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Abstract 

The evolution of cloud computing has revolutionized the way organizations deploy, manage, 

and scale their infrastructure. Terraform, an open-source infrastructure as a code tool, enables 

users to define and provision data center infrastructure using a declarative configuration 

language. This thesis presents the design and implementation of a Terraform provider 

specifically for Cloudlab, a platform for experimenting with cloud computing technologies. 

 

Cloudlab offers a versatile environment for conducting research on cloud infrastructure, but 

its integration with popular infrastructure as a code tools has been limited. By developing a 

dedicated Terraform provider for Cloudlab, this work aims to bridge that gap, facilitating 

automated and efficient management of cloud resources within Cloudlab’s experimental 

framework. 

 

The development process involved a comprehensive analysis of Cloudlab's API and 

functionality, followed by the creation of a Terraform provider that supports the full lifecycle 

of resource management, including provisioning, updating, and decommissioning. Key 

challenges addressed include ensuring compatibility with Terraform’s architecture, handling 

authentication and authorization, and maintaining synchronization between Terraform state 

and Cloudlab’s resource state. 

 

This Terraform provider empowers researchers and developers to leverage Cloudlab’s 

capabilities with the familiar and powerful tools provided by Terraform, thus enhancing 

productivity, repeatability, and scalability in cloud computing experiments. The evaluation of 

the provider demonstrates significant improvements in automation and efficiency, validating 

its effectiveness and utility in real-world scenarios. 
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1.1 Motivation 

Infrastructure as a code involves the management and setup of computer data centers using 

files that computers can understand, instead of manually configuring hardware or using 

interactive tools. This method enables automation and consistency in infrastructure 

deployment, making it easier to scale, manage, and maintain complex systems efficiently.  

Infrastructure as a code offers a range of advantages that help both employees and business 

owners. Firstly, it streamlines the process of managing and deploying infrastructure 



 

 

components like servers, networks, and databases. This means employees can set up and 

modify the infrastructure more quickly and efficiently, saving time and effort. 

 

Moreover, by automating these tasks, infrastructure as a code reduces the likelihood of 

human error, leading to more reliable and consistent systems. This reliability translates to 

fewer disruptions in business operations, ensuring smoother workflows and better service 

delivery to customers. 

 

Additionally, infrastructure as a code facilitates scalability, allowing businesses to easily 

adapt to changing demands. Whether it is scaling up during peak periods or scaling down to 

save costs during slower times, the flexibility offered by infrastructure as a code enables 

businesses to optimize their resources effectively. 

 

Furthermore, by treating infrastructure as a code, businesses can version control their 

infrastructure configurations. This means they can track changes over time, revert to previous 

configurations if needed, and ensure compliance with regulatory standards more effectively. 

Overall, the adoption of infrastructure as a code results in increased efficiency, reliability, 

scalability, and compliance, benefiting both employees and business owners alike. 

 

Terraform is an infrastructure as a code software tool created by HashiCorp. Users define and 

provide data center infrastructure using a declarative configuration language known as 

HashiCorp Configuration Language (HCL), or optionally JSON[2]. The Terraform tool, 

commonly used for managing infrastructure as a code, is widely accessible across different 

cloud platforms like AWS, Azure, and others. Terraform instantiates assets/resources, such as 

compute, and network components, based on the provided configuration, simplifying the 

management of infrastructure across various cloud platforms like AWS, Azure, and others. 

 

1.2 Problem 

 CloudLab is a distributed infrastructure that enables researchers to experiment with cloud 

computing and networking technologies at a scale. It provides a platform for exploring novel 

approaches to building and managing clouds and networks, as experiments that terminate 

after some hours, facilitating research in areas like virtualization, network function 

virtualization (NFV), software-defined networking (SDN), and edge computing. CloudLab is 

supported by the National Science Foundation program (NSF) and is operated by a union of 

universities including the University of Utah, Clemson University, and the University of 

Wisconsin-Madison. Researchers can access CloudLab resources to deploy custom 



 

 

experiments and testbeds, contributing to advancements in cloud computing and networking 

research. 

 

As of now, Terraform isn't directly supported on CloudLab, which may limit its usage for 

university users preferring CloudLab as their cloud service.  

 

Currently there are two ways for managing CloudLab infrastructure. The first and most used 

way is the graphical user interface on CloudLab website, where user can create or destroy 

experiments. The other way is through the CloudLab API, which is written in Python. The 

CloudLab API is not widely used, as it is more complex than graphical user interface on 

CloudLab website. However, it is used by programmers that want to create mass experiments 

using Python scripting. 

 

Based on the introduction above, would be helpful to have Terraform work with CloudLab, 

as students and researchers, would be able to manage the CloudLab infrastructure through 

Terraform, instead of the graphical user interface or CloudLab API. 

 

Integrating Terraform with CloudLab can offer significant advantages for universities and 

their users. Terraform's utility lies in its provision of a unified platform for managing cloud 

infrastructure across various providers. By leveraging Terraform, university users can 

streamline the deployment and management of resources within CloudLab without the need 

for specialized interfaces or extensive training on CloudLab's native API. This encourages 

efficiency by enabling professors to employ a familiar toolset for infrastructure provisioning 

and also gives the opportunity to students to learn a powerful infrastructure as a code tool like 

Terraform. Finally this would help researchers who want to manage the CloudLab 

infrastructure. 

 

CloudLab's unique challenge lies in its focus on managing experiments, which typically 

involve dynamic and varied network configurations tailored to specific research objectives. 

Unlike traditional cloud platforms, where infrastructure setup often follows predefined 

templates, experiments in CloudLab require a more flexible approach due to their diverse 

networking needs. Experimentation involves deploying and testing various configurations, 

often without fixed network structures like those found in AWS or Azure, making adaptation 

of Terraform more complex as it needs to accommodate this fluidity while maintaining 

infrastructure integrity. 

