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Summary

Return-Oriented Programming (ROP) is a complex method of exploiting vulnerabilities

in software applications. It involves constructing a chain of small code sequences, known

as gadgets, that can be reused to perform unintended operations within the application.

However, existing methods for defending against ROP are limited. Some are limited to

the depth of the analysis, while others require specialized compiler, which compromise

the integrity of the application binary.

This thesis dissertation presents the implementation and evaluation of eavesdROP

tool. EavesdROP is our approach for non-branch limited attack detection and preven-

tion of Ret-type Return Oriented Programming(ROP) attacks. It is built on top of Intel

Processor Trace, a hardware feature that provides low overhead control flow tracing of a

process. EavesdROP, designed for Linux machines makes use of ptrace facility along with

Intel PT feature mention before and Libipt, Intel’s reference implementation library for

decoding Intel PT traces. EavesdROP is able to perform dynamic, transparent, variable

depth, Call-Ret imbalance heuristic analysis of a statically compiled target application, in

pursuance to determine whether it is undergoing a ROP attack.
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Chapter 1

Introduction

1.1 Motivation

In C, memory management is the responsibility of the programmer. This means that it is

up to the programmer to correctly allocate and deallocate memory in their C program. If

memory is not managed properly, it can lead to a variety of problems, including buffer

overflows.

A buffer overflow occurs when a program writes more data to a buffer (a temporary

storage area in memory) than the buffer was designed to hold. This can cause the excess

data to overwrite adjacent memory, potentially corrupting or overwriting important data.

In some cases, a buffer overflow can be exploited by an attacker to execute arbitrary code,

allowing them to take control of the program or system.

The most effective method of preventing buffer overflow attacks is through the imple-

mentation of secure code. However, additional countermeasures, including DEP/NX(Data

Execution Prevention/No Execution)[1], ASLR(Address Space Layout Randomization)[25],

and stack canaries[8], have also been introduced to protect against these types of exploits.

In this dissertation, inspired by kBouncer[18]: Efficient and Transparent ROP Mitiga-

tion, research will be conducted to the detection of a specific exploit technique, ROP(Return

Oriented Programming) used to bypass DEP memory protection feature, using Intel PT(Intel

Processor Trace) a CPU tracing feature which records the program execution.

In order to achieve this, numerous techniques are used to observe and control dynam-

ically the execution of the target application, in pursuance to analyse its behaviour and

determine whether its undergoing an attack.
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Chapter 2

Background

Buffer Overflow
A buffer overflow is a type of vulnerability in a computer program that occurs when

the program tries to store more data in a buffer than it was designed to hold. This can

cause the program to crash, or it can allow an attacker to execute malicious code.

In the C programming language, buffer overflows can occur when a program tries to

store data in an array or string that is too large for the allocated buffer. This can happen

when the program does not properly check the size of the input data before trying to store

it.

Buffer overflows can be exploited by attackers to execute arbitrary code, allowing

them to gain unauthorized access to a system or to perform other malicious actions. They

are a common type of security vulnerability and are often found in programs written in C

or C++.

DEP/NX
Data Execution Prevention (DEP) is a system-level memory protection security fea-

ture that is designed to prevent malicious code from being executed in memory regions or

certain pages that are not intended for execution. DEP is implemented in hardware and

software, and it works by marking certain areas of memory as non-executable. This means

that if an attacker tries to execute code from these areas, DEP will block the execution

and prevent the attack from taking place.

NX (No eXecute) is a technology that is similar to DEP. It is implemented in hard-

ware and allows the operating system to mark certain areas of memory as non-executable.

When NX is enabled, any attempt to execute code from a non-executable memory area

will result in an exception being raised.

Both DEP and NX are designed to protect against buffer overflow attacks and other

types of attacks that involve executing malicious code in memory. They are commonly

used in modern operating systems and are an important part of the security landscape.

Address Space Layout Randomization(ALSR)
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Address Space Layout Randomization (ASLR) is a security technique that helps to

protect computer systems from exploitation by randomizing the memory addresses of var-

ious system components, such as executable code, libraries, and data. The goal of ASLR

is to make it more difficult for attackers to predict the memory addresses of vulnerable

system components and thus prevent them from launching successful attacks.

ASLR is especially effective against Return-Oriented Programming (ROP) attacks,

which are a type of memory corruption attack that involves manipulating the return ad-

dress of a function to redirect program execution to arbitrary locations in memory, where

an attacker can execute malicious code. By randomizing the memory addresses of system

components, ASLR makes it much more difficult for attackers to determine the correct

memory addresses to use in their ROP chains, which in turn makes it more difficult for

them to exploit vulnerabilities.

However, ASLR can be bypassed in certain circumstances. One common technique

used to bypass ASLR is to perform memory disclosure attacks, which involve exploiting

a vulnerability to leak the memory address of a system component that is not randomized

by ASLR, such as a shared library. Once an attacker has the address of one component,

they can use it to calculate the addresses of other components and launch their ROP attack.

Another technique used to bypass ASLR is to use a brute-force attack, where an at-

tacker attempts to guess the correct memory address by repeatedly trying different ad-

dresses until they find the correct one. This technique is generally only effective against

poorly implemented ASLR or when combined with other vulnerabilities or techniques.

Control Flow Integrity (CFI) checks
Control Flow Integrity (CFI) is a security technique designed to defend against code

reuse attacks such as Return-Oriented Programming (ROP) attacks. CFI works by enforc-

ing constraints on the control flow of a program, such that the program can only execute

instructions in a valid order according to its control flow graph. This is accomplished by

adding metadata to the binary code of the program, such as information about the valid

targets of a particular function call. At runtime, the CFI system checks the metadata to

ensure that the program is following a valid control flow path or not.

However, there are several drawbacks to CFI as a defense mechanism. One of the

primary drawbacks is the performance overhead of CFI, as it requires additional runtime

checks and metadata processing. Additionally, CFI can be bypassed by attackers who are

able to control the flow of the program in ways that are still considered valid by the CFI

system. For example, some ROP attacks use unaligned gadgets, which are sequences of

instructions that do not start at the beginning of an instruction boundary, and therefore do

not match the expected control flow path. These types of attacks can be difficult for CFI

systems to detect, as they may be interpreted as legitimate control flow changes by the

system.
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Dynamic Binary instrumentation
Instrumentation-based approaches are a class of security techniques designed to de-

fend against code reuse attacks such as Return-Oriented Programming (ROP). These tech-

niques work by inserting additional code, known as "check code," into the binary code of

a program that checks for violations of the expected control flow. At runtime, the check

code monitors the execution of the program and verifies that the program is following a

valid control flow path. If the check code detects a deviation from the expected control

flow, it can terminate the program or take other protective measures to prevent further

damage.

One drawback of instrumentation-based approaches is the overhead they impose on

program execution. Because the check code must execute alongside the program code,

it can slow down the performance of the program and increase its memory footprint.

Additionally, attackers can attempt to evade the check code by manipulating the program

in ways that do not trigger the expected checks. For example, attackers may modify the

code in such a way that the check code is not executed, or they may attempt to bypass the

checks by exploiting weaknesses in the instrumentation mechanism itself.

Furthermore, attackers can use polymorphism and other evasion techniques to modify

the program’s control flow in ways that bypass the check code. Polymorphism involves

modifying the program code at runtime to generate new variations of the attack code,

which can be difficult for the check code to detect. Additionally, attackers can use obfus-

cation techniques to make the code harder to read and analyze, making it more difficult

for the check code to identify deviations from the expected control flow.

Return-oriented programming (ROP)
Is a technique used by attackers to bypass data execution prevention (DEP) and other

memory protection measures. It involves chaining together short segments of code called

"gadgets" that are already present in a program’s memory, in order to execute arbitrary

code.

In ROP, the attacker does not inject new code into the program’s memory. Instead,

they manipulate the program’s execution flow to execute existing code in a way that was

not intended by the original developer. This can allow the attacker to bypass DEP and

other memory protection measures, since the code being executed is already present in

the program’s memory and was not introduced by the attacker.

ROP is often used in conjunction with other techniques, such as buffer overflow at-

tacks, to compromise the security of a system.

Jump Oriented Programming(JOB) - similar to ROP, but instead of reusing gadgets,

an attacker uses a series of indirect jumps to execute malicious code.

Call Oriented Programming(COP) - an advanced form of ROP where the attacker

uses the existing code to build a chain of function calls that execute the malicious code.
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PID
A PID, or process ID, is a unique numerical identifier assigned to each process running

on a computer. It is used to identify and track individual processes, and is typically

assigned by the operating system when a new process is created.

The PID is a unique positive integer value, and it’s used by the operating system to

keep track of the process, manage its resources, and control its execution. For example,

the operating system uses the PID to locate the process’s memory space, open files, and

system resources, and to send signals to the process.

SIGSTOP
SIGSTOP is a signal in the Unix operating system that is used to stop the execution of

a process. When a process receives a SIGSTOP signal, it will immediately stop executing

and will not be able to continue until it receives a SIGCONT signal.

SIGSTOP is a "non-catchable, non-ignorable" signal, which means that the process

cannot catch or ignore it using a signal handler. This makes it a useful tool for forcefully

stopping a process that may be stuck in an infinite loop or otherwise unresponsive.

Intel PT
Intel Processor Trace (Intel PT) is a hardware feature of certain Intel processors that

allows for the tracing and recording of the execution of instructions on the processor. It

can be used for a variety of purposes, such as debugging and performance analysis.

Intel PT works by constantly recording the flow of instructions as they are executed by

the processor. The recorded data can be accessed later for analysis, providing a detailed

record of the processor’s execution. Intel PT can be used to trace the execution of code at

the instruction level, allowing for a more fine-grained analysis of the processor’s behavior.

Intel PT Type Intel PT type is a numerical value located in

1 / s y s / bus / e v e n t _ s o u r c e / d e v i c e s / i n t e l _ p t / t y p e

The "type" file within this subdirectory provides information about the specific type of

Intel PT feature that is present on the system. This information can be useful for de-

termining the capabilities and supported protocols of the Intel PT feature, as well as for

identifying the generation of the CPU that the system is running on.

File descriptor
File descriptor is an abstract indicator used to access a file or other input/output re-

sources, and it is a non-negative integer, it’s unique within a process. When a file is

opened, the operating system returns a file descriptor that can be used to read and write

to the file. In the case of mmap, the file descriptor is used to specify the file that is being

mapped into memory.

Libipt
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The Intel Processor Trace (Intel PT) Decoder Library is Intel’s reference implementa-

tion for decoding Intel PT.

The Libipt library provides an API for working with Intel PT data, allowing developers

to write tools and applications that can make use of this feature.

XED
Intel XED is a software library developed by Intel that allows programmers to work

with the X86 instruction set, which is used by most computers that run on the x86 archi-

tecture. It provides functions for encoding and decoding instructions, as well as tools for

disassembling and assembling code.

Perf Events
Perf Events, also known as "Performance Events" or "perf," is a Linux kernel subsys-

tem that provides a framework for collecting and analyzing performance data from the

operating system and running applications.

It allows a process to monitor various events, such as CPU instructions executed,

cache misses, page faults, and context switches, and collect data about these events in

real-time or offline.

Perf Events provides a range of features, including the ability to:

• Collect data from multiple CPUs and processors simultaneously

• Sample data at a specified rate or in response to specific events

• Filter data based on process, thread, or CPU

• Profile the kernel, user space programs, or both

Ptrace
Ptrace is a system call that allows a process to be traced by another process. This

means that the process being traced can be controlled and monitored by the tracer process.

It can be used to monitor and control the execution of another process, and is often used

for debugging and analyzing the behavior of programs. Some examples of what ptrace

can be used for include examining the system calls that a process makes, injecting code

into a process, and modifying the memory of a process.

waitpid
Waitpid is a system call in the Unix operating system that allows a parent process to

wait for a specific child process to change state. By passing the process ID of the child

process and options that control the behavior of the call, it allows the parent process to

wait for the child process to change state and obtain the child’s exit status, or wait for

other specific state changes and handle them accordingly.

ioctl
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ioctl (short for "input/output control") is a system call in Linux that allows a process

to request input/output operations on a device or file. It is a general-purpose interface that

can be used to perform various operations, such as reading or setting device parameters,

initiating data transfer, or requesting device information.

The ioctl system call takes three arguments: a file descriptor, a request code, and

an argument. The request code specifies the operation to be performed, and the argument

points to a data structure or buffer that is used to pass additional information to the system

call. The ioctl system call returns a positive value on success and a negative value on error.

Mmap
Mmap systemcall, also known as memory-mapped files,it allows a process to map a

file or a portion of a file into its virtual memory address space. When a file is mapped, the

process can read and write to the file directly using pointer operations, which can be more

efficient than using the standard read and write system calls. The mmap function creates

a new memory mapping for the specified file and the mapped region can be accessed as if

it were an array in memory.

Statically compiled
Statically compiled refers to a method of building executable code from source code in

which all of the necessary libraries and dependencies are included in the final executable

file. In other words, when a program is statically compiled, all of the code required to run

the program is contained within a single executable file, without the need for any external

libraries or dependencies.

Statically compiled programs are often larger in size than dynamically compiled pro-

grams, as all of the libraries and dependencies are bundled with the program. However,

they have the advantage of being self-contained, which means that they can be easily

distributed and run on other systems without the need for any additional setup or config-

uration.

Statically compiled programs are also more resilient to changes in the system environ-

ment, as they do not rely on external libraries that may be updated or changed over time.

