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Abstract 
 

The integration of wearable technologies and Artificial Intelligence (AI) offers a promising 

avenue for understanding and addressing problematic pain coping behaviors. This thesis 

examines the potential collaboration between wearable devices and AI algorithms to 

distinguish between effective and ineffective pain coping strategies in real-world situations. 

 

Participants were equipped with Empatica E4 wearable devices and instructed to interact with 

a customized smartphone application, providing valuable insights into social context, stress 

or pain experiences, and coping strategies. By using a variety of psychophysiological signals 

such as Photoplethysmography (PPG), Electrodermal Activity (EDA), Accelerometer (ACC), 

and Temperature (TEMP), alongside self-reported responses, features were extracted to 

capture subtle physiological responses linked to different coping mechanisms. 

 

Since there is a shortage of labeled data and in more large scale experiment may be expensive 

to label the data, a semi-supervised learning approach was employed, in which a limited 

amount of labeled instances were combined with abundant unlabeled data to improve the 

model's generalization. The study examined the effectiveness of semi-supervised algorithms 

in accurately classifying individuals into acceptance and avoidance groups, using techniques 

such as self-training, co-training, and label propagation. 
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1.1 Motivation 
 

Over the past decade, there has been a significant increase in the use of wearable technology, 

including smartwatches and smart bands. These devices have the ability to track various 

psychophysiological signals, such as heart rate and sweat gland activity. These signals, also 

known as psychophysiological indicators, have been demonstrated to be indicative of an 

individual’s emotional response. Some examples of psychophysiological signals include 

Electrocardiogram (ECG) [16], Electrodermal Activity (EDA) [17], and facial 

electromyography (fEMG) [18]. 

Several previous studies [1][2][3][4][5] have analyzed such data. However, most previous 

works focused on signals recorded from stationary devices, with the exception of one study 

[5] that included measures from wearable devices. Furthermore, the only features that were 

examined and used to train the models were HRV time-domain features. These measures are 

used to quantify the amount of variation in the intervals between heartbeats over a specific 

period of time and are derived from ECG data. 

The purpose of this study is to delve deeper into the subject matter in order to gain a better 

understanding of the potential uses and benefits of psychophysiological signals captured by 

wearable devices. The findings of this study could have significant implications for the 

healthcare industry and could help to improve the care and treatment of patients. 
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1.2 Goal of Study 
 

This research utilizes data that was gathered during an experiment about pain management 

techniques, conducted by the Department of Psychology at the University of Cyprus. The 

primary objective of this thesis is to aid in integrating Acceptance and Commitment Therapy 

(ACT) [19] into daily life. ACT is a type of psychotherapy that encourages individuals to 

confront their thoughts and feelings rather than blaming themselves or ignoring them. This 

therapy is particularly useful for those struggling with anxiety, depression, and similar 

conditions. ACT divides individuals into two categories based on their reactions at a 

particular moment: the first group is referred to as "acceptance" or "functional," consisting of 

individuals who acknowledge their problems and attempt to deal with them head-on. The 

second group is the "avoidance" or "dysfunctional" group, consisting of individuals who 

refuse to interact with their thoughts and sensations and try to avoid them. An individual's 

classification changes depending on the environment and circumstances, and they may not 

always fall into the same category. The aim of this thesis is to effectively categorize 

individuals as functional or dysfunctional in terms of coping with pain. 

 

1.3 Methodology 

 

 
Figure 1.1 : Methodology 
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Firstly, the Department of Psychology of the University of Cyprus conducted an 

experiment in the lab, where psychophysiological signals were recorded from the 

Empatica E4 wearable device. These signals are Photoplethysmography (PPG), 

Electrodermal Activity (EDA). 

As shows in the Figure 1.1 before anything, a lot of attention was given to examining the 

efforts of the past years. For this reason, from all the models that was used in the last 

thesis [5] we choose to use the GradientBoostingClassifier [11] as we tested it came with 

the most promising results.  

Then with the use of previous code and techniques data was extracted and cleared. With 

the data ready we started researching about ways that we can get all this unlabeled data 

that was capture by the wearables in use. Semi supervised learning techniques [6][7][8] 

that will be explain later on the thesis is the way that we choose to proceed. 

Finally we started a cycle of extracting unlabeled data, applying the techniques [6][7][8] 

and researching about room for improvements. At the end we evaluated all the models 

and compared the results. 

1.4  Document Organization 
The document is structured into four main sections, as shown in Table 1.1. 

 

Table 1.1 :  Document Organization 
 

Chapters Description 

Chpter 2 : Background Knowledge A comprehensive explanation of the algorithms, 

methods of evaluations, and an analysis of the 

device used for data collection is provided 

Chapter 3 : Previous Work Detailed review of all the relevant prior 

research in the field 

Chapter 4 : Results Displays various algorithm combinations and 

their corresponding outcomes 

Chapter 5 : Summary and Future Improvements Overview of the findings and potential avenues 

for further research and enhancements. 
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Chapter 2 
 

Background knowledge 
 

 

2.1 Psychophysiological signal        6 

2.2 Machine learning algorithms        9 

2.3 Model evaluation          12 

2.4 Monitor device Empatica E4        13 

 

 

2.1 Psychophysiological Signal 
 
Four experiments were conducted by the Department of Psychology of the University of 

Cyprus, which are detailed in Section 3. In this section, the psychophysiological signals that 

were collected are explained. 

2.1.1 Electrocardiogram  

The electrical signals generated by the heart during each beat can be detected noninvasively 

from the surface of the body using an electrocardiogram (ECG) [16]. There are three waves 

in the basic pattern of this electrical activity, which are referred to as P, QRS, and T, as 

shown in Figure 2.1. The ECG signal allows for the extraction of three groups of features, 

which include frequency-domain, spectral, and time-domain. However, for the purposes of 

this study, we are primarily focusing on time-domain features, as they are more relevant to 

our research, according to a previous study. Time-domain measures are primarily concerned 

with Heart Rate Variability (HRV), which refers to the variations in the time intervals 

between successive heartbeats, specifically the RR intervals. The RR intervals are the 

duration between two sequential R peaks in the ECG signal, with the R wave being part of 

the QRS complex. 
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Figure 2.1 Electrocardiogram 

2.1.2 Photoplethysmography 

Optical sensors can detect fluctuations in blood volume throughout the body during a cardiac 

cycle, as blood volume changes from the start of one heartbeat to the beginning of the next. 

This technology, known as photoplethysmography (PPG) [17], involves the use of an LED 

light source and a photodetector. The LED emits light into the microvascular bed of the 

tissue, and the photodetector records the amount of light absorbed or reflected. Based on the 

amount of light absorbed or reflected, changes in blood volume can be detected as shown in 

the Figure 2.2 . Heart Rate Variability (HRV) can also be estimated from the 

photoplethysmography signal, which is equivalent to the distance between consecutive R-

peaks of the ECG signal. 

 

 

Figure 2.2 PPG 
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2.1.3 Electrodermal Activity  

Electrodermal activity (EDA), also known as Galvanic Skin Response (GSR) [20] or Skin 

Conductance (SC), refers to changes in the electrical properties of the skin caused by 

sweating. It is an indicator of a person's emotional state or arousal. Measuring skin 

conductance variations is possible by applying an electrical potential between two points on 

the skin and measuring the current flow between them. The EDA signal is useful in assessing 

pain, and its applications in clinical settings are diverse. For a more detailed explanation of 

the formation of the EDA signal and the features that can be extracted from it, please refer to 

Section 4.2.2. 

2.1.4 Inter-Beat Interval   

ΙBI, which stands for Inter-Beat Interval [21], as shown in the Figure 2.3 refers to the 

duration between successive heartbeats. This measure is utilized to determine the current 

heart rate. 

