

Ατομική Διπλωματική Εργασία

MANAGING CLOUDLAB INFRASTRUCTURE WITH

TERRAFORM

Γιάννης Πανής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μάιος 2024

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

MANAGING CLOUDLAB INFRASTRUCTRE WITH TERRAFORM

Γιάννης Πανής

Επιβλέπων Καθηγητής

Χάρης Βώλος

Η Ατομική Διπλωματική Εργασία υποβλήθηκε προς μερική εκπλήρωση των απαιτήσεων

απόκτησης του πτυχίου Πληροφορικής του Τμήματος Πληροφορικής του Πανεπιστημίου

Κύπρου

Μάιος 2024

Acknowledgements

I would like to express my sincere appreciation to my supervisor, Professor Haris Volos, for

their guidance and introduction to the topic of my thesis.

I am also incredibly grateful to my family and friends for their support and understanding

throughout my studies.

Abstract

The evolution of cloud computing has revolutionized the way organizations deploy, manage,

and scale their infrastructure. Terraform, an open-source infrastructure as a code tool, enables

users to define and provision data center infrastructure using a declarative configuration

language. This thesis presents the design and implementation of a Terraform provider

specifically for Cloudlab, a platform for experimenting with cloud computing technologies.

Cloudlab offers a versatile environment for conducting research on cloud infrastructure, but

its integration with popular infrastructure as a code tools has been limited. By developing a

dedicated Terraform provider for Cloudlab, this work aims to bridge that gap, facilitating

automated and efficient management of cloud resources within Cloudlab’s experimental

framework.

The development process involved a comprehensive analysis of Cloudlab's API and

functionality, followed by the creation of a Terraform provider that supports the full lifecycle

of resource management, including provisioning, updating, and decommissioning. Key

challenges addressed include ensuring compatibility with Terraform’s architecture, handling

authentication and authorization, and maintaining synchronization between Terraform state

and Cloudlab’s resource state.

This Terraform provider empowers researchers and developers to leverage Cloudlab’s

capabilities with the familiar and powerful tools provided by Terraform, thus enhancing

productivity, repeatability, and scalability in cloud computing experiments. The evaluation of

the provider demonstrates significant improvements in automation and efficiency, validating

its effectiveness and utility in real-world scenarios.

Contents

Acknowledgements………………………………………………………………………. 3

Abstract………………………………………………………………………………....... 4

Chapter 1 Introduction……………………………………………………………… 7

 1.1 Motivation 7

 1.2 Problem 8

 1.3 Objectives 10

 1.4 Contributions 10

Chapter 2 Background………………………………………………………………. 12

 2.1 Background 12

 2.1.1 Terraform 12

 2.1.2 Terraform Plugin Framework 15

 2.1.3 CloudLab 16

 2.2 Related Work 17

Chapter 3 Architecture………………..……………………………………………… 19

3.1 Terraform Provider 19

 3.2 Intermediary API 19

 3.3 Putting it all together 19

Chapter 4 Terraform Provider.……..……………………………………………… 22

 4.1 How Terraform Works 22

 4.2 Terraform Plugin Framework 22

 4.2.1 Terraform Provider Publish 23

Chapter 5 Intermediary API….……..……………………………………………… 24

 5.1 SQLite 24

 5.2 Flask 25

 5.3 Deploy on Docker 26

 5.4 Testing 27

Chapter 6 CloudLab Profile….……..……………………………………………… 28

 6.1 CloudLab Profile 28

 6.2 Profile Auto Update 28

 6.3 Mult-Node Deployment for Distributed Computing Usage 29

Chapter 7 Limitations……………………………………………………………….. 32

 7.1 CloudLab Limitations 33

 7.2 Terraform Limitations 34

 7.3 Go Limitations 34

Chapter 8 Evaluation……………………………………………………………….. 36

 8.1 Terraform vs CloudLab Web UI 36

 8.1.1 Ease Of Use 36

 8.1.2 Repeatability 37

 8.1.3 Functionality 37

 8.2 Performance Evaluation 38

 8.2.1 CPU and Memory Utilization 38

Chapter 8 Conclusions……………………………………………………………… 40

 9.1 Conclusions 40

 9.2 Future Work 41

References ……………………………………………………………………………….. 43

Chapter 1

Introduction

1.1 Motivation ……………………………………………………………………………... 7

1.2 Problem………………………………………………………………………………… 8

1.3 Objectives…………………………………………………………………………........ 10

1.4 Contributions……………………………………………………………………........... 10

1.1 Motivation

Infrastructure as a code involves the management and setup of computer data centers using

files that computers can understand, instead of manually configuring hardware or using

interactive tools. This method enables automation and consistency in infrastructure

deployment, making it easier to scale, manage, and maintain complex systems efficiently.

Infrastructure as a code offers a range of advantages that help both employees and business

owners. Firstly, it streamlines the process of managing and deploying infrastructure

components like servers, networks, and databases. This means employees can set up and

modify the infrastructure more quickly and efficiently, saving time and effort.

Moreover, by automating these tasks, infrastructure as a code reduces the likelihood of

human error, leading to more reliable and consistent systems. This reliability translates to

fewer disruptions in business operations, ensuring smoother workflows and better service

delivery to customers.

Additionally, infrastructure as a code facilitates scalability, allowing businesses to easily

adapt to changing demands. Whether it is scaling up during peak periods or scaling down to

save costs during slower times, the flexibility offered by infrastructure as a code enables

businesses to optimize their resources effectively.

Furthermore, by treating infrastructure as a code, businesses can version control their

infrastructure configurations. This means they can track changes over time, revert to previous

configurations if needed, and ensure compliance with regulatory standards more effectively.

Overall, the adoption of infrastructure as a code results in increased efficiency, reliability,

scalability, and compliance, benefiting both employees and business owners alike.

Terraform is an infrastructure as a code software tool created by HashiCorp. Users define and

provide data center infrastructure using a declarative configuration language known as

HashiCorp Configuration Language (HCL), or optionally JSON[2]. The Terraform tool,

commonly used for managing infrastructure as a code, is widely accessible across different

cloud platforms like AWS, Azure, and others. Terraform instantiates assets/resources, such as

compute, and network components, based on the provided configuration, simplifying the

management of infrastructure across various cloud platforms like AWS, Azure, and others.

