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Abstract 

 

Software engineering has continuously grown more complex and software applications 

are routinely used in high-stakes environments. Program correctness is for many 

applications of paramount importance, yet bugs can occur in every project. Static analysis 

tools and formal verification methods are widely used in many projects, ensuring 

correctness. 

Due to the ongoing rapid advancement in artificial intelligence, particularly large 

language models (LLMs), AI-assisted software development techniques are on the rise 

and their utilization is universal. Numerous methods to improve the capabilities of LLMs 

and guarantee the validity of the generated code are emerging, as it is an active area of 

research. 

This thesis presents the design and implementation of an interactive tool used to statically 

detect bugs in a procedural language. It employs a design by contract methodology, 

powered by a Hoare-like system. To accelerate the debugging process, a large language 

model is integrated as an assistant in identifying bugs and correcting programs. 

Characteristics regarding the tool’s accuracy and usability, as well as possible extensions 

are analyzed in depth.  
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Chapter 1 Introduction 

 

 

1.1 Motivation           1 

1.2 Purpose           1 

1.3 Methodology          2 

1.4 Outline of Thesis          2 

 

 

1.1 Motivation 

 

Program correctness is crucial in software engineering as software faults can damage the 

revenue and reputation of an organization or even cost lives. However, software 

development is a complex process where software bugs occur regularly in every project, 

and debugging can take a considerable amount of time [1]. Various tools that detect such 

faults and guarantee the correctness of programs are routinely used in software 

development, and currently the rise of large language models (LLMs) through generative 

AI as programming assistants is prominent. Tools like GitHub Copilot [2], which is based 

on code completion and dcc –help [3], which augments compiler error messages are a 

handful in a plethora of many attempts to improve the software development process 

through LLMs. 

 

1.2 Purpose 

 

In this thesis, a tool is designed and implemented which approaches the debugging 

process from a verification perspective powered by a system which extends Hoare logic 

for a procedural programming language. Moreover, the tool incorporates an LLM as an 

assistant in finding bugs and correcting programs. 
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1.3 Methodology 

 

A baseline target was set for the functional requirements of the tool, as well as possible 

extensions to this target. The formal background needed to design the tool was researched 

along with the necessary technologies to implement it. The tool was built incrementally 

by extending the language from an unstructured imperative language to a procedural 

language that supports recursion. In the final stages of the development the LLM assistant 

was integrated. 

 

The tool’s usability was evaluated through the feedback received from a limited 

conducted survey, where participants were asked to debug some programs using the tool. 

Some notes on the performance, where determined using a profiler. 

 

1.4 Outline of Thesis 

 

In the next chapter, the background behind the structure of the language and the 

verification system used in this thesis is described along with the necessary tools to 

implement them using automated proving techniques. Additionally. some information 

around the capabilities and usefulness of LLMs with respect to this thesis is given. Other 

similar work in static analysis is also discussed in this chapter. 

 

Chapter 3 describes the design and operation of the tool. The language’s syntax and 

semantics are specified along with a proof system used to reason for the correctness of a 

program. The basic algorithm that integrates the LLM is also discussed here. 

 

In Chapter 4, the overall architecture of the tool is analysed and how each software 

component was implemented. Examples which present the basic functionalities of the 

tool and its operation are included. 

 

In Chapter 5, qualitative characteristics of the tool are discussed regarding its usability, 

performance, and other limitations, as well as methods which may improve these 

shortcomings. 
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Chapter 6 concludes this thesis with some final thoughts and discusses some directions 

in which this work can be extended in the future and some challenges faced during this 

thesis.  
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Chapter 2 Background 

 

 

2.1 Logic Errors          4 

2.2 Formal Methods          5 

2.3 Program Correctness         5 

2.4 Hoare Logic          5 

2.5 Satisfiability Modulo Theories and Z3 Theorem Prover     6 

2.6 Design by Contract         6 

2.7 Large Language Models         7 

2.8 Related Work          7 

2.8.1 Dafny           7 

2.8.2 Infer           8 

2.8.3 Frama-C           8 

 

 

2.1 Logic Errors 

 

Many logic errors occur when programming, which are hard to detect and correct, since 

they do not violate the syntax or the semantics of the language. Common tools like 

compilers can detect some common logic errors (e.g. missing return, read before 

assignment), but for other errors no attempt is made to detect them, as this would penalise 

compilation times. Other tools (static analysers, debuggers, etc) exist which can assist the 

programmer in detecting such errors. 

 

Alzahrani and Vahid [2] categorized logic errors found in thousands of student-written 

programs, many of which are caused by misinterpreting the syntax or the semantics, (e.g. 

confusing operator precedence). Others may be caused by typos (e.g. equality vs 

assignment operator in C) or by omitting a required step or misplacing code. 
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2.2 Formal Methods 

 

Formal methods are techniques used to model the specification and verify the behaviour 

of programs. Such specifications are constructed using mathematical logic which are 

verified using inference rules in that logic, or state-space exploration techniques. Using 

formal methods, the whole state space of a program can be symbolically inspected, and 

certain properties like safety and liveness can be deduced [3]. 

 

2.3 Program Correctness 

 

The notion of program correctness asserts that according to a specification if its behaviour 

satisfies that specification. Correctness can be distinguished as either “partial correctness” 

where a program is regarded as correct if its specification is satisfied when it terminates, 

or “total correctness” where a program is also required to terminate in addition to 

satisfying its specifications. Proving total correctness is an undecidable problem due to 

the halting problem. 

 

2.4 Hoare Logic 

 

Hoare logic, conceived by C.A.R Hoare, is a formal system for proving the correctness 

of programs. Its central concept are Hoare triples, notated as {𝜙} 𝐶 {𝜓} which state that 

when the precondition 𝜙 is satisfied, after executing the program 𝐶 the postcondition 𝜓 

holds. These triples can be proved for correctness using an associated set of rules and 

axioms for each construct of the language. Hoare’s initial work [4] included rules for a 

simple unstructured imperative language, and has since been extended to include 

recursive procedures [5], or mutable state through separation logic [6]. The formal 

verification system behind the tool designed in this thesis, is based on Hoare’s revision 

of his original work, which includes recursive procedures [5]. 

 

Figure 2.1 presents the Hoare rules for partial and total correctness for a simple 

unstructured imperative language (WHILE language). Extensions of this system used in 
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the implementation of the tool designed in this thesis are discussed in detail in Section 

3.4.1. 

 

 

{𝜙[𝑒/𝑥]} 𝑥≔𝑒; {𝜙} 
𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡  

𝜙→𝜙0    {𝜙0} 𝑆 {𝜓0}    𝜓0→𝜓

{𝜙} 𝑆 {𝜓}
𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

{𝜙} 𝑆0 {𝜂}    {𝜂} 𝑆1 {𝜓}

{𝜙} 𝑆0 𝑆1 {𝜓}
𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

{𝜙∧𝛽} 𝑆0̅̅ ̅ {𝜓}    {𝜙∧¬𝛽} 𝑆1̅̅ ̅ {𝜓}

{𝜙} 𝑖𝑓 𝛽 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅} {𝜓}
𝐼𝑓 − 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 

{𝜂∧𝛽 } 𝑆̅ {𝜂}

{𝜂} 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅} {𝜂∧¬𝛽}
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑤ℎ𝑖𝑙𝑒 

{𝜂∧𝛽∧0≤𝑒=𝑒0} 𝑆̅ {𝜂∧0≤𝑒<𝑒0}

{𝜂∧0≤𝑒} 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅} {𝜂∧¬𝛽}
𝑇𝑜𝑡𝑎𝑙 − 𝑤ℎ𝑖𝑙𝑒  

Figure 2.1 Hoare Rules for Partial and Total Correctness 

 

Hoare rules by themselves cannot be used in a semi-automated process (a fully automated 

process cannot exist since proving termination is undecidable). Instead, a reformulation 

by Edsger Dijkstra is used [7], the weakest preconditions, which can be computed using 

a recursive function. Programs still must be annotated with invariant conditions to prove 

the correctness of loop commands and variant expressions (strictly decreasing 

expressions through each iteration) to prove termination. 

 

2.5 Satisfiability Modulo Theories and Z3 Theorem Prover 

 

Satisfiability Modulo Theories (SMT) is a generalization of the Boolean SAT problem 

where the target is to decide the satisfiability of a set of logic formulas which may include 

elements and operations from theories beyond propositional logic, such as real numbers, 

integers, bit-vectors, strings and uninterpreted functions. The inclusion of many of 

theories causes instances of the problem to be semi-decidable or even undecidable. 

SMT solvers are ubiquitous in program analysis, due to their expressiveness. Modern 

solvers are based on extensions of the DPLL and CDCL algorithms which are capable of 

reasoning about arbitrary theories. The Z3 Theorem Prover is one such solver developed 

by Microsoft Research which utilizes those algorithms (and many other techniques) [8] 

and is used by many program analysis tools, including the one presented in this thesis. 

 

2.6 Design by Contract 
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Design by Contract, coined by Bertrand Meyer, is a methodology for designing software 

systems rooted in formal verification and Hoare Logic. Software components abide to a 

list of formally described specifications which include preconditions, postconditions and 

invariants, like a business contract, where the involved parties must meet the documented 

obligations to receive the agreed upon benefits [9]. A contract can be enforced at runtime 

in languages that support such functionality (like Eiffel), and by using a test-suite or 

simply documenting it in languages with no such support. Another approach would be to 

formally verify that contracts are enforced in the entire codebase at compile time. 

 

2.7 Large Language Models 

 

Large Language Models (LLMs) are machine learning models trained on vast amounts 

of corpora that aim to perform various natural language processing tasks such text 

generation and translation. [10] Accomplished models employ the Transformer which is 

a model architecture based on an attention mechanism which determines for each token 

the relevancy of other tokens with respect to that token [11]. In recent years, LLMs grew 

in popularity as they are publicly available, and attention is drawn to the models’ 

capabilities of generating and analysing code. This feature is utilized by the tool described 

in this thesis. 

 

2.8 Related Work 

 

In this section are described a handful of tools which incorporate static analysis for 

verifying specifications and detecting bugs. The design of the tool described in this thesis 

is partially inspired by these tools. 

 

2.8.1 Dafny 

 

Dafny is a verification system and programming language developed by Microsoft 

Research, where program specifications can be formally expressed, and a verifier can 

statically check their correctness. It includes various imperative and functional features 
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such as generic classes and inductive datatypes. Program verification is based on 

extensions of Hoare logic such as implicit dynamic frames which are a variation of 

separation logic using the Z3 Automated Theorem Prover. Verified programs can be 

source-to-source translated to many general-purpose programming languages such as Go, 

C++, Java, and others [12]. Dafny strongly resembles the tool developed in this thesis due 

its design by contract methodology which is statically enforced albeit with greater focus 

to verification. 

 

2.8.2 Infer 

 

Infer is a static analysis tool developed by Meta Platforms, Inc., for Java C/C++ and 

Objective-C that can detect bugs such as null dereferences and memory leaks. This 

analyser is continuously processing modifications in the code of the Facebook apps to 

ensure certain program properties. It uses separation logic and includes a modular 

analysis engine which allows the extension of analyses for other domain such as security 

and concurrency [13]. Similar to the tool in this thesis, Infer approaches program analysis 

and bug detection using formal methods. 