 

Figure 2.3 : Inter.Beat Interval 

2.1.5 Blood Volume Pulse  

The main output of the PPG sensor is the Blood Volume Pulse (BVP) [22]. This signal is 

obtained through a special algorithm that combines the light signals observed during green 

and red exposure, as shown in Figure 2.2. The BVP has a fixed sampling rate of 64 Hz, 

meaning it is sampled 64 times every second. 
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2.2 Machine Learning Algorithms 

The field of Machine Learning [13] has seen rapid growth in recent times, with algorithms 

being developed to cater to various problem domains. Amongst these algorithms, supervised, 

unsupervised, and reinforcement learning techniques have been identified as the three 

primary categories. Supervised learning involves data points that come with an associated 

label, which allows the algorithm to identify patterns and generalize to situations not found in 

the dataset. The process is often referred to as "learning with a teacher". Unsupervised 

learning, on the other hand, deals with input data that does not have predefined outputs for 

each input. Therefore, such algorithms focus on uncovering shared characteristics within the 

input data. Reinforcement learning operates like "training under the guidance of a judge", as 

the algorithm receives rewards for correct results and penalties for incorrect ones.  

In academic research, semi-supervised learning has gained increasing attention due to its 

ability to combine supervised and unsupervised learning techniques. This category of 

learning is particularly useful when the collection of data is easy, but labeling them is 

considered difficult due to the time it takes to label them. The main techniques of the semi 

supervised learning, that were used in this thesis are Self Learning [8], co-training [6] and 

Label propagation [7]. 

2.2.1 Self-Learning  
 
Self-learning [8] is a popular approach in semi-supervised learning that relies on the 

assumption that a model's (figure 2.4) predictions on unlabeled data are trustworthy enough 

to be treated as true labels. However, the reliability of this assumption may not always be 

guaranteed, especially when the model encounters ambiguous or out-of-distribution samples. 

As a result, it is imperative to exercise caution when selecting the confidence threshold and 

closely monitor the model's performance to ensure the effectiveness of self-learning. Despite 

its potential shortcomings, self-learning remains a simple and effective way to leverage 

unlabeled data in various domains, including natural language processing, computer vision, 

and healthcare, as demonstrated by its successful application in recent research studies. 
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Figure 2.4 Self-Learning 
 

2.2.2 Co-Training  
 

The co-training [6] technique is a popular approach in semi-supervised learning that 

leverages the assumption that different views or representations of the data can provide 

complementary information, and instances, where the models agree, are likely to be correctly 

labeled. By iteratively expanding the labeled dataset with confident predictions from multiple 

models, co-training can effectively utilize unlabeled data to improve model performance. Co-

training is especially useful when data can be naturally partitioned into distinct views or when 

multiple sources of information are available. Its successful application in various domains, 

including text classification, image recognition, and bioinformatics, attests to its 

effectiveness. However, the selection of views or representations and the monitoring of 

model agreement require careful consideration to ensure the success of co-training. 

 

2.2.3 Label Propagation 
 

The final technique that was tested in the study was label propagation [7], which is grounded 

in the assumption that similar instances should possess similar labels. By harnessing the 
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associations between data points that are encoded in the graph or similarity matrix, label 

propagation effectively capitalizes on the information contained in both labeled and 

unlabeled data in order to deduce labels for the entire dataset. Label propagation is frequently 

employed in cases where the data can be depicted as a graph or where similarity information 

between data points is accessible, such as in social network analysis, citation networks, and 

image segmentation. Nevertheless, the efficacy of label propagation is contingent upon the 

quality of the graph or similarity matrix and the choice of propagation algorithm. Moreover, 

meticulous consideration of the initial labeling and stopping criterion is crucial to attain 

accurate label inference.  

 

 
Figure 2.5 Label Propagation  

 

2.2.4 GradientBoostingClassifier 
 
The GradientBoostingClassifier [11] was chosen as the model for training the semi-

supervised learning algorithm due to its demonstrated superior performance in the previous 

thesis [5]. This classifier is a powerful ensemble learning algorithm commonly employed for 

classification tasks in the field of machine learning. It constructs a model in a stepwise 

fashion using multiple weak learners, typically decision trees, to create a robust predictive 

model. The algorithm operates by iteratively adding new models that correct the errors made 

by the previous ones, focusing on the most challenging instances to classify. This is achieved 

through a technique known as boosting, where each subsequent model is trained to minimize 

the remaining errors of the collective ensemble of models constructed thus far. By leveraging 

the strengths of various weak models, the GradientBoostingClassifier enhances the overall 

accuracy and robustness of the predictive performance. Furthermore, it encompasses 

parameters to regulate overfitting, such as learning rate and tree depth, rendering it a versatile 

and widely utilized approach in diverse applications, including finance, healthcare, and 

marketing.  
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2.3 Model Evaluation 
 
In this thesis, it is important to identify the best classification algorithm for the subject matter. 

To achieve this, it is crucial to choose the most appropriate evaluation methodology and 

performance metrics to compare the potential algorithms. This will help ensure that the 

chosen algorithm is the most effective and accurate for the task at hand. 

The Machine Learning algorithms' performance is evaluated using the Stratified k-fold cross-

validation methodology [9], which has been utilized and  in previous studies in the past 

[1][2][3][4][5]. This method ensures that each fold contains a proportional representation of 

each class. The dataset is divided into k equal-sized folds while maintaining the original class 

label proportions. During k iterations of training and validation, one fold is reserved for 

validation while the remaining (k-1) folds serve as the training set. The model is trained on 

the training set and evaluated on the validation set, producing performance metrics (such as 

accuracy, precision, and recall) for each iteration. Finally, the average of these metrics across 

all k iterations provides a comprehensive evaluation of the model's performance.  

To compute the performance metrics, four measures are crucial as shows in the figure 2.5: 

true positives, false positives, true negatives, and false negatives. True positives (TP) 

represent the number of correctly classified positive samples, while false positives (FP) 

represent the number of incorrectly classified positive samples. True negatives (TN) refer to 

the number of correctly classified negative samples, and false negatives (FN) indicate the 

number of incorrectly classified negative samples. 

 

Figure 2.6 Confusion Matric 
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2.4 Monitor Device Empatica E4 

The Empatica E4 wristband [23] is a wearable device that is designed to collect and analyze 

real-time physiological data. It is a small, lightweight, and comfortable device that can be 

worn on the wrist, making it an invaluable tool for researchers and healthcare professionals. 

The device is equipped with a photoplethysmography (PPG) sensor, which measures blood 

volume pulse to derive heart rate, heart rate variability, and other cardiovascular parameters. 

This sensor is used to monitor the heart rate and heart rate variability, which are important 

indicators of cardiovascular health.  

In addition to the PPG sensor, the Empatica E4 wristband [10] also has an electrodermal 

activity (EDA) sensor. This sensor measures the electrical conductance of the skin to provide 

insights into emotional arousal, stress, and various psychological states. The EDA sensor is 

used to measure skin conductance, which is an important measure of emotional arousal and 

stress. The device also features a 3-axis accelerometer, which captures information on 

physical activity, movement, and gestures. This sensor is used to monitor physical activity 

and movement, which are important indicators of overall health and well-being.  

Furthermore, the Empatica E4 wristband (figure 2.6) has an infrared thermopile that measures 

skin temperature for studying thermal regulation and other physiological parameters. This 

sensor is used to monitor skin temperature, which is an important indicator of various 

physiological functions, such as blood flow and skin hydration.  

The Empatica E4 wristband is widely utilized in diverse research settings, including stress 

monitoring, sleep studies, emotion recognition, and mental health research. The device's 

versatility and effectiveness make it a powerful tool for both clinical trials and academic 

research projects. The Empatica E4 wristband was chosen for the ongoing study because of 

its wide range of sensors and demonstrated effectiveness in various research environments. 

This ensures precise, dependable data gathering and the capability to examine multiple 

physiological parameters simultaneously. 

 
Figure 2.7  Empatica E4 wristband 
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3.2 Prior work           18 

 

 

3.1 Psysiological Experiments  

The Department of Psychology at the University of Cyprus conducted four experiments, 

focusing on diagnosing experiential avoidance in smokers, eating disorders, experimental 

avoidance for anxiety, and functional versus dysfunctional coping with acute pain. These 

experiments were conducted in the ACTHealth lab and involved volunteer participants. This 

section provides an overview of the methodology used in each experiment, as well as related 

research methodologies. 

All of these experiments were connected to Acceptance and Commitment Therapy, which 

involves dividing individuals into two groups based on their reactions: acceptance or 

avoidance. As described in Section 1.2, acceptance-based strategies involve accepting one's 

thoughts and sensations as functional, while avoidance-based strategies involve attempting to 

avoid uncomfortable thoughts and sensations or control and alter them, which is considered 

dysfunctional. Furthermore, a person's classification can change based on the environment 

and circumstances. During the data collection for the first three experiments, it was assumed 

that each participant belonged to a single group throughout the entire procedure. However, 

this assumption did not apply to the fourth experiment. 

