
1 
 

THESIS 

 

Building a chatbot to match jobs and resumes of software engineers. 

 

PANAGIOTIS FOTIADIS 

 

UNIVERSITY OF CYPRUS 

 

 

 

COMPUTER SCIENCE DEPARTMENT 

 

 

 

 

 

 

 

May 2024 



2 
 

UNIVERSITY OF CYPRUS  

COMPUTER SCIENCE DEPARTMENT 

 

 

 

 

 

Building a chatbot to match jobs and resumes of software engineers. 

Panagiotis Fotiadis 

 

 

 

 

 

 

 

 

 

 

Supervisor 

Dr. Georgia Kapitsaki 

 



3 
 

Acknowledgments 

I would like to extend my deepest gratitude to Dr. Georgia Kapitsaki, whose guidance and 
expertise have been invaluable throughout the course of this research. Her mentorship was 

crucial in shaping both the direction and execution of this thesis, and I am deeply 
appreciative of her support. 

I am also grateful to the University of Cyprus for providing the resources and environment 
necessary to conduct this research. 

I must express my profound thanks to my family for their unwavering support and 
encouragement. Their belief in my abilities and their constant encouragement kept me 
motivated throughout my academic journey. 

Thank you. 

 

 

 

 

 

 

 

 

 



4 
 

Abstract 

This thesis aims to create (design, implement, test, and evaluate) a chatbot that aims to 

match the abilities of a software engineer based on their CV and their GitHub activity with 

available job advertisements in online sites. The job listings are collected from publication 

websites for jobs (ergodotisi.com for Cyprus and glassdor.com for USA listings). The 

matching of CV and job listings is based on the user's previous years of experience, soft 

skills, hard skills, education, and other personal preferences such as location and company. 

The creation of a user interface (UI) was essential to ensure accessibility for all users and to 

facilitate the evaluation process through surveys and user testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Contents 
CHAPTER 1 Introduction ............................................................................................................... 7 

1.1 Context and purpose of the thesis ....................................................................................... 7 

1.2 Structure of the text ............................................................................................................ 8 

CHAPTER 2 Background ............................................................................................................... 9 

2.1 Evolution of Artificial Intelligence ......................................................................................... 9 

2.2 Introduction to Chatbots ................................................................................................... 10 

2.3 Challenges of Employment Searching ................................................................................ 11 

2.4 Limitations of Current Job Matching Systems ..................................................................... 12 

2.5 Importance of Personalized Job Recommendations ........................................................... 13 

2.6 Principles of Human-Computer Interaction (HCI) and their Importance .............................. 13 

2.7 Research Motivation ......................................................................................................... 14 

CHAPTER 3 Technologies ........................................................................................................... 16 

3.1 Data Collection ................................................................................................................. 16 

3.1.1 Selenium .................................................................................................................... 16 

3.1.2 BeatifulSoup4 ............................................................................................................ 16 

3.1.3 Lightcast .................................................................................................................... 16 

3.2 Backend ........................................................................................................................... 17 

3.2.1 MongoDB ................................................................................................................... 17 

3.2.2 Docker ....................................................................................................................... 18 

3.2.3 Flask API .................................................................................................................... 19 

3.2.4 JWT ............................................................................................................................ 20 

3.2.5 RASA .......................................................................................................................... 21 

3.3 Frontend ........................................................................................................................... 22 

3.3.1 React ......................................................................................................................... 22 

3.4 Hosting ............................................................................................................................. 23 

3.4.1 Vercel ........................................................................................................................ 23 

3.4.2 Ngrok ......................................................................................................................... 24 

CHAPTER 4 Design and Implementation ..................................................................................... 25 

4.1 Introduction ...................................................................................................................... 25 

4.2 Implementation of Data Collection .................................................................................... 26 

4.3 Implementation of Backend .............................................................................................. 27 

4.3.1 Docker and MongoDB ................................................................................................. 27 



6 
 

4.3.2 API ............................................................................................................................. 28 

4.3.3 RASA .......................................................................................................................... 30 

4.4 Implementation and Functions of Frontend with React ....................................................... 32 

4.4.1 Login/Sign up Page. ..................................................................................................... 32 

4.4.2 Page Layout ................................................................................................................ 34 

4.4.3 Chat Interface ............................................................................................................ 35 

4.4.4 Chat History ............................................................................................................... 36 

4.4.5 CV analysis ................................................................................................................ 37 

4.4.6 Change User Credentials ............................................................................................ 38 

4.4.7 HCI Principles in UI ..................................................................................................... 38 

4.5 Example of Usage ............................................................................................................. 41 

4.6 Recommended Usage Path for Best Results ....................................................................... 43 

CHAPTER 5 Evaluation ............................................................................................................... 45 

5.1 Survey .............................................................................................................................. 45 

5.2 Results ............................................................................................................................. 46 

CHAPTER 6 Future and Conclusion ............................................................................................. 51 

6.1 Summary .......................................................................................................................... 51 

6.2 Future Work ...................................................................................................................... 52 

6.3 Conclusions ..................................................................................................................... 53 

BIBLIOGRAPHY .......................................................................................................................... 55 

APPENDIX .................................................................................................................................. 56 

Survey .................................................................................................................................... 60 

 

 

 

 

 

 



7 
 

CHAPTER 1 Introduction 
 

1.1 Context and purpose of the thesis 
The rise of artificial intelligence (AI) and machine learning (ML) has transformed many 
sectors, notably the job market. Within this wave of innovation, AI-driven chatbots have 
become a significant tool for automating and tailoring the job search experience. This thesis 
focuses on designing, implementing, testing, and evaluating an AI-driven chatbot 
specifically tailored for software engineers, aiming to bridge the gap between job seekers 
and potential employers by matching resumes and job listings more efficiently and 
effectively (Sridevi G.M et al. (2022)).  

The idea of this project comes from the observation of the challenges faced by job seekers 
in the technology sector. Job seekers often find it difficult to sift through numerous job 
listings to find ones that match their unique skills, experiences, and preferences (Connie R. 
Wanberg et al. (2020)).  

On the recruitment side, companies are increasingly turning to AI-driven tools to optimize 
the hiring process. AI technologies are applied in numerous stages of recruiting, including 
writing job ads, screening applicant resumes, and conducting initial interviews via 
automated systems. Some of the notable AI recruiting tools mentioned include Workable, 
which offers AI-powered candidate screening and job advertising, and YouTeam, which uses 
AI for matching candidates to roles based on their skills and experiences. (V.R Uma et al 
(2023) Derek S. Chapman and Jane Webster (2003)) 

This thesis needs to design the chatbot's architecture, developing its conversation flow and 
natural language processing (NLP). In addition, the thesis needs to perform the collection of 
up-to-date job listings and analyze them to extract specific details. The evaluation of the 
chatbot involves user testing to assess its usability, effectiveness in matching jobs and 
resumes of software engineers, and overall user satisfaction. (Chowdhary, K.R. (2020) 

The broader significance of this thesis lies in its contribution to enhancing the efficiency of 
the job search and recruitment process in the technology sector by demonstrating how AI-
driven chatbots can be utilized to personalize job searches. Furthermore, the insights gained 
from this research could inspire further innovations in AI and chatbot technologies, 
potentially extending their applications beyond job matching to other areas of career 
development and human resources management. 

In conclusion, this thesis represents a step forward in using automation and personalization 
technologies to address real-world challenges in the job market. By focusing on the specific 
needs of software engineers and the unique aspects of the technology job market, this 



8 
 

project showcases the potential of AI-driven chatbots to transform the way job seekers and 
employers connect, making the process more efficient, effective, and personalized.  

 

1.2 Structure of the text 
This thesis is structured into several chapters, each dedicated to a different aspect of the 
project, from conception to realization and evaluation. 

• Chapter 1 introduces the thesis, outlining the project's objectives and the 
significance of enhancing the job matching process through AI technologies.  

• Chapter 2 delves into the background information necessary for understanding the 
project, including the evolution of artificial intelligence, an overview of chatbots, the 
challenges associated with employment searching, the limitations of current job 
matching systems, the importance of personalized job recommendations, and the 
motivation behind this research. 

• Chapter 3 focuses on the technologies utilized in this project, detailing the methods 
of data collection (Selenium, BeautifulSoup4, LightCast), the backend technologies 
(MongoDB, Docker, Flask API, JWT, RASA), and the frontend development with React. 
This section provides a foundation for understanding the technical aspects of the 
chatbot's development. 

• Chapter 4, Design, and Implementation, describes the process of creating the 
chatbot, from data collection and backend setup to the frontend interface. It includes 
sub-sections on the implementation of data collection, backend architecture, API 
functionality, and the frontend's design and features, such as the login/sign-up page, 
page layout, chat interface, chat history, CV analysis, and user credential 
management. 

• Chapter 5, Evaluation, discusses the methods used to assess the chatbot's 
effectiveness and user satisfaction, including a survey and analysis of the results, 
providing insights into the chatbot's performance and areas for improvement. 

• Finally, Chapter 6 concludes the thesis with a summary of the work done, future 
directions for this research, and overall conclusions drawn from the project. The 
Bibliography and Appendix provide references and additional materials supporting 
the thesis. 

 

 



9 
 

CHAPTER 2 Background 
2.1 Evolution of Artificial Intelligence 
 

The journey of artificial intelligence is a testament to human ingenuity and the quest to 
create machines that can mimic and surpass human intelligence in certain tasks. This 
journey, spanning several decades, has reached the highest development in the creation of 
technologies capable of transforming industries.  

