
i

Thesis Dissertation

ΕVOLUTION OF CROSS-ECOSYSTEM PACKAGES

Constantinos Orphanos

University Of Cyprus

COMPUTER SCIENCE DEPARTMENT

May 2024

ii

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Evolution of cross-ecosystem packages

Constantinos Orphanos

Supervisor

Eleni Constantinou

Thesis submitted in partial fulfilment of the requirements for the award of degree of

bachelor’s in computer science at University of Cyprus.

May 2024

iii

Acknowledgments

I would like to express my sincere appreciation to my supervisor, Professor Eleni

Constantinou, for their guidance and introduction to the topic of my thesis.

iv

Abstract

This thesis delves into the analysis of programming language usage patterns across cross-

ecosystem packages, aiming to uncover trends and understand the dynamics in those

packages.

The methodology employed involves a multi-step approach, beginning with data

collection using PyDriller, followed by data cleaning and analysis, including the

calculation of metrics such as Discrepancy Percentage and Language Percentage.

Additionally, specialized processes were developed to identify potential language shifts

within repositories, further enhancing the depth of analysis.

The results reveal seven distinct patterns observed in the data: from base languages with

light support of another language, to instances of language migration and attempts at

introducing new languages. Each pattern is analyzed, providing insights into the duration,

commit activity, and modified files associated with each pattern.

I highlight the utility of the patterns in software development analysis, and their potential

to inform decision-making processes and guide language selection strategies. Moreover,

I elaborate on the usefulness of these patterns for both researchers and developers.

In conclusion, this thesis contributes to the growing body of knowledge surrounding

software development practices in software ecosystems by uncovering and analyzing

patterns in programming language usage across cross-ecosystem packages. The insights

gained from this study have the potential to inform and empower developers, researchers,

and industry practitioners.

v

Contents

Section 1 Introduction………………………………………………………… 1

Section 2 Background……………………………………………………………….

2.1 Definition of a software ecosystem. 4

2.2 Why the ecosystems evolve. 4

2.3 Ecosystems used in the research. 7

2.4 Benefits of software ecosystems. 9

2.5 Challenges of software ecosystems. 10

2.6 Feature of software ecosystems. 11

2.7 Historical development of software ecosystems. 12

 2.8 Characteristics of cross-ecosystem packages. 13

Section 3 Related work……………………………………………………………..

3.1 Research on software ecosystems. 15

 3.2 Research on cross-ecosystem packages. 16

Section 4 Methodology……………………………….……………………………

4.1 Data collection. 18

4.2 Adding extension and Language information. 20

4.3 Commit Time Analysis and Threshold Determination. 22

4.4 Language Consistency verification process. 23

4.5 Visualizing Commit Activity over time 25

4.6 Discrepancy Percentage calculation. 26

4.7 Language Percentage calculation. 28

 4.8 Identifying possible Significant Language Shifts. 30

vi

Section 5 Results……………………………………………………………………..

5.1 Pattern 1: Base language with light support for the other language. 32

5.2 Pattern 2: Parallel support in both languages. 34

5.3 Pattern 3: Interchanging support in both languages. 36

5.4 Pattern 4: Language Migration. 38

5.5 Pattern 5: Attempt Success. 40

5.6 Pattern 6: Attempt Failure. 42

5.7 Pattern 7: Unclear Pattern. 44

 5.8 Research Questions. 46

Section 6 Discussion…………………………………………………………………

6.1 Patterns are found empirically and Dataset Variability. 48

6.2 Understanding possible pattern origins. 48

 6.3 Analyzing Pattern differences in numbers. 50

 6.4 Usefulness of the results. 53

 6.5 Limitations. 54

Section 7 Conclusions and Future Work………………………………………… 55

Bibliography…………………………………………………………………………. 56

1

Section 1

Introduction

In the realm of software development, the evolution and interplay of various software

ecosystems represent a complex and dynamically evolving landscape. Software

ecosystems are basically groups of projects that evolve and develop together in the same

environment [11]. As the boundaries of technology continue to expand, the interaction

between different ecosystems has become a focal point for understanding the broader

implications of software development practices. Software ecosystems are very useful.

One of the main reasons is that they decrease the cost involved in software development

and distribution. In addition, SECOs (Software Ecosystems) support cooperation and

knowledge sharing among the software developers [1].

One of the defining characteristics of software ecosystems is the dependencies among the

packages of a SECO. These dependencies are not always technical linkages, but they are

crucial forces that significantly influence the evolution of a SECO. Understanding the

true dynamics of dependencies is very important to understanding how SECOs grow and

adapt over time. To make it clearer these dependencies are basically bonds between two

different packages, often because one package requires the functionality provided by the

other. These “bonds” means that changes in a single package can affect other dependent

packages in various ways. One of these ways is if a package introduces new features or

improvements, dependent packages can leverage on these advancements leading to

broader ecosystem innovation and evolution. Updates or changes in one package also

may motivate modifications in dependent packages to maintain compatibility. Similarly,

if a package is found to have a vulnerability or a bug, then the dependent packages are

also in danger. So, we can summarize that the network of dependencies within a software

ecosystem acts as a catalyst for evolution, pushing the packages affected to adapt,

innovate, and improve.

Building upon the investigation of package dependencies within individual ecosystems,

the subsequent and most critical concept my dissertation introduces is that of cross-

2

ecosystem packages. Cross-ecosystem packages are basically packages that are

distributed and utilized across different programming languages and platforms. These

packages are designed to operate or be shared across multiple software ecosystems, such

as Maven, PyPI, RubyGems, CRAN and NPM in my case. An example of such a package

is the ‘Singularity’ repository found on GitHub, which is found on PyPi, Maven and

NPM. The key characteristic of the cross-ecosystem packages is that they can function

seamlessly across different SECOs. One of the reasons that makes them so important is

that they tend to be more popular, and they have many dependent packages across

multiple platforms [2]. Another reason is that a bug or a vulnerability on a cross-

ecosystem package may span across different ecosystems and if fixing this bug is not

done for all the ecosystems involved, then the users of a specific ecosystem might still

encounter problems while trying to use a certain package with a bug.

Existing research on cross ecosystem packages by two pivotal studies, comes to shed light

on the presence, characteristics, and implications of these packages within and across

software ecosystems. The first study conducted by Constantinou et al [2] aimed to

uncover the characteristics and evolution of cross-ecosystem packages. Through their

methodology and research, they identified a small fraction of packages that are distributed

across multiple ecosystems. They discovered that these packages tend to favor certain

ecosystems over others in terms of support with new releases, which is also a motivation

for my thesis. Moreover, their analysis revealed that they have a significant impact on the

dependency networks within each ecosystem, and therefore affecting many packages

across different ecosystems. As previously highlighted, and confirmed by the findings in

their research, these packages are more popular and have larger developer communities.

All these factors indicate a higher level of importance, underscoring the need for further

investigation into them. Complementing this, the study by Kula et al [12] embarks on a

large-scale empirical analysis of 1.1 million libraries from five distinct software

ecosystems: PyPI, CRAN, Maven, RubyGems, and NPM. Their work focuses on libraries

that are released across multiple ecosystems, thereby intertwining these ecosystems. By

identifying 4,146 GitHub repositories hosting such cross-ecosystem libraries and

analyzing their dependency and contributor patterns, their findings highlight the deep

interconnectedness between different software ecosystems. They reveal that cross-

ecosystem libraries are significantly dependent upon by the ecosystems they belong to

3

and attract a considerable portion of contributors from within those ecosystems,

emphasizing the growing interconnectedness and community reach beyond the confines

of a single programming language.

Building on the groundwork laid by previous research into the characteristics and impact

of cross-ecosystem packages, a significant gap remains in our understanding of how these

packages evolve at the source code level across different package managers. While

Constantinou et al [2] study offers valuable insights into the distribution, popularity, and

dependency networks of cross-ecosystem packages, it stops short of examining the

programming language usage from each package.

This thesis explores and discovers the patterns of programming language usage within

cross-ecosystem packages, aiming to clarify how each ecosystem evolves and is

supported throughout time. The contributions of this work are multiple: it provides an

understanding of programming language patterns in cross-ecosystem packages and

ultimately provides developers and researchers with insights to encourage better decisions

and further research on cross-ecosystem packages. In this way, the thesis enriches existing

knowledge on software ecosystems and provides a new perspective on the intricacies of

cross-ecosystem software development.

4

Section 2

Background Knowledge

2.1 Definition of a software ecosystem. 4

2.2 Why the ecosystems evolve. 4

2.3 Ecosystems used in the research. 7

2.4 Benefits of software ecosystems. 9

2.5 Challenges of software ecosystems. 10

2.6 Feature of software ecosystems. 11

2.7 Historical development of software ecosystems. 12

2.8 Characteristics of cross-ecosystem packages. 13

2.1 Definition of a software ecosystem

In the context of software analysis, a software ecosystem is defined by Lungu [3] as:

“Collection of [interdependent] software projects that are developed and evolve together

in the same environment”. Another definition by Jansen is: “A set of actors functioning

as a unit and interacting with a shared market for software and services, together with the

relationships among them. These relationships are frequently underpinned by a common

technological platform or market and operate through the exchange of information,

resources, and artifacts”.

The term "ecosystem" draws an analogy from biological ecosystems, reflecting the

complex interdependencies, competition, and collaboration that occur within a shared

environment. In a software ecosystem, these dynamics manifest as developers

contributing to open-source projects, companies providing platforms and services, and

users influencing the direction of software development through feedback and usage

patterns.

2.2 Why the ecosystems evolve.

Following the definition of a software ecosystem, we will explore the reasons behind their

evolution. The evolution of software ecosystems is influenced by a variety of factors

5

ranging from technological advancements to changes in user demand and community

dynamics. This section outlines the key drivers of evolution within software ecosystems

and how these drivers interact to shape the development and growth of these complex

systems.

1) Technological Innovations.

