

Individual Diploma Thesis

DETECTING GO LANGUAGE FEATURES BY ANALYZING GO

BINARIES

Frixos Kallenos

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2024

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Detecting Go Language Features by Analyzing Go Binaries

Frixos Kallenos

Supervisor

Dr. Elias Athanasopoulos

The Individual Diploma Thesis was submitted for partial fulfilment of the

requirements for obtaining a degree in Informatics of the Department of Informatics

of the University of Cyprus

May 2024

Acknowledgements

I would like to express my deepest gratitude to those who have supported me

throughout the journey of writing this thesis and especially my supervisor, Dr. Ilias

Athanasopoulos.

A special mention goes to my family and my girlfriend, whose presence in my life has

been a source of strength and inspiration. Your patience, understanding, and love have

been invaluable, especially during the times when my health challenges seemed

insurmountable. You stood by me, providing the emotional and practical support that I

needed to persevere.

Abstract

Memory corruption vulnerabilities are one of the most significant categories of

vulnerabilities in information security. Such vulnerabilities commonly arise from

programming errors or flaws in software development practices, particularly when using

programming languages that permit unrestricted memory access, such as C or C++. To

counter memory corruption attacks, numerous techniques and defense mechanisms have

been devised. Despite the existence of these hardening techniques, numerous attack

vectors remain effective. Programming languages like Rust and Go were developed to

address those vulnerabilities, while being fast and efficient, providing low-level

capabilities and being type-safe and memory-safe. Nevertheless, these languages are not

entirely immune to vulnerabilities; they have weaknesses when not used properly.

Developing security mechanisms for these languages necessitates tools capable of

analyzing programs produced in these languages at the binary level. This thesis will

concentrate on the Go programming language, particularly on disassembling its stripped

binaries and identifying potential utilization of features available specifically in Go,

such as goroutines, channels and closures.

Contents

Chapter 1 Introduction …………………………………………………………1

Chapter 2 Background………………………………………………….………3
 2.1 Binary Analysis 3

 2.2 Assembly Code 5

2.3 Disassembly 5

2.4 Reverse Engineering 6

2.5 Linkage Phase 7

2.6 Go Language 8

Chapter 3 Investigative Process……………….....…………………….. 13

 3.1 Goroutines 14

 3.2 Channels 17

 3.3 Closures 18

Chapter 4 Implementation…………………………………………….……. 22
4.1 Raw bytes of specific addresses 22

4.2 Detecting Goroutines 22

4.3 Detecting Channels 24

4.4 Detecting Closures 26

Chapter 5 Tool Evaluation…………………………………………………… 27

Chapter 6 Related Work ………………………………………………….. 29

Chapter 7 Future Work ………………………………………………….. 30

Chapter 8 Contributions - Conclusion…………………………………….. 31

B i b l I o g r a p h y ……………………………………………………………. 32

A n n e x Α………………………………….…………………………….……… Α-1

A n n e x B………………………………….…………………………….……… Α-1

A n n e x C………………………………….…………………………….……… Α-1

 1

Chapter 1

Introduction

One of the most serious class of vulnerabilities in information security, is memory

corruption vulnerabilities like buffer overflows, buffer overreads and use-after-free

vulnerabilities. According to MITRE rankings, memory corruption errors are currently

one of the three most dangerous software errors [1]. Even major browsers are being

successfully exploited due to memory corruptions, in annual hacking contests like

Pwn2Own or Pwnium [2]. This kind of vulnerabilities typically arise due to

programming errors or flaws in the way software is developed, especially when using

programming languages that allow unrestricted memory access, like C or C++.

Although having unrestricted memory access while coding poses significant security

risks, it provides a lot of benefits like efficiency, since it allows developers to have fine-

grained control over memory management, enabling them to optimize performance by

allocating and deallocating memory precisely as needed. Building operating systems,

device drivers, and other system-level software, as well as maintaining compatibility

with some legacy systems, are some of the reasons other than efficiency, that make

unrestricted memory access necessary.

In order to defend against memory corruption attacks, multiple techniques and defense

mechanisms have been developed. Software hardening techniques include Data

Execution Prevention (DEP), Address Space Layout Randomization (ASLR), exception

handler validation (SafeSEH), Control-flow Integrity (CFI). Even with those hardening

techniques in existence, numerous attack vectors remain effective. That’s either because

attackers are continuously adapting and refining their attack strategies, or because most

hardening techniques are not used in practice due to high performance overhead or not

compatible with all used features. Yet another factor hindering the defensive measures,

is the hurdle of manually modifying the source code to apply protection or make it

compatible with existing code [2]. Note that none of the current methods offer assured

protection since they do not fully solve the general problem of memory corruption.

 2

Programming languages like Rust and Go were developed to address those

vulnerabilities, while being fast and efficient, providing low-level capabilities and being

type-safe and memory-safe [3]. Rust and Go are growing in popularity; IEEE’s 2023

Top Programming languages list ranks them 18th and 8th respectively [4], while C and

C++ maintain their positions in the top spots, occupying the third and fourth. Code

written in Rust or Go can seamlessly coexist with code written in C/C++. This feature

enhances the appeal of these languages, as various components of an unsafe program

can be delegated to Rust or Go, consequently enhancing overall safety [5].

Go language ensures memory safety by incorporating a minimal runtime support with a

lightweight garbage collector and by implementing bounds checks that are activated

during runtime. It has also built-in support for parallel programming using goroutines

(lightweight threads managed by the Go runtime instead of the OS) and channels. This

simplifies the process of writing concurrent code, avoiding the complexities and

potential security issues linked to traditional threading models. Golang features a race

detector tool that aids developers in pinpointing and resolving data race conditions

during the development phase. This significantly contributes to the creation of more

robust and secure parallel programs. By tackling common sources of vulnerabilities at

the language level, these programming languages aid in preventing a broad spectrum of

security issues that have historically affected systems written in languages such as C

and C++.

This thesis will focus on the Go programming language, particularly on disassembling

its stripped binaries and detecting programming features specific to Go language, such

as the use of goroutines, go channels or go closures.

 3

Chapter 2

Background

2.1 Binary Analysis 3

2.2 Assembly Code 5

2.3 Disassembly 5

2.4 Reverse Engineering 6

2.5 Linkage Phase 7

2.6 Go Language 8

2.1 Binary Analysis

2.1.1 General

Binary analysis is the scientific examination of the characteristics of binary computer

programs, referred to as binaries, along with the machine code and data embedded

within them. In simple terms, the main objective of binary analysis is to detect (and

potentially alter) the authentic properties of binary programs — essentially, what they

really do in contrast to what we think they should do [6]. While many people connect

binary analysis with reverse engineering and disassembly, its scope extends beyond

those two. Binary analysis techniques can be categorized into static analysis, dynamic

analysis, or a combination of these classes. With static analysis, we analyze a binary

without ever executing it. We can analyze the whole binary at once, even on a machine

of a different architecture than the one for which the binary was compiled. However, we

won’t have any knowledge of the binary’s runtime state. For example, it’s very difficult

to calculate indirect branches. On the other hand, with dynamic analysis we run the

binary and we analyze it as it executes. This approach is usually more straightforward

than static analysis because it involves complete awareness of the entire runtime state,

including variable values and the results of conditional branches. Nevertheless, it only

 4

provides visibility into the executed code, so it’s possible for the analysis to overlook

significant sections of the program.

2.1.2 Challenges

Analyzing binaries is challenging and considerably more demanding than analyzing the

equivalent source code. Some binary analysis tasks are even inherently undecidable,

making it impossible to build a solution that consistently produces accurate results [6].

During software development we give our constructs (variables, functions, classes)

names that have meaning, and we also follow some naming conventions to make the

source code more readable. This symbolic information (debugging symbols or symbols)

serves no real purpose when the code is compiled. Therefore, it's common practice to

strip binaries in production software, namely to remove debugging symbols and other

metadata, to reduce the file size and improve performance. It also makes sense that

malwares are also stripped, since they need to give away as little information as

possible. Without symbols, understanding the code is significantly more challenging.