This makes them a popular choice for certain types of software, such as system utilities

or other low-level tools that need to run reliably across different environments.
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Chapter 3

Architecture

3.1 eavesdROP approach

Our approach to detect ROP attacks is based on the implementation of runtime checks for

abnormal control flow transfers. Conducting runtime checks for all control flow transfers

can significantly increase the performance overhead of the system, as indirect control

flow transfers are a common occurrence in executed code. To address this issue, we

have proposed a refinement of the set of control transfers that need to be checked during

runtime. This refinement is based on the observation that malicious code often relies on

system calls to achieve its intended goals. Therefore, we propose that only the control

transfers that occur within the final stages of the execution path leading to a system call

should be subject to runtime checks. This reduction in the scope of control transfers that

need to be checked can greatly reduce the performance overhead of the system while

maintaining an appropriate level of security.

Abnormal control flow in ROP attacks is characterized by the manipulation of the

program’s execution flow through the use of gadgets as ilustrated in [3]. These gadgets

are small code snippets that are already present in the program’s memory, and are chained

together by the attacker to redirect the program’s execution flow to a location controlled

by the attacker.

Before ROP code starts executing, the register that holds the stack pointer is set to

the beginning of the ROP payload, this done through a stack pivot[10, 11] . Each gadget

ends with a return instruction, which advances the stack pointer to the address of the next

gadget, and transfers control to it. However, these return instructions of ROP code can

be distinguished from legitimate return instructions of the actual program, since those are

paired with call instructions(when one observes the instructions in order of execution).

Moreover legitimate call instructions upon return tend to transfer execution control back

to the next instruction from where the call was made. Therefore, an execution flow with
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dense return instructions which are not preceded by calls and lead to a system call, is

considered abnormal behaviour and can be used as a marker for ROP code execution.

This heuristic is later referred to as Call-Ret imbalance.

Figure 3.1: Upon kernel space entry, our monitoring program will check preceding indi-

rect branches to determine whether arrived in that state through a benign system call or

part of a ROP exploit [Visualization inspired by kBouncer[18] ]

The image in Figure 3.1 illustrates the concept of memory snapshots and control trans-

fers. The boxes represent snapshots of memory, and the arrows connecting them indicate

the flow of control. The top section represents the kernel space and the bottom section

represents the user space. The vertical line indicates the point at which control is trans-

ferred from user space to kernel space (usually through a system call such as syscall,

sysenter, or int 0x80). This is the point where we examine the control flow path for any

unusual transfers of control and determine if it is a legitimate system call or if it is being

used as part of a ROP exploit.

We chose Intel PT a feature built into certain Intel processors that allows for the trac-

ing and recording of a CPU’s instruction execution. Intel PT benefits over the other ap-

proaches since its hardware based, meaning it does not dependent on software instrumen-

tation and can trace instructions even in kernel or other privileged modes. It has minimal

runtime overhead; it is fully transparent to the running processes; it can be dynamically

enabled and requires no debugging symbols or source code.
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Chapter 4

Implementation

4.1 Trace target application

In order to check preceding indirect branches to determine whether the subject process

arrived in that state through a benign system call or as a part of a ROP exploit, we de-

veloped a tool that uses existing techniques to observe and control the execution of the

target application, allowing us to perform runtime control transfer checks in a controlled

manner.

To control the execution of the subject process, our tool uses ptrace, a system call

primarily used to implement breakpoint debugging and system call tracing. Ptrace allows

our tool, referred to from now on this chapter as the "Tracer", to attach and control another

process, referred to as the "Tracee". Using this tracing feature, our tool can intercept

and observe system calls made by the Tracee before they are executed. This allows us

to analyse the preceding indirect branches the Tracee took to arrive there. Determining

whether its under attack and therefore terminating its execution, or allowing it to continue

until the next system call(or exit), in case of no malicious control transfer detection.

16



Figure 4.1: Unified Modeling Language (UML) diagram that illustrates the sequence of

messages between our Tracer tool and the Tracee in an interaction.
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The sequence diagram in Figure 4.1 illustrates the sequence of messages between our

Tracer tool and the Tracee in an interaction. First the Tracer forks() to create a new

process by duplicating itself. A PTRACE_TRACEME request is then initiated by the child,

to turn it into a Tracee. This allows the child process to be controlled and traced by our

tracer tool. In order to synchronize the Tracer with the Tracee a SIGSTOP signal is

raised by the child. For this reason a waitpid() call is made by the Tracer, in order

to detect this state change signal. The Tracee then continues by executing execvp()

system call to replace its current process image with a new process image, the one of

the target application we are interested on analysing. At this point the Tracer enters an

infinite loop, to which, for every iteration, checks the preceding indirect branches leading

to the system call the Tracee is about to take. This is achieved by initiating the Intel PT

recording(discussed in more detail in the next chapter) and signaling the Tracee using

PTRACE_SYSCALL request, to continue its execution, until the entry of the next system

call. After execution the Tracee will halt upon system call entry and signal its stop to the

Tracer. The Tracer who has been waiting for this state change signal, will terminate the

Intel Pt recording, decode and analyse the control flow, in order to determine if it will

allow the Tracee to continue execution. This procedure is repeated for all system calls

the tracee makes and stops only if an attack is detected, or the target application finishes

its execution. In case of a ROP attack detection the user is notified, the target application

is terminated in order to avoid any malicious activities from taking place and the Intel Pt

trace is automatically saved for further analysis.
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4.2 Capture Intel Processor Trace

Intel Processor Trace (Intel PT) is an extension of Intel Architecture that can be used to

trace software execution on Intel CPUs. It provides a record of software execution that can

be used for debugging, profiling, and optimization purposes.This trace data is collected

by a hardware unit called the Trace Hub, which is integrated into the CPU. The Trace

Hub records the trace data in a buffer, and this data can then be retrieved and analyzed by

software tools.

The trace data generated by Intel PT is in the form of packets, which are highly com-

pressed binary representations of the information collected by the Trace Hub. Each packet

contains a small amount of data, typically representing a single instruction, along with

some additional metadata. The metadata includes information such as the type of packet,

the size of the packet, and the address of the instruction being traced. This feature was

first supported in Intel Core M and 5th generation Intel Core processors that are based

on the Intel micro-architecture code name Broadwell. The information Intel PT provides

allows for a more fine-grained analysis, providing a detailed record of the processor’s

execution and behaviour.

Perf Events, is a Linux kernel subsystem that provides a framework for collecting and

analyzing performance data from the operating system and running applications. One of

these performance events, is the Intel Processor Trace feature we chose to use in this re-

search. The Perf Events tool has been available since Linux kernel version 2.6.31 in 2009

and comes with the linux/perf_event library, which allows for in-tool integration.

In order for our tool to record Intel PT[5] traces of the Tracee using Perf_Events, a

file descriptor must be first obtained through which to talk to Perf subsystem. To do that

we must first configure Perf Events according to our system. The perf_event_attr ob-

ject holds all the configuration options Perf Events library requires for tracing. The struc-

ture is found in /usr/include/linux/perf_event.h. First we start by configuring the

type of tracing we are performing(Intel PT). To do that we set the type option with the spe-

cific type of Intel PT feature that is present on the system. This type is used to determine

the capabilities and supported protocols of the Intel PT feature, as well as for identifying

the generation of the CPU the system is running. Since the type value differs between

CPUs, our tool dynamically reads the host system’s specific type numeric value from the

Intel Pt type file located in the fixed path /sys/bus/event_source/devices/intel_pt/type

of the Linux system. Furthermore other configuration flags are set to prepare tracing based

on our needs, those are the exclude_kernel which tells the Perf Events subsystem not

to count events that occur inside the kernel, such as interrupts or system calls, in the

performance monitoring data. This is useful since our analysis is interested only in the

performance of user-space code, and want to avoid the noise introduced by kernel activity.
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Moreover the start disabled flag which tells Perf Events to start the tracing process

disabled and finally the precise_ip option which is set to 3 indicating that we want no

skid, meaning to record every instruction executed on the CPU. The corresponding code

for the previously mentioned configuration is shown below.

1 s t r u c t p e r f _ e v e n t _ a t t r a t t r ;
2 memset(& a t t r , 0 , s i z e o f ( a t t r ) ) ;
3

4 a t t r . s i z e = s i z e o f ( a t t r ) ;
5

6 FILE * p t _ t y p e _ f i l e = fopen ( " / s y s / bus / e v e n t _ s o u r c e / d e v i c e s / i n t e l _ p t / t y p e " , " r " ) ;
7 c h a r p t _ t y p e _ s t r [MAX_PT_TYPE_STR ] ;
8 f g e t s ( p t _ t y p e _ s t r , s i z e o f ( p t _ t y p e _ s t r ) , p t _ t y p e _ f i l e )
9

10 a t t r . t y p e = a t o i ( p t _ t y p e _ s t r ) ;
11

12 a t t r . e x c l u d e _ k e r n e l = 1 ;
13 a t t r . d i s a b l e d = 1 ;
14 a t t r . p r e c i s e _ i p = 3 ; //No skid

After everything has been configured, we open the perf_event counter for Intel PT

by calling syscall(SYS_perf_event_open, &attr, traceePID, -1, -1, 0) with

the address of the configured perf_event_attr object, the process id of the Tracee, the

-1 value to indicate measuring for all processes/threads on the specified CPU, 0 to show

no group tracing and finally -1 for no additional flags.

1 i n t s y s c a l l ( SYS_per f_event_open , s t r u c t p e r f _ e v e n t _ a t t r * a t t r , p i d _ t pid , i n t cpu , i n t
group_fd , u n s i g n e d long f l a g s ) ;

This system call creates and returns the Perf file descriptor through which, our tool inter-

acts with the Perf subsystem.

Using the Perf file descriptor acquired before our tool maps two buffers AUX and

Data(later refered to as Base) in its memory, required by the perf_event counter to

provide the performance information. The AUX buffer is where the kernel exposes control

flow packets Intel PT captures, whereas the Data buffer contains sideband information

such as image changes that are necessary for decoding the trace. It is required that the

size of both buffers must be a power of two of the size of the memory page according

to perf_event_open(2). The Data buffer requires one additional page to contain the

perf_event_mmap_page, a metadata page that contains various bits of information such

as the beginning of the buffers.

20



The code snippets below shows the setup process of what we call a collector object.

The perf_ctx struct, represents the collector, a grouped list of variables required for the

Intel PT performance capturing. Such information include the Perf file descriptor ob-

tained previously, pointers that hold the memory address of the actual AUX and Data

buffers and variables to store their corresponding size in bytes.

1 //Stores all information about the collector.
2 s t r u c t p e r f _ c t x
3 {
4 i n t p e r f _ f d ; // File descriptor used to talk to the perf API.
5 vo id * aux_buf ; // Pointer to the start of the the AUX buffer.
6 s i z e _ t a u x _ b u f s i z e ; // The size of the AUX buffer’s mmap(2).
7 vo id * b a s e _ b u f ; // Pointer to the start of the base buffer.
8 s i z e _ t b a s e _ b u f s i z e ; // The size the base buffer’s mmap(2).
9 } t r _ c t x ;

First we create a collector object named tr_ctx. We then obtain the page size of the

current host system using getpagesize() call and store that into page_size variable.

The getpagesize() function returns the size of a memory page in bytes. Using that in-

formation we calculate the size of the buffer that will be used to store performance event

data. It multiplies the value of tr_conf->data_bufsize(which is the desired buffer

size in pages) by the page size and adds an extra page for the header as explained above.

The result is stored in tr_ctx->base_bufsize. Then we map the memory for the base

buffer using the mmap() system call. Mmap allows a process to map a range of virtual

memory addresses to a file or device. It can map memory directly in the kernel, provid-

ing a the performance advantage required for Perf Event performance monitoring. The

NULL argument indicates that the kernel should choose the address at which to create the

mapping. The tr_ctx->base_bufsize argument is the length of the mapping, and the

PROT_WRITE argument specifies that the memory can be written to. The MAP_SHARED flag

indicates that the mapping should be shared with other processes. The tr_ctx->perf_fd

argument is a file descriptor that refers to a Perf event, and 0 is the offset within the file

descriptor where the mapping should begin. The result of the mmap() call is stored in

tr_ctx->base_buf. The same procedure is followed for the AUX buffer but with the

specific buffer size and PROT_READ flag it requires.
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1

2 i n t p a g e _ s i z e = g e t p a g e s i z e ( ) ;
3

4 t r _ c t x −> b a s e _ b u f s i z e = (1 + t r _ c o n f −> d a t a _ b u f s i z e ) * p a g e _ s i z e ;
5 t r _ c t x −> b a s e _ b u f = mmap(NULL, t r _ c t x −> b a s e _ b u f s i z e , PROT_WRITE , MAP_SHARED, t r _ c t x

−> p e r f _ f d , 0 ) ;
6

7 i f ( t r _ c t x −> b a s e _ b u f == MAP_FAILED)
8 . . .
9

10 // Populate the header part of the base buffer.
11 s t r u c t per f_event_mmap_page * b a s e _ h e a d e r = t r _ c t x −> b a s e _ b u f ;
12

13 b a s e _ h e a d e r −> a u x _ o f f s e t = b a s e _ h e a d e r −> d a t a _ o f f s e t + b a s e _ h e a d e r −> d a t a _ s i z e ;
14 b a s e _ h e a d e r −> a u x _ s i z e = t r _ c t x −> a u x _ b u f s i z e = t r _ c o n f −> a u x _ b u f s i z e * p a g e _ s i z e ;
15

16 // Allocate the AUX buffer.
17 t r _ c t x −> aux_buf = mmap(NULL, b a s e _ h e a d e r −> a u x _ s i z e , PROT_READ | PROT_WRITE ,
18 MAP_SHARED, t r _ c t x −> p e r f _ f d , b a s e _ h e a d e r −> a u x _ o f f s e t ) ;
19

20 i f ( t r _ c t x −> aux_buf == MAP_FAILED)
21 . . .

