

Diploma Thesis

ANALYZING EXTENSIBLE ACCESS CONTROL MARKUP

LANGUAGE POLICIES USING ANWSER SET PROGRAMMING

Vladimiros Pavlos Semertsidis

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2022

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

ANALYZING EXTENSIBLE ACCESS CONTROL MARKUP LANGUAGE

POLICIES USING ANWSER SET PROGRAMMING

Vladimiros Pavlos Semertsidis

Supervisor

Yannis Dimopoulos

Thesis submitted in partial fulfilment of the requirements for the award of degree of

bachelor’s in computer science at University of Cyprus

May 2022

Acknowledgements

Firstly, I would like to say that I am extremely grateful to my supervisor, Dr. Yannis

Dimopoulos for his constant support and guidance that has played a significant role in the

completion of this thesis. His experience and knowledge of the field have helped me move

forward even in times of doubt.

I am also grateful to the Computer Science Department of the University of Cyprus for

providing me with the knowledge that served as a fundamental base for the implementation of

this thesis.

Finally, I would like to thank my family and friends for being supportive and encouraging me

during these very important and stressful past four years of my life. Their belief in me and my

abilities has been my greatest motive to succeed.

Abstract

In a digitalised world where most systems, organizations and businesses have adopted the use

web applications, the need for protection of digitality stored information within these

applications is greater than ever. A widely implemented way to provide such protection are

web access control policies. These access control policies are seen today as one of the best

approaches to making web applications secure because they allow authorizations to define who

has authorization over what resources and under which conditions in a simple manner. But

despite their usefulness, they have problems. They tend to expand in size and complexity as

the applications that use them grow in complexity as well, which makes it challenging for

developers and analysers to manually detect errors, anomalies, and vulnerabilities within them.

In other words, there is a demand for an effective and efficient tool that will help with policy

analysis.

In this thesis we present and extended XACBench, a partially implemented policy analysis tool

which takes a policy written in XACML (a widely adopted attribute-based access control

language) and translates it into an equivalent set of ASP programs. Where ASP is a declarative

language for solving search problems which when paired with an ASP solver can help with

query analysis and property analysis of access policies.

Our extended version of this tool generates a more accurate ASP translation of XACML 3.0

policies by taking into account its expressiveness regarding arbitrary attribute types. We also

propose a more efficient way to perform query analysis of access policies by defining a

variation set of ASP programs which led to an average speed up of 1.2. Finally, we introduce

a new policy property called hierarchy which gives us insight into the authorization hierarchies

of each attribute type value within a policy.

Contents

Chapter 1 Introduction to XACML and ASP 1

1.1 Motivation 2

 1.2 The eXtensible Access Control Markup Language (XACML) 3

 1.2.1 Introduction to XACML 3

1.2.2 Essential requirements of access policy languages 3

1.2.3 Essential terms of access policy languages 4

1.2.4 The XACML access authorization process 5

1.2.5 XACML 2.0 vs XACML 3.0 6

1.2.6 XACML 3.0 abstract syntax 7

1.2.6.1 Introduction 7

1.2.6.2 Target element 8

1.2.6.3 AnyOf element 9

1.2.6.4 AllOf element 10

1.2.6.5 Match element 10

1.2.6.6 Effect element 11

1.2.6.7 Condition element 11

1.2.6.8 Rule element 12

1.2.6.9 Policy element 13

1.2.6.10 Policy Set element 14

1.2.6.11 Policy/Rule Combining algorithm element 14

 1.2.6.11.1 Deny-overrides 15

1.2.6.11.2 Permit-overrides 15

1.2.6.11.3 First applicable 16

1.2.6.11.4 Only-one-applicable 16

1.2.6.12 Request element 17

1.3 Answer Set Programming (ASP) 18

1.3.1 Introduction to ASP 18

1.3.1.1 ASP syntax

1.3.1.2 Answer Sets

1.3.2 ASP workflow

 1.3.2.1 ASP example 20

 1.3.3 Clingo 22

Chapter 2 XACML to ASP translation and XACBench 23

2.1 Motivation 24

2.2 Proposed framework and prototype tool for translation and 25

analysis of XACML policies

2.2.1 Framework for policy translation and analysis 25

 2.2.2 The XACBench prototype tool for policy translation 26

2.3 ASP programs of the top framework layer 27

 2.3.1 Mapping policy dependent rules 27

 2.3.2 Mapping policy independent rules 30

 2.3.3 Mapping combining algorithms 38

 2.3.3.1 Permit overrides 38

2.3.3.2 Deny overrides 41

 2.3.3.3 First applicable 43

 2.3.3.4 Only one applicable 45

2.3.4 Mapping requests 46

2.4 ASP programs of the middle framework layer 47

 2.4.1 Reachability 48

 2.4.2 Usefulness 49

 2.4.3 Total redundancy 50

 2.4.4 Completeness 52

2.4.5 Isomorphism 52

 2.4.6 Intra-policy anomalies 54

 2.4.7 Inter-policy anomalies 56

2.5 ASP request generator 59

Chapter 3 Modifying XACBench 61

 3.1 Introduction 61

 3.2 Arbitrary attribute types of XACML 3.0 62

 3.3 Conditions of XACML 3.0 64

 3.4 Automatic target matching 69

 3.5 Reducing atom arity for query analysis 71

3.6 Authorization hierarchy 74

Chapter 4 Experiments and Results 80

4.1 Introduction 80

 4.1.1 Experimental environment 81

 4.2 Policy property analysis 81

 4.2.1 Effectiveness 81

 4.2.1.1 Results 82

 4.2.2 Efficiency 83

 4.2.2.1 Results 85

4.3 Efficiency of variation ASP program for query analysis 87

 4.3.1 Results 88

4.4 Hierarchy 89

Chapter 5 Conclusions 92

 5.1 Summary 92

 5.2 Limitations 93

 5.3 Future work 93

References 95

Appendix A 97

Appendix B 98

Appendix C 99

Appendix D 100

1

Chapter 1

Introduction to XACML and ASP

1.1 Motivation 2

 1.2 The eXtensible Access Control Markup Language (XACML) 3

 1.2.1 Introduction to XACML 3

1.2.2 Essential requirements of access policy languages 3

1.2.3 Essential terms of access policy languages 4

1.2.4 The XACML access authorization process 5

1.2.5 XACML 2.0 vs XACML 3.0 6

1.2.6 XACML 3.0 abstract syntax 7

1.2.6.1 Introduction 7

1.2.6.2 Target element 8

1.2.6.3 AnyOf element 9

1.2.6.4 AllOf element 10

1.2.6.5 Match element 10

1.2.6.6 Effect element 11

1.2.6.7 Condition element 11

1.2.6.8 Rule element 12

1.2.6.9 Policy element 13

1.2.6.10 Policy Set element 14

1.2.6.11 Policy/Rule Combining algorithm element 14

 1.2.6.11.1 Deny-overrides 15

1.2.6.11.2 Permit-overrides 15

1.2.6.11.3 First-applicable 16

1.2.6.11.4 Only-one-applicable 16

1.2.6.12 Request element 17

2

1.3 Answer Set Programming (ASP) 18

1.3.1 Introduction to ASP 18

1.3.1.1 ASP syntax

1.3.1.2 Answer Sets

1.3.2 ASP workflow

 1.3.2.1 ASP example 20

 1.3.3 Clingo 22

1.1 Motivation

As we all know, we live in a digitalised world where most systems, organizations and

businesses have adopted the use of web applications. This new and rapidly changing world has

put a lot of pressure on corporate and government executives to protect digital information and

assets of the organizations and their customers. That is why web access control policies have

been widely adopted by many organizations. The general idea behind access control policies

is that they provide rules and guidelines structuring who can access data and resources at an

organization.

Although access control policies are seen as a good approach to making web applications

secure, they seem to have some issues. One of them is their tendency to expand in size and

complexity as the applications that implement them grow in complexity as well. Another issue

is that many organizations that are divided into subdivisions can have their own set of policies

which at sometimes need to be combined to come to a decision regarding access to a common

asset. These issues make it difficult for developers and analysts of access control policies to

manually analyse and detect behaviour, errors, anomalies, and vulnerabilities.

That is why, in this thesis we contribute towards overcoming these issues by modifying an

already existing tool that will provide an efficient and effective way to verify a large variety of

properties of access control policies. More specifically, we will be working with XACML, a

widely adopted attribute-based access control language, answer set programming (ASP), a

declarative language for solving search problems that has recently seen many advancements,

and a predefined syntax for mapping XACML into ASP. The expanded tool will take XACML

policies as input and translate them, using a mostly predefined syntax, to a set of ASP

3

equivalent programs. These programs will then be given to Clingo, an ASP system that grounds

and solves logic programs, which will in turn verify specific properties of the access policies.

1.2 The eXtensible Access Control Markup Language (XACML)

1.2.1 Introduction to XACML

The Organization for the Advancement of Structured Information Standards (OASIS) has

developed the eXtensible Access Control Markup Language (XACML) to define security

policies, request context, and response context statements (all written in XML) [2]. XACML

provides a rich data model for the specification of complicated conditions, that is why it has

become one of the most standardized options for modelling access control policies for many

web applications.

1.2.2 Essential requirements of access policy languages

A policy language for expressing information system security must [2]:

• provide a way to combine rules and policies into a single Policy Set that can be

applied to a particular decision request.

• provide a way to define a process in which rules and policies are combined.

• provide a way to handle multiple subjects acting in different capacities.

• provide a way for deciding whether to provide authorization based on arbitrary

attributes of the world (i.e., subject, resource, environment) that can take multiple

values.

• provide a way to make authorization decisions based on the contents of an

information resource.

• provide a way to perform logical and mathematical operations on arbitrary attributes

of the world.

• provide a way for dealing with a dispersed set of policy components while abstracting

the process for finding, obtaining, and authenticating the policy components.

• provide a way to quickly determine whether a policy applies to a particular action

based on the values of the arbitrary attributes of the world.

4

• provide a way to specify a set of actions that must be performed in conjunction with

policy enforcement.

• provide a high-level representation of the application environment so that the policy

developers can avoid getting into details.

1.2.3 Essential terms of access policy languages

Some important definitions of access control [2]:

Action – an operation on a resource

Access - performing an action

Access control - authorizing access based on a policy or Policy Set

Attribute – arbitrary description of the world (i.e., subject, resource, environment, action, role)

Named attribute/attribute type value – an instance of an attribute, determined by the attribute

name and type

Predicate - a statement about attributes

Conjunctive sequence - a sequence of predicates combined using the logical ‘AND’ operation

Disjunctive sequence - a sequence of predicates combined using the logical ‘OR’ operation

Condition - an expression of predicates. A function that evaluates to "True", "False" or

“Indeterminate”

Effect - the consequence of a satisfied rule. The values it can take are either "Permit" or "Deny".

Decision request - a PEP's request sent to a PDP to make an authorisation decision

Target – contains a set of decision requests, identified by definitions for attributes that a rule,

policy, or Policy Set must evaluate

Rule - contains target, an effect, and a condition

Rule-combining algorithm – combines decisions of multiple rules

Policy – contains a set of rules, a rule-combining algorithm, and a target

Policy-combining algorithm - combines decisions of multiple policies

Policy Set – contains a set of policies, other Policy Sets, a policy-combining algorithm, and a

target

Applicable policy - The set of policies and Policy Sets that governs access for a specific

decision request

Decision - the result of evaluating a rule, policy or Policy Set

Authorization decision - the result of evaluating applicable policy, returned by the PDP to the

PEP. A function that evaluates to “Permit”, “Deny”, “Indeterminate” or “NotApplicable"

5

Advice - a supplementary piece of information in a policy or Policy Set which is provided to

the PEP with the decision of the PDP

Obligation - a operation specified in a rule, policy or Policy Set that should be performed by

the PEP in conjunction with the enforcement of an authorization decision

Context - a canonical representation of a decision request and an authorization decision

Policy information point (PIP) – system component that contains attribute values

Context handler – system component that takes a decision request written in a native format

of some authority and translates it into a XACML format, and the reverse process for the

response

Policy administration point (PAP) - system component that defines a policy or Policy Set

Policy decision point (PDP) – system component that evaluates applicable policy and renders

an authorization decision

Policy enforcement point (PEP) - system component that defines decision requests and

enforces authorization decisions

1.2.4 The XACML access authorization process

Note: In this thesis we see attribute as arbitrary descriptions of the world instead of grouping

them into action, resource, environment, and action. Also, Advices and Obligations of XACML

are not used in the policy analysis framework of this thesis, thus we do not cover them in such

detail.