1.2 Problem

 CloudLab is a distributed infrastructure that enables researchers to experiment with cloud

computing and networking technologies at a scale. It provides a platform for exploring novel

approaches to building and managing clouds and networks, as experiments that terminate

after some hours, facilitating research in areas like virtualization, network function

virtualization (NFV), software-defined networking (SDN), and edge computing. CloudLab is

supported by the National Science Foundation program (NSF) and is operated by a union of

universities including the University of Utah, Clemson University, and the University of

Wisconsin-Madison. Researchers can access CloudLab resources to deploy custom

experiments and testbeds, contributing to advancements in cloud computing and networking

research.

As of now, Terraform isn't directly supported on CloudLab, which may limit its usage for

university users preferring CloudLab as their cloud service.

Currently there are two ways for managing CloudLab infrastructure. The first and most used

way is the graphical user interface on CloudLab website, where user can create or destroy

experiments. The other way is through the CloudLab API, which is written in Python. The

CloudLab API is not widely used, as it is more complex than graphical user interface on

CloudLab website. However, it is used by programmers that want to create mass experiments

using Python scripting.

Based on the introduction above, would be helpful to have Terraform work with CloudLab,

as students and researchers, would be able to manage the CloudLab infrastructure through

Terraform, instead of the graphical user interface or CloudLab API.

Integrating Terraform with CloudLab can offer significant advantages for universities and

their users. Terraform's utility lies in its provision of a unified platform for managing cloud

infrastructure across various providers. By leveraging Terraform, university users can

streamline the deployment and management of resources within CloudLab without the need

for specialized interfaces or extensive training on CloudLab's native API. This encourages

efficiency by enabling professors to employ a familiar toolset for infrastructure provisioning

and also gives the opportunity to students to learn a powerful infrastructure as a code tool like

Terraform. Finally this would help researchers who want to manage the CloudLab

infrastructure.

CloudLab's unique challenge lies in its focus on managing experiments, which typically

involve dynamic and varied network configurations tailored to specific research objectives.

Unlike traditional cloud platforms, where infrastructure setup often follows predefined

templates, experiments in CloudLab require a more flexible approach due to their diverse

networking needs. Experimentation involves deploying and testing various configurations,

often without fixed network structures like those found in AWS or Azure, making adaptation

of Terraform more complex as it needs to accommodate this fluidity while maintaining

infrastructure integrity.

1.3 Objectives

This thesis aims to explore the development of a Terraform provider tailored for CloudLab,

leveraging its API to efficiently manage CloudLab infrastructure. A Terraform provider

serves as the backbone for Terraform, facilitating interaction with specific cloud services to

handle infrastructure operations such as create, read, update and delete.

Our objective is to support resource management practices within CloudLab by preserving

the familiar structure of HashiCorp Configuration Language (HCL), commonly utilized for

defining infrastructure configurations across various cloud providers. Through this endeavor,

we seek to streamline the deployment and management of CloudLab resources, enhancing

efficiency and usability for researchers and practitioners alike.

1.4 Contributions

This thesis contributes to the field of cloud infrastructure management by developing a

specialized Terraform provider tailored for CloudLab, a versatile cloud computing platform

utilized primarily in research and educational settings. The creation of this Terraform

provider addresses a critical need within the research community for efficient and

standardized infrastructure management tools.

One key contribution lies in the adaptation of Terraform, a widely adopted infrastructure-as-

code tool, to seamlessly interface with CloudLab's API. By bridging these technologies, we

empower researchers and practitioners to leverage familiar infrastructure management

practices while harnessing the capabilities of CloudLab's robust infrastructure.

Also, while the scale-up and scale-down functionality for experiments within CloudLab

remains unavailable, the introduction of the specialized Terraform provider offers a pivotal

solution to streamline infrastructure management. Researchers and practitioners can now

efficiently provision and manage resources on CloudLab using familiar infrastructure-as-code

practices facilitated by Terraform. This advancement not only simplifies the process of

setting up and configuring environments but also enhances the reproducibility and scalability

of experiments conducted within CloudLab.

Furthermore, this thesis enhances the usability and efficiency of CloudLab by providing a

unified interface for resource provisioning and management. Through the utilization of

HashiCorp Configuration Language (HCL), commonly employed across various cloud

providers, users can define and manage CloudLab resources with ease, minimizing the

learning curve associated with new tools or platforms.

Another significant contribution lies in the facilitation of streamlined deployment processes

within CloudLab. By enabling users to define infrastructure configurations declaratively,

researchers can automate the deployment of complex environments, reducing manual

intervention and potential errors. This automation fosters reproducibility and scalability,

essential aspects of modern research endeavors.

Moreover, this thesis contributes to the broader ecosystem of infrastructure management tools

by extending Terraform's capabilities to support CloudLab. As Terraform continues to gain

traction as a standard for infrastructure automation, the addition of CloudLab support

expands its applicability, benefiting not only researchers but also industry professionals

seeking efficient cloud management solutions.

In summary, the development of a specialized Terraform provider for CloudLab presented in

this thesis represents a significant contribution to both research and practice. By enhancing

the usability, efficiency, and automation capabilities of CloudLab infrastructure management,

this work aims to empower users to focus more on their research objectives and less on the

intricacies of cloud resource provisioning and management.

Chapter 2

Background

2.1 Background…………………………………………………………………………….. 12

2.1.1 Terraform…………….……………………………………………………..... 12

2.1.2 Terraform Plugin Framework....……………………………………………... 15

2.1.3 CloudLab……………………....…………………………………………….. 16

2.2 Related Work…………………………………………………………………………... 17

2.1 Background

2.1.1 Terraform

At its core, Terraform uses a declarative language called HashiCorp Configuration Language

(HCL) to define infrastructure resources and their configurations. In this language, you

describe the desired state of your infrastructure, such as virtual machines, networks, storage,

and more. Terraform then interprets these configurations and figures out what needs to be

done to make the actual infrastructure match the desired state.

Figure 3.2.1.1: Terraform code snippet.

When you initialize Terraform using the command "terraform init," it begins by examining

the configuration files in your project to identify any external providers (like AWS, Azure,

CloudLab etc.) that it needs to use. Terraform then downloads these modules and plugins,

along with any other necessary dependencies, and sets up the environment for managing your

infrastructure. This initialization process ensures that Terraform has all the tools and

resources it needs to execute your infrastructure code effectively. It's an essential first step

before you can start creating, updating, or deleting resources with Terraform.

After the initialization phase, Terraform is now ready to start planning what to create, update

or delete. It goes through a process called the "planning phase." During this phase, Terraform

examines the configuration files, compares them to the current state of the infrastructure, and

determines what actions need to be taken to reach the desired state. It generates an execution

plan that outlines these actions, such as creating new resources, updating existing ones, or

deleting obsolete ones.

