testing and performance enhancement. 

They are small programs that stress different aspects of a computing system such as power 

consumption or voltage noise, with the aim to detect any architectural, PDN vulnerabilities or 

performance bottlenecks. 

 

The creation of these viruses can be accomplished through either manual or automatic methods. 

However, it is essential to have a deep understanding of the target device’s architecture to 

maximize the microarchitectural activity effectively. This is particularly important for power 

viruses [2], where maximizing the processor’s power consumption is critical. 

 

The main problem with both of these approaches is their time-consuming nature. Manually 

writing a stress-test can be a challenging, trial-and-error procedure that requires a significant 

investment of time. Additionally, current automatic methodologies based on genetic algorithms 

(e.g., GeST framework [1]), require the compilation and execution of each stress test to obtain 

its power consumption, which is also time-consuming.  

 

For these reasons, a new method QuickGen [3] has been introduced to address the GeST’s 

time-consuming problem. This approach involves optimizing the framework to bypass the 

compilation and execution of each program. However, the issue of this approach is that it relies 

on an existing good reference virus and uses the Euclidean distance (the difference on number 

and type of instructions) of that reference virus from the candidate viruses in order to drive the 
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optimization search. Unfortunately, the reference virus may not always be available. The 

Euclidean distance does not cover the whole design space of the problem (it only considers 

only the instruction types). 

 

1.2 Research questions 

 The following are the research questions answered in this thesis: 

1. Can the execution time of the stress-test generation be optimized using Genetic 

Algorithms with the inclusion of Euclidean Distance (QuickGen) and Regression 

Models? 

a) Can the regression model accurately predict the characteristics of the “best-

virus” after X number of generations? 

b) Can Euclidean Distance metric effectively replace Power Consumption as the 

fitness value of the Genetic Algorithm? 

2. Is there a method to enhance the power consumption of GeST individuals (stress-

tests), specifically targeting Sandy Bridge processors?  

a) Can aligning the stress-test address of the GeST individual improve data 

storage in cache blocks and consequently result in higher power consumption?  

b) Does stack initialization contribute to a higher power consumption? 

 

1.3 Contributions  

In my research, I aim to make several significant contributions to the problem.  

• Development and validation of a methodology that predicts the characteristics of a good 

power virus after a certain number of generations (X). 

• Implementation of the methodology in GeST, an existing tool for automatic stress test 

generation, along with the integration of the QuickGen methodology. 

• Experimental evaluation of the methodology, demonstrating that GeST-R can generate 

better power viruses in a faster manner. 

• Investigation of the impact of aligning the loop address of GeST individuals on power 

consumption. Although the results show slight improvement, further exploration is 

needed to fully understand its effects. 

• Finding that stack initialization does not significantly contribute to an increase in power 

consumption. These finding offer valuable insights, in the context of Sandy Bridge 

processors. 



3 

 

 

1.4 Thesis Structure  

 

The remaining structure of the thesis is as follows: 

Chapter 2 and Chapter 3 provide the necessary background information, machine I used, 

processor, and instruction set architecture (ISA). It also explains essential metrics such as 

power consumption and Euclidean distance, as well as regression models, GeST and 

QuickGen methodologies. 

Chapter 4 describes the proposed method, specifically GeST-R methodology, designed to 

improve stress-test generation time.  

Chapter 5 focuses to the experimental setup used to evaluate the proposed method. It 

describes the hardware configuration, the methods used for evaluation, and the validation 

effort. 

Chapter 6 presents the results obtained from the experimental evaluation of the proposed 

method. It analyzes and discusses the findings, highlighting the effectiveness and efficiency 

of the GeST-R approach. 

Chapter 7 examines the related work, discussing another research and approach to stress-test 

generation. 

Chapter 8 looks to the future, discussing potential paths for further research and development 

in the field, including possible extensions or improvements to the GeST-R method. 

Finally, Chapter 9 concludes the thesis by summarizing the main contributions. 
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Chapter 2 

 

Background 

 

2.1 Machine & Processor & ISA  

2.2 Power Consumption 

2.3 Euclidean Distance 

 

2.4 Regression Models 

 
2.1 Machine & Processor & ISA 

 This research focuses on developing a program optimized for specific machine, making it 

crucial to understand the machine components. Each computer has its unique characteristics, 

and the program’s performance, particularly in terms of power consumption, varies across 

different machines. Therefore, a comprehensive understanding of the machine being used is 

essential to achieve maximum program efficiency. 

The machine used in this research for testing is the HP Compaq 8200 Elite CMT PC, equipped 

with an Inter® Core™ i5-2400 CPU @3.10GHz. To conduct experiments, we will utilize two 

instances, meaning only two of the cores will be utilized. 

The processor has a 6MB cache and a bus speed of 5 GT/s. Examining the microarchitecture 

of the processor, we find that the L1 instruction cache can accept 16 bytes per cycle. 

Additionally, the processor has a 4-way decode, allowing it to fetch four instructions 

simultaneously. The architecture is made out of tree main parts, frontend, execution engines 

and memory. Frontend is responsible to fetch and decode instructions. Because Intel is RISC 

based architecture it decodes the CISC ISA to RISC (micro-Ops) dynamically in the fetch part 

of the processor. Also, there is a micro-Op cache. The microarchitecture also comprises six 

execution units, enabling the execution of six instructions concurrently. The execution ports 

are organized as follows: 

• The first unit supports the integer arithmetic logic unit, integer division, integer 

vector arithmetic logic unit, integer vector multiply, floating-point multiply, floating-

point division and vector shuffle. 

• The second unit supports the arithmetic logic unit, integer multiply, integer vector 

arithmetic logic unit, and floating-point add. 

• The third unit supports the integer arithmetic logic unit, vector shuffle, integer vector 

arithmetic logic unit, and branch. 
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• The fourth and fifth units support address generation unit (AGU) and load data 

operations. 

• The sixth unit supports store data operations. 

Based on this information, we can observe that three units focus on computation, while the 

remaining three units focus on memory access. Regarding computation, all three units support 

integer and integer vector arithmetic logic units, with only two units supporting floating-point 

computation and one unit supporting branches. Among the units supporting memory access, 

two units handle load operations and AGU while one unit manages store operations. 

Figure 2.1.1 Microarchitecture of Sandy-Bridge processor  
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Figure 2.1.1, illustrates the architecture that the research focuses on. The x86 ISA defines how 

the processor processes and executes various instructions issued by the operating system (OS) 

and software programs. It serves as a logical framework for instruction execution and enables 

programs and instructions to run on any processor belonging to the Intel 8086 family. 