 



 

 

1.3 Objectives 

This thesis aims to explore the development of a Terraform provider tailored for CloudLab, 

leveraging its API to efficiently manage CloudLab infrastructure. A Terraform provider 

serves as the backbone for Terraform, facilitating interaction with specific cloud services to 

handle infrastructure operations such as create, read, update and delete. 

 

Our objective is to support resource management practices within CloudLab by preserving 

the familiar structure of HashiCorp Configuration Language (HCL), commonly utilized for 

defining infrastructure configurations across various cloud providers. Through this endeavor, 

we seek to streamline the deployment and management of CloudLab resources, enhancing 

efficiency and usability for researchers and practitioners alike. 

 

1.4 Contributions 

This thesis contributes to the field of cloud infrastructure management by developing a 

specialized Terraform provider tailored for CloudLab, a versatile cloud computing platform 

utilized primarily in research and educational settings. The creation of this Terraform 

provider addresses a critical need within the research community for efficient and 

standardized infrastructure management tools. 

 

One key contribution lies in the adaptation of Terraform, a widely adopted infrastructure-as-

code tool, to seamlessly interface with CloudLab's API. By bridging these technologies, we 

empower researchers and practitioners to leverage familiar infrastructure management 

practices while harnessing the capabilities of CloudLab's robust infrastructure. 

 

Also, while the scale-up and scale-down functionality for experiments within CloudLab 

remains unavailable, the introduction of the specialized Terraform provider offers a pivotal 

solution to streamline infrastructure management. Researchers and practitioners can now 

efficiently provision and manage resources on CloudLab using familiar infrastructure-as-code 

practices facilitated by Terraform. This advancement not only simplifies the process of 

setting up and configuring environments but also enhances the reproducibility and scalability 

of experiments conducted within CloudLab. 

 

Furthermore, this thesis enhances the usability and efficiency of CloudLab by providing a 

unified interface for resource provisioning and management. Through the utilization of 

HashiCorp Configuration Language (HCL), commonly employed across various cloud 



 

 

providers, users can define and manage CloudLab resources with ease, minimizing the 

learning curve associated with new tools or platforms. 

 

Another significant contribution lies in the facilitation of streamlined deployment processes 

within CloudLab. By enabling users to define infrastructure configurations declaratively, 

researchers can automate the deployment of complex environments, reducing manual 

intervention and potential errors. This automation fosters reproducibility and scalability, 

essential aspects of modern research endeavors. 

 

Moreover, this thesis contributes to the broader ecosystem of infrastructure management tools 

by extending Terraform's capabilities to support CloudLab. As Terraform continues to gain 

traction as a standard for infrastructure automation, the addition of CloudLab support 

expands its applicability, benefiting not only researchers but also industry professionals 

seeking efficient cloud management solutions. 

 

In summary, the development of a specialized Terraform provider for CloudLab presented in 

this thesis represents a significant contribution to both research and practice. By enhancing 

the usability, efficiency, and automation capabilities of CloudLab infrastructure management, 

this work aims to empower users to focus more on their research objectives and less on the 

intricacies of cloud resource provisioning and management. 
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2.1 Background 

 

2.1.1 Terraform 

At its core, Terraform uses a declarative language called HashiCorp Configuration Language 

(HCL) to define infrastructure resources and their configurations. In this language, you 

describe the desired state of your infrastructure, such as virtual machines, networks, storage, 

and more. Terraform then interprets these configurations and figures out what needs to be 

done to make the actual infrastructure match the desired state. 



 

 

 

Figure 3.2.1.1: Terraform code snippet. 

 

When you initialize Terraform using the command "terraform init," it begins by examining 

the configuration files in your project to identify any external providers (like AWS, Azure, 

CloudLab etc.) that it needs to use. Terraform then downloads these modules and plugins, 

along with any other necessary dependencies, and sets up the environment for managing your 

infrastructure. This initialization process ensures that Terraform has all the tools and 

resources it needs to execute your infrastructure code effectively. It's an essential first step 

before you can start creating, updating, or deleting resources with Terraform. 

 

After the initialization phase, Terraform is now ready to start planning what to create, update 

or delete. It goes through a process called the "planning phase." During this phase, Terraform 

examines the configuration files, compares them to the current state of the infrastructure, and 

determines what actions need to be taken to reach the desired state. It generates an execution 

plan that outlines these actions, such as creating new resources, updating existing ones, or 

deleting obsolete ones. 

 

After the planning phase, Terraform can execute the planned actions to make the 

infrastructure changes. This process is called the "execution phase." Terraform communicates 

with the APIs of the cloud providers or other infrastructure providers to create, update, or 

delete the resources as instructed in the execution plan. 

 



 

 

Following the execution phase, Terraform proceeds to update its internal state to reflect the 

changes made to the infrastructure. This internal state serves as a record of the current 

configuration and status of resources managed by Terraform. By updating this state, 

Terraform ensures that subsequent operations accurately reflect the existing state of the 

infrastructure. This step is crucial for maintaining consistency and facilitating future 

modifications or deployments. 

 

One of the key features of Terraform is its ability to manage dependencies between resources. 

For example, if you have a web server that depends on a database server, Terraform will 

ensure that the database server is created first before attempting to create the web server. This 

helps in building complex infrastructure setups in a reliable and consistent manner. 

Overall, Terraform simplifies the management of infrastructure by allowing you to define it 

in code, providing automation for creating and managing resources, and ensuring consistency 

and reliability through its dependency management capabilities. 

 

Figure 3.2.1.1: How Terraform works. 

 

Terraform has a framework for writing providers, named “Terraform Plugin Framework”. 

This framework is written in Golang. Also, we will need to use CloudLab API to 

communicate with CloudLab. This API is written in Python. So, for this Terraform Provider, 

we will need to integrate Terraform Plugin Framework with CloudLab API. 

 

However, this is not easy, as the CloudLab API and the Terraform Framework Plugin are 

written in different languages. For that reason, we will need a way to make Terraform 

Framework Plugin to communicate with CloudLab API. For that reason, we used Flask 

Framework. Terraform Plugin Framework will send API calls on Flask API, then Flask will 

forward the request through CloudLab API. Finally, CloudLab API will have some 



 

 

“intelligence”, as it is needed to simulate the network subnet of the resources (Virtual 

Machines). 

