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Abstract 

This thesis investigates the optimization of product recommendation systems in the e-

commerce sector, focusing specifically on the application of Restricted Boltzmann 

Machines (RBM) and Multi-Layer Perceptrons (MLP) using the H&M Personalized Fashion 

Recommendations dataset. The study aims to enhance the accuracy and efficiency of 

recommender systems by leveraging implicit feedback from customer transaction data. 

The primary objectives of this research are to develop an RBM-based recommender 

system capable of efficiently utilizing minimal transactional data and to extend an MLP-

based model optimized for richer datasets, including user demographics and item 

characteristics. Additionally, the study benchmarks these models against traditional and 

contemporary machine learning models such as Matrix Factorization (MF), Generalized 

Matrix Factorization (GMF), and Neural Collaborative Filtering (NCF). 

A key component of this research is the advanced data preprocessing designed to utilize 

datasets that contain only implicit data, such as transaction records. This preprocessing 

extracts insightful information, culminating in the proposed affinity score formula. The 

affinity score integrates the z-score distance from the expected purchasing quantity when 

a user buys a product and a recency score, providing a comprehensive measure of user-

item interaction strength. 

The research employs advanced feature engineering, strategic data preprocessing, and 

extensive model tuning. Results demonstrate that the RBM model consistently 

outperforms other models across all metrics, proving to be the most efficient and 

effective in predicting customer preferences. However, the performance of RBM begins to 

plateau after a certain number of epochs, suggesting the model's capacity limit rather 

than overfitting. The study confirms the generalizability of the proposed affinity score 

formula, indicating its potential application beyond the fashion e-commerce industry to 

other retail sectors. 
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The findings of this thesis contribute to the broader understanding of machine learning 

applications in recommender systems, offering valuable insights for enhancing 

recommendation accuracy and system efficiency. Future work will focus on further 

refining these models and exploring their applicability in various e-commerce contexts. 
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Chapter 1: Introduction 

1.1 The Personar Project, a starting point 

In the rapidly evolving e-commerce landscape, personalized shopping experiences have 

become a cornerstone of consumer satisfaction and business success. This drive towards 

personalization has brought the widespread adoption of marketing systems to generate 

product recommendations tailored to individual user preferences. Among these initiatives 

is the Personar project by Parallax Works LTD, which utilizes data-driven strategies for 

marketing campaigns, offering a foundational understanding of customer engagement 

through data. Currently, its core functionality is limited to the traditional marketing 

technique of generating RFM (Recency, Frequency, Monetary) metrics labels, that 

evaluates customers based on their recent purchase behavior, purchase frequency, and 

spending amount. This analysis helps identify customers’ purchasing behavior and 

segment high-value customers for targeted marketing strategies. 

 

1.2 Value of Recommender systems in marketing 

Recommender systems are critical tools in the digital marketplace, analyzing vast amounts 

of data to predict and present items users are likely to find appealing. They analyze user 

behaviors, like past purchases and views, along with item characteristics, to suggest 

relevant products. This not only personalizes the user experience but also enhances 

engagement and loyalty by accurately reflecting individual preferences. The adaptability 

of these systems ensures they continuously refine their recommendations, making them 

indispensable for businesses looking to optimize marketing strategies and improve 

customer satisfaction. Their broad applicability across industries highlights their role in 

tailoring user interactions, making them a key component in modern e-commerce 

ecosystems. 
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1.3 Problem Statement 

Recommender systems are essential tools in modern customer-centric marketing but face 

substantial challenges, particularly when utilizing implicit feedback such as purchase 

history to predict user preferences accurately. These challenges are further compounded 

by the variability in dataset composition; while most datasets predominantly consist of 

transactional interactions between users and items, only a select few encompass richer 

data elements like user demographics (age, gender) and detailed item attributes (color, 

type, category). The Personar project strives to lead in customer-centric marketing by 

demanding a recommender system that is not just effective but also versatile, capable of 

functioning optimally with both minimal and detailed data levels. To bridge this divide, 

this thesis proposes the development and evaluation of two distinct machine learning 

model-based recommender systems: one optimized for datasets with mere transaction 

history and another designed to capitalize on richer datasets that include user 

demographics and item features, that could also mitigate the cold start problem 

recommender systems usually face. Additionally, we incorporate data analysis techniques 

in our preprocessing steps to develop a formula aimed at enhancing recommendation 

accuracy, ensuring our models adapt and perform robustly within a dynamic and flexible 

framework. 

 

1.4 Objectives 

The aim of this thesis is to support the Personar project's vision by creating a 

flexible, data-agnostic recommender system capable of providing accurate product 

recommendations based on implicit feedback.  

To address the challenges faced by recommender systems in utilizing implicit feedback 

effectively, this thesis outlines the following objectives: 
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1. Develop an RBM-based recommender system: This system will be designed to 

efficiently leverage implicit feedback to predict user preferences across datasets of 

poor detail levels with minimal transactional data. 

2. Extend the MLP-based model: Create an MLP-based recommender system that is 

specifically optimized to harness extended data details, such as demographics and 

item characteristics and is cold start proof. 

3. Benchmarking against traditional and modern models: Evaluate and compare the 

performance of both the RBM and the extended MLP models against traditional 

and contemporary benchmarks. This includes the Matrix Factorization (MF) model, 

Generalized Matrix Factorization (GMF), and Neural Collaborative Filtering (NCF) 

models. This comparative analysis will help ascertain their relative effectiveness in 

real world problems. 

4. Investigate advanced modeling techniques: Explore the impact of a proposed 

preference scoring system and negative sampling on model performance, during 

the data preprocessing step.  

These objectives are designed to culminate in the development of innovative 

recommender systems that not only meet the diverse needs of modern datasets but also 

set new standards in recommendation accuracy and adaptability. 

 

1.5 Significance of the Study 

This research endeavors to make a substantial contribution across several fronts. By 

delving into the comparative analysis of Restricted Boltzmann Machines (RBM) and Multi-

Layer Perceptrons (MLP) within the context of recommender systems, this study stands at 

the intersection of machine learning, data science, and e-commerce, reflecting the 

multidisciplinary nature of contemporary computer science education. 

From an academic perspective, this thesis aims to enrich the body of knowledge in 

machine learning applications for recommender systems, a domain that has seen 

significant interest but also poses considerable challenges. The exploration of RBM models 
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in handling implicit feedback and dataset variability provides a detailed case study on the 

practical application of these theories. This aligns closely with the core principles of 

computer science and data analytics, making it a pertinent example of how theoretical 

knowledge is applied to solve real-world problems. Furthermore, by examining the 

efficacy of these models in a dynamic and commercially relevant context, the study offers 

insights that could guide future research, curriculum development, and the evolution of 

machine learning methodologies. 

In the broader context of e-commerce, the findings of this research promise to transcend 

the specific case of the Personar project, offering actionable insights that could be 

leveraged by marketing experts seeking to improve their customer loyalty and sales.  

Lastly, the relevance of this study to my course and career cannot be overstated. It 

embodies the application of advanced computer science and machine learning 

concepts to address a real challenge in the e-commerce sector, demonstrating the 

critical thinking, analytical, and technical skills that are the hallmark of my 

education. This thesis not only serves as a final project, synthesizing my learning 

and research but also positions me at the forefront of emerging technologies and 

their application in digital commerce. 

 

1.6 Limitations 

The scope of this research is defined by several practical constraints, notably limitations in 

hardware resources and time schedule constraints, which naturally delimit the scope of 

the project. While the objectives outlined aim to contribute significantly to the 

understanding and development of machine learning-based recommender systems, it's 

essential to acknowledge these constraints as they influence the methodology, scale, and 

depth of analysis possible within the timeframe of this thesis. 

The computational demands of training and testing sophisticated machine learning 

models like RBM and MLP are substantial. Given the extensive datasets involved in e-
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commerce recommendations, such as the H&M dataset utilized in this study, the 

hardware limitations present a significant constraint. Therefore, the scope of model 

training, parameter tuning, and simulations will be tailored to fit within the available 

computational resources. This may involve sampling smaller subsets of the dataset for 

training and validation, which, while still providing valuable insights, might limit the 

generalizability of the findings to larger or more complex datasets. 

The timeline for this thesis project is another critical factor shaping its scope. With a finite 

period, available to move from conceptualization through to experimentation and 

analysis, certain limitations become necessary. For example, the comparative analysis of 

RBM and MLP models will focus on key performance metrics and configurations rather 

than an exhaustive exploration of all potential model variations and parameter settings. 

Additionally, the development and testing phases will be designed to fit within this 

timeframe, prioritizing depth over breadth in the investigation of these models' 

applicability to recommender systems. 
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Chapter 2: Current Scientific Landscape of 

Recommender Systems 

 

Recommender systems have become an integral component in various industries, 

significantly enhancing user experience and business strategies. The seminal work by [1] 

Goldberg et al. on using collaborative filtering in the Tapestry system laid the foundation 

for modern recommender systems. Since then, the field has evolved, integrating advanced 

algorithms and machine learning techniques. As we explore the transition from traditional 

techniques to advanced models like RBM and MLP, this background serves as a critical 

guide, illuminating the path that has led to the current landscape of recommender 

systems and framing the context for the project at hand. 

 

2.1 Fundamental Approaches 

2.1.1 Collaborative Filtering 

Collaborative filtering, a basis in the domain of recommender systems, harnesses the 

power of collective user behavior to generate personalized recommendations. This 

method started gaining attention after the important GroupLens project in 1994 [2], 

which operates on the principle that users with similar preferences in the past are likely to 

have similar tastes in the future. The technique is divided into two distinct categories: 

user-based and item-based collaborative filtering. The user-based approach focuses on 

finding users with similar preferences and recommending items they have liked, while the 

item-based method identifies items that are similar to those the user has previously 

favored, as elucidated in Sarwar et al.’s influential 2001 paper [3]. According to Ben 

Schafer et al. (2007) [4] Collaborative filtering can be useful in datasets where there are 

many items, many ratings per item, more users than items and users rate multiple items. 

The underlying meaning of the data should be that for each user of the community, there 

are other users with common needs or tastes, the item evaluation requires personal taste 
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and that items are homogenous. A challenge highlighted from Ben Schafer et al. is that in 

collaborative filtering is that the taste of the users should persist. This is a big challenge for 

domains like clothing, where fashion changes and user tastes from a few years ago might 

not be relevant. Another challenge is that they can suffer from the cold-start problem, 

where the system struggles to make a recommendation to a user that has no transaction 

data yet. 

Overall, collaborative filtering is still being considered as the main approach when building 

recommender systems where many user-item interaction data are available. 

 

2.1.2 Content-Based Filtering 

Following the collaborative filtering paradigm, content-based filtering represents another 

foundational technique in the realm of recommender systems, prioritizing the attributes 

of items over user interactions. Pazzani and Billsus [5] describe that this method starts by 

creating user profiles according to given user preferences or history of interactions with 

items. Then, it utilizes the inherent properties of items (such as movie genres or authors 

of books) to align recommendations with a user's established preferences. By drawing on 

the similarities between items, content-based filtering proposes that users will favor items 

similar to those they previously enjoyed. One of the method's significant strengths lies in 

its capacity to provide personalized recommendations with limited data records, 

effectively navigating the cold-start problem that new users present by relying solely on 

item attributes. However, the cold-start problem persists in the user profiling procedure. 

 

The efficacy of content-based filtering is inherently tied to the richness and 

comprehensiveness of the dataset describing item features. The approach presupposes a 

dataset filled with detailed, descriptive attributes of each item, enabling the algorithm to 

leverage similarities effectively. In scenarios where item metadata is sparse, content-

based filtering may encounter limitations, struggling to expand beyond a user's explicit 

preferences and risking a constrained scope of recommendations. This underscores the 

crucial role of detailed item descriptions in the dataset, as the depth and accuracy of these 
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attributes directly influence the quality and diversity of the recommendations generated. 

Despite potential challenges associated with dataset limitations, content-based filtering 

remains an essential strategy in the recommender systems arsenal, particularly valuable in 

settings where extensive item metadata can be matched accurately to user profiles. 

 

2.1.3 Hybrid Systems 

Hybrid recommender systems merge collaborative and content-based filtering to enhance 

recommendation accuracy and diversity. As outlined by Burke [6], these systems employ 

various integration strategies, such as adding content-based features to collaborative 

models or combining separate recommendations. This approach leverages the depth of 

content-based item attributes with the broad appeal of user interactions from 

collaborative filtering, offering a nuanced solution to challenges like the cold-start 

problem and data sparsity. By blending these methodologies, hybrid systems achieve 

greater flexibility and adaptability, making them ideal for dynamic and evolving datasets 

commonly found in e-commerce. They represent a strategic evolution in recommender 

systems, capable of addressing a wider array of user preferences and scenarios. 

 

2.2 Machine Learning in Recommender Systems 

The advent of machine learning has significantly transformed the landscape of 

recommender systems, introducing sophisticated algorithms that learn from data to make 

predictions or decisions. This shift towards machine learning approaches has enabled 

recommender systems to achieve unprecedented levels of personalization and accuracy. 

 

2.2.1 Matrix Factorization Techniques 

One pivotal advancement is the application of matrix factorization techniques, which have 

become a staple in collaborative filtering. Koren et al. [7] highlighted the effectiveness of 

these techniques, particularly Singular Value Decomposition (SVD) and its adaptations, in 

capturing latent factors underlying user-item interactions. Matrix factorization models 
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decompose the user-item interaction matrix into lower-dimensional matrices, revealing 

latent features that represent underlying user preferences and item characteristics. This 

method enhances the system's ability to predict unseen interactions, providing a solid 

foundation for personalized recommendations. 

 

2.2.2 Deep Learning Approaches 

The integration of deep learning into recommender systems has marked a significant 

evolution in the field, enabling the modeling of complex, non-linear relationships between 

users and items. Deep learning approaches leverage layered architectures of neural 

networks to learn from vast amounts of data, capturing hidden yet important patterns 

and interactions that traditional algorithms might overlook. 

 

Zhang et al. [10] provide a comprehensive survey on deep learning-based recommender 

systems, shedding light on the diverse architectures and strategies that have been 

explored to date. Their work underscores the versatility of deep learning in addressing 

various challenges inherent to recommendation tasks, including the cold start problem, 

scalability, and the need for personalization. 

 

A notable application of deep learning in this domain is with Restricted Boltzmann 

Machines (RBM), which Salakhutdinov, Mnih, and Hinton [8] initially explored for 

collaborative filtering. RBMs are a type of neural network that can learn a probability 

distribution over its set of inputs, making them well-suited for uncovering latent 

structures within user-item interaction data, covered in detail later in this document. 

 

Among the more innovative deep learning applications in recommendation systems is 

CoupledCF, developed by Zhang Q. et al [17]. By using a convolutional neural network 

(CNN) and integrating user and item features, this model can significantly enhance the 

recommendation accuracy compared to traditional recommendation systems. 
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2.3 Restricted Boltzmann Machines (RBM) in Recommender Systems 

2.3.1 The RBM Landscape 

Restricted Boltzmann Machines (RBM) have carved a niche in the domain of 

recommender systems, displaying their effectiveness in unraveling the complicated latent 

structures within user-item interaction data. The seminal contribution by Salakhutdinov, 

Mnih, and Hinton [8] set a standard in employing RBMs for collaborative filtering, 

illustrating their potential to refine the accuracy and relevance of recommendations 

significantly. 

 

An RBM is a stochastic neural network comprising a layer of visible units, which 

correspond to observed data points like user ratings, and a layer of hidden units, which 

aim to capture latent factors influencing these interactions. The architecture facilitates the 

modeling of complex data distributions through a 2-layer network, enabling efficient 

training even without inter-layer connections. 

 

The integration of RBMs in recommender systems is primarily valued for their ability to 

discern latent relationships that define user preferences and item attributes, thus 

predicting potential user-item interactions with a high degree of precision. This feature is 

crucial for personalizing recommendations in a manner that resonates with individual user 

tastes. 

 

Additionally, RBMs are very good at managing sparse datasets (a common challenge in 

recommender systems) by probabilistically inferring missing entries, thereby offering 

plausible recommendations for new users or items with minimal interaction history. This 

capability is instrumental in addressing the cold-start problem, enhancing the system's 

utility from the outset. 
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The implementation of RBMs, while offering considerable benefits, also poses challenges, 

notably in parameter tuning and computational efficiency. Nevertheless, subsequent 

studies have built upon the foundational work of Salakhutdinov et al. [8], exploring the 

nuances of RBM applications. Xie et al. [13] expanded on this by incorporating user 

demographic information through a Conditional Restricted Boltzmann Machine (CRBM) 

approach, further personalizing recommendation systems. Yamashita et al. [14] delved 

into the debate on utilizing Bernoulli versus Gaussian units for RBMs in different data 

contexts, enhancing model flexibility. Ben Yedder et al. [15] focused on optimizing RBM 

for predictive accuracy in recommender systems, demonstrating the evolving landscape of 

deep learning techniques in this field. 

 

Through these advancements, RBMs have underscored the transformative impact of deep 

learning on recommender systems, pushing the boundaries of what is achievable in terms 

of personalized content curation and user satisfaction. 

 

2.3.2 Diving into RBMs functioning 

Diving deeper into Restricted Boltzmann Machines (RBMs) and their functioning reveals a 

complex interplay of mathematical and algorithmic principles that enable these models to 

perform remarkably well in the context of recommender systems. 