 

The x86 architecture encompasses key characteristics that facilitate efficient instruction 

execution. Firstly, it provides a framework for the processor to interpret and execute 

instructions consistently. Additionally, it provides a consistent execution environment for 

programs and instructions across various processors within the Intel 8086 family. 

 

Furthermore, the x86 architecture incorporates mechanisms for utilizing and managing the 

CPU’s hardware components. This includes functionalities related to memory addressing, 

software and hardware interrupt handling, data types, registers and input/output management. 

The architecture plays a vital role in supporting program functionality and offering services 

necessary for efficient computation and system operation. 

In this research, the focus will be on studying the instructions of the instructions of the x86 

architecture. The following types of instructions will be explored: 

• Scalar instructions: These instructions perform computations on a single number or a 

set of data at a time. 

• Vector instructions: Multiple operations of the same type are carried out on several 

datasets simultaneously within a single processor instruction. 

• Load instructions: These instructions are used to transfer data or memory addresses 

from memory to a register. 

• Store instructions: These instructions move the value stored in a register to memory. 

 

Additionally, the research will examine combinations of different instruction types. 

Dependencies between instructions are particular interest, as they introduce latencies in 

program execution. The following basic dependencies can exist: 

• Read after Write (RAW) dependence: This dependence exists when instruction B 

attempts to read data before instruction A writes it. 

• Write after Write (WAW) dependence: This dependence exists when instruction A 

tries to write output before instruction B writes it. 
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• Write after Read (WAR) dependence: This dependence exists when instruction B tries 

to write data before instruction A reads it. 

WAW and WAR hazards can be overcome relatively easily by implementing register renaming 

through software of hardware. However, RAW hazards pose a greater challenge, as they cannot 

be easily resolved. One approach to mitigating RAW dependencies is through the 

implementation of out-of-order execution. Other mitigation approaches include, stall execution, 

forwarding and value prediction. 

Figure 2.1.2 Example of code of x86 architecture 

Figure 2.1.2 provides an example of code written in x86 ISA, offering a visual representation 

to help identify different types of instructions. The code includes the following examples of 

instructions: 

• Vector instructions: vmulpd, vaddpd, and vmaxpd 

• Scalar instructions: add, sar, shl, mov 
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• Load instruction: mov 84(%rsp), %rbx 

• Store instruction: mov %rdi, 100(%rsp) 

• Combination of Scalar and store: add %rbx, 60(%rsp) 

Analyzing this code example allows for a better understanding of the different instruction types 

present in the x86 ISA. 

 

2.2 Power Consumption 

Power consumption refers to the amount of energy consumed per unit of time, typically 

measured in watts. Each machine has an idle power consumption, which indicates the power 

consumed when the machine is not actively used by any program. However, the power 

consumption changes as the machine transitions from the idle state to running a process on the 

CPU. The power consumption increases based on the computational intensity of the program 

running on the CPU. Additionally, when multiple programs are running on multiple cores of 

the CPU, the power consumption is influenced by both the number of programs and their 

computational demands. It’s important to note that higher power consumption also leads to 

increased system temperature. 

Core C-states, also known as processor idle sleep states, are power-saving states in which the 

CPU disables or lowers the functioning of specific components. Each processor supports its 

own set of Core C-states, and higher Core C-states typically result in more components being 

turned off or reduced in operation. This helps to decrease power consumption by minimizing 

unnecessary energy usage. They save power when the system is idle, which is a necessary 

requirement. Also, they provide power performance trade-offs, the more components switched 

off the more power saving. Moreover, some C-states may be hidden from the operation system, 

providing additional power-saving capabilities. 

P-states, or power performance states, are states in which the frequency and voltage of the CPU 

are adjusted to optimize power consumption. Each processor has a specific number of P-states 

that can be utilized to dynamically modify the CPU’s operation parameters, such as frequency 

and voltage. By adjusting these parameters, the CPU can achieve a balance between 

performance and power consumption, aiming to reduce overall power consumption while 

maintaining desired performance levels. Also, usually P0 is the settings for turbo and P1 are 

the normal settings. 
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2.3 Euclidean Distance 

Euclidean distance is a statistical method used to measure the dissimilarity between two sets 

of values. In this method, a list of reference values is compared with corresponding values from 

other lists. The deviation between the two lists is calculated by subtracting the corresponding 

values and squaring the result. Finally, the squared differences are summed, and the square 

root of the sum is taken. 

 

The Euclidean distance formula is as follows: 

Figure 2.3.1 Euclidean distance formula 

 

Where x and y represent vectors, by applying this formula, the Euclidean distance can provide 

insights into the dissimilarity or similarity between different sets of values. 

 

2.4 Regression Models 

 A regression model provides a mathematical function that describes the relationship between 

one or more independent variables and a response, dependent, or target variable. It helps us 

understand how changes in the independent variables are associated with changes in the target 

variable. 

For instance, consider the relationship between height and weight. This relationship can be 

described using a linear regression model, where height is the independent variable and weight 

is the dependent variable. By analyzing the data and fitting a regression line, we can estimate 

the weight based on the given height.  

Regression analysis serves as the foundation for various prediction tasks and helps us determine 

the effects on target variables. In this thesis, regression models are used to predict the features 

of the “best” power-virus. 

Additionally, it is worth noting that the regression models used in this research are logarithmic 

regression models. These models are specifically chosen due to the fact that they seem to 

“follow” the trends of the architectural feature limits for maximum power consumption. A 

unique characteristic of logarithmic regression is its potential to reach a saturation point, where 

subsequent increases in the input variables (such as Generation) do not lead to significant 

changes in the predicted features. 
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Chapter 3  

 

Virus programs & GeST 

 
  

3.1 Viruses 

3.2 Stress-Tests     

3.3 Power Virus 

3.4 What is GeST  

3.5 QuickGen Method  

 
  

3.1 Viruses 

Computer viruses are malicious programs with the primary intention of causing harm. They 

can replicate themselves and spread across networks to infect other computers. The purposes 

of viruses can vary depending on their type, but in general, they have the ability to disrupt data, 

cause damage to the operating system, and result in data loss or leakage. Viruses typically 

operate by utilizing executable files that often hide behind running processes, making them 

challenging to trace. 