 

2.8.3 Frama-C 

 

Frama-C is a platform which uses several collaborative plugins that perform static and 

dynamic analysis to verify requirements in C programs. Specifications are described 

using the ANSI/ISO C Specification Language (ACSL) which is used to annotate the 

abstract syntax tree of a program and analysers ensure the validity of desired properties. 

More specifically, the WP (Weakest Precondition) plugin can perform deductive proofs 

of ACSL contracts [14]. The tool in this thesis takes after the deductive approach of 

Frama-C to guarantee annotated properties. 
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Chapter 3 Design 

 

 

3.1 Abstract Syntax          9 

3.2 Typing          11 

3.2.1 Typing Context         11 

3.2.2 Auxiliary Functions        12 

3.2.3 Typing Rules         13 

3.3 Reduction Rules         16 

3.4 Verification Semantics        18 

3.4.1 Extended Hoare Logic for Recursive Procedures    18 

3.4.2 Weakest Preconditions        20 

3.5 LLM Assistant Integration       21 

 

 

3.1 Abstract Syntax 

 

Figure 3.1 describes the abstract syntax for the tool language. It is an amalgamation of an 

assertion language and a programming language where assertions are annotated before 

designated programming language constructs. Let 𝑓 range over declaration names, 𝑥 over 

variable names, 𝑛 over integer literals and 𝑏 over Boolean literals (true, false). Binary 

operators ⊕ are the arithmetic, division, relational and logical operators listed 

representing the usual operators found in C-family languages or propositional logic. 

Arithmetic and Boolean unary operators !∗ are shown below. 

 

Notation 𝑥̅ stands for 𝑥1, 𝑥2, … , 𝑥𝑛 for expressions and 𝑆̅/𝐷̅ stands for 

𝑆1 𝑆2 … 𝑆𝑛/𝐷1 𝐷2 … 𝐷𝑛 for statements and declarations respectively. Let 𝑒 range over 

expressions which can be one of the following: the 𝑟𝑒𝑠𝑢𝑙𝑡 literal, a Boolean 𝑏, an integer 

𝑛, a variable 𝑥, a call expression 𝑓(𝑒̅), a binary expression 𝑒0 ⊕ 𝑒1, a unary expression 

!∗ 𝑒, a conditional ternary expression 𝑒0? 𝑒1: 𝑒2 or a quantified expression ∀𝑥̅. 𝑒 or ∃𝑥̅. 𝑒. 
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Let 𝑆 range over statements which can be one of the following: an assignment 𝑥 ≔ 𝑒;, an 

assertion 𝑎𝑠𝑠𝑒𝑟𝑡 𝑒;, an if-else statement 𝑖𝑓 𝑒 {𝑆0̅} 𝑒𝑙𝑠𝑒 {𝑆1̅}, a while statement 

#𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒0 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒1 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅} or a return statement 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;. 

 

Let 𝐷 range over declarations which have three forms: a function declaration 𝑓𝑛 𝑓(𝑥̅) ∶

= 𝑒;, a predicate declaration 𝑝𝑟𝑒𝑑 𝑓(𝑥̅) ∶= 𝑒; or a procedure declaration 

#𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑓(𝑥̅) {𝑆̅}. 

 

A program 𝑃 is a sequence of declarations 𝐷̅. 

 

𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒  𝑓 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑎𝑚𝑒  𝑥 

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑙𝑖𝑡𝑒𝑟𝑎𝑙  𝑛 

𝐵𝑖𝑛𝑎𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  ⊕ ∷= 

 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 + | − | ∗ 

 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  / | % 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  < | ≤ | = | ≠ | ≥ | > 

 𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  ∧ | ∨ | → 

𝑈𝑛𝑎𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  !∗ ∷= + | − |¬ 

𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑙𝑖𝑡𝑒𝑟𝑎𝑙  𝑏 ∷= 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛   𝑒 ∷= 

𝑅𝑒𝑠𝑢𝑙𝑡 𝑙𝑖𝑡𝑒𝑟𝑎𝑙  𝑟𝑒𝑠𝑢𝑙𝑡 

𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑙𝑖𝑡𝑒𝑟𝑎𝑙  𝑏 

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑙𝑖𝑡𝑒𝑟𝑎𝑙  𝑛 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒   𝑥 

𝐶𝑎𝑙𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑓(𝑒̅) 

𝐵𝑖𝑛𝑎𝑟𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑒0 ⊕ 𝑒1 

𝑈𝑛𝑎𝑟𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  !∗ 𝑒 

𝑇𝑒𝑟𝑛𝑎𝑟𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑒0? 𝑒1: 𝑒2 

𝐹𝑜𝑟𝑎𝑙𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  ∀𝑥̅. 𝑒 

𝐸𝑥𝑖𝑠𝑡𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  ∃𝑥̅. 𝑒 

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡   𝑆 ∷= 
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 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡   𝑥 ≔ 𝑒; 

 𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛   𝑎𝑠𝑠𝑒𝑟𝑡 𝑒; 

𝐼𝑓 − 𝑒𝑙𝑠𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡  𝑖𝑓 𝑒 {𝑆0̅} 𝑒𝑙𝑠𝑒 {𝑆1̅} 

𝑊ℎ𝑖𝑙𝑒 𝑙𝑜𝑜𝑝   #𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒0 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒1 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅} 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡  𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; 

𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛   𝐷 ∷= 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑛 𝑓(𝑥̅) ∶= 𝑒; 

𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑑 𝑓(𝑥̅) ≔ 𝑒; 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 #𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑝𝑟𝑜𝑐 𝑓(𝑥̅){𝑆̅} 

𝑃𝑟𝑜𝑔𝑟𝑎𝑚   𝑃 ∷= 𝐷̅ 

Figure 3.1 Tool Language Abstract Syntax 

 

3.2 Typing 

 

3.2.1 Typing Context 

 

Since the language includes constructs that describe specifications and program 

instructions, multiple judgement contexts are used to determine well-formedness.  

 

Judgement Γ ⊢𝑐 𝑒: 𝑡 holds if in context 𝑐 and environment Γ expression 𝑒 has type 𝑡. 

There are five overlapping contexts used: 𝑚𝑒𝑡𝑎 context which applies to invariants, 

variants, preconditions, functions and predicates, 𝑝𝑜𝑠𝑡 context which applies to 

postconditions, 𝑐𝑎𝑙𝑙 context which applies to procedure calls, 𝑡𝑜𝑡𝑎𝑙 context which applies 

to total expressions (containing no procedure calls or division operators), and 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 

context which applies to all the previous contexts and call free program statements. 

 

Let 𝐸𝑐 denote the set of expressions that occur in 𝐷̅ and are well-formed in context 𝑐 

given an environment Γ. Then 𝐸𝑡𝑜𝑡𝑎𝑙 ⊂ 𝐸𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ⊂ 𝐸𝑚𝑒𝑡𝑎 ⊂ 𝐸𝑝𝑜𝑠𝑡. Also, if 𝑒̅ ⊆ 𝐸𝑡𝑜𝑡𝑎𝑙 and 

𝑓 ∈ 𝑝𝑟𝑜𝑐(𝐷̅) then 𝑓(𝑒̅) ∈ 𝐸𝑐𝑎𝑙𝑙. 
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3.2.2 Auxiliary Functions 

 

Figure 3.2 describes auxiliary functions used to specify the typing and verification rules. 

Let 𝑡 range over type names which can be Boolean 𝔹, integral ℤ or mutable type 𝑚𝑢𝑡 𝑡.  

 

Function 𝑓𝑛(𝐷̅) returns a set with the names of all function declarations in 𝐷̅. Function 

𝑝𝑟𝑒𝑑(𝐷̅) returns a set with the names of all predicate declarations in 𝐷̅. Function 

𝑝𝑟𝑜𝑐(𝐷̅) returns a set with the names of all procedure declarations in 𝐷̅. 

 

Predicate 𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒) holds if expression 𝑒 contains no calls to a procedure. Similarly, 

predicate 𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒) holds if expression 𝑒 contains no division or modulo operations. 

Predicate 𝑡𝑜𝑡𝑎𝑙(𝑒) holds if 𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒) and 𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒). 

 

Predicate 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ, 𝑒, 𝑡) holds if expression 𝑒 can be assigned to a variable with 

type 𝑡 in an environment Γ. Assignable expressions are total expressions, top-level 

division/modulo expressions, and top-level procedure calls. This restriction allows the 

inclusion of certain verification rules (see Section 3.4.1) on non-total expressions, since 

they require extra preconditions which are examined at per-statement level. 

 

Predicate 𝑒𝑛𝑑𝑠𝑅𝑒𝑡𝑢𝑟𝑛(𝑆̅) holds if for every execution path the last statement in 𝑆̅ is a 

return statement. Predicate 𝑖𝑓𝑅𝑒𝑡𝑢𝑟𝑛(𝑖𝑓 𝑒 {𝑆0̅} 𝑒𝑙𝑠𝑒 {𝑆1̅}) holds if in both branches 

𝑆0̅, 𝑆1̅ predicate 𝑒𝑛𝑑𝑠𝑅𝑒𝑡𝑢𝑟𝑛 holds. 

 

Predicates not shown in Figure 3.2 𝑎𝑟𝑖𝑡ℎ(⊕), 𝑑𝑖𝑣(⊕), 𝑟𝑒𝑙(⊕), 𝑙𝑜𝑔(⊕) hold if ⊕ is an 

arithmetic, division, relational or logical operator respectively, as shown in the abstract 

syntax. Similarly, predicate 𝑎𝑟𝑖𝑡ℎ(!∗) holds when unary operator !∗ is + or –. Predicate 

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅) holds if all elements in sequence 𝑥̅ are distinct. 

 

Judgements in 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 context are denoted without a subscript. For all other contexts 

their names are subscripted in judgements. 