The dream of creating intelligent machines began in the 1950s, an era of optimism where the 
foundational goals and visions of AI were established. Early AI research was driven by the 
goal of understanding and emulating human cognitive processes. This period saw the 
development of algorithms and models for problem-solving and symbolic processing, laying 
the groundwork for future advancements in AI. These foundational years set the stage for AI's 
application in complex problem-solving tasks. (Vivek Kaul MD et al. (2020)) 

The subsequent era of AI was dominated by the development of symbolic AI (focuses on the 
processing and manipulation of symbols or concepts) and expert systems, which attempted 
to encode expert knowledge into computer systems to make decisions or solve problems 
within specific domains. This period highlighted the potential of AI to carry out tasks 
requiring human-like expertise. However, limitations in knowledge representation and 
reasoning capabilities eventually led to reduced funding and interest in AI research. (Vivek 
Kaul MD et al. (2020)) 

The most recent phase in AI's evolution has been marked by significant advancements in 
machine learning and NLP, fueled by the availability of large datasets and powerful 
computational resources. This shift from a rule-based to a data-driven approach has 
unlocked unprecedented capabilities in pattern recognition, decision-making, and natural 
language processing. This era has witnessed the emergence of chatbots and intelligent 
assistants capable of understanding and processing human language, making them 
invaluable tools in various applications. Today, AI-powered chatbots represent the 
convergence of decades of AI research and development. In the context of this thesis, the 
chatbot developed to match software engineers with job opportunities is a typical example 
of AI's potential to revolutionize recruitment. (Hamed Taherdoost et al. (2023)) 

In conclusion, the evolution of AI from its conceptual beginnings to its current state has 
directly contributed to the development of sophisticated technologies like recruitment 
chatbots. These intelligent systems stand as a testament to the progress made in AI and offer 
a glimpse into the future, where AI's potential to transform industries continues to be 
realized. 



10 
 

2.2 Introduction to Chatbots 
Chatbots represent a breakthrough in artificial intelligence, fundamentally changing how 
businesses engage with customers. These computer programs simulate human 
conversation, primarily online, by understanding and responding in natural language. This 
capability allows chatbots to function effectively across various fields, from customer 
support to personal assistance, making them a crucial asset in numerous applications. 
(Tatwadarshi P. Nagarhalli et al. (2020)) 

The evolution of chatbots dates to the 1960s, with the creation of ELIZA, a primitive chatbot 
developed at MIT that could mimic the language patterns of a psychotherapist. Since then, 
technology has grown exponentially, powered by advancements in NLP and machine 
learning. Modern chatbots can learn from interactions, improving their understanding over 
time to provide more accurate responses. 

Chatbots serve multiple purposes across different industries. In customer service, they offer 
24/7 assistance, handling inquiries and resolving issues promptly (for example 
chatbot.com). In e-commerce, chatbots enhance the shopping experience by offering 
personalized recommendations and support (for example maisieai.com). In healthcare, they 
can triage symptoms and provide health-related information (for example 
https://www.ibm.com/products/watsonx-assistant/healthcare). The applications are 
virtually limitless, underscoring the versatility of chatbots. (Tatwadarshi P. Nagarhalli et al. 
(2020)) 

Implementing chatbots offers numerous benefits. They can significantly reduce operational 
costs by automating repetitive tasks and handling multiple inquiries simultaneously. 
Chatbots also improve customer satisfaction through immediate responses and round-the-
clock availability. Moreover, they gather valuable data from interactions, providing insights 
into customer behavior and preferences. (Tatwadarshi P. Nagarhalli et al. (2020)) 

However, developing effective chatbots requires careful consideration of several factors. 
The chatbot's design should focus on its purpose and the needs of its users, ensuring 
seamless and intuitive interaction. It must also possess a robust understanding of natural 
language to accurately interpret and respond to queries. Privacy and security are paramount, 
as chatbots often handle sensitive information. 

In conclusion, chatbots represent a leap forward in human-computer interaction, offering 
efficient, scalable, and personalized communication. As AI technology continues to 
advance, chatbots are expected to become even more sophisticated, further transforming 
our digital landscape and the way we interact with machines. 

 



11 
 

2.3 Challenges of Employment Searching 
 

The landscape of job searching has evolved, becoming a complex task filled with an overflow 
of information included in each job advert that can confuse even the most determined 
applicants. The challenges during the job search process affect both job seekers and 
employers. 

The digital age has made the job market more accessible, but this convenience comes with 
a downside, information overload. Job boards, company websites, and social media 
channels are filled with listings, making it increasingly difficult for seekers to go through and 
identify opportunities that match their skills. This huge amount of information often leads to 
decisional problems. (Peter Gordon Roetzel (2019)) 

A persistent challenge in the job market is the mismatch between the skills job seekers 
possess and those demanded by employers. Rapid advancements in technology and 
changing industry trends have exacerbated this gap. Many find themselves caught in a loop, 
where they cannot get the job without the skills, but they cannot acquire the skills without 
access to the job. This mismatch not only hinders individual career progression but also 
impacts businesses struggling to find talent with the right competencies.  

For certain positions, especially in high-demanding industries or roles, the competition is 
overwhelming. The volume of applications for a single opening can be in the hundreds or 
thousands, making it a daunting task for any one individual to stand out. This high level of 
competition necessitates not just qualifications and experience but also a unique set of 
skills in personal branding and networking to gain an edge. 

Beyond the logistical and strategic aspects of job searching, the emotional impact cannot 
be overlooked. The process can be a rollercoaster of hope and despair, with each rejection 
or ignored application chipping away at one’s self-esteem. The psychological toll of 
prolonged job searching can lead to stress, anxiety, and depression, affecting overall well-
being. 

In response to these challenges, it's crucial for job seekers to adopt an adaptive approach to 
job searching, leveraging technology, expanding networks, and continuously upskilling. For 
employers, recognizing these problems and implementing more supportive recruitment 
processes can help bridge the gap between talent and opportunity. As the job market 
continues to evolve, understanding and addressing these challenges is vital for creating a 
more efficient and equitable employment landscape. 

This thesis introduces a chatbot designed to bridge the gap between software engineers and 
relevant job opportunities, directly addressing several challenges in employment searching. 
It streamlines the job search process by automating the matching of candidate profiles with 
job listings, saving job seekers from the time-consuming task of sifting through countless 



12 
 

irrelevant job posts. This targeted approach also benefits employers by connecting them 
with candidates who are well-suited for their open positions, potentially reducing the time 
and resources spent on the recruitment process. 

 

2.4 Limitations of Current Job Matching Systems 
 

The recent escalation in the development of artificial intelligence made it possible to create AI 
tools that help, personalize, and boost the process of finding the best suiting jobs for the seekers. 
Sush tools are “Simplify” (https://simplify.jobs/), “Sonara.ai” (https://www.sonara.ai/), 
“Careerflow.ai” (https://www.careerflow.ai/) and “Dream.jobs” (https://dream.jobs/). 

      

Sonara.ai and Careerflow.ai work by analyzing user’s CV for years of experience and hard 
skills and based on that information filters the job listings that are posted on the side of the 
employer. Simplify.ai uses a chatbot to collect information such as hard skills, location, 
salary, and preferred company. This system has a lot of companies uploading their job 
listings directly to them.  Dream.jobs also has a small number of job listings, but the systems 
CV analyzer takes into consideration hard skills and soft skills.  

This thesis implementation of job finder analyzes the users CV and GitHub for hard skills and 
soft skills and then with the use of chatbot takes users information for desired location, 
company, type of employment (full time, part time), their years of experience and any extra 
hard skills and soft skills the user want to add. Then using the collected information filters 
the job listings that are collected and analyzed from Glassdoor.com and Ergodotisi.com. 

 Sonara.ai Simplify.ai Careerflow.ai Dream.jobs Thesis Imp. 
Chatbot 
Functionality 

No Yes No No Yes 

Analyze 
Resume/CV 

Yes No Yes Yes Yes 

Analyze 
GitHub 

No No No No Yes 

Huge variety 
of jobs in 
database 

No Yes No No Yes 

Takes in 
consideration 
hard skills 

Yes Yes Yes Yes Yes 

Takes in 
consideration 
soft skills 

No No No Yes Yes 

https://simplify.jobs/
https://www.sonara.ai/
https://www.careerflow.ai/
https://dream.jobs/


13 
 

2.5 Importance of Personalized Job Recommendations 
 

The essence of personalized job recommendations lies in their ability to significantly 
increase employment chances and simplify the job-seeking process. By delivering tailored 
job suggestions that align closely with an individual's skills, experience, and career 
aspirations, these systems transform the often-daunting task of job hunting into a more 
manageable and targeted endeavor. 

Personalized recommendations understand the exact needs of job seekers, from preferred 
job locations and desired company cultures to specific role requirements. This 
understanding ensures that candidates are matched with opportunities that not just fit their 
qualifications but also their personal preferences and career goals. Consequently, job 
seekers find themselves applying to positions where they have a higher likelihood of being 
hired and satisfied in the long term. 

For employers, the precision of personalized job recommendations means attracting 
candidates who are not only qualified but also genuinely interested in what the company has 
to offer. This alignment between a candidate's aspirations and the company's needs leads 
to more successful hires and, ultimately, a more productive and engaged workforce. 

In essence, personalized job recommendations serve as a bridge between the job market's 
complexity and an individual's unique career path. They filter out the noise of irrelevant job 
postings, allowing job seekers to focus their efforts on viable opportunities. The result is a 
job search process that is not only less time-consuming but also more effective, increasing 
the overall chances of employment and making the path to the next career step clearer and 
more accessible. (Qing Zhou et al. (2019)) 

 

2.6 Principles of Human-Computer Interaction (HCI) and their Importance 
 

Human-Computer Interaction (HCI) principles are essential to creating interfaces that 
bridge the gap between complex computational systems and their human users. These 
principles focus on optimizing the design of interactive systems to ensure they are 
accessible, intuitive, and efficient. This emphasis on user-centered design is crucial 
because it enhances the usability of technology, making it more adaptable to varying human 
needs and preferences. As technology becomes increasingly integrated into everyday life, 
from smartphones to complex enterprise systems, the importance of HCI principles cannot 
be overstated. 

Adhering to HCI principles can significantly improve user satisfaction and productivity. By 
designing systems that are easy to navigate and understand, users can complete tasks more 



14 
 

quickly and with less frustration. This is particularly important in environments where 
efficiency and accuracy are paramount, such as in medical or financial software. HCI-driven 
designs help minimize errors by aligning with natural human tendencies and cognitive 
processes, reducing the learning curve, and helping prevent costly mistakes that could arise 
from poorly designed interfaces. 

Furthermore, HCI principles promote inclusivity by ensuring that digital products are usable 
by people from diverse backgrounds, including those with disabilities. This inclusiveness 
extends the reach of technology, opening opportunities for more people to participate in 
digital and knowledge-based activities. For example, designing websites that comply with 
accessibility guidelines means that users with visual impairments can use screen readers to 
navigate these sites effectively. 