3.1.1 Diagnosis of Experiential Avoidance in Smokers  

The experiment was divided into five timeframes, each lasting 8 minutes. The first timeframe 

was used as a starting point, while the next two timeframes showed an emotionally neutral 
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video. The final two timeframes showed a video meant to evoke negative emotions. The 

participant's signals were recorded using ECG, COR (fEMG), and GSR with a sampling rate 

of 1000Hz. Throughout the latter four timeframes, the participants took a series of cognitive 

tests to assess brain function. An expert from the Department of Psychology analyzed the 

collected data and categorized the participants accordingly. 

3.1.2 Diagnosis of Eating Disorders  

The goal of this study was to compare the emotional regulation abilities of individuals with 

low and high risk of developing an Eating Disorder. The experiment was divided into five 

timeframes, each lasting 2.5 minutes. The first timeframe was used as a baseline to ensure the 

participants' calm state. In the second and fourth timeframes, an emotionally neutral video 

was presented, while in the third timeframe, a general-content distressing video was shown. 

In the fifth timeframe, a video related to eating disorders was presented to the participants.  

ECG, COR (fEMG), and GSR signals were recorded from the participants throughout the 

procedure with a sampling rate of 1000Hz. An expert from the Department of Psychology 

classified the participants into one of the categories using the collected data. Additionally, the 

Body Image Acceptance and Action Questionnaire (BI-AAQ) was administered to the 

participants to measure body image flexibility. The participants responded on a scale from 

never true to always true, with higher scores indicating greater body image flexibility. 

3.1.3 Diagnosis of Experiential Avoidance for Anxiety  

The objective of this experiment was to compare the emotional regulation abilities of 

individuals in the acceptance category versus those in the avoidance category regarding 

anxiety. The experiment consisted of 72 consecutive timeframes, each lasting approximately 

1.8 minutes. In each timeframe, the participant viewed a single image that was meant to elicit 

a different reaction depending on whether they exhibited signs of anxiety or not. Using the 

collected data, an expert from the Department of Psychology classified the participants into 

one of the categories.  

ECG, GSR, and fEMG (COR, ORB, and ZYG muscles) signals were recorded from the 

participants throughout the procedure with a sampling rate of 1000Hz. 
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3.1.4 Functional Versus Dysfunctional Coping with Acute Pain  

In this study, the researchers aimed to investigate the effectiveness of acceptance and 

avoidance coping strategies in managing pain. The study involved 80 participants who were 

randomly assigned to four different conditions, each receiving a different set of instructions 

on how to deal with pain. The participants underwent three timeframes, which included a 

baseline period to ensure they were in a state of calm, followed by the Cold Pressor Task 

(CPT), where they were required to immerse their hand in cold water for as long as they 

could endure, and a final period to assess their pain management strategies. During these 

timeframes, multiple measures were recorded, including behavioral measures such as pain 

threshold and tolerance, psychophysiological measures such as ECG and EDA signals, and 

self-reported measures examining various aspects such as participants' psychological 

condition and their use of pain-coping strategies.  

In the most recent experiment, the researchers used an Ecological Momentary Assessment 

(EMA) approach, which involved providing participants with smartphones and wearable 

psychophysiological monitors to wear for three days. During this phase, participants were 

prompted to respond to questions on an app pre-installed on the provided smartphones at 

fixed intervals throughout the day, asking about their social context, experiences of stress or 

pain (both physical and emotional), and their use of coping strategies. The use of 

smartphones and wearable monitors allowed for real-time data collection, providing a more 

accurate and comprehensive understanding of participants' experiences and coping strategies. 

If participants did not respond to the prompts, reminder messages were automatically sent 

every 30 minutes to ensure maximum participation.  

Overall, these experiments provide valuable insights into the effectiveness of pain 

management strategies, and the use of different methodologies and technologies allows for a 

more comprehensive understanding of pain and coping strategies in different contexts. 

 

3.1.5 Functional Versus Dysfunctional Coping in Real Time  

The experiment that this thesis focuses on is the most recent one. During the Ecological 

Momentary Assessment (EMA) phase, participants were provided with smartphones and 

wearable psychophysiological monitors which they wore for three consecutive days. The 
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participants were given instructions on how to wear and charge the Empatica E4 wristband to 

ensure proper data collection. They were then prompted to answer questions three times a day 

at fixed intervals every three hours from 10am to 10pm using an app installed by the 

researchers on the smartphones provided. The questions pertained to social context, 

experiences of stress or pain (both physical and emotional), and the use of coping strategies. 

Participants wore the monitors until bedtime and charged them at that time. Reminder 

messages were sent automatically every 30 minutes if a participant did not respond. The 

devices were returned by the participants after the three-day period. 

3.2 Prior Work  

In the current section, the methodologies of four previous works analyzing data from 

experiments on smoking, eating disorders, anxiety, and pain and emotions management are 

presented. This thesis focuses on an experiment mentioned in Section 3.1.5 that studies real-

time pain and emotion management.  

3.2.1 Diploma Project of Ch. Galazis in 2017 

The aim of the project of Galazis [1] was to find the best combination of features to classify 

smoking and eating disorders experiments, based on previous research. For the anxiety 

experiment, additional work was done. The Random Forest classifier was trained and tested 

using all unique feature combinations, with the candidate features being the mean values of 

each recorded signal in each timeframe. The combination that had the highest accuracy and 

the fewest features was chosen. Different machine learning algorithms were studied, 

including Logistic Regression, Naive Bayes, K-Nearest Neighbours, Classification Tree, 

Neural Network, SVM, Bagging (using Decision Tree as the Base Learner), AdaBoosting 

(using Decision Tree as the Base Learner), Gradient Tree Boosting, and Random Forest. The 

data was divided into ten different training and test sets, and each algorithm was executed ten 

times. The results from the best-performing distribution were used for algorithm comparison. 

  

3.2.2 Master Thesis of A. Trigeorgi in 2018 

A different approach was employed in the study of the Trigeorgi [4], which focused more on 

feature extraction. The ECG signal was used to extract time-domain features, generating 

candidate features that included not only the mean values of each signal but also ECG-

derived time-domain features (explained in detail in Section 4.1.1). To identify the optimal 
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feature combination, a Random Forest Classifier [14] was used along with Stratified k-fold 

cross-validation, with the performance averaged across k iterations.  

The same algorithms from the previous study were examined, but the execution method 

differed, using Stratified 5-fold cross-validation. The data were divided into training and test 

sets in five different ways, and each algorithm was executed five times, with the average 

performance of the five runs measured. 

3.2.3 Master Thesis of G. Demosthenous in 2019 

Breiman and Friedman's method was utilized in the study of Demosthenous [2] to extract 

even more features from the ECG signal. The method was employed to calculate feature 

importance using Gradient Boosting Decision Tree, ranking candidate features based on node 

impurity, to identify the most effective feature combination. 

The algorithms studied in this research were different from the previous two studies, as they 

focused on tree-based algorithms. The five algorithms analyzed were Gradient Boosting 

Decision Tree (GBDT), Ada Boosting Decision Tree, Bagging Decision Tree (BDT), 

Random Forest (RF), and Extra Trees (ET). To increase the sample size and counter the 

assumption that each participant belonged to the same group throughout the experiment, an 

additional step was performed, which was training data multiplication.  

Two methodologies, Moving Window Methodology (MWM) and Rectangular Window 

Methodology (RWM), were used and compared. The algorithm execution method combined 

the methods used in the previous two studies, using 10-fold cross-validation and executing 

each algorithm 10 times for each split, totaling 100 executions per algorithm. The prediction 

was also made for samples from previous experiments in this work. 

3.2.4 Diploma Project of E. Georgiou in 2022 

In the study of Georgiou [3] various physiological signals were monitored using BIOPAC, 

Microsoft Band 2, and the Moodmetric Smart Ring. These signals were recorded at different 

frequencies. Due to a limited dataset, the Rectangular Window Methodology was used to 

generate artificial samples. Four datasets were created using different window sizes (10, 20, 

30, and 40 seconds). Time-domain measures were the main focus for ECG and HRV signals, 

and statistical metrics were extracted from the SCL and SCR components of the EDA signal. 