 

𝑇𝑦𝑝𝑒 𝑛𝑎𝑚𝑒 𝑡 ∷= 𝔹 | ℤ | 𝑚𝑢𝑡 𝑡 
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𝑓𝑛 𝑓(𝑥̅)∶=𝑒;∈𝐷̅

𝑓∈𝑓𝑛(𝐷̅)
 

𝑝𝑟𝑒𝑑 𝑓(𝑥̅)∶=𝑒;∈𝐷̅

𝑓∈𝑝𝑟𝑒𝑑(𝐷̅)
 

#𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑝𝑟𝑜𝑐 𝑓(𝑥̅){𝑆̅}∈𝐷̅

𝑓∈𝑝𝑟𝑜𝑐(𝐷̅)
 

 

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑛)
 

 

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑏)
 

 

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑥)
 

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(!∗𝑒)
 

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒0)    𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒1)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒0⊕𝑒1)
 

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒0)    𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒1)    𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒2)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒0?𝑒1:𝑒2)
 

 

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑛)
 

 

divFree(b)
 

 

divFree(x)
 

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(!∗𝑒)
 

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒0)    𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒1) ¬𝑑𝑖𝑣(⊕)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒0⊕𝑒1)
 
𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒0)    𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒1)    𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒2)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒0?𝑒1:𝑒2)
 

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒)   𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒)

𝑡𝑜𝑡𝑎𝑙(𝑒)
 

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝑡

𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑒,𝑡)
 
Γ⊢𝑒0⊕𝑒1:𝑡    𝑡𝑜𝑡𝑎𝑙(𝑒0)    𝑡𝑜𝑡𝑎𝑙(𝑒1)

𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑒0⊕𝑒1,𝑡)
 

Γ⊢𝑐𝑎𝑙𝑙𝑓(𝑒̅):ℤ

𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑓(𝑒̅),ℤ)
 

𝑆̅ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;

𝑒𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆̅ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;) 
  

𝑆̅ 𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅}    𝑖𝑓𝑅𝑒𝑡𝑢𝑟𝑛(𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅})

𝑒𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆̅ 𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅})
 

𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅}  𝑒𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆0̅̅ ̅)  𝑒𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆1̅̅ ̅) 

𝑖𝑓𝑅𝑒𝑡𝑢𝑟𝑛(𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅})
 

 

Context Conversion 

Γ⊢e:t    procFree(e)

Γ⊢𝑚𝑒𝑡𝑎𝑒:𝑡
 

Γ⊢𝑚𝑒𝑡𝑎𝑒:𝑡

Γ⊢𝑝𝑜𝑠𝑡𝑒:𝑡
 

Γ⊢e:t    total(e)

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝑡
 

Figure 3.2 Typing Auxiliary Functions 

 

3.2.3 Typing Rules 

 

In this section, the typing rules and axioms for the language are presented. Judgements 

may be converted to different contexts according to the rules given in Figure 3.2. For each 

rule presented with conclusion Γ ⊢𝑚𝑒𝑡𝑎 𝑒: 𝑡, there is a structurally identical rule with 𝑝𝑜𝑠𝑡 

context Γ ⊢𝑝𝑜𝑠𝑡 𝑒: 𝑡 which is not presented for brevity. Whenever an expression is 

referred to have a type, it is implied that it is well-typed. 

 

Figure 3.3 presents the typing rules for expressions. Let Γ range over typing 

environments, composed of pairs 𝑥: 𝑡, denoting that variable 𝑥 has type 𝑡. Notation 𝑥: ℤ ̅̅ ̅̅ ̅̅  

stands for 𝑥1: ℤ, 𝑥2: ℤ, … , 𝑥𝑛: ℤ. Notation Γ ⊢𝑐 𝑒: ℤ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  stands for 

Γ ⊢𝑐 𝑒1: ℤ Γ ⊢𝑐 𝑒2: ℤ …  Γ ⊢𝑐 𝑒𝑛: ℤ. Judgement Γ ⊢𝑐 𝑒: 𝑡 holds if in context 𝑐 and 

environment Γ expression 𝑒 has type 𝑡. Integer literals have integral type and Boolean 

literals have Boolean type for any environment and context. The 𝑟𝑒𝑠𝑢𝑙𝑡 expression has 
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integral type in 𝑝𝑜𝑠𝑡 context. Variables have a type determined by their environment and 

mutable variables can be treated as immutable. Binary expressions 𝑒0 ⊕ 𝑒1 where ⊕ is 

an arithmetic or division operator have integral type with environment Γ if expressions 

𝑒0, 𝑒1 have integral type with environment Γ. Binary expressions 𝑒0 ⊕ 𝑒1 where ⊕ is a 

relational operator have Boolean type with environment Γ if expressions 𝑒0, 𝑒1 have 

integral type with environment Γ. Binary expressions 𝑒0 ⊕ 𝑒1 where ⊕ is a logical 

operator have Boolean type with environment Γ if expressions 𝑒0, 𝑒1 have Boolean type 

with environment Γ. A ternary expression 𝑒0? 𝑒1: 𝑒2 has type 𝑡 in environment Γ if 𝑒0 has 

Boolean type and 𝑒1, 𝑒2 have type t in environment Γ. A unary expression !∗ 𝑒 where !∗ is 

an arithmetic operator has integral type with environment Γ if 𝑒 has integral type with 

environment Γ. Unary expression ¬𝑒 has Boolean type with environment Γ if 𝑒 has 

Boolean type with environment Γ. A procedure call 𝑓(𝑒̅) has integral type with 

environment Γ and context 𝑐𝑎𝑙𝑙 if there exists a procedure declaration with name 𝑓 in 𝐷̅ 

and each argument 𝑒𝑖 has integral type with environment Γ and context 𝑡𝑜𝑡𝑎𝑙. A 

quantified expression ∀𝑥̅. 𝑒 or ∃𝑥̅. 𝑒 has Boolean type with environment Γ and context 

𝑚𝑒𝑡𝑎, if variables 𝑥̅ are distinct and expression 𝑒 has Boolean type with environment 

Γ, 𝑥: ℤ̅̅ ̅̅ ̅ and context 𝑚𝑒𝑡𝑎. A function call 𝑓(𝑒̅) has integral type with environment Γ and 

context 𝑚𝑒𝑡𝑎 if there exists a function declaration 𝑓 in 𝐷̅ and arguments 𝑒̅ have integral 

type with environment Γ. Similarly, a predicate call 𝑓(𝑒̅) has Boolean type with 

environment Γ and context 𝑚𝑒𝑡𝑎 if there exists a function declaration 𝑓 in 𝐷̅ and 

arguments 𝑒̅ have integral type with environment Γ. 

 

 

Γ⊢𝑛:ℤ
 

 

Γ⊢𝑏:𝔹
 

 

Γ⊢𝑝𝑜𝑠𝑡𝑟𝑒𝑠𝑢𝑙𝑡:ℤ
 

𝛤(𝑥)=𝑡

𝛤⊢𝑥:𝑡
 

Γ⊢𝑥:𝑚𝑢𝑡 𝑡

Γ⊢𝑥:𝑡
 

Γ⊢𝑒0:ℤ    Γ⊢𝑒1:ℤ    𝑎𝑟𝑖𝑡ℎ(⊕)

Γ⊢𝑒0⊕𝑒1:ℤ
 
Γ⊢𝑒0:ℤ    Γ⊢𝑒1:ℤ    𝑑𝑖𝑣(⊕)

Γ⊢𝑒0⊕𝑒1:ℤ
 

Γ⊢𝑒0:ℤ    Γ⊢𝑒1:ℤ    𝑟𝑒𝑙(⊕)

Γ⊢𝑒0⊕𝑒1:𝔹
 

Γ⊢𝑒0:𝔹    Γ⊢𝑒1:𝔹    𝑙𝑜𝑔(⊕)

Γ⊢𝑒0⊕𝑒1:𝔹
 

Γ⊢𝑒:ℤ    𝑎𝑟𝑖𝑡ℎ(!∗)

Γ⊢!∗𝑒:ℤ
 

Γ⊢e:𝔹

Γ⊢¬𝑒:𝔹
 

Γ⊢e:𝔹    Γ⊢e1:𝑡    Γ⊢𝑒2:𝑡

Γ⊢(𝑒?𝑒1:𝑒2):𝑡
 

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅)   Γ,𝑥:ℤ̅̅ ̅̅̅⊢𝑚𝑒𝑡𝑎𝑒:𝔹

Γ⊢𝑚𝑒𝑡𝑎∀𝑥̅.𝑒:𝔹
 

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅)    Γ,𝑥:ℤ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒:𝔹

Γ⊢𝑚𝑒𝑡𝑎∃𝑥̅.𝑒:𝔹
 

Γ⊢𝑚𝑒𝑡𝑎𝑒:ℤ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   𝑓∈𝑓𝑛(𝐷̅)

Γ⊢𝑚𝑒𝑡𝑎𝑓(𝑒̅):ℤ
 

Γ⊢𝑚𝑒𝑡𝑎𝑒:ℤ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   𝑓∈𝑝𝑟𝑒𝑑(𝐷̅)

Γ⊢𝑚𝑒𝑡𝑎𝑓(𝑒̅):𝔹
 

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:ℤ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     𝑓∈𝑝𝑟𝑜𝑐(𝐷̅)

Γ⊢𝑐𝑎𝑙𝑙𝑓(𝑒̅):ℤ
 

Figure 3.3 Typing Rules for Expressions 
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Figure 3.4 presents the typing rules for statements. Judgement Γ ⊢ S holds if statement 𝑆 

is well-formed with environment Γ. An assertion 𝑎𝑠𝑠𝑒𝑟𝑡 𝑒; is well-formed with 

environment Γ if expression 𝑒 has Boolean type in 𝑡𝑜𝑡𝑎𝑙 context. Similarly, a return 

statement 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; is well-formed with environment Γ if expression 𝑒 has integral type 

in 𝑡𝑜𝑡𝑎𝑙 context since procedures always produce an integer value. An assignment 𝑥 ≔

𝑒; is well-formed with environment Γ if expression 𝑒 is assignable with type 𝑡 with 

environment Γ and either variable 𝑥 has type 𝑚𝑢𝑡 𝑡 in Γ, or does not exist in Γ with any 

other type. A statement sequence 𝑥 ≔ 𝑒; 𝑆̅ is well-formed with environment Γ if 

expression e has type 𝑡 with environment Γ, statement 𝑥 ≔ e; is well-formed with 

environment Γ and statement sequence is well-formed with environment Γ, 𝑥: 𝑚𝑢𝑡 𝑡. A 

statement sequence 𝑆0 𝑆1 is well-formed with environment Γ if each statement is well-

formed with environment Γ. An if-else statement 𝑖𝑓 𝑒 {𝑆0̅} 𝑒𝑙𝑠𝑒 {𝑆1̅} is well-formed with 

environment Γ if statement sequences 𝑆0̅, 𝑆1̅ are well-formed and expression 𝑒 has 

Boolean type in 𝑡𝑜𝑡𝑎𝑙 context. A while statement 

#𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒0 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒1 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅} is well-formed with environment Γ if with 

environment Γ expression 𝑒0 has Boolean type in 𝑚𝑒𝑡𝑎 context, expression 𝑒1 has 

integral type in 𝑚𝑒𝑡𝑎 context, expression 𝑒 has Boolean type in 𝑡𝑜𝑡𝑎𝑙 context and 

statement sequence 𝑆̅ is well-formed. 