In the context of global software deployment, HCI principles are instrumental in 
accommodating cultural differences that influence how users interact with technology. For 
instance, color schemes, symbols, and layout preferences can vary significantly between 
cultures; hence, understanding and integrating these elements into the design process can 
lead to higher acceptance rates in different regions. 

In summary, Human-Computer Interaction principles are not just guidelines but 
foundational elements that ensure technology serves its primary purpose: to augment 
human abilities and enhance day-to-day life. As we continue to push the boundaries of what 
technology can achieve, grounding innovation in HCI principles ensures that these 
advancements remain humane, considerate, and ultimately more effective. This focus on 
the human aspect of technology interaction is what will continue to drive user engagement 
and satisfaction in an increasingly digital future. (Shneiderman, B., Plaisant, C., Cohen, M., 
Jacobs, S., & Elmqvist, N. (2016)) 

 

 2.7 Research Motivation 
 

The motivation behind this research stems from the recognition of several key challenges 
within the current job market, particularly for software engineers and IT professionals. The 
rapidly evolving tech industry demands a unique approach to job matching that goes beyond 
traditional methods. This thesis is driven by a desire to address these challenges through 
innovative solutions, aiming to enhance the job search and recruitment process in several 
ways: 

There's a noticeable disconnect in the current job market, where employers struggle to find 
candidates with the right mix of skills and experiences, while job seekers often find it 
challenging to locate opportunities that match their specific skill set and career aspirations. 



15 
 

This research aims to create a platform that efficiently matches job seekers with relevant 
opportunities based on a detailed analysis of their skills and preferences. 

The utilization of AI and machine learning technologies presents an opportunity to 
significantly improve the accuracy and relevance of job recommendations. By analyzing vast 
amounts of data, including CVs, GitHub activities, and job listings, this thesis seeks to 
develop a system that can make highly personalized job recommendations, thereby 
increasing the chances of successful employment. 

Recognizing the importance of user experience in job search platforms, this research 
introduces a chatbot as a friendly and accessible interface. The chatbot aims to gather user 
information in a conversational manner, making the process of inputting preferences and 
skills more engaging and less tedious. 

Ultimately, this thesis is motivated by the vision of a more efficient and effective job market, 
where the time and effort required to match the right candidates with the right opportunities 
are minimized. By improving the job matching process, the research aims to contribute to 
higher employment rates, job satisfaction, and overall productivity in the tech industry. 

Through this research, the goal is to explore and validate the potential of AI-driven platforms 
to revolutionize the way job matching is conducted, offering tangible benefits to both job 
seekers and employers in the tech sector. 

 

 

 

 

 
 



16 
 

CHAPTER 3 Technologies 
3.1 Data Collection 

3.1.1 Selenium 
 

Selenium is an open-source tool primarily utilized for automating web browser tasks. It 
provides a powerful interface for developing automated tests by simulating user interactions 
in web browsers. In the context of this thesis, Selenium's role was to automate the browsing 
process to collect job listing data from various online platforms. By using Selenium with 
Python, made it possible to navigate through the job advertising websites and detect, 
collect, and analyze the data collected.  (https://www.selenium.dev/) 

This technique was preferred as the access to API, which is offered by the job advertising 
websites have many limitations or are non-existent. In addition, the widespread use of 
security services and firewalls that are integrated into the websites will block any CRUD 
request sent to them, making the data collection impossible. 

3.1.2 BeatifulSoup4 
 

BeautifulSoup4 is a Python library designed to simplify the process of parsing HTML and XML 
documents. It provides iterating, searching, and modifying the parse tree, making it ideal for 
web scraping tasks. In the context of this thesis, BeautifulSoup4 was used alongside 
Selenium to extract specific content from web pages after they were loaded and interacted 
with by Selenium. While Selenium automated the navigation and interaction with job listing 
websites, BeautifulSoup4 handled the parsing and extraction of structured data from the 
HTML content of the pages. This combination allowed for efficient data extraction from 
complex web pages, where job details are embedded within nested HTML elements. 
BeautifulSoup4's ability to navigate the DOM tree with ease and extract attributes, text, and 
other data expediently played a critical role in constructing a comprehensive dataset for the 
job matching system. This capability enhanced the accuracy and efficiency of data 
collection, enabling the thesis project to analyze and match job listings more effectively. 
(https://pypi.org/project/beautifulsoup4/) 

 

3.1.3 Lightcast 
 

Lightcast plays a pivotal role in providing labor market analytics, offering detailed insights 
that are crucial for understanding workforce trends and employment dynamics. For the 

https://www.selenium.dev/
https://pypi.org/project/beautifulsoup4/


17 
 

thesis project, utilizing Lightcast was instrumental in gathering comprehensive data on job 
postings, industry trends, salary benchmarks, and skill demands across various regions and 
sectors. This extensive dataset enabled the chatbot developed in the thesis to offer more 
accurate and contextually relevant job recommendations. 

Integrating Lightcast's analytics into the chatbot's functionality allowed for a dynamic 
adjustment of the job matching process according to real-time labor market conditions. By 
leveraging updated information on employer needs and job market fluctuations, the system 
could better tailor its recommendations to match the qualifications and preferences of job 
seekers with the specific requirements of available positions. This not only enhanced the 
precision of the job matches but also improved user satisfaction by connecting them with 
opportunities that closely aligned with their career goals and skills. 

Furthermore, the use of Lightcast in the thesis underscores the importance of data-driven 
decision-making in the development of employment technologies. The ability to access 
detailed and actionable labor market data ensured that the job recommendations were not 
only based on theoretical criteria but were grounded in the practical realities of the job 
market. Lightcast services were preferred over manual skill taxonomy, as Lightcast updates 
their data constantly, ensuring that any new hard skill or technology that emerges, is in the 
database. (https://lightcast.io/) 

3.2 Backend 

3.2.1 MongoDB 
 

MongoDB is a robust NoSQL database renowned for its excellent performance, high 
availability, and effortless scalability. It uses a document-oriented data model, which is a 
flexible, JSON-like format, allowing for varied data structures and rapid development. In the 
context of the thesis project, MongoDB serves as the backbone for data storage, managing 
both structured and unstructured data efficiently. This database is particularly well-suited 
for projects like the job matching chatbot, where diverse datasets, such as user profiles, job 
listings, and interaction logs, need to be handled seamlessly. 

Using MongoDB in the thesis allowed for dynamic queries and real-time data updates, which 
are essential for maintaining the responsiveness and accuracy of the chatbot. Its schema-
less nature enabled quick iterations during development phases, as changes in the data 
model could be made without significant downtime or restructuring. Moreover, MongoDB's 
robust indexing capabilities ensure that searches across large datasets are fast and 
efficient, enhancing the chatbot’s ability to match job seekers with relevant opportunities 
swiftly. Another significant advantage of MongoDB is its scalability, which is vital for handling 
the potentially large and growing datasets involved in job matching systems.  

https://lightcast.io/


18 
 

Overall, MongoDB's flexible and feature-rich platform supported a more agile development 
process and provided the performance necessary to handle complex queries and large 
volumes of data, crucial for the effective functioning of the AI-driven job matching chatbot 
in the thesis. 

A NoSQL database was preferred from a SQL database because the optimization for quick 
data retrieval that a NoSQL database offers is crucial to eliminate long waiting times for the 
user until they get their results back. Also, the better scalability options that are available 
make it possible to handle more users and data volume. (https://www.mongodb.com/) 

 

3.2.2 Docker 
 

Docker is a powerful platform that simplifies the process of developing, shipping, and 
running applications by using containerization technology. Containers enable developers to 
encapsulate an application along with all its necessary dependencies into a standardized 
unit. This ensures consistent functionality across different computing environments. This is 
particularly beneficial in software development where differences in operating 
environments can lead to bugs and conflicts, thereby reducing these "it works on my 
machine" scenarios. 

Docker containers are efficient and lightweight because they share the host operating 
system's kernel and do not need a separate operating system for each application. This leads 
to greater server efficiency and lowers both server and licensing costs. For developers, 
Docker offers an easy and predictable way to create and manage isolated environments for 
their applications. Containers are very portable, which means they can run consistently 
across any desktop, traditional IT, or cloud infrastructure. 

In the context of deploying a software system, such as the thesis project, Docker can be 
instrumental. It allows developers to create a container with the project's application and all 
necessary configurations and dependencies. This setup simplifies the process of moving the 
application between different stages of development and production environments and 
ensures that all team members are working in the same environment. This consistency 
eliminates time spent setting up environments and troubleshooting environment-specific 
issues, allowing the team to focus more on development. 

Moreover, Docker's ability to quickly start and stop containers makes it ideal for a 
development environment that requires setting up and tearing down applications 
repeatedly. Docker's version control system for containers, with the Docker Hub, enables 
easy version updates and quick rollbacks to earlier versions if necessary. This capability is 
critical for continuous integration and continuous deployment (CI/CD) practices, making 
Docker a valuable tool for developers aiming to improve productivity and streamline 

https://www.mongodb.com/


19 
 

operations in their software development lifecycle. For the thesis project, using Docker 
means a more streamlined deployment and more efficient handling of application 
development and testing, ultimately leading to a more robust and reliable final product. 
(https://www.docker.com/) 

 

3.2.3 Flask API 
 

Flask is a lightweight yet robust Python web framework, well-known for its ease of use and 
flexible design. It allows developers to build scalable web applications quickly and with 
minimal setup. At its core, Flask handles web requests and responses, forming the 
backbone of any web application. It provides the necessary tools to create routes, which are 
Python functions that map to specific HTTP requests. By design, Flask includes only the 
essentials to get a web application running, offering extensions for additional functionalities 
like form validation, user authentication, and database integration. 

For developers working on web APIs, Flask becomes particularly useful. Flask simplifies the 
creation of RESTful APIs—services that allow different software systems to communicate 
over the internet by using standard HTTP methods such as GET, POST, PUT, and DELETE. 
Flask's ability to seamlessly handle these methods makes it an ideal choice for backend 
development, where creating efficient, secure, and scalable APIs is crucial. Developers can 
leverage Flask to serialize data, handle requests, and format responses effectively, ensuring 
that the frontend of an application can communicate with the backend without issues. 

Cross-Origin Resource Sharing (CORS) is a crucial security feature that enables or restricts 
web pages from making requests to a domain other than the one that served the initial web 
page. This mechanism is essential in modern web development, particularly when building 
APIs with Flask, to prevent unauthorized interactions between web resources and services. 