 

3.2 Stress-Tests 

 Stress-testing is a crucial process for assessing the performance and reliability of various 

systems, including computers, networks, programs, and devices. Its objective is to subject these 

systems to extreme conditions and determine if they can maintain a satisfactory level of 

effectiveness. Stress-tests involve putting systems through demanding scenarios and observing 

their response. 

During stress-testing, systems are evaluated individually on each aspect to identify any 

vulnerabilities or weaknesses that may arise. This comprehensive examination is crucial as 

vulnerabilities are often easier to detect under stress conditions. Although stress-testing can be 

time-consuming, it is a mandatory step in development of robust and functional system. 
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The primary goals of stress-testing are to determine if a system can effectively operate under 

normal circumstances and also that the system maintains limited functionality even when a 

large part of it has been compromised. By undergoing stress-tests, systems can be better 

prepared to handle unexpected situations, ensuring their reliability and performance in critical 

scenarios. 

 

There are two methods for generating stress tests: manual and automatic. The manual approach 

involves the programmer manually writing and testing the stress-tests. On the other hand, the 

automatic approach relies on specialized tools that use optimization search algorithms, such as 

Genetic Algorithms (GeST), to generate the stress tests based on specified optimization metrics. 

 

 

3.3 Power Virus 

The power virus is a specific type of virus commonly utilized in stress tests to assess the 

resilience of a system under extreme conditions. Its main characteristic is its ability to induce 

maximum CPU power consumption by executing a machine code-based program. This high 

CPU power consumption leads to increased heat generation within the system. Without 

adequate cooling mechanisms in place, this excessive heat can result in data corruption, faulty 

calculations, and system crashes. In some cases, it may even cause permanent damage to the 

system. 

 

While power viruses are primarily employed in stress-tests, it’s important to note that they can 

also be exploited for malicious purposes. However, their primary use remains in benchmarking, 

integration tests, and thermal tests, where their ability to push the system to its limits helps 

evaluate its performance and endurance. These tests are essential for identifying potential 

vulnerabilities, ensuring system stability, and assessing the effectiveness of cooling solutions 

in managing heat dissipation. 
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3.4 What is GeST 

GeST is an automatic framework designed for generating stress-tests. Developed in Python 3, 

GeST utilizes XML files for configuring its parameters. The framework consists of five key 

components: inputs, outputs, a generic algorithm engine, measurement, and the evaluation of 

measurements. 

     Figure 3.4.1 Steps of GA algorithm  

The most crucial component of GeST is the generic algorithm (GA) engine. This engine is 

responsible for selecting the fittest program based on measurements. It employs genetic 

algorithms inspired by natural evolution to evolve the programs over successive generations. 

The process begins by generating an initial seed population of assembly instruction programs. 

This initial generation can be randomly generated or derived from previous runs. Each 

individual in the population is then compiled and executed, and a fitness value is assigned 

based on a chosen metric. 

The next step involves creating the next generation based on the Tournament selection. The 

fittest programs from the previous generation are selected as parents and undergo a crossover 

process. This process involves recombining the instructions of the parent programs to produce 

children. Also, the best individual of each generation always progresses to the next generation, 

this is called elitism. Additionally, a mutation process occurs where random instructions or 

operands within a child program are altered based on user-defined mutation rate. This mutation 

rate determines the frequency of mutations during the search. The figure 3.4.1 below illustrates 

the creation of a new generation using simple viruses as an example. 

Figure 3.4.1 Crossover and Mutation process 
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This procedure continues until the desired population size is reached. Throughout the search, 

inputs are specified through XML files, particularly the configuration file. This file defines 

various inputs such as population size, number of loop instructions, mutation rate, type of 

crossover operation, whether elitism is employed, number of parent programs, instructions and 

operands used in the GA search and the output directory. 

Figure 3.4.2 Default GA parameters 

 

Measurement and fitness evaluation are performed using a measurement file written in Python. 

This file outlines the process of compiling and running the measurement metric, setting the 

fitness parameter with the metric value, and evaluating it using a function. Individuals with the 

best fitness values are then selected as parents for the next generation. 

 

Lastly, GeST generates output files including saved text files for all individuals, identifies by 

generation number, individual ID, and an array of measurements. Additionally, the framework 

provides a binary file that can be loaded into a Python script to obtain advanced results such as 

statistical analysis of the fitness value of the fittest individual per generation and an instruction 

mix breakdown of the fittest individual per generation. 
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One significant drawback of this procedure is the time-consuming nature of calculating power-

consumption by compiling and running each individual.  

Generation of 

program 

Compile Run Gathering metrics 

0.018 seconds 2 seconds 5 seconds 0.018 seconds 

Figure 3.4.1 times of processes in normal search 

 

The time required for each step involved in generating a powerful power virus using normal 

search is illustrated in Figure 3.4.1. These steps outline the time needed for a single individual 

to complete the process. Taking these time estimates into consideration, to produce 50-70 

generations, with each generation consisting of 50 individuals, would require approximately 

5-7 hours. 

 

 

3.5 QuickGen Method    

The QuickGen method is a technique developed to produce simple and powerful power viruses 

quickly. It was created as a solution to the time-consuming process of compiling and gathering 

power consumption for each individual virus in a search. Instead of compiling and running 

metrics on each individual, the QuickGen method utilizes the statistical approach of Euclidean 

distance. 

 

The method involves using the features of a powerful power virus and incorporating them into 

the Euclidean distance formula. The characteristics of the most powerful virus in the search are 

used as reference values in the formula. 

 

To ensure consistent comparisons, the values of each characteristic are normalized. Two 

methods of normalization are applied. The first method normalizes the number of individual 

types of instructions by dividing the total amount of a specific instruction type (e.g., scalar 

instructions) by the total number of instructions. The second method normalizes the total 

number of instructions using the formula: Abs(1 – (Total_under_study / Total_reference)), 
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where “Abs” denotes the absolute value, Total_under_study represents the total instructions of 

the individual under study, and Total_reference represents the total instructions of the reference 

virus. 

