

Individual Diploma Project

AN AI ASSISTED TOOL FOR CORRECTING SOFTWARE FAULTS USING

HOARE LOGIC

Georgios Evangelou

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2024

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

An AI Assisted Tool for Correcting Software Faults Using Hoare Logic

Georgios Evangelou

Supervisor

Professor Anna Philippou

The Individual Diploma Thesis was submitted for partial fulfillment of the requirements

for obtaining the degree of Computer Science of the Department of Computer Science

of the University of Cyprus

May 2024

i

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Anna Philippou,

for her invaluable guidance throughout this project. Her insight and the contributions to

the completion of this work were indispensable.

For providing feedback on the tool implemented in this thesis: Christoforos Seas, Loukia

Christina Ioannou, Marios Flourentzou, Gregory Michael.

Finally, I would like to thank my family for their consistent support during my academic

endeavors.

ii

Abstract

Software engineering has continuously grown more complex and software applications

are routinely used in high-stakes environments. Program correctness is for many

applications of paramount importance, yet bugs can occur in every project. Static analysis

tools and formal verification methods are widely used in many projects, ensuring

correctness.

Due to the ongoing rapid advancement in artificial intelligence, particularly large

language models (LLMs), AI-assisted software development techniques are on the rise

and their utilization is universal. Numerous methods to improve the capabilities of LLMs

and guarantee the validity of the generated code are emerging, as it is an active area of

research.

This thesis presents the design and implementation of an interactive tool used to statically

detect bugs in a procedural language. It employs a design by contract methodology,

powered by a Hoare-like system. To accelerate the debugging process, a large language

model is integrated as an assistant in identifying bugs and correcting programs.

Characteristics regarding the tool’s accuracy and usability, as well as possible extensions

are analyzed in depth.

iii

Contents

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Purpose .. 1

1.3 Methodology .. 2

1.4 Outline of Thesis ... 2

Chapter 2 Background ... 4

2.1 Logic Errors .. 4

2.2 Formal Methods .. 5

2.3 Program Correctness .. 5

2.4 Hoare Logic ... 5

2.5 Satisfiability Modulo Theories and Z3 Theorem Prover 6

2.6 Design by Contract ... 6

2.7 Large Language Models ... 7

2.8 Related Work .. 7

2.8.1 Dafny ... 7

2.8.2 Infer ... 8

2.8.3 Frama-C .. 8

Chapter 3 Design ... 9

3.1 Abstract Syntax ... 9

3.2 Typing .. 11

3.2.1 Typing Context ... 11

3.2.2 Auxiliary Functions ... 12

3.2.3 Typing Rules ... 13

3.3 Reduction Rules .. 16

3.4 Verification Semantics .. 18

3.4.1 Extended Hoare Logic for Recursive Procedures ... 18

iv

3.4.2 Weakest Preconditions .. 20

3.5 LLM Assistant Integration .. 21

Chapter 4 Implementation ... 22

4.1 Parsing ... 23

4.2 Semantics and Typing .. 24

4.3 Compilation and Execution .. 25

4.3.1 Virtual Machine ... 25

4.3.2 Instruction Set .. 25

4.3.3 Code Generation .. 27

4.4 Verification .. 28

4.5 GPT Assistant .. 30

Chapter 5 Evaluation .. 35

5.1 Usability and Accuracy .. 35

5.2 Performance .. 36

5.3 Limitations ... 37

Chapter 6 Conclusion ... 39

6.1 Summary .. 39

6.2 Challenges .. 39

6.3 Future Work .. 40

Bibliography .. 41

Appendix A .. 1

Implementation Code ... 1

User’s Guide .. 1

Introduction ... 1

Build ... 1

Usage .. 1

Language .. 2

v

Appendix B .. 1

Concrete Syntax in EBNF Notation .. 1

Appendix C .. 1

OpenAI assistant prompt ... 1

vi

Table of Figures

Figure 2.1 Hoare Rules for Partial and Total Correctness .. 6

Figure 3.1 Tool Language Abstract Syntax .. 11

Figure 3.2 Typing Auxiliary Functions .. 13

Figure 3.3 Typing Rules for Expressions ... 14

Figure 3.4 Typing Rules for Statements ... 15

Figure 3.5 Typing Rules for Declarations and Programs ... 16

Figure 3.6 Reduction Rules .. 18

Figure 3.7 Verification Rules .. 19

Figure 3.8 Weakest Precondition Function ... 20

Figure 4.1 Tool Architecture .. 23

Figure 4.2 Faulty Integer Square Root Program Inference Trace 30

Figure 4.3 Integer Square Root Program Correction Using a GPT Assistant 32

Figure 4.4 Failed Attempt to Correct a Summation Program Using a GPT Assistant ... 34

Figure 5.1 Procedure that Computes the Next State of Rule 110. 38

List of Tables

Table 4.1 Arithmetic Instructions ... 26

Table 4.2 Stack Manipulation Instructions ... 27

Table 4.3 Control Flow Instructions ... 27

1

Chapter 1 Introduction

1.1 Motivation 1

1.2 Purpose 1

1.3 Methodology 2

1.4 Outline of Thesis 2

1.1 Motivation

Program correctness is crucial in software engineering as software faults can damage the

revenue and reputation of an organization or even cost lives. However, software

development is a complex process where software bugs occur regularly in every project,

and debugging can take a considerable amount of time [1]. Various tools that detect such

faults and guarantee the correctness of programs are routinely used in software

development, and currently the rise of large language models (LLMs) through generative

AI as programming assistants is prominent. Tools like GitHub Copilot [2], which is based

on code completion and dcc –help [3], which augments compiler error messages are a

handful in a plethora of many attempts to improve the software development process

through LLMs.

1.2 Purpose

In this thesis, a tool is designed and implemented which approaches the debugging

process from a verification perspective powered by a system which extends Hoare logic

for a procedural programming language. Moreover, the tool incorporates an LLM as an

assistant in finding bugs and correcting programs.

2

1.3 Methodology

A baseline target was set for the functional requirements of the tool, as well as possible

extensions to this target. The formal background needed to design the tool was researched

along with the necessary technologies to implement it. The tool was built incrementally

by extending the language from an unstructured imperative language to a procedural

language that supports recursion. In the final stages of the development the LLM assistant

was integrated.

The tool’s usability was evaluated through the feedback received from a limited

conducted survey, where participants were asked to debug some programs using the tool.

Some notes on the performance, where determined using a profiler.

1.4 Outline of Thesis

In the next chapter, the background behind the structure of the language and the

verification system used in this thesis is described along with the necessary tools to

implement them using automated proving techniques. Additionally. some information

around the capabilities and usefulness of LLMs with respect to this thesis is given. Other

similar work in static analysis is also discussed in this chapter.

Chapter 3 describes the design and operation of the tool. The language’s syntax and

semantics are specified along with a proof system used to reason for the correctness of a

program. The basic algorithm that integrates the LLM is also discussed here.

In Chapter 4, the overall architecture of the tool is analysed and how each software

component was implemented. Examples which present the basic functionalities of the

tool and its operation are included.

In Chapter 5, qualitative characteristics of the tool are discussed regarding its usability,

performance, and other limitations, as well as methods which may improve these

shortcomings.

3

Chapter 6 concludes this thesis with some final thoughts and discusses some directions

in which this work can be extended in the future and some challenges faced during this

thesis.

4

Chapter 2 Background

2.1 Logic Errors 4

2.2 Formal Methods 5

2.3 Program Correctness 5

2.4 Hoare Logic 5

2.5 Satisfiability Modulo Theories and Z3 Theorem Prover 6

2.6 Design by Contract 6

2.7 Large Language Models 7

2.8 Related Work 7

2.8.1 Dafny 7

2.8.2 Infer 8

2.8.3 Frama-C 8

2.1 Logic Errors

Many logic errors occur when programming, which are hard to detect and correct, since

they do not violate the syntax or the semantics of the language. Common tools like

compilers can detect some common logic errors (e.g. missing return, read before

assignment), but for other errors no attempt is made to detect them, as this would penalise

compilation times. Other tools (static analysers, debuggers, etc) exist which can assist the

programmer in detecting such errors.

Alzahrani and Vahid [2] categorized logic errors found in thousands of student-written

programs, many of which are caused by misinterpreting the syntax or the semantics, (e.g.

confusing operator precedence). Others may be caused by typos (e.g. equality vs

assignment operator in C) or by omitting a required step or misplacing code.

5

2.2 Formal Methods

Formal methods are techniques used to model the specification and verify the behaviour

of programs. Such specifications are constructed using mathematical logic which are

verified using inference rules in that logic, or state-space exploration techniques. Using

formal methods, the whole state space of a program can be symbolically inspected, and

certain properties like safety and liveness can be deduced [3].

2.3 Program Correctness

The notion of program correctness asserts that according to a specification if its behaviour

satisfies that specification. Correctness can be distinguished as either “partial correctness”

where a program is regarded as correct if its specification is satisfied when it terminates,

or “total correctness” where a program is also required to terminate in addition to

satisfying its specifications. Proving total correctness is an undecidable problem due to

the halting problem.

2.4 Hoare Logic

Hoare logic, conceived by C.A.R Hoare, is a formal system for proving the correctness

of programs. Its central concept are Hoare triples, notated as {𝜙} 𝐶 {𝜓} which state that

when the precondition 𝜙 is satisfied, after executing the program 𝐶 the postcondition 𝜓

holds. These triples can be proved for correctness using an associated set of rules and

axioms for each construct of the language. Hoare’s initial work [4] included rules for a

simple unstructured imperative language, and has since been extended to include

recursive procedures [5], or mutable state through separation logic [6]. The formal

verification system behind the tool designed in this thesis, is based on Hoare’s revision

of his original work, which includes recursive procedures [5].

Figure 2.1 presents the Hoare rules for partial and total correctness for a simple

unstructured imperative language (WHILE language). Extensions of this system used in

6

the implementation of the tool designed in this thesis are discussed in detail in Section

3.4.1.

{𝜙[𝑒/𝑥]} 𝑥≔𝑒; {𝜙}
𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝜙→𝜙0 {𝜙0} 𝑆 {𝜓0} 𝜓0→𝜓

{𝜙} 𝑆 {𝜓}
𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

{𝜙} 𝑆0 {𝜂} {𝜂} 𝑆1 {𝜓}

{𝜙} 𝑆0 𝑆1 {𝜓}
𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

{𝜙∧𝛽} 𝑆0̅̅ ̅ {𝜓} {𝜙∧¬𝛽} 𝑆1̅̅ ̅ {𝜓}

{𝜙} 𝑖𝑓 𝛽 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅} {𝜓}
𝐼𝑓 − 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡

{𝜂∧𝛽 } 𝑆̅ {𝜂}

{𝜂} 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅} {𝜂∧¬𝛽}
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑤ℎ𝑖𝑙𝑒

{𝜂∧𝛽∧0≤𝑒=𝑒0} 𝑆̅ {𝜂∧0≤𝑒<𝑒0}

{𝜂∧0≤𝑒} 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅} {𝜂∧¬𝛽}
𝑇𝑜𝑡𝑎𝑙 − 𝑤ℎ𝑖𝑙𝑒

Figure 2.1 Hoare Rules for Partial and Total Correctness

Hoare rules by themselves cannot be used in a semi-automated process (a fully automated

process cannot exist since proving termination is undecidable). Instead, a reformulation

by Edsger Dijkstra is used [7], the weakest preconditions, which can be computed using

a recursive function. Programs still must be annotated with invariant conditions to prove

the correctness of loop commands and variant expressions (strictly decreasing

expressions through each iteration) to prove termination.