As shown in Figure 1.1, initially an authority defines policies within the PAP (1). In other

words, an organisation defines its authorization scheme using XACML. These policies or

Policy Sets represent the complete policy for a specified target which are later used by the PDP.

Then some access requester sends an access request in a native format to the PEP (2), which

forwards the request for access to the context handler in its native request format (3). The

context handler, which communicates with the PIP to access different attributes, translates the

request which is in native format into a request in XACML format and the sends it to the PDP

(4). The PDP might need to request additional attributes from the context handler (5) which in

turn requests the attributes from PIP (6). If so, the PIP obtains the requested attributes from

each attribute’s relative domain. Figure 1.1 only shows domains for attribute types: subject,

environment, and resource and then returns them to the context handler (7-9). The context

handler in turn returns the attributes to the PDP (10), which then evaluates the policy using the

attributes it received and the policies defined in PAP with which it communicates. Following

6

the evaluation, the PDP returns the response context with the authorization decision to the

context handler (11). Finally, the context handler translates the response context from the

XACML format to the native response format and sends it to the PEP (12), which either

authorizes or denies access to the resource.

Figure 1.1: XACML data-flow diagram [2].

1.2.5 XACML 2.0 vs XACML 3.0

The two most widely used versions of XACML are XACML 2.0 and XACML 3.0. One key

difference between the two, that plays a significant role in this paper, lies in the structure of

their attributes. In XACML 2.0 attributes are organized into subject, resource, environment,

and action categories using XML element tags. Whereas XACML 3.0 allows for definition of

custom arbitrary attribute categories that can be indicated using XML attributes. The higher

expressiveness of XACML 3.0 together with its increasing popularity is the reason that this

7

thesis will revolve around XACML 3.0 policies. Figure 1.2 shows an abstract syntax of

XACML 3.0.

Figure 1.2: An abstract syntax of XACML 3.0 [1].

1.2.6 XACML 3.0 abstract syntax

1.2.6.1 Introduction

In a XACML policy, there are three primary elements: Rule, Policy, and Policy Set. The first

primary element is the Rule, which has three components: an Effect, a Target, and a Condition.

The effect is the evaluation of the rule and can take the values Permit, Deny, or Indeterminate

[1]. The applicability of a rule to a set of access requests is specified by its Target which is

made up of a set of AnyOf components in a conjunctive sequence. The AnyOf element is made

up of a set of AllOf components in a disjunctive sequence. The AllOf element is made up of a

set of Match component in a conjunctive sequence. The Match element uses a matching

function to compare its attribute value to a request context’s attribute value. The final

component of the rule, the Condition, is a Boolean expression that refines the rule’s

applicability beyond its Target. The rule’s Effect is returned if a request meets both the Targets

and the Condition’s requirements, otherwise, indeterminate is returned. The second primary

8

element is a policy, which has three components: a Target, a Rule combining algorithm, and a

set of Rules. The Policy combines the Effects of its rules by using the Rule combining

algorithm. The combining algorithm’s result is returned if a request meets the Policy’s Target’s

requirements, otherwise, indeterminate is returned. The third primary element, the Policy Set,

is like the Policy, it is made up of a Target, a set of Policies and a Policy combining algorithm.

Both the Rule combining algorithm and the Policy combining algorithm describe how the

results of evaluating individual Rules inside a Policy or Policies inside a Policy Set respectively

are combined to assess the Policy decision. The four Combining algorithms used in this syntax

are first-applicable, permit-overrides, deny-overrides and only-one-applicable. Finally, the

XACML Request component is a set of attribute types that are each assigned a value relative

to their domain.

1.2.6.2 Target element

The Target element identifies the set of decision requests that the parent element is intended to

evaluate. The Target elements appear as a component of a PolicySet and Policy element and

can appear as a component of a Rule element. The target contains a conjunctive sequence of

AnyOf components. The Target element may be absent from a Rule (empty Target). In this

case, the target of the Rule is the same as that of the parent Policy element. An empty target

matches any request. Otherwise, the target value will be "Match" if all the AnyOf specified in

the target match values in the request context. Otherwise, if any one of the AnyOf specified in

the target is “No Match”, then the target will be “No Match”. Otherwise, the target will be

“Indeterminate”. The target truth table is as follows:

Table 1.1: Evaluation truth table of the Target element.

Throughout this thesis we use as our running example a real-world XACML 3.0 policy called

“kmarket-gold-policy.xml”. The full policy is listed in Appendix A.

9

Lines 7-19 of this example, specify the target of the policy. The one and only AnyOf element

of the Target is matched when the value assigned to the "http://kmarket.com/id/role" attribute

is “gold”. Overall, the target is matched if the value assigned to the "http://kmarket.com/id/role"

attribute is “gold”.

Lines 41-52 specify the target of the second rule. The one and only AnyOf element of the

Target is matched when the value assigned to the

"urn:oasis:names:tc:xacml:1.0:resource:resource-id"

attribute is “Liquor”. Overall, the target is matched if the value assigned to the

"urn:oasis:names:tc:xacml:1.0:resource:resource-id" attribute is “Liquor”.

1.2.6.3 AnyOf element

The AnyOf element contains a disjunctive sequence of AllOf elements. The AnyOf element is

matched by the values in the request context if at least one of its AllOf elements matches a

value in the request context. The AnyOf truth table is as follows:

10

Table 1.2: Evaluation truth table of the AnyOf element.

Lines 8-18 specify the one and only AnyOf of the target of the policy. The one and only AllOf

element of the AnyOf is matched when the value assigned to the "http://kmarket.com/id/role"

attribute is “gold”. Overall, the AnyOf is matched if the value assigned to the

"http://kmarket.com/id/role" attribute is “gold”.

Lines 42-51 specify the one and only AnyOf of the target of the second rule. The one and only

AllOf element of the AnyOf is matched when the value assigned to the

"urn:oasis:names:tc:xacml:1.0:resource:resource-id" attribute is “Liquor”. Overall, the AnyOf

is matched if the value assigned to the "urn:oasis:names:tc:xacml:1.0:resource:resource-id"

attribute is “Liquor”.

1.2.6.4 AllOf element

11

The AllOf element contains a conjunctive sequence of Match elements. An AllOf is matched

by the values in the request context if the value of all its Match elements is “True”. The AllOf

truth table is as follows:

Table 1.3: Evaluation truth table of the AllOf element.

Lines 9-17 specify the one and only AllOf of the policy. The one and only Match element of

the AllOf is matched when the value assigned to the "http://kmarket.com/id/role" attribute is

“gold”. Overall, the AllOf is matched if the value assigned to the "http://kmarket.com/id/role"

attribute is “gold”.

Lines 43-50 specify the one and only AllOf of the second rule. The one and only Match element

of the AllOf is matched when the value assigned to the

"urn:oasis:names:tc:xacml:1.0:resource:resource-id" attribute is “Liquor”. Overall, the AllOf

is matched if the value assigned to the "urn:oasis:names:tc:xacml:1.0:resource:resource-id"

attribute is “Liquor”.

1.2.6.5 Match element

12

The Match element identifies a set of entities by matching the attribute value of the request

context with the embedded attribute value of the same attribute type. A Match is “True” if the

embedded attribute value matches the attribute value in the request context.

Lines 10-16 specify the one and only Match of the policy. The embedded value of the attribute

“http://kmarket.com/id/role" is “gold”. Overall, the Match is “True” if the value assigned in the

request context to the "http://kmarket.com/id/role" attribute is “gold”.

Lines 44-49 specify the one and only Match of the second rule. The embedded value of the

attribute type "urn:oasis:names:tc:xacml:1.0:resource:resource-id” is “Liquor”. Overall, the

Match is “True” if the value assigned in the request context to the

"urn:oasis:names:tc:xacml:1.0:resource:resource-id" attribute is “Liquor”.

1.2.6.6 Effect element

The effect of the rule identifies the intended consequence of a "True" evaluation for the rule.

Two values are allowed: "Permit" and "Deny".

Line 20 specifies that the Effect of first rule of the policy is “Deny”.

13

Line 40 specifies that the Effect of second rule of the policy is “Deny”.

Line 72 specifies that the Effect of third rule of the policy is “Permit”.

1.2.6.7 Condition element

Condition represents a Boolean expression that refines the applicability of the rule beyond the

predicates implied by its target. The condition uses a function to compare its embedded

attribute values to attribute values in the request context. It may be absent (empty), which

means that it is satisfied by all requests. The condition value is "True" if the function returns

“True”, otherwise the condition value is “False”.

Lines 21-30 specify the Condition of the first Rule of the policy. The embedded value of the

attribute "http://kmarket.com/id/totalAmount" is 1000. The function of the condition is

"urn:oasis:names:tc:xacml:1.0:function:integer-greater-than". Overall, the Condition is “True”

if the value assigned in the request context to the "http://kmarket.com/id/totalAmount” attribute

is greater than 1000.

Lines 53-62 specify the Condition of the second Rule of the policy. The embedded value of the

attribute "http://kmarket.com/id/amount" is 10. The function of the condition is

14

"urn:oasis:names:tc:xacml:1.0:function:integer-greater-than". Overall, the Condition is “True”

if the value assigned in the request context to the "http://kmarket.com/id/amount” attribute is

greater than 10.

1.2.6.8 Rule element

The main components of a rule are the Target, the Condition, and the Effect. The Rule’s value

can be calculated by evaluating its contents [2]. Rule evaluation involves separate evaluation

of the Rule's Target and Condition. The Rule truth table is as follows:

Table 1.4: Evaluation truth table of the Rule element.

Lines 20-39 specify the first rule of the policy. This rule has an empty target indicated by the

missing <Target> xml tag. The condition of the rule is satisfied when the total purchase amount

from KMarket on-line trading system is above 1000$. This rule’s effect is Deny. Overall, the

rule states that you are not allowed to do more than a $1000 total purchase from KMarket on-

line trading system.

15

Lines 40-71 specify the second rule of the policy. The target of the rule is satisfied when the

resource trying to be accessed is Liquor. The condition of the rule is satisfied when the total

number of bought items is above 10. This rule’s effect is Deny. Overall, the rule states that you

are not allowed to buy more than 10 Liquor from KMarket on-line trading system.

Line 72 specifies the third rule of the policy. This rule has an empty target indicated by the

missing <Target> xml tag. This rule has an empty condition indicated by the missing

<Condition> xml tag. This rule’s effect is Permit. Overall, the rule is always evaluated to

permit.

1.2.6.9 Policy element

The main components of a Policy are the Target, the Rule, and the Rule-combining algorithm

[2]. The value of a Policy is determined by its contents, considered in relation to the contents

of the request context. A policy's value is be determined by the evaluation of the Policy's

Target and, according to the specified Rule-combining algorithm, which uses the values of the

Policy’s Rules. The Policy truth table is as follows:

16

Table 1.5: Evaluation truth table of the Policy element.

Target

"Match"

"No-match"

Ίndeterminate"

Ru le-combin ing algor ithm {based on ru les)
Decision

any

lany

Policy eνa luation

Decision

"lndeterminate"

Ι·ιndeterminate"

:{ [1, ::-Q , .. ιι,._ ' <.r:. .ι ~:ι .ίu. .. ι.ιol.t.o -~~ ~.t- 1'i • r .. : • .:ιlJ χ...,.:. .. ι~. : JI'.ιlί.<U r..J. .. ~ • .i,_.,._.,,.;,tν i.:.
... ,.,. . ., ~" ' " '"~~~, •·" ,. ,~ι · λ r • • .,.,....,. , , , ,,_~·..,.. ... γ.,., .,..,,.,....~ .. .,._ . 1~.,. :'"""'~ .. -· · Ί

,.-ΗΙΙ1• <'

:ΟΊοιι~>ι:
I ,,:, 11Μ'.•

'
•'J.B~..::.ι . .. '.' 4J.vo Lι• ι οι':1~·- •· · · ''γη Ο <t " " · .. ,' • ' ' 71 1 ''•e · c'"x rιι •• ' '"''J...J ., : · ,, . ..,, .•... :
, •, ,.,.i~ ,.,.r .. •• r:τ .. • , ,. '""· ~t"M•·•ft•·~ ~.,., · ι.''-"' .. ~· ,.,....,,. <11 ,.<> ι • .
l. o t•;ι ~~~,. "-~1'\: ~ ... :.> ,. ,,,._ ~ !1 :-~-<: ~ 0-;J >~·: o.<:<:.,~ • • \".I>)OH'

l.•• ι .t:r .. • •· · •· '' ··ι 11 .,..,: •. , • • ' ' :j' 1 •·· ·• . Ί • . ~ιs ιι •)'!,. ~~-$-.:.·~" ~'-' ·' ·~r.• .:' , ,.

