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Abstract 

In the modern world where we live the biggest amount of our work depends on a personal 

computer. The usage of applications and programming systems is necessary for the 

completion of every task that an employee or an individual handles. This fact increases 

the need for having safe programming systems. Unfortunately, no one can ensure that 

every programming system is safe, and it is globally known that there are both safe and 

unsafe programming systems. Secure systems ensure safe access to memory, while unsafe 

systems lack security assurances. The vulnerability of unsafe systems is programming 

bugs which gives the opportunity of exploitation to the attackers. On the other hand, safe 

systems depend on their run-time environment to ensure that they are secure and avoid 

bugs. While safe systems are perfect for use due to their security, their run-time 

environment costs a lot of performance overhead, which makes the usage of unsafe 

systems the only solution on building high performance applications. In these situations, 

it is necessary to find other ways to ensure the safety of the system such as hardening 

techniques. Even though, those systems are still insecure. Newly created systems and 

languages can be categorized somewhere in the middle of the old safe and unsafe systems. 

Their goal is to be memory safe using as lighter run-time guarantees as they can to 

produce better performance than the old safe systems. An example of these middle 

category systems and languages is Go programing language also known as Golang. 

In this thesis, we try to find vulnerabilities in a compiled program written in Go 

programming language, despite the safety provided by the language. If the program 

succeeds in the compilation without any errors, then it is considered memory safe. The 

goal of this investigation is to convert a valid binary into an invalid one by creating bugs 

after the compilation. In the following thesis, we  provide different examples and 

scenarios of violated binaries, whose bugs get inserted into binary level code artificially.  
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Chapter 1 

 

Introduction 

Most work nowadays is achieved through the usage of computer or mobile applications, 

which mainly perform mathematical calculations in their low-level implementation. The 

basic and fundamental tools for creating applications are programming languages which 

are sets of commands and instructions that are given to the computer machines to perform 

specific tasks depending on the set of instructions are given and their order. Programming 

languages pass through many stages until today in order to gain the form we know. They 

started form low-level languages, which are closer to the machine language and through 

all these years they become high-level and much easier to the programmers to understand, 

learn, and have the ability to use them when designing a programming system and 

developing computer and mobile applications. Languages also can be categorized in 

compiled and interpreted. To get in more details, compiled languages are translated 

directly into machine code that the computer’s processor can execute. On the other hand, 

interpreted languages are not directly transformed in machine code but another program, 

the interpreter, reads and executes the code. As the time passed, languages’ usage was 

getting bigger and bigger, and the result was the appearance of the first programming 

bugs. 

Mostly compiled languages suffer till now from bugs, especially those who don’t offer 

run-time safety support. Those bugs can create enormous system holes in applications if 

they get exploited. Those holes can cost a lot of money and loss of information to 

companies that got attacked. This fact created a wave of inspiration both for the art of 

exploiting and destroying programming systems and the need of building strong defenses 

for the existing systems written in compiled languages like C/C++. It also fired the need 

to develop new programming languages that tried to follow the speed of C/C++ and offer 

at the same time run-time security guarantees. These languages tried to be the lighter they 

can while holding these safety guarantees. Such examples are Rust and Go languages. 

This thesis will focus on the Go language [2]. Go language is designed to prevent common 

bugs such as buffer overflows and memory leaks using its light goroutines on runtime. 
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Another key feature of Go, which makes the language safe, is the solid memory 

management that contains, which is focused on memory concurrency, and it is based on 

multiple goroutines and channels. Golang has a garbage collector that automatically frees 

the allocated memory, which is no longer needed, preventing memory leaks, race 

conditions and deadlocks. An also important characteristic that Go language contains is 

the type of safety, a feature that helps a lot Go developers to avoid null pointer and type 

mismatch errors preventing generating security vulnerabilities. 

The main concern of this thesis is if someone with malicious purpose can overcome those 

safety measures after the compilation of a program written in Go language. In more 

details, is there any possibility a valid executable, which succeeded the compilation 

process, get violated on binary level by manual modifications? Can bugs, we mostly meet 

in C/C++, be created also in a correct executable with no impact on the output interface 

of an application? 

The importance of these questions is very high in order to make optimizations both in 

language configuration and also on validating any application that may be released and 

has malicious behavior with purpose to be exploited on users’ devices. Bugs will always 

exist due to the nature of programming and computing systems but the more we search 

them the more we can figure out a solution to harden the security features of every 

language and avoid as much threads as possible, by making it harder for hackers to take 

advantage of a system. 

 

Contributions 

1. Explore and exploit spatial safety features by modifying checks which prevent 

buffer overflows. 

2. Explore the possibility of creating integer overflow bugs. 

 

Thesis Structure 

In the following chapters of this thesis, we emphasize more in Go language and its 

concepts, terminology and explain the methodology we followed for exploring the safety 

guaranties of the language. In more detail, we explain more terminologies and problems 
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and at the same time explain more about what is a safe and an unsafe system (Chapter 2). 

This chapter does not necessarily need to be read due to the fact that contains a lot of 

information for technological issues and someone who has the knowledge can skip this 

chapter. Moving on to the next chapter, Chapter 3, we discuss more about Go’s practices 

on improving spatial safety and also explain our approach and methodology on the 

exploration. The next chapters, 4 and 5, are more technical and describe our different 

attempts to overcome Go’s safety routines. Finaly, Chapter 6 presents some thoughts on 

how a tool can help with the validation of a binary and identify if it as violated after 

compilation or not.   
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Chapter 2 

 

Background 

 

2.1 Memory Safety, Safe and Unsafe Systems 

2.1.1 Memory Safety 

Memory Safety is a characteristic of many programming languages that keep the source 

code of a program as safe as possible. This is accomplished because those languages 

prevent programmers from introducing many different types of bugs related to the wrong 

usage of the memory. Some of those bugs are buffer overflows, integer overflows and 

dangling pointers, which are pointers that point to a memory location that is no longer 

valid or has been deallocated. In other words, a memory safe system is a system where 

memory accesses are well defined. 

 

2.1.2 Safe Systems 

Safe systems use a good form of memory management. These systems use  programming 

languages with run-time environments like Java, Swift, C# and other languages like 

Python and JavaScript which are scripting languages. The safety guarantees that those 

languages have make them very heavy on run-time in order to produce large time 

overheads. Most of them use a garbage collector to ensure safe memory access and 

deallocation, which make them slow. Due to this fact it is very difficult for those 

languages to become the fundamental to a system programming application. 

