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Abstract  

The application of artificial intelligence in sports has surged, driven by significant 

advancements in data analytics and machine learning. In track and field, where marginal gains 

can be crucial, coaches and athletes increasingly turn to sophisticated technologies, such as 

motion capture, to enhance competitive performance. This thesis leverages advanced machine 

learning techniques to enhance the analysis and prediction of athletic performance using 

motion capture data. 

The primary objectives are to develop predictive models that accurately estimate competition 

times, analyse running techniques to provide actionable feedback, explore injury prevention 

strategies through motion data analysis, compare various modelling techniques, and facilitate 

data-driven decision-making in athletic training. The study emphasizes feature extraction from 

motion capture data, focusing on key biomechanical insights. Sequential Feature Selection 

(SFS) is employed to identify the most relevant features, followed by the application of various 

machine learning models, including Ordinary Least Squares (OLS) regression, ElasticNet, 

Bayesian Ridge, Lasso, HuberRegressor, and LinearRegression. Hyperparameter tuning is 

performed to optimize these models for better predictive accuracy. 

A unique aspect of this thesis is the utilization of a novel dataset derived from Xsens Custom, 

provided by Kinetic Analysis [6], which has never been used in prior studies. This thesis 

represents the first attempt to leverage this specific data for predictive modelling in sports 

analytics. Additionally, there is no existing work that combines such comprehensive 

biomechanical feature extraction from Xsens Custom MVNX data with advanced machine 

learning techniques. 

The thesis highlights the efficacy of combining manually and automatically extracted features 

in predicting performance outcomes. The models developed offer practical insights for coaches 

and athletes, guiding them to optimize training regimens and improve performance. 

Furthermore, the study demonstrates the potential of these predictive models in identifying 

injury risks, thus contributing to safer training practices. 

This thesis provides a comprehensive approach to integrating advanced machine learning 

techniques with sports science, offering a robust framework for enhancing athletic performance 

and injury prevention. Through detailed data analysis and model comparison, it lays the 

groundwork for future research and application in the field of sports analytics. 
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Chapter 1 

 

Introduction 

 

 

1.1 Motivation            1 

1.2 Problem Statement          2 

1.3 Study Objectives           2 

1.4 Overview of the Thesis Structure         3 

 

 

1.1 Motivation 

In recent years, the integration of technology in sports training has seen significant 

advancements, particularly with the emergence and evolution of Artificial Intelligence (AI) and 

Machine Learning (ML). These technologies are increasingly being applied across various 

fields, with track and field emerging as a prime candidate for their application. The ability to 

analyse vast amounts of data and derive actionable insights is revolutionizing how athletes train 

and compete. 

 

As a track and field athlete and an undergraduate student specializing in computer science with 

a focus on AI, I have observed first-hand the potential benefits that AI and ML can bring to 

athletics. The precise analysis enabled by these technologies can significantly enhance an 

athlete's understanding of their performance, leading to more tailored and effective training 

strategies. Moreover, the use of motion capture technology, combined with sophisticated 

machine learning models, offers a novel approach to analysing and optimizing running 

techniques, ultimately aiming to boost athletic performance. 

 

This thesis explores the intersection of AI, machine learning, and sports science to develop 

robust predictive models for athlete performance, specifically focusing on completion times in 

track and field events. By leveraging detailed motion capture data, this study aims to not only 

predict performance outcomes with high accuracy but also to uncover underlying patterns and 

correlations that could inform more efficient training methodologies. 

 

Additionally, this study lays the groundwork for future explorations into the identification of 

potential biomechanical problems in running techniques. The long-term goal is to evolve these 
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models into tools that can pre-emptively identify risk factors for injuries, thereby helping 

athletes avoid long-term harm and improve their overall athletic longevity. This dual focus on 

performance enhancement and injury prevention encapsulates the broader potential of AI and 

ML applications in sports, marking a significant step forward in how athletes train, compete, 

and manage their health. 

 

1.2 Problem Statement  

The integration of artificial intelligence (AI) in sports, particularly track and field, has grown 

significantly due to advancements in data analytics and machine learning. Track and field is a 

sport where even the smallest improvements can lead to substantial competitive advantages. 

Coaches and athletes increasingly rely on sophisticated technologies, such as motion capture, 

which was initially developed for animation and gaming but has become a critical tool for 

biomechanical analysis in sports. Motion capture technology offers detailed insights into 

athletes' movements with a level of precision that surpasses human observation. 

 

The primary problem is that the human eye, even with expert visual observation, cannot capture 

all the intricate variables and detailed analytics needed to fully understand and optimize an 

athlete's technique and form. Traditional analytical methods, including basic statistical analysis 

and simple biomechanical models, are often inadequate for processing and interpreting the 

complex and voluminous data generated by motion capture technologies. This inadequacy 

leads to suboptimal performance prediction and technique optimization. 

 

This thesis aims to address this gap by developing advanced machine learning models capable 

of effectively assimilating and analysing large datasets from motion capture technologies. 

These models will provide accurate performance predictions and actionable feedback, 

enhancing athletic performance and aiding in injury prevention. By leveraging the detailed 

insights from extracted features, the thesis will offer a new paradigm for training and 

performance analysis in track and field, ultimately contributing to significant improvements in 

the application of AI in sports. The successful implementation of these models promises to 

revolutionize the way athletes train and perform, providing coaches and athletes with the tools 

to achieve their full potential. 

 

1.3 Study Objectives 

The primary objective of this thesis is to enhance the analysis and prediction of athletic 

performance in track and field using motion capture data by leveraging advanced machine 

learning techniques. These techniques include Ordinary Least Squares (OLS) regression, 
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ElasticNet, Bayesian Ridge, Lasso, HuberRegressor, LinearRegression, and hyperparameter 

tuning. Additionally, the study employs Sequential Feature Selection (SFS) and correlation 

analysis methods like Spearman to identify the most relevant features. The specific objectives 

are: 

1. Develop Predictive Models: Construct and evaluate predictive models that accurately 

estimate competition times for track and field athletes based on motion capture data. 

These models will utilize both manually extracted features and features automatically 

derived through tsfresh to determine which method provides greater predictive 

accuracy. Techniques such as OLS regression, ElasticNet, Bayesian Ridge, Lasso, 

HuberRegressor, LinearRegression, and hyperparameter tuning will be employed. 

2. Analyse Running Techniques: Utilize insights gained from predictive modelling to 

analyse and optimize running techniques. This involves identifying key biomechanical 

factors that influence performance and providing actionable feedback that athletes and 

coaches can use to improve training outcomes. Advanced machine learning techniques, 

including feature importance analysis (such as correlation analysis using Spearman's 

method) and regression analysis to interpret feature coefficients, will be employed. 

3. Enhance Injury Prevention: Explore the potential of predictive models to identify 

patterns and anomalies in motion data that may predispose athletes to injuries. By 

understanding these patterns, the study aims to contribute to the development of 

strategies that could help prevent injuries before they occur.  

4. Compare Modelling Techniques: Compare the effectiveness of different modelling 

approaches, specifically OLS regression and the best-performing models identified 

through PyCaret, in handling the complexities of sports performance data. This 

comparison will help establish best practices for deploying machine learning models in 

sports analytics.  

5. Facilitate Data-Driven Decisions: Demonstrate how machine learning can transform 

traditional coaching methods by integrating data-driven insights into training regimens. 

This includes evaluating the practical implications of model findings in real-world 

athletic training and competition settings.  

 

1.4 Overview of the Thesis Structure 

This thesis is organized into six chapters, each designed to build upon the information and 

analysis presented in the previous chapters: 

Chapter 1: Introduction  

This chapter sets the stage for the thesis by outlining the motivation behind the study, 

defining the problem statement, and specifying the objectives of the study. 
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Chapter 2: Background  

This chapter introduces foundational concepts and technologies crucial to this thesis, 

focusing on essential biomechanical metrics. It discusses the Symmetry Index (SI) for 

evaluating movement efficiency and the significant role of motion capture data in sports 

analytics. The chapter also covers machine learning tools like PyCaret and tsfresh, 

explaining their use in feature extraction and predictive modelling. Each section aims 

to lay a solid foundation for the methodologies and analyses explored in subsequent 

chapters. 

Chapter 3: Related Work  

This chapter reviews existing literature and previous research studies that focus on 

feature extraction, modelling techniques, and the use of AI in sports analytics. It 

includes an examination of a kinematic analysis study on field hockey players using 

MVNX files from Xsens, similar to the dataset used in this thesis. Additionally, the 

chapter reviews the paper [2] highlighting gaps in current methodologies that this study 

aims to address. 

Chapter 4: Methodology  

This chapter provides a comprehensive examination of the methodologies and results 

of the study. It begins with an in-depth look at the data pre-processing techniques and 

visualizations used to prepare the dataset for analysis. The chapter then explores the 

feature extraction processes, detailing both manual and automated methods via tools 

like PyCaret and tsfresh.  

Chapter 5: Training and Prediction  

This chapter discusses the modelling strategies implemented to predict completion 

times, presenting the results from different modelling approaches, including OLS and 

multiple model comparisons within PyCaret. The chapter includes hyperparameter 

tuning to optimize model performance. It evaluates the models' performance, 

interpreting the significance of their outputs and discussing the practical implications 

of the findings. Additionally, it addresses the challenges and limitations encountered 

during the study, providing a critical perspective on the methods and results presented. 

Chapter 6: Conclusion and Future Work 

The final chapter concludes the thesis by summarizing key findings and contributions 

of the study. It begins by restating the study's objectives, followed by a summary of key 

findings. The chapter also discusses the challenges and limitations encountered during 

the research. Finally, it outlines potential future work directions that could further 

enhance the integration of machine learning in sports analytics, specifically in 

improving performance prediction and injury prevention. 
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Chapter 2 

 

Background 

This section provides a comprehensive understanding of the foundational technologies and 

concepts that are integral to this thesis. It outlines key biomechanical metrics such as stride 

length, airtime, and ground contact time, which are integral for analysing track athletes' 

performance. Additionally, it introduces the Symmetry Index (SI) equation, crucial for 

evaluating athletes' movement efficiency and balance. The chapter also covers the pivotal role 

of motion capture data in sports analytics, detailing how this data is captured and its importance 

in high-precision analysis. Furthermore, descriptions of the machine learning tools PyCaret and 

tsfresh are provided, explaining their utility in feature extraction and predictive modelling. 

Every section is carefully structured to elucidate these fundamental concepts, laying the 

groundwork for the detailed analyses and methodologies to be examined in the following 

chapters. 

 

 

2.1 Stride length            5 

2.2 Ground Contact Time           6 

2.3 Airtime              6 

2.4 Symmetry Index (SI) equation          7 

2.5 Max Effort / Sub Max Effort          8 

2.6 Motion Capture Data           8 

2.7 Pycaret              9 

2.8 tsfresh             9 

 

 

2.1 Stride length  

Stride length is a critical biomechanical parameter in the analysis of running performance. It is 

defined as the distance covered between two successive placements of the same foot, 

encompassing one complete cycle of a leg's movement during running as shown in Figure 1 

and Figure 2. Stride length varies among athletes due to factors such as body size, leg length, 

and the intensity of the exercise. 
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Figure 1 Stride Length [1] 

 

In sports biomechanics, stride length is considered a key determinant of running speed and 

efficiency. According to research by Novacheck [11], stride length, in conjunction with stride 

frequency, dictates the pace at which a runner moves. The balance between stride length and 

stride frequency must be optimized for peak athletic performance, with variations observed 

between sprinting and long-distance running [15]. For instance, sprinters tend to have longer 

stride lengths to maximize speed over short distances, while distance runners might optimize 

stride length for endurance and energy conservation. 

 

Moreover, optimizing stride length is not only crucial for enhancing performance but also for 

reducing injury risk. Improper stride length can lead to biomechanical inefficiencies and 

increased strain on specific muscles and joints, potentially resulting in overuse injuries [3]. 

 

2.2 Ground Contact Time 

Ground Contact Time (GCT) refers to the duration of time a sprinter's foot remains in contact 

with the ground during each stride as shown in Figure 2. This metric is a fundamental aspect 

of running biomechanics, reflecting the efficiency with which a sprinter interacts with the 

running surface. In sprinting, a shorter GCT is often associated with greater running speed and 

improved efficiency because it indicates rapid force application and quick foot turnover. 

 

The amount of time sprinters spend in contact with the ground directly affects their ability to 

generate speed. Efficient sprinters typically exhibit a shorter GCT, allowing them to apply more 

power in less time, thereby increasing their stride frequency and overall speed. Training to 

reduce GCT can lead to significant improvements in sprint performance by enhancing the 

athlete's explosive power and reaction time off the ground [4][7][8][11][12][16]. 

 

2.3 Airtime/Swing Phase Time 

Airtime, in the context of running, refers to the interval during which neither foot is in contact 

with the ground between consecutive steps from one foot to the other as shown in Figure 2. 

This occurs from the toe-off of one foot until the moment the opposite foot touches the ground. 
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This phase is crucial as it reflects the athlete's ability to generate sufficient propulsion and 

maintain momentum. 

 

Airtime is a critical metric for evaluating sprint performance because it directly relates to the 

athlete's speed and efficiency. In sprinting, as speed increases, the time spent in swing phase 

typically increases [7][11], contributing to a greater stride length and enhanced propulsion. 

Therefore, the focus is not merely on minimizing airtime but on optimizing it along with stride 

frequency and ground contact mechanics to achieve the best balance for maximal speed. 

 

 

Figure 2 Gait Cycle when running 

 

2.4 Symmetry Index (SI) equation 

The Symmetry Index (SI) is a quantitative measure used to assess the symmetry of movement 

between the left and right limbs of an athlete. This metric is particularly relevant in sports 

science, where asymmetries can indicate potential inefficiencies or predispositions to injury. 

Symmetry is often idealized in athletic performance, suggesting that a more balanced 

movement could lead to improved performance and reduced injury risk [10][17]. 

 

The Symmetry Index (SI) is calculated using the equation provided below. This index is a ratio 

expressed as a percentage, which quantifies the asymmetry between the right and left limbs' 

movements during performance. 

𝐒𝐈 =  
| 𝒙𝒓  –  𝒙𝒍 |

𝒙𝒓 +  𝒙𝒍
𝟐

∗ 𝟏𝟎𝟎 

 

In the formula xr and xl symbolize the measurements from the right and left limbs, respectively. 

These measurements could be related to various biomechanical outputs, such as force exerted, 

power generated, or stride lengths during sprinting. The absolute value of their difference, ∣ xr 

– xl ∣, is divided by the average of the two measurements to determine the relative asymmetry. 
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Multiplying this ratio by 100% converts it into a percentage. The resulting SI value indicates 

the level of symmetry, with values approaching zero indicating a high degree of symmetry and 

higher values indicating greater asymmetry [10][17]. 

 

2.5 Max Effort / Sub Max Effort 

 

Max Effort (ME) refers to the highest level of intensity an athlete can exert in a given activity. 

In sprinting, this would be the athlete's absolute fastest and most powerful performance over a 

short duration, typically seen in races or short bursts of speed. Max Effort is characterized by 

a full mobilization of an athlete's physical and mental resources, pushing their physiological 

limits. 

 

Sub Max Effort (SME), on the other hand, is a level of exertion that is sustainable over a more 

extended period and is less than the athlete's maximum capacity. While still demanding, it is 

not as intense as Max Effort and is often used in training to improve endurance, technique, and 

to simulate race conditions without the strain of a full-out effort. 