A key factor for the evolution of software ecosystems is technological innovation.

New technologies can significantly alter the landscape of an ecosystem by

introducing new capabilities, improving efficiency, or creating new opportunities

for development. For example, the arrival of cloud computing transformed many

software ecosystems by enabling more scalable and flexible deployment options

for applications. Similarly, new findings and discoveries in artificial intelligence

and machine learning are currently driving significant changes in how software is

developed, managed, and utilized within the software ecosystems [13].

2) Community Engagement and Contributions.

The liveliness of a software ecosystem heavily relies on its community of

developers, users, and other stakeholders. Community engagement, through

contributions to open-source projects, feedback, and collaboration, lead to

continuous improvement and expansion of the ecosystem’s components. An

active and engaged community can quickly adapt to needs that may appear, fill

gaps in the ecosystem, and encourage innovation by sharing knowledge and

resources. The evolution of an ecosystem is often a reflection of the collaborative

efforts of its community [14].

3) Market Demands and User Needs.

Market demands and user need also play a vital role in the reasons behind a

software ecosystem’s evolution. As users’ demands change, the need for the

ecosystems to adapt to the new expectations arises. The ecosystems that manage

to stay up to date with the market demands and user needs that very often change,

are most likely to stay relevant and thrive over time [15].

6

4) Regulatory and Environmental Changes.

Often changes in regulations or shifts in the economic and environmental contexts

may drive the evolution of software ecosystems. To be more precise, regulations

about protection, privacy, and cybersecurity, for example, can motivate

significant adjustments in how software is developed within an ecosystem. Also,

economic trends can impact funding, investment, and the overall direction of

technological development, while environmental concerns might drive the

adoption of more sustainable development practices [16].

5) Cross Ecosystem Interaction

Additionally, the interaction between different software ecosystems can catalyze

evolution by motivating the exchange of ideas and different practices.

This cross-exchange can lead to the discovery of new tools and platforms that

combine the strengths of multiple ecosystems. Cross-ecosystem collaboration can

also encourage similarity between ecosystems, making it easier to integrate

diverse technologies and components into cohesive solutions [17].

6) Adaptation and Survival

Ultimately, the evolution of a software ecosystem is a matter of adapting to the

continuous changes in the technologic landscape, to survive and stay relevant over

time. Ecosystems must balance innovation with stability, ensuring that they

continue to meet the needs of their community while also exploring new directions

and opportunities. The most successful ecosystems are those that manage to create

dynamic stability, constantly evolving without losing sight of their core values

and objectives [18].

Understanding the factors why ecosystems evolve, and their interplay is crucial for

getting to the bottom of how software ecosystems evolve. This knowledge not only sheds

light on the current state of various ecosystems but also provides insights into potential

future trends and developments.

7

2.3 Ecosystems used in the research.

In this section, we will take a deeper look into the software ecosystems that are pivotal to

my study: Maven, PyPI, RubyGems, CRAN and NPM. While numerous ecosystems

exist, these five have been selected based on their significance within the software

development landscape. Understanding the key features, and their roles in software

development provides the necessary knowledge to understand the dynamics of cross-

ecosystem packages.

Maven:

Maven, a cornerstone in the Java ecosystem, is an open-source build automation and

project management tool that is used for Java Applications. What Maven basically does

is automate the source code compilation so that your source code becomes executable,

assembles binary codes into packages and executes test scripts [4]. Using Maven, you can

create Java deliverables like JAR, EAR, and WAR files with the help of pom.xml files.

A POM file is the base of the Maven framework. It’s an XML file as I said before that

accommodates data from your project and configuration details. Maven's dependency

management system automates the inclusion of libraries and other project dependencies,

streamlining the build process and ensuring consistency across development

environments. Also, a key factor of the Maven ecosystem is the central repository which

basically provides developers with access to third-party libraries and modules [4]. If we

dig into the key features and benefits of using Maven, we can say that it provides a simple

project setup for the developers using it and manages dependencies very well.

PyPI: The Python Package Index, also called PyPI is a centralized repository of open-

source packages written in Python which are freely accessible to everyone. Today PyPI

possesses almost 500,000 projects [5]. It was found in 2002 by an Australian developer

called Richar Jones. He released the first version of PyPI in 2003, and over time many

other volunteer contributors joined the adventure. Each individual package that is

accessible from PyPI has its own page, showing information such as its description,

metadata, dependencies, and version history [5)]. As most of the packages are open

source, PyPI has encouraged collaboration, sharing and innovation, whether by building

programs on this existing solution or by proposing alternatives to them. We have all

8

undoubtedly used PyPI before by using the command “pip install”. From this simple

command anyone can install and use PyPI packages. PyPI is also used by many major

companies as it’s the main index for Python packages. Major PyPI users include NASA,

IBM, Google, Instagram, etc. [5]. From all this information we can summarize that PyPI

is an essential part of the Python ecosystem. It is not just a repository for Python packages

but the central hub of the Python ecosystem. Without it the distribution and discovery of

such packages would be far more difficult and complex.

RubyGems: RubyGems is a package manager for the Ruby programming language that

provides the following: a standard format for distributing ruby programs and libraries, a

tool designed to easily manage the installation of gems, and a server for distributing them

[6]. It was created by Chad Fowler, Jim Weirich, David Alan Black, Paul Brannan, and

Richard Kilmer. The development of RubyGems started in November 2003 and was

released to the public on March 14, 2004. The interface of RubyGems is a command line

tool called gem which can install and also manage libraries (gems). There is a public

repository that helps you find gems, resolve dependencies, and install them. Every gem

contains a name, version, and platform. It also consists of code, documentation, and gem

specification, also called Gemspec [6]. Since gems run their own code in an app, there

are security concerns that this may lead to issues due to installation of malicious gems.

The creator of malicious gems may be able to compromise user’s system or server.

CRAN: CRAN stands for Comprehensive R Archive Network and is a repository for the

R programming language. CRAN includes the source and compiled versions of R for

Windows and Mac along with a lot of packages [7]. Those packages are updated

regularly, and they depend on many other packages in a complex graph of dependencies

[8]. As the primary repository for R packages, CRAN plays a crucial role in the R

ecosystem, supporting statistical analysis, graphical representation, and reporting. CRAN

structure ensures easy access to a wide range of statistical techniques, graphical methods,

and other tools though packages submitted by the R community of developers. CRAN’s

emphasis on quality and reliability, including a safe and careful package submission

process, ensures that R users have access to a various set of tools for data analysis and

visualization.

9

NPM: NPM stands for Node Package Manager and is a software ecosystem tham mainly

supports Javascript. It is the package manager for Node.js, and it plays a vital role in the

Node.js ecosystem. NPM allows developers to discover, install and manage libraries and

tools they need for their applications by hosting reusable modules, each one serving

specific functionalities [9]. It also enables version management and ensures that all

dependencies work together seamlessly. Some of the basic NPM commands are ‘npm

init’ and ‘npm install’ [9]. If we dive into the architecture of Node js we can see that it is

designed to take advantage of JavaScript event-driven, non-blocking Input/Output model,

making it very efficient and scalable for building server-side applications.

Understanding these ecosystems provides basic and foundational knowledge from which

we can understand and explore the evolution of cross-ecosystem packages and their

patterns of programming languages. Each ecosystem not only supports its respective

language and community but also contributes to a larger, interconnected landscape of

software development.

2.4 Benefits of software ecosystems.

One of the key benefits of software ecosystems is that the costs involved in software

development and distribution are decreased [10]. This benefit can be broken down into

several aspects. One of them is that a software ecosystem often provides a shared

infrastructure and resources to all participating developers. This may include

development tools, libraries, APIs, and cloud storage. By using these shared resources,

developers can avoid the costs of developing their infrastructure from scratch. Another

factor of the above benefit is that developers in the same ecosystem can reuse software

components such as libraries, modules, and packages. By reusing existing software

components, developers can reduce the time and effort required to develop new software

solutions, leading to lower development costs.

10

2.5 Challenges of software ecosystems.

In the exploration of software ecosystems, several significant challenges emerge that

impact their development, evolution, and sustainability. These challenges are critical to

address as they influence the effectiveness and activity of the ecosystems.

One of the primary challenges is the establishment and management of relationships

between various actors within the ecosystem. Ensuring these relationships are well-

defined and effectively managed is essential for ensuring a collaborative and productive

environment. Additionally, software ecosystems face architectural challenges such as

maintaining platform interface stability, managing the ongoing evolution of the system,

ensuring robust security, and maintaining reliability [10].

Another significant challenge is the heterogeneity of software licenses and the evolution

of systems within an ecosystem. Organizations must navigate these complexities to

minimize dependency risks and ensure compliance with diverse legal and operational

standards. Moreover, differentiating resources within the ecosystem to maintain a

competitive edge from the other competitors, and ensuring long-term viability is a

considerable challenge [10].

Technical and socio-organizational barriers also pose significant challenges, particularly

in coordinating and communicating requirements across geographically distributed

projects. Overcoming these barriers is crucial for the seamless flow of information and

collaboration that form the basis for successful distributed software development [10].

Also maintaining versioning and backward compatibility within a software ecosystem is

crucial for ensuring that newer versions of software components are compatible with

older systems. This challenge involves designing APIs and software components that can

support both new features without disruption. Strategies like semantic versioning and

rigorous testing regimes are often employed to manage this balance effectively [20].

Lastly, the lack of sufficient infrastructure and tools to foster social interaction, decision-

making, and development across organizations involved in both open source and

11

proprietary ecosystems can hold back progress. Developing this infrastructure is vital for

supporting the collaborative dynamics that drive innovation and efficiency within

software ecosystems [10].

These insights into the challenges faced by software ecosystems are crucial for

stakeholders involved in designing, managing, and participating in these ecosystems,

providing them with a clear understanding of where focused efforts and resources are

necessary to enhance ecosystem health and productivity.