High-level source code often includes well-defined types, such as int, double, char, or

even more complex data structures like struct types. However, it’s extremely hard to

infer the purpose and structure of data at the binary level because types are never

explicitly specified. At the binary level it’s also difficult to recognize any high-level

abstractions like classes and functions since these high-level constructs are being

discarded during the compilation process.

Most compilers mix fragments of data with the executable code. This makes it prone to

inadvertently interpreting these data fragments as code, or the other way around, leading

to false conclusions.

Executable code and data are location-dependent inside a binary file. Making any form

of code or data modification is exceptionally hard and carries a risk of breaking the

binary. This is because any modification is likely going to shift other code or data

around, making memory addresses and references from elsewhere in the code invalid.

 5

2.2 Assembly Code

Considering all mentioned above challenges for binary analysis, assembly code has a

significant role in that process. Assembly language serves as a bridge between the

human analyst and the complex machine code of a binary, providing a human-readable

interface that facilitates profound insights into program behavior, debugging, and

vulnerability analysis. There is a one-to-one correspondence between assembly

language instructions and machine code instructions executed by a CPU, allowing

analysts to understand and interpret the binary’s behavior at a level close to hardware.

Assembly is essential for debugging binaries, setting breakpoints, and examining the

state of the program, to identify bugs or vulnerabilities.

2.3 Disassembly

Disassembling a binary refers to the process of converting machine code, which is the

binary representation of executable instructions understood by a computer's central

processing unit (CPU), into assembly language. The disassembly process involves

analyzing the static binary file or runtime information and extracting the sequence of

instructions that make up the program. These instructions are then presented in a

symbolic and mnemonical form that is easier for humans to understand (assembly

code). The result is a textual representation of the program's executable code.

2.3.1 Static Disassembly

In static disassembly, the instructions are extracted from a binary without executing it.

The objective of every static disassembler is to convert all code in a binary into a

human-readable format or a format that can be processed by machines for further

analysis [6]. To accomplish this objective, static disassemblers need to execute the

following steps: (1) Load the binary with a binary loader, (2) Identify all machine

instructions in the binary, (3) Disassemble the identified instructions into assembly

code. The tricky part is the second step because, as we mentioned in binary analysis

challenges, code is mixed with data within a binary and so if the disassembler

misidentify data as code, there is a great chance they could correspond to valid

instructions. Two primary approaches exist for static disassembly, linear and recursive

 6

disassembly. Linear disassembly passes through each one of the code segments and

decodes all bytes consecutively translating them to assembly instructions. In contrast,

recursive disassembly starts from known entry points into the binary and follows

recursively the control flow (calls and jumps) from there. The disadvantage of recursive

disassembly is that it’s not easy to follow every branch, especially indirect jumps, or

calls.

2.3.2 Dynamic disassembly

Dynamic disassembly avoids a lot of dangers associated with code being mixed with

data, because it relies on a lot of runtime information such as memory and register

contents. Therefore, it can disassemble all executed instructions and be certain that there

is no data there. The primary drawback of this approach is the code coverage problem,

where dynamic disassemblers only encounter and analyze instructions that are executed,

rather than all instructions present in the code.

2.4 Reverse Engineering

Reverse Engineering is the understanding of the internals of something made by a

human, through analysis, without having access to its design principles and the way its

components interact to complete its intended goal. In other words, it’s the process of

taking apart something that someone else built and understand how he did it. In the

context of computer science, we usually refer to software reverse engineering, which is

typically done by analyzing the assembly code generated from disassembling the binary

under examination. The assembly code is then analyzed using various tools like IDA

Pro, Ghidra and OllyDbg, which can perform some automated analysis and provide

important insights to the reverse engineer. Normally, a lot of manual effort is required

by the reverse engineer, to overcome all the challenges described in section 2.1, plus

any anti-reversing tricks or obfuscation techniques imposed by the binary. Anti-

Reversing tricks constitute one the main classes of countermeasures designed to combat

reverse engineering. These tricks include, amongst others, direct or indirect debugger

detection, virtual machine detection, parent process detection and execution time

detection. On the other hand, code obfuscation is not exactly an anti-reversing

technique, because its primary target is to challenge the human behind the tool and not

 7

the tool itself. For example, logic flow obfuscation complicates the prediction and

comprehension of when a program execution should reach conditional branches.

test eax, eax
je _eaxWasZero

Regular compiled code: If eax==0 then we jump.

and eax, 0xffffffff
je _eaxWasZero

Obfuscated code: logical AND operation with all its bits set. If the result is zero, eax
was zero, so we jump.

The above obfuscated code produces the same effect as the regular compiled code, but

its purpose is to slow down the analyst by forcing them to analyze unexpected assembly

code before a conditional jump. There is also a technique called NOP obfuscation where

a set of instructions added to the binary have no real impact on the execution of the

code.

push ebx
add ebx, ecx
sub ebx, eax
push eax
sub eax, edx
xor eax, edi
pop eax
pop ebx

NOP obfuscation: The above set of instructions has a NOP effect.

2.5 Linkage Phase

The linking phase is the last stage of the compilation process. During this phase, all the

object files are linked into a single coherent binary executable [6]. As expected, the tool

responsible for executing the linking phase is referred to as a linker or link editor.

Typically, it is distinct from the compiler, which implements all preceding phases.

Object files are considered relocatable because they are compiled independently from

each other. This independence prevents the compiler from assuming that an object will

end up at any particular base address. There are two main types of linking: static linking

and dynamic linking. Static libraries are incorporated directly into the binary

 8

executable. This integration enables the resolution of any references to them entirely

within the executable. The addresses at which dynamic libraries will reside are not

known during the linking phase. Therefore, references to them cannot be resolved at this

stage. Instead, the linker leaves symbolic references to these libraries in the final

executable. These references remain unresolved until the binary is loaded into memory

for execution.

2.6 Go Language

The Go language (or Golang) is a relatively new programming language, designed with

systems programming in mind, developed by Google. The language offers a statically

typed and compiled environment, incorporating modern language features while

maintaining a straightforward syntax. According to its official documentation “Go is

expressive, concise, clean, and efficient” [7]. Its concurrency mechanisms facilitate the

development of programs optimized for multicore and networked machines, while its

innovative type system allows for flexible and modular program construction. Go

compiles quickly to machine code, while also having the convenience of garbage

collection and the capabilities of run-time reflection. It is a fast, statically typed,

compiled language that provides a sensation similar to dynamically typed, interpreted

languages. While it incorporates concepts from existing languages, Go possesses

distinctive properties that result in effective Go programs having a different character

compared to programs written in its language relatives. It’s important for Go developers

to understand Go’s properties and idioms.

2.6.1 The Go Garbage Collector

The Go language is responsible for organizing the storage of Go values, relieving Go

developers from the need to be concerned about where these values are stored or why.

These values frequently need to be stored in the physical memory of a computer, which

is a finite resource and that’s why memory must be managed with care and recycled to

prevent depletion during the execution of a Go program [8]. A garbage collector (GC) is

a system that efficiently recycles memory on behalf of the application by identifying

portions of memory that are no longer in use. The Go standard toolchain includes a

runtime library with each application. This runtime library incorporates a garbage

 9

collector. Go values stored in local variables usually are not managed by the Go garbage

collector at all. This is because the Go compiler can predetermine when the associated

memory can be freed and generate machine instructions for garbage collection that

handle the cleanup. When the Go compiler cannot determine the lifetime of Go values,

they are said to escape to the heap. The process of reserving memory on the heap is

commonly referred to as "dynamic memory allocation". GC is a system designed to

specifically identify and clean up dynamic memory allocations. Whether a Go value

escapes or not depends on the context in which it is used, and the escape analysis

algorithm employed by the Go compiler. Attempting to predict whether a value escapes

can be extremely challenging, given that the escape analysis algorithm is quite

sophisticated and may undergo changes in different Go releases.