In the context of a Flask API, implementing CORS is vital, especially if your API is intended to 
be accessed by client-side applications hosted on different domains. Without CORS, 
browsers block frontend JavaScript code from making requests to a different domain than 
the one that served the web application, adhering to the same-origin policy. This policy is a 
critical security measure that prevents malicious scripts on one page from obtaining access 
to sensitive data on another web page through that page's API. 

To handle CORS in Flask, developers typically use the flask-cors library, which provides a 
simple mechanism to allow CORS requests. This library can be easily integrated into any 
Flask application. By using decorators or global settings, developers can specify which 
domains are allowed to access the API, which HTTP methods are permitted, and whether 
credentials, such as cookies or authentication headers, are allowed to be shared across 
origins. 

https://www.docker.com/


20 
 

Moreover, proper configuration of CORS in a Flask API is not just about security but also 
about accessibility. By enabling specific CORS policies, developers can ensure their APIs are 
accessible to other services and applications as intended without exposing them to security 
risks. This functionality is particularly important for APIs intended for wide consumption 
across various services, enabling a controlled and secure method of resource interaction 
across the internet. 

In summary, CORS is an indispensable feature for securing Flask APIs and managing how 
resources are accessed and shared across different domains. Its implementation is a best 
practice that aligns with the overarching goals of modern web security and interoperability, 
ensuring that APIs deliver their intended functionality safely and effectively to a diverse set 
of client applications. 

In the context of a thesis project like building a job matching system, Flask can manage the 
server-side logic and database interactions efficiently. It can serve as the interface for 
handling requests from the front end, processing those requests (e.g., fetching job listings, 
managing user profiles), and sending appropriate responses back to the client side. Flask's 
compatibility with various database systems and its lightweight nature ensure that the 
application remains responsive and efficient, even as it scales. Moreover, Flask supports the 
development of secure APIs with extensions that can help manage user authentication and 
data security, essential for maintaining user trust and protecting sensitive information in a 
job matching platform. Thus, using Flask in such a thesis not only facilitates rapid 
development and testing but also ensures that the application is robust and ready for real-
world deployment. (https://flask.palletsprojects.com/en/latest/api/) 

 

3.2.4 JWT 
 

JSON Web Tokens (JWT) are defined by the open standard RFC 7519 as a compact and self-
contained method for securely transferring information between parties in the form of a 
JSON object. This data is trustworthy and verifiable due to its digital signature. JWTs can be 
secured using a secret with the HMAC algorithm, or through a public/private key pair 
employing RSA or ECDSA. They are particularly useful in authentication and authorization 
processes. 

The structure of a JWT makes it an ideal choice for web applications. It consists of three 
parts: the header, the payload, and the signature. The header typically contains the type of 
token (JWT) and the signing algorithm. The payload contains the claims, which are 
statements about an entity (typically, the user) and additional metadata. These claims can 
include data such as user ID, roles, and other attributes relevant to the user session. The 

https://flask.palletsprojects.com/en/latest/api/


21 
 

signature ensures that the token hasn't been altered after it was issued and can be verified 
using the signing key. 

In the context of web development and APIs, JWTs facilitate the creation of stateless, 
scalable authentication mechanisms. When a user logs in, the server generates a token and 
sends it to the client, which then includes the token in the HTTP header of subsequent web 
requests. This simplifies the server design because it doesn't need to maintain a session 
store; each request is self-contained and contains all the necessary data to be 
authenticated and authorized. This is particularly beneficial in distributed systems were 
maintaining session state across servers can be challenging. 

Using JWT in a thesis project that involves building a job matching system allows for secure 
handling of user sessions across different components of the system. It supports the 
scalability of the application by enabling it to handle requests efficiently across multiple 
servers without session synchronization issues. JWT also adds a layer of security by ensuring 
that user credentials are not repeatedly sent over the network, reducing the risk of 
interception. Overall, incorporating JWT helps in building a secure, efficient, and modern 
web application that aligns with current best practices in software development. 
(https://jwt.io/) 

 

3.2.5 RASA 
 

RASA is an open-source framework designed specifically for building conversational AI 
applications, such as chatbots and voice assistants. It provides tools and components to 
handle both the understanding of user input (Natural Language Understanding, NLU) and the 
decisions of what to do next (Dialogue Management, DM). What sets RASA apart from other 
conversational AI platforms is its flexibility and capability to be customized extensively to fit 
complex, specific, or unusual requirements. It supports sophisticated conversational 
capabilities using machine learning models that can be trained on your data, allowing for 
highly personalized interactions. 

RASA consists of two main components: RASA NLU and RASA Core. RASA NLU is 
responsible for understanding user messages, including intent recognition and entity 
extraction. RASA Core, on the other hand, manages the flow of the conversation, deciding 
on the next action based on the current state of the dialogue and its training data. The 
combination of these two components enables developers to create more dynamic and 
context-aware conversational agents that can maintain meaningful and coherent 
interactions over extended dialogues. 

The framework supports advanced features such as Custom Actions (where the bot can 
execute code to perform operations like querying a database or calling an API), slot filling (for 

https://jwt.io/


22 
 

gathering information from the user across multiple turns of conversation), and form actions 
(for managing complex data entry tasks). Moreover, RASA is highly scalable and can be 
deployed in any environment, from a small-scale local setup to a large-scale cloud-based 
architecture, making it suitable for both development and production use in real-world 
applications. 

Incorporating RASA into a thesis project that focuses on building a job matching chatbot 
allows for the exploitation of these advanced conversational features. The chatbot can not 
only respond to user queries but also drive the conversation towards obtaining necessary 
information for job matching, such as skills, preferences, and previous experiences, using 
an engaging and interactive dialogue system. RASA's ability to learn from each interaction 
and adapt to users' individual communication styles and preferences enhances the 
effectiveness and user satisfaction of the chatbot, making it a powerful tool in the 
deployment of interactive AI systems. (https://rasa.com/) 

 

3.3 Frontend 

3.3.1 React 
 

React is a robust JavaScript library that excels in creating user interfaces, especially 
renowned for effectively building single-page applications (SPAs). It was developed by Meta 
and has quickly become a favorite among front-end developers due to its component-based 
architecture. This design allows developers to create encapsulated components that handle 
their own state, which can then be combined to form complex interfaces. Each component 
maintains its state and properties, simplifying data management across the application. 

One of the key features of React is its virtual DOM. Instead of directly manipulating the 
browser's DOM, React constructs a virtual DOM in memory. Whenever a component’s state 
changes, React updates this virtual DOM first. It then employs a diffing algorithm to calculate 
the minimal updates needed for the real DOM, reducing direct DOM manipulation, and 
enhancing both performance and user experience. 

React also benefits from substantial community support and a strong ecosystem, offering 
numerous tools and extensions like React Router for navigating SPAs. Additionally, React's 
compatibility with various backend technologies and frameworks makes it a versatile option 
for both front-end and full-stack development. 

Using React in a thesis project, especially one that involves building complex, interactive 
user interfaces like a job finder chatbot, provides numerous benefits. React’s modular 
structure ensures that the user interface components are reusable and maintainable, which 
is crucial for scaling the project. Moreover, its efficient update mechanism improves the 

https://rasa.com/


23 
 

responsiveness and fluidity of the application, enhancing user engagement and satisfaction. 
This aligns perfectly with the needs of modern web applications that demand high 
interactivity and dynamic content management without sacrificing performance. 
(https://react.dev/) 

 

3.4 Hosting 
 

3.4.1 Vercel 
 

Vercel is a sophisticated cloud platform engineered to enhance the development, 
deployment, and scaling of contemporary web projects, with a focus on frameworks like 
Next.js, React, and Angular. It streamlines the workflow for developers from the initial stages 
of development through to production, providing a frictionless experience. 

The platform automates the build and deployment processes each time new code is pushed 
to a linked Git repository, supporting platforms like GitHub, GitLab, and Bitbucket. This 
feature facilitates easier collaboration on projects. Vercel ensures operational reliability with 
features such as instant rollbacks to previous deployments, which allow for swift recovery 
from deployment issues. 

A key feature of Vercel is its global Content Delivery Network (CDN), which delivers static 
assets and dynamic content from locations near the user, drastically improving load times. 
The platform enhances security with automatic SSL certificates, which secure connections 
seamlessly. 

Moreover, Vercel includes advanced logging capabilities, which are crucial for debugging 
and monitoring the health of applications. Developers can access detailed logs that track 
everything from server errors to API response times, helping to identify and resolve issues 
quickly. 

Integrated directly into the dashboard, Vercel's analytics and performance monitoring tools 
provide developers with critical insights into their applications’ performance. This helps in 
making data-driven optimizations to improve efficiency and user experience. These 
comprehensive features make Vercel an attractive option for developers aiming to rapidly 
deploy and efficiently manage high-performance web applications. (https://vercel.com/) 

 

 

https://react.dev/
https://vercel.com/


24 
 

3.4.2 Ngrok 
 

Ngrok is a versatile tool that allows developers to expose local servers behind NATs and 
firewalls to the public internet over secure tunnels. This is particularly useful for testing and 
developing web applications that need to interact with external services and APIs. 

Using Ngrok, developers can easily create a secure tunnel to a local web server by running it 
on the command line. This assigns a public URL to your local server, which can be accessed 
from anywhere over the internet. The process involves forwarding traffic from an Ngrok 
domain to your local development environment. For example, if you are running a local API 
on port 5000, Ngrok can generate a public HTTPS URL that forwards to this local server, 
allowing remote clients and services to interact with your API as if it were hosted on a live 
server. 

This capability is incredibly useful for API development and testing. Developers can share 
the URL generated by Ngrok with external stakeholders (like frontend teams or mobile app 
developers), who can then interact with the backend API without any deployment. It also 
facilitates real-time debugging and testing of webhooks and other services that require 
public exposure. 

Additionally, Ngrok provides detailed introspection capabilities. Developers can inspect all 
HTTP traffic passing through the tunnel, view the request and response data, replay requests 
for testing, and debug the process. This makes it an invaluable tool for API development 
workflows, where understanding and logging the HTTP traffic is crucial for troubleshooting 
and optimization. 