The thesis aimed to identify the most relevant features using three feature selection methods: 

Wrapper, Embedded, and Filter Methods. In addition, the thesis compared the common 
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signals from different monitoring devices. The results varied depending on the methods used 

for comparison. Finally, the thesis concluded that data multiplication using Rectangular 

Window Methodology improved classifier performance and that data from the Microsoft 

Band 2 could match the performance of stationary devices. 

3.2.5 Diploma Project of S. Zeniou in 2023 

The work of Zeniou [5] goes beyond previous studies by analyzing the convergence of 

wearable technologies and Artificial Intelligence to tackle ineffective pain coping 

mechanisms. The study participants from the University of Cyprus utilized the Empatica E4 

wearable device and a specialized app to gather real-time data on social context, stress, pain, 

and coping strategies. The study recorded and analyzed various physiological signals, with a 

particular focus on identifying essential characteristics. The study leveraged machine learning 

algorithms like Adaptive Boosting, Gradient Boosting Decision Tree, Random Forest, and 

Extra Trees to classify the coping strategies of the participants. The analysis emphasized the 

significance of heart rate variability features in the classification process. The Gradient 

Boosting Decision Tree model turned out to be particularly effective, with a 70% accuracy 

rate in distinguishing between functional and ineffective coping mechanisms. Interestingly, 

participants who did not match either coping category displayed characteristics of avoidance 

coping. Furthermore, the study found that the data collected from wearable devices yielded 

comparable results to those gathered from stationary devices, indicating the encouraging 

potential of wearable technology in this field. 
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4.1 Signal Analysis 
 

4.1.1 Data selection 
 
A thorough data collection process was conducted for machine learning purposes, as outlined 

in Section 3.1.5. The study involved 88 participants, each with five associated files 

containing various physiological metrics, including Interbeat Interval (IBI), Heart Rate 

Variability (HRV), Temperature (TEMP), and (EDA). The data was collected over a three-

day period for each patient. 

In addition to the metrics, participants completed a questionnaire three times a day, with the 

time of completion recorded. The primary question asked was “What are you doing right now 

to manage your thoughts, feelings and emotions?”. Participants were given three answer 

options: avoidance for “I distract myself by doing or thinking about something else so that we 

avoid thinking about them,” acceptance for “I let the unpleasant thoughts and experiences be 

there without doing anything to drive them away,” and mindfulness for “I focus on what I’m 

doing now.”. In this thesis we take in consideration only the acceptance and the avoidance. 

The first step of the analysis process involved identifying the time at which the pain-coping 

question was answered by each participant in their respective questionnaires. From there, the 

corresponding metric files were accessed and the data points were recorded five minutes 

before and after the question was answered. This approach allowed for a focused examination 

of the relationship between physiological metrics and patients’ pain-coping strategies. 

 

4.1.2 Feature Extraction 
Various features were extracted from the raw data to train algorithms efficiently. This was 

accomplished by previous researchers, and all details regarding the feature extraction and 

calculation can be found in theses from the past, specifically in Section 4.2. 

 

4.2 Classification Process 
 
As already mentioned, semi-supervised learning is a valuable technique for leveraging both 

labeled and unlabeled data in training machine learning models [8]. This approach is 

especially useful when acquiring labeled data is difficult or expensive. Notably, semi-

supervised learning has been successfully applied in various fields, such as healthcare, 
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finance, language processing, and computer vision, to produce more accurate models by 

incorporating large amounts of unlabeled data. 

 

In this study, the outcomes of three different semi-supervised learning methods for 

classification were investigated. These algorithms, namely self-learning, co-training, and 

label propagation, were chosen to showcase a variety of techniques and compared for their 

effectiveness. In this thesis Section 2.2 provides detailed descriptions of each algorithm, as 

well as the feature selection process used to train them. Additionally, hyperparameters were 

optimized to maximize performance on the training data. 

 

To evaluate the trained models, various metrics were used, as outlined in Section 2.3.1, 

including accuracy, recall, specificity, and F1-score. This assessment allows for a comparison 

of classifier performance, both across different datasets and different algorithms. The most 

efficient classifier(s) are determined based on these metrics, with a particular focus on their 

suitability for detecting and preventing dysfunctional pain coping behaviors. 

 

The classification process employed in this study provides valuable insights into the efficacy 

of the selected machine learning algorithms and the impact of dataset optimization on their 

performance. By effectively cleaning and optimizing the dataset, the study aims to offer 

valuable guidance in improving the detection and prevention of dysfunctional pain coping 

behaviors.  

 

4.2.1 Data Management  
 
The semi-supervised algorithm techniques we used in this study required both labeled and 

unlabeled data for training and validation. To achieve this, we separated the labeled data into 

training and testing datasets, as explained in Section 2.3 of the report. However, we still 

needed to find a way to extract unlabeled records. After evaluating the situation and the 

available tools, we decided to modify the data extraction program. We extracted records 

before and after the label (5/10/20/30/60/120/180/240 minutes before and after) and 

considered them as unlabeled data.  

To find the best combination of unlabeled data that would help train our model, we 

experimented with different grouping strategies. The two groups of unlabeled data that we 

used was all of them and in the second group we used only the distances one (60/120/180/240 

minutes before and after). Our methodical approach to tweaking the data and experimenting 
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with various strategies allowed us to fine-tune our semi-supervised learning technique, 

improving the model's adaptability and effectiveness. 

 

4.3 Result Comparison 
 
This section describes the results of the three algorithms/techniques. In each combination of 

technique and data we used the k-cross validation method and we calculated the k-mean 

value and standard deviation of 5 times. 

In the tables that are showing in each case there are the below metrics and there is one 

variable that is changing(threshold and alpha ). The metrics formula is shown in the  

Figure 5.1 

 

F1 Score : 

The F1 score is the harmonic mean of precision and recall, providing a single measure of a 

model’s accuracy that balances both false positives and false negatives. It is particularly 

useful for imbalanced datasets. 

 

Recall (Sensitivity): 

Recall, also known as sensitivity, measures the proportion of actual positives that are 

correctly identified by the model. It is crucial in contexts where it is important to capture as 

many positives as possible. The positives in this scenario is the avoidance 

 

Precision: 

Precision quantifies the proportion of positive identifications that are actually correct. This 

metric is important when the cost of false positives is high. 

 

AUC (Area Under the ROC Curve): 

The AUC represents the degree or measure of separability. It tells how much the model is 

capable of distinguishing between classes. A higher AUC value indicates a better-performing 

model. 

 

Specificity: 

Specificity measures the proportion of actual negatives that are correctly identified. It is 

crucial in scenarios where it is important to identify as many true negatives as possible. The 

negatives in this scenario in the acceptance 
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Accuracy: 

Accuracy is the ratio of correctly predicted instances (both true positives and true negatives) 

to the total instances. It provides an overall effectiveness of the model but can be misleading 

for imbalanced datasets. 

 

 
Figure 5.1 

4.3.1 Self-Learning Results  
 
For this technique, we used various combinations of the parameters and unlabeled data. As 

mentioned in the previous Section 4.2.1 Data Management we extracted a multiple window 

of unlabeled data. So to find the best combination of unlabeled data to feed the model we had 

to try a few. Also, another parameter that was important to test was the threshold.   

Firstly we tried various combinations of unlabeled data  and we started modifying the 

threshold bit by bit so we could find the optimal. 
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4.3.1.1 Full Labeled and Unlabeled Data 
 

 

The evaluation of the model’s recall indicates (Table 4.1) a proficient ability to detect 

instances of avoidance, yet a notable deficiency in identifying acceptances. This unbalanced 

performance, while consistent with the objective of emphasizing avoidance detection, 

introduces bias by elevating the rate of avoidance identification. Moreover, altering the 

threshold to 0.5, despite producing the most favorable outcomes, does not substantially 

address the issue. Ultimately, the existing model setup appears inadequate in effectively 

discerning between the two categories. 