2.6.2 Go statements – goroutines
A "go" statement starts the execution of a function call as an independent concurrent

thread of control, referred as goroutine, within the same address space [9].

go <expression>

The expression must be a function or method call and it cannot be parenthesized. Built-

in function calls are restricted.

var wg sync.WaitGroup

func count(id string) {
 for i := 1; i <= 10; i++ {
 fmt.Println("goroutine id: "+id+", count:", i)
 time.Sleep(time.Second)
 }
 wg.Done()

func main() {
 wg.Add(3)

 go count("1")
 go count("2")
 go count("3")

 wg.Wait()

 10

}

The above code snipped initiates two concurrent independent goroutines which run in

parallel and they both execute the count() function.

The function value and parameters are evaluated in the usual manner in the calling

goroutine. However, unlike a regular function call, program execution does not wait for

the invoked function to complete. Instead, the function begins executing independently

in a new goroutine. That’s why we used some thread synchronization functions from the

“sync” package in the above example. When the function terminates, its associated

goroutine also terminates. If the function produces any return values, they are discarded

upon the function’s completion. Therefore, if we need a return value or any type of

information from the goroutine’s execution, we must use channels.

2.6.3 Go Channels

A Go channel serves as a mechanism for concurrently executing functions to

communicate by exchanging values of a specified element type [10]. Channels function

as first-in-first-out queues. For instance, if one goroutine sends values on a channel

while another goroutine receives them, the values are received in the order in which

they were sent. It's important to note that the value of an uninitialized channel is nil. The

optional <- operator designates the channel direction, either send or receive. When a

direction is specified, the channel becomes directional; otherwise, it remains

bidirectional. A channel can be restricted to only send or only receive through

assignment or explicit conversion.

chan T // can be used to send and receive values of type T
chan<- int // can only be used to send ints
<-chan float64 // can only be used to receive float64s

Using the built-in function make, a new initialized channel value can be created. The

channel type and an optional capacity are given as arguments to this function.

ch := make(chan int, 100)

 11

The capacity, denoting the number of elements, determines the size of the buffer in the

channel. In the case of a capacity being zero or absent, the channel is unbuffered, and

communication only succeeds when both a sender and receiver are ready. Conversely, if

the channel has a capacity, it becomes buffered, allowing communication without

blocking if the buffer is not full for sends or not empty for receives. When a channel is

nil, it’s never ready for communication. A channel can be closed using the built-in

function close.

A value can be sent on a channel by a send statement, provided that the channel

expression’s core type must be a channel, the channel direction must permit send

operations, and the type of the value to be sent can be assigned to the channel’s element

type. In the process of communication, both the channel and the value expression are

evaluated before the transmission commences. Communication blocks until the send

operation can proceed. Specifically, a send on an unbuffered channel can proceed if a

receiver is prepared to receive. Meanwhile, a send on a buffered channel can proceed if

there is available space in the buffer. Attempting to send on a closed channel results in a

run-time panic and attempting to send on a nil channel leads to indefinite blocking.

ch <- 7 // send value 7 to channel ch

For an operand ch whose core type is a channel, the value of the receive operation <-ch

is the value received from the channel ch. It's essential that the channel direction allows

receive operations, and the type of the receive operation is the same as the element type

of the channel. The expression blocks until a value becomes available. Attempting to

receive from a nil channel results in indefinite blocking. On the other hand, a receive

operation on a closed channel can always proceed immediately, providing the element

type's zero value after any previously sent values have been received.

v1 := <-ch
v2 = <-ch

Receive operator examples.

A receive expression used in an assignment provides an additional untyped boolean

result indicating whether the communication was successful.

 12

x, ok = <-ch
x, ok := <-ch
var x, ok = <-ch
var x, ok T = <-ch

The value of ok is true if the received value resulted from a successful send operation to
the channel. If it is false, it indicates a zero value generated because the channel is

closed and empty.

2.6.4 Go Closures

Go functions have the capability to be closures. A closure is a function value that is able

to reference variables from outside its body. The function can access and modify the

referenced variables; in this context, the function is considered "bound" to the variables.

Closures are essentially formed by a special type of anonymous function.

import "fmt"

func adder() func(int) int {
 sum := 0
 return func(x int) int {
 sum += x
 return sum
 }
}

func main() {
 pos, neg := adder(), adder()

 arr := [10]int{1,-2,4,-5,8,4,-4,1,-2,5}

 for i := 0; i < 10; i++ {
 if arr[i] > 0{
 fmt.Println(“pos sum:”, pos(arr[i]))
 }else{
 fmt.Println(“neg sum:”, neg(arr[i]))
 }
 }
}

In this example, the adder function returns a closure. Each closure is bound to its own
sum variable. That’s why, as we iterate the array arr, the sum variable persists its
value, for each closure separately, through multiple calls of the closure. The sum of

positive numbers and sum of negative numbers of the array, are being printed.

 13

Chapter 3

Investigative Process

3.1 Goroutines 14

3.2 Channels 17

3.3 Closures 18

Our primary objective was to understand how various golang features like goroutines,

channels and closures are implemented at the binary level. To accomplish this, we

created many mock go programs, disassembled them and analyze the assembly code. In

our analytical procedure, we intentionally kept debugging symbols within the various

binary executables to facilitate the correlation between assembly code and

corresponding source code, thereby assisting the identification of patterns. However,

note that our primary objective is developing tools, capable of effectively parsing and

analyzing stripped binaries devoid of any symbolic information.

In the disassembling process, we used the objdump from GNU developer tools and the

go objdump tool, which is a command line tool included with the Go installation. Both

tools produce nearly identical output. The go objdump tool lacks the capability to

disassemble stripped binaries, unlike the GNU objdump. Nonetheless, as we have

mentioned, we didn’t analyze stripped binaries at this phase. The following figures

illustrate the output from the GNU objdump.

By default, the go compiler produces statically compiled binaries, resulting in static

linking against libraries, thereby including all their code into the binary. Consequently,

this leads to an increase in the size of the binaries. We kept the default behavior of the

go compiler, thus analyzing statically linked binaries.

 14

3.1 Goroutines

Every Go binary, including a simple “Hello, World!” program with no additional

functionality, initiates a minimum of five (5) goroutines. Among these, one executes the

main function while the remaining ones handle garbage collection tasks. Developers can

create additional goroutines as needed. Our investigation specifically targets user-

created goroutines and excludes those provided by the default Go runtime package.

We employed the go program presented in section 2.6.2, which spawns three

goroutines, each invoking the counter function. Upon executing the compiled program,

the output will resemble the following:

goroutine id: 3, count: 1
goroutine id: 1, count: 1
goroutine id: 2, count: 1
goroutine id: 2, count: 2
goroutine id: 3, count: 2
goroutine id: 1, count: 2
goroutine id: 1, count: 3
goroutine id: 2, count: 3
goroutine id: 3, count: 3
...

By examining the assembly code produced from objdump, we noticed that for each

goroutine creation there was a call to the newproc() function, from the runtime package

which belongs to the standard library of Go. A memory address is passed as a parameter

through $rax for each call to the newproc(). Upon inspecting the source code of

newproc() [11], we observe that it takes a function pointer as argument. Notably, this

function pointer designates the entry point from which the newly instantiated goroutine

will start its execution.

// Create a new g running fn.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to
this.
func newproc(fn *funcval) {
 gp := getg()
 pc := getcallerpc()
 systemstack(func() {
 newg := newproc1(fn, gp, pc)
 pp := getg().m.p.ptr()
 runqput(pp, newg, true)
 if mainStarted {

 15

 wakep()
 }
 })
}

Source code of newproc function from go runtime package.