An RBM is constituted by a bipartite graph with two layers: a visible layer and a hidden 

layer. These layers are fully connected to each other but not within themselves, a 

restriction that simplifies the learning algorithm and makes it computationally feasible. 

The visible units correspond to input data (e.g., user ratings in recommender systems), 

while the hidden units aim to capture latent variables or factors that might not be 

explicitly observed but influence the input data's structure. 

 

RBMs are energy-based models, where the configuration of the network (i.e., the states of 
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its visible and hidden units) defines the energy of the system. The energy function for a 

binary-state RBM is given by: 

𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖

 

𝑖∈𝑣𝑖𝑠𝑖𝑏𝑙𝑒

𝑣𝑖 − ∑ 𝑏𝑗

 

𝑗∈ℎ𝑖𝑑𝑑𝑒𝑛

ℎ𝑗 − ∑ 𝑣𝑖

 

𝑖,𝑗

ℎ𝑗𝑤𝑖𝑗}  

Here, ai and bj  are the bias terms for the visible and hidden units, respectively, and wij  

represents the weight between visible unit i and hidden unit j. Lower energy states are 

more probable, and the network learns by adjusting its parameters (weights and biases) to 

minimize the overall energy. 

 

Training a traditional Restricted Boltzmann Machine (RBM) involves learning the model 

parameters—the weights and biases—that best approximate the distribution of the input 

data. The core objective is to maximize the likelihood of the training data under the 

model, which is often done through gradient-based optimization methods. 

The energy function is used to compute the joint distribution of the visible and hidden 

units, as well as the conditional probabilities of hidden units given visible units (and vice 

versa), which are essential for the learning algorithm: 

• Joint distribution of v and h: 𝑃(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ) 

• Marginal distribution of v and h: 𝑃(𝑣, ℎ) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ) 

 𝑣,ℎ  

• where Z is the partition function, a normalization factor computed as𝑍  =

∑ 𝑒−𝐸(𝑣,ℎ) 
 𝑣,ℎ   

The learning algorithm commonly used for RBMs is Contrastive Divergence (CD), proposed 

by Hinton. It approximates the gradient of the log-likelihood with respect to the weights 

and biases. The update rules for the parameters are derived from the gradients: 

• Update for weights wij : Δ𝑤𝑖𝑗 = 𝜖 (⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖ℎ𝑗⟩
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

) 

• Update for visible biases ai : Δ𝑎𝑖 = 𝜖(⟨𝑣𝑖⟩𝑑𝑎𝑡𝑎 − ⟨𝑣𝑖⟩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) 
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• Update for hidden biases bj: Δ𝑏𝑖 = 𝜖(⟨ℎ𝑖⟩𝑑𝑎𝑡𝑎 − ⟨ℎ𝑖⟩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) 

 

where ϵ is the learning rate, ⟨⋅⟩data denotes expectations under the distribution 

defined by the training data, and ⟨⋅⟩reconstruction denotes expectations under the 

distribution defined by the model after a Gibbs sampling step starting from the 

training data. 

 

In practice, the CD algorithm performs the following steps for each update: 

1. Compute the positive phase by calculating ⟨vihj⟩data , which involves computing the 

activations of the hidden units given the visible units from the data. 

2. Perform a Gibbs sampling step to obtain a sample of the visible units from the 

model distribution, starting from the data. This involves sampling the hidden units 

given the visible units and then resampling the visible units given these hidden 

units. 

3. Compute the negative phase by calculating ⟨vihj⟩reconstruction using the sampled 

visible units from step 2. 

4. Update the weights and biases according to the computed gradients. 

 

In recommender systems, the visible units of an RBM can be designed to represent user 

ratings for items, with each unit corresponding to a specific item's rating. The hidden units 

capture latent factors that influence user preferences, such as genres or themes in 

movies. By learning these latent factors, RBMs can predict unseen ratings, filling in the 

gaps in the user-item matrix and thus providing personalized recommendations. 
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2.3.3 Multinomial RBMs 

While traditional RBMs and their binary units are well-suited for datasets where variables 

are binary or have been binarized, Multinomial RBMs extend this framework to handle 

multinomial data directly. This is particularly useful in recommender systems where the 

ratings can take on multiple discrete values. 

 

Multinomial RBMs are designed with visible units that can take on multiple states to 

represent multinomial data. For instance, in a movie rating system where ratings range 

from 1 to 5 stars, each visible unit can represent the rating given by a user to a movie. 

The energy function for Multinomial RBMs is adapted to account for the multiple states of 

the visible units. This adaptation involves summing over all possible states of the visible 

units to calculate the partition function, which is used to normalize the probabilities. 

The energy function for a Multinomial RBM configuration is: 

𝐸(𝑣, ℎ) = ∑ ∑ 𝑎𝑖𝑘𝑣𝑖𝑘

{𝑘

 
 

𝑖

   −   ∑ 𝑏𝑗

 

𝑗

ℎ𝑗  −   ∑ ∑ 𝑣𝑖𝑘

 

𝑘

 

𝑖,𝑗

ℎ𝑗𝑤𝑖𝑗𝑘}  

where: 

• vik  represents the state k of visible unit i(for instance, the rating of a movie), 

• hj are the binary states of hidden unit j, 

• aik  are the bias terms for each state k of visible unit i, 

• bj  are the bias terms for the hidden units, 

• wijk  are the weights connecting state k of visible unit i to hidden unit j. 

 

Multinomial RBMs can directly model the distribution of ratings, capturing the nuances in 

user preferences more effectively than binary models. This leads to a richer understanding 

of user-item interactions. 
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By accurately modeling the actual distribution of ratings, Multinomial RBMs can 

potentially offer more precise recommendations, improving user satisfaction with the 

recommender system 

 

2.4 Multi-Layer Perceptrons (MLP) in Recommender Systems 

Multi-Layer Perceptrons (MLP), fundamental to the deep learning toolkit, have been 

widely adopted in recommender systems for their ability to model complex and non-linear 

relationships between users and items. By employing multiple layers of neurons, MLPs 

(Multi-Layer Perceptrons) can learn deep representations of data, enhancing the system's 

capacity to generate personalized recommendations. 

 

Zhang et al. [10] highlight the versatility of MLPs in recommendation tasks, noting their 

efficacy in capturing intricate user-item interaction patterns. This capability makes MLPs 

particularly useful as a baseline model for benchmarking the performance of 

recommender systems. By establishing a performance threshold with MLPs, researchers 

and practitioners can evaluate the effectiveness of novel algorithms or hybrid models 

against this established benchmark, ensuring that new methodologies offer tangible 

improvements over traditional deep learning approaches. 

 

MLPs serve not only as a powerful modeling tool but also as a critical benchmark in the 

continual quest to enhance recommender systems. Their straightforward architecture and 

the ability to process high-dimensional data make them an ideal starting point for 

comparing different machine learning techniques in recommendation contexts. However, 

the simplicity of MLPs may also limit their ability to handle certain recommendation-

specific challenges, such as the cold-start problem or capturing time-dependent dynamics 

without additional modifications or hybridization with other models. 
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2.4.1 Neural Collaborative Filtering 

The Neural Matrix Factorization (NeuMF) model, introduced by Xiangnan He et al. [16], 

represents a significant advance in the use of MLPs in recommender systems. This model 

merges the traditional matrix factorization techniques with multi-layer perceptrons to 

create a powerful hybrid approach that captures the nonlinear interactions between users 

and items more effectively than traditional methods alone. 

 

NeuMF is built on the premise that the interaction between user and item features can be 

modeled more precisely through a neural network framework than by mere dot products, 

as in classical matrix factorization. The architecture of NeuMF consists of two main 

components: a Generalized Matrix Factorization (GMF) model and an (Neural 

Collaborative Filtering (NCF) model. The NCF model is an MLP with embeddings as inputs. 

The GMF model handles the linear part of the user-item interaction, while the MLP 

captures the complex and non-linear relationships. 

 

The integration of these two components is typically achieved via a concatenation layer 

that combines the last hidden layer of the MLP with the output of the GMF. This 

concatenated output is then passed through a final prediction layer, which is usually a 

single neuron with a sigmoid activation function to predict the interaction probability. 

 

Training the NeuMF model involves optimizing a binary cross-entropy loss, which 

effectively measures the discrepancy between the predicted and actual interactions in the 

training data. This loss function is particularly suited for recommendation tasks where the 

goal is to predict a 'like' or 'dislike' (often encoded as 1 or 0). 

One of the key strengths of NeuMF is its flexibility in learning from implicit feedback (e.g., 

clicks, views) rather than explicit ratings. This makes it well-suited for scenarios where 

explicit feedback is sparse or unavailable. 
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Since its introduction, the NeuMF framework has been adapted and extended in several 

ways. For example, researchers have incorporated attention mechanisms to weigh 

different parts of the interaction differently or have added recurrent layers to better 

capture the sequence of interactions over time, enhancing the model's ability to handle 

dynamic user preferences and temporal effects. 

 

NeuMF has shown substantial improvements in recommendation quality across diverse 

domains, from e-commerce to multimedia services, proving its effectiveness over 

traditional collaborative filtering techniques. Its ability to integrate with other data 

sources and to be customized for specific contextual information further enhances its 

applicability and performance in real-world scenarios. 

 

 

Figure 1: Figure 3 from He et al. paper ”Neural Collaborative Filtering” [16], showcasing the architecture of the Neural 

matrix factorization model 
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2.5 Challenges 

The integration of machine learning into recommender systems, while transformative, 

presents a unique set of challenges that drive ongoing research and innovation in the 

field. 

Scalability and Computational Resources: As recommender systems aim to handle 

increasingly large and complex datasets, the computational demands rise correspondingly. 

Training sophisticated models like MLPs or RBMs requires substantial computational 

power, often necessitating advanced hardware or distributed computing environments 

[7,8]. 

Cold-Start Problem: The issue of making accurate recommendations for new users or 

items with little to no interaction history remains a significant challenge. While methods 

like content-based filtering and hybrid models offer potential solutions, fully overcoming 

this hurdle continues to be an area of active research [6]. 

Data Sparsity and Quality: Many recommender systems suffer from sparse datasets, 

where most potential user-item interactions are not observed. Additionally, the quality of 

available data, including the richness of item descriptions and the reliability of user 

feedback, can vary greatly, affecting the system's performance [4,5]. 

Model Interpretability and User Trust: Ensuring that the recommendations provided by 

machine learning models are interpretable and transparent is crucial for building user 

trust. This is particularly challenging with complex models like deep neural networks, 

where the decision-making process is not always clear [10]. 

 

2.6 Summary 

This chapter has charted the progression of recommender systems from their initial 

collaborative and content-based filtering roots to the advanced machine learning 
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frameworks that now define the field. Through the foundational insights of Goldberg et al. 

[1], Resnick et al. [2], Sarwar et al. [3], and the innovative applications of matrix 

factorization by Koren et al. [7], as well as deep learning explorations by Zhang et al. [10], 

we gain a comprehensive understanding of the mechanisms driving personalized 

recommendations. 

 

The integration of hybrid systems, particularly highlighted by Burke [6], underlines the 

importance of combining different methodologies to surmount the limitations inherent to 

any single approach. This multifaceted landscape, enriched by the machine learning 

advancements of matrix factorization and deep learning models like MLPs and RBMs, 

displays the relentless quest for more refined, accurate, and user-centric recommendation 

systems. 

 

However, the journey is punctuated by challenges (scalability, data sparsity, and the quest 

for interpretability) that remind us of the complexity involved in crafting effective 

recommender systems. 

 

This thesis positions itself within this dynamic narrative, aiming to leverage the discussed 

methodologies and insights to implement a flexible, data-agnostic recommender system 

based on RBM and MLP. The literature underscores the importance of addressing data 

sparsity and ensuring model scalability, which are crucial considerations for my project. 

 

Furthermore, the exploration of RBMs by Salakhutdinov, Mnih, and Hinton [8], along with 

the subsequent studies by Xie et al. [13], Yamashita et al. [14], and Ben Yedder et al. [15], 

provides a valuable framework for understanding the potential and challenges of 

employing such models in recommender systems. This background not only informs the 

technical implementation of the project but also highlights the need for careful 

consideration of model parameters, training strategies, and the integration of contextual 

information to enhance the recommendation process. 
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Similarly work by Xiangnan He [16], Zhang Q [17] reveal that MLPs can solve 

recommendation problems effectively. Zhang Q [17] and Rehman [20] also suggest that 

incorporating contextual information in the MLP model can enhance the recommendation 

quality. 
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Chapter 3: Dataset Description 

 

3.1 Overview of H&M Personalized Fashion Recommendations Dataset 

The dataset chosen for this study is the H&M Personalized Fashion Recommendations 

dataset, made available through a competition hosted on Kaggle. This dataset is 

particularly suited for building and evaluating recommender systems in the retail fashion 

domain. It includes diverse data types drawn from H&M Group's extensive online and 

retail store operations, which encompasses 53 online markets and about 4,850 stores 

globally. The dataset is primarily composed of transaction records, customer metadata, 

product metadata, and images, facilitating a comprehensive exploration of user 

preferences and product characteristics.  

3.1.1 Dataset Composition 

The dataset is structured into several key components: 

Transaction Data: At the heart of the dataset are over 32 million transaction records, 

providing a deep well of implicit feedback on customer preferences. Each transaction 

record encapsulates the essence of consumer behavior through user IDs, product IDs, 

purchase timestamps, and normalized prices. This data layer is instrumental for analyzing 

purchasing patterns and inferring user preferences. 

User Data: Enhancing the dataset's utility for personalized recommendation systems is the 

inclusion of demographic information about the users. Details such as age and postal code 

enable a nuanced segmentation of the customer base, allowing for tailored 

recommendations that resonate with specific demographic groups. 

Product Catalog: The dataset's richness is further augmented by an exhaustive product 

catalog, detailing product IDs, names, descriptions, and a plethora of categorical attributes 

such as color, size, and style. This detailed product information is crucial for content-based 

filtering and understanding the attributes that may influence purchasing decisions. 
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3.1.2 Characteristics and Considerations 

Descriptive Statistics of the Transactions Dataset: 

• Number of unique customers: 1,362,281 

• Number of unique articles: 104,547 

• Total number of transactions: 27,306,439 

• Average transactions per customer: 20.04 

• Average transactions per article: 261.19 

Distribution of transactions per customer: 

• Standard Deviation: 31.98 

• Min: 1 

• 25th Percentile: 3 

• 50th Percentile (Median): 8 

• 75th Percentile: 24 

• Max: 1,346 

 

 

 

Figure 2: Distribution of Transactions per Customer. This histogram illustrates the distribution of the number of 
transactions per customer in the dataset. The x-axis represents the number of transactions made by individual customers, 
while the y-axis, displayed on a logarithmic scale, shows the number of customers who made that many transactions. 
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The chart reveals that most customers have a low number of 5-10 transactions, with a few outliers having significantly 
higher transaction counts. 

 

 

Distribution of transactions per article: 

• Standard Deviation: 637.91 

• Min: 1 

• 25th Percentile: 12 

• 50th Percentile (Median): 58 

• 75th Percentile: 250 

• Max: 32,251 

 

 

Figure 3: Distribution of Transactions per Article. This histogram shows the distribution of the number of transactions per 
article in the dataset. The x-axis indicates the number of times each article was purchased, and the y-axis, displayed on a 
logarithmic scale, represents the number of articles with that many transactions. The distribution highlights that most 
articles are purchased relatively few times 200-300, with some articles experiencing a very high number of purchases. 

 

Volume and Variety: The large size of the dataset and its diverse range of data types 

(from transactional records to textual descriptions) presents an opportunity for data-

driven insights. However, this also introduces challenges in managing and processing the 

data effectively. 
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Sparsity: A common hurdle in large datasets is the sparsity of user-item interactions. 

Despite the voluminous transaction records, the vast array of products means that any 

single user interacts with only a small fraction of the inventory, posing challenges for 

collaborative filtering approaches. The dataset has a sparsity of 0.9998, indicating that 

only 0.02% of the possible user-item interactions are observed. 

 

Implicit Feedback: The dataset's reliance on purchase history as a form of implicit 

feedback, rather than explicit ratings or reviews, demands specialized modeling 

techniques. Unlike explicit feedback, implicit signals do not provide direct indications of 

dislike, requiring careful interpretation and handling in the recommendation algorithm. 

 

 
Figure 4: Histogram of Purchase Frequencies with Logarithmic Scale. This graph illustrates the number of occurrences for 

various purchase quantities within the transaction's dataset. The x-axis indicates the number of times a specific product 

was bought by a customer, while the y-axis, on a logarithmic scale, shows the total number of such purchase instances 

observed. Notably, the plot reveals several outliers where products were purchased an exceptionally high number of 

times, deviating from the common purchasing pattern. 

Diverse types of customers: By reviewing Figure 4 we can see that the dataset consists of 

diverse types of customers. Although there are mostly transactions with 1 or 2 quantities, 
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there are many transactions with more than 10 quantities. This could mean that we have 

customers that buy in bulk, potentially drop shippers or resellers. 

3.1.3 Temporal Dynamics 

Seasonality and Trends: The dataset provides a historical record of purchases that can be 

analyzed for seasonality and trends over time. Understanding these temporal dynamics 

can be critical for making timely recommendations, adjusting inventory levels, and 

planning marketing campaigns. 