After the planning phase, Terraform can execute the planned actions to make the

infrastructure changes. This process is called the "execution phase." Terraform communicates

with the APIs of the cloud providers or other infrastructure providers to create, update, or

delete the resources as instructed in the execution plan.

Following the execution phase, Terraform proceeds to update its internal state to reflect the

changes made to the infrastructure. This internal state serves as a record of the current

configuration and status of resources managed by Terraform. By updating this state,

Terraform ensures that subsequent operations accurately reflect the existing state of the

infrastructure. This step is crucial for maintaining consistency and facilitating future

modifications or deployments.

One of the key features of Terraform is its ability to manage dependencies between resources.

For example, if you have a web server that depends on a database server, Terraform will

ensure that the database server is created first before attempting to create the web server. This

helps in building complex infrastructure setups in a reliable and consistent manner.

Overall, Terraform simplifies the management of infrastructure by allowing you to define it

in code, providing automation for creating and managing resources, and ensuring consistency

and reliability through its dependency management capabilities.

Figure 3.2.1.1: How Terraform works.

Terraform has a framework for writing providers, named “Terraform Plugin Framework”.

This framework is written in Golang. Also, we will need to use CloudLab API to

communicate with CloudLab. This API is written in Python. So, for this Terraform Provider,

we will need to integrate Terraform Plugin Framework with CloudLab API.

However, this is not easy, as the CloudLab API and the Terraform Framework Plugin are

written in different languages. For that reason, we will need a way to make Terraform

Framework Plugin to communicate with CloudLab API. For that reason, we used Flask

Framework. Terraform Plugin Framework will send API calls on Flask API, then Flask will

forward the request through CloudLab API. Finally, CloudLab API will have some

“intelligence”, as it is needed to simulate the network subnet of the resources (Virtual

Machines).

2.1.2 Terraform Plugin Framework

To develop a Terraform provider, we will primarily utilize the Terraform Plugin SDK, a

comprehensive toolkit designed to facilitate the creation of custom providers for the

Terraform infrastructure as a code platform. This SDK offers a set of libraries and tools that

streamline the development process, enabling you to interact with various APIs and services

programmatically. By harnessing this SDK, developers can seamlessly integrate their

infrastructure components into Terraform's ecosystem, enhancing its capabilities to manage

diverse resources across different cloud providers and services.

The Terraform plugin framework is an essential component of Terraform, a popular

infrastructure-as-code tool used for managing and provisioning infrastructure resources. It

enables Terraform to support various providers, such as cloud service providers like AWS,

Azure, and Google Cloud Platform, as well as other technologies like Kubernetes, Docker,

and databases.

At its core, the plugin framework allows Terraform to communicate with external systems or

services through plugins. These plugins extend Terraform's functionality by providing the

necessary code to interact with specific providers or technologies. Each plugin serves as a

bridge between Terraform and the target system, enabling Terraform to create, modify, and

delete resources according to the user's configuration.

The framework follows a modular architecture, where each plugin operates independently of

the others. This modular design allows Terraform to support a wide range of providers

without tightly coupling them to the core codebase. When Terraform executes a

configuration, it loads the necessary plugins based on the resources defined in the

configuration. This dynamic loading mechanism ensures that only the relevant plugins are

loaded, optimizing performance, and reducing overhead.

Developing a plugin for Terraform involves implementing a set of interfaces defined by the

plugin SDK (Software Development Kit). These interfaces include methods for resource

management, state management, and configuration validation. Plugin developers write code

to handle CRUD operations (Create, Read, Update, Delete) for resources, manage state files,

and validate configuration inputs to ensure consistency and reliability.

Once a plugin is developed, it can be distributed and installed separately from Terraform

itself. Users can install plugins either manually or through Terraform's built-in plugin

installation mechanism. This separation between Terraform's core codebase and plugins

allows for easier maintenance and updates, as each plugin can be developed and maintained

independently. Additionally, it fosters a vibrant ecosystem where community members can

contribute plugins to support new providers or extend Terraform's capabilities. Overall, the

Terraform plugin framework plays a crucial role in enabling Terraform's flexibility,

extensibility, and interoperability with various infrastructure technologies.

Figure 2.1.2.1: How Terraform Providers work.

To develop a plugin for Terraform, you start by defining the functionality you want to add,

such as support for a new infrastructure provider or extending Terraform's capabilities. Then,

you create the plugin code using the appropriate programming language and follow

Terraform's plugin development guidelines, ensuring compatibility and adherence to best

practices. Once the plugin is developed and tested, it can be packaged into a distributable

format, typically a binary file, along with any necessary documentation.

Distributing the plugin involves making it available for users to install either manually or

through Terraform's built-in plugin installation mechanism. This can be done by hosting the

plugin file on a public repository or marketplace, such as the Terraform Registry, or by

providing direct download links. Users can then install the plugin by following the

installation instructions provided, enabling them to leverage the new functionality within

their Terraform workflows. This separation between Terraform's core codebase and plugins

allows for easier maintenance and updates, fostering a vibrant ecosystem of community-

contributed plugins that enhance Terraform's flexibility and interoperability with various

infrastructure technologies.

2.1.3 Cloudlab

Thus far, there has been a notable absence of infrastructure-as-code capabilities for

CloudLab. Currently, CloudLab offers a Python-based API enabling users to initiate,

terminate, and establish connections between experiments. Nonetheless, a structured system

for managing infrastructure through code remains unavailable within the CloudLab

framework. This absence presents an opportunity to enhance CloudLab's functionality by

incorporating infrastructure as a code methodologies, thereby streamlining experiment

management and deployment processes. Expanding CloudLab's capabilities in this manner

would empower users to automate and orchestrate their experiments more efficiently,

fostering greater flexibility and scalability within the platform. Although we don’t want to

give access to anyone through an infrastructure as a code tool. Only users with existing

access will be able to use Terraform to manage CloudLab infrastructure.

Upon instantiation of an experiment, the profile code springs into action, executing its

predefined instructions to generate an XML code. This XML code serves as a vital directive

for CloudLab, guiding its automated processes in creating the experiment environment

precisely as specified. Through this systematic approach, the profile ensures consistency and

accuracy in setting up experiments, laying the groundwork for seamless execution and

reliable results within the CloudLab infrastructure.