 

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝔹

Γ⊢𝑎𝑠𝑠𝑒𝑟𝑡 𝑒;
 

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:ℤ

Γ⊢𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;
 

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝔹   Γ⊢𝑆0̅̅ ̅    Γ⊢𝑆1̅̅ ̅

Γ⊢𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅}
 

Γ⊢S0    Γ⊢𝑆1

Γ⊢𝑆0 𝑆1
 

Γ⊢𝑒:𝑡    Γ⊢𝑥≔𝑒;    Γ,𝑥:𝑚𝑢𝑡 𝑡⊢𝑆̅

𝛤⊢𝑥≔𝑒; 𝑆̅
  

Γ⊢𝑥:𝑚𝑢𝑡 𝑡    𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑒,𝑡)

Γ,𝑥:𝑚𝑢𝑡 𝑡⊢𝑥≔𝑒;
 

∀t¬(Γ⊢x:t)    𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑒,𝑡)

𝛤,𝑥:𝑚𝑢𝑡 𝑡⊢𝑥≔𝑒;
 

 Γ⊢𝑚𝑒𝑡𝑎 𝑒0:𝔹    Γ⊢𝑚𝑒𝑡𝑎𝑒1:𝔹    Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝔹    Γ⊢𝑆̅

Γ⊢#𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒0 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒1 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅}
  

Figure 3.4 Typing Rules for Statements 

 

Figure 3.5 presents the typing rules for declarations and programs. Judgement ⊢ 𝐷 holds 

if declaration 𝐷 is well-formed. A function declaration 𝑓𝑛 𝑓(𝑥̅) ≔ 𝑒; is well-formed if 

parameters 𝑥̅ are distinct, and 𝑒 has integral type with the environment consisting of the 

parameters typed as ℤ in 𝑚𝑒𝑡𝑎 context. A predicate declaration 𝑝𝑟𝑒𝑑 𝑓(𝑥̅) ≔ 𝑒; is well-

formed if parameters 𝑥̅ are distinct, and 𝑒 has Boolean type with the environment 
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consisting of the parameters typed as ℤ in 𝑚𝑒𝑡𝑎 context. A procedure declaration 

#𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} is well-formed if parameters 𝑥̅ are distinct 

and with the environment consisting of the parameters typed as ℤ: 𝑒0 has Boolean type in 

𝑚𝑒𝑡𝑎 context, 𝑒1 has Boolean type in 𝑝𝑜𝑠𝑡 context, 𝑒2 has integral type in 𝑚𝑒𝑡𝑎 context, 

𝑆̅ is well-formed and 𝑆̅ ends with a return statement in every execution path. 

 

Judgement ⊢ 𝑃 holds if all declarations 𝐷̅ in 𝑃 are distinct and well-formed. 

 

Well-formed declarations 

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅)       𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒:ℤ 

⊢𝑓𝑛 𝑓(𝑥̅)∶=𝑒;
  

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅)     𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒:𝔹 

⊢𝑝𝑟𝑒𝑑 𝑓(𝑥̅)∶=𝑒;
 

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅)    𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒0:𝔹    ,𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑝𝑜𝑠𝑡𝑒1:𝔹    𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒2:ℤ    endReturn(𝑆̅)    𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑆̅

⊢#𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑝𝑟𝑜𝑐 𝑓(𝑥̅){𝑆̅}
  

 

Well-formed programs 

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝐷̅)    ⊢𝐷̅̅ ̅̅     𝑃=𝐷̅

⊢𝑃
  

Figure 3.5 Typing Rules for Declarations and Programs 

 

3.3 Reduction Rules 

 

Figure 3.6 presents the reduction rules and axioms for the language. Specification clauses 

(prefixed by ‘#’) are omitted for brevity. Let 𝜎 denote a non-erroneous state of the 

program which maps variables to values. Assume an initial non-erroneous empty program 

state. Normal form values are Boolean or integer values. Operators ⊕′, !∗
′  denotes the 

concrete version of a symbolic operator ⊕, !∗ respectively. The symbol ⊥ denotes an 

erroneous value or program state, where in both cases execution halts. 

 

Judgement 𝑒, 𝜎 ⇓ 𝑣 holds if expression 𝑒 with state 𝜎 evaluates to value 𝑣. Arithmetic 

and relational expressions evaluate to their normal form by evaluating their operands and 

applying their operator on the resulting values. Division expressions abort execution 

when the divisor is zero. Logical expressions and ternary expressions short-circuit their 

evaluation and implication expressions 𝑒0 → 𝑒1 are evaluated as ¬𝑒0 ∨ 𝑒1. Procedure 
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calls are evaluated by substituting the parameters of the callee procedure in the program 

state with the evaluated arguments and evaluating the procedure body, where variable 

𝑟𝑒𝑠𝑢𝑙𝑡 maps in the state to the evaluated value. 

 

Judgement 𝑆, 𝜎 ⇓ 𝜎′ holds if statement 𝑆 with state 𝜎 evaluates to a new state 𝜎′. Two 

statements may be sequenced if the first statement is not a return statement, and it does 

not evaluate to a ⊥ state. An assignment 𝑥 ≔ 𝑒 with a state 𝜎 evaluates to a state 𝜎[𝑥 ≔

𝑣] if 𝑒 with state 𝜎 evaluates to 𝑣. A return statement 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; with a state 𝜎 evaluates 

to a state 𝜎[𝑟𝑒𝑠𝑢𝑙𝑡 ≔ 𝑛] if expression 𝑒 with state 𝜎 evaluates to 𝑛. An assertion 

evaluates to a ⊥ state if its expression evaluates to false, otherwise it evaluates to the same 

state. If-else statements evaluate to the state determined by the branch which is to be 

executed, which is determined by the value evaluated by the statement’s condition. A 

while statement evaluates to the current state if its guard condition evaluates to false, 

otherwise the body is evaluated for each successive state until the guard condition 

evaluates to false. 

 

Program State 𝜎 𝜎[𝑥 ≔ 𝑣](𝑦) = {
𝑣          𝑦 = 𝑥

𝜎(𝑦)               

Value 𝑣 ∷= 𝑏 | 𝑛 

Expressions 

 

𝑛,𝜎⇓𝑛
 

 

𝑏,𝜎⇓𝑏
 

 

𝑥,𝜎⇓𝜎(𝑥)
  

𝑒0,𝜎⇓𝑛0    𝑒1,𝜎⇓𝑛1 𝑎𝑟𝑖𝑡ℎ(⊕)

𝑒0⊕𝑒1,𝜎⇓𝑛0⊕′𝑛1
 

𝑒1,𝜎⇓0    𝑑𝑖𝑣(⊕)

𝑒0⊕𝑒1,𝜎⇓⊥
 

𝑒0,𝜎⇓𝑛0    𝑒1,𝜎⇓𝑛1    𝑛1≠0    𝑑𝑖𝑣(⊕)

𝑒0⊕𝑒1,𝜎⇓𝑛0⊕′𝑛1
 

𝑒0,𝜎⇓𝑛0    𝑒1,𝜎⇓𝑛1 𝑟𝑒𝑙(⊕)

𝑒0⊕𝑒1,𝜎⇓𝑛0⊕′𝑛1
 

𝑒0,𝜎⇓𝑓𝑎𝑙𝑠𝑒 

𝑒0∧𝑒1,𝜎⇓𝑓𝑎𝑙𝑠𝑒
  

𝑒0,𝜎⇓𝑡𝑟𝑢𝑒    𝑒1,𝜎⇓𝑏1

𝑒0∧𝑒1,𝜎⇓𝑏1
 

𝑒0,𝜎⇓𝑡𝑟𝑢𝑒

𝑒0∨𝑒1,𝜎⇓𝑡𝑟𝑢𝑒
 

𝑒0,𝜎⇓𝑓𝑎𝑙𝑠𝑒    𝑒1,𝜎⇓𝑏1

𝑒0∨𝑒1,𝜎⇓𝑏1
 

𝑒0,𝜎⇓𝑓𝑎𝑙𝑠𝑒

𝑒0→𝑒1,𝜎⇓𝑡𝑟𝑢𝑒
 

𝑒0,𝜎⇓𝑡𝑟𝑢𝑒    𝑒1,𝜎⇓𝑏1

𝑒0→𝑒1,𝜎⇓𝑏1
 

𝑒,𝜎⇓𝑛  𝑎𝑟𝑖𝑡ℎ(!∗)

!∗𝑒,𝜎⇓!∗
′𝑛

 
𝑒,𝜎⇓𝑏

¬𝑒,𝜎⇓¬′𝑏
 

𝑒,𝜎⇓𝑡𝑟𝑢𝑒  𝑒1,𝜎⇓𝑣1

(𝑒?𝑒1:𝑒2),𝜎⇓𝑣1
  

𝑒,𝜎⇓𝑓𝑎𝑙𝑠𝑒  𝑒2,𝜎⇓𝑣2

(𝑒?𝑒1:𝑒2),𝜎⇓𝑣2
 

𝑒,𝜎⇓𝑛̅̅ ̅̅ ̅̅ ̅̅     𝑝𝑟𝑜𝑐 𝑓(𝑥̅){𝑆̅}    𝑆̅,𝜎[𝑥≔𝑒̅̅ ̅̅ ̅̅ ]⇓𝜎′

𝑓(𝑒̅),𝜎⇓𝜎′(𝑟𝑒𝑠𝑢𝑙𝑡)
  

Statements 

𝑆0≠𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;   𝑆0,𝜎0⇓𝜎1    𝑆1,𝜎1⇓𝜎2

𝑆0 𝑆1,𝜎0⇓𝜎2
 

𝑒,𝜎⇓𝑣

𝑥≔𝑒;,𝜎⇓𝜎[𝑥≔𝑣]
 

𝑒,𝜎⇓𝑡𝑟𝑢𝑒    𝑆1̅̅ ̅,𝜎⇓𝜎′

𝑖𝑓 𝑒 {𝑆1̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆2̅̅ ̅},𝜎⇓𝜎′ 
𝑒,𝜎⇓𝑓𝑎𝑙𝑠𝑒    𝑆2̅̅ ̅,𝜎⇓𝜎′

𝑖𝑓 𝑒 {𝑆1̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆2̅̅ ̅},𝜎⇓𝜎′ 
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𝑒,𝜎⇓𝑡𝑟𝑢𝑒    𝑆̅ 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅},𝜎⇓𝜎′

𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅},𝜎⇓𝜎′
 

𝑒,𝜎⇓𝑓𝑎𝑙𝑠𝑒

𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅},𝜎⇓𝜎
 

𝑒,𝜎⇓𝑛

𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;,𝜎⇓𝜎[𝑟𝑒𝑠𝑢𝑙𝑡≔𝑛]
 

𝑒,𝜎⇓𝑡𝑟𝑢𝑒

𝑎𝑠𝑠𝑒𝑟𝑡 𝑒;,𝜎⇓𝜎
 

𝑒,𝜎⇓𝑓𝑎𝑙𝑠𝑒

𝑎𝑠𝑠𝑒𝑟𝑡 𝑒;,𝜎⇓⊥
 

Figure 3.6 Reduction Rules 

 

3.4 Verification Semantics 

 

The language implements a design by contract approach by enforcing contracts statically. 

Each procedure’s body is proven correct according to its specifications. When a rule is 

violated, an implementation of the proof system described in Section 3.4.1, informs us 

that either an assertion or the program itself is incorrect. 

 

Expressions defined in specifications are interpreted as symbolic logical expressions, 

where functions and predicates are not uninterpreted and their bodies correspond to the 

supplied expressions in their definition. This allows an SMT solver to perform 

instantiations on ground terms (e.g. given 𝑓(𝑥) = 𝑥 + 3, 𝑓(4) can be simplified to 7). 

