
Diploma Project

Reducing Microservice Response Time

through an Adaptive and Proactive

Processor Wake-up Mechanism

Christoforos Seas

DEPARTMENT OF COMPUTER SCIENCE

May 2024

UNIVERSITY OF CYPRUS

Faculty of Pure and Applied Sciences

DEPARTMENT OF COMPUTER SCIENCE

Reducing Microservice Response Time

through an Adaptive and Proactive

Processor Wake-up Mechanism

Christoforos Seas

Advisor:

Dr. Haris Volos

The Thesis was submitted in partial fulfillment of the requirements for obtaining the

Computer Science degree of the Department of Computer Science of the University of Cyprus

May 2024

i

Acknowledgements

I want to express my heartfelt gratitude to Dr. Haris Volos for his exceptional coordination and

guidance throughout this thesis. Without his support and advice, this work would not have been

possible.

I also wish to thank Dr. Yanos Sazeides for his invaluable mentorship during my two-month

summer internship in my first year of studies. His insights and professional research skills

have significantly contributed to my growth. I am also grateful to him for serving as another

supervisor for my thesis.

Lastly, I extend my sincere thanks to Ms. Georgia Antoniou, who assisted me during my

internship and this thesis, despite her busy schedule pursuing her Ph.D.

ii

ABSTRACT

In the context of microservices architecture, enhancing operational efficiency is crucial for
optimal performance. This thesis, addresses the challenge of latency arising from CPU
wake-ups from deep sleep C-States in microservices environments. In Linux systems, an
integral component known as the ”Idle governor” manages CPU states, including various sleep
modes referred to as C-States, to optimize power consumption while ensuring system
responsiveness. The idle governor dynamically adjusts CPU states based on system workload,
optimizing power consumption while maintaining responsiveness.

However, one notable outcome of the idle governor’s operation is the potential for it to put the
CPU into a deep idle C-State, resulting in transition overhead when the CPU needs to wake-up
in response to device requests. This transition overhead can contribute to latency, impacting the
responsiveness of microservices.

This research endeavors to tackle the latency associated with CPU idleness by proposing a
practical solution: implementing a mechanism to awaken CPUs from idle states, prior to
processing incoming requests.

By introducing this proactive wake-up mechanism, the study aims to reduce the latency
incurred during CPU wake-up from idle states, consequently improving the responsiveness and
overall performance of microservices. Through practical implementation and experimentation,
the efficacy of the proposed approach is assessed, focusing on latency reduction.

Additionally, the proactive wake-up mechanism is enhanced through training with a hill
climbing AI algorithm. This AI algorithm optimizes the timing of sending pre-query requests
to awaken CPUs and immediately serve incoming queries, further refining the responsiveness
of microservices architecture.

The outcomes of this research offer valuable insights into enhancing microservices efficiency by
leveraging CPU wake-up mechanisms. By prioritizing responsiveness through proactive CPU
management, this work contributes to the advancement of performance optimization strategies
in microservices-based applications, ultimately fostering enhanced operational efficiency and
user experience.

Keywords: C-States, Idle governor, Pre-Query Request: The request sent before the actual
request to wake up the processor

iii

TABLE OF CONTENTS

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES ix

LIST OF ACRONYMS x

1 Introduction 1
1.1 Motivation . 1
1.2 Our Hypothesis . 2
1.3 C-States Impact on Latency . 2
1.4 Contributions . 2

2 Background 4
2.1 Microservices and their Latency Concerns . 4
2.2 gRPCs . 5

2.2.1 Grpc.io Examples . 5
2.3 Linux Power Management and Idle Governors 6

2.3.1 Menu and Ladder Idle Governors . 7
2.3.2 Ubuntu 20.04 Power Management . 8

2.4 Benchmarks . 8
2.4.1 HDSearch . 9
2.4.2 Router . 11
2.4.3 Benchmarks Objectives . 12

2.5 Hill Climbing Algorithm . 13

3 Proactive Wake-up Mechanism 15
3.1 Scenarios for Proactive Wake-Up Mechanism 16

3.1.1 Application in Our Experiments . 16

iv

3.2 Optimization Using a Hill Climbing Algorithm 19

4 Research Methodology 22
4.1 Tools Used . 22

4.1.1 SocWatch . 22
4.1.2 Turbostat . 23

4.2 Fixed CPU Frequency . 24
4.3 SMT Disabled . 25
4.4 IRQ-Core Bind . 25
4.5 Utilizing CloudLab for Experimentation . 26

4.5.1 Limitations: . 27
4.6 Workload Distributions . 27

4.6.1 Poisson Distribution . 28
4.6.2 Exponential Distribution . 28
4.6.3 How Distributions Were Used . 28

4.7 Metrics Used . 29
4.7.1 Average Latency . 29
4.7.2 99th Percentile Latency . 29

4.8 Applying Socket Pre-Query Request in gRPC Helloworld Experiment 30
4.9 System Information . 31

5 Results 32
5.1 Custom Interrupt Micro Benchmark . 32

5.1.1 Latency Comparisons With Different Parameters 36
5.2 HDSearch . 44

5.2.1 Observations with SocWatch . 47
5.3 Router MicroSuite Benchmark . 49
5.4 gRPC Helloworld Experiment . 50
5.5 TCP Delayed Acknowledgment . 51

5.5.1 Explanation of TCP Delayed Acknowledgment 52

6 Related Work 53
6.1 Menu Governor Enhancement Approaches . 53
6.2 Previous Work on Pre-Wakeup . 53

7 Conclusions 54
7.1 Conclusion . 54
7.2 Future Work . 54

v

7.2.1 Further Research and Investigation 54
7.2.2 Linux Kernel and Idle Governor Optimizations 55
7.2.3 Exploring Different Linux Distributions 56

BIBLIOGRAPHY 57

vi

LIST OF TABLES

4.1 C-States Transitions Example as Shown in SocWatch 23
4.2 IRQ Transitions Example as Shown in SocWatch 23
4.3 System Details . 31

5.1 Custom Interrupt Micro Benchmark Results with Poisson Distribution, C-States
Enabled and Pre-Request Interval 10μs. 35

5.2 Custom Interrupt Micro Benchmark Results with Exponential Distribution, C-
States Enabled and Pre-Request Interval 10 μs. 35

5.3 Custom Interrupt Micro Benchmark Results with Exponential Distribution, C-
States Enabled and Pre-Request Interval 300 μs. 35

5.4 Custom Interrupt Micro Benchmark Results with Fixed Interval Time, C-States
Enabled and Pre-Request Interval 10 μs. 36

5.5 Custom Interrupt Micro Benchmark Results with Fixed Interval Time, C-States
Enabled and Pre-Query Request Interval 300 μs. 36

5.6 Micro Benchmark C-State Transitions With Query Interval 10ms and 50μs Pre-
Query Request Interval . 43

5.7 Micro Benchmark C-State Transitions With Query Interval 1ms and 50μs Pre-
Query Request Interval . 43

5.8 Comparison of Latencies (ms) for Different Configurations, with Exponential
Distribution. Each value set, separated by “-”, represents the average latency, the
average 99th percentile tail latency, and the highest 99th percentile tail latency,
respectively. 44

5.9 Comparison of Latencies (ms) for Different Configurations, with Fixed
Interval Time. Each value set, separated by “-”, represents the average latency,
the average 99th percentile tail latency, and the highest 99th percentile tail
latency, respectively. 44

5.10 Comparison of Latencies (ms) for Different Configurations Without Running
on Specific Core and Using Exponential Distribution. Each value set, separated
by “-”, represents the average latency, the average 99th percentile tail latency,
and the highest 99th percentile tail latency, respectively. 45

vii

5.11 Comparison of Latencies (ms) for Different Configurations With C-States
Disabled and Exponential Distribution. Each value set, separated by “-”,
represents the average latency, the average 99th percentile tail latency, and the
highest 99th percentile tail latency, respectively. 45

5.12 Comparison of Latencies (ms) for Different Configurations, with Exponential
Distribution on c220g2. Each value set, separated by “-”, represents the average
latency, the average 99th percentile tail latency, and the highest 99th percentile
tail latency, respectively. 46

5.13 Comparison of Latencies (ms) for Different Configurations, with Fixed
Interval Time on c220g2. Each value set, separated by “-”, represents the
average latency, the average 99th percentile tail latency, and the highest 99th
percentile tail latency, respectively. 46

5.14 C-States Residencies in HDSearch in Running Core (1) 49
5.15 Comparison of Latencies (ms) for Different Configurations in Router, with

Exponential Distribution. Each value set, separated by “-”, represents the
average latency, the average 99th percentile tail latency, and the highest 99th
percentile tail latency, respectively. 50

5.16 Latency Measurements with Different Pre-Query Interval Times in gRPC
Helloworld Example with Fixed Interval Time 10ms 51

5.17 Latency Measurements with Different Pre-Query Interval Times in gRPC
Helloworld Example with Fixed Interval Time 2ms 51

5.18 Latency Measurements with Different Pre-Query Interval Times in gRPC
Helloworld Example with Exponential Distribution with Average Interval
Time 10ms . 51

5.19 Latency Measurements with Different Pre-Query Interval Times in gRPC
Helloworld Example with Exponential Distribution with Average Interval
Time 2ms . 52

viii

LIST OF FIGURES

2.1 Microservices Architecture Example [1] . 5
2.2 High Level Architecture of HDSearch. 10
2.3 Back end request and response pipelines of HDSearch. 10
2.4 Back end request and response pipelines of Routers. 13

3.1 Client-Midtier-Backend Architecture. 17

4.1 CloudLab nodes selection. 27

5.1 Requests Poisson Distribution with Interval Rate 1000μs. 34
5.2 Requests Exponential Distribution Validation. 34
5.3 Custom Interrupt Micro Benchmark Results with Exponential Distribution and

C-States Enabled. 38
5.4 Custom Interrupt Micro Benchmark Results with Fixed Interval Time and C-

States Enabled. 39
5.5 Custom Interrupt Micro Benchmark Results Comparison with Exponential

Distribution and C-States Enabled. 40
5.6 Custom Interrupt Micro Benchmark Results Comparison with Fixed Interval

Time and C-States Enabled. 41
5.7 C-States Transitions Trace of HDSearch Experiment with Fixed Interval Time

10ms and Pre-Query Request Interval 100μs. The corresponding IRQs trace is
shown in Figure 5.8. 47

5.8 IRQs Trace of HDSearch Experiment with Fixed Interval Time 10ms and Pre-
Query Request Interval 100μs. 47

5.9 Combined Figures 5.7 and 5.8. 48
5.10 C-States Residencies in HDSearch in Running Core (1) 49

ix

LIST OF ACRONYMS

• QPS: Queries Per Second

• Avg: Average

• PL: Percentile Latency

• CPU: Central Processor Unit

• API: Application Programming Interface

• IRQ: Interrupt Request

• PMF: Probability Mass Function

• TCP: Transmission Control Protocol

• ACK: Acknowledgment

• SMT: Simultaneous Multithreading

• RNN: Recurrent Neural Network

• PDF: Probability Density Function

• OLDI: Online Data Intensive Applications

x

1 Introduction

The ever-growing demand for agility and scalability in software development has propelled
microservices architectures to the forefront. These architectures decompose applications into
smaller, independent services that communicate through well-defined APIs. While offering
numerous benefits, microservices introduce new challenges, particularly in the realm of
operational efficiency. This thesis investigates a specific performance drawback: latency
arising from CPU wake-ups from deep C-States in microservices environments.

1.1 Motivation

Ourmotivation stems from the need to reduce the tail latency within microservices architectures.
One significant performance drawback we identified is the latency induced by CPU wake-ups
from deep C-States in such environments. To address this issue, our focus lies on proactively
waking up the processor before sending the actual query or request. By preemptively activating
the processor, we aim to minimize latency and optimize operational efficiency in microservices-
based systems.

Expanding on our motivation, the drive to enhance tail latency within microservices
architectures stems from the critical importance of latency reduction in modern computing
environments. As applications become increasingly distributed and real-time responsiveness
becomes a necessity, even minor delays can significantly impact user experience and system
performance.

The specific challenge we aim to address is the latency introduced by CPU wake-up overhead,
which can occur when processors remain in low-power states while awaiting incoming requests.
This C-State transition overhead can result in delays in processing requests, leading to increased
tail latency and potentially degraded system performance.