2.6 Features of software ecosystems.

Software ecosystems exhibit several distinctive features that enable them to support

sustained growth, collaboration, and innovation within the software industry. They are

characterized by a strong architectural framework that includes interface stability,

evolution management, security, and reliability, ensuring a supportive infrastructure for

ongoing development and adaptation.

One of the pivotal features of many software ecosystems is the adoption of an open-source

development model. This model encourages transparency, collaboration, and community-

driven development, which are essential for co-innovation and rapid technological

advancement. The metaphorical application of biological concepts such as mutualism,

commensalism, and symbiosis further emphasize the interconnected relationships within

these ecosystems, highlighting the synergy among different ecosystem participants.

In addition, software ecosystems can be used to negotiate requirements to align solutions,

components, and portfolios with the needs of users and stakeholders. This alignment is

important to maintain the relevance and responsiveness to the market needs. Process

innovation within these ecosystems also plays a critical role, enabling continuous

improvements and adaptations that enhance efficiency and adaptability to changing

environments.

12

These features not only define the operational dynamics of software ecosystems but also

underline their strategic importance in fostering a collaborative and innovative

environment within the software industry. [10]

2.7 Historical development of software ecosystems.

The concept of software ecosystems has evolved significantly over the past few decades,

paralleling the broader evolution of software development methodologies and the

technology landscape. The roots of software ecosystems can be traced back to the early

practices of modular software development in the 1960s and 1970s. As software

complexity grew, the need for modular, reusable components became apparent. Parnas's

seminal work on software modularity presented a foundational approach for designing

software that could be easily maintained and extended, setting the stage for later

developments in software ecosystems [21].

The 1980s and 1990s witnessed the rise of the open-source movement, which played a

pivotal role in the development of software ecosystems. The sharing of source code and

collaborative development enabled by platforms like GNU and later, Linux, showcased

the power of community-driven development. This era marked a significant shift towards

more open, collaborative environments that underpin many modern software ecosystems

[22].

The late 1990s and early 2000s saw the rise of commercial software ecosystems with

companies like Microsoft, Apple, and Oracle developing extensive platforms around their

products. These ecosystems were characterized by a strategic focus on creating a network

of complementary products, services, and third-party applications that all revolve around

a core technology or platform [23].

With the arrival of the internet and web services in the early 2000s, APIs became a crucial

component of software ecosystems, enabling different software applications to interact

smoothly. The API economy further expanded the boundaries of software ecosystems by

allowing diverse applications to connect, share data, and function collectively, regardless

of their underlying platforms [24].

13

The latest phase in the evolution of software ecosystems is marked by the rise of cloud

computing and microservices architectures. These technologies have further

decentralized software development, allowing ecosystems to become more scalable,

resilient, and faster to adapt to changes. The cloud has enabled ecosystems to extend

globally, connecting an even broader range of devices and services [25].

The historical development of software ecosystems reveals a route from tightly coupled,

private systems to open, interconnected networks that extend across the globe. This

evolution reflects wider technological advances and changing business strategies,

illustrating how software development continues to adapt to new challenges and

opportunities.

2.8 Characteristics of cross-ecosystem packages.

To understand cross-ecosystem packages thoroughly, let’s re-define them. Cross-

ecosystem packages are packages that are distributed and utilized across different

programming languages and platforms. They are designed to operate or be shared across

multiple software ecosystems. Such packages are cloudeebus, HanLP and waluigi.

These packages can take various forms. For instance, some packages primarily target one

language, introducing wrappers to extend their reach into other ecosystems. Others

undergo distinct development processes for each ecosystem, showing diverse

development approaches.

One of the main characteristics is interoperability, which means that these packages are

built to operate seamlessly across different ecosystems [15]. This characteristic is crucial

for ensuring that these packages can be effectively utilized within various technological

frameworks without compatibility issues. Interoperability facilitates the sharing of

functionalities and data across different platforms, enhancing the utility and reach of

software applications.

14

Another characteristic is adaptability. Cross- ecosystem packages can evolve to meet the

changing requirements and conventions of multiple ecosystems. This adaptability is

essential for maintaining relevance and functionality as the ecosystems themselves evolve

due to technological advancements or shifts in user demand [13].

Also, understanding the evolution patterns of cross-ecosystem packages is essential.

These patterns can reveal how packages adjust to new ecosystems. The GitHub

repositories of these packages can provide valuable insights into their development

patterns, through their commits and modified files of each commit. These insights include

which languages and, therefore, which ecosystems are targeted from each package.

In conclusion, the unique characteristics of cross-ecosystem packages underscore their

pivotal role in modern software development. By facilitating integration across multiple

ecosystems and maintaining their relevance through their adaptability, these packages

contribute to technological solutions, supporting the continued evolution of software

ecosystems.

15

Section 3

Related work

3.1 Research on software ecosystems. 15

3.2 Research on cross-ecosystem packages. 16

3.1 Research on software ecosystems.

Existing research delves into the characteristics, benefits, and challenges of software

ecosystems. Joshua et al. [10] explored how ecosystems foster collaboration, enable

integration, and streamline software distribution, while also highlighting challenges such

as dependency management and version control. Lungu [11] examined reverse

engineering software ecosystems, highlighting how understanding an ecosystem’s

structure and interrelations can lead to better management and development strategies. It

emphasizes the importance of mapping dependencies to encourage sustainable

ecosystems.

Jansen et al. [13] dig into managing business networks as a survival strategy for software

ecosystems, examining the dynamics between ecosystems and how collaboration,

competition and interdependencies shape their evolution. Fitzergald and Aderfalk [14]

investigate the role of open-source software in software ecosystems, discussing how

open-source projects contribute to ecosystem growth. Bosch [15] discusses the transition

from software product lines to software ecosystems, outlining how ecosystems evolve

beyond individual products, embracing networks of related projects that collectively drive

innovation and development.

Jansen et al. [16] offer a comprehensive analysis of software ecosystems, exploring how

to manage business networks in the software industry. It delves into how ecosystems

function as networks of projects, organizations, and contributors. Manikas and Hansen

[17] provide a systematic literature review of software ecosystems, summarizing key

findings and trends. They emphasize the importance of community engagement,

technological innovation, and regulatory factors in shaping ecosystem evolution. Iansiti

and Levien [18] discuss strategy in the context of software ecosystems, emphasizing how

16

regulatory, economic, and technological factors influence ecosystem development and

growth.

Jacobson et al. [24] discuss the role of APIs in software ecosystems, emphasizing how

they facilitate integration and collaboration, contributing to ecosystem growth and

diversification. Newman [25] discusses the design of microservices and their role in

software ecosystems, emphasizing how they promote modularity and flexibility, enabling

ecosystems to adapt to changing technological landscapes.

3.2 Research on cross-ecosystem packages.

Furthermore, studies have explored the dynamics of cross-ecosystem packages.

Constantinou et al. [2] conducted a comprehensive study to uncover the characteristics

and evolution of cross-ecosystem packages. They found that only a small fraction of

packages is distributed across multiple ecosystems, but these packages have a significant

impact on dependency networks within each ecosystem, influencing packages across

different ecosystems. Additionally, their study highlighted how these packages tend to

favor certain ecosystems over others, based on support and new releases. Their findings

also revealed that these packages are more popular and have larger developer

communities, underscoring their importance and the need for further investigation.

Complementing this, Kula et al. [12] embarked on a large-scale empirical analysis of 1.1

million libraries from five distinct software ecosystems: PyPI, CRAN, Maven,

RubyGems, and NPM. This study focused on libraries released across multiple

ecosystems, identifying 4,146 GitHub repositories hosting such libraries. The findings

emphasized the interconnectedness of different software ecosystems and how cross-

ecosystem libraries are deeply intertwined with the dependency networks of their

ecosystems. The study also showed that these libraries attract contributors from within

their ecosystems, reflecting the growing community reach beyond a single programming

language.

This body of research from multiple papers and contributors provides a comprehensive

overview of software ecosystems and cross-ecosystem packages, highlighting their

17

characteristics, challenges, and opportunities. It lays the foundations for understanding

how ecosystems function, evolve and interact and offers insights into their development

and sustainability.

18

Section 4

Methodology

4.1 Data collection. 18

4.2 Adding extension and Language information. 20

4.3 Commit Time Analysis and Threshold Determination. 22

4.4 Language Consistency verification process. 23

4.5 Visualizing Commit Activity over time. 25

4.6 Discrepancy Percentage calculation. 26

4.7 Language Percentage calculation. 28

4.8 Identifying possible Significant Language shifts. 30

This section describes the methodology employed to extract and analyze data concerning

cross-ecosystem packages across the five big software ecosystems that I previously

mentioned (Maven, NPM, PyPi, Rubygems, CRAN). The primary goal was to identify

patterns in the programming development, maintenance, and evolution of these packages.

To this end, a multi-method approach was employed, combining Python and its powerful

data manipulation library, Pandas, to handle and analyze the data. Additionally, to retrieve

that data, PyDriller was utilized. PyDriller allowed me to extract all the necessary data

from these packages, providing me useful insights into their structural and functional

dynamics. In the next small sections I will analyze how I retrieve those insights and how

I used them to come up with the patterns I was looking for.

4.1 Data Collection

Before I started the data collection process, I first had to discover the cross-ecosystem

packages. To accomplish this, I used Kula et al [12] study and obtained detailed csv files

for the 5 main ecosystems of my research. Those comma-separated values files contained

all the repositories that take part in each ecosystem. So, to discover which of them appear

in more than one ecosystem I first loaded them using python’s library Pandas in a separate

DataFrame for each one of them. Then, all the individual DataFrames were concatenated

into a single big DataFrame. This step was crucial as it merged data from different

ecosystems into a unified structure, setting the stage for cross-ecosystem analysis. Pandas

19

‘concat’ function was used for this purpose, ensuring that indices were reset, and no data

alignment issued occurred. The unified DataFrame was then grouped by the ‘Repository

URL’ to aggregate data based on unique repository addresses. This aggregation was

essential to identify and count the unique platforms associated with each repository. Two

main aggregations were performed: counting unique platforms and concatenating

platform names into a single string for each repository. Repositories appearing in more

than one ecosystem were filtered out using a condition that selected repositories that the

count of unique platforms was greater than one. This step pinpointed the repositories that

are shared across multiple ecosystems, highlighting their cross-ecosystem nature. Finally,

the filtered data, which now only contained the repositories that appeared in more than

one ecosystem, was exported to a csv file.