 

 

Threshold F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.5 0.829 ± 
0.015 

0.894 ± 
0.037 

0.775 ± 
0.023 

0.684 ± 
0.029 

0.474 ± 
0.074 

0.754 ± 
0.020 

0.55 0.814 ± 
0.015 

0.875 ± 
0.068 

0.767 ± 
0.039 

0.663 ± 
0.037 

0.452 ± 
0.138 

0.734 ± 
0.014 

0.6 0.830 ± 
0.020 

0.917 ± 
0.029 

0.759 ± 
0.024 

0.665 ± 
0.036 

0.413 ± 
0.068 

0.749 ± 
0.029 

0.65 0.819 ± 
0.038 

0.879 ± 
0.057 

0.768 ± 
0.029 

0.672 ± 
0.047 

0.466 ± 
0.056 

0.742 ± 
0.050 

0.7 0.824 ± 
0.021 

0.901 ± 
0.031 

0.759 ± 
0.034 

0.661 ± 
0.046 

0.421 ± 
0.102 

0.742 ± 
0.033 

0.75 0.829 ± 
0.029 

0.905 ± 
0.032 

0.764 ± 
0.030 

0.670 ± 
0.054 

0.434 ± 
0.086 

0.749 ± 
0.044 

0.8 0.829 ± 
0.021 

0.928 ± 
0.025 

0.750 ± 
0.025 

0.650 ± 
0.048 

0.373 ± 
0.085 

0.744 ± 
0.035 

0.85 0.825 ± 
0.017 

0.890 ± 
0.061 

0.773 ± 
0.023 

0.678 ± 
0.024 

0.470 ± 
0.099 

0.749 ± 
0.014 

0.9 0.826 ± 
0.023 

0.894 ± 
0.054 

0.769 ± 
0.008 

0.676 ± 
0.019 

0.458 ± 
0.043 

0.749 ± 
0.026 

0.95 0.812 ± 
0.037 

0.849 ± 
0.047 

0.779 ± 
0.040 

0.680 ± 
0.066 

0.511 ± 
0.011 

0.737 ± 
0.055 

Table 4.1 Self Learning Results Full Labeled and Unlabeled Data 
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4.3.1.2 Full Labeled and Distance Unlabeled Data 

 

 

 
 
 

The assessment of the model's recall indicates (Table 4.2) a proficient detection of 

avoidances, but an inadequate classification of acceptances. This unbalanced 

performance, though consistent with the objective of prioritizing avoidance detection, 

introduces bias by artificially inflating the avoidance identification rate. Despite a novel 

combination of factors demonstrating a marginal enhancement in accurately classifying 

both categories based on specificity, even with a threshold of 0.75, the overall 

performance remains unsatisfactory. Ultimately, the current model configuration appears 

inept at effectively discerning between the two categories. 

 

Threshold F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.5 0.825 ± 
0.032 

0.874 ± 
0.025 

0.782 ± 
0.041 

0.690 ± 
0.061 

0.504 ± 
0.102 

0.752 ± 
0.048 

0.55 0.837 ± 
0.024 

0.890 ± 
0.036 

0.791 ± 
0.024 

0.708 ± 
0.041 

0.526 ± 
0.073 

0.769 ± 
0.035 

0.6 0.848 ± 
0.020 

0.931 ± 
0.030 

0.779 ± 
0.016 

0.698 ± 
0.034 

0.465 ± 
0.048 

0.777 ± 
0.030 

0.65 0.843 ± 
0.030 

0.913 ± 
0.050 

0.785 ± 
0.020 

0.704 ± 
0.033 

0.496 ± 
0.042 

0.774 ± 
0.037 

0.7 0.833 ± 
0.037 

0.890 ± 
0.061 

0.782 ± 
0.027 

0.697 ± 
0.046 

0.504 ± 
0.060 

0.762 ± 
0.048 

0.75 0.845 ± 
0.037 

0.920 ± 
0.025 

0.783 ± 
0.049 

0.701 ± 
0.075 

0.481 ± 
0.121 

0.774 ± 
0.057 

0.8 0.830 ± 
0.030 

0.879 ± 
0.059 

0.788 ± 
0.033 

0.698 ± 
0.049 

0.518 ± 
0.106 

0.759 ± 
0.040 

0.85 0.837 ± 
0.024 

0.898 ± 
0.019 

0.785 ± 
0.030 

0.700 ± 
0.052 

0.503 ± 
0.092 

0.767 ± 
0.038 

0.9 0.825 ± 
0.046 

0.863 ± 
0.066 

0.792 ± 
0.041 

0.703 ± 
0.061 

0.543 ± 
0.092 

0.757 ± 
0.059 

0.95 0.826 ± 
0.015 

0.856 ± 
0.042 

0.801 ± 
0.033 

0.710 ± 
0.037 

0.565 ± 
0.103 

0.759 ± 
0.021 

Table 4.1 Self Learning Results Full Labeled and Distance Unlabeled Data 
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4.3.1.3 Balance Labeled and Full Unlabeled  
 
 

Threshold F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.5 0.681 ± 
0.0.47 

0.682 ± 0.077  0.684 ± 
0.043 

0.681 ± 
0.045 

0.679 ± 
0.062 

0.681 ± 
0.045 

0.55 0.676 ± 
0.032 

0.704 ± 0.045 0.652 ± 
0.038 

0.661 ± 
0.036 

0.617 ± 
0.066 

0.661 ± 
0.036 

0.6 0.686 ± 
0.040 

0.667 ± 0.062 0.712 ± 
0.042 

0.696 ± 
0.033 

0.725 ± 
0.055 

0.696 ± 
0.033 

0.65 0.634 ± 
0.036 

0.622 ± 0.047 0.650 ± 
0.049 

0.639 ± 
0.043 

0.656 ± 
0.080 

0.639 ± 
0.044 

0.7 0.653 ± 
0.060 

0.628 ± 0.093 0.687 ± 
0.054 

0.669 ± 
0.045 

0.710 ± 
0.068 

0.669 ± 
0.044 

0.75 0.646 ± 
0.081 

0.613 ± 0.089 0.685 ± 
0.075 

0.665 ± 
0.072 

0.717 ± 
0.065 

0.665 ± 
0.072 

0.8 0.693 ± 
0.066 

0.727 ± 0.112 0.670 ± 
0.041 

0.684 ± 
0.048 

0.641 ± 
0.063 

0.684 ± 
0.049 

0.85 0.620 ± 
0.750 

0.638 ± 0.118 0.612 ± 
0.036 

0.617 ± 
0.043 

0.596 ± 
0.067 

0.616 ± 
0.045 

0.9 0.677 ± 
0.072 

0.712 ± 0.059 0.651 ± 
0.101 

0.653 ± 
0.094 

0.594 ± 
0.157 

0.654 ± 
0.094 

0.95 0.649 ± 
0.088 

0.644 ± 0.124 0.660 ± 
0.056 

0.657 ± 
0.074 

0.671 ± 
0.055 

0.657 ± 
0.073 

Table 4.2 Self Learning Results Balance Labeled and Full Unlabeled 
 
The analysis reveals on Table 4.2 a trade-off between accurate class separation and overall 

model performance. While improvements are seen in correctly classifying both acceptance 

and avoidance, this comes at a cost to overall accuracy. Despite achieving the best accuracy 

at a threshold of 0.6, the model's performance remains inadequate, indicating the need for 

further exploration and potential model reconfiguration. 
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4.3.1.4 Balance Labeled and Distance Unlabeled 
 

 

 

While previous attempts struggled to achieve a balance between accurate classification and 

overall performance, this new combination shows promising improvement.  Here, we see on 

Table 4.4 increases in accuracy, specificity, and recall, indicating the model is learning to 

distinguish between the two classes.  However, it's important to acknowledge that accuracy is 

still lower than ideal. This suggests a trade-off: the model can achieve better class separation 

at the expense of some overall accuracy. The best accuracy is achieved at a threshold of 0.7, 

but further refinement might be necessary to optimize both metrics. 

4.3.1.5 Results  
Overall as it seems from the results the best combination of data in Self learning technique 

was balance labeled data with distance unlabeled and threshold equals 0.7. 