 

Product Lifecycle: The inclusion of transaction timestamps allows for the study of product 

life cycles, from launch to clearance. This can inform strategies for recommending new 

items versus established products and managing the promotion of end-of-life products. 

 

3.1.4 Missing Values 

The dataset is reflective of real-world complexities, one of which is missing data. A notable 

example within the user demographic information is the age attribute. Missing age data 

can hinder the ability to fully personalize the shopping experience, as age is often a 

significant factor in fashion preferences. 

To mitigate the issues arising from incomplete data, we fill the missing values with the 

average value found in the dataset.  

 

 

3.2 Competition Winners 

The winning methodology employed by SENKIN13 in the H&M Personalized Fashion 

Recommendations Kaggle competition involved a strategic approach to candidate 

generation, feature engineering, model selection, and optimization. The key components 

of their approach included detailed feature engineering, model selection, data 

augmentation, downsampling, optimization, and a robust machine setup. 
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In terms of feature engineering, SENKIN13 focused on user-item interaction by analyzing 

user purchase frequency, recency, and item characteristics. They included temporal 

features such as the first and last transaction days and aggregated features for different 

periods like weeks, months, and seasons. Additionally, they incorporated aggregation 

features, such as the mean, max, and min of customer demographics, as well as difference 

and ratio features that captured the variations between various attributes. To enhance 

similarity measures, they utilized collaborative filtering scores and cosine similarity for 

both item-to-item and user-to-item comparisons. 

For model selection, the primary model used was LightGBM, which achieved a cv score of 

0.0441 and an lb score of 0.0367. CatBoost was also employed for handling categorical 

features, although it was less effective than LightGBM. An ensemble approach was 

adopted, combining five LightGBM and seven CatBoost classifiers, which resulted in a final 

lb score of 0.0371. 

Data augmentation and downsampling played a crucial role in their methodology. Various 

retrieval strategies were employed to increase the pool of relevant candidate items. To 

balance the dataset, they selected 1-2 million negative samples per week through 

negative downsampling. 

Optimization techniques were pivotal to their success. They improved inference speed by 

using TreeLite for LightGBM, achieving a twofold speed increase, and by running CatBoost 

on a GPU, resulting in a 30-fold speed improvement. Memory optimization was achieved 

by transforming categorical features into label encoding and applying memory reduction 

techniques. They also utilized distributed processing by splitting users into 28 groups for 

simultaneous inference across multiple servers, employing high-memory Google Cloud 

Platform (GCP) instances in the final week. 

The machine setup for their operations included a desktop with 128GB RAM, a 64-core 

CPU, a TITAN RTX GPU, and GCP instances with up to 300GB RAM. This combination of 

advanced feature engineering, model selection, data augmentation, and optimization 
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techniques enabled the team to effectively model complex interactions, leading to their 

first-place performance in the competition. 

. 
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Chapter 4: Methodology 

4.1 Data Preprocessing 

The preprocessing pipeline is designed to refine and transform raw e-commerce 

transaction data into an optimized format for model input. This section details the 

purpose and methodology of each step, highlighting how they collectively contribute to 

preparing the data for effective GMF, NCF, feature accommodated NCF and RBM 

networks training. 

 

4.1.1 Shrinking the Dataset 

Since we have a dataset containing 32 million transactions, we need to shrink it to fit our 

limitations. Since we have limited computational resources a shrink of the dataset could 

speed up the data preprocessing and network training process, as well as minimizing the 

computer memory we will eventually need for the referred procedures. The substantial 

size of our data set permits a significant reduction in its volume without negatively 

impacting the accuracy of our predictions. By retaining only a part of the dataset, we still 

have access to thousands of transactions, which is more than sufficient for training a 

neural network effectively. However, it's crucial to carefully select which part of the 

dataset to retain. By focusing on the part with the most active customers and most 

frequently purchased products, we ensure the dataset remains high in quality and density, 

making it an ideal input for our neural network. 

 

First, we will retain the top 1% of most active customers and best seller products of the 

dataset, which will be computationally lightweight and allow us to tune our models within 

the thesis's time constraints. This subset will also help us explore how our models perform 

in denser (less sparse) datasets. 

 

Second, we will retain the top 10% of most active customers and best seller products of 

the dataset. This reduction is necessary due to our hardware limitations and will enable us 
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to examine how our models behave in sparser datasets and how they scale when applied 

to larger data problems. 

 

 

Step 1: Transactions Count and Organization 

The initial step involves counting the purchases for each customer-article pair, keeping 

only the most recent transactions. This action groups the user-item transaction pairs 

reducing redundancy and adds a “purchase_count” column for each pair. 

 

Figure 5: Compression of transaction data by retaining only the latest transaction date for each user-item pair and 
counting the total purchases 

After this data compression we are left with 27.3 million transactions. 

Step 2: Enriching Customers with Distinct Purchases 

Customers are enriched with data indicating the number of distinct articles they have 

purchased. This step identifies the highly engaged customers, allowing us to pick a subset 

of dataset with the top customers. 

 

Figure 6: Customers enriched with the count of distinct articles purchased, highlighting highly engaged customers for 

further analysis. 

Step 3: Filtering Top K% Customers 

The dataset is narrowed down to the top K% of customers based on their purchasing 

diversity. This focus on active customers shrinks the dataset, reducing the sparsity of the 

dataset and training complexity. 

 

Step 4: Filtering Articles by Top K% Customers 
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Articles are then filtered to include only those purchased by the top K% customers. This 

ensures the model focuses on products that have a broad appeal to the most engaged 

segment of the customer base. 

 

Step 5: Enriching Articles with Customer Purchase Count 

Articles are further enriched by counting the distinct customers who purchased each 

product. This metric provides insight into the popularity and reach of products within the 

active customer base, allowing us to identify the best-selling products. 

 

Figure 7: Products enriched with the count of distinct customers, highlighting the best-selling items. 

 

Step 6: Filtering Top K% Articles 

The articles dataset is refined to include only the top K% of products, based on customer 

purchase count. This selection prioritizes articles with wider reducing the size and sparsity, 

while increasing the quality of the dataset. 

 

Step 7: Compact Transactions Filtering 

Transactions are filtered to retain only those involving the top K% customers and articles. 

This step ensures the model is trained on the most relevant and impactful customer-

product interactions. 

 

Steps 8: Recalculating Metrics in Filtered Dataset by repeating steps 

With the dataset now focused on the top K% of customers and articles, distinct product 

purchases by customers and distinct customer purchases per product are recalculated to 

reflect the refined dataset. 
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4.1.2 Calculate the User-Item Affinity Score 

Step 9: Append Article Availability Periods  

Each product is supplemented with information on its start and end dates of availability. 

This temporal data is crucial for accurately modeling when products were accessible to 

customers, which directly influences subsequent steps, particularly in identifying suitable 

negative samples. 

 

Figure 8: Products supplemented with start and end dates of availability, crucial for modeling product accessibility 

 

For the following steps we will adopt a method that centers data around each user's or 

item's unique purchasing behavior, compensating for variations akin to differing rating 

scales highlighted by Schafer et al. [4]. This method adjusts for each user's and item’s 

average purchase frequency, similar to how one might adjust for a user's average rating, 

ensuring a consistent baseline for comparison across varying purchasing behaviors. 

 

Step 10: Determining Customer Quantity Purchasing Behavior  

We calculate the median number of each product a customer buys. This step helps 

distinguish between bulk buyers like drop shippers and regular customers based on their 

purchase patterns. 

Consider a scenario where a drop shipper typically purchases items in bulk, such as 10 

units of a product per transaction, but buys only 3 units of a new product. This reduced 

quantity might suggest the product doesn't meet their usual criteria for bulk buying. 

Conversely, a regular customer who usually buys one unit of a product but purchases 3 

units of the same product indicates a strong preference. This differentiation is crucial for 

understanding customer satisfaction and product preference. 
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Step 11: Assessing Product Purchase Quantity Rates  

We analyze the median purchase quantity for each product across all customers. This 

helps identify if a product is commonly bought in bulk or singly, which can vary 

significantly across product categories. 

In evaluating product purchase rates, let's contrast two types of products: furniture and 

socks. Furniture, due to its higher price point and long-term use case, is typically 

purchased once. If a customer buys a piece of furniture multiple times, it could indicate an 

exceptional preference or a need for multiple units (e.g., outfitting a new home or office). 

However, the same quantity of purchases applied to socks (a product usually bought in 

multiples due to their everyday use and wear-and-tear) would have a different 

interpretation. 

 

Step 12: Establishing the Test Set Split Date 

For each customer, we identify a specific split date to divide transactions into training and 

test sets, following an 80-20 split. This division is based on temporal data, treating the test 

set date as the current reference point for model predictions. Transactions including and 

prior to this date are used for training, while those after are earmarked for prediction in 

the test set, ensuring a dynamic and personalized approach to data splitting. 

 

Step 13: Tracking Weeks Since Last Purchase  

We calculate the time elapsed, in weeks, between the most recent purchase date and the 

test set date for each customer-article combination. This metric is pivotal for refining the 

user-item affinity score, providing temporal context to each interaction. 

 

Step 14: Aggregating Purchase Behavior Metrics 

For each transaction, we compute the mean of the purchase quantities previously 

determined in Steps 10 and 11. This average encapsulates both the customer's buying 

habits and the product's typical purchase rate, laying the groundwork for the forthcoming 

calculation of the user-item affinity score. 
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Step 15: Computing Z-Scores for Transactions 

Z-scores are calculated to measure the deviation of a specific purchase quantity from the 

established average. This statistical metric helps to quantify the degree of preference (or 

lack thereof) a customer has for an item, based on their purchase history. 

The Z-score is a statistical measure that indicates the number of standard deviations a 

given value is from the mean. For our case, this translates into understanding how much a 

particular customer-article purchase quantity deviates from the expected purchasing 

pattern. 

The Z-score is computed using the traditional formula, however with alternations in the 

meaning of μ and σ: 

 

𝑍 =
(𝑋 − 𝜇)

𝜎
 

 

Where: 

• Z is the Z-score, 

• X is the purchase frequency of user-item relationship, 

• μ is the mean of the means (calculated in step 14) between the purchasing 

quantity customer behavior for all articles (from Step 10) and the purchase 

quantity rate for that article across all customers (from Step 11). 

• σ is the standard deviation of purchase quantities for the article across all 

customers and for all articles purchased by the customer. 

 

In our case for instance, if a customer has a history of purchasing any article in quantities 

averaging to 3 units and the article is usually purchased once (1), It means that μ = 2 

(mean (3,1)). Let’s assume a standard deviation of 0.5 units. 

We notice that the customer purchased in his lifetime 4 units (X=4) of this product, the Z-

score for this transaction would be: 
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𝑍 =
(4 − 2)

0.5
= 4 

 

 

This Z-score of 4 indicates that the purchase quantity is significantly higher than the 

average, suggesting a strong preference for the product at that time. Conversely, a Z-score 

close to 0 would indicate that the purchase quantity is very close to the average, 

suggesting a standard transaction without strong deviation from the norm. 

Top of Form 

 

 

Step 16: Affinity Score Formulation 

In this critical step, lies the core of my thesis on converting the implicit transaction data 

into an affinity score. We calculate the affinity score for each user-item interaction. This 

score is a key metric that synthesizes both the frequency and recency of purchases into a 

unified preference indicator. 

The formula for calculating the affinity score is as follows: 

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 1 + 𝛼 × 𝑍 + 𝛽 ×
1

𝑙𝑜𝑔2(𝑊𝑒𝑒𝑘𝑠 𝑆𝑖𝑛𝑐𝑒 𝐿𝑎𝑠𝑡 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 + 2)
 

 

 

Where: 

 

• The α x Z part can be assumed to be the score based on the purchasing behavior. 

• The β x 1/log2(Weeks Since Last Purchase+2) part can be assumed to be the 

recency score. 

• Z is the Z-score representing the normalized purchase frequency, highlighting how 

much a user's purchase quantity for an item deviates from their average behavior 

and the item’s behavior. 
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• Weeks Since Last Purchase quantifies the recency of the purchase, with a "+2" in 

the denominator to ensure the formula remains defined even for recent purchases 

(where the value might be 0). 

• α and β are tunable parameters that allow the model to be adjusted according to 

the specific characteristics of the dataset, ensuring that both frequency and 

recency contributions can be balanced appropriately. 

 

Rationale Behind the Formula: 

1. Comprehensive User Preferences: The formula integrates both frequency (through 

the Z-score) and recency (through the weeks since the last purchase), offering a 

holistic view of user preferences. This dual consideration ensures that both 

consistent purchasing patterns and the timeliness of those purchases are factored 

into the model's understanding of user-item affinity. 

2. Normalization Across Users: By utilizing the Z-score for purchase frequency, the 

formula normalizes user behavior, allowing for equitable comparisons across users 

with varying purchasing habits. This normalization is crucial for identifying true 

preferences in datasets with diverse user profiles. 

3. Weighted Recency: The inverse logarithm applied to the recency of purchases 

ensures that recent interactions are weighted more significantly than older ones, 

reflecting the evolving nature of user preferences. However, this weighting is 

carefully moderated to prevent recent purchases from disproportionately 

influencing the affinity score, maintaining a balanced perspective on user behavior 

over time. 

4. Model Fine-tuning: The inclusion of α and β parameters offers flexibility in 

adjusting the influence of purchase frequency and recency, respectively. This 

adaptability is essential for tailoring the model to best reflect the nuances of the 

specific dataset being analyzed, optimizing performance across a variety of e-

commerce contexts. 
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User – Item pairs found in the test set have no tangible “Weeks since last purchase” 

number, as the purchases were made in the future and they are to be predicted, by the 

recommender system. The affinity score in the test set is irrelevant and is not used to 

evaluate the model’s performance. Nonetheless, we can calculate the affinity score using 

a slightly modified formula, to get a sense of the direct test error of the prediction by any 

trained model. The difference between the modified formula that can be used in the test 

set and the above formula is that the recency score is replaced by the average result of all 

user – items recency score. 

 

The adoption of this formula stems from the necessity to capture the dynamic and 

multifaceted nature of user-item interactions within e-commerce platforms. By 

quantitatively modelling both the frequency and recency of purchases, the affinity score 

becomes a robust indicator of user preferences, capable of informing personalized 

recommendation systems with a high degree of accuracy and relevance. 

 

 

Step 17: Incorporating Negative Samples 

In this step we integrate negative sampling, a crucial technique in enhancing the training 

data for our model. This technique, noted in the research by He et al. [16], involves 

incorporating examples of non-purchase interactions. For each user, we look at the array 

of products that, while available, were not purchased by them during their active 

shopping timeline. From this pool, we randomly select a proportionate number of non-

purchased items relative to their actual transactions. 

 

These randomly selected, non-purchased items are then assigned an affinity score using 

the formula Affinity Score=1−δ, where δ is a parameter greater than 0. This scoring 

reflects the absence of a positive interaction between the user and the item, suggesting a 

lower likelihood or preference towards these products. The choice of δ allows for 
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adjusting the degree of negative bias introduced, offering a means to control the influence 

of these negative samples on the model's learning process. 

This process is crucial for training the neural network to distinguish between items that 

users have chosen versus those they have ignored, thereby enhancing the model's 

predictive accuracy. 

 

Step 18: Normalizing the Affinity Score to k Classes 

To prepare affinity scores for the Bernoulli input Multinomial RBM, we get the distribution 

ranking by percentile of these continuous scores, to normalize the outliers. Normalizing 

the scores directly led to having most of the scores near the middle and a few outliers at 

the edges of the scores, resulting to a not useful distribution. Then we normalize the 

distribution ranked by percentile to an integer scale from 1 to k, using a linear scaling 

formula that maps the full range of scores into this discrete set. This normalization not 

only facilitates computational efficiency by reducing the complexity of data processing but 

also enhances the interpretability of the model's outputs. The choice of integer values is 

particularly suited for the next steps in feeding data into the RBM, ensuring compatibility 

with the Bernoulli input Multinomial model's requirements and simplifying the 

representation of user-item interactions. 

 

After shrinking the dataset and adding the negative samples, we are left with the 2 subset 

datasets with the following characteristics: 

Description of Top 1% Dataset: 

• Sparsity of the dataset: 0.9710 

• Number of unique customers: 13,710 

• Number of unique articles: 1,055 

• Total number of transactions: 419,222 

• Average transactions per customer: 30.58 

• Median transactions per customer: 29.00 

• Average transactions per article: 397.37 

• Median transactions per article: 356.00 
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On average each customer is left with a pool of 530 products to choose from after the test 

date. On average the customers purchase about 5.50 articles in their test set period. Our 

Recommender system should aim to predict the purchase of those 5.50 articles of each 

customer out of the pool of 530 products.  

 

Description of Top 10% Dataset: 

• Sparsity of the dataset: 0.9923 

• Number of unique customers: 137,200 

• Number of unique articles: 10,559 

• Total number of transactions: 11,128,166 

• Average transactions per customer: 81.11 

• Median transactions per customer: 70.00 

• Average transactions per article: 1,053.90 

• Median transactions per article: 923.00 

 

On average, each customer is left with a pool of 6500 products to choose from after their 

test date. During the test period, customers typically purchase about 14.6 articles. 