Recognizing this challenge, our research endeavors to proactively mitigate latency by
implementing strategies to awaken the processor before the arrival of actual queries or
requests. By preemptively activating the processor, we aim to minimize the latency introduced
by CPU wake-ups from deep C-States, thereby optimizing the overall operational efficiency of
microservices-based systems, with the cost of increased power consumption.

Our motivation is rooted in the belief that by tackling this performance drawback head-on, we
can unlock significant improvements in system responsiveness, scalability, and overall user
satisfaction within microservices architectures. Through our research efforts, we seek to
contribute to the ongoing evolution and refinement of distributed computing paradigms,

1

ultimately enabling more agile, resilient, and efficient software ecosystems.

1.2 Our Hypothesis

We aim to determine whether sending a preliminary request before the actual data transfer can
yield tangible reductions in response latency. The rationale behind this aim stems from the
hypothesis that initiating a pre-query request could potentially optimize system responsiveness
by priming the underlying infrastructure for incoming data reception. By introducing a
preliminary interaction before the main data transfer, we hypothesize that the processor will
wake-up and then will either enter a shallow C-State, such as C1, or not enter a C-State at all,
thereby minimizing the response latency.

1.3 C-States Impact on Latency

The ideal C-state selection depends on the anticipated workload. For microservices, where short
bursts of activity are interspersed with periods of low utilization, frequent transitions between
active and sleep states can introduce significant latency.

This thesis proposes a novel approach to address this latency challenge. By implementing a
proactive wake-up mechanism, we aim to mitigate the latency incurred when CPUs transition
from deeper sleep states to service incoming requests in microservices environments. The
following sections will delve deeper into the proposed solution, its implementation, and the
evaluation of its effectiveness in reducing latency and improving overall microservices
performance.

1.4 Contributions

Our research makes several contributions to the field of microservices architecture and system
optimization:

• Introduction of Wake-UpMechanism: One of our primary contributions is introducing
and exploring a mechanism to proactively awaken the processor before the arrival of the
actual query. This mechanism, serves to minimize latency arising from deep sleep C-
States wake-up overhead, thereby enhancing the responsiveness of microservices.

• Hill Climbing Algorithm for Optimal Timing: We developed a hill climbing algorithm
to identify the optimal timing for sending the pre-query wake-up request. This algorithm
dynamically adjusts the timing based on the backend server response latency, ensuring
that the wake-up request is sent at the most effective moment to minimize latency.

2

• Experimental Validation: Through rigorous experimentation and analysis, we
empirically demonstrate the potential benefits of our proposed wake-up mechanism in
microservices scenarios. Our experiments showcase a notable reduction (approximately
33% in HDSearch and 18% in Router, see section 2.4 for more details on the
experiments) in response latency, highlighting the efficacy of proactive wake-up
strategies in optimizing system performance.

• Insights into Microservices Optimization: By shedding light on the impact of CPU
wake-up latency on microservices performance, our research provides valuable insights
into the optimization of microservices architectures. Our findings contribute to a deeper
understanding of the challenges and opportunities associated with latency-sensitive
distributed computing environments.

Overall, our contributions offer practical insights and solutions aimed at improving the
operational efficiency and responsiveness of modern distributed systems.

3

2 Background

2.1 Microservices and their Latency Concerns

Microservices architectures decompose applications into smaller, independent services, each
responsible for a specific functionality and communicating with others through APIs. This
modular approach offers several advantages, such as faster development cycles, easier
deployment, and improved scalability. By breaking down a monolithic application into
discrete services, developers can update or scale individual components without affecting the
entire system. This flexibility accelerates development and deployment processes, allowing
teams to respond swiftly to changing business requirements or technological advancements.

However, this decomposition into microservices introduces new challenges, particularly
concerning communication overhead and latency. Each microservice must interact with others
to fulfill a complete user request, often through network calls or inter-process communication.
These interactions can introduce significant latency due to the additional network hops and the
overhead of serializing and deserializing messages. Furthermore, the increased number of
network calls can lead to higher resource consumption and potential bottlenecks, especially
under high load conditions.

A critical aspect of optimizing microservices performance involves managing CPU states.
Modern CPUs employ various power-saving modes, known as C-states, to conserve energy
during periods of low activity. When a CPU is in a deeper C-state, such as C6, it consumes
less power but requires more time to transition back to the active state (C0) where it can
process tasks. This transition latency can significantly impact the responsiveness of
microservices, as each incoming request may need to wait for the CPU to wake up fully.

Consider a typical microservices architecture where services like authentication, user data
retrieval, and recommendation engines work together to process a user query. When a request
arrives, the CPU handling the request might be in a deep sleep state due to low system load.
The time taken to transition from a deep C-state to C0 adds to the total latency experienced by
the user, which is particularly problematic for latency-sensitive applications like real-time
analytics or high-frequency trading systems.

An example of a microservices architecture, illustrating the interactions between different
services is shown in Figure 2.4.

4

Figure 2.1: Microservices Architecture Example [1]

2.2 gRPCs

gRPC, or Remote Procedure Call, is an open-source remote procedure call (RPC) framework
initially developed by Google (the ’g’ initial stands for Google). It facilitates communication
between distributed systems by enabling clients and servers to invoke methods on remote
services as if they were local objects. gRPC leverages HTTP/2 as its transport protocol,
providing features such as bidirectional streaming, multiplexing, and header compression,
which enhance performance and efficiency in communication between services.

At its core, gRPC utilizes Protocol Buffers (protobuf) as its interface definition language (IDL)
for defining the structure of messages and services. Protocol Buffers offer a concise and
language-neutral mechanism for serializing structured data, enabling efficient data
transmission across network boundaries. This abstraction simplifies the development process
by providing a unified interface for defining service contracts and message formats, thereby
promoting interoperability across different programming languages and platforms.

gRPC facilitates efficient and scalable communication between distributed systems through a
lightweight, high-performance RPC framework. By leveraging Protocol Buffers and HTTP/2,
gRPC offers a streamlined approach to building and integrating microservices, enabling
developers to create robust and interoperable systems with ease.

2.2.1 Grpc.io Examples

We utilized a straightforward, open-source gRPC example program encompassing both a client
and a server component from grpc.io [2,3]. This choice was deliberate, aiming for simplicity to

5

facilitate ease of understanding, tracking requests, and managing the implementation process.
By opting for a simple example, we wanted to handle the intricacies of the gRPC framework
while focusing on the core functionality of the client-server communication.

In this example, the client initiates communication by sending a concise “hello from client”
grpc message to the server. Upon receiving this message, the server promptly responds with a
corresponding “hello from server” grpc message. This streamlined exchange encapsulates the
fundamental interaction between a gRPC client and server, allowing for a clear demonstration
of communication flow and message handling.

This example has step-by-step instructions to be implemented with the following programming
languages:

• C++

• C#

• Dart

• Go

• Java

• Kotlin

• Node

• Objective-C

• PHP

• Python

• Ruby

• WebJS

For the purpose of this research, we used the Python and C++ implementations only.

2.3 Linux Power Management and Idle Governors

This research focuses on the impact of CPU power management on microservices performance
in Ubuntu 20.04 LTS. Ubuntu 20.04 LTS was chosen due to its status as a modern and widely
used operating system. This choice ensures the utilization of an already-optimized idle governor
[4], a crucial component for this research. Idle governor implementations in older versions of
Ubuntu, such as 18.04 LTS, may not offer the same level of accuracy in predicting idle states
compared to their newer counterparts.

6

Modern operating systems, like Ubuntu 20.04 LTS, employ a two-pronged approach to manage
CPU performance and power consumption. The first layer is handled by the CPU frequency
governor [5]. This governor dynamically adjusts the CPU’s clock speed based on workload,
ensuring optimal performance during high utilization periods and conserving power during low
activity.

Complementing the frequency governor, the idle governor focuses specifically on optimizing
CPU states when the system is experiencing low utilization. It utilizes various sleep states,
known as C-states (C0, C1, C2, etc.). C-states are CPU sleep states that progressively trade
off power consumption for wake-up time. C0 represents the fully active state with the highest
power consumption and the fastest wake-up time. Deeper C-states (C1, C2, etc.) progressively
reduce power consumption but also increase the time it takes for the CPU to wake up from sleep.
The idle governor intelligently transitions the CPU between these states, aiming for a balance
between power efficiency and responsiveness.

In the Linux kernel, power management plays a crucial role in optimizing energy efficiency
while maintaining system responsiveness. One of the key components of Linux power
management is the CPU idle governor, which determines the appropriate CPU idle state for
each CPU core based on system workload and power-saving objectives.

2.3.1 Menu and Ladder Idle Governors

Two commonly used governors are the menu and ladder governors. The ladder governor is
typically utilized in systems reliant on periodic timer-tick interrupts. This governor initiates
the idle state transition by first moving the CPU core into a shallow idle state when it becomes
idle. If the idle time since the core last woke up exceeds a predefined threshold, the governor
progressively transitions the core to deeper idle states in stages. These state transitions are
triggered by timer interrupts known as ticks. However, in tickless systems where periodic
timer interrupts are disabled, the ladder governor’s control often remains in shallow states for
prolonged periods, thereby hindering the maximization of power savings.

In real-time systems, concerns about performance degradation due to periodic timer interrupts
lead to the adoption of tickless configurations. Consequently, the ladder governor may not be
suitable for such systems. Moreover, the ladder governor faces challenges in reducing wake-up
latency when transitioning from deep idle states. This latency can impact real-time performance,
especially when tasks arrive while the CPU is in a deep idle state, as the governor struggles to
quickly recover from this state.

On the other hand, the menu governor serves as the default governor in the Linux kernel. This
governor maintains records of the last 8 idle times for each CPU core and utilizes this data
to estimate the next idle period. Specifically, if the deviation of the recorded idle times falls

7

below a certain threshold or if the mean is significantly smaller than the standard deviation, the
mean is considered a reasonable interval and is adopted as the next idle period. However, if
these conditions are not met, the governor rejects the largest observed idle time and continues
estimating the next idle time. The estimated idle time is then compared with the wake-up latency
from the current idle state. If the two values are approximately equal, it is determined that the
idle time in the current state was too short, and the governor transitions the core to a shallower
state to reduce latency.

While the menu governor is effective for regular workloads, it struggles to accurately estimate
idle times for sudden irregular workloads. Additionally, similar to the ladder governor, the
menu governor faces challenges in suppressing wake-up latency when transitioning from deep
idle states, especially in scenarios where tasks arrive during these states.

2.3.2 Ubuntu 20.04 Power Management

Ubuntu 20.04 LTS, as a widely used Linux distribution, incorporates power management
features aimed at optimizing energy efficiency while ensuring system responsiveness. The
default power management settings, including the selection of idle governors, are designed to
strike a balance between power savings and performance.

In Ubuntu 20.04, users can customize power management settings through utilities like
cpupower and tlp, allowing fine-tuning of CPU frequency scaling, idle state transitions, and
other parameters. Additionally, kernel updates and patches may introduce improvements to
power management algorithms and idle governors, further enhancing system efficiency.

2.4 Benchmarks

For ourMicroservice benchmarks, we utilized a containerized version of theMicroSuite (µSuite)
benchmark [6], originally developed at the University of Michigan. The containerized version
was created by the University of Cyprus’ xilab [7].

µSuite is a suite of OLDI services that are each composed of front-end, mid-tier, and leaf
microservice tiers. μSuite includes four OLDI services that incorporate open-source software:
a content-based high dimensional search for image similarity — HDSearch, a
replication-based protocol router for scaling fault-tolerant key-value stores — Router, a
service for performing set algebra on posting lists for document retrieval — Set Algebra, and a
user-based item recommender system for predicting user ratings — Recommend. µSuite was
originally written to evaluate OS and network overheads faced by microservices.

OLDI applications, such as web search, advertising, and online retail, constitute a significant

8

portion of data center workloads and are crucial for meeting soft real-time deadlines, often
specified as Service Level Objectives (SLOs). Unlike traditional monolithic architectures,
modern OLDI applications are composed of numerous distributed microservices
interconnected via standardized Remote Procedure Call (RPC) interfaces, such as Google’s
Stubby and gRPC or Facebook/Apache’s Thrift.

Each microservice in the µSuite comprises three tiers: a front-end, mid-tier, and leaf
microservice. These microservices are designed to execute within single-digit milliseconds,
necessitating sub-millisecond median latencies to meet tight SLOs. For instance,
microservices must handle tasks serially, with a single user query often traversing multiple
microservices in a pipeline. The pressure to optimize microservice latency continually mounts
as OLDI datasets and applications grow, with compositions of increasingly complex
interactions.