2.5 Satisfiability Modulo Theories and Z3 Theorem Prover

Satisfiability Modulo Theories (SMT) is a generalization of the Boolean SAT problem

where the target is to decide the satisfiability of a set of logic formulas which may include

elements and operations from theories beyond propositional logic, such as real numbers,

integers, bit-vectors, strings and uninterpreted functions. The inclusion of many of

theories causes instances of the problem to be semi-decidable or even undecidable.

SMT solvers are ubiquitous in program analysis, due to their expressiveness. Modern

solvers are based on extensions of the DPLL and CDCL algorithms which are capable of

reasoning about arbitrary theories. The Z3 Theorem Prover is one such solver developed

by Microsoft Research which utilizes those algorithms (and many other techniques) [8]

and is used by many program analysis tools, including the one presented in this thesis.

2.6 Design by Contract

7

Design by Contract, coined by Bertrand Meyer, is a methodology for designing software

systems rooted in formal verification and Hoare Logic. Software components abide to a

list of formally described specifications which include preconditions, postconditions and

invariants, like a business contract, where the involved parties must meet the documented

obligations to receive the agreed upon benefits [9]. A contract can be enforced at runtime

in languages that support such functionality (like Eiffel), and by using a test-suite or

simply documenting it in languages with no such support. Another approach would be to

formally verify that contracts are enforced in the entire codebase at compile time.

2.7 Large Language Models

Large Language Models (LLMs) are machine learning models trained on vast amounts

of corpora that aim to perform various natural language processing tasks such text

generation and translation. [10] Accomplished models employ the Transformer which is

a model architecture based on an attention mechanism which determines for each token

the relevancy of other tokens with respect to that token [11]. In recent years, LLMs grew

in popularity as they are publicly available, and attention is drawn to the models’

capabilities of generating and analysing code. This feature is utilized by the tool described

in this thesis.

2.8 Related Work

In this section are described a handful of tools which incorporate static analysis for

verifying specifications and detecting bugs. The design of the tool described in this thesis

is partially inspired by these tools.

2.8.1 Dafny

Dafny is a verification system and programming language developed by Microsoft

Research, where program specifications can be formally expressed, and a verifier can

statically check their correctness. It includes various imperative and functional features

8

such as generic classes and inductive datatypes. Program verification is based on

extensions of Hoare logic such as implicit dynamic frames which are a variation of

separation logic using the Z3 Automated Theorem Prover. Verified programs can be

source-to-source translated to many general-purpose programming languages such as Go,

C++, Java, and others [12]. Dafny strongly resembles the tool developed in this thesis due

its design by contract methodology which is statically enforced albeit with greater focus

to verification.

2.8.2 Infer

Infer is a static analysis tool developed by Meta Platforms, Inc., for Java C/C++ and

Objective-C that can detect bugs such as null dereferences and memory leaks. This

analyser is continuously processing modifications in the code of the Facebook apps to

ensure certain program properties. It uses separation logic and includes a modular

analysis engine which allows the extension of analyses for other domain such as security

and concurrency [13]. Similar to the tool in this thesis, Infer approaches program analysis

and bug detection using formal methods.

2.8.3 Frama-C

Frama-C is a platform which uses several collaborative plugins that perform static and

dynamic analysis to verify requirements in C programs. Specifications are described

using the ANSI/ISO C Specification Language (ACSL) which is used to annotate the

abstract syntax tree of a program and analysers ensure the validity of desired properties.

More specifically, the WP (Weakest Precondition) plugin can perform deductive proofs

of ACSL contracts [14]. The tool in this thesis takes after the deductive approach of

Frama-C to guarantee annotated properties.

9

Chapter 3 Design

3.1 Abstract Syntax 9

3.2 Typing 11

3.2.1 Typing Context 11

3.2.2 Auxiliary Functions 12

3.2.3 Typing Rules 13

3.3 Reduction Rules 16

3.4 Verification Semantics 18

3.4.1 Extended Hoare Logic for Recursive Procedures 18

3.4.2 Weakest Preconditions 20

3.5 LLM Assistant Integration 21

3.1 Abstract Syntax

Figure 3.1 describes the abstract syntax for the tool language. It is an amalgamation of an

assertion language and a programming language where assertions are annotated before

designated programming language constructs. Let 𝑓 range over declaration names, 𝑥 over

variable names, 𝑛 over integer literals and 𝑏 over Boolean literals (true, false). Binary

operators ⊕ are the arithmetic, division, relational and logical operators listed

representing the usual operators found in C-family languages or propositional logic.

Arithmetic and Boolean unary operators !∗ are shown below.

Notation 𝑥̅ stands for 𝑥1, 𝑥2, … , 𝑥𝑛 for expressions and 𝑆̅/𝐷̅ stands for

𝑆1 𝑆2 … 𝑆𝑛/𝐷1 𝐷2 … 𝐷𝑛 for statements and declarations respectively. Let 𝑒 range over

expressions which can be one of the following: the 𝑟𝑒𝑠𝑢𝑙𝑡 literal, a Boolean 𝑏, an integer

𝑛, a variable 𝑥, a call expression 𝑓(𝑒̅), a binary expression 𝑒0 ⊕ 𝑒1, a unary expression

!∗ 𝑒, a conditional ternary expression 𝑒0? 𝑒1: 𝑒2 or a quantified expression ∀𝑥̅. 𝑒 or ∃𝑥̅. 𝑒.

10

Let 𝑆 range over statements which can be one of the following: an assignment 𝑥 ≔ 𝑒;, an

assertion 𝑎𝑠𝑠𝑒𝑟𝑡 𝑒;, an if-else statement 𝑖𝑓 𝑒 {𝑆0̅} 𝑒𝑙𝑠𝑒 {𝑆1̅}, a while statement

#𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒0 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒1 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅} or a return statement 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;.

Let 𝐷 range over declarations which have three forms: a function declaration 𝑓𝑛 𝑓(𝑥̅) ∶

= 𝑒;, a predicate declaration 𝑝𝑟𝑒𝑑 𝑓(𝑥̅) ∶= 𝑒; or a procedure declaration

#𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑓(𝑥̅) {𝑆̅}.

A program 𝑃 is a sequence of declarations 𝐷̅.

𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒 𝑓

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑎𝑚𝑒 𝑥

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 𝑛

𝐵𝑖𝑛𝑎𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ⊕ ∷=

 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 + | − | ∗

 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 / | %

 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 < | ≤ | = | ≠ | ≥ | >

 𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ∧ | ∨ | →

𝑈𝑛𝑎𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 !∗ ∷= + | − |¬

𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 𝑏 ∷= 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒 ∷=

𝑅𝑒𝑠𝑢𝑙𝑡 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 𝑟𝑒𝑠𝑢𝑙𝑡

𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 𝑏

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 𝑛

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥

𝐶𝑎𝑙𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓(𝑒̅)

𝐵𝑖𝑛𝑎𝑟𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒0 ⊕ 𝑒1

𝑈𝑛𝑎𝑟𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 !∗ 𝑒

𝑇𝑒𝑟𝑛𝑎𝑟𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒0? 𝑒1: 𝑒2

𝐹𝑜𝑟𝑎𝑙𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ∀𝑥̅. 𝑒

𝐸𝑥𝑖𝑠𝑡𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ∃𝑥̅. 𝑒

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑆 ∷=

11

 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑥 ≔ 𝑒;

 𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑎𝑠𝑠𝑒𝑟𝑡 𝑒;

𝐼𝑓 − 𝑒𝑙𝑠𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑖𝑓 𝑒 {𝑆0̅} 𝑒𝑙𝑠𝑒 {𝑆1̅}

𝑊ℎ𝑖𝑙𝑒 𝑙𝑜𝑜𝑝 #𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒0 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒1 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅}

𝑅𝑒𝑡𝑢𝑟𝑛 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;

𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐷 ∷=

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑛 𝑓(𝑥̅) ∶= 𝑒;

𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑑 𝑓(𝑥̅) ≔ 𝑒;

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 #𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑝𝑟𝑜𝑐 𝑓(𝑥̅){𝑆̅}

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑃 ∷= 𝐷̅

Figure 3.1 Tool Language Abstract Syntax

3.2 Typing

3.2.1 Typing Context

Since the language includes constructs that describe specifications and program

instructions, multiple judgement contexts are used to determine well-formedness.

Judgement Γ ⊢𝑐 𝑒: 𝑡 holds if in context 𝑐 and environment Γ expression 𝑒 has type 𝑡.

There are five overlapping contexts used: 𝑚𝑒𝑡𝑎 context which applies to invariants,

variants, preconditions, functions and predicates, 𝑝𝑜𝑠𝑡 context which applies to

postconditions, 𝑐𝑎𝑙𝑙 context which applies to procedure calls, 𝑡𝑜𝑡𝑎𝑙 context which applies

to total expressions (containing no procedure calls or division operators), and 𝑝𝑎𝑟𝑡𝑖𝑎𝑙

context which applies to all the previous contexts and call free program statements.

Let 𝐸𝑐 denote the set of expressions that occur in 𝐷̅ and are well-formed in context 𝑐

given an environment Γ. Then 𝐸𝑡𝑜𝑡𝑎𝑙 ⊂ 𝐸𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ⊂ 𝐸𝑚𝑒𝑡𝑎 ⊂ 𝐸𝑝𝑜𝑠𝑡. Also, if 𝑒̅ ⊆ 𝐸𝑡𝑜𝑡𝑎𝑙 and

𝑓 ∈ 𝑝𝑟𝑜𝑐(𝐷̅) then 𝑓(𝑒̅) ∈ 𝐸𝑐𝑎𝑙𝑙.

12

3.2.2 Auxiliary Functions

Figure 3.2 describes auxiliary functions used to specify the typing and verification rules.

Let 𝑡 range over type names which can be Boolean 𝔹, integral ℤ or mutable type 𝑚𝑢𝑡 𝑡.

Function 𝑓𝑛(𝐷̅) returns a set with the names of all function declarations in 𝐷̅. Function

𝑝𝑟𝑒𝑑(𝐷̅) returns a set with the names of all predicate declarations in 𝐷̅. Function

𝑝𝑟𝑜𝑐(𝐷̅) returns a set with the names of all procedure declarations in 𝐷̅.

Predicate 𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒) holds if expression 𝑒 contains no calls to a procedure. Similarly,

predicate 𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒) holds if expression 𝑒 contains no division or modulo operations.

Predicate 𝑡𝑜𝑡𝑎𝑙(𝑒) holds if 𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒) and 𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒).

Predicate 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ, 𝑒, 𝑡) holds if expression 𝑒 can be assigned to a variable with

type 𝑡 in an environment Γ. Assignable expressions are total expressions, top-level

division/modulo expressions, and top-level procedure calls. This restriction allows the

inclusion of certain verification rules (see Section 3.4.1) on non-total expressions, since

they require extra preconditions which are examined at per-statement level.

Predicate 𝑒𝑛𝑑𝑠𝑅𝑒𝑡𝑢𝑟𝑛(𝑆̅) holds if for every execution path the last statement in 𝑆̅ is a

return statement. Predicate 𝑖𝑓𝑅𝑒𝑡𝑢𝑟𝑛(𝑖𝑓 𝑒 {𝑆0̅} 𝑒𝑙𝑠𝑒 {𝑆1̅}) holds if in both branches

𝑆0̅, 𝑆1̅ predicate 𝑒𝑛𝑑𝑠𝑅𝑒𝑡𝑢𝑟𝑛 holds.

Predicates not shown in Figure 3.2 𝑎𝑟𝑖𝑡ℎ(⊕), 𝑑𝑖𝑣(⊕), 𝑟𝑒𝑙(⊕), 𝑙𝑜𝑔(⊕) hold if ⊕ is an

arithmetic, division, relational or logical operator respectively, as shown in the abstract

syntax. Similarly, predicate 𝑎𝑟𝑖𝑡ℎ(!∗) holds when unary operator !∗ is + or –. Predicate

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅) holds if all elements in sequence 𝑥̅ are distinct.

