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Abstract 
 

Memory corruption vulnerabilities are one of the most significant categories of 

vulnerabilities in information security. Such vulnerabilities commonly arise from 

programming errors or flaws in software development practices, particularly when using 

programming languages that permit unrestricted memory access, such as C or C++. To 

counter memory corruption attacks, numerous techniques and defense mechanisms have 

been devised. Despite the existence of these hardening techniques, numerous attack 

vectors remain effective. Programming languages like Rust and Go were developed to 

address those vulnerabilities, while being fast and efficient, providing low-level 

capabilities and being type-safe and memory-safe. Nevertheless, these languages are not 

entirely immune to vulnerabilities; they have weaknesses when not used properly. 

Developing security mechanisms for these languages necessitates tools capable of 

analyzing programs produced in these languages at the binary level. This thesis will 

concentrate on the Go programming language, particularly on disassembling its stripped 

binaries and identifying potential utilization of features available specifically in Go, 

such as goroutines, channels and closures. 
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Chapter 1 
 

Introduction 
 

 

One of the most serious class of vulnerabilities in information security, is memory 

corruption vulnerabilities like buffer overflows, buffer overreads and use-after-free 

vulnerabilities. According to MITRE rankings, memory corruption errors are currently 

one of the three most dangerous software errors [1]. Even major browsers are being 

successfully exploited due to memory corruptions, in annual hacking contests like 

Pwn2Own or Pwnium [2]. This kind of vulnerabilities typically arise due to 

programming errors or flaws in the way software is developed, especially when using 

programming languages that allow unrestricted memory access, like C or C++. 

Although having unrestricted memory access while coding poses significant security 

risks, it provides a lot of benefits like efficiency, since it allows developers to have fine-

grained control over memory management, enabling them to optimize performance by 

allocating and deallocating memory precisely as needed. Building operating systems, 

device drivers, and other system-level software, as well as maintaining compatibility 

with some legacy systems, are some of the reasons other than efficiency, that make 

unrestricted memory access necessary. 

 

In order to defend against memory corruption attacks, multiple techniques and defense 

mechanisms have been developed. Software hardening techniques include Data 

Execution Prevention (DEP), Address Space Layout Randomization (ASLR), exception 

handler validation (SafeSEH), Control-flow Integrity (CFI). Even with those hardening 

techniques in existence, numerous attack vectors remain effective. That’s either because 

attackers are continuously adapting and refining their attack strategies, or because most 

hardening techniques are not used in practice due to high performance overhead or not 

compatible with all used features. Yet another factor hindering the defensive measures, 

is the hurdle of manually modifying the source code to apply protection or make it 

compatible with existing code [2]. Note that none of the current methods offer assured 

protection since they do not fully solve the general problem of memory corruption. 
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Programming languages like Rust and Go were developed to address those 

vulnerabilities, while being fast and efficient, providing low-level capabilities and being 

type-safe and memory-safe [3]. Rust and Go are growing in popularity; IEEE’s 2023 

Top Programming languages list ranks them 18th and 8th respectively [4], while C and 

C++ maintain their positions in the top spots, occupying the third and fourth. Code 

written in Rust or Go can seamlessly coexist with code written in C/C++. This feature 

enhances the appeal of these languages, as various components of an unsafe program 

can be delegated to Rust or Go, consequently enhancing overall safety [5]. 

 

Go language ensures memory safety by incorporating a minimal runtime support with a 

lightweight garbage collector and by implementing bounds checks that are activated 

during runtime. It has also built-in support for parallel programming using goroutines 

(lightweight threads managed by the Go runtime instead of the OS) and channels. This 

simplifies the process of writing concurrent code, avoiding the complexities and 

potential security issues linked to traditional threading models. Golang features a race 

detector tool that aids developers in pinpointing and resolving data race conditions 

during the development phase. This significantly contributes to the creation of more 

robust and secure parallel programs. By tackling common sources of vulnerabilities at 

the language level, these programming languages aid in preventing a broad spectrum of 

security issues that have historically affected systems written in languages such as C 

and C++. 

 

This thesis will focus on the Go programming language, particularly on disassembling 

its stripped binaries and detecting programming features specific to Go language, such 

as the use of goroutines, go channels or go closures. 
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Chapter 2 
 

Background 
 

 

2.1 Binary Analysis          3 

2.2 Assembly Code          5 

2.3 Disassembly          5 

2.4 Reverse Engineering         6 

2.5 Linkage Phase          7 

2.6 Go Language          8 

 

 

2.1 Binary Analysis 

 

2.1.1 General 

Binary analysis is the scientific examination of the characteristics of binary computer 

programs, referred to as binaries, along with the machine code and data embedded 

within them. In simple terms, the main objective of binary analysis is to detect (and 

potentially alter) the authentic properties of binary programs — essentially, what they 

really do in contrast to what we think they should do [6]. While many people connect 

binary analysis with reverse engineering and disassembly, its scope extends beyond 

those two. Binary analysis techniques can be categorized into static analysis, dynamic 

analysis, or a combination of these classes. With static analysis, we analyze a binary 

without ever executing it. We can analyze the whole binary at once, even on a machine 

of a different architecture than the one for which the binary was compiled. However, we 

won’t have any knowledge of the binary’s runtime state. For example, it’s very difficult 

to calculate indirect branches. On the other hand, with dynamic analysis we run the 

binary and we analyze it as it executes. This approach is usually more straightforward 

than static analysis because it involves complete awareness of the entire runtime state, 

including variable values and the results of conditional branches. Nevertheless, it only 
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provides visibility into the executed code, so it’s possible for the analysis to overlook 

significant sections of the program. 

 

2.1.2 Challenges 

Analyzing binaries is challenging and considerably more demanding than analyzing the 

equivalent source code. Some binary analysis tasks are even inherently undecidable, 

making it impossible to build a solution that consistently produces accurate results [6].  

 

During software development we give our constructs (variables, functions, classes) 

names that have meaning, and we also follow some naming conventions to make the 

source code more readable. This symbolic information (debugging symbols or symbols) 

serves no real purpose when the code is compiled. Therefore, it's common practice to 

strip binaries in production software, namely to remove debugging symbols and other 

metadata, to reduce the file size and improve performance. It also makes sense that 

malwares are also stripped, since they need to give away as little information as 

possible. Without symbols, understanding the code is significantly more challenging.  

 

High-level source code often includes well-defined types, such as int, double, char, or 

even more complex data structures like struct types. However, it’s extremely hard to 

infer the purpose and structure of data at the binary level because types are never 

explicitly specified. At the binary level it’s also difficult to recognize any high-level 

abstractions like classes and functions since these high-level constructs are being 

discarded during the compilation process. 

 

Most compilers mix fragments of data with the executable code. This makes it prone to 

inadvertently interpreting these data fragments as code, or the other way around, leading 

to false conclusions.  

 

Executable code and data are location-dependent inside a binary file. Making any form 

of code or data modification is exceptionally hard and carries a risk of breaking the 

binary. This is because any modification is likely going to shift other code or data 

around, making memory addresses and references from elsewhere in the code invalid.  
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2.2 Assembly Code 

 

Considering all mentioned above challenges for binary analysis, assembly code has a 

significant role in that process. Assembly language serves as a bridge between the 

human analyst and the complex machine code of a binary, providing a human-readable 

interface that facilitates profound insights into program behavior, debugging, and 

vulnerability analysis. There is a one-to-one correspondence between assembly 

language instructions and machine code instructions executed by a CPU, allowing 

analysts to understand and interpret the binary’s behavior at a level close to hardware. 

Assembly is essential for debugging binaries, setting breakpoints, and examining the 

state of the program, to identify bugs or vulnerabilities.  

 

2.3 Disassembly 

 

Disassembling a binary refers to the process of converting machine code, which is the 

binary representation of executable instructions understood by a computer's central 

processing unit (CPU), into assembly language. The disassembly process involves 

analyzing the static binary file or runtime information and extracting the sequence of 

instructions that make up the program. These instructions are then presented in a 

symbolic and mnemonical form that is easier for humans to understand (assembly 

code). The result is a textual representation of the program's executable code. 