 

2.6 Motion Capture Data 

Motion Capture Data is a sophisticated method used to record the movements of objects or 

people. In sports science, it involves tracking the movement of athletes to gather detailed data 

on their biomechanics. This technology captures the dynamics of movement in several 

dimensions, allowing for an in-depth analysis of the performance that is not visible to the naked 

eye. Motion capture technology, particularly from specialized systems like Xsens Custom, 

enables the collection of precise and multi-dimensional movement data from athletes. These 

advanced systems use inertial sensors to track and record an athlete's movements without the 

need for optical cameras or external reference points. 

The Xsens Custom system is a highly sophisticated motion capture solution tailored to capture 

the nuanced dynamics of an athlete's movement. By attaching sensors to the athlete’s body, the 

system provides real-time three-dimensional data on the athlete's kinematics, offering 

invaluable insights into performance metrics such as joint angles, acceleration, and velocity.  

 

The data used in this study was collected by KineticAnalysis [6], a company that specializes 

in the analysis of movement for sports performance. Their expertise in processing and 

interpreting the raw data captured by the Xsens Custom system allows for a detailed 

understanding of an athlete’s biomechanics and the identification of areas for improvement. A 

unique aspect of this study is the utilization of a novel dataset derived from Xsens Custom, 
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which has never been used in prior studies. This unprecedented dataset provides a fresh 

perspective and significant potential for advancing the field of sports performance analytics. 

 

2.7 Pycaret   

PyCaret is an open-source, low-code machine learning library in Python that aims to reduce 

the complexity of performing end-to-end machine learning tasks. It's designed to help data 

scientists and developers expedite the process of building and deploying machine learning 

models with a minimal amount of coding effort. [13] 

 

PyCaret is known for its comprehensive suite of features that facilitate everything from data 

pre-processing, model training, and model tuning to model analysis and final deployment. The 

library supports various modules for classification, regression, clustering, anomaly detection, 

natural language processing, and associative rule mining, making it a versatile tool for a wide 

range of applications. 

 

In this thesis, PyCaret was utilized primarily for training machine learning models and 

identifying the most effective model for predicting athletic performance from motion capture 

data. The library's setup allows for quick iteration over multiple model types, facilitating the 

evaluation of each model based on predefined metrics such as accuracy, recall, precision, and 

F1 score. 

 

2.8 tsfresh 

tsfresh is an open-source Python library that facilitates the extraction of relevant features from 

time series data automatically. It is specifically designed to handle various types of time series 

inputs and derive meaningful statistical, and mathematical features that significantly enhance 

data analysis and predictive modelling. [18] 

 

tsfresh excels in its ability to efficiently extract a large number of features from time series 

data, which includes basic statistics like mean and median, trends, variability, and more 

complex characteristics such as Fourier transforms and autocorrelation. One of its key strengths 

is the automatic selection of relevant features that best contribute to the predictive power of a 

model, helping to reduce dimensionality and avoid overfitting. 

 

In this thesis, tsfresh was employed alongside my own manual extraction efforts to pre-process 

motion capture data, deriving key features essential for evaluating athletes' performance. This 

comprehensive approach combines automated and manual methodologies to form a robust 
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foundation for creating machine learning models. These models are designed to forecast results 

such as competition completion times, and future work will extend to assess injury risks. 

Together, these methods enhance the precision and efficiency of the initial feature engineering 

phase 
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Chapter 3 

 

Related Work 

 

 

3.1 Previous Research in Motion Capture Data and Sports Analytics   11 

3.2 Modelling and Predicting Athletic Performance in Running    12 

 

 

3.1 Previous Research in Motion Capture Data and Sports Analytics 

The study [5] explores the use of wearable sensors to monitor athletes' performance, 

specifically focusing on field hockey players. This paper, produced by researchers who sourced 

data from the same company as my study (Kinetic Analysis [6]), provides valuable insights 

into kinematic analysis using MVNX files. Additionally, the researcher Ioannou, who authored 

the paper, provided guidance and support throughout my thesis process, especially in pre-

processing methodologies. 

In their research, Ioannou et al. aimed to minimize the number of sensors required for accurate 

performance analysis, thereby reducing the invasiveness and potential performance hindrance 

associated with wearing numerous sensors. By analysing data from 77 field hockey players 

over four years, they identified correlations between different sensors to determine a minimal 

yet effective sensor setup. This approach reduced the number of sensors from 23 to 8, 

maintaining the ability to predict ball speed during a drag-flick with minimal loss in accuracy. 

The methodology employed involved parsing MVNX files to extract and pre-process data into 

a structured format suitable for analysis. The researchers used correlation metrics to eliminate 

redundant sensors, focusing on those that provided the most unique and valuable data. This 

process highlighted the importance of key sensors placed on specific body parts such as the 

toes, hands, lower legs, and forearms, as well as the T12 sensor on the spine. 

 

Application to My Study 

While my study did not focus on minimizing the number of sensors, it adopted a similar 

approach in several key areas to predict athletic performance. First, the pre-processing 

methodologies, developed with guidance from Ioannou, were essential in transforming MVNX 

files into a pandas DataFrame, enabling structured data analysis. Following this, feature 

extraction, as in Ioannou's study, was conducted using tools such as TSFresh to derive a 

comprehensive set of metrics from the motion capture data. Finally, I applied correlation 
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metrics to identify and retain the most relevant features, ensuring that only those most 

correlated with the target variable were used for better predictive results. These steps were 

foundational in enabling the detailed analysis conducted in my study. 

 

3.2 Modelling and Predicting Athletic Performance in Running 

The paper [2] presents a comprehensive model for predicting individual performance in 

running using modern machine learning techniques and a database of over 164,000 British 

runners. The model leverages Local Matrix Completion (LMC) to identify three essential 

parameters per runner: 

1. Endurance: This parameter acts as an exponent in an individual power law that reflects 

the runner's endurance. It explains most performance differences across distances 

greater than 800m, providing a personalized measure of an athlete's capacity to 

maintain performance over longer distances. 

2. Balance between Speed and Endurance: This parameter captures how a runner 

balances speed versus endurance in races, affecting performance over various distances. 

It offers insights into each athlete's running style and pacing strategies. 

3. Middle-Distance Specialization: This parameter accounts for a runner's non-linear 

corrections to the power law, emphasizing their specialization in middle-distance 

events. It refines the performance prediction by considering individual variations that 

deviate from typical pacing trends. 

 

The authors apply these parameters to generate highly accurate predictions, achieving an 

average prediction error of 3.6 minutes for marathon performances and 0.3 seconds for 100m 

performances. This model outperforms previous state-of-the-art performance predictors by 

30% in root mean square error (RMSE). 

By combining these three parameters, the paper's authors produce a holistic, parsimonious 

model that accurately predicts performance across a wide range of race distances, explaining 

both physiological and behavioural aspects of running. Their approach unifies principles from 

power law modelling, scoring tables, and physiological parameters, providing a more 

comprehensive view of athletic performance. 

 

Differences Between the Paper and This Thesis 

The paper [2] and this thesis differ significantly in terms of data sources, analysis approaches, 

and objectives. The existing paper relies on historical race results from a large database, using 

predictive models trained on broad datasets to estimate completion times. This approach 



 13 

focuses on general race performance data without delving into biomechanical features or 

patterns.  

In contrast, this study emphasizes feature extraction from motion capture data to predict 

completion times, utilizing both manually and automatically extracted features. Manually 

extracted features include key biomechanical insights such as stride length, ground contact 

time, and symmetry index, which help identify critical areas for performance optimization. 

Automatically extracted features, derived using advanced techniques like tsfresh, capture 

subtle biomechanical patterns and statistical transformations that provide additional layers of 

analysis. 

By combining both manually and automatically extracted features, this thesis offers a more 

detailed and comprehensive understanding of the factors influencing athletic performance. This 

dual approach not only highlights the importance of key biomechanical elements but also 

uncovers intricate patterns that may not be immediately apparent through manual analysis 

alone. 

Another difference lies in the type of feedback provided. The existing paper offers race 

performance predictions based on aggregated historical data but lacks detailed, actionable 

recommendations for athletes and coaches to improve performance. This study goes beyond 

simple predictions by generating detailed, actionable insights that coaches and athletes can use 

to refine training regimens. The predictive models identify specific features and patterns that 

athletes need to focus on to achieve better results. 

Furthermore, the existing paper primarily focuses on predicting race times and quantifying 

athletic performance without considering injury risks or related biomechanics. In contrast, this 

study extracts motion capture features that could signal injury risks. By identifying 

biomechanical patterns or anomalies, the study provides feedback that allows athletes to adjust 

training and running mechanics to minimize injury risks. 
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Chapter 4 

 

Methodology 

 

 

4.1 Pre-processing of Data         14 

4.2 Data Visualization          21 

4.3 Feature Extraction          26 

4.4 Training and Prediction          47 

 

4.1 Pre-processing of Data  

The pre-processing stage lays the foundation for converting unprocessed motion capture data 

into a well-organized format suitable for detailed analysis. This section provides a 

comprehensive overview of the MVNX file format, highlighting the intricate and hierarchical 

nature of the data captured by the motion sensors. Next, it proceeds to explain how the data is 

converted from an XML-based MVNX format to a pandas DataFrame. The pandas DataFrame 

is well-known for its analytical flexibility and capability in the Python data science community. 

The careful reformatting is essential as it allows for the application of advanced data 

manipulation and machine learning techniques in the latter phases of the thesis. 

 

4.1.1 MVNX File Structure 

The motion capture data used in this study were stored in MVNX format [9], a sophisticated 

XML-based format designed to encapsulate a wide range of biomechanical motion data.  

This format is notable for its precision in calculating kinematic data, such as the position and 

orientation of each body segment B, relative to a fixed earth reference coordinate system G. 

Reference Coordinate Systems: 

• Global Coordinate System (G): By default, the earth-fixed reference coordinate 

system used in MVNX files is defined as a right-handed Cartesian coordinate system. 

The axes of this system are aligned as follows: 

o X: Points toward the local magnetic North. 

o Y: Follows the right-handed coordinate system, pointing West. 

o Z: Points upward, perpendicular to the Earth's surface. 

• Body Frame (B): Each body segment's frame B is initially aligned with the global 

reference frame G when the subject assumes a T-pose.  

 



 15 

The file structure is comprehensive and includes several critical elements: 

 

1. Initialization: Each MVNX file starts with the XML version declaration and includes 

the root element mvnx, which references the XML Schema Definition (XSD) and the 

MVNX version. It contains metadata such as the MVN Analyse/Animate version, build 

details, comments added to the original recording, session information (including the 

suit label, sample frequency, and number of body segments), the date of the recording, 

and the filename of the original session. The structure of the initialization element is 

illustrated in Figure 4. 

 

 

Figure 4 MVNX file Initialization 

 

2. Segments: This section defines the positions (pos_b) of connecting joints (prefixed 

with "j") and anatomical landmarks (prefixed with "p") relative to the origin of that 

segment in the body frame B. The configuration of the segments section is illustrated 

in Figure 5. 

 

Figure 5 MVNX file section Segments 

 

3. Sensor Data: Lists the names of segments measured with the motion trackers (MTs). 

The configuration of the sensors section is illustrated in Figure 6. 
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Figure 6 MVNX file section Sensors 

 

4. Joints Data: Provides a list of joints, detailing the segments and connections for each 

joint. The configuration of the joints section is illustrated in Figure 7. 

 

 

Figure 7 MVNX file section Joints 

 

5. Ergonomic Joint Data: Includes specific joint angles used in ergonomic analysis along 

with their segment connections. The configuration of the ergonomic joint section is 

illustrated in Figure 8. 

 

 

Figure 8 MVNX file section Ergonomic Joint 

 

6. Foot Contact Detection: Details the foot contact points, marking each with a value of 

'1' if in contact with the ground and '0' if not, indexed in the foot contact definition array 

for every given timeframe. The configuration of the foot contact definition section is 

illustrated in Figure 9. 

 

 

Figure 9 MVNX file section Foot Contact Definition 
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7. Frames:  

The frames section of the MVNX file is structured to contain detailed biomechanical data 

across different types of frames, starting with the general frame attributes and moving to 

specific frame types: 

 

A. General Frame Attributes: Each set of frames begins with an opening tag that 

includes the total counts for segments, sensors, and joints. This tag sets the context 

for the detailed data contained in each specific frame type that follows. 

B. Identity Frame: The first type, known as the "identity frame", is marked by the type 

"identity". This frame denotes the null pose or identity pose. All segment orientations 

in this pose are aligned with the global coordinates and have unit quaternion. 

C. Tpose Frame: Following the identity frame is the "tpose" frame, which describes the 

positions and orientations of all segments arranged in a T-pose. The positions and 

orientations of certain segments deviates slightly from the identity pose. 

D. Tpose-ISB Frame: The frame type “tpose-isb” describes the positions and 

orientations of all segments in the T-pose, but using the MVN anatomical frame for 

the body segments. The MVN anatomical frame is used to calculate the joint angles. 

E. Normal Frames: After the specific pose frames, the section transitions to 'normal' 

frames that capture actual motion data during a session. These frames are 

timestamped with their recording time, index, and additional details such as velocity, 

acceleration, angular velocity, angular acceleration, foot contacts, sensor data, joint 

angles and center of mass data. 

  

The structure and sequence of the frames as detailed above are illustrated in Figure 10, 

providing a clear visual representation of the organization and content of data within the frames 

section. 
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Figure 10 MVNX file section Frames 
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Parameters description: 
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4.1.2 Converting MVNX Files to Pandas Data Frame 

 

Overview 

MVNX files, which are encoded in XML, contain complex and hierarchical biomechanical 

data that present challenges for direct analysis. To enable more efficient data manipulation and 

analysis, this data is parsed and converted into a pandas DataFrame. The DataFrame structure 

is favoured in data science due to its powerful analytical capabilities and compatibility with a 

plethora of data analysis tools. 

 

Parsing the XML Data 

The process begins with parsing the XML data. Using Python’s xml.etree.ElementTree 

module [14], the MVNX XML file is read and converted into a tree structure. This structured 

representation allows for systematic extraction of data based on its hierarchical organization. 

 

Constructing the DataFrame 

 

Frame-Based Data Organization: This involves iterating through each frame, extracting 

data related to various sensors and their metrics, and aligning this data temporally. Each 

piece of data is associated with a specific time point, ensuring chronological consistency 

across all data points. 

 

Structuring DataFrame Columns: A separate column is created for each type of 

measurement from each sensor, such as orientation, position, or velocity, ensuring that each 

sensor's data is easily accessible. Systematic naming conventions are employed to name 

columns in a way that reflects the sensor, the type of metric, and the dimension (if 

applicable), such as 'RightFoot_Acceleration_X'. This naming strategy enhances clarity 

and facilitates easy data retrieval. 

 

Finalizing the DataFrame: 

The structured data is then imported into a pandas DataFrame. Each column represents a sensor 

and its corresponding metric, while each row represents a frame from the motion capture data. 

 

The process of transforming the MVNX file to a pandas DataFrame and utilizing the structured 

data within Python is illustrated in the following Figure 11. It visually outlines the steps taken 

to convert the complex motion capture data into an analytically accessible format. 
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Figure 11 Python Code for Converting MVNX Data to pandas DataFrame 

 

4.2 Data Visualization  

This section emphasizes the crucial role of data visualization in analysing motion capture data, 

focusing on extracting and validating critical insights about the datasets. We delve into the 

utilization of visual tools, such as the Xsens Animate and Python, to ensure the integrity and 

reliability of the data before progressing to feature extraction. By employing these advanced 

visualization tools, we can thoroughly examine the datasets, identifying any discrepancies or 

anomalies that need to be addressed. 

