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Abstract 

In recent years, Multi-Agent Reinforcement Learning (MARL) has emerged as a promising 

paradigm for tackling complex decision-making problems in scenarios where multiple 

autonomous agents interact to achieve common goals. Cooperative games, characterized by 

interdependence among agents, are fertile ground for the application of MARL algorithms to 

enhance cooperation and coordination. 

My thesis aims to delve into the field of Cooperative Multi-Agent Reinforcement Learning to 

investigate, analyze and propose algorithms that can facilitate effective cooperation between 

agents in a cooperative game environment. 

The fundamental challenge in cooperative games lies in orchestrating interactions between 

autonomous agents to optimize joint performance, often requiring agents to strike a delicate 

balance between individual goals and the collective goal. 

Traditional MARL methods face limitations in handling the complex dynamics of cooperative 

scenarios, it requires the exploration of advanced reinforcement learning techniques. The goal 

of this research is mainly Algorithmic Exploration. 

A milestone in the field of cooperative games is the Hanabi game environment, which aims to 

train an algorithm that can play Hanabi efficiently and cooperatively, taking advantage of 

available information and minimizing errors. This requires advanced reinforcement learning 

techniques to deal with the complexity of the environment and the uncertainties arising from 

cooperation between players. 

In my thesis I will implement the board game "The Mind". "The Mind" is a cooperative card 

game where players aim to place cards in ascending order without communicating explicitly, 

using the help provided by the game as well as the way of thinking of the other players. For the 

implementation of this game, I will rely on the Hanabi training environment. Building upon 

the foundational strategies employed in the Hanabi game environment, this study introduces 

novel algorithmic approaches tailored to "The Mind," emphasizing the development of non-

verbal communication cues and synchronized actions among agents. The research focuses on 

two primary algorithms: Independent Proximal Policy Optimization (IPPO) and Multi-Agent 

Proximal Policy Optimization (MAPPO). These algorithms are assessed for their ability to 

foster high levels of coordination and cooperation without explicit communication. Both 

algorithms demonstrated the capability to adapt their strategies to the cooperative nature of 

"The Mind," effectively mirroring human gameplay patterns such as intuitive turn-taking and 

strategic card placement based on the collective game state. 

This thesis highlights the critical role of advanced reinforcement learning techniques in 

overcoming the inherent uncertainties and optimizing joint performance in cooperative 



 

4 

 

MARL environments. Future work may explore scaling these algorithms for more complex 

environments and integrating more dynamic communication strategies to further enhance 

agent interaction and cooperation. 
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Chapter 1 

 

Introduction 

 

 

1.1 Challenges           8 

1.2 Methods to use         9 

 

 

In the realm of artificial intelligence, the study of reinforcement learning offers a fascinating 

path for comprehending and creating self-governing systems that can navigate and make 

decisions within intricate settings. Specifically, multi-agent reinforcement learning (MARL) 

adds another layer of complexity by incorporating numerous agents that interact and learn 

simultaneously to fulfill their goals within a mutual environment. This emerging area of 

research holds the potential for progress in Artificial Intelligence and illuminates the 

dynamics of cooperation and rivalry seen in natural and social systems. Among the multitude 

of applications for MARL, games offer a uniquely structured yet challenging domain. 

Especially games, with well-defined rules and objectives, serve as excellent testbeds for 

developing and benchmarking MARL algorithms. 

 

1.1 Challenges 

The cooperative nature of “The Mind” card game [1] could lead to intriguing challenges 

during the implementation of the environment. One of the most significant challenges is 

implementing the implicit communication allowed in "The Mind," such as timing and body 

language signal. In a computational model, you could introduce a mechanism for "signaling" 

between agents without direct communication, possibly using a shared environment state or 

auxiliary channels that represent non-verbal cues.[2] .   

The game provides feedback only at the end of each level (success or failure) or when an 

incorrect card is played. This rarity of rewards can make learning difficult, requiring 

techniques like reward shaping, curriculum learning, or the use of intrinsic motivation to 

guide the agents' learning process [3] .  

Agents must learn not just which cards to play, but also when to play them, requiring a 

refined understanding of other agents' actions. This aspect introduces a significant challenge 

in temporal coordination, which is less common in other MARL environments [4] . Also as 
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the number of players (agents) increases, the complexity of coordination and communication 

exponentially grows. Designing a scalable environment that can handle increased agent 

counts without a significant drop in performance is crucial. 

The game's difficulty increases as players progress through levels. A MARL system must not 

only succeed at lower levels but also prepare its strategy to perform well at higher levels, 

which involves more cards and thus a larger action space and increased complexity. 

Translating human non-verbal communication cues into a format that can be understood and 

utilized by AI agents is a novel challenge. This might involve creating a limited set of 

"actions" that represent these cues and integrating them into the agents' decision-making 

processes. 

 

1.2 Objectives 

The main objectives of this thesis are structured to address both the theoretical and practical 

aspects of adapting "The Mind" card game into a MARL environment. These objectives are 

outlined as follows: 

1. Develop a MARL Environment, a simulation of "The Mind," capturing the essence of 

its gameplay, which includes cooperative play without direct communication among 

players. This involves defining appropriate state and action spaces, as well as a 

reward system that encourages cooperative strategies. 

2. Evaluate Learning Algorithms, to implement and assess the performance of various 

reinforcement learning algorithms, including Independent Q-Learning, IPPO, and 

MAPPO, within this environment [5][6]. The aim is to analyze how different 

algorithms cope with the challenges of partial observability, limited communication, 

and the necessity for implicit coordination. 

3. Study the behavior and strategies developed by agents in the game, comparing them 

with human strategies where possible. This objective includes identifying any 

emergent behaviors or strategies that differ significantly from human play, and 

understanding the conditions under which these occur. 

4. To explore the potential applications of the findings in real-world scenarios where 

cooperation and non-verbal communication are crucial, such as in autonomous 

vehicle coordination or robotic team operations. 

These objectives guide the research towards significant contributions to the fields of game 

theory, cooperative AI, and MARL, offering both theoretical insights and practical 

implications. 
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Chapter 2 

 

Background  

 

 

2.1 Cooperative MARL environments       10 

2.2 “The Mind”          11 

2.2 Hanabi as a testbed         13 

2.3 Methods used          15 

2.4 PPO Algorithms          17 

2.5 Q-Learning          20 

 

 

2.1 Cooperative MARL environments 

 

Multi-Agent Reinforcement Learning (MARL) in cooperative environments is a fascinating 

and complex field within artificial intelligence where multiple agents interact within a shared 

environment to achieve a common goal. The focus is on designing strategies that allow these 

agents to learn how to cooperate, often without direct communication between them. This has 

significant implications for a range of applications from autonomous vehicles to complex 

simulation systems and cooperative robotics. 

In MARL, each agent typically makes decisions based on its own observations of the 

environment, which might include the state of the environment and other agents' actions. 

Unlike single-agent reinforcement learning, where the entire environment's state and reward 

feedback loop are controlled by one agent's actions, in MARL, the state and reward for any 

given agent can be affected by the actions of other agents. 

Cooperative environments are scenarios where agents need to work together to maximize a 

shared reward or achieve a group objective. This collaboration requires mechanisms to 

coordinate actions among agents, which can be challenging due to the agents having partial 

observability and shared rewards. Each agent typically only sees a part of the entire 

environment, making it necessary for them to infer the rest or rely on communicated 

information. Also, all agents may share the same reward function, which aligns with their 

goals but also requires them to find a balance in strategy that maximizes the collective outcome. 

These are the main challenges of cooperative MARL environments. 
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To eliminate these challenges various approaches have been developed to handle the 

complexities of learning in cooperative MARL settings. 

Techniques like multi-agent Q-learning [5] , where each agent maintains a value function that 

estimates the expected utility of actions considering the possible actions of other agents or 

Policy Gradient Methods [6] that involve each agent learning a policy that maximizes the 

expected return. Methods like Multi-Agent Deep Deterministic Policy Gradient extend single-

agent approaches to multi-agent environments by considering the impact of other agents' 

policies. 