 

The following characteristics were found to be suitable for the search using the QuickGen 

method: 

• Number of scalar instructions (normalized) 

• Number of load or store instructions (normalized) 

• Number of scalar load or store instructions (normalized) 

• Number of vmultpd instructions (normalized) 

• Number of vaddpd instructions (normalized) 

• Number of vmaxpd instructions (normalized) 

• Number of vsubpd instructions (normalized) 

• Number of vxor instructions (normalized) 

• Normalized total amount of instructions 

 

Generation of program Gathering metrics 

0.038 seconds 0.038 seconds 

Figure 3.5.1 times of processes using Quickgen Euclidean distance search 

 

Figure 3.5.1 presents the time requirements for each step in the QuickGen method when 

generating an individual. Remarkably, it takes only 0.038 seconds to generate a single 

individual. Considering the generation of 50-70 generations with 50 individuals per generation, 

the total time needed is approximately 1.5 – 2 minutes. Once all the individuals are generated, 

it is recommended to compile and collect power consumption metrics for the first 10 

individuals with the lowest Euclidean distance. Extensive experimentation has shown that this 

value yields high power consumption. However, this approach does come with a trade-off, as 

running 10 individuals can take anywhere from half an hour to an hour. Nevertheless, the 

QuickGen method enables the execution of more searches. 
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It’s important to note that the QuickGen method relies on having a reference virus to obtain 

characteristics. This reliance on a reference virus represents a major drawback of the procedure, 

as it introduces a non-automated aspect to the process. Addressing this limitation is the primary 

focus of my thesis, aiming to integrate a procedure that automatically identifies the features of 

the reference virus and incorporates them as input for the QuickGen method. 

The reference virus for QuickGen method can be found in the following ways. Firstly, it can 

be obtained from a publicly available virus known to have high power consumption. 

Alternatively, in our research, we derive the reference virus by running GeST methodology for 

multiple generations and selecting an individual (stress-test) with high power consumption. 
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Chapter 4  

 

GeST-R Method 

  

 
  

4.1 Idea 

4.2 The Power of Regression Models in Virus Generation  

4.3 Integration of GeST-R 

 

  

4.1 Idea 

Considering the limitation of the QuickGen method, which relies on having a reference virus, 

I have proposed a novel approach to address this issue in my thesis. To overcome the need for 

a predefined reference virus, I have developed a methodology that utilizes the power of 

regression models and the iterative search process of the GeST framework. The methodology 

involves running the GeST algorithm for a smaller number of iterations, typically around 10-

15 generations, and collecting the data from these generations. This data is then used to train 

regression models that can accurately predict the optimal reference virus features for future 

generations. By analyzing the trends and patterns in the collected data, the regression models 

can provide valuable insights into evolution of the features over time. This approach allows for 

a more dynamic and adaptive generation of powerful power viruses, as the regression models 

enable the prediction of optimal features even after substantial number of generations, such as 

the 50th generation. This innovative methodology not only eliminates the dependency on a 

predefined reference virus but also enhances the efficiency and effectiveness of the overall 

search process. 
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Figure 4.1.1 GeST-R control flow schema 

The control flow schema of the GeST-R methodology is as follows: 

1. Warm-up for N normal GeST iterations: This initial step involves running a warm-up 

phase for specified number of normal GeST iterations. During this phase, each 

individual is compiled and measured for power consumption. The purpose of this 

warm-up phase is to exclude the initial iterations from the regression training dataset. 

Through experimentation, it has been observed that the features in the early iterations 

may not be as reliable as those in later iterations. 

2. Training for the next M normal GeST iterations: Following the warm-up phase, the 

methodology proceeds to run normal GeST for M iterations. Similar to the warm-up 

phase, each individual is compiled and measured for power consumption. The data from 

this step is then utilized to train the regression models, which they will serve as a 

predictive tool for determining the optimal reference virus features in future generations. 

3. Collection of data from training phase: During this step, the methodology collects data 

on the features of each generation. Specifically, it records the number of instructions of 

each instruction type for the individual with the highest power consumption in each 

generation. This data serves as the foundation for training the regression models and 

capturing the trends and patterns in the evolving features. 

4. Prediction of reference virus based on collected features: Using the trained regression 

models, the methodology predicts the optimal reference virus for subsequent iterations. 

The regression models leverage the patterns and correlations identified in the training 

phase to make accurate predictions regarding the most suitable features for maximizing 

power consumption. It is worth mentioning that the framework tests multiple 
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logarithmic regression models (ln(x), log2(x), log10(x)), and chooses the one with the 

lowest error with cross-validation methodology. Specifically, the training set is divided 

in 5 parts (folds). During the error testing of the regression models, 4 parts out of 5 are 

used as training sets, and the remaining one is used as validation set. This process is 

being repeated for 5 times and each time a different validation set is chosen. At the end, 

the error of the regression model is the average error calculated from the cross-

validation procedure. Finally, the chosen regression model will be the one with the 

lowest error. 

5. Execution of QuickGen method for T iterations: With the predicted reference virus in 

hand, the methodology proceeds to run the QuickGen method for a specified number 

of iterations, denoted as T. Rather than compiling and running each individual to gather 

power consumption, the methodology utilizes the concept of Euclidean distance from 

the reference virus. The top 10 individuals with the lowest Euclidean distance are 

compiled and run, as it is important to note that low Euclidean distance alone does not 

guarantee high power consumption. Since the features used to calculate the Euclidean 

Distance may not fully capture all the characteristics that define a virus with high power 

consumption, it is important to acknowledge that this metric alone may not be sufficient. 

However, the observed trends indicate a correlation between the Euclidean Distance 

with the instruction types and the power consumption. 

6. In the final step, there are two options. The first option is to proceed with running 

normal GeST iterations for a specified number of F iterations and conclude the 

procedure. This is essential because Euclidean distance alone is not a definitive 

indicator of high-power consumption. The second option is to restart the entire process, 

beginning again from step 2. This choice enables iterative repetition of the methodology, 

allowing for continuous improvement and refinement of the prediction and generation 

process. By reapplying the training phase and leveraging the regression models, it 

becomes possible to adapt and enhance the accuracy of prediction the reference virus 

features for future generations. 

 

 

 

  



20 

 

 

4.2 The Power of Regression Models in Virus Generation 

 

In this section, we present a compelling rationale for utilizing regression models in our virus 

generation methodology. Through a series of experiments, we conducted a comprehensive 

analysis of the relationship between instruction types, power consumption, and the 

effectiveness of regression models. Our approach involved running normal GeST for 50 

generations, collecting data on the number of instructions of each instruction type. We then 

utilized the data from the first 20 generations, excluding the initial 10 as warm-up iterations, 

and used the subsequent 10 generations for training our regression models. 

 

Upon applying the trained regression models to predict the outcome of generation 50, we 

compared the predicted number of instructions of each instruction type with the actual 

outcomes obtained from normal GeST. Remarkably, we found a striking similarity between 

the regression model predictions generated by the regression models and the observed 

outcomes of normal GeST. This will help us build the good power virus features for QuickGen 

method. 