 

4.2.1 Visualization with Xsens Animate 

This section explores the initial stage of data analysis where visual tools, specifically the Xsens 

Animate tool, play a crucial role  

 

Tool Overview: 

The Xsens Animate tool [19] is an advanced visualization platform specifically designed for 

motion capture data analysis. This tool transforms raw biomechanical data into detailed three-

dimensional animations, providing a dynamic and intuitive means to observe and analyse the 

complex movements of athletes in real-time.  

 

Technical Features: 

Sensor Integration: Xsens Animate seamlessly integrates data from multiple sensors 

placed on the athlete's body, synthesizing the inputs to create a cohesive animation that 

reflects the actual movements performed during the capture session. 

Frame-by-Frame Analysis: The tool enables frame-by-frame scrutiny of the captured 

data, an essential feature for identifying precise moments in a performance where 

biomechanical efficiencies or inefficiencies appear. Paying close attention to little 



 22 

details is crucial when analysing complex actions such as running, as even slight 

variations over time can significantly impact the efficiency of each step. 

Customizable Views: Researchers can customize how data is viewed within the tool, 

choosing from various display options that highlight different biomechanical aspects, 

such as skeletal movements, joint angles, or center of mass. 

 

Insights from Xsens Animate 

 

Sensor Placement Observations: During the analysis, it became apparent that the  

incorrect placement of sensors, particularly at crucial points like the heel and toe, significantly 

affected the accuracy of the data. Figures 12 illustrate cases where sensors were not correctly 

placed, leading to erroneous representations of foot mechanics. These errors were critical as 

they affected the fundamental analysis of foot strike patterns and overall foot dynamics, which 

are essential for accurate biomechanical assessment. 

Additionally, in other captures, sensors incorrectly positioned on the athletes' legs further 

compromised the kinematic analysis. This misplacement not only distorted the accuracy of leg 

movement data but also introduced irregular motion patterns that did not truly reflect the 

athletes' actual performances. Such inaccuracies were particularly problematic for analysing 

the precise mechanics of running, where detailed leg movements are critical for a thorough 

understanding of athletic efficiency. 

 

 

 

Figure 12 Example of incorrect placement of sensors 

 

Data Exclusion Decisions: Based on the observed sensor errors, decisions were made to 

exclude certain datasets from further analysis. The process of selectively excluding certain data 

was crucial in preserving the integrity of the study findings, guaranteeing that only precise and 

pertinent information was analysed. Implementing such an indicator was necessary to maintain 

the study's rigorous requirements and ensure reliable insights on sports performance. 
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Protocols for Future Data Collection: The incident also emphasised the significance of 

implementing careful sensor setup protocols to prevent similar issues in future captures and 

studies. 

 

Visual Insights for Feature Selection: The Xsens Animate tool played a vital role in 

emphasising important visual aspects that guided the process of extracting features. Through 

careful visual observation of motion dynamics, we determined crucial characteristics that are 

necessary for thorough analysis. This sets the foundation for the discusses in the Feature 

Extraction section. 

 

4.2.2 Visualization with Python 

This section explores how Python was utilized to complement and extend the insights gained 

from Xsens Animate and other visualization tools. It will showcase several plots created with 

Python, discussing how these visualizations support and deepen the initial observations made 

with dynamic tools like Xsens Animate. The analysis presented here will focus on deriving and 

explaining the insights that these Python-generated visualizations provide about the motion 

capture data, further enhancing the feature extraction process by substantiating the findings 

from Xsens with additional visual evidence. 

 

 

Right and Left Foot Velocity Analysis 

Figure 13 provides a comprehensive analysis of the velocities for both the left and right feet 

of an athlete, using color-coded indicators to mark ground contact points. 

• Contact Points Indication: Blue dots signify the right foot's contact with the ground, 

and red dots represent the same for the left foot. 

• Left Foot Analysis (Figure 13 - Top Graph): Each red dot, marking the contact of the 

left foot, is followed by a sharp increase in velocity. This pattern indicates the foot's 

lift-off, highlighting the critical phase of toe push-off that propels the athlete forward. 

• Right Foot Analysis (Figure 13 - Bottom Graph): Similarly, for the right foot, the blue 

dots are succeeded by a rise in velocity. This consistent pattern suggests a toe push-off 

preceding the foot's lift-off. 
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Figure 13 Right and Left Foot Velocity Analysis 

 

Insights from Foot Velocity Analysis: 

 

Consistent Technique and Rhythm: Beyond the approximate 350th frame, a repetitive 

pattern emerges in both the left and right foot velocity graphs, indicating a consistent running 

technique and rhythm. This uniform motion is suggestive of efficient energy utilization, which 

is characteristic of an athlete's optimal running form.   

 

Determining the Beginning of Running Movement: As evident in Figure 13, the initial 

segments of the capture depict the athlete with a velocity near zero, highlighting a period of 

stationary rest or preparatory activity. This phase persists until approximately the 350th frame, 

at which point a noticeable increase in velocity indicates the onset of sustained running. This 

transition from preparatory activities to actual running is crucial. Accurately identifying this 

shift is pivotal in data pre-processing to ensure that analyses focus only on frames that capture 

the full essence of the running motion. The objective is to isolate and retain data from the 

precise moment an athlete begins running until they complete a specified distance. 

Implementing this practice across all datasets sharpens the focus and relevance of the analysis, 

enabling a more accurate assessment of running mechanics and performance. 

 

Differential Ground Contact Analysis  

Figure 14 highlights a clear contrast in ground contact data between the athlete's left and right 

feet. The graphs depict foot velocities over a series of frames again using color-coded indicators 

to mark ground contact points. 
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Consistency in Right Foot Contacts: The sequence of blue markers on the bottom graph 

outlines a consistent pattern of ground contacts for the right foot. Each foot strike, signified by 

a blue marker, is followed by a peak in velocity, which corresponds to the foot's lift-off, 

indicative of an established running rhythm. 

 

Absence of Left Foot Contacts: Contrarily, the absence of red markers on both graphs is 

conspicuous, suggesting an atypical lack of ground contact throughout the captured frames. 

This anomaly provides a clear visual confirmation of the sensor placement issues previously 

identified with the Xsens Animate tool, underscoring a critical data integrity issue that needs 

to be addressed. 

 

 

Figure 14 Comparative Ground Contact Analysis for Left and Right Feet 

 

Resolving Data Integrity Issues 

The insights drawn from Figure 14 have necessitated decisive action regarding the datasets in 

question. The notable lack of ground contact data for the left foot corroborates earlier concerns 

identified with Xsens animation, issues of sensor misplacement or data capture errors. Such 

findings undermine the reliability of the affected datasets for any substantive biomechanical 

analysis. 

 

To maintain the scientific rigor of this study, we have determined that datasets exhibiting these 

discrepancies, specifically those with incorrect sensor placement or problematic capture data 

cannot be utilized. Consequently, these datasets will be excluded from further analysis. This 

careful curation ensures that subsequent evaluations, particularly in feature extraction and 

model training, are based on data of uncompromised accuracy and consistency. 



 26 

4.3 Feature Extraction  

 

4.3.1 Manual Feature Extraction 

In the manual feature extraction phase, we dedicated our efforts to identifying and quantifying 

crucial aspects of athletic performance tailored to varying effort levels and distances. Through 

a meticulous analysis of four distinct captures per athlete—two at maximum effort and two at 

sub-maximum effort, across both 30-meter and 50-meter distances—we derived valuable data 

points. These data points effectively capture the subtleties of running mechanics, providing 

insights into the dynamic interplay of biomechanical factors under different running conditions. 

This careful examination allows us to understand and quantify how athletes adjust their 

performance strategies across varying intensities and distances, revealing critical elements that 

influence overall athletic output. 

 

1) Total Steps 

Objective: The total number of steps taken by an athlete over a set distance provides insight 

into their running economy and efficiency. Analysing the step count helps in understanding 

how athletes manage their energy and pace across different effort levels and distances. 

 

Methodology 

 

Data Preparation  

Before counting steps, the motion capture data is carefully pre-processed and loaded into a 

pandas dataframe. This preparation follows a specific pre-processing function outlined in 

the previous section, which formats and structures the data to ensure it is ready for detailed 

analysis. This step involves transforming raw data into a more analysable form by 

organizing it into clearly defined columns for each sensor metric, including ground contact 

indicators for both feet. 

 

Algorithm for Calculation:  

To accurately quantify the total steps taken by an athlete for each foot during a capture 

session, we employ a custom Python function named count_steps. This function 

meticulously analyses binary ground contact data from the motion capture system. Each 

entry in the dataframe corresponds to a frame of motion capture, where a '1' indicates that 

the foot is in contact with the ground, representing a foot strike, and '0' indicates no contact. 

This binary system allows precise detection of each step as the foot transitions from air to 
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ground contact. The detailed implementation of this function is illustrated in the Python 

code shown in Figure 15. 

 

 

Figure 15 Python Code for the count_steps Function 

 

Analysis Process: 

The function iterates through the specified column, identifying transitions from 'no contact' 

(0) to 'contact' (1), signalling the initiation of a new step. 

A new step is counted only if the interval since the last registered contact exceeds the 

contact_interrupt_threshold, effectively filtering out false step counts from brief or 

accidental contacts. For example, the sensor data switches from '1' (contact) at frame 10 to 

'0' (no contact) at frame 11, and back to '1' at frame 12—a scenario that's unlikely to 

represent actual steps due to the physical impossibility of such rapid consecutive foot 

contacts within just 10 milliseconds.  

The function returns the count of steps for the specified foot, allowing separate analysis for 

each foot's contact data. 

 

Insights from Total Steps Feature 

 

A. Comparative Analysis of Running Efficiency 

 

Scenario 1: Increased Steps with Maximum Effort 

During maximum effort, an athlete took 31 steps to cover the distance in 7540 

milliseconds, whereas, under sub-maximum effort, the distance was covered in 28 

steps over 7700 milliseconds. Notably, at maximum effort, there is a visible 

increase in tension and a breakdown in running technique, as observed from video 

analysis using Xsens Animation. This tension appears to disrupt the runner's 

optimal form, resulting in increased step count and less efficient movement. 
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Despite the increased effort, this does not translate into improved performance but 

rather contributes to a less efficient and potentially more fatiguing running style. 

 

Scenario 2: Consistent Steps Across Efforts 

In a contrasting example, the athlete consistently covers the distance in 29 steps 

regardless of the effort level. However, the times differ significantly: 7050 

milliseconds at maximum effort vs. 7800 milliseconds at sub-maximum effort. 

This scenario illustrates that maintaining a consistent step count and technique 

without excessive tension leads to more efficient and faster performances. The 

absence of technique breakdown allows the athlete to utilize their energy more 

effectively, demonstrating that a relaxed but consistent running form can enhance 

overall speed and efficiency. 

 

Conclusion: Enhancing Predictive Modelling  

The analysis of total steps across different effort levels and distances provides 

valuable data that can significantly enhance the predictive modelling of 

competition times. Incorporating step count data helps to accurately forecast the 

effects of different running techniques and efforts on performance outcomes, 

making it invaluable for optimizing performance in competitive settings. 

 

B. Injury Prevention and Management: 

Consistency and Asymmetry: Tracking the consistency of step counts across different 

sessions and comparing left/right foot contacts can help in identifying asymmetrical 

running patterns, which are often precursors to injuries. Adjustments in training can 

be made to correct these imbalances. 

 

 

2) Ground Contact Time (GCT) and Average GCT 

Objective: Ground Contact Time (GCT) quantifies the duration each foot is in contact with 

the ground during a stride. This metric is fundamental for analysing an athlete's running 

biomechanics [4][11], assessing efficiency, and identifying potential areas for speed 

enhancement. Analysing both the individual GCT and average GCT across different 

running conditions provides insights into technique, fatigue, and efficiency. 
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Methodology 

 

Data Preparation: 

Before measuring the GCT, the motion capture data is carefully pre-processed and loaded 

into a pandas dataframe. This preparation follows a specific pre-processing function 

outlined in the previous section, which formats and structures the data to ensure it is ready 

for detailed analysis. This step involves transforming raw data into a more analysable form 

by organizing it into clearly defined columns for each sensor metric, including ground 

contact indicators for both feet. 

 

 

Algorithm for Calculation: 

The calculation of Ground Contact Times (GCT) for both the left and right feet during a 

capture session is conducted using a custom Python function, calculate_contact_times. 

This function is designed to process binary ground contact data, which indicates whether 

each foot is in contact with the ground at each frame captured by the motion capture system. 

A value of '1' in the data signifies that the foot is in contact with the ground (foot strike), 

and a value of '0' indicates no contact (foot is in the air). This binary approach allows for 

precise identification of each contact phase, from the initial touch to the lift-off. The 

detailed implementation of this function is illustrated in the Python code shown in Figure 

16. 
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Figure 16 Python Code for the calculate_contact_times Function 

 

  

Analysis Process: 

1. Identification of Contact Events: 

Contact Start: A ground contact event starts when the diff() function applied to 

the toe_column identifies a transition from '0' (no contact) to '1' (contact). This 

indicates that the foot has just touched the ground. 
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Contact End: A ground contact event ends when the transition goes from '1' to 

'0', indicating the foot has left the ground. 

2. Recording Contact Durations: 

For both feet, the function tracks the frame number when each contact starts and 

ends. If a contact event meets the criteria of not being a false positive (determined 

by the contact_interrupt_threshold which filters out any minor breaks in contact 

that don't surpass the threshold) the duration of the contact is calculated. 

3. Calculation of Contact Times: 

The duration for each valid contact event is calculated by subtracting the start 

frame from the end frame, then multiplying by the frame interval (10 milliseconds 

in this context). This provides the contact time in milliseconds. 

These individual contact times are collected into lists for both the left and right 

feet. 

4. Calculation of Average Contact Times: 

The average contact time for each foot is computed by taking the mean of all 

recorded contact times. This average provides a measure of the typical ground 

contact duration for the session. 

 

Insights GCT Analysis 

This section synthesizes observations from the ground contact time (GCT) analyses, 

comparing performance across different effort levels and between athletes. The insights are 

directly linked to biomechanical efficiencies, which are in alignment with established 

research on running dynamics. 

 

Comparative Analysis Within an Athlete's Performances 

From detailed observations of a single athlete's performances, we noted distinct variations 

in their running efficiency under different conditions. For instance, during a test, the athlete 

consistently took 29 steps to cover 50 meters, yet the time taken varied with the effort level. 

At maximum effort, the distance was covered in 7.050 seconds, compared to 7.800 seconds 

at sub-maximum effort. This 0.750-second difference underscores the influence of exertion 

level on speed. 

Further inspection reveals that ground contact time significantly decreases during 

maximum effort compared to sub-maximum effort. For example, Figure 17 shows that 

during maximum effort, the athlete reduced their ground contact time by about 20 

milliseconds per step. Over the course of 29 steps, this adjustment cumulatively saved 

approximately 0.580 seconds due to shorter ground contacts. This observation underscores 
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how effective management of ground contact time can significantly boost running speed, 

supporting the principle that minimizing ground contact time is essential for enhancing 

overall running efficiency. 

 

 

Figure 17 Ground Contact Time Comparisons for Max Effort vs. Sub Max Effort 

 

Integration with Established Research  

 

Corroboration with Novacheck's [11]  Findings: Our study's observations align with 

findings from Tom F. Novacheck, which reveal that elite sprinters achieve remarkably 

short Ground Contact Times (GCTs), thereby enhancing their speed and efficiency. 

Notably, Novacheck pointed out that world-class sprinters can achieve toe-off as early 

as 22% of the gait cycle, signifying superior biomechanical efficiency, as illustrated in 

Figure 18 from his study "The Biomechanics of Running." (Fig.3 in paper). 