 

2.1.3 Unsafe Systems 

A system is considered unsafe if the programming language used on building it does not 

have any built-in strategy in order to prevent wrong memory access and assure that 

memory management will be correct. Some of these languages are C and C++. Those 

languages usually are used for developing both operating systems like the Linux OS and 
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games. The reason that they are so commonly used for those purposes is their light run-

time due to the fact that a system level application cannot afford a heavy run-time. C++ 

is used in gaming because it can optimize the usage of the computer resources and give 

to the gaming applications better graphics and the ability to accept multiple players. So 

those languages are more focused on performance than memory safety due to their 

purpose of use. 

 

2.2 Problem with Unsafe Systems 

Until this point, we passed through the explanation of what is a safe and unsafe system 

and also discussed their usage and purpose. In this section we will see some problems that 

systems may face when no safety measurements are taken by the languages themselves. 

Thinking about a program in Java or in C# what comes in mind is that when a programmer 

tries to access a memory location, like the index of an array, if accidentally use as index’s 

number an integer greater than the legal bounds of the array a run-time error will occur. 

In languages without safety guarantees like C or C++ the same scenario will not be 

secured by the language’s runtime and an over-read or an overwrite bug will be created 

[4]. 

An over-read bug is an anomaly where a program, while accessing the memory of a buffer 

in order to gain data from it, passes through the buffer’s boundary and tries to read data 

from an unknown location. This phenomenon is a memory safety bug because it causes 

violations to the memory usage of a program. This bug is dangerous due to the fact that 

it can cause loss of information or give access to people with malicious intentions on 

gaining crucial information inside a program’s data. Other times this bug may result in 

incorrect results on programs output, or other times results in a crash. Those two errors 

are the best-case scenario. The most dangerous result that an over-read bug can produce 

is the breach of  system security which we mentioned before, and this is where the cyber 

security community focuses in order to find solutions for  safer programming [5]. 

On the other hand, an overwrite bug is when a potential hacker tries to manipulate a 

programming error in order to overwrite data or the existing buffer boundaries on a 

program. The attacker most of the time alters the executable code of a program and 

overwrites elements of its memory and with this violation the behavior of the application 
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changes and becomes malicious. With this the hacker can destroy files, gain crucial 

information and access user’s data, accounts or devices [6]. 

Those two issues are only some of the problems that a program may have if there are no 

built-in safety guarantees of the language is written on and are needed to understand the 

field of exploration or this thesis. In the next chapters, we examine how Go language tries 

to solve or prevent those errors, which can encourage malicious activity and violation of 

many applications. In this thesis we focused on Spatial Safety, which ensures that every 

memory access that takes place in a programming system is manipulated correct and it 

happens inside the object’s boundaries that is getting accessed. 

   

2.3 Basic Motivation of Go 

Go is ranked on the higher places on StackOverflow by the programmers on the survey 

took place in 2023 [7]. This survey happens every year and thousands of programmers’ 

vote, based on their experiences and the languages they love and use the most. Go it seems 

that has stolen a big part of programmers’ hearts despite the fact that it is a “young” 

language in the industry of programming languages compared to the mainstream ones. 

Go is a compiled, concurrent, garbage -collected, statically typed language developed at 

Google, and it is efficient, scalable, and productive [8]. It is considered as memory safe 

language due to its built-in run-time routines that prevent buffer overflows and dangling 

pointers. The garbage collection logic makes the memory usage well managed without 

the need of the programmers’ code for memory management. Due to the garbage 

collector, it was a challenge to make the language fast because as we know languages 

with garbage collection strategy are slower with heavy runtime, such as Java language.  

In order to be faster but remain safe, Go has a well-designed model. Its speed depends on 

a lot of reasons. First, Go is a compiled language, not an interpreted one, so its compilation 

process is faster due to the avoidance of working through a virtual machine. Second, Go 

has built-in support for concurrency, which gives developers the complete freedom to 

choose their approach on solving problems for software applications. Go is also 

particularly well suited for high loads applications or intensive I/O operations that require 

multitasking due its ability to deploy workloads across multiple CPU cores 



11 
 

simultaneously. Finally, Go has native compilation which fasters code execution and take 

full benefits of modern CPU features [9]. 

Go tries to be somewhere in the middle of the fast but memory unsafe languages, like C 

and C++, and the slower but memory safe languages like Java and C#. While writing Go, 

a developer could write safe and unsafe code, and this depends on him/her. If the 

programmer follows the rules of Go written in language’s documentation combined with 

the built-in features that language have then we talk about a safe Go program. In this 

thesis we will focus on safe programs and the ability to violate them on binary level after 

the compilation time. 

 

2.4 Advantages and Disadvantages when Using Go 

2.4.1 Advantages 

Go language has many advantages. Some of them are named and explained at a high level 

in this section. The fact that is a compiled language reduces the run-time of programs and 

it is able to compile to a single executable binary. The language is minimalist with no 

complexity, and it has a built-in formatting engine, which both of them help the 

developers to have an easier time while coding. Another benefit of the language is the 

automatic garbage collection, as we mentioned several times before. It has automatic 

memory management, which helps the programmers to focus on more important aspects 

of their code. There is no need for unit-testing libraries due to Go’s built-in testing and 

benchmarking. Go language has also advanced concurrency techniques and requires very 

little boilerplate code to create substantial applications. The last but not least advantages 

mentioned in this section are the dedicated Networking API that the language features, 

the fast speed that has when is used for back-end operations and its youngness because it 

has learnt from the giants (mature languages in industry like Java and C/C++) that came 

before Go [10].  

     

2.4.2 Disadvantages 

As always there is no programming language , which only has advantages. The same fact 

stands also for the Go language. Some of the disadvantages that the language has are 
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mentioned in the following lines. Go has a lack of libraries and compared  to other 

languages like Python and Java, Golang has a relatively small standard library and due to 

this situation developers may need third-party libraries for certain tasks. Even though the 

language is very simple, a problem that a programmer may face is the large time needed 

to learn and understand some unique features like Golang’s concurrency model. In 

advantages we mentioned the youngness of the language but here we will also mention 

immaturity as a disadvantage and this happening clearly because there may be fewer tools 

and resources available for developers, for no other reason [11].    
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Chapter 3 

 

Methodology 

This chapter gets into details about the main approach of Go language’s memory safety 

features and especially the buffer boundaries checking before accessing an index of an 

array. This technique is developed by the language’s creators with the goal of avoiding 

memory management violation. The language executes these checks on run-time to 

ensure spatial memory safety and at the same time be as light as possible without using a 

virtual machine approach for its garbage collection logic. Our goal in this thesis is to 

explore if we can violate a “safe” binary file, which passed the compilation process 

without alerting any errors. In more detail we try to modify the binary code in order to 

overcome or change the run-time checks and insert spatial safety bugs. 