2.2 Related Work

In the context of managing cloud infrastructure, various tools and approaches have been

developed to streamline and optimize the deployment, configuration, and maintenance of

resources. Terraform by HashiCorp is one such tool that has gained widespread adoption due

to its declarative approach and support for multi-cloud environments. This subchapter

explores related work in this domain, highlighting tools and frameworks that share similar

objectives with Terraform, particularly in the context of managing cloud infrastructure like

CloudLab.

One of the primary alternatives is AWS CloudFormation. CloudFormation is a service

provided by AWS (Amazon Web Services), that works with JSON and YAML files.

However, it integrates only with AWS services. This can be a limitation for multi-cloud

environments, where Terraform offers more flexibility.

Another notable tool is Ansible provided by Red Hat. Ansible works with YAML files,

making it accessible for users already familiar with its syntax. However, unlike Terraform,

Ansible is designed to handle both the initial setup and ongoing configuration management,

making it more complex when focusing only on infrastructure provisioning.

Also, another tool is Enoslib. Enoslib is a Python library designed to facilitate the deployment

and management of experimental infrastructures. It is particularly useful for researchers and

engineers who need to set up complex and reproducible experimental environments. Enoslib

supports various cloud and cluster environments, including those orchestrated by OpenStack,

Grid5000, and Docker. It offers a higher-level abstraction compared to Terraform, focusing

on ease of use for experimental deployments.

These tools highlight the ecosystem of infrastructure as a code solution, each with its

strengths and weaknesses. While Terraform is a highly popular and flexible choice due to its

multi provider support and declarative syntax, understanding the alternatives allows for a

more informed decision when selecting the most suitable tool for each case.

Also there are several tools analogous to CloudLab, each offering different capabilities. One

of them is OpenStack, an open-source cloud computing platform. Another significant tool is

Google Cloud Platform by Google, which offers a comprehensive suite of cloud computing

services. Finally, and the pioneer of the cloud computing is AWS (Amazon Web Services)

which offers a variety of cloud computing services. All of them are used in both academic

and industry. However, none of these services provide the “experiments” that CloudLab has.

Chapter 3

Architecture

3.1 Terraform Provider…………………………………………………………………….. 19

3.2 Intermediary API………………………………………………………………………. 19

3.3. Putting it all together……………………………………..…………………………… 19

3.1 Terraform Provider

The Terraform Provider plays a crucial role in ensuring that users provide the right

parameters and promptly communicates any errors or successes. Additionally, it verifies the

presence of a valid credentials .pem file. While it doesn't validate the correctness of the

credentials, it does confirm that the .pem file exists and that Terraform has the necessary

permissions to access it. This helps maintain the integrity of the configuration process and

aids in smooth execution of Terraform operations.

3.2 Intermediary API

Intermediary API is responsible for transmitting experiment parameters and authentication

credentials (stored in a .pem file) to the Cloudlab API. It also acts as a state management

service, keeping track of the state, information if they exist and which experiment created

them, for all VLANs created by the Terraform provider. This ensures that no experiment gets

deployed into a non-existent VLAN.

With the integration of the Terraform provider and Intermediary API, the capability to scale

up and down experiments, which was previously unavailable within Cloudlab, has now

become accessible. Through this enhanced infrastructure, researchers and developers can

dynamically adjust the scale of their experiments, optimizing resource utilization and

facilitating more efficient testing and deployment processes. This advancement marks a

significant evolution in experiment management within Cloudlab, empowering users with

greater flexibility and control over their computational environments.

In addressing the challenge of scaling experiments up and down efficiently, a solution is to

use VLANs provided by CloudLab. VLANs enable experiments within the same network to

communicate. This allows for more flexible experimentation as researchers can allocate

resources dynamically, scaling their setups according to changing requirements. With

VLANs, CloudLab helps users control their experiments better, making it easier to switch

between different experiment sizes smoothly.

Another reason for the necessity of an intermediary API, except the VLAN state maintain,

lies in the divergence of programming languages between systems. In this case, the CloudLab

API is coded in Python, while the Terraform Plugin Framework operates on Go. These

distinct programming languages pose a challenge for direct communication and integration

between the two systems. To bridge this linguistic gap and enable seamless interaction, an

intermediary API serves as a mediator, facilitating communication by translating requests and

responses between Python and Go. By providing a unified interface that abstracts the

underlying language complexities, the intermediary API fosters interoperability, allowing the

CloudLab API and Terraform Plugin Framework to effectively collaborate despite their

disparate linguistic foundations. This intermediary layer not only harmonizes communication

but also enhances system compatibility and scalability, thereby streamlining development and

deployment processes in heterogeneous software environments.

3.3 Putting it all together

To summarize, the Terraform provider sends an API call with the parameters. The Flask API

checks if any of the VLANs of the node requested already exists in another experiment. If

any of the VLANs requested already exist, it checks if the experiment that created the each

VLAN has passed the provisioning state. If not, then it waits until it passes the provisioning

state. If any of the VLAN is already created, it will connect the requested node into it,

otherwise it will create it using the process we explained before. After the ‘VLAN checks’

phase, it forwards the request to CloudLab API. It gets the response from the CloudLab API,

it returns the appropriate response to Terraform provider. It’s worth noting that before any

checks, Flask API checks if the correct arguments are given by Terraform provider. If not, it

returns the appropriate error to Terraform provider.

Figure 3.3.1: How Terraform Cloudlab Provider works.

Chapter 4

Terraform Provider

4.1 How Terraform Works………………………………………………………………… 22

4.2 Terraform Plugin Framework………………………………………………………….. 23

4.2.1 Terraform Provider Publish..……………………………………………….. 23

4.1 How Terraform Works

Terraform utilizes HashiCorp Configuration Language (HCL) to define infrastructure

resources and configurations, aiming to achieve a desired state of infrastructure. After

initialization using the "terraform init" command, Terraform enters a planning phase where it

analyzes configuration files and generates an execution plan to reconcile the desired state

with the current infrastructure. Subsequently, Terraform executes the planned actions,

communicating with cloud or infrastructure providers' APIs to create, update, or delete

resources accordingly. Throughout this process, Terraform manages dependencies between

resources to ensure consistency and reliability in infrastructure deployment. This workflow

underscores Terraform's role in simplifying infrastructure management through code-based

definitions, automation, and dependency management capabilities.

4.2 Terraform Plugin Framework

Developing a plugin for Terraform involves implementing a set of interfaces defined by the

plugin SDK (Software Development Kit). These interfaces include methods for resource

management, state management, and configuration validation. Plugin developers write code

to handle CRUD operations (Create, Read, Update, Delete) for resources, manage state files,

and validate configuration inputs to ensure consistency and reliability.