 

3.4.1 Extended Hoare Logic for Recursive Procedures 

 

Figure 3.7 lists the verification rules and axioms used for the language. They are an 

extension of Hoare logic that includes assertion statements and structured programming 

capabilities through callable procedures. The rules below are denoted using the usual 

Hoare triples notation {𝜙} 𝐶 {𝜓}, instead of the directive-like notation that the language 

uses. 

 

Rule Assignment states that if a specification 𝜙 holds after an assignment 𝑥 ≔ 𝑒;, then a 

specification 𝜙[𝑒/𝑥] must hold before the assignment where we all free occurrences of 𝑥 

are substituted with 𝑒 in the original specification and 𝑒 must be total. Extending this rule 

to allow division expressions, rule Assignment Div requires that the divisor is non-zero. 

Rule Consequence allows the weakening of a precondition and the strengthening of a 

postcondition of a program segment. Rule Composition allows the derivation of a triple 

for the sequence of two statements if the postcondition of the first one is the precondition 
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of the second one. Rule If-Statement allows proving a triple for an if-else statement by 

considering a triple for each branch of the statement where the statements condition is 

assumed true on the first branch and false on the second and the triples share the same 

postcondition. Rule Partial-while allows proving the partial correctness of a triple for a 

while loop, where an invariant condition is needed to hold before and after the loop’s 

body, where the loop guard holds on the precondition of the body and its negation at the 

postcondition of the loop. Rule Total-while allows proving the total correctness of a while 

loop triple, by augmenting the previous rule with a non-negative variant expression 

required to be strictly decreasing for each iteration. 

 

 𝑡𝑜𝑡𝑎𝑙(𝑒)

{𝜙[𝑒/𝑥]} 𝑥≔𝑒; {𝜙} 
𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡  

𝜙→𝜙0    {𝜙0} 𝑆 {𝜓0}    𝜓0→𝜓

{𝜙} 𝑆 {𝜓}
𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

{𝜙} 𝑆0 {𝜂}    {𝜂} 𝑆1 {𝜓}

{𝜙} 𝑆0 𝑆1 {𝜓}
𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

{𝜙∧𝛽} 𝑆0̅̅ ̅ {𝜓}    {𝜙∧¬𝛽} 𝑆1̅̅ ̅ {𝜓}

{𝜙} 𝑖𝑓 𝛽 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅} {𝜓}
𝐼𝑓 − 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛t 

{𝜂∧𝛽 } 𝑆̅ {𝜂}

{𝜂} 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅} {𝜂∧¬𝛽}
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑤ℎ𝑖𝑙𝑒 

{𝜂∧𝛽∧0≤𝑒=𝑒0} 𝑆̅ {𝜂∧0≤𝑒<𝑒0}

{𝜂∧0≤𝑒} 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅} {𝜂∧¬𝛽}
𝑇𝑜𝑡𝑎𝑙 − 𝑤ℎ𝑖𝑙𝑒 

 

{𝜙∧𝜓} 𝑎𝑠𝑠𝑒𝑟𝑡 𝜙; {𝜓}
𝐴𝑠𝑠𝑒𝑟𝑡  

{𝜙} 𝑆̅ {𝜓}

{𝜙} 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} {𝜓}
𝑃𝑟𝑜𝑐 

{𝜙} 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆0̅̅ ̅ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; 𝑆1̅̅ ̅} {𝜓}

{𝜓[𝑒/𝑟𝑒𝑠𝑢𝑙𝑡]} 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; {𝜓}
𝑅𝑒𝑡𝑢𝑟𝑛  

𝑑𝑖𝑣(⊕)

{𝜙[(𝑒0⊕𝑒1)/𝑥]∧𝑒1≠0} 𝑥≔𝑒0⊕𝑒1; {𝜙}
𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐷𝑖𝑣  

{𝜙} 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} {𝜓}

{𝜙[𝑒/𝑥̅̅ ̅̅ ̅]} 𝑦≔𝑓(𝑒̅); {𝜓[𝑒/𝑥̅̅ ̅̅ ̅]}
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑐𝑎𝑙𝑙  

{𝜙∧0≤𝑎} 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} {𝜓}    {𝜙′∧0≤𝑎′} 𝑝𝑟𝑜𝑐 𝑓′(𝑥′̅̅ ̅) {𝑆′̅̅ ̅} {𝜓′} 

𝑦≔𝑓(𝑒̅);∈𝑆′̅̅ ̅    0≤𝑎[𝑒/𝑥̅̅ ̅̅ ̅]<𝑎′

{𝜙[𝑒/𝑥 ̅̅ ̅̅ ̅̅ ]} 𝑦≔𝑓(𝑒̅); {𝜓[𝑒/𝑥 ̅̅ ̅̅ ̅̅ ]}
𝑇𝑜𝑡𝑎𝑙 − 𝑐𝑎𝑙𝑙  

Figure 3.7 Verification Rules 

 

The rules described above cannot be used to prove the correctness of procedure calls and 

recursive procedures. The following rules extend Hoare logic for recursive procedures 

that return a value and use assertion statements. The simplest of these rules is the rule for 

assertions where the assertion condition should hold before the execution of the assert 

statement. A triple for a return statement 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;, has as postcondition 𝜓 its enclosing 

procedure’s postcondition and as precondition 𝜓[𝑒/𝑟𝑒𝑠𝑢𝑙𝑡] where the symbolic result 

expression is substituted with the return expression 𝑒. The specification of a 

procedure is proven correct if the corresponding specification is proven correct for 
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its body. Procedure call triples can be deduced by substituting the parameters that 

occur in the specifications of the callee procedure with the arguments supplied to 

the call. To guarantee termination of directly or mutually recursive calls, the variant 

of the callee procedure where parameters are substituted by the supplied 

arguments, must be strictly less than the variant of the caller. 

 

Clark showed that for languages which include recursion it is not possible to obtain a 

sound and complete Hoare-like system [15]. A similar system to the one described in this 

section was shown to be sound [16], therefore incomplete and these properties apply to 

this system using akin argumentation. 

 

3.4.2 Weakest Preconditions 

 

To automate the rules above, Figure 3.8 presents a recursive function to calculate the 

weakest precondition, given a statement and a postcondition. 

 

𝑤𝑝(𝑥 ≔ 𝑒; , 𝜓) = 𝜓[𝑒/𝑥], 𝑖𝑓 𝑡𝑜𝑡𝑎𝑙(𝑒) 

𝑤𝑝(𝑆0 𝑆1, 𝜓) = 𝑤𝑝(𝑆0, 𝑤𝑝(𝑆1, 𝜓)) 

𝑤𝑝(𝑖𝑓 𝛽 {𝑆0} 𝑒𝑙𝑠𝑒 {𝑆1}, 𝜓) = (𝛽 → 𝑤𝑝(𝑆0, 𝜓)) ∧ (¬𝛽 → 𝑤𝑝(𝑆1, 𝜓)) 

𝑤𝑝(#𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅}, 𝜓) = 𝑒 ∧ 0 ≤ 𝑣,

𝑖𝑓 (𝑒 ∧ 𝛽 ∧ 0 ≤ 𝑣 = 𝑣0 → 𝑤𝑝(𝑆̅, 𝑒 ∧ 0 ≤ 𝑣 < 𝑣0)) ∧ (𝑒 ∧ ¬𝛽 → 𝜓) 

𝑤𝑝(𝑎𝑠𝑠𝑒𝑟𝑡 𝜙; , 𝜓) = 𝜙 ∧ 𝜓 

𝑤𝑝(𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; , 𝜓) = 𝜓[𝑒/𝑟𝑒𝑠𝑢𝑙𝑡] 

𝑤𝑝(𝑦′ ≔ 𝑓(𝑒̅); , 𝜓) = 𝜙𝑓[𝑒/𝑥̅̅ ̅̅ ̅] ∧ 𝑣𝑓[𝑒/𝑥̅̅ ̅̅ ̅] < 𝑣0 ∧ ∀𝑦(𝜓𝑓[𝑒/𝑥̅̅ ̅̅ ̅, 𝑟𝑒𝑠𝑢𝑙𝑡/𝑦] → 𝜓) 

𝑤𝑝(𝑥 ≔ 𝑒0 ⊕ 𝑒1; , 𝜓) = 𝜓[(𝑒0 ⊕ 𝑒1)/𝑥] ∧ 𝑒1 ≠ 0, 𝑖𝑓 𝑑𝑖𝑣(⊕) 

𝑤𝑝(#𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅}, 𝜓) = 𝑤𝑝(𝑆̅, 𝜓),

𝑖𝑓 𝜙 ∧ 0 ≤ 𝑣 → 𝑤𝑝(𝑆̅, 𝜓) 

Figure 3.8 Weakest Precondition Function 

When calculating the weakest precondition for a procedure call it is assumed that the 

relevant statement appears in a procedure declaration  

#𝑝𝑟𝑒 𝜙𝑓 #𝑝𝑜𝑠𝑡 𝜓𝑓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣𝑓  𝑓(𝑥̅) {𝑆̅}. 
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A specification #𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 0  for a procedure 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} is valid for 

partial correctness if 𝜙 → 𝑤𝑝(#𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 0 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅}, 𝜓). A 

specification #𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣  for a procedure 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} is valid for 

total correctness if 𝜙 ∧ 0 ≤ 𝑣 → 𝑤𝑝(#𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅}, 𝜓). 

The correctness of the whole program is determined by the correctness of every 

procedure. 

 

3.5 LLM Assistant Integration 

 

The tool utilizes the capabilities of current large language models to automate the 

debugging process of a faulty program or the semi-decidable aspects of the verification 

process through the assertion language. The LLM is treated as an unreliable oracle, and 

therefore cannot operate unsupervised, and its produced output has no guarantees 

regarding correctness (or anything else). 

 

The LLM interferes when a program cannot be proven correct using the proof system 

described in the Section 3.4, by being prompted with the detected error and the original 

program. The model may respond by suggesting a different specification or altering the 

original program and explain the reasoning behind its actions. These responses are 

supervised by the user and can be used to evaluate the newly generated code for 

correctness or discarded. 
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A prototype for the language as described in the previous chapter along with integration 

of an LLM Assistant was implemented in python. Architecturally it follows the structure 

of a multi-pass compiler, being a hybrid of an interpreter and a static analysis tool with 

supplementary LLM assistance, shown diagrammatically below: 
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Figure 4.1 Tool Architecture 

 

4.1 Parsing 

 

The concrete syntax chosen for the tool closely resembles the abstract syntax given in 

Section 3.1. This syntax presented using EBNF notation can be found in Appendix B. 

 

The syntax follows similar lexical rules as the C language. Operators which cannot be 

represented using ASCII characters are approximated using fairly conventional 

alternatives (e.g. using != for ≠). Integer literals are represented using signed base 10 

notation. Identifier names are identical to standard C identifiers and do not overlap with 

any keyword. Lexemes may be separated by whitespace characters, which are 

insignificant. Single line comments prefixed by ‘//’ are allowed and ignored by the parser. 
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The grammar includes precedence and associativity rules for all operators defined in the 

previous chapter, in a manner like most C-family languages. Expression grouping using 

parentheses is allowed. If-else statements may be chained without block nesting. 