Ioctl stands for "input-output control" and is a system call that is used to perform

device-specific operations that cannot be done through standard file operations. In the

context of Perf event tracing, ioctl can be used to enable, reset, and disable tracing. For

example, ioctl(tr_ctx->perf_fd, PERF_EVENT_IOC_ENABLE, 0) is used to enable

tracing by setting the tr_ctx->perf_fd file descriptor to the PERF_EVENT_IOC_ENABLE

operation, which tells the kernel to start tracing. Similarly, PERF_EVENT_IOC_RESET can

be used to reset the trace, and PERF_EVENT_IOC_DISABLE can be used to disable tracing.

These ioctl operations allow for fine-grained control over Perf event tracing . The code

snippet below is taken from the collection phase loop of our tool and shows how ioctl is

used to reset, start and stop Intel Pt tracing in between system calls of our target applica-

tion.

1 i o c t l ( t r _ c t x −> p e r f _ f d , PERF_EVENT_IOC_RESET , 0 ) ; //Resets the event count.
2 i o c t l ( t r _ c t x −> p e r f _ f d , PERF_EVENT_IOC_ENABLE , 0 ) ; //Start Intel PT capturing
3

4 /*
5 * Signal tracee to execute until next system call entry
6 */
7

8 i o c t l ( t r _ c t x −> p e r f _ f d , PERF_EVENT_IOC_DISABLE , 0 ) ; //Stop Intel PT capturing
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4.3 Decode Intel Processor Trace

The Intel PT Decoder Library or in short, Libipt[? ], is Intel’s reference implementation

for decoding Intel PT[6]. It can be used as a standalone library or it can be partially or fully

integrated into a tool. The Libipt decoder library provides multiple layers of abstraction

ranging from packet encoding and decoding to full execution flow reconstruction.

Our tool, performs control flow analysis on the executed Tracee’s instructions. As a

result, it is necessary to decode the control flow packets that AUX buffer contains. Libipt

library provides an instruction decoder which we allocate by configuring the pt_config

object. The pt_config structure defines an Intel Processor Trace encoder or decoder.

In order to configure pt_config for decoding one has to provide information such as

the size, beginning and ending addresses of the buffer containing the Intel Pt trace cap-

tured, in our case the AUX trace buffer, as well as the CPU identifier which indicates

Libipt the processor on which the trace has been collected. In order to dynamically ob-

tain the CPU information Libipt provides the pt_cpu_read function which takes the

address of the CPU variable in the pt_config object and sets it to the correct value. The

pt_cpu_errata() function enables workarounds for known errata for the processor de-

fined by its family/model/stepping in its CPU argument.(refer to intel-pt.h). The code

snippet below shows everything mentioned above.

1 s t r u c t p t _ c o n f i g c o n f i g ;
2 memset(& c o n f i g , 0 , s i z e o f ( c o n f i g ) ) ;
3 c o n f i g . s i z e = s i z e o f ( c o n f i g ) ;
4 c o n f i g . b e g i n = t r _ c t x −> aux_buf ;
5 c o n f i g . end = t r _ c t x −> aux_buf + t r _ c t x −> a u x _ b u f s i z e ;
6

7 i n t rv = p t _ c p u _ r e a d (& c o n f i g . cpu ) ;
8 i f ( rv != p t e_ ok )
9 . . .

10

11 // Work around CPU bugs.
12 i f ( c o n f i g . cpu . vendor ) {
13 rv = p t _ c p u _ e r r a t a (& c o n f i g . e r r a t a , &c o n f i g . cpu ) ;
14 . . .
15 }
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The pt_config configuration object is required for the allocation of a decoder. The

decoder object contains all necessary information libipt needs to decode our trace, includ-

ing but not limited to, the execution mode(x86/x86-64), address space, current decoding

instruction and the image of the Tracee. After instantiating the decoder needs to be syn-

chronized. Synchronization is necessary for the decoder to find the first event of the Intel

PT trace, Perf Events written in the AUX buffer. Synchronization is achieved by calling

pt_insn_sync_forward() along with the pointer to the instruction decoder object.

1 s t r u c t p t _ i n s n _ d e c o d e r * d e c o d e r = NULL;
2

3 // Instantiate a decoder.
4 d e c o d e r = p t _ i n s n _ a l l o c _ d e c o d e r (& c o n f i g ) ;
5 i f ( d e c o d e r == NULL)
6 . . .
7

8 // Sync the decoder.
9 * d e c o d e r _ s t a t u s = p t _ i n s n _ s y n c _ f o r w a r d ( d e c o d e r ) ;

10 i f (* d e c o d e r _ s t a t u s == − p t e _ e o s )
11 . . .

In addition to Intel PT configuration, the instruction flow decoder, needs to know the

memory image for which Intel PT has been recorded. This is necessary for control flow

reconstruction, as Libipt needs to associate the trace with the corresponding instructions

found in the ELF file, as well as, for error checking associated with decoding failures, due

to an instruction pointer lying outside of the traced memory image. The image is a col-

lection of contiguous, non-overlapping memory regions, called sections that the decoder

stores in a pt_image object, Libipt provides. In order to populate the image object, the

Tracee’s ELF file is loaded from the disk and repeated calls to pt_image_add_cached(),

are made, one for each section the ELF file contains, in order add it to the image. After

the image is populated the pt_insn_set_image function is called to associate the image

with the decoder object. The code for the previous image population process is provided

for us by Libipt sample tools[4] in the load_elf.c file. In order to populate the image

object we simply call the load_elf() function with the pt_image_section_cache, the

pt_image objects as well as the absolute path to the target application and its base address

which we extract using extract_base() also provided. For the decoding to be success-

ful, the target application should be statically linked, so that, all the code, for all routines

called by it are self-contained. Failure to do so, will result in "No Map" errors, since the

decoder will be looking to associate with code that simply don’t exist, in the pt_image

object. The following code snippet shows the implementation of everything mentioned

before.
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1 // Build and load a memory image from which to recover control flow.
2 s t r u c t p t_ image * image = p t _ i m a g e _ a l l o c (NULL) ;
3 i f ( image == NULL)
4 . . .
5

6 // Use image cache to speed up decoding.
7 s t r u c t p t _ i m a g e _ s e c t i o n _ c a c h e * i s c a c h e = p t _ i s c a c h e _ a l l o c (NULL) ;
8 i f ( i s c a c h e == NULL)
9 . . .

10

11 i n t 6 4 _ t ba se ;
12 base = 0 u l l ; /*The first (lowest) LOAD segment’s virtual address is the

default load base of the file
13 */
14 i n t e r r c o d e = e x t r a c t _ b a s e ( c u r r e n t _ e x e , &base ) ;
15 i f ( e r r c o d e < 0)
16 . . .
17

18 e r r c o d e = l o a d _ e l f ( i s c a c h e , image , c u r r e n t _ e x e , base , " p t x e d _ u t i l " ) ;
19 rv = p t _ i n s n _ s e t _ i m a g e ( decoder , image ) ;
20 i f ( rv < 0)
21 . . .

Libipt comes with a set of sample tools built on top of it, that serve as a starting point

for the integration of the library in our tools. Functionalities such as loading an ELF file

or decoding an Intel Pt trace to assembly code, are integrations of such sample codes in

our tool. Thus the reader is advised to seek help in the library’s repository for further

documentation of such functionalities.

The decoder is now initialised and contains all the information required to decode

the captured Intel Pt trace. Instructions can now be decoded in execution flow order.

The following code snippet shows a stripped down example of the decoding loop which

decodes the instructions in the trace.

Firstly, drain_events_insn() is called with the decoder and status (an integer vari-

able that the functions modifies depending on the events) parameters to retrieve events that

have been stored in the decoder’s queue in order to be handled appropriately. These can

range from tracing start and stop events, overflow events, and certain exceptions. If there

is an error during this process, the decoding loop is terminated. Next, we check whether

the end-of-stream (EOS) flag has been set(signifying the reach of the end of the stream)

using the pts_eos flag in the status variable. If the EOS flag is set the loop is termi-

nated. The loop then calls pt_insn_next() with parameters the decoder, insn object( the

pt_insn object created before, used to store decrypted instructions) and sizeof(insn)

which specifies the size of the insn object in bytes. This function fetches the next in-

struction from the trace and decode it into the insn object. Finally it returns the status

of the instruction decode operation, which can be a positive number indicating success,

or a negative number indicating an error. The decoded instructions are then stored in the
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execInst array for the control flow analysis.

1 s t r u c t p t _ i n s n i n s n ;
2 u i n t 6 4 _ t o f f s e t ;
3

4 //Decoder loop stripped down example
5 f o r ( ; ; )
6 {
7 s t a t u s = d r a i n _ e v e n t s _ i n s n ( decoder , s t a t u s ) ;
8 i f ( s t a t u s < 0)
9 . . .

10

11 i f ( s t a t u s & p t s _ e o s )
12 b r e a k ;
13

14 //Fetch next instruction from trace
15 s t a t u s = p t _ i n s n _ n e x t ( decoder , &insn , s i z e o f ( i n s n ) ) ;
16 i f ( s t a t u s < 0)
17 . . .
18

19 e x e c I n s t [ c o u n t e r ] = i n s n ;
20 c o u n t e r ++;
21 }
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4.4 Control flow analysis

When a program is undergoing a ROP attack, the attacker manipulates the program’s

execution flow through the use of gadgets. These gadgets are small code snippets that are

already present in the program’s memory and are chained together by the attacker. Before

ROP code starts executing, the register that holds the stack pointer is set to the beginning

of the ROP payload. Each gadget ends with a return instruction, which advances the stack

pointer to the address of the next gadget and transfers control to it.

Our detection is based on heuristics regarding the number of call and return instruc-

tions executed in the depth of analysis. In order to infer whether the Tracee is under

attack or not, we observed that one is required to examine, in most cases, only the control

transfers that occur within the final stages of the execution path leading to the system call.

System calls take parameters to perform their task. Those parameters are passed by writ-

ing them in the appropriate registers before making the actual call. As a result the attacker

needs to craft a chain of gadgets to be executed, that deterministically set the values of

the registers to those of the parameters to be past. The default analysis depth is set to

100 preceding instructions leading to the system call, almost 3x times more compared to

other approaches, this can be configured to any amount but from our observations ROP

payload complexity increases drastically the further the gadgets are executed from the

system call, since the values of the registers can change. Thus a default analysis depth of

a 100 instructions is enough for most cases and even more complex ROP attacks.

Having stored the execution flow that led to the system call the Tracee is about to take.

Our tool analyses that trace starting from the syscall and moving backwards, keeping

track of the number of executed call and return instructions. Our experiments showed

that benign system calls have a light imbalance between the number of call and return

instructions, whilst malicious execution tends to have a much greater number of return

instructions compared to calls. From our testings we noticed that benign system calls

don’t tend to have a Call-Ret imbalance greater than 10.

The pt_insn object contains an enum pt_insn_class iclass variable that indi-

cates the instruction class each object contains. Libipt sets that variable for us during

pt_insn_next() call. Using that field, our tool keeps track of the number of executed

call and return instructions. By the end of the execution flow analysis, if the number of

calls are greatly imbalanced(more than 10) to the number of return instructions, the anal-

ysed trace is considered malicious, the Tracee process is killed and the user is notified.
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The Figure 4.2 below shows an example of a trace leading to a benign system call

on the left and a trace of a malicious system call on the right. To print the decoded

instructions in assembly, our tool makes use of the Intel X86 Encoder Decoder(XED)[7]

library along with a partial integration of the ptxed Libipt sample tool. As we can see on

the bottom of Figure 4.2 after analysing the benign system call our tool found a Call-Ret

imbalance of 1, meaning there was only 1 return instruction for which it could not find a

call which the tool interprets as normal behaviour. Whilst on the other hand, the analysis

of the flow of execution leading to the malicious system call led to the discovery of 51

unmatched return instructions, which are way more than the limit set, thus triggering the

detection mechanism.

Figure 4.2: Execution flow example between a benign and a malicious system call for

a control flow analysis configured to analyse 100 preceding instructions leading to the

system call.
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4.5 Additional functionalities

Our tool comes with a help menu which allow users to quickly access information on

how to use the tool and what options and arguments are available. The Listing 4.1 below

shows the help menu the user is expected to see when they run the program with -h/–help

argument.

The --depth option followed by a numeric value the user provides changes the de-

fault analysis limit from 100 to the provided value.

The --pinfo option prints the Perf Events file descriptor acquired and the configured

buffer sizes of both AUX and Base buffers.

The --pinst option prints the traced instructions, one instruction per line, in x86[-

64] assembly language. This is often used for visual inspection of the traced flow of

execution. Is often paired with the --step option described later.

The --pbuff option writes the contents of AUX and BASE buffers to the disk. This

is useful for further analysis outside of our tool.

The --praw option writes the decoded instructions in raw hex format to buffer.out file

on the disk. This is useful for further analysis outside of our tool.

The --psyscall option prints the system call chain of the target application along

with the passed arguments for each call.

The --step option is used to pause the execution of the program before a system call

is executed and wait for the user to press a key to proceed to the next step. This is often

paired with --pinst option and allows the user to see visually the executed instructions

before a system call is executed.

The --panalysetime prints the total time the tool takes to record, decode and analyse

the target application.