 

 

Figure 18 Ground Contact Time and Air Time Across Running Speeds, Adapted from 

'The Biomechanics of Running' by Tom F. Novacheck [11] (Fig.3) 

 

Scientific Correlation: These findings are consistent with those reported by 

Novacheck, who observed that faster runners, particularly elite sprinters, spend 
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significantly less time in stance phases. This reduced stance time translates into shorter 

GCTs, which are critical for achieving high speeds. 

 

Biomechanical Implications: Our empirical data demonstrates that minimized GCTs 

correlate strongly with increased running speeds [4][7][11], providing real-world 

examples of how biomechanical principles can enhance athletic performance. The 

detailed analysis of GCT across different effort levels substantiates the importance of 

efficient ground contact management as a key factor in optimizing running mechanics. 

 

Conclusion: Enhancing Predictive Modelling 

The insights garnered from the analysis of GCT are invaluable for enhancing the predictive 

accuracy of models that forecast competition times. By integrating GCT metrics into our 

models, we can predict how modifications in running technique and effort levels affect an 

athlete's performance. These metrics prove especially potent in predicting the completion 

times of races, thereby offering athletes and coaches precise data to fine-tune training and 

competition strategies. 

 

 

3) Air Time and Average Air Time 

Objective: The objective of analysing Air Time and Average Air Time is to quantify the 

phase during which an athlete's feet are not in contact with the ground during a running 

stride. This measurement is crucial for understanding the dynamics of an athlete's gait, 

particularly the efficiency of their running mechanics and the effectiveness of their stride 

[11].  

 

Methodology  

 

Data Preparation:  

Prior to calculating Air Time, the motion capture data is processed and organized into a 

pandas DataFrame as outlined in previous sections. This preparation involves structuring 

the data to facilitate easy access to specific metrics such as toe and heel contact points for 

both feet, crucial for determining when both feet are off the ground. 

 

Algorithm for Calculation: 

The calculate_air_times function is designed to quantify the duration for which both feet 

of an athlete are airborne during a stride. This function examines sequences of frames to 
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determine continuous periods when both the toes and heels of both feet are not in contact 

with the ground, surpassing a predefined threshold to ensure it captures genuine Air Time 

and not brief or accidental losses of contact. The detailed implementation of this function 

is illustrated in the Python code shown in Figure 19. 

 

 

Figure 19 Python Code for the calculate_air_times Function 

 

Analysis Process: 

Contact Detection: The function iterates through the DataFrame, checking for 

intervals where both the toe and heel of each foot register no contact (0) continuously 

over a set threshold of frames. This method helps in identifying the start of an actual 

Air Time period, minimizing false detections. 

Airtime Calculation: Once a potential Air Time start is identified, the function looks 

for any foot contact (toe or heel changing to 1) to mark the end of Air Time. The 

duration is calculated based on the number of frames between the start and end of the 

Air Time, with each frame representing 10 milliseconds. 

Average Air Time: The function finally computes the average Air Time across all 

detected periods within a session, providing a metric of the athlete's average flight phase 

per stride. 

 

Insights from Air Time Analysis 

In this analysis, we examine the air time metrics of two sprint sessions involving the same 

athletes, referred to as Runner A and Runner B, across two distances: 30 meters and 50 

meters. This approach allows us to assess their consistency and changes in performance 

under different conditions. 
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Correlation with Biomechanical Research: Our data corroborates the biomechanical 

insights presented by Tom Novacheck [11], specifically his observation that as speed 

increases, so does the time spend in the swing phase (air time). This phenomenon is vividly 

illustrated in Figure 18 and further supported by our comparative analysis of two athletes 

over distances of 30 meters and 50 meters. 

 

 

Comparative Performance Analysis: 

30-meter Performance Comparison: 

In the 30-meter performance comparison, Runner A completed the distance in 3.05 

seconds, taking 19 steps with an average overall airtime of 74.21 milliseconds. Runner 

B outperformed this, finishing faster in 2.7 seconds and with fewer steps (17), despite 

having a slightly higher average overall airtime of 78.75 milliseconds. This indicates 

that Runner B's more effective utilization of vertical force may have enhanced their 

overall speed. 

50-meter Performance Comparison: 

For the 50-meter race, Runner A finished in 4.86 seconds, taking 31 steps with an 

average overall airtime of 82 milliseconds. Runner B again showed superior 

performance, covering the distance in a quicker 4.46 seconds using only 26 steps, and 

recording an average overall airtime of 85.38 milliseconds. This consistent ability of 

Runner B to maintain more airtime and efficiently utilize vertical force significantly 

contributes to their quicker finishes in both distances. 

 

Biomechanical Implications and Conclusion:  

These comparisons highlight the critical role of airtime in sprinting efficiency. 

Extending the duration of the swing phase not only allows athletes to optimize stride 

mechanics but also helps reduce step count and improve overall race times. The 

consistent results across both distances for Runners A and B illustrate how enhancing 

airtime can significantly enhance performance. This aligns with Novacheck’s 

biomechanical theories, providing empirical support for theoretical concepts and 

offering actionable insights for training programs focused on maximizing 

biomechanical advantages to boost competitive sprinting performance. 

 

 

 



 36 

Conclusion: Enhancing Predictive Modelling  

The detailed analysis of air time and average air time enhances the accuracy of predictive 

models aimed at forecasting athletes' completion times. By integrating these metrics, 

models can more precisely account for the dynamic elements of running mechanics that 

directly influence speed and efficiency. This enables more accurate predictions and tailored 

training approaches that can significantly improve athletes’ competitive performance. 

 

4) Stride Length 

 

Objective:  

The objective of analysing Stride Length is to measure the distance covered in each step 

during a running stride. Stride Length is a critical metric for assessing the efficiency of a 

runner's gait. In sprinting, longer strides are often associated with greater speed and 

efficiency, provided they can be maintained without excessive energy expenditure [11][15]. 

In distance running, optimal stride length helps maintain endurance and speed over longer 

periods, balancing energy conservation with pace [12]. 

 

Methodology  

 

Data Preparation:  

Before calculating Stride Length, it is essential to ensure the motion capture data is pre-

processed and organized correctly into a pandas DataFrame, as previously outlined. The 

data should include accurate positional information for each foot, which is critical for 

measuring the distance between consecutive foot contacts of the same foot. 

 

Algorithm for Calculation: 

The calculate_stride_lengths function is carefully designed to compute the stride lengths 

for both the left and right feet by determining the distance between successive ground 

contacts made by the same foot. This measurement is critical for assessing the efficiency 

and mechanics of a runner’s gait. The detailed implementation of this function is illustrated 

in the Python code shown in Figure 20. 
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Figure 20 Python Code for the calculate_stride_lengths Function 

 

Analysis Process: 

1. Identification of Contact Events: 

Contact End (Toe-Off): The end of a ground contact event (toe-off) is detected 

when the diff() function applied to the toe contact columns (toe_columnL and 

toe_columnR) identifies a transition from '1' (contact) to '0' (no contact). This 

transition indicates that the foot has lifted off the ground. 

Subsequent Foot Strike: After a toe-off event, the subsequent foot strike event 

is identified when the transition goes from '0' to '1', indicating the foot has 

touched the ground again. 

2. Recording Stride Events: 

Tracking Events: For both the left and right feet, the function records the frame 

numbers where each toe-off and the next corresponding foot strike of the same 

foot. It checks these events to ensure they are separated by more than the 

contact_interrupt_threshold to avoid counting minor, false-positive 

displacements as new strides. 
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Distance Measurement: Once a valid pair of toe-off and foot strike events is 

identified, the horizontal distance between these two points (along the x-axis) 

is measured to calculate the stride length. 

3. Calculation of Stride Lengths: 

Stride Measurement: The stride length for each valid event pair is calculated 

by taking the absolute difference between the x-coordinates of the toe-off and 

the subsequent foot strike positions. This provides the stride length in meters 

(or the units used for positional data). 

Collection of Stride Data: These individual stride lengths are collected into 

separate lists for both the left and right feet, allowing for analysis of stride 

patterns and differences between feet. 

 

Calculation of Average Stride Lengths: 

For a broader analysis that summarizes stride data over a session or compares across 

sessions, you can optionally calculate the average stride lengths for each foot. This average 

provides insights into the general efficiency and consistency of an athlete's gait over the 

analysed period. The Python code demonstrating this calculation is presented in Figure 21. 

 

 

Figure 21 Python Code for the calculation of average strides 

  

Insights from Stride Length Analysis 

In this analysis, we explore the stride length metrics from two sprint sessions, focusing on 

Runner A and Runner B across distances of 30 meters and 50 meters. By comparing their 

stride lengths across these distances, we aim to evaluate the consistency of their running 

mechanics and observe variations in performance under differing conditions. 
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Comparative Performance Analysis Over 30 Meters: 

Runner A completed the 30-meter distance in 3.05 seconds, taking 19 steps. His average 

stride length was 2.775 meters, with the average left stride measuring of 2.82 meters and 

the average right stride measuring of 2.73 meters. Runner B outperformed this by 

demonstrating a longer average stride length of 3.445 meters, with average left stride of 

3.45 meters and average right stride of 3.44 meters, allowing him to finish faster in 2.7 

seconds and with fewer steps, totalling only 17.  

 

Observations from 30-Meter Performance 

Runner B's increased stride length facilitated fewer steps to cover the same distance, 

exemplifying more efficient running mechanics. This efficiency not only reflects in his 

faster completion time but also indicates that effectively executed longer strides can 

significantly enhance running speed. Runner B’s performance underscores the importance 

of optimizing stride length to improve overall sprinting efficiency and speed. 

 

Comparative Performance Analysis Over 50 Meters: 

Runner A took 31 steps to complete the 50-meter distance in 4.86 seconds, with an average 

stride length of 2.98 meters, breaking down to 3.00 meters for the average left stride and 

2.97 meters for the average right stride. Conversely, Runner B demonstrated a more 

efficient stride, achieving a faster completion time of 4.46 seconds with an average stride 

length of 3.64 meters, detailed further as 3.635 meters for the average left stride and 3.646 

meters for the average right, while requiring only 26 steps. 

 

Observations from 50-Meter Performance: 

The considerable difference in average stride lengths between Runner A and Runner B 

significantly influenced their race dynamics. Runner B’s ability to maintain longer strides 

not only reduced the number of steps required but also contributed to a swifter overall 

performance, indicating an optimized stride mechanism. Moreover, Runner B’s extended 

strides across the 50-meter distance highlight the critical role of stride length efficiency in 

enhancing both speed and endurance. This consistent capability to maintain elongated 

strides underscores potential long-term benefits, suggesting that enhancing stride length 

could lead to substantial improvements in overall racing performance. 
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Conclusion: Enhancing Predictive Modelling 

The detailed analysis of stride length across various running conditions and distances offers 

critical insights that can significantly enhance the accuracy of predictive models in 

athletics. By integrating stride length data, these models gain a deeper, more nuanced 

understanding of the intricate ways in which stride dynamics influence overall performance 

times. This integration not only improves the precision of predictions but also helps in 

tailoring training programs to optimize athletes' performance based on their unique 

biomechanical characteristics. 

 

 

5) Stride Length Symmetry Index 

 

Objective: 

The Stride Length Symmetry Index (SI) aims to quantify the degree of symmetry in an 

athlete’s stride lengths between the left and right legs. This metric is critical for assessing 

balance and uniformity in an athlete's gait, which are essential for optimal performance and 

injury prevention. Symmetrical stride lengths can indicate efficient biomechanics, whereas 

asymmetrical strides may signal potential biomechanical inefficiencies or underlying issues 

that could lead to injuries. 

 

Methodology 

 

Data Preparation: 

The data from the motion capture system is processed to calculate the stride lengths for 

both the left and right legs, as previously described. This data is essential for computing 

the Symmetry Index. 

 

Algorithm for Calculation: 

The function calculate_symmetry_indices computes the Stride Length Symmetry Index 

for each pair of left and right stride lengths recorded during a session. This calculation is 

crucial for evaluating the balance and uniformity in an athlete's running mechanics. The 

detailed implementation of this function is illustrated in the Python code shown in Figure 

22. 
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Figure 22 Python Code for the calculate_stride_lengths Function 

 

Equalizing Data Lengths: The function begins by determining the shorter length 

between the two lists of stride lengths (left_strides and right_strides) to ensure that 

the comparison is only made where paired data exists. 

Symmetry Index Calculation: For each pair of corresponding left and right strides, 

the function calculates the Symmetry Index using the formula:  

𝑆𝐼 =  
|Left Stride Length –  Right Stride Length|

Left Stride Length +  Right Stride Length
2

∗ 100 

This formula measures the percentage difference between the two stride lengths relative 

to their average, providing a clear quantification of symmetry. 

Compiling Indices: All calculated Symmetry Indices are compiled into a list, which 

can later be analysed to assess the overall symmetry of the athlete’s gait across the 

session. 

Calculating Average Symmetry Index: To determine the overall symmetry for the 

session or across multiple sessions, the average Symmetry Index is calculated by 

summing all the indices and then dividing by the number of indices:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝐼𝑛𝑑𝑒𝑥 =
∑(symmetry indices)

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑖𝑛𝑑𝑖𝑐𝑒𝑠
 

This average provides a single percentage value that represents the typical symmetry 

level for the athlete's strides during the analysed period. 

This added step in the analysis process allows for a more comprehensive understanding 

of an athlete's stride symmetry over time, giving insight into their biomechanical 

consistency and potential areas for improvement. By quantifying and averaging the 

Symmetry Index, you can effectively monitor changes in gait symmetry as a response 

to training interventions or due to other factors such as fatigue or injury. 
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Insights from Stride Length Symmetry Index Analysis 

In this analysis, we focused on uncovering potential asymmetries in the runners' stride 

patterns. The goal was to understand how such asymmetries could affect overall running 

efficiency and the athletes' risk of injury. The Stride Length Symmetry Index (SI) was 

calculated for each runner across multiple sessions and distances to provide a 

comprehensive overview of their stride balance. Lower Symmetry Indices indicate a more 

balanced and efficient running gait, while higher indices may reveal underlying issues that 

need addressing through targeted training or biomechanical adjustments. 

 

Key Findings: 

The results from the Stride Length Symmetry Index (SI) calculations across all athletes and 

sessions consistently revealed low symmetry indices. This consistent finding suggests a 

high level of balance in the runners’ stride patterns, indicating efficient biomechanical 

alignment and movement. Well-balanced strides are crucial for maintaining high running 

efficiency, and the low symmetry indices observed in our athletes imply that their energy 

is being optimally utilized during each stride. This efficiency is essential not only for 

sprinting but also for distance running. 

Additionally, a balanced stride symmetry is often associated with a lower risk of injuries 

[10][17]. Asymmetries in stride length can lead to compensatory movements that increase 

stress on specific muscles or joints, potentially resulting in overuse injuries. The absence 

of significant asymmetry in our athletes' stride patterns suggests a reduced likelihood of 

such issues. This supports their ability to train consistently and compete safely, underlining 

the importance of monitoring stride symmetry not only for performance enhancement but 

also for injury prevention. 

 

Conclusion: Enhancing Predictive Modelling 

The insights derived from analysing the Stride Length Symmetry Index are crucial for 

refining predictive models aimed at forecasting athletic performance, especially in terms of 

completion times. By integrating symmetry index data, these models can better account for 

biomechanical efficiency and potential asymmetries, which are key factors influencing an 

athlete's speed and endurance. 