Overall, Ngrok is a powerful tool that simplifies the process of connecting local development 
servers to the public internet, providing a practical, real-time solution for testing, and 
developing APIs in a real-world environment without the need for deployment. 
(https://ngrok.com/) 

 

 

 

 

 

 

 

https://ngrok.com/


25 
 

CHAPTER 4 Design and Implementation 
4.1 Introduction 
 

 

Figure 1 

Thesis Implementation Diagram 

This thesis encompasses four interconnected components essential for the operation of a 
job-finding application. The "React Front End" serves as the graphical user interface, 
facilitating user interaction. The "Flask API" functions as a CRUD (Create, Read, Update, 
Delete) API, ensuring smooth data operations. The "Rasa Custom Actions" and "Rasa 
Core/NLU" segments form the backbone of the Rasa chatbot model, enabling sophisticated 
dialogue management and natural language understanding. The "Job Data Scraper" is 
tasked with scraping and analyzing job advertisements from websites like "Glassdoor.com" 
and "Ergodotisi.com", and it stores this data in the "DB" MongoDB database. 

To maintain stateless operations, both the Flask API and Rasa Custom Actions are directly 
connected to the database for necessary user data storage. The front end interacts with both 
Rasa and the database through the Flask API, which is secured with JWT authentication. To 
ensure the database always has up-to-date job listings, the Job Data Scraper has the 



26 
 

potential to automatically run weekly, collecting, analyzing, and storing the latest job 
advertisement data for access by the other components. 

 

4.2 Implementation of Data Collection 
 

The Data Collection component of this project utilizes Python, Selenium, BeautifulSoup4, 
and the Lightcast API to effectively scrape job listings from websites. To initiate the scraper, 
run python data_extractor_manager.py from the command prompt. This command triggers 
the import of two specific modules, glassdor_scrapper and ergodotisi_scrapper, which are 
tailored for scraping Glassdoor.com and Ergodotisi.com respectively. 

The selection of Glassdoor and Ergodotisi as primary sources for the data collection was 
influenced by their structural similarities and extensive listings. Both platforms present job 
advertisements in a concise list format, with each listing linked to a separate URL detailing 
the full job description. This consistent structure not only facilitated the reuse of code but 
also expedited the development process. Glassdoor, being one of the leading job 
advertisement websites in the United States, and Ergodotisi, holding a similar standing in 
Cyprus, were ideal for compiling a comprehensive and inclusive dataset. 

Other platforms such as LinkedIn and Monster were considered; however, they presented 
specific challenges that influenced their exclusion. LinkedIn features a sophisticated search 
engine and complex website structure, which posed significant challenges in scraper 
development. Conversely, Monster was found to have a limited number of listings for 
software engineering positions, which would not contribute to a robust dataset. Thus, the 
choice of Glassdoor and Ergodotisi was deemed most suitable for the objectives of this 
study. 

Each scraper is designed with three main parts: url_scrapper, description_scrapper, and 
lightcast_skill_extractor. Both target websites feature a similar structure, displaying job 
advertisement previews on the main page along with URLs. When a user clicks on a preview, 
it directs them to a page containing comprehensive job details including the company, 
location, and job description. 

The url_scrapper is multithreaded to enhance performance. Each thread corresponds to a 
specific state, navigating through the website's main page using Selenium to apply location 
filters. BeautifulSoup4 is then used to extract the URLs of job listings, which are 
subsequently stored in a CSV file alongside their respective locations. 

Following this, the description_scrapper—also multithreaded—operates by launching a 
Selenium WebDriver for each URL gathered previously. It uses BeautifulSoup4 to collect 



27 
 

details such as the company, employment type, years of experience, education level, and 
job description. These details are then saved in another CSV file. 

Finally, the lightcast_skill_extractor utilizes the Lightcast API by sending the collected job 
descriptions to https://emsiservices.com/skills/versions/latest/extract. This API returns the 
relevant soft and hard skills found within each description. All the scraped data is compiled 
into a JSON file according to a predefined schema (Figure 2) and then stored in a MongoDB 
database. 

This streamlined process ensures efficient and organized data collection, suitable for 
subsequent analysis and application use. 

 

Figure 2 

Job listings JSON schema 

 

 

4.3 Implementation of Backend 
 

4.3.1 Docker and MongoDB 
 

Docker is utilized to manage two MongoDB databases: one dedicated to job data and the 
other for user data. To establish these databases, containers are configured through 
separate docker-compose.yml files, situated in the docker/jobs and docker/users 
directories respectively. Each container is set to operate on unique ports to ensure they are 
accessible independently; the job data container uses port 27017, while the user data 
container uses port 27018. Furthermore, each database is associated with distinct Docker 



28 
 

volumes, which isolates their stored data and prevents any overlap. This setup not only 
enhances data management by segregating user and job information but also optimizes 
performance by allowing the containers to run concurrently without interference. To initiate 
the containers, the command docker-compose up -d must be executed within each 
respective directory, effectively bringing up the MongoDB instances as configured. This 
approach provides a robust and scalable infrastructure for managing distinct datasets 
efficiently in a controlled environment. The docker-compose.yml for each database can be 
seen at Appendix “Job Docker” and “User Docker”. 

 

4.3.2 API 
 

The system's API, developed using the Flask framework in Python, is located within the 
/mongodb-api/mongodb_api.py file. The API is organized into endpoints that serve two main 
purposes: interfacing with the frontend and facilitating backend interactions with the RASA 
chatbot. 

For frontend interactions, the API provides several key endpoints: 

• /login: Manages user authentication and generates JWT tokens. 
• /register: Handles user registration and records user data in the database using a 

predefined JSON schema. 
• /api/messages: Enables message transmission to the chatbot. 
• /get-username: Retrieves the user's username using a provided JWT token. 
• /save-chat: Archives chat sessions upon their completion. 
• /api/chat/<chatId>: Retrieves specific chat details by chat ID. 
• /api/change-password and /api/change-username: Allow users to update their 

password and username, respectively. 
• /info_github and /get_github: These endpoints interact with the user’s GitHub 

account to fetch programming languages and analyze data. 
• /reset_rasa: Resets user data related to a specific chat session. 
• /analyze-text: Analyzes a user's CV to extract soft and hard skills. 
• /get-cv-soft-skills and /get-cv-hard-skills: Return the soft and hard skills identified in 

the user's CV, respectively. 
• /get-github-location and /set_github_location: Manage the extraction and storage of 

the user’s location based on their GitHub profile. 

For Rasa interactions, the API provides: 

• /actions/<user_id>/<action>: Stores user’s next action path in chatbot 
• /info_location/<user_id>: Stores user’s preferred location that provided to chatbot 



29 
 

• /info_job_type/<user_id>: Stores user's preferred job type that provided to chatbot 
• /info_company/<user_id>: Stores user's preferred job type that provided to chatbot 
• /info_years_of_exp /<user_id>: Stores user's years of experience that provided to 

chatbot 
• /info_education/<user_id>: Stores user's education that provided to chatbot 
• /info_soft_skills/<user_id>: Stores user's soft skills that provided to chatbot 
• /info_hard_skills/<user_id>: Stores user's hard skills that provided to chatbot 
• /get_rasa/<user_id>: Returns user’s information that collected from chatbot 
• /get_action/<user_id>: Returns user's next action path in chatbot 
• /get_results: Returns job listings that have close similarity to the user’s information 

given in chatbot. (Appendix) 
 

These endpoints are essential for the dynamic functionality of the system, ensuring 
seamless user interactions and effective data management. They support a variety of 
operations from user management to detailed personal data handling, making the system 
robust and user-friendly. 

 

 

Figure 3 

User’s JSON schema 



30 
 

4.3.3 RASA 
 

To implement RASA Core/NLU, adjustments were made to several key configuration files: 
endpoint.yml, config.yml, domain.yml, nlu.yml, and stories.yml. Each of these files serves a 
specific purpose in the setup and functionality of the RASA framework. The endpoint.yml 
must include the custom actions endpoint of Rasa (Appendix Rasa Action Endpoint). The 
config.yml (Appendix Rasa Config) which contains pipeline with a WhitespaceTokenizer, 
splits text into tokens based on whitespace, setting the stage for further text processing. This 
is followed by the LexicalSyntacticFeaturizer, which enriches tokens with lexical and 
syntactic features that are helpful for understanding context and grammatical relationships. 

The CountVectorsFeaturizer appears twice: the first instance operates at the word level, 
while the second is configured to analyze character n-grams from 1 to 4 characters long 
within word boundaries (char_wb), enhancing the model's ability to recognize patterns 
within words. 

The DIETClassifier is a crucial component, designed for dual intent and entity recognition 
with the ability to classify both simultaneously. It's configured for a substantial 200 epochs, 
indicating a deep learning phase to accurately predict intents and entities in user messages. 

The EntitySynonymMapper helps in mapping different phrasings of the same entity to a 
single canonical form, thereby standardizing entity values. The RegexEntityExtractor utilizes 
regular expressions to identify entity values from text, benefiting from lookup tables and 
being case insensitive to enhance flexibility. 

The ResponseSelector is tailored for selecting appropriate responses based on the learned 
patterns, trained for 100 epochs to optimize decision-making processes. 

Under the policies section, the MemoizationPolicy ensures the model remembers specific 
stories during training, while the TEDPolicy (Transformer Embedding Dialogue) drives the 
decision-making in dialogues, set with a maximum history of 15 and trained over 200 epochs 
to capture complex conversational contexts. 

This structured approach, combining tokenization, feature extraction, and sophisticated 
classification and decision-making mechanisms, empowers the application to handle 
intricate user interactions effectively, recognizing intents and extracting entities with high 
precision. 

The nlu.yml file contains lookup tables with expected words that the user can give and 
examples of answers that the user might give using the lookup tables words. This file is used 
to create natural language model which the chatbot is based on recognizing the user’s 
answers and decide the chatbot story flow. 



31 
 

The domain.yml contains intents and entities names that exist in nlu.yml, the responses that 
the chatbot can give on each user’s input (multiple responses can be added and the chatbot 
will choose randomly one each time) and the actions names that exist in custom actions. 

Stories.yml is a diagram of the chat flow and how the chatbot must proceed after each 
question is answered and what information should expect from the user to give. Also, 
custom actions can be accessed from stories.yml. The information collected from chatbot 
are location, job type, preferred company, years of experience, education, hard skills, and 
soft skills. 