After producing this csv with all the repositories appearing in multiple ecosystems, I was

ready to start collecting data about them. The data collection process for this thesis was

structured around extracting detailed commit and file modification data from those

multiple software repositories. This was achieved using Python, with the help of the

PyDriller library, a tool specifically designed for mining data from Git repositories.

Pydriller allows to extract a lot of details about the commits of the repository (such as its

hash, message, author, committer, author date, committer date, modified files, project

name, insertions, lines, files) and also information for the modified files of each commit

(such as its old path, new path, filename, added lines, deleted lines, source code, methods,

lines of code). The procedure was carefully planned to automate extraction, ensure

accuracy, and handle potential errors efficiently and effectively.

Initially, we imported the list of cross-ecosystem packages that we initially extracted

using Pandas. Each repository URL from that csv file was processed to clone the

repository locally, allowing direct interaction with the repository’s data. Using

PyDriller’s ‘Repository’ module, the script traversed trough each commit in the cloned

repositories. For every commit relevant data such as: Commit Hash, Commit Message,

Commit Author Name, Commit Author Email, Commit Committer Name, Commit

Committer Email, Commit Authored Date, Commit Committer Date, Branches, Merge,

Commit Parents, Project Name, Project Path, Number of Deleted Lines, Number of

Inserted Lines, Lines, Number of files changed were captured. Moreover, for each

20

commit, details about the modified files were extracted such as: Commit Hash, Old Path,

New Path, File Name, Type of the Change, Diff, Diff Parsed, Added lines, Deleted Lines,

Source code, Source code before, Methods, Methods before, Changed methods, Lines of

code, Complexity, Token Count. The key connecting the modified files to the appropriate

commit was the commit hash.

The extracted data for commits and modified files were then written into CSV format file

using Python’s CSV library, ensuring that the data could be easily accessed and analyzed

in subsequent stages. These CSV files were zipped to optimize storage and maintain the

integrity of the data during the transfer or backup processes. Each zip file was named after

the name of the repository.

Throughout the data collection process, various exceptions were carefully handled to

ensure robustness. Errors such as ‘GitCommandError’, ‘ValueError’,

‘NotADirectoryError’, ‘MemoryError’, ‘calledProcessError’ were captured, and for the

repository causing them I left a comment on it, to know that it is problematic for that

reason. If there were no errors while extracting the data for a certain repository, then I

marked the comment column of that package as ‘Done’. This error handling process was

crucial to maintain the continuity of the data extraction process across all repositories,

ensuring that any issues were documented and could be addressed without disrupting the

over data collection workflow. After this process data for 3304 of the total 3987

repositories, was extracted without any errors.

The methodology adopted for data collection not only facilitated a comprehensive

extraction of the required data but also ensured that the process was scalable, repeatable,

and efficient, laying a solid foundation for the detailed analysis that would follow in the

study.

4.2 Adding extension and Language information.

Following the initial step of data collection, the next phase of the methodology involved

enhancing the data that I extracted with some additional useful information for further

use. Specifically, each modified file’s programming language and file extension were

21

determined and added to the dataset. This enrichment of the data was crucial for further

analysis, as it allowed a more detailed insight into the nature of changes across different

software ecosystems. The programming language of the file is instrumental in enabling

this analysis, as ecosystems are programming language based.

The first step of this data enrichment process was the creation of a language mapping

based on the file extensions, which was derived from the classifications provided by the

CLOC tool [26]. CLOC offers extensive coverage of various file types categorized per

programming language, enhancing the reliability and comprehensiveness of the mapping.

A dictionary was constructed to map each file extension to its corresponding

programming language. This ‘dictionary’ included common programming languages

such as C, Java, Python and less common ones like Elixir and Objective-C, ensuring broad

coverage.

The mapping was implemented in Python, utilizing a dictionary structure where keys

represented file extensions and values represented the corresponding programming

languages. This dictionary was then written to a CSV file to serve as a persistent and

easily accessible reference for language identification. The CSV file creation involved

using Python’s ‘csv’ module to write the extension-language pairs into a file, ensuring

that this vital information was correctly recorded and retrievable for future processing

steps.

The main data enrichment process was conducted by another Python script that processed

each entry in the dataset of modified files. First, the language mapping CSV file was

loaded into a DataFrame, and a dictionary was created from it to facilitate quick lookup

operations. This setup ensured that the mapping could be efficiently accessed during the

data processing.

A function was designed to extract the file extension from each file name. This function

also handled edge cases such as files without extensions and specific files like ‘LICENSE’

which was treated as ‘Unknown’. Such files are important, but not dedicated to a specific

programming language, therefore they must be excluded from the pattern finding process.

Using this function, for each file in the data (modified files) the script calculated the file

22

extension and the programming language. These values were then added as new columns

to the DataFrame, providing a richer dataset that included both the type of file and the

programming context. The enriched DataFrame was then saved into a new CSV file

within the ZIP file. This process was repeated for the full set of packages.

4.3 Commit Time Analysis and Threshold Determination.

The subsequent phase of the methodology involved analyzing the timing of commits for

each programming language within the repositories and establishing thresholds to classify

commit intervals as either ‘Gap’ or ‘No Gap’. This step of the methodology is important

for understanding the activity patterns.

First, each repository’s ZIP file, which contains the modified_files_languages and

commits csv files was processed to merge these two datasets. The merging of these two

csv files was achieved by first extracting them from their CSV files within the ZIP file,

then the modified files data was filtered to exclude entries that belong to languages who

were non-programming, such as README or Git configuration files. After that, the

remaining modified files data was merged with the commits data on the ‘Commit Hash’

field. As previously mentioned, the ‘key’ connecting those two files is ‘Commit Hash’ as

it associates each commit with the programming languages of the files affected in that

commit.

For each programming language in the data, the entries were sorted by the ‘Commit

Authored Date’ and then the difference between two consecutive commits of that

language was calculated. This step was crucial for determining the frequency and

regularity of commits per language. Statistical analysis was due next, where the average

of the time differences and the standard deviation of those time differences were

calculated. These two statistics provided insights into the typical commit intervals and

the variability of each language context.

An important part of this phase was setting the threshold for each Language to classify

the commit intervals. For each language, the threshold was defined as the sum of the

average time difference and the standard deviation of the time differences, the two

23

statistics that were calculated before. This threshold helped identify unusually long

intervals between commits, classified as ‘Gap’, and shorter intervals classified as ‘No

Gap’. The way that those intervals were classified was simple. Intervals exceeding the

threshold were labeled as ‘Gap’, while shorter intervals were labeled as ‘No Gaps’. This

classification was added to the dataset, enhancing the data with significant insights into

the commit intervals.

Two CSV files were generated during this process, the ‘thresholds’ and

‘commit_time_difference’. The ‘thresholds’ CSV file contained detailed statistics for

each language, including average time differences, standard deviation, the threshold,

which is the sum of the previous two, and the-time difference between the first commit

containing that language and the first commit of that repository, as well as the difference

between the last commit containing that language and the last commit of the repository.

The ‘commit_time_difference’ documented each commit’s timing details, including the

programming language, the date and time of the actual and the next commit, the

calculated time difference between the previous two, the time difference in days, and the

classification of that interval (Gap or No Gap).

4.4 Language Consistency verification process.

An essential step in my methodology consisted of verifying the consistency of

programming languages used in each repository against the expected languages based on

the repository’s associated platforms. This verification ensured that the subsequent

analysis and visualization would be meaningful and based on accurate repository data.

Initially, a predefined mapping was established to associate each software platform with

its typical used programming language. To be more specific, repositories on Maven were

expected to use Java, repositories on PyPi were expected to use python, repositories on

CRAN were expected to use R, repositories on NPM were expected to use JavaScript and

repositories on Rubygems were expected to use Ruby. This mapping was crucial to make

sure which languages should be present in the repositories associated with each platform.

24

The process began with the extraction of existing language data from each repository. For

each repository listed as ‘Done’ in the preliminary report

(shared_repos_report_final.csv), indicating that it had previously been processed without

errors, the associated ZIP file was accessed to extract language data. This was done by

reading the ‘thesholds.csv’ file from the ZIP archive, which as we mentioned before,

contained information about the languages detected in the repository during the earlier

analyses.

For each repository, the languages extracted from the thresolds.csv file were then cross-

verified against the expected languages derived from the platform-language mapping we

mentioned before. This verification involved:

• Extracting the platforms associated with the repository from the preliminary

report (shared_repos_report_final.csv).

• Finding the expected languages for these platforms based on the mapping.

• Counting the number of expected languages that matched the languages actually

found in the repository (through the thresholds.csv)

If fewer than two of the repository’s expected languages were found in the repository’s

actual data, then it was flagged in the comment section as: ‘Repository languages do not

match’. This flagging was important because it indicated an ‘issue’ for those repositories,

which was that they were not actually supported by 1 or more platforms so there was no

point in further analyzing it. These cases may occur because of a wrapper. The package

is probably supporting both languages, but don’t commit in both languages.

Finally, the updated data, including the comments about language inconsistency was

written back to a final CSV file. This file served as a comprehensive record of each

repository’s status regarding language consistency, informing the next steps in the

methodology and ensuring that only repositories who are supported by more than 1

platform are further analyzed.