  

3.1 Spatial Safety 

As mentioned before in less detail, the goal of spatial safety is to ensure that every 

memory access occurs within the bounds of a known object [12]. Usually when we talk 

about enforcing spatial safety in languages like Java or C#, we mean that the language 

executes run-time checks before accessing a part of an allocated memory object like an 

array. In that case the language compares the index we need to access with the boundaries 

of the object in memory. 

Go has a similar approach to preventing memory management bugs. Diving in buffer 

overflow bugs we saw that Go’s compiler adds code to prevent unsafe memory access. 

These checks perform a comparison between the boundaries of the buffer we want to 

access and the index of the same buffer we want to read or write on it. Using this strategy 

Golang avoids over-read and overwrite bugs [4]. The code added as a check causes the 

interruption of the program before overwrite memory data in unknown memory location 

or before reading data that are not accessed through the object (buffer) we trying to reach. 

For integer overflows we observed that the Go’s compiler adds a similar check with the 

difference that this check is inside a function called when an integer value is checked 
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before its usage. This check compares the register containing the value of the integer we 

want to use with the max integer value than a Go program can handle. If the comparison 

failed, then again, the program crashes before the register’s overflow takes place. 

   

3.2 Our Methodology 

In this section, we describe the methodology we followed in exploring Golang’s concepts 

explained in the sections above. We created examples written in Go in order to explore 

how the language’s compiler manipulates the memory. In our examples we have statically 

allocated arrays in order to be able to locate in binary level the check added from the 

compiler in order to prevent the buffer overflow. Integer overflow examples were also 

created with the goal of locating again the added check and if there is any difference 

between those two types of checks. After locating the injection from the compile code for 

checks, we tried to overcome it and produce spatial safety bugs like the way they 

happened in C or C++. All the above get analyzed in chapters 4 and 5 as different Proofs 

Of Concept (POC). We followed the quietest and the most cunning approach when 

modifying the binary because our goal was to prove that by making the minimum of 

modification, memory safety bugs can be regenerated from nowhere.     

 

3.2.1 Buffer Overflow 

For the buffer overflow bug, we followed the following steps: 

1. Create a toy example based on each POC. 

2. Compile the program, run it, and examine the output results. 

3. Explore the program on binary-level, using GDB and Radare2. 

4. Locate the boundaries’ checks added from the compiler. 

5. Modify the binary using Radare2 in order to violate it the way we want. 

6. Run the modified program with the right input to exploit the bug and examine the 

new results.    
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3.2.2 Integer Overflow 

For the integer overflow bug, we followed the following steps, which are very  similar to 

the buffer overflow steps: 

1. Create a toy example based on the POC. 

2. Compile the program, run it, and examine the output results. 

3. Explore the low-level instructions and the assembly of the program, using GDB 

and Radare2. 

4. Locate the check for the integer boundaries added by the compiler. 

5. Modify the binary at the point of the check using Radare2. 

6. Run the violated program with the correct input in order to exploit the bug and 

observe the results.   
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Chapter 4 

 

Buffer Overflow 

Before moving to the details of our strategy to reach the exploitation of a program it is 

important to mention that Go language has two objects that are used as buffers, arrays and 

slices. An array has a fixed size, its length, which is part of its type and that is why arrays 

cannot be resized [13][14]. A slice, on the other hand, is a dynamically sized, flexible 

view into the elements of an array [14]. A slice does not store any data, it just describes a 

section of an underlying array [15]. It has both a length and a capacity. The length of a 

slice is the number of elements it contains, when capacity is the number of elements in 

the underlying array [16]. Most of the times developers use slices because they are more 

flexible and that is why we also focused on slices. 

4.1 Proof Of Concept 1: Locate And Create First Buffer Overflow 

Bug 

4.1.1 Exploring Assembly of a Simple Program 

Before doing anything including modification and exploitation of a program we have to 

explore and understand how the compiler manipulates the boundaries checks. For this 

reason, we created a simple program that iterates through a buffer and copied its elements 

to a second smaller one. To do that we wrote the code that is shown below.  
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This program only contains the main function. In this main function two slices are 

initialized the way it shown and after that with the use of a for loop we copy elements 

from one slice to the other, which is a very common way in order to create a buffer 

overflow bug. The for loop has 15 iterations and tries to copy the same number of 

elements from buffer1 to buffer2. As we see from the code buffer2 is only 10 elements 

long. This creates a buffer overflow bug but the program compiles and runs. 

Even though the program runs, it crashes and outputs the message: “panic: runtime 

error: index out of range [10] with length 10”. 

With this experiment we are sure that Go language manipulates the buffer overflow bugs 

by calling the panic function, which terminates the program with an error message. To 

understand how Go does this we have to inspect and understand the assembly code of the 

program to find the injected check instructions added from the compiler in order to 

prevent the overwrite bug. For this operation we use the gdb [17] with the dashboard add-

on [18], which makes the exploration of the assembly code easier.  

 

1 Dump of assembler code for function main.main: 

2 0x00000000004808e0 <+0>: lea     -0x38(%rsp),%r12  

3 0x00000000004808e5 <+5>: cmp     0x10(%r14),%r12  

4 0x00000000004808e9 <+9>: jbe     0x480a96  <main.main+438> 

5 0x00000000004808ef <+15>: push    %rbp  

=== Skip Some Instructions ===  

6 0x0000000000480a0e <+302>: mov     0x28(%rsp,%rcx,8),%rdx  

7 0x0000000000480a13 <+307>: mov     %rdx,(%rax,%rcx,8)  

8 0x0000000000480a17 <+311>: inc     %rcx  

9 0x0000000000480a1a <+314>: nopw    0x0(%rax,%rax,1)  

10 0x0000000000480a20 <+320>: cmp     $0xf,%rcx  

11 0x0000000000480a24 <+324>: jge     0x480a2e  <main.main+334> 

12 0x0000000000480a26 <+326>: cmp     $0xa,%rcx  

13 0x0000000000480a2a <+330>: jb      0x480a0e  <main.main+302> 

14 0x0000000000480a2c <+332>: jmp     0x480a88  <main.main+424> 

15 0x0000000000480a2e <+334>: movups  %xmm15,0xa0(%rsp)  

16 0x0000000000480a37 <+343>: mov     $0xa,%ebx  

17 0x0000000000480a3c <+348>: mov     %rbx,%rcx  

18 0x0000000000480a3f <+351>: nop   
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19 0x0000000000480a40 <+352>: call    0x40aa20  <runtime.convTslice> 