Therefore, our recommender system should aim to accurately predict the purchase of 

these 14.6 articles for each customer from a pool of 6500 products. 

 

 

4.1.3 Preparing the Input Vectors for the MF, GMF and NCF 

For the MF (Matrix Factorization), GMF (Generalized Matrix Factorization) and NCF 

(Neural Collaborative Filtering MLP) models, we prepare our input vectors using the 

divided train and test datasets. We employ one-hot encoding for both users and items to 

feed into the respective embedding layers of our models. The target variable for these 

inputs is the affinity score, which serves as an indicator of user preference. 

To assess each model's performance accurately, we compile an additional dataset. This 

dataset comprises all items that were active beyond our designated test period and were 
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not present in the training set. This ensures that our evaluation reflects the model's ability 

to predict preferences for new, previously unseen items. 

 

4.1.4 Preparing the Input Vectors for the RBM 

To align with the Multinomial RBM's, Bernoulli input requirements, we structure a matrix 

with each input vector (row) to represent a customer, where elements (columns) 

correspond to one-hot encoded affinity ratings across k classes for each item. For 

example, a rating of 4 out of 5 translates into a vector [0,0,0,1,0], with the position of '1' 

indicating the rating class. A vector with all zeros indicates no interaction. Due to the 

extensive size and sparsity of our dataset (characterized by many transactions but limited 

interactions per customer-item pair) we use a sparse matrix in the Compressed Sparse 

Row (CSR) format. This setup ensures that each customer's interactions are compactly 

represented, preserving the data's richness while accommodating the RBM's 

computational constraints. 

 

4.1.5 Preparing the Input Vectors for the feature accommodated NCF 

In developing the input vectors for an NCF model that accommodates additional features, 

we leverage the encoded user and item data prepared for the GMF and NCF model inputs. 

To this foundational dataset, we append key demographic information—specifically, the 

customers' age, which has proven insightful for personalization. 

For the items, we enhance the input vectors with a carefully selected set of features that 

provide significant insight without overburdening our computational resources. These 

features include the product type, graphical appearance, color group, department, and 

index group. The selection of these features is strategic, chosen for their potential impact 

on user preference while considering the constraints of our hardware and the project 

timeline. 
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4.2 Overview of decisions across the models’ implementation 

In this section, we detail the strategic decisions that apply to all models used in this thesis, 

ensuring a consistent approach across different machine learning techniques in our 

recommender system. Each decision is substantiated with relevant literature, highlighting 

the rationale behind our choices. 

 

To optimize data handling in our recommender systems, we've chosen the Parquet file 

format for its efficient columnar storage, which is ideal for handling large datasets. 

Parquet offers high compression and fast read/write operations, crucial for the 

voluminous data involved in training and evaluating machine learning models. This format 

is especially beneficial when used in conjunction with Pandas, a robust Python library for 

data analysis. Pandas provide powerful data manipulation capabilities that, when paired 

with Parquet, facilitate efficient data operations and minimize memory usage. 

Additionally, we leverage Dask for its ability to handle large datasets in parallel, 

complementing Pandas by enabling scalable data processing across multiple cores. This 

strategic choice ensures scalability and efficiency in our data processing tasks, crucial for 

the dynamic requirements of neural network training. 

 

We have selected the PyTorch framework for its dynamic computation graph and efficient 

memory usage, which are critical for the rapid prototyping of deep learning models. This 

framework's flexibility and ease of use in defining complex models. 

 

PyTorch allows us to utilize CUDA which enables acceleration of deep learning algorithms 

by leveraging GPU hardware. This approach is essential for handling the computationally 

intensive tasks of training neural networks.  

We are using the Adam optimizer due to its effectiveness in handling sparse gradients on 

noisy problems, as Kingma and Ba describe: "Adam is computationally efficient, has little 

memory requirement, invariant to diagonal rescale of the gradients, and is well suited for 
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problems that are large in terms of data and/or parameters" [18]. This makes Adam 

particularly suitable for the large-scale data sets typical in recommender systems. 

In optimizing our neural network training processes, we have implemented a learning rate 

scheduler that reduces the learning rate upon detecting a plateau in model performance, 

as supported by A. Khodamoradi, et al. [19]. According to their paper, this dynamically 

manages the learning rate to stabilize training and prevent prolonged inefficiency in 

updates. 

 

The selection of evaluation metrics at K (such as precision@k, recall@k, NDCG@k, MAP@k 

and F1 Score@k) is pivotal for assessing the performance of recommender systems. These 

metrics are widely used in the literature to measure the relevance of recommended items 

within the top K suggestions, reflecting user satisfaction and system effectiveness. Zhang 

et al. provide a comprehensive overview of these metrics in their survey on deep learning-

based recommender systems, validating their importance in measuring the quality of 

recommendations [10]. 

 

4.3 Implementation of the Traditional Matrix Factorization Model Class 
For the implementation of any Neural Network in this study we extend the following 

BaseNetwork abstract class (Figure 36 in Appendix), which extends the torch.nn.Module 

class and contains lists that hold the evaluation metrics after each epoch. 

 

Matrix Factorization (MF) is a foundational machine learning model used in collaborative 

filtering for recommender systems. Matrix Factorization will be used as the robust 

baseline in my study due to its simplicity and effectiveness, allowing for straightforward 

interpretation and efficient computation. It serves as an ideal starting point for evaluating 

more complex models or hybrid approaches in collaborative filtering. 

 

In Matrix Factorization, the user-item interaction matrix is decomposed into two lower-

dimensional latent factor matrices, one for users and one for items. Each user and each 
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item are associated with vectors (embeddings) in a shared latent space of dimension 

embed_dim. The interaction between a user and an item is predicted by taking the dot 

product of their respective latent vectors, representing the user's overall interest in the 

item's characteristics and capturing the interaction strength or preference. 

In my implementation, MF (Figure 37 in Appendix) is defined as a class extending 

BaseNetwork with the following extensions: 

• User and Item Embeddings: nn.Embedding layers create embeddings for users and 

items. The dimension of these embeddings, embed_dim, is a critical 

hyperparameter that defines the size of the latent space. 

 

• Forward Pass: In the forward method, embeddings for users and items are 

retrieved based on user_indices and item_indices. The interaction score is 

computed as the sum of element-wise products (dot product) of these 

embeddings, which then is returned as the output. 

 
Figure 9: A diagram of the Matrix Factorization architecture 

 

4.4 Implementation of the Generalized Matrix Factorization Model Class 
In the realm of recommender systems, the Generalized Matrix Factorization (GMF) model, 

as described by He et al. in "Neural Collaborative Filtering" [16], builds upon the 
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traditional Matrix Factorization (MF) approach with an added layer for nonlinear 

transformations. This augmentation enhances the model's capacity to capture intricate 

user-item interactions, offering improved recommendation quality. 

 

GMF decomposes the user-item interaction matrix into latent factor matrices, with each 

user and item represented by vectors in a shared latent space. The model's architecture 

includes embedding layers for users and items, followed by a layer for nonlinear 

transformations applied to the element-wise product of embeddings. This additional layer 

enables GMF to discern complex patterns in user preferences and item characteristics 

beyond linear relationships. 

 

The implementation (Figure 38 in Appendix) and functions of the GMF model are almost 

identical to the implementation of the traditional MF model, with the only difference 

being the architecture definition, as it has an extra layer. 

 

 

Figure 10: A diagram of the Generalized Matrix Factorization architecture 
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4.5 Implementation of the Neural Collaborative Filtering Model Class 

 

Like the Generalized Matrix Factorization (GMF) model, NCF builds on Matrix Factorization 

(MF) foundations while introducing a neural network-based architecture. This architecture 

incorporates embedding layers for users and items and multiple hidden layers for 

nonlinear transformations. The dynamic addition of hidden layers allows NCF to discern 

complex patterns in user preferences and item characteristics, surpassing the linear 

limitations of traditional MF. 

 

The implementation of the NCF model (Figure 39 in Appendix) closely mirrors that of the 

GMF model, with the primary distinction lying in the architecture definition. The NCF class 

in PyTorch consists of embedding layers for users and items, followed by a sequence of 

fully connected layers (fc_layers) for nonlinear transformations. This sequence 

dynamically adjusts its structure based on the specified number of hidden units and 

layers, allowing for flexibility in model complexity. 

 

The forward method of the NCF class concatenates user and item embeddings and passes 

the resulting vector through the fully connected layers to generate the final output. The 

sigmoid activation function ensures output values are bounded between 0 and 1, 

representing the likelihood of user-item interactions. 
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Figure 11: Figure 2 from He et al. paper ”Neural Collaborative Filtering” [16], showcasing the architecture of the NCF 

 

4.6 Implementation details of MF, GMF and NCF 

Despite the distinct architectures of the Matrix Factorization (MF), Generalized Matrix 

Factorization (GMF), and Neural Collaborative Filtering (NCF) models, their operational 

processes and application methods remain consistent across all three. This uniformity 

ensures that each model can be seamlessly integrated and tested within the same 

framework, allowing for direct comparison and efficient optimization of their respective 

functionalities. The consistent handling of data preprocessing, training routines, and 

evaluation metrics across these models simplifies the experimental setup and enables a 

straightforward assessment of each model's performance in a controlled environment. In 

this section, we will delve into the specifics of how these operational processes and 

application methods were implemented. 

4.6.1 Data Preparation 

The RecommendationDataset class (Figure 41 in Appendix) is crucial in managing the 

preprocessing and normalization of data for the Matrix Factorization model. This class is 

designed to handle three primary types of input data: user IDs, item IDs, and their 
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corresponding ratings. These inputs are fundamental to collaborative filtering models, 

where the goal is to predict user preferences based on historical interactions. 

The structured approach to data handling ensures that the data fed into the neural 

network is clean, consistent, and correctly formatted. By standardizing the preprocessing 

steps within a dedicated dataset class, the scalability and maintainability of the model 

code are significantly enhanced, making it easier to adjust data inputs and preprocessing 

techniques as needed. 

 

4.6.2 Loading Datasets and Encoding User and Item IDs 

The training and testing datasets are loaded from parquet using pandas (Figure 42 in 

Appendix). Then we employ LabelEncoder from sklearn.preprocessing to convert each 

unique user and item identifier into a numerical format. This transformation is crucial 

because the MF model requires numerical input for indexing into user and item 

embedding matrices. Once encoded, these identifiers are used to create instances of the 

RecommendationDataset.  

Then, we create the train and test data loaders. The train loader processes data in 

batches, significantly reducing training time by allowing the model to update more 

frequently with smaller subsets of data. For the test loader, a larger batch size is used to 

optimize evaluation speed. Shuffling the data in the training phase ensures diversity in the 

training examples presented to the model, preventing it from learning unintended biases 

and improving its generalization across different data scenarios. 

Figure 12: Initialization of training and testing data loaders in PyTorch, specifying batch sizes, shuffle settings, and 

generator devices. 

Finally, we load the dataset with potential purchasable items for assessing the 

recommendation system's performance. This dataset organizes active items that each 

user may purchase post their last recorded interaction, excluding those previously 
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purchased as noted in the training set. By comparing the top 'k' recommended items from 

this dictionary for each user, against the actual purchases recorded in the test set, we can 

measure the effectiveness of the model in predicting user preferences and its potential 

real-world applicability.  

 

4.6.3 Model Initialization and Configuration 

Model initialization involves setting up essential components to ensure effective training. 

Key steps include determining the number of users and items from the encoded data, 

which informs the size of the embedding layers necessary for the Matrix Factorization 

model. An instance of the MF model is created with the calculated user and item counts. 

The mean squared error (MSE) loss function is employed for its suitability in regression-

based tasks like rating prediction. Optimization is managed by the Adam optimizer, 

leveraging its advantages in handling sparse gradients, as discussed in section 4.2. A 

learning rate scheduler is also used to adjust the learning rate based on performance, 

enhancing the training process by reducing the rate when improvements plateau. 

 

Figure 13: Setup of the matrix factorization model in PyTorch, detailing user and item counts, model initialization, and 

configuration of the loss function and optimizer. 
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4.6.4 Training Procedure 

The training procedure is central to optimizing the Matrix Factorization model's 

performance. The process involves several key steps: 

1. Tracking Actual Purchases: Before training, a dictionary is populated to track the 

actual items purchased by each user in the test set. This mapping is crucial for later 

validating the model's recommendation accuracy. 

2. Training Loop: The model undergoes training over a specified number of epochs. 

Each epoch consists of: 

a. Training the model with batches of user, item, and rating data from the 

training loader. 

b. Using the optimizer to adjust model weights based on the loss computed 

from the output and actual ratings. 

c. Periodically resetting gradients to prevent accumulation with 

optimizer.zero_grad(). 

3. Validation: After each epoch, the model's performance is assessed on both 

training and test data to calculate loss and error rates. These metrics help monitor 

the model's learning progress and adjust strategies if necessary. 

4. Performance Metrics: Key recommendation metrics such as hit rate, precision, 

recall, normalized discounted cumulative gain (NDCG), mean average precision 

(MAP), and F1 score are calculated to evaluate the model's effectiveness at 

predicting top K recommendations. 

5. Learning Rate Adjustment: A learning rate scheduler adjusts the learning rate 

based on the precision metric from the validation phase, optimizing the model's 

response to training dynamics and enhancing convergence efficiency. 
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Figure 14: Comprehensive Python function for training the recommendation model, including detailed steps for training, 

validation, metric evaluation, and learning rate adjustment using PyTorch and TQDM for progress tracking. 

 

 

4.6.5 Model Evaluation and Metrics Calculation 

In the training cycle of our recommendation model, we employ the validation process as a 

critical checkpoint to ensure the model's generalization capabilities on unseen data. This 

step is vital for preventing overfitting and confirming consistent performance under 

varying conditions. 
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We initialize the validate function by setting the model to evaluation mode. This is crucial 

for disabling training-specific behaviors, ensuring the model behaves consistently when 

assessing its performance. During validation, we track loss and absolute error, starting 

both metrics at zero to aggregate these values accurately across the dataset. 

Throughout the validation phase, we iterate over batches from the provided DataLoader, 

which contains user IDs, item IDs, and ratings. For each batch, we calculate loss using the 

specified criterion, which evaluates the discrepancy between predicted and actual ratings. 

Additionally, to calculate absolute error, we adjust ratings back to their original scale 

because our model's output is normalized. This adjustment is crucial for an accurate 

evaluation of how closely the model's predictions match the actual ratings. 

 

Both loss and absolute error are accumulated across all batches, offering a comprehensive 

view of the model’s performance over the entire validation dataset. By dividing the total 

loss by the number of batches, we obtain the average loss, reflecting the typical level of 

error the model produces against the validation data. Similarly, the average absolute error 

provides insight into the average discrepancy between the model’s predictions and the 

actual ratings, offering a direct measure of predictive accuracy. 

 

We validate the model on both the training and test sets. Validating on the training set 

allows us to monitor the model’s learning progress and convergence towards the training 

data. Although the ratings in the test set may not be entirely accurate due to the simplistic 

handling of recency scores during data preprocessing, we still calculate test error and loss. 

This provides a preliminary idea of how the model behaves on unseen data and helps us 

detect any potential overfitting. 
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Figure 15: Python function validate for evaluating a recommendation model, demonstrating the calculation of loss and 

absolute error during model validation using PyTorch, with outputs and ratings scaled back to their original range. 

 

4.6.6 Evaluation Metrics at K 

In the realm of recommender systems, evaluating the model’s performance extends 

beyond mere accuracy. It’s crucial to assess how well the model predicts the top items 

that users are most likely to engage with. This is where metrics evaluated at a specified 

number, K, play a vital role. These metrics, focusing on the top K recommendations, mirror 

real-world scenarios where users interact with a limited number of suggested items, 

making them fundamental for measuring user satisfaction and model effectiveness. 

 

Metrics Employed: 

1. Hit Rate at K (HR@K): This metric checks if at least one of the top-K recommended 

items matches the items actually interacted with by the user, offering a quick 

indication of whether the recommendations are broadly relevant. 
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2. Precision at K: This measures the proportion of relevant recommendations within 

the top K items, indicating the accuracy of the model in identifying items that are 

truly of interest to the user. 

3. Recall at K: It assesses the model’s ability to capture all relevant items within its 

top K recommendations, crucial for understanding the model's completeness in 

retrieving relevant items. 

4. Normalized Discounted Cumulative Gain at K (NDCG@K): This metric evaluates 

the ranking quality of the recommendations, giving more importance to hits at 

higher ranks, thus reflecting the practical utility of the ranking order in the 

recommendations. 

5. Mean Average Precision at K (MAP@K): MAP@K calculates the average precision 

across all users, considering the order of recommendations, and emphasizes the 

placement of truly relevant items within the top K slots. 

6. F1 Score at K: This combines precision and recall into a single metric, balancing the 

trade-offs between them and providing a holistic view of the model's performance 

at the specified K. 

These metrics are computed on the test dataset to ensure that our model not only aligns 

with user preferences accurately but also meets the operational standards required for 

real-world applications.  The evaluation implementation can be found at figure 44 and 45 

in the appendix. 