1 usage : . / a . o u t [ < o p t i o n s >] [ < Pa th t o T r a ce e e l f f i l e > + a rgumen t s ]
2

3 o p t i o n s :
4

5 −− d e p t h [ Number o f I n s t r u c t i o n s ] p r e c e d i n g number o f i n s t r u c t i o n s t o check
6 −− p i n f o p r i n t I n t e l P t i n f o r m a t i o n
7 −− p i n s t p r i n t t r a c e d i n s t r u c t i o n s i n x86 [ −64]
8 −− p b u f f p r i n t AUX and Base b u f f e r s t o f i l e
9 −−praw p r i n t raw i n s t r u c t i o n s t o b u f f e r . o u t f i l e

10 −− p s y s c a l l p r i n t sys tem c a l l c h a i n
11 −− s t e p s t e p t h r o u g h t h e s y s c a l l s
12 −− p a n a l y s e t i m e p r i n t a n a l y s i s t ime

Listing 4.1: Help menu
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Disassembling of the trace is performed with a stripped down integration of "ptxed"

sample tool provided with libipt library. Ptxed uses Intel’s XED (X86 Encoder Decoder)

library used for encoding and decoding X86 (IA32 and Intel64) instructions, to provide

a disassembly of the trace. The XED decoder takes sequences of 1-15 bytes along with

machine mode information found in the pt_insn object and produces a data structure

describing the opcode, operands, and flags of the decoded instruction.

System call chain reconstruction is possible using ptrace. Upon system call entry

the tool gathers the content of the registers and prints a representation of it, before its

executed.

30



Chapter 5

Evaluation

In this section we present the results of the experimental evaluation of our tool in terms

of runtime overhead and effectiveness on real world applications.

Experiments were performed on the following machine

Description
CPU Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz

Memory 16GiB DDR4 2400 MHz

Disk WDC WD5000AZLX-6 HDD

OS Ubuntu 22.04.1 LTS

Table 5.1: System specifications
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5.1 Runtime Overhead

The runtime overhead tests evaluate the CPU performance impact of eavesdROP on the

tracee application. To evaluate the computation performance of the analysis, eavesdROP

integrates a timing mechanism that keeps track of the time taken from creation to termi-

nation(or detection) of the target application. To evaluate the time taken for the target

application to run in the native environment, the time linux tool was used. Time tool

returns the total time a command takes to run in seconds. The results are illustrated in

Table 5.2.

In order to evaluate the runtime performance of our tool, we decided to conduct tests

on the ’coreutils-8.32’ package of basic Unix utilities. We made this choice because

the source code for this package is readily available which allowed us to compile the

applications based on our needs(ex. statically). Additionally the low number of system

calls each application makes affected our choice since, during testing, we noticed that our

tools does not handle efficiently large applications with many system calls.

The table below shows the name and version of the application used for testing, its size

in megabytes, the benchmark, meaning the task for which the application was evaluated,

the number of system calls that our tool analysed for each test. The native run time,

meaning the real time it takes for the application to execute on the Linux system without

any additional modifications or optimizations, measured in seconds using ’time’ tool.

The analysis time which indicates the total time in seconds our tool took to dynamically

analyse the application. Finally the performance column shows the ratio of the tool’s

analysis time compared to the native run time. Each test was performed 5 times, and an

average value is presented to eliminate any additional external overheads that may have

influenced the results.

We chose to evaluate the runtime overhead this way in order to allow for easy compar-

ison between the other ROP defending approaches mentioned in ’Related Work’ chapter.

Additionally the reason we mentioned the benchmark and number of system calls the tar-

get application makes, is because the two are highly related since the type of benchmark

directly affects the number of system calls, which with their turn also affect the analysis

time.

Program Size(MB) Benchmark Number of Syscalls Native Run Analysis Performance
sha256sum 8.32 5,0MB Compute&Check(5,0MB file) 190 0.013s 4.205s 323x

ls 8.32 1,5MB list directory 32 0.005s 2.348s 470x

cp 8.32 1,3MB copy(1,5MB file) 62 0.007s 4.719s 674x

gzip 1.10 1,3MB zip(1,5MB file) 112 0.004s 4.403 1100x

Table 5.2: Runtime Overhead Performance
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The above results indicate that eavesdROP analysis introduces a huge performance

loss. More specifically, our approach is on average 641 times slower than the native run.

This performance loss, renders eavesdROP unusable for real time analysis of applications.

We justify this huge performance losses on the approach we followed to utilise our orig-

inal idea. More specifically our choice to use instruction flow decoding instead of block

decoding when using Libipt and the use of ptrace in order to control the target applica-

tion’s execution. These issues are later discussed in the ’Limitations’ and ’Conclusion’

chapters along with possible solutions to improve and make eavesdROP ideal for real time

analysis.
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5.2 Effectiveness

The effectiveness tests aim to determine whether our tool can effectively detect and if so,

protect applications from Ret-type ROP attacks. Due to the poor run time performance

we were only limited to applications that use a small number of system calls. For this

reason we were only able to test eavesdROP on the applications mentioned above and a

custom made vulnerable application we refer to as ’binTest’ which copies data read from

a file into a much smaller allocated buffer.

The table below shows the applications for which eavesdROP was tested. The ’exploit

type’ column indicates whether the target application was attacked(method of attack) or

not. The analysis depth shows the number of preceding instructions leading to each sys-

tem call for which the target application was analysed, in order to determine if it was

undergoing an attack. In our case the value of the depth was kept to the default value 100

as indicated. Lastly the ’Detected’ column shows whether our tool detected and protected

the target application from an attacks (indicated by a check mark) or not(indicated by an

X if the tested application was attacked and the tool failed to detect it, or a pass if the

application was not undergoing an attack and our tool positively recognised that).

Program Exploit Type Analysis Depth Detected
binTest ROP 100

sha256sum 8.32 NO 100 pass

ls 8.32 NO 100 pass

cp 8.32 NO 100 pass

gzip 1.10 NO 100 pass

Table 5.3: Effectiveness Accuracy

As we can see from the table above eavesdROP successfully detected all tested appli-

cations. Ideally in this part we would test eavesdROP on known vulnerabilities of real life

applications with the corresponding ROP attacks but due to its run time overhead, that is

not feasible.
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Chapter 6

Related Work

6.1 Other ROP defending approaches

The table below compares eavesdROP with other tools that implement different approaches

in order to detect ROP attacks[12, 13, 14, 17, 19, 24, 27]. The first column indicates the

name of the approach, the ’ROP Type’ column shows what kind of ROP attacks the listed

tool can detect. Return oriented programming[3, 20] is often used as a general name to

describe all attacks that use existing code to exploit a vulnerability, other such attacks are

Jump-Oriented Programming(JOP)[26] and Call-Oriented Programming(COP)[21]. For

this reason the type is listed to show the capabilities of each tool. The ’No Source Code’

columns indicates whether the tools requires the source code of the target application in

order to perform the analysis. In a similar way the ’No Binary Rewriting’ column indi-

cates whether the tool requires to make modifications to the binary of the application, this

is often seen on approaches that perform some kind of binary instrumentation to place

hooks. ’Run-time Efficiency’ shows if the tool affects the native run time of the target

application when under analysis so that it renders it unusable( the research papers of the

other approaches set the barrier to 20% overhead). Finally, ’Not branch limited’ column

indicates whether the depth of the analysis is limited. Kbouncer[19], ROPGuard[12] and

ROPecker[27] rely on the Last Branch Recording (LBR) feature of Intel and AMD pro-

cessors which limits the depth of their analysis since LBR feature is stack limited to only

16(32 for newer CPUs) entries. LBR-based solutions are vulnerable to history-flushing

attacks[2, 22], where the payload on purpose includes dummy branch instructions to flush

LBR entries in order to avoid detection.
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ROP Type No Source Code No Binary Rewriting Run-time Efficiency Not Branch Limited
DROP[17] Ret-based X X

ROPDefender[14] Ret-based X X

ROPGuard[12] Ret-based X X

Return-less Kernel[13] Ret-based X

CFLocking[24] All X

Kbouncer[19] All X X

ROPecker[27] All X

eavesdROP Ret-based X X

Table 6.1: Comparison Between Other ROP Approaches

As the above table indicates, eavesdROP is not better than the other approaches.

EavesdROP whilst requires no binary instrumentation and is not branch limited, it lacks

the ability to perform its analysis without requiring the targets application source code.

This is due to the requirement of statically linked binaries. Moreover as shown on the

previous chapter our tool is far from run time efficient. All these drawbacks are further

discussed in the ’Limitations’ and ’Conclusion’ chapters where possible solutions are

suggested.

A. Address Randomization

Address Space Layout Randomization (ASLR) is a security technique proposed to

defend against Return-Oriented Programming (ROP) attacks. ASLR works by randomly

arranging the locations of key components of a program’s address space, such as the stack,

heap, and code sections, each time the program is executed. This makes it difficult for

an attacker to predict the location of specific gadgets or other components in the address

space, and therefore makes it more difficult for the attacker to construct a successful ROP

attack.

However, attackers have developed techniques to bypass ASLR[23]. One such tech-

nique is memory disclosure, where the attacker leverages a vulnerability in the program

to leak information about the memory layout of the program at runtime. Another tech-

nique is brute force, where the attacker attempts to repeatedly execute the program with

different memory layouts until they find one that works for their ROP attack. Addition-

ally, attackers have developed methods to defeat specific types of ASLR, such as kernel

ASLR, which randomizes the location of the kernel in memory, by identifying and ex-

ploiting weaknesses in the implementation of these techniques.

B. Control Flow checks

Control Flow Integrity (CFI)[16] is a security technique designed to defend against

code reuse attacks such as Return-Oriented Programming (ROP) attacks. CFI works by

enforcing constraints on the control flow of a program, such that the program can only

execute instructions in a valid order according to its control flow graph. CFLocking[24]

limits the number of abnormal control flow transfers by recompiling the source code of
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the target application. The Return-less Kernel[13] approach implements methods through

a compiler and is designed to eliminate the use of the ret opcode in the kernel image.

Instead of using the stack to store control data, this approach stores the control data in a

separate buffer.

Control Flow Integrity (CFI) is accomplished by adding metadata to the binary code

of the program, such as information about the valid targets of a particular function call.

At runtime, the CFI system checks the metadata to ensure that the program is following a

valid control flow path or not.

However, there are several drawbacks to CFI as a defense mechanism. One of the

primary drawbacks is the performance overhead of CFI, as it requires additional runtime

checks and metadata processing. Additionally, CFI can be bypassed[9] by attackers who

are able to control the flow of the program in ways that are still considered valid by the

CFI system. For example, some ROP attacks use unaligned gadgets, which are sequences

of instructions that do not start at the beginning of an instruction boundary, and therefore

do not match the expected control flow path. These types of attacks can be difficult for

CFI systems to detect, as they may be interpreted as legitimate control flow changes by

the system.

C. Binary instrumentation

Instrumentation-based approaches are a class of security techniques designed to de-

fend against code reuse attacks such as Return-Oriented Programming (ROP). These tech-

niques work by inserting additional code( using tools such us PIN[15]), known as "check

code," into the binary code of a program that checks for violations of the expected con-

trol flow. ROPDefender[14] and DROP[17] use binary instrumentation to help with the

detection of ROP attacks.

At runtime, the check code monitors the execution of the program and verifies that the

program is following a valid control flow path. If the check code detects a deviation from

the expected control flow, it can terminate the program or take other protective measures

to prevent further damage.

One drawback of instrumentation-based approaches is the overhead they impose on

program execution. Because the check code must execute alongside the program code,

it can slow down the performance of the program and increase its memory footprint.

Additionally, attackers can attempt to evade the check code by manipulating the program

in ways that do not trigger the expected checks. For example, attackers may modify the

code in such a way that the check code is not executed, or they may attempt to bypass the

checks by exploiting weaknesses in the instrumentation mechanism itself.
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Chapter 7

Limitations

7.1 eavesdROP tool limitations

The Intel Processor Trace feature of Intel processors allows for a transparent, non depth

limited tracing. Whilst Intel PT is designed to have a low overhead on system performance

and provides a fast and efficient way to trace program execution without significant per-

formance impact(in the range of 1-5%), our implementation lacks the run time efficiency

other ROP defending approaches provide. This poor performance is mainly the result of

the decoding and execution control process. The trace contains several packets such as

the PSB(Packet Stream Boundary) a synchronization packet that provides a starting point

for decoding the trace. The packets within a packet stream must be decoded serially and

in the correct order. This is because the packets are dependent on each other and may ref-

erence information from previous packets in the stream. If the packets are decoded out of

order or with missing packets, the decoded information may be incorrect or incomplete.

As a result, one is bound to decode the whole trace only to analyse a very small part lead-

ing to the system call. Libipt decoder library provides several layers of abstraction for

decoding the trace, our implementation uses instruction flow. Instruction flow layer deals

with the execution flow on the instruction level and provides a simple API for iterating

over instructions in execution order. This layer of decoding is generally slow compared

to the other options Libipt provides, such as the block layer, a much faster approach that

requires a small amount of post-processing. Additionally our approach to use ptrace fa-

cility to control the execution of the target application introduces the largest amount of

run time overhead.

The current implementation is limited in its ability to analyze dynamically linked bi-

naries, as it was not specifically designed to load and decode dynamically linked sections.

