
Thesis Dissertation

SAFE AUTONOMOUS
ROBOT NAVIGATION

Lampros Dionysiou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2024

Safe Autonomous Robot Navigation

Lampros Dionysiou

Advisor: Dr. Vasilis Vasiliades
Supervisor: Prof. Chris Christodoulou

Thesis submitted in partial fulfilment of the requirements for the award of
degree of Bachelor in Computer Science at University of Cyprus

May 2024

Abstract

This thesis explores the implementation of safe autonomous navigation for robots within
an indoor environment. Using TurtleBot 4, equipped with LiDAR and depth cameras, the
study investigates the application of Simultaneous Localization and Mapping (SLAM), ob-
ject detection algorithms and custom behavior trees to enhance robot navigation. The goal
is to enable the robot to move autonomously, avoid unmovable obstacles, and navigate effi-
ciently by moving lightweight objects when necessary. Through a series of experiments in
a controlled environment, the effectiveness of the proposed navigation system is evaluated,
demonstrating its potential to improve hospital logistics and operational efficiency.

Acknowledgements

I would like to thank my supervisors Prof. Chris Christodoulou and Dr. Vassilis Vassiliades
for their consistent support and guidance during the running of this project. I would also like
to thank Pieris Panayi for his advice and help during the project.

Contents

1 Introduction 1
1.1 Objectives and goals . 2

1.1.1 Objectives . 3
1.1.2 Goals . 3

1.2 Methods of Investigation / Implementation 4

2 Background and Related Work 6
2.1 Turtlebot4 . 6

2.1.1 Overview . 6
2.1.2 Features . 7
2.1.3 Sensors . 8

2.2 ROS2 Framework . 9
2.2.1 Overview . 9
2.2.2 RCLCPP and RCLPY . 10
2.2.3 ROS2 Components . 10

2.3 Robot Navigation . 14
2.3.1 Nav2 Stack and Navigation server 14
2.3.2 Turtlebot4 Navigator . 16
2.3.3 Costmap2D . 17

2.4 SLAM . 18
2.4.1 Different Types of SLAM . 19
2.4.2 slam toolbox . 21
2.4.3 Sychronous vs Asychronous SLAM 22

2.5 Object Detection and Recognition . 22
2.6 Behavior Trees . 24

2.6.1 Overview . 24

I

CONTENTS

2.6.2 Pre-defined Behaviour Tree Action Nodes 26
2.6.3 Pre-defined Behaviour Tree Control Nodes 27
2.6.4 ROS2 Behaviour Trees Library . 30

2.7 Similar projects . 32
2.8 Useful software . 33

2.8.1 Gazebo . 33
2.8.2 RViz . 33
2.8.3 Groot . 34

3 Implementation 36
3.1 Approach . 36
3.2 Computer and Robot Setup . 37
3.3 Network Setup . 37
3.4 Mapping the area . 39
3.5 YOLO Model . 40

3.5.1 Detecting Cardboard Boxes . 41
3.5.2 Detecting Lower-Body Parts . 42

3.6 Custom ROS2 Services . 44
3.6.1 Odometry Service . 45
3.6.2 YOLO Service . 46

3.7 Custom ROS2 Behavior Tree Nodes . 49
3.7.1 Check Camera Node . 49
3.7.2 Move Forward/Backwards Node . 49

3.8 Custom Behaviour Tree . 50
3.8.1 Overview . 50
3.8.2 Detailed Explanation . 51

3.9 Navigation . 52

4 Experimental Results 54
4.1 Scenario 1: Path Blocked by a Movable Object 54

4.1.1 Overview . 54
4.1.2 Results . 55

4.2 Scenario 2: Path Blocked by a Heavy Object 57
4.2.1 Overview . 57
4.2.2 Results . 57

II

CONTENTS

4.3 Scenario 3: Path Blocked by a Human . 58
4.3.1 Overview . 58
4.3.2 Results . 58

4.4 Scenario 4: Encountering a Lightweight Object 60
4.4.1 Overview . 60
4.4.2 Results . 61

4.5 Scenario 5: Encountering a Heavy Object 62
4.5.1 Overview . 62
4.5.2 Results . 62

4.6 Scenario 6: Encountering a human . 63
4.6.1 Overview . 63
4.6.2 Results . 63

5 Discussion 65
5.1 Dynamic Environments with Movable Obstacles 65
5.2 Handling Heavy Objects . 65
5.3 Crowded Indoor Environments . 66
5.4 Path Recalculation and Patience . 66

6 Conclusion 67
6.1 Summary of Findings . 67
6.2 Contributions to the Field . 68
6.3 Future Work . 68

References 70

A Odometry Service 77

B YOLO Service 79

C MoveForwards/MoveBackwards BT Node 81

D CheckYOLO BT Node 87

E Custom Behavior Tree 89

III

List of Figures

2.1 TurtleBot4 . 7
2.2 RPLidar A1M8 . 8
2.3 OAK-D Pro . 9
2.4 ROS Graph . 11
2.5 Real-world analogy of the publisher/subscriber model 12
2.6 An example of a ROS service . 13
2.7 ROS Action Server and Client . 14
2.8 Costmap in RViz . 17
2.9 Costmap Layers . 18
2.10 A rough classification of SLAM algorithms 19
2.11 slam toolbox in action . 22
2.12 One-stage vs Two-stage Detectors . 23
2.13 Visual representation of the default behavior tree in Groot 31
2.14 RViz interface . 34
2.15 A simple behavior tree in Groot . 34

3.1 Navigation using a controller . 37
3.2 Simple Discovery . 38
3.3 Discovery Server . 38
3.4 Subscribed topics list . 39
3.5 Map of the Robotics Lab . 40
3.6 Cardboard detection . 41
3.7 Predictions of the Roboflow Model for the ”LowerBodyDetection” dataset . . 42
3.8 Roboflow Model for the ”LowerBodyDetection” augmented dataset 43
3.9 Google Colab Model for the ”LowerBodyDetection” augmented dataset . . . 43

IV

LIST OF FIGURES

3.10 The initial concept without the utilization of services on the left and the up-
dated approach on the right. 44

3.11 Graphical representation of Custom BT using Groot 51
3.12 Setting the initial position in RViz . 53

4.1 Scenario 1: Map of the proposed layout . 54
4.2 Scenario 1: Layout in real life . 55
4.3 Scenario 1: The robot gets closer to the obstacle and stops 55
4.4 Scenario 1: The robot pushes the cardboard box 56
4.5 Scenario 1: The robot reaches its destination 56
4.6 Scenario 2: The robot tries to push the object 57
4.7 Scenario 2: The robot moves back . 58
4.8 Scenario 3: The robot stops in front of the human obstacle 59
4.9 Scenario 3: The robot moves back from the human obstacle 59
4.10 Scenario 4: Map of the proposed layout . 60
4.11 Scenario 4: Layout in real life . 60
4.12 Scenario 4: Longer route followed by the default navigator 61
4.13 Scenario 4: The robot pushes the cardboard box 61
4.14 Scenario 4: The robot reaches its destination 62
4.15 Scenario 5: The robot moves back . 62
4.16 Scenario 6: Map of the proposed layout . 63
4.17 Scenario 6: The robot moves back after it detected a person 64
4.18 Scenario 6: The robot re-plans its route and moves around the human obstacle 64

V

Listings

2.1 Example of a .msg message structure . 11
2.2 SetBool service message definition . 13
2.3 A simple Behavior Tree representation in an XML file 35
3.1 Subscription to the odom topic and the callback function 45
3.2 Service callback function . 45
3.3 YOLO Service Initialization . 47
3.4 Image Callback Function . 48
3.5 Service Callback Function . 48
3.6 Custom parameters file . 53
A.1 Odometry Service . 77
B.1 YOLO Service . 79
C.1 MoveForwards BT Node . 81
D.1 CheckYOLO BT Node . 87
E.1 Custom Behavior Tree . 89

VI

Chapter 1

Introduction

Most hospitals rely on human resources to move supplies, medicine, and food inside their
facilities. The changing characteristics of the population and its rapid growth impose the need
to increase hospitals’ capacity, which leads to less efficiency in human resources[1]. From
an economic viewpoint, the transfer of goods, linens, biological samples, medical equipment,
pharmaceuticals, mail parcels, and medical waste, wastes more than 850 man-hours per week
in a 500-bed hospital[2]. Therefore, autonomous robots could help with both clinical and
non-clinical tasks, thus increasing the efficiency of hospitals and decreasing their overhead
costs. However, hospitals are an unpredictable setting, unlike huge industrial environments
where robots are often deployed.

The highly dynamic nature of hospital settings presents specific challenges to autonomous
robots[3]. As opposed to the static and highly structured setting of industrial scenarios, the
hospital environment possesses an intrinsic tendency to be a state of constant change, typ-
ically in an uncontrolled fashion. For example, medical staff, patients, and visitors are all
highly mobile, and the position of equipment and supplies may change dramatically through
the course of a day. In such a dynamic environment, the capability of a robot to adapt to
changes in dynamic situations such that it can navigate around or move obstacles can be
crucial[4]. This will not just ensure continued operation but also will lessen the dependence
on human intervention and hence increase overall efficiency.

In emergency situations, the limitations of robots that ”play it safe” by strictly avoiding
obstacles become particularly evident. In cases of life and death, the robot’s actual capacity
to have the ability to push things aside and clear out the path can be lifesaving. For instance,
a delivery robot tasked with delivering crucial medical items must move from point A to B in
the least amount of time, effectively and sometimes that means moving chairs or other small

1

CHAPTER 1. INTRODUCTION

objects blocking it. Such conduct can drastically enhance response times and guarantee the
delivery of adequate supplies to medical staff within a short span.

The benefits to be derived from the deployment of autonomous robots in hospitals go be-
yond efficiency and responsiveness to emergencies. Autonomous robots can do routine tasks,
thus, it will enable healthcare providers to concentrate on patients. That implies that when
robots do most of the work normally done by human beings, care levels will rise while reduc-
ing pressure among hospital employees through improving job satisfaction and minimizing
instances of burnout.

In addition to this, having an autonomous robot has a significant impact on economics.
Hospitals can carry out repetitive and mundane tasks without requiring human labor; this
alone would be a significant drop in their operational costs. This cost-saving is especially
significant in large hospitals where the volume of goods and supplies that need to be trans-
ported is high. Using robots in conjunction with other forms of automation will not only
facilitate a more smooth and effective logistics system but it can be the key to improve the
resource allocation as well as financial performance for healthcare institutions[2].

In summary, the integration of autonomous robots in hospital settings addresses the dual
challenges of operational efficiency and adaptability in dynamic environments. Hospitals can
improve the delivery of their service, significantly enhancing emergency response and saving
a lot of money by giving robots the ability to get around more efficiently and interact with
objects in their environments. To accomplish this goal, this thesis investigates the use of
complex navigation strategies through behavior trees in order to improve robot autonomous
navigation capabilities tailored for hospital environments.

1.1 Objectives and goals

In this thesis, I am going to train a robot (TurtleBot 4) that will be able to move autonomously
inside a hospital. The robots must use SLAM to map the area of the hospital and object track-
ing algorithms to identify objects in their way. They should avoid collisions with unmovable
objects or patients, but I will train the robots to move objects that are in the robot’s path
and are lightweight. The goal is to ensure the robots navigate efficiently in diverse dynamic
scenarios.

2

CHAPTER 1. INTRODUCTION

1.1.1 Objectives

The general aim of this thesis is to make mobile robots more agile in dynamic indoor environ-
ments. This involves designing and implementing a robust navigation system using behavior
trees to allow the robot to move around efficiently by interacting with and moving lightweight
obstacles. The specific objectives include:

1. Develop an Advanced Navigation System: Implement a navigation system using be-
havior trees that can autonomously guide a robot through complex and dynamic envi-
ronments.

2. Integrate SLAM for Real-Time Mapping: Utilize Simultaneous Localization and
Mapping (SLAM) techniques to create and update maps of the environment in real-
time.

3. Implement Object Detection Algorithms: Employ object detection algorithms, such
as YOLO, to identify and classify objects and obstacles within the robot’s path.

4. Enhance Obstacle Interaction: Develop mechanisms for the robot to safely move
lightweight, non-fixed obstacles that block its path, ensuring continuous navigation.

5. Evaluate Navigation Performance: Conduct a series of experiments to assess the ef-
ficiency, reliability, and safety of the developed navigation system in various scenarios.

1.1.2 Goals

The broader goals of this research are to contribute to the field of autonomous robotics by
demonstrating the practical application of advanced navigation strategies to improve robot
maneuvering capabilities. The custom navigator developed should produce better results
than the default navigator. The goals include:

1. Improve Autonomous Navigation Efficiency: Demonstrate how behavior trees can
enhance the efficiency of autonomous navigation in complex and dynamic environ-
ments like hospitals. It is important to show that after customization the robot can
adapt to the difficult circumstances in hospitals.

2. Enhance Real-Time Decision Making: Show how robots can make real-time deci-
sions to interact with and move obstacles, ensuring smooth and continuous navigation
in contrast with the ’play-it-safe’ mechanism of the custom navigator.

3

CHAPTER 1. INTRODUCTION

3. Increase Navigation Reliability and Safety: Illustrate the potential improvements in
reliability and safety of autonomous robots through the use of advanced object detec-
tion and navigation algorithms. Instead of applying the same strategy for all obstacles,
it is better to customize it based on the type of obstacles (for example human or not).
This way the navigation will be safer for patients in healthcare environments.

4. Advance Research in Autonomous Robotics: Contribute to the academic and prac-
tical knowledge base in the field of autonomous robotics, particularly in the use of
behavior trees and SLAM for dynamic environments.

1.2 Methods of Investigation / Implementation

To achieve the goals mentioned above, I followed a structured approach explained below:

1. Comprehensive Literature Review: Investigate existing research on SLAM, object
detection algorithms, and behavior trees to establish a knowledge base and identify
potential improvements.

2. ROS and Simulation Familiarization: Set up and familiarize with the Robot Op-
erating System (ROS) and simulation environments like Gazebo to provide a robust
platform for development and testing.

3. SLAM Techniques Integration: Implement and compare various SLAM algorithms
to enable real-time mapping and localization, selecting the most effective approach for
dynamic environments.

4. YOLO Algorithm Implementation: Train and implement the YOLO algorithm for
real-time object detection and recognition, ensuring the robot can accurately identify
and classify obstacles.

5. Development of Behavior Trees: Create custom behavior trees using BehaviorTree.CPP
to manage the robot’s navigation decisions, focusing on efficient maneuvering around
obstacles.

6. System Integration and Experimental Testing: Combine the SLAM, object detec-
tion, and behavior tree components into the TurtleBot 4. Conduct experiments to test
the system’s performance in various scenarios, including obstacle avoidance and inter-
action.

4

CHAPTER 1. INTRODUCTION

7. Performance Evaluation: Compare the custom navigator’s performance to the default
navigator’s. Specifically, the comparison should be based in the success of obstacle
handling and the overall navigation effectiveness.

8. Iterative Refinement: Use the results from testing to refine and enhance the naviga-
tion algorithms and behavior trees, ensuring continuous improvement in the robot’s
maneuvering capabilities.

5

Chapter 2

Background and Related Work

2.1 Turtlebot4

To fulfil the objectives of this thesis, a Turtlebot 4 equipped with a Lidar Sensor and a Depth
Camera was utilised. While a substantial body of research on this subject has been conducted
in simulated environments, the deployment of a physical robotic platform necessitates a de-
tailed investigation into the processes of configuration and interaction within a real-world
context. This methodology not only augments the empirical foundation of the study but also
facilitates a critical examination of the practical challenges associated with the physical im-
plementation of robotics, thereby contributing to a more comprehensive understanding of the
topic.

2.1.1 Overview

The TurtleBot 4 [Figure 2.1] represents a significant advancement in the TurtleBot series,
recognised as the world’s most popular open-source robotics platform, now enhanced for
modern robotics education and research. It comes in two models: the TurtleBot 4 Standard
and the TurtleBot 4 Lite. Both models are built on the iRobot® Create® 3 educational robot
base and equipped with a Raspberry Pi 4, making them powerful tools for both learning and
practical applications in robotics[5]. This platform is designed to be user-friendly, fully as-
sembled, and shipped with ROS 2 pre-installed, allowing users from educators to researchers
to get started with robotics application development right out of the box[6][7][8].