Moreover, metaconditions (prefixed by #) are optional, which allows the user to omit 

variants if they do not wish to examine termination, or they can omit preconditions when 

there is no need to validate one, or even postconditions in case that a program should only 

be executed, not verified. Variants and invariants are also allowed to be omitted if it is 

desired to receive a proposed such expression by the LLM assistant. 

 

The syntax was deliberately constructed to be easy to parse, as it can be shown that it can 

be specified by an LL(1) grammar and implement a simple recursive descent parser for 

it. Having said that, the pyparsing module [17] was used to implement the parser by 

specifying the respective parsing expression grammar. By executing the parser on an 

input string, an abstract syntax tree (AST) containing metadata about the nodes text 

location is created to be further processed, given that the input is syntactically valid. 

 

4.2 Semantics and Typing 

 

During semantic analysis the AST is processed to determine whether the respective 

program is well formed, construct a symbol table that associates variables with types and 

declarations with their kinds and produce the symbol table and the call graph between the 

program procedures. 

 

The well formedness of a program is evaluated using the typing rules described in the 

previous chapter in a top-down manner using pattern matching, based on the context of 

the specification. Type inference is also performed at this step on assignments by 

evaluating the type of the assigned expression and declaring a new variable with the 

inferred type or detecting ill-formed assignments to variables of different types or 

parameters which are immutable. 
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Whenever a rule is violated, the error is reported with a descriptive message and the whole 

semantic check phase is terminated, no recovery attempts are made. 

 

4.3 Compilation and Execution 

 

An interpreter for the language was also implemented to allow the empirical verification 

of the correctness or faultiness of the inspected program. The implementation uses a 

virtual stack-based execution context with a simple instruction set that is described below. 

 

4.3.1 Virtual Machine 

 

The virtual machine is composed of the following elements: 

• Program memory, which is a sequence of instructions to be executed. 

• Instruction pointer, which points the currently executing instruction. 

• Value stack, which contains integer values used by the program. 

• Call stack, where the values of the instruction pointer from previous calls are 

stored. 

• Frame stack, which stores segments of the value stack according to calls already 

executed. 

• String table, which contains messages when the program is abruptly terminated 

by a failed assertion. 

There is no concept of word size since the native python integers are used in this 

implementation, which have unlimited precision. There is no explicit Boolean type either 

and the zero value is treated as false. 

 

4.3.2 Instruction Set 

 

Below are listed the instructions used by the virtual machine to execute a program. Each 

instruction may optionally include an integer operand that may be interpreted as a label 

or an immediate value. All non control flow instructions increment the instruction pointer 

by one. The program terminates when the instruction pointer reaches the end of program 
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memory. Division and modulo operations are not defined on zero divisor and this 

implementation raises a ZeroDivisionError which is part of the python runtime. 

 

The following notation is used below: 

• [𝐵𝑒𝑓𝑜𝑟𝑒] → [𝐴𝑓𝑡𝑒𝑟]: Stack modification, only the topmost values are shown. 

• 𝑏𝑎𝑠𝑒: [𝑡𝑜𝑝 𝑣𝑎𝑙𝑢𝑒𝑠]: Denotes the whole stack. 

• [𝑎] ∗ 𝑛: A stack consisting of n repetitions of the value a. 

• |𝑆|: The length of the stack S. 

Value operations are denoted using a C-like syntax. The assert instruction on failure 

reaches the end of program and outputs the message provided by its operand. 

 

Mnemonic Value Stack 

NOP  

NEG [V]→[-V] 

NOT [V]→[!V] 

ADD [V1, V2]→[V1+V2] 

SUB [V1, V2]→[V1-V2] 

MUL [V1, V2]→[V1*V2] 

DIV [V1, V2]→[V1/V2] 

MOD [V1, V2]→[V1%V2] 

LT [V1, V2]→[V1<V2] 

LE [V1, V2]→[V1<=V2] 

EQ [V1, V2]→[V1==V2] 

NE [V1, V2]→[V1!=V2] 

GE [V1, V2]→[V1>=V2] 

GT [V1, V2]→[V1>V2] 

Table 4.1 Arithmetic Instructions 

 

Mnemonic Operand Value Stack Frame Stack Side Effect 

LOAD I []→[S[I]]   

STORE I [V]→[]  S[I]=V 



27 

 

 

Mnemonic Operand Value Stack Call 

Stack 

Frame 

Stack 

Instruction 

Pointer 

JMP I    I 

JMP_IF I [V]→[V]   V!=0?I:IP+1 

JMP_UNLESS I [V]→[V]   V==0?I:IP+1 

ASSERT I [V]→[]   V==0?END:IP+1 

CALL I  []→[IP]  I 

RET  S0:[V]→S:[V] [I]→[] [S]→[] I+1 

Table 4.3 Control Flow Instructions 

 

4.3.3 Code Generation 

 

The code generation phase follows closely the reduction rules described in Chapter 3. 

Where a naive implementation of the interpreter would traverse the AST at runtime and 

apply the reduction rules, the AST is converted top-down in a sequence of instructions to 

be interpreted by the virtual machine. Given that the AST is well-formed, the code 

generation phase should not fail or produce ill-formed code which violates the virtual 

machine semantics (e.g. popping from an empty stack). 

 

Base expressions are compiled using the CONST instruction. Composite expressions are 

compiled by recursively generating instructions for the respective subexpressions and 

emit the necessary instructions to combine them, for example 𝑒0 + 𝑒1 would be generated 

as: 𝑒0 𝑐𝑜𝑑𝑒; 𝑒1 𝑐𝑜𝑑𝑒; 𝐴𝐷𝐷. 

 

CONST I []→[I]   

POP  [V]→[]   

ENTER I S:[]→S:[0]*max{0,|S|-I}   

FRAME I S:[V]*I→S []→[[V]*I]  

Table 4.2 Stack Manipulation Instructions 
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Conditional expressions and control flow statements are compiled using backpatching to 

‘fix’ jump instruction target that are not known when generating them, and POP 

instructions to remove unneeded values when branching is determined. Assignments are 

implemented using the STORE instruction. When compiling an assert statement, after 

generating the code for the assertion expression the instruction ASSERT is emitted with 

operand the location of an entry in the string table of the virtual machine with the message 

displayed in case of a failed assertion. 

 

Procedure calls are generated by compiling their arguments in reverse order and 

allocating them on the stack frame (using the FRAME instruction), where the callee 

procedure is to be executed afterwards. Calls to procedures not yet compiled are 

backpatched after compiling all procedures. Procedures use the ENTER instruction in the 

same way that many calling conventions require a prologue to allocate space in the stack 

and a RET instruction as an epilogue. The amount of space to allocate is again, 

backpatched. 

 

A symbol table with the addresses of the compiled procedures is also produced along with 

the generated code as there is no single specified entry point, and the user may select 

which procedure to execute and the supplied arguments using command-line options. 

 

4.4 Verification 

 

The tool detects software faults by applying the extensions of Hoare Logic for recursive 

procedural programming described in Chapter 3. All expressions that appear in the 

assertion language and all intermediate conditions are represented using Z3 expressions. 

Converting AST expressions to Z3 expressions is mostly trivial, since all AST expression 

nodes have equivalent Z3 nodes which can be constructed through the Z3 API. No 

function is left uninterpreted, where their Z3 definition is equivalent to their AST 

declaration expression. 

 

Each program is verified for partial correctness or total correctness where variant 

expressions are employed. For each procedure and its specification, the weakest 
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precondition is computed using an implementation of the recursive function 𝑤𝑝. Each 

intermediate inferred precondition is checked using the Z3 Automated Theorem Prover, 

where if the precondition is found unsatisfiable it is presented in a message with its 

location and verification fails. The provided precondition must imply the calculated 

precondition (by the consequence rule), and the needed implications of a while loop 

precondition are checked using the Z3 Automated Theorem Prover. If such implication is 

not proven to be a tautology, again a descriptive message is presented along with a 

counterexample, and verification fails. The total call rule is applied if a call is directly or 

mutually recursive which is determined through the call graph, otherwise the partial rule 

suffices since termination does not depend on non recursive calls. 

 

Example: 

 

As an example of fault detection using the implementation described, the following faulty 

program where it is intended that the integer square root of x is computed, is tried to be 

verified for partial correctness. By computing the weakest precondition of the procedure 

using backwards inferences traced in the figure below, the precondition computed before 

the if-else statement is unsatisfiable. By observing the implications that compose the 

precondition, their consequents contain the negation of their antecedents respectively. 

The program can be corrected by inverting the if condition, which causes the swapping 

of the antecedents of the implications of the precondition. The tool produces the following 

output when attempting to verify this program: 

buggy/isqrt.hld:13:9: error: precondition `If(m*m <= x, 

   And(And(l*l <= x, x < m*m), 0 <= x), 

   And(And(m*m <= x, x < r*r), 0 <= x))` found is unsatisfiable 

        if m * m <= x { 

        ^ 

 

#pre x >= 0 

#post result * result <= x && x < (result + 1) * (result + 1) 

proc isqrt(x) { 

  l := 0; 

  r := x + 1; 
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  #invariant l * l <= x && x < r * r 

  #variant r - l 

  while l != r - 1 { 

    m := (l + r) / 2; 

    {(𝑚 ∗ 𝑚 ≤ 𝑥 → 𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑚 ∗ 𝑚) ∧ (𝑚 ∗ 𝑚 > 𝑥 → 𝑚 ∗ 𝑚 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟)} 

    if m * m <= x { 

      {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑚 ∗ 𝑚 ∧ 𝑙 = 𝑚 − 1} 

       r := m; 

      {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑙 = 𝑟 − 1} 

    } else { 

      {𝑚 ∗ 𝑚 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑚 = 𝑟 − 1} 

       l := m; 

      {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑙 = 𝑟 − 1} 

    } 

    {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑙 = 𝑟 − 1} 

  } 

  {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑙 = 𝑟 − 1} 

  {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < (𝑙 + 1) ∗ (𝑙 + 1)} 

  return l; 

  {𝑟𝑒𝑠𝑢𝑙𝑡 ∗ 𝑟𝑒𝑠𝑢𝑙𝑡 ≤ 𝑥 ∧ 𝑥 < (𝑟𝑒𝑠𝑢𝑙𝑡 + 1) ∗ (𝑟𝑒𝑠𝑢𝑙𝑡 + 1)} 

} 

Figure 4.2 Faulty Integer Square Root Program Inference Trace 

 

4.5 GPT Assistant 

 

Using OpenAI’s assistants and its API, an assistant was created using the gpt-3.5-turbo 

model by providing some instructions in natural language, where the language is 

described briefly, and example programs are provided to the model. The assistant is 

instructed to take in consideration comments starting with ‘///’ as user supplied hints that 

may help in correcting the faulty program and if it was to generate a new program, to use 

a specified format that is easily parsed by the tool. The full prompt can be found in 

Appendix C. 
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When a program fails to be verified for correctness, the assistant is provided a prompt 

containing the program and the error through the asynchronous OpenAI API. The tool 

offers an interactive mode flag, where when a proposed modified program is detected in 

the assistant’s response the user may choose to instantly update their previous program. 