25

4.5 Visualizing Commit Activity over time.

The next step in the methodology involved visualizing the timeline of each repository’s

commit activity across its main programming languages. The main criterion for a

repository to undergo this process was to pass the language consistency check in the

previous step and its ‘Comment’ column to still be marked as ‘Done’. This visualization

was created by marking each month with colors corresponding to the activity status

(‘Gap’ or ‘No Gap’) for each language. This part of the entire process aimed to provide a

clear, visual representation of the temporal patterns of commits, facilitating easy

identification of active and inactive periods across different programming languages

within each repository.

Firstly, the process starts by identifying the expected languages for each repository based

on its platform. A mapping of platforms to their main languages (e.g., NPM to Javascript,

PyPi to Python) is used to determine these expected languages. This mapping ensures that

the analysis focuses on relevant languages avoiding other less significant languages.

For each repository listed in a centralized CSV file, the script extracts the repository name

and locates the corresponding ZIP file containing the commit data. If the Zip file exists,

it proceeds to process the data. If it does not exist, the repository is skipped, and a log

message is generated.

The commit data is read from a ‘commit_time_differences.csv’ file within the

repository’s ZIP file. The authored dated of the commits are parsed, and languages are

standardized by stripping any leading or trailing whitespace. The script then filters this

data to include only commits in the languages determined to be relevant from the platform

mapping.

Also, a full range of commit dates is calculated from the earliest to the latest commit.

Based on this range, a list of months is generated. For each language present after

filtering, the script initializes a DataFrame where each row represents a month, and each

column represents a language. All cells are initially set to ‘Gap’ indicating no activity.

For each language, the script identifies the months in which commits were made and

26

marks these in the DataFrame as ‘No Gap’. This marking is based on the actual commit

authored dates, reflecting active development periods of that language within the

repository.

An excel workbook is created to visually represent this timeline. Cells are colored green

for ‘No Gap’ and red for ‘Gap’. This coloring provides a visual representation of

repository’s activity over its whole timeline, making it easy for me to spot trends and

patterns amongst the repository’s main languages.

Once the workbook is formatted, it is saved into an in-memory buffer and then written

back into the repository’s ZIP file as a new Excel file named as: {repository’s name}

_commit_activity_final.csv. This file serves as a final, visual summary of the repositor’s

activity over time, providing valuable insights into the development dynamics based on

the filtered programming languages.

4.6 Discrepancy Percentage calculation.

The discrepancy percentage is a crucial metric in the study of cross-ecosystem packages

to come away with evolution patterns. It quantifies the difference in commit activity

between the two languages associated in a repository, expressed as a percentage over the

whole series of months of the repository. To make it clearer, I provide some examples

below:

Figure 1:

Figure 1 is libcredit’s1 package timeline of commits. As we can see the only month that

the 2 main languages of this repository (Python and Javascript) have difference in their

1 https://github.com/commonsmachinery/libcredit

https://github.com/commonsmachinery/libcredit

27

commit activity (the one is Gap, and the other is No Gap) is October of 2013. Based on

the calculation of the discrepancy percentage this is 25%.

Figure 2

Figure 2 is Message-Bus’s 2package timeline. Here the only difference is August of 2013

where it is Gap in Java (there are no commits modifying java files in that month) but there

is activity about Ruby. For this example, the discrepancy percentage is 50%.

This metric, as can be seen from the examples above, provides insights into the

development patterns and synchronization between different languages within cross-

ecosystem packages, highlighting how well these packages integrate and evolve across

ecosystems.

To calculate the discrepancy percentage for repositories associated with exactly two

platforms, information about repositories was gathered from a centralized CSV file

(called final_repos.csv), which contains details about each repository, including its URL,

the platforms it belongs to, and the count of platforms. Inside this CSV file, there are only

the repositories that passed the check about Language Consistency that I mentioned

before. Only repositories associated with exactly two platforms were selected for further

analysis, and the calculation of the discrepancy percentage. That way we ensured the

focus remained on packages spanning across two different ecosystems, making the

discrepancy percentage particularly meaningful.

For each repository, the commit activity data was extracted from the

commit_activity_final excel file contained within the repository’s ZIP archive. This Excel

file provides a timeline of the repository’s activity, recording the status of each language’s

commit activity (Gap or No Gap) for each month, as we also mentioned before. The excel

file was then processed to count the number of months with discrepancies between the

2 https://github.com/groupon/Message-Bus

https://github.com/groupon/Message-Bus

28

two languages’ activities. A discrepancy was recorded for a month if one language

showed a ‘Gap’ (indicating there were no commits including this language, during that

month) while the other showed ‘No Gap’ (indicating there were commits including this

language, during that month). The total number of months was also counted.

The discrepancy percentage was then calculated as the ratio of discrepancy months to the

total number of months, reflecting how often the two languages’ activities are out of sync,

indicating differences in their development patterns. The discrepancy percentages, along

with the repositories’ information, were saved to a new CSV file (called

final_repos_months.csv), serving as a comprehensive record of each repository’s

discrepancy percentage (and other metrics in the future), providing valuable data for

further analysis or reporting.

The discrepancy percentage metric offers crucial insights into the synchronization

between different programming languages within cross-ecosystem packages. By

quantifying how often these languages' activities diverge, we highlight potential areas for

improvement in package integration and development strategies. Understanding these

patterns is essential for identifying different patterns, to then classify each repository

based on its commit activity.

4.7 Language Percentage calculation.

The language percentage is a metric that measures how much of the total timeline a given

programming language shows active development (No Gaps). To make it clearer, we are

going to revisit the previous examples:

Figure 3:

29

For the libcredit package as we can see from the timeline of the two languages (Python

and Javascript), Python has been active for the whole timeline of the package. Therefore,

its percentage is 100%. On the other hand, Javascript has only been active for 3 of the 4

months so for Javascript the percentage is 75%.

Figure 4:

In the Message_Bus case we can clearly see that Java misses out in August of 2013 so

Java’s percentage is 50% and Ruby has activity throughout the whole timeline, which

makes it 100% percentage.

This metric offers insights into the consistency and continuity of development across

different languages within cross-ecosystem packages, highlighting their integration and

evolution over time.

To calculate the language percentage of each language of a package, commit activity data

for each repository is extracted from the Excel file (commit_activity_data) stored inside

each package’s ZIP file. This file, as we also mentioned before, records the activityfor

each month for the languages of the package. This Excel data is read into a DataFrame

and its values are converted into numerical values: ‘No Gap’ is mapped to 1, and ‘Gap’

is mapped to 0. This conversion simplifies the calculation process, making it easy to sum

up the active months for each language.

For each main language (the five languages associated with the big five ecosystems I am

working with), the number of months with active commits on that language is counted.

This count is then divided by the total number of months of the package to calculate the

percentage of time the language was actively used in development. This percentage is

recorded for each language, offering a direct comparison between them. Additionally, the

difference between the percentages of the two languages is computed, highlighting the

disparity or balance in their usage over the repository's timeline. This difference provides

30

further insights into how well the two languages are integrated and whether one language

dominates the development cycle.

The language percentages and difference between them are stored in the same CSV file

which consolidates the information about the Discrepancy percentage as well. This file

serves a comprehensive record of those two metrics that will be crucial to extract patterns

in the language usage.

The language percentage metric offers a crucial understanding of the development

patterns and consistency of cross-ecosystem packages. By calculating how much of the

total timeline each language shows active development, it highlights the balance or

disparity between different languages, reflecting their integration into the project’s

ecosystem.

4.8 Identifying possible Significant Language Shifts.

In addition to the primary analyses, the methodology I used to identify the patterns

incorporates a specialized process to identify possible significant language shifts within

repositories. This involves detecting periods where a programming language has

sustained activity for six or more consecutive months, followed by a period of inactivity

(gaps), suggesting potential shifts in language usage. I chose the six months threshold to

set a language as significant language for the repository based on the thought that it strikes

a balance between sensitivity and specificity in identifying meaningful shifts. While

shorter thresholds might lead to false positives by capturing temporary fluctuations,

longer thresholds could overlook shorter-term shifts or periods of less intense

development. Additionally, six months of inactivity in an active project is less likely to

be a random occurrence and is more indicative of a shift in language usage, making it a

reasonable sign for detecting significant language shifts.

The whole process starts by reading the commit activity data from Excel, where each

months’ activity for each language is recorded, as previously explained. The data

extracted from the commit activity excel file is then processed to replace the textual

representations of ‘Gap’ or ‘No Gap’ with 0 and 1 (0 for Gap and 1 for No Gap). That

31

way the identification of shifts is simplified. For each language in a repository, the script

tracks the continuity of active months and detects when a shift to inactivity occurs after a

sustained period of activity. If a language shows active development for at least six

consecutive months followed by a single gap, it is then flagged as a possible significant

language shift.

This detection mechanism is applied to every repository. The script analyzes the data of

the package for shifts and records the corresponding dates of any possible shifts.

Repositories with detected possible shifts are extracted in a csv file, providing a base for

further manual verification to determine if these shifts correspond to actual language

migrations.

While manually looking each of those possible language shifts extracted in a separate csv

file, I was also monitoring the metrics of each repository (Discrepancy percentage and

Language Percentage). These two metrics offer additional insights into the consistency

and synchronization of development efforts between the two languages of the repository.

This dual approach of both monitoring the calculated metrics of the package but also

manual verification I performed on the commit activity timeline, ensured an in-depth

analysis of significant language shifts.

This sectiondetailed the methodology used to analyze cross-ecosystem packages across

Maven, NPM, PyPi, Rubygems and CRAN, aiming to identify patterns in their

development, maintenance, and evolution regarding their programming language use.

Using Python, Pandas and PyDriller mainly, the process involved several critical steps.

From data collection using the PyDriller, to data cleaning from the Language Consistency

verification, to calculating metrics such as Discrepancy Percentage and Language

Percentage to analyze all the data I collected. This comprehensive approach ensured

reliable data handling and analysis, setting the stage for revealing the evolution patterns

in the subsequent results chapter.