'·!"'·' · ... ~ -·
1 • /:Ul~ · .. ,,.,,~ψ;

''"' ... , ... :
~~11• ι: •••.-~-• ' "•""1\"' l!ot l ,off•" ~l't,o.' _.,.."'"'"'''.>

··~,.. ~·-
·::"'~·1)' r:ι.i· Ι..ι, ·"'" - " · " ... "" ··'-' :. ι .ο. r ~ .. _..~..-, , , ,-,., ι .. ~· ι.;...,,• ,.

,;ο,....· ,. ,.., .. ,!. -,.- ·~"""'"~ ~ ... ~ .. ~1· 1 .,. ,,.,.~.···«• , .. _ ~·· -... ..,..., '
fAH:< . .:'J~·~"'Ha<.o.H~ At-t ;,u ι ..-• .<tl:"> : //o-YJ•t .<:~.<0/:.:t it~ •U.:O.O.:~·-"t '
wι.·,ι~~'Ι •ι · · ·· · ··μ ·• Ψ•Μ'' Μ '' !! t "' '
I'IH~-1.':' .. - · ,. •• -r.· • · ~.,.-.. "''\ ""1 ' .V'" •rιιι ~.,..,_,.--ι .. -~..,.,. ·)1• ~•·~"-..."η••-· • ι.•

• t),ρ?:ν ·

. ·:/~ι ι •' ~·:
•. r'.N>t t · ·"~ '

~λ#':.><ο•:Ο><ι:·:· ··~ ""' "'

~"!.ο·: "';:.,ψ,. .. ~ ~- -'" !ι<Ι, .. ι .. ''-' ·-'0.1' "1&\Ι ~ν:-... ..,_..,, .,, -.,. Jν•"" .-...~ -·"' "''-'-' • u.,,oy ..
•,r,r;~ φ-!tιo:-~), •• ,...,. .. .,~:ς:,,...,~,., , ' ' \r.r.>'I.,.Ι•,r ftΙ--,,... ., , ,.,. . ,.,_.,..~ ' ·" ~~ ... 1 •) /\·~ ..,...,.,·., .,ι:ι:v tl\to•.- • ~.-Η. ' •'

•J.~•;,ιW••'<'•:·~· :-•• οτ·.'ι'•-''Ι:.tt ~ ; /ι-.. . .. > .~.,..,.ι.::):,/»f:.::.:ι.-...tot:=~· •Υ*'" ,.., • ..ot .. :.ι Μ •ο ώ ,.~~·
1.-:ο.ιο $ 1~~1: '"·~·=•""' ,,,... ιο....~••ι ,.,, -ι .. , ~~. ;,,ι .. ,. • .,.-ΊΛιι .. . :.:.οι .. ,•,.ι-·, ~~φ-~ ~.,-~, ... , ~J:::'f"''"" ' ' "' ·'
' ' "'"' .. ,.-,.:::, .. 1"1' • • , • .,... ,

•• ιλ•J'J,..,,.-~,ψ.ι. • • • . '·'*• .,
,;) .. 1ο::·

(~. · .. ;:-=-= • .--.- ·•r :r·• ι:.,ι .. J<" • ""'" >< ι;"r ' "" ... ,.,..,, , f<•)
-·:,

-~·;e~ ...
(). 11 ~ !'>

•1-JJ . Y. .. o. .. J. I.:.-" .. r: .. • ,.~ ι ,..l . ~ ο ι,οω.:ι_Q .. ιt-':1 -'"'-J" .. ι" ·,

• .. '\-: -: ::1b1.::: (•::.1·.:: :<' t '1ιn,~-· 'Atot.P ://..,_. w3 oro/200:.,'::::I:! Lδ4bao:ι:to-:rJ.ncr" ... (.J <r~:.("~ · • .-.".tt ι: 1:cι.:~ :-.r,1·.ι : .•

(Α-:-: : 1b1.:::e!.•: η ;-:-::.t ~ι: .-.~~rι .:>'.ι~eJ~-· u.ηt :~~" ιuιne" ~-= JΙeιαοι: ι. υ: ~e: .:-ι:.r c.e : r ::. :-.;r ~ 1<1'
<: .. ι .. ~., .:. ,-"ι.r:;. • . :ι~•'"" . ι.:,,,.]. ,~ .Ο .. ι ι •·-lx•ι .. -.... ι .. ':lvt ;r . ., " t"''""
O.:ι-: :t ·,-,:(-" t.toto-o : ιι -..~ .. ~., . W') .)t"2/:00 .1/»Ct.S~to~f"-1'1Q- Mu~~c:>:::c~<-n-:.-" -:.-:v.c" : ...

(/J!ιι-:.(r.>

: -:/)1 ι ~r;.

• / .l.n•JC=:>

(/~'arqe-:.>

.;ι;, .. , ι; , ; , , ,;.

: < .::ι.~ ι·; 3'1:.r.c ': 1cr. Iι:'.="·:.r.: : .:.;.; ι, : ~a.-.a' : tC' : ~: :. ο !"ιU'IC't:Oιn'l :.1:'\teoo~--oro ;;ι-:c~- ': t.;.r." ~
• " ..)pρL'i ."1:.r.(': 1 C:':1~-"·,;r.; ;).,,l, :~·~'loCO : to :~ :0 U tιΦΟt:Οο:Ι :.1'\':COC~-onC -.U:ζ. - (1':1y")'>

.;) , ι ; ι ,, , ,,. Γ•-- ; ~ ~ - ι .. ,. :. ι. Ι. • ; · , 0! ... 1: 1- ' l ol, l,f> ί .'\•- ••\ .,1. """ { . ι ,,,,. ."
< 1': "'c::Ό--="t.tt? : ιι•:ιι;.r~ at . :.'λ-.IC'-atwo1"\''
ι.ι.:ι': :Ί i--ι:(- ·r r.rτ. · u't~t~ιf ;ο 2r1,. '"'11 ;:;Μι snιaςn--.. t· n•.ςocr· ΙttU~ωι:c~•:::c~<-n':- • -:.-:v.c • !)'>

(/).π. 1 ·ρ

< .::ι.-:-:::: 1b1:.': c•:~11:.; j ; t ;t;--:,; = ' 'At t ">: I ι'..,_ . w3 . of"'::'/200:0/:31LSd)on;;ιtJ.n-:ooo~" ~1c <ι .::ι.-: -: :: 1~·.:t;V;.1·.:a •
. r.ι .#L'i)'>

(jr...,; ; -, ; ..,,..>
,•.),·J ν_.,,.!..-<y.:. .. ,.,. .;. ._,,,,. .,

•.Jι<tv:.cc~φ:::c~~ 1(·r. Λc!.•;t :: ~~-":ιι:uι --1r1':1.1 -·~'lι0untι-~\'1o:.- ~p:.:.c~o--cc:υ" ...
(,.,.,. .. ;ι-,,_,.,. ; ι:; - ;::"7'" " ** ' -.~ ι. t. t . .. , , t . .. ,,.. ,.,..,.. + ~,.,..,.1 • ~ n· "'><»"'rι -.-... ; ·,. , ~ ~ t.• >
··.1. ~ ~ .. .u,.,, ,.•; .. ι..... ο~ •. ~τ • • - .. -";.ιι // """ . ,.) .u.y/~001/:::::ι.ι:ι,g._.ι..-.-ι .. ι .--nu" ·,γ..,,..11 ·....:: ι,., :... · . .r , .. _. •. ,.
u:.:ι :.ο '-L<ιι1Ο~ !~(111 ~r•:to c,r.-11~: tor-::ι.<11no:ι O\'O~·/ZI.τ.~r;.buτ.cV.3 :.uc.•

(/.Att::::lbu-:.eA_, : 1 ςr~ r.-: !: 1'~ι: : ~ ~ 1 ~;-.>

,. / .1.·J ν.ί,.,,.~ ... ,_, .. ,.,."' i '-''· .,

'·/ .:':ldv1.cc~φ:::c: ~ 1 (·r. ~ ...
(/~_(')

.:'=l .. • .. ι:ι .. ι .. r,ι-"1,._,.., ; .- .. . ι -" -:rr - · ι.-' ρ. • .,. ; ι: i :.­
~·ro:.~c.ν>:

17

Lines 6-73 specify the one and only Policy of the Policy Set. The target of the Policy is satisfied

when the value assigned to the "http://kmarket.com/id/role" attribute is “gold”. The Rule-

Combining algorithm of the Policy is deny-overrides indicated by

RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-

overrides". The Policy contains three rules indicated by three pairs of xml tags (<Rule…>,

</Rule>) and are described in Section 1.2.6.2.

1.2.6.10 Policy Set element

The main components of a Policy Set are the Target, the Policy, the Policy Set, and the Policy-

combining algorithm. The value of a Policy Set is determined by its contents, considered in

relation to the contents of the request context. A Policy Set’s value is be determined by the

evaluation of the Policy Set’s Target and, according to the specified Policy-combining

algorithm, which uses the values of the Policy Set’s child Policies and child Policy Sets. The

Policy Set truth table is as follows:

Table 1.6: Evaluation truth table of the Policy Set element.

18

Lines 2-74 specify the one and only Policy Set of the XACML 3.0 real world policy. This rule

has an empty target indicated by the first </Target> xml tag. The Rule-Combining algorithm

of the Policy is first-applicable indicated by

“PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable". The Policy Set contains a single Policy indicated by the pair of xml tags

(<Policy…>, </Policy>) which is described in Section 1.2.6.8.

19

1.2.6.11 Policy/Rule Combining algorithm element

The rule-combining algorithm specifies the procedure by which the results of evaluating the

component rules are combined when evaluating the policy, i.e. the decision value placed in the

response context by the PDP is the value of the policy, as defined by the rule-combining

algorithm. The policy-combining algorithm specifies the procedure by which the results of

evaluating the component policies are combined when evaluating the Policy Set, i.e., the

decision value placed in the response context by the PDP is the result of evaluating the Policy

Set, as defined by the policy-combining algorithm. The abstract syntax of XACML3.0 defines

four combining algorithms [2]: first-applicable, permit-overrides, deny-overrides, only-one-

applicable.

Line 3 specifies the algorithm that will be used to resolve the results of the various policies that

may be in the Policy Set. In this example, the policy combining algorithm is first applicable,

indicated by PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-

algorithm:first-applicable".

Line 6 specifies the algorithm that will be used to resolve the results of the various rule that

may be in the policy. In this example, the rule combining algorithm is deny overrides, indicated

by RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-

overrides".

1.2.6.11.1 Deny-overrides

The deny overrides combining algorithm is intended for those 1cases where a deny decision

should have priority over a permit decision. This algorithm’s behaviour is as follows:

1. If any decision is "Deny", the result is "Deny".

2. Otherwise, if any decision is "Indeterminate", the result is "Indeterminate".

3. Otherwise, if any decision is "Permit", the result is "Permit".

20

The rule/policy combining algorithm defined here has the following identifier:

urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-overrides

or

urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-overrides

1.2.6.11.2 Permit-overrides

The permit overrides combining algorithm is intended for those cases where a permit decision

should have priority over a deny decision. This algorithm’s behaviour is as follows:

1. If any decision is "Permit", the result is "Permit".

2. Otherwise, if any decision is "Indeterminate", the result is "Indeterminate".

3. Otherwise, if any decision is "Deny", the result is "Deny".

The rule/policy combining algorithm defined here has the following identifier:

urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:permit-overrides

or

urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-overrides

1.2.6.11.3 First applicable

Each rule is evaluated in the order in which it is listed in the policy. For a particular rule, if the

target matches and the condition evaluates to "True", then the evaluation of the policy is halted,

and the corresponding effect of the rule will be the result of the evaluation of the policy (i.e.

"Permit" or "Deny"). For a particular rule selected in the evaluation, if the target evaluates to

"False" or the condition evaluates to "False", then the next rule in the order will be evaluated.

If no further rule in the order exists, then the policy will evaluate to "Indeterminate".

The rule/policy combining algorithm defined here has the following identifier:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable

or

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable

1.2.6.11.4 Only-one-applicable

21

In the entire set of policies in the Policy Set, if no policy is considered applicable by virtue of

its target, then the result of the policy-combination algorithm will be "Indeterminate". If more

than one policy is considered applicable by virtue of its target, then the result of the policy-

combination algorithm will be "Indeterminate". If only one policy is considered applicable by

evaluation of its target, then the result of the policy-combining algorithm will be the result of

evaluating the policy.