Judgements in 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 context are denoted without a subscript. For all other contexts

their names are subscripted in judgements.

𝑇𝑦𝑝𝑒 𝑛𝑎𝑚𝑒 𝑡 ∷= 𝔹 | ℤ | 𝑚𝑢𝑡 𝑡

13

𝑓𝑛 𝑓(𝑥̅)∶=𝑒;∈𝐷̅

𝑓∈𝑓𝑛(𝐷̅)

𝑝𝑟𝑒𝑑 𝑓(𝑥̅)∶=𝑒;∈𝐷̅

𝑓∈𝑝𝑟𝑒𝑑(𝐷̅)

#𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑝𝑟𝑜𝑐 𝑓(𝑥̅){𝑆̅}∈𝐷̅

𝑓∈𝑝𝑟𝑜𝑐(𝐷̅)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑛)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑏)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑥)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(!∗𝑒)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒0) 𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒1)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒0⊕𝑒1)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒0) 𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒1) 𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒2)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒0?𝑒1:𝑒2)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑛)

divFree(b)

divFree(x)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(!∗𝑒)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒0) 𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒1) ¬𝑑𝑖𝑣(⊕)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒0⊕𝑒1)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒0) 𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒1) 𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒2)

𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒0?𝑒1:𝑒2)

𝑝𝑟𝑜𝑐𝐹𝑟𝑒𝑒(𝑒) 𝑑𝑖𝑣𝐹𝑟𝑒𝑒(𝑒)

𝑡𝑜𝑡𝑎𝑙(𝑒)

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝑡

𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑒,𝑡)

Γ⊢𝑒0⊕𝑒1:𝑡 𝑡𝑜𝑡𝑎𝑙(𝑒0) 𝑡𝑜𝑡𝑎𝑙(𝑒1)

𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑒0⊕𝑒1,𝑡)

Γ⊢𝑐𝑎𝑙𝑙𝑓(𝑒̅):ℤ

𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑓(𝑒̅),ℤ)

𝑆̅ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;

𝑒𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆̅ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;)

𝑆̅ 𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅} 𝑖𝑓𝑅𝑒𝑡𝑢𝑟𝑛(𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅})

𝑒𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆̅ 𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅})

𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅} 𝑒𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆0̅̅ ̅) 𝑒𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆1̅̅ ̅)

𝑖𝑓𝑅𝑒𝑡𝑢𝑟𝑛(𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅})

Context Conversion

Γ⊢e:t procFree(e)

Γ⊢𝑚𝑒𝑡𝑎𝑒:𝑡

Γ⊢𝑚𝑒𝑡𝑎𝑒:𝑡

Γ⊢𝑝𝑜𝑠𝑡𝑒:𝑡

Γ⊢e:t total(e)

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝑡

Figure 3.2 Typing Auxiliary Functions

3.2.3 Typing Rules

In this section, the typing rules and axioms for the language are presented. Judgements

may be converted to different contexts according to the rules given in Figure 3.2. For each

rule presented with conclusion Γ ⊢𝑚𝑒𝑡𝑎 𝑒: 𝑡, there is a structurally identical rule with 𝑝𝑜𝑠𝑡

context Γ ⊢𝑝𝑜𝑠𝑡 𝑒: 𝑡 which is not presented for brevity. Whenever an expression is

referred to have a type, it is implied that it is well-typed.

Figure 3.3 presents the typing rules for expressions. Let Γ range over typing

environments, composed of pairs 𝑥: 𝑡, denoting that variable 𝑥 has type 𝑡. Notation 𝑥: ℤ ̅̅ ̅̅ ̅̅

stands for 𝑥1: ℤ, 𝑥2: ℤ, … , 𝑥𝑛: ℤ. Notation Γ ⊢𝑐 𝑒: ℤ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ stands for

Γ ⊢𝑐 𝑒1: ℤ Γ ⊢𝑐 𝑒2: ℤ … Γ ⊢𝑐 𝑒𝑛: ℤ. Judgement Γ ⊢𝑐 𝑒: 𝑡 holds if in context 𝑐 and

environment Γ expression 𝑒 has type 𝑡. Integer literals have integral type and Boolean

literals have Boolean type for any environment and context. The 𝑟𝑒𝑠𝑢𝑙𝑡 expression has

14

integral type in 𝑝𝑜𝑠𝑡 context. Variables have a type determined by their environment and

mutable variables can be treated as immutable. Binary expressions 𝑒0 ⊕ 𝑒1 where ⊕ is

an arithmetic or division operator have integral type with environment Γ if expressions

𝑒0, 𝑒1 have integral type with environment Γ. Binary expressions 𝑒0 ⊕ 𝑒1 where ⊕ is a

relational operator have Boolean type with environment Γ if expressions 𝑒0, 𝑒1 have

integral type with environment Γ. Binary expressions 𝑒0 ⊕ 𝑒1 where ⊕ is a logical

operator have Boolean type with environment Γ if expressions 𝑒0, 𝑒1 have Boolean type

with environment Γ. A ternary expression 𝑒0? 𝑒1: 𝑒2 has type 𝑡 in environment Γ if 𝑒0 has

Boolean type and 𝑒1, 𝑒2 have type t in environment Γ. A unary expression !∗ 𝑒 where !∗ is

an arithmetic operator has integral type with environment Γ if 𝑒 has integral type with

environment Γ. Unary expression ¬𝑒 has Boolean type with environment Γ if 𝑒 has

Boolean type with environment Γ. A procedure call 𝑓(𝑒̅) has integral type with

environment Γ and context 𝑐𝑎𝑙𝑙 if there exists a procedure declaration with name 𝑓 in 𝐷̅

and each argument 𝑒𝑖 has integral type with environment Γ and context 𝑡𝑜𝑡𝑎𝑙. A

quantified expression ∀𝑥̅. 𝑒 or ∃𝑥̅. 𝑒 has Boolean type with environment Γ and context

𝑚𝑒𝑡𝑎, if variables 𝑥̅ are distinct and expression 𝑒 has Boolean type with environment

Γ, 𝑥: ℤ̅̅ ̅̅ ̅ and context 𝑚𝑒𝑡𝑎. A function call 𝑓(𝑒̅) has integral type with environment Γ and

context 𝑚𝑒𝑡𝑎 if there exists a function declaration 𝑓 in 𝐷̅ and arguments 𝑒̅ have integral

type with environment Γ. Similarly, a predicate call 𝑓(𝑒̅) has Boolean type with

environment Γ and context 𝑚𝑒𝑡𝑎 if there exists a function declaration 𝑓 in 𝐷̅ and

arguments 𝑒̅ have integral type with environment Γ.

Γ⊢𝑛:ℤ

Γ⊢𝑏:𝔹

Γ⊢𝑝𝑜𝑠𝑡𝑟𝑒𝑠𝑢𝑙𝑡:ℤ

𝛤(𝑥)=𝑡

𝛤⊢𝑥:𝑡

Γ⊢𝑥:𝑚𝑢𝑡 𝑡

Γ⊢𝑥:𝑡

Γ⊢𝑒0:ℤ Γ⊢𝑒1:ℤ 𝑎𝑟𝑖𝑡ℎ(⊕)

Γ⊢𝑒0⊕𝑒1:ℤ

Γ⊢𝑒0:ℤ Γ⊢𝑒1:ℤ 𝑑𝑖𝑣(⊕)

Γ⊢𝑒0⊕𝑒1:ℤ

Γ⊢𝑒0:ℤ Γ⊢𝑒1:ℤ 𝑟𝑒𝑙(⊕)

Γ⊢𝑒0⊕𝑒1:𝔹

Γ⊢𝑒0:𝔹 Γ⊢𝑒1:𝔹 𝑙𝑜𝑔(⊕)

Γ⊢𝑒0⊕𝑒1:𝔹

Γ⊢𝑒:ℤ 𝑎𝑟𝑖𝑡ℎ(!∗)

Γ⊢!∗𝑒:ℤ

Γ⊢e:𝔹

Γ⊢¬𝑒:𝔹

Γ⊢e:𝔹 Γ⊢e1:𝑡 Γ⊢𝑒2:𝑡

Γ⊢(𝑒?𝑒1:𝑒2):𝑡

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅) Γ,𝑥:ℤ̅̅ ̅̅̅⊢𝑚𝑒𝑡𝑎𝑒:𝔹

Γ⊢𝑚𝑒𝑡𝑎∀𝑥̅.𝑒:𝔹

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅) Γ,𝑥:ℤ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒:𝔹

Γ⊢𝑚𝑒𝑡𝑎∃𝑥̅.𝑒:𝔹

Γ⊢𝑚𝑒𝑡𝑎𝑒:ℤ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑓∈𝑓𝑛(𝐷̅)

Γ⊢𝑚𝑒𝑡𝑎𝑓(𝑒̅):ℤ

Γ⊢𝑚𝑒𝑡𝑎𝑒:ℤ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑓∈𝑝𝑟𝑒𝑑(𝐷̅)

Γ⊢𝑚𝑒𝑡𝑎𝑓(𝑒̅):𝔹

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:ℤ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑓∈𝑝𝑟𝑜𝑐(𝐷̅)

Γ⊢𝑐𝑎𝑙𝑙𝑓(𝑒̅):ℤ

Figure 3.3 Typing Rules for Expressions

15

Figure 3.4 presents the typing rules for statements. Judgement Γ ⊢ S holds if statement 𝑆

is well-formed with environment Γ. An assertion 𝑎𝑠𝑠𝑒𝑟𝑡 𝑒; is well-formed with

environment Γ if expression 𝑒 has Boolean type in 𝑡𝑜𝑡𝑎𝑙 context. Similarly, a return

statement 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; is well-formed with environment Γ if expression 𝑒 has integral type

in 𝑡𝑜𝑡𝑎𝑙 context since procedures always produce an integer value. An assignment 𝑥 ≔

𝑒; is well-formed with environment Γ if expression 𝑒 is assignable with type 𝑡 with

environment Γ and either variable 𝑥 has type 𝑚𝑢𝑡 𝑡 in Γ, or does not exist in Γ with any

other type. A statement sequence 𝑥 ≔ 𝑒; 𝑆̅ is well-formed with environment Γ if

expression e has type 𝑡 with environment Γ, statement 𝑥 ≔ e; is well-formed with

environment Γ and statement sequence is well-formed with environment Γ, 𝑥: 𝑚𝑢𝑡 𝑡. A

statement sequence 𝑆0 𝑆1 is well-formed with environment Γ if each statement is well-

formed with environment Γ. An if-else statement 𝑖𝑓 𝑒 {𝑆0̅} 𝑒𝑙𝑠𝑒 {𝑆1̅} is well-formed with

environment Γ if statement sequences 𝑆0̅, 𝑆1̅ are well-formed and expression 𝑒 has

Boolean type in 𝑡𝑜𝑡𝑎𝑙 context. A while statement

#𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒0 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒1 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅} is well-formed with environment Γ if with

environment Γ expression 𝑒0 has Boolean type in 𝑚𝑒𝑡𝑎 context, expression 𝑒1 has

integral type in 𝑚𝑒𝑡𝑎 context, expression 𝑒 has Boolean type in 𝑡𝑜𝑡𝑎𝑙 context and

statement sequence 𝑆̅ is well-formed.