 

2.3.1 Static Disassembly 

In static disassembly, the instructions are extracted from a binary without executing it. 

The objective of every static disassembler is to convert all code in a binary into a 

human-readable format or a format that can be processed by machines for further 

analysis [6]. To accomplish this objective, static disassemblers need to execute the 

following steps: (1) Load the binary with a binary loader, (2) Identify all machine 

instructions in the binary, (3) Disassemble the identified instructions into assembly 

code. The tricky part is the second step because, as we mentioned in binary analysis 

challenges, code is mixed with data within a binary and so if the disassembler 

misidentify data as code, there is a great chance they could correspond to valid 

instructions. Two primary approaches exist for static disassembly, linear and recursive 
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disassembly. Linear disassembly passes through each one of the code segments and 

decodes all bytes consecutively translating them to assembly instructions. In contrast, 

recursive disassembly starts from known entry points into the binary and follows 

recursively the control flow (calls and jumps) from there. The disadvantage of recursive 

disassembly is that it’s not easy to follow every branch, especially indirect jumps, or 

calls. 

 

2.3.2 Dynamic disassembly 

Dynamic disassembly avoids a lot of dangers associated with code being mixed with 

data, because it relies on a lot of runtime information such as memory and register 

contents. Therefore, it can disassemble all executed instructions and be certain that there 

is no data there. The primary drawback of this approach is the code coverage problem, 

where dynamic disassemblers only encounter and analyze instructions that are executed, 

rather than all instructions present in the code.      

 

2.4 Reverse Engineering 

 

Reverse Engineering is the understanding of the internals of something made by a 

human, through analysis, without having access to its design principles and the way its 

components interact to complete its intended goal. In other words, it’s the process of 

taking apart something that someone else built and understand how he did it. In the 

context of computer science, we usually refer to software reverse engineering, which is 

typically done by analyzing the assembly code generated from disassembling the binary 

under examination. The assembly code is then analyzed using various tools like IDA 

Pro, Ghidra and OllyDbg, which can perform some automated analysis and provide 

important insights to the reverse engineer. Normally, a lot of manual effort is required 

by the reverse engineer, to overcome all the challenges described in section 2.1, plus 

any anti-reversing tricks or obfuscation techniques imposed by the binary. Anti-

Reversing tricks constitute one the main classes of countermeasures designed to combat 

reverse engineering. These tricks include, amongst others, direct or indirect debugger 

detection, virtual machine detection, parent process detection and execution time 

detection. On the other hand, code obfuscation is not exactly an anti-reversing 

technique, because its primary target is to challenge the human behind the tool and not 
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the tool itself. For example, logic flow obfuscation complicates the prediction and 

comprehension of when a program execution should reach conditional branches. 

 

test eax, eax 
je _eaxWasZero 

Regular compiled code: If eax==0 then we jump. 
 

and eax, 0xffffffff 
je _eaxWasZero 

Obfuscated code: logical AND operation with all its bits set. If the result is zero, eax 
was zero, so we jump. 

 

The above obfuscated code produces the same effect as the regular compiled code, but 

its purpose is to slow down the analyst by forcing them to analyze unexpected assembly 

code before a conditional jump. There is also a technique called NOP obfuscation where 

a set of instructions added to the binary have no real impact on the execution of the 

code. 

 

push ebx 
add ebx, ecx 
sub ebx, eax 
push eax 
sub eax, edx 
xor eax, edi 
pop eax 
pop ebx 

NOP obfuscation: The above set of instructions has a NOP effect. 
 

2.5 Linkage Phase 

 

The linking phase is the last stage of the compilation process. During this phase, all the 

object files are linked into a single coherent binary executable [6]. As expected, the tool 

responsible for executing the linking phase is referred to as a linker or link editor. 

Typically, it is distinct from the compiler, which implements all preceding phases. 

Object files are considered relocatable because they are compiled independently from 

each other. This independence prevents the compiler from assuming that an object will 

end up at any particular base address. There are two main types of linking: static linking 

and dynamic linking. Static libraries are incorporated directly into the binary 
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executable. This integration enables the resolution of any references to them entirely 

within the executable. The addresses at which dynamic libraries will reside are not 

known during the linking phase. Therefore, references to them cannot be resolved at this 

stage. Instead, the linker leaves symbolic references to these libraries in the final 

executable. These references remain unresolved until the binary is loaded into memory 

for execution.   

 

2.6 Go Language 

 

The Go language (or Golang) is a relatively new programming language, designed with 

systems programming in mind, developed by Google. The language offers a statically 

typed and compiled environment, incorporating modern language features while 

maintaining a straightforward syntax. According to its official documentation “Go is 

expressive, concise, clean, and efficient” [7]. Its concurrency mechanisms facilitate the 

development of programs optimized for multicore and networked machines, while its 

innovative type system allows for flexible and modular program construction. Go 

compiles quickly to machine code, while also having the convenience of garbage 

collection and the capabilities of run-time reflection. It is a fast, statically typed, 

compiled language that provides a sensation similar to dynamically typed, interpreted 

languages. While it incorporates concepts from existing languages, Go possesses 

distinctive properties that result in effective Go programs having a different character 

compared to programs written in its language relatives. It’s important for Go developers 

to understand Go’s properties and idioms. 

 

2.6.1 The Go Garbage Collector 

The Go language is responsible for organizing the storage of Go values, relieving Go 

developers from the need to be concerned about where these values are stored or why. 

These values frequently need to be stored in the physical memory of a computer, which 

is a finite resource and that’s why memory must be managed with care and recycled to 

prevent depletion during the execution of a Go program [8]. A garbage collector (GC) is 

a system that efficiently recycles memory on behalf of the application by identifying 

portions of memory that are no longer in use. The Go standard toolchain includes a 

runtime library with each application. This runtime library incorporates a garbage 
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collector. Go values stored in local variables usually are not managed by the Go garbage 

collector at all. This is because the Go compiler can predetermine when the associated 

memory can be freed and generate machine instructions for garbage collection that 

handle the cleanup. When the Go compiler cannot determine the lifetime of Go values, 

they are said to escape to the heap. The process of reserving memory on the heap is 

commonly referred to as "dynamic memory allocation". GC is a system designed to 

specifically identify and clean up dynamic memory allocations. Whether a Go value 

escapes or not depends on the context in which it is used, and the escape analysis 

algorithm employed by the Go compiler. Attempting to predict whether a value escapes 

can be extremely challenging, given that the escape analysis algorithm is quite 

sophisticated and may undergo changes in different Go releases. 

 

2.6.2 Go statements – goroutines 
A "go" statement starts the execution of a function call as an independent concurrent 

thread of control, referred as goroutine, within the same address space [9].  

 

go <expression> 

 

The expression must be a function or method call and it cannot be parenthesized. Built-

in function calls are restricted. 

 

var wg sync.WaitGroup 
 
func count(id string) { 
 for i := 1; i <= 10; i++ { 
  fmt.Println("goroutine id: "+id+", count:", i) 
  time.Sleep(time.Second) 
 } 
 wg.Done() 
 
 
func main() { 
 wg.Add(3) 
 
 go count("1") 
 go count("2") 
 go count("3") 
 
 wg.Wait() 
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} 
 

The above code snipped initiates two concurrent independent goroutines which run in 

parallel and they both execute the count() function. 

 

The function value and parameters are evaluated in the usual manner in the calling 

goroutine. However, unlike a regular function call, program execution does not wait for 

the invoked function to complete. Instead, the function begins executing independently 

in a new goroutine. That’s why we used some thread synchronization functions from the 

“sync” package in the above example. When the function terminates, its associated 

goroutine also terminates. If the function produces any return values, they are discarded 

upon the function’s completion. Therefore, if we need a return value or any type of 

information from the goroutine’s execution, we must use channels. 