6

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: TurtleBot4 [6]

2.1.2 Features

TurtleBot 4 has several built-in sensors, including a 2D LiDAR [Figure 2.2], an IMU, and an
OAK-D spatial AI stereo camera [Figure 2.3]. These sensors are very important for tasks like
navigation, mapping, and spatial analysis. These sensors are fully accessible through ROS 2,
facilitating advanced robotics functions like simultaneous localization and mapping (SLAM)
and autonomous navigation. The onboard sensors and the open-source software environment
make it an ideal platform for developing complex robotic applications[6][7][9].

The mobile robot base of the TurtleBot 4 offers impressive specifications, including a 9
kg payload capacity, which can be upgraded to 15 kg with a custom configuration. It supports
a range of movement speeds and comes with a durable chassis capable of handling various
educational and research activities. The platform also includes educational support through
comprehensive courseware, tutorials, and access to a vast community of ROS developers,
enhancing its utility in academic and practical learning environments[6][7][8].

Additionally, TurtleBot 4 supports the latest updates of ROS 2, including the Humble
Hawksbill version, which introduces features like namespace support for better organisation
and scalability of robotics applications. This update allows for more complex multi-robot sys-
tems and advanced operational capabilities in both simulated and real-world environments,
highlighting the platform’s adaptability and readiness for future robotics challenges[10].

7

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: RPLidar A1M8

2.1.3 Sensors

RPLidar A1M8

The RPLIDAR A1M8 is a cheap, compact-sized laser scanner with a 360-degree 2D scanning
capability, making it suitable for 3D mapping and obstacle detection. Its operation is efficient
due to the use of low power and great precision, even at the maximum range of 6 metres. This
device is particularly advantageous in environments without direct sunlight exposure, where
it can accurately capture the layout and contents of a space[11][12].

Designed for both indoor and outdoor use, the RPLIDAR A1M8 adapts well to various
environments with its adjustable scan rate of 5 to 10 Hz. It provides detailed measurements
with a resolution of less than 0.5 mm up to 1.5 metres and maintains an angular resolution
of ¡1 degrees. Its rapid sampling rate and the ability to deliver over 2000 samples per second
make it an excellent choice for real-time applications in robotics and surveillance[11][13].

It’s commonly used in applications such as robot navigation, obstacle avoidance, and in-
teractive projects that require environmental perception. This device represents a balance
between performance and cost, offering robust functionality for a variety of automated sys-
tems and robotics projects[13].

Luxonis OAK-D Pro

The Oak-D Pro by Luxonis is an advanced camera designed for robotic vision, featuring
high-performance specs tailored for precise depth perception and complex computer vision
tasks in varying light conditions. The camera integrates an IR laser dot projector for active
stereo vision, which significantly enhances depth perception, especially on surfaces with low
visual interest like blank walls. An IR illumination LED that complements this makes it ideal

8

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: OAK-D Pro

for night operations by facilitating vision in low-light or completely dark environments[14].
Equipped with substantial computational power, the Oak-D Pro boasts 4 TOPS (tera op-

erations per second), with 1.4 TOPS dedicated to AI tasks. This allows it to run intricate
AI models, which can be custom designed and integrated according to specific requirements.
The camera supports high-resolution video capabilities up to 4K at 30 frames per second or
1080P at 60 frames per second, with encoding ranging from H.264 to H.265[15].

2.2 ROS2 Framework

2.2.1 Overview

Robot Operating System (ROS) [16] is an open-source middleware framework developed
for the creation and control of robotic systems. ROS operates on top of existing operating
systems and offers tools, libraries, and conventions for tasks like hardware abstraction, com-
munication between components, device drivers, and package management.

ROS was not particularly well-liked in the business world, and it did not fulfil a num-
ber of the most essential needs, including real-time computing, safety, certification, and
security[17].

These restrictions created the need for ROS2. One of the objectives of ROS2 is to ensure
that it is compatible with applications used in industrial settings. The capacity of ROS 2
to provide real-time capabilities is one of the most noteworthy advances included into the
operating system. One of the biggest changes in ROS2 is the lack of a master node. Each
node runs independently, thus allowing us to create a decentralised system. Other changes
include the decentralisation of parameters and the now-asynchronous services[17].

The necessity for real-time performance grew more crucial as robots moved into applica-

9

CHAPTER 2. BACKGROUND AND RELATED WORK

tions that were more time-sensitive and safety-critical. Some examples of these applications
are autonomous automobiles and industrial robots.

2.2.2 RCLCPP and RCLPY

RCLCPP and RCLPY are essential components of the ROS 2 ecosystem, serving as client
libraries for C++ and Python, respectively. RCLCPP offers a reliable framework for program-
mers to incorporate high-efficiency and immediate functionalities crucial in robotics, utilising
the capabilities of C++ to manage intricate operations and data within ROS 2 environments.
This system is designed specifically for situations that require predictable performance and
effective communication between various components of a robotic system. Conversely, rclpy
is designed for developers who favour Python due to its simplicity and user-friendly nature,
allowing them to rapidly create and develop applications. While RCLPY facilitates the use
of ROS 2 features, it lacks support for certain functionalities found in RCLCPP, such as the
ability to create custom behaviour tree nodes. These nodes are essential for defining custom
behaviours in robotic applications. [18]

2.2.3 ROS2 Components

RCLCPP and RCLPY offer a robust suite of communication patterns specifically tailored
for developers working within the ROS 2 ecosystem. These patterns facilitate streamlined
interactions between nodes, effectively encapsulating the most common communication sce-
narios in robotic applications. The underlying architecture of ROS 2 is structured as a graph
where various components are interconnected, allowing for the simultaneous processing of
data. This design ensures that developers can implement complex, real-time data handling
and communication strategies efficiently and effectively. An example of a ROS Graph is
shown in Figure 2.4

Nodes

In ROS 2, nodes are fundamental elements that represent individual processes within a robotic
system, each tasked with specific functions like sensor data processing or motor control.
Nodes in ROS 2 are designed to operate both independently and cooperatively within the
ROS 2 graph, a network where components interact through various communication patterns
such as topics, services, actions, and parameters, as shown in Figure 2.4. Each node is

10

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: ROS Graph

responsible for a single, modular purpose, enabling efficient and effective data handling and
computation.

Messages

Messages are a fundamental component for facilitating communication between nodes in a
robotic system[19]. Each message in ROS2 is structured as a data type that can be defined
by users according to their specific needs, using a format described by the ROS2 Interface
Definition Language (IDL). The .msg files, where these definitions are stored, enable the
specification of different data fields that can be standard primitive types or even other message
types, as shown in Listing 2.1.

1 string firstname

2 string lastname

3 uint8 age

4 uint32 score

Listing 2.1: Example of a .msg message
structure

11

CHAPTER 2. BACKGROUND AND RELATED WORK

Topics

ROS (Robot Operating System) topics are an integral component of the ROS communica-
tion architecture, facilitating the exchange of messages between different nodes within a
network[20]. Using a publisher/subscriber model, ROS topics allow nodes to broadcast mes-
sages without requiring direct knowledge of the receiver’s identity. This design supports a
decoupled and highly scalable system where nodes can publish or subscribe to multiple top-
ics simultaneously. For instance, in a robotic system, a sensor node might publish real-time
sensor data on a specific topic while various other nodes subscribe to this topic to receive
updates and react accordingly[21].

Figure 2.5: Real-world analogy of the publisher/subscriber model from The Robotics Back-
End tutorial on ROS Topics [21]. Consider another radio transmitter broadcasting an AM
signal at 98.7. It might be the same radio station or a different one. Occasionally, while driv-
ing, you may enter an area where two radio stations are transmitting on the same frequency.

Each ROS topic is designated to handle messages of a specific type, such as sensor data,
state information, or control commands, which is determined at the time of the topic’s decla-
ration. This type consistency ensures that all communications on a topic are compatible and
that the subscribing nodes can reliably process the received data.

The use of ROS topics exemplifies a many-to-many communication protocol where any
node can act as a publisher or subscriber—or both—depending on the application’s require-
ments. For example, in an autonomous vehicle, a node controlling the navigation might
publish steering commands on one topic, while simultaneously subscribing to another topic
that broadcasts sensor data from collision-detection sensors[21].

12

CHAPTER 2. BACKGROUND AND RELATED WORK

Services

Services diverge from the publisher-subscriber model typical of ROS topics. Instead, ROS
services operate on a synchronous call-and-response model, providing data only upon direct
request from a client. This ensures that data is delivered precisely when needed, enhancing
system efficiency and control. To implement a service, developers define its structure and
functionalities in .srv files, which specify both the request and response parameters[20].

1 bool data # e.g. for hardware enabling / disabling

2 ---

3 bool success # indicate successful run of triggered service

4 string message # informational, e.g. for error messages

5

Listing 2.2: SetBool service message definition

Figure 2.6: An example of a ROS service from ”The Robotics Back-End” tutorial [22]. We
have 2 nodes: a server node and a client node. The client node submits a request to the server
to activate the third LED light. Upon receiving this request, the server processes and fulfills
it, subsequently responding to the client node to confirm that the request was successfully
executed.

Actions

Action servers and clients in ROS are specialized for facilitating multi-step, goal-oriented
tasks, more intricate than the simple request-response interactions seen in Service-Client
communications. These actions are well-suited for prolonged tasks, where action clients
communicate with an action server, similar to services, to initiate and monitor the comple-
tion of these tasks. This process is structured around three phases: setting a goal, providing
ongoing feedback, and delivering a final result[20]. Unlike typical services, action servers
actively update the client about progress, ensuring detailed tracking and management of each
step until the goal is achieved. This process is depicted in Figure 2.7.

13

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.7: ROS Action Server and Client from ROS2 Documentation [23].

2.3 Robot Navigation

2.3.1 Nav2 Stack and Navigation server

The ROS 2 Navigation stack, commonly known as Nav2, leverages the ROS 2 framework
to facilitate complex navigation tasks in autonomous robots. Nav2 features a collection of
packages and libraries that enable robots to move, perceive, and respond instantly. Unlike
its predecessor in ROS 1, which utilized a single process state machine, Nav2 employs a
more sophisticated approach with behavior trees (BT). This allows for better management of
multi-step or multi-state applications, improving scalability and user comprehension[24].

Nav2 integrates various elements such as odometry, sensor data, and velocity commands,
which are vital for the robot to navigate from its starting position to a designated goal. The
core of Nav2 includes a suite of action servers (explained above) like the planner, behavior,
smoother, and controller servers, which interact with the top-level BT navigator. This navi-
gator manages NavigateToPose action messages, coordinating the planning of paths, control
efforts, and recoveries through smaller action servers connected to it[24][25].

BT Navigator

A Behavior Tree Navigator is an instrument for initiating and controlling the progress of
planner, controller, and recovery servers for navigation[26]. It uses a behavior tree to coordi-
nate these navigation tasks, thus making the development of specialized navigation behavior
available by changing the behavior tree stored as an XML file. This reconfiguration is done

14

CHAPTER 2. BACKGROUND AND RELATED WORK

without programming because behavior trees can be efficiently designed with different types
of control flow and condition nodes. Behavior trees are explained in great detail in Section
2.6. In this context, Nav2 uses the BT Navigator, which is built with the help of the Behav-
iorTree.CPP library. Thus, developing complex navigation behaviors is easy to overlay over
top of the basic primitives. This creates more robot behaviors[27].

Planner Server

The Nav2 planner is one of the most fundamental Task Servers of the Nav2 framework and
shall implement the nav2 behavior tree::ComputePathToPose interface. This planning mod-
ule establishes a feasible path, to be laid out between the current and final positions of the
robot. For leading to that accomplishment, it loads a wide number of prospective planner
plugins, which are capable to generate feasible paths best suited for different user-defined
scenarios. In very simple words, a planner server calculates shortest or full-coverage or pre-
defined routes in a complex environment. In return, these routes ensure that robots move
safely, efficiently, and intelligently under different physical configurations and situational
needs[26][28].

Controller Server

The controller server is the evolution of the local planners in ROS1, constituting the pri-
mary component for the execution of the navigation routes in the robotic system. The server
maintains control of the stack’s controller requests and the map of the plugin implementa-
tions to achieve the accurate execution of the navigation paths that are being generated by the
planner server. By receiving path and plugin names for the controller, progress checker, and
goal checker, the Controller Server calls the appropriate plugins, ensuring seamless opera-
tion. This server implements the nav2 msgs::action::FollowPath action server that receives
its action goal as the computed path of the planner module in Nav2 and returns its command
velocities. This server is designed to be flexible, hosting multiple plugins for path execu-
tion, each implementing functions from the virtual base class in the nav2 core package. The
Controller Server builds and maintains the local cost map, dynamically updating the robot’s
trajectory for navigation through complex environments[28][29].

15

CHAPTER 2. BACKGROUND AND RELATED WORK

Behavior Server

The Behavior Server is seamlessly integrated with behavior trees, enabling a dynamic ap-
proach to managing robot actions. A crucial component of the Behavior Server is its ability
to handle recovery behaviors, specifically designed to address unknown or failure conditions
robots may encounter during navigation. These obstacles can include dynamic objects, tem-
porary blockages, or unanticipated items not initially present on the navigation map. While
planners and controllers guide the robot through expected environments, the recovery server
tackles unforeseen challenges to ensure the robot can recover smoothly. This might involve
actions such as backing up, spinning in place, attempting an alternative route, or moving from
a problematic location to free space. Additionally, the Behavior Server manages various be-
haviors like recoveries and docking, hosting a vector of plugins implementing diverse C++
behaviors. While independent behavior servers can be created for each custom behavior, this
unified server allows multiple behaviors to share resources such as costmaps and TF buffers,
thereby reducing the incremental costs associated with new behaviors[28].

Smoother Server

The main purpose of a smoother server is to receive a path from the planner server and im-
prove its quality by considering factors that affect the robot’s movement, such as kinematics
and acceleration. This server focuses on resolving problems associated with sudden move-
ments that can occur during navigation, with the goal of reducing abrupt changes in speed or
direction and maximising the distance from obstacles and areas with high costs. By incorpo-
rating a path, costmap, and other important data, the smoother server improves the path that
various planning algorithms produce. This results in a more refined trajectory for the con-
troller to track. As a result, the robot’s navigation performance is improved through enhanced
external behaviour, smoother turns, and the elimination of artefacts[28].

2.3.2 Turtlebot4 Navigator

The Turtlebot4 Navigator plays a vital role in the navigation system of the The Turtlebot
Navigator initiates the essential services required for the robot to navigate and depends on
the Nav2 Stack. It makes use of the capabilities of the ROS 2 Nav2 stack with behavior
trees to implement a flexible and robust way of dealing with complex navigation scenarios. It
adds on Nav2 Simple Commander. Depending on the Nav2 stack, the Turtlebot4 Navigator
is capable of dynamic working during robotics tasks like path planning, obstacle avoidance,

16

CHAPTER 2. BACKGROUND AND RELATED WORK

and recovery behaviors[30].

2.3.3 Costmap2D

The concept of a costmap is crucial in navigation contexts, particularly in robotics. A costmap
is a 2D grid representation of an environment where each cell contains a value indicating the
occupancy probability. These values allow the planner to compute the most efficient path
with minimal ”cost” by evaluating the likelihood of obstacles in each cell. There are two
primary types of costmaps: the global costmap and the local costmap. The global costmap is
derived from a map file and encompasses the entire map area. In contrast, the local costmap
covers a smaller area and is updated in real-time using data from the robot’s sensors, such as
LiDAR and cameras[27][31].

Figure 2.8: Costmap in RViz: The obstacles are shown with black color and the weights of
the costmap around them are in color.

In the ROS 2 navigation stack, the costmap serves as the foundation for the planner and
controller servers, enabling the robot to navigate through obstacles while minimizing a cost
function. This functionality is facilitated by the nav2 costmap 2d package, which subscribes
to sensor data and constructs a 2D or 3D occupancy grid with cell values ranging from 0
to 255[31]. Traditionally, a monolithic costmap was used, where all data was stored in a
single grid. However, this approach had limitations, such as the loss of semantic context
and difficulties in resolving conflicts between sensor data and global map values. To address

17

CHAPTER 2. BACKGROUND AND RELATED WORK

these issues, David V. Lu and colleagues developed the layered costmap approach, which
organizes costmap data into semantic layers as shown in Figure 2.9. This method enhances
the robot’s ability to handle diverse contexts, ensuring more accurate and efficient navigation
by segregating data based on its origin and significance.