This µSuite Fork has been amended to achieve the following:

• Correct and confirm all the installation/compilations commands to run on Ubuntu Linux
18.04 and 20.04

• Provide instructions to compile and run docker and prepare a docker image with the
complete µSuite for easier deployment

• Provide instructions and the configuration to run the applications on single node using
docker-compose.yaml

• Provide intrusctions and the configuration to run the applications on multiple nodes using
docker-compose-swarm.yml

• Provide instructions and source code to run the application on single node allowing the
system to enter c6.

2.4.1 HDSearch

This research investigates the impact of CPU power management on the performance of
microservices architectures. To achieve this, a well-established microservice benchmark,
HDSearch [8], was employed. HDSearch implements a core functionality commonly found in
search engines.

Service Description: HDSearch simulates a multi-node microservice architecture consisting of
three distinct tiers:

Microservice Architecture:

• Client: The client tier represents the user and initiates the search query by providing an
image. It expects a response containing a list of similar images.

9

Figure 2.2: High Level Architecture of HDSearch.

Figure 2.3: Back end request and response pipelines of HDSearch.

10

• Mid-tier: The mid-tier acts as an intermediary between the client and the leaf servers.
Upon receiving a search request, it retrieves the relevant feature vectors for the queried
image and utilizes Locality-Sensitive Hashing (LSH) tables to identify potential matches
across the leaf servers. The mid-tier then distributes a limited number (defined by the
FIXEDCOMP constant) of these feature vectors to each leaf server for further processing.

• Leaf Servers (Buckets): Each leaf server represents a microservice instance responsible
for comparing the received feature vectors against its local data to identify potential
matches. Finally, it transmits the results back to the mid-tier.

Advantages: The selection of HDSearch as the benchmark for this research offers several
advantages:

• Real-world Relevance: HDSearch mimics a functionality commonly used in search
engines, making the results applicable to real-world scenarios.

• Controlled Complexity: The benchmark offers a well-defined architecture with distinct
tiers, enabling focused investigation of CPU power management’s impact on each tier.

• Open-Source Availability: The open-source nature of HDSearch (available on GitHub
[8]) fosters transparency and reproducibility of the research findings. HDSearch is an
easier-to-use microsuite example, it has its own repository with step-by-step instructions,
which makes it easier implementation.

2.4.2 Router

Service Description: Router’s primary functionality revolves around routing key-value store
requests to memcached deployments while abstracting the routing and redundancy logic from
clients. This abstraction allows clients to interact with Router seamlessly, without needing to
manage the complexities of memcached hosts directly. Moreover, Router incorporates
replication-based protocol routing to ensure fault tolerance in memcached deployments.

One notable solution in this domain is McRouter, a memcached protocol router developed by
Facebook to scale memcached deployments. McRouter employs efficient routing strategies and
offers various features such as connection pooling, prefix routing, replicated pools, production
traffic shadowing, and online reconfiguration. It has demonstrated the capability to handle up
to 5 billion queries per second (QPS).

To address the limitations of traditional memcached systems while drawing insights from
McRouter, we introduce a simplified version called Router. Router is designed to route client
requests to appropriate memcached servers efficiently and provide fault tolerance for
large-scale deployments.

Router’s primary functionality revolves around routing key-value store requests to memcached

11

deployments while abstracting the routing and redundancy logic from clients. This abstraction
allows clients to interact with Router seamlessly, without needing to manage the complexities
of memcached hosts directly. Moreover, Router incorporates replication-based protocol routing
to ensure fault tolerance in memcached deployments.

Router’s functionality can be described in a series of stages. In the first stage, Router parses
clients’ requests and forwards them to the route computation code. This code utilizes the
SpookyHash algorithm, a proven well-distributed hashing algorithm, to distribute keys from
clients’ requests uniformly across destination memcached servers. SpookyHash is chosen for
its efficiency, low collision rate, and compatibility with various key data types.

In the final stage, Router invokes internal client code to forward the requests to specific
destination memcached servers. Notably, Router maintains a single TCP connection to each
destination server per Router thread, ensuring efficient communication and resource
utilization.

For large-scale memcached deployments, Router employs replicated key-value store data pools
to address the challenges of overwhelming client connections and ensuring high availability of
critical data. By replicating data across multiple servers, Router spreads the load and provides
fault tolerance, enhancing the reliability of the overall system.

Router is implemented as a suite of microservices, each serving a specific role in the system
architecture:

• Front-end Microservice: Provides a client library that interfaces with Router through a
gRPC interface. This microservice abstracts the details of communication with Router
from the clients.

• Mid-tier Microservice: Utilizes SpookyHash to distribute keys uniformly across
memcached servers and routes get or set requests accordingly. It also implements
replication for fault tolerance, ensuring that data is replicated across multiple servers.

• Leaf Microservice: Acts as a communication wrapper around memcached server
processes. It handles multiple concurrent requests from the mid-tier microservices,
translating and forwarding queries to the local memcached server instances.

2.4.3 Benchmarks Objectives

The primary objective of the benchmarks is to investigate the efficacy of employing a
pre-query request strategy in reducing the overall response time during data transfer processes.
Specifically, we aim to determine whether sending a preliminary request before the actual data
transfer can yield tangible reductions in response latency.

Through systematic experimentation and analysis, we seek to quantify the impact of pre-query

12

Figure 2.4: Back end request and response pipelines of Routers.

requests on response time reduction across varying system configurations and workloads. By
comparing the response times of scenarios with and without pre-query requests, we aim to
elucidate the potential benefits and limitations of this optimization strategy in real-world
applications.

Furthermore, the benchmarks aim to contribute to a deeper understanding of the underlying
mechanisms governing response time optimization. By examining the interplay between pre-
query requests, interrupt handling efficiency and system responsiveness, we tried to uncover
how communication protocols and system architectures work behind the scenes.

In summary, the benchmarks aim to assess the feasibility and effectiveness of integrating pre-
query request strategies to enhance overall system performance and responsiveness.

2.5 Hill Climbing Algorithm

Hill Climbing [9–11] is a local search algorithm used for solving optimization problems. It starts
with an initial solution and iteratively moves to a neighboring solution with better value, aiming
to reach the peak (or minimum) of the solution space.

The algorithm maintains a current solution and explores neighboring solutions by making
incremental changes to it. At each iteration, it selects the neighboring solution with the highest
(or lowest) value and moves to it, considering only improvements over the current solution.

The process continues until no better neighboring solution can be found or a stopping criterion is

13

met. The algorithm may terminate at a local optimum, where no neighboring solution provides
further improvement, or at a predefined termination condition.

Hill Climbing is simple yet effective for optimization tasks where the solution space is relatively
smooth and continuous. However, it may get stuck in local optima and fail to find the global
optimum in more complex solution spaces.

Below is the pseudocode for the Hill Climbing algorithm:

Algorithm 1 Hill Climbing Algorithm
1: Input: Initial solution s0
2: Output: Optimized solution s
3: s← s0
4: while termination condition not met do
5: sbest ← null
6: for each neighbor s′ ∈ neighbors(s) do
7: if value(s′) > value(sbest) then
8: sbest ← s′

9: if value(sbest) > value(s) then
10: s← sbest
11: else
12: break
13: return s

In this pseudocode:

• The algorithm starts with an initial solution s0.

• It iterates through the neighboring solutions, comparing their values.

• If a better neighboring solution is found, it updates the current solution to this better
neighbor.

• The process continues until no better neighboring solution is found or a predefined
termination condition is met, such as an amount of iterations or time.

14

3 Proactive Wake-up Mechanism

In modern distributed computing environments, optimizing system responsiveness is essential
for achieving efficient performance, particularly in scenarios involving microservices
architectures. Our approach to enhance responsiveness involves implementing a proactive
wake-up mechanism, which aims to minimize latency by preemptively waking up system
components before they are needed.

The proactive wake-up mechanism operates on the principle of anticipating upcoming tasks or
requests and initiating necessary preparations in advance. This proactive approach mitigates the
overhead associated with latency-inducing operations, such as CPU wake-ups from deep sleep
states (C-States) or network initialization.

At its core, the proactive wake-up mechanism relies on timely signaling and coordination
between different components within the system. For instance, in a microservices architecture,
the mechanism may involve a hierarchy of communication channels, with higher-level
components signaling lower-level components to prepare for incoming requests.

The implementation of the proactive wake-up mechanism typically involves several key steps:

1. Signaling and Coordination: Upon detecting an impending task or request, higher-level
components within the system signal lower-level components to initiate preparation steps.
This signaling mechanism serves as an early notification system, allowing components to
proactively wake up or allocate resources in anticipation of upcoming demands.

2. Preparation and Wake-up Procedures: Lower-level components respond to the
signaling cues by initiating preparation procedures, such as waking up from low-power
states, initializing network connections, or loading necessary resources into memory.
These proactive steps aim to minimize the latency associated with task execution by
reducing the time required for component activation and readiness.

3. Optimization and Fine-tuning: The proactive wake-up mechanism undergoes iterative
refinement and optimization to ensure its effectiveness in different workload scenarios.
Fine-tuning parameters enable the mechanism to adapt dynamically to changing system
conditions and workload patterns. In this research, we also aimed to fine-tune the
appropriate interval time between the pre-query request (wake-up call) and the original
query, using a Hill Climbing algorithm.

In this research, a socket send request was utilized as part of the proactive wake-up mechanism
due to its speed and lightweight nature. However, it is worth noting that there may exist
alternative methods or technologies that could potentially offer even faster and/or lighter

15

approaches to achieving the same goal. Exploring these alternatives and evaluating their
suitability for specific use cases could be a valuable direction for future research in this area.

Overall, the proactive wake-up mechanism represents a proactive approach to latency reduction
in distributed computing environments. By anticipating and preparing for upcoming tasks or
requests, the mechanism optimizes system responsiveness and minimizes latency, ultimately
enhancing the overall efficiency and performance of the system.

3.1 Scenarios for Proactive Wake-Up Mechanism

The proactive wake-up mechanism is particularly beneficial in distributed systems with distinct
stages of request processing involving multiple components. This mechanism can be effectively
applied in scenarios such as:

• Client-Midtier-BackendArchitectures: In distributed architectures where a client sends
a request to a midtier component, which then forwards it to a backend server, the midtier
can utilize the proactive wake-up mechanism to signal the backend server to prepare for
the incoming request. This ensures that the backend server is ready to process the request
promptly, minimizing latency.

• Microservices with Dependent Services: In microservices environments where
services depend on each other to fulfill a request, a service receiving an initial request
can preemptively signal dependent services to wake up and prepare for subsequent
processing. This approach reduces the cumulative latency across the service chain.

• Pre-Scheduled Tasks: In scenarios where tasks are scheduled to run at specific
intervals, components can be preemptively awakened shortly before the task execution
time, ensuring that they are fully operational and ready to process tasks immediately as
they arrive.

In these scenarios, the proactive wake-up mechanism leverages the knowledge of upcoming
requests or tasks to initiate preparatory actions in advance, thereby reducing overall latency.

3.1.1 Application in Our Experiments

In our experiments, we utilized the proactive wake-up mechanism within a setup involving three
nodes: a client, a midtier, and a bucket. The midtier is responsible for coordinating the request
flow and employs the proactive wake-up mechanism to ensure that the bucket is ready to handle
incoming queries efficiently.

• Client Node: The client node initiates requests that are directed towards the midtier.

16

• Midtier Node: Upon receiving a request from the client, the midtier sets a flag to signal
the proactive wake-up mechanism. This mechanism involves sending a lightweight pre-
query request to the bucket to wake it up and prepare it for the subsequent actual query.

• Bucket Node: The bucket node, which might be in a low-power state, receives the pre-
query request and transitions to the active state, ready to process the actual query sent by
the midtier.

A demonstration is shown in Figure 3.1.

Figure 3.1: Client-Midtier-Backend Architecture.

We aimed to integrate the pre-query request strategy, utilizing socket send requests, into the
HDSearch and Router experiments. In this setup, a dedicated server is deployed within the
bucket, tasked with listening for the pre-query request. Both the listening server and the bucket
operate on a single core. Within the midtier, a helper thread manages the transmission of pre-
query requests. Upon receiving a request from the client, the midtier sets a flag indicating to
the helper thread to dispatch a pre-query request to the bucket, effectively initiating its wakeup
process.