 

2.6.3 Go Channels 

A Go channel serves as a mechanism for concurrently executing functions to 

communicate by exchanging values of a specified element type [10]. Channels function 

as first-in-first-out queues. For instance, if one goroutine sends values on a channel 

while another goroutine receives them, the values are received in the order in which 

they were sent. It's important to note that the value of an uninitialized channel is nil. The 

optional <- operator designates the channel direction, either send or receive. When a 

direction is specified, the channel becomes directional; otherwise, it remains 

bidirectional. A channel can be restricted to only send or only receive through 

assignment or explicit conversion. 

 
chan T          // can be used to send and receive values of type T 
chan<- int      // can only be used to send ints 
<-chan float64  // can only be used to receive float64s 

 

Using the built-in function make, a new initialized channel value can be created. The 

channel type and an optional capacity are given as arguments to this function. 

 
ch := make(chan int, 100) 
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The capacity, denoting the number of elements, determines the size of the buffer in the 

channel. In the case of a capacity being zero or absent, the channel is unbuffered, and 

communication only succeeds when both a sender and receiver are ready. Conversely, if 

the channel has a capacity, it becomes buffered, allowing communication without 

blocking if the buffer is not full for sends or not empty for receives. When a channel is 

nil, it’s never ready for communication. A channel can be closed using the built-in 

function close. 

 

A value can be sent on a channel by a send statement, provided that the channel 

expression’s core type must be a channel, the channel direction must permit send 

operations, and the type of the value to be sent can be assigned to the channel’s element 

type. In the process of communication, both the channel and the value expression are 

evaluated before the transmission commences. Communication blocks until the send 

operation can proceed. Specifically, a send on an unbuffered channel can proceed if a 

receiver is prepared to receive. Meanwhile, a send on a buffered channel can proceed if 

there is available space in the buffer. Attempting to send on a closed channel results in a 

run-time panic and attempting to send on a nil channel leads to indefinite blocking. 

 
ch <- 7  // send value 7 to channel ch 

 

For an operand ch whose core type is a channel, the value of the receive operation <-ch 

is the value received from the channel ch. It's essential that the channel direction allows 

receive operations, and the type of the receive operation is the same as the element type 

of the channel. The expression blocks until a value becomes available. Attempting to 

receive from a nil channel results in indefinite blocking. On the other hand, a receive 

operation on a closed channel can always proceed immediately, providing the element 

type's zero value after any previously sent values have been received. 

 

v1 := <-ch 
v2 = <-ch 

Receive operator examples. 
 

A receive expression used in an assignment provides an additional untyped boolean 

result indicating whether the communication was successful. 
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x, ok = <-ch 
x, ok := <-ch 
var x, ok = <-ch 
var x, ok T = <-ch 

The value of ok is true if the received value resulted from a successful send operation to 
the channel. If it is false, it indicates a zero value generated because the channel is 

closed and empty. 
 

2.6.4 Go Closures 

Go functions have the capability to be closures. A closure is a function value that is able 

to reference variables from outside its body. The function can access and modify the 

referenced variables; in this context, the function is considered "bound" to the variables. 

Closures are essentially formed by a special type of anonymous function. 

 
import "fmt" 
 
func adder() func(int) int { 
 sum := 0 
 return func(x int) int { 
  sum += x 
  return sum 
 } 
} 
 
func main() { 
 pos, neg := adder(), adder() 
  
 arr := [10]int{1,-2,4,-5,8,4,-4,1,-2,5} 
  
 for i := 0; i < 10; i++ { 
  if arr[i] > 0{ 
   fmt.Println(“pos sum:”, pos(arr[i])) 
  }else{ 
   fmt.Println(“neg sum:”, neg(arr[i])) 
  } 
 } 
} 

In this example, the adder function returns a closure. Each closure is bound to its own 
sum variable. That’s why, as we iterate the array arr, the sum variable persists its 
value, for each closure separately, through multiple calls of the closure. The sum of 

positive numbers and sum of negative numbers of the array, are being printed. 
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Chapter 3 
 

Investigative Process 
 

 

3.1 Goroutines          14 

3.2 Channels          17 

3.3 Closures          18 

 

 

Our primary objective was to understand how various golang features like goroutines, 

channels and closures are implemented at the binary level. To accomplish this, we 

created many mock go programs, disassembled them and analyze the assembly code. In 

our analytical procedure, we intentionally kept debugging symbols within the various 

binary executables to facilitate the correlation between assembly code and 

corresponding source code, thereby assisting the identification of patterns. However, 

note that our primary objective is developing tools, capable of effectively parsing and 

analyzing stripped binaries devoid of any symbolic information. 

 

In the disassembling process, we used the objdump from GNU developer tools and the 

go objdump tool, which is a command line tool included with the Go installation. Both 

tools produce nearly identical output. The go objdump tool lacks the capability to 

disassemble stripped binaries, unlike the GNU objdump. Nonetheless, as we have 

mentioned, we didn’t analyze stripped binaries at this phase. The following figures 

illustrate the output from the GNU objdump. 

 

By default, the go compiler produces statically compiled binaries, resulting in static 

linking against libraries, thereby including all their code into the binary. Consequently, 

this leads to an increase in the size of the binaries. We kept the default behavior of the 

go compiler, thus analyzing statically linked binaries.  
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3.1 Goroutines 

Every Go binary, including a simple “Hello, World!” program with no additional 

functionality, initiates a minimum of five (5) goroutines. Among these, one executes the 

main function while the remaining ones handle garbage collection tasks. Developers can 

create additional goroutines as needed. Our investigation specifically targets user-

created goroutines and excludes those provided by the default Go runtime package. 

 

We employed the go program presented in section 2.6.2, which spawns three 

goroutines, each invoking the counter function. Upon executing the compiled program, 

the output will resemble the following: 

 
goroutine id: 3, count: 1 
goroutine id: 1, count: 1 
goroutine id: 2, count: 1 
goroutine id: 2, count: 2 
goroutine id: 3, count: 2 
goroutine id: 1, count: 2 
goroutine id: 1, count: 3 
goroutine id: 2, count: 3 
goroutine id: 3, count: 3 
... 

 

By examining the assembly code produced from objdump, we noticed that for each 

goroutine creation there was a call to the newproc() function, from the runtime package 

which belongs to the standard library of Go. A memory address is passed as a parameter 

through $rax for each call to the newproc(). Upon inspecting the source code of 

newproc() [11], we observe that it takes a function pointer as argument. Notably, this 

function pointer designates the entry point from which the newly instantiated goroutine 

will start its execution. 

 
// Create a new g running fn. 
// Put it on the queue of g's waiting to run. 
// The compiler turns a go statement into a call to 
this. 
func newproc(fn *funcval) { 
 gp := getg() 
 pc := getcallerpc() 
 systemstack(func() { 
  newg := newproc1(fn, gp, pc) 
  pp := getg().m.p.ptr() 
  runqput(pp, newg, true) 
  if mainStarted { 
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   wakep() 
  } 
 }) 
} 

Source code of newproc function from go runtime package. 
 

The go instruction to create a goroutine, as seen in 2.6.2, is “go <function_name>”, thus 

we expected that the function pointer given to newproc() should be the address of the 

function used in this instruction. Counterintuitively, that wasn’t the case, since the 

newproc() function gets the address of a new function created by the compiler, 

which in turn calls the initial function used in the instruction.  

 

For example, the source code in 2.6.2., creates the goroutines using “go count()”. In 

the assembly code, for each created goroutine, the newproc() function gets the 

address of a distinct compiler created function (e.g. main.func1, main.func2, etc) 

which has in its code a call instruction to the count() function. 

 

After analyzing multiple other binaries, we also discovered that the go compiler, 

generates one of two distinct assembly code patterns, which execute preceding the 

invocation of the newproc() function. That is where the $rax register will get its 

value to be passed as an argument.  