 

Successful Example: 

As a successful example, the following figure presents the interaction between the user, 

the tool and the assistant through the messages displayed by the tool and the assistant’s 

response for the faulty integer square root program shown previously. In this scenario the 

user chooses to apply the changes proposed by the tool and the program is subsequently 

verified and the calculated weakest precondition required by the procedure is presented. 

 

$ ./hld/run.py buggy/isqrt.hld --ai --interactive 

buggy/isqrt.hld:13:9: error: precondition `If(m*m <= x, 

   And(And(l*l <= x, x < m*m), 0 <= x), 

   And(And(m*m <= x, x < r*r), 0 <= x))` found is unsatisfiable 

        if m * m <= x { 

        ^ 

Asking Hoare Logic Debugging Assistant (gpt-3.5-turbo)... 

 

The error message you have indicates that the precondition for the `if` statement inside 

the `isqrt` procedure is found to be unsatisfiable by the compiler. This implies that the 

condition being checked in the `if` statement contradicts the conditions specified in the 

preconditions and invariants of the program. 

 

Looking closely at the `if` statement condition `m * m <= x`, it seems to be the cause of 

the issue. The precondition requires `m * m <= x` to be true, but this condition is directly 

conflicting with the invariant `l * l <= x`.  

 

To correct this error, you should adjust the logic of the program to ensure consistency 

between the conditions in the `if` statement, the preconditions, and the invariants. One 
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possible correction would be to consider the relationship between `m`, `l`, and `r` in the 

binary search algorithm and update the conditions accordingly.  

 

Here is the corrected version of the `isqrt` procedure: 

 

``` 

#pre x >= 0 

#post result * result <= x && x < (result + 1) * (result + 1) 

proc isqrt(x) { 

    l := 0; 

    r := x + 1; 

    #invariant l * l <= x && x < r * r 

    #variant r - l 

    while l != r - 1 { 

        m := (l + r) / 2; 

        if m * m > x { 

            r := m; 

        } else { 

            l := m; 

        } 

    } 

    return l; 

} 

``` 

 

In this corrected version, the condition in the `if` statement has been updated to `m * m 

> x` instead of `m * m <= x` to maintain consistency with the specified preconditions and 

invariants. This change should resolve the unsatisfiability error. 

Apply proposed changes and retry? (Y/n) y 

proc isqrt(...) {...} requires `And(Not((1 + x)*(1 + x) <= x), 0 <= x)` 

Figure 4.3 Integer Square Root Program Correction Using a GPT Assistant 
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Failed Example: 

As a failed example, the following figure presents the interaction between the user, the 

tool and the assistant through the messages displayed by the tool and the assistant’s 

response for a faulty sum of consecutive even integers program (displayed using the cat 

command). In this case, the supplied loop invariant is incorrect and GPT identifies the 

error but fails to correct it properly, providing an invalid explanation. 

 

$ cat examples/sum.hld 

#post result == n * (n - 1) 

proc sum(n) { 

  i := 0; 

  total := 0; 

  #invariant total == i * (i + 1) 

  #variant n - i 

  while i != n { 

    total := total + 2 * i; 

    i := i + 1; 

  } 

  return total; 

} 

$ ./hld/run.py examples/sum.hld --ai --interactive 

examples/sum.hld:7:16: error: invariant and guard negation do not imply post condition. 

        post: total == n*(-1 + n) 

counter-example: [i = -2, total = 2, n = -2] 

  while i != n { 

               ^ 

Asking Hoare Logic Debugging Assistant (gpt-3.5-turbo)... 

 

The error message indicates that the postcondition specified in the program is not 

implied by the invariant and guard (loop condition) specified in the loop. This suggests 

an issue with the loop and the way the loop condition is interacting with the 

postcondition. 
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To resolve this issue, we need to ensure that the loop condition and the invariant are 

correctly related to eventually satisfy the postcondition. One way to correct the program 

is to adjust the loop condition and the invariant.  

 

Here is the corrected program: 

 

``` 

#post result == n * (n - 1) 

proc sum(n) { 

  i := 0; 

  total := 0; 

  #invariant total == i * (2 * i - 1)  /// Update the invariant to match the relationship 

between total and i 

  #variant n - i 

  while i != n { 

    total := total + 2 * i; 

    i := i + 1; 

  } 

  return total; 

} 

``` 

 

In this corrected version, the invariant has been updated to reflect the relationship 

between the total and the loop variable `i`. This adjustment ensures that the loop 

invariant is consistent with the changes happening inside the loop and will help in 

satisfying the specified postcondition. 

Apply proposed changes and retry? (Y/n) n 

Figure 4.4 Failed Attempt to Correct a Summation Program Using a GPT Assistant 
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5.1 Usability and Accuracy 

 

In this section, the usability of the tool will be discussed qualitatively. In general, the tool 

offers fine-grained, per-statement precision in detecting errors, assuming that 

specifications were accurate. The generated messages in case of a detected error, describe 

the inferred fault precisely according to the formal system used. This does not necessarily 

mean that the programmer will understand their program’s fault, since the tool informs 

them about the validity of logical conditions, and it may not be immediately clear as to 

what exactly must corrected. 

 

An early version of the tool which did not include the LLM assistant along with two 

simple faulty programs to debug were given to a handful of senior undergraduate students 

that had been previously taught Hoare logic. While they responded mostly positively to 

the tool and its usage, generally regarding it as helpful and partially succeeding in 

debugging the said programs, they felt uncomfortable with the amount of Hoare logic 

required to use and understand the tool. 

 

The language poses some unusual restrictions on division expressions and procedure 

calls, as they must be directly assigned and not nested anywhere else in the program’s 

code. This is required since these expressions require extra preconditions, and the 

verification rules are applied at the level of statements. These restrictions can be relaxed 

if a rewrite (or desugar) step is added after parsing where these expressions are de-nested 

and assigned to fresh variables. 
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The integration and usage of the LLM assistant is a double-edged sword. It generally 

succeeds in finding invariants and variant expressions for many programs. While in many 

cases it is capable of correcting faulty programs and is responsive to user hints, at times 

it proposes non-sensical solutions or even ignores the problem completely. Sometimes it 

can contradict itself between its explanations and proposed code, which can cause 

frustration and confusion to the programmer. It may also fail to comply to the syntactic 

rules of the language by prepending invariants before non-loop constructs. 

 

The accuracy of the assistant can be increased by using more recent models such as GPT-

4, Gemini, or Llama. Querying the LLM multiple times, merging and repairing the 

responses increases the precision of the model in finding invariants, [18] therefore similar 

techniques could be beneficial for this implementation in terms of accuracy. Querying 

can be done in parallel so that responsiveness will not be affected. 

 

5.2 Performance 

 

Even though performance was not a primary concern in this implementation, it is a 

detrimental factor for any static analysis tool. Since these tools attempt to solve (or 

approximate) NP-hard problems, their execution time must scale well with larger input 

programs. Additionally, this tool aims to be interactive, so that programmers may attempt 

to correct their programs as often as needed, therefore high response time is unwanted. 

This implementation written in python, whose runtime has many known caveats 

concerning its performance by itself, has some issues that although resolvable using 

various methods, shall be addressed. 

 

By running a profiler, two major bottlenecks where identified: the parser and the OpenAI 

API. The parsing library used struggles with some inputs causing it to backtrack 

unnecessarily, and a simpler grammar cannot be easily expressed using the provided 

functionality. This is easily fixed by creating a handwritten recursive descent parser 

without backtracking, or by using an ‘industrial’ parser generator. The problems caused 

by OpenAI’s API were trickier. The needed modules’ import time, which occurs at 
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runtime, takes a great portion of the total execution time and this is caused by CPython’s 

importing mechanisms. This was partially solved by using lazy imports, i.e. importing the 

needed modules when needed, in which case execution times are still penalized. A 

possible solution to this bottleneck, would be rewriting the tool in a compiled language 

where no such imports at runtime are necessary. 

 

Another contributing factor to the performance of this tool, is the assistant’s response 

time. Current LLMs need tens of seconds to respond to a few hundred tokens, which 

damages the tools latency even further. 

 

Lastly, the SMT solver, needs a significant share of resources to determine the 

satisfiability of the computed properties. Some calls to the solver can be avoided, as this 

implementation checks the satisfiability of every inferred precondition at each statement. 

Instead, the solver can be called on fewer statements and then backtracking can be used 

to detect the offending statement. 

 

5.3 Limitations 

 

The language described in this thesis is computationally universal, as demonstrated by 

the program below which simulates rule 110, a known universal cellular automaton [19]. 

The integer 𝑛 represents the state of the automaton as a binary vector. Since the language 

does not support bitwise operations, they are emulated using arithmetic and relational 

operators (addition of powers of two is equivalent to bitwise or, 𝑛 % 2𝑘+1 ≥ 2𝑘 is true if 

and only if the 𝑘th bit of 𝑛 is set). Variables 𝑙, 𝑐, 𝑟 represent the left, centre (self), and 

right cells respectively of the log2(𝑖) cell, used by the if condition to determine the 

log2(𝑖) cell of the next state 𝑚. The procedure terminates when no set cells with no set 

neighbouring cells remain, since their next state will always be zero. 

 

proc rule110(n) { 

    m := 0; i := 1; 

    t := n % 4; l := t >= 2; 

    t := n % 2; c := t >= 1; 
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    r := false; 

    while i <= n * 2 { 

        if (c || r) && (!l || !c || !r) { 

            m := m + i; 

        } else {} 

        r := c; c := l; 

        i := i * 2; 

        t := n % (i * 4); l := t >= i * 2; 

    } 

    return m; 

} 

Figure 5.1 Procedure that Computes the Next State of Rule 110. 

 

Even though any computable function can be expressed in this language, it poses some 

practical difficulties. Most general-purpose programming languages do not use arbitrary 

precision integers. It is possible to simulate bit-vectors with any overflow behavior 

(wrapping, undefined, saturated, etc.) using integers and a few user-defined functions and 

predicates. However, native support could be added to the tool without burdening the 

programmer, by extending the syntax to include type annotations, the type system to 

include bit-vectors and utilizing the Z3 bit-vector values. Support for memory references 

through arrays, pointers, and composite data types, would turn this tool closer to a typical 

programming language and the verification step would be powered by a suitable flavor 

of separation logic. 

 

The tool does not restrict the programmer in any way in expressing specifications, 

therefore it can fail to terminate when verifying a program. Recursive functions and 

predicates are not checked for termination, but employing a paradigm such as total 

functional programming on these structures is possible and potentially beneficial. 
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6.1 Summary 

 

In this project a tool was devised to assist in identifying and resolving software faults, 

facilitating formal methods and the competences of LLMs. The tool ensures that 

programs comply to their specifications and leads the user to the necessary actions to 

correct their programs otherwise. LLMs can bridge the gap between the complexity of 

Hoare-like systems, accelerating debugging and making formal verification more 

accessible, by providing insight into the deductions constructed by the tool. 

 

Through empirical evaluation and a small-scale survey, we conclude that this tool is 

deemed as useful by programmers with a background in Hoare-like proof systems. By 

utilizing the capabilities of LLMs, the barrier to entry for using formal methods is 

significantly lowered, even allowing the expression of specifications and bug causes in 

natural language. 