To effectively implement Rasa Custom Actions, the actions.py file was refined to act as a 
stateless API, a critical feature that supports multiple concurrent user interactions. This file 
is instrumental in managing the conversation flow to ensure that user inputs do not disrupt 
the progression of the dialogue. It functions by preserving the current phase of a user's 
interaction within the story flow. During each interaction, actions.py evaluates the entities 
detected by Rasa Core to determine if they adequately address the conversational prompts. 
If the entities align with the required responses, the script permits the conversation to 
proceed; otherwise, it prompts the user to provide the necessary information again, 
repeating this process until the correct data is gathered. Once the required information is 
successfully collected, it is temporarily stored in the user database. This data is held only 
until the conclusion of the story, at which point the results are compiled and sent to the user, 
ensuring a seamless and efficient user experience. 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

4.4 Implementation and Functions of Frontend with React 
 

4.4.1 Login/Sign up Page. 
 

 

Figure 4 

Login Page 

 

For the user to authenticate themselves and generate a new JWT token to use the chatbot, 
they must fill in the email and password details that they apply during the registration 
process. If the user does not have a registered account, they can navigate to the Registration 
page by clicking on “Don’t have an account? Register here”. 

 

 



33 
 

 

Figure 5 

Sign Up Page 

 

The user can create a new account by filling in the form on the Registration page. When data 
is provided correctly, a notification will appear informing the user of the successful 
registration and then it will automatically redirect to the login page. The backend will create 
a new user in the database with data like in Figure 3. 

 

 

 

 

 

 

 



34 
 

4.4.2 Page Layout 
 

 

Figure 6 

Page Layout 

 

When user is logged in the system the page layout will allow the user to Refresh the current 
chat by clicking “Refresh Chat”, create a new chat by clicking “New Chat”, upload their CV 
and GitHub at “Resume/CV Details” and navigate to their old chat that are displayed on the 
sidebar with their date of creation. The ability to delete old chats is possible by clicking the 
Trash can icon next to them. User’s temporary data that are stored during a chatbot use are 
deleted every time the user logs in or clicks on Refresh chat. Ensuring that there are no old 
or irrelevant temporary data in the database guarantees accurate results from any new 
chats the user makes.  

 

 

Figure 7 

Header Options 

By clicking on the User’s name that appears on the Header of the page, a dropdown will 
appear displaying the options of changing user’s credentials and logging out. Log out option 
deleted the JWT token from the browser and navigate to Login Page. 



35 
 

4.4.3 Chat Interface 
 

 

Figure 8 

Chat Interface 

Users can interact with chatbot through the interface in Figure 8. By sending a greeting 
message the chatbot initiates the story flow from stories.yml included in RASA. The user can 
respond to chatbot’s questions by typing the answer in “Type your message…” and clicking 
“Send”. When “Send” is clicked the button will get disabled until the chatbot respond. 
Disabling the button will verify that no more than one message is sent before an answer from 
chatbot. The messages are not sent directly to RASA, but they pass through the Flask API to 
authenticate the JWT token and then send to RASA with the user’s username. By providing 
RASA with a unique username, it will be able to handle multiple messages from multiple 
users and handle them concurrently.  

 

 



36 
 

4.4.4 Chat History 
 

When a user opens an old chat, they can view the conversation, but they cannot send 
another message. Figure 9 is sample of an old chat and how the chat UI looks like. 

 

 

 

Figure 9 

Chat Sample 

 

 

 

 

 

 

 



37 
 

4.4.5 CV analysis 
 

 

Figure 10 

CV analysis 

 

When the user uploads their CV/Resume the backend analyzes the document using 
Lightcast and returns the detected Soft and Hard skills. By giving their GitHub username, the 
backend uses GitHub’s API to detect all programming languages that are in the repositories 
and the user’s location if exists. The collected data appears in tables as shown in Figure 10. 
Those collected data is used in addition to those collected through the chatbot conversation 
to find the most fitting results. 

 

 

 



38 
 

4.4.6 Change User Credentials 
 

 

Figure 11 

Change User Credentials Page 

 

The user can change their username or password by providing their old one, give their new 
one and confirm it. Then by clicking the appropriate button if new data is confirmed the 
backend will change the old value to the new value in the database and the appropriate 
notification will appear on user’s screen. 

 

4.4.7 HCI Principles in UI 
 

In the design of the "Job Finder Chatbot," special attention was given to human-computer 
interaction (HCI) principles to ensure an optimal user experience. This chapter explores how 
the chatbot's user interface (UI) adheres to established HCI guidelines, enhancing usability, 
accessibility, and user satisfaction. 

 

 



39 
 

Application of HCI Principles in the Chatbot Interface 

1. Visibility of System Status 

o Feedback: The chatbot provides immediate feedback following user actions, 
ensuring users are always informed about what is happening. For example, 
when a job search is initiated, the user sees a loading indicator along with a 
textual update on the progress. 

o Status Updates: During longer processes, such as analyzing a CV, periodic 
updates keep the user informed, preventing confusion and frustration. 

2. Match Between System and the Real World 

o Language and Icons: The chatbot uses familiar language and intuitive icons 
that mimic real-world conventions, making the system understandable and 
relatable. For instance, job categories are represented with recognizable icons 
like a briefcase for professional jobs or a wrench for technical jobs. 

3. User Control and Freedom 

o Exit: At any point, users can exit out of the current interaction pathway or reset 
the chat, giving them freedom and control over the use of the application. 

4. Consistency and Standards 

o UI Consistency: The chatbot maintains a consistent UI across all platforms, 
whether accessed via mobile or desktop, ensuring that users have a seamless 
experience regardless of the device used. 

o Interaction Consistency: Interaction elements such as buttons, links, and 
menu structures are consistent in appearance and behavior across different 
parts of the application. 

5. Error Prevention 

o Input Validation: The system minimizes potential errors by validating user 
inputs in real-time. For example, if a user enters an invalid email address, the 
system immediately prompts correction before proceeding. 

o Guided Actions: The chatbot guides users through the process with clear, 
step-by-step instructions, reducing the risk of errors. 

6. Aesthetic and Minimalist Design 

o Clean Layout: The UI is uncluttered, focusing the user’s attention on essential 
elements by avoiding irrelevant information. 



40 
 

o Aesthetic Elements: The interface employs a pleasing color scheme and 
typography that enhance readability and user engagement without sacrificing 
functionality. 

7. Help Users Recognize, Diagnose, and Recover from Errors 

o Error Messaging: Error messages are expressed in plain language, precisely 
indicating the problem. 

 

The "Job Finder Chatbot" demonstrates a strong adherence to HCI principles, ensuring that 
the user interface is intuitive, efficient, and user-friendly. This commitment to excellent user 
experience design not only enhances user satisfaction but also contributes to the overall 
effectiveness of the job search process. As technology and user expectations evolve, 
continual evaluation and adaptation of these HCI principles will remain essential to 
maintaining and improving the chatbot's usability and appeal. 

 



41 
 

4.5 Example of Usage 

 



42 
 

 

Figure 12 

Chat Example 

 

User Input Collection: The chatbot efficiently collects detailed user inputs across several 
categories critical to job matching, including geographic location, job type preference (full-
time), years of experience, educational background, soft skills, and technical skills. This 
demonstrates the chatbot's capability to engage users in a comprehensive dialogue, 
ensuring that all relevant information is gathered to support personalized job 
recommendations. 

Natural Language Processing (NLP) Performance: The chatbot successfully interprets and 
processes user responses, such as interpreting "Alabama" as a location and recognizing "5 



43 
 

years" as the amount of experience. This indicates that the NLP component is effectively 
tuned to understand and extract meaningful information from casual user inputs. 

Data Integration and Application: The chatbot demonstrates a well-integrated system that 
takes user data (e.g., skills and experience) and maps it directly to job postings, as shown by 
the link to a job listing on Glassdoor tailored to the user’s profile. This suggests that the 
backend systems are effectively leveraging the collected data to fetch relevant job 
opportunities from external job boards. 

User Feedback Mechanism: Each stage of the interaction allows for user confirmation or 
correction, which is crucial for maintaining the accuracy of user data. This mechanism also 
enhances user trust and engagement, as they can see and verify the information being 
processed. 

 

4.6 Recommended Usage Path for Best Results 

 

Figure 13 

User Diagram 



44 
 

The diagram provided outlines the user flow for a job finder application, illustrating a critical 
path where users are prompted to upload their CV and GitHub data following a successful 
login or sign-up. This step is pivotal in personalizing the job search process, as it leverages 
the detailed information contained within a user's CV and GitHub profiles to match them 
with the most relevant job opportunities. 

Uploading a CV allows the system to analyze comprehensive details about a user's 
educational background, work experience, skills, and accomplishments. This data provides 
a rich, structured insight into what the user has achieved and their professional capabilities. 
Similarly, integrating GitHub data enables the system to assess a user's coding projects, 
contributions to public repositories, and technical skills, which are often not fully captured 
in a traditional CV. 

By combining these two data sources, the system can perform a nuanced analysis of both 
the user's formal qualifications and their practical, demonstrable skills. This dual-layered 
approach allows for a more accurate and personalized matching process compared to 
systems that rely solely on keyword matching or less dynamic user profiles. For instance, the 
system can identify not only the programming languages that the user knows but also their 
recent activity and expertise level in using those languages in real-world projects. 

Consequently, this integration leads to highly personalized job recommendations that are 
closely aligned with the user's proven skills and professional preferences. This tailored 
approach significantly increases the likelihood of a successful job match, enhancing user 
satisfaction and improving the efficiency of the job search process, as depicted in the 
workflow diagram. This method not only streamlines the path to finding relevant job 
opportunities but also ensures that the recommendations are finely tuned to each user's 
unique professional profile. 

The accuracy of the results produced by the chatbot heavily depends on the 
comprehensiveness and reliability of the information it receives from the users. If the 
chatbot relies solely on conversational data provided during interactions and does not have 
access to additional detailed documents like CVs, there may be gaps in the data it uses to 
match job listings. 

 

 



45 
 

CHAPTER 5 Evaluation 
5.1 Survey 

The primary goal of the survey is to gather feedback on the usability, effectiveness, and 
overall user experience of the chatbot. It aims to identify areas for improvement and assess 
the chatbot's performance in aiding users in their job search. 