20 0x0000000000480a45 <+357>: lea     0x6e14(%rip),%rdx         # 0x487860 

21 0x0000000000480a4c <+364>: mov     %rdx,0xa0(%rsp)  

22 0x0000000000480a54 <+372>: mov     %rax,0xa8(%rsp)  

23 0x0000000000480a5c <+380>: mov     0xabde5(%rip),%rbx         # 0x52c848 

24 0x0000000000480a63 <+387>: lea     0x3bb7e(%rip),%rax         # 0x4bc5e8 

25 0x0000000000480a6a <+394>: lea     0xa0(%rsp),%rcx  

26 0x0000000000480a72 <+402>: mov     $0x1,%edi  

27 0x0000000000480a77 <+407>: mov     %rdi,%rsi  

28 0x0000000000480a7a <+410>: call    0x47b860  <fmt.Fprintln> 

29 0x0000000000480a7f <+415>: add     $0xb0,%rsp  

30 0x0000000000480a86 <+422>: pop     %rbp  

31 0x0000000000480a87 <+423>: ret   

32 0x0000000000480a88 <+424>: mov     %rcx,%rax  

33 0x0000000000480a8b <+427>: mov     $0xa,%ecx  

34 0x0000000000480a90 <+432>: call    0x462700  <runtime.panicIndex> 

35 0x0000000000480a95 <+437>: nop   

36 0x0000000000480a96 <+438>: call    0x4605e0  <runtime.morestack_noctxt> 

37 0x0000000000480a9b <+443>: nopl    0x0(%rax,%rax,1)  

38 0x0000000000480aa0 <+448>: jmp     0x4808e0  <main.main> 

39 End of assembler dump. 

 

On the above list of assembly instructions, we can see some interesting observations. With 

the purple color we marked the basic check that the for-loop does in order to run the 

correct number of iterations. Two instructions after that we can see the buffer check added 

by the compiler marked with red color. The instruction and the address marked with the 

green color is the action that runs the for-loop. Finaly the instruction marked with the blue 

color leads to the address marked also in blue, from where the panic block begins. In this 

panic section is where the program crashes.  

To get a little bit in more detail, the three instructions in lines 12,13 and 14 are the most 

important for this example. They are added by the compiler to ensure that every access of 

the buffer’s memory is safe. It checks if the for-loop’s iteration counter, which is used as 

index for the buffer, is below the buffer’s boundaries. If this happens the program 

continues its regular flow, otherwise it leads to the panic function in order to terminate 

before the overwrite bug exploits. 
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4.1.2 Binary Modification - Violation    

Our goal is to bypass the check by modifying the binary level instructions. For this reason, 

we used the following code, which can show the results of the violation better in its output.  

 

The copy_table function takes two slices of integer elements and copies one into the other. 

The source slice of this example is slice2 and the destination slice is slice1. In the main 

function there is also another slice, the overwrite slice, which is allocated between the 

two slices. What we want to show with this example is the overwrite bug. The function 

copy_table tries to copy all the 15 elements of slice2 inside slice1. Although slice1 can 

carry only 10 elements, we expect to see the program finishes without crashing and 

copying all the 15 elements of slice2 in slice1. We expect that the 5 elements that cannot 

be stored in slice1 will be stored in the overwrite slice, which is allocated after the slice1 
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in main function. Since we are exploring spatial safety, we expect that our program has 

the following arrangement of the slices.  

 

 

 

For the modification of the binary, we used the radare2 disassembler [19]. After locating 

the check injected by compiler to protect the program from the overwrite bug, we patched 

the cmp command. In more detail, we changed it from cmp %rax, $0xa to cmp %rax, 

$0xf. With this modification, we let the program to overwrite data outside the slice1 

because we made the boundaries of the slice “bigger” that it actually is and more 

specifically we tricked the program in order to copy more data and write them in unknown 

for slice1 memory. After the loop finished, we are sure that all 15 elements of slice2 

copied into slice1. 

  

4.1.3 Results After Modification 

 

1 Hello 

2 Overwrite Slice Before: [0 0 0 0 0 0 0 0 0 0] 

3 Slice1: [10 10 10 10 10 10 10 10 10 10] 

4 Slice2: [10 10 10 10 10 10 10 10 10 10 10 10 10 10 10] 

5 Overwrite Slice After: [10 10 10 10 10 0 0 0 0 0] 

 

The results above confirm our thoughts for the overwritten data. Slice1 at the beginning 

it was full of 5s as it is shown in the code screenshot above. After the run of the violated 

binary, we can see that now is full of 10s, which are the slice2’s elements. We can also 

see that the five 10s are written after the slice1, in the overwrite slice. The fifteen 10s are 

marked with red in the results shown above in order to understand better how the program 

assigned the values of slice2 into the slice1 and overwrite slice.  

Data slice1 overwrite slice2 Data 
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Before moving to the next example, we have to mention that binary modification is 

successful only if the changes we make do not shift the binary. If the bytes we add shift 

the binary, then the program crashes and it means that the modification we are trying to 

make is not possible to be done. 

 

4.2 Proof Of Concept 2: Overwriting Bug When Accessing a Slice  

In this proof of concept, we explore two specific concepts that referred to the buffer 

overflow bug. Those two concepts are, firstly, if the compiler also injects a kind of the 

same check when we try to access an index of a slice and, secondly, if this is happening, 

we want to explore the possibility of modifying this check, bypass and create an overwrite 

or an over-read bug. For this example, we created a different toy program, which is 

explained in the following sections. 

 

4.2.1 Creation of the Toy Program 

 

This toy program is very simple and interacts with the user. The change_element function 

takes as parameters the slice and the index, which is the input that the user gave when the 
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program started. The only thing that change_element function does is replacing the 

element in the given index to 27. There is also an integer variable with the name 

diagnostic, which helps us better locate the boundaries check. Its value is a hexadecimal 

value, 0xdeadbeef, which is easy to find in the binary instructions. That is why it is used 

just before the call of the change_element function. 

   

4.2.2 Locating the Check 

When running the example with an input greater than 18 the program crashes. This is the 

correct behavior that the program must have due to the fact that the slice can only hold 

19 items, so indexes are between 0 and 18. The program terminates by giving the handle 

to the panic function as the output says. This generates the first thoughts about the 

existence of similar boundaries check as the one examined in the previous proof of 

concept.  

 

When we dived into more detail of the assembly code in the binary file, we located a 

check similar to the one we mentioned in the previous proof of concept. We are sure that 

we found a correct and valid check because the hexadecimal value 0x13 is the number 19 

in decimal.  