32

Chapter 5

Results

5.1 Pattern 1: Base language with support of other language. 32

5.2 Pattern 2: Parallel support in both languages. 34

5.3 Pattern 3: Interchanging support in both languages. 36

5.4 Pattern 4: Language Migration 38

5.5 Pattern 5: Attempt Success. 40

5.6 Pattern 6: Attempt Failure. 42

5.7 Pattern 7: Unclear Pattern. 44

5.8 Research Questions. 46

This chapter presents the findings from the extensive analysis conducted on the cross-

ecosystem packages across the five major software ecosystems: Maven, PyPi, NPM,

Rubygems and CRAN. Through the metrics I calculated and manual inspection of each

repository’s commit activity, I have successfully identified patterns in programming

language usage within these packages. The metrics, including the Discrepancy Percentage

as well as the Language Percentage for each language, alongside the manual review of

package’s timelines, have provided a reliable framework for understanding how

programming languages are adopted, used, and shifted over time in these cross ecosystem

packages. The next sections will dive into these patterns that I found, providing useful

information and examples for each one of them.

5.1 Pattern 1: Base language with light support of other language.

In my analysis of cross-ecosystem packages, one pattern that emerged is the “Base

Language with light support of other language” pattern. This pattern is characterized by

the presence of a dominant base language, while lightly supporting another language.

This pattern is particularly notable in repositories where the metric of the Discrepancy

percentage is high and there is also large Language percentage difference between the

two languages. Below we can see some examples:

33

Figure 5

In Figure 5 we have ember-auth’s 3 timeline of activity. In the second column we see the

continuous support of Javascript (100% Language Percentage) since all time periods are

No Gap. On the other hand, we have activity in Ruby in only one of the total nine months

of the total timeline (that makes it only 11.1% Language Percentage). High Discrepancy

Percentage (88.9%) and at the same time high Language Percentage Difference, classifies

this package as Pattern 1.

Figure 6

In the second example provided we have the timeline of the resources-api-v14 package.

As we can see in this example, Python is the most significant language with a Discrepancy

Percentage of 83.3%, and the Language Percentage Difference equals 50%.

Characteristics of Pattern 1:

This pattern is identified through a combination of high discrepancy percentage and a

considerable Language percentage difference between the 2 languages used in that

package. Specifically, repositories falling into this pattern have a discrepancy percentage

3 https://github.com/heartsentwined/ember-auth
4 https://github.com/schul-cloud/resources-api-v1

https://github.com/heartsentwined/ember-auth
https://github.com/schul-cloud/resources-api-v1

34

greater than 50% and a language percentage difference greater than 40%. These 2 metrics

combined suggest that one language is consistently used more actively than the other,

which only plays a minor or supporting role.

I choose the threshold of 50% for the discrepancy percentage and 40% for the Language

Percentage difference by calculating the average results for each metric and by manually

inspecting example packages of different numbers on these 2 metrics. I used the same

methodology for every other threshold I used in defining the patterns.

5.2 Pattern 2: Parallel support in both languages.

In my exploration of cross-ecosystem packages, another distinct pattern identified is the

“Parallel Support in both languages” pattern. This pattern is characterized by minimal

discrepancy percentages, indicating that both languages used within the repository in the

same way (used or not used actively) with similar levels of commitment over time. Below

we can see some examples:

Figure 7:

Figure 7 displays tatl’s5 package timeline. As we can see for the first 2 months, there is

commit activity for both languages. This is followed by 2 months of inactivity, for both

languages again. This is a typical example of this pattern. Notably, tatl’s Discrepancy

percentage is 0%, reflecting identical commit activity for both languages throughout the

entire timeline, thereby perfectly aligning with the characteristics of this pattern.

5 https://github.com/tln/tatl

https://github.com/tln/tatl

35

Figure 8:

Figure 8 is a big part of the dash-extendable-graph 6commit activity timeline. Observing

the results, it is evident the commit activity between the languages only differs in one

month of this big part of the timeline. Given that the total timeline for commits in this

package spans 43 months, such a minimal discrepancy, nearly close to 0%, categorizes

this case under Pattern 2.

Characteristics of pattern 2:

Pattern 2 is marked by a very low discrepancy percentage- specifically, less than 5%. This

statistic suggests that the activity between the two languages in these repositories is

almost synchronous, with both languages showing similar levels of active development

across the timeline. In repositories classifying in this pattern, the absence of significant

gaps in development activity between the two languages implies a balanced use where

both languages are essential to the project’s operations.

The code used to classify repositories into this pattern checks for a discrepancy percentage

that falls within this low range, ensuring that the languages are supported and evolved in

almost parallel.

6 https://github.com/bcliang/dash-extendable-graph

https://github.com/bcliang/dash-extendable-graph

36

In summary, Pattern 2 reveals a scenario where cross-ecosystem packages benefit from

balanced and harmonious language usage, maintaining consistency and synergy across

different programming languages within the same package.

5.3 Pattern 3: Interchanging support in both languages.

In the analysis of cross-ecosystem packages, Pattern 3 emerges as “Interchanging Support

in Both Languages.”. This pattern is characterized by a lack of a clear dominant language

but notable differences in the commit activity between the two languages and therefore

notable numbers in the Discrepancy Percentage metric. Unlike pattern 1 where one

language consistently leads, Pattern 3 indicates a more dynamic interchange where there

is not a clear significant language. Below we can see some examples of this pattern:

Figure 9:

Figure 9 is a big part of the swim’s7 timeline. By observing the results from the commit

activity excel file, we can clearly see that there is no significant language (Language

percentages helps us confirm it: 35% Language 1, 66% Language 2) and there is a

significant number of months that the commit activity differs between the languages

(Discrepancy Percentage is 55%).

7 https://github.com/swimos/swim

https://github.com/swimos/swim

37

Figure 10:

Another example of this pattern is the stellarstation-api 8package visualized in figure 10.

In this case also, there is no significant language from the above visualization and some

discrepancy in the commit activity of the two languages.

Characteristics of Pattern 3

Pattern 3 is identified in repositories where the discrepancy percentage is notably high

(over 45%), yet the percentage difference between the two languages remains relatively

low (below 40%). This indicates that while both languages are used at the same level,

their periods of activity differ over time, without one language consistently being more

“active” than the other.

In summary “Pattern 3: Interchanging support in both languages” reflects a flexible

approach to software development within cross-ecosystem packages, where the

interchanging support of languages facilitates comprehensive and adaptable project

development. This pattern offers a unique perspective on how diverse technological

environments and programming languages coexist over the life of a project, adapting to

its changing needs and opportunities.

8 https://github.com/infostellarinc/stellarstation-api

https://github.com/infostellarinc/stellarstation-api

38

5.4 Pattern 4: Language migration.

Pattern 4, identified as “Language Migration”, represents a significant shift in the

dominant programming language within a repository. This pattern is characterized by a

transition from one of the main languages to another, as evidenced by continuous activity

in a new language that replaces the previously dominant one. There might be some slight

but insignificant overlap during migration. Below we can see some examples:

Figure 11:

Figure 11 is the part of the HanLP9 package where the switch happens. As we can clearly

see from the visualization of the timeline, the significant language switches from

Language 1 (Java) to Language 2 (Python).

9 https://github.com/hankcs/HanLP

https://github.com/hankcs/HanLP

39

Figure 12:

Figure 12 is the part of the Recongizers-Text 10 package where the language migration

happens. This example illustrates a smoother transition from Language 1 (Javascript) to

Language 2 (Python). Here we can also see that there is also some overlap between the

languages, but it seems that the significant language is changing.

Characteristics of Pattern 4

Language migration is detected when a repository shows a clear switch in the primary

language used for development, following a period where another language had

maintained sustained activity. This transition is identified through an analytical process

that tracks each language’s active months, following a period of reduced or no activity

(Gaps) in its usage. This shift suggests a strategic decision to adopt a new primary

language, possibly due to technological, team, or project direction changes.

Detection process

The code I used for this pattern did not automatically classify packages to this pattern.

The code analyzed commit activity excel files from all the repositories to identify possible

shifts in programming language. This is done by tracking the continuity of active months

for each language and noting when a shift to a new language has possibly occurred. More

10 https://github.com/Microsoft/Recognizers-Text

https://github.com/Microsoft/Recognizers-Text

40

information about this process can be found in the Methodology sub-section: Identifying

Possible Language Shifts.

In conclusion, Pattern 4 offers interesting insights into the strategic shifts in programming

languages within projects. By identifying and analyzing these migrations, developers can

gain valuable information into the adaptability in software development, ensuring that the

projects they are working on remain relevant and efficient in the process of changing

technological landscapes.

5.5 Pattern 5: Attempt Success.

Pattern 5, called “Attempt Success”, describes a scenario within cross-ecosystem

packages where a new programming language successfully gets integrated into the

project’s development workflow. This pattern is identified by the entry of a second

language into the project after the initial 25% of the project timeline, and for the following

time the 2 languages show similar levels of activity. This pattern reflects successful

adoption and sustained use of a new language alongside the primary language. Below we

can see some examples:

Figure 13:

41

In Figure 13 there is a part of the 0x-monorepo 11package. During October of 2018 the

second language of the repository is introduced. After its introduction the second

language shows an active commitment to the repository’s workflow by showing

consistent ‘No Gaps’.

Figure 14:

Figure 14 is the point of introduction of the second language in the thrift12 package. As

we can see after its introduction, the second language has a complimentary role, but still

is actively engaged in the development of the package.

Characteristics of Attempt Success

This pattern is particularly interesting when a new language not only enters the

development cycle but also achieves a balance in usage with the existing primary

language. The criteria for identifying this pattern include:

1) Late Entry: The second language appears after the first 25% of the total package

timeline.

2) Consistent Engagement: Following its introduction, the secondary language

maintains a continuous presence in the timeline, marked by the absence of

significant gaps.