As a consequence, this approach can only effectively analyze statically compiled executa-

bles.
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Chapter 8

Conclusion

We showcased eavesdROP, a Ret-type Return Oriented Programming(ROP), non-branch

limited, attack detection and prevention tool, build on top of Intel Processor Trace feature

of recent processors, that provides control flow tracing of a process. EavesdROP, de-

signed for Linux machines, uses the ptrace facility along with Intel PT feature and Libipt,

Intel’s reference implementation library for decoding Intel PT traces, in order to perform

dynamic, transparent, variable depth, Call-Ret imbalance heuristic analysis of a statically

compiled target application in pursuance to determine whether its undergoing a ROP at-

tack. EavesdROP requires no source code and does not perform any modifications to the

protected application whatsoever. Finally we showed that our prototype implementation

is able to effectively protect against ROP exploits with the only drawback the run time

overhead it introduces.

As of future work, the tool could be optimised to reduce the significant runtime per-

formance it introduces and possibly make it run time efficient. Optimisations can be made

to the decoding process by choosing block layer decoding approach which is much faster

than the existing approach we are using. Furthermore faster execution control methods

can be put into practise to stop the target application upon system call entry, required for

analysis. A good mechanism would be some kind of binary instrumentation that places

hooks which intercept the normal flow of execution and allow our tool to perform its anal-

ysis. Finally, functionality can be added to support tracing of dynamically linked binaries

and more extensive evaluations could be carried on real applications, to ensure that is able

to detect more complex ROP payloads successfully.
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Appendix A

Source Code

A.1 main.c

1 # d e f i n e _GNU_SOURCE
2

3 # i n c l u d e < s t d b o o l . h>
4 # i n c l u d e < s t d i o . h>
5 # i n c l u d e < s t d l i b . h>
6 # i n c l u d e < s y s / i o c t l . h>
7 # i n c l u d e < s y s / p t r a c e . h>
8 # i n c l u d e < s y s / w a i t . h>
9 # i n c l u d e < s y s / u s e r . h>

10 # i n c l u d e < l i n k . h>
11

12 # i n c l u d e < t ime . h>
13

14 # i n c l u d e " p e r f _ p t / c o l l e c t . c "
15 # i n c l u d e " p e r f _ p t / decode . c "
16

17

18 //Compile
19 // gcc -L /usr/local/lib/ main.c -lipt -lxed
20

21 # d e f i n e FATAL ( . . . ) \
22 do \
23 { \
24 f p r i n t f ( s t d e r r , " s t r a c e : " __VA_ARGS__ ) ; \
25 f p u t c ( ’ \ n ’ , s t d e r r ) ; \
26 e x i t ( EXIT_FAILURE ) ; \
27 } w h i l e ( 0 )
28

29 // Data,Aux,Trace buffer sizes
30 # d e f i n e PERF_PT_DFLT_DATA_BUFSIZE 64
31 # d e f i n e PERF_PT_DFLT_AUX_BUFSIZE 1024
32 # d e f i n e PERF_PT_DFLT_INITIAL_TRACE_BUFSIZE 1024 * 1024
33

34 # d e f i n e MAXLIST 100
35

36 c h a r * p a r s e d A r g s [MAXLIST ] ;
37
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38 s t r u c t p e r f _ c o l l e c t o r _ c o n f i g pp tConf = {
39 . d a t a _ b u f s i z e = PERF_PT_DFLT_DATA_BUFSIZE ,
40 . a u x _ b u f s i z e = PERF_PT_DFLT_AUX_BUFSIZE ,
41 . i n i t i a l _ t r a c e _ b u f s i z e = PERF_PT_DFLT_INITIAL_TRACE_BUFSIZE } ;
42

43 vo id wri te_memory ( vo id * addr , s i z e _ t s i z e , c h a r * f i l e n a m e )
44 {
45 vo id * r e a d o u t = m a l lo c ( s i z e ) ;
46 memcpy ( r e a d o u t , addr , s i z e ) ;
47 FILE * fd = fopen ( f i l e n a m e , "wb" ) ;
48 f w r i t e ( r e a d o u t , 1 , s i z e , fd ) ;
49 f c l o s e ( fd ) ;
50 f r e e ( r e a d o u t ) ;
51 }
52

53 vo id p r i n t _ h e l p ( )
54 {
55 p r i n t f ( " usage : . / a . o u t [ < Pa th t o T ra c e e e l f f i l e >] [ < o p t i o n s > ] \ n \ n " ) ;
56 p r i n t f ( " o p t i o n s : \ n \ n " ) ;
57 p r i n t f ( "−− d e p t h [ n u m O f I n s t r u c t i o n s ] p r e c e d i n g number o f i n s t r u c t i o n s t o

check \ n " ) ;
58 p r i n t f ( "−− p i n f o p r i n t I n t e l P t i n f o r m a t i o n \ n " ) ;
59 p r i n t f ( "−− p i n s t p r i n t t r a c e d i n s t r u c t i o n s i n x86 [ − 6 4 ] \ n

" ) ;
60 p r i n t f ( "−− p b u f f p r i n t AUX and Base b u f f e r s \ n " ) ;
61 p r i n t f ( "−−praw p r i n t raw i n s t r u c t i o n s i n b u f f e r . o u t

f i l e \ n " ) ;
62 p r i n t f ( "−− p s y s c a l l p r i n t sys tem c a l l c h a i n \ n " ) ;
63 p r i n t f ( "−− s t e p S tep t h r o u g h t h e s y s c a l l s \ n " ) ;
64 p r i n t f ( "−− p t r a c e t i m e p r i n t i n t e l P t t r a c e t ime and e x i t \ n " ) ;
65 p r i n t f ( "−− p a n a l y s e t i m e p r i n t a n a l y s i s t ime \ n \ n " ) ;
66 r e t u r n ;
67 }
68

69 i n t main ( i n t a rgc , c h a r ** a rgv )
70 {
71 i n t pArgs =0;
72

73 c l o c k _ t b e g i n ;
74 c l o c k _ t end ;
75 do ub l e t i m e _ s p e n t ;
76

77 i f ( a r g c <= 1)
78 FATAL( " t o o few argumen t s : %d " , a r g c ) ;
79

80 i f ( a r g c > 1)
81 {
82 c h a r * a r g ;
83

84 i n t i =0 ;
85 f o r ( i =1 ; i < a r g c ; i ++) {
86 a r g = a rgv [ i ] ;
87

88 i f ( a r g [ 0 ] ! = ’− ’ )
89 b r e a k ;
90

91 i f ( s t r c mp ( arg , "−− h e l p " ) == 0)
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92 {
93 p r i n t _ h e l p ( ) ;
94 r e t u r n 0 ;
95 c o n t i n u e ;
96 }
97 i f ( s t r c mp ( arg , "−h " ) == 0)
98 {
99 p r i n t _ h e l p ( ) ;

100 r e t u r n 0 ;
101 c o n t i n u e ;
102 }
103 i f ( s t r c mp ( arg , "−− d e p t h " ) == 0)
104 {
105 i f ( a r g c <= i ) {
106 f p r i n t f ( s t d e r r ,
107 "−− d e p t h : m i s s i n g argument . \ n " ) ;
108 r e t u r n 1 ;
109 }
110 s t a t s . l i m i t e d = t r u e ;
111 s t a t s . d e p t h = a t o i ( a rgv [++ i ] ) ;
112 c o n t i n u e ;
113 }
114 i f ( s t r c mp ( arg , "−− p i n f o " ) == 0)
115 {
116 s t a t s . p i n f o = t r u e ;
117 c o n t i n u e ;
118 }
119 i f ( s t r c mp ( arg , "−− p i n s t " ) == 0)
120 {
121 s t a t s . p i n s t = t r u e ;
122 c o n t i n u e ;
123 }
124 i f ( s t r c mp ( arg , "−− p b u f f " ) == 0)
125 {
126 s t a t s . p b u f f = t r u e ;
127 c o n t i n u e ;
128 }
129 i f ( s t r c mp ( arg , "−−praw " ) == 0)
130 {
131 s t a t s . praw = t r u e ;
132 c o n t i n u e ;
133 }
134 i f ( s t r c mp ( arg , "−− p s y s c a l l " ) == 0)
135 {
136 s t a t s . p s y s c a l l = t r u e ;
137 c o n t i n u e ;
138 }
139 i f ( s t r c mp ( arg , "−− s t e p " ) == 0)
140 {
141 s t a t s . s t e p = t r u e ;
142 c o n t i n u e ;
143 }
144 i f ( s t r c mp ( arg , "−− p a n a l y s e t i m e " ) == 0)
145 {
146 s t a t s . p a n a l y s e t i m e = t r u e ;
147 c o n t i n u e ;
148 }
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149

150 p r i n t f ( " unknown o p t i o n : %s \ n " , a r g ) ;
151 r e t u r n 0 ;
152 }
153

154 pArgs= i ;
155 }
156

157 p i d _ t t r a c e e p i d = f o r k ( ) ;
158

159 s w i t c h ( t r a c e e p i d )
160 {
161 c a s e −1: /* error */
162 FATAL( "%s " , s t r e r r o r ( e r r n o ) ) ;
163 c a s e 0 : /* child */
164 p t r a c e (PTRACE_TRACEME, 0 , 0 , 0 ) ;
165 /* Because we’re now a tracee, execvp will block until the parent
166 * attaches and allows us to continue. */
167 execvp ( a rgv [ pArgs ] , ( a rgv +pArgs ) ) ;
168 FATAL( "%s " , s t r e r r o r ( e r r n o ) ) ;
169 }
170

171 // Wait for tracee to stop
172 w a i t p i d ( t r a c e e p i d , 0 , 0 ) ;
173

174 p t r a c e ( PTRACE_SETOPTIONS , t r a c e e p i d , 0 , PTRACE_O_TRACEEXIT) ;
175

176 i n t d e c _ s t a t u s ;
177 s t r u c t p t _ i n s n _ d e c o d e r * d e c o d e r ;
178 boo l f i r s t = t r u e ;
179

180 //
181 s t r u c t p e r f _ c t x * t r a c e r = p e r f _ i n i t _ c o l l e c t o r (& pptConf , t r a c e e p i d , &s t a t s ) ;
182 i f ( t r a c e r == NULL)
183 p r i n t f ( " C o l l e c t o r e r r o r " ) ;
184

185 i f ( s t a t s . p i n f o )
186 {
187 p r i n t f ( " p e r f _ f d %d \ n " , t r a c e r −> p e r f _ f d ) ;
188 }
189

190 i f ( s t a t s . p i n f o )
191 {
192 p r i n t f ( "Aux B u f f e r s i z e : %l d \ n " , t r a c e r −> a u x _ b u f s i z e ) ;
193 p r i n t f ( " Base B u f f e r s i z e : %l d \ n " , t r a c e r −> b a s e _ b u f s i z e ) ;
194 }
195

196 i f ( s t a t s . p a n a l y s e t i m e ) {
197 b e g i n = c l o c k ( ) ;
198 }
199

200 //Main tracing loop
201 f o r ( ; ; )
202 {
203 i o c t l ( t r a c e r −> p e r f _ f d , PERF_EVENT_IOC_RESET , 0 ) ;
204 i o c t l ( t r a c e r −> p e r f _ f d , PERF_EVENT_IOC_ENABLE , 0 ) ;
205
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206 /* Enter next system call */
207 i f ( p t r a c e (PTRACE_SYSCALL , t r a c e e p i d , 0 , 0 ) == −1)
208 {
209 // Tracee is dead, this is triggered when tracee finish executing
210 i f ( e r r n o == ESRCH)
211 b r e a k ;
212 FATAL( "%s " , s t r e r r o r ( e r r n o ) ) ;
213 }
214

215 i f ( w a i t p i d ( t r a c e e p i d , 0 , 0 ) == −1)
216 {
217 // Tracee is dead, this is triggered when tracee finish executing
218 i f ( e r r n o == ESRCH)
219 b r e a k ;
220 FATAL( "%s " , s t r e r r o r ( e r r n o ) ) ;
221 }
222

223 i o c t l ( t r a c e r −> p e r f _ f d , PERF_EVENT_IOC_DISABLE , 0 ) ;
224

225 i f ( s t a t s . p s y s c a l l )
226 {
227 /* Gather system call arguments */
228 s t r u c t u s e r _ r e g s _ s t r u c t r e g s ;
229 i f ( p t r a c e (PTRACE_GETREGS, t r a c e e p i d , 0 , &r e g s ) == −1)
230 {
231 // Tracee is dead, this is triggered when tracee finish executing
232 i f ( e r r n o == ESRCH)
233 b r e a k ;
234 FATAL( "%s " , s t r e r r o r ( e r r n o ) ) ;
235 }
236

237 l ong s y s c a l l = r e g s . o r i g _ r a x ;
238 /* Print a representation of the system call */
239 f p r i n t f ( s t d e r r , "%l d (%ld , %ld , %ld , %ld , %ld , %l d ) \ n " ,
240 s y s c a l l ,
241 ( l ong ) r e g s . r d i , ( l ong ) r e g s . r s i , ( l ong ) r e g s . rdx ,
242 ( l ong ) r e g s . r10 , ( l ong ) r e g s . r8 , ( l ong ) r e g s . r9 ) ;
243 i f ( s t a t s . s t e p ) {
244 p r i n t f ( " P r e s s any c h a r a c t e r t o c o n t i n u e \ n " ) ;
245 g e t c h a r ( ) ;
246 }
247 }
248

249 i f ( s t a t s . p b u f f )
250 {
251 write_memory ( t r a c e r −>aux_buf , t r a c e r −> a u x _ b u f s i z e , " aux " ) ;
252 write_memory ( t r a c e r −> base_buf , t r a c e r −> b a s e _ b u f s i z e , " base " ) ;
253 }
254