 

1 Dump of assembler code for function main.main: 

2 0x000000000048e800 <+0>: lea     -0x40(%rsp),%r12  

3 0x000000000048e805 <+5>: cmp     0x10(%r14),%r12  

4 0x000000000048e809 <+9>: jbe     0x48eb10  <main.main+784> 

1 Initial Buffer: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] 

2 Please give the index of the element you want to change: 20 

3 panic: runtime error: index out of range [20] with length 19 

4  

5 goroutine 1 [running]: 

6 main.change_element(...) 

 /home/nektarios/Documents/Diplomatiki/TestingGo/table_access/toy2.go:8 

7 main.main() 

 /home/nektarios/Documents/Diplomatiki/TestingGo/table_access/toy2.go:23 +0xa73 
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5 0x000000000048e80f <+15>: push    %rbp  

6 === Skip Some Instructions === 

7 0x000000000048ea05 <+517>: mov     0xb0(%rsp),%rcx  

8 0x000000000048ea0d <+525>: mov     (%rcx),%rax  

9 0x000000000048ea10 <+528>: cmp     $0x13,%rax  

10 0x000000000048ea14 <+532>: jae     0x48eb05  <main.main+773> 

11 0x000000000048ea1a <+538>: mov     0x38(%rsp),%rdx  

12 0x000000000048ea1f <+543>: movq    $0x1b,(%rdx,%rax,8)  

13 0x000000000048ea27 <+551>: movups  %xmm15,0x60(%rsp)  

14 0x000000000048ea2d <+557>: lea     0x7d2c(%rip),%r8        # 0x496760 

15 0x000000000048ea34 <+564>: mov     %r8,0x60(%rsp)  

16 0x000000000048ea39 <+569>: lea     0x3ecf0(%rip),%r8         # 0x4cd730 

17 0x000000000048ea40 <+576>: mov     %r8,0x68(%rsp)  

18 0x000000000048ea45 <+581>: mov     0xb815c(%rip),%rbx         # 0x546ba8  

19 0x000000000048ea4c <+588>: lea     0x3f195(%rip),%rax         # 0x4cdbe8  

20 0x000000000048ea53 <+595>: lea     0x60(%rsp),%rcx  

21 0x000000000048ea58 <+600>: mov     $0x1,%edi  

22 0x000000000048ea5d <+605>: mov     %rdi,%rsi  

23 0x000000000048ea60 <+608>: call    0x4832c0  <fmt.Fprint> 

24 === Skip Some Instructions === 

25 0x000000000048eafc <+764>: add     $0xb8,%rsp  

26 0x000000000048eb03 <+771>: pop     %rbp  

27 0x000000000048eb04 <+772>: ret   

28 0x000000000048eb05 <+773>: mov     $0x13,%ecx  

29 0x000000000048eb0a <+778>: call    0x462ca0  <runtime.panicIndex> 

30 0x000000000048eb0f <+783>: nop   

31 0x000000000048eb10 <+784>: call    0x460b80  <runtime.morestack_noctxt> 

32 0x000000000048eb15 <+789>: jmp     0x48e800  <main.main> 

33 End of assembler dump. 

 

The lines marked with red is the check of the boundaries that the compiler injected in 

order to prevent the bug. If the index given is equal or greater than 19 the program jumps 

to the panic block of instructions, else the program continues its usual flow. 
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4.2.3 Performing the Attack 

In order to perform the attack and modify the binary we used again the radare2 

disassembler [19]. We changed the value of the boundaries from 19 to 30 which means 

that when we patched the binary, we changed the cmp command from cmp $0x13, %rax 

to cmp $0x1e, %rax. The results of the modified binary are shown below. 

 

1 Dump of assembler code for function main.main: 

2 0x000000000048e800 <+0>: lea     -0x40(%rsp),%r12  

3 0x000000000048e805 <+5>: cmp     0x10(%r14),%r12  

4 0x000000000048e809 <+9>: jbe     0x48eb10  <main.main+784> 

5 0x000000000048e80f <+15>: push    %rbp  

6 === Skip Some Instructions === 

7 0x000000000048ea05 <+517>: mov     0xb0(%rsp),%rcx  

8 0x000000000048ea0d <+525>: mov     (%rcx),%rax  

9 0x000000000048ea10 <+528>: cmp     $0x1e,%rax  

10 0x000000000048ea14 <+532>: jae     0x48eb05  <main.main+773> 

11 0x000000000048ea1a <+538>: mov     0x38(%rsp),%rdx  

12 0x000000000048ea1f <+543>: movq    $0x1b,(%rdx,%rax,8)  

13 0x000000000048ea27 <+551>: movups  %xmm15,0x60(%rsp)  

14 0x000000000048ea2d <+557>: lea     0x7d2c(%rip),%r8        # 0x496760 

15 0x000000000048ea34 <+564>: mov     %r8,0x60(%rsp)  

16 0x000000000048ea39 <+569>: lea     0x3ecf0(%rip),%r8         # 0x4cd730 

17 0x000000000048ea40 <+576>: mov     %r8,0x68(%rsp)  

18 0x000000000048ea45 <+581>: mov     0xb815c(%rip),%rbx         # 0x546ba8  

19 0x000000000048ea4c <+588>: lea     0x3f195(%rip),%rax         # 0x4cdbe8  

20 0x000000000048ea53 <+595>: lea     0x60(%rsp),%rcx  

21 0x000000000048ea58 <+600>: mov     $0x1,%edi  

22 0x000000000048ea5d <+605>: mov     %rdi,%rsi  

23 0x000000000048ea60 <+608>: call    0x4832c0  <fmt.Fprint> 

24 === Skip Some Instructions === 

25 0x000000000048eafc <+764>: add     $0xb8,%rsp  

26 0x000000000048eb03 <+771>: pop     %rbp  

27 0x000000000048eb04 <+772>: ret   

28 0x000000000048eb05 <+773>: mov     $0x13,%ecx  

29 0x000000000048eb0a <+778>: call    0x462ca0  <runtime.panicIndex> 

30 0x000000000048eb0f <+783>: nop   

31 0x000000000048eb10 <+784>: call    0x460b80  <runtime.morestack_noctxt> 
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32 0x000000000048eb15 <+789>: jmp     0x48e800  <main.main> 

33 End of assembler dump. 

 

As we can see from the above listing nothing more changed than the cmp command. The 

binary did not shift and that is why modification is possible in this scenario. 

 

4.2.4 Final Results 

For this toy program we provided as input the number 25 after the violation of the binary. 

As we can see from the results below the program finished without crashing or displaying 

any error. 