The policy combining algorithm defined here has the following identifier:

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:only-one-applicable

1.2.6.12 Request element

The request context is a list of values assigned to attribute types. Suppose we have a

hypothetical decision request that might be submitted to a PDP that executes the policy of our

running example (Appendix A). In English, the access request that generates the decision

request may be stated as follows:

A requester with the role “gold” wants to buy 20 items called Liquor from the KMarket on-line

trading system, which comes to a total of 550$.

In XACML, the information in the decision request is formatted into a request context

statement that looks like the one in Appendix B.

Lines 7-13 specify that the value of attribute type "http://kmarket.com/id/role" is “gold”.

22

Lines 14-20 specify that the value of attribute type "http://kmarket.com/id/totalAmount" is

“550”.

Lines 21-27 specify that the value of attribute type

"urn:oasis:names:tc:xacml:1.0:resource:resource-id" is “Liquor”.

Lines 28-34 specify that the value of attribute type "http://kmarket.com/id/amount" is “20”.

Response evaluation process is as follows:

The Condition of the first Rule (line 21-30 of Appendix A) is evaluated to “False” since

550>1000 is not true, where 550 is the attribute value assigned by the request context to the

attribute type “http://kmarket.com/id/totalAmount” (line 14-20 of Appendix B), 1000 is the

embedded attribute value of the Condition for the attribute type

“http://kmarket.com/id/totalAmount” (line 28 of Appendix A), and > is the function used by

the Condition (line 22 of Appendix A).

The Condition of the second Rule (line 53-62 of Appendix A) is evaluated to “True” since

20>10 is true, where 20 is the attribute value assigned by the request context to the attribute

type "http://kmarket.com/id/amount” (line 28-34 of Appendix B), 10 is the embedded attribute

value of the Condition for the attribute type "http://kmarket.com/id/amount” (line 60 of

Appendix A), and > is the function used by the Condition (line 54 of Appendix A). The

Condition of the third Rule (line 72 of Appendix A) is evaluated to “True” since it has not

condition.

http://kmarket.com/id/totalAmount
http://kmarket.com/id/totalAmount

23

The Match of the target of the policy is evaluated to “True” since the embedded attribute value

(line 11 of Appendix A) “gold” matches the attribute value assigned by the request context

(line 7-13 of Appendix B) for the attribute type "http://kmarket.com/id/role" (line 13 of

Appendix A, line 9 of Appendix B). Since Match is “True” and it is the only Match component

of the AllOf (line 9-17 of Appendix A), that AllOf is matched. The AnyOf (line 8-18 of

Appendix A) is matched since one of its AllOf components is matched. In turn the Target of

the Policy is matched (line 7-19 of Appendix A) since it has a single AnyOf component, and it

has been matched.

The Match of the target of the second rule is evaluated to “True” since the embedded attribute

value (line 45 of Appendix A) “Liquor” matches the attribute value assigned by the request

context (line 21-27 of Appendix B) for the attribute type

"urn:oasis:names:tc:xacml:1.0:resource:resource-id" (line 46 of Appendix A, line 23 of

Appendix B). Since Match is “True” and it is the only Match component of the AllOf (line 9-

17 of Appendix A), that AllOf is matched. The AnyOf (line 42-51 of Appendix A) is matched

since one of its AllOf components is matched. In turn the Target of the second Rule is matched

(line 41-52 of Appendix A) since it has a single AnyOf component, and it has been matched.

The first Rule is evaluated “indeterminate” since its Condition was evaluated “False”. The

second rule is evaluated “Deny” since its Effect is “Deny” (line 40 of Appendix A), its Target

was matched and its Condition was evaluated “True”. The third Rule is evaluated “Permit”

since its Effect is “Permit” (line 72 of Appendix A), its Target is empty, and it has no Condition.

The Policy is evaluated to “Deny”, since its Target was matched, and it uses the deny-override

Rule combining algorithm” (line 6 of Appendix A) that comes to a decision “Deny” because

the second Rule was evaluated to “Deny”. The Policy Set is evaluated to “Deny”, since it has

an empty Target, and it uses the first-applicable Policy combining algorithm” (line 3 of

Appendix A) that comes to a decision “Deny” because the one and only Policy was evaluated

to “Deny”. Thus, the final response to the request is “Deny”.

1.3 Answer Set Programming (ASP)

1.3.1 Introduction to ASP

24

Answer Set Programming (ASP) is a declarative logic programming language that helps us

solve search problems. Unlike traditional programming languages that use algorithms to solve

their problems, a program in a declarative language simply describes what is counted as a

solution. Using this description, the declarative programming system discovers a solution by

the process of automated reasoning [6]. In other words, a declarative program encodes the

problem itself, it is made up of a set of conditions on the values of variables that define solutions

to the problem, also called answer sets or stable models.

1.3.1.1 ASP syntax

Any program written in a logic programming language is a set of sentences in logical form,

expressing facts and rules about some problem domain. An ASP program is a logic program

made up of a finite set of declarative rules of the form [5]:

a0 :- a1, ..., am, not am+1, ..., not an. (1)

where 0 ≤ m ≤ n and a0, …, an are propositional atoms. The atom a0 is the head of the rule (1),

and the list a1, ..., am, not am+1, ..., not an is its body. If the body is empty, then the rule is

known as a fact. The rule above states that a0 must be true if a1, ..., am have been proven true

and if am+1, ..., an could not be proven true, meaning that they are possibly false.

Rule (2) has a head which includes atoms in braces [6]. This is a “choice-rule” which

describes all possible ways to choose which of the atoms p or q or r are included in the stable

model. Suppose we have a program that consists of the following rule:

{p, q, r}. (2)

Answer sets of this one-rule program are: ∅, {p}, {q}, {r}, {p, q}, {p, r}, {q, r}, {p, q, r}.

These rules can also have integers before or after the braces, which express bounds on the

cardinality of the stable model described by the rule. Suppose we have a program that

consists of the following rule:

 1{p, q, r}2.

25

Answer sets of this one-rule program are: {p}, {q}, {r}, {p, q}, {p, r}, {q, r}.

Rule (4) has an empty head. This is a “constraint-rule” which eliminates all answer sets of a

program where p has been proven and q could not be proven.

:- p, not q. (3)

1.3.1.2 Answer Sets

The definition of an answer set (stable model) tells us when a model of a propositional formula

F (that is, a truth assignment satisfying F) is considered “stable” [12]. It provides a semantics

for grounded ASP programs in view of two conventions. First, we agree to treat rules and

programs without variables as propositional formulas “written in logic programming notation”.

For instance, we identify the second convention is to identify any set X of atoms with the truth

assignment that makes all elements of X true and makes all other atoms false. The reduct FX of

a propositional formula F relative to a set X of atoms is the formula obtained from F by

replacing each maximal sub formula that is not satisfied by X with ⊥ (falsity). We say that X

is a stable model of F if X is minimal among the sets satisfying FX. The minimality of X is

understood here in the sense of set inclusion: no proper subset of X satisfies FX.

For example, consider the following rules of a logic program:

p(1). p(2). p(3).

q(3) :- notr(3).

r(X) :- p(X), not q(X).

The ground rules of the propositional program F are:

p(1). p(2). p(3).

q(3) :- not r(3).

r(1) :- p(1), not q(1).

r(2) :- p(2), not q(2).

r(3) :- p(3), not q(3).

Now, suppose we want to check whether X = {p(1), p(2), p(3)} is an answer set of the grounded

program F shown above. The reduct FX of the program with respect to X is as follows:

26

p(1). p(2). p(3). q(3).

r(1) :- p(1).

r(2) :- p(2).

r(3) :- p(3).

All the atoms we can prove from reduct FX are {p(1), p(2), p(3), r(1), r(2), r(3), q(3)} which

are different from X={p(1), p(2), p(3)}, thus X is not an answer set of this program. Now,

suppose we want to check if X’ = {p(1), p(2), p(3), q(3), r(1), r(2)} is an answer set. The reduct

FX’ of the program with respect to this new answer set is as follows:

p(1). p(2). p(3). q(3).

r(1) :- p(1).

r(2) :- p(2).

All the atoms we can prove from reduct FX’ are {p(1), p(2), p(3), q(3), r(1), r(2)} which is

identical to X’. This means that X’= {p(1), p(2), p(3), q(3), r(1), r(2)} is an answer set of this

program.

1.3.2 ASP workflow

The ASP workflow is as follows. Initially we model the problem using first logic programming.

Next, we proceed with grounding, a process that removes all the variables from our initial

program without losing any of its solutions (answer sets/stable models). After producing the

ground program (a propositional representation of the original ASP program), we use this

representation to generate the answer sets (stable models), also known as solving [1]. The

workflow is shown in Figure 3.

27

Figure 1.3: The workflow of ASP [3].

1.3.2.1 ASP example

Suppose we have a simple problem problem where we want to color vertexes of a graph with

one of two colors. We model this problem into an ASP logic problem P with the following

rules, choices, and facts:

vertex(0). (1)

vertex(1). (2)

col(red). (3)

col(blue). (4)

1{color(X,C) : col(C)}1 ← vertex(X). (5)

There are 2 vertexes indicated by facts (1-2), and 2 colors indicated by facts (3-4), We state

that each vertex must be assigned with exactly 1 color indicated by rule(5).

The grounder takes the above logic program P and produces a variable-free ground program

GP. The ground instantiation of the logic program P is the set of all the ground instances of

rules of P that can be obtained by substituting variables with constants [11]. The ground

program GP contains the following:

vertex(0).

vertex(1).

28

col(red).

col(blue).

1{color(0,0) : col(0)}1 ← vertex(0).

1{color(1,1) : col(1)}1 ← vertex(1).

1{color(red,red) : col(red)}1 ← vertex(red).

1{color(blue,blue) : col(blue)}1 ← vertex(blue).

1{color(blue,red) : col(red)}1 ← vertex(blue).

1{color(blue,0) : col(0)}1 ← vertex(blue).

1{color(blue,1) : col(1)}1 ← vertex(blue).

1{color(red,blue) : col(blue)}1 ← vertex(red).

1{color(red,0) : col(0)}1 ← vertex(red).

1{color(red,1) : col(1)}1 ← vertex(red).

1{color(0,blue) : col(blue)}1 ← vertex(0).

1{color(0,red) : col(red)}1 ← vertex(0).

1{color(0,1) : col(1)}1 ← vertex(0).

1{color(1,0) : col(0)}1 ← vertex(1).

1{color(1,red) : col(red)}1 ← vertex(1).

1{color(1,blue) : col(blue)}1 ← vertex(1).

Some ground rules are useless. They will never be applicable because their bodies contain

atoms that are not derivable from the program (they do not appear in the head of any rule).

Such rules are ones that have atoms like vertex(red/blue), or col(0/1), or color(blue/red,..), or

color(…,0/1) in them. Grounding, may be computationally very expensive having a big impact

on the performance of the whole system.

The solver takes the grounded program GP above and generates the following stable models

(answer sets):

Answer1

{color(0, red), color(1, blue), col(blue), col(red),vertex(1), vertex(0)}

Interpreted as: color the first vertex red and the second vertex blue.

Answer2

{color(0, red), color(1, red), col(blue), col(red),vertex(1), vertex(0)}

Interpreted as: color the first vertex red and the second vertex red.

Answer3

29

{color(0, blue), color(1, blue), col(blue), col(red),vertex(1), vertex(0)}

Interpreted as: color the first vertex blue and the second vertex blue.

Answer4

{color(0, blue), color(1, red), col(blue), col(red),vertex(1), vertex(0)}

Interpreted as: color the first vertex blue and the second vertex red.

1.3.3 Clingo

Clingo is a tool used for grounding and solving logic programs, developed at the University of

Potsdam. Clingo combines the functionalities of two other tools called gringo, and clasp [4].

The first tool called gringo is a grounder which takes the original program and compute an

equivalent variable-free program. The second tool called clasp is a solver which takes the

propositional programs generated by the grounder and computes the answer sets. Another

useful functionality of Clingo is that it can integrate the scripting language Python which will

later help us compare attribute type values.

