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Abstract 

 

This thesis delves into the analysis of programming language usage patterns across cross-

ecosystem packages, aiming to uncover trends and understand the dynamics in those 

packages. 

 

The methodology employed involves a multi-step approach, beginning with data 

collection using PyDriller, followed by data cleaning and analysis, including the 

calculation of metrics such as Discrepancy Percentage and Language Percentage. 

Additionally, specialized processes were developed to identify potential language shifts 

within repositories, further enhancing the depth of analysis. 

 

The results reveal seven distinct patterns observed in the data: from base languages with 

light support of another language, to instances of language migration and attempts at 

introducing new languages. Each pattern is analyzed, providing insights into the duration, 

commit activity, and modified files associated with each pattern. 

 

I highlight the utility of the patterns in software development analysis, and their potential 

to inform decision-making processes and guide language selection strategies. Moreover, 

I elaborate on the usefulness of these patterns for both researchers and developers. 

 

In conclusion, this thesis contributes to the growing body of knowledge surrounding 

software development practices in software ecosystems by uncovering and analyzing 

patterns in programming language usage across cross-ecosystem packages. The insights 

gained from this study have the potential to inform and empower developers, researchers, 

and industry practitioners. 
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Section 1 

 

Introduction 

 

In the realm of software development, the evolution and interplay of various software 

ecosystems represent a complex and dynamically evolving landscape. Software 

ecosystems are basically groups of projects that evolve and develop together in the same 

environment [11]. As the boundaries of technology continue to expand, the interaction 

between different ecosystems has become a focal point for understanding the broader 

implications of software development practices. Software ecosystems are very useful. 

One of the main reasons is that they decrease the cost involved in software development 

and distribution. In addition, SECOs (Software Ecosystems) support cooperation and 

knowledge sharing among the software developers [1].  

 

One of the defining characteristics of software ecosystems is the dependencies among the 

packages of a SECO. These dependencies are not always technical linkages, but they are 

crucial forces that significantly influence the evolution of a SECO. Understanding the 

true dynamics of dependencies is very important to understanding how SECOs grow and 

adapt over time. To make it clearer these dependencies are basically bonds between two 

different packages, often because one package requires the functionality provided by the 

other. These “bonds” means that changes in a single package can affect other dependent 

packages in various ways. One of these ways is if a package introduces new features or 

improvements, dependent packages can leverage on these advancements leading to 

broader ecosystem innovation and evolution. Updates or changes in one package also 

may motivate modifications in dependent packages to maintain compatibility. Similarly, 

if a package is found to have a vulnerability or a bug, then the dependent packages are 

also in danger. So, we can summarize that the network of dependencies within a software 

ecosystem acts as a catalyst for evolution, pushing the packages affected to adapt, 

innovate, and improve. 

 

Building upon the investigation of package dependencies within individual ecosystems, 

the subsequent and most critical concept my dissertation introduces is that of cross-
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ecosystem packages. Cross-ecosystem packages are basically packages that are 

distributed and utilized across different programming languages and platforms. These 

packages are designed to operate or be shared across multiple software ecosystems, such 

as Maven, PyPI, RubyGems, CRAN and NPM in my case. An example of such a package 

is the ‘Singularity’ repository found on GitHub, which is found on PyPi, Maven and 

NPM.  The key characteristic of the cross-ecosystem packages is that they can function 

seamlessly across different SECOs. One of the reasons that makes them so important is 

that they tend to be more popular, and they have many dependent packages across 

multiple platforms [2]. Another reason is that a bug or a vulnerability on a cross-

ecosystem package may span across different ecosystems and if fixing this bug is not 

done for all the ecosystems involved, then the users of a specific ecosystem might still 

encounter problems while trying to use a certain package with a bug. 

 

Existing research on cross ecosystem packages by two pivotal studies, comes to shed light 

on the presence, characteristics, and implications of these packages within and across 

software ecosystems. The first study conducted by Constantinou et al [2] aimed to 

uncover the characteristics and evolution of cross-ecosystem packages. Through their 

methodology and research, they identified a small fraction of packages that are distributed 

across multiple ecosystems. They discovered that these packages tend to favor certain 

ecosystems over others in terms of support with new releases, which is also a motivation 

for my thesis. Moreover, their analysis revealed that they have a significant impact on the 

dependency networks within each ecosystem, and therefore affecting many packages 

across different ecosystems. As previously highlighted, and confirmed by the findings in 

their research, these packages are more popular and have larger developer communities. 

All these factors indicate a higher level of importance, underscoring the need for further 

investigation into them. Complementing this, the study by Kula et al [12] embarks on a 

large-scale empirical analysis of 1.1 million libraries from five distinct software 

ecosystems: PyPI, CRAN, Maven, RubyGems, and NPM. Their work focuses on libraries 

that are released across multiple ecosystems, thereby intertwining these ecosystems. By 

identifying 4,146 GitHub repositories hosting such cross-ecosystem libraries and 

analyzing their dependency and contributor patterns, their findings highlight the deep 

interconnectedness between different software ecosystems. They reveal that cross-

ecosystem libraries are significantly dependent upon by the ecosystems they belong to 
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and attract a considerable portion of contributors from within those ecosystems, 

emphasizing the growing interconnectedness and community reach beyond the confines 

of a single programming language. 

 

Building on the groundwork laid by previous research into the characteristics and impact 

of cross-ecosystem packages, a significant gap remains in our understanding of how these 

packages evolve at the source code level across different package managers. While 

Constantinou et al [2] study offers valuable insights into the distribution, popularity, and 

dependency networks of cross-ecosystem packages, it stops short of examining the 

programming language usage from each package.  

 

This thesis explores and discovers the patterns of programming language usage within 

cross-ecosystem packages, aiming to clarify how each ecosystem evolves and is 

supported throughout time. The contributions of this work are multiple: it provides an 

understanding of programming language patterns in cross-ecosystem packages and 

ultimately provides developers and researchers with insights to encourage better decisions 

and further research on cross-ecosystem packages. In this way, the thesis enriches existing 

knowledge on software ecosystems and provides a new perspective on the intricacies of 

cross-ecosystem software development. 
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Section 2 

 

Background Knowledge 

2.1 Definition of a software ecosystem.                                                                                   4 

2.2 Why the ecosystems evolve.                                                                                          4 

2.3 Ecosystems used in the research.                                                                                  7 

2.4 Benefits of software ecosystems.                                                                                     9 

2.5 Challenges of software ecosystems.                                                                                 10 

2.6 Feature of software ecosystems.                                                                                      11 

2.7 Historical development of software ecosystems.                                                             12 

2.8 Characteristics of cross-ecosystem packages.                                                                        13 

 

2.1  Definition of a software ecosystem 

In the context of software analysis, a software ecosystem is defined by Lungu [3] as: 

“Collection of [interdependent] software projects that are developed and evolve together 

in the same environment”. Another definition by Jansen is: “A set of actors functioning 

as a unit and interacting with a shared market for software and services, together with the 

relationships among them. These relationships are frequently underpinned by a common 

technological platform or market and operate through the exchange of information, 

resources, and artifacts”.  

 

The term "ecosystem" draws an analogy from biological ecosystems, reflecting the 

complex interdependencies, competition, and collaboration that occur within a shared 

environment. In a software ecosystem, these dynamics manifest as developers 

contributing to open-source projects, companies providing platforms and services, and 

users influencing the direction of software development through feedback and usage 

patterns. 

 

2.2  Why the ecosystems evolve. 

 

Following the definition of a software ecosystem, we will explore the reasons behind their 

evolution. The evolution of software ecosystems is influenced by a variety of factors 
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ranging from technological advancements to changes in user demand and community 

dynamics. This section outlines the key drivers of evolution within software ecosystems 

and how these drivers interact to shape the development and growth of these complex 

systems. 

 

1) Technological Innovations. 

A key factor for the evolution of software ecosystems is technological innovation. 

New technologies can significantly alter the landscape of an ecosystem by 

introducing new capabilities, improving efficiency, or creating new opportunities 

for development. For example, the arrival of cloud computing transformed many 

software ecosystems by enabling more scalable and flexible deployment options 

for applications. Similarly, new findings and discoveries in artificial intelligence 

and machine learning are currently driving significant changes in how software is 

developed, managed, and utilized within the software ecosystems [13]. 

 

2) Community Engagement and Contributions. 

The liveliness of a software ecosystem heavily relies on its community of 

developers, users, and other stakeholders. Community engagement, through 

contributions to open-source projects, feedback, and collaboration, lead to 

continuous improvement and expansion of the ecosystem’s components. An 

active and engaged community can quickly adapt to needs that may appear, fill 

gaps in the ecosystem, and encourage innovation by sharing knowledge and 

resources. The evolution of an ecosystem is often a reflection of the collaborative 

efforts of its community [14]. 

 

3) Market Demands and User Needs. 

Market demands and user need also play a vital role in the reasons behind a 

software ecosystem’s evolution. As users’ demands change, the need for the 

ecosystems to adapt to the new expectations arises. The ecosystems that manage 

to stay up to date with the market demands and user needs that very often change, 

are most likely to stay relevant and thrive over time [15]. 
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4) Regulatory and Environmental Changes. 

Often changes in regulations or shifts in the economic and environmental contexts 

may drive the evolution of software ecosystems. To be more precise, regulations 

about protection, privacy, and cybersecurity, for example, can motivate 

significant adjustments in how software is developed within an ecosystem. Also, 

economic trends can impact funding, investment, and the overall direction of 

technological development, while environmental concerns might drive the 

adoption of more sustainable development practices [16]. 