 

4.6.7 Exporting Results in DataFrame 

To efficiently manage and analyze the results from our model evaluations, we utilize the 

Dask library to export the predicted scores into a DataFrame format. This approach is 

essential for handling large datasets that result from the model’s predictions across both 

training and testing phases. 
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4.7 Demographic and Feature Enhanced Neural Collaborative Filtering (DFNCF) 
Considering that in some e-commerce cases additional demographic and item feature 

data may be available, we can develop a model which can leverage this extended 

information. The incorporation of such comprehensive data has been shown to 

significantly improve recommendation quality, as evidenced by research from Zhang et al. 

[17] and Israr ur Rehman, et al. [20] highlighting the effectiveness of integrating explicit 

and implicit user-item couplings and contextual features in deep collaborative filtering. 

We introduce the Demographic and Feature Enhanced Neural Collaborative Filtering 

(DFNCF) model. This model aims to enhance recommendation quality by extracting more 

nuanced latent features between users and items and across their interactions.  

 

In this section, we will explore the implementation of DFNCF, which builds upon the 

Neural Collaborative Filtering (NCF) framework by introducing additional input layers that 

incorporate item features and demographic data such as customer age. While maintaining 

operational consistency with the NCF model, DFNCF modifies the architectural framework 

and input handling in the forward function to accommodate the expanded data set. 

 

Figure 16: A diagram of the proposed Demographic and Feature Enhanced Neural Collaborative Filtering architecture 
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4.7.1 How DFNCF Works 

The Demographic and Feature Enhanced Neural Collaborative Filtering (DFNCF) model 

significantly enhances the traditional Neural Collaborative Filtering (NCF) by integrating 

both demographic information and detailed item features into the recommendation 

process. This approach allows for a deeper and more nuanced understanding of user 

preferences and item characteristics. 

 

Like in NCF, DFNCF uses user and item embeddings to capture latent factors, but it 

expands further by introducing additional embeddings for categorical features of items. 

Each item's feature is represented by its own embedding layer. These layers help the 

model capture specific attributes of items that might influence user preference: 

1. Product Type: Embeddings for product type allow the model to differentiate 

between categories of items, understanding which types are preferred by which 

types of users. 

2. Graphical Appearance: This feature captures the visual design or aesthetic of 

items, which can be crucial in domains like fashion or decor where visual aspects 

significantly impact user choice. 

3. Color Group: By embedding color groups, DFNCF can cater to user preferences 

related to color, which are often strong personal preferences. 

4. Department: This captures the broader classification of items, such as electronics, 

clothing, or home goods, aiding in segmenting recommendations according to 

departmental lines. 

5. Index Group: Typically used in retail to group items into logistical categories, these 

embeddings can help in modeling operational aspects like supply chain 

preferences or seasonal trends. 
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In addition to these item features, DFNCF incorporates the age of users as a direct 

numerical input, acknowledging that age can significantly affect purchasing patterns and 

preferences. 

 

The concatenated input layer, which combines user embeddings, item embeddings, 

categorical feature embeddings, and age, feeds into a multi-layer perceptron (MLP). The 

MLP similarly as in the NCF, consists of several hidden layers that process these inputs 

through non-linear transformations, facilitated by ReLU activation functions, culminating 

in a sigmoid output layer that predicts the probability of user-item interactions. 

 

By leveraging a rich dataset that includes demographic and categorical item features, 

DFNCF not only adheres to the operational processes typical of NCF but also enhances its 

architecture to accommodate a broader spectrum of inputs. This comprehensive approach 

ensures that DFNCF is well-suited for complex recommendation scenarios where 

additional data layers provide critical insights into user behavior and item desirability, 

significantly improving recommendation quality and relevance. 

 

4.7.2 Implementation of DFNCF Class 

The DFNCF class extends the BaseNetwork to create a model that incorporates both user 

and item embeddings with additional demographic and feature embeddings into a unified 

recommendation system. The constructor of DFNCF initializes several embedding layers 

that are specific to both user-item interactions and item-specific attributes, which enrich 

the model's capability to discern and learn from complex patterns in the data. 

 

• User and Item Embeddings: Like the NCF model, embeddings for users and items 

convert sparse indices into dense vectors, each of size user_item_embed_dim. 

These embeddings capture the latent factors from user-item interactions. 
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• Feature Embeddings: Each item feature such as product type, graphical 

appearance, color group, department, and index group is embedded separately. 

Each type of item feature is transformed into a dense vector of size 

features_embed_dim, allowing the model to capture specific properties of items 

that may influence user preferences. 

 

The architecture also incorporates age as a continuous feature directly into the network, 

reflecting its impact on user preferences without the need for embedding. 

 

The network's forward pass concatenates these embeddings along with the age input into 

a single feature vector. This combined vector is then processed through a sequence of 

fully connected layers (multilayer perceptron or MLP) defined in self.fc_layers. The MLP 

consists of several hidden layers that reduce dimensionality progressively, each followed 

by a ReLU activation to introduce non-linearity, culminating in a sigmoid output layer. This 

final layer outputs the probability that a user would prefer a given item, enabling binary 

classification of interactions. 
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Figure 17: Implementation of the Demographics and Feature Enhanced Neural Collaborative Filtering class in PyTorch, 
defining a neural network module for collaborative filtering with methods for embedding users and items. 

This expanded approach maintains operational consistency while enhancing the model’s 

input data for a more detailed recommendation system. 

 

4.8 Multinomial RBM 
In this section, we explore my implementation of the Multinomial Restricted Boltzmann 

Machine (RBM), a sophisticated model for collaborative filtering based on the seminal 

work by Salakhutdinov, Mnih, and Hinton [8].  
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Figure 18: Figure 1 from Salakhutdinov et al. paper ”Neural Collaborative Filtering” [16], showcasing the architecture of 

the Multinomial RBM [8] 

4.8.1 Implementation of Multinomial RBM class 

The MultinomialRBM  (Figure 47 in Appendix) is initialized with the number of visible 

units, hidden units, and rating classes (k). The visible units represent the product of items 

and their possible rating classes, and the hidden units capture latent features within the 

data. Weights and biases are initialized using a scaled normal distribution to start the 

training from a neutral stance, which helps in stabilizing the learning process early on. 

The implementation class (Figure 47 in Appendix) has the following functionalities: 

 

• Forward and Reverse Mappings: The model includes methods for mapping visible 

units to hidden probabilities (to_hidden) and reconverting hidden states back to 

visible probabilities (to_visible), leveraging the sigmoid and softmax functions 

respectively. These transformations are crucial for the Gibbs sampling process, 

allowing the model to approximate the underlying probability distribution of the 

data. 
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• Free Energy Calculation: The free energy function calculates the energy of a given 

visible state, providing a measure used during training to evaluate the likelihood of 

observing a given state. This function helps in optimizing the model parameters by 

minimizing the energy states of visible units corresponding to higher probabilities. 

• Gibbs Sampling: This method performs Gibbs sampling to approximate the 

likelihood of the data under the current model. It alternates between sampling 

hidden states given visible states and then resampling visible states, which is 

essential for training RBMs. The ability to compute the weighted average or exact 

sampling at the end of Gibbs steps provides flexibility in how the model's outputs 

are used for evaluation or further training. 

 

It is important to understand the purpose and process of Gibbs Sampling in RBMs, as 

detailed by Salakhutdinov, Mnih, and Hinton [8]. Gibbs sampling is employed to 

approximate the hidden states given visible data, crucial for learning the model's 

distribution. Starting with an initial visible state, the method iteratively samples hidden 

states based on current visible states and then resamples visible states from these hidden 

states. This process, repeated for a defined number of Gibbs steps per training iteration, 

helps the model to better approximate the underlying data distribution. Adjusting the 

number of Gibbs steps dynamically during training can optimize convergence and enhance 

the model’s ability to reconstruct input data accurately, thereby improving training 

efficiency and the quality of the generated recommendations. 

 

4.8.2 Loading the Data 

The RBMDataset class (Figure 48 in Appendix) is specifically designed to manage the 

loading of user-item interaction data from a sparse matrix format into a PyTorch-friendly 

format for training. It supports either direct loading from a file path where the CSR matrix 

is stored or handling an already loaded CSR matrix. Depending on the memory constraints 

and requirements of the training process, this class offers the flexibility to work with data 

in its native sparse format or convert it to a dense array. 
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Once the dataset is prepared, it is loaded into a DataLoader object, which facilitates batch 

processing during model training. In this context, we do not shuffle the records as the data 

represents specific user-item interactions where the order of users does not impact the 

training dynamics. 

 

4.8.3 Training the RBM 

We manage RBM training (Figure 49 in Appendix) using established deep learning 

procedures, selecting Adam as the optimizer due to its efficacy [18]. We set an initial 

learning rate and apply decay to optimize weight adjustments during training, including 

weight decay to curb overfitting. Throughout training, we dynamically adjust Gibbs 

sampling steps to refine the model’s convergence and data reconstruction accuracy, a 

process critical for learning the probability distribution effectively as detailed by 

Salakhutdinov, Mnih, and Hinton [8]. 

  

During each epoch, we process batches of data where Gibbs sampling—vital for training 

RBMs—is performed. This Monte Carlo method alternates sampling between hidden 

states from visible layers and resampling visible states, crucial for understanding the 

model's stability via free energy calculations. Our approach adjusts learning rates upon 

performance plateaus, enhancing efficiency using a strategy similar to the adaptive 

scheduler described by Khodamoradi et al. [19]. 

  

To evaluate our model's efficacy, we compute metrics such as HR@K, Precision@K, and 

others, reflecting the model’s predictive accuracy on user preferences. These metrics not 

only guide iterative improvements during training but also validate our methodological 

choices, aligning with studies emphasizing the importance of precision metrics in 

collaborative filtering systems [3, 10]. 
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4.9 Tuning the Models 
In this section, we describe the process of tuning hyperparameters for the traditional 

Matrix Factorization (MF) model, illustrating the broader strategy applicable to all models 

discussed in this thesis. The MF model is chosen for its simplicity, which facilitates a clear 

understanding of the hyperparameter tuning strategy. 

 

We aim to determine the optimal configuration of the MF model's hyperparameters using 

a dataset comprised of the top 1% of best-buying customers and best-selling products. 

This dataset has been condensed to enhance processing speeds. The affinity score within 

this dataset is binary, where '1' indicates interaction and '0' for non-interactions 

generated through negative sampling. We are not using the proposed formula yet, as we 

need to find the optimal values of the formula’s coefficients α, β and δ. 

 

The hyperparameters we focus on include embedding dimension size of users and items, 

learning rate, learning rate decay on plateau, and batch size. The optimal settings are 

identified based on their performance, measured by the Normalized Discounted 

Cumulative Gain (NDCG) and F1 score at the top K recommended items. NDCG is a 

standard research benchmark, while the F1 score is particularly suited to our e-commerce 

context, emphasizing both precision and recall. We choose K to be 12, as it is a small yet 

effective number that can be used for a marketing campaign. The choice of K = 12 was 

also the choice made by the Kaggle competition where we sourced our dataset. We can in 

a later stage, compare our MAP@12 score with other submissions in the competition to 

determine how well our recommender system behaves. 

 

 

To establish the optimal values for the hyperparameters, we set up the following arrays 

containing potential values for each parameter.  

embed_dims = [512, 1024, 2048, 4096] 

lr = [0.01, 0.005, 0.001] 

lr_decay = [0.25, 0.5, 0.75] 

batch_sizes = [128, 256] 
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We systematically explore every possible combination by training the model for 10 epochs 

with each set. The performance metrics, NDCG@12 and F1@12, are recorded for each 

combination and stored in a CSV file. This data will be analyzed post-training to identify 

the combination that maximizes these metrics, thereby determining the most effective 

hyperparameter settings.  

After choosing the most effective hyperparameters, we do the same iterative procedure 

to find the optimal values for the proposed Affinity Score formula’s coefficients α, β and δ. 

For the coefficients we check α and β starting from 0 and incrementing it by 0.25 until it 

reaches 3. Similarly, for δ we start from 1 and we increase it by 1 until we reach 3. 

We choose as the optimal values the combination of which the NDCG@12 and F1@12 are 

at a maximum. 

The tuning procedure adapts when optimizing other models to accommodate their 

specific architectures and additional parameters. For the Generalized Matrix Factorization 

(GMF) model, we employ a strategy similar to the MF model, focusing on the same core 

hyperparameters.  

We trialed the optimal parameters of the GMF by iterating over the following 

hyperparameter arrays: 

embed_dims = [512, 1024, 2048, 4096] 

lr = [0.00001, 0.000001, 0.0000001] 

lr_decay = [0.25, 0.5, 0.75] 

batch_sizes = [128, 256] 

 

However, the Neural Collaborative Filtering (NCF) model introduces more complexity due 

to its multi-layer perceptron (MLP) architecture. Here, not only do we optimize the typical 

hyperparameters like embedding dimensions and learning rates, but we also determine 

the ideal number of hidden layers and the size of each layer, crucial for capturing complex 

user-item interactions. 

We trialed the hyperparameters of the NCF over these arrays: 

embed_dims = [1024, 2048, 4096] 

hidden_units = [512, 1024] 

hidden_layers = [3, 4, 5] 

lr = [0.00001, 0.000005, 0.000001] 
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lr_decay = [0.25, 0.5, 0.75] 

batch_sizes = [128, 256] 

 

 

The Demographic and Feature Enhanced Neural Collaborative Filtering (DFNCF) model was 

trialed on the following arrays: 

embed_dims = [512, 1024, 2048] 

num_hidden_units = [512, 1024, 2048] 

num_hidden_layers = [3, 4, 5] 

lr = [1e-5, 5e-6, 1e-6] 

lr_decay = [0.25, 0.5, 0.75] 

batch_sizes = [128, 256] 

 

Similarly, for the Multinomial Restricted Boltzmann Machine (RBM), the focus extends to 

determining the optimal size of the hidden layer, which affects the model's capacity to 

learn and represent the data effectively.  The RBM was tuned on the following 

hyperparameter choices: 

n_hidden_units_fractions = [0.5, 0.15, 0.25, 0.35] 

lr_list = [5e-6, 1e-6] 

lr_decay = [0.25, 0.5, 0.75] 

weight_decay_list = [1e-5, 1e-6] 

batch_sizes = [128, 256] 

 

 

Each model's unique characteristics necessitate adjustments in the tuning strategy to 

ensure optimal performance across diverse recommender system architectures. 

 

4.10 Tuning Results of Model Hyperparameters 
After thorough training and optimization of various models with different hyperparameter 

combinations, we have successfully identified the optimal settings for each of our 

recommendation models. The results can be found in the appendix tables. Below are the 

details of the optimal hyperparameters for each model, as derived from extensive 

experiments catalogued in the Appendix. 

Matrix Factorization (MF) Model 

Commented [NT1]: To do 
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• Embedding Dimension: 512 

• Learning Rate: 0.01 

• Learning Rate Decay: 0.75 

• Batch Size: 128 

 

Generalized Matrix Factorization (GMF) Model 

• Embedding Dimension: 2048 

• Learning Rate: 0.005 

• Learning Rate Decay: 0.75 

• Batch Size: 256 

 

Neural Collaborative Filtering (NCF) Model 

• Embedding Dimension: 2048 

• Hidden Units: 256 

• Hidden Layers: 4 

• Learning Rate: 0.000005 

• Learning Rate Decay: 0.75 

• Batch Size: 256 

 

Demographic and Feature-Enhanced Neural Collaborative Filtering (DFNCF) Model 

• User-Item Embed Dimension: 1024 

• Feature Embed Dimension: 1024 

• Hidden Units: 2048 

• Hidden Layers: 5 

• Learning Rate: 0.00001 

• Learning Rate Decay: 0.25 

 

Multinomial Restricted Boltzmann Machine (RBM) Model 
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• Hidden Units Fraction: 0.35 

• Learning Rate: 0.000005 

• Learning Rate Decay: 0.5 

• Weight Decay: 0.000001 

• Batch Size: 256 

 

These results will be applied to adjust the coefficients of the Affinity Score formula for 

each model. 

 

4.11 Tuning results of Coefficients for Affinity Score Formula Across Models 
Upon employing the determined optimal hyperparameters, we experimented with various 

combinations of coefficients for the Affinity Score formula across different models. These 

coefficients play a crucial role in accurately reflecting user preferences and improving 

recommendation quality. The results can be found in the appendix tables. Here are the 

optimal values found for each model: 

Matrix Factorization (MF): 

• a = 1 

• b = 2.75 

• d = 1 

Generalized Matrix Factorization (GMF): 

• a = 1 

• b = 3 

• d = 2 

Neural Collaborative Filtering (NCF): 

• a = 0.5 

• b = 2.5 

• d = 1 

Commented [NT2]: To do 
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Restricted Boltzmann Machine (RBM): 

• a = 2 

• b = 0.5 

• d = 2 

Demographic and Feature-Enhanced Neural Collaborative Filtering (DFNCF): 

• a = 0 

• b = 1 

• d = 2  

 

Given this variance, adopting a one-size-fits-all approach for the coefficients might not be 

ideal. Each model behaves differently based on its architecture and the specific nature of 

the data it handles, which suggests that tailor-fitting the coefficients to each model could 

leverage these unique characteristics for better performance. Therefore, it might be more 

effective for us to continue using distinct combinations for each model. 
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Chapter 5: Results & Discussion 
 

In this chapter, we evaluate whether the proposed affinity scoring formula, which 

classifies user-item interactions into five distinct classes rather than the traditional binary 

classification, enhances the quality of recommendations and to compare the performance 

of advanced models, Multinomial RBM and DFNCF, against traditional models such as MF, 

GMF, and NCF.  