Threshold F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.5 0.689 ± 
0.059 

0.666 ± 0.098 0.723 ± 
0.035 

0.703 ± 
0.038 

0.741 ± 
0.060 

0.703 ± 
0.038 

0.55 0.696 ± 
0.074 

0.689 ± 0.103 0.711 ± 
0.061 

0.703 ± 
0.057 

0.717 ± 
0.072 

0.703 ± 
0.056 

0.6 0.693 ± 
0.036 

0.675 ± 0.080 0.723 ± 
0.036 

0.704 ± 
0.016 

0.733 ± 
0.066 

0.704 ± 
0.017 

0.65 0.701 ± 
0.084 

0.691 ± 0.129 0.720 ± 
0.051 

0.712 ± 
0.072 

0.732 ± 
0.056 

0.711 ± 
0.072 

0.7 0.710 ± 
0.026 

0.698 ± 0.059 0.731 ± 
0.058 

0.716 ± 
0.028 

0.734 ± 
0.084 

0.715 ± 
0.028 

0.75 0.706 ± 
0.068 

0.690 ± 0.98 0.730 ± 
0.049 

0.715 ± 
0.058 

0.740 ± 
0.063 

0.715 ± 
0.058 

0.8 0.702 ± 
0.055 

0.682 ± 0.070 0.726 ± 
0.050 

0.712 ± 
0.057 

0.741 ± 
0.047 

0.711 ± 
0.050 

0.85 0.695 ± 
0.031 

0.674 ± 0.048 0.720 ± 
0.037 

0.703 ± 
0.056 

0.703 ± 
0.056 

0.703 ± 
0.301 

0.9 0.713 ± 
0.019 

0.727 ± 0.044 0.702 ± 
0.022 

0.707 ± 
0.015  

0.686 ± 
0.047 

0.707 ± 
0.014 

0.95 0.696 ± 
0.076 

0.683 ± 0.080 0.712 ± 
0.086 

0.7 ± 0.789 0.717 ± 
0.094 

0.7 ± 
0.079 

Table 4.4 Self Learning Results Balance Labeled and Distance Unlabeled 
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4.3.2 Co-Training 
 
This technique we had trouble using a ready library so we decided to implement it myself. 

 

But in the beginning, we had to find a way to split the features into 2 views. There are so 

many different ways and so many combinations. So we took the features from the last theses 

and tried on with many difference combinations(learning rate , balance/unbalance data and 

lastly we tried with all the features with no results.)  

A sample of results of this technique results is shown below. 

 

 

 Predicted negative Predicted positive 

Actual negative  3 25 

Actual positive 3 48 
Table 4.3 : Co-Training Confusion Matrix 

 

 

 

F1 0.7741935483870968 

Recall-Sensitivity 0.9411764705882353 

Precision (PPV) 0.6575342465753424 

AUC 0.5241596638655461 

Specificity 0.10714285714285714 

Accuracy 0.6455696202531646 
Figure 4.6 : Co-Training Metrics 

 

 
The analysis of the two tables above (Table 5.5 and Table 5.6)  revealed that the model was 

unable to accurately identify negatives (acceptance). Consequently, it was determined that 

this technique was not suitable for the task at hand. As a result, the decision was made to 

discontinue its use and shift the focus to the remaining two techniques. 
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4.3.3 Label Propagation  
 
In this technique as explained in previous section the algorithm works with distance. In the 

sklearn library in python there are 2 option for that( using rbf or using knn ). Like previously 

we  tested the algorithm both ways and also we made the same combinations as self-learning 

(filtering the unlabeled data and/or balancing the labeled ). Each time we modified the alpha 

parameter (as the sklearn library write “  Clamping factor. A value in (0, 1) that specifies the 

relative amount that an instance should adopt the information from its neighbors as opposed 

to its initial label. alpha=0 means keeping the initial label information, alpha=1 means 

replacing all initial information.”) to find the optimal. 

 

 

4.3.3.1 RBF 
 
The RBF kernel is a powerful tool for analyzing data points in a high-dimensional space [15]. 

Its ability to identify complex relationships among data points makes it an ideal choice for a 

wide range of machine learning tasks, including label propagation. By leveraging the RBF 

kernel's similarity measure, label propagation can effectively propagate labels from labeled 

data points to their unlabeled counterparts. 
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4.3.3.1.1 Full Labeled and Unlabeled Data 

 

 
 

The combination we tested fails to adequately classify either avoidances or acceptances, and 

adjusting the alpha parameter doesn't seem on Table 4.7 to significantly improve the 

outcome. 

 

Alpha F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.1 0.784 ± 
0.038 

0.776 ± 0.063 0.796 ± 
0.035 

0.685 ± 
0.048 

0.595 ± 0.101 0.716 ± 
0.043 

0.2 0.787 ± 
0.037 

0.772 ± 0.043 0.803 ± 
0.033 

0.696 ± 
0.046 

0.619 ± 0.052 0.722 ± 
0.045 

0.3 0.767 ± 
0.054 

0.754 ± 0.096 0.787 ± 
0.022 

0.671 ± 
0.036 

0.588 ± 0.062 0.699 ± 
0.054 

0.4 0.780 ± 
0.020 

0.758 ± 0.021 0.806 ± 
0.042 

0.692 ± 
0.046 

0.627 ± 0.099 0.714 ± 
0.031 

0.5 0.774 ± 
0.042 

0.766 ± 0.069 0.786 ± 
0.024 

0.673 ± 
0.045 

0.580 ± 0.057 0.704 ± 
0.049 

0.6 0.805 ± 
0.011 

0.792 ± 0.029 0.820 ± 
0.010 

0.720 ± 
0.008 

0.649 ± 0.039 0.744 ± 
0.009 

0.7 0.776 ± 
0.032 

0.765 ± 0.062 0.791 ± 
0.035 

0.676 ± 
0.039 

0.588 ± 0.098 0.706 ± 
0.034 

0.8 0.795 ± 
0.041 

0.796 ± 0.080 0.801 ± 
0.038 

0.696 ± 
0.046 

0.596 ± 0.113 0.729 ± 
0.043 

0.9 0.783 ± 
0.026 

0.784 ± 0.022 0.785 ± 
0.055 

0.671 ± 
0.068 

0.558 ± 0.141 0.709 ± 
0.045 

Table 4.7 Label propagation RBF Full Labeled and Unlabeled Data 
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4.3.3.1.2 Full Labeled and Distance Unlabeled Data 
 

Alpha F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.1 0.808 ± 
0.027 

0.811 ± 0.061 0.809 ± 
0.024 

0.711 ± 
0.032 

0.611 ± 
0.081 

0.744 ± 
0.030 

0.2 0.754 ± 
0.033 

0.746 ± 0.061 0.764 ± 
0.026 

0.640 ± 
0.030 

0.534 ± 
0.073 

0.676 ± 
0.033 

0.3 0.768 ± 
0.042 

0.754 ± 0.081 0.787 ± 
0.016 

0.671 ± 
0.033 

0.588 ± 
0.054 

0.699 ± 
0.045 

0.4 0.793 ± 
0.040 

0.784 ± 0.074 0.806 ± 
0.029 

0.701 ± 
00.040 

0.618 ± 
0.077 

0.729 ± 
0.045 

0.5 0.772 ± 
0.044 

0.758 ± 0.055 0.788 ± 
0.042 

0.673 ± 
0.063 

0.588 ± 
0.092 

0.701 ± 
0.056 

0.6 0.779 ± 
0.036 

0.776 ± 0.047 0.783 ± 
0.042 

0.670 ± 
0.059 

0.564 ± 
0.103 

0.706 ± 
0.049 

0.7 0.754 ± 
0.043 

0.743 ± 0.058 0.770 ± 
0.060 

0.642 ± 
0.076 

0.542 ± 
0.146 

0.676 ± 
0.056 

0.8 0.777 ± 
0.026 

0.762 0.038 0.796 ± 
0.056 

0.679 ± 
0.063 

0.596 ± 
0.137 

0.706 ± 
0.041 

0.9 0.765 ± 
0.018 

0.757 ± 0.029 0.774 ± 
0.031 

0.653 ± 
0.040 

0.549 ± 
0.090 

0.689 ± 
0.026 

Table 4.8 Label propagation RBF Full Labeled and Distance Unlabeled Data 
 
 

 

The results of this combination overall on Table 4.8 shows that with alpha value 0.1 we get 

increase on the accuracy, recall and Specificity.  That indicates that the algorithm priorities 

the existing labels on the graph and doesn’t give much weight to the similar nodes. 
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4.3.3.1.3 Balance Labeled and Full Unlabeled  

 
 

 
Analysis of the results shows on Table 4.9 improved separation of the two classes compared 

to previous attempts. This improvement is achieved with an alpha parameter of 0.5, 

indicating that assigning equal weight to existing and propagated labels during the labeling 

process is most effective here. 