30

Chapter 2

XACML to ASP translation and XACBench

2.1 Motivation 24

2.2 Proposed framework and prototype tool for translation and analysis of XACML 25

policies

2.2.1 Framework for policy translation and analysis 25

2.2.2 The XACBench prototype tool for policy translation 26

2.3 ASP programs of the top framework layer 27

2.3.1 Mapping policy dependent rules 27

2.3.2 Mapping policy independent rules 30

2.3.3 Mapping combining algorithms 38

 2.3.3.1 Permit overrides 38

2.3.3.2 Deny overrides 41

2.3.3.3 First applicable 43

2.3.3.4 Only one applicable 45

 2.3.4 Mapping requests 46

2.4 ASP programs of the middle framework layer 47

 2.4.1 Reachability 48

 2.4.2 Usefulness 49

 2.4.3 Total redundancy 50

 2.4.4 Completeness 52

 2.4.5 Isomorphism 52

 2.4.6 Intra-policy anomalies 54

 2.4.7 Inter-policy anomalies 56

2.5 ASP request generator 59

31

2.1 Motivation

Today, many organisations, governments, and companies have adopted the use of Web

applications. Such applications hold valuable information of organisations that have adopted

them, and their customers. The need for protection of digital information has led to the use of

access control policies which allow applications that implement them to define rules and

guidelines structuring who can access data and resources at an organization. One of the most

common access control policy languages used today is the eXtensible Access Control Markup

Language (XACML), which lets users define access policies made up of complicated

conditions. Despite its popularity and its rich and expressive model for the specification of

access policies, XACML does not have an effective way to analyse the policies that it specifies.

It is essential that the process of creating new policies, updating, or removing ones that already

exist is followed by a thorough analysis of the newly defined set of policies. Updates to access

policies may cause errors, and anomalies which can in turn lead to incorrect decision-making

or even an application that is susceptible to attacks. Analysis is crucial for detecting the impact

of different changes made to access policies, whether anomalies or conflicts have arisen as an

aftereffect. Performing such an analysis manually is impractical and is even more daunting

when the policies are defined by multiple authorities, with each authority having their own set

of policies. Therefore, there is a need for a tool which will allow policy developers and

analysers to examine a wide range of properties effectively and efficiently both at policy design

time, and during the general maintenance phase.

In this chapter we will be going over the idea proposed by Mohsen Rezvani, David Rajaratnam,

Aleksandar Ignjatovic, Maurice Pagnucco,and Sanjay Jha, which is to translate XACML

policies into sets of ASP equivalent programs [1]. We will also be going over a prototype

translation tool, that follows this idea called XACBench, developed by Shayan Ahmadi ,

Mohammad Nassiri , and Mohsen Rezvani [9].

2.2 Proposed framework and prototype tool for translation and analysis of XACML

policies

2.2.1 Framework for policy translation and analysis

32

Here we present the framework for XACML policy analysis using ASP proposed by Mohsen

Rezvani, David Rajaratnam, Aleksandar Ignjatovic, Maurice Pagnucco, and Sanjay Jha. This

framework initially translates XACML policies together with a wide range of policy properties

into equivalent ASP programs and then uses an ASP solver to generate answer sets which are

then used to verify those policy properties [1]. The top framework layer maps input XACML

policies to an equivalent set of ASP programs. This layer is divided into two parts. The first

part are policy independent ASP programs; it contains the ASP translations of XACML

combining algorithms and the match programs which are common for all input XACML

policies. The second part is the policy dependent ASP program; an ASP program that contains

facts that describe the input XACML policy. These facts specified by the input XACML policy

describe the components of the policy, who they belong to, and under which circumstances

they can be satisfied or matched (Section 2.3.4). In the middle framework layer, there are policy

independent property programs with ASP rules that help verify a wide range of XACML policy

properties (redundancies, completeness, generalizations, etc.). ASP programs of the top and

middle framework layer are passed together to an ASP solver, such as Clingo. The answer sets

generated by the solver are then used to verify properties that stand true for the input XACML

policy. Policy analysis can be divided into two main processes. The first process is query

analysis, where we check what authorization decision the XACML policy comes to when faced

with some request. The other analysis process is policy property analysis, where we check

policy properties such as total redundancy, simple redundancy, shadow anomaly, correlation

anomaly, generalization anomaly, reachability, usefulness, isomorphism, and completeness.

The policy analysis framework is shown in Figure 2.1.

33

Figure 2.1: Policy analysis framework [1].

2.2.2 The XACBench prototype tool for policy translation

Here we present the prototype tool called XACBench developed by Shayan Ahmadi,

Mohammad Nassiri, and Mohsen Rezvani. XACBench is a typical Maven Java project which

offers two main functionalities that are used in this thesis [9]. The first and essential

functionality is the translation of XACML 3.0 policies to ASP equivalent programs that follows

the framework described above. The second functionality lets us generate synthetic XACML

security policies of varying sizes, which is used in this thesis to help us run tests on policies of

varying sizes and complexity.

In the XACML 3.0 to ASP translation functionality, XACBench takes a XACML 3.0 policy as

input and converts it into a set of ASP equivalent programs, the policy dependent programs.

As for the input policy independent ASP programs, XACBench contains a predefined set of

ASP programs that describe combining algorithms, matching, and a wide range of policy

properties.

2.3 ASP programs of the top framework layer

34

To analyse various properties of an XACML policy we need ASP programs equivalent to the

XACML policy and its components. The XACBench tool contains ASP programs such as

“match_target_v3.asp”, and “match_common.asp” which contain the policy independent ASP

matching programs, Sections 2.3.2-2.3.3 exhibit rules within these programs. XACBench also

generates an ASP program that contains the policy dependent ASP program, Section 2.3.4

exhibits rules within this program. In other words, this program contains facts written using the

ASP language that are equivalent to the facts that described the input access policy in the

XACML language.

2.3.1 Mapping policy dependent rules

In Figure 2.2 we can see the result of using the XACBench XACML 3.0 to ASP translation

functionality on our running example, the real-world XACML 3.0 policy called “kmarket-gold-

policy.xml”.

Figure 2.2: ASP equivalent to the XACML 3.0 policy called kmarket-gold-policy.

(1)

anyof(rid, anyid, action_value, environment_value, resource_value, subject_value).

Rule (1) is a fact which states that there is an AllOf element that belongs an AnyOf element

anyid of Rule rid with embedded attribute values action_value, environment_value,

resource_value, and subject_value.

35

We can see this fact rule appear in lines 9, 16 of Figure 2.2. These facts are generated based on

lines 7-19, and 41-52 of Appendix A.

(2)

target(rname).

Rule (2) is a fact which states rule/policy/Policy Set rname has an empty target.

We can see this fact rule appear in lines 6, 13, 19 of Figure 2.2. Line 19 states that the policy

set has an empty target and is based on line 5 of Appendix A. Line 13 states that the third Rule

of the Policy has an empty target based on the absence of the <Target> xml tag in line 72 of

Appendix A. Line 6 states that the first Rule of the Policy has an empty target based on the

absence of the <Target> xml tag in lines 20-39 of Appendix A.

(3)

target(rname) :- anyof(rname ,anyid, _, _).

Rule (3) states that a rule/policy/policy set has an empty target if it also has an AnyOf element.

This rule causes issues in our translation which we discuss in Section 3.4. We can see this fact

rule appear in lines 10, 17 of Figure 2.2 since both the Policy and its second Rule have Targets

indicated by lines 7-19 and 41-52 of Appendix A respectively. We discuss how this part must

be changed in the next chapter.

(4)

condition(rname, true).

Rule (4) is a fact which states that rule rname has an empty condition. We can see this fact rule

appear in lines 7, 11, 14 of Figure 2.2. This part of the translation is incorrect and we discuss

it in the next Chapter.

(5)

condition(rname, is_subject(subject_value)).

Rule (5) is a fact which states that rule rname has a condition that the access-subject is

subject_value

36

(6)

condition(rname, is_subject_resource(subject_value, resource_value)).

Rule (6) is a fact which states that rule rname has a condition that the access-subject is

subject_value and the access-resource is resource_value

(7)

rule(rname, rid, pname, ef).

Rule (7) is a fact which states that rname is a rule with id rid and effect ef that belongs to policy

pname. We can see this fact rule appear in lines 8, 12, 15 of Figure 2.2. Line 8 states that there

is a Rule r1 of Policy p1 with the Effect deny, which is based on lines 20-39 of Appendix A.

Line 12 states that there is a Rule r2 of Policy p1 with the Effect deny, which is based on lines

40-71 of Appendix A. Line 15 states that there is a Rule r3 of Policy p1 with the Effect permit,

which is based on line 72 of Appendix A.

(8)

policy(pname, pid, psname, alg).

Rule (8) is a fact which states that pname is a policy with id pid, that uses the combining

algorithm alg, and belongs to Policy Set psname. We can see this fact rule appear in line 18 of

Figure 2.2. Line 18 states that there is a Policy p1 that belongs to Policy Set ps0 that use the

combining algorithm deny-overrides, which is based on lines 6-73 of Appendix A.

(9)

policy_set(psname, psid, ppsname, alg).

Rule (9) is a fact which states that psname is a Policy Set with id psid, that uses the combining

algorithm alg, and belongs to Policy Set ppsname. If the value of psid is 0, then it is the root

Policy Set and ppsname is equal to psname. We can see this fact rule appear in line 20 of Figure

2.2. Line 20 states that there is a Policy Set ps0 that uses the combining algorithm first-

applicable, which is based on lines 2-74 of Appendix A.

2.3.2 Mapping policy independent rules

37

A target in XACML 3.0 matches a request if all AnyOf objects in the target match the request.

An AnyOf object matches a request if at least one of its AllOf objects matches the request.

(10)

match_anyof_req(RN, AnyID, ActReq, EnvReq, ResReq, SubReq) :-

 request(ActReq, EnvReq, ResReq, SubReq),

anyof(RN, AnyID, ActAnyof, EnvAnyof, ResAnyof,

SubAnyof),

 @match_str_func(ActReq, ActAnyof, any) == 1,

 @match_str_func(EnvReq, EnvAnyof, any) == 1,

 @match_str_func(ResReq, ResAnyof, any) == 1,

 @match_str_func(SubReq, SubAnyof, any) == 1.

Rule (10) states that an AllOf element of rule/policy RN with id AnyID is matched to a request

with values ActReq, EnvReq, ResReq, SubReq under certain conditions.

The first condition is that there is a request with values ActReq, EnvReq, ResReq, SubReq

indicated by the atom [request(ActReq, EnvReq, ResReq, SubReq)]. The second condition is

that there is an AllOf element that belongs to rule/policy RN with id AnyID with ActAnyof,

EnvAnyof, ResAnyof, SubAnyof as values assigned to the attributes of the policy, indicated

by the atom [anyof(RN, AnyID, ActAnyof, EnvAnyof, ResAnyof, SubAnyof)]. The last four

conditions use a python script

#script (python)

def match_str_func(str1, str2, any_str):

 if (str1 == str2) or (str2 == any_str):

 return 1

 else:

 return 0

#end.

to check whether the values (ActAnyof, EnvAnyof, ResAnyof, SubAnyof) assigned to the

attributes by the AllOf element match those of the request (ActReq, EnvReq, ResReq, SubReq)

respectively. If a value assigned to an attribute by the AllOf element is any, then the condition

for that attribute is satisfied for all values of the request for that same attribute.

38

(11)

no_match_anyof_req(RN, ActReq, EnvReq, ResReq, SubReq) :-

 request(ActReq, EnvReq, ResReq, SubReq),

 anyof(RN, AnyID, _, _, _, _),

not match_anyof_req(RN, AnyID, ActReq, EnvReq,

ResReq, SubReq).

Rule (11) states that an AnyOf element of rule/policy RN is not matched to a request with

values ActReq, EnvReq, ResReq, SubReq under certain conditions.

The first condition is that there is a request with values ActReq, EnvReq, ResReq, SubReq

indicated by the atom [request(ActReq, EnvReq, ResReq, SubReq)]. The second condition is

that there is an AllOf element that belongs to rule/policy RN with id AnyID, indicated by the

atom [anyof(RN, AnyID, _, _, _, _)]. The third condition is that an AllOf element with id

AnyID, that belongs to the rule/policy RN with ActReq, EnvReq, ResReq, SubReq as values

assigned to the attributes of the policy could not be proven, indicated by the atom [not

match_anyof_req(RN, AnyID, ActReq, EnvReq, ResReq, SubReq)].

(12)

match_target(TN, ActReq, EnvReq, ResReq, SubReq) :-

 request(ActReq, EnvReq, ResReq, SubReq),

 target(TN).

Rule (12) states that a target element of rule/policy TN is matched to a request with values

ActReq, EnvReq, ResReq, SubReq under certain conditions.

The first condition is that there is a request with values ActReq, EnvReq, ResReq, SubReq

indicated by the atom [request(ActReq, EnvReq, ResReq, SubReq)]. The second condition is

that the rule/policy TN has an empty target, indicated by the atom [target(TN)].

(13)

match_target(TN, ActReq, EnvReq, ResReq, SubReq) :-

 request(ActReq, EnvReq, ResReq, SubReq),

 anyof(TN, _, _, _, _, _),

not no_match_anyof_req(TN, ActReq, EnvReq, ResReq,

SubReq).