1 Initial Buffer: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] 

2 Please give the index of the element you want to change: 25 

3 Buffer After: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] 

4 diagnostic = DEADBEEF 

 

We also can see that there is no difference for the elements included in buffer after the 

run of the patched binary and this is totally normal because the buffer can only hold 19 

elements and when we give as input the number 25 the value 27 (the values that our 

program puts in the given index) will be written in an unknown for our program memory 

after the end of our buffer. If we inspect the stack of our program before and after 

accessing the memory at index 25, we can observe the following pictures of memory.  

In the first one we can see that everything looks fine and correct, at the level we can say 

this for assembly code of a binary file. Numbers marked in blue are the initial values of 

the slice we stored when we initialized it at the beginning of the program. Those are the 

values 1 to 19 and below we can see them in the stack with their hexadecimal values. 

- offset - 0  1 2  3 4  5 6  7 8  9 A B C D E F 

0xc0000b4000 0100 0000 0000 0000 0200 0000 0000 0000 

0xc0000b4010 0300 0000 0000 0000 0400 0000 0000 0000 

0xc0000b4020 0500 0000 0000 0000 0600 0000 0000 0000 

0xc0000b4030 0700 0000 0000 0000 0800 0000 0000 0000 
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0xc0000b4040 0900 0000 0000 0000 0a00 0000 0000 0000 

0xc0000b4050 0b00 0000 0000 0000 0c00 0000 0000 0000 

0xc0000b4060 0d00 0000 0000 0000 0e00 0000 0000 0000 

0xc0000b4070 0f00 0000 0000 0000 1000 0000 0000 0000 

0xc0000b4080 1100 0000 0000 0000 1200 0000 0000 0000 

0xc0000b4090 1300 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40a0 0000 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40b0 0000 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40c0 0000 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40d0 0000 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40e0 0000 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40f0 0000 0000 0000 0000 0000 0000 0000 0000 

 

After accessing the memory if we observe the stack, we will see that the value 0x1b will 

be shown, which is the value 27 in decimal. This is the value our program adds at the 

given index.  

 

- offset - 0  1 2  3 4  5 6  7 8  9 A B C D E F 

0xc0000b4000 0100 0000 0000 0000 0200 0000 0000 0000 

0xc0000b4010 0300 0000 0000 0000 0400 0000 0000 0000 

0xc0000b4020 0500 0000 0000 0000 0600 0000 0000 0000 

0xc0000b4030 0700 0000 0000 0000 0800 0000 0000 0000 

0xc0000b4040 0900 0000 0000 0000 0a00 0000 0000 0000 

0xc0000b4050 0b00 0000 0000 0000 0c00 0000 0000 0000 

0xc0000b4060 0d00 0000 0000 0000 0e00 0000 0000 0000 

0xc0000b4070 0f00 0000 0000 0000 1000 0000 0000 0000 

0xc0000b4080 1100 0000 0000 0000 1200 0000 0000 0000 

0xc0000b4090 1300 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40a0 0000 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40b0 0000 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40c0 0000 0000 0000 0000 1b00 0000 0000 0000 

0xc0000b40d0 0000 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40e0 0000 0000 0000 0000 0000 0000 0000 0000 

0xc0000b40f0 0000 0000 0000 0000 0000 0000 0000 0000 
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As we can see above, the value 0x1b is marked red and it is the new entry in our stack. If 

we count carefully, we can also see that is at the 25th index of the memory started at 

0xc0000b4000 address which is our buffer’s starting point. So, we accomplished the attack with 

the minimum of modification on binary level, without crashing the program while it runs. We 

successfully modified the stack out of the legal boundaries of the slice and that means that we 

created an overwrite bug.   
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Chapter 5 

 

Integer Overflow 

In this section we will dive into integers and the possibility of creating integer overflow 

bugs. Our goal is to explore compiled binaries of programs that manipulate integers and 

find out if Go language manipulates the integer overflow with the same way that 

manipulates buffer overflows. More specifically we will search for a similar block of 

instructions injected from the compiler in order to prevent the integer overflows or find 

out if Go has a different approach for this kind of bug. 

 

5.1 Proof Of Concept: Searching for Integer Overflow Check 

For this proof of concept, we will focus on integer manipulation from Go language and 

explore the language’s behavior through different examples. 

5.1.1 Creation of the Toy Program  

For this experiment we created a small toy example, which calculates the addition of  two 

integers inserted from the user at the beginning of the program. 
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As we can see in the above screenshot of the source code, the function addition takes two 

integer parameters, calculates their sum, and prints the results on user’s display. In 

function main, as shown above, the only thing that happens is the “reading” of user’s 

inputs stored in integer variables input1 and input2. 

First Simple Run Output 

1 Hello! Welcome to the addition program! 

2 Please give the first integer: 10 

3 Please give the second integer: 15 

4 The result of the addition: 10 + 15 = 25 

 

In the output shown above the two red numbers are input1 and input2 that the user gave 

at the beginning of the program. The number marked green is the result that addition 

function calculates and prints.  

 

5.1.2 Exploring Binary 

In order to find out if the compiler of Go language injects code in binary level in order to 

prevent the integer overflow, we have to observe the assembly instructions of our toy 

program’s binary. A part of this binary, which is part of the addition function is shown 

below. 

  

1 Dump of assembler code for function main.addition: 

2 0x000000000048e800 <+0>: cmp     0x10(%r14),%rsp 
 

3 0x000000000048e804 <+4>: jbe     0x48e8b7  <main.addition+183> 

4 0x000000000048e80a <+10>: push    %rbp 
 

5 0x000000000048e80b <+11>: mov     %rsp,%rbp 
 

6 0x000000000048e80e <+14>: sub     $0x70,%rsp 
 

7 0x000000000048e812 <+18>: mov     %rbx,0x88(%rsp) 
 

8 0x000000000048e81a <+26>: lea     (%rax,%rbx,1),%rcx 
 

9 0x000000000048e81e <+30>: mov     %rcx,0x38(%rsp) 
 

10 0x000000000048e823 <+35>: movups  %xmm15,0x40(%rsp) 
 

11 0x000000000048e829 <+41>: movups  %xmm15,0x50(%rsp) 
 

12 0x000000000048e82f <+47>: movups  %xmm15,0x60(%rsp) 
 

13 0x000000000048e835 <+53>: call    0x40a900  <runtime.convT64> 

14 0x000000000048e83a <+58>: lea             0x813f(%rip),%rcx # 0x496980 
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15 === Skip Some Instructions === 

16 0x000000000048e8ac <+172>: call    0x4831a0  <fmt.Fprintf> 

17 0x000000000048e8b1 <+177>: add     $0x70,%rsp 
 

18 0x000000000048e8b5 <+181>: pop     %rbp 
 

19 0x000000000048e8b6 <+182>: ret 
  

20 0x000000000048e8b7 <+183>: mov     %rax,0x8(%rsp) 
 