The HDSearch and Router send requests from the client to the midtier following the exponential
distribution. Notably, it does not matter which distribution is used, all distributions yield better
results with pre-query request.

We utilize a std::atomic<bool> variable named sendRequestFlag, initialized to false, to
facilitate communication from the main thread to the helper thread. This variable serves as a
signaling mechanism, indicating to the helper thread when to send the pre-query request.

Within the helper thread, the main loop continuously waits for the sendRequestFlag to be
set to true before proceeding with sending the pre-query request. This waiting mechanism is
achieved through a busy-wait loop:

while (true)
{

// Wait until the flag is set to true
while (!sendRequestFlag.load(std::memory_order_acquire))

17

{
}
if (pre-query-request-interval > 0)
{

struct timeval start_time, end_time;
gettimeofday(&end_time, NULL);
gettimeofday(&start_time, NULL);

// Instead of sleep(pre-query-request-interval), I actively
// read the current timestamp and check
// whether the <pre-query-request-interval> us have passed
// Also, I need to check that while waiting, I still want to
// send the pre-query request
while (end_time.tv_usec - start_time.tv_usec <
pre-query-request-interval &&
sendRequestFlag.load(std::memory_order_acquire))
{

gettimeofday(&end_time, NULL);
}

}

if (sendRequestFlag.load(std::memory_order_acquire))
{

// Once the pre-query-request-interval us have passed,
// send the request
send_request();

}

// Reset the flag
sendRequestFlag.store(false, std::memory_order_release);

}

After setting the flag to true, indicating the necessity of a pre-query request, the helper thread
proceeds to send the pre-query request to the bucket. This however, comes with the cost of a
greater power consumption in the midtier.

Additionally, we conducted experiments involving sending the pre-query request after a certain
number of microseconds to assess potential benefits. The methodology involved the midtier
setting the flag to true upon receiving a request from the client, triggering the helper thread to

18

handle the sending of the pre-query request. Notably, the helper thread executes the pre-query
request transmission only if the pre-query request interval time exceeds the processing time
required for the midtier to dispatch the request to the bucket. To clarify, the pre-query request
interval time is the time between the pre-query request and the actual request, and NOT the time
between two consecutive pre-query requests.

In other words, the midtier resets the flag to false once it completes its processing, signaling
to the helper thread that it has finished. Meanwhile, the helper thread remains in a busy-waiting
state, continually checking the flag’s status. If the flag remains true, indicating that a pre-query
request is still required, the helper thread proceeds with the sending process. This approach
ensures that the pre-query request is sent only when necessary.

3.2 Optimization Using a Hill Climbing Algorithm

The critical challenge in our scenario lies in determining the optimal timing for sending the
pre-query request. The midtier must find the appropriate waiting interval between receiving the
query from the client and dispatching the pre-query request to the bucket. This interval must
strike a delicate balance, allowing sufficient time for the bucket to awaken and prepare for the
impending query processing task while minimizing any unnecessary delays due to the pre-query
processing.

In other words, the challenge lies in determining the optimal waiting time for sending the pre-
query request. If the request is sent too early, the bucket may be awakened unnecessarily and
enter a deep C-State, leading to wasted resources. Conversely, if the request is sent too late, the
bucket may not be fully awake in time to process the original query efficiently because it is still
processing the pre-query request, resulting in increased latency.

To address this challenge, the Hill Climbing algorithm dynamically adjusts the waiting time for
the pre-query request based on the response time of the bucket. By measuring the response time
and iteratively adjusting the waiting time, the algorithm aims to minimize latency and optimize
the performance of the distributed system.

The process involves iteratively adjusting the waiting time for the pre-query request and
measuring the corresponding response time of the bucket. The algorithm selects neighboring
solutions by incrementally changing the waiting time and evaluates their performance based on
the response time. It then moves to the neighboring solution with the lowest response time,
iteratively refining the waiting time until an optimal solution is found.

Therefore, we employed a hill climbing algorithm to optimize the waiting microseconds for
sending the pre-query request. Initially, the waiting microseconds were set to 0 and then they
were incremented by 100μs, which is the initial step size. Subsequently, the step size was

19

reduced to 50, then 25, and so on until reaching 3 microseconds. If the algorithm found that
increasing the waiting microseconds improved performance, it would adjust the waiting time
accordingly, by adding the step size to the waiting microseconds. Conversely, if decreasing the
waiting microseconds yielded better results, the algorithm would adapt accordingly. This
iterative process allowed us to dynamically adjust the waiting time for the pre-query request,
optimizing system performance and responsiveness. The waiting microseconds were changed
for each 1000 requests, by comparing the average response time of these requests.

// Check if 1000 iterations have passed
if (process_request_count % 1000 == 0 && send_request_time >= 0)
{

// Calculate average time
uint64_t average_time = calculate_average_time();

// Adjust send_request_time parameter based on comparison with previous average
// If the pre-query request interval increased previously, then increase it now
// (initially it will increase)
if (increasing)
{

// If the new average is less, then increase the send_request_time
if (average_time < previous_average_time)
{

send_request_time += step;
}
else // Decrease the send request time
{

send_request_time -= step;
increasing = false;

}
}
else
{

// If the new average is less, then decrease the send_request_time
if (average_time < previous_average_time)
{

send_request_time -= step;
}
else // Increase the send request time

20

{
send_request_time += step;
increasing = true;

}
}
// Change the step (the rate which will increase or decrease the
// pre-query request interval)
if (step > 5)
{

step /= 2;
}
previous_average_time = average_time;

}

21

4 Research Methodology

4.1 Tools Used

4.1.1 SocWatch

In our research, we place particular emphasis on harnessing the capabilities of Intel SocWatch
to track interrupts and their associated Interrupt Request (IRQ) numbers, as well as monitoring
C-States residencies and tracing their transitions.

Purpose: The primary focus of our utilization of Intel SocWatch is to conduct in-depth analysis
of system interrupts and C-States behavior on Intel architecture-based platforms. By leveraging
SocWatch, we aim to precisely monitor interrupt handling mechanisms and C-States residency
patterns, facilitating a thorough understanding of system-level performance characteristics.

Key Features:

1. Interrupt Tracking: Intel SocWatch enables precise tracking and analysis of system
interrupts, providing detailed insights into interrupt handling mechanisms and IRQ
assignments.

2. C-States Residency Analysis: SocWatch facilitates comprehensive monitoring of
C-States residencies, which gives us the big picture of each processor’s idleness.

3. Traceability: With Intel SocWatch, we can trace the transitions of the processor into
and out of each C-state, allowing us to track the entry and exit of the processor into/from
various C-States. This traceability feature enables us to correlate C-States transitions with
system events and workload characteristics, and analyze when our pre-query requests
wakeup the processor and what happens after this.

Analysis and Interpretation: Utilizing the data collected by Intel SocWatch, we perform
comprehensive analysis and interpretation of interrupt behavior and C-States residency
patterns. We analyze interrupt frequency, distribution, and latency characteristics to identify
potential optimization opportunities. Similarly, we examine C-States residency durations and
transitions.

4.1.1.1 Example of C-States Transitions Trace

An example of a C-States transitions trace is as shown in Table 4.1:

In this trace, each row represents a sample captured during system monitoring. The first column
denotes the sample number, the second column represents the continuous time in milliseconds

22

Table 4.1: C-States Transitions Example as Shown in SocWatch

Sample # Continuous Time (ms) C-State Duration (ms)
416 1169.26 CC0 0.56
417 1178.80 CC6 9.54
418 1179.59 CC0 0.78

in which the processor transitioned out of the C-State, the third column indicates the C-State
and the last column specifies the duration (in milliseconds) for which the processor remained in
that particular C-State.

For instance, the first row indicates that the processor stayed at C0 for 0.56 ms, which is until
1169.26 ms since the beginning of the trace collection, and the second row indicates that the
processor transitioned to C6 at 1169.26 ms and stayed in this state until 1178.80 ms, resulting
in a duration of 9.54 ms.

4.1.1.2 Example of IRQs Trace

An example of IRQs captured during monitoring is provided below in Table 4.2:

Table 4.2: IRQ Transitions Example as Shown in SocWatch

Sample # Continuous Time (ms) IRQ No Interface Duration (ms)
209 1178.80 39 i40e-enp94s0f0-TxRx-1 10.11
210 1179.59 39 i40e-enp94s0f0-TxRx-1 0.79
211 1189.41 39 i40e-enp94s0f0-TxRx-1 9.81

In this example, each row represents an IRQ event captured during system monitoring. The
columns provide the following information: the sample number, continuous time in
milliseconds, IRQ number, interface description, and duration since the last IRQ event.

For instance, the first row indicates that an IRQ 39 event occurred 10.11 ms prior to 1178.80 ms
since the beginning of the trace (therefore at 1168.69 ms), and the second row indicates that an
IRQ 39 event occurred at 1178.80 ms, and another interrupt arrived at 1179.59 ms, resulting in
a duration of 0.79 ms without another interrupt occurring.

4.1.2 Turbostat

In addition to Intel SocWatch, we also employ Turbostat as a complementary tool in our research
endeavors. Turbostat offers a lightweight and straightforward solution for monitoring processor
performance metrics.

Purpose: The primary purpose of integrating Turbostat into our toolkit is to gain insights into
processor performance metrics, including frequency, utilization, and power consumption.

23

Unlike Intel SocWatch, Turbostat also provides insights into processor behavior and C-States
residencies. However, it distinguishes between software hints and real C-States. Software
hints refer to instructions or signals provided by the software to the processor, indicating the
desired C-State it should enter into. On the other hand, real C-States represent the actual
C-States that the processor was observed to be in.

Key Features:

1. Lightweight Monitoring: Turbostat offers a lightweight monitoring solution, making it
easier to implement and less resource-intensive compared to Intel SocWatch.

2. Processor Metrics: Turbostat provides essential metrics such as CPU frequency,
utilization, and power consumption, offering valuable insights into processor behavior.

3. Real C-States Residencies: Turbostat offers real-time monitoring of C-States
residencies, allowing us to observe the processor’s idleness and power-saving
mechanisms.

Limitations: While Turbostat provides valuable insights into processor performance metrics,
it lacks the traceability feature offered by Intel SocWatch. As a result, Turbostat only offers
software hints and real C-States residencies, without providing detailed trace information on
transitions between C-States.

Analysis and Interpretation: Despite its limitations, Turbostat serves as a valuable tool for
assessing processor performance and power management strategies. By analyzing the data
collected through Turbostat, we gain insights into processor behavior and power-saving
mechanisms, enabling us to optimize system performance and efficiency.

Moreover, to ensure the accuracy and reliability of our findings, we cross-validate the results
obtained fromTurbostat with those from Intel SocWatch. This cross-validation process enhances
the robustness of our analysis and interpretation, providing a comprehensive understanding of
system-level performance characteristics and power management strategies.

4.2 Fixed CPU Frequency

In all our experiments, we maintained a fixed CPU frequency to eliminate its variability as a
factor affecting the results. Although this factor did not significantly impact the outcomes,
ensuring a consistent frequency helped maintain the stability and reproducibility of our
experiments.

To achieve a fixed CPU frequency, we utilized the intel_pstate=disable option in the
GRUB_CMDLINE_LINUX_DEFAULT parameter within the /etc/default/grub configuration
file. This option disables the Intel P-state driver, allowing manual control over the CPU

24

frequency.

Additionally, we used the command sudo cpupower frequency-set -f 2200MHz to set
the CPU frequency to 2200MHz. This command ensured that the CPU operated at a consistent
frequency throughout our experiments, enabling accurate and reliable measurements across
different test scenarios.

4.3 SMT Disabled

For our experiments, we disabled Simultaneous Multithreading (SMT), also known as Hyper-
Threading, on the CPU. By doing so, we ensured that each core was dedicated to executing only
one thread at a time, effectively restricting concurrent execution threads per core.

The rationale behind disabling SMT was to streamline our experimental setup and ensure
clearer and more straightforward results. With SMT disabled, we aimed to reduce the potential
complexity introduced by concurrent execution threads sharing resources within a single core.

To disable SMT, we utilized the following command:

echo "off" | sudo tee /sys/devices/system/cpu/smt/control

This command effectively turned off SMT, ensuring that each physical core operated
independently without the simultaneous execution of multiple threads. By enforcing this
configuration, we aimed to enhance the clarity and interpretability of our experimental
outcomes while maintaining consistency and reliability across our test scenarios.