The go instruction to create a goroutine, as seen in 2.6.2, is “go <function_name>”, thus

we expected that the function pointer given to newproc() should be the address of the

function used in this instruction. Counterintuitively, that wasn’t the case, since the

newproc() function gets the address of a new function created by the compiler,

which in turn calls the initial function used in the instruction.

For example, the source code in 2.6.2., creates the goroutines using “go count()”. In

the assembly code, for each created goroutine, the newproc() function gets the

address of a distinct compiler created function (e.g. main.func1, main.func2, etc)

which has in its code a call instruction to the count() function.

After analyzing multiple other binaries, we also discovered that the go compiler,

generates one of two distinct assembly code patterns, which execute preceding the

invocation of the newproc() function. That is where the $rax register will get its

value to be passed as an argument.

The first pattern is just a lea instruction that loads the function pointer address from

the .rodata section to $rax and a then a call to newproc() right after. The second

assembly code pattern undertakes the following sequence of actions: (1) call of the

newobject() function from the runtime package, which allocates some memory and

returns a pointer to it in $rax, (2) the address of the compiler generated function is

loaded in $rcx, (3) the value of $rcx is moved in the memory of the object created in

step 1, (4) various instructions probably about garbage collection are executed and (5)

the newproc() function is called, while $rax points to the memory address of the

object that contains the compiler generated function.

lea 0x1e7fc(%rip),%rax # 49cda8 <go.func.*+0x24b>
callq 43a9a0 <runtime.newproc>
lea 0x1e7f8(%rip),%rax # 49cdb0 <go.func.*+0x253>
callq 43a9a0 <runtime.newproc>
lea 0x1e7f4(%rip),%rax # 49cdb8 <go.func.*+0x25b>
callq 43a9a0 <runtime.newproc>

 16

First assembly code pattern before calling newproc()

callq 40bdc0 <runtime.newobject>
lea 0x63(%rip),%rcx # 47e180 <main.main.func1>
mov %rcx,(%rax)
cmpl $0x0,0xd1fc9(%rip) # 5500f0 <runtime.writeBarrier>
jne 47e134 <main.main+0x54>
mov 0x10(%rsp),%rcx
mov %rcx,0x8(%rax)
jmp 47e145 <main.main+0x65>
lea 0x8(%rax),%rdi
mov 0x10(%rsp),%rcx
nopl (%rax)
callq 45aa60 <runtime.gcWriteBarrierCX>
callq 43a9a0 <runtime.newproc>

Second assembly code pattern before calling newproc()

Following an extensive analysis of go binaries that spawn goroutines, it has come to our

attention that the second abovementioned assembly code pattern, emerges when Go

channels are employed, for the communication among goroutines by exchanging values.

The first assembly code pattern is generated when channels aren’t used.

 17

3.2. Channels

After examining goroutines, our focus shifted to Go channels, which enable

communication among different goroutines. Once again, we constructed mock Go

binaries and disassembled them, allowing us to scrutinize how the Go compiler

implements channels at the assembly level.

package main

import (
 "fmt"
)

func get_func(ch <-chan int) {
 var x int = <-ch
 fmt.Println(x + 2)
}

func give_func(ch chan<- int) {
 var y int = 3
 ch <- y
}

func main() {
 ch := make(chan int, 2)
 go give_func(ch)
 get_func(ch)
}

The above go program creates a channel of type int with buffer size two. It has two

functions that get the created channel as argument and use it to communicate

(send/receive values). The get_func() is called by the main goroutine, and the

give_func() is called from a new goroutine that runs in parallel with the main one.

The give_func() creates a local variable and sends its value through the channel,

while the get_func() receives the value from the channel, adds two and prints it (the

number 5 is printed).

At the binary level, the implementation of go channels relies on three functions from the

runtime package of the Go standard library, akin to the utilization of newproc()

 18

function for goroutines. Those three functions are: (1) makechan() which is used

initially to create a new channel, (2) chansend1() which is used to send variables

into a channel and (3) chanrecv1() which is used to receive variables from a

channel.

The initial step involves creating the channel by invoking the makechan() function,

which returns a pointer to it. Essentially, this function initializes an hchan struct

[12].

type hchan struct {
 qcount uint // total data in the queue
 dataqsiz uint // size of the circular queue
 buf unsafe.Pointer // points to an array of dataqsiz
elements
 elemsize uint16
 closed uint32
 timer *timer // timer feeding this chan
 elemtype *_type // element type
 sendx uint // send index
 recvx uint // receive index
 recvq waitq // list of recv waiters
 sendq waitq // list of send waiters

 // lock protects all fields in hchan, as well as several
 // fields in sudogs blocked on this channel.
 lock mutex
}

At the assembly level, when a channel is used to send some value, the chansend1()

function is invoked. The channel pointer returned by makechan() is given as an

argument via the $rax register. The value to be send is loaded onto the stack, and a

pointer to it is also provided as an argument, via the $rbx register. Similarly, when a

channel is utilized to receive a value, the channel pointer is given as an argument to the

chanrecv1() function through $rax. The received value is obtained through stack after

chanrecv1() is returned.

3.3. Closures

Similar to our previous examinations of Goroutines and Go channels, we studied the

assembly code generated by simple Go programs incorporating closures. We identified

 19

two distinct approaches through which the Go compiler facilitates the creation of

closures at the assembly level. The selection of an approach by the compiler is

contingent upon whether the closure (or the function that creates it) invokes any library

functions, like for example fmt.Println() or math.Pow().

In the first approach, the compiler generates a distinct function for every created

closure. Here, "created" refers to each invocation of the function that returns a closure

(in the high level go source code). At the assembly level, the function that returns the

closure is not created as a separate function, probably as an optimization strategy. The

address of the closure is pushed onto the stack, followed by variables bound to the

closure, in the subsequent stack positions. Anytime the program wants to call the

closure, it does the following: (1) moves the closure address from the stack to $rcx, (2)

moves the closure argument to $rax, (3) loads the address of stack containing the

address of the closure to $rdx, and (4) executes an indirect call instruction to the

closure, e.g. call $rcx. Of course, the registers may differ depending on the number of

the closure’s arguments, although $rdx seems to always get the stack address where the

closure is stored.

import "fmt"

func adder(x int) func(int) int {
 var base int = x

 return func(y int) int {
 return base + y
 }
}

func main() {
 var add5 func(int) int
 var add10 func(int) int

 add5 = adder(5)
 fmt.Println(add5(2))
 fmt.Println(add5(3))

 add10 = adder(10)
 fmt.Println(add10(2))
 fmt.Println(add10(3))
}
In this code snipped, the closure does not invoke any library functions, so the compiler
will select the first approach. There are two calls of the adder function which returns a

closure, so the compiler would generate two functions.

 20

<main.main.func2>:
47e1a0: add 0x8(%rdx),%rax
47e1a4: retq

<main.main.func1>:
47e1c0: add 0x8(%rdx),%rax
47e1c4: retq

The two closures as they are implemented by the compiler.

47e00c: lea 0x1ad(%rip),%rcx # 47e1c0 <main.main.func1>
47e013: mov %rcx,0x38(%rsp)
47e018: movq $0x5,0x40(%rsp)
The assembly code for creating the first closure. The closure’s address is moved to the

stack and then the number 5, which is the argument for the adder function, is also
placed into the subsequent stack position. The closure is bound to the base variable,

which gets the value of the argument.

47e021: mov 0x38(%rsp),%rcx
47e026: mov $0x2,%eax
47e02b: lea 0x38(%rsp),%rdx
47e030: callq *%rcx
This is the assembly code for invoking a closure. The closure’s address is retrieved from
the stack to $rcx. Additionaly, $eax gets the closure’s argument and $rdx gets a pointer

to the stack address where the closure, namely its address and the variables that is
bound to, are stored. Lastly, we have an indirect call to the closure.