 

After conducting the experiments and training the regression models, we compared the 

predicted number of instructions of each instruction type from the regression models with the 

actual results from the normal GeST generations. To visually illustrate these findings, we have 

included Figure 4.2.1 which shows the comparison between the predicted and the actual 

number of instructions for each type. 

 

The graphs clearly demonstrate the close alignment between the predictions generated by the 

regression models and the actual results obtained from the normal GeST iterations. These 

results validate the effectiveness and reliability of using regression models for predicting the 

good reference virus features based on instruction types. In other words, regression models, 

manage to predict the features of a virus that needed 50 generations of normal GeST procedure 

at just 20 generations. Regression models are able to replace some of the GeST generations but 

not all of them, because we need some generations to train them. Also, the regression models 

predict some of the features and not all of them, therefore GeST is needed for exploring the 

uncontrolled features (e.g., dependencies). 
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Figure 4.2.1 Accuracy of the Regression Models 
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4.2 Integration of GeST-R 

In this section, we will discuss the successful integration of GeST-R, our developed 

methodology based on regression models, into the GeST framework. By incorporating 

regression models, we aimed to introduce reference virus prediction for QuickGen method. 

This integration enables a fully automatic and faster procedure for the effective generation of 

power viruses. 

 

In terms of input/output, GeST-R takes input from the GeST configuration file, where 

parameters such as the number of warm-up, training, QuickGen, and finalize iterations are 

specified. Additionally, the configuration file includes the Total GeST-R iterations and the 

GeST-R flag, which determines whether GeST-R or normal GeST should be executed. 

 

The functionality of GeST-R is exposed through an API that allows seamless interacting with 

the GeST framework. This API provides access to key functions for training the regression 

models, predicting the reference virus, and evaluating the fitness of individuals during different 

stages of the evolutionary process. 

 

One important function is the Reference_Features function, which takes the instruction type 

data from the training generations. This data is used to train the regression models, enabling 

them to predict the reference virus based on the number of instructions of each instruction type. 

The prediction function then utilizes the trained models to predict the reference virus for a 

future generation. 

 

During the warm-up and training iterations, the fitness evaluation is based on power 

consumption, which is measured by compiling and running each individual virus. For 

QuickGen iterations, the fitness evaluation involves calculating the Euclidean distance between 

the current individual and the predicted reference virus using the trained regression models. 

Finally, during the finalize iterations, the fitness is once again determined by measuring the 

power consumption of each individual virus. 
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By integrating GeST-R into GeST, we have introduced a more sophisticated and efficient 

approach to power virus generation, leveraging the power regression models for accurate 

prediction. 
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Chapter 5  

  

Experimental Methodology  

   

 
  

5.1 Hardware Configuration 

5.2 GeST and viruses 

5.3 Power Measurements and Analysis 

5.4 Validation effort  

 
  

5.1 Hardware Configuration 

 

This research is conducted on a single machine, namely the HP Compaq 8200 Elite CMP PC, 

which is equipped with an Intel® Core™ i5-2400 CPU @ 3.10GHz processor. The CPU 

consists of 4 cores with a base frequency of 3.10 GHz and a thermal design power (TDP) of 

85 Watts. To ensure stability, the CPU frequency was regulated using the cpupower tool, which 

allows the operating system to dynamically adjust the CPU frequency based on power-saving 

or performance-enhancing needs. This tool enables automatic scaling in response to system 

load, as well as manual adjustments by user space programs (“CPU frequency scaling – 

ArchWiki”). The processor is equipped with 6MB of cache and operates at a bus speed of 5 

GT/s. When examining the microarchitecture of the processor, it is observed that the L1 

instruction cache can handle 16 bytes per cycle, and there is a 4-way decode capability. 

Furthermore, this microarchitecture comprises 6 execution units. To ensure consistent results, 

c-stats and p-states were disabled during all experiments to eliminate variations. It is important 

to note that the generated viruses solely stress the CPU, as other components of the system 

such as DRAM frequency were not configured.  
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5.2 GeST and Viruses 

 

The GeST tool served as the primary workload for generating and evaluating power viruses in 

this research. The GeST-R methodology, which integrates regression models into the GeST 

framework, was employed to enhance the generation of power viruses. GeST-R introduced a 

reference virus prediction approach, leveraging regression models to predict the number of 

instructions for each instruction type. 

The GeST configuration file was updated to include additional parameters specific to GeST-R. 

These parameters included N for warm-up training iterations, M for training iterations, T for 

QuickGen iterations, F for finalize iterations, the total number of GeST-R iterations, and the 

GeST-R flag. By setting the GeST-R flag to 1, GeST-R was executed, while setting it to 0 

resulted in the normal GeST procedure. 

During the fitness evaluation process in the GeST-R methodology, several steps were 

undertaken. Initially, power consumption was utilized as the fitness value for the warm-up and 

training iterations. Each individual virus underwent compilation and execution to measure its 

power consumption, which served as the fitness value. Subsequently, during the QuickGen 

iterations, the Euclidean Distance between the current individual and the reference virus was 

calculated and considered the fitness value. The reference virus was determined using the 

trained regression models based on the training iterations. Finally, following the completion of 

QuickGen iterations, the power consumption of each individual virus was once again measured 

during the finalize iterations, and this power consumption value was employed as the fitness 

value. 

Power consumption measurements were obtained by executing each virus for a fixed duration 

of 5 seconds and recording the corresponding power consumption of the system. These 

measurements served as a key metric to determine the effectiveness of the generated power 

viruses. 

It is important to note that the version of GeST used in this research is not publicly available. 

The GeST implementation and its integration with the GeST-R methodology were developed 

specifically for this study and tailored to the research objectives. 
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5.3 Power Measurement and Analysis 

 

This research focuses on several CPU-related metrics that are crucial for understanding the 

impact of programs on the processor. In particular, power consumption serves as a fundamental 

metric for assessing program performance in the context of power viruses. To measure power 

consumption, the program was compiled, and the likwid-powermeter tool was employed. 

Likwid-powermeter (based on rapl counters) is specifically designed for Intel CPUs and 

provides accurate power and clocking information. By utilizing this tool, the power 

consumption of the program could be effectively measured in various research scenarios. The 

analysis of power consumption data played a vital role in evaluating program performance and 

determining the effectiveness of the developed power viruses. 