255 i f ( f i r s t )
256 {
257 f i r s t = f a l s e ;
258 d e c o d e r = i n i t _ i n s t _ d e c o d e r ( t r a c e r −>aux_buf , t r a c e r −> a u x _ b u f s i z e , &d e c _ s t a t u s ,

a rgv [ pArgs ] , &s t a t s ) ;
259 i f ( d e c o d e r == NULL)
260 p r i n t f ( " e r r o r : d e c o d e r i n i t i a l i z a t i o n \ n " ) ;
261 }
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262 e l s e
263 {
264 i n t d e c _ s t a t u s = p t _ i n s n _ s y n c _ s e t ( decoder , 0 ) ;
265 i f ( d e c _ s t a t u s == − p t e _ e o s )
266 {
267 // There were no blocks in the stream. The user will find out on next
268 // call to hwt_ipt_next_block().
269 p r i n t f ( " no b l o c k s \ n " ) ;
270 }
271 e l s e i f ( d e c _ s t a t u s < 0)
272 {
273 p r i n t f ( " sync e r r o r \ n " ) ;
274 }
275 }
276

277 i f ( ! d e c o d e _ t r a c e ( decoder , &d e c _ s t a t u s , &s t a t s ) )
278 {
279 p t r a c e ( PTRACE_KILL , t r a c e e p i d , 0 , 0 ) ;
280 r e t u r n 0 ;
281 }
282 i f ( s t a t s . s t e p ) {
283 p r i n t f ( " P r e s s any c h a r a c t e r t o c o n t i n u e \ n " ) ;
284 g e t c h a r ( ) ;
285 }
286

287

288 /* Run system call and stop on exit */
289 i f ( p t r a c e (PTRACE_SYSCALL , t r a c e e p i d , 0 , 0 ) == −1)
290 {
291 // Tracee is dead, this is triggered when tracee finish executing
292 i f ( e r r n o == ESRCH)
293 b r e a k ;
294 FATAL( "%s " , s t r e r r o r ( e r r n o ) ) ;
295 }
296 i f ( w a i t p i d ( t r a c e e p i d , 0 , 0 ) == −1)
297 {
298 // Tracee is dead, this is triggered when tracee finish executing
299 i f ( e r r n o == ESRCH)
300 b r e a k ;
301 FATAL( "%s " , s t r e r r o r ( e r r n o ) ) ;
302 }
303

304 } // End loop
305

306

307 i f ( s t a t s . p a n a l y s e t i m e ) {
308 end= c l o c k ( ) ;
309 t i m e _ s p e n t = ( d oub l e ) ( end − b e g i n ) / CLOCKS_PER_SEC ;
310 p r i n t f ( "%f second \ n " , t i m e _ s p e n t ) ;
311

312 }
313

314 p r i n t f ( "No a t t a c k s found ! \ n " ) ;
315

316 f r e e _ i n s n _ d e c o d e r ( d e c o d e r ) ;
317 i f ( ! p e r f _ f r e e _ c o l l e c t o r ( t r a c e r ) )
318 p r i n t f ( " e r r o r : F r e e i n g T r a c e r \ n " ) ; }
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A.2 collect.c

1 # d e f i n e _GNU_SOURCE
2

3 # i n c l u d e < s t d i o . h>
4 # i n c l u d e < s t d l i b . h>
5 # i n c l u d e < u n i s t d . h>
6 # i n c l u d e < s y s c a l l . h>
7 # i n c l u d e < s y s / mman . h>
8 # i n c l u d e < i n t t y p e s . h>
9 # i n c l u d e < e r r n o . h>

10 # i n c l u d e < s t d b o o l . h>
11 # i n c l u d e < t ime . h>
12 # i n c l u d e < i n t e l − p t . h>
13 # i n c l u d e < l i n u x / p e r f _ e v e n t . h>
14

15 # d e f i n e SYSFS_PT_TYPE " / s y s / bus / e v e n t _ s o u r c e / d e v i c e s / i n t e l _ p t / t y p e "
16 # d e f i n e MAX_PT_TYPE_STR 8
17

18 # d e f i n e MAX_OPEN_PERF_TRIES 50000
19 # d e f i n e OPEN_PERF_WAIT_NSECS 10000000 // 1/100 of a second.
20

21 # d e f i n e AUX_BUF_WAKE_RATIO 0 . 5
22

23 # i f n d e f INFTIM
24 # d e f i n e INFTIM −1
25 # e n d i f
26

27 /*
28 * Stores all information about the collector.
29 */
30 s t r u c t p e r f _ c t x
31 {
32 i n t p e r f _ f d ; // FD used to talk to the perf API.
33 vo id * aux_buf ; // Ptr to the start of the the AUX buffer.
34 s i z e _ t a u x _ b u f s i z e ; // The size of the AUX buffer’s mmap(2).
35 vo id * b a s e _ b u f ; // Ptr to the start of the base buffer.
36 s i z e _ t b a s e _ b u f s i z e ; // The size the base buffer’s mmap(2).
37 } ;
38

39 s t r u c t s t a t s _ c o n f i g
40 {
41 boo l p i n f o ;
42 boo l p i n s t ;
43 boo l p b u f f ;
44 boo l praw ;
45 boo l p s y s c a l l ;
46 boo l s t e p ;
47 boo l l i m i t e d ;
48 boo l p a n a l y s e t i m e ;
49 i n t d e p t h ;
50 } s t a t s ;
51

52 s t r u c t p e r f _ c o l l e c t o r _ c o n f i g
53 {
54 s i z e _ t d a t a _ b u f s i z e ; // Data buf size (in pages).
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55 s i z e _ t a u x _ b u f s i z e ; // AUX buf size (in pages).
56 s i z e _ t i n i t i a l _ t r a c e _ b u f s i z e ; // Initial capacity (in bytes) of a
57 // trace storage buffer.
58 } ;
59

60 // Private prototypes.
61 s t a t i c i n t o p e n _ p e r f ( s i z e _ t , p i d _ t t r a c e e p i d , s t r u c t s t a t s _ c o n f i g * ) ;
62

63 // Exposed Prototypes.
64 s t r u c t p e r f _ c t x * p e r f _ i n i t _ c o l l e c t o r ( s t r u c t p e r f _ c o l l e c t o r _ c o n f i g * , p i d _ t t r a c e e p i d ,

s t r u c t s t a t s _ c o n f i g * ) ;
65 boo l p e r f _ f r e e _ c o l l e c t o r ( s t r u c t p e r f _ c t x * t r _ c t x ) ;
66

67 /*
68 * Opens the perf file descriptor and returns it.
69 *
70 * Returns a file descriptor, or -1 on error.
71 */
72 s t a t i c i n t
73 o p e n _ p e r f ( s i z e _ t a u x _ b u f s i z e , p i d _ t t r a c e e p i d , s t r u c t s t a t s _ c o n f i g * s t a t s )
74 {
75 s t r u c t p e r f _ e v e n t _ a t t r a t t r ;
76 memset(& a t t r , 0 , s i z e o f ( a t t r ) ) ;
77 a t t r . s i z e = s i z e o f ( a t t r ) ;
78 // attr.size = sizeof(struct perf_event_attr);
79

80 i n t r e t = −1;
81

82 // Get the perf "type" for Intel PT.
83 FILE * p t _ t y p e _ f i l e = fopen ( SYSFS_PT_TYPE , " r " ) ;
84 i f ( p t _ t y p e _ f i l e == NULL)
85 {
86 p r i n t f ( " E r r o r : openn ing p e r f ’ t y p e ’ f i l e d e s c r i p t o r " ) ;
87 r e t = −1;
88 go to c l e a n ;
89 }
90 c h a r p t _ t y p e _ s t r [MAX_PT_TYPE_STR ] ;
91 i f ( f g e t s ( p t _ t y p e _ s t r , s i z e o f ( p t _ t y p e _ s t r ) , p t _ t y p e _ f i l e ) == NULL)
92 {
93 p r i n t f ( " E r r o r : r e a d i n g p e r f ’ t y p e ’ " ) ;
94 r e t = −1;
95 go to c l e a n ;
96 }
97 a t t r . t y p e = a t o i ( p t _ t y p e _ s t r ) ;
98 i f ( s t a t s −> p i n f o )
99 p r i n t f ( " I n t e l PT t y p e : %d \ n " , a t t r . t y p e ) ;

100

101 a t t r . c o n f i g = 0 x300e601 ;
102

103 // Exclude the kernel.
104 a t t r . e x c l u d e _ k e r n e l = 1 ;
105

106 // Exclude the hyper-visor.
107 a t t r . e x c l u d e _ h v = 1 ;
108

109 // Start disabled.
110 a t t r . d i s a b l e d = 1 ;
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111

112 // No skid.
113 a t t r . p r e c i s e _ i p = 3 ;
114

115 // Notify for every sample.
116 a t t r . wa te rmark = 1 ;
117 a t t r . wakeup_watermark = 1 ;
118

119 // Generate a PERF_RECORD_AUX sample when the AUX buffer is almost full.
120 a t t r . aux_watermark = ( s i z e _ t ) ( ( d oub l e ) a u x _ b u f s i z e * g e t p a g e s i z e ( ) ) *

AUX_BUF_WAKE_RATIO;
121

122 // Acquire file descriptor through which to talk to Intel PT. This syscall
123 // could return EBUSY, meaning another process or thread has locked the
124 // Perf device.
125 s t r u c t t i m e s p e c w a i t _ t i m e = {0 , OPEN_PERF_WAIT_NSECS } ;
126

127 // pid_t target_tid = syscall(__NR_gettid);
128 f o r ( i n t t r i e s = MAX_OPEN_PERF_TRIES ; t r i e s > 0 ; t r i e s − −)
129 {
130 r e t = s y s c a l l ( SYS_per f_event_open , &a t t r , t r a c e e p i d , −1 , −1 , 0 ) ;
131 i f ( ( r e t == −1) && ( e r r n o == EBUSY) )
132 {
133 n a n o s l e e p (& w a i t _ t i m e , NULL) ; // Doesn’t matter if this is interrupted.
134 }
135 e l s e
136 {
137 b r e a k ;
138 }
139 }
140

141 i f ( r e t == −1)
142 {
143 p r i n t f ( " E r r o r openn ing p e r f _ e v e n t " ) ;
144 }
145

146 c l e a n :
147 i f ( ( p t _ t y p e _ f i l e != NULL) && ( f c l o s e ( p t _ t y p e _ f i l e ) == −1) )
148 {
149 r e t = −1;
150 }
151

152 r e t u r n r e t ;
153 }
154

155

156 /*
157 * Initialise a collector context.
158 */
159 s t r u c t p e r f _ c t x *
160 p e r f _ i n i t _ c o l l e c t o r ( s t r u c t p e r f _ c o l l e c t o r _ c o n f i g * t r _ c o n f , p i d _ t t r a c e e p i d , s t r u c t

s t a t s _ c o n f i g * s t a t s )
161 {
162 s t r u c t p e r f _ c t x * t r _ c t x = NULL;
163 boo l f a i l i n g = f a l s e ;
164

165 // Allocate and initialise collector context.
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166 t r _ c t x = ma l lo c ( s i z e o f (* t r _ c t x ) ) ;
167 i f ( t r _ c t x == NULL)
168 {
169 p r i n t f ( " E r r o r : a l l o c a t i n g c o l l e c t o r " ) ;
170 f a i l i n g = t r u e ;
171 go to c l e a n ;
172 }
173

174 // Set default values.
175 memset ( t r _ c t x , 0 , s i z e o f (* t r _ c t x ) ) ;
176 t r _ c t x −> p e r f _ f d = −1;
177

178 // Obtain a file descriptor through which to speak to perf.
179 t r _ c t x −> p e r f _ f d = o p e n _ p e r f ( t r _ c o n f −> a u x _ b u f s i z e , t r a c e e p i d , s t a t s ) ;
180 i f ( t r _ c t x −> p e r f _ f d == −1)
181 {
182 p r i n t f ( " E r r o r : o b t a i n i n g a p e r f _ e v e n t f i l e d e s c r i p t o r " ) ;
183 f a i l i n g = t r u e ;
184 go to c l e a n ;
185 }
186

187 i n t p a g e _ s i z e = g e t p a g e s i z e ( ) ;
188 // printf("\n%d\n",page_size);
189 t r _ c t x −> b a s e _ b u f s i z e = (1 + t r _ c o n f −> d a t a _ b u f s i z e ) * p a g e _ s i z e ;
190 t r _ c t x −> b a s e _ b u f = mmap(NULL, t r _ c t x −> b a s e _ b u f s i z e , PROT_WRITE , MAP_SHARED, t r _ c t x

−> p e r f _ f d , 0 ) ;
191

192 i f ( t r _ c t x −> b a s e _ b u f == MAP_FAILED)
193 {
194 p r i n t f ( " E r r o r : mapping base b u f f e r " ) ;
195 f a i l i n g = t r u e ;
196 go to c l e a n ;
197 }
198

199 // Populate the header part of the base buffer.
200 s t r u c t per f_event_mmap_page * b a s e _ h e a d e r = t r _ c t x −> b a s e _ b u f ;
201 b a s e _ h e a d e r −> a u x _ o f f s e t = b a s e _ h e a d e r −> d a t a _ o f f s e t + b a s e _ h e a d e r −> d a t a _ s i z e ;
202 b a s e _ h e a d e r −> a u x _ s i z e = t r _ c t x −> a u x _ b u f s i z e =
203 t r _ c o n f −> a u x _ b u f s i z e * p a g e _ s i z e ;
204