 

We have trained these models using the optimal hyperparameters identified in previous 

sections and the data preprocessing incorporates the optimal coefficients of the affinity 

score formula for each model as discovered from our analyses. 

 

For assessing whether the proposed affinity scoring formula, which classifies user-item 

interactions into five distinct classes rather than the traditional binary classification, 

enhances the quality of recommendations, we do a comparative analysis of the 

performance metrics for each model under two different scenarios:  

 

• The user-item affinity score is binary (0 for no interaction and 1 for interaction),  

• The user-item affinity score is spread across 5 classes as defined by our optimized 

formula.  

 

In the top 1% dense subset, we aim to predict whether the 5.5 articles purchased by 

customers, from an average pool of 530 available products, are found in the top 12 items 

ranked by the model (HR@12). Precision at 12 (Precision@12) measures the proportion of 

relevant items among the top 12 recommendations. Recall at 12 (Recall@12) indicates the 

proportion of the 5.5 purchased items that are successfully predicted within the top 12. 

Normalized Discounted Cumulative Gain at 12 (NDCG@12) assesses the ranking quality of 

the recommendations, giving higher scores for correctly predicting the more relevant 

items at higher ranks. Mean Average Precision at 12 (MAP@12) computes the average 
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precision across all relevant items, rewarding models that predict more relevant items 

earlier in the list. F1 Score at 12 (F1@12) combines Precision and Recall into a single 

metric to provide a balance between them. 

For the top 10% subset, the customers purchase on average 14.6 products, with an 

available pool of 6,500 products per customer. Here, HR@12 evaluates whether the 

model's top 12 ranked items include the 14.6 purchased products. Precision@12 

measures the proportion of relevant items among the top 12 recommendations, while 

Recall@12 indicates the proportion of the 14.6 purchased items found within the top 12. 

NDCG@12 assesses the ranking quality, rewarding higher ranks for more relevant items. 

MAP@12 computes the average precision across all relevant items, and F1@12 provides a 

balanced measure of Precision and Recall. 

 

 

5.1 Evaluation of the Proposed Affinity Score Formula on the Matrix Factorization 

Model 
In this section, we analyze the effectiveness of the proposed affinity score formula on the 

performance of the Matrix Factorization (MF) model. The MF model was evaluated over 

30 epochs on the top 1% subset and over 15 epochs on the top 10% subset for time 

efficiency. Performance metrics were recorded for each epoch.  
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5.1.1 Results 

Results on the top 1% dense subset is as follows: 

 

Figure 19: Matrix Factorization metrics  at 12 items comparison chart with 2 data preprocessing of the target 
approaches, binary interaction and affinity score calculated with the proposed formula. The dataset used is the top 1% 
subset of the initial dataset. 

From the chart, we can see a similar pattern for both approaches where we have 

increasing recommendation quality and plateaus at epoch 15.  

For binary interaction, the hit rate maxed at 0.0613, while for the affinity score calculated 

interaction, it maxed at 0.0608.  

The precision for binary interaction peaked at 0.0054, while for the affinity score 

interaction, it reached a high of 0.0053.  

The recall trajectories are closely aligned between the two methods. For binary 
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interaction, recall at 12 reached a maximum of 0.0141, whereas for the affinity score 

interaction, the peak was slightly lower at 0.0138.  

The NDCG for binary interaction topped at 0.0098, compared to 0.0096 for the affinity 

score interaction.  

The behavior of the MAP at 12 metric shows closely matching trends across epochs. The maximum 

MAP at 12 for binary interaction was 0.0039, and for affinity score interaction, it was slightly less 

at 0.0038.  

The F1 score at 12 for binary interaction reached its highest at 0.0073, and for affinity 

score interaction, it was very close at 0.0072. 

 

The results on the more challenging and expansive top 10% subset are as follows: 

 



   

 

78 
 

Figure 20: Matrix Factorization metrics at 12 items comparison chart with two data preprocessing approaches: binary 
interaction and affinity score calculated with the proposed formula. The dataset used is the top 10% subset of the initial 
dataset. 

The binary interaction method achieves a maximum hit rate of 0.0217, while the affinity 

score interaction method sees a peak of 0.0214. This represents a slight decrease of 1.36% 

when using the affinity score, indicating that in sparser datasets, the more granular rating 

system may not significantly enhance the model's ability to retrieve relevant items.  

The peak precision is 0.0018 for both approaches.  

The recall measures the model’s ability to identify all relevant items, with both 

approaches reaching a maximum of 0.0025. 

The NDCG, which accounts for the hit rate's position, again, both reached a maximum of 

0.0023.  

The MAP shows a maximum of 0.0007 for both approaches.  

The F1 Score, balancing precision and recall, was highest at 0.0019 for both approaches. 

 

5.1.2 Discussion 

Across both the denser top 1% subset and the more expansive and sparser top 10% 

subset, the multi-class scoring system demonstrated performance very similar to the 

traditional binary interaction approach across all metrics. This consistency suggests that 

the multi-class scoring system can be used as an alternative approach without any 

performance loss compared to the binary system, regardless of data density. However, it 

is evident that the simple Matrix Factorization (MF) model fails to fully leverage the more 

diverse and rich information that the multi-class approach offers. This limitation indicates 

that while the multi-class system is robust and adaptable, more advanced or tailored 

models may be required to effectively exploit the richer information provided by the 

multi-class scoring in real-world recommender system applications. 

 

It is also evident that the simple Matrix Factorization (MF) model fails to fully leverage the 

more diverse and rich information that the multi-class approach offers. The expected 

benefits of capturing nuanced user-item interactions were not realized, indicating a 
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potential limitation in the MF model's capacity to utilize the additional granularity 

provided by the multi-class scoring system. This highlights the need for more advanced or 

tailored models to effectively exploit the richer information encapsulated by the multi-

class approach in real-world recommender system applications. 

 

5.2 Evaluation of the Proposed Affinity Score Formula on the Generalized Matrix 

Factorization (GMF) Model 

In this section, we evaluate the influence of the proposed affinity score formula on the 

performance of the Generalized Matrix Factorization (GMF) model. Over 30 epochs on the 

top 1% subset and 15 epochs on the top 10% subset, we measured the same metrics as on 

the MF model. This evaluation aims to discern how different scoring methods affect the 

model's efficacy, particularly in how well it adapts to variations in data density. 

5.2.1 Results 

The data from the top 1% dense subset offers a critical insight into how the GMF model 

handles a scenario with frequent and diverse user-item interactions. By implementing a 

nuanced multi-class scoring system, we expect to observe a notable improvement in the 

model's ability to deliver precise and relevant recommendations, leveraging the rich 

interaction data available in this subset. 
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Figure 21: Generalized Matrix Factorization metrics at 12 items comparison chart with 2 data preprocessing of the target 
approaches, binary interaction and affinity score calculated with the proposed formula. The dataset used is the top 1% 
subset of the initial dataset. 

 

The binary interaction method plateaus just after 8 training epochs and achieves a 

maximum hit rate of 0.0283, while the affinity score interaction method sees a peak of 

0.0391 after 22 epochs. This represents a 38% increase when using the affinity score, 

suggesting that a more granular rating system significantly enhances the model's ability to 

retrieve relevant items.  

The peak precision for the binary interaction is 0.0024 compared to 0.0034 for the affinity 

score interaction, indicating a 42% improvement. This higher precision demonstrates the 

affinity method's effectiveness in increasing the proportion of true positive 
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recommendations.  

The recall measures the model’s ability to identify all relevant items, with binary 

interaction reaching a maximum of 0.0069 and affinity score interaction peaking at 

0.0091, a 32% improvement. This increase affirms that the multi-class scoring method is 

better at capturing relevant items across the dataset.  

The NDCG, which accounts for the position of the hit rate, saw a maximum of 0.0044 for 

binary interaction and 0.0063 for affinity score interaction, a 43% increase. This suggests 

that the affinity score method not only identifies more relevant items but also ranks them 

more effectively at the top of the recommendation list.  

The MAP shows a maximum of 0.0018 for binary interaction and 0.0026 for affinity score 

interaction, a 47% improvement. This increase reflects a more accurate overall prediction 

across all queries.  

The F1 Score, balancing precision and recall, was highest at 0.0033 for binary interaction 

and 0.0046 for affinity score interaction, demonstrating a 40% improvement. This 

confirms that the affinity scoring method yields a more balanced performance between 

precision and recall. 

 

The top 10% sparse subset of the dataset offers a contrast to the denser subset, exploring 

how the GMF model performs under less optimal conditions with fewer interactions per 

item. As with the denser subset, the nuanced multi-class scoring is anticipated to bring 

improvements, albeit possibly with more modest gains due to the inherent limitations of 

sparse data. 
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Figure 22: Generalized Matrix Factorization metrics at 12 items comparison chart with two data preprocessing 
approaches: binary interaction and affinity score calculated with the proposed formula. The dataset used is the top 10% 
subset of the initial dataset. 

The binary interaction method achieves a maximum hit rate of 0.0096 after 7 epochs, 

while the affinity score interaction method sees a peak of 0.0343. This represents a 256% 

increase when using the affinity score, suggesting that a more granular rating system 

significantly enhances the model's ability to retrieve relevant items even in sparser 

scenarios. 

The peak precision for the binary interaction is 0.0008 compared to 0.0030 for the affinity 

score interaction, indicating a 266% improvement. This higher precision demonstrates the 

affinity method's effectiveness in increasing the proportion of true positive 

recommendations in a sparse data environment. 

The recall measures the model’s ability to identify all relevant items, with binary 
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interaction reaching a maximum of 0.0011 and affinity score interaction peaking at 

0.0038, a 255% improvement. This increase affirms that the multi-class scoring method is 

better at capturing relevant items across the sparse dataset. 

The NDCG, which accounts for the position of the hit rate, saw a maximum of 0.0010 for 

binary interaction and 0.0037 for affinity score interaction, a 274% increase. This suggests 

that the affinity score method not only identifies more relevant items but also ranks them 

more effectively at the top of the recommendation list. 

The MAP shows a maximum of 0.0003 for binary interaction and 0.0012 for affinity score 

interaction, a 284% improvement. This increase reflects a more accurate overall 

prediction across all queries. 

The F1 Score, balancing precision, and recall, was highest at 0.0008 for binary interaction 

and 0.0030 for affinity score interaction, demonstrating a 259% improvement. This 

confirms that the affinity scoring method yields a more balanced performance between 

precision and recall. 

 

5.2.2 Discussion 

Across both the denser top 1% subset and the more expansive and sparser top 10% 

subset, the multi-class scoring system demonstrated significant improvements over the 

traditional binary interaction approach across all metrics. This consistency suggests that 

the multi-class scoring system can be effectively used as an alternative approach with 

substantial performance gains compared to the binary system, regardless of data density. 

Notably, the improvements were more pronounced in the sparse dataset, indicating the 

robustness and adaptability of the multi-class scoring method in less optimal conditions. 

Furthermore, the slightly more advanced Generalized Matrix Factorization (GMF) model, 

unlike the simpler Matrix Factorization (MF) model, successfully leverages the additional 

information provided by the multi-class approach, highlighting its potential to enhance 

recommendation quality by capturing more nuanced user-item interactions. 
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5.3 Evaluation of the Proposed Affinity Score Formula on the Neural Collaborative 

Filtering (NCF) Model 

In this section, we apply a similar approach to that used in the evaluation of the MF and 

GMF models to assess the impact of the proposed affinity score formula on the 

performance of the Neural Collaborative Filtering (NCF) model.  

The evaluation spans 30 epochs on the top 1% subset and 15 epochs on the top 10% 

subset, recording the same metrics as above. 

 

5.3.1 Results 

The results from the top 1% dense subset show significant insights into the NCF model's 

handling of scenarios with high interaction density. The implementation of a multi-class 

scoring system is anticipated to significantly enhance the model's capability in delivering 

precise and relevant recommendations by effectively utilizing the rich interaction data. 
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Figure 23: Neural Collaborative Filtering metrics at 12 items comparison chart with 2 data preprocessing of the target 
approaches, binary interaction and affinity score calculated with the proposed formula. The dataset used is the top 1% 
subset of the initial dataset. 

In the NCF model's evaluation all metrics are correlated. We observe that the 

recommendation quality for both the binary interaction and the affinity score interaction 

methods demonstrates a distinct pattern of early improvements followed by stabilization. 

The affinity score interaction method shows a steady increase in performance across all 

metrics until about the 4th epoch, where it begins to plateau, maintaining relatively stable 

values through subsequent epochs. This indicates that the model quickly adapts to the 

nuances of the multi-class scoring system but reaches its optimization limit early. In 

contrast, the binary interaction method shows minimal early gains and reaches a plateau 
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almost immediately from the 2nd epoch, indicating a more limited capacity to adapt and 

improve over time. 

 

The binary interaction peaks at a Hit Rate of 0.04995, whereas the affinity score 

interaction reaches a significantly higher peak of 0.12982, marking an increase of 

approximately 160%. This substantial improvement underlines the effectiveness of the 

affinity score in capturing more relevant user-item interactions. 

Precision for the binary approach peaks at 0.00432, with the affinity score method rising 

to 0.01197, representing an impressive 177% improvement. This reflects a markedly 

enhanced accuracy in the recommendations provided by the affinity score system. 

The binary method achieves a maximum Recall of 0.01122, which is substantially 

enhanced to 0.03353 by the affinity score, improving by about 199%. This increase 

indicates that the multi-class system is significantly better at retrieving relevant items. 

The NDCG for binary interaction tops at 0.00757, while the affinity score interaction 

climbs to a peak of 0.02395, an enhancement of approximately 217%. This improvement 

suggests a better ranking of recommended items that are more aligned with user 

preferences. 

The maximum MAP for the binary interaction reaches 0.00284, compared to a much 

higher 0.01070 for the affinity score interaction, which is an increase of around 277%. 

This indicates a more precise prediction of user preferences across all recommended item 

sets. 

The F1 Score for binary interaction reaches a peak of 0.00588, while for the affinity score 

interaction, it is significantly enhanced to 0.01654, marking a 181% improvement. 

 

The NCF model on the top 10% subset performs as follows: 
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Figure 24: Neural Collaborative Filtering metrics at 12 items comparison chart with 2 data preprocessing of the target 
approaches, binary interaction and affinity score calculated with the proposed formula. The dataset used is the top 10% 
subset of the initial dataset. 

In the evaluation of the NCF model on the top 10% subset, we observed the following 

trends across all metrics. Both the binary interaction and affinity score interaction 

methods showed a pattern of early improvements followed by stabilization until about the 

3rd epoch. This behavior indicates that the model quickly adapts to the nuances of the 

multi-class scoring system but reaches its optimization limit early.  

The binary interaction peaks at a Hit Rate of 0.024448, while the affinity score interaction 

reaches a significantly higher peak of 0.051718, marking an 112% improvement. This 

substantial enhancement underscores the effectiveness of the affinity score in capturing 

more relevant user-item interactions. 
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Precision for the binary approach peaks at 0.002109, whereas the affinity score method 

rises to 0.004583, representing an 117% improvement. This reflects a markedly enhanced 

accuracy in the recommendations provided by the affinity score system. 

The binary method achieves a maximum Recall of 0.002886, which is substantially 

enhanced to 0.005796 by the affinity score, marking a 101% improvement. This increase 

indicates that the multi-class system is significantly better at retrieving relevant items. 

The NDCG for binary interaction tops at 0.002774, while the affinity score interaction 

climbs to a peak of 0.005741, showing a 107% improvement. This suggests a better 

ranking of recommended items that are more aligned with user preferences. 

The maximum MAP for the binary interaction reaches 0.000902, compared to a much 

higher 0.001823 for the affinity score interaction, indicating a 102% improvement. This 

demonstrates a more precise prediction of user preferences across all recommended item 

sets. 

Finally, the F1 Score for binary interaction peaks at 0.002269, while for the affinity score 

interaction, it is significantly enhanced to 0.004742, marking a 109% improvement. 

These results highlight the superior performance of the affinity score interaction method 

over the binary interaction method across all metrics, reaffirming its effectiveness in 

enhancing recommendation quality, especially in sparser datasets like the top 10% subset. 

 

5.3.2 Discussion 

In the denser top 1% of the dataset, the adoption of the multi-class affinity scoring 

method substantially improves all performance metrics measured. This enhancement 

highlights that in scenarios with frequent and varied interactions, a refined scoring system 

that can capture a broader spectrum of user-item interactions markedly boosts the 

accuracy and relevance of the model's recommendations. The results show significant 

gains across all metrics, with improvements ranging from 160% to 277% over the 

traditional binary interaction model. Such substantial increases underscore the capability 

of the affinity score formula to leverage dense interaction data effectively. 
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In the more expansive and sparser top 10% subset of the dataset, the adoption of the 

multi-class affinity scoring method continues to yield notable improvements across all 

performance metrics. We observe an increase in recommendation quality, with the 

metrics improving by 101% to 117%. These results underscore the efficacy of the multi-

class affinity scoring method in handling sparser datasets, where traditional binary 

interaction methods tend to struggle. 

 

The consistency of these improvements across all metrics indicates that the affinity 

scoring method can significantly enhance the accuracy and relevance of recommendations 

in a variety of data scenarios, not just those with high interaction density. 