 

5.4 Validation Effort 

 

Validation played a crucial role in ensuring the accuracy and reliability of various components 

in my research, including the regression models, QuickGen method and power consumption of 

the normal GeST procedure, and the overall GeST-R methodology. Validation measures were 

implemented to assess the performance and effectiveness of each element. 

To validate the regression models, extensive experiments were conducted to compare the 

predicted outcomes with the actual results obtained from the normal GeST procedure. This 

involved analyzing the number of instructions for each instruction type and evaluating how 

closely the regression models aligned with the observed trends. 

For the QuickGen Method, validation was carried out by running multiple iterations and 

analyzing the generated power viruses. The power consumption metrics were meticulously 

measured and compared to ensure that QuickGen Method produced accurate and consistent 

results. 

The entire GeST-R methodology underwent comprehensive validation to verify its 

effectiveness in achieving the desired objectives. This involved examining the integration of 

regression models, the prediction accuracy of reference viruses, and the overall efficiency of 

the approach in generation power viruses. 

By employing validation procedures for each component, I could confidently establish the 

accuracy, reliability, and effectiveness of the regression models, QuickGen Method, and the 

GeST-R methodology as a whole. 
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Chapter 6  

 

Experimental Evaluation 

 

 
  

6.1 QuickGen Validation 

6.2 GeST-R Parameter Analysis 

 6.2.1 QuickGen generations vs Power Consumption 

 6.2.2 Training generations vs Power Consumption 

 6.2.3 Warm-up generations vs Power Consumption 

 6.2.4 Finalize Generations vs Power Consumption 

 6.2.5 Repetitive Runs vs Power Consumption 

6.3 GeST-R vs GeST 

6.4 GeST individual optimization 

 

 
  

6.1 QuickGen Validation 

Figure 6.1.1 Euclidean vs Power Consumption             Figure 6.1.2 Euclidean vs Avg Power Consumption 

 

The Figures 6.1.1 and 6.1.2 illustrate the relationship between Euclidean distance and Power 

Consumption. It is evident that there is a clear correlation between the two variables. As the 

Euclidean distance decreases, indicating a higher similarity between the current individual and 

the reference virus, the Power Consumption tends to increase. These finding addresses one of 
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the research questions posed in the thesis, demonstrating the potential of QuickGen in 

optimizing the execution time of stress-test generation. 

 

 

 

Figure 6.1.3 Euclidean vs Generations   Figure 6.1.4 Avg Euclidean vs Generations 

The Figures 6.1.3 and 6.1.4 show the relationship between generation and Euclidean distance. 

As the generation number increases, indicating the progression of the stress-test generation 

process, the Euclidean distance between the current individual and the reference virus 

decreases. The decreasing Euclidean distance signifies an improved similarity between the 

generated individuals and the desired characteristics of the reference virus. This trend validates 

the efficacy of the stress-test generation methodology. 

     Figure 6.1.5 Power Consumption vs QuickGen generations 
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During the analysis of the figure 6.1.5, an important finding appeared in the GeST-R 

methodology regarding the relationship between Euclidean Distance and power consumption. 

The figure shows that lower Euclidean Distance does not always correspond to better power 

consumption. This can be attributed to the methodology’s focus on a limited set of features, 

the number of each instruction type, while overlooking other crucial factors like dependencies. 

As a result, the correlation between Euclidean distance and power consumption exhibited 

fluctuations.  The fluctuations are also evident from the first graph (Euclidean distance vs 

Power Consumption), at 0.02 Euclidean distance there are viruses with 50W power 

consumption and others with 58W. To overcome this issue, a solution was to measure the 

power consumption of the top 10 individuals with the lowest Euclidean distance at each 

QuickGen generation. Then the tournament selection will be among those 10 individuals, and 

it will be based on their power consumption. This additional step successfully addressed the 

fluctuating power consumption problem, and promoting individuals with high-power 

consumption to the subsequent generations. 

After incorporating the additional step of measuring power consumption for the top 10 

individuals with the lowest Euclidean distance at each QuickGen generation, the results 

demonstrate notable improvements in the power consumption of generated viruses. 
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6.2 GeST-R Parameter Analysis 

6.2.1 QuickGen generations vs Power Consumption 

 

     Figure 6.2.1.1 QuickGen Generations vs Power Consumption 

Based on the experimental results showed in the figure 6.2.1.1, where GeST-R was evaluated 

with 25, 50 and 100 generations of QuickGen, it was observed that the number of QuickGen 

generations has a significant impact on power consumption and computational time. The graph 

demonstrated that increasing the number of QuickGen generations beyond 25 did not result in 

substantial improvements in power consumption. In fact, viruses generated with 25 generations 

of QuickGen exhibited comparable power consumption and sufficiently low Euclidean 

distance compared to those generated with a higher number of generations. Additionally, using 

25 generations of QuickGen led to a significant reduction in computational time compared to 

using 50 generations. This reduction can be attributed to the time-consuming nature of 

measuring the power consumption of 10 individuals for each QuickGen generation. 

Considering the trade-off between power consumption and computational time, the results 

suggest that 25 generations of QuickGen, coupled with 15 training generations, 10 warm-up 

generations, and 15 finalize generations, provide an optimal balance of efficiency for the 

GeST-R methodology. 

The possible reasons why there is no improvement in power consumption after 25 generations, 

could be attributed to the following factors. Firstly, it is likely that the features characterizing 
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the predicted virus are already reached within the initial 25 generations, making further 

iterations unnecessary. Secondly, Euclidean distance alone may not capture all the relevant 

features that characterize the best virus, requiring additional iterations with power consumption 

measurement to uncover the remaining features. Lastly, it is possible that the optimization 

process gets trapped in a local optimum, preventing further improvements beyond 25 

generations. 