205 // Allocate the AUX buffer.
206 //
207 // Mapped R/W so as to have a saturating ring buffer.
208 t r _ c t x −> aux_buf = mmap(NULL, b a s e _ h e a d e r −> a u x _ s i z e , PROT_READ | PROT_WRITE ,
209 MAP_SHARED, t r _ c t x −> p e r f _ f d , b a s e _ h e a d e r −> a u x _ o f f s e t ) ;
210 i f ( t r _ c t x −> aux_buf == MAP_FAILED)
211 {
212 p r i n t f ( " E r r o r : mapping aux b u f f e r " ) ;
213 f a i l i n g = t r u e ;
214 go to c l e a n ;
215 }
216

217 c l e a n :
218 i f ( f a i l i n g && ( t r _ c t x != NULL) )
219 {
220 p e r f _ f r e e _ c o l l e c t o r ( t r _ c t x ) ;
221 r e t u r n NULL;
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222 }
223 r e t u r n t r _ c t x ;
224 }
225

226 /*
227 * Clean up and free a perf_ctx and its contents.
228 *
229 * Returns true on success or false otherwise.
230 */
231 boo l p e r f _ f r e e _ c o l l e c t o r ( s t r u c t p e r f _ c t x * t r _ c t x )
232 {
233 i n t r e t = t r u e ;
234

235 i f ( ( t r _ c t x −> aux_buf ) &&
236 ( munmap ( t r _ c t x −>aux_buf , t r _ c t x −> a u x _ b u f s i z e ) == −1) )
237 {
238 p r i n t f ( " E r r o r : unmapping aux b u f f e r " ) ;
239 r e t = f a l s e ;
240 }
241 i f ( ( t r _ c t x −> b a s e _ b u f ) &&
242 ( munmap ( t r _ c t x −> base_buf , t r _ c t x −> b a s e _ b u f s i z e ) == −1) )
243 {
244 p r i n t f ( " E r r o r : unmapping base b u f f e r " ) ;
245 r e t = f a l s e ;
246 }
247 i f ( t r _ c t x −> p e r f _ f d >= 0)
248 {
249 c l o s e ( t r _ c t x −> p e r f _ f d ) ;
250 t r _ c t x −> p e r f _ f d = −1;
251 }
252 i f ( t r _ c t x != NULL)
253 {
254 f r e e ( t r _ c t x ) ;
255 }
256 r e t u r n r e t ;
257 }
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A.3 decode.c

1 # d e f i n e _GNU_SOURCE
2

3 # i n c l u d e < s t d i o . h>
4 # i n c l u d e < i n t e l − p t . h>
5 # i n c l u d e < p t_ cp u . h>
6 # i n c l u d e < s t d b o o l . h>
7 # i n c l u d e < i n t t y p e s . h>
8 # i n c l u d e < s t d i n t . h>
9 # i n c l u d e < l i n k . h>

10 # i n c l u d e < e r r n o . h>
11 # i n c l u d e < s t d l i b . h>
12 # i n c l u d e < u n i s t d . h>
13 # i n c l u d e < s t d b o o l . h>
14

15 # i n c l u d e " p t x e d _ u t i l . c "
16 # i n c l u d e " a n a l y s e _ e x e c _ f l o w . c "
17 # i n c l u d e " p t_ cp u . c "
18 # i n c l u d e " p t _ c p u i d . c "
19 # i n c l u d e " l o a d _ e l f . c "
20

21 // Storage for executed instructions
22 s t r u c t p t _ i n s n e x e c I n s t [ 1 0 0 0 0 0 ] ;
23

24 // Private prototypes
25 s t a t i c i n t e x t r a c t _ b a s e ( c o n s t c h a r * , u i n t 6 4 _ t * ) ;
26

27 // Public prototypes.
28 vo id * i n i t _ i n s t _ d e c o d e r ( vo id * buf , u i n t 6 4 _ t l en ,
29 i n t * d e c o d e r _ s t a t u s ,
30 c o n s t c h a r * c u r r e n t _ e x e , s t r u c t s t a t s _ c o n f i g * ) ;
31 boo l d e c o d e _ t r a c e ( s t r u c t p t _ i n s n _ d e c o d e r * decoder , i n t * d e c o d e r _ s t a t u s , s t r u c t

s t a t s _ c o n f i g * ) ;
32 vo id f r e e _ i n s n _ d e c o d e r ( s t r u c t p t _ i n s n _ d e c o d e r * ) ;
33

34 s t a t i c i n t e x t r a c t _ b a s e ( c o n s t c h a r * arg , u i n t 6 4 _ t * base )
35 {
36 c h a r * sep , * r e s t ;
37

38 sep = s t r r c h r ( arg , ’ : ’ ) ;
39 i f ( sep )
40 {
41 u i n t 6 4 _ t num ;
42

43 i f ( ! sep [ 1 ] )
44 r e t u r n 0 ;
45

46 e r r n o = 0 ;
47 num = s t r t o u l l ( sep + 1 , &r e s t , 0 ) ;
48 i f ( e r r n o | | * r e s t )
49 r e t u r n 0 ;
50

51 * base = num ;
52 * sep = 0 ;
53 r e t u r n 1 ;
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54 }
55

56 r e t u r n 0 ;
57 }
58

59

60 vo id *
61 i n i t _ i n s t _ d e c o d e r ( vo id * buf , u i n t 6 4 _ t l en ,
62 i n t * d e c o d e r _ s t a t u s , c o n s t c h a r * c u r r e n t _ e x e , s t r u c t s t a t s _ c o n f i g *

s t a t s )
63 {
64 boo l f a i l i n g = f a l s e ;
65 i f ( s t a t s −>praw )
66 b u f f e r F d = fopen ( " b u f f e r . o u t " , "w+" ) ;
67

68 s t r u c t p t _ c o n f i g c o n f i g ;
69 memset(& c o n f i g , 0 , s i z e o f ( c o n f i g ) ) ;
70

71 // pt_config_init(&config);
72

73 c o n f i g . s i z e = s i z e o f ( c o n f i g ) ;
74 c o n f i g . b e g i n = buf ;
75 c o n f i g . end = buf + l e n ;
76

77 // Decode for the current CPU.
78 s t r u c t p t _ i n s n _ d e c o d e r * d e c o d e r = NULL;
79 i n t rv = p t _ c p u _ r e a d (& c o n f i g . cpu ) ;
80 i f ( rv != p t e_ ok )
81 {
82 p r i n t f ( " E r r o r : r e a d i n g cpu " ) ;
83 f a i l i n g = t r u e ;
84 go to c l e a n ;
85 }
86

87 // Work around CPU bugs.
88 i f ( c o n f i g . cpu . vendor )
89 {
90 rv = p t _ c p u _ e r r a t a (& c o n f i g . e r r a t a , &c o n f i g . cpu ) ;
91 i f ( rv < 0)
92 {
93 p r i n t f ( " E r r o r : working around bugs " ) ;
94 f a i l i n g = t r u e ;
95 go to c l e a n ;
96 }
97 }
98

99 // Instantiate a decoder.
100 d e c o d e r = p t _ i n s n _ a l l o c _ d e c o d e r (& c o n f i g ) ;
101 i f ( d e c o d e r == NULL)
102 {
103 p r i n t f ( " E r r o r : i n s t a n t i a t i n g d e c o d e r " ) ;
104 f a i l i n g = t r u e ;
105 go to c l e a n ;
106 }
107

108 // Sync the decoder.
109 * d e c o d e r _ s t a t u s = p t _ i n s n _ s y n c _ f o r w a r d ( d e c o d e r ) ;
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110 i f (* d e c o d e r _ s t a t u s == − p t e _ e o s )
111 {
112 // There were no blocks in the stream. The user will find out on next
113 // call to hwt_ipt_next_block().
114 go to c l e a n ;
115 }
116 e l s e i f (* d e c o d e r _ s t a t u s < 0)
117 {
118 p r i n t f ( " E r r o r : s y n c h r o n i s i n g d e c o d e r " ) ;
119 f a i l i n g = t r u e ;
120 go to c l e a n ;
121 }
122

123 // Build and load a memory image from which to recover control flow.
124 s t r u c t p t_ image * image = p t _ i m a g e _ a l l o c (NULL) ;
125 i f ( image == NULL)
126 {
127 p r i n t f ( " E r r o r : a l l o c a t i n g image " ) ;
128 f a i l i n g = t r u e ;
129 go to c l e a n ;
130 }
131 // Use image cache to speed up decoding.
132 s t r u c t p t _ i m a g e _ s e c t i o n _ c a c h e * i s c a c h e = p t _ i s c a c h e _ a l l o c (NULL) ;
133

134 i f ( i s c a c h e == NULL)
135 {
136 p r i n t f ( " E r r o r : a l l o c a t i n g cache " ) ;
137 f a i l i n g = t r u e ;
138 go to c l e a n ;
139 }
140

141 i n t 6 4 _ t ba se ;
142 base = 0 u l l ;
143

144 i n t e r r c o d e = e x t r a c t _ b a s e ( c u r r e n t _ e x e , &base ) ;
145 i f ( e r r c o d e < 0)
146 {
147 p r i n t f ( " E r r o r : E x t r a c t i n g base " ) ;
148 f a i l i n g = t r u e ;
149 go to c l e a n ;
150 }
151

152 e r r c o d e = l o a d _ e l f ( i s c a c h e , image , c u r r e n t _ e x e , base , " p t x e d _ u t i l " ) ;
153

154 rv = p t _ i n s n _ s e t _ i m a g e ( decoder , image ) ;
155 i f ( rv < 0)
156 {
157 p r i n t f ( " E r r o r : s e t t i n g image t o d e c o d e r " ) ;
158 f a i l i n g = t r u e ;
159 go to c l e a n ;
160 }
161

162 c l e a n :
163 i f ( f a i l i n g )
164 {
165 p t _ i n s n _ f r e e _ d e c o d e r ( d e c o d e r ) ;
166 r e t u r n NULL;
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167 }
168 r e t u r n d e c o d e r ;
169 }
170

171 /*
172 *
173 * Decodes intel PT
174 *
175 */
176 boo l d e c o d e _ t r a c e ( s t r u c t p t _ i n s n _ d e c o d e r * decoder , i n t * d e c o d e r _ s t a t u s , s t r u c t

s t a t s _ c o n f i g * s t a t s )
177 {
178 x e d _ s t a t e _ t xed ;
179 i f ( s t a t s −> p i n s t )
180 {
181 x e d _ s t a t e _ z e r o (&xed ) ;
182 x e d _ t a b l e s _ i n i t ( ) ;
183 }
184

185 u i n t 6 4 _ t o f f s e t , sync ;
186

187 o f f s e t = 0 u l l ;
188 i n t e r r c o d e ;
189

190 i n t s t a t u s = * d e c o d e r _ s t a t u s ;
191 s t r u c t p t _ i n s n i n s n ;
192

193 // Used to keep track of the number of instructions
194 i n t c o u n t e r = 0 ;
195

196 /* Initialize the IP - we use it for error reporting. */
197 i n s n . i p = 0 u l l ;
198

199 f o r ( ; ; )
200 {
201 s t a t u s = d r a i n _ e v e n t s _ i n s n ( decoder , s t a t u s ) ;
202 i f ( s t a t u s < 0)
203 {
204 p r i n t f ( " Dra in Ev en t s e r r o r \ n " ) ;
205 b r e a k ;
206 }
207

208 i f ( s t a t u s & p t s _ e o s )
209 {
210 // printf("[End of trace]\n");
211 b r e a k ;
212 }
213

214 e r r c o d e = p t _ i n s n _ g e t _ o f f s e t ( decoder , &o f f s e t ) ;
215 i f ( e r r c o d e < 0)
216 {
217 p r i n t f ( " Get o f f s e t e r r o r " ) ;
218 b r e a k ;
219 }
220

221 s t a t u s = p t _ i n s n _ n e x t ( decoder , &insn , s i z e o f ( i n s n ) ) ;
222 i f ( s t a t u s < 0)
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223 {
224 /* Even in case of errors, we may have succeeded
225 * in decoding the current instruction.
226 */
227 p r i n t _ i n s n (& insn , &xed , o f f s e t ) ;
228 p r i n t f ( " E r r o r f e t c h i n g i n s t r u c t i o n \ n " ) ;
229 }
230

231 e x e c I n s t [ c o u n t e r ] = i n s n ;
232 c o u n t e r ++;
233

234 i f ( c o u n t e r >99997)
235 c o u n t e r = s t a t s −> d e p t h +1;
236

237 i f ( s t a t s −> p i n s t )
238 p r i n t _ i n s n (& insn , &xed , o f f s e t ) ;
239

240 i f ( s t a t s −>praw )
241 p r i n t _ r a w _ i n s n _ f i l e (& i n s n ) ;
242

243 }
244

245 /* We shouldn’t break out of the loop without an error. */
246 i f ( ! s t a t u s )
247 s t a t u s = − p t e _ i n t e r n a l ;
248

249 /* We’re done when we reach the end of the trace stream. */
250 i f ( s t a t u s == − p t e _ e o s )
251 {
252 p r i n t f ( " E r r o r wi th end of t r a c e s t r e a m \ n " ) ;
253 r e t u r n f a l s e ;
254 }
255

256

257 i f ( ! e x e c _ f l o w _ a n a l y s i s ( e x e c I n s t , c o u n t e r ) )
258 {
259 p r i n t f ( " Rop c h a i n d e t e c t e d \ n " ) ;
260 r e t u r n f a l s e ;
261 }
262 e l s e
263 {
264 i f ( s t a t s −> p s y s c a l l )
265 {
266 p r i n t f ( " S y s c a l l s a f e \ n " ) ;
267 }
268 }
269 r e t u r n t r u e ;
270 }
271