 

 

5.4 Evaluation of the Proposed Affinity Score Formula on the DFNCF Model 

Our methodology for training and obtaining results is identical to the evaluation 

procedure used for the above models. We chose optimal hyperparameters for the model 

and only altered the input data according to the two data preprocessing approaches: 

binary interaction and affinity score interaction. 

 5.4.1 Results 

In the top 1% dense subset, the recommendation quality of the DFNCF model increases 

with epochs, with the affinity score interaction approach plateauing after epoch 4 and the 

binary interaction approach plateauing on epoch 13. 
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Figure 25: Demographic and Feature-enhanced Neural Collaborative Filtering metrics at 12 items comparison chart with 
2 data preprocessing of the target approaches, binary interaction and affinity score calculated with the proposed 
formula. The dataset used is the top 1% subset of the initial dataset. 

The DFNCF model's performance on the dense subset using the affinity score interaction 

approach achieves a peak hit rate of 0.1339. In contrast, the binary interaction approach 

reaches a maximum hit rate of 0.0637. This represents a 110% improvement in the hit 

rate using the affinity score interaction method. 

The precision with the affinity score interaction approach reaches a peak of 0.0123. The 

binary interaction approach achieves a maximum precision of 0.0055. The precision 

improved by 122% with the affinity score interaction method. 

The recall using the affinity score interaction approach achieves a maximum of 0.0364. 

The binary interaction approach reaches a maximum recall of 0.0155. We observed a 

135% improvement in recall using the affinity score interaction method. 
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The NDCG for the model with the affinity score interaction approach reaches a maximum 

of 0.0249. The binary interaction approach achieves a maximum NDCG of 0.0107. The 

NDCG improved by 134% with the affinity score interaction method. 

The MAP using the affinity score interaction approach reaches a peak of 0.0112. The 

binary interaction approach shows a maximum MAP of 0.0043. MAP improved by 160% 

with the affinity score interaction method. 

The F1 score for the DFNCF model using the affinity score interaction approach achieves a 

peak of 0.0172. The binary interaction approach reaches a maximum F1 score of 0.0077. 

The F1 score improved by 125% with the affinity score interaction method. 

 

 

In the top 10% sparse subset, the recommendation quality of the DFNCF model shows 

improvement with epochs, with the affinity score interaction approach plateauing after 

epoch 3 and the binary interaction approach plateauing after epoch 2. 
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Figure 26: Demographic and Feature-enhanced Neural Collaborative Filtering metrics at 12 items comparison chart with 
2 data preprocessing of the target approaches, binary interaction and affinity score calculated with the proposed 
formula. The dataset used is the top 10% subset of the initial dataset. 

The DFNCF model's performance on the sparse subset using the affinity score interaction 

seems to overfit after epoch 3. The multi-class approach achieves a peak hit rate of 

0.0479. In contrast, the binary interaction approach reaches a maximum hit rate of 

0.0328. This represents a 46% improvement in the hit rate using the affinity score 

interaction method. 

The precision with the affinity score interaction approach reaches a peak of 0.0042. The 

binary interaction approach achieves a maximum precision of 0.0029. The precision 

improved by 44% with the affinity score interaction method. 
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The recall using the affinity score interaction approach achieves a maximum of 0.0053. 

The binary interaction approach reaches a maximum recall of 0.0039. We observed a 36% 

improvement in recall using the affinity score interaction method. 

The NDCG with the affinity score interaction approach reaches a maximum of 0.0054. The 

binary interaction approach achieves a maximum NDCG of 0.0046. The NDCG improved by 

18% with the affinity score interaction method. 

The MAP using the affinity score interaction approach reaches a peak of 0.0017. The 

binary interaction approach shows a maximum MAP of 0.0018. MAP decreased by 4% 

with the affinity score interaction method. 

The F1 score using the affinity score interaction approach achieves a peak of 0.0043. The 

binary interaction approach reaches a maximum F1 score of 0.0031. The F1 score 

improved by 40% with the affinity score interaction method. 

 

5.4.2 Discussion 

The evaluation of the DFNCF model across different data densities—comparing the top 1% 

and top 10% subsets—highlights the effectiveness of the multi-class affinity score system. 

In the denser top 1% subset, the multi-class affinity scoring method significantly improved 

all performance metrics, showing that a nuanced scoring system enhances 

recommendation accuracy and relevance in datasets with frequent interactions. In the 

sparser top 10% subset, although the improvements were less pronounced, the affinity 

score interaction still outperformed the binary interaction in most metrics. 

Overall, the multi-class affinity score formula proves to be versatile and consistently 

enhances recommendation quality across various data densities, making it a valuable tool 

for DFNCF-based recommender systems. 
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5.5 Evaluation of the Proposed Affinity Score Formula on the Multinomial RBM 

Model 

In this section, we assess the impact of the proposed affinity score formula on the 

performance of the Multinomial RBM model across two different subsets of data: the top 

1% dense subset and the top 10% more sparse subset. We compare two data 

preprocessing approaches: the traditional binary interaction, where the user-item affinity 

score is set to 0 for no interaction and 1 for interaction, and our proposed method that 

categorizes ratings into five classes according to our optimized formula coefficients. 

The Multinomial RBM model was trained using the same optimal hyperparameters but 

with these two distinct data preprocessing approaches to ascertain the impact of our 

affinity scoring method on various performance metrics. The model was evaluated over 30 

epochs, and metrics recorded include Hit Rate at K (HR@K), Precision at K, Recall at K, 

Normalized Discounted Cumulative Gain at K (NDCG@K), Mean Average Precision at K 

(MAP@K), and F1 Score at K. This evaluation helps us understand how the affinity score 

formula influences the model's performance in different data density scenarios, providing 

insights into its applicability across varying scales of user-item interactions. 

 

5.5.1 Results 

The results shown in the following charts are derived from the top 1% dense subset of the 

dataset. This subset represents a scenario with higher interaction density, offering a rich 

context for testing the efficacy of our multi-class affinity score system. The enhancements 

in recommendation quality observed here may reflect the model's ability to leverage the 

increased informational content in denser interaction environments. 
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Figure 27: Multinomial Restricted Boltzmann Machine metrics at 12 items comparison chart with 2 data preprocessing of 
the target approaches, binary interaction and affinity score calculated with the proposed formula. The dataset used is 
the top 1% subset of the initial dataset. 

The Affinity Score interaction method shows an increasing trend through the epochs and 

plateaus after 10 epochs of training. On the other hand, the binary interaction method 

plateaus after just 2 epochs. For binary interaction, the hit rate peaked at 0.0544, whereas 

for the affinity score interaction, it reached a maximum of 0.1587, indicating a significant 

improvement of 192% with the multi-class system. 

Since all metrics are correlated, we observe a similar behavior as before. The precision for 

binary interaction topped at 0.0046, while for the affinity score interaction, it climbed to a 

peak of 0.0144, meaning a 210% improvement. 

For binary interaction, recall at 12 reached a maximum of 0.0127, while for the affinity 

score interaction, the peak was substantially higher at 0.0377, showing a 196% 

improvement. 

The NDCG for binary interaction reached a high of 0.0230, whereas for the affinity score 

interaction, it significantly increased to 0.0690, indicating a 200% improvement. 
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The maximum MAP at 12 for binary interaction was 0.0036, compared to a much higher 

0.0103 for the affinity score interaction, indicating a 189% improvement. 

The F1 score at 12 for binary interaction hit 0.0064, while for affinity score interaction, it 

was much improved at 0.0196, indicating an improvement of 207%. 

 

Additionally, we analyze the performance of the model on the top 10% more sparse 

subset of the dataset. This part of the evaluation focuses on understanding how well the 

affinity score formula performs under conditions of sparser data availability, which is 

often a challenge in practical recommender system applications. The results from this 

subset help illustrate the robustness and adaptability of the proposed method across 

different levels of data sparsity. 
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Figure 28: Multinomial Restricted Boltzmann Machine metrics at 12 items comparison chart with 2 data preprocessing of 
the target approaches, binary interaction and affinity score calculated with the proposed formula. The dataset used is 
the top 10% subset of the initial dataset. 

 

The Affinity Score multi-class method indicates an increasing trend for the first 3 epochs, 

but plateaus at epoch 4, until epoch 10 when the Gibbs steps scheduler shifts from 1 

Gibbs step to 3 Gibbs steps. where it results in a quality collapse, at epoch 20 when the 

Gibbs steps scheduler shifts to 5 Gibbs steps, the quality of the results increases and 

plateaus at epoch 27.  This behavior could be because we may reach the capacity of the 

model by epoch 10 and we see a quality collapse. Then probably due to the reduce on 

plateau scheduler, with smaller learning rates we fine tune the weights to reach the 

maximum quality once again. 

The binary interaction method demonstrates a more consistent improvement in 

recommendation quality through the epochs. It shows a steady increase in performance, 

reaching a plateau around the 15th epoch, indicating that the model has effectively 

learned the user-item interactions and optimized its recommendations. 

The binary interaction peaks at a Hit Rate of 0.0884, whereas the affinity score interaction 

reaches a slightly lower peak of 0.0872, marking a -1% decrease. Precision for the binary 

approach peaks at 0.0084, with the affinity score method slightly decreasing to 0.0083, 

representing a -2% decrease. The binary method achieves a maximum Recall of 0.0116, 

which is slightly reduced to 0.0111 by the affinity score, resulting in a -4% decrease. The 

NDCG for binary interaction tops at 0.0425, while the affinity score interaction climbs to a 

peak of 0.0449, showing a 6% improvement. The maximum MAP for the binary 

interaction reaches 0.0044, compared to a higher 0.0048 for the affinity score interaction, 

which is an 11% improvement. The F1 Score for binary interaction reaches a peak of 

0.0091, while for the affinity score interaction, it is slightly lower at 0.0088, marking a -3% 

decrease. 

These results indicate that while the affinity score method shows improvements in certain 

metrics like NDCG and MAP, it experiences slight decreases in Hit Rate, Precision, Recall, 

and F1 Score compared to the binary interaction method. 
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5.5.2 Discussion 

The evaluation of the Multinomial Restricted Boltzmann Machine (RBM) model across 

both the top 1% dense subset and the top 10% sparse subset reveals key insights into the 

effectiveness of the multi-class affinity score system. In the top 1% subset, characterized 

by higher interaction density, the affinity score interaction method significantly improves 

recommendation quality. The metrics score dramatic increases, ranging from 189% to 

210%, demonstrating the method's ability to capture nuanced user-item interactions and 

enhance recommendation accuracy in dense datasets. 

In the top 10% sparse subset, the binary interaction method shows a more consistent 

improvement, plateauing around the 15th epoch. While the affinity score method 

experiences some fluctuations, it still achieves comparable results. It shows slight 

decreases in Hit Rate (-1%), Precision (-2%), Recall (-4%), and F1 Score (-3%), but improves 

NDCG (6%) and MAP (11%). These results indicate that the affinity score method, while 

not always outperforming the binary method in every metric, enhances ranking quality 

and average precision, capturing more detailed user-item interactions even in sparse 

datasets. 

Overall, the multi-class affinity score system proves robust and adaptable. It excels in 

dense datasets by significantly enhancing all performance metrics and offers advantages 

in ranking and precision in sparse datasets. This suggests that the affinity score system is a 

valuable tool for recommender systems, capable of improving performance across varying 

data densities. 

 

5.6 Comparing the performance of the models 

In this section, we will compare the performance of all models across various metrics and 

training time to assess their efficiency. The models were trained on a machine with an 
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Nvidia GPU RTX 4090, consisting of 24GB VRAM and 16,384 CUDA cores with clock speeds 

of 2595 Mhz. The machine also had 192GB of DDR5 RAM with clock speed of 5200 MHz. 

The CPU of the machine is Intel’s i7 14700 with clock speed of 5.3 GHz, was not utilized for 

the training of the network as we leveraged PyTorch’s ability to train models on the GPU, 

however it was used for transferring data between RAM and GPU VRAM and for minor 

calculations when using numpy arrays. 

  

5.6.1 Comparing the models on the top 1% subset 

We begin with a detailed examination of the binary interaction results on the top 1% 

dense subset, followed by comprehensive charts illustrating the performance of each 

model.  
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Figure 29: Comparative Performance of all 5 Models Across Different Metrics 
The charts illustrate the performance comparison of five models (MF, NMF, GMF, DFNCF, and RBM) on the top 1% subset 
of the dataset using the binary interaction method. Each chart represents one performance metric: Hit Rate @ 12, 
Precision @ 12, Recall @ 12, NDCG @ 12, MAP @ 12, and F1 Score @ 12. The x-axis shows the number of epochs, and the 
y-axis shows the corresponding metric values. 

Model Train Time 
(in minutes) 

 

RBM 00:32 

GMF 3:00 

MF 2:53 

NCF 5:16 

DFNCF 12:39 

Figure 30: Training times for different models on the top 1% subset using Binary Interaction, with RBM being the fastest 
and DFNCF the slowest. 

After studying the charts, we observed the following: 

DFNCF consistently achieves the highest metrics in almost all categories. These results indicate its 



   

 

101 
 

superior ability to capture user preferences and provide accurate recommendations. DFNCF 

requires the longest training time, clocking in at over 12 minutes. This extended time can be 

attributed to its complex modeling of user-item interactions and extra embedding inputs, which, 

while effective, demands significant computational resources. 

RBM performs exceptionally well in terms of ranking quality, achieving the highest NDCG@12 of 

0.0230 and competitive scores on the rest of the metrics. This indicates its robust capability in 

ranking relevant items higher. RBM stands out for its efficiency, with the shortest training time of 

just 32 seconds. This makes it an attractive option when quick model training is necessary, though 

it slightly trails DFNCF in some performance metrics. 

NCF also demonstrates strong performance, with a training time of just over 5 minutes, NCF offers 

a balanced trade-off between performance and training duration. Its use of neural networks to 

model complex interactions helps achieve this balance. 

MF shows good performance, showcasing the reason why it is considered as the established 

recommendation algorithm. These metrics indicate that MF, although simple, can effectively 

model user-item interactions but doesn't outperform DFNCF. MF's training time is relatively 

efficient compared to DFNCF, but less so than RBM. 

GMF lags behind the other models in performance metrics, although it stabilizes quickly, its 

capability to capture and predict user preferences is limited. It has close training time to the MF 

model as it they have similar architecture. 

Based on the comparative analysis, DFNCF emerges as the top-performing model in terms 

of recommendation quality, consistently achieving the highest metrics across most 

categories. However, this superior performance comes with the longest training time 

trade-off. MF follows closely in recommendation quality, striking a balance between 

effectiveness and training duration. RBM stands out for its exceptional efficiency, 

achieving competitive ranking quality with the shortest training time, making it a strong 

candidate when quick model training is crucial. NCF offers good performance metrics, but 

its efficiency falls behind as it takes moderate training time. GMF is the least effective in 

capturing user preferences and could be avoided for such a scenario. 

 

We continue our exploration journey by comparing the models on the same top 1% dense 

subset but on the proposed multi-class interaction target, using the proposed formula 

during data preprocessing. 
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Figure 31: Comparative Performance of all 5 Models Across Different Metrics 
The charts illustrate the performance comparison of five models (MF, NMF, GMF, DFNCF, and RBM) on the top 1% subset 
of the dataset using the multi-class interaction method. Each chart represents one performance metric: Hit Rate @ 12, 
Precision @ 12, Recall @ 12, NDCG @ 12, MAP @ 12, and F1 Score @ 12. The x-axis shows the number of epochs, and the 
y-axis shows the corresponding metric values. 

Model Train Time 
(in minutes) 

RBM 00:38 

GMF 3:00 

MF 2:54 
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NCF 5:17 

 

DFNCF 12:36 

Figure 32: Training times for different models on the top 1% subset using Multi-Class Interaction, with RBM being the 
fastest and DFNCF the slowest. 

 

After examining the results of the multi-class interaction target, we observed similar 

results regarding the training times of the models, compared to the binary interaction. 

The RBM is still the fastest, even with the increase in the number of nodes in the visible 

layer from 2 to 5, and more nodes in the hidden layer, as the hidden layer size is relative 

to the visible layer and, as found from our fine-tuning procedure, accounts for 35% of the 

size of the visible layer. 

Regarding recommendation quality, the RBM model leverages the more nuanced 

information created from the proposed formula most effectively. RBM outperforms all 

models across all metrics except MAP@12. DFNCF is the second-best performer, 

surpassing all other models except RBM across all metrics. In the MAP metric, DFNCF 

outperforms RBM. 

NCF ranks third in recommendation quality and is very close to DFNCF in performance. MF 

and GMF models perform similarly, with MF performing slightly better, but both are 

significantly worse than the top three models. This result suggests that the simplicity of 

the product dot element approach on the embeddings in MF and GMF fails to recognize 

user-item affinities as effectively as the deep learning models. 

Based on the comparative analysis of the multi-class interaction target, RBM emerges as 

the top-performing model, achieving the highest metrics across almost all categories with 

the shortest training time.  
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5.6.2 Comparing the models on the top 10% subset 

Here is a detailed examination of the binary interaction results on the top 10% expansive 

subset with charts illustrating the performance of each model. 