Lastly Centralized Training with Decentralized Execution is a method where agents are trained 

in a centralized manner where the training algorithm has access to the actions and states of all 

agents, but during execution, each agent operates independently using only its own local 

observation [7] . 

Cooperative MARL has wide applications like coordinating multiple robots for tasks like 

search and rescue or automated warehouses or managing traffic lights and flow in urban 

settings to optimize traffic throughput and reduce congestion. 

Also complex games like soccer or strategy games where multiple players must work together 

against an opposing team is challenging to implement in MARL and that’s the section this 

dissertation is about. 

 

2.2 “The Mind” 

This thesis focuses on "The Mind" [1] a cooperative card game that, despite its simple 

premise, unfolds into a complex test of intuition, strategy, and non-verbal communication 

among players. Here’s how it works : 

The game can be played by 2 to 4 players. 

Each player receives a hand of cards. The 

number of cards each player gets 

corresponds to the current level of the game. 

The game starts at level 1, so each player 

gets one card and there are 100 cards in the 

deck, numbered 1 to 100. The goal is to 

complete all levels by placing cards from the 

hand in the middle of the table in ascending order. Players cannot communicate about the 

specific numbers they hold, and they try to synchronize with each other to play cards in the 

correct order. There are no turns; players decide when to play cards, aiming to do so in 

ascending order without discussing card values . 
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 If a player places a card out of order (e.g., a card higher than one still in a player's hand is 

played), the team loses a life. The misplaced card and any lower cards not yet played are 

discarded. The team starts with a certain number of lives. Successfully completing a level 

allows the team to move to the next level, which increases the number of cards each player 

receives. Some levels grant extra lives or shuriken cards when completed. A shuriken card 

allows all players to discard their lowest card, helping them to realign if the game becomes 

too challenging. To use a shuriken, all players must agree by raising a hand. The game is won 

if the players complete all the levels with at least one life remaining and is lost if players lose 

all their lives before completing all the levels.  

This game uniquely challenges the realm of MARL, especially in its requirement for agents 

to master implicit communication and coordination strategies without direct exchange of 

information. Deploying "The Mind" within a MARL environment epitomizes the 

convergence of numerous AI research domains, encompassing communication in 

decentralized systems, the crafting of cooperative strategies, and fostering social and intuitive 

intelligence among artificial entities.  

The primary goal of this dissertation is to navigate these aspects through the development of 

a MARL framework inspired by "The Mind" game, with the aim to dissect how autonomous 

agents forge cooperative strategies under the veil of information asymmetry and 

communicative restrictions. This investigation endeavors not just to push forward the 

technological power of MARL systems, but also to illuminate the foundational aspects of 

collective intelligence that arise from the dynamics of multiple interacting learning agents. 

This research effort positions itself at the nexus of AI exploration, game theory, and cognitive 

science, delivering an expansive review of how artificial agents can maneuver and excel 

within the complexity of games crafted by humans, and, by extension, navigate complex 

scenarios in the real world.  

The thesis aims to enrich our comprehension of Cooperative Multi-Agent Reinforcement 

Learning by examining, evaluating, and proposing algorithms designed to improve the 

collaboration between agents within different cooperative game settings. 

The fundamental challenge in cooperative games lies in orchestrating interactions between 

autonomous agents to optimize joint performance, often requiring agents to strike a delicate 

balance between individual goals and the collective goal. 
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2.3 Hanabi as a testbed 

 

The game of Hanabi provides a rich MARL 

environment for exploring cooperation among agents 

in settings of imperfect information. Here’s a detailed 

look at how Hanabi works as a MARL environment 

[8] . Hanabi is a cooperative card game where players 

work together to create stacks of cards in sequential 

order for each color available in the game. What 

makes Hanabi unique is that players cannot see their 

own cards; they can only see their teammates' cards. 

The goal is to complete all stacks perfectly, but the 

catch is the limited and strategic communication allowed among players, making it a 

challenging exercise in cooperative strategy and inference . 

In Hanabi, all players share a common goal: to score the highest points by stacking cards 

correctly. This cooperative nature requires players to work together, contrasting sharply with 

competitive environments where agents work against each other. Cooperation is facilitated 

through limited communication, typically about the properties of the cards each player holds, 

using a finite set of tokens to give hints. 

Players have imperfect information because they cannot see their own cards. This setup 

compels players to depend heavily on the hints given by others to infer what cards they hold. 

Effective play requires understanding not only the explicit information shared but also the 

intent behind each communication, leading players to perform complex inferential reasoning 

about their teammates' knowledge and strategies. 

In Hanabi, communication is not free but comes at a cost of hint tokens, which are limited. 

Players can only provide hints about the features of the cards (such as color or number), making 

the timing and content of hints critically strategic. This restriction adds a layer of depth to the 

gameplay, where every hint needs to maximize information value. 

The limitations and challenges of the Hanabi environment seem to have similar structure to the 

Mind’s gameplay and structure and that’s the reason I decided to modify the Hanabi’s JAX 

environment [9] [10] .  

The agents must develop an understanding of other agents' knowledge and intentions, a concept 

known as "theory of mind" [11] . This is crucial in Hanabi because effective gameplay hinges 

not just on what you know but what you understand about what others know. Finding effective 

strategies (policies) that work well with others' strategies is vital. Agents must learn not just to 
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optimize their actions but to align their actions with the group's strategy to maximize the 

collective outcome. Agents must make decisions with incomplete and indirect information, a 

significant challenge compared to environments with perfect information. 

Researchers have used Hanabi as a testbed for developing and evaluating AI algorithms that 

can handle complex, cooperative interactions among agents with imperfect information. This 

has involved advancements in areas such as reinforcement learning, policy learning, and 

communication protocols within multi-agent systems. 

Hanabi not only provides a challenging environment for developing RL agents but also offers 

insights into how agents can be designed to effectively cooperate and communicate in real-

world applications, where similar constraints often exist. 

 

Similarities 

The games Hanabi and "The Mind" share several foundational characteristics that make them 

both compelling environments for studying multi-agent reinforcement learning (MARL), 

particularly in the context of cooperation, communication, and strategy under conditions of 

imperfect information. Here's how the environments associated with each game relate to each 

other and the insights they offer for MARL research and development. 

Firstly the cooperative gameplay, both games are purely cooperative, where all players share 

the common goal of achieving the best group outcome (maximizing score in Hanabi, 

successfully playing all cards in sequential order in "The Mind"). Success in both games 

depends not just on individual decision-making but on effective group coordination and 

strategy. 

Another common characteristic is the imperfect information the two games provide, for 

example in Hanabi, players cannot see their own cards but can see others', requiring 

dependence on teammates for information about their own hand and in "The Mind", while 

players can see their own cards, they cannot share this information directly and must 

synchronize playing cards in ascending order without direct communication, relying heavily 

on timing and mutual understanding. Both environments challenge agents to operate effectively 

with incomplete knowledge of the game’s state. The main and most important feature is the 

limited communication.  Hanabi restricts communication through a limited number of tokens 

that can be used to give hints about the properties of the cards. This makes choosing what 

information to share, and when, a critical part of the strategy. "The Mind" limits 

communication even more strictly, as players are not allowed to communicate about their cards 

at all, leading to a need for implicit understanding and non-verbal cues to coordinate actions. 
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  These constraints push the development of reinforcement learning agent strategies that must 

infer intent and strategy from limited and indirect information. 

In terms of the Theory of Mind both games elevate the necessity for AI agents to develop a 

theory of mind that is, an ability to consider the perspectives, knowledge, and potential 

intentions of other agents. Developing agents that can accurately predict and adapt to the 

actions of other agents based on limited cues is a significant challenge in these environments.  

Agents must learn optimal strategies that are not just effective on their own but are also 

complementary to the strategies of other agents. This involves complex policy coordination 

where the agent’s behavior must align with the group's overall strategy to succeed. 