4.2.1 Terraform Provider Publish

Publishing a Terraform plugin involves several key steps to ensure that your provider is

reliable, secure, and available to the community. The process starts with preparing your

plugin for release, which includes generating a GPG signing key, verifying various

configurations, and creating a release on GitHub. Following these steps helps maintain the

integrity of your plugin and facilitates a smooth publishing process.

Github Actions are used to automate workflows, including building, testing, and releasing

your provider. Verifying your GitHub Action workflow involves ensuring that your CI/CD

pipeline is correctly configured to handle these tasks. This step includes checking for proper

triggers, dependencies, and steps in the workflow file, which helps in automating the

validation and release process, ensuring consistency and reliability.

A GPG signing key is used to sign your provider's release artifacts, ensuring their authenticity

and integrity. Generating a GPG signing key involves creating a new key pair that you will

use to sign your releases. This step is critical for security, as it allows users to verify that the

releases they download are indeed from you and have not been tampered with.

Creating a provider release involves tagging a new version in your GitHub repository and

pushing it. This action triggers your GitHub Action workflows, which use GoReleaser to

build your provider binaries, sign them with your GPG key, and publish them as a new

release on GitHub. This step consolidates all your preparations and automation efforts,

resulting in a new version of your provider being available for users.

Chapter 5

Intermediary API

5.1 SQLite…………………………………………………………………………………. 24

5.2 Flask…………...………………………………………………………………………. 25

5.3 Deploy on Docker…………………………………………………………….……….. 26

5.4 Testing………………………………………………………………………..………... 27

In this chapter, we delve into the mechanics of Flask API and how we used it to achieve the

desired result. This is a crucial component bridging the functionalities of Terraform provider

and CloudLab API. Flask serves as a pivotal intermediary, facilitating seamless

communication between these two entities. Its primary role encompasses the forwarding of

API calls, adeptly managing errors, and preserving VLANs state.

5.1 SQLite

Using SQLite as my relational database to store the VLANs states inside. The schema for this

database is a simple format using SQL statements to describe and manage the tables of the

following schema.

Figure 3.2.1.1: Flask API Database Schema.

The VLAN table comprises the following columns:

• Name: This refers to the name given to the VLAN.

• Experiment: Denotes the specific experiment responsible for the VLAN's creation.

• Ready: Indicates whether the experiment associated with the VLAN has reached a

state after provisioning, denoted by a value of 'True'. If the experiment is not yet

ready, it is indicated by a value of 'False'. Before provisioning of the experiment, the

VLAN was not created yet, so is not usable.

The intermediary Flask API, tasked with managing VLAN states via a database table,

operates with a pivotal function: preserving the status of each VLAN. This entails that when

the API receives a request to retrieve the experiment status linked to a specific VLAN, it

undertakes the crucial responsibility of updating the corresponding database records. This

dynamic process ensures that any alterations in the experiment's status, such as termination,

prompt the API to promptly delete the associated record pertaining to the VLAN involved in

the experiment. By executing these operations seamlessly, the API maintains an accurate and

up-to-date representation of VLAN states, thereby facilitating efficient management and

oversight of network configurations.

5.2 Flask

A Flask API is a web application programming interface (API) built using Flask, a micro web

framework for Python. An API is a way for two components to communicate with each other.

API takes requests from clients (like web browsers or mobile apps), processes them, and

returns responses. Flask makes it easy to create these APIs by providing tools and libraries to

handle HTTP requests and responses.

In a Flask API, you define routes, which are URLs that clients can visit to interact with your

API. For example, you might have a route like "/hello" that responds with a friendly greeting

when visited. Each route is associated with a function called a view function, which runs

when the route is visited. Inside these view functions, you can perform tasks like fetching

data from a database, processing user input, or returning specific responses.

Flask APIs are commonly used for building web services, backend systems, and

microservices. They're flexible and lightweight, making them a popular choice for developers

who want to quickly create APIs without a lot of overhead. With Flask, you can easily build

APIs for tasks like serving data to a web or mobile application, handling webhook requests

from third-party services, or even building your own custom web services.

It's crucial to emphasize that to access the CloudLab API, users must possess a credentials

.pem file downloadable from their account. Consequently, the Flask API necessitates the

submission of this credentials .pem file to facilitate communication with the CloudLab API.

A .pem file, short for Privacy-Enhanced Mail, is a file format used to store cryptographic

keys and certificates. It typically contains either a public key, a private key, or a certificate

issued by a certificate authority. These files are commonly used in secure communication

protocols like SSL/TLS to establish encrypted connections over networks such as the

internet.

To utilize the CloudLab API, users must acquire the necessary credentials in the form of a

.pem file, which can be downloaded from the platform. However, upon downloading, the file

is encrypted, necessitating decryption before use. This decryption process involves

employing specific commands using the OpenSSL tool. Specifically, the commands "openssl

rsa -in cloudlab.pem" and "openssl x509 -in cloudlab.pem" are utilized to decrypt the file,

resulting in a decrypted .pem file termed as "cloudlab-decrypted.pem". Once decrypted, this

file can be used to authenticate and access the CloudLab API securely, enabling users to

leverage its services and resources effectively.

5.3 Deploy on Docker

We decided to deploy the API using Docker primarily due to its user-friendly nature.

Utilizing Docker simplifies the process for users, they just need to clone the API repository

and execute the Docker Compose file. This approach eliminates the complexities typically

associated with setting up and configuring the API environment. By leveraging Docker, users

can quickly and effortlessly establish a consistent and reliable deployment environment,

enhancing overall efficiency and ease of use.

Except of the ease of user, deploying the API using Docker offers a plethora of advantages

that streamline the development process. Docker provides a consistent environment across

different platforms, ensuring the seamless execution of the API regardless of the underlying

infrastructure. This consistency mitigates compatibility issues and simplifies deployment, as

developers can package all dependencies and configurations within Docker containers.

Additionally, Docker's lightweight nature optimizes resource utilization, enhancing

performance while minimizing overhead costs. Overall, leveraging Docker for API

deployment enhances reliability and efficiency, making it an indispensable tool for modern

software development practices.

5.4 Testing

Testing the API posed a significant challenge due to its requirement for a .pem file as a

parameter, a feature unsupported by standard API testing tools. Consequently, the

conventional tools were inadequate for assessing the API's functionality accurately. To

overcome this limitation, a bespoke solution was developed in Go programming language.