21 0x000000000048e8bc <+188>: mov     %rbx,0x10(%rsp) 
 

22 0x000000000048e8c1 <+193>: call    0x460b80  <runtime.morestack_noctxt> 

23 0x000000000048e8c6 <+198>: mov     0x8(%rsp),%rax 
 

24 0x000000000048e8cb <+203>: mov     0x10(%rsp),%rbx 
 

25 0x000000000048e8d0 <+208>: jmp     0x48e800  <main.addition> 

26 End of assembler dump. 

 

In the above listing is marked red the instruction that performs the addition of the two 

integers. There is not any check for testing the boundaries of the integer maximum value 

neither before nor after the addition. It seems that the compiler did not inject any kind of 

boundaries check. To explore the binary in more depth we also observed the main function 

to see if there is at least a check while “reading” the integer values inserted by the user as 

the program’s inputs. A snapshot of the binary is shown in the following listing. 

1 Dump of assembler code for function main.main: 

2 0x000000000048e8e0 <+0>: lea -0x10(%rsp),%r12   

3 0x000000000048e8e5 <+5>: cmp 0x10(%r14),%r12   

4 0x000000000048e8e9 <+9>: jbe 0x48ea75 <main.main+405>  

5 0x000000000048e8ef <+15>: push %rbp   

6 0x000000000048e8f0 <+16>: mov %rsp,%rbp   

7 === Skip Some Instuction === 

8 0x000000000048ea2f <+335>: mov %rcx,0x30(%rsp)   

9 0x000000000048ea34 <+340>: mov 0xb8165(%rip),%rbx #0x546ba0  

10 0x000000000048ea3b <+347>: lea 0x3f146(%rip),%rax #0x4cdb88 

11 0x000000000048ea42 <+354>: mov $0x1,%edi   

12 0x000000000048ea47 <+359>: mov %rdi,%rsi   

13 0x000000000048ea4a <+362>: lea 0x28(%rsp),%rcx   

14 0x000000000048ea4f <+367>: call 0x489e20 <fmt.Fscanln>  

15 0x000000000048ea54 <+372>: mov 0x78(%rsp),%rcx   

16 0x000000000048ea59 <+377>: mov (%rcx),%rbx   

17 0x000000000048ea5c <+380>: mov 0x80(%rsp),%rcx   

18 0x000000000048ea64 <+388>: mov (%rcx),%rax   

19 0x000000000048ea67 <+391>: call 0x48e800 <main.addition>  

20 0x000000000048ea6c <+396>: add $0x88,%rsp   

21 0x000000000048ea73 <+403>: pop %rbp   
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22 0x000000000048ea74 <+404>: ret    

23 0x000000000048ea75 <+405>: call 0x460b80 <runtime.morestack_noctxt>  

24 0x000000000048ea7a <+410>: jmp 0x48e8e0 <main.main>  

25 End of assembler dump. 

 

The listing shown above cannot help us find if there is any check at the time of the 

“reading”. As we can see there are not any cmp instruction. The only hint that these 

assembly instructions gave us is the call to the Fscanln function, which performs the 

reading. The only option we have is to dive into this function and find our answers. On 

the listing below we can see the assembly instructions of the Fsanln function which helps 

us read the inputs that user gives to us. 

1 Dump of assembler code for function fmt.Fscanln: 

2 0x0000000000489e20 <+0>: lea -0x10(%rsp),%r12 
 

3 0x0000000000489e25 <+5>: cmp 0x10(%r14),%r12 
 

4 0x0000000000489e29 <+9>: jbe 0x489f27 <fmt.Fscanln+263> 

5 0x0000000000489e2f <+15>: push %rbp 
 

6 0x0000000000489e30 <+16>: mov %rsp,%rbp 
 

7 0x0000000000489e33 <+19>: sub $0x88,%rsp 
 

8 0x0000000000489e3a <+26>: mov %rax,0x98(%rsp) 
 

9 0x0000000000489e42 <+34>: mov %rbx,0xa0(%rsp) 
 

10 0x0000000000489e4a <+42>: mov %rsi,0xb8(%rsp) 
 

11 0x0000000000489e52 <+50>: mov %rdi,0xb0(%rsp) 
 

12 0x0000000000489e5a <+58>: mov %rcx,0xa8(%rsp) 
 

13 0x0000000000489e62 <+66>: xor %ecx,%ecx 
 

14 0x0000000000489e64 <+68>: mov $0x1,%edi 
 

15 0x0000000000489e69 <+73>: call 0x48a6a0 <fmt.newScanState> 

16 0x0000000000489e6e <+78>: mov %rax,0x78(%rsp) 
 

17 0x0000000000489e73 <+83>: mov %bl,0x58(%rsp) 
 

18 0x0000000000489e77 <+87>: mov %cl,0x59(%rsp) 
 

19 0x0000000000489e7b <+91>: mov %dil,0x5a(%rsp) 
 

20 0x0000000000489e80 <+96>: mov %rsi,0x60(%rsp) 
 

21 0x0000000000489e85 <+101>: mov %r8,0x68(%rsp) 
 

22 0x0000000000489e8a <+106>: mov %r9,0x70(%rsp) 
 

23 0x0000000000489e8f <+111>: movups 0x58(%rsp),%xmm0 
 

24 0x0000000000489e94 <+116>: movups %xmm0,0x28(%rsp) 
 

25 0x0000000000489e99 <+121>: movups 0x68(%rsp),%xmm0 
 

26 0x0000000000489e9e <+126>: movups %xmm0,0x38(%rsp) 
 

27 === Skip Some instuctions === 

28 0x0000000000489ea3 <+131>: mov 0xa8(%rsp),%rbx 
 

29 0x0000000000489eab <+139>: mov 0xb0(%rsp),%rcx 
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30 0x0000000000489eb3 <+147>: mov 0xb8(%rsp),%rdi 
 

31 0x0000000000489ebb <+155>: nopl 0x0(%rax,%rax,1) 
 

32 0x0000000000489ec0 <+160>: call 0x48e400 <fmt.(*ss).doScan> 

33 0x0000000000489ec5 <+165>: mov %rax,0x50(%rsp) 
 

34 0x0000000000489f59 <+313>: mov 0x28(%rsp),%rsi 
 

35 0x0000000000489f5e <+318>: xchg %ax,%ax 
 

36 0x0000000000489f60 <+320>: jmp 0x489e20 <fmt.Fscanln> 

37 End of assembler dump. 

 

After exploring this set of assembly instructions, we can see that there is no check in the 

function. There are not any checks in the whole program.  