The first pattern is just a lea instruction that loads the function pointer address from 

the .rodata section to $rax and a then a call to newproc() right after. The second 

assembly code pattern undertakes the following sequence of actions: (1) call of the 

newobject() function from the runtime package, which allocates some memory and 

returns a pointer to it in $rax, (2) the address of the compiler generated function is 

loaded in $rcx, (3) the value of $rcx is moved in the memory of the object created in 

step 1, (4) various instructions probably about garbage collection are executed and (5) 

the newproc() function is called, while $rax points to the memory address of the 

object that contains the compiler generated function. 

 
lea    0x1e7fc(%rip),%rax        # 49cda8 <go.func.*+0x24b> 
callq  43a9a0 <runtime.newproc> 
lea    0x1e7f8(%rip),%rax        # 49cdb0 <go.func.*+0x253> 
callq  43a9a0 <runtime.newproc> 
lea    0x1e7f4(%rip),%rax        # 49cdb8 <go.func.*+0x25b> 
callq  43a9a0 <runtime.newproc> 
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First assembly code pattern before calling newproc() 
 

callq  40bdc0 <runtime.newobject> 
lea    0x63(%rip),%rcx        # 47e180 <main.main.func1> 
mov    %rcx,(%rax) 
cmpl   $0x0,0xd1fc9(%rip)        # 5500f0 <runtime.writeBarrier> 
jne    47e134 <main.main+0x54> 
mov    0x10(%rsp),%rcx 
mov    %rcx,0x8(%rax) 
jmp    47e145 <main.main+0x65> 
lea    0x8(%rax),%rdi 
mov    0x10(%rsp),%rcx 
nopl   (%rax) 
callq  45aa60 <runtime.gcWriteBarrierCX> 
callq  43a9a0 <runtime.newproc> 

Second assembly code pattern before calling newproc() 
 

Following an extensive analysis of go binaries that spawn goroutines, it has come to our 

attention that the second abovementioned assembly code pattern, emerges when Go 

channels are employed, for the communication among goroutines by exchanging values. 

The first assembly code pattern is generated when channels aren’t used.  
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3.2. Channels 

 

After examining goroutines, our focus shifted to Go channels, which enable 

communication among different goroutines. Once again, we constructed mock Go 

binaries and disassembled them, allowing us to scrutinize how the Go compiler 

implements channels at the assembly level. 

 
package main 
 
import ( 
 "fmt" 
) 
 
func get_func(ch <-chan int) { 
 var x int = <-ch 
 fmt.Println(x + 2) 
} 
 
func give_func(ch chan<- int) { 
 var y int = 3 
 ch <- y 
} 
 
func main() { 
 ch := make(chan int, 2) 
 go give_func(ch) 
 get_func(ch) 
} 

 

The above go program creates a channel of type int with buffer size two. It has two 

functions that get the created channel as argument and use it to communicate 

(send/receive values). The get_func() is called by the main goroutine, and the 

give_func() is called from a new goroutine that runs in parallel with the main one. 

The give_func() creates a local variable and sends its value through the channel, 

while the get_func() receives the value from the channel, adds two and prints it (the 

number 5 is printed). 

 

At the binary level, the implementation of go channels relies on three functions from the 

runtime package of the Go standard library, akin to the utilization of newproc() 
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function for goroutines. Those three functions are: (1) makechan() which is used 

initially to create a new channel, (2) chansend1() which is used to send variables 

into a channel and (3) chanrecv1() which is used to receive variables from a 

channel. 

 

The initial step involves creating the channel by invoking the makechan() function, 

which returns a pointer to it. Essentially, this function initializes an hchan struct 

[12]. 

 

type hchan struct { 
 qcount   uint           // total data in the queue 
 dataqsiz uint           // size of the circular queue 
 buf      unsafe.Pointer // points to an array of dataqsiz 
elements 
 elemsize uint16 
 closed   uint32 
 timer    *timer // timer feeding this chan 
 elemtype *_type // element type 
 sendx    uint   // send index 
 recvx    uint   // receive index 
 recvq    waitq  // list of recv waiters 
 sendq    waitq  // list of send waiters 
 
 // lock protects all fields in hchan, as well as several 
 // fields in sudogs blocked on this channel. 
 lock mutex 
} 
 

At the assembly level, when a channel is used to send some value, the chansend1() 

function is invoked. The channel pointer returned by makechan() is given as an 

argument via the $rax register. The value to be send is loaded onto the stack, and a 

pointer to it is also provided as an argument, via the $rbx register. Similarly, when a 

channel is utilized to receive a value, the channel pointer is given as an argument to the 

chanrecv1() function through $rax. The received value is obtained through stack after 

chanrecv1() is returned. 

 

3.3. Closures 

 

Similar to our previous examinations of Goroutines and Go channels, we studied the 

assembly code generated by simple Go programs incorporating closures. We identified 
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two distinct approaches through which the Go compiler facilitates the creation of 

closures at the assembly level. The selection of an approach by the compiler is 

contingent upon whether the closure (or the function that creates it) invokes any library 

functions, like for example fmt.Println() or math.Pow(). 

 

In the first approach, the compiler generates a distinct function for every created 

closure. Here, "created" refers to each invocation of the function that returns a closure 

(in the high level go source code). At the assembly level, the function that returns the 

closure is not created as a separate function, probably as an optimization strategy. The 

address of the closure is pushed onto the stack, followed by variables bound to the 

closure, in the subsequent stack positions. Anytime the program wants to call the 

closure, it does the following: (1) moves the closure address from the stack to $rcx, (2) 

moves the closure argument to $rax, (3) loads the address of stack containing the 

address of the closure to $rdx, and (4) executes an indirect call instruction to the 

closure, e.g. call $rcx. Of course, the registers may differ depending on the number of 

the closure’s arguments, although $rdx seems to always get the stack address where the 

closure is stored. 

 

import "fmt" 
 
func adder(x int) func(int) int { 
 var base int = x 
 
 return func(y int) int { 
  return base + y 
 } 
} 
 
func main() { 
 var add5 func(int) int 
 var add10 func(int) int 
 
 add5 = adder(5) 
 fmt.Println(add5(2)) 
 fmt.Println(add5(3)) 
 
 add10 = adder(10) 
 fmt.Println(add10(2)) 
 fmt.Println(add10(3)) 
} 
In this code snipped, the closure does not invoke any library functions, so the compiler 
will select the first approach. There are two calls of the adder function which returns a 

closure, so the compiler would generate two functions.  
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<main.main.func2>: 
47e1a0:  add    0x8(%rdx),%rax 
47e1a4:  retq     
 
<main.main.func1>: 
47e1c0:  add    0x8(%rdx),%rax 
47e1c4:  retq 

The two closures as they are implemented by the compiler. 
 
47e00c:  lea    0x1ad(%rip),%rcx      # 47e1c0 <main.main.func1> 
47e013:  mov    %rcx,0x38(%rsp) 
47e018:  movq   $0x5,0x40(%rsp) 
The assembly code for creating the first closure. The closure’s address is moved to the 

stack and then the number 5, which is the argument for the adder function, is also 
placed into the subsequent stack position. The closure is bound to the base variable, 

which gets the value of the argument. 
 
47e021:  mov    0x38(%rsp),%rcx 
47e026:  mov    $0x2,%eax 
47e02b:  lea    0x38(%rsp),%rdx 
47e030:  callq  *%rcx 
This is the assembly code for invoking a closure. The closure’s address is retrieved from 
the stack to $rcx. Additionaly, $eax gets the closure’s argument and $rdx gets a pointer 

to the stack address where the closure, namely its address and the variables that is 
bound to, are stored. Lastly, we have an indirect call to the closure. 
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In the second approach, the compiler generates only a single function, regardless of the 

number of closures created. Unlike the first approach, the function that returns the 

closure, is distinctively generated in assembly. The closure’s address and the variables 

that the closure is bound are not passed onto the stack like the first approach. All these 

are passed, with the same order as the first approach, on the memory of an object, 

allocated with newobject(). In this case, whenever the closure needs to be invoked, the 

same process is followed as the first approach, with the distinction that the closure’s 

address and the other variables are retrieved via the object’s memory rather than the 

stack. 
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Chapter 4 
 

Implementation 
 

 

4.1 Raw bytes of specific addresses       22 

4.2 Detecting Goroutines        22 

4.3 Detecting Channels        24 

4.4 Detecting Closures        26 

 

 

4.1. Raw bytes of specific addresses 

 

We created a python script (elf2bytes.py) that takes as input an ELF binary, a start 

addresses and an end address and prints the raw bytes of all the instructions between 

those two addresses. Of course, this could be done with other tools as well, but we 

wanted the output in a specific format, so after making minimal changes, it can be 

inserted in the code of other python scripts we developed. We needed to use the 

“elftools” and “capstone” python libraries. Elftools contains functions and data 

structures for analyzing ELF files, while capstone is a lightweight multi-platform and 

multi-architecture disassembly framework. 