272 /*
273 * Free an instruction decoder and its image.
274 */
275 vo id f r e e _ i n s n _ d e c o d e r ( s t r u c t p t _ i n s n _ d e c o d e r * d e c o d e r )
276 {
277 i f ( d e c o d e r != NULL)
278 {
279 p t _ i n s n _ f r e e _ d e c o d e r ( d e c o d e r ) ; } }
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A.4 analyse_exec_flow.c

1 # d e f i n e _GNU_SOURCE
2

3 # i n c l u d e < s t d i o . h>
4 # i n c l u d e < i n t e l − p t . h>
5 # i n c l u d e < s t d b o o l . h>
6

7 boo l e x e c _ f l o w _ a n a l y s i s ( s t r u c t p t _ i n s n * e x e c I n s t A r r , i n t i n s t C n t )
8 {
9

10 i n t c n t = 1 ;
11 i n t s t o p = −1;
12

13 i f ( s t a t s . l i m i t e d && s t a t s . depth < i n s t C n t ) {
14 s t o p = i n s t C n t − s t a t s . dep th −1;
15 }
16

17 f o r ( i n t i = i n s t C n t − 1 ; i > s t o p ; i − −)
18 {
19 s w i t c h ( e x e c I n s t A r r [ i ] . i c l a s s )
20 {
21 c a s e p t i c _ c a l l : // Near (function) call
22 cn t − −;
23 b r e a k ;
24 c a s e p t i c _ r e t u r n : // Near (function) return
25 c n t ++;
26 b r e a k ;
27 }
28 }
29 //printf("Call/Ret Ibalance\n%d\n",cnt);
30 i f ( cn t <10)
31 r e t u r n t r u e ;
32

33 r e t u r n f a l s e ;
34 }
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A.5 ptxed_util.c

1 # d e f i n e _GNU_SOURCE
2

3 # i n c l u d e < i n t e l − p t . h>
4 # i n c l u d e < s t d l i b . h>
5 # i n c l u d e < s t d i o . h>
6 # i n c l u d e < s t r i n g . h>
7 # i n c l u d e < i n t t y p e s . h>
8 # i n c l u d e < e r r n o . h>
9 # i n c l u d e < p t_ cp u . h>

10 # i n c l u d e <xed / xed − i n t e r f a c e . h>
11

12 FILE * b u f f e r F d ;
13

14 /* A collection of statistics. */
15 s t r u c t p t x e d _ s t a t s
16 {
17 /* The number of instructions. */
18 u i n t 6 4 _ t i n s n ;
19

20 /* The number of blocks.
21 *
22 * This only applies to the block decoder.
23 */
24 u i n t 6 4 _ t b l o c k s ;
25

26 /* A collection of flags saying which statistics to collect/print. */
27 u i n t 3 2 _ t f l a g s ;
28 } ;
29

30 /*
31 Private Prototypes
32 */
33 s t a t i c c o n s t c h a r * p r i n t _ e x e c _ m o d e ( enum pt_exec_mode mode ) ;
34 s t a t i c vo id x e d _ p r i n t _ i n s n ( c o n s t x e d _ d e c o d e d _ i n s t _ t * i n s t , u i n t 6 4 _ t i p ) ;
35 s t a t i c xed_machine_mode_enum_t t r a n s l a t e _ m o d e ( enum pt_exec_mode mode ) ;
36 s t a t i c vo id p r i n t _ r a w _ i n s n ( c o n s t s t r u c t p t _ i n s n * i n s n ) ;
37 s t a t i c vo id p r i n t _ r a w _ i n s n _ f i l e ( c o n s t s t r u c t p t _ i n s n * i n s n ) ;
38 s t a t i c i n t d r a i n _ e v e n t s _ i n s n ( s t r u c t p t _ i n s n _ d e c o d e r * decoder , i n t s t a t u s ) ;
39

40 s t a t i c c o n s t c h a r * p r i n t _ e x e c _ m o d e ( enum pt_exec_mode mode )
41 {
42 s w i t c h ( mode )
43 {
44 c a s e ptem_unknown :
45 r e t u r n "<unknown>" ;
46

47 c a s e p t e m _ 1 6 b i t :
48 r e t u r n " 16− b i t " ;
49

50 c a s e p t e m _ 3 2 b i t :
51 r e t u r n " 32− b i t " ;
52

53 c a s e p t e m _ 6 4 b i t :
54 r e t u r n " 64− b i t " ;
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55 }
56

57 r e t u r n "< i n v a l i d >" ;
58 }
59

60 s t a t i c vo id p r i n t _ r a w _ i n s n ( c o n s t s t r u c t p t _ i n s n * i n s n )
61 {
62 u i n t 8 _ t l e n g t h , i d x ;
63 i f ( ! i n s n )
64 {
65 p r i n t f ( " [ i n t e r n a l e r r o r ] " ) ;
66 r e t u r n ;
67 }
68 p r i n t f ( " " ) ;
69 l e n g t h = insn −> s i z e ;
70 i f ( s i z e o f ( in sn −>raw ) < l e n g t h )
71 l e n g t h = s i z e o f ( in sn −>raw ) ;
72

73 f o r ( i d x = 0 ; i d x < l e n g t h ; ++ i d x )
74 p r i n t f ( "%02x " , i n sn −>raw [ i d x ] ) ;
75

76 f o r ( ; i d x < p t _ m a x _ i n s n _ s i z e ; ++ i d x )
77 p r i n t f ( " " ) ;
78 }
79

80 s t a t i c vo id p r i n t _ r a w _ i n s n _ f i l e ( c o n s t s t r u c t p t _ i n s n * i n s n )
81 {
82 u i n t 8 _ t l e n g t h , i d x ;
83

84 i f ( ! i n s n )
85 {
86 p r i n t f ( " [ i n t e r n a l e r r o r ] " ) ;
87 r e t u r n ;
88 }
89

90 l e n g t h = insn −> s i z e ;
91 i f ( s i z e o f ( in sn −>raw ) < l e n g t h )
92 l e n g t h = s i z e o f ( in sn −>raw ) ;
93

94 f o r ( i d x = 0 ; i d x < l e n g t h ; ++ i d x )
95 f p r i n t f ( b u f f e r F d , "%02x " , in sn −>raw [ i d x ] ) ;
96

97 f o r ( ; i d x < p t _ m a x _ i n s n _ s i z e ; ++ i d x )
98 f p r i n t f ( b u f f e r F d , " " ) ;
99 f p r i n t f ( b u f f e r F d , " \ n " ) ;

100 }
101

102 s t a t i c i n t d r a i n _ e v e n t s _ i n s n ( s t r u c t p t _ i n s n _ d e c o d e r * decoder , i n t s t a t u s )
103 {
104 i n t e r r c o d e ;
105 w h i l e ( s t a t u s & p t s _ e v e n t _ p e n d i n g )
106 {
107 s t r u c t p t _ e v e n t e v e n t ;
108 u i n t 6 4 _ t o f f s e t ;
109

110 s t a t u s = p t _ i n s n _ e v e n t ( decoder , &even t , s i z e o f ( e v e n t ) ) ;
111 i f ( s t a t u s < 0)
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112 r e t u r n s t a t u s ;
113 }
114

115 r e t u r n s t a t u s ;
116 }
117

118 s t a t i c vo id x e d _ p r i n t _ i n s n ( c o n s t x e d _ d e c o d e d _ i n s t _ t * i n s t , u i n t 6 4 _ t i p )
119 {
120 x e d _ p r i n t _ i n f o _ t p i ;
121 c h a r b u f f e r [ 2 5 6 ] ;
122 x e d _ b o o l _ t ok ;
123

124 i f ( ! i n s t )
125 {
126 p r i n t f ( " [ i n t e r n a l e r r o r ] " ) ;
127 r e t u r n ;
128 }
129

130 // Print raw instruction
131 /*
132 xed_uint_t length, i;
133

134 length = xed_decoded_inst_get_length(inst);
135 for (i = 0; i < length; ++i)
136 printf(" %02x", xed_decoded_inst_get_byte(inst, i));
137

138 for (; i < pt_max_insn_size; ++i)
139 printf(" ");
140 */
141

142 x e d _ i n i t _ p r i n t _ i n f o (& p i ) ;
143 p i . p = i n s t ;
144 p i . buf = b u f f e r ;
145 p i . b l e n = s i z e o f ( b u f f e r ) ;
146 p i . r u n t i m e _ a d d r e s s = i p ;
147

148 // AT&T syntax
149 // pi.syntax = XED_SYNTAX_ATT;
150

151 ok = x e d _ f o r m a t _ g e n e r i c (& p i ) ;
152 i f ( ! ok )
153 {
154 p r i n t f ( " [ xed p r i n t e r r o r ] " ) ;
155 r e t u r n ;
156 }
157

158 p r i n t f ( " %s " , b u f f e r ) ;
159 }
160

161 /*
162 Identifies processor instruction set mode that we are decoding
163 */
164 s t a t i c xed_machine_mode_enum_t t r a n s l a t e _ m o d e ( enum pt_exec_mode mode )
165 {
166 s w i t c h ( mode )
167 {
168 c a s e ptem_unknown :
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169 r e t u r n XED_MACHINE_MODE_INVALID;
170

171 c a s e p t e m _ 1 6 b i t :
172 r e t u r n XED_MACHINE_MODE_LEGACY_16;
173

174 c a s e p t e m _ 3 2 b i t :
175 r e t u r n XED_MACHINE_MODE_LEGACY_32;
176

177 c a s e p t e m _ 6 4 b i t :
178 r e t u r n XED_MACHINE_MODE_LONG_64;
179 }
180 r e t u r n XED_MACHINE_MODE_INVALID;
181 }
182

183 s t a t i c vo id p r i n t _ i n s n ( c o n s t s t r u c t p t _ i n s n * insn , x e d _ s t a t e _ t *xed , u i n t 6 4 _ t o f f s e t )
184 {
185 i f ( ! i n s n )
186 {
187 p r i n t f ( " [ i n t e r n a l e r r o r ] \ n " ) ;
188 r e t u r n ;
189 }
190

191 p r i n t _ e x e c _ m o d e ( in sn −>mode ) ;
192 // printf("%016" PRIx64 " ", offset);
193

194 p r i n t f ( "%016" PRIx64 , in sn −> i p ) ;
195

196 xed_machine_mode_enum_t mode ;
197 x e d _ d e c o d e d _ i n s t _ t i n s t ;
198 x e d _ e r r o r _ e n u m _ t e r r c o d e ;
199

200 mode = t r a n s l a t e _ m o d e ( in sn −>mode ) ;
201

202 x e d _ s t a t e _ s e t _ m a c h i n e _ m o d e ( xed , mode ) ;
203 x e d _ d e c o d e d _ i n s t _ z e r o _ s e t _ m o d e (& i n s t , xed ) ;
204

205 e r r c o d e = xed_decode (& i n s t , i n sn −>raw , in sn −> s i z e ) ;
206 s w i t c h ( e r r c o d e )
207 {
208 c a s e XED_ERROR_NONE:
209 x e d _ p r i n t _ i n s n (& i n s t , i n sn −> i p ) ;
210 b r e a k ;
211

212 d e f a u l t :
213 p r i n t _ r a w _ i n s n ( i n s n ) ;
214

215 p r i n t f ( " [ xed decode e r r o r : (%u ) %s ] " , e r r c o d e ,
216 x e d _ e r r o r _ e n u m _ t 2 s t r ( e r r c o d e ) ) ;
217 b r e a k ;
218 }
219

220 p r i n t f ( " \ n " ) ;
221 }
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A.6 binTest.c

1 // C code stored in geeks.c file
2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e < u n i s t d . h>
4 # i n c l u d e < s t r i n g . h>
5 # i n c l u d e < s t d l i b . h>
6

7 FILE * f p t r ;
8 c h a r b u f f e r 1 [ 1 0 0 0 ] ;
9

10 //sudo gcc -static -no-pie -fno-stack-protector ./test1.c -o bin1.out
11

12 vo id v u l n e r a b l e F u n c ( c h a r * i n p u t ) {
13 c h a r b u f f e r [ 2 0 ] ;
14 memcpy(& b u f f e r , i n p u t , 1 0 0 0 ) ;
15 }
16

17 // Driver Code
18 i n t main ( )
19 {
20

21

22 i f ( ( f p t r = fopen ( " . / f i l e 1 . i n " , " r " ) ) == NULL) {
23 p r i n t f ( " E r r o r ! open ing f i l e " ) ;
24 e x i t ( 1 ) ;
25 }
26

27 c h a r ch ;
28 i n t i =0 ;
29 /*
30 do {
31 ch = fgetc(fptr);
32 buffer1[i]=ch;
33 i++;
34 } while (ch != EOF);
35 fclose(fptr);*/
36 f r e a d ( b u f f e r 1 , s i z e o f ( c h a r ) , 1000 , f p t r ) ;
37 f c l o s e ( f p t r ) ;
38

39 v u l n e r a b l e F u n c ( b u f f e r 1 ) ;
40 r e t u r n 0 ;
41 }

64


	Introduction
	Motivation

	Background
	Architecture
	eavesdROP approach

	Implementation
	Trace target application
	Capture Intel Processor Trace
	Decode Intel Processor Trace
	Control flow analysis
	Additional functionalities

	Evaluation
	Runtime Overhead
	Effectiveness

	Related Work
	Other ROP defending approaches

	Limitations
	eavesdROP tool limitations

	Conclusion
	Source Code
	main.c
	collect.c
	decode.c
	analyse_exec_flow.c
	ptxed_util.c
	binTest.c