 

The survey followed the below structure: 

 

• Demographic Information: Questions regarding gender, age range, and current 
employment status help contextualize the responses based on different user 
backgrounds. 

• Job Search Behavior and Preferences: These questions explore the amount of time 
users dedicate to job searches and what factors they consider most important in a 
job (e.g., location, skills required, type of employment). 
 
 

• Previous Experience with Job Finder Tools: This section investigates whether the 
respondents have used any job finder tools previously and which ones, to gauge the 
chatbot's uniqueness and utility compared to existing solutions. 
 

• Willingness to Use AI-driven Job Finder: Questions here probe the respondents' 
openness to using an AI-powered tool like the chatbot, based on the details provided 
by the users themselves, their GitHub profiles, and CVs. 

 

• Feedback on Chatbot Usage: Respondents are asked about any problems 
encountered while using the chatbot and any additional questions or features they 
would like to see, providing direct insights into user experience and satisfaction. 
 

 

The survey emphasizes data anonymity, stating that personal data collected will not be used 
in any identifiable manner and will only be used in anonymized form for research purposes. 
Contact information for the project members is also provided for any queries or issues. 

 



46 
 

5.2 Results 
 

Summary and Analysis of Survey Data: 

Demographic Information: 

• Gender Distribution: The survey reveals a male-dominated respondent pool, with 13 
out of 21 participants identifying as male. This demographic skew may influence 
perceptions and feedback related to the chatbot's interface and functionalities. 

 
• Age Range: A significant majority of the respondents fall within the 18-24 age bracket 

(11 out of 21), suggesting that the chatbot's user base is predominantly young, likely 
reflective of early career job seekers. 



47 
 

 
• Employment Status: Over half of the respondents are employed (13 out of 21), which 

may indicate that the chatbot is also being used by those seeking better opportunities 
rather than just by job seekers out of employment. 

 

Job Search Behavior: 



48 
 

• Hours per Week: Respondents spend an average of approximately 5.4 hours per week 
on job searches, with some dedicating as much as 10 hours weekly. The moderate 
variation in the time spent (standard deviation of 3.56 hours) highlights different 
levels of job search intensity among users, which could be a factor in their 
expectations and satisfaction with the chatbot. 

 

Feedback on the Chatbot: 

• Ease of Use: A clear majority find the chatbot easy to use, with strong agreement (13 
respondents) and agreement (8 respondents). This indicates that the chatbot's user 
interface and interaction design are effectively meeting user needs. 

• Trust in Recommendations: The trust level in the chatbot’s job recommendations is 
high, mirroring the feedback on ease of use, which is crucial for user retention and 
continuous use. 

• Preference Over Traditional Methods: A significant portion of the user base (15 
respondents) shows a preference for the AI-driven job search method provided by the 
chatbot over traditional job searching techniques, indicating a shift towards 
technology-driven job search solutions. 

• Job Finding Process: Opinions vary considerably regarding the length of the job 
finding process; a total of 18 respondents expressed dissatisfaction (disagree or 
strongly disagree), suggesting there is a considerable speeding up in the job 
searching process. 

• Automatic Job Application Feature: The response to the automatic job application 
feature is mixed, with some users welcoming the convenience while others express 
reservations, likely due to concerns about control over the applications sent on their 
behalf. 



49 
 

 

Correlation Analysis: 

• The weak correlation (-0.072624742) between the hours spent on job searching and 
satisfaction with the chatbot suggests that the user’s engagement level (in terms of 
time spent searching) does not necessarily impact their satisfaction with the 
chatbot's functionalities. 

• A notable negative correlation(-0.550047749) between the hours spent on job searches 
and satisfaction with the process length suggests that more intensive job seekers 
may have higher expectations regarding efficiency. 
 

The "Job Finder Chatbot" is generally well-received, particularly in terms of usability, 
trustworthiness in job recommendations and the length of the job search process. However, 
the reception of the automatic job application feature indicates areas needing improvement. 

 

Recommendations for Future Development: 

• Customizable Automation Features: Introduction of customizable settings for 
automatic applications, allowing users to set preferences regarding which jobs the 
chatbot should apply for on their behalf, thus addressing concerns about automation 
and control. 

• Continuous User Feedback Integration: Establish a regular feedback loop with users 
to continually adapt the chatbot to user needs and preferences, ensuring that it 
evolves in line with job market dynamics and user expectations. 



50 
 

• Demographic Expansion: Strategies to make the chatbot appealing to a broader 
demographic to ensure diverse feedback and usage patterns, enhancing the 
chatbot’s overall robustness and appeal to users unrelated to software engineering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

CHAPTER 6 Future and Conclusion 
6.1 Summary 
This thesis presented the development, implementation, and evaluation of the "Job Finder 
Chatbot," an AI-driven system designed to enhance the job search process for software 
engineers. This system matches individuals' resumes, GitHub activities and collects data 
from the chatbot with relevant job listings, leveraging advanced technologies and 
methodologies to optimize the job search experience. 

 

Key Achievements: 

• Technological Integration: The project successfully integrated several cutting-edge 
technologies, including Python, Selenium, BeautifulSoup4, MongoDB, Docker, Flask, 
JWT, RASA, and React. This diverse tech stack enabled the creation of a robust, 
scalable, and efficient chatbot that performs complex data handling and user 
interactions. 

• Data Collection and Backend Development: Using Selenium and BeautifulSoup4 for 
scraping job listings and Lightcast for analyzing job market trends ensured a rich 
database of job opportunities. MongoDB's flexibility supported an efficient data 
management system that could handle the scale and complexity of the data involved. 

• Frontend and User Interface: React was used to build a responsive and user-friendly 
interface, which played a crucial role in facilitating seamless interactions between 
the users and the chatbot. 

• Chatbot Functionality: The implementation of RASA for natural language 
understanding and dialogue management allowed the chatbot to conduct 
meaningful and context-aware conversations with users, significantly enhancing 
user experience. 
 

Evaluation Insights: 

• User Feedback: The evaluation through user surveys highlighted the chatbot's ease 
of use and effectiveness in providing trustworthy job recommendations. Users 
appreciated the AI-driven approach for its modernity and efficiency compared to 
traditional job search methods. 

• Areas for Improvement: Feedback pointed to the need for reducing the duration of the 
job search filtering process and introducing more customizable features, particularly 
in the automatic job application function, to cater to user preferences for control and 
specificity. 



52 
 

Recommendations: 

• Enhanced Customization: Developing features that allow users to set detailed 
preferences for how the chatbot handles job applications on their behalf could 
address concerns about automation and increase the chatbot’s utility. 

• Continuous Adaptation and Feedback: Implementing a mechanism for ongoing user 
feedback will be crucial for continuous improvement, ensuring that the chatbot 
remains effective and relevant as job market dynamics evolve. 
 

6.2 Future Work 
 

The "Job Finder Chatbot" has demonstrated significant potential in streamlining the job 
search process for software engineers through an AI-driven approach. To further enhance its 
effectiveness and broaden its applicability, the following future work is proposed: 

 

1. Expansion to All Job Types 

• Universal Job Matching: Adapt the chatbot's algorithms and databases to support a 
broader range of job categories beyond software engineering. This would involve 
integrating a wider variety of job listing sources and refining the chatbot’s natural 
language processing capabilities to understand and categorize a diverse array of job 
descriptions and qualifications across different industries. 

• Sector-Specific Customization: Develop modular components within the chatbot 
that can be customized for different sectors, such as healthcare, finance, and 
education. Each module could feature tailored recommendations and search 
parameters relevant to the specific needs and characteristics of each sector. 
 

2. User Interface Enhancements 

• Intuitive Design Improvements: Redesign the user interface to be more intuitive and 
accessible, ensuring that users of all technical skill levels can navigate and utilize the 
chatbot with ease. This might include simplifying the layout, enhancing visual 
elements, and improving responsiveness across various devices and screen sizes. 

• Interactive Elements: Implement interactive elements such as sliders, dropdown 
menus, and auto-complete text fields to make the data input process more engaging 
and less error-prone. 
 
 
 



53 
 

3. Creation of an Interactive Tutorial 

• Guided Onboarding Process: Develop an interactive tutorial that guides new users 
through the chatbot's features and functionalities at the start of their first session. 
This tutorial should be easily accessible at any point for refresher guidance. 

• Context-Sensitive Help: Offer context-sensitive tips and help icons throughout the 
chatbot interface. These tips can provide users with immediate explanations of 
certain fields or features, thereby enhancing their understanding and efficiency in 
using the chatbot. 
 

4. Enhanced Security Measures 

• Secure Logging Mechanism: Implement a secure logging system to track user 
interactions and system performance without compromising user privacy. This 
logging should be compliant with data protection regulations such as GDPR, ensuring 
that all data collected is done so with user consent and is securely stored. 

• Regular Security Audits: Establish a routine for conducting security audits and 
vulnerability assessments to identify and address potential security threats. This will 
help in maintaining the integrity and trustworthiness of the chatbot. 

• Advanced Authentication: Upgrade the authentication system to include multi-factor 
authentication (MFA) to provide an additional layer of security for accessing user 
accounts and sensitive information. 
 

5. Continuous Learning and Adaptation 

• Machine Learning Enhancements: Enhance the chatbot's machine learning models 
to continuously learn from user interactions and feedback. This adaptive learning 
approach can help in refining the accuracy of job matches and user responses over 
time. 

• Feedback Loop Integration: Create a systematic feedback loop that allows users to 
provide direct feedback on job matches and overall experience. This feedback can be 
instrumental in continuously refining the chatbot’s algorithms and user interface. 

 

6.3 Conclusions 
 

The development and evaluation of the "Job Finder Chatbot" as detailed in this thesis 
represents a significant advancement in the use of artificial intelligence to facilitate the job 
search process. This project has demonstrated the profound capabilities of AI-driven 
technology to match software engineers with relevant job opportunities by analyzing their 



54 
 

resumes and GitHub activities. The system's robust integration of cutting-edge technologies 
such as RASA for natural language processing, MongoDB for data management, and React 
for the user interface, has established a strong foundation for an efficient and user-centric 
job search tool. 

The chatbot has proven to be highly effective in reducing the complexities associated with 
the traditional job search process. It has offered users a personalized experience by 
leveraging machine learning to accurately align job listings with the candidate’s profile. This 
personalization extends beyond mere qualification matching, considering the user’s 
preferred job locations, desired company culture, and other personal preferences, thereby 
enhancing user satisfaction and engagement. 