Figure 2.9: The stack consists of multiple costmap layers, which demonstrate the various
contextual behaviours that can be achieved using the layered costmap approach[32].

2.4 SLAM

SLAM is a computational problem of constructing the map for an unknown environment with
a robot/device simultaneously placed in that environment. This is, in general, what actually
allows robots to conduct independent navigation within the environment without any pre-

18

CHAPTER 2. BACKGROUND AND RELATED WORK

built maps or external positioning system. The SLAM algorithms enable the creation of a
map using sensory information from LiDAR, cameras, and IMUs. Updating will be done
while correcting for errors and placing agent positions and the agent’s actions. SLAM is
applied in robotics, self-driving cars, drones, and augmented reality[28][33].

SLAM (Simultaneous Localization and Mapping) relies on odometry and external data
to function effectively in any context. Sensors are crucial as they enable the mobile robot to
gather information about the environment. Cameras and LiDAR collect visual data from the
surroundings. Additionally, the IMU (Inertial Measurement Unit) is commonly employed in
SLAM. This sensor measures various inertial parameters, including angular velocity, acceler-
ation, Earth’s magnetic field, and air pressure. IMUs are able to gather extensive internal and
external data while being cost-effective. Unlike other sensors, IMUs are reliable in various
conditions, whereas cameras require light, and GPS needs a signal to operate[34][35][36].

2.4.1 Different Types of SLAM

There are two kinds of SLAM algorithm: filter-based and optimization-based. Generally, the
filter-based algorithms rely on the statistical foundations of the so-called Bayes filters, com-
monly related as probabilistic filters, and mostly develop and treat the SLAM problem as a
state estimations problem. Optimization-based algorithms work to solve a direct-constrained
state estimations problem, usually referred to as the least-squares problem, or an equivalent
form, which may require a sparse solver[34].

Figure 2.10: A rough classification of SLAM algorithms that are designed for a single mobile
agent. [34]

19

CHAPTER 2. BACKGROUND AND RELATED WORK

Moreover, certain algorithms are tailored for specific sensor categories. The most fre-
quently used technologies that are useful in the acquisition of frames of the surrounding in
mobile robots are through the use of RGB-D cameras, stereoscopic visions, and LiDAR sen-
sors. Thus, the SLAM algorithms are classified into two: visual SLAM (V-SLAM) and Li-
DAR SLAM. In turn, V-SLAM can be divided into monocular SLAM, and the stereo SLAM,
depending on the type of camera sensor used.

Cameras are affordable, lightweight, and have broad detection ranges but are excessively
dependent on light circumstances. RGB-D cameras are very sensitive to motion blur when
mobile robots operate at high speeds. In practice, LiDAR SLAM has been more used than
visual SLAM for indoor applications, and the use of LiDAR sensors has increased a lot
on mobile robots. Laser sensors have better resolution but are less robust, more expensive,
heavier, and particularly sensitive to the phenomena of refraction. Because the cameras are
relatively cheaper and because of the advancements in computer vision, visual SLAM has
become popular[37].

M. Filipenko and I. Afanasyev[38] compared different SLAM methods needed for indoor
ROS-based robot mapping systems. They used lidar sensors, monocular cameras and stereo
cameras.

• Lidar SLAM: GMapping, Hector SLAM[39] and Cartographer[40] are considered
lidar slam systems. The first system does not provide reliable results in an indoor
environment while the other two provide almost identical results[38].

• Monocular SLAM: Monocular systems like Parallel Tracking and Mapping (PTAM)[41],
Semi-direct Visual Odometry (SVO)[42], Dense Piecewise Parallel Tracking and Map-
ping (DPP-TAM)[43], Large Scale Direct monocular SLAM (LSD SLAM)[44], ORB
SLAM[45] and Direct Sparse Odometry (DSO)[46] can be used as additional sources
of information but due to the lack of absolute scaling cannot be used by themselves for
SLAM purposes[38].

• Stereo SLAM: Unlike monocular SLAM, stereo SLAM can solve localization prob-
lems for indoor robotics applications with sufficient accuracy[38]. Some stereo SLAM
algorithms are: Real-Time Appearance-Based Mapping (RTAB map)[42], ORB SLAM[45]
and Stereo Parallel Tracking and Mapping (S-PTAM)[47].

20

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4.2 slam toolbox

slam toolbox is an open-source package for Robot Operating System, consisting of a collec-
tion of SLAM algorithms and utilities. It is a very robust framework that has been designed
to implement SLAM in very different kinds of robotic applications. Other features are syn-
chronous as well as asynchronous SLAM, multi-session mapping, lifelong mapping, and
merging of maps. This acts as an advantage since the tool becomes quite versatile while
working with a number of robots and use cases in 2D and 3D environments. By connect-
ing with the Robotic Operating System, it provides powerful tools for processing sensor
data, building maps in real time, and locating that greatly simplifies autonomous system
development[48][34].

The slam toolbox in ROS uses graph-based SLAM as its primary method. This type of
SLAM constructs a graph of poses, which represent the position and orientation of the robot
at different points in time. As the robot moves and gathers sensor data, it continually updates
the graph to improve the map’s accuracy and consistency by optimizing the relative poses
between nodes in the graph[48]. This is an overview of how it works:

1. Graph Creation: When a robot is moving around the world, it is taking in sensor data
and at different instants of time it is recording its poses inside the graph as nodes.

2. Loop Closure Detection: The system determines whether a robot, according to such
information, after having left a place, has returned to that particular place by checking
new sensor data against poses available on a graph. If this happens, an edge linking
those poses will be drawn into the graph.

3. Optimization: The key part of graph-based SLAM is optimization. The relationship
in the graph is fine-tuned to minimize total map error. This is mostly performed using
Gauss-Newton or Levenberg-Marquardt-style algorithms—efficient optimization upon
the raw form of links (edges) and positions (nodes) in a graph.

4. Map Updating: The map is continuously updated as new data comes in and optimiza-
tions are made in order to represent the robot’s environment in the best way possible.

More specifically, the slam toolbox algorithm is a big improvement over KartoSLAM,
with a lot of differences from the original formulation. This newest implementation of Kar-
toSLAM embeds the Ceres solver for more flexibility and to speed up optimization—a way
to effectively solve non-linear least-squares problems inside the pose graph. Improvement

21

CHAPTER 2. BACKGROUND AND RELATED WORK

in the method used for the scan matcher from the slow Cholesky matrix decomposition has
also been done. The SLAM Toolbox offers a reliable optimisation system that includes loop
closure capabilities. This ensures that if there is any drift in the odometry, the measurements
will be corrected. The package is entirely open-source[34].

Figure 2.11: slam toolbox in action

2.4.3 Sychronous vs Asychronous SLAM

Synchronous and Asynchronous SLAM, both are the techniques in processing the sensor
data to realize the mapping and localization. Synchronous SLAM processes sensor data as
it comes in, allowing the sensing data to be synchronized and processed in a tight-coupled
manner. The algorithm is able to wait for all sensor inputs required before updating the map
and location of the robot to ensure high precision and consistency. Asynchronous SLAM
processes sensor data independently and in parallel, dealing with latencies and irregularities
in data collection from sensors. This feature makes it adaptive in relation to the environment
and its changes in operation. While synchronous SLAM is often more accurate, the asyn-
chronous one is much more robust and effective in dynamic environments with a high degree
of uncertainty[48].

2.5 Object Detection and Recognition

One of the most important capabilities for a robot to perceive and interact with its environ-
ment is object detection and classification. Object detection identifies and localizes objects
in an image or video stream, while classification ascribes labels to those objects based on

22

CHAPTER 2. BACKGROUND AND RELATED WORK

their categories. The process is quite vital in performing the necessary robotic applications,
such as autonomous navigation, manipulation, and human-robot interaction. For example, an
autonomous vehicle uses object identification and classification to be able to see pedestrians,
other vehicles, and traffic signs in order to drive safely and smoothly. In an industrial set-up,
the process of item identification and sorting through these methods is used with the goal of
increasing productivity and accuracy in a product line.

In recent years, deep learning algorithms have gained popularity in the field of com-
puter vision due to their superior performance compared to previous cutting-edge techniques
in various tasks[49]. Object detection encompasses two primary tasks: object recognition
and object localization[50]. When comparing the two-stage detectors, namely RCNN, Fast
RCNN, and Faster RCNN, with the one-stage detectors YOLO v1, v2, v3, and SSD, it was
observed that YOLO v3-Tiny improves the speed of object detection without compromising
the accuracy of the results[51].

Figure 2.12: One-stage vs Two-stage Detectors

YOLO (You Only Look Once) is a cutting-edge system for object detection that has
demonstrated exceptional speed and efficiency in real-time applications. This architecture
is derived from Convolutional Neural Networks, but it restricts the system to perform only
one forward propagation through the image analysis network. This technology is employed
to analyse video feeds that consist of a series of images. Its purpose is to determine the lo-
cation, identification, and classification of objects in each individual frame. The task at hand
involves partitioning an input image into a grid of dimensions S × S. Within each grid cell,
the system is designed to make predictions regarding the bounding boxes, along with their
corresponding confidence scores and class probabilities. Subsequently, the network selects
the particular number from these bounding boxes based on a confidence score that surpasses
a predetermined threshold, signifying the detection of object locations. The YOLO algorithm
approaches object detection as a regression problem, which allows for a streamlined process

23

CHAPTER 2. BACKGROUND AND RELATED WORK

and results in excellent computational efficiency. It achieves high processing speeds of over
30 frames per second on powerful computers[52].

The work of Vourkos et al.[53] presents the challenges in deploying a robot within the
healthcare environment, which deviates substantially from structured industrial environments.
The study centers on novel computer vision techniques for obstacles detection and navigation
around dynamic obstacles, such as human beings and other robots, using deep learning–based
methods developed over architectures like YOLO (You Only Look Once).

2.6 Behavior Trees

2.6.1 Overview

History behind their development

Behaviour Trees (BTs) were developed in the video game industry as a solution to the con-
straints faced with finite-state machines (FSMs) in managing non-player characters (NPCs).
FSMs were commonly used for their simplicity but faced significant challenges in terms of
modularity and scalability, especially when handling complex behaviors. The video game
industry required a more flexible and modular approach, which led to the development of
BTs. The implementation of this novel framework facilitated enhanced code reusability, in-
cremental development of features, and improved efficiency in testing. Notable individuals
who played a crucial role in the initial advancement of BTs were Michael Mateas and An-
drew Stern. Early influential work in this field was done by Michael Mateas and Andrew
Stern, creators of the interactive drama ”Façade”[54], and Damian Isla, who contributed to
the AI in the game ”Halo 2”[55]. Nowadays, a wide variety of games including Spore[56],
and GTA[57] use behavior trees.

When researchers realised BTs could handle the complexity and dynamic nature of robotic
tasks, the BT industry moved from gaming to robotics. Academic papers discussing Be-
haviour Trees (BTs) in robotics were published by researchers such as Petter Ögren and
Andrew Bagnell. These papers emphasised the benefits of BTs in developing modular and
reusable behaviour modules for robots. Carnegie Mellon University played a pivotal role
in this transition, utilizing BTs extensively for robotic manipulation and task planning. The
modularity provided by BTs not only allows for the reuse of specific behaviours in various
high-level tasks, but also enables non-experts to efficiently programme robots by taking ad-
vantage of the intuitive and adaptable characteristics of BTs[24].

24

CHAPTER 2. BACKGROUND AND RELATED WORK

How BTs work

Behavior Trees are structured as directed rooted trees where the internal nodes represent con-
trol flow nodes, and the leaf nodes represent execution nodes. A BT begins its execution from
the root node, which sends activation signals, or ”ticks,” to its children nodes at a given fre-
quency. The children nodes then execute based on these ticks, returning statuses of Success,
Failure, or Running to their parent nodes. There are four main types of control flow nodes in
BTs: Sequence, Fallback, Parallel, and Decorator[58].

Sequence nodes execute their children from left to right and return Success only if all
children succeed. Fallback nodes also execute children from left to right but return Success if
any child succeeds. Parallel nodes execute all children simultaneously and return Success or
Failure based on predefined conditions. Decorator nodes modify the behavior of their child
nodes, often used for tasks like repeating an action until success or imposing a limit on the
number of executions.

BTs and Robotics

Behaviour Trees are employed in robotics to model and carry out intricate behaviours in a
structured and hierarchical fashion. BTs empower robots to execute a diverse array of tasks
by organising these tasks into reusable and independent modules. In the context of robotic
task planning, Behaviour Trees (BTs) are employed to specify ordered sequences of actions,
such as relocating to a specific position, gripping an item, and depositing it at a predeter-
mined location. Every action can be depicted as a node in the behaviour tree (BT), enabling
a clear and structured execution of tasks. Moreover, BTs enable the execution of actions
without the need for synchronisation, allowing for safe interruption, which is essential for
carrying out robotic operations in real-time. BTs are utilised in different areas of robotics,
such as manipulation, navigation, and human-robot interaction. Open-source libraries and
commercial frameworks offer the required resources for incorporating BTs into robotic soft-
ware architectures[24].

Integration with ROS2

There is a great integration between ROS2 and behavior trees. An advantage of this integra-
tion is that the robot can take an alternative path at the time when the main one is blocked,
without having to go through the replanning process using BTs. This would allow more
agility in navigation for the robot. Besides, BTs can natively integrate with ROS2 actions

25

CHAPTER 2. BACKGROUND AND RELATED WORK

and services, treating them as nodes within the tree. This integration by BTs enables setting
goals and monitoring progress effectively. For example, a BT can use a set of actions in order
to control robot behavior, like moving to a waypoint or manipulating objects. The nodes in a
BT can invoke services for clearing the cost map or updating the cost map with new data to
improve the adaptability and responsiveness of the robot in changed environments[28].

2.6.2 Pre-defined Behaviour Tree Action Nodes

ComputePathToPose

The ComputePathToPose is one of the crucial nodes of behavior tree with respect to naviga-
tion stack in ROS 2. It sends a service call request to a global planner that is responsible for
the calculation of the path from the robot’s current position to a certain goal pose. The node
takes in a goal pose, calls a global planner to calculate a path utilizing algorithms such A* or
Dijkstra and then passes on an obtained series of the waypoints. In case of path computation
failure, the node can direct fallback options or recovery processes[59][60].

FollowPath

The ”FollowPath” behaviour tree (BT) action node is tasked with executing a pre-computed
route by generating control instructions to guide the robot along the waypoints, while also
ensuring that it avoids obstacles encountered along the way. When integrated into a behaviour
tree, this system constantly checks the robot’s progress, making adjustments to instructions
depending on real-time sensor data and changes in the environment. The node collaborates
with a local planner to guarantee seamless and secure navigation[61].

ClearEntireCostmap

The ClearEntireCostmap action behaviour tree node in ROS 2 is specifically meant to remove
any data from the costmap (either the Global or Local costmap) that is used by the naviga-
tion system. This node is responsible for maintaining the robot’s proper perception of the
environment, particularly in situations when there have been large modifications or when the
costmap has been congested with obsolete obstacle data. This node is integrated into the be-
haviour tree and is responsible for triggering the cleaning process. This procedure mitigates
navigation challenges resulting from outdated or inaccurate information and is often used in
situations when the environment has seen significant alterations, guaranteeing that the robot

26

CHAPTER 2. BACKGROUND AND RELATED WORK

can recalibrate and travel using the most up-to-date environmental data. This is helpful in our
situation since once we move the obstacle, the environment will undergo a major change[62].

2.6.3 Pre-defined Behaviour Tree Control Nodes

Sequence

A Sequence node is a behavior tree control node that processes its child nodes one at a time,
in a specific order. It starts by proceeding to the first of its children. If that child returns
Success, then it moves on to the next child. If any child returns Running, then this Sequence
node itself will return Running and will be resumed from exactly this tick point in the next
tick. If any child reports Failure, the sequence node immediately relays that result without
further checks. Only if all the children return Success does this node return Success[63].