4.4 IRQ-Core Bind

In our experimental setup, we aimed to achieve a clearer understanding of system performance
by binding each Interrupt Request (IRQ) to a dedicated CPU core. By assigning specific cores
to handle individual interrupts, we sought to maintain a consistent and predictable environment
across multiple experiment runs.

The motivation behind this approach was to ensure that the system’s behavior remained stable
and reproducible throughout the experimental process. By dedicating specific cores to handle
interrupts, we minimized the likelihood of variability in interrupt handling and CPU resource
allocation, thereby facilitating more consistent and interpretable results.

In Linux, CPU affinity is managed using bitmasks. A bitmask is a binary pattern where each bit
represents a CPU core. By setting specific bits in the bitmask, we can control which CPU cores
are allowed to handle interrupts associated with a particular IRQ [12].

25

For example, if we have four CPU cores and we want to assign IRQ handling exclusively to
core 0, we would set the bitmask to 0001 (in binary), indicating that only core 0 is allowed to
handle interrupts for that IRQ. Similarly, if we want to assign IRQ handling to cores 0 and 1, we
would set the bitmask to 0011 (in binary), allowing both cores 0 and 1 to handle interrupts.

To implement IRQ-Core binding, we utilized a script that interacted with the system’s /proc
filesystem to access and manipulate IRQ configurations. The key command involved setting
the CPU affinity for each IRQ to its corresponding core. This was achieved by writing the
calculated bitmask to the smp_affinity file located in the /proc/irq/[IRQ]/ directory.

By writing the appropriate bitmask to the smp_affinity file for each IRQ, we effectively specify
which CPU cores are eligible to handle interrupts associatedwith that IRQ. This ensures that IRQ
handling is distributed evenly across the available CPU cores, optimizing system performance
and resource utilization.

4.5 Utilizing CloudLab for Experimentation

This research leveraged CloudLab, a cloud computing platform designed for reproducible
research experimentation. CloudLab offers a controlled environment where researchers can
rent machines with various configurations, including the specific operating system chosen for
this research, Ubuntu 20.04 LTS. Users can select from a wide range of node types, each
offering different hardware specifications such as processors (CPUs), and memory (RAM).
This flexibility allows researchers to tailor the experimental environment to their specific
needs.

A significant advantage of CloudLab is the close resemblance of its nodes to real-world
servers. The hardware configurations offered by CloudLab mirror those found in production
environments, ensuring the generalizability of the research findings. This close simulation
minimizes the risk of results being skewed by factors unique to a particular hardware setup.

Figure 4.1 demonstrates how the nodes are chosen.

By employing a modern operating system on a controlled platform like CloudLab, this
research establishes a reliable foundation for investigating the impact of CPU power
management, specifically C-States managed by the idle governor, on the performance of
microservices. The ability to configure the hardware characteristics further strengthens the
research by enabling experimentation that closely reflects real-world deployments.

26

Figure 4.1: CloudLab nodes selection.

4.5.1 Limitations:

Despite the advantages offered by CloudLab, several limitations were encountered during the
experimentation process. Firstly, the CloudLab nodes are available for a maximum duration of
16 hours, extendable up to 7 days and then again up to another 7 days. This limitation imposed
constraints on the duration of experiments, requiring frequent manual intervention to extend
the duration, leading to stress and time consumption. Additionally, after 14 days, a new
experiment had to be created, potentially resulting in different node configurations and IRQ
numbers, which could impact the reproducibility of results. Furthermore, the unavailability of
the c220g5 nodes and the long initial node boot time posed more challenges. Moreover, setting
up the experimental environment on each node, including downloading tools such as
SocWatch, setting fixed frequencies, disabling SMT affinity, etc., was time-consuming and
repetitive. Lastly, the nodes provided by CloudLab had limited storage capacity, which
occasionally posed challenges and hindered the continuity of experiments.

4.6 Workload Distributions

In our experiments, we utilized two commonly used probability distributions: the Poisson
distribution and the Exponential distribution.

27

4.6.1 Poisson Distribution

The Poisson distribution [13] is a discrete probability distribution that represents the number of
events occurring in a fixed interval of time or space, given the average rate of occurrence. It is
characterized by a single parameter, λ (lambda), which represents the average rate of occurrence
of the event.

The probability mass function (PMF) of the Poisson distribution is given by:

P (X = k) =
e−λλk

k!

where:
- X is the random variable representing the number of events.
- k is the number of events that occur.
- e is the base of the natural logarithm, approximately equal to 2.71828.

4.6.2 Exponential Distribution

The Exponential distribution [14,15] is a continuous probability distribution that represents the
time between events in a Poisson process, where events occur continuously and independently
at a constant average rate. It is characterized by a single parameter, λ (lambda), which represents
the average rate of occurrence of the event.

The probability density function (PDF) of the Exponential distribution is given by:

f(x|λ) = λe−λx

where:
- x is the time between events.
- λ is the rate parameter, representing the average rate of occurrence of events.

4.6.3 How Distributions Were Used

Example: Let’s consider a scenario where we are simulating a web server that receives queries
at an average rate of λ = 10 queries per second (QPS). To model the time intervals between
consecutive requests with an average of 100 milliseconds (ms) between each request, we
calculate the corresponding query per second (QPS), which isQPS = 1

interval time =
1

100 ms = 10.

28

Using the Poisson distribution with λ = 10, we can generate random numbers representing the
time intervals between requests.

Note: Web service performance is typically modeled using a Poisson process for arrivals, which
results in inter arrival times following the exponential distribution [16, 17].

4.7 Metrics Used

4.7.1 Average Latency

The Average Latency represents the typical or average time taken for all requests processed by a
system or service. It is calculated by summing up the individual latency values for each request
and then dividing the total by the number of requests.

Mathematically, the Average Latency Avg can be expressed as:

Avg =

∑n
i=1 Latencyi

n

Where:

• Latencyi represents the latency of the ith request.

• n is the total number of requests.

The Average Latency signifies the typical duration users can expect to wait for their requests to
be processed. This metric provides valuable insight into the overall performance of the system,
helping to measure the level of responsiveness and efficiency in handling user requests. By
monitoring the Average Latency, we can ensure that the system meets user expectations for
timely responses and optimize its performance accordingly

4.7.2 99th Percentile Latency

The 99th percentile latency is a performance metric commonly used in computing and
networking to quantify the responsiveness or delay experienced by a system or service. It
represents the value below which 99% of measured latency values fall, indicating the latency
experienced by the vast majority of requests or events.

To calculate the 99th percentile latency, all latency measurements are sorted in ascending order,
and the value corresponding to the 99th percentile position is identified. In other words, if there
are n latency measurements, the 99th percentile latency is the value of the latency measurement
at the index n× 0.99 when the measurements are arranged in ascending order.

Mathematically, the 99th percentile latency PL99 can be expressed as:

29

PL99 = Latency⌈0.99×n⌉

Where:

• Latency⌈0.99×n⌉ represents the latency measurement at the index corresponding to the 99th
percentile position when the latency measurements are sorted in ascending order.

• n is the total number of latency measurements.

This metric is particularly useful for understanding the tail end of the latency distribution,
capturing outliers or instances of unusually high latency that may significantly impact user
experience or system performance. By focusing on the 99th percentile latency, organizations
can ensure that the vast majority of users or requests experience acceptable levels of
responsiveness, while also identifying and addressing potential performance bottlenecks or
issues affecting a small but significant portion of users or events.

In summary, the 99th percentile latency provides valuable insights into the performance
characteristics of a system, helping organizations optimize resources, improve user experience,
and ensure reliable and responsive service delivery.

4.8 Applying Socket Pre-Query Request in gRPCHelloworld
Experiment

In the Router gRPC Helloworld Experiment, we employed the C++ version of the gRPC
Helloworld example to minimize latency and closely replicate real-world scenarios. By
utilizing the C++ implementation, we aimed to achieve optimal performance and reduce
overhead associated with language bindings or additional layers of abstraction.

In the gRPCHelloworld Experiment, we replicated the methodology employed in the HDSearch
and Router experiments, adapting it to the gRPC framework to explore its potential benefits
within this context.

In this experiment, the setup involved two distinct nodes: the client and the server. The client
node was responsible for generating and transmitting a series of requests to the server node.
These requests were sent utilizing the gRPC framework, allowing for efficient communication
between the client and server (for further details, see section 2.2.1).

Similar to the HDSearch and Router setup, we introduced a mechanism for pre-query requests
within the gRPC experiment. A dedicated serverwas deployedwithin the gRPC listener server to
listen for pre-query requests from the client. Upon receiving a request from the client, the server
processed the request and prepared a pre-query response, priming the server for subsequent

30

requests.

4.9 System Information

The cloudlab node that we used throughout my whole research was c220g5 [18]. This node has
3 sleep C-States: C1, C1E and C6.

The system’s details are shown below:

Feature Details
Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian
Address sizes 46 bits physical, 48 bits virtual
CPU(s) 40
On-line CPU(s) list 0-39
Thread(s) per core 2
Core(s) per socket 10
Socket(s) 2
NUMA node(s) 2
Vendor ID GenuineIntel
CPU family 6
Model 85
Model name Intel(R) Xeon(R) Silver 4114 CPU @

2.20GHz
Stepping 4
Frequency boost enabled
CPU MHz 1014.566
CPU max MHz 2201.0000
CPU min MHz 800.0000
BogoMIPS 4400.00
Virtualization VT-x
L1d cache 640 KiB
L1i cache 640 KiB
L2 cache 20 MiB
L3 cache 27.5 MiB
NUMA node0 CPU(s) 0-9, 20-29
NUMA node1 CPU(s) 10-19, 30-39

Table 4.3: System Details

31

5 Results

5.1 Custom Interrupt Micro Benchmark

To evaluate the effectiveness of our pre-query request method, we developed a custom micro
benchmark tool [19] inspired by socket communication. This benchmark utilizes a client-server
architecture:

• Client: The client initiates the interaction by sending a “hello” request through a network
socket.

• Server: The server listens for incoming socket requests. Upon receiving a “hello” request,
the server responds with a “hello” message.

Our rationale for developing a custom benchmark was to create a controlled environment for
studying the impact of pre-query requests on response latency. This simplified approach allowed
us to isolate and analyze the specific behavior of our proposed method.

We opted to delve into the lowest level of system interaction possible. This led us to simulate
queries as socket send requests, with an additional investigation into the impact of sending pre-
query requests slightly before the actual queries.

Each experiment instance was conducted over 1000 queries. In this experiment, we
systematically explored multiple parameters, including:

• Sleep Interval Time: This parameter determines the duration of sleep between each
query (actual request). For experiments using the Poisson Distribution, the interval time
is calculated as 1/λ, where λ represents the rate of occurrence of events. For example, a
sleep interval time of 100ms corresponds to a rate of 10 queries per second (QPS),
which is equivalent to λ = 10.

• C-States Enabled or Disabled: We examined the effects of enabling or disabling C-
States to discern their influence on tail latency.

• Distribution: We used Poisson distribution, as it is implemented in the HDSearch
benchmark. However, we also changed our analysis to incorporate the Exponential
distribution. This allowed us to assess the impact of real-life scenario probability
distributions on query scheduling and subsequent tail latency since the distribution that
is observed in most microservice scenarios is exponential [16]. Moreover, we continued
to evaluate the efficacy of sending queries at fixed intervals, comparing this approach
against the dynamic scheduling enabled by the Poisson and Exponential distributions.

32

• Send Pre-query Request or Not: We evaluated whether sending a pre-query request
yielded tail latency improvements.

• Pre-query Interval: We explored various timings for sending the pre-query requests,
adjusting the delay between the arrival of the actual query and the transmission of the
pre-query request. This investigation aimed to identify the optimal timing strategy for
preemptively waking up the processor and minimizing tail latency. Notably, the pre-query
request did not alter the queries intervals. If the pre-query request interval (from the time
the query arrived to the midtier until the midtier sends the pre-query request) exceeds the
time needed for the query to be forwarded from the midtier to the bucket, the pre-query
request will not be sent.