39

Rule (13) states that a target element of rule/policy TN is matched to a request with values

ActReq, EnvReq, ResReq, SubReq under certain conditions.

The first condition is that there is a request with values ActReq, EnvReq, ResReq, SubReq

indicated by the atom [request(ActReq, EnvReq, ResReq, SubReq)]. The second condition is

that the rule/policy TN has an AllOf element, indicated by the atom [anyof(TN, _, _, _, _, _)].

The third condition is that there isn’t a single AnyOf element of rule/policy TN that could not

be matched to a request with values ActReq, EnvReq, ResReq, SubReq, indicated by the atom

[not no_match_anyof_req(TN, ActReq, EnvReq, ResReq, SubReq)].

(14)

bool_expr(true).

Rule (14) seems to have no use in the general scheme since it does not appear in any body of

any rule defined in XACBench.

(15)

bool_expr(true, ActReq, EnvReq, ResReq, SubReq) :-

 request(ActReq, EnvReq, ResReq, SubReq).

Rule (15) states that the Boolean expression true is satisfied by a request with values ActReq,

EnvReq, ResReq, SubReq under certain conditions.

The first condition is that there is a request with values ActReq, EnvReq, ResReq, SubReq

indicated by the atom [request(ActReq, EnvReq, ResReq, SubReq)].

(16)

bool_expr(is_subject(X), ActReq, EnvReq, ResReq, SubReq) :-

 condition(_, is_subject(X)),

 request(ActReq, EnvReq, ResReq, SubReq),

 X == SubReq.

Rule (16) states that the Boolean expression is_subject(X) is satisfied by a request with values

ActReq, EnvReq, ResReq, SubReq under certain conditions.

The first condition is that there is some rule with a condition that is satisfied only if the value

of the subject attribute is X, indicated by the atom [condition(_, is_subject(X))]. The second

40

condition is that there is a request with values ActReq, EnvReq, ResReq, SubReq indicated by

the atom [request(ActReq, EnvReq, ResReq, SubReq)]. The third condition is that X must be

equal to the request’s value SubReq assigned to the subject attribute, indicated by the atom [X

== SubReq].

(17)

bool_expr(is_subject_resource(X,Y), ActReq, EnvReq, ResReq, SubReq) :-

 condition(_, is_subject_resource(X, Y)),

 request(ActReq, EnvReq, ResReq, SubReq),

 X == SubReq,

 Y == ResReq.

Rule (17) states that the Boolean expression is_subject_resource(X,Y) is satisfied by a request

with values ActReq, EnvReq, ResReq, SubReq under certain conditions.

The first condition is that there is some rule with a condition that is satisfied only if the value

of the subject attribute is X and the value of the resource attribute is Y, indicated by the atom

[condition(_, is_subject_resource(X, Y))]. The second condition is that there is a request with

values ActReq, EnvReq, ResReq, SubReq indicated by the atom [request(ActReq, EnvReq,

ResReq, SubReq)]. The third condition is that X must be equal to the request’s value SubReq

assigned to the subject attribute, indicated by the atom [X == SubReq]. The fourth condition is

that X is equal to the request’s value SubReq assigned to the subject attribute, indicated by the

atom [X == SubReq]. The fifth condition is that Y must be equal to the request’s value ResReq

assigned to the resource attribute, indicated by the atom [Y == ResReq].

(18)

match_rule(RN, RID, PN, E, ActReq, EnvReq, ResReq, SubReq) :-

 rule(RN, RID, PN, E),

 request(ActReq, EnvReq, ResReq, SubReq),

 match_target(RN, ActReq, EnvReq, ResReq, SubReq),

 condition(RN, B),

 bool_expr(B, ActReq, EnvReq, ResReq, SubReq).

Rule (18) states that a rule RN with id RID that belongs to the policy PN will have the effect E

on the request with values ActReq, EnvReq, ResReq, SubReq under certain conditions.

41

The first condition is that there is a rule RN with id RID, and effect E, that belongs to policy

PN, indicated by the atom [rule(RN, RID, PN, E)]. The second condition is that there is a

request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom [request(ActReq,

EnvReq, ResReq, SubReq)]. The third condition is that the target of rule RN is matched to a

request with values ActReq, EnvReq, ResReq, SubReq, indicated by the atom

[match_target(RN, ActReq, EnvReq, ResReq, SubReq)]. The fourth condition is that the rule

RN has a condition with a boolean expression B, indicated by the atom [condition(RN, B)].

The fifth condition is that the Boolean expression B is satisfied by a request with values

ActReq, EnvReq, ResReq, SubReq, indicated by the atom [bool_expr(B, ActReq, EnvReq,

ResReq, SubReq)].

(19)

match_policy(PN, PID, PS, RN, E, ActReq, EnvReq, ResReq, SubReq) :-

 policy(PN, PID, PS, ALG),

 request(ActReq, EnvReq, ResReq, SubReq),

 match_target(PN, ActReq, EnvReq, ResReq, SubReq),

match_policy_alg(PN, RN, ALG, E, ActReq, EnvReq,

ResReq, SubReq).

Rule (19) states that a policy PN with id PID that belongs to the Policy Set PS will have the

affect E on the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN under

certain conditions.

The first condition is that there is a policy PN with id PID, that belongs to policy PS and uses

the combining algorithm ALG, indicated by the atom [policy(PN, PID, PS, ALG)]. The second

condition is that there is a request with values ActReq, EnvReq, ResReq, SubReq indicated by

the atom [request(ActReq, EnvReq, ResReq, SubReq)]. The third condition is that the target of

policy PN is matched to a request with values ActReq, EnvReq, ResReq, SubReq, indicated by

the atom [match_target(PN, ActReq, EnvReq, ResReq, SubReq)]. The fourth condition is that

the policy PN using the combining algorithm ALG will have the affect E on the request with

values ActReq, EnvReq, ResReq, SubReq due to rule RN, indicated by the atom

[match_policy_alg(PN, RN, ALG, E, ActReq, EnvReq, ResReq, SubReq)].

(20)

match_policyset(PSN, PSID, PPS, CN, RN, E, ActReq, EnvReq, ResReq, SubReq) :-

 policy_set(PSN, PSID, PPS, ALG),

42

 request(ActReq, EnvReq, ResReq, SubReq),

 match_target(PSN, ActReq, EnvReq, ResReq, SubReq),

match_policyset_child(CN, _, PSN, RN, E, ActReq,

EnvReq, ResReq, SubReq),

match_policyset_alg(PSN, CN, RN, ALG, E, ActReq,

EnvReq, ResReq, SubReq).

Rule (20) states that a Policy Set PSN with id PSID that belongs to the Policy Set PPS will

have the affect E on the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN

that belongs to child policy CN under certain conditions.

The first condition is that there is a Policy Set PSN with id PSID, that belongs to Policy Set

PPS and uses the combining algorithm ALG, indicated by the atom [policy(PSN, PSID, PPS,

ALG)]. The second condition is that there is a request with values ActReq, EnvReq, ResReq,

SubReq indicated by the atom [request(ActReq, EnvReq, ResReq, SubReq)]. The third

condition is that the target of policy PSN is matched to a request with values ActReq, EnvReq,

ResReq, SubReq, indicated by the atom [match_target(PN, ActReq, EnvReq, ResReq,

SubReq)]. The fourth condition is that a child policy CN of the Policy Set PSN has the affect

E on the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN, indicated by

the atom [match_policyset_child(CN, _, PSN, RN, E, ActReq, EnvReq, ResReq, SubReq)].

The fifth condition is that the Policy Set PSN using the combining algorithm ALG has the

affect E on the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN that

belongs to child policy CN, indicated by the atom [match_policyset_alg(PSN, CN, RN, ALG,

E, ActReq, EnvReq, ResReq, SubReq)].

(21)

match_policyset(PSN, PSID, PPS, 0, 0, indeterminate, ActReq, EnvReq, ResReq, SubReq) :-

 policy_set(PSN, PSID, PPS, ALG),

 request(ActReq, EnvReq, ResReq, SubReq),

not match_policyset(PSN, PSID, PPS, _, _, permit,

ActReq, EnvReq, ResReq, SubReq),

not match_policyset(PSN, PSID, PPS, _, _, deny,

ActReq, EnvReq, ResReq, SubReq).

43

Rule (21) states that a Policy Set PSN with id PSID that belongs to the Policy Set PPS will

have the affect indeterminate on the request with values ActReq, EnvReq, ResReq, SubReq

under certain conditions.

The first condition is that there is a Policy Set PSN with id PSID, that belongs to Policy Set

PPS and uses the combining algorithm ALG, indicated by the atom [policy(PSN, PSID, PPS,

ALG)]. The second condition is that there is a request with values ActReq, EnvReq, ResReq,

SubReq indicated by the atom [request(ActReq, EnvReq, ResReq, SubReq)]. The third

condition is that there is no Policy Set PSN with id PSID that belongs to the Policy Set PPS

that has the effect permit on the request with values ActReq, EnvReq, ResReq, SubReq,

indicated by the atom [not match_policyset(PSN, PSID, PPS, _, _, permit, ActReq, EnvReq,

ResReq, SubReq)]. The fourth condition is that there is no Policy Set PSN with id PSID that

belongs to the Policy Set PPS that has the effect deny on the request with values ActReq,

EnvReq, ResReq, SubReq, indicated by the atom [not match_policyset(PSN, PSID, PPS, _, _,

deny, ActReq, EnvReq, ResReq, SubReq)].

(22)

match_program(PSRoot, CN, RN, E, ActReq, EnvReq, ResReq, SubReq) :-

 PSRoot = ps0,

 request(ActReq, EnvReq, ResReq, SubReq),

match_policyset(PSRoot, _, _, CN, RN, E, ActReq,

EnvReq, ResReq, SubReq).

Rule (22) states that the whole program, which is identified as the root Policy Set PSRoot, will

have the affect E on the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN

that belongs to child policy CN under certain conditions.

The first condition is that the Policy Set PSRoot is actually the root Policy Set ps0, indicated

by the atom [PSRoot = ps0]. The second condition is that there is a request with values ActReq,

EnvReq, ResReq, SubReq indicated by the atom [request(ActReq, EnvReq, ResReq, SubReq)].

The third condition is that there is a Policy Set PSRoot that has the affect E on the request with

values ActReq, EnvReq, ResReq, SubReq due to rule RN that belongs to child policy CN,

indicated by the atom [match_policyset(PSRoot, _, _, CN, RN, E, ActReq, EnvReq, ResReq,

SubReq)].

(23)

match_policyset_child(CN, CID, CPN, RN, E, ActReq, EnvReq, ResReq, SubReq) :-

44

 policy_set(CPN, _, _, _),

 policy(CN, CID, CPN, _),

 request(ActReq, EnvReq, ResReq, SubReq),

match_policy(CN, CID, CPN, RN, E, ActReq, EnvReq,

ResReq, SubReq).

Rule (23) states that a child policy CN of the Policy Set CPN with id CID will have the affect

E on the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN under certain

conditions.

The first condition is that there is a Policy Set CPN, indicated by the atom [policy_set(CPN, _,

_, _)]. The second condition is that there is a policy CN with id CID which belongs to the Policy

Set CPN, indicated by the atom [policy(CN, CID, CPN, _)]. The third condition is that there is

a request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom

[request(ActReq, EnvReq, ResReq, SubReq)]. The fourth condition is that there is a policy CN

with id CID that belongs to the Policy Set CPN that has the affect E on the request with values

ActReq, EnvReq, ResReq, SubReq due to rule RN, indicated by the atom [match_policy(CN,

CID, CPN, RN, E, ActReq, EnvReq, ResReq, SubReq)].

(24)

match_policyset_child(CN, CID, CPN, RN, E, ActReq, EnvReq, ResReq, SubReq) :-

 policy_set(CPN, _, _, _),

 policy_set(CN, CID, CPN, _),

 CN != CPN,

 request(ActReq, EnvReq, ResReq, SubReq),

match_policyset(CN, CID, CPN, _, RN, E, ActReq,

EnvReq, ResReq, SubReq).

Rule (24) states that a child policy CN of the Policy Set CPN with id CID will have the affect

E on the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN under certain

conditions.

The first condition is that there is a Policy Set CPN, indicated by the atom [policy_set(CPN, _,

_, _)]. The second condition is that there is a policy CN with id CID which belongs to the Policy

Set CPN, indicated by the atom [policy(CN, CID, CPN, _)]. The third condition is that the child

policy CN is not its own parent CPN, indicated by the atom [CN != CPN]. The fourth condition

is that there is a request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom

45

[request(ActReq, EnvReq, ResReq, SubReq)]. The fifth condition is that there is a Policy Set

CN with id CID that belongs to the Policy Set CPN that has the affect E on the request with

values ActReq, EnvReq, ResReq, SubReq due to rule RN, indicated by the atom

[match_policy(CN, CID, CPN, _, RN, E, ActReq, EnvReq, ResReq, SubReq)].