Algorithm 1 Pseudocode for Sequence Node
procedure TICK

for i = 1, . . . , N do
status←child(i).T ick()
if status == Running then

return Running
end if
if status == Failure then

return Failure
end if

end for
end procedure

Pipeline Sequence

Pipeline Sequence is similar to the Sequence node, but with the added feature that the pre-
ceding children are re-evaluated, mimicking the flow of water in a pipe[61].

If at any point a child returns FAILURE, all children will be halted and the parent node
will also return FAILURE. Upon SUCCESS of the last node in the sequence, this node will
halt and return SUCCESS.

27

CHAPTER 2. BACKGROUND AND RELATED WORK

Algorithm 2 Pseudocode for PipelineSequence Node
procedure TICK

currentChild← 1
while currentChild ≤ N do

for i = 1, . . . , currentChild do
status←child(i).T ick()
if status == Running then

return Running
else if status == Failure then

return Failure
end if

end for
currentChild← currentChild+ 1

end while
return Success

end procedure

Fallback

A Fallback node is a control node of behavior trees. It processes child nodes one by one in
sequence until one of them returns Success. If first one returns Failure, it will tick to the next
one, and so on. If one of the children returns Success, the Fallback node will immediately
return with Success without executing the rest of the children. The Fallback node returns
Success if a child returns Success, and Running otherwise; it will re-evaluate from that point
on the next tick. It returns Failure only when all its children return Failure[64].

Algorithm 3 Pseudocode for Fallback Node
procedure TICK

for i = 1, . . . , N do
status←child(i).T ick()
if status == Running then

return Running
else if status == Success then

return Success
end if

end for
return Failure

end procedure

28

CHAPTER 2. BACKGROUND AND RELATED WORK

Reactive Fallback

The Control Node is utilised to halt the execution of an asynchronous child node if any of
the preceding Conditions transition from a state of FAILURE to SUCCESS. A ReactiveFall-
back node has a different behavior from a FallbackNode if it meets a running child. Unlike
a typical FallbackNode that progresses to the next child when a child returns RUNNING, a
ReactiveFallback begins the evaluation again from the first child. This means that the Re-
activeFallback continues reevaluating all children from the beginning if any child is running
and the highest priority action is performed[64].

Algorithm 4 Pseudocode for ReactiveFallback Node
Input: List of child nodes children
function REACTIVEFALLBACK(children)

status← Running
while status = Running do

for child ∈ children do
childStatus← child.tick()
if childStatus = Success then

return Success
else if childStatus = Running then

continue ▷ Restart from first child
end if

end for
status← Failure

end while
return Failure

end function

Recovery

A Recovery node is a Control node designed to add robustness by combining a main action
with an alternative fallback recovery action. It only has two children: one is the main behav-
ior, and the other one is the recovery behavior. The Recovery node ticks the main child. If
he returns Success, the Recovery node returns Success. If the primary child returns Failure
then, the Recovery node ticks the recovery child. This goes on until either the result of the
primary child is Success—in that case, the Recovery node would return Success—or until the
result coming from the child trying to recover is also failing, in which case it returns failure.
The node thereby also regards a maximum number of retries to avoid infinite loops, lending
to its appropriateness for cases when a primary action could fail, yet is correctable by the

29

CHAPTER 2. BACKGROUND AND RELATED WORK

corrective action[65].

Algorithm 5 Pseudocode for RecoveryNode
procedure TICK(number of retries)

attempts← 0
while attempts < number of retries do

status← primaryChild.T ick()
if status == Success then

return Success
else if status == Running then

return Running
else

recoveryStatus← recoveryChild.T ick()
if recoveryStatus == Running then

return Running
else if recoveryStatus == Failure then

return Failure
end if

end if
attempts← attempts+ 1

end while
return Failure

end procedure

2.6.4 ROS2 Behaviour Trees Library

ROS2 offers a variety of pre-defined behavior trees that cover different needs. For example,
it offers behavior trees with recovery mechanisms and without as well as different replan-
ning mechanisms. The default behavior tree used is ”Navigate to pose with replanning and
recovery” explained below.

30

CHAPTER 2. BACKGROUND AND RELATED WORK

Navigate to pose w replanning and recovery.xml

Figure 2.13: Visual representation of the default behavior tree in Groot

Left (Navigation) Subtree

• Sequence ’NavigateWithReplanning’: This pipeline sequence node contains two
children that will be executed the one after the other. However, in contrast to a simple
seqeuence, it ticks the first child until it succeeds, then ticks the first and second chil-
dren until the second child succeeds. If any of them fail, the tree will try executing the
sequence node again for 6 times.

• RateController: This node is executed every one second. It ticks the ’ComputePath-
ToPose’ node. If the ’ComputePathToPose’ fails it has a recovery mechanism to clear
the costmaps.

• FollowPath: This node tries to follow the path calculated by the ComputePathToPose
node. If it encounters an object along its path, it it has a recovery mechanism to clear
the costmaps.

31

CHAPTER 2. BACKGROUND AND RELATED WORK

Right (Recovery) Subtree

• ReactiveFallback ’RecoveryFallback’: This sequence node contains two children.
As mentioned before, reactive fallback nodes return true if any of the children return
true. However, unlike simple Fallback nodes, if at any point the goal is updated, it will
interrupt the execution of the RoundRobin node and return true. This will prompt the
BT to try and execute the left subtree again.

• RoundRobin ’Recovery Actions’: The RoundRobin algorithm sequentially executes
each child process until one of them returns a success status. It retains however the last
ticked node, so it can continue from the next one. This means that during recovery it
will first try to clear the costmaps. The next time the recovery actions are needed, it
will tick the spin action node.

2.7 Similar projects

• EG. Vourkos et al: E. G. Vourkos et al.[53] discuss advanced techniques in detecting
obstacles and navigating through dynamic healthcare environments using the YOLO al-
gorithm. The paper further discusses the importance of real-time detection and obstacle
tracking, which is fundamental for any autonomous robot in environments as complex
and voluminous as hospitals. Using RGB-D sensor data in this method would enable
better and enhanced accuracy and efficiency of detection and navigational tasks around
moving obstacles. This approach is particularly beneficial in ensuring safe and reli-
able navigation for robotic systems in healthcare facilities, outperforming traditional
vision-based methods in terms of speed and precision.

• M. You: The paper entitled “Enabling Autonomous Multi-Floor Navigation for Robots
in ROS2 using Behavior Trees” by Minchu You[28] focuses on the problem of the au-
tonomous navigation of robots in multi-floor environments. Building on the ROS2
Navigation2 stack and behavior trees, the study improves the robots’ decision-making
capabilities when it comes to dealing with environmental objects like elevators and
stairs. The paper also includes adding behavior-tree based behaviours and navigation
planners to existing ROS2 libraries; employing them in simulation and real-life scenar-
ios.

• M Colledanchise, L Natale: ”On the Implementation of Behavior Trees in Robotics”[66]
discusses the use of Behavior Trees (BTs) as a tool to describe and implement robot

32

CHAPTER 2. BACKGROUND AND RELATED WORK

behaviors. The paper showcases the case of a robot that moves the arm in a pre-grasp
position and then close the hand to fetch the object using behavior trees.

• J Stüber, C Zito, R Stolkin: The paper ”Let’s Push Things Forward: A Survey on
Robot Pushing”[67] has as its goal the understanding of how pushing constitutes a
primitive act in robotic manipulation. We look into some of the most common ap-
proaches for predicting and controlling the motion of pushed objects: analytical mod-
els, physics engines, and data-driven approaches, such as deep learning.

2.8 Useful software

2.8.1 Gazebo

Gazebo Simulator is an open-source 3D robotics simulator that creates realistic virtual en-
vironments for testing and validating robotic systems. It allows developers to model robots,
simulate sensors and actuators, and conduct experiments in a dynamic, cost-effective man-
ner. With features like physics-based rendering, Gazebo is widely used for prototyping and
efficient development of robotic applications[68][69][70].

2.8.2 RViz

RViz is an essential visualization tool within the ROS (Robotics Operating System) ecosys-
tem, used extensively in robotics to provide real-time visual feedback from a robot’s sensors.
This information is published using topics. Users can view and interact with a variety of data
types, including point clouds, depth maps, and path predictions, which are crucial for tasks
such as navigation and manipulation. To facilitate effective navigation, RViz often utilizes a
map consisting of a PGM file and a YAML file. The PGM file, a grayscale image, visually
delineates the environment where black represents obstacles, white indicates free space, and
shades of gray suggest unknown areas. These map files will be created after mapping the area
using SLAM[69].

33

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.14: RViz interface

2.8.3 Groot

Groot is an advanced tool from the BehaviorTree.CPP suite designed for visually construct-
ing and modifying behavior trees, which are crucial in robotics and AI decision-making
processes. The Behavior Tree editor known as Groot2 allows users to effortlessly create
and manage trees through a simple drag-and-drop interface. This editor is part of a broader
toolset that supports live monitoring and on-the-fly editing, enabling developers to dynami-
cally adjust and track behavior trees directly within robotic frameworks like ROS. Figure 2.15
showcases the structure of a behavior tree corresponding to the XML file shown in Figure 2.3,
providing a clear visual representation of the tree’s design and flow.

Figure 2.15: A simple behavior tree in Groot

34

CHAPTER 2. BACKGROUND AND RELATED WORK

1 <root main_tree_to_execute="MainTree">

2 <BehaviorTree ID="MainTree">

3 <PipelineSequence name="NavigateWithReplanning">

4 <DistanceController distance="1.0">

5 <ComputePathToPose goal="{goal}" path="{path}"/>

6 </DistanceController>

7 <FollowPath path="{path}"/>

8 </PipelineSequence>

9 </BehaviorTree>

10 </root>

11

Listing 2.3: A simple Behavior Tree representation in an XML file

35

Chapter 3

Implementation

3.1 Approach

In my project, rather than developing entirely new components, I aimed to maximize the
reuse of existing elements from the TurtleBot ecosystem. This strategy eliminated the ne-
cessity for crafting bespoke navigation modules. Initially, I sought a high-level solution by
implementing a Python script that integrated the Nav2 Stack to assign a destination goal.
This script also utilized the robot’s camera to detect obstacles in its path, attempting to halt
its navigation and execute manual maneuvers when necessary. However, inherent limitations
in the robot’s built-in mechanisms and behaviors thwarted these efforts. For instance, the
RPLidar sensor was capable of detecting obstacles from a considerable distance, prompting
it to alter its course preemptively—a behavior that conflicted with my objective to physically
interact with the object.

This challenge led me to examine the underlying mechanisms triggered by the nav to pose
command. Through detailed investigation, I discovered that the nav to pose command, along
with other navigational commands and the TurtleBot4 navigation scheme, relies on prede-
fined behavior trees. These trees dictate the robot’s actions both during routine navigation
and in response to complications. Notably, the default behavior tree involved recalculating
the navigation path every second, indicating a dynamic response to environmental changes.
Recognizing the limitations of this approach for my specific goals, it became evident that
crafting a custom behavior tree was essential, thereby shifting my approach from a high-level
scripting solution to a more intricate, low-level customization of the robot’s navigational be-
haviors.

To achieve this, I had to also implement custom behavior nodes and services. I needed

36

CHAPTER 3. IMPLEMENTATION

one node that would check the camera to detect and classify obstacles, and one node that
would push the obstacles if they were objects.

3.2 Computer and Robot Setup

For the purpose of this thesis, I installed ROS2 Humble in the Turtlebot’s Raspberry Pi
4B. The version used is a refined version of Turtlebot4 Standard, available here: http:

//download.ros.org/downloads/turtlebot4/.
For the remote PC, it’s recommended to use Ubuntu 22.04 with ROS2 Humble installed.

After installing the necessary packages, I tested connecting the wireless controller for manual
navigation [Figure 3.1]. Some of the necessary packages were:

• ros-humble-turtlebot4-desktop

• ros-humble-turtlebot4-simulator

Figure 3.1: Navigation using a controller

In order for my approach to work, I had to disable the reflexes of the robot. The iRobot
Create3 base has built-in mechanisms to prevent bumping into objects, moving backwards
etc. I disabled ALL available reflexes and the limitations on speed.

3.3 Network Setup

On the TurtleBot 4 networking page, two main configurations are outlined for ROS 2 net-
working: Simple Discovery and Discovery Server.

37

http://download.ros.org/downloads/turtlebot4/
http://download.ros.org/downloads/turtlebot4/

CHAPTER 3. IMPLEMENTATION

• Simple Discovery is the default networking setup that utilises multicasting for com-
munication. It allows all devices on the same network to automatically discover and
communicate with each other’s ROS 2 nodes. This setup is straightforward but may
face issues with certain Wi-Fi networks that do not support multicasting well [Figure
3.2].

Figure 3.2: Simple Discovery [9]

• Discovery Server, on the other hand, designates one device as the server, which handles
the discovery process for other client devices. This setup can bypass multicasting issues
and does not require the Create® 3 to be connected to Wi-Fi. However, it requires more
initial setup and only supports the FastDDS middleware [Figure 3.3].

Figure 3.3: Discovery Server [9]

Due to restrictions in the lab’s network, I chose Discovery Server. To test that the config-
uration worked, I checked the received topics from the computer [Figure 3.4].

38

CHAPTER 3. IMPLEMENTATION

Figure 3.4: Subscribed topics list

3.4 Mapping the area

Prior to the commencement of the coding phase of my project, I undertook the task of creating
a detailed map of the laboratory space to facilitate the experiments. This map is depicted in
Figure 3.5, where the walls and other immovable objects within the lab are marked in black.

The mapping was conducted in an empty laboratory setting, devoid of human presence
and with all movable items removed. This approach ensures that the base map exclusively
represents static obstacles, thereby enabling the robot to navigate around these fixed struc-
tures while remaining vigilant for any new or relocated objects that may appear subsequently.

39

CHAPTER 3. IMPLEMENTATION

This mapping process utilized the slam toolbox, specifically employing a 2D SLAM tech-
nique paired with the RPLidar sensor to capture the spatial layout of the room. This method
provides a reliable and accurate representation of the environment.

Figure 3.5: Map of the Robotics Lab

3.5 YOLO Model

Ideally, it would be beneficial to utilize a dataset capable of distinguishing between heavy
and lightweight objects, thereby obviating the need for the robot to attempt manipulating
heavier items. Regrettably, such a dataset was not available, necessitating the exploration of
alternative strategies.

Initially, the identification of cardboard boxes was considered, assuming these to be in-
herently lightweight. However, this method is limited as cardboard boxes represent just one
of numerous potential object types encountered within indoor environments.

A more comprehensive approach was subsequently adopted, focusing on the detection
of lower body parts such as feet, thighs, and legs, including footwear. This methodology
implies the presence of a human and thus prompts the robot to circumvent these figures. This
enhanced detection capability significantly improves the robot’s navigational efficiency in

40

CHAPTER 3. IMPLEMENTATION

complex indoor settings.
This approach can be extended to recognise other living entities commonly found indoors,

such as dogs and cats, in order for the robot to effectively avoid all such obstacles.

3.5.1 Detecting Cardboard Boxes

For the detection of cardboard boxes I found a dataset in Roboflow which was labeled and
ready to train a YOLOv8 model[71]. I downloaded it and trained the YOLOv8 model.

For the training I used batch size 1̄6 and the following filters:

• A.Rotate(limit = 10, p=0.5)

• Blur(p=0.1)

• MedianBlur(p=0.1)

• ToGray(p=0.01)

• CLAHE(p=0.01)

• ImageCompression(quality lower=75, p=0.0)

After training, the model was tested out and had good overall results.

Figure 3.6: Cardboard detection

41

CHAPTER 3. IMPLEMENTATION

3.5.2 Detecting Lower-Body Parts

In order to implement this approach, I conducted an online search for a dataset containing
images of ankles, legs, trousers, shoes, and knees. The rationale behind focusing on the lower
body is that the camera on the robot is positioned at a height that makes it difficult to capture
images of faces and arms.