Firstly, we validated that our queries followed an exponential distribution in the exponential
distribution implementation. Figure 5.2 illustrates the probability density function (PDF) of
the request intervals, represented as a histogram. The horizontal axis represents the pre-query
interval time, while the vertical axis represents the density, which sums up to 1. This histogram is
compared to the PDF of an exponential distribution, demonstrating the distribution of intervals
observed in the experiment. This comparison is conducted within the experiment where the
average query interval time is 10000 μs (1 second

100
).

Similarly, we validated that our queries followed Poisson distribution in the Poisson
distribution implementation. The PDF graph of the Poisson distribution is illustrated in Figure
5.1. While the Poisson distribution is used in HDSearch, we were not sure whether it was the
best approach, because based on Cao et al. [16] “The arrival process of HTTP requests is
assumed to be Poissonian and the service discipline is processor sharing”, meaning that the
inter-arrival times should follow an exponential distribution [17]. This is the reason we shifted
to exponential distribution.

33

Figure 5.1: Requests Poisson Distribution with Interval Rate 1000μs.

Figure 5.2: Requests Exponential Distribution Validation.

34

With Poisson Distribution

Table 5.1: Custom Interrupt Micro Benchmark Results with Poisson Distribution, C-States
Enabled and Pre-Request Interval 10μs.

(a) Without Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 216.49 348
1 214.24 302

(b) With Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 144.68 173
1 141.70 172

Comments / Observations:

• When using a Poisson distributionwith intervals ranging from 100ms to 1ms, adding a pre-
request consistently results in lower average latency and 99th percentile latency compared
to scenarios without pre-requests. This suggests that sending a pre-request before the
actual query reduces tail latency.

With Exponential Distribution

Table 5.2: Custom Interrupt Micro Benchmark Results with Exponential Distribution, C-
States Enabled and Pre-Request Interval 10 μs.

(a) Without Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 235.24 308
1 207.02 325
0.1 90.00 305

(b) With Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 199.14 258
1 163.61 243
0.1 80.02 273

Table 5.3: Custom Interrupt Micro Benchmark Results with Exponential Distribution, C-
States Enabled and Pre-Request Interval 300 μs.

(a) Without Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 231.45 267
1 225.32 294
0.1 157.67 274

(b) With Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 117.65 243
1 110.02 223
0.1 103.55 385

Comments / Observations:

• When using Exponential Distribution with pre-request intervals of 10 μs and 300 μs, we
observe consistent reductions in average latency and 99th percentile latency compared to
scenarios without pre-requests. This indicates that incorporating pre-requests effectively
improves responsiveness and reduces tail latency across varying interval durations.

• Notably, the magnitude of latency improvement varies across different interval
durations. The largest difference in latency between scenarios with and without

35

pre-requests is observed at 1 ms intervals, indicating a substantial improvement with
pre-requests. Additionally, at 0.1 ms intervals, the average latency is lower for both
scenarios, but the pre-request version consistently exhibits lower both average and 99th
percentile latency compared to the counterpart without pre-requests, demonstrating the
continued effectiveness of pre-requests in improving overall responsiveness.

• Even with very short intervals of 10μs and longer intervals of 300μs, we observe reduced
latency compared to scenarios without pre-requests. This highlights the effectiveness of
pre-requests in improving responsiveness across a wide range of interval durations.

With Fixed Interval Time

These results did not follow any distribution, but the query interval time was fixed instead.

Table 5.4: Custom Interrupt Micro Benchmark Results with Fixed Interval Time, C-States
Enabled and Pre-Request Interval 10 μs.

(a) Without Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 238.42 307
1 146.51 319
0.1 88.13 312

(b) With Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 204.76 255
1 139.26 246
0.1 79.55 210

Table 5.5: Custom Interrupt Micro Benchmark Results with Fixed Interval Time, C-States
Enabled and Pre-Query Request Interval 300 μs.

(a) Without Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 232.02 276
1 227.06 313

(b) With Pre-Query Request.

Interval(ms) Avg Latency(μs) 99th PL(μs)
100 114.90 130
1 115.38 207

Comments / Observations:

• Across all fixed interval timings, the inclusion of pre-requests consistently leads to
reductions in both average latency and 99th percentile latency. This indicates that
pre-requests effectively contribute to minimizing tail latency across various fixed
interval durations.

5.1.1 Latency Comparisons With Different Parameters

We measured the average latency and the 99th percentile latency in microseconds. For further
information on what 99th percentile latency is, see section 4.7.2.

The average and 99th percentile latency results are based on 1000 requests for each interval
configuration.

36

We incorporated a phase comprising 50 warmup requests preceding the actual experiment and
compared the results. The results are as shown below in graphs 5.3 and 5.4. The blue columns
represent the 99th percentile tail latencies, and the orange is the average tail latencies.

Each figure contains 16 columns, divided as follows: the first 8 columns are with pre-query
request enabled, and the last 8 are with pre-query request disabled. Within each group of 8
columns, they are further divided: the first 4 columns have a pre-query request time of 100 μs,
and the second 4 columns have an interval of 50 μs. The pre-query request time is the time
between the pre-query and the original query, and not the interval time between two
consecutive pre-query requests. Additionally, within each subgroup of 4 columns, the first 2
columns have a query interval of 1000 μs, and the next 2 columns have a query interval of 100
μs. The query interval is the time between two consecutive queries. Finally, within each
subgroup of 2 columns, the first column does not have a warm-up phase whereas the second is
with a 50 requests warm-up phase.

We also included speedup graphs to compare each column i with its corresponding (i + 8)th
column. Essentially, each (i + 8)th column represents the same experiment instance but with
the pre-request disabled. These graphs illustrate the performance differences, indicating how
much faster (or slower) the experiment instance with the pre-request enabled is compared to
when it is disabled. The speedup comparisons are presented in Figures 5.5 and 5.6.

C-States Disabled: For experiments with C-States disabled, the average latency consistently
hovered around 67 μs, with the 99th percentile latency consistently at 140 μs across all intervals
tested, including 1000ms, 100ms, 10ms, 1ms and 0.1ms.

37

Figure 5.3: Custom Interrupt Micro Benchmark Results with Exponential Distribution and
C-States Enabled.

38

Figure 5.4: Custom Interrupt Micro Benchmark Results with Fixed Interval Time and C-States
Enabled.

39

Figure 5.5: Custom Interrupt Micro Benchmark Results Comparison with Exponential
Distribution and C-States Enabled.

40

Figure 5.6: Custom Interrupt Micro Benchmark Results Comparison with Fixed Interval Time
and C-States Enabled.

41

Comments / Observations:

• Sending a pre-request continues to reduce both the average and the 99th percentile tail
latencies across most scenarios, with a more pronounced effect observed when employing
fixed interval time.

• With fixed interval time, the average latency values are notably higher, and they approach
the 99th percentile latency times more than exponential distribution latency values do.

• With fixed interval time, we observe a discernible distinction based on whether warmup
requests are sent prior to the main experiment. In contrast, such disparity is not evident
in the case of the exponential distribution, particularly concerning average latency
measurements.

42

We utilized SocWatch to capture the C-States transitions during the experiment. Our
observations revealed that after the query execution, the system entered C6, as anticipated.
Subsequently, upon sending the pre-query request, the system transitioned into C1, until it
receives the query. Tables 5.6 and 5.7 present a snippet of the recorded results.

Table 5.6: Micro Benchmark C-State Transitions With Query Interval 10ms and 50μs Pre-
Query Request Interval

Sample # Continuous Time (ms) C-State Duration (ms)
2889 7235.22 CC6 9.54
2890 7235.91 CC0 0.68
2891 7235.95 CC1 0.05
2892 7236.03 CC0 0.08
2893 7245.82 CC6 9.78
2894 7246.25 CC0 0.44
2895 7246.30 CC1 0.05
2896 7246.38 CC0 0.08
2897 7256.17 CC6 9.79

Table 5.7: Micro Benchmark C-State Transitions With Query Interval 1ms and 50μs Pre-
Query Request Interval

Sample # Continuous Time (ms) C-State Duration (ms)
2536 1728.75 CC0 0.68
2537 1728.77 CC1 0.02
2538 1728.83 CC0 0.07
2539 1729.16 CC6 0.33
2540 1729.76 CC0 0.60
2541 1729.94 CC1 0.17
2542 1730.04 CC0 0.11
2543 1730.07 CC1 0.02
2544 1730.13 CC0 0.07
2545 1730.96 CC6 0.83

43

5.2 HDSearch

We conducted the HDSearch experiment five times, each QPS set to 100 and 500, respectively.
For each experiment, we measured the average latency and the 99th percentile tail latency.
Subsequently, we calculated the average of the average latencies, the average of the 99th
percentile tail latencies, and identified the highest 99th percentile tail latency. The summarized
results are presented in Table 5.8. The summarized results with fixed interval time are
presented in Table 5.9.

Table 5.8: Comparison of Latencies (ms) for Different Configurations, with Exponential
Distribution. Each value set, separated by “-”, represents the average latency, the average 99th
percentile tail latency, and the highest 99th percentile tail latency, respectively.

Configuration QPS = 100 (ms) QPS = 500 (ms)
Without pre 1.88 - 2.40 - 2.411 1.54 - 2.72 - 2.741

With immediate pre 1.25 - 1.57 - 1.585 1.11 - 1.49 - 1.529
With pre 50us 1.25 - 1.56 - 1.586 1.09 - 1.46 - 1.500
With pre 100us 1.26 - 1.56 - 1.578 1.09 - 1.47 - 1.443
With pre 150us 1.26 - 1.52 - 1.541 1.09 - 1.43 - 1.438
With adaptive pre 1.25 - 1.52 - 1.538 1.09 - 1.45 - 1.457

Table 5.9: Comparison of Latencies (ms) for Different Configurations, with Fixed Interval
Time. Each value set, separated by “-”, represents the average latency, the average 99th
percentile tail latency, and the highest 99th percentile tail latency, respectively.

Configuration QPS = 10 (ms) QPS = 100 (ms)
Without pre 2.18 - 2.76 - 2.781 1.96 - 2.31 - 2.34

With immediate pre 1.29 - 1.45 - 1.478 1.46 - 1.88 - 1.92
With pre 50us 1.30 - 1.47 - 1.483 1.50 - 1.90 - 1.926
With pre 100us 1.31 - 1.48 - 1.484 1.49 - 1.90 - 1.929
With pre 150us 1.28 - 1.44 - 1.471 1.46 - 1.87 - 1.909
With adaptive pre 1.28 - 1.47 - 1.478 1.46 - 1.87 - 1.909

44

Furthermore, we ran the same experiment again, this time without running the pre-query request
server and the bucket on a specific core. The summarized results are presented in Table 5.10.

Table 5.10: Comparison of Latencies (ms) for Different Configurations Without Running on
Specific Core and Using Exponential Distribution. Each value set, separated by “-”, represents
the average latency, the average 99th percentile tail latency, and the highest 99th percentile
tail latency, respectively.

Configuration QPS = 100 (ms) QPS = 500 (ms)
Without pre 2.24 - 2.92 - 3.005 2.08 - 2.83 - 2.882

With immediate pre 2.29 - 2.92 - 3.022 2.02 - 2.74 - 2.811
With pre 50us 2.30 - 2.94 - 3.029 2.00 - 2.72 - 2.808
With pre 100us 2.30 - 2.93 - 3.025 2.02 - 2.73 - 2.810
With pre 150us 2.28 - 2.90 - 3.020 2.04 - 2.74 - 2.809
With adaptive pre 2.31 - 2.94 - 3.030 2.00 - 2.78 - 2.813

Additionally, we repeated the experiment with C-States disabled to investigate whether the
observed advantage of pre-query requests is attributable to C-state wake-up effects. The
summarized results are presented in Table 5.11.

Table 5.11: Comparison of Latencies (ms) for Different Configurations With C-States
Disabled and Exponential Distribution. Each value set, separated by “-”, represents the
average latency, the average 99th percentile tail latency, and the highest 99th percentile tail
latency, respectively.

Configuration QPS = 100 (ms) QPS = 500 (ms)
Without pre 1.26 - 1.40 - 1.519 1.07 - 1.40 - 1.450

With immediate pre 1.28 - 1.58 - 1.586 1.10 - 1.48 - 1.530
With pre 50us 1.30 - 1.55 - 1.587 1.08 - 1.46 - 1.501
With pre 100us 1.25 - 1.57 - 1.579 1.03 - 1.42 - 1.444
With pre 150us 1.27 - 1.47 - 1.568 1.06 - 1.42 - 1.462
With adaptive pre 1.28 - 1.42 - 1.525 1.09 - 1.47 - 1.509

Lastly, we also experimented with QPS set to 10 and 100 and we used the Cloudlab’s node
c220g2 to see whether we observe the same result. For each experiment, we measured the
average latency and the 99th percentile tail latency. Subsequently, we calculated the average
of the average latencies, the average of the 99th percentile tail latencies, and identified the
highest 99th percentile tail latency. The summarized results are presented in Table 5.12. The
summarized results with fixed interval time are presented in Table 5.13.