Incorporating these biomechanical variables into predictive models not only improves their 

accuracy but also makes them more reflective of real-world conditions. This enhanced 

understanding allows coaches and athletes to develop targeted training strategies that 

address any identified asymmetries proactively. Such strategic interventions optimize 
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performance and reduce the risk of injury, ensuring athletes can maintain high levels of 

competitiveness and longevity in their sporting careers. 

 

 

4.3.2 tsfresh Feature Extraction  

In this subsection, we delve into the use of tsfresh for automated feature extraction from 

motion capture data of each athlete. tsfresh is a powerful Python library designed to 

automatically calculate a vast array of time series characteristics, or features, from a dataset. 

This tool is particularly useful for capturing the inherent complexities within time series 

data without manual intervention. This process aims to identify features that significantly 

correlate with the target variable, optimize the feature set for model training, and enhance 

the predictive accuracy. 

 

Methodology 

Data Preparation: 

The data preparation stage is crucial for ensuring that the motion capture data is accurately 

processed for tsfresh feature extraction. This step involves loading and formatting each 

session's data into a pandas DataFrame, as described in the previous sections. Here’s a 

detailed breakdown: 

 

1. Loading Data:  

Each motion capture file, typically stored in MVNX format, is loaded into the pandas 

DataFrame. These files contain detailed biomechanical data capturing each athlete's 

movements throughout various performance tests. 

Exclusions: Specific files identified for exclusion based on predetermined criteria, such as 

errors in data capture or irrelevance to the current study, are not loaded into the DataFrame. 

This preventive measure ensures the quality and relevance of the data being analysed. 

 

 

2. Data Segmentation: The main goal of data segmentation in this context is to isolate 

the segment of the data that represents the athlete's performance from the start to the 

completion of the 30-meter distance. This ensures that the analysis focuses specifically 

on the performance metrics relevant to this sprint distance. 
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Feature Extraction Process: 

Using tsfresh [18], features are automatically extracted based on various time series 

characteristics. The process involves specifying parameters to efficiently capture relevant 

features from the dataset. The code block provided in Figure 23 details how the 

extract_features function from tsfresh is used to extract a wide array of features based on 

the configured settings. 

 

 

Figure 23 Implementation of tsfresh’s extract_features Function for Automated 

Feature Extraction 

 

Choice of EfficientFCParameters for Feature Extraction: 

In this study, the feature extraction settings are defined using 

tsfresh.feature_extraction.settings.EfficientFCParameters(). This configuration is 

selected to balance between extracting a comprehensive set of features and maintaining 

manageable computation times, which is crucial due to the extensive nature of the 

biomechanical data being processed [18]. 

 

The EfficientFCParameters function in TSFresh is designed to extract a robust set of 

features from time series data, similar to those obtained using the 
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ComprehensiveFCParameters. However, it omits features that are tagged with a “high 

computational cost” attribute. The rationale behind this selection is to reduce the runtime, 

especially important when processing large datasets like those in this study, where each 

athlete’s motion capture data involves numerous data points across multiple sessions. 

 

Using EfficientFCParameters ensures that while essential and diverse features are 

extracted to capture the dynamics of the athletes’ performances adequately, the 

computational overhead is kept in check. This is particularly advantageous in scenarios 

where the data needs to be processed in a reasonable timeframe without sacrificing the 

depth of analysis required to make informed conclusions about athletic performance. 

 

This approach aligns with the thesis’s need to efficiently handle extensive motion capture 

data, allowing for the extraction of meaningful features that can later be used to model and 

predict athletic performance outcomes effectively. 

 

Saving Common Features: 

 

After the feature extraction process using tsfresh, we identified features that are common 

across different datasets. These common features, numbering 342,657, were then 

consolidated and saved into a CSV file. This critical step ensures that the subsequent 

analysis phases are based on features that are consistently present across all sessions, 

thereby maintaining the reliability and validity of the analyses. This CSV file serves as a 

foundational dataset for further detailed examination and modelling. 

 

Final Feature Set Preparation 

 

Objective:  

Given the large number of common features (342,657) identified from the tsfresh extraction 

across multiple datasets, it was imperative to refine the feature set to enhance model 

performance and avoid overfitting. The goal was to retain features that have a strong 

correlation with the target variable ('total_time') and to eliminate features that are highly 

correlated with each other. This approach helps in minimizing redundancy and potential 

multicollinearity in the modelling phase. 
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Code Implementation:  

The Python code shown in Figure 24 demonstrates the steps taken to refine the feature set, 

ensuring that we only retain the most informative features for our predictive modelling. 

This code is responsible for the final feature set refinement, highlighting our methodical 

approach to handling a large number of features and ensuring that each feature contributes 

uniquely to our model's predictive capabilities. 

 

 

Figure 24 Python Code for Feature Set Refinement Process 

 

 

Process Overview: 

1. Data Loading and Preparation: 

The data, including the extracted features, is loaded from a CSV file into a pandas 

DataFrame. This dataset includes all features deemed common across different motion 

capture sessions, ensuring a consistent basis for analysis. 

2. Feature Selection Based on Target Correlation: 

Correlation with the target variable ('total_time') is calculated using Spearman's rank 

correlation to identify features that have a strong influence on the target. A high correlation 

threshold (e.g., 0.9) ensures only the most impactful features are selected. 

3. Removal of Highly Inter-correlated Features: 

A correlation matrix of the selected features is created to identify and remove features that 

have high correlations with each other (threshold >= 0.9). This step helps to minimize 

multicollinearity, ensuring that the remaining features provide unique informational value 

to the models. 
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4. Consolidation of the Final Feature Set: 

The remaining features after the above filtering steps form the final set used for modelling. 

This set is optimized for model performance, balancing the need for comprehensive data 

representation with the practical considerations of model complexity and overfitting. From 

the initial pool of 342,657 features, this rigorous process reduces the set to only 16 features, 

achieving a significant dimensionality reduction. 

 

Conclusion: This structured approach to feature selection and refinement helps ensure that 

the final model is built on a robust, interpretable, and highly predictive set of features. By 

systematically reducing the feature set from an initial 342,657 features to just 16, we 

significantly enhance the model's manageability and focus on elements most critical to 

predicting the total time effectively. This process not only optimizes performance but also 

aids in the understanding and application of the model in practical scenarios, ensuring that 

the features used are the most impactful for predicting outcomes. 

 

4.4 Training and Prediction 

In this section, we explain the comprehensive methodology followed for the predictive 

modelling discussed in Chapter 5. Our approach involved leveraging both Ordinary Least 

Squares (OLS) regression and various machine learning models provided by the PyCaret 

library, applied to both manually and automatically extracted features. 

 

Ordinary Least Squares (OLS) Regression 

We employed the OLS model to predict race completion times using both manually and 

automatically extracted features. Through iterative modelling and strategic feature refinement, 

we identified key predictors of completion times. This process involved applying Sequential 

Feature Selection (SFS) to retain the most relevant features, experimenting with different 

training and testing dataset sizes to ensure robust model performance, and refining the feature 

set to enhance the model's predictive capabilities. 

To ensure the reliability and generalizability of the OLS models, we employed 10-fold cross-

validation throughout the modelling process. This rigorous validation method helped to prevent 

overfitting and provided a robust measure of model performance across different subsets of the 

dataset. 

To evaluate the effectiveness of the OLS models using manually extracted features, we 

benchmarked their performance against a baseline model. The baseline model predicted 

performance times by simply using the average completion time derived from the training 

dataset. Comparing the OLS models to this baseline highlighted the improvements achieved 
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through more sophisticated modelling techniques, with performance assessed using Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE) metrics. 

For the automatically extracted features, we compared the best model derived from manually 

extracted features with various OLS models trained using automatically extracted features, 

with performance assessed using MAE and RMSE. This comparison aimed to determine the 

superiority and accuracy of models based on different feature extraction methods. 

The best OLS models for both manually and automatically extracted features were further 

analysed for the statistical significance and influence of each feature on the prediction of 

completion times. This detailed examination provided insights into how each feature 

contributed to the model’s performance and identified the key predictors of completion times. 

 

PyCaret for Multiple Model Training  

Our application of PyCaret to the dataset was systematic and iterative, designed to maximize 

the efficiency and effectiveness of our experiments for both manually and automatically 

extracted features. Initially, we conducted model screening by training and evaluating various 

machine learning models available in PyCaret based on their Mean Absolute Error (MAE), a 

critical metric for our regression analysis. From this assessment, we identified the top three 

models that demonstrated consistent performance and superior average weighted MAE scores. 

In the next phase, we focused on hyperparameter tuning to refine the parameters of these top 

models. PyCaret’s automated optimization tools were used to quickly adjust model parameters, 

complemented by GridSearchCV for conducting an exhaustive search for optimal parameter 

combinations, allowing for more granular control over the tuning process. After tuning, we 

compared the performance of the models to determine which configuration—either tuned by 

PyCaret or GridSearchCV—yielded the best results. This comparison was critical in selecting 

the final model, ensuring it met the analytical needs of our project. 

Throughout the training and tuning phases, 10-fold cross-validation was employed to ensure 

the models' reliability and to prevent overfitting, thus enhancing their generalizability. The 

methodology culminated in the selection of the final model, which was then rigorously 

evaluated to confirm its predictive accuracy. The selected model was assessed to ensure it met 

the project's analytical needs, providing actionable insights for predicting race completion 

times. 

 

Comparative Analysis of OLS and PyCaret Outcomes 

Finally, we compared the results of the OLS models with the best-performing models from 

PyCaret. This comparative analysis focused on evaluating the effectiveness of each approach 

in terms of results, model complexity, training time, robustness, and generalization. By 
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analysing the performance of both manually and automatically extracted features, we aimed to 

determine which modelling approach offers the best balance between accuracy, simplicity, and 

computational efficiency. This comparison provided valuable insights into the strengths and 

trade-offs of each method, guiding the selection of the most appropriate modelling technique 

for enhancing athletic performance prediction. 
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Training and Prediction 
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5.4 Challenges and Limitations        75 

 

 

5.1 Ordinary Least Squares (OLS) Regression  

 

Introduction to OLS 

 Ordinary Least Squares (OLS) regression is a fundamental statistical method used 

extensively in predictive modelling and econometrics. It is specifically designed for 

estimating the relationships among variables in linear regression models. By fitting a linear 

equation to observed data, OLS minimizes the sum of the squared differences between the 

observed responses in the dataset and those predicted by the linear approximation. 

 

Advantages of OLS 

The primary advantage of OLS is its simplicity and interpretability. It provides clear, 

quantifiable insights into how predictor variables affect the response variable, making it 

invaluable for understanding and predicting outcomes. In the context of this study, 

Ordinary Least Squares (OLS) regression helps elucidate the relationships between various 

race features such as (stride length, air time, ground contact time etc.)  and the athletes' 

performance times. This approach enables a detailed understanding of how different 

aspects of an athlete’s performance correlate with their speed and efficiency, providing 

actionable insights that can directly influence training methodologies and competitive 

strategies. 

 

Baseline Comparison 

To assess the effectiveness of the OLS models, their performance is benchmarked against 

a baseline model. The baseline model predicts performance times by simply using the 

average completion time derived from the training dataset. This comparison not only 
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highlights the superior predictive capability of the OLS models over simpler statistical 

methods but also establishes a standard for evaluating the incremental value brought by 

employing more sophisticated features and modelling techniques. 

 

By employing OLS regression, this study aims to provide a robust statistical framework for 

predicting athletic performance, thereby offering insights that are critical for athletes and 

coaches to optimize training and competition strategies. 

 

Model Implementation: 

1) Manual Extracted Features Implementation: 

 

Data Preparation 

The manually extracted features were carefully prepared to ensure the integrity of the 

dataset for modelling. The selected features for the analysis were: 

 

• Total Steps 

• Average Left and Right Foot Ground Contact Time (ms) 

• Average Overall Ground Contact Time (ms) 

• Average Overall Air Time (ms) 

• Stride Length Symmetry Index 

• Adjusted Stride Length Symmetry Index 

• Average Stride Length (Left, Right, and Combined) 

• Gender 

 

These features were derived from detailed analysis in the previous sections, focusing 

on capturing essential aspects of running mechanics that influence performance. 

 

Models Setup and Evaluation 

 

i. Model 1: 

 

Selected Features 

For this model, all manually extracted features previously detailed were utilized: 

• Total Steps 

• Average Left and Right Foot Ground Contact Time (ms) 

• Average Overall Ground Contact Time (ms) 
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• Average Overall Air Time (ms) 

• Stride Length Symmetry Index 

• Adjusted Stride Length Symmetry Index 

• Average Stride Length (Left, Right, and Combined) 

 

Data Splitting 

The dataset was divided into a training set (70% of the data) and a test set (30% of the 

data). This split was chosen to ensure that the model could be trained on a 

comprehensive sample of the data while still retaining a substantial portion for unbiased 

evaluation. 

 

ii. Model 2: 

 

Selected Features 

Model 2 applied Sequential Forward Selection (SFS) using the Ordinary Least Squares 

(OLS) as the estimator. The goal was to identify an optimal subset of features that 

enhance predictive accuracy while minimizing redundancy. The SFS identified the 

following features as most effective for predicting race completion times: 

• Total Steps 

• Average Overall Ground Contact Time (ms) 

• Average Overall Air Time (ms) 

• Stride Length Symmetry Index 

 

Data Splitting 

As with Model 1, the data was split into 70% for training and 30% for testing, 

maintaining consistency in evaluation methodology to ensure comparability across 

models. 

 

iii. Model 3: 

Selected Features:  

For Model 3, I expanded the feature set from Model 2 by incorporating the gender of 

each athlete, hypothesizing that this demographic detail might have a significant impact 

on the model's accuracy due to physiological differences that could affect race 

dynamics. 
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Data Splitting: 

As with Model 1 and 2, the data was split into 70% for training and 30% for testing, 

maintaining consistency in evaluation methodology to ensure comparability across 

models. 

 

iv. Model 4: 

Selected Features:  

The best-performing model utilized an expanded set of features based on 

comprehensive analysis from previous models: 

 

• Total Steps 

• Stride Length Symmetry Index 

• Average Stride Length 

• Average Overall Ground Contact Time (ms) 

• Average Overall Air Time (ms) 

• Gender 

 

These features were chosen for their strong correlation with the target variable and their 

potential to provide a nuanced understanding of the dynamics influencing race 

performance. 

 

Data Splitting: 

For this model, the data was split into 80% training and 20% testing. This adjustment 

in the training-test ratio was made to maximize the training data available for the model, 

enhancing its ability to learn and generalize from a larger dataset. Increasing the 

training proportion can often lead to better model performance, especially when the 

feature space is complex and varied, as it provides a richer set of examples from which 

the model can learn. 

 

Results and Interpretation 

The predictive models developed for forecasting completion times demonstrated 

significant improvements through incremental refinements, as detailed in the 

accompanying table. Each model's performance offers valuable insights into the 

interaction between feature selection and predictive accuracy, guiding future 

enhancements and research directions. 
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Figure 25 Results of Manual Extracted Features OLS Models  

 

Model 1 marked a substantial advance over the baseline, reducing the Mean Absolute 

Error (MAE) from 929.92 milliseconds (ms) to 155.97 ms, and the Root Mean Square 

Error (RMSE) from 1026.33 ms to 205.30 ms. This improvement highlights the value 

of the manually extracted biomechanical features, confirming their critical role in 

predictive modelling. The reduction in error metrics emphasizes the features' 

effectiveness, though the remaining errors indicate potential for further optimization 

through advanced feature engineering or alternative regression methodologies. 