 

2.1.2 Terraform Plugin Framework 

To develop a Terraform provider, we will primarily utilize the Terraform Plugin SDK, a 

comprehensive toolkit designed to facilitate the creation of custom providers for the 

Terraform infrastructure as a code platform. This SDK offers a set of libraries and tools that 

streamline the development process, enabling you to interact with various APIs and services 

programmatically. By harnessing this SDK, developers can seamlessly integrate their 

infrastructure components into Terraform's ecosystem, enhancing its capabilities to manage 

diverse resources across different cloud providers and services. 

 

The Terraform plugin framework is an essential component of Terraform, a popular 

infrastructure-as-code tool used for managing and provisioning infrastructure resources. It 

enables Terraform to support various providers, such as cloud service providers like AWS, 

Azure, and Google Cloud Platform, as well as other technologies like Kubernetes, Docker, 

and databases. 

 

At its core, the plugin framework allows Terraform to communicate with external systems or 

services through plugins. These plugins extend Terraform's functionality by providing the 

necessary code to interact with specific providers or technologies. Each plugin serves as a 

bridge between Terraform and the target system, enabling Terraform to create, modify, and 

delete resources according to the user's configuration. 

 

The framework follows a modular architecture, where each plugin operates independently of 

the others. This modular design allows Terraform to support a wide range of providers 

without tightly coupling them to the core codebase. When Terraform executes a 

configuration, it loads the necessary plugins based on the resources defined in the 

configuration. This dynamic loading mechanism ensures that only the relevant plugins are 

loaded, optimizing performance, and reducing overhead. 

 

Developing a plugin for Terraform involves implementing a set of interfaces defined by the 

plugin SDK (Software Development Kit). These interfaces include methods for resource 

management, state management, and configuration validation. Plugin developers write code 

to handle CRUD operations (Create, Read, Update, Delete) for resources, manage state files, 

and validate configuration inputs to ensure consistency and reliability. 



 

 

 

Once a plugin is developed, it can be distributed and installed separately from Terraform 

itself. Users can install plugins either manually or through Terraform's built-in plugin 

installation mechanism. This separation between Terraform's core codebase and plugins 

allows for easier maintenance and updates, as each plugin can be developed and maintained 

independently. Additionally, it fosters a vibrant ecosystem where community members can 

contribute plugins to support new providers or extend Terraform's capabilities. Overall, the 

Terraform plugin framework plays a crucial role in enabling Terraform's flexibility, 

extensibility, and interoperability with various infrastructure technologies. 

 

Figure 2.1.2.1: How Terraform Providers work. 

 

To develop a plugin for Terraform, you start by defining the functionality you want to add, 

such as support for a new infrastructure provider or extending Terraform's capabilities. Then, 

you create the plugin code using the appropriate programming language and follow 

Terraform's plugin development guidelines, ensuring compatibility and adherence to best 

practices. Once the plugin is developed and tested, it can be packaged into a distributable 

format, typically a binary file, along with any necessary documentation. 

 

Distributing the plugin involves making it available for users to install either manually or 

through Terraform's built-in plugin installation mechanism. This can be done by hosting the 

plugin file on a public repository or marketplace, such as the Terraform Registry, or by 

providing direct download links. Users can then install the plugin by following the 

installation instructions provided, enabling them to leverage the new functionality within 

their Terraform workflows. This separation between Terraform's core codebase and plugins 

allows for easier maintenance and updates, fostering a vibrant ecosystem of community-

contributed plugins that enhance Terraform's flexibility and interoperability with various 

infrastructure technologies. 

 

2.1.3 Cloudlab 

Thus far, there has been a notable absence of infrastructure-as-code capabilities for 

CloudLab. Currently, CloudLab offers a Python-based API enabling users to initiate, 



 

 

terminate, and establish connections between experiments. Nonetheless, a structured system 

for managing infrastructure through code remains unavailable within the CloudLab 

framework. This absence presents an opportunity to enhance CloudLab's functionality by 

incorporating infrastructure as a code methodologies, thereby streamlining experiment 

management and deployment processes. Expanding CloudLab's capabilities in this manner 

would empower users to automate and orchestrate their experiments more efficiently, 

fostering greater flexibility and scalability within the platform. Although we don’t want to 

give access to anyone through an infrastructure as a code tool. Only users with existing 

access will be able to use Terraform to manage CloudLab infrastructure. 

 

Upon instantiation of an experiment, the profile code springs into action, executing its 

predefined instructions to generate an XML code. This XML code serves as a vital directive 

for CloudLab, guiding its automated processes in creating the experiment environment 

precisely as specified. Through this systematic approach, the profile ensures consistency and 

accuracy in setting up experiments, laying the groundwork for seamless execution and 

reliable results within the CloudLab infrastructure. 

 

2.2 Related Work 

In the context of managing cloud infrastructure, various tools and approaches have been 

developed to streamline and optimize the deployment, configuration, and maintenance of 

resources. Terraform by HashiCorp is one such tool that has gained widespread adoption due 

to its declarative approach and support for multi-cloud environments. This subchapter 

explores related work in this domain, highlighting tools and frameworks that share similar 

objectives with Terraform, particularly in the context of managing cloud infrastructure like 

CloudLab. 

 

One of the primary alternatives is AWS CloudFormation. CloudFormation is a service 

provided by AWS (Amazon Web Services), that works with JSON and YAML files. 

However, it integrates only with AWS services. This can be a limitation for multi-cloud 

environments, where Terraform offers more flexibility. 

 

Another notable tool is Ansible provided by Red Hat. Ansible works with YAML files, 

making it accessible for users already familiar with its syntax. However, unlike Terraform, 

Ansible is designed to handle both the initial setup and ongoing configuration management, 

making it more complex when focusing only on infrastructure provisioning. 