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝔹

Γ⊢𝑎𝑠𝑠𝑒𝑟𝑡 𝑒;

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:ℤ

Γ⊢𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;

Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝔹 Γ⊢𝑆0̅̅ ̅ Γ⊢𝑆1̅̅ ̅

Γ⊢𝑖𝑓 𝑒 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅}

Γ⊢S0 Γ⊢𝑆1

Γ⊢𝑆0 𝑆1

Γ⊢𝑒:𝑡 Γ⊢𝑥≔𝑒; Γ,𝑥:𝑚𝑢𝑡 𝑡⊢𝑆̅

𝛤⊢𝑥≔𝑒; 𝑆̅

Γ⊢𝑥:𝑚𝑢𝑡 𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑒,𝑡)

Γ,𝑥:𝑚𝑢𝑡 𝑡⊢𝑥≔𝑒;

∀t¬(Γ⊢x:t) 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(Γ,𝑒,𝑡)

𝛤,𝑥:𝑚𝑢𝑡 𝑡⊢𝑥≔𝑒;

 Γ⊢𝑚𝑒𝑡𝑎 𝑒0:𝔹 Γ⊢𝑚𝑒𝑡𝑎𝑒1:𝔹 Γ⊢𝑡𝑜𝑡𝑎𝑙𝑒:𝔹 Γ⊢𝑆̅

Γ⊢#𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒0 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒1 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅}

Figure 3.4 Typing Rules for Statements

Figure 3.5 presents the typing rules for declarations and programs. Judgement ⊢ 𝐷 holds

if declaration 𝐷 is well-formed. A function declaration 𝑓𝑛 𝑓(𝑥̅) ≔ 𝑒; is well-formed if

parameters 𝑥̅ are distinct, and 𝑒 has integral type with the environment consisting of the

parameters typed as ℤ in 𝑚𝑒𝑡𝑎 context. A predicate declaration 𝑝𝑟𝑒𝑑 𝑓(𝑥̅) ≔ 𝑒; is well-

formed if parameters 𝑥̅ are distinct, and 𝑒 has Boolean type with the environment

16

consisting of the parameters typed as ℤ in 𝑚𝑒𝑡𝑎 context. A procedure declaration

#𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} is well-formed if parameters 𝑥̅ are distinct

and with the environment consisting of the parameters typed as ℤ: 𝑒0 has Boolean type in

𝑚𝑒𝑡𝑎 context, 𝑒1 has Boolean type in 𝑝𝑜𝑠𝑡 context, 𝑒2 has integral type in 𝑚𝑒𝑡𝑎 context,

𝑆̅ is well-formed and 𝑆̅ ends with a return statement in every execution path.

Judgement ⊢ 𝑃 holds if all declarations 𝐷̅ in 𝑃 are distinct and well-formed.

Well-formed declarations

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅) 𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒:ℤ

⊢𝑓𝑛 𝑓(𝑥̅)∶=𝑒;

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅) 𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒:𝔹

⊢𝑝𝑟𝑒𝑑 𝑓(𝑥̅)∶=𝑒;

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥̅) 𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒0:𝔹 ,𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑝𝑜𝑠𝑡𝑒1:𝔹 𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑚𝑒𝑡𝑎𝑒2:ℤ endReturn(𝑆̅) 𝑥:ℤ ̅̅ ̅̅ ̅⊢𝑆̅

⊢#𝑝𝑟𝑒 𝑒0 #𝑝𝑜𝑠𝑡 𝑒1 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒2 𝑝𝑟𝑜𝑐 𝑓(𝑥̅){𝑆̅}

Well-formed programs

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝐷̅) ⊢𝐷̅̅ ̅̅ 𝑃=𝐷̅

⊢𝑃

Figure 3.5 Typing Rules for Declarations and Programs

3.3 Reduction Rules

Figure 3.6 presents the reduction rules and axioms for the language. Specification clauses

(prefixed by ‘#’) are omitted for brevity. Let 𝜎 denote a non-erroneous state of the

program which maps variables to values. Assume an initial non-erroneous empty program

state. Normal form values are Boolean or integer values. Operators ⊕′, !∗
′ denotes the

concrete version of a symbolic operator ⊕, !∗ respectively. The symbol ⊥ denotes an

erroneous value or program state, where in both cases execution halts.

Judgement 𝑒, 𝜎 ⇓ 𝑣 holds if expression 𝑒 with state 𝜎 evaluates to value 𝑣. Arithmetic

and relational expressions evaluate to their normal form by evaluating their operands and

applying their operator on the resulting values. Division expressions abort execution

when the divisor is zero. Logical expressions and ternary expressions short-circuit their

evaluation and implication expressions 𝑒0 → 𝑒1 are evaluated as ¬𝑒0 ∨ 𝑒1. Procedure

17

calls are evaluated by substituting the parameters of the callee procedure in the program

state with the evaluated arguments and evaluating the procedure body, where variable

𝑟𝑒𝑠𝑢𝑙𝑡 maps in the state to the evaluated value.

Judgement 𝑆, 𝜎 ⇓ 𝜎′ holds if statement 𝑆 with state 𝜎 evaluates to a new state 𝜎′. Two

statements may be sequenced if the first statement is not a return statement, and it does

not evaluate to a ⊥ state. An assignment 𝑥 ≔ 𝑒 with a state 𝜎 evaluates to a state 𝜎[𝑥 ≔

𝑣] if 𝑒 with state 𝜎 evaluates to 𝑣. A return statement 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; with a state 𝜎 evaluates

to a state 𝜎[𝑟𝑒𝑠𝑢𝑙𝑡 ≔ 𝑛] if expression 𝑒 with state 𝜎 evaluates to 𝑛. An assertion

evaluates to a ⊥ state if its expression evaluates to false, otherwise it evaluates to the same

state. If-else statements evaluate to the state determined by the branch which is to be

executed, which is determined by the value evaluated by the statement’s condition. A

while statement evaluates to the current state if its guard condition evaluates to false,

otherwise the body is evaluated for each successive state until the guard condition

evaluates to false.

Program State 𝜎 𝜎[𝑥 ≔ 𝑣](𝑦) = {
𝑣 𝑦 = 𝑥

𝜎(𝑦)

Value 𝑣 ∷= 𝑏 | 𝑛

Expressions

𝑛,𝜎⇓𝑛

𝑏,𝜎⇓𝑏

𝑥,𝜎⇓𝜎(𝑥)

𝑒0,𝜎⇓𝑛0 𝑒1,𝜎⇓𝑛1 𝑎𝑟𝑖𝑡ℎ(⊕)

𝑒0⊕𝑒1,𝜎⇓𝑛0⊕′𝑛1

𝑒1,𝜎⇓0 𝑑𝑖𝑣(⊕)

𝑒0⊕𝑒1,𝜎⇓⊥

𝑒0,𝜎⇓𝑛0 𝑒1,𝜎⇓𝑛1 𝑛1≠0 𝑑𝑖𝑣(⊕)

𝑒0⊕𝑒1,𝜎⇓𝑛0⊕′𝑛1

𝑒0,𝜎⇓𝑛0 𝑒1,𝜎⇓𝑛1 𝑟𝑒𝑙(⊕)

𝑒0⊕𝑒1,𝜎⇓𝑛0⊕′𝑛1

𝑒0,𝜎⇓𝑓𝑎𝑙𝑠𝑒

𝑒0∧𝑒1,𝜎⇓𝑓𝑎𝑙𝑠𝑒

𝑒0,𝜎⇓𝑡𝑟𝑢𝑒 𝑒1,𝜎⇓𝑏1

𝑒0∧𝑒1,𝜎⇓𝑏1

𝑒0,𝜎⇓𝑡𝑟𝑢𝑒

𝑒0∨𝑒1,𝜎⇓𝑡𝑟𝑢𝑒

𝑒0,𝜎⇓𝑓𝑎𝑙𝑠𝑒 𝑒1,𝜎⇓𝑏1

𝑒0∨𝑒1,𝜎⇓𝑏1

𝑒0,𝜎⇓𝑓𝑎𝑙𝑠𝑒

𝑒0→𝑒1,𝜎⇓𝑡𝑟𝑢𝑒

𝑒0,𝜎⇓𝑡𝑟𝑢𝑒 𝑒1,𝜎⇓𝑏1

𝑒0→𝑒1,𝜎⇓𝑏1

𝑒,𝜎⇓𝑛 𝑎𝑟𝑖𝑡ℎ(!∗)

!∗𝑒,𝜎⇓!∗
′𝑛

𝑒,𝜎⇓𝑏

¬𝑒,𝜎⇓¬′𝑏

𝑒,𝜎⇓𝑡𝑟𝑢𝑒 𝑒1,𝜎⇓𝑣1

(𝑒?𝑒1:𝑒2),𝜎⇓𝑣1

𝑒,𝜎⇓𝑓𝑎𝑙𝑠𝑒 𝑒2,𝜎⇓𝑣2

(𝑒?𝑒1:𝑒2),𝜎⇓𝑣2

𝑒,𝜎⇓𝑛̅̅ ̅̅ ̅̅ ̅̅ 𝑝𝑟𝑜𝑐 𝑓(𝑥̅){𝑆̅} 𝑆̅,𝜎[𝑥≔𝑒̅̅ ̅̅ ̅̅]⇓𝜎′

𝑓(𝑒̅),𝜎⇓𝜎′(𝑟𝑒𝑠𝑢𝑙𝑡)

Statements

𝑆0≠𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; 𝑆0,𝜎0⇓𝜎1 𝑆1,𝜎1⇓𝜎2

𝑆0 𝑆1,𝜎0⇓𝜎2

𝑒,𝜎⇓𝑣

𝑥≔𝑒;,𝜎⇓𝜎[𝑥≔𝑣]

𝑒,𝜎⇓𝑡𝑟𝑢𝑒 𝑆1̅̅ ̅,𝜎⇓𝜎′

𝑖𝑓 𝑒 {𝑆1̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆2̅̅ ̅},𝜎⇓𝜎′
𝑒,𝜎⇓𝑓𝑎𝑙𝑠𝑒 𝑆2̅̅ ̅,𝜎⇓𝜎′

𝑖𝑓 𝑒 {𝑆1̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆2̅̅ ̅},𝜎⇓𝜎′

18

𝑒,𝜎⇓𝑡𝑟𝑢𝑒 𝑆̅ 𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅},𝜎⇓𝜎′

𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅},𝜎⇓𝜎′

𝑒,𝜎⇓𝑓𝑎𝑙𝑠𝑒

𝑤ℎ𝑖𝑙𝑒 𝑒 {𝑆̅},𝜎⇓𝜎

𝑒,𝜎⇓𝑛

𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;,𝜎⇓𝜎[𝑟𝑒𝑠𝑢𝑙𝑡≔𝑛]

𝑒,𝜎⇓𝑡𝑟𝑢𝑒

𝑎𝑠𝑠𝑒𝑟𝑡 𝑒;,𝜎⇓𝜎

𝑒,𝜎⇓𝑓𝑎𝑙𝑠𝑒

𝑎𝑠𝑠𝑒𝑟𝑡 𝑒;,𝜎⇓⊥

Figure 3.6 Reduction Rules

3.4 Verification Semantics

The language implements a design by contract approach by enforcing contracts statically.

Each procedure’s body is proven correct according to its specifications. When a rule is

violated, an implementation of the proof system described in Section 3.4.1, informs us

that either an assertion or the program itself is incorrect.

Expressions defined in specifications are interpreted as symbolic logical expressions,

where functions and predicates are not uninterpreted and their bodies correspond to the

supplied expressions in their definition. This allows an SMT solver to perform

instantiations on ground terms (e.g. given 𝑓(𝑥) = 𝑥 + 3, 𝑓(4) can be simplified to 7).

3.4.1 Extended Hoare Logic for Recursive Procedures

Figure 3.7 lists the verification rules and axioms used for the language. They are an

extension of Hoare logic that includes assertion statements and structured programming

capabilities through callable procedures. The rules below are denoted using the usual

Hoare triples notation {𝜙} 𝐶 {𝜓}, instead of the directive-like notation that the language

uses.