Model 2 utilized a refined set of features determined through Sequential Feature 

Selection (SFS), achieving notable performance gains over the baseline, albeit with 

slight increases in error metrics compared to Model 1. This variation underscores the 

SFS's efficiency in identifying essential features but suggests that some beneficial 

predictors might have been excluded. The results illustrate the delicate balance required 

in feature selection to optimize both model accuracy and interpretability. 

Model 3 incorporated gender as an additional feature, resulting in further improvements 

with an MAE of 135.59 ms and an RMSE of 170.12 ms. The inclusion of gender not 

only reduced errors but also added a layer of depth to the analysis, reflecting 

physiological and biomechanical differences that impact race outcomes. This 

underscores the importance of demographic variables in enhancing the model's 

explanatory power and predictive accuracy. 

Model 4 achieved the best performance with the lowest MAE and RMSE of 114.68 ms 

and 147.38 ms, respectively. By strategically selecting features and using a larger 

training dataset, this model showcased the profound impact of careful data management 

and methodological precision on predictive outcomes. The success of Model 4 

effectively demonstrates how careful feature selection, alongside optimal data splitting, 

can profoundly impact the predictive capabilities of regression models in sports 

analytics. The results not only validate the chosen methodology but also highlight the 

critical role of demographic factors like gender in predicting athletic performance. 
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Collectively, these results underscore the progressive enhancement of predictive 

accuracy through methodical feature selection and the thoughtful integration of 

demographic variables. Each step forward provides critical insights into the dynamics 

influencing race performance, setting a foundation for further investigations aimed at 

refining predictive models in sports analytics. 

 

Detailed Analysis of the Best Model 

Below, Figure 26 displays the summary of the best-performing model derived from 

our analysis. This summary encapsulates the statistical significance and influence of 

each feature on the prediction of completion times. 

 

 

Figure 26 Best Model Summary 

 

The table summarizes the regression output, detailing each predictor's coefficients, 

standard errors, t-values, P-values, and confidence intervals. This section interprets 

these statistical metrics to illuminate their significance in influencing race performance. 

By understanding the quantitative impact of each feature, we can better appreciate how 

variations in athlete performance are explained through our model. 

 

Total Steps: The coefficient for total steps is 162.1798, with a standard error of 33.964, 

a t-value of 4.775, and a p-value of less than 0.001. The confidence interval ranges from 

94.085 to 230.274. This feature is statistically significant, indicating a strong positive 

relationship between the total number of steps and race completion time. Each 

additional step is associated with an increase in race time, emphasizing the importance 

of stride efficiency for better performance. 

Stride Length Symmetry Index: The coefficient for the stride length symmetry index 

is 12.4214, with a standard error of 6.501, a t-value of 1.911, and a p-value of 0.061. 



 56 

The confidence interval ranges from -0.613 to 25.455. While this coefficient approaches 

significance, it suggests that higher asymmetry might increase race time, although this 

effect is not statistically robust at the usual levels of significance. 

Average Stride Length: The coefficient for average stride length is -1398.9469, with 

a standard error of 476.950, a t-value of -2.933, and a p-value of 0.005. The confidence 

interval ranges from -2355.174 to -442.719. This significant negative coefficient 

indicates that longer strides are effectively associated with shorter completion times, 

reinforcing the importance of stride efficiency. 

Average Overall Ground Contact Time (ms): The coefficient for average overall 

ground contact time is 17.8925, with a standard error of 0.748, a t-value of 23.919, and 

a p-value of less than 0.001. The confidence interval ranges from 16.393 to 19.392. This 

positive and highly significant relationship suggests that longer contact times are 

correlated with increased completion times, highlighting the performance cost of 

extended ground contact. 

Average Overall Air Time (ms): The coefficient for average overall air time is 

16.3908, with a standard error of 1.884, a t-value of 8.701, and a p-value of less than 

0.001. The confidence interval ranges from 12.614 to 20.167. Similar to ground contact 

time, longer air times are significantly associated with increased completion times, 

reflecting the biomechanical trade-offs in running techniques. 

Gender: The coefficient for gender is 222.0911, with a standard error of 64.807, a t-

value of 3.427, and a p-value of 0.001. The confidence interval ranges from 92.161 to 

352.022. Gender shows a significant effect on race times, indicating potential 

physiological and biomechanical differences affecting performance. 

 

Model Insights and Practical Implications: 

Efficiency in Stride: The data highlights the critical role of stride length and its 

symmetry in running efficiency. Properly balanced strides ensure more effective 

propulsion and less energy wastage, which directly translates into improved 

performance times. Athletes and coaches should consider drills and techniques that 

enhance stride length and promote symmetry across both feet. 

Ground and Air Time Optimization: Our findings indicate that minimizing ground 

contact time without compromising the air time essential for forward propulsion can 

lead to better race results. Focused training on quick toe-offs and efficient mid-air 

motion can help athletes achieve a balance that optimizes speed. 

Data-Driven Training: This model provides valuable insights that can inform targeted 

interventions in an athlete's training regimen. By understanding the specific variables 
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that most significantly impact performance, training can be tailored to address these 

areas, resulting in more focused improvements. Regularly revisiting this data-driven 

approach, as athletes evolve, ensures that training remains aligned with optimal 

performance goals. 

 

 

2) tsfresh Extracted Features: 

 

Data Preparation 

After segmenting the motion capture data as previously outlined, the tsfresh library was 

used to automatically extract features from each athlete's performance data. This 

process leverages complex algorithms designed to explore and construct a 

comprehensive set of time-series features from the biomechanical data collected. 

 

Feature Extraction and Selection 

From the extensive range of features generated by tsfresh, we initially identified 

342,657 potential features. Through a systematic process of identifying common 

features present in all datasets, we narrowed this list down significantly to ensure 

consistency and manageability. 

 

Final Feature Set 

The final set of features used for modelling includes 16 specific attributes that 

demonstrated the highest correlation with our target variable, completion time, and 

minimal inter-feature correlation. This diverse range of data points includes specific 

body part positions and movements, along with more complex statistical 

transformations, categorized as follows: 

 

• Frequency Domain Features: Fourier coefficients help capture repetitive motion 

patterns, which are essential for identifying consistent performance attributes in 

athletes. For example: 

1) Right Upper Leg Position X (FFT Coefficient Absolute, Coefficient 82) 

2) L5 Orientation Q3 (FFT Coefficient Angle, Coefficient 99) 

3) Head Position Z (FFT Coefficient Angle, Coefficient 92) 
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• Statistical Features: These features assess the time series data's underlying properties, 

such as stationarity and trends, which are important for understanding movement 

consistency and predicting performance. 

4) Left Upper Leg Position X (Augmented Dickey-Fuller, Used Lag, Auto 

Lag: AIC) 

5) Head Velocity Y (Augmented Dickey-Fuller, Used Lag, Auto Lag: AIC) 

6) T8 Acceleration Z (Augmented Dickey-Fuller, Used Lag, Auto Lag: AIC) 

7) Left Lower Leg Orientation Q3 (Augmented Dickey-Fuller, Used Lag, 

Auto Lag: AIC) 

 

 

• Peaks and Other Descriptive Statistics: These features highlight critical points and 

descriptive metrics in the sensor data, offering insights into the dynamics of motion. 

8) Neck Acceleration Z (Number of Peaks) 

9) Right Shoulder Position X (Last Location of Minimum) 

10) Right Forearm Velocity Y (Number of Peaks) 

11) Left Lower Leg Position Y (Longest Strike Above Mean) 

 

• Dynamic Time-Warping and Complexity Measures: These complex metrics provide 

insights into the temporal dynamics and structural complexity of the motion capture 

data. 

12) Left Toe Position Y (Lempel-Ziv Complexity, Bins: 10) 

 

• Trend and Variation Analysis: Analysing trends and variations in sensor data helps 

identify patterns related to athletic performance and potential biomechanical issues. 

13) Right Hand Angular Velocity Y (Aggregated Linear Trend, Standard 

Error, Chunk Length: 10, Aggregate Function: Maximum) 

14) Right Upper Leg Acceleration X (Aggregated Linear Trend, Standard 

Error, Chunk Length: 5, Aggregate Function: Mean) 

 

• Change Quantiles Analysis: This type of analysis measures changes within specified 

quantile ranges of the data. It helps identify variability within certain segments of the 

distribution, which can be crucial for understanding how movements vary under 

different conditions or phases of activity. 

15) Right Toe Velocity X (Change in Quantiles, Function: Variance, Non-

Absolute Values, Quantile Range: 0.0 to 0.6) 
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• Count Features: Count features quantify the frequency of certain conditions being met 

within the dataset. These are useful for identifying recurring patterns or events. 

16) T8 Orientation Q4 (Count Above Mean) 

 

 

Models Setup and Evaluation 

 

i. Model 1  

 

Selected Features: 

Utilized all 16 tsfresh extracted features, including Fourier coefficients, augmented 

dickey-fuller attributes, change quantiles, number of peaks, and various other dynamic 

and statistical measures from the sensor data. 

 

Data Splitting: 

For this model, the data was split into 80% training and 20% testing. This adjustment 

in the training-test ratio was made to maximize the training data available for the model, 

enhancing its ability to learn and generalize from a larger dataset. Increasing the 

training proportion can often lead to better model performance, especially when the 

feature space is complex and varied, as it provides a richer set of examples from which 

the model can learn. 

 

ii. Model 2 

 

Selected Features: 

Model 2 utilizes a refined subset of features identified through Sequential Feature 

Selection (SFS) with the Ordinary Least Squares (OLS) as the estimator. The selected 

features are particularly potent in capturing essential aspects of the dynamics of race, 

emphasizing the potential of combining frequency domain features, count features, and 

statistical metrics: 

• Right Upper Leg Position X (FFT Coefficient Absolute, Coefficient 82) 

• L5 Orientation Q3 (FFT Coefficient Angle, Coefficient 99) 

• T8 Orientation Q4 (Count Above Mean) 

• Neck Acceleration Z (Number of Peaks) 

• Right Shoulder Position X (Last Location of Minimum) 
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• Right Hand Angular Velocity Y (Aggregated Linear Trend, Standard Error, 

Chunk Length 10, Aggregate Function: Max) 

• Left Lower Leg Orientation Q3 (Augmented Dickey-Fuller, Used Lag, 

Autolag: AIC) 

• Left Lower Leg Position Y (Longest Strike Above Mean) 

• T8 Acceleration Z (Augmented Dickey-Fuller, Used Lag, Autolag: AIC) 

 

Results and Interpretation 

The development and refinement of predictive models using tsfresh extracted features 

demonstrated significant advancements in forecasting race completion times, as 

depicted in the accompanying table. The tsfresh library facilitated an extensive and 

nuanced feature extraction process, ultimately contributing to substantial improvements 

in model performance. 

 

 

Figure 26 Results of tsfresh Extracted Features OLS Models  

 

Model 1 leveraged all 16 tsfresh extracted features, which include complex attributes 

like Fourier coefficients, augmented Dickey-Fuller attributes, and dynamic time-

warping measures. This model achieved a Mean Absolute Error (MAE) of 24.25 

milliseconds (ms) and a Root Mean Square Error (RMSE) of 61.14 ms, which 

significantly outperformed the best model using manually extracted features that had 

an MAE of 114.68 ms and an RMSE of 147.38 ms. The substantial reduction in error 

metrics with Model 1 illustrates the robustness and efficacy of automated feature 

extraction techniques. These techniques excel at capturing intricate patterns and 

dynamics of biomechanical data, which are often challenging to identify through 

manual processes. 

Model 2 refined the feature set further through Sequential Feature Selection (SFS) 

using Ordinary Least Squares (OLS) as the estimator. This model, focusing on a tailored 

subset of powerful features, dramatically improved the prediction accuracy, achieving 

an MAE of 8.29 ms and an RMSE of 10.09 ms. This represents an unprecedented 

reduction in error metrics, highlighting the critical importance of targeted feature 
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selection. The focused approach allowed Model 2 to not only enhance predictive 

accuracy but also to increase the interpretability of the model. By concentrating on 

fewer, more impactful features, this model provided deeper insights into the specific 

biomechanical and physiological variables that most directly affect race performance. 

Moreover, the simplification of the feature set enhances the practical applicability of 

the model's findings, potentially influencing training and performance optimization 

strategies. 

 

These results validate the powerful capability of tsfresh for automatic feature extraction 

in sports analytics. They demonstrate how strategic feature selection and advanced 

modelling techniques can synergistically improve the precision of predictions while 

also providing actionable insights into the underlying dynamics of athletic 

performance. The progression from a broad array of automatically extracted features to 

a meticulously curated subset exemplifies a successful approach in leveraging complex 

data for practical outcomes. 

 

Detailed Analysis of the Best Model 

Below, Figure 27 displays the summary of the best-performing model derived from 

our analysis. This summary encapsulates the statistical significance and influence of 

each feature on the prediction of race completion times 

 

 

Figure 27 Best Model Summary 

 

This section delves into the coefficients that are statistically significant, providing 

insights into their impact on race performance. The table includes each predictor's 

coefficients, standard errors, t-values, P-values, and confidence intervals, helping us to 

understand the quantitative effects of these variables on race times. 

 

Statistically Significant Model Coefficients: 

The Right Upper Leg Position X (FFT Coefficient Abs Coeff 82) has a coefficient 

of 182.1214, a standard error of 1.554, a t-value of 117.175, and a p-value of less than 
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0.001. The confidence interval ranges from 178.987 to 185.256. This feature shows a 

significant positive relationship with completion times, suggesting that increased 

movement or variation in the right upper leg's position correlates with longer 

completion times. This underscores the need for controlled and efficient leg movements 

during the run. 

The T8 Acceleration Z (Augmented Dickey-Fuller Usedlag AIC) has a coefficient 

of 6.4571, a standard error of 2.099, a t-value of 3.076, and a p-value of 0.004. The 

confidence interval ranges from 2.224 to 10.690. This feature reflects the importance 

of forward and backward acceleration at the T8 segment, likely related to running 

posture and vertical oscillations. Effective management of these accelerations can 

improve overall completion times by ensuring core stability and efficient energy 

utilization, which are vital for competitive running. 

The Right Hand Angular Velocity Y (Aggregated Linear Trend, Stderr, Max) has 

a coefficient of -148.1801, a standard error of 23.393, a t-value of -6.334, and a p-value 

of less than 0.001. The confidence interval ranges from -195.357 to -101.003. This 

negative coefficient demonstrates that higher angular velocities of the right hand are 

associated with shorter completion times. Efficient arm swing dynamics contribute 

positively to propulsion and momentum, highlighting the necessity of proper 

synchronization of arm movements with leg strides to maximize speed and efficiency. 

The Right Shoulder Position X (Last Location of Minimum) has a coefficient of 

14.6088, a standard error of 6.774, a t-value of 2.157, and a p-value of 0.037, with a 

confidence interval ranging from 0.948 to 28.269. This indicates that the position of the 

right shoulder at the last minimum has a notable impact on completion times. Such 

positions, likely occurring at critical moments during the race, can significantly 

influence the athlete's performance. 

 

 

Model Insights and Practical Implications 

The analysis of the best-performing model using tsfresh extracted features offers 

valuable insights into the biomechanical factors impacting race performance, and here 

are the practical implications derived from those insights: 

Upper Body Mechanics: The model highlights the significant role of the right upper 

leg's position and the right shoulder's movements. This emphasizes the need for 

balanced strength and coordination between the upper and lower body. Athletes should 

focus on enhancing upper body mechanics through drills that improve the strength and 
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mobility of shoulders and upper legs, like plyometrics and targeted resistance training, 

which can directly improve running efficiency and race times. 