Both games can serve as testbeds for developing communication protocols where the cost of 

communication is high, and only essential strategic information must be conveyed. This has 

broader applications in real-world scenarios where communication bandwidth is limited, or 

where agents must operate under strict secrecy or privacy constraints. 

The insights gained from developing agents that can handle the dynamics of Hanabi and "The 

Mind" can be applied to real-world scenarios like collaborative robotics, autonomous vehicle 

coordination, and complex negotiation systems, where multiple agents must work together 

towards common goals under uncertainty and with limited communication. These 

environments can help bridge the gap between theoretical MARL research and practical 

applications in complex, real-world systems. 

 

2.4 Methods used 

 

Exploring algorithmic strategies for the cooperative card game "The Mind" involves 

considering how different RL techniques can adapt to the game's unique challenges. In "The 

Mind," players must synchronize with each other to play cards from their hands in ascending 

order without any communication about the cards they hold.  

Some algorithmic approaches that I considered for "The Mind" are Independent Q-Learning 

(IQL), Deep Q-Networks (DQN), Independent Proximal Policy Optimization (IPPO) and 

Multi-Agent PPO (MAPPO).  

The IQL algorithm treats each agent independently, with each learning its own Q-function, 

which estimates the utility of actions given the state of the environment. In "The Mind," 

where inter-agent coordination is silent and crucial, IQL can struggle since it doesn't 

inherently model other agents' actions or strategies [5] . However, with modifications to 

consider implicit cues from other players’ actions, it could be adapted for better performance. 
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The IPPO algorithm is a policy gradient method that optimizes a "surrogate" objective 

function, providing effective learning with fewer data samples than other policy gradient 

methods. MAPPO extends PPO to multi-agent environments by considering joint actions and 

rewards [6] . 

MAPPO could be highly effective for "The Mind" as it can help coordinate strategies among 

multiple agents through shared rewards and policy updates, encouraging cooperative 

behavior essential for this game. 

Opponent-Aware Learning, another significant advancement in MARL , is the introduction of 

opponent-aware learning mechanisms, such as those encapsulated in the Learning with 

Opponent-Learning Awareness (LOLA) approach [12] . LOLA explicitly incorporates the 

anticipated learning adaptations of other agents into each agent’s decision-making process. 

This is particularly relevant to "The Mind," where players must intuit and anticipate others' 

plays without direct communication. By integrating LOLA's principles, agents can be 

designed to consider how their actions will influence the strategies of other agents, fostering a 

more dynamic and interactive learning environment. 

The LOLA framework has demonstrated its effectiveness in promoting cooperative behavior 

in environments traditionally characterized by competition, such as the iterated prisoners' 

dilemma. This aspect of LOLA could be crucial for "The Mind," where the goal is to achieve 

the highest possible group outcome through cooperation. Understanding how cooperative 

strategies can emerge in adversarial settings provides a theoretical foundation for 

encouraging similar outcomes among agents in "The Mind." 

Challenges of Non-Stationarity and Partial Observability seem to arise by the fact that MARL 

environments are inherently non-stationary; the strategies of agents continuously evolve, 

meaning the environment’s dynamics change over time. LOLA addresses these challenges by 

adapting the agents’ learning processes to account for the ongoing learning of their 

opponents. This approach is vital for managing the non-stationarity in "The Mind," where 

each round of play can significantly alter the state of the game. Furthermore, the issue of 

partial observability where agents must operate without full knowledge of the game state is 

analogous to many real-world problems addressed by MARL. LOLA's method of accounting 

for hidden information and predicting opponent moves can directly inform the development 

of effective strategies under these conditions. 

 

Incorporating these concepts into the thesis will help articulate why advanced MARL 

approaches are not only applicable but also essential for developing an effective simulation of 

"The Mind." By discussing these points, the thesis will highlight the intersection of 
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theoretical MARL research and practical application, underscoring the innovative approach 

taken in adapting "The Mind" into a MARL framework. 

 

Challenges 

Some challenges I faced in algorithmic exploration were communication constraints, which 

was the primary challenge in "The Mind”, the lack of direct communication. Any algorithm 

must infer intentions and plan actions based solely on the sequence of played cards and game 

progress, which can be non-trivial without explicit signals. Also, coordination was 

challenging because achieving synchrony in actions without communication requires 

sophisticated prediction and adaptation strategies within the algorithms, particularly in 

learning when to play or hold back cards based on the inferred pace of the game. 

Finally, scalability and complexity, adapting algorithms to handle different levels of the 

game, where the number of cards increases, adds complexity. The scalability of the 

algorithms to handle these varying conditions is crucial. 

 

2.5 PPO Algorithms 

In previous experiments in several MARL environments the researchers discovered that 

Proximal Policy Optimization (PPO) is effective in multi-agent reinforcement learning 

settings, particularly focusing on its core features and how they benefit MARL environments 

[8] . 

 PPO modifies the policy gradient objective to include a clipping mechanism that prevents too 

large policy updates. This is crucial in MARL, where the actions of one agent can significantly 

impact the environment for other agents. The clipping helps maintain training stability across 

updates, which is vital in environments with many agents interacting dynamically. 

As an on-policy algorithm, PPO uses the data collected from the current policy to update itself. 

This aligns well with environments where agents need to adapt to strategies that are 

continuously evolving, as it uses the most recent and therefore relevant data to learn. 

PPO can update its policy using the same set of collected environment samples for multiple 

epochs, a method that can be more sample efficient in complex environments. Each sample can 

provide rich learning signals about interactions among multiple agents, making it valuable for 

repeated scrutiny. 

In cooperative MARL tasks, agents need to coordinate their actions, which can lead to highly 

interdependent and potentially chaotic learning dynamics. PPO's clipped objective curtails 

drastic policy shifts, ensuring that the learning process remains stable even as agents learn to 

cooperate more effectively [6]. 
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The flexibility of PPO in handling different types of interactions, competitive, cooperative, or 

mixed ,is beneficial. Its fundamental algorithmic structure doesn't need significant adjustments 

to switch between these modes, making it a versatile tool in the MARL toolbox. 

PPO has shown robust performance across a range of environments and setups. This robustness 

is especially useful in MARL, where the complexity and variability of environments can be 

much higher than in single-agent scenarios. 

Many MARL environments feature partial observability, where agents cannot see the full state 

of the environment. PPO's ability to work effectively with the limited and local information 

typical in on-policy learning setups makes it suitable for such conditions. 

Recent empirical studies [6], have demonstrated PPO's effectiveness in complex MARL 

environments like the multi-agent particle environments, StarCraft II, Google Research 

Football,  and Hanabi. These results underline the algorithm’s capability to manage the 

complexities of multi-agent learning without requiring extensive modifications. 

These characteristics and empirical validations illustrate why PPO, despite its traditional on-

policy nature and perceived inefficiencies in sample use, has emerged as a strong contender in 

the field of MARL, capable of competing with and often surpassing more specialized off-policy 

methods. 

The paper discusses specifically the use of Independent Proximal Policy Optimization (IPPO) 

and Multi-Agent Proximal Policy Optimization (MAPPO) in the context of  JaxMARL [9] , 

emphasizing their utility in multi-agent reinforcement learning environments.  

In order to test the learning progress on “The Mind” environment , I am going to use the IPPO 

and MAPPO algorithms , just like in the Hanabi JaxMARL [ 9 ] environment.  

 

IPPO is adapted to support parameter sharing across homogeneous agents. This feature is 

crucial in MARL environments where similar agents perform the same tasks, as it allows for 

more efficient learning through shared experiences and reduced parameter space. The 

implementation provides options for both feed-forward and recurrent neural network 

architectures, enabling it to handle different types of environment dynamics, including those 

requiring memory of past states. We are going to use the feed-forward version of IPPO.  

Also leveraging JAX's capabilities, IPPO can be executed very efficiently, offering substantial 

speedups in training times compared to traditional approaches, which is critical in complex 

MARL settings where the environment may involve multiple agents interacting over extended 

episodes. 