 

Alpha F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.1 0.652 ± 
0.059 

0.637 ± 0.067 0.675 ± 
0.083 

0.658 ± 
0.062 

0.680 ± 
0.112 

0.658 ± 
0.062 

0.2 0.638 ± 
0.067 

0.615 ± 0.097 0.672 ± 
0.062 

0.655 ± 
0.057 

0.694 ± 
0.078 

0.654 ± 
0.057 

0.3 0.694 ± 
0.066 

0.689 ± 0.057 0.702 ± 
0.092 

0.692 ± 
0.074 

0.695 ± 
0.116 

0.692 ± 
0.074 

0.4 0.651 ± 
0.074 

0.673 ± 0.118 0.637 ± 
0.036 

0.646 ± 
0.046 

0.619 ± 
0.050 

0.646 ± 
0.047 

0.5 0.696 ± 
0.060 

0.675 ± 0.070 0.722 ± 
0.069 

0.704 ± 
0.086 

0.732 ± 
0.086 

0.704 ± 
0.061 

0.6 0.646 ± 
0.055 

0.636 ± 0.093 0.663 ± 
0.049 

0.654 ± 
0.037 

0.672 ± 
0.079 

0.654 ± 
0.036 

0.7 0.650 ± 
0.118 

0.651 ± 0.147 0.654 ± 
0.088 

0.657 ± 
0.096 

0.664 ± 
0.066 

0.658 ± 
0.095 

0.8 0.649 ± 
0.061 

0.667 ± 0.092 0.637 ± 
0.048 

0.643 ± 
0.052 

0.619 ± 
0.063 

0.642 ± 
0.053 

0.9 0.656 ± 
0.066 

0.660 ± 0.133 0.671 ± 
0.043 

0.663 ± 
0.036 

0.666 ± 
0.111 

0.662 ± 
0.037 

Table 4.9 Label propagation RBF Balance Labeled and Full Unlabeled 
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4.3.3.1.4 Balance Labeled and Distance Unlabeled 
 

Alpha F1  Recall-Sensitivity Precision AUC Specificity Accuracy 

0.1 0.695 ± 
0.066 

0.696 ± 0.084 0.697 ± 
0.062 

0.695 ± 
0.058 

0.694 ± 
0.070 

0.695 ± 
0.058 

0.2 0.707 ± 
0.039 

0.705 ± 0.046 0.710 ± 
0.037 

0.708 ± 
0.037 

0.710 ± 
0.036 

0.707 ± 
0.037 

0.3 0.684 ± 
0.095 

0.674 ± 0.104 0.697 ± 
0.094 

0.688 ± 
0.089 

0.702 ± 
0.098 

0.688 ± 
0.089 

0.4 0.700 ± 
0.065 

0.719 ± 0.110 0.691 ± 
0.053 

0.696 ± 
0.050 

0.673 ± 
0.086 

0.696 ± 
0.051 

0.5 0.665 ± 
0.032 

0.682 ± 0.095 0.665 ± 
0.065 

0.658 ± 
0.038 

0.634 ± 
0.140 

0.658 ± 
0.037 

0.6 0.696 ± 
0.034 

0.681 ± 0.056 0.716 ± 
0.034 

0.703 ± 
0.027 

0.725 ± 
0.053 

0.703 ± 
0.028 

0.7 0.703 ± 
0.020 

0.682 ± 0.038 0.726 ± 
0.016 

0.711 ± 
0.012 

0.740 ± 
0.029 

0.711 ± 
0.012 

0.8 0.670 ± 
0.054 

0.681 ± 0.073 0.661 ± 
0.044 

0.665 ± 
0.046  

0.648 ± 
0.047 

0.665 ± 
0.046 

0.9 0.690 ± 
0.041 

0.690 ± 0.080 0.698 ± 
0.034 

0.692 ± 
0.033 

0.694 ± 
0.067 

0.692 ± 
0.033 

Table 4.10 Label propagation RBF Balance Labeled and Distance Unlabeled 
 

As Table 4.10 shows, with the best alpha value now at 0.7. This suggests that while both 

existing labels and propagated labels are important, the model benefits slightly more from 

prioritizing the propagated labels during the labeling process. 

4.3.3.1.5 Results 

Overall as it seems the best result of Label Propagation with rbf kernel is full label and 

distance unlabeled data with the alpha parameter equal with 0.1, that indicates that the 

algorithm gives doesn’t give much weight to the around similar nodes. 
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4.3.3.2 KNN 
 
In this setting, each data point is represented as a node in a graph, and the edges between 

nodes represent the similarity between them. The KNN kernel calculates the similarity 

between each pair of data points based on their distance in the feature space. Specifically, for 

each data point, it considers its k nearest neighbors and assigns higher similarity values to 

closer neighbors and lower values to farther ones. 

 

 

4.3.3.2.1 Full Labeled and Unlabeled Data 
  

Alpha F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.1 0.777 ± 
0.036 

0.829 ± 0.060 0.732 ± 
0.018 

0.609 ± 
0.032 

0.389 ± 
0.040 

0.683 ± 
0.040 

0.2 0.783 ± 
0.016 

0.863 ± 0.031 0.717 ± 
0.013 

0.588 ± 
0.024 

0.312 ± 
0.053 

0.681 ± 
0.020 

0.3 0.770 ± 
0.031 

0.833 ± 0.023 0.715 ± 
0.037 

0.581 ± 
0.060 

0328 ± 
0.100 

0.666 ± 
0.048 

0.4 0.759 ± 
0.027 

0.830 ± 0.036 0.699 ± 
0.022 

0.556 ± 
0.037 

0.283 ± 
0.040 

0.648 ± 
0.037 

0.5 0.745 ± 
0.029 

0.795 ± 0.059 0.703 ± 
0.023 

0.558 ± 
0.037 

0.320 ± 
0.084 

0.638 ± 
0.035 

0.6 0.756 ± 
0.042 

0.841 ± 0.055 0.690 ± 
0.042 

0.538 ± 
0.076 

0.236 ± 
0.013 

0.641 ± 
0.063 

0.7 0.770 ± 
0.045 

0.852 ± 0.075 0.704 ± 
0.025 

0.567 ± 
0.043 

0.282 ± 
0.060 

0.663 ± 
0.051 

0.8 0.759 ± 
0.033 

0.852 ± 0.064 0.686 ± 
0.022 

0.533 ± 
0.041 

0.213 ± 
0.087 

0.641 ± 
0.041 

0.9 0.775 ± 
0.011 

0.883 ± 0.036 0.692 ± 
0.009 

0.545 ± 
0.013 

0.207 ± 
0.048 

0.658 ± 
0.011 

Table 4.11 Label propagation KNN Full Labeled and Unlabeled Data 
 
Results show on Table 4.11 that this model is not able to separate the 2 classes independently 

of the alpha parameter. As it seems from the specificity it cannot classify the acceptance at 

all. 
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4.3.3.2.2 Full Labeled and Distance Unlabeled Data 
  