 21

In the second approach, the compiler generates only a single function, regardless of the

number of closures created. Unlike the first approach, the function that returns the

closure, is distinctively generated in assembly. The closure’s address and the variables

that the closure is bound are not passed onto the stack like the first approach. All these

are passed, with the same order as the first approach, on the memory of an object,

allocated with newobject(). In this case, whenever the closure needs to be invoked, the

same process is followed as the first approach, with the distinction that the closure’s

address and the other variables are retrieved via the object’s memory rather than the

stack.

 22

Chapter 4

Implementation

4.1 Raw bytes of specific addresses 22

4.2 Detecting Goroutines 22

4.3 Detecting Channels 24

4.4 Detecting Closures 26

4.1. Raw bytes of specific addresses

We created a python script (elf2bytes.py) that takes as input an ELF binary, a start

addresses and an end address and prints the raw bytes of all the instructions between

those two addresses. Of course, this could be done with other tools as well, but we

wanted the output in a specific format, so after making minimal changes, it can be

inserted in the code of other python scripts we developed. We needed to use the

“elftools” and “capstone” python libraries. Elftools contains functions and data

structures for analyzing ELF files, while capstone is a lightweight multi-platform and

multi-architecture disassembly framework.

The script initially opens the given ELF file, iterates through its sections until it finds

the .text section and then reads all the bytes of that section. Using some functions from

the capstone framework, it creates a disassembler object and then disassembles all the

bytes read from the .text section. A generator object is returned, through which we can

iterate all instructions and print only the bytes of the instructions between the addresses

given by the user (start – end addresses). The bytes are printed in a hex escaped format.

4.2. Detecting goroutines

 23

Since the creation of a goroutine is indicated by a call to the newproc() function from

the runtime package (see 3.1), we developed a script to identify (1) the presence of this

function inside an ELF binary, (2) any calls to that function, (3) the addresses from

which each goroutine will start execution and (4) the actual user function that is called

by each goroutine. Similar to “elf2bytes.py”, this script also uses the Elftools and

Capstone libraries and can analyze stripped binaries.

Initially, we used the elf2bytes.py script with various non-stripped binaries to extract all

the raw bytes of the newproc() function. We determined the exact starting and ending

addresses of the function using objdump. The resulting bytes were not identical for all

binaries, as the newproc() function in each binary had slightly different assembly

instructions. For example, the newproc() function needs to call the systemstack()

function, which is another Go runtime function. For this task, one binary might have the

instruction call 0x458b20, while another binary might have call 0x458860. This occurs

because the systemstack() function is not located at the same address in every binary or

the call instruction is not on the same address in every binary.

In our “goroutineDetection.py” script, we used regular expressions to specify a pattern

that will always match and find the newproc() function in a series of bytes. For

example, the above assembly instructions call 0x458b20 and call 0x458860 are could be

comprised from the bytes e8 2f e1 01 00 and e8 6f de 01 00 respectively. A regex

pattern like “e8 {4}.”, where “{4}.” means any four bytes, is able to match both

instructions. In that way, by studying the assembly code of the newproc() function in

multiple binaries, we build a regex pattern that can identify it in any series of raw bytes.

The actual creation of a goroutine is indicated by a call to the newproc() function. Our

script makes a list with all the call instructions found in the binary, by checking the

mnemonic of each instruction. Then checks which of those instructions call an address

where the newproc() function is detected. After that, we need to identify which of the

two assembly code patterns, described in 3.1 is present, in order to detect the start

address of the goroutine.

 24

If the instruction before “call newproc()” is a lea instruction, we calculate the address

that is loaded into $rax. This address stores a function pointer to the compiler-generated

function, which is where the goroutine will start execution. We then retrieve the

function pointer, navigate to that function, and identify the first call instruction, which

invokes the actual user function.

If the instruction before “call newproc()” is not a lea instruction, there are probably

channels in the binary, and thus we have the second assembly code pattern described on

3.1. Our script then checks one by one all instructions backwards until it finds a “mov

qword ptr [rax], rcx” instruction. This instruction is used to move the function pointer

stored in $rcx to the memory of a newly allocated object, pointed by $rax. The previous

instruction should be a lea instruction loading the function pointer to $rcx. In that way

our script identifies the address from which the goroutine will start execution and

following that, the call instruction to the actual user function.

Since we are focusing only on goroutines invoked from user code, we wanted to ignore

all default goroutines created by the go runtime package (e.g. for garbage collection).

Therefore, we identify all calls to the newproc() function but do not further analyze

code from libraries.

4.3. Detecting Channels

To identify the use of channels, our “channelDetection.py” script must detect the

presence of the following functions: makechan(), chansend1() and chanrecv1(), along

with calls to these functions (see 3.2). Using a similar approach as our goroutine

detection script, we construct regular expression patterns to match these functions in

any byte stream.

After identifying the addresses of each of these three functions, we procced to search all

call instructions to these addresses. This allows us to determine the exact addresses

where a channel is created and when a channel it is used for sending or receiving values.

 25

Using the GDB (GNU Debugger) Python API, we enhanced our Python script with

runtime analysis capabilities. The GDB Python API enables extending and automating

GDB using Python scripts. For a Python script to interact with GDB, it must be

executed with the following command: "gdb -x script.py".

Initially we set breakpoints at every address where we have found a call to makechan(),

chansend1() or chanrecv1(). Each time a breakpoint is hit, we check which function the

call instruction invokes. If it’s a makechan call, we know it will return a pointer to the

newly created channel through $rax, and we capture this information. If it’s a chansend

call, we retrieve the $rax value, which is the pointer of the channel to be used, and the

$rbx value, which is the value to be sent. If it’s a chanrecv call, we get the $rax value

which is the pointer of the channel to be used, and we retrieve the received value from

the stack. To find the stack address, we examine the instruction preceding the chanrecv

call.

RUNTIME ANALYSIS

Channel created at address: 0x47e081

Channel pointer: 0xc000116060

Channel created at address: 0x47e094

Channel pointer: 0xc0001160c0

chansend1 call at 0x47e021

Value 0x000000000000000c sent through channel 0xc000116060

chansend1 call at 0x47e021

Value 0x0000000000000011 sent through channel 0xc0001160c0

chanrecv1 call at 0x47e20f

Value 0x000000000000000c received through channel 0xc000116060

chanrecv1 call at 0x47e231

Value 0x0000000000000011 received through channel 0xc0001160c0

 26

4.4. Detecting Closures

Initially, our "closureDetection.py" script searches through the entire binary for two

specific instructions appearing consecutively. As discussed in section 3.3, the

instructions "lea rcx, 0x1ad(rip)" followed by "mov 0x38(rsp), rcx" suggest a potential

closure preparation. The offset in both instructions can vary, and the rcx register could

also be rax or rbx.

For each potential closure setup, we locate all indirect calls within the same function by

searching consecutively until a ret instruction is encountered. For each of these indirect

calls, we examine the preceding instruction. If it’s a lea instruction that loads an address

from the stack, from the same offset where the closure was stored, into rdx, we mark

this indirect call as a closure call. We can then trace back to the closure preparation and

calculate the closure function’s address.

Our script can only identify closures that are generated with the first approach described

in 3.3.. For the second approach we would need runtime analysis capabilities, since the

closures address is stored and retrieved from the memory of an object allocated at

runtime.

Possible closure set-up detected at address: 0x47e00c

Closure call at 0x47e030. Closure function at 0x47e1c0

Closure call at 0x47e080. Closure function at 0x47e1c0

Possible closure set-up detected at address: 0x47e0c5

Closure call at 0x47e0e9. Closure function at 0x47e1a0

Closure call at 0x47e136. Closure function at 0x47e1a0

 27

Chapter 5

Tool Evaluation

To evaluate our tool’s performance, we initially tested it by analyzing the mock binaries

used during development (source code presented in Annex A). Before testing, we

stripped all these binaries to confirm that the tool does not rely on the presence of

symbols and can identify Go features even in stripped binaries. Disassembling the

corresponding non-stripped versions was particularly helpful, as it allowed us to

compare the results and measure accuracy.