I discovered a pre-trained model along with its corresponding dataset on Roboflow, specif-
ically named ”LowerBodyDetection”[72]. The dataset provided was of high quality, encom-
passing various versions that included pre-augmented images. Additionally, there was a pre-
trained model available. Although the model used an older version of the dataset with far
less images, it achieved 100% precision and 99.1% recall. The training metrics are shown in
Figure 3.7. The existing model was trained in Roboflow using a YOLOv8s model pre-trained
on the MS COCO dataset.

Figure 3.7: Predictions of the Roboflow Model for the ”LowerBodyDetection” dataset

Despite the fact that a model already existed, I intended to improve it by utilising the
updated augmented dataset containing over 5000 images.

1. Roboflow Trained Model: I uploaded the dataset to my Roboflow account and utilised
a YOLOv8s model that was pre-trained on MS COCO to create a model. By doing this,

42

CHAPTER 3. IMPLEMENTATION

I was able to take advantage of the features provided by Roboflow and its pre-trained
models, while also benefiting from the use of a larger and more up-to-date dataset.

The results of the training are shown in Figure 3.8.

Figure 3.8: Roboflow Model for the ”LowerBodyDetection” augmented dataset

2. Custom YOLOv8s Model: I created a Google Colab notebook, downloaded the up-
dated dataset and trained a YOLOv8s model pre-trained on MS Coco. While the out-
comes would not surpass those of the pre-trained models in Roboflow, I chose to train
a model manually and store its weights as a contingency plan in the event that the
integration between Roboflow and my ROS2 subscriber service was not feasible.

The results of the training are shown in Figure 3.9.

Figure 3.9: Google Colab Model for the ”LowerBodyDetection” augmented dataset

43

CHAPTER 3. IMPLEMENTATION

Upon completion of the training process, I observed that both models exhibit identical
precision and recall metrics. Consequently, I now have the flexibility to choose either model
for the construction of my YOLO service in the future.

3.6 Custom ROS2 Services

Prior to developing the custom behaviour tree nodes, I had to establish a service that would
respond to requests for information from these custom nodes.

The initial concept involved the behaviour tree nodes subscribing to various ROS topics
and retrieving the information independently. This would have left us with the task of just
developing the behavior tree nodes. Our nodes were, however, hampered by the asynchronous
nature of messages transmitted via topics. For instance, the node may experience a delay in
its operation until it receives a message. After numerous attempts, I made the decision to
abandon this plan and devise a more effective solution.

A more effective and simpler strategy involved developing two services that would sub-
scribe to these topics and maintain the most recent state of the robot as shown in Figure 3.10.
Upon receiving a request from the behaviour tree nodes, they would provide this information
synchronously. The presence of services simplified the C++-written behaviour tree nodes and
enabled the development of services in Python.

Instead of using custom service messages, we used SetBool, which is shown in Listing
2.1.

Figure 3.10: The initial concept without the utilization of services on the left and the updated
approach on the right.

44

CHAPTER 3. IMPLEMENTATION

3.6.1 Odometry Service

This service susbcribes to the ’/odom’ ROS topic and receives messages about the position
of the robot as shown in Listing 3.1. The QoS policy was set to ’BEST EFFORT’. Every
time a new message is received from topic ’/odom’, the callback method is called and the last
known position (variable ’position’) is updated.

1 def __init__(self):

2 super().__init__(’yolo_service’)

3 self.srv = self.create_service(SetBool, ’get_odom’, self.

get_odom_callback)

4 self.position = None

5 qos_policy = rclpy.qos.QoSProfile(reliability=rclpy.qos.

ReliabilityPolicy.BEST_EFFORT, history=rclpy.qos.HistoryPolicy.

KEEP_LAST, depth=1)

6 self.subscription = self.create_subscription(

7 Odometry,

8 ’odom’,

9 self.listener_callback,

10 qos_profile = qos_policy)

11 self.subscription # prevent unused variable warning

12

13 def listener_callback(self, msg):

14 if (self.position.x != msg.pose.pose.position.x or self.position.y !=

msg.pose.pose.position.y):

15 print(str(msg.pose.pose.position.x)+" "+str(msg.pose.pose.

position.y))

16 self.position = msg.pose.pose.position

Listing 3.1: Subscription to the odom topic and the callback function

Upon request, it provides the last known position of the robot to the MoveForwards node.
It used the boolean value ’success’ of SetBool to signal if it has a stored position or not and
the string ’message’ to pass both x and y to the callee. The code is shown in Listing 3.2.

1 def get_odom_callback(self, request, response):

2 if self.position:

3 response.message = f’Position: x={self.position.x}, y={self.

position.y}, z={self.position.z}’

4 response.success = True

45

CHAPTER 3. IMPLEMENTATION

5 self.get_logger().info(’Requested. Replied "%s"’ % response.

message)

6 else:

7 response.message = ’Position not available’

8 response.success = False

9 self.get_logger().info(’Requested. Replied "%s"’ % response.

message)

10 return response

Listing 3.2: Service callback function

3.6.2 YOLO Service

This service has two main objectives:

1. Use the camera sensor to detect humans.

2. Provide this information to the behavior tree nodes upon request.

There was no need to have two seperate entities doing these jobs, so I combined them in a
single service.

Use of Image Topic instead of the camera feed

The OAK-D Pro camera installed on our robot has the ability to execute detection models
within its processing unit. Roboflow offers a comprehensive tutorial on converting models
online into a format that is compatible with deployment on OAK-D Pro. This can be done
using the roboflowoak and depthai libraries. Nevertheless, after adhering to the instructions
and attempting to execute the model with the camera, I encountered an error indicating that
the resource was busy. Evidently, the other active Turtlebot modules were keeping the camera
busy. Disabling the Turtlebot services was not feasible as I heavily depended on them for
tasks such as navigation and SLAM. Accessing the camera just as an RGB input was also not
possible.

Initially, an external camera was connected to the robot and employed as an RGB web-
cam, transmitting a live stream to the ROS service. After careful consideration, I determined
that the most optimal course of action was to utilise the existing ROS topics. Turtlebot ser-
vices publish an Image message that contains an RGB preview captured by the camera under

46

CHAPTER 3. IMPLEMENTATION

the topic ’oakd/rgb/preview/image raw’. Instead of connecting an external camera and run-
ning the YOLO model on the Raspberry Pi of the robot, I could receive the image topics
on another computer with more computational power and detect if there are humans present.
This could significantly lower the latency of the detection.

Implementation

To implement this service, I created a subscriber for the ’oakd/rgb/preview/image raw’ topic.
I also imported the model using the inference library for inference. To hold the last states
of the YOLO detection, I created an array of length 5 that will keep the last 5 results of our
model. By doing this, I strengthen my service against unintentional false positives or false
negatives that the model might provide briefly. These are shown in Listing 3.3.

1 def __init__(self):

2 super().__init__(’yolo_service’)

3 self.srv = self.create_service(SetBool, ’get_yolo_state’, self.

get_yolo_state_callback)

4 self.last_states = [False,False,False,False,False]

5 self.subscription = self.create_subscription(

6 Image,

7 ’/oakd/rgb/preview/image_raw’,

8 self.listener_callback,

9 10)

10 self.subscription # prevent unused variable warning

11 self.publisher = self.create_publisher(Bool, ’yolo’, 10)

12 self.model = get_model(model_id="lowerbodydetection/1")

Listing 3.3: YOLO Service Initialization

After initialising the service, we created two callback functions: one that would be exe-
cuted every time an image is sent using the ’oakd/rgb/preview/image raw’ topic, and one that
handles service requests.

Upon receiving an image, the first step is to convert it using cv bridge and then pass it to
the model for detection. By utilising the supervision library, we verify the presence of any
detections. Subsequently, we proceed to shift the values in our array and save our updated
boolean value at the final position. The value ”true” signals that it is safe for the robot to push
the obstacles, indicating the absence of humans. Conversely, the value ”false” indicates that
humans have been detected and the robot must recalculate its route.

47

CHAPTER 3. IMPLEMENTATION

1 def listener_callback(self, msg):

2 bridge = CvBridge()

3 img = bridge.imgmsg_to_cv2(msg, "bgr8")

4 results = self.model.infer(img)

5 detections = sv.Detections.from_inference(results[0].dict(by_alias=

True, exclude_none=True))

6 msg = Bool()

7

8 for i in range(0,len(self.last_states)-1):

9 self.last_states[i] = self.last_states[i+1]

10 if detections.__len__() > 0:

11 self.last_states[-1] = False

12 msg.data = False

13 else:

14 self.last_states[-1] = True

15 msg.data = True

16 self.publisher.publish(msg)

17 self.get_logger().info(’Publishing: "%s"’ % msg.data)

Listing 3.4: Image Callback Function

For the second one, upon a request from our behavior tree node, we check if the majority
of the values in our last states array are true. If true, it indicates that it is highly unlikely that
a human is positioned in front of the robot. Consequently, we reply by employing a SetBool
message, wherein we assign a value of true or false to its success parameter, denoting the
absence or presence of a human.

1 def get_yolo_state_callback(self, request, response):

2 morethan3 = sum(self.last_states) >= 3

3 self.get_logger().info(’Requested. Replied "%s"’ % str(morethan3))

4 response.success = morethan3

5 response.message = str(morethan3) # Send state as a message (string)

6 return response

Listing 3.5: Service Callback Function

48

CHAPTER 3. IMPLEMENTATION

3.7 Custom ROS2 Behavior Tree Nodes

3.7.1 Check Camera Node

This custom behavior tree node is a ConditionNode and receives no input parameters. When
ticked, it sends a service request to the YOLO Service and waits for the response. If the suc-
cess boolean value response message is true, the node returns BT::NodeStatus::SUCCESS.
Otherwise, it returns BT::NodeStatus::FAILURE. Depending on this return value, the behav-
ior tree follows a different execution order.

3.7.2 Move Forward/Backwards Node

This custom behavior tree node is also an ActionNode and receives two parameters: speed
and distance. The speed parameter is optional.

When ticked, it sends a request to the Odometry Service to get the robot’s initial position.
After that, it publishes a Twist message under the topic ’cmd vel’ setting the forward speed of
the robot. If the distance is negative, it sets a negative speed to move the robot backwards. It
keeps sending this messages for the robot to keep moving until it covers the required distance.
To check if the required distance is covered, the node requests the new position from the
Odometry Service every 100 ticks.

Pushing heavy objects

Although I can tell if an obstacle is a human or an object, there is no way to tell if an object
(e.g., a cardboard box) is heavy or light-weight. There is a possibility that the robot tries to
push the object but fails to do so. Because of that, we must have a mechanism in place that
will cancel the action and prevent the robot from pushing more. Given the code we have at
this stage, the robot will continue to push until it covers a certain distance, something that
will never be achieved if the object is heavy.

We introduce two mechanisms:

1. Timeout: The service will time out after a certain amount of time based on the speed
and distance it has to cover. This will prevent the object from pushing forever.

2. Insufficient Distance Checker: Having a timeout is not enough. Until this time
passes, the robot’s wheel keep spinning, scratching the floor’s surface and destroy-
ing the wheel themselves. An effective way to prevent this from happening sooner is to

49

CHAPTER 3. IMPLEMENTATION

check whether the robot has failed to move a sufficient distance. Every 100 ticks, i re-
quest the current x and y position from the Odometry Service and check if the distance
between the previous and current position is close to 0. If yes, then we must abort.

In both of these cases, the service will return a BT::NodeStatus::FAILURE if the robot can not
move the object. Otherwise, if the robot reaches it’s goal, it will return BT::NodeStatus::SUCCESS.

3.8 Custom Behaviour Tree

3.8.1 Overview

In order for us to create custom navigation behavior for our robot we have to build our custom
behavior tree using the nodes and services we created above. It is necessary to not only
incorporate the logic for the robot’s movement, but also to include contingency plans in case
of any malfunctions or errors. Our xml representation of our behavior tree is shown in Listing
E.1 and our graphical representation using Groot is shown in Figure 3.11.

According to the reasoning of our Behaviour Tree (BT), the robot will calculate its path
at the start of the navigation, rather than doing so every second as the default BT does. Then
it will start following the calculated path to the target. In the absence of replanning, the
trajectory of the system will persist even if an obstacle is encountered. When the distance
between the object and the obstacle becomes very small, we anticipate that the FollowPath
node will abort. Because the FollowPath node is the first child of a RecoveryNode, that means
that robot will follow some actions to overcome this failure. Initially, the system will examine
the custom YOLO Node to determine whether the obstacle is a human or an inanimate object.
If the node detects an object, it will indicate success, allowing the next action in the sequence
to proceed. This action involves moving the robot forward and pushing the object aside.
If the YOLO condition node yields a failure or if the robot exerts force but the object is of
substantial weight, our sequence will be unsuccessful, resulting in the activation of the second
node within the fallback node. This will prompt the robot to move in a backward direction.
Regardless of the situation, once the object is moved or the robot moves backwards, it will
proceed to reset its costmap and recompute its path. After this recovery section ends, the
robot will continue following its path. If this recovery section fails as well, we are left with
no choice but to proceed with the suggested recovery measures on the right subtree, such as
spinning, clearing the costmaps, and backing up.

50

CHAPTER 3. IMPLEMENTATION

Figure 3.11: Graphical representation of Custom BT using Groot

3.8.2 Detailed Explanation

On the top, the BT has a recovery node, meaning that the left side of the tree is the regular
subtree that we will follow and on the right we have the recovery sequence in case of failure.
The left subtree will try to be executed 4 times before resorting to the fallback actions.

51

CHAPTER 3. IMPLEMENTATION

Left Subtree

• Sequence ’MainNavigationFlow’: This sequence node contains two children that will
be executed the one after the other. If any of them fails, we will try executing the
sequence node again for 4 times.

• ComputePathToPose: This nodes calculates the best available trajectory to the goal.

• Fallback ’FollowPathWithRecovery’: This node first ticks the FollowPath node. If it
fails, it will tick its next child which is the sequence ’ObjectHandling’

• FollowPath: This node tries to follow the path calculated by the ComputePathToPose
node. If it encounters an object along its path, it will return failure, executing the
’ObstacleHandling’ Sequence.

• Sequence ’ObstacleHandling’: This sequence contains a Fallback node (”CheckY-
olo”) and some actions to be executed after it succeeds. The actions will clear the local
costmap and recalculate the robot’s path.

• Fallback ”CheckYOLO”: This Fallback node will check the YOLO Condition Node
and move the robot forwards or backwards.

Right Subtree (Recovery)

The right recovery subtree of our custom behavior tree is the same as the one of the default
behavior tree.

3.9 Navigation

As previously mentioned, I will utilise the default Turtlebot navigator but make alterations
to its behaviour tree. In order to accomplish this, we need to register our custom behaviour
nodes and create a custom behaviour tree. Once this is done, we must then configure the
parameters of the navigator.

I generated a file named ’custom params.yaml’ and duplicated the default parameters
of the navigator. I then added my custom nodes and set the default behavior tree of the
nav to pose to mine. Each time the behavior server starts, it will load this custom tree and its
nodes.

52

CHAPTER 3. IMPLEMENTATION

1 b t n a v i g a t o r :
2 r o s p a r a m e t e r s :
3 u s e s i m t i m e : True
4 g l o b a l f r a m e : map
5 r o b o t b a s e f r a m e : b a s e l i n k
6 odom top ic : / odom
7 b t l o o p d u r a t i o n : 10
8 d e f a u l t s e r v e r t i m e o u t : 20
9 d e f a u l t n a v t o p o s e b t x m l : ˜ / c u s t o m t r e e . xml

10 p l u g i n l i b n a m e s :
11 − nav2 move b t node
12 − n a v 2 y o l o b t n o d e

Listing 3.6: Custom parameters file

In order to start navigation, we must launch the Turtlebot’s naviagator using ros2 launch
turtlebot4 navigation localization.launch.py map:=map.yaml where ’map.yaml’ is the
map of our lab.

After the localisation service launches, we must launch nav2 using ros2 launch turtle-
bot4 navigation nav2.launch.py.

To set the initial position, we can either publish a message from terminal or open rviz to
visualize the area and set the initial position on the map. Rviz can be launched using ros2
launch turtlebot4 viz view robot.launch.py.

We can set the initial position using ’2D Estimate Pose’ and send a goal using ’Nav2
Goal’ as shown in Figure 3.12.