 

 

 

 

Figure 33: Comparative Performance of all 5 Models Across Different Metrics 
The charts illustrate the performance comparison of five models (MF, NMF, GMF, DFNCF, and RBM) on the top 10% 
subset of the dataset using the binary interaction method. Each chart represents one performance metric: Hit Rate @ 12, 
Precision @ 12, Recall @ 12, NDCG @ 12, MAP @ 12, and F1 Score @ 12. The x-axis shows the number of epochs, and the 
y-axis shows the corresponding metric values. 
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Model Train Time 

 

RBM 0:24:38 

GMF 2:52:56 

MF 2:11:38 

NCF 4:29:37 (for 
10 epochs), 
6:44:25 
(expected for 
15 epochs) 

DFNCF 6:28:30 (for 
10 epochs), 
9:42:45 
(expected for 
15 epochs) 

Figure 34: Training times for different models on the top 10% subset using Binary Interaction, with RBM being the fastest 
and DFNCF the slowest. 

 

After examining the performance of the models on the top 10% subset using binary 

interactions, we observed the following results: 

The RBM model outperforms all other models across all metrics, making it the best 

performing and most efficient model. It achieves the highest score across all metrics. 

Additionally, RBM has the shortest training time of just over 24 minutes, highlighting its 

robust capability in ranking relevant items higher and offering exceptional efficiency. 

The RBM model performs exceptionally well in terms of ranking quality, achieving the 

highest NDCG@12 of 0.0391 and competitive scores on the other metrics. Its efficiency is 

notable, with the shortest training time of just over 24 minutes, making it an attractive 

option when quick model training is necessary. RBM's ability to rank relevant items higher 

makes it a strong candidate despite slightly trailing DFNCF in some performance metrics. 

The DFNCF model ranks second in terms of performance. It achieves high metrics across 

most categories, demonstrating its superior ability to capture user preferences and 

provide accurate recommendations. However, this model requires the longest training 

time at over 6 hours. The complexity of modeling user-item interactions and additional 

embedding inputs contribute to its extended training duration. 
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The NCF model ranks third, providing good recommendation quality. It offers a balanced 

trade-off between performance and training duration, with a training time of just under 

4.5 hours. NCF effectively leverages neural networks to model complex interactions, 

achieving strong precision and recall metrics, though it falls behind DFNCF in overall 

performance. Its performance metrics, particularly in recall, make it a dependable model, 

although it falls short of the top performers. 

The MF model, although simple, ranks fourth. It shows good performance with a relatively 

efficient training time of approximately 4.5 hours. While it effectively models user-item 

interactions, MF does not outperform the top three models in recommendation quality. 

Its recall and precision metrics are reliable but not as high as those of RBM, DFNCF, and 

NCF. 

The GMF model is the worst performing among all models. It takes over 2 hours to train, 

which is longer than the MF model. GMF's ability to capture and predict user preferences 

is limited, resulting in lower performance metrics across the board. 

In the comparative analysis of the top 10% subset using binary interactions, RBM emerges 

as the top-performing model, achieving the highest metrics across all categories with the 

shortest training time. This makes RBM both the best performing and the most efficient 

model. DFNCF, while achieving high metrics, requires the longest training time and thus 

ranks second. Our proposed advanced models seem to outperform the traditional models 

in more scaled problems.  

We also note that the NCF and DFNCF models were trained for 10 epochs instead of 15 

due to their long training times and the performance plateau observed. This decision was 

made to manage the extensive training times while still achieving reliable performance 

results within the thesis time constraints. 

 

We continue with the multi-class interaction comparison 
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Figure 35: Comparative Performance of all 5 Models Across Different Metrics 
The charts illustrate the performance comparison of five models (MF, NMF, GMF, DFNCF, and RBM) on the top 10% 
subset of the dataset using the multi-class interaction method. Each chart represents one performance metric: Hit Rate 
@ 12, Precision @ 12, Recall @ 12, NDCG @ 12, MAP @ 12, and F1 Score @ 12. The x-axis shows the number of epochs, 
and the y-axis shows the corresponding metric values. 

 

The training times for the models are identical with the ones measured on the binary interaction. 

The only model with different training time is the RBM as it has now more nodes in the visible 

layer, as we need 5 nodes per product to represent the rating, instead of 2 and the hidden layer 

size grows proportionally to the visible layer. The training time for the RBM doubles to 1 hour. 
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By analyzing the results, we conclude that: 

The RBM model once again outperforms all other models across all metrics, solidifying its status as 

the best performing and most efficient model. However, after epoch 5, RBM's performance 

plateaus, indicating it has maybe reached its capacity. It is probable we assigned a limiting number 

of hidden nodes to solve the problem on the expansive dataset, as the proportion of hidden to 

visible nodes was set to 35% during tuning the model on the smaller dataset subset at section 4.9. 

This leads to a decline in recommendation quality. Despite this, RBM remains the top choice for 

both performance and efficiency. 

Interestingly, the NCF model outperforms the more advanced DFNCF model across all metrics in 

the multi-class interaction setting. NCF demonstrates strong recommendation quality, leveraging 

neural networks to effectively model complex user-item interactions. Its training time is 

reasonable compared to DFNCF, making it a robust and efficient option. 

The DFNCF model, while still performing well, is outperformed by NCF in this setting. It shows 

good metrics but does not reach the same level of precision, recall, or ranking quality as NCF. 

DFNCF's extended training time remains a significant factor, requiring careful consideration when 

choosing a model for deployment. 

The GMF model demonstrates improved performance in the multi-class interaction scenario, 

outperforming the MF model. GMF effectively leverages the more insightful multi-class interaction 

data, achieving better metrics across the board compared to MF. This improvement highlights 

GMF's potential in scenarios where deeper insights from data can be harnessed. 

The MF model, which performed relatively well in the binary interaction scenario, is now 

outperformed by GMF. The traditional simplicity of MF does not capture the nuanced information 

as effectively as GMF in the multi-class interaction setting. As a result, MF ranks lower in this 

comparison. 

In the multi-class interaction scenario for the top 10% subset, RBM once again emerges as the best 

performing and most efficient model, with its performance peaking before potential overfitting. 

NCF surprisingly surpasses DFNCF, showcasing strong metrics and efficient training. DFNCF, while 

still effective, is edged out by NCF in this context. GMF outperforms MF, leveraging the multi-class 

interaction data more effectively. These observations suggest that RBM is consistently the top 
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model, with NCF and DFNCF offering robust alternatives depending on the specific requirements 

and constraints of the recommendation system. 
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Chapter 6: Conclusion 

 

In this thesis, we have delved deeply into the development and evaluation of advanced 

machine learning-based recommender systems, aimed at optimizing product 

recommendations in the e-commerce sector using the H&M dataset. Our comprehensive 

approach has yielded several significant conclusions, highlighting the effectiveness of our 

methods and providing valuable insights for future research and practical applications. 

 

Affinity Score Formula Impact 

One of this thesis' pivotal contributions is introducing a novel multi-class affinity score 

formula. This formula classifies user-item interactions into five distinct classes, as opposed 

to the traditional binary interaction method. The multi-class approach significantly 

enhances the granularity and accuracy of the recommendations. 

• Enhanced Performance: The multi-class affinity score formula consistently 

outperformed the traditional binary method across GFM, NCF and DFNCF models 

and datasets tested. This improvement was especially pronounced in the denser 

dataset, where the detailed classification of interactions helped the models better 

understand user preferences and make more accurate predictions. On the MF and 

RBM it achieved similar performance. 

• Robustness and Adaptability: The success of the multi-class formula in both dense 

and sparse datasets underscore its robustness and adaptability. This formula can 

effectively capture the nuances of user behavior, making it a valuable tool for a 

wide range of e-commerce applications. Since the proposed formula is calculated 

in the data preprocessing step it can work with any machine learning model, 

without any tweaks in the architecture. 

•  

 Model Performance 

We evaluated the performance of five different models where: 
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• The Multinomial RBM model emerged as the top performer, achieving the highest 

metrics across almost all evaluation categories. Its ability to handle sparse datasets 

effectively and its relatively short training times make it an excellent choice for 

real-world applications where computational efficiency is crucial. 

• The DFNCF model also demonstrated high performance, particularly excelling in 

the dense dataset when using the binary interaction approach. However, its 

complexity resulted in longer training times. Despite this, the inclusion of 

demographic and item-specific features, makes it cold-start-proof to new users or 

items, as they can be clustered to the known demographic and item-specific 

features embeddings. 

 

The above more advanced models perform better than the following traditional ones. 

 

• The MF model served as a robust baseline due to its traditional establishment, 

simplicity and effectiveness in collaborative filtering. It performed well in scenarios 

with dense data but showed limitations in handling sparse datasets. It could not 

leverage the more nuanced multi-class interaction data. The primary advantage of 

MF is its computational efficiency and ease of implementation, making it suitable 

for applications where quick deployment and scalability are essential. However, its 

linear nature limits its ability to capture complex interactions between users and 

items. 

• GMF extends the traditional MF model by incorporating a layer for nonlinear 

transformations. This augmentation enhances its capacity to capture intricate user-

item interactions, offering improved recommendation quality over MF in sparse 

datasets.  

• NCF demonstrated high performance across various datasets, excelling in capturing non-

linear relationships between users and items. However, it falls behind the DFNCF and RBM 

network. 
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While our results are derived from a dataset specific to the fashion e-commerce industry, 

the principles and methodologies we employed have broader applicability. The proposed 

affinity score formula relies on transaction dates and purchasing quantities, which are 

common data points in most e-commerce and retail datasets. This suggests that our 

approach can potentially be generalized to other sectors within the e-commerce and retail 

industries, provided that similar transactional data is available. 

 

The comparative analysis of different collaborative filtering modules, as presented in our 

study, also offers valuable insights that extend beyond the specific use case of fashion 

recommendations. The methodologies for evaluating and contrasting collaborative 

filtering techniques can be applied to a wide range of recommendation systems, 

regardless of the industry. 

 

This thesis has made significant strides in advancing the understanding and development 

of recommender systems using machine learning techniques. Our novel multi-class affinity 

score formula, along with the comprehensive evaluation of multiple models, has 

demonstrated how integrating detailed user and item data can substantially enhance 

recommendation accuracy. The findings highlight the importance of robust, adaptable, 

and scalable approaches in developing effective recommender systems for the e-

commerce industry. 
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Chapter 7: Future Works 

This thesis has explored various machine learning techniques to improve recommender 

systems' accuracy and robustness. While significant advancements have been made, 

several promising directions for future research could further enhance these systems' 

capabilities.  

 

Fusion of DFNCF and GMF to Create DFNeuMF 

The fusion of the Demographic and Feature-enhanced Neural Collaborative Filtering 

(DFNCF) with Generalized Matrix Factorization (GMF) could potentially enhance the 

recommendation quality. This approach is inspired by the Neural Collaborative Filtering 

(NeuMF) model [16], which combines MLP with GMF to capture both linear and non-linear 

user-item interactions.  

 

Incorporating Raw Inputs into MLP 

The current Affinity Score formula synthesizes various factors, such as the quantities of 

the same product bought by the user and the weeks since the last purchase. Future 

research could involve: 

• Using Raw Inputs Directly: Feeding the raw quantities and weeks since the last 

purchase as inputs into the MLP, allowing the neural network to determine their 

relationship with the binary interaction target. 

• Model Training and Comparison: Training the model with these raw inputs and 

comparing its performance to the current approach to assess improvements in 

prediction accuracy. 

 

Adding a Conditional Demographic Layer to RBM 

Incorporating demographic information, such as age, can further personalize 

recommendations. Inspired by the Occupation-Aware RBM [13], future work could 

involve: 



   

 

114 
 

• Conditional Demographic Layer: Adding a layer to the RBM network that 

introduces age information, enhancing the model's ability to make age-specific 

recommendations. 

• Model Evaluation: Testing the modified RBM to evaluate the impact of 

demographic information on recommendation accuracy. 

Testing on Diverse Datasets 

To ensure the generalizability and robustness of the developed models, it is essential to 

test them on datasets of different natures and industries. Future research could focus on: 

• Cross-Domain Evaluation: Applying the models to datasets from various domains, 

such as healthcare, finance, and entertainment, to assess their performance across 

different contexts. 

• Industry-Specific Adjustments: Identifying and incorporating industry-specific 

features that may enhance recommendation accuracy. 

 

Labeling Latent Features 

Understanding and interpreting the latent features detected by the models can provide 

valuable insights into user preferences and item characteristics. Future work could 

involve: 

• Latent Feature Labeling: Developing methods to label and interpret the latent 

features identified by the models, providing more transparency and 

interpretability. 

• Visualization and Analysis: Creating visualization tools to explore these latent 

features, helping stakeholders understand the factors driving recommendations. 

Continuous research and innovation in these areas will help address the remaining 

challenges and fully realize the potential of these systems in various applications. 
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APPENDIX 

1. Large code snippets and code documentation 

 

Figure 36: Code snippet of the BaseNetwork class in PyTorch, designed as an abstract base class for neural network 

models, including metric tracking and model saving/loading functionalities. 

 

 

Figure 37: Implementation of the Matrix Factorization class in PyTorch, defining a neural network module for 

collaborative filtering with methods for embedding users and items. 
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Figure 38: Implementation of the Generalized Matrix Factorization class in PyTorch, defining a neural network module for 

collaborative filtering with methods for embedding users and items. 

Figure 40: Implementation of the Neural Collaborative Filtering class in PyTorch, defining a neural network module for 

collaborative filtering with methods for embedding users and items. 

 

Figure 41: Definition of the RecommendationDataset class in PyTorch, constructing a dataset suitable for a 

recommendation system with methods for initialization, length retrieval, and item access, including optional 

normalization of ratings. 
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The class, derived from PyTorch's Dataset, performs several essential functions: 

• Initialization (__init__ method): This method accepts arrays of users, items, and 

ratings, along with two optional parameters: classes, which defaults to 5, and 

needs_normalization, a boolean that indicates whether the rating data requires 

normalization. The parameters users and items are converted into PyTorch tensors 

with data type torch.int64, suitable for indexing operations within embedding 

layers. 

• Normalization: If needs_normalization is set to True, the ratings are normalized to 

a scale from 0 to 1. This is done by subtracting 1 from each rating (assuming ratings 

start from 1), dividing by classes - 1. This is needed as the MLP network with 

sigmoid function returns a value between 0 and 1 and we need to align the target 

output to this constraint. 

• Data Retrieval (__getitem__ method): This method retrieves an individual sample 

from the dataset at a specified index, returning the user ID, item ID, and the 

normalized or raw rating. This functionality is critical for training the model in 

batches and individually processing each interaction during the training and 

evaluation phases. 

• Dataset Length (__len__ method): It provides the total number of ratings available 

in the dataset, which is used by data loaders in PyTorch to manage batch 

processing effectively. 

 

Figure 42: Python function load_datasets for loading training, test, and active items data from Parquet files using 

pandas, including print statements to track the progress of data loading. 
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Figure 43: Python function encode_data for preprocessing customer and item IDs in training, test, and active items 

datasets using LabelEncoder. The function concatenates datasets for unified encoding, applies transformation, and 

returns encoded data, allowing for consistent reference across datasets in a recommendation system. 

• Initialization: Upon initialization, the LabelEncoder is fitted on the combined 

dataset of user and item identifiers from both training and test datasets. This 

ensures a consistent encoding scheme across the entire data, preventing any 

discrepancies during model training or predictions. 

• Transformation: After fitting, the encoder transforms the user and item identifiers 

in both training and test datasets into normalized indices. This step is vital to 

maintain data consistency and integrity, ensuring that every unique identifier is 

assigned a unique index. 
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Figure 44: Python function for evaluating the relevance of the top k recommendations against the actual purchased items 

per user. 

Figure 45: The above function forward passes all the candidate items for each user and predicts their rating. Then for 

each user it sorts the items in descending order based on their predicted rating and saves it in a dictionary. 
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Figure 46: Python function predict_scores_to_dask_dataframe that uses a machine learning model to predict scores for 

user-article pairs from training and testing datasets, converts the predictions into a Dask DataFrame with user IDs, article 

IDs, and scores, and optionally saves the results to a Parquet file. 
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Within this function, the model is set to evaluation mode, and predictions are generated 

for both the training and testing datasets using the respective loaders. For each batch, the 

model's output scores are scaled back to their original range and then converted into a 

human-readable format by mapping user and item indices back to their original IDs using 

LabelEncoders. These mapped scores are then compiled into Pandas DataFrames, 

capturing essential information such as user IDs, article IDs, and the corresponding 

predicted scores. 

 

Each DataFrame generated per batch is temporarily stored as a Dask delayed object, 

allowing for efficient management of memory and computational overhead. These 

delayed objects are then aggregated into a single Dask DataFrame. If specified by the user, 

this DataFrame can be saved to a Parquet file, a columnar storage file format that offers 

optimized disk storage and fast data retrieval. 
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Figure 47: MultinomialRBM class implementation in Python 
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Figure 48: RBMDataset class implementation in Python extending Pytorch’s Dataset class 

The initialization of the dataset can be configured to either keep the matrix in its original 

sparse format (dense=False), which is more memory efficient, or convert it to a dense 

format (dense=True), which can simplify subsequent operations but at the cost of 

increased memory usage. This flexibility allows for efficient memory management during 

training, particularly important when dealing with large datasets typical in collaborative 

filtering scenarios. 
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Figure 49: Python code snippet for training the Multinomial RBM 

 