Our “goroutineDetection.py” script performs really well with all mock binaries,

including those designed for testing channels, as they also create goroutines. The sript

can identify the newproc() function, all call instructions to it, the address where the

goroutine will start execution, and the address of the actual function that is being

invoked at the source code level.

Our tool for analyzing Go channels works as expected with mock binaries. Since these

binaries are simple and do not depend on user interaction or input, the runtime analysis

is effective and can capture values being sent and received through channels.

The Go compiler implements closures using two different approaches, as described in

section 3.3. Our tool can only identify the first approach. Since when we have the

second one, the closure’s address is stored in the memory of an object allocated at

runtime. Thus, a tool must have runtime capabilities to identify it.

We also tested our scripts against real-world applications written in Go, such as Caddy

(an open-source web server) and Task (a Make alternative). While we identified many

potential closures, we could not verify their validity since these binaries were stripped,

preventing correlation between the source code and the equivalent assembly code.

Initially, we did not identify any goroutines or channels. However, after updating our

 28

Go compiler and adjusting our regular expression patterns, we were able to detect some

goroutines and channels. Nonetheless, as with closures, we could not verify their

validity.

 29

Chapter 6

Related Work

This thesis aims to contribute to software security. In the paper "Exploiting Mixed

Binaries" by Michalis Papaevripides, it was shown that mixed binaries built using

C/C++ and Go are, counterintuitively, less secure than binaries built with hardened

C/C++. This highlights the need for implementing defense mechanisms for Go code as

well. To achieve this, tools that can analyze binaries and identify Go-specific features

are necessary.

Similar work has been done by Stylianos Sofokleous, focusing on the Rust language. In

his paper "Challenges in Disassembling Rust Binaries," he explored methods to identify

Trait Objects, which are specific to Rust [13].

 30

Chapter 7

Future Work

7.1 Automate Regular Expression Patterns 70

7.2 Runtime Analysis 73

7.3 Single integrated tool 30

7.1. Automate Regular Expression Patterns

Our regular expression patterns to match functions like newproc() or makechan()

require substantial manual work. We had to locate the exact address of the function in a

non-stripped binary, extract all its raw bytes, and then manually go through each

instruction to modify certain bytes to "any byte." This process could be automated to

some extent.

7.2. Runtime Analysis

When a binary is run, not every instruction is executed, as some may depend on user

input. Therefore, to analyze a binary at runtime, as we did when searching for Go

channel utilization, we need fuzzing capabilities. This will ensure that a large

percentage of the code is analyzed.

7.3 Single integrated tool

We could combine all three separate python scrips to a single tool that can analyze a Go

binary and detect any Go feature.

 31

Chapter 8

Contributions - Conclusion

In this paper, we emphasize the importance of tools for binary analysis, particularly to

discover programming features unique to the Go language, for enhancing software

security. We crafted several Go programs and examined their implementation at the

binary level. Using this information, we developed Python scripts to identify Go

features such as goroutines, channels, and closures in stripped binaries. Our tools

primarily rely on static analysis, with the exception of our channel detection script,

which includes some runtime capabilities. Finally, we evaluated the performance of

these tools against simple stripped binaries and real-world Go applications.

If anyone attempts to develop software security defense mechanisms, these tools or our

methodology may help provide valuable information about binaries.

 32

Bibliography

[1] https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

[2] Szekeres, L. (2017). Memory corruption mitigation via hardening and testing

(Doctoral dissertation, Stony Brook University). The Graduate School, Stony Brook

University.

[3] Fulton, K. R., Chan, A., Votipka, D., Hicks, M., & Mazurek, M. L. (n.d.). Benefits

and drawbacks of adopting a secure programming language: Rust as a case study.

University of Maryland.

[4] https://spectrum.ieee.org/the-top-programming-languages-2023

[5] Papaevripides, M., & Athanasopoulos, E. (n.d.). Exploiting mixed binaries.

University of Cyprus.

[6] Andriesse, D. (2018). Practical binary analysis. No Starch Press.

[7] https://go.dev/doc/

[8] https://go.dev/doc/gc-guide

[9] https://go.dev/ref/spec#Go_statements

[10] https://go.dev/ref/spec#Channel_types

[11] https://go.dev/src/runtime/proc.go

[12] https://go.dev/src/runtime/chan.go

 33

[13] Sofokleous, S. (2023). Challenges in disassembling Rust binaries. Computer

Science Department, University of Cyprus

Annex Α
Goroutine detection python script
import goFunctions

from elftools.elf.elffile import ELFFile

from capstone import *

import os

import sys

import re

dirname = os.path.dirname(__file__)

bin_path = os.path.join(dirname, sys.argv[1])

print("bin path:", bin_path, "\n")

f = open(bin_path, 'rb')

elffile = ELFFile(f)

class Pattern:

 def __init__(self, name, pattern):

 self.name = name

 self.pattern = pattern

def getInstructionAt(address):

 for i in instructions:

 if i.address == address:

 return i

def getPreviousInstruction(address):

 for i in range(len(instructions)):

 if instructions[i].address == address:

 if i == 0:

 print("returning -1")

 return -1

 else:

 return instructions[i-1]

def getDataAt(size, address, rawBytes, section):

 data = ""

 for i in range(size):

 byte = str(hex(rawBytes[address+i - section['sh_addr']]))[2:]

 if len(byte) == 1:

 byte = "0"+ byte

 data = byte + data

 return data

def getIP(address):

 for i in instructions:

 if i.address == address:

 return address + i.size

def getNextCallInstruction(address):

 for i in range(len(instructions)):

 if instructions[i].address == address:

 for j in range(i, len(instructions)):

 if instructions[j].mnemonic == "call":

 return instructions[j]

def findCallInstructionsTo(address):

 instructions = disasm.disasm(code_bytes, code_section['sh_addr'])

 call_addresses = []

 for instr in instructions:

 if (instr.mnemonic == 'call' and instr.op_str == address):

 call_addresses.append(instr.address)

 return call_addresses

for section in elffile.iter_sections():

 if section.name == '.text':

 code_section = section

 if section.name == '.rodata':

 rodata_section = section

Read the code bytes from the section

code_bytes = code_section.data()

rodata_bytes = rodata_section.data()

Create a disassembler object

disasm = Cs(CS_ARCH_X86, CS_MODE_64)

Disassemble the code bytes and create a list

instructions = disasm.disasm(code_bytes, code_section['sh_addr'])

instructions = list(instructions)

patterns = [

 Pattern('newproc',

b'\\x49\\x3b\\x66.\\x76.\\x48\\x83\\xec.\\x48\\x89\\x6c\\x24.\\x48\\x8d\\x6c\\

x24.\\x44\\x0f\\x11\\x7c\\x24.\\x44\\x0f\\x11\\x7c\\x24.\\x48\\x8d\\x0d.{4}\\x

48\\x89\\x4c\\x24.\\x48\\x89\\x44\\x24.\\x4c\\x89\\xf0\\x48\\x89\\x44\\x24.\\x

48\\x8b\\x44\\x24.\\x48\\x89\\x44\\x24.\\x48\\x8d\\x44\\x24.\\x48\\x89\\x04\\x

24\\xe8.{4}\\x45\\x0f\\x57\\xff\\x64\\x4c\\x8b\\x34\\x25.{4}\\x48\\x8b\\x6c\\x

24.\\x48\\x83\\xc4.\\xc3\\x48\\x89\\x44\\x24.\\xe8.{4}\\x48\\x8b\\x44\\x24.\\x

eb.'),

 Pattern('newproc',

b'\\x49\\x3b\\x66.\\x76.\\x55\\x48\\x89\\xe5\\x48\\x83\\xec.\\x44\\x0f\\x11\\x

7c\\x24.\\x44\\x0f\\x11\\x7c\\x24.\\x48\\x8d\\x0d.{4}\\x48\\x89\\x4c\\x24.\\x4

8\\x89\\x44\\x24.\\x4c\\x89\\xf0\\x48\\x89\\x44\\x24.\\x48\\x8b\\x44\\x24.\\x4

8\\x89\\x44\\x24.\\x48\\x8d\\x44\\x24.\\x48\\x89\\x04\\x24\\xe8.{4}')