This custom Go program was specifically crafted to facilitate the testing process, enabling the

seamless transmission of the necessary .pem file to the API for comprehensive evaluation.

Through the utilization of this tailored approach, the testing endeavor was effectively

streamlined, ensuring thorough assessment of the API's capabilities and performance.

Chapter 6

Cloudlab Profile

3.1 Cloudlab Profile……………………………………………………………………….. 28

3.2 Profile Auto Update…………………………………………………………………… 29

3.3 Multi-Node Deployment for Distributed Computing Usage…………………………... 29

3.1 Cloudlab Profile

For this reason, we created a profile named Terraform-profile in the UCY-COAST project.

We made this profile accessible to everyone. The profile instantiates a single node and gives

the possibility to the user to connect it to a VLAN. This profile takes as parameters:

• Specific Aggregate: The servers where the node will be. Users can choose between

emulab.net, utah.cloudlab.us, clemson.cloudlab.us, wisc.cloudlab.us, apt.emulab.net,

Any.

• Node Image: The operating system the node will have. Users can choose between

Ubuntu 18.04, Ubuntu 16.04, Ubuntu 20.04, Centos 7, FreeBSD 11.3.

• Routable IP: A checkbox, if it is checked, then the node is accessible from outside the

CloudLab network.

• Shared VLANs: A list of VLANs the node will belong to. Each VLAN have the

following fields:

o Create Shared VLAN: A checkbox, if true then the VLAN with name given

will be created by this node.

o Connect Shared VLAN: A checkbox, if true then the node will use the existing

VLAN with name given.

o Shared VLAN Name: The name of the VLAN.

o Shared VLAN IP Address: The IP Address that the node will have in the

VLAN.

o Shared VLAN Netmask: The Subnet Mask that the node will have in the

VLAN.

Figure 3.1.1: CloudLab Profile Parameter Definition.

3.2 Profile Auto Update

The profile operates on a repository basis, indicating that the source code of the profile is

stored within a git repository. Additionally, a webhook has been integrated into the

repository, allowing for the automatic triggering of a POST request to CloudLab whenever a

new push occurs. This facilitates the seamless updating of the profile on CloudLab, ensuring

its continuous alignment with the latest changes made to the source code.

3.3 Multi-Node Deployment for Distributed Computing Usage

In a distributed computing environment, the deployment of multiple nodes plays a pivotal

role in harnessing computational power effectively. The Terraform-profile simplifies this

process by providing a streamlined approach to configure and deploy nodes across cloud

infrastructures. Let's delve into an example scenario to illustrate its application.

Imagine a research project requiring a distributed computing environment for analyzing vast

datasets. With the Terraform-profile, researchers can define configurations for creating

multiple nodes, each tasked with specific computational roles. For instance, one node may

serve as a master node orchestrating tasks, while others act as worker nodes processing data

in parallel.

The Terraform-profile offers flexibility in selecting node images tailored to the project's

requirements. Researchers can opt for operating systems conducive to distributed computing

frameworks like Kubernetes or Hadoop. These frameworks enable seamless management of

distributed applications, allowing for efficient resource utilization and fault tolerance.

Integration with tools such as Kubernetes enhances the scalability and resilience of the

distributed computing environment. Kubernetes automates the deployment, scaling, and

management of containerized applications across clusters of nodes. By leveraging the

Terraform-profile, researchers can provision Kubernetes clusters with predefined

configurations, ensuring consistency and reproducibility.

Similarly, Hadoop facilitates distributed data processing by distributing datasets across

multiple nodes and parallelizing computation tasks. With the Terraform-profile, researchers

can provision Hadoop clusters effortlessly, configuring nodes with appropriate roles such as

NameNode, DataNode, and ResourceManager.

One of the significant advantages of using the Terraform-profile is its ability to extend or

decrease the number of nodes even after the initial creation. This dynamic scalability ensures

that the computing environment can adapt to varying workloads and computational demands.

Researchers can easily add more nodes to handle increased data processing needs or reduce

the number of nodes to optimize resource usage and manage costs effectively. This can be

done by creating another experiment using the Terraform-profile and connecting it to VLANs

that have been created by another profile. This interconnected setup allows for flexible

resource allocation and ensures that all nodes can communicate seamlessly within the same

network, further enhancing the efficiency and scalability of the distributed computing

environment.

In this way, the Terraform-profile serves as a foundational tool for establishing robust

distributed computing environments, empowering researchers to tackle complex

computational challenges effectively. By integrating seamlessly with frameworks like

Kubernetes and Hadoop, it facilitates the implementation of scalable and resilient solutions

for distributed data processing and analysis.

Chapter 7

Limitations

7.1 CloudLab Limitations…………………………………………………………………. 33

7.2 Terraform Limitations…………………………………………………………………. 34

7.3 Go Limitations…………………………………………………………………. ……... 34

In this chapter, we delve into the various limitations encountered when developing Terraform

Provider. Understanding these limitations is essential for effectively navigating the intricacies

of each tool and optimizing their usage within specific contexts.

CloudLab, as a cloud infrastructure platform, imposes certain constraints that users must be

aware of when provisioning and managing their resources. These restrictions range from

limitations on virtual machine configurations to constraints on the number of failed

experiments allowed. By exploring these CloudLab restrictions, we gain insights into the

challenges users may face during the instantiation of resource.

Similarly, Terraform, a powerful infrastructure as a code tool, comes with its own set of

limitations and constraints. These Terraform restrictions may include limitations on resource

types, dependencies, or scalability. By examining these restrictions, we can identify potential

roadblocks in infrastructure provisioning workflows and explore workarounds or alternative

approaches to address them effectively.

Furthermore, the Go programming language, commonly used for developing Terraform

providers and other infrastructure-related tools, presents its own unique set of restrictions.

These Go restrictions were mostly language features. Understanding these constraints is

essential for writing efficient and reliable code in Go and ensuring compatibility with

Terraform and other infrastructure management tools.

By dissecting the restrictions associated with CloudLab, Terraform, and Go, this chapter aims

to provide a comprehensive understanding of the limitations inherent in each tool. Armed

with this knowledge, users can better navigate the complexities of infrastructure management

and develop strategies to overcome obstacles encountered during the provisioning and

maintenance of cloud resources.

4.1 CloudLab Limitations

CloudLab, while offering valuable infrastructure management capabilities, imposes certain

restrictions that users must navigate. Understanding and working within these limitations is

crucial for effectively utilizing CloudLab for infrastructure provisioning and management.