During the experimentation, it was observed that reducing the number of QuickGen generations 

below 25 resulted in a notable decrease in the quality of generated individuals. Specifically, 

viruses generated with fewer than 25 generations of QuickGen did not have low Euclidean 

distance compared to the reference virus. This indicated that a higher number of QuickGen 

generations is necessary to ensure the selection and evolution of individuals with closer feature 

characteristics to the predicted reference virus. Thus, the finding highlight the importance of 

maintaining a minimum threshold of 25 generations to achieve desirable results in terms of 

Euclidean distance and feature similarity. 
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6.2.2 Training generations vs Power Consumption 

 

     Figure 6.2.2.1 Power Consumption vs Finalize Generations 

 

Based on the experimental results, the figure 6.2.2.1 shows that the number of training 

generations in the GeST-R methodology has a significant impact on the accuracy of the 

predicted reference features. The experiments compared the performance of GeST-R with 5, 

10 and 15 training generations, focusing on the last 10 generations of finalize iterations, the 

last step of GeST-R procedure. It was found that 5 training generations were insufficient to 

effectively train the regression model, resulting in lower-quality predictions of the reference 

virus features. However, with 10 and 15 training generations, the regression models were well-

trained and produced accurate predictions of the reference virus features. Interestingly, the 

difference in performance between 10 and 15 training generations was minimal, suggesting 

that the additional 5 training generations did not provide significant improvements in the 

quality of the predictions. Considering the additional time required for 5 more training 

generations, it was concluded that 10 training generations offer a more balanced trade-off 

accuracy and computational efficiency in the GeST-R methodology. 
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6.2.3 Warm-up generations vs Power Consumption 

 

      Figure 6.2.2.1 Power Consumption vs Finalize Generations 

 

The experimental evaluation of GeST-R with different values of warm-up iterations (5, 10, and 

15) revealed interesting insights into the power consumption trends during the Finalize step. 

The figure 6.2.2.1 shows a lower power consumption for the individuals in the first generations 

of the Finalize step for both 5 and 15 warm-up iterations compared to the warm-up 10. The 

observed trend can be explained by the importance of having sufficient number of warm-up 

iterations to gather valid data for training the regression models. With fewer warm-up iterations, 

the early generations of GeST may not provide accurate data, leading to non-optimal regression 

models. On the other hand, excessive number of warm-up iterations can potentially lead to the 

exclusion of important data, such as significant changes between early generations, thereby 

impacting the quality of the regression model. Based on the results, it was determined that 10 

warm-up iterations strike the optimal balance, allowing for the generation of reliable regression 

models and ultimately improving the power consumption of the final individuals. 
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6.2.4 Finalize generations vs Power Consumption 

 

     Figure 6.2.3.1 Power Consumption vs Finalize Generations 

By analyzing the figure 6.2.3.1 showing the relationship between finalize generations and 

power consumption, a clear trend emerges. The graph, which includes 15 finalize generations, 

demonstrates that the power consumption stabilizes after around 10 generations. Beyond this 

point, the difference in power consumption between successive generations becomes 

increasingly small. These results indicate that 10 generations are sufficient to achieve a good 

outcome in terms of power consumption. Additional finalize generations beyond this point will 

add more time delay. Therefore, it can be concluded that 10 finalize generations provide a 

practical and efficient choice for achieving desirable power consumption results in the       

GeST-R methodology. 
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6.2.5 Repetitive Runs vs Power Consumption 

     Figure 6.2.4.1 Iterative GeST-R procedure  

As a solution to the issue of getting trapped in a local minimum during the optimization process, 

a repetitive GeST-R procedure was introduced. The main idea behind this procedure is to train 

multiple times during the whole procedure the regression models, allowing for the discovery 

of new trends that may have been missed by the initial data which we used to train regression 

models. This approach aims to overcome the limitations of local minimum by exploring 

different directions in the optimization process. 

The figure 6.2.4.1 presented demonstrates the results of the GeST-R repetitive procedure. To 

execute the repetitive procedure, the gestr_iterations parameter in the configuration file needs 

to be adjusted to the desired number of iterations. Each iteration comprises a training phase, 

regression model training based on the training phase, and the QuickGen method. After all 

iterations are completed, the finalize step is executed. 

       Figure 6.2.4.2 Power Consumption vs Generations 
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The figure 6.2.4.1 reveals that significant improvements can be observed after the first iteration 

of the repetitive procedure. However, subsequent iterations show only slight improvements. 

This can be attributed to reaching the limit of power consumption for the specific processor 

being used. To determine the power consumption limit, the normal GeST procedure was run 

for 100 generations, revealing that it reaches a limit approximately 60W for two instances as 

the following figure 6.2.4.2 shows. 

It is important to note that the figure 6.2.4.1 does not include the power consumption of the 

QuickGen generations. This is because of the significantly reduced time required to execute a 

QuickGen generation compared to a regular GeST generation. 

 

6.3 GeST-R vs GeST 

 Figure 6.3.1 Power Consumption vs GeST generations     Figure 6.3.2 Power Consumption vs GeST generations      

  

 Figure 6.3.3 Power Consumption vs GeST generations     Figure 6.3.4 Power Consumption vs GeST generations 
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The figures 6.3.1, 6.3.2, 6.3.3 and 6.3.4 are showing the comparison between GeST-R and 

GeST methodologies in terms of power consumption. The y-axis represents the power 

consumption of the individuals, while the x-axis represents the number of generations. The 

power consumption of the highest-power individual from each generation is plotted for both 

GeST-R and GeST. The starting generation of the graphs is the same between the GeST-R and 

GeST methodologies, however the figures 6.3.1, 6.3.2, 6.3.3 and 6.3.4 have different starting 

generations to validate the GeST-R procedure (that is working for more cases). 

In this comparison, the graphs are clearly showing that the final produced individual of the 

GeST-R produces power consumption levels that are nearly equal to those of the GeST 50th 

generation individual. This demonstrates the effectiveness of the GeST-R methodology in 

optimizing the stress-test generation process. 

It is important to note that the graphs do not include the power consumption of the QuickGen 

generations. This is because of the significantly reduced time required to execute a QuickGen 

generation compared to a regular GeST generation. As such, the 25 generations of QuickGen 

are equivalent to just 5 generations of GeST in terms of time. 

The figure 6.3.3 reveals interesting differences between the two procedures. While they start 

from the same initial generation, the subsequent generations diverge. This can be attributed to 

the different used operators (cross-over, mutation) and they produced different individuals. 

GeST-R initially has lower power consumption, but after QuickGen method, it surpasses GeST 

and ultimately produces an individual with power consumption similar to GeST 50th generation. 

The figure 6.3.4 has 15 training iterations instead of 10. Increasing the training generations in 

GeST-R did not significantly change the results, as we showed before. GeST-R still produced 

an individual with power consumption comparable to GeST’s 50th generation. Interestingly, at 

the final generation of the Finalize step, GeST-R even outperformed GeST by generating an 

individual with higher power consumption, however this appears to be random rather than 

attributed to any specific facor. 