2.3.3 Mapping combining algorithms

In the XACML 3.0 abstract syntax there are four common combining algorithms defined, First-

applicable, Permit-overrides, Deny-overrides, and Only-one-applicable.

2.3.3.1 Permit overrides

In the permit-overrides combining algorithm, if there is a permit rule/policy, which matches

the request, then the result is Permit; otherwise, the result is determined by deny rules/policies.

(25)

match_policy_alg(PN, RN, permit_overrides, permit, ActReq, EnvReq, ResReq, SubReq) :-

 policy(PN, _, _, permit_overrides),

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN, _, PN, permit, ActReq, EnvReq,

ResReq, SubReq).

Rule (25) states that the policy PN using the combining algorithm permit overrides will permit

the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN under certain

conditions.

The first condition is that policy PN actually uses the combining algorithm permit overrides

indicated by the atom [policy(PN, _, _, permit_overrides)]. The second condition is that there

is a request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom

[request(ActReq, EnvReq, ResReq, SubReq)]. The third condition is that there is a matched

rule RN that belongs to the policy PN and its effect under the request with values ActReq,

EnvReq, ResReq, SubReq is permit, indicated by the atom [match_rule(RN, _, PN, permit,

ActReq, EnvReq, ResReq, SubReq)].

(26)

match_policy_alg(PN, RN, permit_overrides, deny, ActReq, EnvReq, ResReq, SubReq) :-

46

 policy(PN, _, _, permit_overrides),

 request(ActReq, EnvReq, ResReq, SubReq),

not match_rule(_, _, PN, permit, ActReq, EnvReq,

ResReq, SubReq),

match_rule(RN, _, PN, deny, ActReq, EnvReq, ResReq,

SubReq).

Rule (26) states that the policy PN using the combining algorithm permit overrides will deny

the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN under certain

conditions.

The first condition is that policy PN actually uses the combining algorithm permit overrides

indicated by the atom [policy(PN, _, _, permit_overrides)]. The second condition is that there

is a request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom

[request(ActReq, EnvReq, ResReq, SubReq)]. The third condition is that there is no matched

rule RN that belongs to the policy PN and its effect under the request with values ActReq,

EnvReq, ResReq, SubReq is permit, indicated by the atom [not match_rule(RN, _, PN, permit,

ActReq, EnvReq, ResReq, SubReq)]. The fourth condition is that is that there is a matched rule

RN that belongs to the policy PN and its effect under the request with values ActReq, EnvReq,

ResReq, SubReq is deny, indicated by the atom [match_rule(RN, _, PN, deny, ActReq,

EnvReq, ResReq, SubReq)].

(27)

match_policyset_alg(PS, CN, RN, permit_overrides, permit, ActReq, EnvReq, ResReq,

SubReq) :-

 policy_set(PS, _, _, permit_overrides),

 request(ActReq, EnvReq, ResReq, SubReq),

match_policyset_child(CN, _, PS, RN, permit, ActReq,

EnvReq, ResReq, SubReq).

(28)

match_policyset_alg(PS, CN, RN, permit_overrides, deny, ActReq, EnvReq, ResReq,

SubReq) :-

 policy_set(PS, _, _, permit_overrides),

 request(ActReq, EnvReq, ResReq, SubReq),

47

not match_policyset_child(_, _, PS, _, permit, ActReq,

EnvReq, ResReq, SubReq),

match_policyset_child(CN, _, PS, RN, deny, ActReq,

EnvReq, ResReq, SubReq).

Rules (27) and (28) follow similar logic to rules (25) and (26) respectively. Here we are

referring to the effect of Policy Sets based on the decisions of their child policies or child Policy

Sets. Whereas in rules (25) and (26) we were referring to the effect of policies based on the

decisions of their rules.

2.3.3.2 Deny overrides

In the deny-overrides combining algorithm, if there is a deny rule/policy, which matches the

request, then the result is deny; otherwise, the result is obtained by permit rules/policies.

(29)

match_policy_alg(PN, RN, deny_overrides, deny, ActReq, EnvReq, ResReq, SubReq) :-

 policy(PN, _, _, deny_overrides),

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN, _, PN, deny, ActReq, EnvReq, ResReq,

SubReq).

Rule (29) states that the policy PN using the combining algorithm deny overrides will deny the

request with values ActReq, EnvReq, ResReq, SubReq due to rule RN under certain conditions.

The first condition is that policy PN actually uses the combining algorithm deny overrides

indicated by the atom [policy(PN, _, _, deny_overrides)]. The second condition is that there is

a request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom

[request(ActReq, EnvReq, ResReq, SubReq)]. The third condition is that there is a matched

rule RN that belongs to the policy PN and its effect under the request with values ActReq,

EnvReq, ResReq, SubReq is deny, indicated by the atom [match_rule(RN, _, PN, deny,

ActReq, EnvReq, ResReq, SubReq)].

(30)

match_policy_alg(PN, RN, deny_overrides, permit, ActReq, EnvReq, ResReq, SubReq) :-

 policy(PN, _, _, deny_overrides),

48

 request(ActReq, EnvReq, ResReq, SubReq),

not match_rule(_, _, PN, deny, ActReq, EnvReq,

ResReq, SubReq),

match_rule(RN, _, PN, permit, ActReq, EnvReq,

ResReq, SubReq).

Rule (30) states that the policy PN using the combining algorithm deny overrides will permit

the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN under certain

conditions.

The first condition is that policy PN actually uses the combining algorithm deny overrides

indicated by the atom [policy(PN, _, _, deny_overrides)]. The second condition is that there is

a request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom

[request(ActReq, EnvReq, ResReq, SubReq)]. The third condition is that there is no matched

rule RN that belongs to the policy PN and its effect under the request with values ActReq,

EnvReq, ResReq, SubReq is deny, indicated by the atom [not match_rule(RN, _, PN, deny,

ActReq, EnvReq, ResReq, SubReq)]. The fourth condition is that is that there is a matched rule

RN that belongs to the policy PN and its effect under the request with values ActReq, EnvReq,

ResReq, SubReq is permit, indicated by the atom [match_rule(RN, _, PN, permit, ActReq,

EnvReq, ResReq, SubReq)].

(31)

match_policyset_alg(PS, CN, RN, deny_overrides, deny, ActReq, EnvReq, ResReq, SubReq)

:-

 policy_set(PS, _, _, deny_overrides),

 request(ActReq, EnvReq, ResReq, SubReq),

match_policyset_child(CN, _, PS, RN, deny, ActReq,

EnvReq, ResReq, SubReq).

(32)

match_policyset_alg(PS, CN, RN, deny_overrides, permit, ActReq, EnvReq, ResReq,

SubReq) :-

 policy_set(PS, _, _, deny_overrides),

 request(ActReq, EnvReq, ResReq, SubReq),

not match_policyset_child(_, _, PS, _, deny, ActReq,

EnvReq, ResReq, SubReq),

49

match_policyset_child(CN, _, PS, RN, permit, ActReq,

EnvReq, ResReq, SubReq).

Rules (31) and (32) follow similar logic to rules (29) and (30) respectively. Here we are

referring to the effect of Policy Sets based on the decisions of their child policies or child Policy

Sets. Whereas in rules (29) and (30) we were referring to the effect of policies based on the

decisions of their rules.

2.3.3.3 First applicable

In the first-applicable combining algorithm, the result is determined by the matching result of

the first rule/policy whose target and condition are matched to the decision request.

(33)

dom_match_rule(RN, RID1, PN, E, ActReq, EnvReq, ResReq, SubReq):-

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN, RID1, PN, E, ActReq, EnvReq, ResReq,

SubReq),

match_rule(_, RID2, PN, _, ActReq, EnvReq, ResReq,

SubReq),

 RID2<RID1.

Rule (33) states that the dominated rule RN with id RID1 that belongs to policy PN will have

the effect E on the request with values ActReq, EnvReq, ResReq, SubReq under certain

conditions.

The first condition is that there is a request with values ActReq, EnvReq, ResReq, SubReq

indicated by the atom [request(ActReq, EnvReq, ResReq, SubReq)]. The second condition is

that there is a matched rule RN with id RID1 that belongs to the policy PN and its effect under

the request with values ActReq, EnvReq, ResReq, SubReq is E, indicated by the atom

[match_rule(RN, RID1, PN, E, ActReq, EnvReq, ResReq, SubReq)]. The third condition is

that there is a matched rule with id RID2 that also belongs to policy PN indicated by the atom

[match_rule(_, RID2, PN, _, ActReq, EnvReq, ResReq, SubReq)]. The fourth condition is that

id RID1 of rule RN is larger than the id of the other matched rule with id RID2, meaning that

rule with id RID1 is dominated by some higher priority rule with id RID2 within the same

policy.

50

(34)

match_policy_alg(PN, RN, first_applicable, E, ActReq, EnvReq, ResReq, SubReq) :-

 policy(PN, _, _, first_applicable),

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN, RID, PN, E, ActReq, EnvReq, ResReq,

SubReq),

not dom_match_rule(_, RID, PN, E, ActReq, EnvReq,

ResReq, SubReq).

Rule (34) states that the policy PN using the combining algorithm first applicable will have the

affect E on the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN under

certain conditions.

The first condition is that policy PN actually uses the combining algorithm first applicable

indicated by the atom [policy(PN, _, _, first_applicable)]. The second condition is that there is

a request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom

[request(ActReq, EnvReq, ResReq, SubReq)]. The third condition is that there is a matched

rule RN that belongs to the policy PN and its effect under the request with values ActReq,

EnvReq, ResReq, SubReq is E, indicated by the atom [match_rule(RN, RID, PN, E, ActReq,

EnvReq, ResReq, SubReq)]. The fourth condition is that the same rule with id RID must not

be dominated by some higher priority rule indicated by the atom [not dom_match_rule(_, RID,

PN, E, ActReq, EnvReq, ResReq, SubReq)].

(35)

dom_match_child(CN, CID1, PS, E, ActReq, EnvReq, ResReq, SubReq):-

 request(ActReq, EnvReq, ResReq, SubReq),

match_policyset_child(CN, CID1, PS, _, E, ActReq,

EnvReq, ResReq, SubReq),

match_policyset_child(_, CID2, PS, _, E2, ActReq,

EnvReq, ResReq, SubReq),

 E != indeterminate,

 E2 != indeterminate,

 CID2<CID1.

(36)

51

match_policyset_alg(PS, CN, RN, first_applicable, E, ActReq, EnvReq, ResReq, SubReq) :-

 policy_set(PS, _, _, first_applicable),

 request(ActReq, EnvReq, ResReq, SubReq),

match_policyset_child(CN, CID, PS, RN, E, ActReq,

EnvReq, ResReq, SubReq),

 E != indeterminate,

not dom_match_child(CN, CID, PS, E, ActReq, EnvReq,

ResReq, SubReq).

Rules (35) and (36) follow similar logic to rules (33) and (34) respectively. Here we are

referring to the effect of Policy Sets based on the decisions of their child policies or child Policy

Sets where we also add a condition which states that the effect must not be indeterminate,

indicated by the atoms [E != indeterminate, E2 != indeterminate]. Whereas in rules (34) and

(35) we were referring to the effect of policies based on the decisions of their rules.

2.3.3.4 Only one applicable

In the only-one-applicable combining algorithm, if exactly one policy is matched, the result of

the combining algorithm is identified by such a policy.

(37)

match_policy_alg(PN, RN, only_one_applicable, E, ActReq, EnvReq, ResReq, SubReq) :-

 policy(PN, _, _, only_one_applicable),

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN, _, PN, E, ActReq, EnvReq, ResReq,

SubReq),

1{match_rule(_, _, PN, _, ActReq, EnvReq, ResReq,

SubReq)}1.

Rule (37) states that the policy PN using the combining algorithm only one applicable will have

the affect E on the request with values ActReq, EnvReq, ResReq, SubReq due to rule RN under

certain conditions.

The first condition is that policy PN actually uses the combining algorithm only one applicable

indicated by the atom [policy(PN, _, _, only_one_applicable)]. The second condition is that

there is a request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom

52

[request(ActReq, EnvReq, ResReq, SubReq)]. The third condition is that there is a matched

rule RN that belongs to the policy PN and its effect under the request with values ActReq,

EnvReq, ResReq, SubReq is E, indicated by the atom [match_rule(RN, RID, PN, E, ActReq,

EnvReq, ResReq, SubReq)]. The fourth condition is that there is only a single rule that belongs

to policy PN that is matched under the request with values ActReq, EnvReq, ResReq, SubReq,

indicated by the atom [1{match_rule(_, _, PN, _, ActReq, EnvReq, ResReq, SubReq)}1].