However, one notable limitation is the inability to modify experiments programmatically

through the Cloudlab API. While Cloudlab provides a user-friendly web interface for

conducting various tasks such as creating, starting, stopping, and deleting experiments, there

is currently no direct support for experiment modification via API endpoints. This limitation

restricts automation and integration possibilities for users who prefer to manage experiments

programmatically or through scripting.

During my experience developing the Terraform provider, I encountered a notable restriction

concerning the handling of repeated failed experiments on CloudLab. Whenever a user

attempted to create an experiment that failed consistently for the same reason, CloudLab

would freeze the user's account. This necessitated contacting support to resolve the issue,

thereby imposing a limitation on the number of failed experiments a user could initiate before

facing account suspension.

This constraint notably affected certain approaches, such as the creation of VLANs, where

multiple failed attempts were common due to issues like VLAN non-existence. Implementing

solutions to automatically retry failed experiments, such as attempting to create a VLAN with

parameters to connect to it and creating it if it did not exist, was hindered by the restriction on

the number of failed experiment attempts allowed per user.

Navigating these restrictions requires careful consideration and potentially alternative

approaches to achieve desired infrastructure configurations within CloudLab. Awareness of

these limitations empowers developers to develop strategies that optimize resource utilization

and mitigate potential disruptions to their infrastructure management workflows.

4.2 Terraform Limitations

While Terraform offers powerful capabilities for infrastructure management, it also comes

with certain restrictions that can impact the development process of Terraform providers. One

significant limitation arises from the language in which Terraform providers are written.

Terraform providers are typically developed in Go, whereas CloudLab, the infrastructure

being managed, is written in Python. This disparity presents a challenge for seamless

integration, as one approach considered was to incorporate Python files within the Terraform

provider and execute them using bash commands. However, the Terraform plugin framework

only downloads Go files when utilizing the provider, making it impossible to execute Python

code within the Terraform provider environment.

4.3 Go Limitations

In addition to its strengths, Go also presents certain limitations, one of which poses a

significant challenge in interfacing with external systems like the CloudLab API. The

CloudLab API, written in Python, communicates with CloudLab via XMLRPC (XML

Remote Procedure Calling) client and invokes XMLRPC functions. However, Go lacks an

official library from Google that fully supports all the functionalities of Python's XMLRPC.

This absence of comprehensive XMLRPC support in Go necessitated the development of an

intermediary API written in Python. This intermediary API serves as a bridge between the

Terraform provider, written in Go, and the CloudLab API. Essentially, the Terraform

provider interacts with the intermediary API, which, in turn, communicates with the

CloudLab API through Python functions.

The requirement for an intermediary API arises from the disparity between the capabilities of

Python's XMLRPC libraries and the limitations of existing Go libraries. While Go offers

robust performance and concurrency features, its ecosystem may lag behind in certain areas

compared to more established languages like Python. Thus, the intermediary API acts as a

workaround to leverage the functionalities of Python and facilitate seamless communication

between the Terraform provider and the CloudLab API.

Despite this restriction, the integration of an intermediary API enables the Terraform provider

to effectively interact with the CloudLab infrastructure, thereby extending the capabilities of

Go-based applications in managing cloud resources. Moving forward, efforts to address this

limitation may involve exploring alternative approaches or libraries within the Go ecosystem

or advocating for enhancements to Go's XMLRPC support to better align with the

requirements of interfacing with external systems like CloudLab.

Chapter 8

Evaluation

8.1 Terraform vs CloudLab Web UI………………………………………………………. 36

8.1.1 Ease of Use……………….......…………………………………………….... 36

8.1.2 Repeatability………………....………………………………………………. 37

8.1.3 Functionality………………....………………………………………………. 37

8.2 Performance Evaluation……………………………………………………………….. 38

8.2.1 CPU and Memory Utilization..………………………………………………. 38

8.1 Terraform vs CloudLab Web UI

The Terraform vs CloudLab Web UI chapter serves as a critical examination of the Terraform

approach compared to the Web UI of CloudLab in managing infrastructure. Each method

presents distinct advantages and limitations, which warrant careful consideration for users

seeking the most suitable approach for their needs.

8.1.1 Ease of Use

In evaluating Terraform versus CloudLab Web UI for ease of use, several factors were

considered. CloudLab Web UI provides a graphical user interface (GUI) that gives the

potential of provisioning and managing cloud resources. Users can interact with intuitive

menus and forms, reducing the need for extensive coding knowledge. This accessibility

enhances usability, especially for those less experienced in infrastructure as a code practices.

On the other hand, Terraform, a tool for building, changing, and versioning infrastructure

safely and efficiently, offers a command-line interface that requires familiarity HashiCorp

configuration language files. Users must have a solid understanding of infrastructure as a

code principles to effectively utilize Terraform. Moreover, Terraform's uses extend further

than a single cloud provider; it can be used across various platforms such as AWS, Azure,

and Google Cloud. This cross-compatibility means that learning Terraform for one cloud

provider can be used for others as well, streamlining the learning process and enhancing its

value proposition.

8.1.2 Repeatability

Repeatability refers to the ability to reliably recreate infrastructure configurations. Terraform

excels in this aspect due to its declarative approach. Infrastructure configurations are defined

in code, ensuring consistency across deployments. By versioning configuration files and

leveraging infrastructure state management, Terraform enables precise replication of

environments.

CloudLab Web UI offers a different approach to repeatability. It maintains a history of

experiments created by users. Each experiment in the history has a button associated with it

that allows users to recreate the same experiment with a single click. This feature streamlines

the process of reproducing previous setups. However, it's important to note that CloudLab

Web UI lacks built-in versioning capabilities. While users can easily recreate experiments,

there is no mechanism for tracking and managing changes over time.

8.1.3 Functionality

Terraform offers a streamlined and automated approach to infrastructure management

through its declarative configuration files. With Terraform, users can define their desired

infrastructure state in code, enabling easy replication and version control. This approach

promotes consistency and reproducibility across environments, reducing the likelihood of

configuration errors and ensuring that infrastructure deployments are predictable and reliable.

Additionally, Terraform's support for infrastructure as a code principles facilitates

collaboration among team members and simplifies the process of scaling infrastructure as

workloads grow.