 



 

 

Also, another tool is Enoslib. Enoslib is a Python library designed to facilitate the deployment 

and management of experimental infrastructures. It is particularly useful for researchers and 

engineers who need to set up complex and reproducible experimental environments. Enoslib 

supports various cloud and cluster environments, including those orchestrated by OpenStack, 

Grid5000, and Docker. It offers a higher-level abstraction compared to Terraform, focusing 

on ease of use for experimental deployments. 

 

These tools highlight the ecosystem of infrastructure as a code solution, each with its 

strengths and weaknesses. While Terraform is a highly popular and flexible choice due to its 

multi provider support and declarative syntax, understanding the alternatives allows for a 

more informed decision when selecting the most suitable tool for each case. 

 

Also there are several tools analogous to CloudLab, each offering different capabilities. One 

of them is OpenStack, an open-source cloud computing platform. Another significant tool is 

Google Cloud Platform by Google, which offers a comprehensive suite of cloud computing 

services. Finally, and the pioneer of the cloud computing is AWS (Amazon Web Services) 

which offers a variety of cloud computing services. All of them are used in both academic 

and industry. However, none of these services provide the “experiments” that CloudLab has. 
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3.1 Terraform Provider 

 

The Terraform Provider plays a crucial role in ensuring that users provide the right 

parameters and promptly communicates any errors or successes. Additionally, it verifies the 

presence of a valid credentials .pem file. While it doesn't validate the correctness of the 

credentials, it does confirm that the .pem file exists and that Terraform has the necessary 

permissions to access it. This helps maintain the integrity of the configuration process and 

aids in smooth execution of Terraform operations. 

 

3.2 Intermediary API 

Intermediary API is responsible for transmitting experiment parameters and authentication 

credentials (stored in a .pem file) to the Cloudlab API. It also acts as a state management 

service, keeping track of the state, information if they exist and which experiment created 



 

 

them, for all VLANs created by the Terraform provider. This ensures that no experiment gets 

deployed into a non-existent VLAN. 

 

With the integration of the Terraform provider and Intermediary API, the capability to scale 

up and down experiments, which was previously unavailable within Cloudlab, has now 

become accessible. Through this enhanced infrastructure, researchers and developers can 

dynamically adjust the scale of their experiments, optimizing resource utilization and 

facilitating more efficient testing and deployment processes. This advancement marks a 

significant evolution in experiment management within Cloudlab, empowering users with 

greater flexibility and control over their computational environments. 

 

In addressing the challenge of scaling experiments up and down efficiently, a solution is to 

use VLANs provided by CloudLab. VLANs enable experiments within the same network to 

communicate. This allows for more flexible experimentation as researchers can allocate 

resources dynamically, scaling their setups according to changing requirements. With 

VLANs, CloudLab helps users control their experiments better, making it easier to switch 

between different experiment sizes smoothly. 

 

Another reason for the necessity of an intermediary API, except the VLAN state maintain, 

lies in the divergence of programming languages between systems. In this case, the CloudLab 

API is coded in Python, while the Terraform Plugin Framework operates on Go. These 

distinct programming languages pose a challenge for direct communication and integration 

between the two systems. To bridge this linguistic gap and enable seamless interaction, an 

intermediary API serves as a mediator, facilitating communication by translating requests and 

responses between Python and Go. By providing a unified interface that abstracts the 

underlying language complexities, the intermediary API fosters interoperability, allowing the 

CloudLab API and Terraform Plugin Framework to effectively collaborate despite their 

disparate linguistic foundations. This intermediary layer not only harmonizes communication 

but also enhances system compatibility and scalability, thereby streamlining development and 

deployment processes in heterogeneous software environments. 

 

3.3 Putting it all together 

To summarize, the Terraform provider sends an API call with the parameters. The Flask API 

checks if any of the VLANs of the node requested already exists in another experiment. If 

any of the VLANs requested already exist, it checks if the experiment that created the each 

VLAN has passed the provisioning state. If not, then it waits until it passes the provisioning 



 

 

state. If any of the VLAN is already created, it will connect the requested node into it, 

otherwise it will create it using the process we explained before. After the ‘VLAN checks’ 

phase, it forwards the request to CloudLab API. It gets the response from the CloudLab API, 

it returns the appropriate response to Terraform provider. It’s worth noting that before any 

checks, Flask API checks if the correct arguments are given by Terraform provider. If not, it 

returns the appropriate error to Terraform provider. 

 

Figure 3.3.1: How Terraform Cloudlab Provider works. 
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4.1 How Terraform Works 

Terraform utilizes HashiCorp Configuration Language (HCL) to define infrastructure 

resources and configurations, aiming to achieve a desired state of infrastructure. After 

initialization using the "terraform init" command, Terraform enters a planning phase where it 

analyzes configuration files and generates an execution plan to reconcile the desired state 

with the current infrastructure. Subsequently, Terraform executes the planned actions, 

communicating with cloud or infrastructure providers' APIs to create, update, or delete 

resources accordingly. Throughout this process, Terraform manages dependencies between 

resources to ensure consistency and reliability in infrastructure deployment. This workflow 

underscores Terraform's role in simplifying infrastructure management through code-based 

definitions, automation, and dependency management capabilities. 



 

 

 

4.2 Terraform Plugin Framework 

Developing a plugin for Terraform involves implementing a set of interfaces defined by the 

plugin SDK (Software Development Kit). These interfaces include methods for resource 

management, state management, and configuration validation. Plugin developers write code 

to handle CRUD operations (Create, Read, Update, Delete) for resources, manage state files, 

and validate configuration inputs to ensure consistency and reliability. 

 

4.2.1 Terraform Provider Publish 

Publishing a Terraform plugin involves several key steps to ensure that your provider is 

reliable, secure, and available to the community. The process starts with preparing your 

plugin for release, which includes generating a GPG signing key, verifying various 

configurations, and creating a release on GitHub. Following these steps helps maintain the 

integrity of your plugin and facilitates a smooth publishing process. 