 

The script initially opens the given ELF file, iterates through its sections until it finds 

the .text section and then reads all the bytes of that section. Using some functions from 

the capstone framework, it creates a disassembler object and then disassembles all the 

bytes read from the .text section. A generator object is returned, through which we can 

iterate all instructions and print only the bytes of the instructions between the addresses 

given by the user (start – end addresses). The bytes are printed in a hex escaped format. 

 

4.2. Detecting goroutines 
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Since the creation of a goroutine is indicated by a call to the newproc() function from 

the runtime package (see 3.1), we developed a script to identify (1) the presence of this 

function inside an ELF binary, (2) any calls to that function, (3) the addresses from 

which each goroutine will start execution and (4) the actual user function that is called 

by each goroutine. Similar to “elf2bytes.py”, this script also uses the Elftools and 

Capstone libraries and can analyze stripped binaries. 

 

Initially, we used the elf2bytes.py script with various non-stripped binaries to extract all 

the raw bytes of the newproc() function. We determined the exact starting and ending 

addresses of the function using objdump. The resulting bytes were not identical for all 

binaries, as the newproc() function in each binary had slightly different assembly 

instructions. For example, the newproc() function needs to call the systemstack() 

function, which is another Go runtime function. For this task, one binary might have the 

instruction call 0x458b20, while another binary might have call 0x458860. This occurs 

because the systemstack() function is not located at the same address in every binary or 

the call instruction is not on the same address in every binary. 

 

In our “goroutineDetection.py” script, we used regular expressions to specify a pattern 

that will always match and find the newproc() function in a series of bytes. For 

example, the above assembly instructions call 0x458b20 and call 0x458860 are could be 

comprised from the bytes e8 2f e1 01 00 and e8 6f de 01 00 respectively. A regex 

pattern like “e8 {4}.”, where “{4}.” means any four bytes, is able to match both 

instructions. In that way, by studying the assembly code of the newproc() function in 

multiple binaries, we build a regex pattern that can identify it in any series of raw bytes. 

 

The actual creation of a goroutine is indicated by a call to the newproc() function. Our 

script makes a list with all the call instructions found in the binary, by checking the 

mnemonic of each instruction. Then checks which of those instructions call an address 

where the newproc() function is detected. After that, we need to identify which of the 

two assembly code patterns, described in 3.1 is present, in order to detect the start 

address of the goroutine.  
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If the instruction before “call newproc()” is a lea instruction, we calculate the address 

that is loaded into $rax. This address stores a function pointer to the compiler-generated 

function, which is where the goroutine will start execution. We then retrieve the 

function pointer, navigate to that function, and identify the first call instruction, which 

invokes the actual user function.    

 
If the instruction before “call newproc()” is not a lea instruction, there are probably 

channels in the binary, and thus we have the second assembly code pattern described on 

3.1. Our script then checks one by one all instructions backwards until it finds a “mov 

qword ptr [rax], rcx” instruction. This instruction is used to move the function pointer 

stored in $rcx to the memory of a newly allocated object, pointed by $rax. The previous 

instruction should be a lea instruction loading the function pointer to $rcx. In that way 

our script identifies the address from which the goroutine will start execution and 

following that, the call instruction to the actual user function. 

 

Since we are focusing only on goroutines invoked from user code, we wanted to ignore 

all default goroutines created by the go runtime package (e.g. for garbage collection). 

Therefore, we identify all calls to the newproc() function but do not further analyze 

code from libraries. 

 

4.3. Detecting Channels 

 

To identify the use of channels, our “channelDetection.py” script must detect the 

presence of the following functions: makechan(), chansend1() and chanrecv1(), along 

with calls to these functions (see 3.2). Using a similar approach as our goroutine 

detection script, we construct regular expression patterns to match these functions in 

any byte stream. 

 

After identifying the addresses of each of these three functions, we procced to search all 

call instructions to these addresses. This allows us to determine the exact addresses 

where a channel is created and when a channel it is used for sending or receiving values. 
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Using the GDB (GNU Debugger) Python API, we enhanced our Python script with 

runtime analysis capabilities. The GDB Python API enables extending and automating 

GDB using Python scripts. For a Python script to interact with GDB, it must be 

executed with the following command: "gdb -x script.py". 

 

Initially we set breakpoints at every address where we have found a call to makechan(), 

chansend1() or chanrecv1(). Each time a breakpoint is hit, we check which function the 

call instruction invokes. If it’s a makechan call, we know it will return a pointer to the 

newly created channel through $rax, and we capture this information. If it’s a chansend 

call, we retrieve the $rax value, which is the pointer of the channel to be used, and the 

$rbx value, which is the value to be sent. If it’s a chanrecv call, we get the $rax value 

which is the pointer of the channel to be used, and we retrieve the received value from 

the stack. To find the stack address, we examine the instruction preceding the chanrecv 

call. 

 
RUNTIME ANALYSIS 

---------------- 

 

Channel created at address: 0x47e081 

Channel pointer: 0xc000116060 

 

Channel created at address: 0x47e094 

Channel pointer: 0xc0001160c0 

 

chansend1 call at 0x47e021 

Value 0x000000000000000c sent through channel 0xc000116060  

 

chansend1 call at 0x47e021 

Value 0x0000000000000011 sent through channel 0xc0001160c0  

 

chanrecv1 call at 0x47e20f 

Value 0x000000000000000c received through channel 0xc000116060  

 

chanrecv1 call at 0x47e231 

Value 0x0000000000000011 received through channel 0xc0001160c0 
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4.4. Detecting Closures 

 

Initially, our "closureDetection.py" script searches through the entire binary for two 

specific instructions appearing consecutively. As discussed in section 3.3, the 

instructions "lea rcx, 0x1ad(rip)" followed by "mov 0x38(rsp), rcx" suggest a potential 

closure preparation. The offset in both instructions can vary, and the rcx register could 

also be rax or rbx. 

For each potential closure setup, we locate all indirect calls within the same function by 

searching consecutively until a ret instruction is encountered. For each of these indirect 

calls, we examine the preceding instruction. If it’s a lea instruction that loads an address 

from the stack, from the same offset where the closure was stored, into rdx, we mark 

this indirect call as a closure call. We can then trace back to the closure preparation and 

calculate the closure function’s address. 

 

Our script can only identify closures that are generated with the first approach described 

in 3.3.. For the second approach we would need runtime analysis capabilities, since the 

closures address is stored and retrieved from the memory of an object allocated at 

runtime. 

 
Possible closure set-up detected at address: 0x47e00c 

Closure call at 0x47e030. Closure function at 0x47e1c0 

Closure call at 0x47e080. Closure function at 0x47e1c0 

 

Possible closure set-up detected at address: 0x47e0c5 

Closure call at 0x47e0e9. Closure function at 0x47e1a0 

Closure call at 0x47e136. Closure function at 0x47e1a0 
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Chapter 5 
 

Tool Evaluation 
 

 

To evaluate our tool’s performance, we initially tested it by analyzing the mock binaries 

used during development (source code presented in Annex A). Before testing, we 

stripped all these binaries to confirm that the tool does not rely on the presence of 

symbols and can identify Go features even in stripped binaries. Disassembling the 

corresponding non-stripped versions was particularly helpful, as it allowed us to 

compare the results and measure accuracy. 

 

Our “goroutineDetection.py” script performs really well with all mock binaries, 

including those designed for testing channels, as they also create goroutines. The sript 

can identify the newproc() function, all call instructions to it, the address where the 

goroutine will start execution, and the address of the actual function that is being 

invoked at the source code level.  