45

Table 5.12: Comparison of Latencies (ms) for Different Configurations, with Exponential
Distribution on c220g2. Each value set, separated by “-”, represents the average latency, the
average 99th percentile tail latency, and the highest 99th percentile tail latency, respectively.

Configuration QPS = 10 (ms) QPS = 100 (ms)
Without pre 1.64 - 2.07 - 2.089 1.54 - 1.88 - 1.895

With immediate pre 1.28 - 1.66 - 1.690 1.17 - 1.39 - 1.39
With pre 50us 1.29 - 1.64 - 1.693 1.17 - 1.37 - 1.38
With pre 100us 1.27 - 1.59 - 1.642 1.17 - 1.35 - 1.363
With pre 150us 1.27 - 1.59 - 1.608 1.18 - 1.36 - 1.38
With adaptive pre 1.28 - 1.56 - 1.625 1.18 - 1.35 - 1.399

Table 5.13: Comparison of Latencies (ms) for Different Configurations, with Fixed Interval
Time on c220g2. Each value set, separated by “-”, represents the average latency, the average
99th percentile tail latency, and the highest 99th percentile tail latency, respectively.

Configuration QPS = 10 (ms) QPS = 100 (ms)
Without pre 1.71 - 2.05 - 2.073 1.53 - 1.76 - 1.771

With immediate pre 1.35 - 1.64 - 1.650 1.17 - 1.30 - 1.305
With pre 50us 1.34 - 1.63 - 1.633 1.16 - 1.31 - 1.315
With pre 100us 1.33 - 1.59 - 1.605 1.17 - 1.31 - 1.317
With pre 150us 1.31 - 1.60 - 1.617 1.15 - 1.29 - 1.294
With adaptive pre 1.31 - 1.66 - 1.621 1.15 - 1.28 - 1.320

Comments / Observations:

• Implementing both fixed interval time and Exponential Distribution methods reveals a
notable decrease in average tail latency due to pre-query requests.

• When employing fixed time intervals, we observed greater latencies in comparison to
those observed with exponential distribution.

• Without assigning dedicated cores for running the bucket and the pre-query request server,
we did not observe any noticeable benefit from sending a pre-query request. This outcome
was somewhat expected since the designated core does not wake up prior to receiving the
query.

• Additionally, in scenarios where C-States are disabled, we found no observable
difference in latency improvement when utilizing pre-query requests. This suggests that
the effectiveness of pre-query requests rely on the CPU idleness.

46

5.2.1 Observations with SocWatch

We monitored IRQs and C-States traces using SocWatch under fixed interval times. Setting the
interval to 10 ms, we anticipated results similar to those of the micro benchmark, as shown in
Table 5.6. While we observed similarities, we also noted an intriguing pattern: occasionally,
the system did not transition to C1 after the pre-query request, suggesting the possibility of no
sleep occurring post pre-query. Focusing on the experiment with a pre-query request interval of
100μs, which produced optimal results, Figure 5.7 presents a segment of the C-States transitions
trace for HDSearch, and Figure 5.8 presents the corresponding segment of the IRQs. For further
explanation of the output, read section 4.1.1.

Figure 5.7: C-States Transitions Trace of HDSearch Experiment with Fixed Interval Time
10ms and Pre-Query Request Interval 100μs. The corresponding IRQs trace is shown in
Figure 5.8.

Figure 5.8: IRQs Trace of HDSearch Experiment with Fixed Interval Time 10ms and Pre-
Query Request Interval 100μs.

47

Figure 5.9: Combined Figures 5.7 and 5.8.

48

We also measured the residencies of the C-States, which are presented in Table 5.14 and Figure
5.10. The latency with the pre-query request is the average of sending an immediate pre-query
request (0μs), 50μs, 100μs, and 150μs. As expected, without sending a pre-query request, the
C0 residency time is less, while C1 and C6 residency times are greater.

Table 5.14: C-States Residencies in HDSearch in Running Core (1)

Configuration C0 Residency (%) C1 Residency (%) C6 Residency (%)
Without Pre-Query 9.71 0.16 90.14
With Pre-Query 10.38 0.22 89.40

Figure 5.10: C-States Residencies in HDSearch in Running Core (1)

5.3 Router MicroSuite Benchmark

We applied the same approach for pre-query requests as described in the HDSearch experiment
in the Router MicroSuite Benchmark. The results are shown in Table 5.15.

49

Table 5.15: Comparison of Latencies (ms) for Different Configurations in Router, with
Exponential Distribution. Each value set, separated by “-”, represents the average latency, the
average 99th percentile tail latency, and the highest 99th percentile tail latency, respectively.

Configuration QPS = 100 (ms) QPS = 500 (ms)
Without pre 1.68 - 1.98 - 2.02 1.68 - 1.95 - 2.02

With immediate pre 1.49 - 1.80 - 1.91 1.49 - 1.79 - 1.92
With pre 50us 1.52 - 1.83 - 1.96 1.52 - 1.79 - 1.96
With pre 100us 1.53 - 1.84 - 1.93 1.53 - 1.80 - 1.93
With pre 150us 1.55 - 1.84 - 1.88 1.55 - 1.79 - 1.88
With adaptive pre 1.50 - 1.86 - 1.87 1.50 - 1.80 - 1.91

Comments:

• Similarly to the findings in HDSearch, we observed that sending a pre-query request leads
to a reduction in tail latency in the Router Benchmark.

5.4 gRPC Helloworld Experiment

During the experiment (mentioned in section 4.8), we initiated a series of 10,000 requests from
the client to the server, each with a fixed time interval of 10 milliseconds between them (Table
5.16). Additionally, we conducted a variation of the experiment by adjusting the interval time
between requests. to 2 milliseconds (equivalent to 500 queries per second, Table 5.17), aiming
to analyze the system’s performance under different query rates.

Additionally, we incorporated intervals generated using an exponential distribution, with
average numbers of 2 (Table 5.19) and 10 (Table 5.18), mirroring the fixed intervals. This
approach allowed us to simulate more realistic request patterns and comprehensively assess the
system’s responsiveness and scalability across a range of load conditions.

Moreover, to investigate the potential advantages of pre-query requests, we experimented with
sending a pre-query request to the server at various time intervals before the original query.
These intervals included immediately (0 microseconds), as well as before 50 microseconds,
100 microseconds, and 200 microseconds of the original query. By examining the effects of
pre-query requests at different time offsets, we aimed to identify any potential performance
enhancements or efficiency gains that could be achieved through this approach.

We monitored IRQs and C-States traces using SocWatch under fixed interval times, exactly as
we did in section 5.2.1. Setting the interval to 10 ms, we anticipated results similar to those of
the micro benchmark, as shown in Table 5.6. While we observed similarities, we also noted an
intriguing pattern: occasionally, the system did not transition to C1 after the pre-query request,

50

suggesting the possibility of no sleep occurring post pre-query. Focusing on the experiment
with a pre-query request interval of 100μs, which produced optimal results, Figure 5.7 presents
a segment of the C-States transitions trace for HDSearch, and Figure 5.8 presents the
corresponding segment of the IRQs. For further explanation of the output, read section 4.1.1.

Table 5.16: Latency Measurements with Different Pre-Query Interval Times in gRPC
Helloworld Example with Fixed Interval Time 10ms

Interval Time (μs) Average Latency (μs) 99th Percentile Latency (μs)
Without pre 3338.13 3676

Immediate pre (0) 3354.43 3686
50 3339.07 3582
100 3329.62 3560
200 3314.85 3517

Adaptive pre 3325.10 3525

Table 5.17: Latency Measurements with Different Pre-Query Interval Times in gRPC
Helloworld Example with Fixed Interval Time 2ms

Interval Time (μs) Average Latency (μs) 99th Percentile Latency (μs)
Without pre 3308.46 3566

Immediate pre (0) 3315.70 3505
50 3252.08 3536
100 3324.66 3607
200 3284.50 3480

Adaptive pre 3251.43 3548

Table 5.18: Latency Measurements with Different Pre-Query Interval Times in gRPC
Helloworld Example with Exponential Distribution with Average Interval Time 10ms

Interval Time (μs) Average Latency (μs) 99th Percentile Latency (μs)
Without pre 3264.58 3517

Immediate pre (0) 3288.05 3481
50 3238.52 3455
100 3267.42 3460
200 3251.07 3455

Adaptive pre 3264.40 3452

5.5 TCP Delayed Acknowledgment

During our experiments, when the interval time was 100ms or greater, we observed using
Wireshark that another message was sent after 40ms. This message was identified as the TCP

51

Table 5.19: Latency Measurements with Different Pre-Query Interval Times in gRPC
Helloworld Example with Exponential Distribution with Average Interval Time 2ms

Interval Time (μs) Average Latency (μs) 99th Percentile Latency (μs)
Without pre 3338.13 3676

Immediate pre (0) 3354.43 3686
50 3339.07 3582
100 3329.62 3560
200 3314.85 3517

Adaptive pre 3353.32 3564

Delayed Acknowledgment [20, 21], which, in our case, is an acknowledgment sent after 40ms,
but this timing varied. The significance of this observation lies in its implications for processor
wake-up cycles. When the TCP Delayed Acknowledgment is triggered, it prompts the
processor to wake up after only 40ms, following which it returns to a deep sleep state (C6)
once the acknowledgment is processed.

5.5.1 Explanation of TCP Delayed Acknowledgment

TCP (Transmission Control Protocol) uses acknowledgments (ACKs) to confirm the receipt of
data packets. Typically, an ACK is sent immediately after receiving a data packet. However,
TCP Delayed Acknowledgment is a mechanism that delays the sending of ACKs in certain
situations.

The purpose of TCPDelayed Acknowledgment is to improve network efficiency by reducing the
number of ACK packets sent over the network. Instead of acknowledging each received packet
immediately, TCP Delayed Acknowledgment allows the receiver to wait for a short period (in
our case 40ms) to see if it can piggyback the ACK on the next outgoing data packet.

By delayingACKs and potentially piggybacking them on outgoing data packets, TCP can reduce
the overall number of packets transmitted on the network, which can help alleviate network
congestion and improve performance, especially in high-latency environments.

52

6 Related Work

6.1 Menu Governor Enhancement Approaches

Several approaches have been proposed to enhance the menu governor.Dial and Song [22] and
Sharafzadeh et al. [23] introduced methods to address its limitations. They utilized machine
learning to estimate idle periods and select appropriate idle states. While these methods improve
idle state selection, they still struggle to reduce wake-up latency when transitioning from deep
states.

There were also many other attempts to create new idle C-States, such as AgileWatts [24], in
order to find the best trade-off for performance and energy consumption.

6.2 Previous Work on Pre-Wakeup

A recent research from Kei Fujimoto et al. [25] has addressed the challenge of maintaining
high real-time performance in services while facing increased server power consumption due
to the disabling of power-saving features. To mitigate the deep C-State wakeup latency issue, a
pre-wakeup (PWU) system has been proposed. This system pre-wakes CPU cores before task
assignment, reducing wake-up latency while allowing for transition to deeper idle states when
appropriate. Evaluations conducted on an Intel Xeon processor demonstrated that the PWU
system incurs minimal power-consumption overhead and can reduce recovery time from the
C6 state by 84%.

53

7 Conclusions

7.1 Conclusion

This thesis has shed light on a potential avenue for improving the performance of microservices
implementations, and potentially other systems utilizing gRPCs or remote API calls. Through
the introduction of a pre-query request mechanism aimed at awakening the CPU before the
arrival of the primary query, a promising benefit has been demonstrated. By sending a fast
and lightweight request to the server, this mechanism effectively reduces tail latency, leading to
enhanced system responsiveness.

The findings presented in this thesis underscore the significance of proactive approaches to
CPU wake-up management in microservices environments. By strategically timing the
pre-query request to ensure the CPU is awakened sufficiently ahead of the primary query,
significant improvements in tail latency have been observed. This not only enhances the
end-user experience but also contributes to the overall efficiency and effectiveness of
microservices-based systems.