Rule Assignment states that if a specification 𝜙 holds after an assignment 𝑥 ≔ 𝑒;, then a

specification 𝜙[𝑒/𝑥] must hold before the assignment where we all free occurrences of 𝑥

are substituted with 𝑒 in the original specification and 𝑒 must be total. Extending this rule

to allow division expressions, rule Assignment Div requires that the divisor is non-zero.

Rule Consequence allows the weakening of a precondition and the strengthening of a

postcondition of a program segment. Rule Composition allows the derivation of a triple

for the sequence of two statements if the postcondition of the first one is the precondition

19

of the second one. Rule If-Statement allows proving a triple for an if-else statement by

considering a triple for each branch of the statement where the statements condition is

assumed true on the first branch and false on the second and the triples share the same

postcondition. Rule Partial-while allows proving the partial correctness of a triple for a

while loop, where an invariant condition is needed to hold before and after the loop’s

body, where the loop guard holds on the precondition of the body and its negation at the

postcondition of the loop. Rule Total-while allows proving the total correctness of a while

loop triple, by augmenting the previous rule with a non-negative variant expression

required to be strictly decreasing for each iteration.

 𝑡𝑜𝑡𝑎𝑙(𝑒)

{𝜙[𝑒/𝑥]} 𝑥≔𝑒; {𝜙}
𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝜙→𝜙0 {𝜙0} 𝑆 {𝜓0} 𝜓0→𝜓

{𝜙} 𝑆 {𝜓}
𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

{𝜙} 𝑆0 {𝜂} {𝜂} 𝑆1 {𝜓}

{𝜙} 𝑆0 𝑆1 {𝜓}
𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

{𝜙∧𝛽} 𝑆0̅̅ ̅ {𝜓} {𝜙∧¬𝛽} 𝑆1̅̅ ̅ {𝜓}

{𝜙} 𝑖𝑓 𝛽 {𝑆0̅̅ ̅} 𝑒𝑙𝑠𝑒 {𝑆1̅̅ ̅} {𝜓}
𝐼𝑓 − 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛t

{𝜂∧𝛽 } 𝑆̅ {𝜂}

{𝜂} 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅} {𝜂∧¬𝛽}
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑤ℎ𝑖𝑙𝑒

{𝜂∧𝛽∧0≤𝑒=𝑒0} 𝑆̅ {𝜂∧0≤𝑒<𝑒0}

{𝜂∧0≤𝑒} 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅} {𝜂∧¬𝛽}
𝑇𝑜𝑡𝑎𝑙 − 𝑤ℎ𝑖𝑙𝑒

{𝜙∧𝜓} 𝑎𝑠𝑠𝑒𝑟𝑡 𝜙; {𝜓}
𝐴𝑠𝑠𝑒𝑟𝑡

{𝜙} 𝑆̅ {𝜓}

{𝜙} 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} {𝜓}
𝑃𝑟𝑜𝑐

{𝜙} 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆0̅̅ ̅ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; 𝑆1̅̅ ̅} {𝜓}

{𝜓[𝑒/𝑟𝑒𝑠𝑢𝑙𝑡]} 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; {𝜓}
𝑅𝑒𝑡𝑢𝑟𝑛

𝑑𝑖𝑣(⊕)

{𝜙[(𝑒0⊕𝑒1)/𝑥]∧𝑒1≠0} 𝑥≔𝑒0⊕𝑒1; {𝜙}
𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐷𝑖𝑣

{𝜙} 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} {𝜓}

{𝜙[𝑒/𝑥̅̅ ̅̅ ̅]} 𝑦≔𝑓(𝑒̅); {𝜓[𝑒/𝑥̅̅ ̅̅ ̅]}
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑐𝑎𝑙𝑙

{𝜙∧0≤𝑎} 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} {𝜓} {𝜙′∧0≤𝑎′} 𝑝𝑟𝑜𝑐 𝑓′(𝑥′̅̅ ̅) {𝑆′̅̅ ̅} {𝜓′}

𝑦≔𝑓(𝑒̅);∈𝑆′̅̅ ̅ 0≤𝑎[𝑒/𝑥̅̅ ̅̅ ̅]<𝑎′

{𝜙[𝑒/𝑥 ̅̅ ̅̅ ̅̅]} 𝑦≔𝑓(𝑒̅); {𝜓[𝑒/𝑥 ̅̅ ̅̅ ̅̅]}
𝑇𝑜𝑡𝑎𝑙 − 𝑐𝑎𝑙𝑙

Figure 3.7 Verification Rules

The rules described above cannot be used to prove the correctness of procedure calls and

recursive procedures. The following rules extend Hoare logic for recursive procedures

that return a value and use assertion statements. The simplest of these rules is the rule for

assertions where the assertion condition should hold before the execution of the assert

statement. A triple for a return statement 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒;, has as postcondition 𝜓 its enclosing

procedure’s postcondition and as precondition 𝜓[𝑒/𝑟𝑒𝑠𝑢𝑙𝑡] where the symbolic result

expression is substituted with the return expression 𝑒. The specification of a

procedure is proven correct if the corresponding specification is proven correct for

20

its body. Procedure call triples can be deduced by substituting the parameters that

occur in the specifications of the callee procedure with the arguments supplied to

the call. To guarantee termination of directly or mutually recursive calls, the variant

of the callee procedure where parameters are substituted by the supplied

arguments, must be strictly less than the variant of the caller.

Clark showed that for languages which include recursion it is not possible to obtain a

sound and complete Hoare-like system [15]. A similar system to the one described in this

section was shown to be sound [16], therefore incomplete and these properties apply to

this system using akin argumentation.

3.4.2 Weakest Preconditions

To automate the rules above, Figure 3.8 presents a recursive function to calculate the

weakest precondition, given a statement and a postcondition.

𝑤𝑝(𝑥 ≔ 𝑒; , 𝜓) = 𝜓[𝑒/𝑥], 𝑖𝑓 𝑡𝑜𝑡𝑎𝑙(𝑒)

𝑤𝑝(𝑆0 𝑆1, 𝜓) = 𝑤𝑝(𝑆0, 𝑤𝑝(𝑆1, 𝜓))

𝑤𝑝(𝑖𝑓 𝛽 {𝑆0} 𝑒𝑙𝑠𝑒 {𝑆1}, 𝜓) = (𝛽 → 𝑤𝑝(𝑆0, 𝜓)) ∧ (¬𝛽 → 𝑤𝑝(𝑆1, 𝜓))

𝑤𝑝(#𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣 𝑤ℎ𝑖𝑙𝑒 𝛽 {𝑆̅}, 𝜓) = 𝑒 ∧ 0 ≤ 𝑣,

𝑖𝑓 (𝑒 ∧ 𝛽 ∧ 0 ≤ 𝑣 = 𝑣0 → 𝑤𝑝(𝑆̅, 𝑒 ∧ 0 ≤ 𝑣 < 𝑣0)) ∧ (𝑒 ∧ ¬𝛽 → 𝜓)

𝑤𝑝(𝑎𝑠𝑠𝑒𝑟𝑡 𝜙; , 𝜓) = 𝜙 ∧ 𝜓

𝑤𝑝(𝑟𝑒𝑡𝑢𝑟𝑛 𝑒; , 𝜓) = 𝜓[𝑒/𝑟𝑒𝑠𝑢𝑙𝑡]

𝑤𝑝(𝑦′ ≔ 𝑓(𝑒̅); , 𝜓) = 𝜙𝑓[𝑒/𝑥̅̅ ̅̅ ̅] ∧ 𝑣𝑓[𝑒/𝑥̅̅ ̅̅ ̅] < 𝑣0 ∧ ∀𝑦(𝜓𝑓[𝑒/𝑥̅̅ ̅̅ ̅, 𝑟𝑒𝑠𝑢𝑙𝑡/𝑦] → 𝜓)

𝑤𝑝(𝑥 ≔ 𝑒0 ⊕ 𝑒1; , 𝜓) = 𝜓[(𝑒0 ⊕ 𝑒1)/𝑥] ∧ 𝑒1 ≠ 0, 𝑖𝑓 𝑑𝑖𝑣(⊕)

𝑤𝑝(#𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅}, 𝜓) = 𝑤𝑝(𝑆̅, 𝜓),

𝑖𝑓 𝜙 ∧ 0 ≤ 𝑣 → 𝑤𝑝(𝑆̅, 𝜓)

Figure 3.8 Weakest Precondition Function

When calculating the weakest precondition for a procedure call it is assumed that the

relevant statement appears in a procedure declaration

#𝑝𝑟𝑒 𝜙𝑓 #𝑝𝑜𝑠𝑡 𝜓𝑓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣𝑓 𝑓(𝑥̅) {𝑆̅}.

21

A specification #𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 0 for a procedure 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} is valid for

partial correctness if 𝜙 → 𝑤𝑝(#𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 0 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅}, 𝜓). A

specification #𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣 for a procedure 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅} is valid for

total correctness if 𝜙 ∧ 0 ≤ 𝑣 → 𝑤𝑝(#𝑝𝑟𝑒 𝜙 #𝑝𝑜𝑠𝑡 𝜓 #𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑣 𝑝𝑟𝑜𝑐 𝑓(𝑥̅) {𝑆̅}, 𝜓).

The correctness of the whole program is determined by the correctness of every

procedure.

3.5 LLM Assistant Integration

The tool utilizes the capabilities of current large language models to automate the

debugging process of a faulty program or the semi-decidable aspects of the verification

process through the assertion language. The LLM is treated as an unreliable oracle, and

therefore cannot operate unsupervised, and its produced output has no guarantees

regarding correctness (or anything else).

The LLM interferes when a program cannot be proven correct using the proof system

described in the Section 3.4, by being prompted with the detected error and the original

program. The model may respond by suggesting a different specification or altering the

original program and explain the reasoning behind its actions. These responses are

supervised by the user and can be used to evaluate the newly generated code for

correctness or discarded.

22

Chapter 4 Implementation

4.1 Parsing 23

4.2 Semantics and Typing 24

4.3 Compilation and Execution 25

4.3.1 Virtual Machine 25

4.3.2 Instruction Set 25

4.3.3 Code Generation 27

4.4 Verification 28

4.5 GPT Assistant 30

A prototype for the language as described in the previous chapter along with integration

of an LLM Assistant was implemented in python. Architecturally it follows the structure

of a multi-pass compiler, being a hybrid of an interpreter and a static analysis tool with

supplementary LLM assistance, shown diagrammatically below:

23

Figure 4.1 Tool Architecture

4.1 Parsing

The concrete syntax chosen for the tool closely resembles the abstract syntax given in

Section 3.1. This syntax presented using EBNF notation can be found in Appendix B.

The syntax follows similar lexical rules as the C language. Operators which cannot be

represented using ASCII characters are approximated using fairly conventional

alternatives (e.g. using != for ≠). Integer literals are represented using signed base 10

notation. Identifier names are identical to standard C identifiers and do not overlap with

any keyword. Lexemes may be separated by whitespace characters, which are

insignificant. Single line comments prefixed by ‘//’ are allowed and ignored by the parser.

24

The grammar includes precedence and associativity rules for all operators defined in the

previous chapter, in a manner like most C-family languages. Expression grouping using

parentheses is allowed. If-else statements may be chained without block nesting.

Moreover, metaconditions (prefixed by #) are optional, which allows the user to omit

variants if they do not wish to examine termination, or they can omit preconditions when

there is no need to validate one, or even postconditions in case that a program should only

be executed, not verified. Variants and invariants are also allowed to be omitted if it is

desired to receive a proposed such expression by the LLM assistant.

The syntax was deliberately constructed to be easy to parse, as it can be shown that it can

be specified by an LL(1) grammar and implement a simple recursive descent parser for

it. Having said that, the pyparsing module [17] was used to implement the parser by

specifying the respective parsing expression grammar. By executing the parser on an

input string, an abstract syntax tree (AST) containing metadata about the nodes text

location is created to be further processed, given that the input is syntactically valid.