]

for p in patterns:

 # Use re.finditer() to search for the pattern in the bytes

 matches = re.finditer(p.pattern, code_bytes)

 # Iterate through the matches and print the results

 for match in matches:

 start, end = match.start(), match.end()

 matched_bytes = code_bytes[start:end]

 start_address = hex(code_section['sh_addr'] + start)

 end_address = hex(code_section['sh_addr'] + end - 1)

 print(f"{p.name} function detected at address: {start_address}\n")

 call_addresses = findCallInstructionsTo(start_address)

 if len(call_addresses) == 0:

 continue

 for call_addr in call_addresses:

 print(f'call to {p.name} function detected at 0x{call_addr:x}')

 #if call_addr < 0x47dfe0:

 #print()

 #continue

 prev_instr = getPreviousInstruction(call_addr)

 prev_instr2 = getPreviousInstruction(prev_instr.address)

 if prev_instr == -1:

 continue

 mnemonic = prev_instr.mnemonic

 if mnemonic == "lea" or prev_instr2.mnemonic == "lea":

 if mnemonic != "lea":

 prev_instr = prev_instr2

 op_str = prev_instr.op_str

 index = int(op_str[op_str.find('+ ')+1:op_str.find(']')],16)

 reg = op_str[op_str.find('[')+1:op_str.find('+')-1]

 if reg == "rip":

 rip = getIP(prev_instr.address)

 addr = getDataAt(8,rip + index, rodata_bytes,

rodata_section)

 print("Goroutine starts execution at address 0x" + addr)

 next_call = getNextCallInstruction(int("0x"+addr,16))

 print("User function at address " + next_call.op_str)

 else:

 found = False

 while(not found):

 if prev_instr.mnemonic +" "+ prev_instr.op_str == 'mov

qword ptr [rax], rcx':

 found = True

 prev_instr =

getPreviousInstruction(prev_instr.address)

 if prev_instr == -1:

 break

 if prev_instr.mnemonic == "lea":

 op_str = prev_instr.op_str

 index = int(op_str[op_str.find('+

')+1:op_str.find(']')],16)

 reg = op_str[op_str.find('[')+1:op_str.find('+')-

1]

 if reg == "rip":

 rip = getIP(prev_instr.address)

 addr = rip + index

 print("Goroutine starts execution at address "

+ str(hex(addr)))

 next_call = getNextCallInstruction(addr)

 print("User function at address " +

next_call.op_str)

 prev_instr = getPreviousInstruction(prev_instr.address)

 if prev_instr == -1 or prev_instr.mnemonic == "ret":

 break

 print("")

Annex B
Channel detection python script

import os

import sys

sys.path.append('/usr/local/anaconda3/lib/python3.8/site-packages')

import re

from elftools.elf.elffile import ELFFile

from capstone import *

import gdb

bin_path = "/path/of/binary/to/be/analyzed"

f = open(bin_path, 'rb')

elffile = ELFFile(f)

class Pattern:

 def __init__(self, name, pattern):

 self.name = name

 self.pattern = pattern

def findCallInstruction(address):

 instructions = disasm.disasm(code_bytes, code_section['sh_addr'])

 call_addresses = []

 for instr in instructions:

 if (instr.mnemonic == 'call' and instr.op_str == address):

 call_addresses.append(instr.address)

 return call_addresses

def getChanrecvStackAddr(address):

 for i in range(len(instructions)):

 if instructions[i].address == address:

 if i == 0 or i == 1:

 return 0

 else:

 instr = instructions[i-2]

 op_str = instr.op_str

 index = int(op_str[op_str.find("+")+1:op_str.find("]")],16)

 return index

def getNextInstrAddr(addr):

 for i in instructions:

 if i.address == addr:

 return addr + i.size

def getPreviousInstruction(address):

 for i in range(len(instructions)):

 if instructions[i].address == address:

 if i == 0:

 return -1

 else:

 return instructions[i-1].address

for section in elffile.iter_sections():

 if section.name == '.text':

 code_section = section

 break

disasm = Cs(CS_ARCH_X86, CS_MODE_64)

Read the code bytes from the section

code_bytes = code_section.data()

Create a disassembler object

disasm = Cs(CS_ARCH_X86, CS_MODE_64)

Disassemble the code bytes and print the results

instructions = disasm.disasm(code_bytes, code_section['sh_addr'])

instructions = list(instructions)

patterns = [

Pattern("makechan",b'\\x49\\x3b\\x66.\\x0f\\x86.{4}\\x48\\x83\\xec.\\x48\\x89\

\x6c\\x24.\\x48\\x8d\\x6c\\x24.\\x48\\x8b\\x50.\\x48\\x8b\\x32\\x90\\x48\\x81\

\xfe.{4}\\x0f\\x83.{4}\\x80\\x7a.{2}\\x0f\\x87.{4}\\x48\\x89\\x54\\x24.\\x48\\

x89\\xd8\\x48\\xf7\\xe6\\x0f\\x80.{4}\\x48\\xba\\xa0\\xff\\xff\\xff\\xff\\xff\

\x00\\x00\\x48\\x39\\xd0\\x0f\\x87.{4}\\x0f\\x1f\\x44\\x00\\x00\\x48\\x85\\xdb

\\x0f\\x8c.{4}\\x48\\x89\\x5c\\x24.\\x48\\x85\\xc0\\x0f\\x84.{4}\\x48\\x8b\\x5

4\\x24.\\x48\\x83\\x7a.\\x00\\x75.\\x48\\x83\\xc0.\\x31\\xdb\\xb9.{4}\\xe8.{4}

\\x84\\x00\\x48\\x8d\\x50.\\x83\\x3d.{4}\\x00'),

Pattern("makechan",b'\\x49\\x3b\\x66.\\x0f\\x86.{4}\\x55\\x48\\x89\\xe5\\x48\\

x83\\xec.\\x48\\x8b\\x50.\\x48\\x8b\\x02'),

 Pattern('chansend1',

b'\\x48\\x83\\xec.\\x48\\x89\\x6c\\x24.\\x48\\x8d\\x6c\\x24.\\xb9.{4}\\x48\\x8

b\\x7c\\x24.\\xe8.{4}\\x48\\x8b\\x6c\\x24.\\x48\\x83\\xc4.\\xc3'),

 Pattern('chansend1',

b'\\x55\\x48\\x89\\xe5\\x48\\x83\\xec.\\xb9.{4}\\x48\\x8b\\x7c\\x24.\\xe8.{4}\

\x48\\x83\\xc4.\\x5d\\xc3'),

 Pattern('chanrecv1',

b'\\x48\\x83\\xec.\\x48\\x89\\x6c\\x24.\\x48\\x8d\\x6c\\x24.\\xb9\\x01\\x00\\x

00\\x00\\xe8.{4}\\x48\\x8b\\x6c\\x24.\\x48\\x83\\xc4.\\xc3'),

 Pattern('chanrecv1',

b'\\x55\\x48\\x89\\xe5\\x48\\x83\\xec.\\xb9.{4}\\xe8.{4}\\x48\\x83\\xc4.\\x5d\

\xc3')

]

#RUNTIME ANALYSIS

print("STATIC ANALYSIS")

print("----------------\n")

for p in patterns:

 # Use re.finditer() to search for the pattern in the bytes

 matches = re.finditer(p.pattern, code_bytes)