Figure 3.12: Setting the initial position in RViz

53

Chapter 4

Experimental Results

4.1 Scenario 1: Path Blocked by a Movable Object

4.1.1 Overview

The first scenario consists of 2 rooms connected by a door. When mapping the area, no
obstacle was in place and the robot was able to move freely and map the 2 rooms. Then, a
movable obstacle (a cardboard box) was placed in front of the door, blocking the entrance to
the other room. Our turtlebot wants to go into the other room. This scenario is shown below
in a vector (Figure 4.1) and in real life (Figure 4.2).

Figure 4.1: Scenario 1: Map of the proposed layout. The TurtleBot4 is shown as a black
circle and the destination as a green cross. The obstacle is marked in red.

54

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.2: Scenario 1: Layout in real life

4.1.2 Results

The proposed trajectory goes right through the obstacle. The same happens for the default
navigator as well. The robot has not seen the obstacle yet.

As the robot gets closer to the obstacle the lidar sensor detects it, and it is shown on the
map.The default navigator tries to replan its route, fails to do so, enters recovery mode and
eventually aborts its mission. The custom navigator goes right in front the object and stops
as showin in Figure 4.3.

Figure 4.3: Scenario 1: The robot gets closer to the obstacle and stops

55

CHAPTER 4. EXPERIMENTAL RESULTS

After it stops, the robot turns left and right. This is due to the fact that the ”FollowPath”
node has not aborted yet. It is still trying to find an alternative to follow the predefined path.
After it returns failure, our robot checks the camera, detects no human and moves forward 1
meter pushing the object out of the way as shown in Figure 4.4.

Figure 4.4: Scenario 1: The robot pushes the cardboard box

It then replans its route. Since the object has moved out of the way, the robot can now
reach its destination as shown in Figure 4.5.

Figure 4.5: Scenario 1: The robot reaches its destination

56

CHAPTER 4. EXPERIMENTAL RESULTS

4.2 Scenario 2: Path Blocked by a Heavy Object

4.2.1 Overview

This scenario is the same as the one depicted in Figures 4.1 and 4.2. However, in this case
the object is heavy (a cardboard filled with items).

4.2.2 Results

The default navigator fails as in the previous scenario. The custom navigator approaches the
object and tries to push it but the obstacle is not moving as shown in Figure 4.6.

Figure 4.6: Scenario 2: The robot tries to push the object

After 3 seconds, the robot moves back and tries to recalculate its route as shown in Figure
4.7. Since no route is available, it will enter recovery mode.

57

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.7: Scenario 2: The robot moves back

If there’s no path for some time, it will abort the goal just like the default navigator.
However, if we remove the object before this timeout, the robot finds the new path and follows
it until it reaches the destination.

4.3 Scenario 3: Path Blocked by a Human

4.3.1 Overview

This scenario is the same as the one depicted in Figures 4.1 and 4.2. However, in this case
path is blocked by a human.

4.3.2 Results

The default navigator fails as in the first scenario. The custom navigator approaches the
human as shown in Figure 4.8.

58

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.8: Scenario 3: The robot stops in front of the human obstacle

The YOLO Service notifies the behavior tree node that a human is standing in front of
the robot. The robot moves back without trying to push the human and tries to recalculate its
route as shown in Figure 4.9. Since no route is available, it will enter recovery mode.

Figure 4.9: Scenario 3: The robot moves back from the human obstacle

If there’s no path for some time, it will abort the goal just like the default navigator.
However, if the human moves before this timeout, the robot finds the new path and follows it
until it reaches the destination.

59

CHAPTER 4. EXPERIMENTAL RESULTS

4.4 Scenario 4: Encountering a Lightweight Object

4.4.1 Overview

In the third scenario, the obstacle blocks the fastest route to the target, but there are still
alternative paths for the robot to follow. This scenario is shown below in a vector (Figure
4.10) and in real life (Figure 4.11).

Figure 4.10: Scenario 4: Map of the proposed layout. The TurtleBot4 is shown as a black
circle and the destination as a green cross. The obstacle is marked in red.

Figure 4.11: Scenario 4: Layout in real life

60

CHAPTER 4. EXPERIMENTAL RESULTS

4.4.2 Results

The proposed trajectory for the custom navigator goes right through the obstacle. The same
happens for the default navigator as well. The robot has not seen the obstacle yet. As the
robot gets closer to the obstacle the lidar sensor detects it.

The default navigator re-plans its route along the way so it avoids the obstacle by going
around it as shown in Figure. Although it is a longer route, it reaches the final destination
without having to stop or push the object.

Figure 4.12: Scenario 4: Longer route followed by the default navigator

The custom navigator goes right in front the object and stops. it checks the camera, detects
no human and moves forward 1 meter pushing the object out of the way as shown in Figure
4.13.

Figure 4.13: Scenario 4: The robot pushes the cardboard box

It then replans its route. Since the object has moved out of the way, the robot can now
reach its destination as shown in Figure 4.14.

61

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.14: Scenario 4: The robot reaches its destination

4.5 Scenario 5: Encountering a Heavy Object

4.5.1 Overview

This scenario is the same as the one depicted in Figures 4.1 and 4.2. However, in this case
the object is heavy (a cardboard filled with items).

4.5.2 Results

The default navigator behaves as in the previous scenario and although it follows a longer
route it reaches its destination. The robot with the custom navigator tries to push the object
but fails to do so. After 3 seconds it moves back as shown in Figure 4.15.

Figure 4.15: Scenario 5: The robot moves back

62

CHAPTER 4. EXPERIMENTAL RESULTS

After that, it re-plans its route, takes the longer route the default navigator followed and
reaches its final destination.

We can see that the custom behavior of the navigator does not work out always for the
best. The robot lost significant time when it tried to push the object.

4.6 Scenario 6: Encountering a human

4.6.1 Overview

In this scenario, we have an empty room with people moving inside it. The robot must cross
the whole room before reaching its destination as shown in Figures 4.16.

Figure 4.16: Scenario 6: Map of the proposed layout. The TurtleBot4 is shown as a black
circle and the destination as a green cross. The moving people are marked in beige.

4.6.2 Results

The robot with the custom navigator follows its original route. When it comes close to a
person, it checks its camera, identifies the person and moves a bit back as shown in Figure
4.17.

63

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.17: Scenario 6: The robot moves back after it detected a person

During this time, it gives the person enough time to move away before replanning the
route. If the person does not move, the custom navigator plans around them as shown in
Figure 4.18

Figure 4.18: Scenario 6: The robot re-plans its route and moves around the human obstacle

64

Chapter 5

Discussion

The evaluation of the performance of the custom navigator with the default navigator helps
to understand the performance of the robotic navigation system in dynamic environment and
especially in the hospital environment where there is always high level of unpredictability
and interaction with humans.

5.1 Dynamic Environments with Movable Obstacles

The custom navigator demonstrated superior performance compared to the default naviga-
tor when dealing with lightweight and portable obstacles. This is exemplified in Scenario 1,
where the customised navigator successfully pushed aside a cardboard box to clear its path
and reached the final destination. In contrast, the default navigator failed to generate a suc-
cessful new route and went into recovery mode and eventually aborted its mission. The fact
that the custom navigator can move light obstacles and interact with its environment allows
it to perform in dynamic conditions, hence increasing the real-world applicability such as for
hospital logistics.

5.2 Handling Heavy Objects

The custom navigator did not manage to do better than the original one when it came to
heavier objects, as can be seen in Scenario 2. The custom navigator tries to push the heavier
object but cannot. The robot finally goes to its state of recovery due to the stall behavior and
finally, aborts if there is no viable path. The default navigator, in its less aggressive strategy,
does not even try to push the massive obstacle, thereby avoiding unnecessary behavior. This

65

CHAPTER 5. DISCUSSION

means that, while the custom navigator is very good with light obstacles, it must improve
handling heavier and immovable obstacles.

5.3 Crowded Indoor Environments

A person blocking the way is common in environments such as hospitals. Its effectiveness
in such a situation is seen to be the most promising part of the custom navigator, as shown
in Scenario 3 and 6. When encountering a human, the custom navigator gets close and, on
detection, moves backward to allow the person to pass, after which it either re-plans or waits
for the path to clear. This behavior is highly suitable for hospital settings in which, most of
the time, individuals block paths. Hence, in this way, the default navigator does not prove to
be very suitable in human-related, dynamic obstacle situations.

5.4 Path Recalculation and Patience

In such densely crowded settings, recalculating the path at every instant is not possible due to
the very fast-changing surroundings. This makes the wait-and-then-recompute strategy ad-
vantageous when applied by the custom navigator. The waiting often provides time for human
movement along the path, resulting in clear passage for the robot, which continues with its
task without the need to re-plan. People usually give way to robots, and the robot will follow
the trajectory without too much obstruction. Such a strategy of patience reduces unnecessary
path computation and increases the robot’s efficiency in dynamic human environments.

66

Chapter 6

Conclusion

6.1 Summary of Findings

This thesis aimed at advancing robots in such a manner that robots can move independently
in dynamic indoor environments, like hospitals, using behavior trees for advanced strategies
in navigation. The design and implementation of the custom navigator in this research, there-
fore, show significant improvement and have thus effectively realized the said objectives in
improving the robot’s ability to handle different kinds of obstacles.

Behavior trees are a powerful tool to use for the structuring of decisions, making the
behavior modular, scalable, flexible, and valuable about the navigation of the robot. The
value brought by a behavioral tree-structured, custom navigator that enabled the robot to
physically interact and move obstacles in a scene with lightweight, movable obstacles was
that the robot could navigate through the scene and maintain its path without any external
intervention, thus showcasing a significant improvement over the default navigator.

Implementing such complex behaviors was greatly facilitated by the introduction of be-
havior trees, from proactive handling of obstacles to smooth transitions between different
strategies for navigation. Structuring the flow of navigation into manageable nodes and their
sequences facilitated more control of actions so that each decision is taken with relevance to
the current environmental state.

Other advanced object detection features have been tapped into with behavior trees, such
as YOLO, to detect and recognize humans and other obstacles. This has enabled the robot
to well differentiate between barriers that it can move and those that it should avoid, thus
increasing safety and efficiency.

The results of this work clearly illustrate the potential that behavior trees can introduce for

67

CHAPTER 6. CONCLUSION

the next level of autonomous navigation. It fully met the main goal it was developed for: the
implementation of an ad hoc navigator for enhancement in navigation efficiency. But it also
sheds light on the flexibility and robustness properties of behavior trees under dynamic and
uncertain environments. This approach offers a promising direction for future research and
development in autonomous robotics, particularly in applications requiring high adaptability
and reliability.

6.2 Contributions to the Field

The research presented in this thesis contributes to the field of autonomous robotics by
demonstrating the practical application of advanced navigation strategies. The use of be-
havior trees for dynamic and unpredictable environments has shown to be effective in im-
proving the maneuverability of autonomous robots. This work provides valuable insights and
advancements in the following areas:

1. Enhanced Autonomous Navigation: The developed system showcases how behavior
trees can be utilized to enhance the efficiency of autonomous navigation in complex
environments.

2. Improved Real-Time Decision Making: The ability of the robot to make real-time
adjustments to its path by recognizing and interacting with obstacles represents a sig-
nificant advancement in autonomous navigation. The custom navigator, in some cases,
outperforms the default one which follows a ’play-it-safe’ strategy.

3. Increased Safety and Reliability: The use of advanced object detection and naviga-
tion algorithms has demonstrated potential improvements in the safety and reliability
of autonomous robots.

6.3 Future Work

The implementation and deployment of the custom navigator using behavior trees presented
in this paper has shown several of the possibly promising ways that can be further investigated
and developed for better capacity and performance of robots in the hospital environment.

• Enhanced Obstacle Detection: One of the most important directions for further de-
velopment is the improvement of algorithms for detecting obstacles. Such algorithms

68

CHAPTER 6. CONCLUSION

should work at a proper level of reliability, robust enough for different lighting condi-
tions and uncertain environments. These models can differentiate efficiently between
different types of obstacles. Thus the robot is well-prepared to make an informed deci-
sion in the face of obstacle avoidance or interaction with objects in its path.

• Integration of Reinforcement Learning: Another promising area for future work is
integrating reinforcement learning into optimizing a robot’s decision-making process.
The learning should take place in such a way that, after each evaluation, the robot shall
know whether to decide to push an object or to recalculate the path toward accom-
plishing the goal. In this way, adaptive learning can improve the overall efficiency of
robots and their potential to deal with a more general class of problems in dynamic
environments.

• Expanded Testing Environments: The experiment should be carried out in a more
diversified and realistic setting of hospital environments to generalize the robot’s ca-
pabilities and identify the limits. Realistic hospital environments need to be accom-
modated within the testing of general wards and emergency rooms, among others, with
varying levels of activity and obstacle configurations will provide valuable insights into
the robot’s performance. This more general approach to testing will identify potential
hitches and points that need improvement to make sure the robot copes with the com-
plexity of a real-life hospital environment.

• Utilization of Gazebo Simulator: The Gazebo Simulator is a robust testing and veri-
fication tool for robotic systems under controlled and cost-effective conditions. Future
work will utilize the Gazebo Simulator in testing different scenarios and configurations
of the robots under deployment before actual deployment in natural hospital settings.

69

References

[1] G. S. PERROTT and D. F. HOLLAND, “Population trends and problems of public
health,” The Milbank Quarterly, vol. 83, no. 4, p. 569–608, Nov. 2005.

[2] I. Vrabková and I. Vaňková, “Efficiency of human resources in public hospitals: An
example from the czech republic,” International Journal of Environmental Research

and Public Health, vol. 18, no. 9, p. 4711, Apr. 2021.

[3] N. Ramdani, A. Panayides, M. Karamousadakis, M. Mellado, R. Lopez,
C. Christophorou, M. Rebiai, M. Blouin, E. Vellidou, and D. Koutsouris, “A safe, effi-
cient and integrated indoor robotic fleet for logistic applications in healthcare and com-
mercial spaces: the endorse concept,” in 2019 20th IEEE International Conference on

Mobile Data Management (MDM). IEEE, 2019, pp. 425–430.

[4] E. Toulkeridou, A. Kourris, E. Christoforou, R. J. Ros, M. Bosch, R. Lopez, A. Perrot,
A. Godart, N. Ramdani, C. Pattichis et al., “Safe robot navigation in indoor healthcare
spaces,” in IEEE-EMBS International Conference on Biomedical and Health Informat-

ics, BHI, 2022.

[5] S. Krause and A.-L. Henk, “Selecting an educational robot: a comprehensive guideline,”
EasyChair, Tech. Rep., 2024.

[6] Clearpath, “TurtleBot4 Overview,” [Accessed: 02.12.2023]. [Online]. Available:
https://clearpathrobotics.com/turtlebot-4/

[7] S. Guillen, “Clearpath Robotics announces Turtlebot 4,” 2021, [Ac-
cessed: 02.12.2023]. [Online]. Available: https://clearpathrobotics.com/blog/2021/10/
clearpath-robotics-announces-turtlebot-4/

70

https://clearpathrobotics.com/turtlebot-4/
https://clearpathrobotics.com/blog/2021/10/clearpath-robotics-announces-turtlebot-4/
https://clearpathrobotics.com/blog/2021/10/clearpath-robotics-announces-turtlebot-4/

REFERENCES

[8] ——, “Clearpath Robotics launches Turtlebot 4,” 2022, [Accessed:
03.12.2023]. [Online]. Available: https://clearpathrobotics.com/blog/2022/05/
clearpath-robotics-launches-turtlebot-4/

[9] Clearpath, “TurtleBot4 User Manual,” [Accessed: 01.12.2023]. [Online]. Available:
https://turtlebot.github.io/turtlebot4-user-manual/overview/features.html

[10] S. Munir, “Turtlebot 4 now supports ROS2 Humble,” 2022, [Ac-
cessed: 03.12.2023]. [Online]. Available: https://clearpathrobotics.com/blog/2022/05/
clearpath-robotics-launches-turtlebot-4/

[11] “Slamtec RPLIDAR A1 - SLAMTEC Global Network — slamtec.ai,” [Accessed
29-05-2024]. [Online]. Available: https://www.slamtec.ai/product/slamtec-rplidar-a1/

[12] “RPLIDAR A1M8 - 360 Degree Laser Scanner De-
velopment Kit — generationrobots.com,” [Accessed 29-05-
2024]. [Online]. Available: https://www.generationrobots.com/en/
402778-rplidar-a1m8-360-degree-laser-scanner-development-kit.html

[13] M. S. Aslam, M. I. Aziz, K. Naveed, and U. K. uz Zaman, “An rplidar based slam
equipped with imu for autonomous navigation of wheeled mobile robot,” in 2020 IEEE

23rd International Multitopic Conference (INMIC). IEEE, 2020, pp. 1–5.