The other policy algorithm, MAPPO , extends the PPO framework to multi-agent settings by 

allowing centralized training but ensures that execution is decentralized. This approach is 
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beneficial for environments where agents must operate independently while still benefiting 

from a coordinated strategy learned during training. Like IPPO, MAPPO benefits from JAX’s 

accelerated computation, enabling faster training across multiple agents and scenarios. The use 

of MAPPO is indicated for more complex MARL environments where agent coordination is 

crucial, such as those involving strategic interactions or joint task completion. 

Both algorithms handle the increased complexity and dimensionality of MARL settings 

effectively ,as seen from previous experiments , making them suitable for large-scale 

applications and also can be adjusted to various MARL scenarios, whether fully cooperative, 

competitive, or mixed, providing flexibility in approach. 

The integration of these algorithms into the JaxMARL [9] framework harnesses the full power 

of JAX for MARL research, offering a combination of high-performance computation and the 

versatility needed for advanced MARL applications such as “The Mind” . 

 

Architecture 

Both Independent Proximal Policy Optimization (IPPO) and Multi-Agent Proximal Policy 

Optimization (MAPPO) use an Actor-Critic architecture. The actor and critic are typically 

implemented as two separate neural networks. This separation allows them to focus on distinct 

tasks and optimize different objectives during training.  

The actor network is responsible for selecting actions based on the current policy. It takes as 

an input the observations and the available actions based on the environment’s state, and it 

outputs a probability distribution over the possible actions.  The policy distribution over actions 

(typically modeled as a categorical distribution). 

On the other hand the purpose of the critic network is to evaluate the value of the current state 

by estimating the expected return (cumulative future rewards).It takes as an input the state of 

the game and it outputs a scalar value representing the expected return from the current state. 

The main difference between IPPO and MAPPO lies in their architectural approach to 

handling agent interactions and learning within Multi-Agent Reinforcement Learning 

(MARL) environments. Each addresses the complexity and dynamics of multiple agents in 

distinct ways, influencing their respective capabilities and applications In IPPO, each agent 

operates with its own separate instance of the policy network (actor) and potentially its own 

value network (critic). This setup allows each agent to learn based on its own experiences 

independently of other agents. MAPPO typically employs a centralized critic that accesses 

the global state or a joint observation that includes information from all agents . This critic 

helps in evaluating the global impact of the actions taken by all agents, which facilitates 

learning coordinated behaviors. While the critic is centralized, each agent still maintains its 
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own actor for decision-making, allowing for actions that are locally optimized yet informed 

by a global perspective during training [12] . 

To summarize, the Actor Network is responsible for policy learning, determining the action 

distribution, the critic network is responsible for value estimation, assessing the expected 

returns from states. The separation of actor and critic networks allows for specialized 

optimization, leading to potentially better performance and stability in training. 

 

2.6 Q - Learning 

On the other hand, the exploration of independent reinforcement learning algorithms, 

particularly Q-learning, in various multi-agent reinforcement learning environments is not as 

effective as expected.  

Q-learning, when applied independently to each agent in a MARL setup, faces challenges 

primarily due to the absence of stationarity in the environment. Each agent's learning process 

treats other agents as part of the environment, which is continually changing as all agents 

concurrently update their policies. This results in a lack of convergence guarantees because the 

environment does not adhere to the Markovian property, a fundamental assumption in 

traditional Q-learning. 

The study [5] shows that independent Q-learning can perform comparably to more complex 

multi-agent algorithms in fully observable, cooperative settings. When the environment is 

partially observable, like “The Mind”, the performance tends to degrade, but enhancements 

like adding recurrence (as in Deep Recurrent Q-Networks) can mitigate this issue by helping 

the algorithm handle the partial observability. 

In competitive settings, independent Q-learning can benefit from modifications such as 

parameter sharing and the addition of agent indicators. These enhancements help the algorithm 

distinguish between different agents and adapt the learned policies to competitive dynamics 

more effectively [5]. 

The most significant challenges for independent Q-learning arise in mixed settings where 

agents must cooperate with some and compete against others. Here, the algorithms struggle to 

balance these interactions effectively, often failing to develop cooperative strategies while 

maintaining competitive capabilities .   

Some adaptations for improvement could be parameter sharing among agents, independent Q-

learning algorithms can leverage collective experiences to learn more generalizable policies 

across different agents. This is particularly effective in symmetric games where agents have 

similar roles or objectives. 
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As a conclusion, independent Q-learning algorithms face inherent limitations in MARL due to 

non-stationarity and partial observability, practical enhancements and adaptations can 

significantly improve their applicability and performance.  

The effectiveness of these adaptations, however, varies greatly depending on the specific 

characteristics of the environment, such as the level of observability and the nature of agent 

interactions (cooperative, competitive, or mixed). 

These findings underscore the importance of choosing and tailoring the right algorithmic 

strategies based on the specific requirements and dynamics of the multi-agent environments in 

question. 

 

Future Directions 

Research continues into more efficient algorithms, better communication strategies between 

agents, and approaches to handling larger numbers of agents. Also, understanding how to 

design reward structures and training environments that encourage effective cooperative 

strategies is an ongoing area of research. 

In summary, cooperative MARL poses unique challenges and offers substantial opportunities 

for advancing how intelligent systems can operate in complex, multi-agent settings. 

 

Chapter 3 

 

Design & Structure 
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3.1 Environment Design 

 

The design and structure of the Multi-Agent Reinforcement Learning environment for "The 

Mind" game was quite complex and intricate, featuring a multitude of aspects typical of Jax 

MARL environments [10] and systems, especially Hanabi, but with specific modifications 

tailored to the game's unique mechanics.  
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The game is designed as a multi-agent environment where each agent (player) interacts with 

the game state. This involves agents taking turns to play or discard cards, with the potential to 

request using a shuriken to help the team. 

The game state, implemented as a State class, includes elements that are going to be used in 

the game’s logic and observations such as player hands, available shuriken and life tokens, 

game level, the card on the table and indicators for game status (terminal, level won). The 

state is vital for tracking the progression of the game and the strategy employed by agents. 

The environment implements three discrete actions play a card, pass, or use a shuriken. 

Although “The Mind” game [1] doesn’t support a direct pass action, I decided to implement it 

in order for the agents to wait for the team-players to play their lowest card , if needed.  The 

observations for each agent, encapsulated within the game dynamics and the rules. 

Observation space includes the state of the deck, other players' last actions, and the tokens 

available, allowing strategic decision-making. 

When we initialize the game state (reset function) the environment shuffles and deals the 

cards to each agent according to the current level and initiates the shuriken and life tokens. 

There are also functions that generate the observation spaces for each agent before 

proceeding to the gameplay along with the get_legal_moves function, which determines the 

actions available to each agent based on the current state (e.g., whether they can play a card 

higher than the last played card without losing a life token). 

The gameplay is managed by the step_env and step_agent functions. By calling the step_env 

function we trigger the current agent to make one of the three available actions. When the 

agent plays we update the state and the reward based on the action the agent took and then the 

index moves to the next player.  

The rewards depend on the action of each player. If a player passes it earns a negative reward 

-1 or -0.05 according to the game mode’s reward ( sparse or dense )  , when the player plays 

the lowest card correctly it gets a reward of +1 and if a shuriken token is asked/played the 

agents get a smaller positive reward (+0.1 ) or no reward depending again on the game mode. 

The agent architecture in "The Mind" environment, as implemented , is part of a complex 

MARL system designed to replicate the game's mechanics where players cooperate under 

conditions of limited information. Analyzing the architecture involves looking at how the 

state is managed, actions are determined, and observations are handled.  

Observations are crucial in MARL, especially under partial observability. Using the get_obs 

function we generate the observations for each agent. Because agents cannot see their own 

cards, the observation includes other relevant game state information like the current level, 

number of shuriken and life tokens left, and the last played card. The observation for each 
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agent is designed to only include information that the agent is supposed to know, adhering to 

the game's rules of limited information visibility.  