 

5) Cross Ecosystem Interaction 

Additionally, the interaction between different software ecosystems can catalyze 

evolution by motivating the exchange of ideas and different practices. 

This cross-exchange can lead to the discovery of new tools and platforms that 

combine the strengths of multiple ecosystems. Cross-ecosystem collaboration can 

also encourage similarity between ecosystems, making it easier to integrate 

diverse technologies and components into cohesive solutions [17]. 

 

 

6) Adaptation and Survival 

Ultimately, the evolution of a software ecosystem is a matter of adapting to the 

continuous changes in the technologic landscape, to survive and stay relevant over 

time. Ecosystems must balance innovation with stability, ensuring that they 

continue to meet the needs of their community while also exploring new directions 

and opportunities. The most successful ecosystems are those that manage to create 

dynamic stability, constantly evolving without losing sight of their core values 

and objectives [18]. 

 

Understanding the factors why ecosystems evolve, and their interplay is crucial for 

getting to the bottom of how software ecosystems evolve. This knowledge not only sheds 

light on the current state of various ecosystems but also provides insights into potential 

future trends and developments. 
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2.3  Ecosystems used in the research. 

 

In this section, we will take a deeper look into the software ecosystems that are pivotal to 

my study: Maven, PyPI, RubyGems, CRAN and NPM. While numerous ecosystems 

exist, these five have been selected based on their significance within the software 

development landscape. Understanding the key features, and their roles in software 

development provides the necessary knowledge to understand the dynamics of cross-

ecosystem packages. 

 

Maven:  

Maven, a cornerstone in the Java ecosystem, is an open-source build automation and 

project management tool that is used for Java Applications. What Maven basically does 

is automate the source code compilation so that your source code becomes executable, 

assembles binary codes into packages and executes test scripts [4]. Using Maven, you can 

create Java deliverables like JAR, EAR, and WAR files with the help of pom.xml files. 

A POM file is the base of the Maven framework. It’s an XML file as I said before that 

accommodates data from your project and configuration details. Maven's dependency 

management system automates the inclusion of libraries and other project dependencies, 

streamlining the build process and ensuring consistency across development 

environments. Also, a key factor of the Maven ecosystem is the central repository which 

basically provides developers with access to third-party libraries and modules [4]. If we 

dig into the key features and benefits of using Maven, we can say that it provides a simple 

project setup for the developers using it and manages dependencies very well.  

 

PyPI: The Python Package Index, also called PyPI is a centralized repository of open-

source packages written in Python which are freely accessible to everyone. Today PyPI 

possesses almost 500,000 projects [5]. It was found in 2002 by an Australian developer 

called Richar Jones. He released the first version of PyPI in 2003, and over time many 

other volunteer contributors joined the adventure. Each individual package that is 

accessible from PyPI has its own page, showing information such as its description, 

metadata, dependencies, and version history [5)]. As most of the packages are open 

source, PyPI has encouraged collaboration, sharing and innovation, whether by building 

programs on this existing solution or by proposing alternatives to them. We have all 
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undoubtedly used PyPI before by using the command “pip install”. From this simple 

command anyone can install and use PyPI packages. PyPI is also used by many major 

companies as it’s the main index for Python packages. Major PyPI users include NASA, 

IBM, Google, Instagram, etc. [5]. From all this information we can summarize that PyPI 

is an essential part of the Python ecosystem. It is not just a repository for Python packages 

but the central hub of the Python ecosystem. Without it the distribution and discovery of 

such packages would be far more difficult and complex. 

 

RubyGems: RubyGems is a package manager for the Ruby programming language that 

provides the following: a standard format for distributing ruby programs and libraries, a 

tool designed to easily manage the installation of gems, and a server for distributing them 

[6]. It was created by Chad Fowler, Jim Weirich, David Alan Black, Paul Brannan, and 

Richard Kilmer. The development of RubyGems started in November 2003 and was 

released to the public on March 14, 2004. The interface of RubyGems is a command line 

tool called gem which can install and also manage libraries (gems). There is a public 

repository that helps you find gems, resolve dependencies, and install them. Every gem 

contains a name, version, and platform. It also consists of code, documentation, and gem 

specification, also called Gemspec [6]. Since gems run their own code in an app, there 

are security concerns that this may lead to issues due to installation of malicious gems. 

The creator of malicious gems may be able to compromise user’s system or server. 

 

CRAN: CRAN stands for Comprehensive R Archive Network and is a repository for the 

R programming language. CRAN includes the source and compiled versions of R for 

Windows and Mac along with a lot of packages [7]. Those packages are updated 

regularly, and they depend on many other packages in a complex graph of dependencies 

[8]. As the primary repository for R packages, CRAN plays a crucial role in the R 

ecosystem, supporting statistical analysis, graphical representation, and reporting. CRAN 

structure ensures easy access to a wide range of statistical techniques, graphical methods, 

and other tools though packages submitted by the R community of developers. CRAN’s 

emphasis on quality and reliability, including a safe and careful package submission 

process, ensures that R users have access to a various set of tools for data analysis and 

visualization. 
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NPM: NPM stands for Node Package Manager and is a software ecosystem tham mainly 

supports Javascript. It is the package manager for Node.js, and it plays a vital role in the 

Node.js ecosystem. NPM allows developers to discover, install and manage libraries and 

tools they need for their applications by hosting reusable modules, each one serving 

specific functionalities [9]. It also enables version management and ensures that all 

dependencies work together seamlessly. Some of the basic NPM commands are ‘npm 

init’ and ‘npm install’ [9]. If we dive into the architecture of Node js we can see that it is 

designed to take advantage of JavaScript event-driven, non-blocking Input/Output model, 

making it very efficient and scalable for building server-side applications.  

 

Understanding these ecosystems provides basic and foundational knowledge from which 

we can understand and explore the evolution of cross-ecosystem packages and their 

patterns of programming languages. Each ecosystem not only supports its respective 

language and community but also contributes to a larger, interconnected landscape of 

software development.  

 

2.4  Benefits of software ecosystems. 

 

One of the key benefits of software ecosystems is that the costs involved in software 

development and distribution are decreased [10]. This benefit can be broken down into 

several aspects. One of them is that a software ecosystem often provides a shared 

infrastructure and resources to all participating developers. This may include 

development tools, libraries, APIs, and cloud storage. By using these shared resources, 

developers can avoid the costs of developing their infrastructure from scratch. Another 

factor of the above benefit is that developers in the same ecosystem can reuse software 

components such as libraries, modules, and packages. By reusing existing software 

components, developers can reduce the time and effort required to develop new software 

solutions, leading to lower development costs. 
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2.5  Challenges of software ecosystems. 

 

In the exploration of software ecosystems, several significant challenges emerge that 

impact their development, evolution, and sustainability. These challenges are critical to 

address as they influence the effectiveness and activity of the ecosystems. 

 

One of the primary challenges is the establishment and management of relationships 

between various actors within the ecosystem. Ensuring these relationships are well-

defined and effectively managed is essential for ensuring a collaborative and productive 

environment. Additionally, software ecosystems face architectural challenges such as 

maintaining platform interface stability, managing the ongoing evolution of the system, 

ensuring robust security, and maintaining reliability [10]. 

 

Another significant challenge is the heterogeneity of software licenses and the evolution 

of systems within an ecosystem. Organizations must navigate these complexities to 

minimize dependency risks and ensure compliance with diverse legal and operational 

standards. Moreover, differentiating resources within the ecosystem to maintain a 

competitive edge from the other competitors, and ensuring long-term viability is a 

considerable challenge [10]. 

 

Technical and socio-organizational barriers also pose significant challenges, particularly 

in coordinating and communicating requirements across geographically distributed 

projects. Overcoming these barriers is crucial for the seamless flow of information and 

collaboration that form the basis for successful distributed software development [10]. 

 

Also maintaining versioning and backward compatibility within a software ecosystem is 

crucial for ensuring that newer versions of software components are compatible with 

older systems. This challenge involves designing APIs and software components that can 

support both new features without disruption. Strategies like semantic versioning and 

rigorous testing regimes are often employed to manage this balance effectively [20]. 

 

Lastly, the lack of sufficient infrastructure and tools to foster social interaction, decision-

making, and development across organizations involved in both open source and 
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proprietary ecosystems can hold back progress. Developing this infrastructure is vital for 

supporting the collaborative dynamics that drive innovation and efficiency within 

software ecosystems [10]. 

 

These insights into the challenges faced by software ecosystems are crucial for 

stakeholders involved in designing, managing, and participating in these ecosystems, 

providing them with a clear understanding of where focused efforts and resources are 

necessary to enhance ecosystem health and productivity.  

 

2.6  Features of software ecosystems. 

 

Software ecosystems exhibit several distinctive features that enable them to support 

sustained growth, collaboration, and innovation within the software industry. They are 

characterized by a strong architectural framework that includes interface stability, 

evolution management, security, and reliability, ensuring a supportive infrastructure for 

ongoing development and adaptation. 

 

One of the pivotal features of many software ecosystems is the adoption of an open-source 

development model. This model encourages transparency, collaboration, and community-

driven development, which are essential for co-innovation and rapid technological 

advancement. The metaphorical application of biological concepts such as mutualism, 

commensalism, and symbiosis further emphasize the interconnected relationships within 

these ecosystems, highlighting the synergy among different ecosystem participants. 