 

Github Actions are used to automate workflows, including building, testing, and releasing 

your provider. Verifying your GitHub Action workflow involves ensuring that your CI/CD 

pipeline is correctly configured to handle these tasks. This step includes checking for proper 

triggers, dependencies, and steps in the workflow file, which helps in automating the 

validation and release process, ensuring consistency and reliability. 

 

A GPG signing key is used to sign your provider's release artifacts, ensuring their authenticity 

and integrity. Generating a GPG signing key involves creating a new key pair that you will 

use to sign your releases. This step is critical for security, as it allows users to verify that the 

releases they download are indeed from you and have not been tampered with. 

 

Creating a provider release involves tagging a new version in your GitHub repository and 

pushing it. This action triggers your GitHub Action workflows, which use GoReleaser to 

build your provider binaries, sign them with your GPG key, and publish them as a new 

release on GitHub. This step consolidates all your preparations and automation efforts, 

resulting in a new version of your provider being available for users. 
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In this chapter, we delve into the mechanics of Flask API and how we used it to achieve the 

desired result. This is a crucial component bridging the functionalities of Terraform provider 

and CloudLab API. Flask serves as a pivotal intermediary, facilitating seamless 

communication between these two entities. Its primary role encompasses the forwarding of 

API calls, adeptly managing errors, and preserving VLANs state.  

 

5.1 SQLite 

Using SQLite as my relational database to store the VLANs states inside. The schema for this 

database is a simple format using SQL statements to describe and manage the tables of the 

following schema. 

 



 

 

 

Figure 3.2.1.1: Flask API Database Schema. 

 

The VLAN table comprises the following columns: 

• Name: This refers to the name given to the VLAN. 

• Experiment: Denotes the specific experiment responsible for the VLAN's creation. 

• Ready: Indicates whether the experiment associated with the VLAN has reached a 

state after provisioning, denoted by a value of 'True'. If the experiment is not yet 

ready, it is indicated by a value of 'False'. Before provisioning of the experiment, the 

VLAN was not created yet, so is not usable. 

 

The intermediary Flask API, tasked with managing VLAN states via a database table, 

operates with a pivotal function: preserving the status of each VLAN. This entails that when 

the API receives a request to retrieve the experiment status linked to a specific VLAN, it 

undertakes the crucial responsibility of updating the corresponding database records. This 

dynamic process ensures that any alterations in the experiment's status, such as termination, 

prompt the API to promptly delete the associated record pertaining to the VLAN involved in 

the experiment. By executing these operations seamlessly, the API maintains an accurate and 

up-to-date representation of VLAN states, thereby facilitating efficient management and 

oversight of network configurations.  

 

5.2 Flask 

A Flask API is a web application programming interface (API) built using Flask, a micro web 

framework for Python. An API is a way for two components to communicate with each other. 

API takes requests from clients (like web browsers or mobile apps), processes them, and 

returns responses. Flask makes it easy to create these APIs by providing tools and libraries to 

handle HTTP requests and responses. 

 

In a Flask API, you define routes, which are URLs that clients can visit to interact with your 

API. For example, you might have a route like "/hello" that responds with a friendly greeting 

when visited. Each route is associated with a function called a view function, which runs 



 

 

when the route is visited. Inside these view functions, you can perform tasks like fetching 

data from a database, processing user input, or returning specific responses. 

 

Flask APIs are commonly used for building web services, backend systems, and 

microservices. They're flexible and lightweight, making them a popular choice for developers 

who want to quickly create APIs without a lot of overhead. With Flask, you can easily build 

APIs for tasks like serving data to a web or mobile application, handling webhook requests 

from third-party services, or even building your own custom web services. 

 

It's crucial to emphasize that to access the CloudLab API, users must possess a credentials 

.pem file downloadable from their account. Consequently, the Flask API necessitates the 

submission of this credentials .pem file to facilitate communication with the CloudLab API.  

 

A .pem file, short for Privacy-Enhanced Mail, is a file format used to store cryptographic 

keys and certificates. It typically contains either a public key, a private key, or a certificate 

issued by a certificate authority. These files are commonly used in secure communication 

protocols like SSL/TLS to establish encrypted connections over networks such as the 

internet. 

 

To utilize the CloudLab API, users must acquire the necessary credentials in the form of a 

.pem file, which can be downloaded from the platform. However, upon downloading, the file 

is encrypted, necessitating decryption before use. This decryption process involves 

employing specific commands using the OpenSSL tool. Specifically, the commands "openssl 

rsa -in cloudlab.pem" and "openssl x509 -in cloudlab.pem" are utilized to decrypt the file, 

resulting in a decrypted .pem file termed as "cloudlab-decrypted.pem". Once decrypted, this 

file can be used to authenticate and access the CloudLab API securely, enabling users to 

leverage its services and resources effectively. 

 

5.3 Deploy on Docker 

We decided to deploy the API using Docker primarily due to its user-friendly nature. 

Utilizing Docker simplifies the process for users, they just need to clone the API repository 

and execute the Docker Compose file. This approach eliminates the complexities typically 

associated with setting up and configuring the API environment. By leveraging Docker, users 

can quickly and effortlessly establish a consistent and reliable deployment environment, 

enhancing overall efficiency and ease of use. 

 



 

 

Except of the ease of user, deploying the API using Docker offers a plethora of advantages 

that streamline the development process. Docker provides a consistent environment across 

different platforms, ensuring the seamless execution of the API regardless of the underlying 

infrastructure. This consistency mitigates compatibility issues and simplifies deployment, as 

developers can package all dependencies and configurations within Docker containers. 

Additionally, Docker's lightweight nature optimizes resource utilization, enhancing 

performance while minimizing overhead costs. Overall, leveraging Docker for API 

deployment enhances reliability and efficiency, making it an indispensable tool for modern 

software development practices. 

 

5.4 Testing 

Testing the API posed a significant challenge due to its requirement for a .pem file as a 

parameter, a feature unsupported by standard API testing tools. Consequently, the 

conventional tools were inadequate for assessing the API's functionality accurately. To 

overcome this limitation, a bespoke solution was developed in Go programming language. 