The use of JAX significantly optimizes the computational aspects, allowing for efficient 

simulation of multiple game instances. This setup is ideal for exploring sophisticated 

cooperative strategies and learning dynamics in MARL. This design enables not just playing 

the game according to its rules but also exploring various strategies that agents can learn to 

optimize their play, potentially extending beyond simple rule-based strategies to more 

complex, learned behaviors that effectively utilize the cooperative and strategic aspects of 

"The Mind." 

 

3.2 JAX Library 

The use of JAX for JIT compilation and vectorized operations (jax.vmap, jax.jit) in my 

environment,  suggests optimization for performance [13] . These are used in functions that 

require large computational power to efficiently compute outputs across all agents. 

Implementing "The Mind" as a MARL environment using JAX can offer several significant 

benefits, particularly due to JAX's unique features and capabilities. Here's how using JAX can 

be advantageous as JAX provides powerful tools like vmap (vectorized map) and jit (Just-In-

Time compilation) that can significantly speed up computations. Vmap can automatically batch 

computations without needing manual batching, which is especially beneficial when we need 

to process actions or evaluations for multiple agents simultaneously. The jit compiler can 

optimize and compile parts of the code to machine language, speeding up execution 

dramatically. Also JAX's automatic differentiation capability, provided through autograd, 

simplifies the implementation of learning algorithms that require gradient computation. This is 

particularly beneficial for training reinforcement learning models where gradient-based 

optimization is used. JAX is also designed to be replacement for NumPy but with added 

capabilities like GPU support and automatic differentiation. 
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 This compatibility means that we can use familiar NumPy-like syntax and functions, which 

makes coding more straightforward.  

Another benefit that JAX provides is that it can automatically take advantage of GPU 

hardware accelerations, which is invaluable for running large-scale simulations or training 

complex models in “The Mind” environment. This feature allows for handling more 

significant amounts of data and computations faster, which is crucial for real-time learning 

and decision-making in multi-agent settings. 

In terms of Algorithm Implementation, with JAX, we can implement various reinforcement 

learning algorithms more efficiently, ensuring that the computational burden is manageable 

even as the complexity of the environment grows. 

Using JAX for implementing a MARL version of "The Mind" thus aligns well with the need 

for high-performance computation, scalability, and the sophisticated data handling required 

for effective reinforcement learning. This choice can enhance your development process, 

allowing you to focus more on strategic implementation rather than computational 

challenges. 

All these not only simplify the code by removing explicit loops but also enhance performance 

by leveraging JAX’s underlying optimizations for batched operations. 

JAX encourages a functional programming style, which fits well with the requirements of 

simulation environments where immutable states are preferable. This functional approach 

helps in managing state more predictably and avoiding side effects, which can make the 

system easier to debug, test, and scale. 

JAX excels at automatic differentiation, offering grad, vjp, and jvp functions that are essential 

for implementing learning algorithms, especially those involving gradient descent [6] .  

JAX is designed to run seamlessly across different devices, including CPUs, GPUs, and 

TPUs. This cross-platform capability ensures that environments can scale across hardware 

resources efficiently, allowing for faster training and simulation without major code changes. 

In summary, JAX provides a robust framework for building efficient and scalable simulation 

environments for MARL. Its strengths in performance optimization, functional programming, 

and easy scalability align well with the needs of complex multi-agent systems like the one 

implemented for "The Mind" game. 

As seen from the environments implemented in JaxMARL library JAX provides significant 

computational advantages in handling multiple parallel environments, which is a common 

scenario in the training and evaluation phases of multi-agent systems. The use of JAX in 

these environments enables more efficient experimentation and faster iteration times, which 

are crucial for advancing research and development in complex MARL scenarios.  



 

24 

 

 

3.3 Test & Validation 

Evaluating the validity of "The Mind" MARL environment is crucial to ensure it accurately 

reflects the game's mechanics and provides a robust platform for training and testing 

algorithms. By creating unit tests for individual components of the environment to ensure they 

function as expected including state and action Spaces to ensure states and actions are correctly 

defined, mapped, and accessible to agents.  

Also to verify that rewards are assigned correctly for various actions and outcomes, ensuring 

they reflect the game's rules and check that the transition functions work correctly, considering 

actions and leading to appropriate next states. 

To test the game mechanics, we manually play through the environment or step through 

individual transitions to confirm rules are applied correctly. Test edge cases, such as scenarios 

with all agents passing or incorrect card plays, to see how the environment responds and if it 

behaves as intended. 

To observe and evaluate how agents behave in the environment over time we can track the 

learning curves of various algorithms to see if they converge and stabilize similarly to expected 

patterns, analyze how strategies evolve during training, such as turn-taking, decision-making 

sequences, and response to partial observability, to see if they align with expected behaviors. 

By using statistical methods to evaluate the consistency and reliability of the environment we 

repeat tests with the same algorithm multiple times to see if results are consistent, indicating 

stability in the environment and compare the results of different algorithms in the environment 

to expected benchmarks using correlation or regression analysis to assess their validity. 

 

The environment was built in the structure of the JaxMARL environments [6] to be compatible 

to a variety of algorithms, from Independent Q-Learning to MAPPO that the library of jaxmarl 

supports and be able to compare the performance of these algorithms to see if the environment 

produces consistent and reliable results across different approaches. 

Comparison of the environments implemented in the Jax MARL library with their original implementation. 
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By incorporating these methods, we can thoroughly evaluate the validity of the environment, 

ensuring it faithfully represents the game's mechanics and provides a reliable platform for 

testing algorithms.  

 

Chapter 4 

 

Results & Discussion 
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4.1 Experiment Setup 

As mentioned before , the environment’s game rules as well as agents' states include their 

remaining hand, cards in play, and any shared information about the current state of the game. 

Actions consist of playing a card from hand, hinting at another player's action, or passing. 

Rewards are assigned based on how closely the group’s actions align with the intended 

sequence, with positive rewards for correct plays and negative rewards for mistakes or 

premature card plays. 

The algorithms I evaluated my environment with are Proximal Policy Optimization algorithms 

, specifically IPPO and MAPPO. Each agent in Independent PPO (IPPO) follows a PPO-based 

policy, independently optimized using its own experiences. In MAPPO agents are trained with 

centralized policy optimization but execute independently, enabling them to benefit from 

coordinated strategies. 

Both algorithms are going to be executed using modified scripts provided by the JaxMARL 

library [9].  The experiments will take place on various GPUs on Google Collab notebook. The 

results will appear as plots including the Return on the y-axis and the updated steps on the x-

axis. 

 The X-axis on the graph representing the IPPO algorithm's training performance is labeled 

"Update Step." This axis measures the number of policy updates that have been performed 

during the training process, axis’ value increases by 1 for each policy update performed. For 

example, if the agent performs 10,000 interactions with the environment (timesteps), these are 
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broken down into smaller segments defined by NUM_STEPS. If NUM_STEPS is set to 128, 

the number of update steps would be the total timesteps divided by NUM_STEPS. If 

NUM_ENVS (number of parallel environments) is 4, this means experiences are collected from 

4 environments simultaneously. 

Number of Update Steps=
TOTAL_TIMESTEPS

NUM_ENVS×NUM_STEPS
 

 

The y-axis in the provided graphs represents the "Return," which refers to the cumulative 

reward that agents accumulate over an episode. In the context of this research, it reflects the 

effectiveness of the agents' policies in achieving their goals within the "The Mind" 

environment. 

 

4.2 Results 

In this chapter, we present the results of applying the Independent Proximal Policy 

Optimization (IPPO) and Multi-Agent Proximal Policy Optimization (MAPPO) algorithms to 

the multi-agent environment, "The Mind". The performance of the agents trained using IPPO 

and MAPPO is evaluated through the analysis of return curves, which depict the cumulative 

rewards obtained by the agents over the training period. 