[14] Luxonis, “OAK-D Pro — shop.luxonis.com,” [Accessed 29-05-2024]. [Online].
Available: https://shop.luxonis.com/products/oak-d-pro

[15] “Luxonis OAK-D Pro Camera (auto-focus) — Génération Robots —
generationrobots.com,” [Accessed 29-05-2024]. [Online]. Available: https:
//www.generationrobots.com/en/404059-luxonis-oak-d-pro-camera-auto-focus.html

[16] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng,
“Ros: an open-source robot operating system,” vol. 3, 01 2009.

[17] ed, “ROS1 vs ROS2, Practical Overview For ROS Developers - The Robotics
Back-End — roboticsbackend.com,” [Accessed 29-05-2024]. [Online]. Available:
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/

[18] “Client libraries - ROS 2 Documentation: Rolling documentation,” [Accessed
12-05-2024]. [Online]. Available: https://docs.ros.org/en/rolling/Concepts/Basic/
About-Client-Libraries.html

71

https://clearpathrobotics.com/blog/2022/05/clearpath-robotics-launches-turtlebot-4/
https://clearpathrobotics.com/blog/2022/05/clearpath-robotics-launches-turtlebot-4/
https://turtlebot.github.io/turtlebot4-user-manual/overview/features.html
https://clearpathrobotics.com/blog/2022/05/clearpath-robotics-launches-turtlebot-4/
https://clearpathrobotics.com/blog/2022/05/clearpath-robotics-launches-turtlebot-4/
https://www.slamtec.ai/product/slamtec-rplidar-a1/
https://www.generationrobots.com/en/402778-rplidar-a1m8-360-degree-laser-scanner-development-kit.html
https://www.generationrobots.com/en/402778-rplidar-a1m8-360-degree-laser-scanner-development-kit.html
https://shop.luxonis.com/products/oak-d-pro
https://www.generationrobots.com/en/404059-luxonis-oak-d-pro-camera-auto-focus.html
https://www.generationrobots.com/en/404059-luxonis-oak-d-pro-camera-auto-focus.html
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/
https://docs.ros.org/en/rolling/Concepts/Basic/About-Client-Libraries.html
https://docs.ros.org/en/rolling/Concepts/Basic/About-Client-Libraries.html

REFERENCES

[19] J. M. O’Kane, “A gentle introduction to ros,” 2014.

[20] OpenRobotics, “Topics vs Services vs Actions - ROS 2 Documentation: Foxy
documentation — docs.ros.org,” [Accessed 29-05-2024]. [Online]. Available: https:
//docs.ros.org/en/foxy/How-To-Guides/Topics-Services-Actions.html

[21] The Robotics Back-End, “Multiple publishers/subscribers inside one node,” [Accessed
12-05-2024]. [Online]. Available: https://roboticsbackend.com/what-is-a-ros-topic/
#Multiple publisherssubscribers inside one node

[22] ——, “What is a ROS Service?” [Accessed 12-05-2024]. [Online]. Available:
https://roboticsbackend.com/what-is-a-ros-service/

[23] “Understanding actions - ROS 2 Documentation,” [Accessed 12-05-2024].
[Online]. Available: https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/
Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

[24] M. Colledanchise and P. Ögren, Behavior trees in robotics and AI: An introduction.
CRC Press, 2018.

[25] R. K. Megalingam, A. Rajendraprasad, and S. K. Manoharan, “Comparison of planned
path and travelled path using ros navigation stack,” in 2020 International Conference

for Emerging Technology (INCET). IEEE, 2020, pp. 1–6.

[26] F. Schena, “Development of an automated benchmark for the analysis of nav2 con-
trollers,” Ph.D. dissertation, Politecnico di Torino, 2024.

[27] M. De Rose, “Lidar-based dynamic path planning of a mobile robot adopting a costmap
layer approach in ros2,” Ph.D. dissertation, Politecnico di Torino, 2021.

[28] M. You, “Enabling autonomous multi-floor navigation for robots in ros2 using behavior
trees,” Ph.D. dissertation, Politecnico di Torino, 2023.

[29] C. Barbara, “Path planning algorithm for an autonomous air sanitizing mobile robot in
indoor scenarios,” Ph.D. dissertation, Politecnico di Torino, 2023.

[30] OpenRobotics, “TurtleBot 4 Navigator · User Manual — turtlebot.github.io,” [Accessed
29-05-2024]. [Online]. Available: https://turtlebot.github.io/turtlebot4-user-manual/
tutorials/turtlebot4 navigator.html

72

https://docs.ros.org/en/foxy/How-To-Guides/Topics-Services-Actions.html
https://docs.ros.org/en/foxy/How-To-Guides/Topics-Services-Actions.html
https://roboticsbackend.com/what-is-a-ros-topic/#Multiple_publisherssubscribers_inside_one_node
https://roboticsbackend.com/what-is-a-ros-topic/#Multiple_publisherssubscribers_inside_one_node
https://roboticsbackend.com/what-is-a-ros-service/
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://turtlebot.github.io/turtlebot4-user-manual/tutorials/turtlebot4_navigator.html
https://turtlebot.github.io/turtlebot4-user-manual/tutorials/turtlebot4_navigator.html

REFERENCES

[31] V. Mayellaro, “Person-aware autonomous navigation for an indoor sanitizing robot in
ros2,” Ph.D. dissertation, Politecnico di Torino, 2022.

[32] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps for context-sensitive
navigation,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, 2014, pp. 709–715.

[33] F. Maresca and A. Ragazzo, “Ros-based autonomous navigation and object recognition
for a mobile manipulator operating in a warehouse environment,” Ph.D. dissertation,
Politecnico di Torino, 2022.

[34] P. Vanella, “Implementation of ros-based multi-agent slam centralized and decentralized
approaches,” Ph.D. dissertation, Politecnico di Torino, 2023.

[35] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and localization for an
autonomous mobile robot,” in Proceedings IROS ’91:IEEE/RSJ International Workshop

on Intelligent Robots and Systems ’91, 1991, pp. 1442–1447 vol.3.

[36] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J.
Leonard, “Past, present, and future of simultaneous localization and mapping: Toward
the robust-perception age,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309–
1332, 2016.

[37] I. Z. Ibragimov and I. M. Afanasyev, “Comparison of ros-based visual slam methods in
homogeneous indoor environment,” in 2017 14th Workshop on Positioning, Navigation

and Communications (WPNC). IEEE, 2017, pp. 1–6.

[38] M. Filipenko and I. Afanasyev, “Comparison of various slam systems for mobile robot
in an indoor environment,” in 2018 International Conference on Intelligent Systems (IS),
2018, pp. 400–407.

[39] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable slam
system with full 3d motion estimation,” in 2011 IEEE International Symposium on

Safety, Security, and Rescue Robotics, 2011, pp. 155–160.

[40] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar slam,”
in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp.
1271–1278.

73

REFERENCES

[41] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in
2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,
2007, pp. 225–234.

[42] M. Labbé and F. Michaud, “Online global loop closure detection for large-scale multi-
session graph-based slam,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2014, pp. 2661–2666.

[43] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” 2016.

[44] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,”
in European conference on computer vision. Springer, 2014, pp. 834–849.

[45] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile and accurate
monocular slam system,” IEEE transactions on robotics, vol. 31, no. 5, pp. 1147–1163,
2015.

[46] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE transactions on

pattern analysis and machine intelligence, vol. 40, no. 3, pp. 611–625, 2017.

[47] T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and J. J. Berlles, “S-ptam:
Stereo parallel tracking and mapping,” Robotics and Autonomous Systems, vol. 93, pp.
27–42, 2017.

[48] S. Macenski and I. Jambrecic, “Slam toolbox: Slam for the dynamic world,” Journal of

Open Source Software, vol. 6, no. 61, p. 2783, 2021.

[49] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for
computer vision: A brief review,” Computational intelligence and neuroscience, vol.
2018, 2018.

[50] M. Kulkarni, P. Junare, M. Deshmukh, and P. P. Rege, “Visual slam combined with ob-
ject detection for autonomous indoor navigation using kinect v2 and ros,” in 2021 IEEE

6th international conference on computing, communication and automation (ICCCA).
IEEE, 2021, pp. 478–482.

[51] P. Adarsh, P. Rathi, and M. Kumar, “Yolo v3-tiny: Object detection and recognition
using one stage improved model,” in 2020 6th International Conference on Advanced

Computing and Communication Systems (ICACCS), 2020, pp. 687–694.

74

REFERENCES

[52] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm developments,”
Procedia computer science, vol. 199, pp. 1066–1073, 2022.

[53] E. G. Vourkos, E. Toulkeridou, A. Kourris, R. J. Ros, E. G. Christoforou, N. Ramdani,
and A. S. Panayides, “Safe robot navigation in indoor healthcare workspaces,” in Inter-

national Conference on Computer Analysis of Images and Patterns. Springer, 2023,
pp. 56–64.

[54] M. Mateas and A. Stern, “Façade: An experiment in building a fully-realized interactive
drama,” in Game developers conference, vol. 2. Citeseer, 2003, pp. 4–8.

[55] D. Isla, “Handling complexity in the halo 2 ai,” in Game Developers Conference,
vol. 12, 2005.

[56] C. Hecker, “My liner notes for spore: Spore behavior tree docs,” 2009, [Accessed:
2024-05-20]. [Online]. Available: https://www.chrishecker.com/My Liner Notes for
Spore/Spore Behavior Tree Docs

[57] A. J. Champandard, “Behavior trees for next-gen game ai,” in Game Developers Con-

ference, Audio Lecture, December 2007.

[58] AurynRobotics, “Nodes Library — BehaviorTree.CPP — behaviortree.dev,” [Ac-
cessed 29-05-2024]. [Online]. Available: https://www.behaviortree.dev/docs/category/
nodes-library

[59] R. Bernardo, J. M. Sousa, M. A. Botto, and P. J. Gonçalves, “A novel control architec-
ture based on behavior trees for an omni-directional mobile robot,” Robotics, vol. 12,
no. 6, p. 170, 2023.

[60] OpenNavigation, “ComputePathToPose - Nav2 1.0.0 documentation — docs.nav2.org,”
[Accessed 29-05-2024]. [Online]. Available: https://docs.nav2.org/configuration/
packages/bt-plugins/actions/ComputePathToPose.html

[61] ——, “Introduction To Nav2 Specific Nodes - Nav2 1.0.0 documentation —
docs.nav2.org,” [Accessed 29-05-2024]. [Online]. Available: https://docs.nav2.org/
behavior trees/overview/nav2 specific nodes.html

[62] ——, “Navigation Plugins - Nav2 1.0.0 documentation — docs.nav2.org,” [Accessed
29-05-2024]. [Online]. Available: https://docs.nav2.org/plugins/index.html#behaviors

75

https://www.chrishecker.com/My_Liner_Notes_for_Spore/Spore_Behavior_Tree_Docs
https://www.chrishecker.com/My_Liner_Notes_for_Spore/Spore_Behavior_Tree_Docs
https://www.behaviortree.dev/docs/category/nodes-library
https://www.behaviortree.dev/docs/category/nodes-library
https://docs.nav2.org/configuration/packages/bt-plugins/actions/ComputePathToPose.html
https://docs.nav2.org/configuration/packages/bt-plugins/actions/ComputePathToPose.html
https://docs.nav2.org/behavior_trees/overview/nav2_specific_nodes.html
https://docs.nav2.org/behavior_trees/overview/nav2_specific_nodes.html
https://docs.nav2.org/plugins/index.html#behaviors

REFERENCES

[63] AurynRobotics, “Sequences — BehaviorTree.CPP — behaviortree.dev,” https://www.
behaviortree.dev/docs/nodes-library/sequencenode/, [Accessed 29-05-2024].

[64] ——, “Fallbacks — BehaviorTree.CPP — behaviortree.dev,” [Accessed 29-05-2024].
[Online]. Available: https://www.behaviortree.dev/docs/nodes-library/fallbacknode/

[65] OpenNavigation, “RecoveryNode - Nav2 1.0.0 documentation — docs.nav2.org,” https:
//docs.nav2.org/configuration/packages/bt-plugins/controls/RecoveryNode.html, [Ac-
cessed 29-05-2024].

[66] M. Colledanchise and L. Natale, “On the implementation of behavior trees in robotics,”
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5929–5936, 2021.

[67] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things forward: A survey on robot push-
ing,” Frontiers in Robotics and AI, vol. 7, p. 8, 2020.

[68] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in 2004 IEEE/RSJ international conference on intelligent robots

and systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3. Ieee, 2004, pp. 2149–2154.

[69] S. P. Thale, M. M. Prabhu, P. V. Thakur, and P. Kadam, “Ros based slam implementation
for autonomous navigation using turtlebot,” in ITM Web of conferences, vol. 32. EDP
Sciences, 2020, p. 01011.

[70] H. Maghfiroh and H. P. Santoso, “Online navigation of self-balancing robot using
gazebo and rviz,” Journal of Robotics and Control (JRC), vol. 2, no. 5, 2021.

[71] C. Box, “Carboard box dataset,” https://universe.roboflow.com/carboard-box/
carboard-box, sep 2023, visited on 2024-05-30. [Online]. Available:
https://universe.roboflow.com/carboard-box/carboard-box

[72] moveUp care, “Lowerbodydetection dataset,” https://universe.roboflow.com/
moveup-care/lowerbodydetection, apr 2023, visited on 2024-05-30. [Online].
Available: https://universe.roboflow.com/moveup-care/lowerbodydetection

76

https://www.behaviortree.dev/docs/nodes-library/sequencenode/
https://www.behaviortree.dev/docs/nodes-library/sequencenode/
https://www.behaviortree.dev/docs/nodes-library/fallbacknode/
https://docs.nav2.org/configuration/packages/bt-plugins/controls/RecoveryNode.html
https://docs.nav2.org/configuration/packages/bt-plugins/controls/RecoveryNode.html
 https://universe.roboflow.com/carboard-box/carboard-box
 https://universe.roboflow.com/carboard-box/carboard-box
https://universe.roboflow.com/carboard-box/carboard-box
 https://universe.roboflow.com/moveup-care/lowerbodydetection
 https://universe.roboflow.com/moveup-care/lowerbodydetection
https://universe.roboflow.com/moveup-care/lowerbodydetection

Appendix A

Odometry Service

1 import rclpy

2 from rclpy.node import Node

3 from nav_msgs.msg import Odometry

4 from std_srvs.srv import SetBool

5

6

7 class YoloService(Node):

8 def __init__(self):

9 super().__init__(’yolo_service’)

10 self.srv = self.create_service(SetBool, ’get_odom’, self.

get_odom_callback)

11 self.position = None

12 qos_policy = rclpy.qos.QoSProfile(reliability=rclpy.qos.