4.2 Semantics and Typing

During semantic analysis the AST is processed to determine whether the respective

program is well formed, construct a symbol table that associates variables with types and

declarations with their kinds and produce the symbol table and the call graph between the

program procedures.

The well formedness of a program is evaluated using the typing rules described in the

previous chapter in a top-down manner using pattern matching, based on the context of

the specification. Type inference is also performed at this step on assignments by

evaluating the type of the assigned expression and declaring a new variable with the

inferred type or detecting ill-formed assignments to variables of different types or

parameters which are immutable.

25

Whenever a rule is violated, the error is reported with a descriptive message and the whole

semantic check phase is terminated, no recovery attempts are made.

4.3 Compilation and Execution

An interpreter for the language was also implemented to allow the empirical verification

of the correctness or faultiness of the inspected program. The implementation uses a

virtual stack-based execution context with a simple instruction set that is described below.

4.3.1 Virtual Machine

The virtual machine is composed of the following elements:

• Program memory, which is a sequence of instructions to be executed.

• Instruction pointer, which points the currently executing instruction.

• Value stack, which contains integer values used by the program.

• Call stack, where the values of the instruction pointer from previous calls are

stored.

• Frame stack, which stores segments of the value stack according to calls already

executed.

• String table, which contains messages when the program is abruptly terminated

by a failed assertion.

There is no concept of word size since the native python integers are used in this

implementation, which have unlimited precision. There is no explicit Boolean type either

and the zero value is treated as false.

4.3.2 Instruction Set

Below are listed the instructions used by the virtual machine to execute a program. Each

instruction may optionally include an integer operand that may be interpreted as a label

or an immediate value. All non control flow instructions increment the instruction pointer

by one. The program terminates when the instruction pointer reaches the end of program

26

memory. Division and modulo operations are not defined on zero divisor and this

implementation raises a ZeroDivisionError which is part of the python runtime.

The following notation is used below:

• [𝐵𝑒𝑓𝑜𝑟𝑒] → [𝐴𝑓𝑡𝑒𝑟]: Stack modification, only the topmost values are shown.

• 𝑏𝑎𝑠𝑒: [𝑡𝑜𝑝 𝑣𝑎𝑙𝑢𝑒𝑠]: Denotes the whole stack.

• [𝑎] ∗ 𝑛: A stack consisting of n repetitions of the value a.

• |𝑆|: The length of the stack S.

Value operations are denoted using a C-like syntax. The assert instruction on failure

reaches the end of program and outputs the message provided by its operand.

Mnemonic Value Stack

NOP

NEG [V]→[-V]

NOT [V]→[!V]

ADD [V1, V2]→[V1+V2]

SUB [V1, V2]→[V1-V2]

MUL [V1, V2]→[V1*V2]

DIV [V1, V2]→[V1/V2]

MOD [V1, V2]→[V1%V2]

LT [V1, V2]→[V1<V2]

LE [V1, V2]→[V1<=V2]

EQ [V1, V2]→[V1==V2]

NE [V1, V2]→[V1!=V2]

GE [V1, V2]→[V1>=V2]

GT [V1, V2]→[V1>V2]

Table 4.1 Arithmetic Instructions

Mnemonic Operand Value Stack Frame Stack Side Effect

LOAD I []→[S[I]]

STORE I [V]→[] S[I]=V

27

Mnemonic Operand Value Stack Call

Stack

Frame

Stack

Instruction

Pointer

JMP I I

JMP_IF I [V]→[V] V!=0?I:IP+1

JMP_UNLESS I [V]→[V] V==0?I:IP+1

ASSERT I [V]→[] V==0?END:IP+1

CALL I []→[IP] I

RET S0:[V]→S:[V] [I]→[] [S]→[] I+1

Table 4.3 Control Flow Instructions

4.3.3 Code Generation

The code generation phase follows closely the reduction rules described in Chapter 3.

Where a naive implementation of the interpreter would traverse the AST at runtime and

apply the reduction rules, the AST is converted top-down in a sequence of instructions to

be interpreted by the virtual machine. Given that the AST is well-formed, the code

generation phase should not fail or produce ill-formed code which violates the virtual

machine semantics (e.g. popping from an empty stack).

Base expressions are compiled using the CONST instruction. Composite expressions are

compiled by recursively generating instructions for the respective subexpressions and

emit the necessary instructions to combine them, for example 𝑒0 + 𝑒1 would be generated

as: 𝑒0 𝑐𝑜𝑑𝑒; 𝑒1 𝑐𝑜𝑑𝑒; 𝐴𝐷𝐷.

CONST I []→[I]

POP [V]→[]

ENTER I S:[]→S:[0]*max{0,|S|-I}

FRAME I S:[V]*I→S []→[[V]*I]

Table 4.2 Stack Manipulation Instructions

28

Conditional expressions and control flow statements are compiled using backpatching to

‘fix’ jump instruction target that are not known when generating them, and POP

instructions to remove unneeded values when branching is determined. Assignments are

implemented using the STORE instruction. When compiling an assert statement, after

generating the code for the assertion expression the instruction ASSERT is emitted with

operand the location of an entry in the string table of the virtual machine with the message

displayed in case of a failed assertion.

Procedure calls are generated by compiling their arguments in reverse order and

allocating them on the stack frame (using the FRAME instruction), where the callee

procedure is to be executed afterwards. Calls to procedures not yet compiled are

backpatched after compiling all procedures. Procedures use the ENTER instruction in the

same way that many calling conventions require a prologue to allocate space in the stack

and a RET instruction as an epilogue. The amount of space to allocate is again,

backpatched.

A symbol table with the addresses of the compiled procedures is also produced along with

the generated code as there is no single specified entry point, and the user may select

which procedure to execute and the supplied arguments using command-line options.

4.4 Verification

The tool detects software faults by applying the extensions of Hoare Logic for recursive

procedural programming described in Chapter 3. All expressions that appear in the

assertion language and all intermediate conditions are represented using Z3 expressions.

Converting AST expressions to Z3 expressions is mostly trivial, since all AST expression

nodes have equivalent Z3 nodes which can be constructed through the Z3 API. No

function is left uninterpreted, where their Z3 definition is equivalent to their AST

declaration expression.

Each program is verified for partial correctness or total correctness where variant

expressions are employed. For each procedure and its specification, the weakest

29

precondition is computed using an implementation of the recursive function 𝑤𝑝. Each

intermediate inferred precondition is checked using the Z3 Automated Theorem Prover,

where if the precondition is found unsatisfiable it is presented in a message with its

location and verification fails. The provided precondition must imply the calculated

precondition (by the consequence rule), and the needed implications of a while loop

precondition are checked using the Z3 Automated Theorem Prover. If such implication is

not proven to be a tautology, again a descriptive message is presented along with a

counterexample, and verification fails. The total call rule is applied if a call is directly or

mutually recursive which is determined through the call graph, otherwise the partial rule

suffices since termination does not depend on non recursive calls.

Example:

As an example of fault detection using the implementation described, the following faulty

program where it is intended that the integer square root of x is computed, is tried to be

verified for partial correctness. By computing the weakest precondition of the procedure

using backwards inferences traced in the figure below, the precondition computed before

the if-else statement is unsatisfiable. By observing the implications that compose the

precondition, their consequents contain the negation of their antecedents respectively.

The program can be corrected by inverting the if condition, which causes the swapping

of the antecedents of the implications of the precondition. The tool produces the following

output when attempting to verify this program:

buggy/isqrt.hld:13:9: error: precondition `If(m*m <= x,

 And(And(l*l <= x, x < m*m), 0 <= x),

 And(And(m*m <= x, x < r*r), 0 <= x))` found is unsatisfiable

 if m * m <= x {

 ^

#pre x >= 0

#post result * result <= x && x < (result + 1) * (result + 1)

proc isqrt(x) {

 l := 0;

 r := x + 1;

30

 #invariant l * l <= x && x < r * r

 #variant r - l

 while l != r - 1 {

 m := (l + r) / 2;

 {(𝑚 ∗ 𝑚 ≤ 𝑥 → 𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑚 ∗ 𝑚) ∧ (𝑚 ∗ 𝑚 > 𝑥 → 𝑚 ∗ 𝑚 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟)}

 if m * m <= x {

 {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑚 ∗ 𝑚 ∧ 𝑙 = 𝑚 − 1}

 r := m;

 {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑙 = 𝑟 − 1}

 } else {

 {𝑚 ∗ 𝑚 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑚 = 𝑟 − 1}

 l := m;

 {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑙 = 𝑟 − 1}

 }

 {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑙 = 𝑟 − 1}

 }

 {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < 𝑟 ∗ 𝑟 ∧ 𝑙 = 𝑟 − 1}

 {𝑙 ∗ 𝑙 ≤ 𝑥 ∧ 𝑥 < (𝑙 + 1) ∗ (𝑙 + 1)}

 return l;

 {𝑟𝑒𝑠𝑢𝑙𝑡 ∗ 𝑟𝑒𝑠𝑢𝑙𝑡 ≤ 𝑥 ∧ 𝑥 < (𝑟𝑒𝑠𝑢𝑙𝑡 + 1) ∗ (𝑟𝑒𝑠𝑢𝑙𝑡 + 1)}

}

Figure 4.2 Faulty Integer Square Root Program Inference Trace

4.5 GPT Assistant

Using OpenAI’s assistants and its API, an assistant was created using the gpt-3.5-turbo

model by providing some instructions in natural language, where the language is

described briefly, and example programs are provided to the model. The assistant is

instructed to take in consideration comments starting with ‘///’ as user supplied hints that

may help in correcting the faulty program and if it was to generate a new program, to use

a specified format that is easily parsed by the tool. The full prompt can be found in

Appendix C.

31

When a program fails to be verified for correctness, the assistant is provided a prompt

containing the program and the error through the asynchronous OpenAI API. The tool

offers an interactive mode flag, where when a proposed modified program is detected in

the assistant’s response the user may choose to instantly update their previous program.

Successful Example:

As a successful example, the following figure presents the interaction between the user,

the tool and the assistant through the messages displayed by the tool and the assistant’s

response for the faulty integer square root program shown previously. In this scenario the

user chooses to apply the changes proposed by the tool and the program is subsequently

verified and the calculated weakest precondition required by the procedure is presented.

$./hld/run.py buggy/isqrt.hld --ai --interactive

buggy/isqrt.hld:13:9: error: precondition `If(m*m <= x,

 And(And(l*l <= x, x < m*m), 0 <= x),

 And(And(m*m <= x, x < r*r), 0 <= x))` found is unsatisfiable

 if m * m <= x {

 ^

Asking Hoare Logic Debugging Assistant (gpt-3.5-turbo)...

The error message you have indicates that the precondition for the `if` statement inside

the `isqrt` procedure is found to be unsatisfiable by the compiler. This implies that the

condition being checked in the `if` statement contradicts the conditions specified in the

preconditions and invariants of the program.

Looking closely at the `if` statement condition `m * m <= x`, it seems to be the cause of

the issue. The precondition requires `m * m <= x` to be true, but this condition is directly

conflicting with the invariant `l * l <= x`.

To correct this error, you should adjust the logic of the program to ensure consistency

between the conditions in the `if` statement, the preconditions, and the invariants. One

32

possible correction would be to consider the relationship between `m`, `l`, and `r` in the

binary search algorithm and update the conditions accordingly.