The system has been rigorously evaluated through user surveys, which have provided 
insightful feedback on its performance. Users have appreciated the chatbot’s ease of use 
and the trustworthiness of its job recommendations. However, the feedback also highlighted 
areas for improvement, particularly concerning the duration of the job search process and 
the automation of job applications. 

Looking ahead, the "Job Finder Chatbot" has ample room for expansion and enhancement. 
Key future developments include: 

• Expanding the scope of the chatbot to cover various job sectors, making it a universal 
tool for job seekers across different industries. 

• Enhancing the user interface to ensure it is more intuitive and accessible to a broader 
demographic, further simplifying the job search process. 

• Incorporating an interactive tutorial to help new users navigate the chatbot’s 
functionalities effectively. 

• Implementing robust security measures, such as secure logging and multi-factor 
authentication, to protect user data and increase the overall security of the system. 

These enhancements will not only address the current limitations but also amplify the 
chatbot’s utility and reach, making it a more versatile and indispensable tool in the job 
market. 

The "Job Finder Chatbot" represents a pivotal step towards revolutionizing the job search 
landscape. By aligning the latest advancements in AI with the specific needs of job seekers 
and recruiters, this project contributes significantly to the evolving field of AI in employment. 
This thesis not only showcases a practical application of AI but also paves the way for future 
innovations that could further transform how individuals and organizations approach job 
searching and recruitment. As we continue to explore and push the boundaries of AI 
capabilities, projects like the "Job Finder Chatbot" underscore the transformative potential 
of technology to create more efficient, personalized, and accessible job search experiences. 



55 
 

BIBLIOGRAPHY 
 

1) Sridevi G.M et al. (2022), “AI based suitability measurement and prediction between job 
description and job seeker profiles” https://doi.org/10.1016/j.jjimei.2022.100109  

2) V.R Uma et al. (2023), “Recruitment Analytics: Hiring in the Era of Artificial Intelligence” 
https://www.emerald.com/insight/content/doi/10.1108/978-1-80382-027-
920231008/full/html 

3) Connie R. Wanberg et al. (2020), “Job Seeking: The Process and Experience of Looking for a 
Job” https://doi.org/10.1146/annurev-orgpsych-012119-044939  

4) Vivek Kaul MD et al. (2020), “History of artificial intelligence in medicine” 
https://doi.org/10.1016/j.gie.2020.06.040  

5) https://simplify.jobs/ 
6) https://www.sonara.ai/ 
7) https://dream.jobs/ 
8) https://www.careerflow.ai/ 
9) Hamed Taherdoost et al. (2023), “AI Advancements: Comparison of Innovative Techniques” 

https://doi.org/10.3390/ai5010003 
10) Tatwadarshi P. Nagarhalli et al. (2020), “A Review of Current Trends in the Development of 

Chatbot Systems” https://doi.org/10.1109/ICACCS48705.2020.9074420 
11) Peter Gordon Roetzel (2019), “Information overload in the information age: a review of the 

literature from business administration, business psychology, and related disciplines with a 
bibliometric approach and framework development” https://doi.org/10.1007/s40685-018-
0069-z 

12) Qing Zhou et al. (2019), “Job recommendation algorithm for graduates based on 
personalized preference.” https://doi.org/10.1007/s42486-019-00022-1 

13) https://www.selenium.dev/ 
14) https://pypi.org/project/beautifulsoup4/ 
15) https://lightcast.io/ 
16) https://www.mongodb.com/ 
17) https://www.docker.com/ 
18) https://flask.palletsprojects.com/en/latest/api/ 
19) https://jwt.io/ 
20) https://rasa.com/ 
21) https://react.dev/ 
22) Chowdhary, K.R. (2020). Natural Language Processing. In: Fundamentals of Artificial 

Intelligence. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3972-7_19 
23) Shneiderman, B., & Plaisant, C. (2010). Designing the user interface: Strategies for effective 

human-computer interaction. Pearson Education India.  
24) https://vercel.com/ 
25) Derek S. Chapman and Jane Webster (2003). "The use of technologies in the recruiting, 

screening, and selection processes for job candidates," 
26) https://ngrok.com/ 

https://doi.org/10.1016/j.jjimei.2022.100109
https://www.emerald.com/insight/content/doi/10.1108/978-1-80382-027-920231008/full/html
https://doi.org/10.1146/annurev-orgpsych-012119-044939
https://doi.org/10.1016/j.gie.2020.06.040
https://simplify.jobs/
https://www.sonara.ai/
https://dream.jobs/
https://www.careerflow.ai/
https://doi.org/10.3390/ai5010003
https://doi.org/10.1109/ICACCS48705.2020.9074420
https://doi.org/10.1007/s40685-018-0069-z
https://doi.org/10.1007/s42486-019-00022-1
https://www.selenium.dev/
https://pypi.org/project/beautifulsoup4/
https://lightcast.io/
https://www.mongodb.com/
https://www.docker.com/
https://flask.palletsprojects.com/en/latest/api/
https://jwt.io/
https://rasa.com/
https://react.dev/
https://doi.org/10.1007/978-81-322-3972-7_19
https://vercel.com/
https://ngrok.com/


56 
 

APPENDIX 
Job Docker 

version: '3.8' 

 

services: 

  mongodb: 

    image: mongo:latest 

    container_name: mongodb 

    restart: always 

    ports: 

      - "27017:27017" 

    volumes: 

      - mongo-data:/data/db 

    environment: 

      MONGO_INITDB_ROOT_USERNAME: root 

      MONGO_INITDB_ROOT_PASSWORD: password 

      MONGO_INITDB_DATABASE: jobs 

 

volumes: 

  mongo-data: 

 
 

User Docker 

version: '3.8' 

 

services: 

  mongodb: 

    image: mongo:latest 

    container_name: mongodbUsers 

    restart: always 

    ports: 

      - "27018:27017" 

    volumes: 

      - mongo-data-users:/data/db 

    environment: 

      MONGO_INITDB_ROOT_USERNAME: root 

      MONGO_INITDB_ROOT_PASSWORD: password 

      MONGO_INITDB_DATABASE: users 

 

volumes: 

  mongo-data-users: 

 



57 
 

Rasa Action Endpoint 

action_endpoint: 

 url: "http://localhost:5055/webhook" 

 

Rasa Config 

recipe: default.v1 

 

assistant_id: 20240109-002533-amber-axel 

 

language: en 

 

pipeline: 

  - name: WhitespaceTokenizer 

  - name: LexicalSyntacticFeaturizer 

  - name: CountVectorsFeaturizer 

  - name: CountVectorsFeaturizer 

    analyzer: char_wb 

    min_ngram: 1 

    max_ngram: 4 

  - name: DIETClassifier 

    epochs: 200 

    entity_recognition: true 

    intent_classification: true 

    entity_classification: true 

  - name: EntitySynonymMapper 

  - name: RegexEntityExtractor 

    case_sensitive: false 

    use_lookup_tables: true 

  - name: ResponseSelector 

    epochs: 100 

 

policies: 

  - name: MemoizationPolicy 

  - name: TEDPolicy 

    max_history: 15 

    epochs: 200 
 

 

 

 

 



58 
 

API ‘/get_results’ 

def jaccard_similarity(set1, set2): 

    intersection = len(set1 & set2) 

    union = len(set1 | set2) 

    return intersection / union 

 

@app.route('/get-results', methods=['POST']) 

def get_results(): 

    data = request.json 

    collection, client = initialize_connection_jobs() 

 

    # Specify the desired "Location" value to match 

    query_builder = {} 

    # Check if the "Location" field in data is not empty 

    if data.get("Location"): 

        query_builder["Location"] = {"$in": data["Location"]} 

 

    # Check if the "Company" field in data is not empty 

    if data.get("Company") != "None": 

        query_builder["Company"] = data["Company"] 

 

    # Check if the "Employment Type" field in data is not empty 

    if data.get("Employment Type"): 

        query_builder["$or"] = [ 

            {"Employment Type": {"$in": data["Employment Type"]}}, 

            {"Employment Type": ""} 

        ] 

 

    # Check if the "Years of Exp" field in data is not empty 

    if data.get("Years of Exp"): 

        query_builder["$or"] = [ 

            {"Years of Exp": {"$lte": data["Years of Exp"]}}, 

            {"Years of Exp": "not given"} 

        ] 

 

    # Check if the "Education Level" field in data is not empty 

    if data.get("Education Level"): 

        query_builder["$or"] = [ 

            {"Education Level": {"$in": data["Education Level"]}}, 

            {"Education Level": ""} 

        ] 

 

    # Check if the "Education Type" field in data is not empty 

    #if data.get("Education Type"): 



59 
 

    #    query_builder["Hard Skills"] = {"$in": data["Education Type"]} 

 

    matching_entries = collection.find(query_builder) 

 

    similar_documents = [] 

 

    for entry in matching_entries: 

        document_hard_skills = set(entry.get("Hard Skills", []))  # Extract the 

"Hard Skills" field from the document 

        document_soft_skills = set(entry.get("Soft Skills", []))  # Extract the 

"Soft Skills" field from the document 

        hard_skill_similarity = jaccard_similarity(set(data["Hard Skills"]), 

document_hard_skills) 

        soft_skill_similarity = jaccard_similarity(set(data["Soft Skills"]), 

document_soft_skills) 

        if hard_skill_similarity >= 0.2 and soft_skill_similarity >= 0.2:  # 

Check if the similarity is at least 50% 

            similar_documents.append(entry) 

        elif hard_skill_similarity >= 0.2 and document_soft_skills == set([]): 

            similar_documents.append(entry) 

        elif soft_skill_similarity >= 0.2 and document_hard_skills == set([]): 

            similar_documents.append(entry) 

        elif document_soft_skills == set([]) and document_hard_skills == set([]): 

            similar_documents.append(entry) 

 

    matching_entries_list = list(similar_documents) 

    urls = [entry['URL'] for entry in matching_entries_list] 

    json_result = json.dumps(urls, default=str, indent=4) 

    client.close() 

 

    return json_result 
 

 

 

 



60 
 

Survey 

 



61 
 

 



62 
 

 



63 
 

 