Arm Dynamics: The negative relationship between the right hand's angular velocity 

and race times suggests that efficient arm dynamics are crucial. Proper arm swings 

synchronized with leg movements can increase propulsion and overall speed. Athletes 

should practice drills that refine arm swing techniques to ensure they contribute 

effectively to forward momentum. 

Vertical Motion Management: The association of T8 spinal acceleration with slower 

race times underlines the importance of minimizing vertical motion to conserve energy. 

Training to improve core stability and strength can help athletes maintain a stable torso 

and reduce vertical oscillations, leading to more efficient energy use during races. 

Data-Driven Training Adjustments: Insights from this model enable targeted, data-

driven adjustments in training. Understanding specific biomechanical influences allows 

for personalized training approaches, focusing on the individual needs of each athlete. 

Regular use of sensor data during training can aid in real-time adjustments and track 

progress effectively. 

Holistic Training Approach: The interaction of different biomechanical factors 

suggests that a holistic approach to training is essential. A comprehensive program that 

addresses stride mechanics, upper body strength, core stability, and arm dynamics 

ensures a well-rounded development and enhances overall athletic performance. 

 

Conclusion 

This part of the thesis has provided significant insights into athletic performance by 

exploring both manually and automatically extracted features through Ordinary Least 

Squares (OLS) regression. Our progression from initial models using manually 

extracted features to more advanced models employing tsfresh extracted features 

demonstrates a clear enhancement in both predictive accuracy and interpretative power. 

 

Through iterative modelling and strategic feature refinement, we have identified key 

predictors of completion times. This journey from a broad collection of manually 

analysed features to a refined set of features extracted by sophisticated automated 

methods illustrates the value of blending domain knowledge with advanced data 

analytics to enhance predictive models. These models not only improve upon baseline 

predictions but also offer actionable insights that are directly applicable to training and 

performance optimization. 
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The standout performance of the models using tsfresh extracted features highlights the 

considerable benefits of automated feature extraction within the realm of sports 

analytics. By harnessing complex algorithms to pinpoint critical predictors from 

extensive data sets, this thesis has set new benchmarks in the field. This approach 

enriches our understanding of crucial performance influences and opens up further 

avenues for research and practical application in sports science. 

 

As we continue to delve deeper into the potential of data analytics in sports, the 

subsequent sections will explore the use of the PyCaret tool, expanding on the 

foundation laid here to further refine our methods and insights. This transition ensures 

a seamless progression towards even more sophisticated modelling techniques, 

continuing to support athletes and coaches in their pursuit of peak performance. 

 

 

5.2 PyCaret for Multiple Model Training 

 

Introduction to PyCaret 

PyCaret is an open-source, low-code machine learning library in Python that aims to reduce 

the hypothesis to insights cycle time in a machine learning experiment. It enables data 

scientists and analytics professionals to perform end-to-end experiments quickly and 

efficiently. PyCaret automates machine learning workflows, enabling fast experimentation 

and deployment of models. 

 

Advantages of PyCaret 

 

• Efficiency: Automates many of the repetitive tasks involved in a typical machine 

learning workflow, allowing for more efficient model development. 

• Accessibility: Offers a simple and easy-to-use interface that helps new practitioners 

adopt machine learning techniques without deep programming expertise. 

• Flexibility: Supports multiple algorithms and models, providing a broad toolkit for 

testing various approaches to find the best solution. 

• Deployment Ready: Includes modules for model deployment and monitoring, making 

it easier to transition from a development environment to a production setting. 
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Methodology for PyCaret Model Training and Selection 

In applying PyCaret to our dataset, our approach was systematic and iterative, leveraging 

the library's extensive capabilities to maximize the efficiency of our experiments. We began 

with an initial model screening where various machine learning models provided by 

PyCaret were trained and evaluated based on their Mean Absolute Error (MAE), a critical 

metric for our regression analysis. From this initial assessment, we identified the top three 

models, selected for their performance consistency and superior average weighted MAE 

scores. The next phase involved hyperparameter tuning using PyCaret’s automated 

optimization tools to quickly refine model parameters, complemented by an exhaustive 

search with GridSearchCV for more granular control over the tuning process. After 

optimizing the parameters, we compared the performance of the models to determine which 

configuration—either tuned by PyCaret or GridSearchCV—yielded the best results. 

Throughout the training and tuning phases, we employed 10-fold cross-validation to ensure 

the models' reliability and to prevent overfitting, thus enhancing their generalizability. The 

methodology culminated in selecting the final model, which was then rigorously evaluated 

to confirm its predictive accuracy and ensure it met the analytical needs of our project. This 

comprehensive process allowed us to systematically identify and refine the best models for 

predicting race completion times, harnessing the full potential of PyCaret's features in our 

data-driven analysis. 

 

1) Manual Extracted Features Implementation 

 

Data Preparation and Feature Selection 

In this phase of the analysis, we utilized manually extracted features that were identified as 

significant in the earlier sections of the study. These features were chosen based on their 

demonstrated impact on race performance metrics and included: 

• Total Steps 

• Average Left and Right Foot Ground Contact Time (ms) 

• Average Overall Ground Contact Time (ms) 

• Average Overall Air Time (ms) 

• Stride Length Symmetry Index 

• Average Stride Length (Left, Right, and Combined) 

• Gender 
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Data Splitting 

For the multiple models trained using PyCaret, the dataset was partitioned into 80% for 

training and 20% for testing. This 80/20 split is widely utilized in machine learning to 

ensure that each model has a substantial amount of data to learn from while also reserving 

a significant portion for unbiased evaluation of their performance. This standard practice 

helps maintain a balance between effectively learning underlying patterns and avoiding 

overfitting across various models. 

 

Model Training with PyCaret 

We employed PyCaret, an open-source machine learning library, to train multiple 

regression models using the manually extracted features. The process involved: 

 

10-Fold Cross-Validation: This technique was used to validate the models' performance, 

ensuring robustness and the ability to generalize across different datasets. 

Model Selection: PyCaret's comparative model analysis helped identify the top-performing 

models based on their Average Mean Absolute Error (MAE). The initial selection of the 

top three models is illustrated in Figure 28. 

 

 

           Figure 28 Best Performing Models Based on Average Mean Absolute Error 

 

This figure highlights the initial results from the comparative analysis of regression 

models trained using PyCaret. The models are ranked based on their Average MAE, 

with the Elastic Net model showing the best performance at 173.8311 ms, followed 

closely by the Linear Regression and Huber Regressor models with MAEs of 179.3158 

ms and 179.9482 ms, respectively. These results facilitate the identification of the most 

promising models for further tuning and evaluation. This selection process is crucial as 

it narrows down the candidates to those with the highest potential for precision in 

predicting race completion times, setting the stage for the next phase of hyperparameter 

tuning. 
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Hyperparameter Tuning 

Hyperparameter tuning was undertaken for the top-performing models identified through 

initial model screenings, aiming to further enhance their prediction accuracy for race 

completion times. We employed two distinct methods for this purpose: 

 

PyCaret Tuning: Utilizing PyCaret's built-in optimization tools allowed for rapid iteration 

and tuning of model parameters. 

GridSearchCV Tuning: This method conducted a more exhaustive search across a 

broader range of parameter configurations to finely tune the models. 

 

 

           Figure 29 Tuning Results from Pycaret and GridSearchCV for Selected Models 

 

The results of the hyperparameter tuning are illustrated in Figure 29, which presents the 

Mean Absolute Error (MAE) for each model following adjustments made via PyCaret and 

GridSearchCV. The table clearly demonstrates that both tuning methods significantly 

improved the models’ predictive accuracy. The Elastic Net model, in particular, showed 

superior performance with the lowest MAE of 113.92 ms after GridSearchCV tuning, 

confirming its effectiveness in predicting race times using the selected features. The Linear 

Regression and Huber Regressor models also saw improved accuracy, with MAEs of 

119.24 ms and 115.17 ms, respectively, indicating robust enhancements though slightly 

trailing behind the Elastic Net. 

 

The best settings for the ElasticNet model were: 

• Alpha: 0.1 

• L1 Ratio: 0.99 

• Positive: False 

• Selection: 'random' 

• Tolerance: 0.001 

These parameters suggest a model finely tuned for this specific dataset, balancing the 

complexity of the model with the need to prevent overfitting. This level of precision in 
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parameter tuning enhances the model’s performance and adaptability to new data, ensuring 

robustness in practical applications. 

 

ElasticNet Model Coefficients 

Figure 30 presents the summary of the ElasticNet model, which has been refined through 

rigorous hyperparameter tuning. This model provides critical insights into the variables that 

significantly impact race completion times, highlighting the interplay of physical attributes 

and biomechanical efficiency. 

 

 

Figure 30 ElasticNet Summary 

 

The model identifies Average Stride Length with a coefficient of -994.670468, indicating 

a strong negative relationship with race times. This suggests that longer strides are 

beneficial, as they are associated with decreased completion times, reflecting higher 

efficiency in an athlete's stride mechanics. It's an indication that training aimed at 

lengthening the stride could effectively improve race performance. 

Gender shows a coefficient of 222.570542, revealing notable differences in race times 

between genders. This difference points to underlying physiological or biomechanical 

disparities that could be explored further to develop gender-specific training programs, 

potentially optimizing performance through tailored approaches. 

The positive coefficient of 188.326301 for Total Steps implies that a higher count of steps 

correlates with increased race times. This finding underscores the importance of stride 

optimization, where reducing the number of steps through efficient stride length and 

frequency could lead to faster race completions. 

Average Overall Ground Contact Time and Average Overall Air Time have 

coefficients of 18.115142 and 16.226401, respectively. Both metrics suggest that longer 

times spent either in contact with the ground or in the air are linked with slower race times. 

This insight is crucial for training focus, as it suggests benefits from drills that enhance foot 

strike efficiency and reduce non-productive air time, thereby promoting a more effective 

racing motion. 
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Lastly, the Stride Length Symmetry Index has a small coefficient of 11.466058, 

mirroring previous findings that athletes exhibit a high level of biomechanical balance with 

consistently low symmetry indices. This inclusion underlines its importance, slight changes 

in stride symmetry, whether improvements or deteriorations, can significantly affect race 

times. Thus, even small deviations in this area warrant attention in training programs to 

maintain and enhance athletic performance. 

 

Interpretation and Practical Implications 

This refined analysis using the ElasticNet model through PyCaret illustrates the substantial 

impact of advanced machine learning techniques in sports analytics. By enhancing models 

with precise parameter tuning, we have significantly reduced prediction errors, 

demonstrating the capabilities of sophisticated analytical methods in improving predictions 

of athletic performance. 

The model's accuracy and predictive power, bolstered by comprehensive tuning, effectively 

show how machine learning can be integrated with sports science to offer actionable 

insights. Such data-driven approaches are pivotal in advancing our understanding of athlete 

performance, facilitating the development of scientifically backed, personalized training 

regimens tailored to the unique needs and characteristics of each athlete. 

 

2) tsfresh Extracted Features 

 

Data Preparation and Feature Selection 

In this phase of the analysis, we utilized tsfresh extracted features that were previously 

identified as significant in earlier sections of the study. These features were specifically 

selected based on their demonstrated impact on race performance metrics and robustness in 

capturing essential dynamics of athletic performance. The selection was informed by 

comprehensive testing, which highlighted these features' ability to significantly enhance 

model accuracy. The selected features included: 

 

• Right Upper Leg Position X (FFT Coefficient Absolute, Coefficient 82) 

• L5 Orientation Q3 (FFT Coefficient Angle, Coefficient 99) 

• T8 Orientation Q4 (Count Above Mean) 

• Neck Acceleration Z (Number of Peaks) 

• Right Shoulder Position X (Last Location of Minimum) 

• Right Hand Angular Velocity Y (Aggregated Linear Trend, Standard Error, Chunk 

Length 10, Aggregate Function: Max) 
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• Left Lower Leg Orientation Q3 (Augmented Dickey-Fuller, Used Lag, Autolag: 

AIC) 

• Left Lower Leg Position Y (Longest Strike Above Mean) 

• T8 Acceleration Z (Augmented Dickey-Fuller, Used Lag, Autolag: AIC) 

 

These features were chosen because previous analyses and model iterations demonstrated 

their effectiveness in predicting race completion times, providing a solid foundation for the 

current predictive modelling efforts. 

 

Data Splitting 

To maintain consistency across our modelling strategies, we continued with an 80/20 data 

partition—80% for training and 20% for testing. This standard practice in machine learning 

ensures that models have enough data to effectively learn the underlying patterns while also 

providing a substantial dataset for performance evaluation and avoiding overfitting. 

 

Model Training with PyCaret 

Using PyCaret, we trained a variety of models to find the best predictors of race times using 

the tsfresh extracted features. The initial training phase helped identify the top performers 

based on their average Mean Absolute Error (MAE). The following figure showcases the 

three models that excelled in terms of predictive accuracy. 

 

 

             Figure 31 Best Performing Models Based on Average Mean Absolute Error 

 

In the competitive assessment of models, Linear Regression emerged as the leader with 

the lowest Average Mean Absolute Error (MAE) of 11.9466 ms, demonstrating its high 

accuracy in forecasting race completion times with the selected tsfresh extracted features. 

Closely following was Bayesian Ridge, which achieved an Average MAE of 11.9624 ms, 

indicative of its proficiency in managing the complex interactions inherent in the dataset. 

Lasso, though slightly less accurate with an Average MAE of 18.0571 ms, still marked 

itself as a strong contender, showcasing the robustness of these predictive models in the 
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domain of sports analytics. This trio of models now prepares the groundwork for deeper 

analysis and hyperparameter tuning aimed at refining their predictive capabilities and 

optimizing their real-world application to athletic performance forecasting. 

 

Hyperparameter Tuning 

In the pursuit of optimizing model performance, we conducted extensive hyperparameter 

tuning using both PyCaret and GridSearchCV. This stage was crucial to refine the accuracy 

of our selected models: Linear Regression, Bayesian Ridge, and Lasso. 

 

 

           Figure 32 Tuning Results from Pycaret and GridSearchCV for Selected Models 

 

As shown in Figure 32, both tuning methods successfully improved the models' Mean 

Absolute Error (MAE) scores. PyCaret’s automated tuning tools provided substantial 

enhancements, while GridSearchCV's more exhaustive parameter search yielded even 

better performance, demonstrating the power of thorough parameter optimization. 

For Linear Regression, the best results were obtained with GridSearchCV tuning, which 

delivered an impressive MAE reduction to 8.2874 ms. This level of precision was achieved 

using optimal settings that included fitting the model with an intercept and without 

constraining the coefficients to be positive, allowing for a flexible adaptation to the 

underlying data patterns. 

The Bayesian Ridge and Lasso models also saw significant improvements, with 

GridSearchCV tuning bringing their MAEs down to 8.4539 ms and 8.6021 ms, 

respectively. These results underscore the effectiveness of meticulous parameter 

adjustments in enhancing the predictive capabilities of our models. 

The detailed tuning of these models not only ensures greater predictive accuracy but also 

enhances their applicability to real-world scenarios in sports analytics. By achieving such 

low MAE scores, the models demonstrate their potential for precise and reliable race time 

predictions, setting a strong foundation for further validation and application. 
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LinearRegression Model Coefficients 

Figure 33 presents the summary of the LinearRegression model derived from our analysis, 

highlighting the statistically significant coefficients and their implications for race times.  

 

Figure 33 LinearRegression Summary 

 

The Right Upper Leg Position X (FFT Coefficient Abs Coeff 82) has a coefficient of 

955.029767, indicating a significant impact on race times. This suggests that increased 

movement or variation in the right upper leg's position correlates with longer completion 

times, emphasizing the need for controlled and efficient leg movements during the run. 