This custom Go program was specifically crafted to facilitate the testing process, enabling the 

seamless transmission of the necessary .pem file to the API for comprehensive evaluation. 

Through the utilization of this tailored approach, the testing endeavor was effectively 

streamlined, ensuring thorough assessment of the API's capabilities and performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

 

Cloudlab Profile 

 

 

3.1 Cloudlab Profile……………………………………………………………………….. 28 

3.2 Profile Auto Update…………………………………………………………………… 29 

3.3 Multi-Node Deployment for Distributed Computing Usage…………………………... 29 

 

 

3.1 Cloudlab Profile 

For this reason, we created a profile named Terraform-profile in the UCY-COAST project. 

We made this profile accessible to everyone. The profile instantiates a single node and gives 

the possibility to the user to connect it to a VLAN. This profile takes as parameters: 

• Specific Aggregate: The servers where the node will be. Users can choose between 

emulab.net, utah.cloudlab.us, clemson.cloudlab.us, wisc.cloudlab.us, apt.emulab.net, 

Any. 

• Node Image: The operating system the node will have. Users can choose between 

Ubuntu 18.04, Ubuntu 16.04, Ubuntu 20.04, Centos 7, FreeBSD 11.3. 

• Routable IP: A checkbox, if it is checked, then the node is accessible from outside the 

CloudLab network. 



 

 

• Shared VLANs: A list of VLANs the node will belong to. Each VLAN have the 

following fields: 

o Create Shared VLAN: A checkbox, if true then the VLAN with name given 

will be created by this node. 

o Connect Shared VLAN: A checkbox, if true then the node will use the existing 

VLAN with name given. 

o Shared VLAN Name: The name of the VLAN. 

o Shared VLAN IP Address: The IP Address that the node will have in the 

VLAN. 

o Shared VLAN Netmask: The Subnet Mask that the node will have in the 

VLAN. 

 

Figure 3.1.1: CloudLab Profile Parameter Definition. 

 

3.2 Profile Auto Update 

The profile operates on a repository basis, indicating that the source code of the profile is 

stored within a git repository. Additionally, a webhook has been integrated into the 

repository, allowing for the automatic triggering of a POST request to CloudLab whenever a 

new push occurs. This facilitates the seamless updating of the profile on CloudLab, ensuring 

its continuous alignment with the latest changes made to the source code. 

 

3.3 Multi-Node Deployment for Distributed Computing Usage 

In a distributed computing environment, the deployment of multiple nodes plays a pivotal 

role in harnessing computational power effectively. The Terraform-profile simplifies this 



 

 

process by providing a streamlined approach to configure and deploy nodes across cloud 

infrastructures. Let's delve into an example scenario to illustrate its application. 

 

Imagine a research project requiring a distributed computing environment for analyzing vast 

datasets. With the Terraform-profile, researchers can define configurations for creating 

multiple nodes, each tasked with specific computational roles. For instance, one node may 

serve as a master node orchestrating tasks, while others act as worker nodes processing data 

in parallel. 

 

The Terraform-profile offers flexibility in selecting node images tailored to the project's 

requirements. Researchers can opt for operating systems conducive to distributed computing 

frameworks like Kubernetes or Hadoop. These frameworks enable seamless management of 

distributed applications, allowing for efficient resource utilization and fault tolerance. 

 

Integration with tools such as Kubernetes enhances the scalability and resilience of the 

distributed computing environment. Kubernetes automates the deployment, scaling, and 

management of containerized applications across clusters of nodes. By leveraging the 

Terraform-profile, researchers can provision Kubernetes clusters with predefined 

configurations, ensuring consistency and reproducibility. 

 

Similarly, Hadoop facilitates distributed data processing by distributing datasets across 

multiple nodes and parallelizing computation tasks. With the Terraform-profile, researchers 

can provision Hadoop clusters effortlessly, configuring nodes with appropriate roles such as 

NameNode, DataNode, and ResourceManager. 

 

One of the significant advantages of using the Terraform-profile is its ability to extend or 

decrease the number of nodes even after the initial creation. This dynamic scalability ensures 

that the computing environment can adapt to varying workloads and computational demands. 

Researchers can easily add more nodes to handle increased data processing needs or reduce 

the number of nodes to optimize resource usage and manage costs effectively. This can be 

done by creating another experiment using the Terraform-profile and connecting it to VLANs 

that have been created by another profile. This interconnected setup allows for flexible 

resource allocation and ensures that all nodes can communicate seamlessly within the same 

network, further enhancing the efficiency and scalability of the distributed computing 

environment. 

 



 

 

In this way, the Terraform-profile serves as a foundational tool for establishing robust 

distributed computing environments, empowering researchers to tackle complex 

computational challenges effectively. By integrating seamlessly with frameworks like 

Kubernetes and Hadoop, it facilitates the implementation of scalable and resilient solutions 

for distributed data processing and analysis. 
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In this chapter, we delve into the various limitations encountered when developing Terraform 

Provider. Understanding these limitations is essential for effectively navigating the intricacies 

of each tool and optimizing their usage within specific contexts. 

 

CloudLab, as a cloud infrastructure platform, imposes certain constraints that users must be 

aware of when provisioning and managing their resources. These restrictions range from 

limitations on virtual machine configurations to constraints on the number of failed 

experiments allowed. By exploring these CloudLab restrictions, we gain insights into the 

challenges users may face during the instantiation of resource. 

 



 

 

Similarly, Terraform, a powerful infrastructure as a code tool, comes with its own set of 

limitations and constraints. These Terraform restrictions may include limitations on resource 

types, dependencies, or scalability. By examining these restrictions, we can identify potential 

roadblocks in infrastructure provisioning workflows and explore workarounds or alternative 

approaches to address them effectively. 

 

Furthermore, the Go programming language, commonly used for developing Terraform 

providers and other infrastructure-related tools, presents its own unique set of restrictions. 

These Go restrictions were mostly language features. Understanding these constraints is 

essential for writing efficient and reliable code in Go and ensuring compatibility with 

Terraform and other infrastructure management tools. 