 

Our tool for analyzing Go channels works as expected with mock binaries. Since these 

binaries are simple and do not depend on user interaction or input, the runtime analysis 

is effective and can capture values being sent and received through channels. 

 

The Go compiler implements closures using two different approaches, as described in 

section 3.3. Our tool can only identify the first approach. Since when we have the 

second one, the closure’s address is stored in the memory of an object allocated at 

runtime. Thus, a tool must have runtime capabilities to identify it. 

 

We also tested our scripts against real-world applications written in Go, such as Caddy 

(an open-source web server) and Task (a Make alternative). While we identified many 

potential closures, we could not verify their validity since these binaries were stripped, 

preventing correlation between the source code and the equivalent assembly code. 

Initially, we did not identify any goroutines or channels. However, after updating our 



 28 

Go compiler and adjusting our regular expression patterns, we were able to detect some 

goroutines and channels. Nonetheless, as with closures, we could not verify their 

validity. 
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Chapter 6 
 

Related Work 
 

 

This thesis aims to contribute to software security. In the paper "Exploiting Mixed 

Binaries" by Michalis Papaevripides, it was shown that mixed binaries built using 

C/C++ and Go are, counterintuitively, less secure than binaries built with hardened 

C/C++. This highlights the need for implementing defense mechanisms for Go code as 

well. To achieve this, tools that can analyze binaries and identify Go-specific features 

are necessary. 

 

Similar work has been done by Stylianos Sofokleous, focusing on the Rust language. In 

his paper "Challenges in Disassembling Rust Binaries," he explored methods to identify 

Trait Objects, which are specific to Rust [13]. 
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Chapter 7 
 

Future Work 
 

 

7.1 Automate Regular Expression Patterns      70 

7.2 Runtime Analysis         73 

7.3 Single integrated tool        30 

 

 

7.1. Automate Regular Expression Patterns 

 

Our regular expression patterns to match functions like newproc() or makechan() 

require substantial manual work. We had to locate the exact address of the function in a 

non-stripped binary, extract all its raw bytes, and then manually go through each 

instruction to modify certain bytes to "any byte." This process could be automated to 

some extent. 

 

7.2. Runtime Analysis 

 

When a binary is run, not every instruction is executed, as some may depend on user 

input. Therefore, to analyze a binary at runtime, as we did when searching for Go 

channel utilization, we need fuzzing capabilities. This will ensure that a large 

percentage of the code is analyzed. 

 

7.3 Single integrated tool 

 

We could combine all three separate python scrips to a single tool that can analyze a Go 

binary and detect any Go feature. 
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Chapter 8 
 

Contributions - Conclusion 
 

 

In this paper, we emphasize the importance of tools for binary analysis, particularly to 

discover programming features unique to the Go language, for enhancing software 

security. We crafted several Go programs and examined their implementation at the 

binary level. Using this information, we developed Python scripts to identify Go 

features such as goroutines, channels, and closures in stripped binaries. Our tools 

primarily rely on static analysis, with the exception of our channel detection script, 

which includes some runtime capabilities. Finally, we evaluated the performance of 

these tools against simple stripped binaries and real-world Go applications. 

 

If anyone attempts to develop software security defense mechanisms, these tools or our 

methodology may help provide valuable information about binaries. 
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Annex Α 
Goroutine detection python script 
import goFunctions 

from elftools.elf.elffile import ELFFile 

from capstone import * 

import os 

import sys 

import re 

 

dirname = os.path.dirname(__file__) 

bin_path = os.path.join(dirname, sys.argv[1]) 

print("bin path:", bin_path, "\n") 

 

f = open(bin_path, 'rb') 

elffile = ELFFile(f) 

 

class Pattern: 

    def __init__(self, name, pattern): 

        self.name = name 

        self.pattern = pattern 

 

def getInstructionAt(address): 

    for i in instructions: 

        if i.address == address: 

            return i 

         

def getPreviousInstruction(address): 

    for i in range(len(instructions)): 

        if instructions[i].address == address: 

            if i == 0: 

                print("returning -1") 

                return -1 

            else: 

                return instructions[i-1] 

             

def getDataAt(size, address, rawBytes, section): 

    data = "" 

    for i in range(size): 

        byte = str(hex(rawBytes[address+i - section['sh_addr']]))[2:] 

        if len(byte) == 1: 

            byte = "0"+ byte 

        data = byte + data 

    return data 

 

def getIP(address): 



 

    for i in instructions: 

        if i.address == address: 

            return address + i.size 

         

def getNextCallInstruction(address): 

    for i in range(len(instructions)): 

        if instructions[i].address == address: 

            for j in range(i, len(instructions)): 

                if instructions[j].mnemonic == "call": 

                    return instructions[j] 

 

def findCallInstructionsTo(address): 

    instructions = disasm.disasm(code_bytes, code_section['sh_addr']) 

    call_addresses = [] 

    for instr in instructions: 

        if (instr.mnemonic == 'call' and instr.op_str == address): 

            call_addresses.append(instr.address) 

    return call_addresses             

 

for section in elffile.iter_sections(): 

    if section.name == '.text': 

        code_section = section 

    if section.name == '.rodata': 

        rodata_section = section 

 

# Read the code bytes from the section 

code_bytes = code_section.data() 

rodata_bytes = rodata_section.data() 

 

# Create a disassembler object 

disasm = Cs(CS_ARCH_X86, CS_MODE_64) 

 

# Disassemble the code bytes and create a list 

instructions = disasm.disasm(code_bytes, code_section['sh_addr']) 

instructions = list(instructions) 

 

 

patterns = [ 

    Pattern('newproc', 

b'\\x49\\x3b\\x66.\\x76.\\x48\\x83\\xec.\\x48\\x89\\x6c\\x24.\\x48\\x8d\\x6c\\

x24.\\x44\\x0f\\x11\\x7c\\x24.\\x44\\x0f\\x11\\x7c\\x24.\\x48\\x8d\\x0d.{4}\\x

48\\x89\\x4c\\x24.\\x48\\x89\\x44\\x24.\\x4c\\x89\\xf0\\x48\\x89\\x44\\x24.\\x

48\\x8b\\x44\\x24.\\x48\\x89\\x44\\x24.\\x48\\x8d\\x44\\x24.\\x48\\x89\\x04\\x

24\\xe8.{4}\\x45\\x0f\\x57\\xff\\x64\\x4c\\x8b\\x34\\x25.{4}\\x48\\x8b\\x6c\\x

24.\\x48\\x83\\xc4.\\xc3\\x48\\x89\\x44\\x24.\\xe8.{4}\\x48\\x8b\\x44\\x24.\\x

eb.'), 



 

    Pattern('newproc', 

b'\\x49\\x3b\\x66.\\x76.\\x55\\x48\\x89\\xe5\\x48\\x83\\xec.\\x44\\x0f\\x11\\x

7c\\x24.\\x44\\x0f\\x11\\x7c\\x24.\\x48\\x8d\\x0d.{4}\\x48\\x89\\x4c\\x24.\\x4

8\\x89\\x44\\x24.\\x4c\\x89\\xf0\\x48\\x89\\x44\\x24.\\x48\\x8b\\x44\\x24.\\x4

8\\x89\\x44\\x24.\\x48\\x8d\\x44\\x24.\\x48\\x89\\x04\\x24\\xe8.{4}') 

] 

 

for p in patterns: 

    # Use re.finditer() to search for the pattern in the bytes 

    matches = re.finditer(p.pattern, code_bytes) 

 

    # Iterate through the matches and print the results 

    for match in matches: 

        start, end = match.start(), match.end() 

        matched_bytes = code_bytes[start:end] 

        start_address = hex(code_section['sh_addr'] + start) 

        end_address = hex(code_section['sh_addr'] + end - 1) 

        print(f"{p.name} function detected at address: {start_address}\n") 

 

        call_addresses = findCallInstructionsTo(start_address) 

        if len(call_addresses) == 0: 

            continue 

        for call_addr in call_addresses: 

            print(f'call to {p.name} function detected at 0x{call_addr:x}') 