11 https://github.com/0xProject/0x-monorepo
12 https://github.com/apache/thrift

https://github.com/0xProject/0x-monorepo
https://github.com/apache/thrift

42

3) Balanced Activity: Post-introduction, both the primary and secondary and

secondary languages exhibit a balanced level of activity. This balance is

quantified by ensuring that the difference in activity levels between the two

languages is less than 50%, showing that new language is not supplementary but

an integral part of the development.

Detection Process

The detection of this pattern involves a detailed examination of the commit activity data

extracted from the package’s repositories. A script analyzed the activity status (Gaps or

No Gaps) for each language over time, focusing on the presence of gaps before and

consistent activity after the introduction threshold for the other language. The script

ensures that the secondary language, once introduced, does not show big difference in

activity compared to the primary language, confirming its successful integration and

parallel development.

In summary, Pattern 5 reveals a dynamic aspect of software development within cross-

ecosystem environments, where new technologies are not only tested but also

successfully integrated into the ongoing project workflow. This pattern provides insights

into the evolving nature of software projects and the successful management of multiple

programming languages, contributing to a richer, more flexible development

environment.

5.6 Pattern 6: Attempt Failure.

Pattern 6, referred to as “Attempt Failure”, characterizes a situation where a new

programming language is introduced into a project after the 25% mark, but fails to sustain

its presence until the end of the project timeline. This pattern identifies an unsuccessful

attempt to incorporate a new language into the project’s development workflow, resulting

in its abandonment before project completion. Below we can see some examples of this

pattern:

43

Figure 15:

In Figure 15 we have two important phases of the pv’s13 package timeline. In the first

screenshot we have the time when the second language gets introduced in the package. In

the second screenshot we can clearly see that the introduced language is clearly

abandoned before the end of the timeline.

Figure 16:

Similarly for this example shown in Figure 12, which is visualizing a key part of the

deck.gl’s 14package timeline, we can observe the introduction of the second language in

April of 2019, and its complete abandonment in July of 2023.

Characteristics of Attempt Failure

The key attributes of this pattern include:

1) Introduction of the new language: The project witnesses the entry of a second

language at some point after the 25% during its timeline.

13 https://github.com/biasmv/pv
14 https://github.com/uber/deck.gl

https://github.com/biasmv/pv
https://github.com/uber/deck.gl

44

2) Subsequent Abandonment: Despite the initial adoption, the second language

fails to maintain its presence or relevance throughout the project’s lifecycle.

Detection and Verification Process

The detection process for Attempt Failure mirrors that of Attempt Success, utilizing the

same code to identify the packages that classify as Attempt Success. The difference

between the two processes is that the code I used for Pattern 5 does not check if the

language got abandoned in the end, so I manually inspect each package’s timeline to

classify a certain package as Pattern 6.

In summary, Pattern 6 highlights the dynamic nature of language adoption and the

subsequent uncertainties involved in incorporating new technologies into software

projects.

5.7 Pattern 7: Unclear Pattern.

Pattern 7, termed “Unclear Pattern”, classifies repositories where the discrepancy

percentage between programming languages falls within a range that does not distinctly

align with any predefined or new pattern. This pattern suggests a lack of notable trends

or consistent language usage dynamics, making it challenging or impossible to categorize

the repository into a specific pattern category. Below we can see some examples:

Figure 17:

Figure 17 is poseidon’s 15 package whole timeline. As we can observe from the

visualization of its timeline there is only different activity for 1 of the total 5 months of

the package, indicating there is not a clear pattern or a notable trend.

15 https://github.com/Yodo1-backend/Poseidon

https://github.com/Yodo1-backend/Poseidon

45

Figure 18:

In Figure 18 we can see the whole happybara’s16 timeline. By observing the timeline, we

can see that there is only difference in the commit activity for May of 2017, resulting for

10% discrepancy percentage and therefore classifying as Pattern 7.

Characteristics of Unclear Pattern:

The main features defining this pattern include:

1) Discrepancy Percentage Range: Repositories classified under Pattern 7 exhibit

a discrepancy percentage falling within a specific range, typically between 5%

and 25%. This range indicates a moderate level of variance between the usage of

different programming languages within the repository.

2) Absence of Clear Trends: Despite the small presence of variance in language

usage, repositories classified under Pattern 7 lack clear, identifiable patterns or

trends in their language usage behavior.

3) Uncertainty in Classification: Pattern 7 reflects the uncertainty surrounding the

underlying language usage dynamics of the repository. While other patterns

showcase distinct characteristics and behaviors, repositories categorized under

Pattern 7 lack straightforward classification due to their mixed or inconclusive

language usage patterns.

16 https://github.com/amireh/happybara

https://github.com/amireh/happybara

46

Classification Process

The classification of repositories into Pattern 7 involves the application of specific criteria

to identify instances where the discrepancy percentage falls within the defined range (5%

to 25%) and where no other pattern classification has been assigned.

In summary, Pattern 7 represents a big category of repositories with unclear language

usage dynamics that lack straightforward characteristics in order to classify them into a

predefined or new pattern.

5.8 Research Questions.

1) Question: What is the total number of repositories that passed the Language

Consistency verification?

Answer: Although I collected data for 3987 repositories using the above detailed

methodology, only 523 passed the Language verification process (more details

about it in its own sub-section in the Methodology chapter) and were able for a

further analysis.

2) Question: What is the distribution of repositories across different patterns of

language usage within cross-ecosystem packages?

Answer: The analysis that I did reveals a varied distribution of repositories across

the patterns that we discussed in the previous sub-sections. Among the identified

patterns, Pattern 7, characterized by unclear or inconclusive language usage

trends, emerges as the one with the most packages with 214 repositories.

Following, Pattern 2, exhibiting parallel support in both languages, shows a

notable presence with 78 repositories. Additionally, 73 repositories are classified

under Pattern1. Pattern 5, representing Attempt Success, is observed in 17

repositories, while Pattern 4 in 13 repositories. Furthermore, Pattern 3,

showcasing interchanging support in both languages is found in only 7

repositories while Pattern 6 is identified in 5 repositories. Notably, 116

repositories remain unassigned to any specific pattern category. In total, the

47

analysis assigns patterns to 407 repositories, providing valuable insights into the

diverse language usage within cross-ecosystem packages.

48

Chapter 6

Discussion

6.1 Pattern found empirically and Dataset Variability. 48

6.2 Understanding possible pattern origins. 48

6.3 Analyzing Pattern differences in numbers. 50

6.4 Usefulness of the results. 53

6.5 Limitations. 54

6.1 Pattern discovery relies on the dataset.

The patterns identified in this thesis regarding language usage within repositories are

derived empirically from the dataset I worked with. It’s crucial to acknowledge that the

number and nature of these patterns may differ with different datasets. Several factors

contribute to this variability.

Firstly, throughout the study I collected data for the cross-ecosystem packages of five

ecosystems: Maven, NPM, PyPi, Rubygems and CRAN. If another composition of

ecosystems is used for the research, then the results may differ, because of different

repositories exhibiting distinct development patterns. Another big factor is the manual

inspection and the thresholds that I chose. Different thresholds may produce different

patterns.

Overall, while the patterns identified empirically in my thesis provide valuable insights

into language usage across cross-ecosystem packages, they represent only a subset of

possible patterns within the broader software development landscape.

6.2 Pattern interpretation

• Pattern 1: Base language with light support of the other language.

49

This pattern likely emerges when a repository primarily uses one programming language

for its core functionality while occasionally incorporating features or modules written in

another language for supplementary purposes. The significant discrepancy percentage

between the two languages indicates that one language dominates the development

efforts. The sporadic activity in the second language suggests that its role is providing

specialized functionality or addressing specific requirements that are suited to that

language’s strengths. Reasons for this pattern could include exploiting language-specific

optimizations, or integrating external systems that are more compatible with the

secondary language.

• Pattern 2: Parallel support in both languages.

In this pattern, both languages exhibit similar levels of commit activity throughout the

repository’s timeline, indicating a balanced and parallel development approach. This

pattern underscores the capability of development teams to manage multiple languages

efficiently, ensuring that no part of the project falls behind due to unequal attention or

resource distribution. The presence of this pattern within a repository can often indicate

a well-integrated project structure, where cross-functional teams work together to

advance the project's goals without bias toward one technology stack over another.

• Pattern 3: Interchanging support in both languages.

The interchanging support pattern suggests a fluidity in language usage within the

repository, where neither language emerges as the dominant one. Repositories exhibiting

this pattern may demonstrate a project structure that accommodates and perhaps benefits

from the strengths of different programming languages.

• Pattern 4: Language Migration.

Language Migration is a critical pattern to recognize as it can significantly impact project

development and maintenance. It reflects deeper changes within a project’s lifecycle,

such as shifts in technology preference, adaptation to market trends, or responses to

50

community feedback. Identifying this pattern may provide useful information into

strategic decision-making processes regarding technology use within organizations.

• Pattern 5: Attempt Success.

The attempt success pattern showcases an effort to introduce a new language into the

repository, with the intention of integrating it into the project's development workflow

successfully. This pattern may occur when developers recognize the benefits of

introducing and using a new language to address specific challenges, leverage unique

features, or enhance the project's capabilities. Reasons for this pattern could include the

need for language-specific tools or libraries, the desire to exploit the performance or

efficiency gains offered by the new language, or the intention to attract contributors with

expertise in the targeted language.

• Pattern 6: Attempt failure.

Contrary to the attempt success pattern, attempt failure indicates an unsuccessful attempt

to introduce a new language into the repository, as evidenced by the language's

abandonment before the end of the timeline. This pattern may result from factors such as

technical challenges or limitations encountered during the integration process,

insufficient community support or expertise in the new language or differences between

project requirements and the capabilities of the chosen language.