Alpha F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.1 0.742 ± 
0.008 

0.814 ± 0.013 0.681 ± 
0.022 

0.522 ± 
0.034 

0.229 ± 
0.081 

0.620 ± 
0.020 

0.2 0.744 ± 
0.038 

0.807 ± 0.064 0.691 ± 
0.019 

0.054 ± 
0.032 

0.275 ± 
0.027 

0.630 ± 
0.043 

0.3 0.736 ± 
0.046 

0.799 ± 0.089 0.684 ± 
0.016 

0.530 ± 
0.029 

0.260 ± 
0.046 

0.620 ± 
0.047 

0.4 0.727 ± 
0.028 

0.788 ± 0.043 0.675 ± 
0.020 

0.512 ± 
0.045 

0.236 ± 
0.062 

0.605 ± 
0.040 

0.5 0.755 ± 
0.020 

0.841 ± 0.033 0.685 ± 
0.015 

0.531 ± 
0.026 

0.221 ± 
0.037 

0.635 ± 
0.027 

0.6 0.731 ± 
0.038 

0.791 ± 0.067 0.680 ± 
0.023 

0.522 ± 
0.036 

0.252 ± 
0.062 

0.613 ± 
0.043 

0.7 0.743 ± 
0.011 

0.826 ± 0.031 0.675 ± 
0.014 

0.512 ± 
0.022 

0.199 ± 
0.062 

0.618 ± 
0.015 

0.8 0.748 ± 
0.026 

0.841 ± 0.044 0.674 ± 
0.016 

0.512 ± 
0.034 

0.183 ± 
0.043 

0.623 ± 
0.034 

0.9 0.769 ± 
0.024 

0.882 ± 0.039 0.682 ± 
0.024 

0.525 ± 
0.051 

0.167 ± 
0.104 

0.646 ± 
0.038 

Table 4.12 Label propagation KNN Full Labeled and Distance Unlabeled Data 
  
Same in this case, again the model isn't able to identify the 2 classes. As it seems on Table 

4.12 from the specificity it cannot classify the acceptance at all. The results are not 

satisfactory. 
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4.3.3.2.3 Balance Labeled and Full Unlabeled  
 

Alpha F1  Recall-
Sensitivity 

Precision AUC Specificity Accuracy 

0.1 0.595 ± 
0.045 

0.575 ± 0.071 0.628 ± 
0.076 

0.608 ± 
0.054 

0.640 ± 
0.127 

0.608 ± 
0.054 

0.2 0.572 ± 
0.172 

0.567 ± 0.193 0.588 ± 
0.136 

0.600 ± 
0.111 

0.634 ± 
0.088 

0.600 ± 
0.111 

0.3 o.629 ± 
0.085 

0.623 ± 0.113 0.644 ± 
0.076 

0.636 ± 
0.081 

0.648 ± 
0.106 

0.635 ± 
0.081 

0.4 0.576 ± 
0.063 

0.546 ± 0.057 0.615 ± 
0.101 

0.594 ± 
0.074 

0.641 ± 
0.121 

0.593 ± 
0.073 

0.5 0.582 ± 
0.098 

0.594 ± 0.116 0.575 ± 
0.084 

0.578 ± 
0.092 

0.564 ± 
0.082 

0.578 ± 
0.092 

0.6 0.573 ± 
0.087 

0.592 ± 0.130 0.562 ± 
0.061 

0.567 ± 
0.069 

0.542 ± 
0.073 

0.567 ± 
0.069 

0.7 0.571 ± 
0.074 

0.544 ± 0.079 0.606 ± 
0.088 

0.589 ± 
0.074 

0.635 ± 
0.109 

0.589 ± 
0.073 

0.8 0.561 ± 
0.053 

0.560 ± 0.069 0.565 ± 
0.048 

0.563 ± 
0.042 

0.566 ± 
0.068 

0.563 ± 
0.042 

0.9 0.590 ± 
0.085 

0.592 ± 0.115 0.591 ± 
0.054 

0.594 ± 
0.065 

0.595 ± 
0.038 

0.593 ± 
0.065 

Table 4.13Label propagation KNN Balance Labeled and Full Unlabeled 
 

 

Like other combinations balancing the 2 classes gives better results. But again not 

satisfactory enough. The change on the alpha parameter does not seems to affect the model as 

shown on Table 4.13. 
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4.3.3.2.4 Balance Labeled and Distance Unlabeled 

 

  
In this combination, we got a bit worse results than the other cases as shown on Table 4.14. 

The alpha parameter is shown to be slightly better close to low values. 

 

 

4.3.3.2.5 Results  
 
Overall as it seems the KNN kernel doesn’t suit in our case as in every combination fail to 

give satisfactory results 

Alpha F1  Recall-Sensitivity Precision AUC Specificity Accuracy 

0.1 0.610 ± 
0.078 

0.634 ± 0.120 0.594 ± 
0.059 

0.600 ± 
0.064 

0.565 ± 
0.089 

0.601 ± 
0.064 

0.2 0.611 ± 
0.040 

0.636 ± 0.079 0.594 ± 
0.032 

0.596 ± 
0.032 

0.556 ± 
0.096 

0.597 ± 
0.031 

0.3 0.600 ± 
0.084 

0.607 ± 0.119 0.599 ± 
0.060 

0.601 ± 
0.070 

0.595 ± 
0.068 

0.601 ± 
0.069 

0.4 0.577 ± 
0.040 

0.576 ± 0.060 0.581 ± 
0.030 

0.578 ± 
0.035 

0.580 ± 
0.057 

0.580 ± 
0.035 

0.5 0.564 ± 
0.130 

0.576 ± 0.154 0.555 ± 
0.056 

0.563 ± 
0.115 

0.563 ± 
0.080 

0.563 ± 
0.115 

0.6 0.600 ± 
0.106 

0.631 ± 0.123 0.579 ± 
0.108 

0.579 ± 
0.119 

0.528 ± 
0.116 

0.579 ± 
0.118 

0.7 0.575 ± 
0.082 

0.592 ± 0.111 0.562 ± 
0.058 

0.567 ± 
0.073 

0.541 ± 
0.059 

0.567 ± 
0.073 

0.8 0.586 ± 
0.055 

0.592 ± 0.076 0.585 ± 
0.063 

0.582 ± 
0.054 

0.573 ± 
0.090 

0.582 ± 
0.054 

0.9 0.536 ± 
0.096 

0.547 ± 0.108 0.527 ± 
0.527 

0.525 ± 
0.100 

0.502 ± 
0.115 

0.525 ± 
0.100 

Table 4.14 Label propagation KNN Balance Labeled and Distance Unlabeled 
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5.1 Summary 
 

In general our results does not differ much from the last thesis results. 

In conclusion the combination that gave the best results was Label Propagation with full 

labeled data with distance unlabeled and alpha value 0.1. Then the second best result is the 

self learning with balance labeled data and distance unlabeled with threshold 0.7.  

In summary, it appears that the semi-supervised learning techniques utilized mostly had a 

positive impact on the data. However, the impact varies depending on the quality of the data 

used. The results show that selecting both labeled and unlabeled data has a noticeable effect. 

The model seems to perform best when given balanced data from both classes, although this 

does result in a drop in accuracy. This approach appears to increase the model's 

understanding of both classes, as indicated by acceptable levels of recall and specificity. 

When using all of the data, it becomes clear that the model struggles to recognize the 

acceptance class. 

Furthermore, it seems that selecting distance records from the labeled data is more optimal 

for the unlabeled data than feeding in all of it. However, this also depends on the quality of 

the data and the experiment's design. It may be better to allow the user to clear their mind 

from the questionnaire and return to their normal activities. After testing various techniques, 

self-learning and label propagation with balanced labeled and distance unlabeled data proved 

to be the most suitable approach for this case. 

Finally is worth noting that in the Label propagation technique, when the parameter alpha 

was low, it returned a slightly better result. That indicates that the labeled data is sparse or 
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potentially noisy [24], as it allows the algorithm to better adapt to the underlying structure of 

the data. 

 

 

5.2 Future Improvements 
 

In the future, if the project continues with this approach, with the semi supervised learning, it 

will be a huge plus if data were recollected with more precautions so to have  more clean data 

to work with, as explained in the summary (Section 5.1) the algorithm Label propagation 

shows that when the alpha parameter was low it gave better results, that indicates potential 

noisy labeled data. Also this data were collected on students and many students they were not 

taking the experiment on a serious level. 

Another way that we found but we decided not to work with because it wasn’t in the semi 

supervised learning techniques was try to generate records instead of trying to labeled the 

unlabeled with a form of GAN algorithms [12]. That might help because as it shows the 

unlabeled data they play a important role. 

In the future, it would be beneficial to explore advanced machine learning algorithms, such as 

ensemble methods, deep learning models, and neural networks, in combination with semi-

supervised learning. These advanced models have the potential to significantly enhance 

performance by capturing intricate data patterns and providing more accurate predictions. 

Furthermore,  another technique that might be useful because of the noisy data it is some 

variation of SOMs (Self Organizing Maps) [25]. It’s a type of unsupervised learning but with 

some modifications and after analyzing the neighborhoods it may give better results and the 

noisy data they will not affect the so much the model. 
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