Moving forward, further research and experimentation could explore the broader applicability
of the pre-query request mechanism across various system architectures and use cases.
Additionally, investigating optimizations and refinements to the mechanism could uncover
additional performance benefits, further enhancing the value proposition for its adoption in
real-world deployments.

In conclusion, this thesis offers valuable insights into the potential of proactive CPU wake-
up management strategies to optimize system performance in microservices environments. By
reducing tail latency through the implementation of the pre-query request mechanism, a tangible
improvement in system responsiveness has been demonstrated, paving theway formore efficient
and effective microservices implementations in the future.

7.2 Future Work

7.2.1 Further Research and Investigation

While the current research provides valuable insights into the impact of CPU powermanagement
on microservices performance, there are avenues for further exploration and analysis.

Firstly, conducting experiments in a different environment, distinct from CloudLab, would offer
valuable insights into the generalizability of the findings. Testing the results in a real-world

54

deployment or a different cloud computing platform could provide a broader perspective and
validate the reproducibility of the observed effects.

Additionally, further investigation is warranted to understand the underlying reasons behind the
suboptimal performance observed in the gRPC helloworld experiment.

7.2.2 Linux Kernel and Idle Governor Optimizations

Exploring potential enhancements to the idle governor could yield significant reductions in
microservice response latency. By introducing smarter mechanisms within the governor, such
as predictive wake-up strategies or intelligent handling of interrupt coalescing, the kernel
could proactively awaken CPU cores in anticipation of impending requests, thus minimizing
response latency.

One avenue for improvement lies in devising algorithms within the idle governor that anticipate
upcoming workloads, such as gRPC requests, and preemptively adjust CPU states accordingly.
By intelligently predicting workload patterns and preemptively transitioning CPU cores from
idle states to active states, the kernel could effectively reduce the latency incurred during request
processing.

Furthermore, optimizing interrupt handling through techniques like interrupt coalescing could
also contribute to latency reduction. By intelligently aggregating and processing interrupts, the
kernel can minimize the overhead associated with interrupt handling, thereby streamlining the
response process for microservices.

7.2.2.1 Idle Governors with Machine Learning

Idle governors utilizing machine learning techniques hold promise for further optimizing CPU
power management and reducing response latency in microservices environments. Recent
research efforts [23, 26] have explored the application of machine learning algorithms within
idle governors, demonstrating potential benefits in terms of performance and efficiency.

By leveraging machine learning models, idle governors can adaptively learn and adjust CPU
power states based on dynamic workload patterns and system characteristics. These models can
analyze historical workload data, system metrics, and environmental factors to make proactive
decisions regarding CPU power management.

For example, reinforcement learning algorithms can enable idle governors to learn optimal
policies for transitioning CPU cores between different power states in response to varying
workload demands. Similarly, recurrent neural network (RNN) architectures can capture
temporal dependencies in workload patterns, allowing for more accurate predictions and
proactive adjustments.

55

The integration of machine learning into idle governors offers several potential benefits,
including improved responsiveness, enhanced energy efficiency, and better adaptability to
workload fluctuations. By dynamically optimizing CPU power states based on real-time data
and predictive models, machine learning-powered idle governors have the potential to
significantly enhance the performance and efficiency of microservices environments.

7.2.3 Exploring Different Linux Distributions

In our experimentation, we only utilized Ubuntu LTS 20.04 as the operating system for our
research environment. However, with the release of newer versions such as Ubuntu 24.04, there
is an opportunity to explore the potential impacts of updated distributions on microservices
performance.

The adoption of a newer Linux distribution may introduce changes to various components of
the operating system, including the idle governor. As such, experimenting with Ubuntu 24.04
or other recent releases could provide insights into how these changes affect CPU power
management and response latency in microservices environments.

Furthermore, exploring alternative Linux distributions beyond Ubuntu, such as Fedora or
CentOS, offers additional avenues for investigation. Each distribution may employ different
configurations, package versions, and default settings, which can influence system behavior
and performance characteristics.

56

BIBLIOGRAPHY

[1] [Online]. Available: https://medium.com/design-microservices-architecture-with-
patterns/when-to-use-and-when-not-to-use-microservices-no-silver-bullet-3ae293faf6d

[2] [Online]. Available: https://grpc.io/docs/languages/cpp/quickstart/

[3] [Online]. Available: https://github.com/grpc/grpc

[4] [Online]. Available: https://docs.kernel.org/driver-api/pm/cpuidle.html#:~:text=A%
20CPU%20idle%20time%20(%20CPUIdle,order%20to%20save%20some%20energy.

[5] [Online]. Available: https://docs.kernel.org/admin-guide/pm/cpufreq.html

[6] A. Sriraman and T. F. Wenisch, “μ suite: A benchmark suite for microservices,” in 2018
IEEE International Symposium on Workload Characterization (IISWC), 2018, pp. 1–12.

[7] [Online]. Available: https://github.com/cseas002/MicroSuite

[8] [Online]. Available: https://github.com/cseas002/HDSearch-Multinode

[9] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Prentice
Hall, 2010.

[10] [Online]. Available: https://www.geeksforgeeks.org/introduction-hill-climbing-artificial-
intelligence

[11] [Online]. Available: https://en.wikipedia.org/wiki/Hill_climbing

[12] [Online]. Available: https://access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/6/html/performance_tuning_guide/s-cpu-irq

[13] [Online]. Available: https://www.scribbr.com/statistics/poisson-distribution/#:~:text=A%
20Poisson%20distribution%20is%20a,the%20mean%20number%20of%20events.

[14] [Online]. Available: https: / /courses . lumenlearning.com/introstats1/chapter / the-
exponential-distribution

[15] [Online]. Available: https: / /en.wikipedia.org/wiki/Exponential_distribution#:~:
text=In%20probability%20theory%20and%20statistics,rate%3B%20the%20distance%
20parameter%20could

[16] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, “Web server performance modeling using
an m/g/1/k*ps queue,” in 10th International Conference on Telecommunications, 2003.
ICT 2003., vol. 2, 2003, pp. 1501–1506 vol.2.

[17] [Online]. Available: https://www.probabilitycourse.com/chapter11/11_1_2_basic_
concepts_of_the_poisson_process.php

57

https://medium.com/design-microservices-architecture-with-patterns/when-to-use-and-when-not-to-use-microservices-no-silver-bullet-3ae293faf6d
https://medium.com/design-microservices-architecture-with-patterns/when-to-use-and-when-not-to-use-microservices-no-silver-bullet-3ae293faf6d
https://grpc.io/docs/languages/cpp/quickstart/
https://github.com/grpc/grpc
https://docs.kernel.org/driver-api/pm/cpuidle.html#:~:text=A%20CPU%20idle%20time%20(%20CPUIdle,order%20to%20save%20some%20energy.
https://docs.kernel.org/driver-api/pm/cpuidle.html#:~:text=A%20CPU%20idle%20time%20(%20CPUIdle,order%20to%20save%20some%20energy.
https://docs.kernel.org/admin-guide/pm/cpufreq.html
https://github.com/cseas002/MicroSuite
https://github.com/cseas002/HDSearch-Multinode
https://www.geeksforgeeks.org/introduction-hill-climbing-artificial-intelligence
https://www.geeksforgeeks.org/introduction-hill-climbing-artificial-intelligence
https://en.wikipedia.org/wiki/Hill_climbing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-irq
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-irq
https://www.scribbr.com/statistics/poisson-distribution/#:~:text=A%20Poisson%20distribution%20is%20a,the%20mean%20number%20of%20events.
https://www.scribbr.com/statistics/poisson-distribution/#:~:text=A%20Poisson%20distribution%20is%20a,the%20mean%20number%20of%20events.
https://courses.lumenlearning.com/introstats1/chapter/the-exponential-distribution
https://courses.lumenlearning.com/introstats1/chapter/the-exponential-distribution
https://en.wikipedia.org/wiki/Exponential_distribution#:~:text=In%20probability%20theory%20and%20statistics,rate%3B%20the%20distance%20parameter%20could
https://en.wikipedia.org/wiki/Exponential_distribution#:~:text=In%20probability%20theory%20and%20statistics,rate%3B%20the%20distance%20parameter%20could
https://en.wikipedia.org/wiki/Exponential_distribution#:~:text=In%20probability%20theory%20and%20statistics,rate%3B%20the%20distance%20parameter%20could
https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php
https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php

[18] [Online]. Available: https://www.wisc.cloudlab.us/portal/show-nodetype.php?type=
c220g5

[19] [Online]. Available: https://github.com/cseas002/interrupts

[20] [Online]. Available: https://access.redhat.com/documentation/en-us/red_hat_enterprise_
linux_for_real_time/7/html/tuning_guide/reducing_the_tcp_delayed_ack_timeout

[21] [Online]. Available: https://en.wikipedia.org/wiki/TCP_delayed_acknowledgment

[22] Q. Diao and J. Song, “Prediction of cpu idle-busy activity pattern,” in 2008 IEEE 14th
International Symposium on High Performance Computer Architecture, 2008, pp. 27–36.

[23] E. Sharafzadeh, S. A. S. Kohroudi, E. Asyabi, and M. Sharifi, “Yawn: A cpu idle-state
governor for datacenter applications,” in Proceedings of the 10th ACM SIGOPS Asia-
Pacific Workshop on Systems, 2019.

[24] J. H. Yahya, H. Volos, D. B. Bartolini, G. Antoniou, J. S. Kim, Z. Wang, K. Kalaitzidis,
T. Rollet, Z. Chen, Y. Geng, O. Mutlu, and Y. Sazeides, “Agilewatts: An energy-efficient
cpu core idle-state architecture for latency-sensitive server applications,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022, pp. 835–850.

[25] K. Fujimoto, H. Harasawa, K. Natori, I. Otani, S. Saito, andA. Shiraga, “Pwu: Pre- wakeup
for cpu idle to reduce latency and power consumption,” in 2022 International Conference
on Software, Telecommunications and Computer Networks (SoftCOM), 2022, pp. 1–6.

[26] S. Pattanayak and B. Thangaraju, “Linux cpu-idle menu governor with online
reinforcement learning and scheduler load balancing statistics,” in 2019 IEEE
International Conference on Electronics, Computing and Communication Technologies
(CONECCT), 2019, pp. 1–6.

58

https://www.wisc.cloudlab.us/portal/show-nodetype.php?type=c220g5
https://www.wisc.cloudlab.us/portal/show-nodetype.php?type=c220g5
https://github.com/cseas002/interrupts
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/reducing_the_tcp_delayed_ack_timeout
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/reducing_the_tcp_delayed_ack_timeout
https://en.wikipedia.org/wiki/TCP_delayed_acknowledgment

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	Introduction
	Motivation
	Our Hypothesis
	C-States Impact on Latency
	Contributions

	Background
	Microservices and their Latency Concerns
	gRPCs
	Grpc.io Examples

	Linux Power Management and Idle Governors
	Menu and Ladder Idle Governors
	Ubuntu 20.04 Power Management

	Benchmarks
	HDSearch
	Router
	Benchmarks Objectives

	Hill Climbing Algorithm

	Proactive Wake-up Mechanism
	Scenarios for Proactive Wake-Up Mechanism
	Application in Our Experiments

	Optimization Using a Hill Climbing Algorithm

	Research Methodology
	Tools Used
	SocWatch
	Turbostat

	Fixed CPU Frequency
	SMT Disabled
	IRQ-Core Bind
	Utilizing CloudLab for Experimentation
	Limitations:

	Workload Distributions
	Poisson Distribution
	Exponential Distribution
	How Distributions Were Used

	Metrics Used
	Average Latency
	99th Percentile Latency

	Applying Socket Pre-Query Request in gRPC Helloworld Experiment
	System Information

	Results
	Custom Interrupt Micro Benchmark
	Latency Comparisons With Different Parameters

	HDSearch
	Observations with SocWatch

	Router MicroSuite Benchmark
	gRPC Helloworld Experiment
	TCP Delayed Acknowledgment
	Explanation of TCP Delayed Acknowledgment

	Related Work
	Menu Governor Enhancement Approaches
	Previous Work on Pre-Wakeup

	Conclusions
	Conclusion
	Future Work
	Further Research and Investigation
	Linux Kernel and Idle Governor Optimizations
	Exploring Different Linux Distributions

	BIBLIOGRAPHY