 

The experiments were conducted using the following configuration parameters: 

Learning Rate (LR) , 

Number of Environments (NUM_ENVS) , 

Number of Steps (NUM_STEPS) , 

Total Timesteps (TOTAL_TIMESTEPS), 

Update Epochs (UPDATE_EPOCHS) , 

Number of Minibatches (NUM_MINIBATCHES) , 

Discount Factor (GAMMA) , 

GAE Lambda (GAE_LAMBDA), 

Clipping Epsilon (CLIP_EPS) , 

Entropy Coefficient (ENT_COEF), 

Value Function Coefficient (VF_COEF) , 

Max Gradient Norm (MAX_GRAD_NORM) 

Number of Seeds (NUM_SEEDS) , 

Random Seed (SEED)  

For each run we modify the TOTAL_TIMESTEPS, NUM_STEPS and NUM_ENVS 

parameters. 
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The parameters `TOTAL_TIMESTEPS`, `NUM_ENVS`, and `NUM_STEPS` significantly 

influence the performance and efficiency of the algorithms . The total number of timesteps 

represents the interactions with the environment that the algorithm will perform during training. 

The higher the `TOTAL_TIMESTEPS`, the longer the training duration. More timesteps allow 

the agent to gather more experience, which can lead to better learning and policy optimization. 

Sufficiently high `TOTAL_TIMESTEPS` can help ensure that the agent has enough time to 

explore the environment and converge to an optimal or near-optimal policy. However, there is 

a point of diminishing returns where additional timesteps may not lead to significant 

performance improvements. 

The variable NUM_ENVS corresponds to the number of parallel environments in which the 

agent interacts simultaneously. Using multiple environments in parallel can significantly 

increase the sample efficiency. The agent collects experiences from several environments at 

the same time, leading to faster accumulation of training data. Training with multiple 

environments can stabilize learning by providing diverse experiences, which helps in 

generalizing the policy better across different scenarios. Also the parameter `NUM_ENVS` 

directly influences the batch size for each update. A larger number of environments results in 

larger batches of experience data, which can improve gradient estimates during optimization. 

However, it also requires sufficient memory and processing power to manage multiple 

environments concurrently. 

The number of steps the agent takes in each environment before performing a policy update, 

`NUM_STEPS` determines the length of the trajectories used for each update. Longer 

trajectories (higher `NUM_STEPS`) provide more temporal context, which can be beneficial 

for learning in environments with long-term dependencies. A higher `NUM_STEPS` means 

that updates occur less frequently but with more data per update. This can improve the stability 

of the policy updates and lead to better performance. Shorter trajectories (lower 

`NUM_STEPS`) lead to more frequent updates with less data, which might increase the 

variance in gradient estimates. 
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IPPO – Results 

 

Results for 5e1 timesteps , 1024 environments and 128 steps 

 

 

 

 

 

 

 

 

 

 

 

The graph depicts the return over update steps for the IPPO algorithm training session in the 

environment. The return starts at a low value and even goes negative at the very beginning, 

indicating that the agents are exploring and initially making suboptimal decisions.  The sharp 

drop to around -20 at the very beginning suggests that the agents might have taken actions 

leading to significant negative rewards like pass or playing the wrong card. 

Between steps 0 - 5000 the returns show high variance with significant spikes and drops. This 

phase reflects the exploration phase where the agents are trying different actions to understand 

the environment. The returns occasionally reach positive values, indicating that the agents are 

learning and sometimes making good decisions. 

During steps 5000 - 15000 there is a noticeable improvement in the returns, with the values 

stabilizing around 0. This indicates that the agents have started to learn a more stable policy 

but are still not consistently achieving high rewards. The flat line around 0 suggests that the 

learning might have plateaued temporarily, possibly due to the agents exploring a stable but 

suboptimal policy. At the final steps ,15000 - 40000, returns start to consistently stay in the 

positive range, with some fluctuations. This indicates that the agents have learned to perform 

better in the environment. The fluctuations in returns during this phase are smaller compared 

to the early training phase, showing more stable performance with occasional dips, possibly 

due to exploration or encountering challenging scenarios. After around 15000 update steps, the 

returns stabilize in the positive range, indicating that the agents have converged to a reasonably 

good policy. The small fluctuations towards the end are typical in reinforcement learning, 

where the agents continue to explore slightly to avoid local optima. 
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Results for 5e1 timesteps , 128 environments , 16 steps 

 

 

 

 

 

 

 

 

 

 

 

In the initial phase (steps 0 - 2000 ) , the return starts with high variance, fluctuating 

significantly. This is typical of the exploration phase where the agents are trying different 

actions to understand the environment. 

There are some sharp drops indicating that the agents are sometimes making suboptimal 

decisions that result in negative rewards. In middle Training Phase (2000 - 15000 steps) the 

returns stabilize around a high value close to 20, which suggests that the agents have learned 

a reasonably good policy. However, there are occasional sharp drops, indicating that the 

agents sometimes take actions leading to significantly lower rewards. This could be due to 

continued exploration or encountering challenging scenarios in the environment. At steps 

15000 - 25000 , the returns continue to fluctuate with more frequent and significant drops, 

even reaching negative values. This suggests that while the agents have learned a good 

policy, they are still exploring and sometimes making poor decisions. 

The period around 25000 update steps shows a significant drop to a negative return, which 

might indicate a temporary failure in the policy or an exploration into less optimal strategies. 

In the end Phase we see a stabilization around a value slightly above 0, indicating that the 

agents have settled into a stable policy but one that is not as optimal as in the middle training 

phase. The fluctuations reduce, showing that the policy is stable but could still benefit from 

further refinement. The middle phase shows a period of high returns, indicating effective 

learning and a stable policy, however, the latter phase's stabilization at a lower return 

suggests that the agents might have converged to a suboptimal policy. The overall trend 

shows that the agents can achieve high returns but struggle with maintaining it consistently. 
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Results for 5e1 timesteps , 128 environments and 2 steps  

 

 

 

 

 

 

 

 

 

 

In the first steps the return starts with negative values, indicating poor performance by the 

agents initially but there is a sharp increase in return within the first 500 update steps, quickly 

reaching close to the maximum return of 20. This indicates that the agents rapidly learn an 

effective policy. After the sharp increase, the return stabilizes around 20 and maintains this 

level throughout the remaining update steps. The stability indicates that the agents have learned 

a robust policy and consistently achieve high returns. 

The agents show a rapid increase in performance within the initial phase, suggesting that the 

learning algorithm and network architecture can effectively capture some dynamics of the 

environment. The maximum return of around 20 suggests that the agents have learned an 

effective policy, potentially near the optimal for the given state of the environment. 

Extending the training duration beyond 5000 update steps might reveal whether the 

performance remains stable over a longer period or if further improvements are possible. 

 

Results for 5e1 timesteps , 128 environments and 16 steps , for 3 seeds 
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Orange Line (Seed 0): 

The agent quickly learns an effective policy, reaching a high return of around 20 early in the 

training process. The performance stabilizes, showing consistent high returns with minor 

fluctuations. This suggests the agent has successfully learned a robust strategy for the 

environment. 

Green Line (Seed 1): 

The agent demonstrates a more gradual increase in returns, reaching a plateau around a return 

of 0. The stability of the green line indicates that the agent may be stuck in a local minimum 

or is unable to explore more effective strategies. 

Blue Line (Seed 2): 

The agent initially shows some improvement but experiences a significant drop in returns, 

stabilizing at a negative return of around -20. The instability and negative returns suggest that 

the agent might be learning a suboptimal policy or is exploring ineffective actions that degrade 

performance. 

 

The orange line’s stability indicates a well-learned policy with minor exploration leading to 

high and consistent returns. In contrast, the blue line's sharp drops highlight episodes of poor 

performance, suggesting the agent is unable to maintain a stable policy. The green line’s flat 

trajectory implies little to no improvement, possibly due to insufficient exploration or being 

stuck in a suboptimal policy. 