 

In addition, software ecosystems can be used to negotiate requirements to align solutions, 

components, and portfolios with the needs of users and stakeholders. This alignment is 

important to maintain the relevance and responsiveness to the market needs. Process 

innovation within these ecosystems also plays a critical role, enabling continuous 

improvements and adaptations that enhance efficiency and adaptability to changing 

environments. 
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These features not only define the operational dynamics of software ecosystems but also 

underline their strategic importance in fostering a collaborative and innovative 

environment within the software industry. [10] 

 

2.7  Historical development of software ecosystems. 

 

The concept of software ecosystems has evolved significantly over the past few decades, 

paralleling the broader evolution of software development methodologies and the 

technology landscape. The roots of software ecosystems can be traced back to the early 

practices of modular software development in the 1960s and 1970s. As software 

complexity grew, the need for modular, reusable components became apparent. Parnas's 

seminal work on software modularity presented a foundational approach for designing 

software that could be easily maintained and extended, setting the stage for later 

developments in software ecosystems [21].  

 

The 1980s and 1990s witnessed the rise of the open-source movement, which played a 

pivotal role in the development of software ecosystems. The sharing of source code and 

collaborative development enabled by platforms like GNU and later, Linux, showcased 

the power of community-driven development. This era marked a significant shift towards 

more open, collaborative environments that underpin many modern software ecosystems 

[22]. 

 

The late 1990s and early 2000s saw the rise of commercial software ecosystems with 

companies like Microsoft, Apple, and Oracle developing extensive platforms around their 

products. These ecosystems were characterized by a strategic focus on creating a network 

of complementary products, services, and third-party applications that all revolve around 

a core technology or platform [23]. 

 

With the arrival of the internet and web services in the early 2000s, APIs became a crucial 

component of software ecosystems, enabling different software applications to interact 

smoothly. The API economy further expanded the boundaries of software ecosystems by 

allowing diverse applications to connect, share data, and function collectively, regardless 

of their underlying platforms [24]. 
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The latest phase in the evolution of software ecosystems is marked by the rise of cloud 

computing and microservices architectures. These technologies have further 

decentralized software development, allowing ecosystems to become more scalable, 

resilient, and faster to adapt to changes. The cloud has enabled ecosystems to extend 

globally, connecting an even broader range of devices and services [25]. 

 

The historical development of software ecosystems reveals a route from tightly coupled, 

private systems to open, interconnected networks that extend across the globe. This 

evolution reflects wider technological advances and changing business strategies, 

illustrating how software development continues to adapt to new challenges and 

opportunities. 

 

2.8  Characteristics of cross-ecosystem packages. 

 

To understand cross-ecosystem packages thoroughly, let’s re-define them. Cross-

ecosystem packages are packages that are distributed and utilized across different 

programming languages and platforms. They are designed to operate or be shared across 

multiple software ecosystems. Such packages are cloudeebus, HanLP and waluigi. 

 

These packages can take various forms. For instance, some packages primarily target one 

language, introducing wrappers to extend their reach into other ecosystems. Others 

undergo distinct development processes for each ecosystem, showing diverse 

development approaches. 

 

One of the main characteristics is interoperability, which means that these packages are 

built to operate seamlessly across different ecosystems [15]. This characteristic is crucial 

for ensuring that these packages can be effectively utilized within various technological 

frameworks without compatibility issues. Interoperability facilitates the sharing of 

functionalities and data across different platforms, enhancing the utility and reach of 

software applications.  
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Another characteristic is adaptability. Cross- ecosystem packages can evolve to meet the 

changing requirements and conventions of multiple ecosystems. This adaptability is 

essential for maintaining relevance and functionality as the ecosystems themselves evolve 

due to technological advancements or shifts in user demand [13]. 

 

Also, understanding the evolution patterns of cross-ecosystem packages is essential. 

These patterns can reveal how packages adjust to new ecosystems. The GitHub 

repositories of these packages can provide valuable insights into their development 

patterns, through their commits and modified files of each commit. These insights include 

which languages and, therefore, which ecosystems are targeted from each package. 

 

In conclusion, the unique characteristics of cross-ecosystem packages underscore their 

pivotal role in modern software development. By facilitating integration across multiple 

ecosystems and maintaining their relevance through their adaptability, these packages 

contribute to technological solutions, supporting the continued evolution of software 

ecosystems. 
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Section 3 

 

Related work 

3.1 Research on software ecosystems.                                                                              15 

3.2 Research on cross-ecosystem packages.                                                                              16 

 

3.1 Research on software ecosystems. 

 

Existing research delves into the characteristics, benefits, and challenges of software 

ecosystems. Joshua et al. [10] explored how ecosystems foster collaboration, enable 

integration, and streamline software distribution, while also highlighting challenges such 

as dependency management and version control. Lungu [11] examined reverse 

engineering software ecosystems, highlighting how understanding an ecosystem’s 

structure and interrelations can lead to better management and development strategies. It 

emphasizes the importance of mapping dependencies to encourage sustainable 

ecosystems. 

 

Jansen et al. [13] dig into managing business networks as a survival strategy for software 

ecosystems, examining the dynamics between ecosystems and how collaboration, 

competition and interdependencies shape their evolution. Fitzergald and Aderfalk [14] 

investigate the role of open-source software in software ecosystems, discussing how 

open-source projects contribute to ecosystem growth. Bosch [15] discusses the transition 

from software product lines to software ecosystems, outlining how ecosystems evolve 

beyond individual products, embracing networks of related projects that collectively drive 

innovation and development. 

 

Jansen et al. [16] offer a comprehensive analysis of software ecosystems, exploring how 

to manage business networks in the software industry. It delves into how ecosystems 

function as networks of projects, organizations, and contributors. Manikas and Hansen 

[17] provide a systematic literature review of software ecosystems, summarizing key 

findings and trends. They emphasize the importance of community engagement, 

technological innovation, and regulatory factors in shaping ecosystem evolution. Iansiti 

and Levien [18] discuss strategy in the context of software ecosystems, emphasizing how 
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regulatory, economic, and technological factors influence ecosystem development and 

growth. 

 

Jacobson et al. [24] discuss the role of APIs in software ecosystems, emphasizing how 

they facilitate integration and collaboration, contributing to ecosystem growth and 

diversification. Newman [25] discusses the design of microservices and their role in 

software ecosystems, emphasizing how they promote modularity and flexibility, enabling 

ecosystems to adapt to changing technological landscapes. 

 

3.2 Research on cross-ecosystem packages. 

 

Furthermore, studies have explored the dynamics of cross-ecosystem packages. 

Constantinou et al. [2] conducted a comprehensive study to uncover the characteristics 

and evolution of cross-ecosystem packages. They found that only a small fraction of 

packages is distributed across multiple ecosystems, but these packages have a significant 

impact on dependency networks within each ecosystem, influencing packages across 

different ecosystems. Additionally, their study highlighted how these packages tend to 

favor certain ecosystems over others, based on support and new releases. Their findings 

also revealed that these packages are more popular and have larger developer 

communities, underscoring their importance and the need for further investigation. 

 

Complementing this, Kula et al. [12] embarked on a large-scale empirical analysis of 1.1 

million libraries from five distinct software ecosystems: PyPI, CRAN, Maven, 

RubyGems, and NPM. This study focused on libraries released across multiple 

ecosystems, identifying 4,146 GitHub repositories hosting such libraries. The findings 

emphasized the interconnectedness of different software ecosystems and how cross-

ecosystem libraries are deeply intertwined with the dependency networks of their 

ecosystems. The study also showed that these libraries attract contributors from within 

their ecosystems, reflecting the growing community reach beyond a single programming 

language. 

 

This body of research from multiple papers and contributors provides a comprehensive 

overview of software ecosystems and cross-ecosystem packages, highlighting their 
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characteristics, challenges, and opportunities. It lays the foundations for understanding 

how ecosystems function, evolve and interact and offers insights into their development 

and sustainability. 
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This section describes the methodology employed to extract and analyze data concerning 

cross-ecosystem packages across the five big software ecosystems that I previously 

mentioned (Maven, NPM, PyPi, Rubygems, CRAN). The primary goal was to identify 

patterns in the programming development, maintenance, and evolution of these packages. 

To this end, a multi-method approach was employed, combining Python and its powerful 

data manipulation library, Pandas, to handle and analyze the data. Additionally, to retrieve 

that data, PyDriller was utilized. PyDriller allowed me to extract all the necessary data 

from these packages, providing me useful insights into their structural and functional 

dynamics. In the next small sections I will analyze how I retrieve those insights and how 

I used them to come up with the patterns I was looking for. 

 

4.1 Data Collection 

 

Before I started the data collection process, I first had to discover the cross-ecosystem 

packages. To accomplish this, I used Kula et al [12] study and obtained detailed csv files 

for the 5 main ecosystems of my research. Those comma-separated values files contained 

all the repositories that take part in each ecosystem. So, to discover which of them appear 

in more than one ecosystem I first loaded them using python’s library Pandas in a separate 

DataFrame for each one of them. Then, all the individual DataFrames were concatenated 

into a single big DataFrame. This step was crucial as it merged data from different 

ecosystems into a unified structure, setting the stage for cross-ecosystem analysis. Pandas 
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‘concat’ function was used for this purpose, ensuring that indices were reset, and no data 

alignment issued occurred. The unified DataFrame was then grouped by the ‘Repository 

URL’ to aggregate data based on unique repository addresses. This aggregation was 

essential to identify and count the unique platforms associated with each repository. Two 

main aggregations were performed: counting unique platforms and concatenating 

platform names into a single string for each repository. Repositories appearing in more 

than one ecosystem were filtered out using a condition that selected repositories that the 

count of unique platforms was greater than one. This step pinpointed the repositories that 

are shared across multiple ecosystems, highlighting their cross-ecosystem nature. Finally, 

the filtered data, which now only contained the repositories that appeared in more than 

one ecosystem, was exported to a csv file. 