6.3 Comparing pattern characteristics

The observed differences in average timeline duration, number of commits, and number

of modified files among patterns may offer valuable insights into the nature, dynamics,

and characteristics of software development projects:

51

Average Timeline Duration:

Pattern 1: 77 months

Pattern 2: 38 months

Pattern 3: 27 months

Pattern 4: 118 months

Pattern 5: 60 months

Pattern 6: 57 months

Pattern 7: 60 months

• Longer average timeline durations, as seen in repositories of Pattern 4 , may

suggest that these projects have long-term development efforts. This long-term

timeline of development might be the reason for the language migration of the

package.

• Short average timeline durations, as observed in Pattern 3 repositories, could

indicate projects with specific objectives or shorter development cycles.

Average Number of Commits:

Pattern 1: 2622 commits.

Pattern 2: 172 commits.

Pattern 3: 230 commits.

Pattern 4: 2244 commits.

Pattern 5: 2406 commits.

Pattern 6: 1874 commits.

Pattern 7: 589 commits.

0

20

40

60

80

100

120

140

Pattern 1Pattern 2Pattern 3Pattern 4Pattern 5 Patter 6 Pattern 7

52

• Higher average numbers of commits, as seen in Pattern1, 4 and 5 repositories,

may happen because these projects are characterized by active collaboration,

frequent updates and therefore commits, and continuous integration practices.

These projects might prioritize agility and responsiveness to changes.

• Lower average numbers of commits, as observed in Pattern 2 and 3, might suggest

projects with more conservative approaches. These projects may prioritize code

stability and reliability over frequent changes and adjustments.

Average Number of Modified Files:

Pattern 1: 12953 modified files.

Pattern 2: 2242 modified files.

Pattern 3: 15464 modified files.

Pattern 4: 20195 modified files.

Pattern 5: 13599 modified files.

Pattern 6: 11247 modified files.

Pattern 7: 2844 modified files.

0

500

1000

1500

2000

2500

3000

Pattern
1

Pattern
2

Pattern
3

Pattern
4

Pattern
5

Pattern
6

Pattern
7

0

5000

10000

15000

20000

25000

Pattern
1

Pattern
2

Pattern
3

Pattern
4

Pattern
5

Pattern
6

Pattern
7

53

• Higher average numbers of modified files, as seen in Pattern 3 and 4, could

indicate projects undergoing significant refactoring, architectural changes, or

extensive feature expansions. These projects may experience ongoing

evolution requiring modifying multiple modules and components.

• Lower average of modified files, as observed in Pattern 2 and 7, might suggest

projects with narrower scope, simple architectures, or limited development

activities.

6.4 Usefulness of the results.

The patterns analyzed in this thesis are important for several reasons. Firstly, they offer

deep insights into how software projects evolve over time, highlighting trends in language

usage, commit activity, and repository characteristics. These insights guide strategic

decision-making by helping stakeholders identify successful projects and avoid

unsuccessful ones. Moreover, the patterns enable comparative analysis, allowing

developers to evaluate their techniques against others and identify areas for improvement.

Additionally, the patterns serve as predictive indicators of future development trends,

enabling proactive adaptation. Lastly, the patterns that I discovered or patterns in general

may foster collaboration and communication among stakeholders, providing a common

language for discussing project characteristics and aligning goals and expectations.

Overall, identifying these patterns enhances project management, drives improvements

in software engineering practices, and fosters innovation in the field.

After analyzing why these patterns are useful, the examination that emerges after that is

to whom are these patterns useful. The answer is that these patterns hold utility for both

developers and researchers in the software development domain. For developers,

understanding these patterns helps them make informed decisions regarding project

management. By recognizing the development trends and patterns, developers can better

prepare for challenges and optimize their workflows. Additionally, for researchers these

patterns can serve as a foundation for further empirical studies and theoretical

investigations. Furthermore, researchers can leverage these patterns to develop predictive

models, validate hypotheses, and contribute to the development of best practices and

guidelines in the field.

54

6.5 Limitations.

While the identified patterns provide valuable insights into programming language usage

across repositories, it's important to acknowledge the absence of direct validation from

developers regarding the intentions behind language choices. Without direct confirmation

from developers, the reasoning behind the language usages that lead to these patterns

remains uncertain, and there’s a possibility that other factors, that I did not mention in the

Discussion section, influenced the language usage.

55

Chapter 7

Conclusions and Future Work.

In this thesis, I managed a comprehensive analysis of cross-ecosystem software packages,

focusing on identifying patterns in programming language usage. Through a multi-step

methodology involving data collection, enrichment, and analysis, I uncovered seven

distinct patterns, shedding light on the dynamics of language usage within these packages.

These patterns ranged from base languages with light support to instances of language

migration, providing valuable insights into the evolution and maintenance of cross-

ecosystem packages.

By leveraging various metrics and manual verification processes, I not only identified

these patterns but also provided context and possible explanations for their occurrence.

This deeper understanding of language usage patterns in cross-ecosystem packages

contributes to the broader discussion on software development practices.

In the future, there are several opportunities for extra research based on the findings of

this thesis. Firstly, extending the analysis to include additional software ecosystems

beyond the ones studied in this thesis could provide a more comprehensive understanding

of language usage patterns across different domains. Exploring emerging ecosystems

could uncover unique patterns and trends that were not captured in the current study.

Also, engaging with developers to gain deeper insights into their decision-making

processes regarding programming language selection and to validate the identified

patterns against their actual intentions, may be a future research topic. This approach

would offer a more comprehensive understanding of the dynamics driving language usage

in software development projects. In addition, an interesting topic for future work would

be how different characteristics of the package such as its age or the developers involved,

affect the pattern of the pattern.

56

Βιβλιογραφία

(1) https://thesai.org/Downloads/Volume4No8/Paper_33-

Software_Ecosystem_Features,_Benefits_and_Challenges.pdf

(2) Constantinou, E., Decan, A., & Mens, T. (2018). Breaking the borders: an

investigation of cross-ecosystem software packages. arXiv preprint

arXiv:1812.04868.

(3) M. Lungu, "Towards reverse engineering software ecosystems," IEEE

International Conference on Software Maintenance, pp. 428-431, 2008, doi:

10.1109/ICSM.2008.4658096.

(4) https://www.browserstack.com/guide/what-is-maven-in-java

(5) https://datascientest.com/en/pypi-the-complete-guide-to-the-python-third-party-

repository

(6) https://guides.rubygems.org/what-is-a-gem/

(7) https://www.pcmag.com/encyclopedia/term/cran

(8) https://onlinelibrary.wiley.com/doi/10.1002/smr.2270

(9) https://medium.com/@shikha.ritu17/understanding-node-js-ecosystem-and-

tooling-fe7466d686c9

(10) Joshua, J.V., Alao, D.O., Okolie, S.O., & Awodele, O. (2013). Software

Ecosystem: Features, Benefits and Challenges. International Journal of Advanced

Computer Science and Applications

(11) Lungu, Mircea (2009). Reverse Engineering Software Ecosystems (Ph.D.).

University of Lugano.

(12) Kannee, K., Kula, R. G., Wattanakriengkrai, S., & Matsumoto, K. (2023).

Intertwining Communities: Exploring Libraries that Cross Software Ecosystems. In

Proceedings of the 20th International Conference on Mining Software Repositories

(MSR 2023). ACM.

(13) Jansen, S., Brinkkemper, S., & Finkelstein, A. (2009). Business Network

Management as a Survival Strategy: A Tale of Two Software Ecosystems. In First

International Workshop on Software Ecosystems.

(14) Fitzgerald, B., & Agerfalk, P. J. (2008). The mysteries of open source software:

Black and white and red all over? In Transactions on Software Engineering.

https://thesai.org/Downloads/Volume4No8/Paper_33-Software_Ecosystem_Features,_Benefits_and_Challenges.pdf
https://thesai.org/Downloads/Volume4No8/Paper_33-Software_Ecosystem_Features,_Benefits_and_Challenges.pdf
https://www.browserstack.com/guide/what-is-maven-in-java
https://datascientest.com/en/pypi-the-complete-guide-to-the-python-third-party-repository
https://datascientest.com/en/pypi-the-complete-guide-to-the-python-third-party-repository
https://www.pcmag.com/encyclopedia/term/cran
https://onlinelibrary.wiley.com/doi/10.1002/smr.2270
https://medium.com/@shikha.ritu17/understanding-node-js-ecosystem-and-tooling-fe7466d686c9
https://medium.com/@shikha.ritu17/understanding-node-js-ecosystem-and-tooling-fe7466d686c9

57

(15) Bosch, J. (2009). From Software Product Lines to Software Ecosystems. In

Proceedings of the 13th International Software Product Line Conference.

(16) Jansen, S., Cusumano, M. A., & Brinkkemper, S. (2013). Software Ecosystems:

Analyzing and Managing Business Networks in the Software Industry. Edward Elgar

Publishing.

(17) Manikas, K., & Hansen, K. M. (2013). Software Ecosystems – A Systematic

Literature Review. In Journal of Systems and Software.

(18) Iansiti, M., & Levien, R. (2004). Strategy as Ecology. Harvard Business Review.

(19) Joshua, J.V., Alao, D.O., Okolie, S.O., & Awodele, O. (2013). Software

Ecosystem: Features, Benefits and Challenges. International Journal of Advanced

Computer Science and Applications

(20) Raemaekers, S., van Deursen, A., & Visser, J. (2012). Semantic versioning

versus breaking changes: A study of the maven repository. 2012 28th IEEE

International Conference on Software Maintenance (ICSM).

(21) Parnas, D. L. (1972). On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15(12), 1053-1058.

(22) Raymond, E. S. (1999). The Cathedral and the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary. O'Reilly Media.

(23) Iansiti, M., & Levien, R. (2004). The Keystone Advantage: What the New

Dynamics of Business Ecosystems Mean for Strategy, Innovation, and Sustainability.

Harvard Business School Press.

(24) Jacobson, D., Woods, D., & Brail, G. (2011). APIs: A Strategy Guide. O'Reilly

Media.

(25) Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems.

O'Reilly Media.

(26) https://cloc.sourceforge.net/