 

5.1.3 Final Results 

Combining all the above results we stated believe very strongly that Go language does 

not implement any check for the boundaries of the integers. This fact made us dive deeper 

into Golang’s documentation in order to find answers. The findings ensured our thoughts 

of not checking integers for overflow. Go language follows the same approach as C, C++ 

and Java languages. This means that Go language implements the 2’s complement every 

time an integer overflow happens. If the overflow is because the value is greater than the 

maximum integer value, then the result starts from the minimum value and also the 

opposite. An example is provided below after using our toy program shown in this 

chapter.   

1 Hello! Welcome to the addition program! 

2 Please give the first integer: 9223372036854775807 

3 Please give the second integer: 1 

4 The result of the addition: 9223372036854775807 + 1 = -9223372036854775808 

 

As we can see in the example above, we used as the first input of the program the 

maximum integer value [22] and as the second input the number 1. The final result is the 

minimum integer value that an integer can have in Go [22]. This is happening, as we 

already said, because Golang’s architecture implements the 2’s complement for the 

integer overflows. 
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Chapter 6 

 

Future Work 

After we finished all the previous work explained in both chapters 4 and 5, we thought a 

lot of future work could be done in order to both explore more aspects of spatial safety 

and try to find some solutions to identify if a binary is modified or not. In this chapter we 

will discuss in some detail what else we would like to explore and also give ideas for 

some kind of a validator that can separate the modified from the original compiled 

binaries of Go language’s programs. 

 

6.1 More Exploration 

There is an aspect of spatial safety that needs exploration and maybe some of the aspects 

we already discussed need to dive into more depth to find out more about them.  

 

6.1.1 More Exploration Depth 

The concept it may need more in-depth exploration is the integer overflow. It may be a 

way to create an integer overflow bug if we find a way to “disable”  the implementation 

of 2’s complement. It is difficult due to the fact that this is the way the Go language works. 

With more research maybe something will come on top in order to use it. 

 

6.1.2 New Area to Search  

Something new that we have not discussed so far and can be get under investigation is 

the scenario of using the buffer overflow to redirect the flow of a program to a different 

address than the correct one. This may be a redirection from jumps to the destination 

function to a function we exploited in binary level and created there another bug that will 

makes the program gain malicious behavior. This concept contains both assembly 

exploration and stack observation in order to understand exactly how a program works 

and implement the redirection. That is the reason we believe that the investigation of this 
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concept will give us much more information about how language manipulates its memory 

every time a program is run. 

 

6.2 Ideas for a Validator 

The main idea is to create a program which can identify if a binary has modified 

boundaries checks like those we implemented in the previous chapters. This validator can 

be added as a plugin to the Google Play store  or to the Apple’s App Store in order to 

prevent users from downloading malicious applications. It can also be used by both, 

Google and Apple, in order to inspect easily the applications that want to be in their online 

Stores to identify from the beginning if they have any malicious behavior on the aspect 

of memory management and usage. 
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Chapter 7 

 

Related Work 

Since the day programing started evolving so fast until today, developers face memory 

safe bugs. Those bugs are found mostly in unsafe languages and produce big problems 

for computing systems. The attackers take advantage of those bugs and exploit many 

programming systems with the goal of taking advantage of the victim or gaining 

information and data without authorization. This fact makes computer society search and 

discover new ways to harden the systems’ safety. 

Unsafe languages like C and C++ have hardening techniques to enforce the memory 

safety they provide. Such an example is stack canaries which enforce the safety of the 

stack while a program is running [23].  

Another tool that can be used in order to offer spatial safety is SafeStack, which is an 

instrumentation pass that protects programs against attacks based on buffer overflows 

[25]. It is a part of the Code-Pointer Integrity project [26]. 

The HardBound project can also provide spatial safety to the C language, but not in the 

software side because it is a new hardware design. It maintains memory layout 

compatibility by encoding the bounds information in a disjoint shadow space, support 

implicitly checks and propagates the bounds information as the bounded pointer is 

dereferenced, incremented, and copied to and from memory, and reduces storage and 

runtime overheads by caching compressed pointer encodings, thereby allowing many 

bounded pointers to be efficiently represented using just a few additional bits of state [24]. 

This thesis does not provide new solutions on detecting violations of spatial safety and 

we do not also try to improve the existing ones. Our goal was to explore the approach of 

Go language on handling its memory model. We wanted to understand Go’s safe code and 

observe the injected, from the compiler, blocks of code that perform the boundaries 

checks. We also used the reasoning that a safe binary can modified and generates bugs to 

the program that was safe before. Finally, we tried to share some ideas for a validator tool 
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that could identify the modified binaries and prevent that way the usage of malicious 

applications.  

This thesis and our whole approach of this research is based on the fact that every binary 

produced for a program written in Go language contains only safe code, which produced 

by the Golang’s compiler and after the modifications the safe binary instantly becomes 

unsafe and malicious if someone use it for his/her personal interests. 
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Chapter 8 

 

Conclusion 

This thesis explored and dived into detail on the safety of binaries written in Go language. 

Throughout Chapter 3 we explained in detail our methodology and approach in order to 

accomplish our goal, to find out if we can manually create spatial safety bugs in binaries 

that passed successfully through their compilation. In Chapters 4 and 5 we explored 

different scenarios for both buffers over-read or overwrite bugs and integer overflow 

bugs. We provided all the necessary information to validate our reasoning for patching 

and inserting bugs at the binary level of a program.  

We exploited programs that manipulate buffers by modifying the boundaries checks. We 

located the injected code that compiler adds to prevent buffer overflows and violated it at 

the minimum level, just to exploit the binary without cause any error occurred or crash 

the program. As proven in this thesis, these modifications can produce over-read and 

overwrite bugs, that can be used for malicious exploitations. 

 We also explored the possibility of the compiler injecting similar checks to prevent 

integer overflow bugs. After diving into the binaries and observing them carefully we did 

not locate any block of instructions producing any kind of check on integers. This fact 

and our research in depth of the documentation of Go language leads us to the conclusion 

that Golang does not perform any kind of boundaries checks, due to the fact that it 

implements the 2’s complement’s strategy. 

Furthermore, in Chapter 6 we provided more aspects of spatial safety that can be explored 

in order to have more information and gain a better knowledge of how Go language 

manipulates and manages its memory. Lastly, in the same chapter, we suggested a 

potential validator, which will identify the modified binaries and can be a great tool in 

order to prevent the usage of malicious applications from unsuspecting users.     
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