 

After producing this csv with all the repositories appearing in multiple ecosystems, I was 

ready to start collecting data about them. The data collection process for this thesis was 

structured around extracting detailed commit and file modification data from those 

multiple software repositories. This was achieved using Python, with the help of the 

PyDriller library, a tool specifically designed for mining data from Git repositories. 

Pydriller allows to extract a lot of details about the commits of the repository (such as its 

hash, message, author, committer, author date, committer date, modified files, project 

name, insertions, lines, files) and also information for the modified files of each commit 

(such as its old path, new path, filename, added lines, deleted lines, source code, methods, 

lines of code). The procedure was carefully planned to automate extraction, ensure 

accuracy, and handle potential errors efficiently and effectively. 

 

Initially, we imported the list of cross-ecosystem packages that we initially extracted 

using Pandas. Each repository URL from that csv file was processed to clone the 

repository locally, allowing direct interaction with the repository’s data. Using 

PyDriller’s ‘Repository’ module, the script traversed trough each commit in the cloned 

repositories. For every commit relevant data such as: Commit Hash, Commit Message, 

Commit Author Name, Commit Author Email, Commit Committer Name, Commit 

Committer Email, Commit Authored Date, Commit Committer Date, Branches, Merge, 

Commit Parents, Project Name, Project Path, Number of Deleted Lines, Number of 

Inserted Lines, Lines, Number of files changed were captured. Moreover, for each 



   

 

20 

 

commit, details about the modified files were extracted such as: Commit Hash, Old Path, 

New Path, File Name, Type of the Change, Diff, Diff Parsed, Added lines, Deleted Lines, 

Source code, Source code before, Methods, Methods before, Changed methods, Lines of 

code, Complexity, Token Count. The key connecting the modified files to the appropriate 

commit was the commit hash. 

 

The extracted data for commits and modified files were then written into CSV format file 

using Python’s CSV library, ensuring that the data could be easily accessed and analyzed 

in subsequent stages. These CSV files were zipped to optimize storage and maintain the 

integrity of the data during the transfer or backup processes. Each zip file was named after 

the name of the repository.  

 

Throughout the data collection process, various exceptions were carefully handled to 

ensure robustness. Errors such as ‘GitCommandError’, ‘ValueError’, 

‘NotADirectoryError’, ‘MemoryError’, ‘calledProcessError’ were captured, and for the 

repository causing them I left a comment on it, to know that it is problematic for that 

reason. If there were no errors while extracting the data for a certain repository, then I 

marked the comment column of that package as ‘Done’. This error handling process was 

crucial to maintain the continuity of the data extraction process across all repositories, 

ensuring that any issues were documented and could be addressed without disrupting the 

over data collection workflow. After this process data for 3304 of the total 3987 

repositories, was extracted without any errors. 

 

The methodology adopted for data collection not only facilitated a comprehensive 

extraction of the required data but also ensured that the process was scalable, repeatable, 

and efficient, laying a solid foundation for the detailed analysis that would follow in the 

study. 

 

4.2 Adding extension and Language information. 

 

Following the initial step of data collection, the next phase of the methodology involved 

enhancing the data that I extracted with some additional useful information for further 

use. Specifically, each modified file’s programming language and file extension were 
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determined and added to the dataset. This enrichment of the data was crucial for further 

analysis, as it allowed a more detailed insight into the nature of changes across different 

software ecosystems. The programming language of the file is instrumental in enabling 

this analysis, as ecosystems are programming language based. 

 

The first step of this data enrichment process was the creation of a language mapping 

based on the file extensions, which was derived from the classifications provided by the 

CLOC tool [26]. CLOC offers extensive coverage of various file types categorized per 

programming language, enhancing the reliability and comprehensiveness of the mapping. 

A dictionary was constructed to map each file extension to its corresponding 

programming language. This ‘dictionary’ included common programming languages 

such as C, Java, Python and less common ones like Elixir and Objective-C, ensuring broad 

coverage. 

 

The mapping was implemented in Python, utilizing a dictionary structure where keys 

represented file extensions and values represented the corresponding programming 

languages. This dictionary was then written to a CSV file to serve as a persistent and 

easily accessible reference for language identification. The CSV file creation involved 

using Python’s ‘csv’ module to write the extension-language pairs into a file, ensuring 

that this vital information was correctly recorded and retrievable for future processing 

steps. 

 

The main data enrichment process was conducted by another Python script that processed 

each entry in the dataset of modified files. First, the language mapping CSV file was 

loaded into a DataFrame, and a dictionary was created from it to facilitate quick lookup 

operations. This setup ensured that the mapping could be efficiently accessed during the 

data processing.  

 

A function was designed to extract the file extension from each file name. This function 

also handled edge cases such as files without extensions and specific files like ‘LICENSE’ 

which was treated as ‘Unknown’. Such files are important, but not dedicated to a specific 

programming language, therefore they must be excluded from the pattern finding process. 

Using this function, for each file in the data (modified files) the script calculated the file 
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extension and the programming language. These values were then added as new columns 

to the DataFrame, providing a richer dataset that included both the type of file and the 

programming context. The enriched DataFrame was then saved into a new CSV file 

within the ZIP file. This process was repeated for the full set of packages.  

 

4.3 Commit Time Analysis and Threshold Determination. 

 

The subsequent phase of the methodology involved analyzing the timing of commits for 

each programming language within the repositories and establishing thresholds to classify 

commit intervals as either ‘Gap’ or ‘No Gap’. This step of the methodology is important 

for understanding the activity patterns. 

 

First, each repository’s ZIP file, which contains the modified_files_languages and 

commits csv files was processed to merge these two datasets. The merging of these two 

csv files was achieved by first extracting them from their CSV files within the ZIP file, 

then the modified files data was filtered to exclude entries that belong to languages who 

were non-programming, such as README or Git configuration files. After that, the 

remaining modified files data was merged with the commits data on the ‘Commit Hash’ 

field. As previously mentioned, the ‘key’ connecting those two files is ‘Commit Hash’ as 

it associates each commit with the programming languages of the files affected in that 

commit. 

 

For each programming language in the data, the entries were sorted by the ‘Commit 

Authored Date’ and then the difference between two consecutive commits of that 

language was calculated. This step was crucial for determining the frequency and 

regularity of commits per language. Statistical analysis was due next, where the average 

of the time differences and the standard deviation of those time differences were 

calculated. These two statistics provided insights into the typical commit intervals and 

the variability of each language context. 

 

An important part of this phase was setting the threshold for each Language to classify 

the commit intervals. For each language, the threshold was defined as the sum of the 

average time difference and the standard deviation of the time differences, the two 
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statistics that were calculated before. This threshold helped identify unusually long 

intervals between commits, classified as ‘Gap’, and shorter intervals classified as ‘No 

Gap’. The way that those intervals were classified was simple. Intervals exceeding the 

threshold were labeled as ‘Gap’, while shorter intervals were labeled as ‘No Gaps’. This 

classification was added to the dataset, enhancing the data with significant insights into 

the commit intervals. 

 

Two CSV files were generated during this process, the ‘thresholds’ and 

‘commit_time_difference’. The ‘thresholds’ CSV file contained detailed statistics for 

each language, including average time differences, standard deviation, the threshold, 

which is the sum of the previous two, and the-time difference between the first commit 

containing that language and the first commit of that repository, as well as the difference 

between the last commit containing that language and the last commit of the repository.  

The ‘commit_time_difference’ documented each commit’s timing details, including the 

programming language, the date and time of the actual and the next commit, the 

calculated time difference between the previous two, the time difference in days, and the 

classification of that interval (Gap or No Gap). 

 

4.4 Language Consistency verification process. 

 

An essential step in my methodology consisted of verifying the consistency of 

programming languages used in each repository against the expected languages based on 

the repository’s associated platforms. This verification ensured that the subsequent 

analysis and visualization would be meaningful and based on accurate repository data. 

 

Initially, a predefined mapping was established to associate each software platform with 

its typical used programming language. To be more specific, repositories on Maven were 

expected to use Java, repositories on PyPi were expected to use python, repositories on 

CRAN were expected to use R, repositories on NPM were expected to use JavaScript and 

repositories on Rubygems were expected to use Ruby. This mapping was crucial to make 

sure which languages should be present in the repositories associated with each platform. 
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The process began with the extraction of existing language data from each repository. For 

each repository listed as ‘Done’ in the preliminary report 

(shared_repos_report_final.csv), indicating that it had previously been processed without 

errors, the associated ZIP file was accessed to extract language data. This was done by 

reading the ‘thesholds.csv’ file from the ZIP archive, which as we mentioned before, 

contained information about the languages detected in the repository during the earlier 

analyses. 

 

For each repository, the languages extracted from the thresolds.csv file were then cross-

verified against the expected languages derived from the platform-language mapping we 

mentioned before. This verification involved: 

• Extracting the platforms associated with the repository from the preliminary 

report (shared_repos_report_final.csv). 