 

By dissecting the restrictions associated with CloudLab, Terraform, and Go, this chapter aims 

to provide a comprehensive understanding of the limitations inherent in each tool. Armed 

with this knowledge, users can better navigate the complexities of infrastructure management 

and develop strategies to overcome obstacles encountered during the provisioning and 

maintenance of cloud resources. 

 

4.1 CloudLab Limitations 

CloudLab, while offering valuable infrastructure management capabilities, imposes certain 

restrictions that users must navigate. Understanding and working within these limitations is 

crucial for effectively utilizing CloudLab for infrastructure provisioning and management. 

However, one notable limitation is the inability to modify experiments programmatically 

through the Cloudlab API. While Cloudlab provides a user-friendly web interface for 

conducting various tasks such as creating, starting, stopping, and deleting experiments, there 

is currently no direct support for experiment modification via API endpoints. This limitation 

restricts automation and integration possibilities for users who prefer to manage experiments 

programmatically or through scripting. 

 

During my experience developing the Terraform provider, I encountered a notable restriction 

concerning the handling of repeated failed experiments on CloudLab. Whenever a user 

attempted to create an experiment that failed consistently for the same reason, CloudLab 

would freeze the user's account. This necessitated contacting support to resolve the issue, 

thereby imposing a limitation on the number of failed experiments a user could initiate before 

facing account suspension. 

 



 

 

This constraint notably affected certain approaches, such as the creation of VLANs, where 

multiple failed attempts were common due to issues like VLAN non-existence. Implementing 

solutions to automatically retry failed experiments, such as attempting to create a VLAN with 

parameters to connect to it and creating it if it did not exist, was hindered by the restriction on 

the number of failed experiment attempts allowed per user. 

 

Navigating these restrictions requires careful consideration and potentially alternative 

approaches to achieve desired infrastructure configurations within CloudLab. Awareness of 

these limitations empowers developers to develop strategies that optimize resource utilization 

and mitigate potential disruptions to their infrastructure management workflows. 

 

4.2 Terraform Limitations 

While Terraform offers powerful capabilities for infrastructure management, it also comes 

with certain restrictions that can impact the development process of Terraform providers. One 

significant limitation arises from the language in which Terraform providers are written. 

Terraform providers are typically developed in Go, whereas CloudLab, the infrastructure 

being managed, is written in Python. This disparity presents a challenge for seamless 

integration, as one approach considered was to incorporate Python files within the Terraform 

provider and execute them using bash commands. However, the Terraform plugin framework 

only downloads Go files when utilizing the provider, making it impossible to execute Python 

code within the Terraform provider environment. 

 

4.3 Go Limitations 

In addition to its strengths, Go also presents certain limitations, one of which poses a 

significant challenge in interfacing with external systems like the CloudLab API. The 

CloudLab API, written in Python, communicates with CloudLab via XMLRPC (XML 

Remote Procedure Calling) client and invokes XMLRPC functions. However, Go lacks an 

official library from Google that fully supports all the functionalities of Python's XMLRPC. 

This absence of comprehensive XMLRPC support in Go necessitated the development of an 

intermediary API written in Python. This intermediary API serves as a bridge between the 

Terraform provider, written in Go, and the CloudLab API. Essentially, the Terraform 

provider interacts with the intermediary API, which, in turn, communicates with the 

CloudLab API through Python functions. 

 

The requirement for an intermediary API arises from the disparity between the capabilities of 

Python's XMLRPC libraries and the limitations of existing Go libraries. While Go offers 



 

 

robust performance and concurrency features, its ecosystem may lag behind in certain areas 

compared to more established languages like Python. Thus, the intermediary API acts as a 

workaround to leverage the functionalities of Python and facilitate seamless communication 

between the Terraform provider and the CloudLab API. 

 

Despite this restriction, the integration of an intermediary API enables the Terraform provider 

to effectively interact with the CloudLab infrastructure, thereby extending the capabilities of 

Go-based applications in managing cloud resources. Moving forward, efforts to address this 

limitation may involve exploring alternative approaches or libraries within the Go ecosystem 

or advocating for enhancements to Go's XMLRPC support to better align with the 

requirements of interfacing with external systems like CloudLab. 
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8.1 Terraform vs CloudLab Web UI 

The Terraform vs CloudLab Web UI chapter serves as a critical examination of the Terraform 

approach compared to the Web UI of CloudLab in managing infrastructure. Each method 

presents distinct advantages and limitations, which warrant careful consideration for users 

seeking the most suitable approach for their needs. 

 

8.1.1 Ease of Use 

In evaluating Terraform versus CloudLab Web UI for ease of use, several factors were 

considered. CloudLab Web UI provides a graphical user interface (GUI) that gives the 



 

 

potential of provisioning and managing cloud resources. Users can interact with intuitive 

menus and forms, reducing the need for extensive coding knowledge. This accessibility 

enhances usability, especially for those less experienced in infrastructure as a code practices. 

 

On the other hand, Terraform, a tool for building, changing, and versioning infrastructure 

safely and efficiently, offers a command-line interface that requires familiarity HashiCorp 

configuration language files. Users must have a solid understanding of infrastructure as a 

code principles to effectively utilize Terraform. Moreover, Terraform's uses extend further 

than a single cloud provider; it can be used across various platforms such as AWS, Azure, 

and Google Cloud. This cross-compatibility means that learning Terraform for one cloud 

provider can be used for others as well, streamlining the learning process and enhancing its 

value proposition. 

 

8.1.2 Repeatability 

Repeatability refers to the ability to reliably recreate infrastructure configurations. Terraform 

excels in this aspect due to its declarative approach. Infrastructure configurations are defined 

in code, ensuring consistency across deployments. By versioning configuration files and 

leveraging infrastructure state management, Terraform enables precise replication of 

environments. 

 

CloudLab Web UI offers a different approach to repeatability. It maintains a history of 

experiments created by users. Each experiment in the history has a button associated with it 

that allows users to recreate the same experiment with a single click. This feature streamlines 

the process of reproducing previous setups. However, it's important to note that CloudLab 

Web UI lacks built-in versioning capabilities. While users can easily recreate experiments, 

there is no mechanism for tracking and managing changes over time. 