 

This work opens new avenues for future research in combining artificial intelligence with 

formal methods, aiming to further refine the user experience and expand the capabilities 

of such tools. By exploring this synergy, we can move towards accessible, robust, and 

error-free software development. 

 

6.2 Challenges 
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During this project, several challenges were encountered. One major hurdle was the 

design of the proof system, which required to carefully create and understand suitable 

extensions to Hoare logic, ensuring soundness. Moreover, the Z3 API presented 

difficulties due to its vastness and steep learning curve. Finally, the performance issues 

that emerged were a concern; the parsing library used to generate ASTs, python’s runtime 

and OpenAI API’s latency affected the tool’s responsiveness. These challenges were 

addressed through iterative refinement and optimization of the implementation achieving 

the primary goals of this thesis. 

 

6.3 Future Work 

 

There are many possible extensions to the tool described in this thesis. The tool can be 

further developed to include more expressive language constructs such as memory 

references, composite data structures and dynamic methods, as well as to incorporate 

other approaches in formal methods such as symbolic execution or model checking. The 

communication between the tool and the LLMs can be implemented using more 

sophisticated approaches [18], to better the accuracy and reliability of the model, thereby 

improving user experience and accelerating software development. 

 

There are countless static analysis tools with more features than the one developed during 

this thesis, that can be reused. By focusing on the synergy of LLMs and formal methods, 

different strategies can be implemented by providing information to the LLM using static 

analysis tools to debug or even synthesise programs, under the user’s supervision or fully 

automated. Formal methods allow users to trust the responses generated by the LLMs as 

they can guarantee that the programs comply to certain specifications [20]. 
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Appendix A 

Implementation Code 

The code for the implementation is publicly available at 

https://github.com/gevang03/epl401-hoare-logic-debugger. 

User’s Guide 

Introduction 

The purpose of this tool is to assist in finding bugs in programs, thus making 

programming easier. The tool uses formal methods to detect bugs and verify correctness 

and termination. It includes an integrated large language model that can assist in 

correcting found bugs. 

Build 

On Linux, run the following commands. Make sure that python3 --version is 3.9.18. 

 

Run: 

$ git clone --depth=1 https://github.com/gevang03/epl401-hoare-logic-d
ebugger.git 
$ cd epl401-hoare-logic-debugger 
$ python3 -m venv .venv 
$ . .venv/bin/activate 
$ pip install --require-virtualenv -r requirements.txt 

Usage 

Synopsis: $ ./hld/run.py [OPTIONS] FILE 

Run ./hld/run.py FILE to check for partial correctness 

Run ./hld/run.py --total FILE to check for total correctness 

(termination) 

Run ./hld/run.py --run 'f x y' FILE to execute procedure f with 

arguments x and y. 

Run ./hld/run.py --ai FILE to ask GPT assistant about error. 

Run ./hld/run.py --ai --interactive FILE to interactively apply 

GPT assistant’s changes. 

Run ./hld/run.py -h for help. 

https://github.com/gevang03/epl401-hoare-logic-debugger
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Language 

The language that the tool supports is procedural and should be familiar to any C/Java 

programmer. There also exist some constructs to express program specifications. 

Types and Basic Expressions 

Only two value types exist in HLD: Booleans (true, false) signed integers (represented 

in base 10) 

The following prefix/infix operators are defined with the same meaning, precedence, and 

associativity as in C or Java: 

• Arithmetic: +, -, *, /, % 
• Boolean: !, &&, ||, -> 
• Relational: <, <=, ==, !=, >=, > 
• Conditional: ?: 

Parentheses () can be used to group expressions. Relational operators are defined for 

integer typed expressions only. 

Variables 

Variables can be declared/assigned: 

// c++ style comments 
x := 11; 
p := false; 
y := x + 3; 

The division and modulo operator cannot be nested in expressions, they must be directly 

assigned to a variable. 

 

Example: 

temp := x / y; 
a := temp + 1; 
// `a := (x / y) + 1;` is illegal 

Control Flow 

The following control flow structures are available: 

if-else statements: 

if x < 1 { // note that braces {} are mandatory. 
    y := 3; 
} else { 
    y := x + 1; 
} 

while loops: Note: while loop conditions are referred as guards by the tool. 

https://en.cppreference.com/w/c/language/operator_precedence
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while x < 10 { 
    s := s + x; 
    x := x + 1; 
} 

return statements: 

proc foo() { 
    // ... 
    return -1; 
} 

Assert statements: must be supplied a Boolean condition which should evaluate to true 

for every valid execution of a program: 

assert x > 0; 

Procedures 

Procedures are the basic abstraction used to define specifications and discover bugs in a 

program. 

• Procedures accept a number of integer parameters and return a single integer value. 

Parameters cannot be reassigned (they are immutable). 

• Procedures must end with a return statement in a every reaching path of execution. 

• Procedures may be preceded by a precondition (a condition which should hold 

before the execution of the procedure). 

• Procedures may be preceded by a postcondition (a condition which should hold after 

the execution of the procedure). The result keyword is used to represent the value 

returned by the procedure. 

Example: 

#pre x >= 0           // precondition 
#post result == x + 1 // postcondition 
proc inc(x) { 
    y := x + 1; 
    return y; 
} 

Procedure Calls 

Procedures may be called with the required number of arguments. However, they must 

be directly assigned, not nested in any other expressions. 

Example: 

#pre x >= 0 
#post result == x + 2 
proc inc2(x) { 
    x1 := inc(x); 
    x2 := inc(x1); 



A-4 

    // `return inc(inc(x));` is illegal 
    return x2; 
} 

Variants and Invariants 

Invariants are conditions which must hold before, during and after the execution of an 

iteration of a while loop/recursive call. They are used to prove the correctness of these 

iterative structures. 

Variants are integer expressions which each iteration must be decreased and are always 

bound by zero. They are used to prove termination of while loops/recursive calls. 

Example: 

#pre n >= 0 
#post result == n * (n - 1) / 2 
proc sum(n) { 
    i := 0; 
    total := 0; 
    #invariant total == i * (i - 1) / 2 
    #variant n - i 
    while i != n { 
        total := total + i; 
        i := i + 1; 
    } 
    return total; 
} 

Functions and Predicates 

Functions and predicates are used to define other specifications, that may require 

recursion to do so, for example. Their body consists of a single integral or Boolean 

expression respectively. Functions and predicates cannot be called inside of a procedure. 

 

Examples: 

// example predicate for divides operator  
pred divides(a, b) := b % a == 0; 

// 'equivalent' to: 
// function fct(n) { 
//     if (n <= 0) { 
//         return 1; 
//     } else { 
//         return n * fct(n - 1); 
//     } 
// } 
fn fct(n) := n <= 0 ? 1 : n * fct(n - 1); 
 
// note that variant here is used to prove the termination of a recurs
ive procedure 
#pre x >= 0 
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#post result == fct(x) 
#variant x 
proc calc_fct(x) { 
  if x == 0 { 
    return 1; 
  } else { 
    y := calc_fct(x-1); 
    return x * y; 
  } 
} 

Quantified Expressions 

Quantified expressions using the forall end exists keywords, can be used in specification 

if necessary. Quantified expressions can bind multiple variables (forall x. forall 
y. p(x, y) == forall x y. p(x, y)). 

pred prime(n) := n > 1 && forall i. 2 <= i && i < n -> n % i != 0; 
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Appendix B 

Concrete Syntax in EBNF Notation 

(* Whitespace and single line comments prefixed by ‘//’ are not significant and omitted 

for brevity. *) 

 

program = declaration, {declaration}; 

 

declaration = procedure | fn_or_pred; 

 

procedure = [pre], [post], [variant], 'proc', identifier, paramlist, block; 

fn_or_pred = ('fn' | 'pred'), ident, paramlist, ':=', expr, ';'; 

 

(* STATEMENTS *) 

statement = ifelse | assert | assignment | while | return; 

ifelse = 'if', expression, block, 'else', (ifelse | block); 

assert = 'assert', expression, ';'; 

assignment = identifier, ':=', expression, ';'; 

while = [invariant], [variant], 'while', expression, block; 

block = '{', {statement}, '}'; 

return = 'return', expression, ';'; 

 

(* EXPRESSIONS *) 

expression = primary | ternary_expr; 

 

(* Using regex: /[a-zA-Z_][a-zA-Z0-9_]*/ *) 

(* Matches from keywords are excluded *) 

identifier = ((alpha | '_'), {alphanum | '_'}) - keyword; 

call = identifier, '(', [expression, {',', expression}], ')'; 

quantified = ('forall' | 'exists'), identifier, {identfier}, '.', expr; 

 

literal = bool | int; 
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bool = 'true' | 'false'; 

int = digits, {digits}; 

 

(* ASSERTIONS *) 

pre = '#pre', expression; 

post = '#post', expression; 

invariant = '#invariant', expression; 

variant = '#variant', expression; 

 

(* AUXILIARY *) 

paramlist = '(', [identifier, {',', identifier}], ')'; 

 

alphanum = alpha | digits; 

alpha = lower | upper; 

lower = ? letters a to z ?; 

upper = ? letters A to Z ?; 

digits = ? digits 0 to 9 ?; 

 

ternary_expr = impl_expr, '?', ternary_expr, ':', ternary_expr; 

impl_expr = or_expr, '||', or_expr; 

or_expr = and_expr, '||', and_expr; 

and_expr = rel_expr, '&&', rel_expr; 

rel_expr = add_expr, rel_op, add_expr; 

add_expr = mul_expr, add_op, mul_expr; 

mul_expr = unary_expr, mul_op, unary_expr; 

unary_expr = un_op, primary; 

primary = '(' expression ')' | literal | identifier | call | 'result' | quantified; 

 

rel_op = '<' | '<=' | '==' | '!=' | '>=' | '>'; 

add_op = '+' | '-'; 

mul_op = '*' | '/' | '%'; 

un_op = '+' | '-' | '!'; 
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keyword = 'assert' | 'if' | 'else' | 'proc' | 'fn' | 'while' | 'true' | 'false' | 'return'  

  | 'result' | 'forall' | 'exists' | 'pred' 

  | '#pre' | '#post' | '#invariant' | '#variant'; 
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Appendix C 

OpenAI assistant prompt 

You are an assistant for a procedural programming language where each procedure is 

verified using Hoare logic and backwards inferences. Hoare Logic clauses are prefixed 

by '#'. If statements are always followed by an else statement. Invariants and variants do 

not affect program behavior. Invariants appear only before loops, variants appear before 

loops and procedures. fn functions are used to describe specifications. The result 

expression refers to the value returned by the procedure. Values prefixed by `e!` refer to 

variant bounds. Comments starting with ̀ ///` are user hints about what they think the error 

is. Users provide the program and an error message trying to figure out what is wrong 

with their program. Either some statement or expression in the program, or some 

precondition, postcondition, variant, invariant may be wrong. If a correction would be 

suggested, supply the whole program. Example correct programs are provided in file 

retrieval 