            #if call_addr < 0x47dfe0: 

                #print() 

                #continue 

            prev_instr = getPreviousInstruction(call_addr) 

            prev_instr2 = getPreviousInstruction(prev_instr.address) 

            if prev_instr == -1:  

                continue 

            mnemonic = prev_instr.mnemonic 

            if mnemonic == "lea" or prev_instr2.mnemonic == "lea": 

                if mnemonic != "lea": 

                    prev_instr = prev_instr2 

                op_str = prev_instr.op_str 

                index = int(op_str[op_str.find('+ ')+1:op_str.find(']')],16) 

                reg = op_str[op_str.find('[')+1:op_str.find('+')-1] 

                if reg == "rip": 

                    rip = getIP(prev_instr.address) 

                    addr = getDataAt(8,rip + index, rodata_bytes, 

rodata_section) 

                    print("Goroutine starts execution at address 0x" + addr) 

                    next_call = getNextCallInstruction(int("0x"+addr,16)) 

                    print("User function at address " + next_call.op_str) 

            else: 



 

                found = False 

                while(not found): 

                    if prev_instr.mnemonic +" "+ prev_instr.op_str == 'mov 

qword ptr [rax], rcx': 

                        found = True 

                        prev_instr = 

getPreviousInstruction(prev_instr.address) 

                        if prev_instr == -1:  

                            break 

                        if prev_instr.mnemonic == "lea": 

                            op_str = prev_instr.op_str 

                            index = int(op_str[op_str.find('+ 

')+1:op_str.find(']')],16) 

                            reg = op_str[op_str.find('[')+1:op_str.find('+')-

1] 

                            if reg == "rip": 

                                rip = getIP(prev_instr.address) 

                                addr = rip + index 

                                print("Goroutine starts execution at address " 

+ str(hex(addr))) 

                                next_call = getNextCallInstruction(addr) 

                                print("User function at address " + 

next_call.op_str) 

                             

                    prev_instr = getPreviousInstruction(prev_instr.address) 

                    if prev_instr == -1 or prev_instr.mnemonic == "ret":  

                        break 

            print("") 

 



 

Annex B 
Channel detection python script 

 
import os 

import sys 

 

sys.path.append('/usr/local/anaconda3/lib/python3.8/site-packages') 

 

import re 

from elftools.elf.elffile import ELFFile 

from capstone import * 

import gdb 

 

bin_path = "/path/of/binary/to/be/analyzed" 

 

f = open(bin_path, 'rb') 

elffile = ELFFile(f) 

 

class Pattern: 

    def __init__(self, name, pattern): 

        self.name = name 

        self.pattern = pattern 

 

def findCallInstruction(address): 

    instructions = disasm.disasm(code_bytes, code_section['sh_addr']) 

    call_addresses = [] 

    for instr in instructions: 

        if (instr.mnemonic == 'call' and instr.op_str == address): 

            call_addresses.append(instr.address) 

    return call_addresses 

 

def getChanrecvStackAddr(address): 

    for i in range(len(instructions)): 

        if instructions[i].address == address: 

            if i == 0 or i == 1: 

                return 0 

            else: 

                instr = instructions[i-2] 

                op_str = instr.op_str 

                index = int(op_str[op_str.find("+")+1:op_str.find("]")],16) 

                return index 

             

def getNextInstrAddr(addr): 

    for i in instructions: 



 

        if i.address == addr: 

            return addr + i.size 

         

def getPreviousInstruction(address): 

    for i in range(len(instructions)): 

        if instructions[i].address == address: 

            if i == 0: 

                return -1 

            else: 

                return instructions[i-1].address 

 

for section in elffile.iter_sections(): 

    if section.name == '.text': 

        code_section = section 

        break 

 

disasm = Cs(CS_ARCH_X86, CS_MODE_64) 

 

# Read the code bytes from the section 

code_bytes = code_section.data() 

 

# Create a disassembler object 

disasm = Cs(CS_ARCH_X86, CS_MODE_64) 

 

# Disassemble the code bytes and print the results 

instructions = disasm.disasm(code_bytes, code_section['sh_addr']) 

instructions = list(instructions) 

 

patterns = [ 

    

Pattern("makechan",b'\\x49\\x3b\\x66.\\x0f\\x86.{4}\\x48\\x83\\xec.\\x48\\x89\

\x6c\\x24.\\x48\\x8d\\x6c\\x24.\\x48\\x8b\\x50.\\x48\\x8b\\x32\\x90\\x48\\x81\

\xfe.{4}\\x0f\\x83.{4}\\x80\\x7a.{2}\\x0f\\x87.{4}\\x48\\x89\\x54\\x24.\\x48\\

x89\\xd8\\x48\\xf7\\xe6\\x0f\\x80.{4}\\x48\\xba\\xa0\\xff\\xff\\xff\\xff\\xff\

\x00\\x00\\x48\\x39\\xd0\\x0f\\x87.{4}\\x0f\\x1f\\x44\\x00\\x00\\x48\\x85\\xdb

\\x0f\\x8c.{4}\\x48\\x89\\x5c\\x24.\\x48\\x85\\xc0\\x0f\\x84.{4}\\x48\\x8b\\x5

4\\x24.\\x48\\x83\\x7a.\\x00\\x75.\\x48\\x83\\xc0.\\x31\\xdb\\xb9.{4}\\xe8.{4}

\\x84\\x00\\x48\\x8d\\x50.\\x83\\x3d.{4}\\x00'), 

    

Pattern("makechan",b'\\x49\\x3b\\x66.\\x0f\\x86.{4}\\x55\\x48\\x89\\xe5\\x48\\

x83\\xec.\\x48\\x8b\\x50.\\x48\\x8b\\x02'), 

    Pattern('chansend1', 

b'\\x48\\x83\\xec.\\x48\\x89\\x6c\\x24.\\x48\\x8d\\x6c\\x24.\\xb9.{4}\\x48\\x8

b\\x7c\\x24.\\xe8.{4}\\x48\\x8b\\x6c\\x24.\\x48\\x83\\xc4.\\xc3'), 



 

    Pattern('chansend1', 

b'\\x55\\x48\\x89\\xe5\\x48\\x83\\xec.\\xb9.{4}\\x48\\x8b\\x7c\\x24.\\xe8.{4}\

\x48\\x83\\xc4.\\x5d\\xc3'), 

    Pattern('chanrecv1', 

b'\\x48\\x83\\xec.\\x48\\x89\\x6c\\x24.\\x48\\x8d\\x6c\\x24.\\xb9\\x01\\x00\\x

00\\x00\\xe8.{4}\\x48\\x8b\\x6c\\x24.\\x48\\x83\\xc4.\\xc3'), 

    Pattern('chanrecv1', 

b'\\x55\\x48\\x89\\xe5\\x48\\x83\\xec.\\xb9.{4}\\xe8.{4}\\x48\\x83\\xc4.\\x5d\

\xc3') 

] 

 

#RUNTIME ANALYSIS 

print("STATIC ANALYSIS") 

print("----------------\n") 

 

for p in patterns: 

    # Use re.finditer() to search for the pattern in the bytes 

    matches = re.finditer(p.pattern, code_bytes) 

 

    # Iterate through the matches and print the results 

    for match in matches: 

        start, end = match.start(), match.end() 

        matched_bytes = code_bytes[start:end] 

        start_address = hex(code_section['sh_addr'] + start) 

        end_address = hex(code_section['sh_addr'] + end - 1) 

        print(f"{p.name} function detected - address: {start_address}") 

 

        call_addresses = findCallInstruction(start_address) 

        if len(call_addresses) != 0: 

            for a in call_addresses: 

                print(f'call to {p.name} function detected at 0x{a:x}') 

        if p.name == "makechan": 

            makechan_calls = call_addresses 

        elif p.name == "chansend1": 

            chansend_calls = call_addresses 

        elif p.name == "chanrecv1": 

            chanrecv_calls = call_addresses 

    print("\n") 

 

 