 

MAPPO - Results 

 

Results for 10e1 timesteps , 128 environments and 16 steps 
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As observed, the algorithm starts with returns that are marginally positive, suggesting that 

initial policies, while not highly effective, avoid detrimental outcomes. This phase likely 

reflects the algorithm’s exploitation of basic strategies that provide consistent but limited 

rewards. The noticeable dip in performance at the midpoint of the training suggests a period 

of exploration. Here, the algorithm may be testing new strategies that diverge from 

previously learned behaviors, resulting in temporary performance setbacks.: The dramatic 

rise in returns towards the end of the graph indicates the discovery of highly effective 

strategies. This could be attributed to the algorithm optimizing its policy selection based on 

accumulated experiences and overcoming the exploration penalties observed earlier. 

 

Results for 5e1 timesteps , 128 environments and 2 steps 

 

 

 

 

 

 

 

 

 

 

 

The return starts near zero and remains flat initially. This phase likely corresponds to the initial 

exploration period where the agents are exploring the environment and learning the basic 

dynamics of the game without any significant improvement in performance. Around step 10, 

there is a significant drop in the return, followed by a rapid increase reaching a peak return of 

approximately 18 at step 30. This sharp increase indicates that the agents have discovered a 

highly rewarding strategy or set of actions that significantly improves their performance. After 

reaching the peak, the return drops slightly but stabilizes around a return of 10. This suggests 

that the agents are refining their strategies and converging to a stable policy. The slight drop 

could be due to continued exploration or fine-tuning of the policy. 

The flat return in the initial steps reflects the agents' exploration and lack of effective strategies. 

This is common in reinforcement learning where agents start with little knowledge of the 

environment. The sharp increase in return signifies that the agents have found effective 

strategies that yield high rewards. This phase shows the capability of the MAPPO algorithm to 
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leverage exploration to discover rewarding actions. The stabilization phase indicates that the 

agents are converging to a stable policy. The slight fluctuations around the stable return value 

suggest that the agents are still exploring but have largely settled on a successful strategy. 

 

Results for 10e1 timesteps , 4 environments and 2 steps 

 

 

 

 

 

 

 

 

 

 

In this graph, we observe the return over 25 update steps. The graph starts with returns below 

zero, indicating that the agents are performing poorly initially. The returns fluctuate between 

negative and positive values, indicating instability in the learned policies. Towards the end of 

the update steps, there is a sharp increase in the return, reaching around. This suggests that the 

agents have started to learn more effective strategies, although the learning process is still 

unstable. The learning process appears more unstable, with returns fluctuating significantly 

before achieving a positive return towards the end. This suggests variability in the learning 

process, which could be due to factors such as randomness in the environment, the complexity 

of the task, or variability in initial conditions. The fluctuations observed in the graph highlight 

the challenges in achieving consistent performance. It suggests that while the MAPPO 

algorithm can find effective strategies, the path to stable learning might require more time or 

adjustments to hyperparameters. 
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Results for 5e1 timesteps , 128 environments and 2 steps , for 3 seeds 

 

 

 

 

 

 

 

 

 

 

 

 

The graph demonstrates considerable variance in the performance of the MAPPO algorithm 

across different seeds. This variability underscores the importance of multiple runs to evaluate 

the robustness and stability of the learning algorithm.  At the beginning of the training (0-5 

update steps), all three seeds show returns close to zero, indicating that the agents have not yet 

learned effective strategies and are performing at or slightly below the baseline. Between 5-15 

update steps, we observe divergence in the performance across the three seeds, the blue and 

green seeds show a drop in performance, with returns dipping to negative values around -1 to 

-2 but the orange seed maintains a return close to zero during this period. Around 15 update 

steps, the green seed experiences a sharp increase in return, briefly exceeding 0.5 before 

dropping again. The blue seed also shows an improvement, though it remains below zero.  The 

orange seed exhibits a steep decline, reaching a minimum return of approximately -2.5.After 

20 update steps, performance for the seeds becomes more distinct, the green seed's return 

increases significantly, reaching positive values around 0.5 to 1. The blue seed's return 

improves but remains below zero and the orange seed shows some recovery but continues to 

exhibit significant fluctuations. 

The green seed shows a more stable learning curve in the later stages compared to the blue and 

orange seeds, suggesting that, in this instance, the initial random seed significantly affected the 

learning trajectory. The fluctuations in returns, particularly for the orange seed, suggest that 

the agents might be exploring different strategies or encountering instabilities in policy updates. 
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4.3 Discussion 

The results indicate that IPPO and MAPPO are well-suited to "The Mind" environment, 

effectively handling the cooperative dynamics and limited communication. MAPPO's 

centralized training enhances coordination, contributing to its superior performance. 

The strategies developed by IPPO and MAPPO can mirror human gameplay in a certain level 

, with agents showing a natural turn-taking pattern and considering the game's state when 

making decisions. The algorithms seem to adapted well to the unique rules of "The Mind," 

developing coherent strategies despite the lack of direct communication.  

Algorithm Performance in Cooperative Games suggests that on-policy algorithms with 

centralized training can handle cooperative scenarios effectively. This finding reinforces the 

importance of centralized coordination mechanisms in complex MARL environments [6] .  

The results demonstrate that IPPO is capable of learning effective policies for the multi-agent 

environment of "The Mind". The algorithm shows strong convergence properties, as indicated 

by the stabilization of returns at high levels in the latter phases of training. However, there are 

fluctuations and occasional drops in performance, which suggest that while the agents are 

generally effective, there are still opportunities for improvement in terms of stability and 

consistency. 

Some potential improvements that can benefit the algorithms are extending the training 

duration beyond the current limits might help in achieving more consistent performance and 

further refining the learned policies, fine-tuning hyperparameters such as the learning rate, 

discount factor, and clipping epsilon could enhance the algorithm's stability and performance. 

Also by refining the reward structure to provide more informative feedback can guide the 

agents towards more stable and optimal behavior. Implementing advanced exploration 

strategies, such as epsilon-greedy or entropy-based methods, might help in reducing the initial 

variability and speeding up the convergence process. 

The results presented in the previous chapters indicate significant learning dynamics that 

characterize the performance of MAPPO in "The Mind". Notably, the agents demonstrated a 

capability to recover from suboptimal policies and adapt strategies that significantly improved 

their performance, as seen in the sharp increase in returns towards the end of the training cycles. 

 These findings align with the established theories in reinforcement learning that emphasize the 

importance of exploration for achieving optimal long-term rewards. The observed fluctuations 

in performance reflect a sophisticated balance between exploration and exploitation, a core 

challenge in MARL environments. This behavior mirrors findings from similar studies [6] , 

which demonstrated that agents often experience initial declines in performance as they explore 

new strategies before stabilization occurs upon learning optimal actions. The study contributes 
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to the understanding of how MARL algorithms like MAPPO can be optimized to manage 

complex, cooperative interactions among agents in a semi-competitive environment. The 

capability of MAPPO to dynamically adjust agent policies in response to the evolving game 

dynamics offers a robust example of adaptive learning in multi-agent systems. 

The strategic implications of this research are profound, particularly in the design of reward 

structures and policy updates that encourage beneficial exploration. Implementing techniques 

such as reward shaping or dynamic policy adjustment could further enhance the learning 

efficiency in similar MARL setups. For practitioners, this research suggests the importance of 

carefully designing the learning environment and the reward mechanisms to foster effective 

agent collaboration and to mitigate conflicts that may arise from competitive behaviors. 

 

This chapter has demonstrated that IPPO and MAPPO, particularly MAPPO, are effective in 

handling "The Mind" as a MARL environment. The results highlight the importance of 

centralized training and nuanced coordination strategies in cooperative games and provide 

insights into potential real-world applications for MARL. 

 

Chapter 5 

 

Conclusion & Future Improvements 
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5.1 Conclusion 

The results have shown changes in execution, versatility, and productivity across the 

calculations, outlining the significant effect of algorithmic plan on the way of behaving and 

progress of agents inside a perplexing MARL structure.  