• Finding the expected languages for these platforms based on the mapping. 

• Counting the number of expected languages that matched the languages actually 

found in the repository (through the thresholds.csv) 

If fewer than two of the repository’s expected languages were found in the repository’s 

actual data, then it was flagged in the comment section as: ‘Repository languages do not 

match’. This flagging was important because it indicated an ‘issue’ for those repositories, 

which was that they were not actually supported by 1 or more platforms so there was no 

point in further analyzing it. These cases may occur because of a wrapper. The package 

is probably supporting both languages, but don’t commit in both languages. 

 

Finally, the updated data, including the comments about language inconsistency was 

written back to a final CSV file. This file served as a comprehensive record of each 

repository’s status regarding language consistency, informing the next steps in the 

methodology and ensuring that only repositories who are supported by more than 1 

platform are further analyzed. 
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4.5 Visualizing Commit Activity over time. 

 

The next step in the methodology involved visualizing the timeline of each repository’s 

commit activity across its main programming languages. The main criterion for a 

repository to undergo this process was to pass the language consistency check in the 

previous step and its ‘Comment’ column to still be marked as ‘Done’. This visualization 

was created by marking each month with colors corresponding to the activity status 

(‘Gap’ or ‘No Gap’) for each language. This part of the entire process aimed to provide a 

clear, visual representation of the temporal patterns of commits, facilitating easy 

identification of active and inactive periods across different programming languages 

within each repository. 

 

Firstly, the process starts by identifying the expected languages for each repository based 

on its platform. A mapping of platforms to their main languages (e.g., NPM to Javascript, 

PyPi to Python) is used to determine these expected languages. This mapping ensures that 

the analysis focuses on relevant languages avoiding other less significant languages. 

 

For each repository listed in a centralized CSV file, the script extracts the repository name 

and locates the corresponding ZIP file containing the commit data. If the Zip file exists, 

it proceeds to process the data. If it does not exist, the repository is skipped, and a log 

message is generated. 

 

The commit data is read from a ‘commit_time_differences.csv’ file within the 

repository’s ZIP file. The authored dated of the commits are parsed, and languages are 

standardized by stripping any leading or trailing whitespace. The script then filters this 

data to include only commits in the languages determined to be relevant from the platform 

mapping. 

 

Also, a full range of commit dates is calculated from the earliest to the latest commit. 

Based on this range, a list of months is generated. For each language present after 

filtering, the script initializes a DataFrame where each row represents a month, and each 

column represents a language. All cells are initially set to ‘Gap’ indicating no activity. 

For each language, the script identifies the months in which commits were made and 
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marks these in the DataFrame as ‘No Gap’. This marking is based on the actual commit 

authored dates, reflecting active development periods of that language within the 

repository. 

 

An excel workbook is created to visually represent this timeline. Cells are colored green 

for ‘No Gap’ and red for ‘Gap’. This coloring provides a visual representation of 

repository’s activity over its whole timeline, making it easy for me to spot trends and 

patterns amongst the repository’s main languages.  

 

Once the workbook is formatted, it is saved into an in-memory buffer and then written 

back into the repository’s ZIP file as a new Excel file named as: {repository’s name} 

_commit_activity_final.csv. This file serves as a final, visual summary of the repositor’s 

activity over time, providing valuable insights into the development dynamics based on 

the filtered programming languages. 

 

4.6 Discrepancy Percentage calculation. 

 

The discrepancy percentage is a crucial metric in the study of cross-ecosystem packages 

to come away with evolution patterns. It quantifies the difference in commit activity 

between the two languages associated in a repository, expressed as a percentage over the 

whole series of months of the repository. To make it clearer, I provide some examples 

below:  

 

Figure 1: 

  

 

 

Figure 1 is libcredit’s1 package timeline of commits. As we can see the only month that 

the 2 main languages of this repository (Python and Javascript) have difference in their 

 
1 https://github.com/commonsmachinery/libcredit 

https://github.com/commonsmachinery/libcredit
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commit activity (the one is Gap, and the other is No Gap) is October of 2013. Based on 

the calculation of the discrepancy percentage this is 25%. 

 

 

Figure 2 

 

 

Figure 2 is Message-Bus’s 2package timeline. Here the only difference is August of 2013 

where it is Gap in Java (there are no commits modifying java files in that month) but there 

is activity about Ruby. For this example, the discrepancy percentage is 50%. 

 

This metric, as can be seen from the examples above, provides insights into the 

development patterns and synchronization between different languages within cross-

ecosystem packages, highlighting how well these packages integrate and evolve across 

ecosystems. 

 

To calculate the discrepancy percentage for repositories associated with exactly two 

platforms, information about repositories was gathered from a centralized CSV file 

(called final_repos.csv), which contains details about each repository, including its URL, 

the platforms it belongs to, and the count of platforms. Inside this CSV file, there are only 

the repositories that passed the check about Language Consistency that I mentioned 

before. Only repositories associated with exactly two platforms were selected for further 

analysis, and the calculation of the discrepancy percentage. That way we ensured the 

focus remained on packages spanning across two different ecosystems, making the 

discrepancy percentage particularly meaningful. 

 

For each repository, the commit activity data was extracted from the 

commit_activity_final excel file contained within the repository’s ZIP archive. This Excel 

file provides a timeline of the repository’s activity, recording the status of each language’s 

commit activity (Gap or No Gap) for each month, as we also mentioned before. The excel 

file was then processed to count the number of months with discrepancies between the 

 
2 https://github.com/groupon/Message-Bus 

https://github.com/groupon/Message-Bus
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two languages’ activities. A discrepancy was recorded for a month if one language 

showed a ‘Gap’ (indicating there were no commits including this language, during that 

month) while the other showed ‘No Gap’ (indicating there were commits including this 

language, during that month). The total number of months was also counted. 

 

The discrepancy percentage was then calculated as the ratio of discrepancy months to the 

total number of months, reflecting how often the two languages’ activities are out of sync, 

indicating differences in their development patterns. The discrepancy percentages, along 

with the repositories’ information, were saved to a new CSV file (called 

final_repos_months.csv), serving as a comprehensive record of each repository’s 

discrepancy percentage (and other metrics in the future), providing valuable data for 

further analysis or reporting. 

 

The discrepancy percentage metric offers crucial insights into the synchronization 

between different programming languages within cross-ecosystem packages. By 

quantifying how often these languages' activities diverge, we highlight potential areas for 

improvement in package integration and development strategies. Understanding these 

patterns is essential for identifying different patterns, to then classify each repository 

based on its commit activity. 

 

4.7 Language Percentage calculation. 

 

The language percentage is a metric that measures how much of the total timeline a given 

programming language shows active development (No Gaps). To make it clearer, we are 

going to revisit the previous examples:  

 

Figure 3: 
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For the libcredit package as we can see from the timeline of the two languages (Python 

and Javascript), Python has been active for the whole timeline of the package. Therefore, 

its percentage is 100%. On the other hand, Javascript has only been active for 3 of the 4 

months so for Javascript the percentage is 75%. 

 

Figure 4: 

 

 

In the Message_Bus case we can clearly see that Java misses out in August of 2013 so 

Java’s percentage is 50% and Ruby has activity throughout the whole timeline, which 

makes it 100% percentage. 

 

This metric offers insights into the consistency and continuity of development across 

different languages within cross-ecosystem packages, highlighting their integration and 

evolution over time. 

 

To calculate the language percentage of each language of a package, commit activity data 

for each repository is extracted from the Excel file (commit_activity_data) stored inside 

each package’s ZIP file. This file, as we also mentioned before, records the activityfor 

each month for the languages of the package. This Excel data is read into a DataFrame 

and its values are converted into numerical values: ‘No Gap’ is mapped to 1, and ‘Gap’ 

is mapped to 0. This conversion simplifies the calculation process, making it easy to sum 

up the active months for each language.  

 

For each main language (the five languages associated with the big five ecosystems I am 

working with), the number of months with active commits on that language is counted. 

This count is then divided by the total number of months of the package to calculate the 

percentage of time the language was actively used in development. This percentage is 

recorded for each language, offering a direct comparison between them. Additionally, the 

difference between the percentages of the two languages is computed, highlighting the 

disparity or balance in their usage over the repository's timeline. This difference provides 
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further insights into how well the two languages are integrated and whether one language 

dominates the development cycle. 

 

The language percentages and difference between them are stored in the same CSV file 

which consolidates the information about the Discrepancy percentage as well. This file 

serves a comprehensive record of those two metrics that will be crucial to extract patterns 

in the language usage.  

 

The language percentage metric offers a crucial understanding of the development 

patterns and consistency of cross-ecosystem packages. By calculating how much of the 

total timeline each language shows active development, it highlights the balance or 

disparity between different languages, reflecting their integration into the project’s 

ecosystem.  

 

4.8 Identifying possible Significant Language Shifts. 

 

In addition to the primary analyses, the methodology I used to identify the patterns 

incorporates a specialized process to identify possible significant language shifts within 

repositories. This involves detecting periods where a programming language has 

sustained activity for six or more consecutive months, followed by a period of inactivity 

(gaps), suggesting potential shifts in language usage. I chose the six months threshold to 

set a language as significant language for the repository based on the thought that it strikes 

a balance between sensitivity and specificity in identifying meaningful shifts. While 

shorter thresholds might lead to false positives by capturing temporary fluctuations, 

longer thresholds could overlook shorter-term shifts or periods of less intense 

development. Additionally, six months of inactivity in an active project is less likely to 

be a random occurrence and is more indicative of a shift in language usage, making it a 

reasonable sign for detecting significant language shifts.  