Overall, the graphs are showing that GeST-R effectively use the power of regression models 

to improve the power consumption of stress-test individuals, offering a more efficient approach 

to stress-test generation. 
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6.4 GeST individual optimization 

  Figure 6.4.1 Power of Loop Alignment vs No Loop Alignment 

To evaluate the impact of loop alignment on power consumption, I conducted an experiment 

comparing the power consumption of the current GeST individual with an individual with an 

aligned loop address (the individuals were the same). Loop alignment involves placing the 

loop start address on a new cache block, potentially reducing cache misses and improving 

power consumption. The figure 6.4.1 in the evaluation illustrates the power consumption 

results for both cases, revealing that the individual with loop alignment resulted in a slightly 

higher power consumption for all instances compared to the non-aligned approach. 

 

 

 

 

 

 

 

 

  Figure 6.4.2 Power of Stack Initialized vs No Stack Initialized 
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The figure 6.4.2 presents the experiment conducted on stack initialization, where the stack 

was initialized with values to increase CPU stress during instruction execution. Interestingly, 

the results indicate that the individuals with stack initialization exhibited higher power 

consumption to those without stack initialization. 

     Figure 6.4.3 Power of current GeST individual vs Stack initialized and Loop Aligned individual 

 

Combining the loop alignment and stack initialization improvements, the graph 6.4.3 

demonstrates the power consumption improvements achieved by applying these techniques to 

the same individual. By adding loop alignment and stack initialization to the individuals, we 

can observe an improvement in power consumption compared to the initial individual (before 

the changes). 
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Chapter 7 

 

Related Work   

  

 
  

In the field of stress-test generation and optimization, several projects and frameworks have 

been developed to address similar challenges. One notable project is MicroGrad, which is 

another automated framework for stress-test generation. MicroGrad utilizes the Microprobe 

code generation framework and employs a Gradient Descent-based tuning mechanism to 

evolve test cases for Stress testing. By iteratively adjusting parameters, the tuning mechanism 

aims to improve performance metrics such as execution time, power consumption, or 

efficiency. The evaluation of MicroGrad demonstrates its high accuracy and low resource 

requirements. 

 

In comparison to MicroGrad, GeST-R offers a distinct approach to stress-test generation and 

optimization. While MicroGrad focuses on utilizing a Gradient Descent-based tuning 

mechanism to evolve test cases, GeST-R incorporates Genetic Algorithms and regression 

models for optimizing stress-test generation. GeST-R integrates the use of Euclidean Distance 

and regression models to predict the characteristics of the “best-virus” and optimize power 

consumption. Additionally, it should be noted that comparing the execution time between 

GeST-R and MicroGrad is not straightforward. While GeST-R runs on real hardware, the 

evaluation of MicroGrad is conducted on a simulator (GEM5). Furthermore, the comparison is 

based on generation rather than real-time measurements. 
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Chapter 8 

  

Future Work           

  

 
In this section, we will explore potential avenues for future research and improvements based 

on the findings and outcomes of this study. These directions aim to further enhance the 

effectiveness and efficiency of the methodology proposed in this thesis. 

• Evaluating the Necessity of QuickGen: One important question to address is whether 

the utilization of the QuickGen method is essential or if the regression models alone 

can provide sufficient accuracy. It would be valuable to investigate the possibility of 

generating individuals directly with features equivalent to the output of the regression 

models. This approach could potentially eliminate the need for running the QuickGen 

method, leading to a more streamlined and efficient process. 

• Expanding Virus Features: To enhance the accuracy of the regression model 

predictions, it is worth considering the inclusion of additional features beyond just the 

number of instructions. For example, incorporating dependencies and analyzing the 

distances between them could provide valuable insights into power consumption 

patterns. Expanding the set of virus features can potentially yield more robust 

regression models and improve the overall accuracy of reference virus prediction. 

• Automated Procedure Optimization: In order to facilitate the application of the 

methodology in practical scenarios, developing an automated method for determining 

optimal warm-up, training, QuickGen, and finalization iterations would be highly 

beneficial. By automating these steps, researchers and practitioners can save 

significant time and effort in configuring and fine-tunning the procedure, ultimately 

improving the efficiency and reproducibility of the experiments. 

• Error Prediction for Reference Virus Generation: A key aspect to explore is the 

development of a method that can predict the number of generations for which the 

regression models will accurately predict the reference virus. This prediction can be 

based on analyzing the error rates and patterns observed in the regression models’ 

predictions for future generations. By estimating the limitations of the models in 

advanced, researchers can optimize the selection and usage of regression models, 

ensuring their effectiveness in predicting reference viruses for a given number of 

generations. 
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These future research directions have the potential to further advance the proposed 

methodology, enhancing its accuracy, efficiency, and automation. By addressing these aspects, 

researchers can continue to contribute to the field of power virus generation, opening up new 

possibilities for advanced and impactful methodologies in the future. 
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Chapter 9 

 

Conclusion 

 

In this thesis, we set out to address several research questions related to optimizing the 

execution time of stress-test generation using Genetic Algorithms (GAs) with the inclusion of 

Euclidean Distance (QuickGen) and Regression Models. Additionally, we explored methods 

to enhance the power consumption of GeST individuals, specifically targeting Sandy Bridge 

processors. 

Regarding the first research question, we have successfully demonstrated the effectiveness of 

regression models in predicting the characteristics of the “best-virus” after a certain number of 

generations. Through training the regression models using instruction type data from the initial 

generations, accurate predictions were made, contributing to the optimization of the stress-test 

generation process. 

Furthermore, our investigation into the validation of Euclidean Distance as a replacement for 

power consumption as the fitness value of the Genetic Algorithm yielded positive results. The 

Euclidean Distance metric proved to be an effective measure of similarity between individuals 

and the reference virus, facilitating accurate fitness evaluation during the evolutionary process. 

Moving on to the second research question, we explored various methods to enhance the power 

consumption of GeST individuals on Sandy Bridge processors. Our findings revealed that 

aligning the loop address of GeST individuals improved data storage in cache blocks, resulting 

in higher power consumption. 

Overall, this research has contributed to advancing the field of stress-test generation and power 

virus development. The integration of Euclidean Distance and Regression Models within the 

GeST framework has proven to be a successful approach for optimizing execution time and 

enhancing power consumption. 

These findings open up new possibilities for further research and development in the field of 

stress-test generations and power virus optimization. Future work could focus on refining the 

regression models, exploring additional metrics for fitness evaluation, and investigating the 

impact of other processor architectures. By continuing to explore those paths, we can further 

improve the efficiency and effectiveness of stress-test generation techniques and contribute to 

advancements in computer system testing and evaluation.  
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