Here is the corrected version of the `isqrt` procedure:


``` 

#pre x >= 0 

#post result * result <= x && x < (result + 1) * (result + 1) 

proc isqrt(x) { 

    l := 0; 

    r := x + 1; 

    #invariant l * l <= x && x < r * r 

    #variant r - l 

    while l != r - 1 { 

        m := (l + r) / 2; 

        if m * m > x { 

            r := m; 

        } else { 

            l := m; 

        } 

    } 

    return l; 

} 

``` 


In this corrected version, the condition in the `if` statement has been updated to `m * m

> x` instead of `m * m <= x` to maintain consistency with the specified preconditions and

invariants. This change should resolve the unsatisfiability error.

Apply proposed changes and retry? (Y/n) y

proc isqrt(...) {...} requires `And(Not((1 + x)*(1 + x) <= x), 0 <= x)`

Figure 4.3 Integer Square Root Program Correction Using a GPT Assistant

33

Failed Example:

As a failed example, the following figure presents the interaction between the user, the

tool and the assistant through the messages displayed by the tool and the assistant’s

response for a faulty sum of consecutive even integers program (displayed using the cat

command). In this case, the supplied loop invariant is incorrect and GPT identifies the

error but fails to correct it properly, providing an invalid explanation.

$ cat examples/sum.hld

#post result == n * (n - 1)

proc sum(n) {

 i := 0;

 total := 0;

 #invariant total == i * (i + 1)

 #variant n - i

 while i != n {

 total := total + 2 * i;

 i := i + 1;

 }

 return total;

}

$./hld/run.py examples/sum.hld --ai --interactive

examples/sum.hld:7:16: error: invariant and guard negation do not imply post condition.

 post: total == n*(-1 + n)

counter-example: [i = -2, total = 2, n = -2]

 while i != n {

 ^

Asking Hoare Logic Debugging Assistant (gpt-3.5-turbo)...

The error message indicates that the postcondition specified in the program is not

implied by the invariant and guard (loop condition) specified in the loop. This suggests

an issue with the loop and the way the loop condition is interacting with the

postcondition.

34

To resolve this issue, we need to ensure that the loop condition and the invariant are

correctly related to eventually satisfy the postcondition. One way to correct the program

is to adjust the loop condition and the invariant.

Here is the corrected program:


``` 

#post result == n * (n - 1) 

proc sum(n) { 

  i := 0; 

  total := 0; 

  #invariant total == i * (2 * i - 1)  /// Update the invariant to match the relationship 

between total and i 

  #variant n - i 

  while i != n { 

    total := total + 2 * i; 

    i := i + 1; 

  } 

  return total; 

} 

``` 


In this corrected version, the invariant has been updated to reflect the relationship

between the total and the loop variable `i`. This adjustment ensures that the loop

invariant is consistent with the changes happening inside the loop and will help in

satisfying the specified postcondition.

Apply proposed changes and retry? (Y/n) n

Figure 4.4 Failed Attempt to Correct a Summation Program Using a GPT Assistant

35

Chapter 5 Evaluation

5.1 Usability and Accuracy 35

5.2 Performance 36

5.3 Limitations 37

5.1 Usability and Accuracy

In this section, the usability of the tool will be discussed qualitatively. In general, the tool

offers fine-grained, per-statement precision in detecting errors, assuming that

specifications were accurate. The generated messages in case of a detected error, describe

the inferred fault precisely according to the formal system used. This does not necessarily

mean that the programmer will understand their program’s fault, since the tool informs

them about the validity of logical conditions, and it may not be immediately clear as to

what exactly must corrected.

An early version of the tool which did not include the LLM assistant along with two

simple faulty programs to debug were given to a handful of senior undergraduate students

that had been previously taught Hoare logic. While they responded mostly positively to

the tool and its usage, generally regarding it as helpful and partially succeeding in

debugging the said programs, they felt uncomfortable with the amount of Hoare logic

required to use and understand the tool.

The language poses some unusual restrictions on division expressions and procedure

calls, as they must be directly assigned and not nested anywhere else in the program’s

code. This is required since these expressions require extra preconditions, and the

verification rules are applied at the level of statements. These restrictions can be relaxed

if a rewrite (or desugar) step is added after parsing where these expressions are de-nested

and assigned to fresh variables.

36

The integration and usage of the LLM assistant is a double-edged sword. It generally

succeeds in finding invariants and variant expressions for many programs. While in many

cases it is capable of correcting faulty programs and is responsive to user hints, at times

it proposes non-sensical solutions or even ignores the problem completely. Sometimes it

can contradict itself between its explanations and proposed code, which can cause

frustration and confusion to the programmer. It may also fail to comply to the syntactic

rules of the language by prepending invariants before non-loop constructs.

The accuracy of the assistant can be increased by using more recent models such as GPT-

4, Gemini, or Llama. Querying the LLM multiple times, merging and repairing the

responses increases the precision of the model in finding invariants, [18] therefore similar

techniques could be beneficial for this implementation in terms of accuracy. Querying

can be done in parallel so that responsiveness will not be affected.

5.2 Performance

Even though performance was not a primary concern in this implementation, it is a

detrimental factor for any static analysis tool. Since these tools attempt to solve (or

approximate) NP-hard problems, their execution time must scale well with larger input

programs. Additionally, this tool aims to be interactive, so that programmers may attempt

to correct their programs as often as needed, therefore high response time is unwanted.

This implementation written in python, whose runtime has many known caveats

concerning its performance by itself, has some issues that although resolvable using

various methods, shall be addressed.

By running a profiler, two major bottlenecks where identified: the parser and the OpenAI

API. The parsing library used struggles with some inputs causing it to backtrack

unnecessarily, and a simpler grammar cannot be easily expressed using the provided

functionality. This is easily fixed by creating a handwritten recursive descent parser

without backtracking, or by using an ‘industrial’ parser generator. The problems caused

by OpenAI’s API were trickier. The needed modules’ import time, which occurs at

37

runtime, takes a great portion of the total execution time and this is caused by CPython’s

importing mechanisms. This was partially solved by using lazy imports, i.e. importing the

needed modules when needed, in which case execution times are still penalized. A

possible solution to this bottleneck, would be rewriting the tool in a compiled language

where no such imports at runtime are necessary.

Another contributing factor to the performance of this tool, is the assistant’s response

time. Current LLMs need tens of seconds to respond to a few hundred tokens, which

damages the tools latency even further.

Lastly, the SMT solver, needs a significant share of resources to determine the

satisfiability of the computed properties. Some calls to the solver can be avoided, as this

implementation checks the satisfiability of every inferred precondition at each statement.

Instead, the solver can be called on fewer statements and then backtracking can be used

to detect the offending statement.

5.3 Limitations

The language described in this thesis is computationally universal, as demonstrated by

the program below which simulates rule 110, a known universal cellular automaton [19].

The integer 𝑛 represents the state of the automaton as a binary vector. Since the language

does not support bitwise operations, they are emulated using arithmetic and relational

operators (addition of powers of two is equivalent to bitwise or, 𝑛 % 2𝑘+1 ≥ 2𝑘 is true if

and only if the 𝑘th bit of 𝑛 is set). Variables 𝑙, 𝑐, 𝑟 represent the left, centre (self), and

right cells respectively of the log2(𝑖) cell, used by the if condition to determine the

log2(𝑖) cell of the next state 𝑚. The procedure terminates when no set cells with no set

neighbouring cells remain, since their next state will always be zero.

proc rule110(n) {

 m := 0; i := 1;

 t := n % 4; l := t >= 2;

 t := n % 2; c := t >= 1;

38

 r := false;

 while i <= n * 2 {

 if (c || r) && (!l || !c || !r) {

 m := m + i;

 } else {}

 r := c; c := l;

 i := i * 2;

 t := n % (i * 4); l := t >= i * 2;

 }

 return m;

}

Figure 5.1 Procedure that Computes the Next State of Rule 110.

Even though any computable function can be expressed in this language, it poses some

practical difficulties. Most general-purpose programming languages do not use arbitrary

precision integers. It is possible to simulate bit-vectors with any overflow behavior

(wrapping, undefined, saturated, etc.) using integers and a few user-defined functions and

predicates. However, native support could be added to the tool without burdening the

programmer, by extending the syntax to include type annotations, the type system to

include bit-vectors and utilizing the Z3 bit-vector values. Support for memory references

through arrays, pointers, and composite data types, would turn this tool closer to a typical

programming language and the verification step would be powered by a suitable flavor

of separation logic.

The tool does not restrict the programmer in any way in expressing specifications,

therefore it can fail to terminate when verifying a program. Recursive functions and

predicates are not checked for termination, but employing a paradigm such as total

functional programming on these structures is possible and potentially beneficial.

39

Chapter 6 Conclusion

6.1 Summary 39

6.2 Challenges 39

6.3 Future Work 40

6.1 Summary

In this project a tool was devised to assist in identifying and resolving software faults,

facilitating formal methods and the competences of LLMs. The tool ensures that

programs comply to their specifications and leads the user to the necessary actions to

correct their programs otherwise. LLMs can bridge the gap between the complexity of

Hoare-like systems, accelerating debugging and making formal verification more

accessible, by providing insight into the deductions constructed by the tool.

Through empirical evaluation and a small-scale survey, we conclude that this tool is

deemed as useful by programmers with a background in Hoare-like proof systems. By

utilizing the capabilities of LLMs, the barrier to entry for using formal methods is

significantly lowered, even allowing the expression of specifications and bug causes in

natural language.

This work opens new avenues for future research in combining artificial intelligence with

formal methods, aiming to further refine the user experience and expand the capabilities

of such tools. By exploring this synergy, we can move towards accessible, robust, and

error-free software development.

6.2 Challenges

40

During this project, several challenges were encountered. One major hurdle was the

design of the proof system, which required to carefully create and understand suitable

extensions to Hoare logic, ensuring soundness. Moreover, the Z3 API presented

difficulties due to its vastness and steep learning curve. Finally, the performance issues

that emerged were a concern; the parsing library used to generate ASTs, python’s runtime

and OpenAI API’s latency affected the tool’s responsiveness. These challenges were

addressed through iterative refinement and optimization of the implementation achieving

the primary goals of this thesis.

6.3 Future Work

There are many possible extensions to the tool described in this thesis. The tool can be

further developed to include more expressive language constructs such as memory

references, composite data structures and dynamic methods, as well as to incorporate

other approaches in formal methods such as symbolic execution or model checking. The

communication between the tool and the LLMs can be implemented using more

sophisticated approaches [18], to better the accuracy and reliability of the model, thereby

improving user experience and accelerating software development.

There are countless static analysis tools with more features than the one developed during

this thesis, that can be reused. By focusing on the synergy of LLMs and formal methods,

different strategies can be implemented by providing information to the LLM using static

analysis tools to debug or even synthesise programs, under the user’s supervision or fully

automated. Formal methods allow users to trust the responses generated by the LLMs as

they can guarantee that the programs comply to certain specifications [20].

41

Bibliography

[1] T. Britton, L. Jeng, G. Carver, T. Katzenellenbogen and P. Cheak, "Reversible

Debugging Software "Quantify the time and cost saved using reversible

debuggers"," 2020. [Online]. Available:

https://www.researchgate.net/publication/345843594_Reversible_Debugging_So

ftware_Quantify_the_time_and_cost_saved_using_reversible_debuggers.

[2] "GitHub Copilot," GitHub, Inc., 2024. [Online]. Available:

https://github.com/features/copilot.

[3] A. Taylor, A. Vassar, J. Renzella and H. Pearce, "Models, dcc --help:

Transforming the Role of the Compiler by Generating Context-Aware Error

Explanations with Large Language," in SIGCSE 2024: Proceedings of the 55th

ACM Technical Symposium on Computer Science Education V. 1, Portland, 2024.

[4] N. Alzahrani and F. Vahid, "Common Logic Errors for Programming Learners: A

Three-decade Literature Survey," in 2021 ASEE Virtual Annual Conference

Content Access, 2021.