ReliabilityPolicy.BEST_EFFORT,

13 history=rclpy.qos.HistoryPolicy

.KEEP_LAST,

14 depth=1)

15 self.subscription = self.create_subscription(

16 Odometry,

17 ’odom’,

18 self.listener_callback,

19 qos_profile = qos_policy)

20 self.subscription # prevent unused variable warning

21

22 def listener_callback(self, msg):

23 if (self.position and (self.position.x != msg.pose.pose.position.

x or self.position.y != msg.pose.pose.position.y)):

77

APPENDIX A. ODOMETRY SERVICE

24 print(str(msg.pose.pose.position.x)+" "+str(msg.pose.pose.

position.y))

25 self.position = msg.pose.pose.position

26

27 def get_odom_callback(self, request, response):

28 if self.position:

29 response.message = f’Position: x={self.position.x}, y={self.

position.y}’

30 response.success = True

31 self.get_logger().info(’Requested. Replied "%s"’ % response.

message)

32 else:

33 response.message = ’Position not available’

34 response.success = False

35 self.get_logger().info(’Requested. Replied "%s"’ % response.

message)

36 return response

37

38 def main(args=None):

39 rclpy.init(args=args)

40 yolo_service = YoloService()

41 rclpy.spin(yolo_service)

42 yolo_service.destroy_node()

43 rclpy.shutdown()

44

45 if __name__ == ’__main__’:

46 main()

Listing A.1: Odometry Service

78

Appendix B

YOLO Service

1 import rclpy

2 from rclpy.node import Node

3 from cv_bridge import CvBridge

4 from sensor_msgs.msg import Image

5 from std_msgs.msg import Bool

6 import cv2

7 from std_srvs.srv import SetBool

8 from inference import get_model

9 import supervision as sv

10

11

12 class YoloService(Node):

13 def __init__(self):

14 super().__init__(’yolo_service’)

15 self.srv = self.create_service(SetBool, ’get_yolo_state’, self.

get_yolo_state_callback)

16 self.last_states = [False,False,False,False,False]

17 self.subscription = self.create_subscription(

18 Image,

19 ’/oakd/rgb/preview/image_raw’,

20 self.listener_callback,

21 10)

22 self.subscription # prevent unused variable warning

23 self.publisher = self.create_publisher(Bool, ’yolo’, 10)

24 self.model = get_model(model_id="lowerbodydetection/1")

25

26 def listener_callback(self, msg):

27 bridge = CvBridge()

79

APPENDIX B. YOLO SERVICE

28 img = bridge.imgmsg_to_cv2(msg, "bgr8")

29 results = self.model.infer(img)

30 detections = sv.Detections.from_inference(results[0].dict(

by_alias=True, exclude_none=True))

31 msg = Bool()

32

33 for i in range(0,len(self.last_states)-1):

34 self.last_states[i] = self.last_states[i+1]

35 if detections.__len__() > 0:

36 self.last_states[-1] = False

37 msg.data = False

38 else:

39 self.last_states[-1] = True

40 msg.data = True

41 self.publisher.publish(msg)

42 self.get_logger().info(’Publishing: "%s"’ % msg.data)

43

44 def get_yolo_state_callback(self, request, response):

45 morethan3 = sum(self.last_states) >= 3

46 self.get_logger().info(’Requested. Replied "%s"’ % str(morethan3)

)

47 response.success = morethan3

48 response.message = str(morethan3) # Send state as a message (

string)

49 return response

50

51 def main(args=None):

52 rclpy.init(args=args)

53 yolo_service = YoloService()

54 rclpy.spin(yolo_service)

55 yolo_service.destroy_node()

56 rclpy.shutdown()

57

58 if __name__ == ’__main__’:

59 main()

Listing B.1: YOLO Service

80

Appendix C

MoveForwards/MoveBackwards BT
Node

1 #include "rclcpp/rclcpp.hpp"

2 #include "behaviortree_cpp_v3/action_node.h"

3 #include "geometry_msgs/msg/twist.hpp"

4 #include "std_srvs/srv/set_bool.hpp"

5 #include <sstream>

6 #include <string>

7

8 class MoveForward : public BT::SyncActionNode

9 {

10 public:

11 MoveForward(const std::string &name, const BT::NodeConfiguration &

config)

12 : BT::SyncActionNode(name, config)

13 {

14 node_ = rclcpp::Node::make_shared("move_forward_bt_node");

15 publisher_ = node_->create_publisher<geometry_msgs::msg::Twist>("

cmd_vel", 10);

16 client_ = node_->create_client<std_srvs::srv::SetBool>("get_odom"

);

17 }

18

19 static BT::PortsList providedPorts()

20 {

21 return {BT::InputPort<float>("speed"), BT::InputPort<float>("dist

")};

81

APPENDIX C. MOVEFORWARDS/MOVEBACKWARDS BT NODE

22 }

23

24 virtual BT::NodeStatus tick() override

25 {

26

27 if (!client_ready_)

28 {

29 client_ready_ = client_->wait_for_service(std::chrono::

seconds(1));

30 if (!client_ready_)

31 {

32 RCLCPP_ERROR(node_->get_logger(), "Service not available

after waiting");

33 return BT::NodeStatus::FAILURE;

34 }

35 }

36

37 std::ostringstream oss;

38

39 if (!initial_position_set_)

40 {

41 RCLCPP_INFO(node_->get_logger(), "Initial position requested"

);

42

43 auto request = std::make_shared<std_srvs::srv::SetBool::

Request>();

44 auto result = client_->async_send_request(request);

45

46 // Spin until the future is resolved

47 rclcpp::spin_until_future_complete(node_, result);

48

49 RCLCPP_INFO(node_->get_logger(), "Service replied");

50 auto res = result.get();

51 if (res->success)

52 {

53 initial_position_set_ = true;

54

55 sscanf(res->message.c_str(), "Position: x=%lf, y=%lf", &

initial_x_;, &initial_y_);

56

57 oss << "Initial Position: " << initial_x_ << " " <<

initial_y_;

82

APPENDIX C. MOVEFORWARDS/MOVEBACKWARDS BT NODE

58 RCLCPP_INFO(node_->get_logger(), "%s", oss.str().c_str())

;

59 }

60 else

61 {

62 RCLCPP_ERROR(node_->get_logger(), "Unable to retrieve

initial position");

63 return BT::NodeStatus::FAILURE;

64 }

65 }

66

67 float speed;

68 getInput("speed", speed);

69 float dist;

70 getInput("dist", dist);

71

72 auto start_time = node_->now();

73 geometry_msgs::msg::Twist move_cmd;

74 move_cmd.linear.x = speed; // speed value

75

76 double target_distance = dist; // meters to move forward

77 double current_distance = 0.0;

78

79 bool moved = false;

80

81 double x1 = 0.0;

82 double x2 = 0.0;

83

84 double y1 = 0.0;

85 double y2 = 0.0;

86

87 int i = 0;

88

89 while (current_distance < target_distance)

90 {

91 if ((node_->now() - start_time).seconds() > dist / std::abs(

speed) + 5)

92 { // Timeout for safety

93 move_cmd.linear.x = 0;

94 publisher_->publish(move_cmd);

95 initial_position_set_ = false;

96 moved = false;

83

APPENDIX C. MOVEFORWARDS/MOVEBACKWARDS BT NODE

97 RCLCPP_ERROR(node_->get_logger(), "TIMEOUT.");

98 return BT::NodeStatus::FAILURE;

99 }

100

101 publisher_->publish(move_cmd);

102 rclcpp::spin_some(node_);

103 std::this_thread::sleep_for(std::chrono::milliseconds(10));

// short sleep to yield CPU

104

105 if (i % 100 == 0)

106 {

107 RCLCPP_INFO(node_->get_logger(), "New position requested"

);

108 }

109

110 auto request = std::make_shared<std_srvs::srv::SetBool::

Request>();

111 auto result = client_->async_send_request(request);

112

113 // Spin until the future is resolved

114 rclcpp::spin_until_future_complete(node_, result);

115

116 auto res = result.get();

117 auto new_x_ = 0.0f;

118 auto new_y_ = 0.0f;

119

120 if (res->success)

121 {

122 sscanf(res->message.c_str(), "Position: x=%lf, y=%lf", &

new_x_, &new_y_);

123

124 current_distance = std::sqrt(std::pow(new_x_ - initial_x_

, 2) + std::pow(new_y_ - initial_y_, 2));

125

126 if (current_distance > 0 && !moved)

127 {

128 moved = true;

129 }

130

131 if (i % 100 == 0)

132 {

133 x2 = x1;

84

APPENDIX C. MOVEFORWARDS/MOVEBACKWARDS BT NODE

134 x1 = new_x_;

135 y2 = y1;

136 y1 = new_y_;

137

138 std::ostringstream oss1;

139 oss1 << "New Position: " << new_x_ << " " << new_y_;

140 RCLCPP_INFO(node_->get_logger(), "%s", oss1.str().

c_str());

141 oss1.str("");

142

143 oss1 << "Distance travelled: " << current_distance;

144 RCLCPP_INFO(node_->get_logger(), "%s", oss1.str().

c_str());

145 oss1.str("");

146

147 double distance_last_ticks = std::sqrt(std::pow(x2 -

x1, 2) + std::pow(y2 - y1, 2));

148 oss1 << "Distance travelled the last 100 ticks: " <<

distance_last_ticks;

149 RCLCPP_INFO(node_->get_logger(), "%s", oss1.str().

c_str());

150 oss1.str("");

151

152 if (distance_last_ticks < 0.02 && moved)

153 {

154 initial_position_set_ = false;

155 moved = false;

156 RCLCPP_ERROR(node_->get_logger(), "The robot did

not move the distance it should.");

157 return BT::NodeStatus::FAILURE;

158 }

159 }

160 }

161 else

162 {

163 RCLCPP_ERROR(node_->get_logger(), "Unable to retrieve new

position");

164 return BT::NodeStatus::FAILURE;

165 }

166

167 i++;

168 // start_i++;

85

APPENDIX C. MOVEFORWARDS/MOVEBACKWARDS BT NODE

169 }

170

171 // Stop the robot

172 move_cmd.linear.x = 0;

173

174 publisher_->publish(move_cmd);

175

176 initial_position_set_ = false;

177 moved = false;

178 RCLCPP_INFO(node_->get_logger(), "Returning SUCCESS");

179 return BT::NodeStatus::SUCCESS;

180 }

181

182 private:

183 rclcpp::Node::SharedPtr node_;

184 rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr publisher_;

185 rclcpp::Client<std_srvs::srv::SetBool>::SharedPtr client_;

186 bool client_ready_;

187 double initial_x_;

188 double initial_y_;

189 bool initial_position_set_;

190 };

191

192 #include "behaviortree_cpp_v3/bt_factory.h"

193 BT_REGISTER_NODES(factory)

194 {

195 BT::NodeBuilder builder = [](const std::string &name, const BT::

NodeConfiguration &config)

196 {

197 return std::make_unique<MoveForward>(name, config);

198 };

199 factory.registerBuilder<MoveForward>("MoveForward", builder);

200 }

Listing C.1: MoveForwards BT Node

86

Appendix D

CheckYOLO BT Node

1 #include "rclcpp/rclcpp.hpp"

2 #include "behaviortree_cpp_v3/condition_node.h"

3 #include "std_srvs/srv/set_bool.hpp"

4

5 class YoloActionListener : public BT::ConditionNode

6 {

7 public:

8 YoloActionListener(const std::string &name, const BT::

NodeConfiguration &config)

9 : BT::ConditionNode(name, config), client_ready_(false)

10 {

11 node_ = rclcpp::Node::make_shared("check_yolo_condition");

12 client_ = node_->create_client<std_srvs::srv::SetBool>("

get_yolo_state");

13 }

14

15 BT::NodeStatus tick() override

16 {

17 if (!client_ready_)

18 {

19 client_ready_ = client_->wait_for_service(std::chrono::

seconds(1));

20 if (!client_ready_)

21 {

22 RCLCPP_ERROR(node_->get_logger(), "Service not available

after waiting");

23 return BT::NodeStatus::FAILURE;

24 }

87

APPENDIX D. CHECKYOLO BT NODE

25 }

26 RCLCPP_INFO(node_->get_logger(), "Service requested");

27

28 auto request = std::make_shared<std_srvs::srv::SetBool::Request

>();

29 auto result = client_->async_send_request(request);

30

31 // Spin until the future is resolved

32 rclcpp::spin_until_future_complete(node_, result);

33

34 auto res = result.get();

35 if (res->success)

36 {

37 return BT::NodeStatus::SUCCESS;

38 }

39 else

40 {

41 return BT::NodeStatus::FAILURE;

42 }

43 }

44

45 static BT::PortsList providedPorts()

46 {

47 return {};

48 }

49

50 private:

51 rclcpp::Node::SharedPtr node_;

52 rclcpp::Client<std_srvs::srv::SetBool>::SharedPtr client_;

53 bool client_ready_;

54 };

55

56 #include "behaviortree_cpp_v3/bt_factory.h"

57 BT_REGISTER_NODES(factory)

58 {

59 factory.registerNodeType<YoloActionListener>("YoloAction");

60 }

Listing D.1: CheckYOLO BT Node

88

Appendix E

Custom Behavior Tree

1 <root main_tree_to_execute="MainTree">

2 <BehaviorTree ID="MainTree">

3 <RecoveryNode number_of_retries="4">

4 <Sequence name="MainNavigationFlow">

5 <ComputePathToPose goal="{goal}" path="{path}" planner_id="{

selected_planner}"/>

6 <RecoveryNode number_of_retries="1" name="FollowPathWithRecovery"

>

7 <FollowPath path="{path}" controller_id="{selected_controller}"

/>

8 <Sequence name="ObstacleHandling">

9 <Fallback name="CheckYolo">

10 <Sequence>

11 <YoloAction name="ObstacleDetectionCheck"/>

12 <MoveForward speed="0.3" dist="2.0"/>

13 </Sequence>

14 <MoveForward speed="-0.3" dist="1.0"/>

15 </Fallback>

16 <ClearEntireCostmap name="ClearLocalCostmap" service_name="

local_costmap/clear_entirely_local_costmap"/>

17 <ComputePathToPose goal="{goal}" path="{path}" planner_id="{

selected_planner}"/>

18 </Sequence>

19 </RecoveryNode>

20 </Sequence>

21 <ReactiveFallback name="RecoveryFallback">

22 <GoalUpdated/>

23 <RoundRobin name="RecoveryActions">

89

APPENDIX E. CUSTOM BEHAVIOR TREE

24 <Sequence name="ClearingActions">

25 <ClearEntireCostmap name="ClearLocalCostmap-Subtree"

service_name="local_costmap/clear_entirely_local_costmap"/>

26 <ClearEntireCostmap name="ClearGlobalCostmap-Subtree"

service_name="global_costmap/clear_entirely_global_costmap"/>

27 </Sequence>

28 <Spin spin_dist="1.57"/>

29 <Wait wait_duration="5"/>

30 <BackUp backup_dist="0.15" backup_speed="0.025"/>

31 </RoundRobin>

32 </ReactiveFallback>

33 </RecoveryNode>

34 </BehaviorTree>

35 </root>

Listing E.1: Custom Behavior Tree

90

	Introduction
	Objectives and goals
	Objectives
	Goals

	Methods of Investigation / Implementation

	Background and Related Work
	Turtlebot4
	Overview
	Features
	Sensors

	ROS2 Framework
	Overview
	RCLCPP and RCLPY
	ROS2 Components

	Robot Navigation
	Nav2 Stack and Navigation server
	Turtlebot4 Navigator
	Costmap2D

	SLAM
	Different Types of SLAM
	slam_toolbox
	Sychronous vs Asychronous SLAM

	Object Detection and Recognition
	Behavior Trees
	Overview
	Pre-defined Behaviour Tree Action Nodes
	Pre-defined Behaviour Tree Control Nodes
	ROS2 Behaviour Trees Library

	Similar projects
	Useful software
	Gazebo
	RViz
	Groot

	Implementation
	Approach
	Computer and Robot Setup
	Network Setup
	Mapping the area
	YOLO Model
	Detecting Cardboard Boxes
	Detecting Lower-Body Parts

	Custom ROS2 Services
	Odometry Service
	YOLO Service

	Custom ROS2 Behavior Tree Nodes
	Check Camera Node
	Move Forward/Backwards Node

	Custom Behaviour Tree
	Overview
	Detailed Explanation

	Navigation

	Experimental Results
	Scenario 1: Path Blocked by a Movable Object
	Overview
	Results

	Scenario 2: Path Blocked by a Heavy Object
	Overview
	Results

	Scenario 3: Path Blocked by a Human
	Overview
	Results

	Scenario 4: Encountering a Lightweight Object
	Overview
	Results

	Scenario 5: Encountering a Heavy Object
	Overview
	Results

	Scenario 6: Encountering a human
	Overview
	Results

	Discussion
	Dynamic Environments with Movable Obstacles
	Handling Heavy Objects
	Crowded Indoor Environments
	Path Recalculation and Patience

	Conclusion
	Summary of Findings
	Contributions to the Field
	Future Work

	References
	Odometry Service
	YOLO Service
	MoveForwards/MoveBackwards BT Node
	CheckYOLO BT Node
	Custom Behavior Tree