In contrast, the Web UI of CloudLab provides a graphical interface for managing

infrastructure, offering a more intuitive and visually oriented experience. This interface may

appeal to users who prefer a point-and-click approach to infrastructure management or who

are less familiar with coding and infrastructure as a code concepts. The Web UI offers real-

time feedback and visualizations, allowing users to interactively explore and configure their

infrastructure components. However, reliance on the Web UI may introduce challenges in

terms of reproducibility and automation, as manual configuration steps are susceptible to

human error and may be difficult to track and replicate consistently across environments.

Additionally, the graphical nature of the interface may limit the scalability and complexity of

infrastructure configurations that can be effectively managed through the Web UI alone.8

8.2 Performance Evaluation

When the intermediary API receives requests to create virtual machines, it serializes the

process at a specific point. This point occurs when a virtual machine needs to create the

VLAN before the other virtual machines can connect to it. At this juncture, there is a delay of

about 10 seconds while the first VM creates the VLAN. Following this initial delay, the

creation of subsequent VMs proceeds in parallel. This serialization ensures that the network

configuration is correctly established before other virtual machines are instantiated, thus

avoiding potential connectivity issues. However, this initial delay introduces a slight

overhead to the provisioning process. Optimizing this aspect of the API or exploring

alternative approaches to VLAN creation could further enhance the performance and

efficiency of the system.

8.2.1 CPU and Memory Utilization

The plots below show the CPU and Memory Utilization while creating 7 VMs that are

connected to the same 2 VLANs. As you can see, both CPU and Memory Utilization is close

to 0%.

The minimal resource utilization indicates that the intermediary API does not impose

significant computational or memory load during the VM creation process. This efficiency

suggests that the API's performance is primarily limited by the VLAN creation step rather

than by the computational overhead. Future improvements could focus on optimizing the

VLAN creation to further reduce delays and enhance the overall provisioning speed without

compromising resource efficiency.

Figure 8.2.1.1 CPU and Memory Utilization while creating 7 VMs connected to 2 VLANs

Chapter 9

Conclusion

9.1 Conclusions…………………………………………………………………………….. 40

9.2 Future Work…………………………………………………………………………..... 41

6.1 Conclusions

In conclusion, this thesis has explored the development and implementation of a Terraform

provider for managing CloudLab infrastructure, specifically focusing on the creation and

deletion of virtual machines. Through this research, it has been demonstrated that utilizing

Terraform as an infrastructure management tool offers significant advantages in terms of

automation, scalability, and reproducibility.

By creating a custom Terraform provider tailored to CloudLab, users can efficiently

provision and manage virtual machines within their infrastructure environment. This not only

streamlines the process of deploying resources but also enhances flexibility and control over

the infrastructure's configuration.

Furthermore, this project contributes to the broader field of cloud computing by extending the

capabilities of Terraform to support diverse cloud platforms and environments. By leveraging

Terraform's declarative syntax and infrastructure as a code principles, users can easily define

and manage complex infrastructure setups with minimal effort.

Overall, the development of a Terraform provider for CloudLab represents a significant step

towards enhancing the efficiency and reliability of cloud infrastructure management. This

research opens avenues for further exploration and innovation in the realm of automated

infrastructure provisioning, paving the way for more seamless and scalable cloud

deployments in the future.

6.2 Future Work

Moving forward, several avenues for future work emerge from this thesis's findings and

implementation. Firstly, enhancing the Terraform provider to include an Update functionality

stands as a promising direction. Currently, the provider focuses on creating and destroying

virtual machines, but integrating an Update feature would enable users to modify existing

resources without the need for manual intervention. This would not only streamline the

management process but also ensure that infrastructure configurations remain up-to-date and

adaptable to evolving requirements.

Additionally, removing the intermediary Flask API presents another opportunity for

refinement. While the Flask API served as a bridge between Terraform and CloudLab in the

current implementation, eliminating this layer could simplify the architecture and reduce

potential points of failure. By directly integrating CloudLab functionalities into the Terraform

provider, users can benefit from a more seamless and efficient workflow, bypassing

unnecessary layers and enhancing overall system performance.

Moreover, extending the Terraform provider's capabilities beyond virtual machines holds

promise for advancing infrastructure management. For instance, incorporating support for

additional CloudLab resources like networks, storage volumes, or security groups could

furnish users with a more comprehensive toolkit for provisioning and configuring their cloud

infrastructure. Continual refinement and expansion of the Terraform provider by researchers

and practitioners stand to enrich cloud infrastructure management practices, fostering greater

efficiency, scalability, and reliability in cloud deployments. This expansion might entail

modifying the profile settings on CloudLab to encompass a broader array of parameters.

Through such modifications, users could gain the ability to create diverse types of virtual

machines, thus broadening the utility and flexibility of the infrastructure provisioning

process.

Currently, the intermediary API holds the state of VLANs on a database locally, which

restricts users to working on a single machine to access the same state. A potential future

enhancement could address this limitation by enabling a distributed state management

system. This would allow users to work on different computers while maintaining consistent

access to the same state. Implementing such a solution would improve collaboration and

flexibility, as users would no longer be tethered to a specific machine to manage VLAN

configurations, thereby enhancing the overall usability and robustness of the system.

References

[1] https://en.wikipedia.org/wiki/Infrastructure_as_code

[2] https://en.wikipedia.org/wiki/Terraform_(software)

[3] https://developer.hashicorp.com/terraform/plugin/framework

[4] https://spacelift.io/blog/ansible-vs-terraform

[5] https://flask.palletsprojects.com/en/latest/api/

[6] https://www.sqlite.org/

[7] https://www.terraform.io/

[8] https://zeet.co/blog/terraform-alternatives

[9] https://docs.cloudlab.us/getting-started.html

[10] https://gitlab.flux.utah.edu/stoller/portal-tools

[11] https://www.usenix.org/conference/atc19/presentation/duplyakin

[12] https://aws.amazon.com/cloudformation/

[13] https://github.com/BeyondTheClouds/enoslib

[14] https://discovery.gitlabpages.inria.fr/enoslib/

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig,

Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,

Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink,

Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The design and

operation of cloudlab. In Proceedings of the 2019 USENIX Conference on Usenix

Annual Technical Conference (USENIX ATC '19). USENIX Association, USA, 1–

14.

[16] R. -A. Cherrueau et al., "EnosLib: A Library for Experiment-Driven Research in

Distributed Computing," in IEEE Transactions on Parallel and Distributed Systems,

vol. 33, no. 6, pp. 1464-1477, 1 June 2022

[17] https://github.com/BeyondTheClouds/enoslib

[18] https://hal.science/hal-03324177/

[19] https://ieeexplore.ieee.org/abstract/document/9139623/