 

8.1.3 Functionality 

Terraform offers a streamlined and automated approach to infrastructure management 

through its declarative configuration files. With Terraform, users can define their desired 

infrastructure state in code, enabling easy replication and version control. This approach 

promotes consistency and reproducibility across environments, reducing the likelihood of 

configuration errors and ensuring that infrastructure deployments are predictable and reliable. 

Additionally, Terraform's support for infrastructure as a code principles facilitates 

collaboration among team members and simplifies the process of scaling infrastructure as 

workloads grow. 



 

 

In contrast, the Web UI of CloudLab provides a graphical interface for managing 

infrastructure, offering a more intuitive and visually oriented experience. This interface may 

appeal to users who prefer a point-and-click approach to infrastructure management or who 

are less familiar with coding and infrastructure as a code concepts. The Web UI offers real-

time feedback and visualizations, allowing users to interactively explore and configure their 

infrastructure components. However, reliance on the Web UI may introduce challenges in 

terms of reproducibility and automation, as manual configuration steps are susceptible to 

human error and may be difficult to track and replicate consistently across environments. 

Additionally, the graphical nature of the interface may limit the scalability and complexity of 

infrastructure configurations that can be effectively managed through the Web UI alone.8 

 

8.2 Performance Evaluation 

When the intermediary API receives requests to create virtual machines, it serializes the 

process at a specific point. This point occurs when a virtual machine needs to create the 

VLAN before the other virtual machines can connect to it. At this juncture, there is a delay of 

about 10 seconds while the first VM creates the VLAN. Following this initial delay, the 

creation of subsequent VMs proceeds in parallel. This serialization ensures that the network 

configuration is correctly established before other virtual machines are instantiated, thus 

avoiding potential connectivity issues. However, this initial delay introduces a slight 

overhead to the provisioning process. Optimizing this aspect of the API or exploring 

alternative approaches to VLAN creation could further enhance the performance and 

efficiency of the system. 

 

8.2.1 CPU and Memory Utilization 

The plots below show the CPU and Memory Utilization while creating 7 VMs that are 

connected to the same 2 VLANs. As you can see, both CPU and Memory Utilization is close 

to 0%. 

 

 

The minimal resource utilization indicates that the intermediary API does not impose 

significant computational or memory load during the VM creation process. This efficiency 

suggests that the API's performance is primarily limited by the VLAN creation step rather 

than by the computational overhead. Future improvements could focus on optimizing the 

VLAN creation to further reduce delays and enhance the overall provisioning speed without 

compromising resource efficiency. 



 

 

 

Figure 8.2.1.1 CPU and Memory Utilization while creating 7 VMs connected to 2 VLANs 
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6.1 Conclusions 

In conclusion, this thesis has explored the development and implementation of a Terraform 

provider for managing CloudLab infrastructure, specifically focusing on the creation and 

deletion of virtual machines. Through this research, it has been demonstrated that utilizing 

Terraform as an infrastructure management tool offers significant advantages in terms of 

automation, scalability, and reproducibility. 

 

By creating a custom Terraform provider tailored to CloudLab, users can efficiently 

provision and manage virtual machines within their infrastructure environment. This not only 

streamlines the process of deploying resources but also enhances flexibility and control over 

the infrastructure's configuration. 

 



 

 

Furthermore, this project contributes to the broader field of cloud computing by extending the 

capabilities of Terraform to support diverse cloud platforms and environments. By leveraging 

Terraform's declarative syntax and infrastructure as a code principles, users can easily define 

and manage complex infrastructure setups with minimal effort. 

 

Overall, the development of a Terraform provider for CloudLab represents a significant step 

towards enhancing the efficiency and reliability of cloud infrastructure management. This 

research opens avenues for further exploration and innovation in the realm of automated 

infrastructure provisioning, paving the way for more seamless and scalable cloud 

deployments in the future. 

 

6.2 Future Work 

Moving forward, several avenues for future work emerge from this thesis's findings and 

implementation. Firstly, enhancing the Terraform provider to include an Update functionality 

stands as a promising direction. Currently, the provider focuses on creating and destroying 

virtual machines, but integrating an Update feature would enable users to modify existing 

resources without the need for manual intervention. This would not only streamline the 

management process but also ensure that infrastructure configurations remain up-to-date and 

adaptable to evolving requirements. 

 

Additionally, removing the intermediary Flask API presents another opportunity for 

refinement. While the Flask API served as a bridge between Terraform and CloudLab in the 

current implementation, eliminating this layer could simplify the architecture and reduce 

potential points of failure. By directly integrating CloudLab functionalities into the Terraform 

provider, users can benefit from a more seamless and efficient workflow, bypassing 

unnecessary layers and enhancing overall system performance. 

 

Moreover, extending the Terraform provider's capabilities beyond virtual machines holds 

promise for advancing infrastructure management. For instance, incorporating support for 

additional CloudLab resources like networks, storage volumes, or security groups could 

furnish users with a more comprehensive toolkit for provisioning and configuring their cloud 

infrastructure. Continual refinement and expansion of the Terraform provider by researchers 

and practitioners stand to enrich cloud infrastructure management practices, fostering greater 

efficiency, scalability, and reliability in cloud deployments. This expansion might entail 

modifying the profile settings on CloudLab to encompass a broader array of parameters. 

Through such modifications, users could gain the ability to create diverse types of virtual 



 

 

machines, thus broadening the utility and flexibility of the infrastructure provisioning 

process. 

 

Currently, the intermediary API holds the state of VLANs on a database locally, which 

restricts users to working on a single machine to access the same state. A potential future 

enhancement could address this limitation by enabling a distributed state management 

system. This would allow users to work on different computers while maintaining consistent 

access to the same state. Implementing such a solution would improve collaboration and 

flexibility, as users would no longer be tethered to a specific machine to manage VLAN 

configurations, thereby enhancing the overall usability and robustness of the system. 
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