 # Iterate through the matches and print the results

 for match in matches:

 start, end = match.start(), match.end()

 matched_bytes = code_bytes[start:end]

 start_address = hex(code_section['sh_addr'] + start)

 end_address = hex(code_section['sh_addr'] + end - 1)

 print(f"{p.name} function detected - address: {start_address}")

 call_addresses = findCallInstruction(start_address)

 if len(call_addresses) != 0:

 for a in call_addresses:

 print(f'call to {p.name} function detected at 0x{a:x}')

 if p.name == "makechan":

 makechan_calls = call_addresses

 elif p.name == "chansend1":

 chansend_calls = call_addresses

 elif p.name == "chanrecv1":

 chanrecv_calls = call_addresses

 print("\n")

#RUNTIME ANALYSIS

print("RUNTIME ANALYSIS")

print("----------------\n")

gdb.execute("file "+bin_path, to_string=True)

limit = 0x47dfe0

Set breakpoints

for i in range(len(makechan_calls)):

 makechan_calls[i] = getNextInstrAddr(makechan_calls[i])

for c in makechan_calls:

 if c < limit:

 continue

 gdb.execute("break *"+str(c), to_string=True)

for c in chansend_calls:

 if c < limit:

 continue

 gdb.execute("break *"+str(c), to_string=True)

for c in chanrecv_calls:

 if c < limit:

 continue

 gdb.execute("break *"+str(c), to_string=True)

next_chanrecv_calls = list(chanrecv_calls)

for i in range(len(next_chanrecv_calls)):

 next_chanrecv_calls[i] = getNextInstrAddr(next_chanrecv_calls[i])

for c in next_chanrecv_calls:

 if c < limit:

 continue

 gdb.execute("break *"+str(c), to_string=True)

bpoint_num =

len(makechan_calls)+len(chansend_calls)+len(chanrecv_calls)+len(next_chanrecv_

calls)

numbers = ""

for i in range(bpoint_num):

 numbers = numbers + str(i+1)

 if i+1 != bpoint_num:

 numbers = numbers + " "

commands = f"""

commands {numbers}

silent

end

"""

gdb.execute(commands, to_string=True)

Run the program

gdb.execute("run", to_string=True)

recv_channels = {}

while(True):

 try:

 rip = gdb.selected_frame().pc()

 except:

 sys.exit()

 if rip in makechan_calls:

 rax = gdb.parse_and_eval("$rax")

 rip = getPreviousInstruction(rip)

 print(f"Channel created at address: {hex(rip)}")

 print(f"Channel pointer: {hex(rax)}\n")

 gdb.execute("c", to_string=True)

 elif rip in chansend_calls:

 rax = gdb.parse_and_eval("$rax")

 rbx = gdb.parse_and_eval("$rbx")

 inferior = gdb.selected_inferior()

 value = inferior.read_memory(rbx,8)

 print(f"chansend1 call at {hex(rip)}")

 print("Value 0x" + str(value.tobytes()[::-1].hex()), "sent through

channel", hex(rax), "\n")

 gdb.execute("c", to_string=True)

 elif rip in chanrecv_calls:

 rax = gdb.parse_and_eval("$rax")

 recv_channels[rip] = rax

 gdb.execute("c", to_string=True)

 elif rip in next_chanrecv_calls:

 index = getChanrecvStackAddr(rip)

 rsp = gdb.parse_and_eval("$rsp")

 inferior = gdb.selected_inferior()

 value = inferior.read_memory(rsp+index,8)

 rip = getPreviousInstruction(rip)

 print(f"chanrecv1 call at {hex(rip)}")

 print("Value 0x" + str(value.tobytes()[::-1].hex()), "received through

channel", hex(recv_channels[rip]), "\n")

 gdb.execute("c", to_string=True)

Annex C
Closures detection python script

import goFunctions

from elftools.elf.elffile import ELFFile

from capstone import *

import os

import sys

import re

dirname = os.path.dirname(__file__)

bin_path = os.path.join(dirname, sys.argv[1])

print("bin path:", bin_path, "\n")

f = open(bin_path, 'rb')

elffile = ELFFile(f)

class Pattern:

 def __init__(self, name, pattern):

 self.name = name

 self.pattern = pattern

def findCallInstruction(address):

 instructions = disasm.disasm(code_bytes, code_section['sh_addr'])

 call_addresses = []

 for instr in instructions:

 if (instr.mnemonic == 'call' and instr.op_str == address):

 call_addresses.append(instr.address)

 return call_addresses

def getInstrAt(addr):

 for i in instructions:

 if i.address == addr:

 return i

def getPrevInstr(addr):

 for i in range(len(instructions)):

 if instructions[i].address == addr:

 if i == 0:

 return -1

 return instructions[i-1]

 return -1

def getNextInstr(addr):

 for i in range(len(instructions)):

 if instructions[i].address == addr:

 if i == len(instructions)-1:

 return -1

 return instructions[i+1]

 return -1

def findIndirectCall(addr):

 indirectCalls = []

 indirectCallInstructions = ["call rax", "call rbx", "call rcx"]

 for i in range(len(instructions)):

 if instructions[i].address == addr:

 for j in range(i, len(instructions)):

 mnemonic = instructions[j].mnemonic

 op_str = instructions[j].op_str

 if mnemonic == "ret":

 return indirectCalls

 if mnemonic+" "+op_str in indirectCallInstructions:

 indirectCalls.append(instructions[j].address)

 return indirectCalls

def getStackOffset(op_str):

 reg = op_str[op_str.find("[")+1:op_str.find(" +")]

 if reg != "rsp":

 return 0

 offset = op_str[op_str.find('+')+2:op_str.find(']')]

 return int(offset, 16)

def getIP(address):

 for i in instructions:

 if i.address == address:

 return address + i.size

def calculateRIP(addr, op_str):

 reg = op_str[op_str.find("[")+1:op_str.find(" +")]

 if reg != "rip":

 return 0

 rip = getIP(addr)

 offset = int(op_str[op_str.find('+')+2:op_str.find(']')],16)

 return rip + offset

for section in elffile.iter_sections():

 if section.name == '.text':

 code_section = section

 break

Read the code bytes from the section

code_bytes = code_section.data()

Create a disassembler object

disasm = Cs(CS_ARCH_X86, CS_MODE_64)

Disassemble the code bytes and print the results

instructions = disasm.disasm(code_bytes, code_section['sh_addr'])

instructions = list(instructions)

patterns = [

 Pattern('closure',b'\\x48\\x8d\\x0d.{4}\\x48\\x89\\x4c\\x24.'),

 Pattern('closure',b'\\x48\\x8d\\x05.{4}\\x48\\x89\\x44\\x24.'),

 Pattern('closure',b'\\x48\\x8d\\x1d.{4}\\x48\\x89\\x5c\\x24.')

]

closure_create = []

for p in patterns:

 # Use re.finditer() to search for the pattern in the bytes

 matches = re.finditer(p.pattern, code_bytes)

 # Iterate through the matches and print the results

 for match in matches:

 start, end = match.start(), match.end()

 matched_bytes = code_bytes[start:end]

 start_address = code_section['sh_addr'] + start

 #if start_address < 0x47dfe0:

 #continue

 closure_create.append(start_address)

for addr in closure_create:

 next_instr = getNextInstr(addr)

 if next_instr == -1:

 continue

 closure_stack_offset = getStackOffset(next_instr.op_str)

 ind_calls = findIndirectCall(addr)

 closure_calls = {}

 for ind_call in ind_calls:

 priv = getPrevInstr(ind_call)

 op_str = priv.op_str

 if priv.mnemonic == "lea" and op_str[:3] == "rdx":

 offset = getStackOffset(op_str)

 if (offset == closure_stack_offset):

 closure_address = calculateRIP(addr, getInstrAt(addr).op_str)

 closure_calls[ind_call] = closure_address

 if len(closure_calls) == 0:

 continue

 print(f"Possible closure set-up detected at address: {hex(addr)}")

 for i in closure_calls:

 print(f"Closure call at {hex(i)}. Closure function at

{hex(closure_calls[i])}")

 print()