#RUNTIME ANALYSIS 

print("RUNTIME ANALYSIS") 

print("----------------\n") 

gdb.execute("file "+bin_path, to_string=True) 

 

limit = 0x47dfe0 



 

# Set breakpoints 

for i in range(len(makechan_calls)): 

    makechan_calls[i] = getNextInstrAddr(makechan_calls[i]) 

for c in makechan_calls: 

    if c <  limit: 

        continue 

    gdb.execute("break *"+str(c), to_string=True) 

for c in chansend_calls: 

    if c <  limit: 

        continue 

    gdb.execute("break *"+str(c), to_string=True) 

for c in chanrecv_calls: 

    if c <  limit: 

        continue 

    gdb.execute("break *"+str(c), to_string=True) 

next_chanrecv_calls = list(chanrecv_calls) 

for i in range(len(next_chanrecv_calls)): 

    next_chanrecv_calls[i] = getNextInstrAddr(next_chanrecv_calls[i]) 

for c in next_chanrecv_calls: 

    if c <  limit: 

        continue 

    gdb.execute("break *"+str(c), to_string=True)     

 

bpoint_num = 

len(makechan_calls)+len(chansend_calls)+len(chanrecv_calls)+len(next_chanrecv_

calls) 

numbers = "" 

for i in range(bpoint_num): 

    numbers = numbers + str(i+1) 

    if i+1 != bpoint_num: 

        numbers = numbers + " " 

 

commands = f""" 

commands {numbers} 

silent 

end 

""" 

gdb.execute(commands, to_string=True) 

 

# Run the program 

gdb.execute("run", to_string=True) 

 

recv_channels = {} 

 

while(True): 

    try: 



 

        rip = gdb.selected_frame().pc() 

    except: 

        sys.exit() 

 

    if rip in makechan_calls: 

        rax = gdb.parse_and_eval("$rax") 

        rip = getPreviousInstruction(rip) 

        print(f"Channel created at address: {hex(rip)}") 

        print(f"Channel pointer: {hex(rax)}\n") 

        gdb.execute("c", to_string=True) 

 

    elif rip in chansend_calls: 

        rax = gdb.parse_and_eval("$rax") 

        rbx = gdb.parse_and_eval("$rbx") 

        inferior = gdb.selected_inferior() 

        value = inferior.read_memory(rbx,8) 

        print(f"chansend1 call at {hex(rip)}") 

        print("Value 0x" + str(value.tobytes()[::-1].hex()), "sent through 

channel", hex(rax), "\n") 

        gdb.execute("c", to_string=True) 

 

    elif rip in chanrecv_calls: 

        rax = gdb.parse_and_eval("$rax") 

        recv_channels[rip] = rax 

        gdb.execute("c", to_string=True) 

 

    elif rip in next_chanrecv_calls: 

        index = getChanrecvStackAddr(rip) 

        rsp = gdb.parse_and_eval("$rsp") 

        inferior = gdb.selected_inferior() 

        value = inferior.read_memory(rsp+index,8) 

        rip = getPreviousInstruction(rip) 

        print(f"chanrecv1 call at {hex(rip)}") 

        print("Value 0x" + str(value.tobytes()[::-1].hex()), "received through 

channel", hex(recv_channels[rip]), "\n") 

        gdb.execute("c", to_string=True) 

 

 

 

 



 

Annex C 
Closures detection python script 

 
import goFunctions 

from elftools.elf.elffile import ELFFile 

from capstone import * 

import os 

import sys 

import re 

 

dirname = os.path.dirname(__file__) 

bin_path = os.path.join(dirname, sys.argv[1]) 

print("bin path:", bin_path, "\n") 

 

f = open(bin_path, 'rb') 

elffile = ELFFile(f) 

 

class Pattern: 

    def __init__(self, name, pattern): 

        self.name = name 

        self.pattern = pattern 

 

def findCallInstruction(address): 

    instructions = disasm.disasm(code_bytes, code_section['sh_addr']) 

    call_addresses = [] 

    for instr in instructions: 

        if (instr.mnemonic == 'call' and instr.op_str == address): 

            call_addresses.append(instr.address) 

    return call_addresses 

 

def getInstrAt(addr): 

    for i in instructions: 

        if i.address == addr: 

            return i 

         

def getPrevInstr(addr): 

    for i in range(len(instructions)): 

        if instructions[i].address == addr: 

            if i == 0: 

                return -1 

            return instructions[i-1] 

    return -1 

 

def getNextInstr(addr): 



 

    for i in range(len(instructions)): 

        if instructions[i].address == addr: 

            if i == len(instructions)-1: 

                return -1 

            return instructions[i+1] 

    return -1 

         

def findIndirectCall(addr): 

    indirectCalls = [] 

    indirectCallInstructions = ["call rax", "call rbx", "call rcx"] 

    for i in range(len(instructions)): 

        if instructions[i].address == addr: 

            for j in range(i, len(instructions)): 

                mnemonic = instructions[j].mnemonic 

                op_str = instructions[j].op_str 

                if mnemonic == "ret": 

                    return indirectCalls 

                if mnemonic+" "+op_str in indirectCallInstructions: 

                    indirectCalls.append(instructions[j].address) 

    return indirectCalls 

 

def getStackOffset(op_str): 

    reg = op_str[op_str.find("[")+1:op_str.find(" +")] 

    if reg != "rsp": 

        return 0 

    offset = op_str[op_str.find('+')+2:op_str.find(']')] 

    return int(offset, 16) 

 

def getIP(address): 

    for i in instructions: 

        if i.address == address: 

            return address + i.size 

 

def calculateRIP(addr, op_str): 

    reg = op_str[op_str.find("[")+1:op_str.find(" +")] 

    if reg != "rip": 

        return 0 

    rip = getIP(addr) 

    offset = int(op_str[op_str.find('+')+2:op_str.find(']')],16) 

    return rip + offset 

             

 

for section in elffile.iter_sections(): 

    if section.name == '.text': 

        code_section = section 

        break 



 

 

# Read the code bytes from the section 

code_bytes = code_section.data() 

 

# Create a disassembler object 

disasm = Cs(CS_ARCH_X86, CS_MODE_64) 

 

# Disassemble the code bytes and print the results 

instructions = disasm.disasm(code_bytes, code_section['sh_addr']) 

instructions = list(instructions) 

 

patterns = [ 

    Pattern('closure',b'\\x48\\x8d\\x0d.{4}\\x48\\x89\\x4c\\x24.'), 

    Pattern('closure',b'\\x48\\x8d\\x05.{4}\\x48\\x89\\x44\\x24.'), 

    Pattern('closure',b'\\x48\\x8d\\x1d.{4}\\x48\\x89\\x5c\\x24.') 

] 

 

closure_create = [] 

 

for p in patterns: 

    # Use re.finditer() to search for the pattern in the bytes 

    matches = re.finditer(p.pattern, code_bytes) 

 

    # Iterate through the matches and print the results 

    for match in matches: 

        start, end = match.start(), match.end() 

        matched_bytes = code_bytes[start:end] 

        start_address = code_section['sh_addr'] + start 

        #if start_address < 0x47dfe0: 

            #continue 

        closure_create.append(start_address) 

 

for addr in closure_create: 

    next_instr = getNextInstr(addr) 

    if next_instr == -1: 

        continue 

    closure_stack_offset = getStackOffset(next_instr.op_str) 

    ind_calls = findIndirectCall(addr) 

    closure_calls = {} 

    for ind_call in ind_calls: 

        priv = getPrevInstr(ind_call) 

        op_str = priv.op_str 

        if priv.mnemonic == "lea" and op_str[:3] == "rdx": 

            offset = getStackOffset(op_str) 

            if (offset == closure_stack_offset): 

                closure_address = calculateRIP(addr, getInstrAt(addr).op_str) 



 

                closure_calls[ind_call] = closure_address 

    if len(closure_calls) == 0: 

        continue 

    print(f"Possible closure set-up detected at address: {hex(addr)}") 

    for i in closure_calls: 

        print(f"Closure call at {hex(i)}. Closure function at 

{hex(closure_calls[i])}") 

    print() 

 

 