For the T8 Orientation Q4 Count Above Mean, with a coefficient of 12.883679, the data 

implies that higher counts above the mean orientation at the T8 spinal segment enhance 

race completion times. This may indicate more consistent upper body posture or stability, 

which is crucial for maintaining speed and reducing fatigue over the duration of the race. 

The coefficient of 10.960835 for T8 Acceleration Z (Augmented Dickey-Fuller Usedlag 

AIC) reflects the importance of forward and backward acceleration at the T8 segment, 

likely related to the running posture and vertical oscillations. Managing these accelerations 

effectively can improve overall completion times by ensuring core stability and efficient 

energy utilization, which are vital for competitive running. 

A negative coefficient of -23.743585 for Right Hand Angular Velocity Y (Aggregated 

Linear Trend, Stderr, Max) demonstrates that higher angular velocities of the right hand 

are associated with shorter completion times. Efficient arm swing dynamics contribute 

positively to propulsion and momentum, highlighting the necessity of proper 

synchronization of arm movements with leg strides to maximize speed and efficiency. 

 

Interpretation and Practical Implications 

This analysis using PyCaret and GridSearchCV illustrates the profound impact of advanced 

machine learning techniques in sports analytics. Sophisticated tools for hyperparameter 

tuning have led to a significant reduction in prediction error, showcasing the potential of 

modern analytical methods to enhance athletic performance predictions. 
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The Linear Regression model, enhanced through meticulous tuning, has demonstrated 

remarkable accuracy and predictive power. This model not only confirms the effectiveness 

of integrating machine learning with sports science but also offers actionable insights. 

These insights are pivotal for coaches, suggesting focused training on critical 

biomechanical aspects such as upper leg mechanics, arm swing dynamics, core stability 

and posture. By optimizing these areas, significant improvements in athletes' performance 

times can be achieved. 

These findings highlight that strategic training, informed by data-driven insights, can lead 

to marked improvements in athletic performance. They offer valuable guidance for 

coaches, suggesting targeted areas for training enhancements and more precise athlete 

monitoring. This approach ensures that training is scientifically grounded and tailored to 

meet individual athlete needs, potentially transforming conventional training 

methodologies in sports. 

 

5.3 Comparative Analysis of OLS and PyCaret Outcomes 

Introduction to Comparative Analysis 

This analysis compares the effectiveness of the Ordinary Least Squares (OLS) regression 

with various machine learning models developed using PyCaret. The focus is on evaluating 

how OLS, a model without hyperparameter tuning capabilities, stands against potentially 

more complex models from PyCaret that benefit from extensive tuning. By analysing their 

performance on both manually and automatically extracted features, this comparison aims 

to elucidate which modelling approach yields the best balance between accuracy, 

simplicity, and computational efficiency. 

 

Performance Metrics Comparison 

The comparative analysis initially reveals a noteworthy finding: before tuning, PyCaret 

models did not outperform the simpler, untuned OLS model. This initial performance is 

depicted in the tables below, which contrast the results for manually and automatically 

extracted features. 

 

Figure 34 Comparison of OLS and PyCaret Models Using Manually Extracted 

Features 
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This table shows the Mean Absolute Error (MAE) for the OLS model alongside the initial 

and tuned results of the PyCaret models. Initially, all PyCaret models—ElasticNet, 

LinearRegression, and HuberRegressor—recorded higher MAEs than the OLS model. 

However, after tuning, the PyCaret models demonstrated significant improvements, with 

ElasticNet showing the most considerable enhancement, reducing its MAE to closely match 

that of the OLS model. 

 

 

Figure 35 Comparison of OLS and PyCaret Models Using tsfresh Extracted 

Features 

Similarly, the second table presents the outcomes for models utilizing tsfresh extracted 

features. The OLS model initially outperformed all PyCaret models. Nevertheless, 

following tuning, all PyCaret models substantially improved their performance, with 

LinearRegression achieving the most notable reduction in MAE, surpassing the OLS 

model. 

These tables clearly illustrate the impact of tuning on the performance of PyCaret models. 

While the initial results were less impressive, the tuned models align more closely with or 

even surpass the simplicity and effectiveness of the OLS model. This underscores the 

potential enhancements that advanced machine learning techniques can offer over 

traditional models when appropriately tuned for specific datasets. 

 

The outcomes from this comparative analysis not only highlight the importance of 

hyperparameter tuning in enhancing model performance but also demonstrate the efficacy 

of machine learning models in sports analytics when they are optimally adjusted. This 

comprehensive comparison provides valuable insights into the balance between model 

simplicity and computational sophistication, guiding future modelling strategies in sports 

performance prediction. 
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Model Complexity and Training Time 

OLS, with its absence of hyperparameter tuning, offers a straightforward and 

computationally efficient modelling approach, ideal for situations where simplicity is 

prioritized. In contrast, while PyCaret models initially underperformed, they reached 

competitive performance levels after tuning. However, this enhancement required 

additional computational resources and time, illustrating a trade-off between simplicity and 

the need for complex adjustments to achieve optimal performance. 

 

Robustness and Generalization 

Both the OLS and PyCaret models underwent rigorous evaluation, including 10-fold cross-

validation, to ensure their robustness and generalizability. The notable improvement in 

PyCaret models post-tuning suggests that with meticulous calibration, these models can 

provide robust predictions, though this comes with an increase in training complexity. 

 

Practical Implications 

In scenarios where computational resources and time are limited, OLS provides a viable 

and effective solution. However, if conditions permit extended model exploration and 

tuning, PyCaret’s models offer considerable customization and potentially greater 

accuracy, making them suitable for more in-depth analytical tasks. 

 

Conclusion 

This comparative analysis highlights the distinct strengths of OLS and PyCaret within 

various contexts. OLS excels in delivering simplicity and satisfactory performance without 

the necessity for tuning, making it well-suited for quicker deployments. Conversely, 

PyCaret offers enhanced flexibility and potentially superior performance but requires 

significant tuning and more computational resources to fully leverage its capabilities. The 

choice between these modelling approaches should be guided by the specific needs of the 

project, the available resources, and the desired complexity of the model. 

 

 

5.4 Challenges and Limitations 

The process of modelling completion times using OLS and PyCaret has highlighted several 

challenges and exposed limitations inherent in predictive modelling within sports analytics. 

These challenges range from data quality and feature selection to model complexity and 

generalizability. 
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Data Quality and Availability  

The data for this study was sourced from a specific group of athletes, which limits the 

diversity and potentially affects the generalizability of the findings. The motion capture 

sessions were well-conducted but limited in number, leading to models that may perform 

well for this particular group but less so for a broader athlete population. This highlights 

the need for datasets that include a wider range of athletes to enhance the robustness and 

applicability of the predictive models. 

Feature Selection and Engineering  

The study employed both manually extracted and tsfresh automated features. While manual 

selection allows for domain expertise to guide the process, it risks omitting potentially 

informative features. Conversely, automated methods can introduce features that, although 

statistically significant, might not provide practical insights and could lead to overfitting or 

reduced interpretability. These tsfresh features are not only complex and numerous, 

presenting significant challenges in interpretation and obscuring model transparency, but 

their extraction also demands considerable computational resources. This requirement can 

be particularly prohibitive in scenarios where rapid model training and deployment are 

essential. 

Model Selection and Hyperparameter Tuning The effectiveness of the models, 

particularly those trained with PyCaret, heavily relied on hyperparameter tuning. This 

tuning is resource-intensive and can limit the feasibility of these models in scenarios 

requiring quick responses or limited computational resources. Furthermore, while complex 

models can capture intricate data patterns, they also risk overfitting, making it essential to 

balance complexity with generalization capabilities. 

Generalizability and Validation 

Although 10-fold cross-validation helps assess model robustness, it doesn't guarantee 

performance on unseen data from different populations or under varied conditions. 

The predictive models developed in this study are tailored to the specifics of short-distance 

sprint data, derived from a controlled group of athletes during motion capture sessions 

explicitly focused on short sprints. The nature of our dataset, which includes only short-

distance sprint sections, precludes the evaluation of these models for long-distance races 

like marathons or extended athletic events. This limitation restricts the applicability of our 

findings outside of short sprint contexts, emphasizing the need for targeted data collection 

across different distances and formats to validate and potentially extend the utility of these 

models to broader athletic applications. 
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6.1 Restating Objectives 

The primary objective of this thesis was to leverage advanced machine learning techniques to 

enhance the analysis and prediction of athletic performance in track and field using motion 

capture data. To achieve this, the study aimed to construct and evaluate predictive models that 

accurately estimate competition times for track and field athletes. These models utilized both 

manually extracted features, informed by theoretical and practical knowledge of biomechanics, 

and automatically derived features using the tsfresh tool to identify the most predictive features. 

In analysing running techniques, the models provided insights into key factors affecting 

performance, enabling the provision of actionable feedback for athletes and coaches to 

optimize their training outcomes. Moreover, this study explored the potential of predictive 

modelling for injury prevention by identifying patterns and anomalies in motion data that could 

predispose athletes to injuries, contributing to strategies for proactive injury prevention. The 

study also compared different modelling approaches, including OLS regression and various 

models through PyCaret, to establish best practices in handling complex sports performance 

data. Finally, it demonstrated how integrating machine learning insights into coaching 

regimens can transform traditional training methods, facilitating data-driven decisions with 

practical implications for real-world athletic training and competition settings. Ultimately, this 

study sought to empower athletes and coaches with valuable insights to enhance training 

strategies and performance. 
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6.2 Summary of Key Findings 

 

Predictive Models: The predictive models constructed in this study successfully estimated 

competition times by utilizing both manually and automatically extracted features. The Linear 

Regression model, which used features derived from the tsfresh tool, achieved the most 

accurate predictions with a Mean Absolute Error of 8.29 milliseconds. This finding underscores 

the significant predictive power of automated feature extraction techniques. 

 

Running Techniques: The analysis of running techniques provided valuable insights into the 

key biomechanical factors influencing athletic performance. By using both manually and 

automatically extracted features, this study identified specific aspects of an athlete's movement 

that significantly affect competition times. 

Manually extracted features emphasized the importance of balancing stride length, stride 

frequency, and symmetry. Reducing both ground contact time and air time proved crucial for 

efficient motion, as shorter times were associated with faster race outcomes. Optimizing the 

total number of steps also emerged as important, reinforcing the need to balance stride 

frequency and length. 

Automatically extracted features highlighted subtle but essential patterns in leg positioning, 

core stability, and arm-leg synchronization, revealing intricate biomechanical patterns crucial 

for effective performance. These features emphasized the importance of controlled and 

efficient leg movements, core stability, and arm swing coordination in enhancing athletic speed 

and minimizing fatigue. 

Together, these insights offer a comprehensive understanding of how different running 

technique elements affect race outcomes and provide practical strategies for refining training 

regimens. By leveraging these findings, coaches and athletes can tailor their training to 

optimize individual performance while minimizing injury risks. 

 

Injury Prevention: Although this study primarily focused on performance improvement, the 

predictive models provide a foundational framework for identifying patterns that may 

predispose athletes to injury. Enhanced analysis could identify problematic patterns early. 

 

Comparing Modelling Techniques: The comparative analysis between Ordinary Least 

Squares (OLS) regression and machine learning models developed using PyCaret highlighted 

the strengths and trade-offs of each approach. OLS, despite its lack of hyperparameter tuning, 

initially outperformed the untuned PyCaret models, showcasing its ability to deliver reasonable 

predictive accuracy with minimal complexity. 
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After tuning, the PyCaret models significantly improved their predictive performance, aligning 

with or even surpassing OLS results for both manually and automatically extracted features. 

However, this improvement required additional computational resources and time, highlighting 

a trade-off between simplicity and optimization. 

OLS is ideal for quick deployment in scenarios where computational efficiency is essential. In 

contrast, PyCaret provides greater customization and accuracy through hyperparameter tuning 

but demands more computational resources. Choosing between these approaches depends on 

specific project needs, available resources, and the desired level of model complexity. This 

analysis ultimately underscores the importance of model selection and optimization in sports 

analytics. 

Data-Driven Decisions: The study demonstrated the potential of machine learning models to 

inform training strategies by providing actionable insights into each athlete's performance. 

Coaches can tailor training regimens using detailed metrics from predictive modelling, which 

identify individual strengths and weaknesses. These insights give coaches a nuanced 

understanding of each athlete's biomechanics, allowing them to focus on training areas that will 

yield the greatest improvement. 

 

6.3 Challenges and Limitations 

This study encountered several challenges related to data quality, computational resources, 

feature selection, and model generalizability. The dataset, drawn from a specific group of 

athletes, lacked diversity, which affected generalizability. The limited number of motion 

capture sessions resulted in models that were highly tailored to this group, restricting their 

broader applicability. A more varied dataset would improve the robustness of the predictive 

models. 

Manual feature extraction, guided by domain expertise, may overlook key features, while 

automated selection can introduce statistically significant but less interpretable features. The 

automated extraction process via tsfresh is resource-intensive and generates complex features 

that can lead to interpretation challenges and computational burdens. 

The performance of models trained via PyCaret was highly dependent on tuning, which is 

computationally expensive and time-consuming. Additionally, balancing model complexity 

with the ability to generalize to new data remains a critical challenge. 

While 10-fold cross-validation aided model robustness, it does not guarantee performance on 

unseen data. These models, tailored to short-distance sprint data, were not validated on long-

distance races, limiting their applicability beyond the sprint context. Data collection across 

different race lengths is necessary for broader validation. 

 



 80 

 

6.4 Future Work 

Enhanced Data Collection: Future studies should focus on gathering a more diverse dataset 

across different athlete populations and race formats. This will improve model robustness, 

enable better generalization, and enhance our understanding of performance patterns in various 

track and field events. 

Advanced Modelling Techniques: Exploring advanced modelling techniques, such as deep 

learning and ensemble methods, could further refine predictive accuracy. Additionally, testing 

models that incorporate real-time data streams and external variables, such as environmental 

conditions, can yield richer insights and more dynamic predictions. 

Real-World Applications: Integrating predictive models into real-world coaching 

environments is crucial for validating their practicality and effectiveness in competitive 

contexts. Wearable technology and training software can serve as valuable tools for 

implementing these models, providing coaches and athletes with real-time feedback and 

actionable insights 

Improving Interpretability: Developing more interpretable models will enhance the 

understanding of predictive insights among coaches and athletes. This improved 

interpretability will facilitate more effective communication and integration of data into 

training strategies, ensuring that the insights are practically applied to improve performance. 

Injury Prevention: Future work in injury prevention can be significantly advanced by 

combining a comprehensive review of theoretical research on track and field injuries with 

deeper, more meaningful feature extraction to identify critical biomechanical patterns. Delving 

into this body of knowledge, alongside collecting richer data on the biomechanics of athletes, 

could reveal subtle patterns or specific risk factors associated with injuries. For instance, as 

demonstrated with the stride symmetry index, these patterns may provide early indications of 

imbalances or inefficiencies in running mechanics that predispose athletes to injuries. 

Through detailed analysis of these movement patterns, we can develop predictive models that 

offer immediate, actionable feedback on each athlete's biomechanical health. These insights 

would help coaches and medical staff identify potential injury risks, customize training to 

address specific vulnerabilities, and improve recovery protocols. Moreover, such models 

would empower athletes to proactively adjust their running mechanics to minimize injury risks 

while maximizing performance. Real-time, data-driven body analysis could ultimately lead to 

the development of promising tools and technologies that not only safeguard athlete health but 

also enhance their competitive edge through optimized running mechanics and improved 

performance results. 
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