 

The whole process starts by reading the commit activity data from Excel, where each 

months’ activity for each language is recorded, as previously explained. The data 

extracted from the commit activity excel file is then processed to replace the textual 

representations of ‘Gap’ or ‘No Gap’ with 0 and 1 (0 for Gap and 1 for No Gap). That 
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way the identification of shifts is simplified. For each language in a repository, the script 

tracks the continuity of active months and detects when a shift to inactivity occurs after a 

sustained period of activity. If a language shows active development for at least six 

consecutive months followed by a single gap, it is then flagged as a possible significant 

language shift.  

 

This detection mechanism is applied to every repository. The script analyzes the data of 

the package for shifts and records the corresponding dates of any possible shifts. 

Repositories with detected possible shifts are extracted in a csv file, providing a base for 

further manual verification to determine if these shifts correspond to actual language 

migrations. 

 

While manually looking each of those possible language shifts extracted in a separate csv 

file, I was also monitoring the metrics of each repository (Discrepancy percentage and 

Language Percentage). These two metrics offer additional insights into the consistency 

and synchronization of development efforts between the two languages of the repository. 

This dual approach of both monitoring the calculated metrics of the package but also 

manual verification I performed on the commit activity timeline, ensured an in-depth 

analysis of significant language shifts.  

 

This sectiondetailed the methodology used to analyze cross-ecosystem packages across 

Maven, NPM, PyPi, Rubygems and CRAN, aiming to identify patterns in their 

development, maintenance, and evolution regarding their programming language use. 

Using Python, Pandas and PyDriller mainly, the process involved several critical steps. 

From data collection using the PyDriller, to data cleaning from the Language Consistency 

verification, to calculating metrics such as Discrepancy Percentage and Language 

Percentage to analyze all the data I collected. This comprehensive approach ensured 

reliable data handling and analysis, setting the stage for revealing the evolution patterns 

in the subsequent results chapter. 
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This chapter presents the findings from the extensive analysis conducted on the cross-

ecosystem packages across the five major software ecosystems: Maven, PyPi, NPM, 

Rubygems and CRAN. Through the metrics I calculated and manual inspection of each 

repository’s commit activity, I have successfully identified patterns in programming 

language usage within these packages. The metrics, including the Discrepancy Percentage 

as well as the Language Percentage for each language, alongside the manual review of 

package’s timelines, have provided a reliable framework for understanding how 

programming languages are adopted, used, and shifted over time in these cross ecosystem 

packages. The next sections will dive into these patterns that I found, providing useful 

information and examples for each one of them. 

 

5.1 Pattern 1: Base language with light support of other language.  

 

In my analysis of cross-ecosystem packages, one pattern that emerged is the “Base 

Language with light support of other language” pattern. This pattern is characterized by 

the presence of a dominant base language, while lightly supporting another language. 

This pattern is particularly notable in repositories where the metric of the Discrepancy 

percentage is high and there is also large Language percentage difference between the 

two languages. Below we can see some examples: 
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Figure 5 

 

 

 

 

 

 

In Figure 5 we have ember-auth’s 3 timeline of activity. In the second column we see the 

continuous support of Javascript (100% Language Percentage) since all time periods are 

No Gap. On the other hand, we have activity in Ruby in only one of the total nine months 

of the total timeline (that makes it only 11.1% Language Percentage). High Discrepancy 

Percentage (88.9%) and at the same time high Language Percentage Difference, classifies 

this package as Pattern 1. 

 

Figure 6 

 

 

 

 

 

 

In the second example provided we have the timeline of the resources-api-v14 package. 

As we can see in this example, Python is the most significant language with a Discrepancy 

Percentage of 83.3%, and the Language Percentage Difference equals 50%. 

 

Characteristics of Pattern 1: 

This pattern is identified through a combination of high discrepancy percentage and a 

considerable Language percentage difference between the 2 languages used in that 

package. Specifically, repositories falling into this pattern have a discrepancy percentage 

 
3 https://github.com/heartsentwined/ember-auth 
4 https://github.com/schul-cloud/resources-api-v1 

https://github.com/heartsentwined/ember-auth
https://github.com/schul-cloud/resources-api-v1
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greater than 50% and a language percentage difference greater than 40%. These 2 metrics 

combined suggest that one language is consistently used more actively than the other, 

which only plays a minor or supporting role. 

 

I choose the threshold of 50% for the discrepancy percentage and 40% for the Language 

Percentage difference by calculating the average results for each metric and by manually 

inspecting example packages of different numbers on these 2 metrics. I used the same 

methodology for every other threshold I used in defining the patterns. 

 

5.2 Pattern 2: Parallel support in both languages. 

 

In my exploration of cross-ecosystem packages, another distinct pattern identified is the 

“Parallel Support in both languages” pattern. This pattern is characterized by minimal 

discrepancy percentages, indicating that both languages used within the repository in the 

same way (used or not used actively) with similar levels of commitment over time. Below 

we can see some examples:  

 

Figure 7:  

 

 

 

 

 

Figure 7 displays tatl’s5 package timeline. As we can see for the first 2 months, there is 

commit activity for both languages. This is followed by 2 months of inactivity, for both 

languages again. This is a typical example of this pattern. Notably, tatl’s Discrepancy 

percentage is 0%, reflecting identical commit activity for both languages throughout the 

entire timeline, thereby perfectly aligning with the characteristics of this pattern. 

 
5 https://github.com/tln/tatl 

https://github.com/tln/tatl
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Figure 8:  

 

 

 

 

 

 

 

 

 

Figure 8 is a big part of the dash-extendable-graph 6commit activity timeline. Observing 

the results, it is evident the commit activity between the languages only differs in one 

month of this big part of the timeline. Given that the total timeline for commits in this 

package spans 43 months, such a minimal discrepancy, nearly close to 0%, categorizes 

this case under Pattern 2. 

 

Characteristics of pattern 2:  

Pattern 2 is marked by a very low discrepancy percentage- specifically, less than 5%. This 

statistic suggests that the activity between the two languages in these repositories is 

almost synchronous, with both languages showing similar levels of active development 

across the timeline. In repositories classifying in this pattern, the absence of significant 

gaps in development activity between the two languages implies a balanced use where 

both languages are essential to the project’s operations. 

 

The code used to classify repositories into this pattern checks for a discrepancy percentage 

that falls within this low range, ensuring that the languages are supported and evolved in 

almost parallel. 

 
6 https://github.com/bcliang/dash-extendable-graph 

https://github.com/bcliang/dash-extendable-graph
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In summary, Pattern 2 reveals a scenario where cross-ecosystem packages benefit from 

balanced and harmonious language usage, maintaining consistency and synergy across 

different programming languages within the same package.  

 

5.3 Pattern 3: Interchanging support in both languages. 

 

In the analysis of cross-ecosystem packages, Pattern 3 emerges as “Interchanging Support 

in Both Languages.”. This pattern is characterized by a lack of a clear dominant language 

but notable differences in the commit activity between the two languages and therefore 

notable numbers in the Discrepancy Percentage metric. Unlike pattern 1 where one 

language consistently leads, Pattern 3 indicates a more dynamic interchange where there 

is not a clear significant language. Below we can see some examples of this pattern:  

Figure 9: 

 

 

 

 

 

 

 

 

Figure 9 is a big part of the swim’s7 timeline. By observing the results from the commit 

activity excel file, we can clearly see that there is no significant language (Language 

percentages helps us confirm it: 35% Language 1, 66% Language 2) and there is a 

significant number of months that the commit activity differs between the languages 

(Discrepancy Percentage is 55%). 

 
7 https://github.com/swimos/swim 

https://github.com/swimos/swim
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Figure 10: 

 

 

 

 

 

 

 

 

 

Another example of this pattern is the stellarstation-api 8package visualized in figure 10. 

In this case also, there is no significant language from the above visualization and some 

discrepancy in the commit activity of the two languages. 

 

Characteristics of Pattern 3  

Pattern 3 is identified in repositories where the discrepancy percentage is notably high 

(over 45%), yet the percentage difference between the two languages remains relatively 

low (below 40%). This indicates that while both languages are used at the same level, 

their periods of activity differ over time, without one language consistently being more 

“active” than the other. 

 

In summary “Pattern 3: Interchanging support in both languages” reflects a flexible 

approach to software development within cross-ecosystem packages, where the 

interchanging support of languages facilitates comprehensive and adaptable project 

development. This pattern offers a unique perspective on how diverse technological 

environments and programming languages coexist over the life of a project, adapting to 

its changing needs and opportunities. 

 
8 https://github.com/infostellarinc/stellarstation-api 

https://github.com/infostellarinc/stellarstation-api
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5.4 Pattern 4: Language migration. 

 

Pattern 4, identified as “Language Migration”, represents a significant shift in the 

dominant programming language within a repository. This pattern is characterized by a 

transition from one of the main languages to another, as evidenced by continuous activity 

in a new language that replaces the previously dominant one. There might be some slight 

but insignificant overlap during migration. Below we can see some examples:  

 

Figure 11: 

 

 

 

 

 

 

Figure 11 is the part of the HanLP9 package where the switch happens. As we can clearly 

see from the visualization of the timeline, the significant language switches from 

Language 1 (Java) to Language 2 (Python). 