[5] "Langley Formal Methods Program • What is Formal Methods," [Online].

Available: https://shemesh.larc.nasa.gov/fm/fm-what.html.

[6] C. Hoare, "An Axiomatic Basis for Computer Programming," Communications of

the ACM, vol. 12, no. 10, pp. 576-580, 1969.

[7] C. Hoare, "Procedures and Parameters: An Axiomatic Approach," in Symposium

on Semantics of Algorithmic Languages, 1971.

[8] J. C. Reynolds, "Separation Logic: A Logic for Shared Mutable Data Structures,"

in LICS, 2002.

[9] E. Dijkstra, "Guarded Commands, Nondeterminacy and Formal Derivation of

Programs," Communications for the ACM, vol. 18, no. 8, pp. 453-457, 1975.

[10] N. Bjørner, C. Eisenhofer, A. Gurfinkel, N. P. Lopes, L. de Moura, L. Nachmanson

and C. Wintersteiger, "Z3 Internals (Draft)," Microsoft Research, [Online].

Available: https://z3prover.github.io/papers/z3internals.html#sec-solver-cores.

42

[11] B. Meyer, "Applying "Design by Contract"," Computer (IEEE), vol. 25, no. 10,

pp. 40-51, 1992.

[12] "What are large language models (LLMs)?," [Online]. Available:

https://www.ibm.com/topics/large-language-models.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser

and I. Polosukhin, "Attention is All you Need," no. 30, pp. 5998-6008, 2017.

[14] R. L. F. D. R. C. K. Rustan M. Leino, "Dafny Reference Manua," 29 April 2022.

[Online]. Available: https://dafny.org/dafny/DafnyRef/out/DafnyRef.pdf.

[15] "About Infer," Meta Platforms, Inc., [Online]. Available:

https://fbinfer.com/docs/about-Infer.

[16] "Kernel & Plugins - Frama-C," [Online]. Available: https://www.frama-

c.com/html/kernel.html.

[17] E. Clark, "Programming language constructs for which it is impossible to obtain

good Hoare axiom systems," Journal of the ACM, vol. 26, no. 1, pp. 129-147, 1979.

[18] E.-R. Olderog, "On the notion of expressiveness and the rule of adaptation,"

Theoretical Computer Science, vol. 24, pp. 337-347, 1983.

[19] "pyparsing - PyPI," [Online]. Available: https://pypi.org/project/pyparsing/.

[20] K. Adharsh, S. Aditya, C. Saikat, D. Pantazis, K. L. Shuvendu, L. Akash, R.

Aseem, R. Subhajit and S. Rahul, "Finding Inductive Loop Invariants using Large

Language Models," 14 November 2023. [Online]. Available:

https://arxiv.org/abs/2311.07948.

[21] M. Cook, "Universality in Elementary Cellular Automata," Complex Systems, no.

15, pp. 1-40, 2004.

[22] M. R. H. Missu, C. V. Lopes, M. Iris and J. Noble, "Towards AI-Assisted Synthesis

of Verified Dafny Methods," 1 February 2024. [Online]. Available:

https://arxiv.org/abs/2402.00247.

A-1

Appendix A

Implementation Code

The code for the implementation is publicly available at

https://github.com/gevang03/epl401-hoare-logic-debugger.

User’s Guide

Introduction

The purpose of this tool is to assist in finding bugs in programs, thus making

programming easier. The tool uses formal methods to detect bugs and verify correctness

and termination. It includes an integrated large language model that can assist in

correcting found bugs.

Build

On Linux, run the following commands. Make sure that python3 --version is 3.9.18.

Run:

$ git clone --depth=1 https://github.com/gevang03/epl401-hoare-logic-d
ebugger.git
$ cd epl401-hoare-logic-debugger
$ python3 -m venv .venv
$. .venv/bin/activate
$ pip install --require-virtualenv -r requirements.txt

Usage

Synopsis: $./hld/run.py [OPTIONS] FILE

Run ./hld/run.py FILE to check for partial correctness

Run ./hld/run.py --total FILE to check for total correctness

(termination)

Run ./hld/run.py --run 'f x y' FILE to execute procedure f with

arguments x and y.

Run ./hld/run.py --ai FILE to ask GPT assistant about error.

Run ./hld/run.py --ai --interactive FILE to interactively apply

GPT assistant’s changes.

Run ./hld/run.py -h for help.

https://github.com/gevang03/epl401-hoare-logic-debugger

A-2

Language

The language that the tool supports is procedural and should be familiar to any C/Java

programmer. There also exist some constructs to express program specifications.

Types and Basic Expressions

Only two value types exist in HLD: Booleans (true, false) signed integers (represented

in base 10)

The following prefix/infix operators are defined with the same meaning, precedence, and

associativity as in C or Java:

• Arithmetic: +, -, *, /, %
• Boolean: !, &&, ||, ->
• Relational: <, <=, ==, !=, >=, >
• Conditional: ?:

Parentheses () can be used to group expressions. Relational operators are defined for

integer typed expressions only.

Variables

Variables can be declared/assigned:

// c++ style comments
x := 11;
p := false;
y := x + 3;

The division and modulo operator cannot be nested in expressions, they must be directly

assigned to a variable.

Example:

temp := x / y;
a := temp + 1;
// `a := (x / y) + 1;` is illegal

Control Flow

The following control flow structures are available:

if-else statements:

if x < 1 { // note that braces {} are mandatory.
 y := 3;
} else {
 y := x + 1;
}

while loops: Note: while loop conditions are referred as guards by the tool.

https://en.cppreference.com/w/c/language/operator_precedence

A-3

while x < 10 {
 s := s + x;
 x := x + 1;
}

return statements:

proc foo() {
 // ...
 return -1;
}

Assert statements: must be supplied a Boolean condition which should evaluate to true

for every valid execution of a program:

assert x > 0;

Procedures

Procedures are the basic abstraction used to define specifications and discover bugs in a

program.

• Procedures accept a number of integer parameters and return a single integer value.

Parameters cannot be reassigned (they are immutable).

• Procedures must end with a return statement in a every reaching path of execution.

• Procedures may be preceded by a precondition (a condition which should hold

before the execution of the procedure).

• Procedures may be preceded by a postcondition (a condition which should hold after

the execution of the procedure). The result keyword is used to represent the value

returned by the procedure.

Example:

#pre x >= 0 // precondition
#post result == x + 1 // postcondition
proc inc(x) {
 y := x + 1;
 return y;
}

Procedure Calls

Procedures may be called with the required number of arguments. However, they must

be directly assigned, not nested in any other expressions.

Example:

#pre x >= 0
#post result == x + 2
proc inc2(x) {
 x1 := inc(x);
 x2 := inc(x1);

A-4

 // `return inc(inc(x));` is illegal
 return x2;
}

Variants and Invariants

Invariants are conditions which must hold before, during and after the execution of an

iteration of a while loop/recursive call. They are used to prove the correctness of these

iterative structures.

Variants are integer expressions which each iteration must be decreased and are always

bound by zero. They are used to prove termination of while loops/recursive calls.

Example:

#pre n >= 0
#post result == n * (n - 1) / 2
proc sum(n) {
 i := 0;
 total := 0;
 #invariant total == i * (i - 1) / 2
 #variant n - i
 while i != n {
 total := total + i;
 i := i + 1;
 }
 return total;
}

Functions and Predicates

Functions and predicates are used to define other specifications, that may require

recursion to do so, for example. Their body consists of a single integral or Boolean

expression respectively. Functions and predicates cannot be called inside of a procedure.

Examples:

// example predicate for divides operator
pred divides(a, b) := b % a == 0;

// 'equivalent' to:
// function fct(n) {
// if (n <= 0) {
// return 1;
// } else {
// return n * fct(n - 1);
// }
// }
fn fct(n) := n <= 0 ? 1 : n * fct(n - 1);

// note that variant here is used to prove the termination of a recurs
ive procedure
#pre x >= 0

A-5

#post result == fct(x)
#variant x
proc calc_fct(x) {
 if x == 0 {
 return 1;
 } else {
 y := calc_fct(x-1);
 return x * y;
 }
}

Quantified Expressions

Quantified expressions using the forall end exists keywords, can be used in specification

if necessary. Quantified expressions can bind multiple variables (forall x. forall
y. p(x, y) == forall x y. p(x, y)).

pred prime(n) := n > 1 && forall i. 2 <= i && i < n -> n % i != 0;

B-1

Appendix B

Concrete Syntax in EBNF Notation

(* Whitespace and single line comments prefixed by ‘//’ are not significant and omitted

for brevity. *)

program = declaration, {declaration};

declaration = procedure | fn_or_pred;

procedure = [pre], [post], [variant], 'proc', identifier, paramlist, block;

fn_or_pred = ('fn' | 'pred'), ident, paramlist, ':=', expr, ';';

(* STATEMENTS *)

statement = ifelse | assert | assignment | while | return;

ifelse = 'if', expression, block, 'else', (ifelse | block);

assert = 'assert', expression, ';';

assignment = identifier, ':=', expression, ';';

while = [invariant], [variant], 'while', expression, block;

block = '{', {statement}, '}';

return = 'return', expression, ';';

(* EXPRESSIONS *)

expression = primary | ternary_expr;

(* Using regex: /[a-zA-Z_][a-zA-Z0-9_]*/ *)

(* Matches from keywords are excluded *)

identifier = ((alpha | '_'), {alphanum | '_'}) - keyword;

call = identifier, '(', [expression, {',', expression}], ')';

quantified = ('forall' | 'exists'), identifier, {identfier}, '.', expr;

literal = bool | int;

B-2

bool = 'true' | 'false';

int = digits, {digits};

(* ASSERTIONS *)

pre = '#pre', expression;

post = '#post', expression;

invariant = '#invariant', expression;

variant = '#variant', expression;

(* AUXILIARY *)

paramlist = '(', [identifier, {',', identifier}], ')';

alphanum = alpha | digits;

alpha = lower | upper;

lower = ? letters a to z ?;

upper = ? letters A to Z ?;

digits = ? digits 0 to 9 ?;

ternary_expr = impl_expr, '?', ternary_expr, ':', ternary_expr;

impl_expr = or_expr, '||', or_expr;

or_expr = and_expr, '||', and_expr;

and_expr = rel_expr, '&&', rel_expr;

rel_expr = add_expr, rel_op, add_expr;

add_expr = mul_expr, add_op, mul_expr;

mul_expr = unary_expr, mul_op, unary_expr;

unary_expr = un_op, primary;

primary = '(' expression ')' | literal | identifier | call | 'result' | quantified;

rel_op = '<' | '<=' | '==' | '!=' | '>=' | '>';

add_op = '+' | '-';

mul_op = '*' | '/' | '%';

un_op = '+' | '-' | '!';

B-3

keyword = 'assert' | 'if' | 'else' | 'proc' | 'fn' | 'while' | 'true' | 'false' | 'return'

 | 'result' | 'forall' | 'exists' | 'pred'

 | '#pre' | '#post' | '#invariant' | '#variant';

C-1

Appendix C

OpenAI assistant prompt

You are an assistant for a procedural programming language where each procedure is

verified using Hoare logic and backwards inferences. Hoare Logic clauses are prefixed

by '#'. If statements are always followed by an else statement. Invariants and variants do

not affect program behavior. Invariants appear only before loops, variants appear before

loops and procedures. fn functions are used to describe specifications. The result

expression refers to the value returned by the procedure. Values prefixed by `e!` refer to

variant bounds. Comments starting with ̀ ///` are user hints about what they think the error

is. Users provide the program and an error message trying to figure out what is wrong

with their program. Either some statement or expression in the program, or some

precondition, postcondition, variant, invariant may be wrong. If a correction would be

suggested, supply the whole program. Example correct programs are provided in file

retrieval