To sum up the critical discoveries of the review, ponder the ramifications of these outcomes 

for the more extensive field of MARL, and propose bearings for future exploration that could 

expand the comprehension and use of MARL in helpful conditions.  
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This thesis has explored the application of Multi-Agent Proximal Policy Optimization 

(MAPPO) and Independent Proximal Policy Optimization (IPPO) within the MARL 

framework tailored for "The Mind" game. The findings demonstrate that both algorithms, 

particularly MAPPO, are well-suited for managing the cooperative dynamics and 

communication constraints inherent in "The Mind." Notably, MAPPO's centralized training 

mechanism facilitated superior coordination among agents. 

Both IPPO and MAPPO have shown the capability to develop strategies that mirror human-

like behaviors such as turn-taking and state-aware decision-making, despite the absence of 

direct communication. This capability underscores the potential of advanced MARL 

algorithms to approximate complex human interactions within a game setting. 

The research highlighted the robust adaptability of MAPPO and IPPO to the unique rules and 

cooperative nature of "The Mind.". The dynamic adjustment of policies by the algorithms, 

supported by empirical results, illustrated a sophisticated balance between exploration and 

exploitation—a critical aspect in achieving optimal long-term rewards in MARL environments. 

This study contributes to the broader discourse on the efficacy of on-policy algorithms with 

centralized training in cooperative multi-agent settings. It provides empirical evidence 

supporting the theory that such training frameworks can enhance agent coordination and 

learning outcomes. 

The findings from this thesis offer valuable insights for practitioners and researchers in 

designing MARL systems for similar complex environments. The demonstrated importance of 

reward structures and policy updates suggests approaches for enhancing agent collaboration in 

various applications, from gaming to autonomous systems and beyond. 

In conclusion, this thesis has shown that IPPO and MAPPO are effective tools for navigating 

the complexities of cooperative MARL environments. This research not only enhances our 

understanding of multi-agent learning dynamics but also opens avenues for future exploration 

into more sophisticated and scalable MARL applications. 

 

5.2 Limitations 

In the context of the research on "The Mind" within a cooperative MARL  environment, several 

limitations may have arisen. Addressing these limitations not only provides transparency but 

also paves the way for future research.  

One of the primary limitations that could have emerged from this research is the scalability of 

the algorithms. While MAPPO and IPPO performed well within the constrained setup of "The 

Mind" game with a limited number of agents, as the number of agents increases, the complexity 

of the environment and the interactions among agents can escalate dramatically, potentially 
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leading to issues like non-converging policies or increased computational demands. The 

scalability of these algorithms to other cooperative games or real-world scenarios that involve 

more dynamic interactions or larger state spaces remains a question. 

The algorithms were tested in a very specific setting with predefined rules and structured 

interactions. The ability of IPPO and MAPPO to generalize to environments that have different 

rules, objectives, or agent dynamics wasn't thoroughly tested. This limitation could affect the 

applicability of the findings to other real-world applications or different types of games. The 

performance of these algorithms in environments where agent roles or game dynamics change 

unpredictably is uncertain. 

Given that "The Mind" inherently involves limited communication among players, the 

algorithms were tailored to operate under these constraints, how these algorithms would 

perform in environments where agents can communicate more explicitly or where 

communication is a variable factor wasn't addressed. The reliance on developing implicit 

coordination strategies could be a limitation in scenarios where explicit coordination is 

necessary or more efficient. 

The effectiveness of these algorithms is heavily dependent on the design of the reward 

structure. If the reward signals are not adequately informative or aligned with the desired 

outcomes, the learning process can be misguided, leading to suboptimal policies. 

 

5.3 Future Work 

In the aspect of algorithmic enhancements, further research could explore algorithms or 

modifications that more effectively handle the non-stationarity of MARL environments, 

particularly for Independent Q-Learning or similar approaches, investigate how 

communication strategies, such as message-passing or signaling protocols, can enhance 

cooperation in MARL environments, particularly for algorithms like IPPO and MAPPO. 

Expanding "The Mind" environment to include more complex game dynamics, such as multi-

round scenarios, could provide a more rigorous testbed for MARL algorithms. Exploring other 

cooperative games as MARL environments can help diversify benchmarks, allowing for 

broader evaluations and comparisons of algorithms. 

Future studies could also delve deeper into comparing AI strategies with human gameplay, 

examining how closely they align and what insights can be drawn from the differences and 

analyze how algorithms learn and adapt over time, including how they form strategies, handle 

new scenarios, and improve coordination skills. 

In summary, this research presents a new MARL environment based on "The Mind," 

successfully implements and evaluates multiple algorithms within it, and draws insights into 
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the dynamics of cooperative learning. The findings offer significant contributions to MARL 

research, particularly in cooperative game settings, and suggest numerous avenues for future 

exploration to further advance the field.  
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Appendix Α 

 

 

This function is designed to handle the gameplay logic where a player, represented by a specific 

index (`aidx`), attempts to play the lowest card in their hand. The function evaluates whether 

this action is valid based on the game's rules and updates the game state accordingly. Here's a 

more detailed breakdown of the process and functionality depicted in the code snippet: 

 

1. Extract Player Hand: The function begins by extracting the hand of the player specified by 

`aidx` from the state, assuming that the hand is sorted or that the lowest card is the first in the 

array. 
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2. Determine Played Card: It identifies the lowest card in the player's hand as the card to be 

played. 

 

3. Update Shown Cards: The function updates the `shown_cards` state to include the card just 

played, indicating that this card is now visible or known to other players. 

 

4. Remove Card from Hand: It removes the played card from the player's hand and shifts the 

remaining cards left to fill the gap. 

 

5. Validate Play: The function checks if the played card is valid by comparing it to the last card 

played (`last_played`). A play is considered valid if the card played is greater than the last card 

played but still less than a specified threshold (101 in this case). 

 

6. Update Life Tokens and Reward: If the play is not valid, the player loses a life token, and 

the reward is decreased by one. If the play is valid, the reward is incremented by one, 

encouraging the agent to continue making valid plays. 

 

7. Return Updated State: Depending on the validity of the play, it returns the updated life tokens 

and the reward. 

 

This function is crucial for teaching the agent the consequences of its actions, both positive and 

negative, helping it learn the optimal strategy for playing its cards in the game "The Mind". 

The structured reward system (reward of +1 for a correct play and a penalty of -1 for an 

incorrect one) directly incentivizes the agent to align its actions with the game rules and 

objectives, thereby maximizing collective outcomes in a cooperative game environment. 
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Appendix Β 

 

 

 

The script is designed to simulate gameplay in "The Mind" environment, testing its integrity 

and the interaction of agents within this setup. It executes multiple game steps while collecting 

and printing state information to ensure that the game logic and agent behaviors align with 

expected outcomes. 

 

  A loop runs for a fixed number of iterations (30 in this case), where each iteration represents 

a step in the environment. 

  At each iteration, the current state is appended to `state_seq`. 

 The script uses JAX for random number generation and action sampling. `key, key_s, key_a` 

are split keys used for generating random numbers, ensuring reproducibility and independent 

random samples for different parts of the code. 
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Actions for each agent are sampled according to the environment's action space, ensuring that 

actions are valid and randomly chosen based on the current policy or action distribution. 

 Before the environment steps forward, the script prints out the current state of various game 

components such as lives, the current level, the last card played, and whether the state is 

terminal (end of the game). 

 The environment progresses using the `env.step` method, which receives the current state and 

chosen actions. This method returns observations, updated state, rewards, completion flags 

(`dones`), and additional info. 

This step is where the game logic is applied, and the environment calculates the new state based 

on the actions taken by the agents. 

After stepping through the environment, the script prints detailed information about the new 

state, including any changes in the level, player index, rewards received, and observations of 

the environment state. 

This script is valuable for testing and verifying the game's mechanics in "The Mind" MARL 

environment by  ensuring the environment behaves as expected without any logical errors or 

inconsistencies and also assessing whether agents' actions based on the current policy lead to 

reasonable outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