 
9 https://github.com/hankcs/HanLP 

https://github.com/hankcs/HanLP
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Figure 12: 

 

 

 

 

 

 

 

 

Figure 12 is the part of the Recongizers-Text 10 package where the language migration 

happens. This example illustrates a smoother transition from Language 1 (Javascript) to 

Language 2 (Python). Here we can also see that there is also some overlap between the 

languages, but it seems that the significant language is changing. 

 

Characteristics of Pattern 4 

Language migration is detected when a repository shows a clear switch in the primary 

language used for development, following a period where another language had 

maintained sustained activity. This transition is identified through an analytical process 

that tracks each language’s active months, following a period of reduced or no activity 

(Gaps) in its usage. This shift suggests a strategic decision to adopt a new primary 

language, possibly due to technological, team, or project direction changes.  

 

Detection process 

The code I used for this pattern did not automatically classify packages to this pattern. 

The code analyzed commit activity excel files from all the repositories to identify possible 

shifts in programming language. This is done by tracking the continuity of active months 

for each language and noting when a shift to a new language has possibly occurred. More 

 
10 https://github.com/Microsoft/Recognizers-Text 

https://github.com/Microsoft/Recognizers-Text
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information about this process can be found in the Methodology sub-section: Identifying 

Possible Language Shifts. 

 

In conclusion, Pattern 4 offers interesting insights into the strategic shifts in programming 

languages within projects. By identifying and analyzing these migrations, developers can 

gain valuable information into the adaptability in software development, ensuring that the 

projects they are working on remain relevant and efficient in the process of changing 

technological landscapes. 

 

5.5 Pattern 5: Attempt Success. 

 

Pattern 5, called “Attempt Success”, describes a scenario within cross-ecosystem 

packages where a new programming language successfully gets integrated into the 

project’s development workflow. This pattern is identified by the entry of a second 

language into the project after the initial 25% of the project timeline, and for the following 

time the 2 languages show similar levels of activity. This pattern reflects successful 

adoption and sustained use of a new language alongside the primary language. Below we 

can see some examples:  

 

Figure 13: 
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In Figure 13 there is a part of the 0x-monorepo 11package. During October of 2018 the 

second language of the repository is introduced. After its introduction the second 

language shows an active commitment to the repository’s workflow by showing 

consistent ‘No Gaps’. 

 

Figure 14: 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 is the point of introduction of the second language in the thrift12 package. As 

we can see after its introduction, the second language has a complimentary role, but still 

is actively engaged in the development of the package. 

 

Characteristics of Attempt Success 

This pattern is particularly interesting when a new language not only enters the 

development cycle but also achieves a balance in usage with the existing primary 

language. The criteria for identifying this pattern include:  

1) Late Entry: The second language appears after the first 25% of the total package 

timeline. 

2) Consistent Engagement: Following its introduction, the secondary language 

maintains a continuous presence in the timeline, marked by the absence of 

significant gaps. 

 
11 https://github.com/0xProject/0x-monorepo 
12 https://github.com/apache/thrift 

https://github.com/0xProject/0x-monorepo
https://github.com/apache/thrift
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3) Balanced Activity: Post-introduction, both the primary and secondary and 

secondary languages exhibit a balanced level of activity. This balance is 

quantified by ensuring that the difference in activity levels between the two 

languages is less than 50%, showing that new language is not supplementary but 

an integral part of the development. 

 

Detection Process 

The detection of this pattern involves a detailed examination of the commit activity data 

extracted from the package’s repositories. A script analyzed the activity status (Gaps or 

No Gaps) for each language over time, focusing on the presence of gaps before and 

consistent activity after the introduction threshold for the other language. The script 

ensures that the secondary language, once introduced, does not show big difference in 

activity compared to the primary language, confirming its successful integration and 

parallel development. 

 

In summary, Pattern 5 reveals a dynamic aspect of software development within cross-

ecosystem environments, where new technologies are not only tested but also 

successfully integrated into the ongoing project workflow. This pattern provides insights 

into the evolving nature of software projects and the successful management of multiple 

programming languages, contributing to a richer, more flexible development 

environment. 

 

5.6 Pattern 6: Attempt Failure. 

 

Pattern 6, referred to as “Attempt Failure”, characterizes a situation where a new 

programming language is introduced into a project after the 25% mark, but fails to sustain 

its presence until the end of the project timeline. This pattern identifies an unsuccessful 

attempt to incorporate a new language into the project’s development workflow, resulting 

in its abandonment before project completion. Below we can see some examples of this 

pattern: 
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Figure 15:                                                                                                                                               

 

 

 

 

 

 

 

In Figure 15 we have two important phases of the pv’s13 package timeline. In the first 

screenshot we have the time when the second language gets introduced in the package. In 

the second screenshot we can clearly see that the introduced language is clearly 

abandoned before the end of the timeline. 

Figure 16: 

 

 

 

 

 

 

 

 

Similarly for this example shown in Figure 12, which is visualizing a key part of the 

deck.gl’s 14package timeline, we can observe the introduction of the second language in 

April of 2019, and its complete abandonment in July of 2023. 

 

Characteristics of Attempt Failure 

The key attributes of this pattern include:  

1) Introduction of the new language: The project witnesses the entry of a second 

language at some point after the 25% during its timeline. 

 
13 https://github.com/biasmv/pv 
14 https://github.com/uber/deck.gl 

https://github.com/biasmv/pv
https://github.com/uber/deck.gl
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2) Subsequent Abandonment: Despite the initial adoption, the second language 

fails to maintain its presence or relevance throughout the project’s lifecycle. 

 

Detection and Verification Process 

The detection process for Attempt Failure mirrors that of Attempt Success, utilizing the 

same code to identify the packages that classify as Attempt Success. The difference 

between the two processes is that the code I used for Pattern 5 does not check if the 

language got abandoned in the end, so I manually inspect each package’s timeline to 

classify a certain package as Pattern 6. 

 

In summary, Pattern 6 highlights the dynamic nature of language adoption and the 

subsequent uncertainties involved in incorporating new technologies into software 

projects. 

 

5.7 Pattern 7: Unclear Pattern. 

 

Pattern 7, termed “Unclear Pattern”, classifies repositories where the discrepancy 

percentage between programming languages falls within a range that does not distinctly 

align with any predefined or new pattern. This pattern suggests a lack of notable trends 

or consistent language usage dynamics, making it challenging or impossible to categorize 

the repository into a specific pattern category. Below we can see some examples:  

 

Figure 17: 

 

 

 

Figure 17 is poseidon’s 15  package whole timeline. As we can observe from the 

visualization of its timeline there is only different activity for 1 of the total 5 months of 

the package, indicating there is not a clear pattern or a notable trend. 

 
15 https://github.com/Yodo1-backend/Poseidon 

https://github.com/Yodo1-backend/Poseidon
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Figure 18: 

 

 

 

 

 

In Figure 18 we can see the whole happybara’s16 timeline. By observing the timeline, we 

can see that there is only difference in the commit activity for May of 2017, resulting for 

10% discrepancy percentage and therefore classifying as Pattern 7. 

 

Characteristics of Unclear Pattern: 

The main features defining this pattern include:  

1) Discrepancy Percentage Range: Repositories classified under Pattern 7 exhibit 

a discrepancy percentage falling within a specific range, typically between 5% 

and 25%. This range indicates a moderate level of variance between the usage of 

different programming languages within the repository. 

2) Absence of Clear Trends: Despite the small presence of variance in language 

usage, repositories classified under Pattern 7 lack clear, identifiable patterns or 

trends in their language usage behavior. 

3) Uncertainty in Classification: Pattern 7 reflects the uncertainty surrounding the 

underlying language usage dynamics of the repository. While other patterns 

showcase distinct characteristics and behaviors, repositories categorized under 

Pattern 7 lack straightforward classification due to their mixed or inconclusive 

language usage patterns. 

 

 

 

 

 
16 https://github.com/amireh/happybara 

https://github.com/amireh/happybara
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Classification Process 

The classification of repositories into Pattern 7 involves the application of specific criteria 

to identify instances where the discrepancy percentage falls within the defined range (5% 

to 25%) and where no other pattern classification has been assigned. 

 

In summary, Pattern 7 represents a big category of repositories with unclear language 

usage dynamics that lack straightforward characteristics in order to classify them into a 

predefined or new pattern. 

 

5.8 Research Questions. 

 

1) Question: What is the total number of repositories that passed the Language 

Consistency verification?  

 

Answer: Although I collected data for 3987 repositories using the above detailed 

methodology, only 523 passed the Language verification process (more details 

about it in its own sub-section in the Methodology chapter) and were able for a 

further analysis.  

 

2) Question: What is the distribution of repositories across different patterns of 

language usage within cross-ecosystem packages?  

 

Answer: The analysis that I did reveals a varied distribution of repositories across 

the patterns that we discussed in the previous sub-sections. Among the identified 

patterns, Pattern 7, characterized by unclear or inconclusive language usage 

trends, emerges as the one with the most packages with 214 repositories. 

Following, Pattern 2, exhibiting parallel support in both languages, shows a 

notable presence with 78 repositories. Additionally, 73 repositories are classified 

under Pattern1. Pattern 5, representing Attempt Success, is observed in 17 

repositories, while Pattern 4 in 13 repositories. Furthermore, Pattern 3, 

showcasing interchanging support in both languages is found in only 7 

repositories while Pattern 6 is identified in 5 repositories. Notably, 116 

repositories remain unassigned to any specific pattern category. In total, the 
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analysis assigns patterns to 407 repositories, providing valuable insights into the 

diverse language usage within cross-ecosystem packages. 
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Chapter 6 

 

Discussion 

6.1 Pattern found empirically and Dataset Variability.                                                     48 

6.2 Understanding possible pattern origins.                                                                       48 

6.3 Analyzing Pattern differences in numbers.                                                                50 

6.4 Usefulness of the results.                                                                                              53 

6.5 Limitations.                                                                                                                 54 

 

6.1 Pattern discovery relies on the dataset. 

 

The patterns identified in this thesis regarding language usage within repositories are 

derived empirically from the dataset I worked with. It’s crucial to acknowledge that the 

number and nature of these patterns may differ with different datasets. Several factors 

contribute to this variability. 

 

Firstly, throughout the study I collected data for the cross-ecosystem packages of five 

ecosystems: Maven, NPM, PyPi, Rubygems and CRAN. If another composition of 

ecosystems is used for the research, then the results may differ, because of different 

repositories exhibiting distinct development patterns. Another big factor is the manual 

inspection and the thresholds that I chose. Different thresholds may produce different 

patterns. 

 

Overall, while the patterns identified empirically in my thesis provide valuable insights 

into language usage across cross-ecosystem packages, they represent only a subset of 

possible patterns within the broader software development landscape. 

 

6.2 Pattern interpretation 

 

• Pattern 1: Base language with light support of the other language. 
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This pattern likely emerges when a repository primarily uses one programming language 

for its core functionality while occasionally incorporating features or modules written in 

another language for supplementary purposes. The significant discrepancy percentage 

between the two languages indicates that one language dominates the development 

efforts. The sporadic activity in the second language suggests that its role is providing 

specialized functionality or addressing specific requirements that are suited to that 

language’s strengths. Reasons for this pattern could include exploiting language-specific 

optimizations, or integrating external systems that are more compatible with the 

secondary language. 

 

• Pattern 2: Parallel support in both languages. 

 

In this pattern, both languages exhibit similar levels of commit activity throughout the 

repository’s timeline, indicating a balanced and parallel development approach. This 

pattern underscores the capability of development teams to manage multiple languages 

efficiently, ensuring that no part of the project falls behind due to unequal attention or 

resource distribution. The presence of this pattern within a repository can often indicate 

a well-integrated project structure, where cross-functional teams work together to 

advance the project's goals without bias toward one technology stack over another. 

 

• Pattern 3: Interchanging support in both languages. 

 

The interchanging support pattern suggests a fluidity in language usage within the 

repository, where neither language emerges as the dominant one. Repositories exhibiting 

this pattern may demonstrate a project structure that accommodates and perhaps benefits 

from the strengths of different programming languages.  

 

• Pattern 4: Language Migration. 

 

Language Migration is a critical pattern to recognize as it can significantly impact project 

development and maintenance. It reflects deeper changes within a project’s lifecycle, 

such as shifts in technology preference, adaptation to market trends, or responses to 
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community feedback. Identifying this pattern may provide useful information into 

strategic decision-making processes regarding technology use within organizations. 

 

 

 

• Pattern 5: Attempt Success. 

 

The attempt success pattern showcases an effort to introduce a new language into the 

repository, with the intention of integrating it into the project's development workflow 

successfully. This pattern may occur when developers recognize the benefits of 

introducing and using a new language to address specific challenges, leverage unique 

features, or enhance the project's capabilities. Reasons for this pattern could include the 

need for language-specific tools or libraries, the desire to exploit the performance or 

efficiency gains offered by the new language, or the intention to attract contributors with 

expertise in the targeted language. 

 

• Pattern 6: Attempt failure. 

 

Contrary to the attempt success pattern, attempt failure indicates an unsuccessful attempt 

to introduce a new language into the repository, as evidenced by the language's 

abandonment before the end of the timeline. This pattern may result from factors such as 

technical challenges or limitations encountered during the integration process, 

insufficient community support or expertise in the new language or differences between 

project requirements and the capabilities of the chosen language. 

 

6.3 Comparing pattern characteristics 

 

The observed differences in average timeline duration, number of commits, and number 

of modified files among patterns may offer valuable insights into the nature, dynamics, 

and characteristics of software development projects:  
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Average Timeline Duration:  

Pattern 1: 77 months 

Pattern 2: 38 months 

Pattern 3: 27 months 

Pattern 4: 118 months 

Pattern 5: 60 months 

Pattern 6: 57 months 

Pattern 7: 60 months 

 

• Longer average timeline durations, as seen in repositories of Pattern 4 , may 

suggest that these projects have long-term development efforts. This long-term 

timeline of development might be the reason for the language migration of the 

package. 

• Short average timeline durations, as observed in Pattern 3 repositories, could 

indicate projects with specific objectives or shorter development cycles. 

 

Average Number of Commits: 

Pattern 1: 2622 commits. 

Pattern 2: 172 commits. 

Pattern 3: 230 commits. 

Pattern 4: 2244 commits. 

Pattern 5: 2406 commits. 

Pattern 6: 1874 commits. 

Pattern 7: 589 commits. 
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• Higher average numbers of commits, as seen in Pattern1, 4 and 5 repositories, 

may happen because these projects are characterized by active collaboration, 

frequent updates and therefore commits, and continuous integration practices. 

These projects might prioritize agility and responsiveness to changes. 

• Lower average numbers of commits, as observed in Pattern 2 and 3, might suggest 

projects with more conservative approaches. These projects may prioritize code 

stability and reliability over frequent changes and adjustments. 

 

Average Number of Modified Files:  

Pattern 1: 12953 modified files. 

Pattern 2: 2242 modified files. 

Pattern 3: 15464 modified files. 

Pattern 4: 20195 modified files. 

Pattern 5: 13599 modified files. 

Pattern 6: 11247 modified files. 

Pattern 7: 2844 modified files. 
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• Higher average numbers of modified files, as seen in Pattern 3 and 4, could 

indicate projects undergoing significant refactoring, architectural changes, or 

extensive feature expansions. These projects may experience ongoing 

evolution requiring modifying multiple modules and components. 

• Lower average of modified files, as observed in Pattern 2 and 7, might suggest 

projects with narrower scope, simple architectures, or limited development 

activities.  

 

6.4 Usefulness of the results. 

 

The patterns analyzed in this thesis are important for several reasons. Firstly, they offer 

deep insights into how software projects evolve over time, highlighting trends in language 

usage, commit activity, and repository characteristics. These insights guide strategic 

decision-making by helping stakeholders identify successful projects and avoid 

unsuccessful ones. Moreover, the patterns enable comparative analysis, allowing 

developers to evaluate their techniques against others and identify areas for improvement. 

Additionally, the patterns serve as predictive indicators of future development trends, 

enabling proactive adaptation. Lastly, the patterns that I discovered or patterns in general 

may foster collaboration and communication among stakeholders, providing a common 

language for discussing project characteristics and aligning goals and expectations. 

Overall, identifying these patterns enhances project management, drives improvements 

in software engineering practices, and fosters innovation in the field. 

 

After analyzing why these patterns are useful, the examination that emerges after that is 

to whom are these patterns useful. The answer is that these patterns hold utility for both 

developers and researchers in the software development domain. For developers, 

understanding these patterns helps them make informed decisions regarding project 

management. By recognizing the development trends and patterns, developers can better 

prepare for challenges and optimize their workflows. Additionally, for researchers these 

patterns can serve as a foundation for further empirical studies and theoretical 

investigations. Furthermore, researchers can leverage these patterns to develop predictive 

models, validate hypotheses, and contribute to the development of best practices and 

guidelines in the field. 
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6.5 Limitations. 

 

While the identified patterns provide valuable insights into programming language usage 

across repositories, it's important to acknowledge the absence of direct validation from 

developers regarding the intentions behind language choices. Without direct confirmation 

from developers, the reasoning behind the language usages that lead to these patterns 

remains uncertain, and there’s a possibility that other factors, that I did not mention in the 

Discussion section, influenced the language usage.  
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Chapter 7 

 

Conclusions and Future Work. 

 

In this thesis, I managed a comprehensive analysis of cross-ecosystem software packages, 

focusing on identifying patterns in programming language usage. Through a multi-step 

methodology involving data collection, enrichment, and analysis, I uncovered seven 

distinct patterns, shedding light on the dynamics of language usage within these packages. 

These patterns ranged from base languages with light support to instances of language 

migration, providing valuable insights into the evolution and maintenance of cross-

ecosystem packages. 

 

By leveraging various metrics and manual verification processes, I not only identified 

these patterns but also provided context and possible explanations for their occurrence. 

This deeper understanding of language usage patterns in cross-ecosystem packages 

contributes to the broader discussion on software development practices. 

 

In the future, there are several opportunities for extra research based on the findings of 

this thesis. Firstly, extending the analysis to include additional software ecosystems 

beyond the ones studied in this thesis could provide a more comprehensive understanding 

of language usage patterns across different domains. Exploring emerging ecosystems 

could uncover unique patterns and trends that were not captured in the current study. 

Also, engaging with developers to gain deeper insights into their decision-making 

processes regarding programming language selection and to validate the identified 

patterns against their actual intentions, may be a future research topic. This approach 

would offer a more comprehensive understanding of the dynamics driving language usage 

in software development projects. In addition, an interesting topic for future work would 

be how different characteristics of the package such as its age or the developers involved, 

affect the pattern of the pattern. 
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