(38)

match_policyset_alg(PS, CN, RN, only_one_applicable, E, ActReq, EnvReq, ResReq,

SubReq) :-

 policy_set(PS, _, _, only_one_applicable),

 request(ActReq, EnvReq, ResReq, SubReq),

match_policyset_child(CN, _, PS, RN, E, ActReq,

EnvReq, ResReq, SubReq),

 E != indeterminate,

1{match_policyset_child(_, _, PS, _, E2, ActReq,

EnvReq, ResReq, SubReq) : E2 != indeterminate}1.

Rule (38) follows similar logic to rule (37). Here we are referring to the effect of Policy Sets

based on the decisions of their child policies or child Policy Sets where we also add a condition

which states that the effect must not be indeterminate, indicated by the atom [E !=

indeterminate]. Whereas rule (37) refers to the effect of policies based on the decisions of their

rules.

2.3.4 Mapping requests

In XACML the request component is a set of attribute types that are assigned values relative

to their domains, which are defined by the input XACML policy. The XACBench prototype

tool defines four attribute types and a domain for each one. This representation of attributes is

more in line with XACML 2.0 since it involves the attribute types of action, environment,

resource, and subject.

(39)

request(ActReq, EnvReq, ResReq, SubReq) :- action_domain(ActReq),

environment_domain(EnvReq),

53

 resource_domain(ResReq),

 subject_domain(SubReq).

Rule (39) states that a request with attribute values ActReq, EnvReq, ResReq, SubReq is

created under certain conditions. The first condition is that ActReq belongs to the action

domain, indicated by the atom [action_domain(ActReq)]. The second condition is that EnvReq

belongs to the environment domain, indicated by the atom [environment_domain(EnvReq)].

The third condition is that ResReq belongs to the resource domain, indicated by the atom

[resource_domain(ResReq)]. The fourth condition is that SubReq belongs to the subject

domain, indicated by the atom [subject_domain(SubReq)].

In our running example with the real-world XACML 3.0 policy called “kmarket-gold-

policy.xml” (Appendix A), we consider a possible request for the policy, shown in Figure 2.3

(Appendix B).

Figure 2.3: XACML 3.0 request for real-world XACML 3.0 policy called “kmarket-gold-

policy.xml”.

54

The ASP translation of this request would result in an ASP fact such as:

request(gold, 550, liquor, 20).

2.4 ASP programs of the middle framework layer

The XACBench prototype XACML analysis: total redundancy, simple redundancy, shadow

anomaly, correlation anomaly, generalization anomaly, reachability, usefulness, isomorphism,

and completeness.

To analyse these XACML policy properties we need ASP programs that describe them using

ASP rules. The XACBench prototype tool contains such ASP programs:

“all_rules_total_redundancy.asp”, “completeness.asp”, “effectiveness_isomorphism.asp”,

“effectiveness_policy.asp”, “effectiveness_policyset.asp”, “effectiveness_rule.asp”,

“inter_policy_anomalies.asp”, and “intra_policy_anomalies.asp” , their rules can be seen in

Sections 2.4.1-2.4.7.

2.4.1 Reachability

A rule is reachable if there is a request matched by this rule. Removing an unreachable rule

(policy and policy set) has no effect on the semantics of a policy. Thus, the discovery of such

rules (policies and policy sets) helps the administrator to remove them and improve the

efficiency of the policy analysis.

reachable_rule(RN) :-

 rule(RN, _, _, _),

 request(ActReq, EnvReq, ResReq, SubReq),

match_program(_, _, RN, _, ActReq, EnvReq, ResReq,

SubReq).

unreachable_rule(RN) :-

 rule(RN, _, _, _),

 not reachable_rule(RN).

55

The XACBench tool contains similar predefined ASP programs and ASP rules for reachability

and unreachability of policies and policy sets.

2.4.2 Usefulness

A rule (policy, policy set) is useful if it is matched by some request. Removing a useless rule

(policy and policy set) has no effect on the semantics of a policy but can improve the efficiency

of policy analysis.

A rule is useless if there is no request matched by the rule.

useful_rule(RN) :-

 rule(RN, RID, P, E),

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN, RID, P, E, ActReq, EnvReq, ResReq,

SubReq).

useless_rule(RN) :-

 rule(RN, _, _, _),

 not useful_rule(RN).

The XACBench tool contains similar predefined ASP programs and ASP rules for usefulness

of policies and policy sets.

2.4.3 Total redundancy

A rule(policy) is totally redundant if every request matched by this rule(policy) is also matched

by other rules(policies) in the policy (Policy Set).

A rule is matched by another rule of the same policy if there is a request matched by both rules.

match_by_others(RN, ActReq, EnvReq, ResReq, SubReq) :-

 rule(RN, RID, PN, _),

 rule(RN2, RID2, PN, _),

56

 RID > RID2,

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN, RID, PN, _, ActReq, EnvReq, ResReq,

SubReq),

match_rule(RN2, RID2, PN, _, ActReq, EnvReq,

ResReq, SubReq).

A rule is not totally redundant if there is a request matched by that rule and no other rule of the

same policy is matched by that same request.

no_total_redundancy(RN) :-

 rule(RN, _, _, _),

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN, _, _, _, ActReq, EnvReq, ResReq,

SubReq),

not match_by_others(RN, ActReq, EnvReq, ResReq,

SubReq).

total_redundancy(RN) :-

 rule(RN, _, _, _),

 not no_total_redundancy(RN).

A policy is matched by another policy of the same Policy Set if there is a request matched by

both policies.

match_by_others(PN, ActReq, EnvReq, ResReq, SubReq) :-

 policy(PN, PID, PSN, _),

 policy(PN2, PID2, PSN, _),

 PID > PID2,

 request(ActReq, EnvReq, ResReq, SubReq),

match_policy(PN, PID, PSN, _, _, ActReq, EnvReq,

ResReq, SubReq),

match_policy(PN2, PID2, PSN, _, _, ActReq, EnvReq,

ResReq, SubReq).

57

A policy is not totally redundant if there is a request matched by that policy and no other policy

of the same Policy Set is matched by that same request.

no_total_redundancy(PN) :-

 policy(PN, PID, PSN, _),

 request(ActReq, EnvReq, ResReq, SubReq),

match_policy(PN, PID, PSN, _, _, ActReq, EnvReq,

ResReq, SubReq),

not match_by_others(PN, ActReq, EnvReq, ResReq,

SubReq).

total_redundancy(PN) :-

 policy(PN, PID, PSN, _),

 not no_total_redundancy(PN).

2.4.4 Completeness

A XACML policy is incomplete if there is a request that is neither matched as permit nor as

deny by the program.

A policy is complete if it matches all possible requests.

incomplete(ActReq, EnvReq, ResReq, SubReq) :-

 request(ActReq, EnvReq, ResReq, SubReq),

not match_program(_, _, _, permit, ActReq, EnvReq,

ResReq, SubReq),

not match_program(_, _, _, deny, ActReq, EnvReq,

ResReq, SubReq).

complete :- not incomplete(_, _, _, _).

2.4.5 Isomorphism

Two XACML policies are isomorphic if and only if they return identical decision for every

request.

58

Two programs (policysets) are not isomorphic if they have different decisions (E1!=E2) for at

least one common request.

no_isomorphic_program(PSN1, PSN2) :-

 policy_set(PSN1, PSID1, _, ALG),

 policy_set(PSN2, PSID2, _, ALG),

 PSID1 != PSID2,

 request(ActReq, EnvReq, ResReq, SubReq),

match_policyset(PSN1, _, _, _, _, E1, ActReq, EnvReq,

ResReq, SubReq),

match_policyset(PSN2, _, _, _, _, E2, ActReq, EnvReq,

ResReq, SubReq),

 E1 != E2.

Two programs (policysets) are not isomorphic if one is matched by a common request and the

other is not.

no_isomorphic_program(PSN1, PSN2) :-

 policy_set(PSN1, PSID1, _, ALG),

 policy_set(PSN2, PSID2, _, ALG),

 PSID1 != PSID2,

 request(ActReq, EnvReq, ResReq, SubReq),

match_policyset(PSN1, _, _, _, _, _, ActReq, EnvReq,

ResReq, SubReq),

not match_policyset(PSN2, _, _, _, _, _, ActReq,

EnvReq, ResReq, SubReq).

The isomorphism property of two policy sets is symmetric. If PSN2 is isomorphic to PSN1

then PSN1 is isomorphic to PSN2. The same can be said for a non-isomorphic pair of policy

sets.

isomorphic_program(PSN1, PSN2) :-

 isomorphic_program(PSN2, PSN1).

no_isomorphic_program(PSN1, PSN2) :-

59

 no_isomorphic_program(PSN2, PSN1).

Two policy sets are isomporhpic if they are not non-isomporhpic.

isomorphic_program(PSN1, PSN2) :-

 policy_set(PSN1, PSID1, _, ALG),

 policy_set(PSN2, PSID2, _, ALG),

 PSID1 != PSID2,

 not no_isomorphic_program(PSN1, PSN2).

2.4.6 Intra-policy anomalies

Intra-policy anomalies are anomalies which occur between rules of the same policy. The ASP

rules described below check for anomalies of a rule with other rules within a policy. These

anomalies consist of simple shadow, simple redundancy, correlation, generalization, and some

other anomalies that we described before, such as total redundancy, usefulness, and reachability

of a rule.

A rule RID1 is not a subset of another rule RID2 of the same policy if the first matches a

common request and the second does not.

no_subset_rule(RID1, RID2) :-

 rule(RN1, RID1, PN, _),

 rule(RN2, RID2, PN, _),

 RN1 != RN2,

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN1, RID1, PN, _, ActReq, EnvReq,

ResReq, SubReq),

not match_rule(RN2, RID2, PN, _, ActReq, EnvReq,

ResReq, SubReq).

subset_rule(RID1, RID2) :-

 rule(RN1, RID1, PN, _),

 rule(RN2, RID2, PN, _),

 RN1 != RN2,

60

 not no_subset_rule(RID1, RID2).

A rule RID1 overlaps with another rule RID2 of the same policy if they both match at least one

common request. The overlap property is symmetric, and it helps us verify the simple

correlation anomaly.

overlap_rule(RID1, RID2) :-

 overlap_rule(RID2, RID1).

overlap_rule(RID1, RID2) :-

 rule(RN1, RID1, PN, _),

 rule(RN2, RID2, PN, _),

 RN1 != RN2,

 request(ActReq, EnvReq, ResReq, SubReq),

match_rule(RN1, RID1, PN, _, ActReq, EnvReq,

ResReq, SubReq),

match_rule(RN2, RID2, PN, _, ActReq, EnvReq,

ResReq, SubReq).

A rule RID1 is shadowed by another rule RID2 of the same policy if the first is a subset of the

second one, they have different effects, and the first has a lower priority.

simple_shadow_anomaly_rule(RID1, RID2) :-

 rule(RN1, RID1, PN, RE1),

 rule(RN2, RID2, PN, RE2),

 RID2 < RID1,

 RE1 != RE2,

 subset_rule(RID1, RID2).

A rule RID1 is redundant due to another rule RID2 of the same policy if the first is a subset of

the second one, they have the same effects, and the first has a lower priority. Removing a

redundant or shadowed rule has no effect on the semantics of a policy but can improve the

efficiency of policy analysis.

simple_redundancy_anomaly_rule(RID1, RID2) :-

61

 rule(RN1, RID1, PN, RE1),

 rule(RN2, RID2, PN, RE2),

 RID2 < RID1,

 RE1 == RE2,

 subset_rule(RID1, RID2).

A rule RID1 is a correlation of a rule RID2 of the same policy if they have different effects,

the first has lower priority and is overlapped by the second one, and they are not subsets of

each other. In other words, there are request that are only matched by the first rule, requests

that are only matched by the second rule, and requests that are matched by both rules. If the

order (the priority) of the two rules was reversed, the decisions (effects) for the requests that

are matched by both rules would also be reversed. Correlation is considered an anomaly

warning [10].

correlation_anomaly_rule(RID1, RID2) :-

 rule(RN1, RID1, PN, RE1),

 rule(RN2, RID2, PN, RE2),

 RID2 < RID1,

 RE1 != RE2,

 overlap_rule(RID1, RID2),

 not subset_rule(RID1, RID2),

 not subset_rule(RID2, RID1).

A rule RID2 is a generalization of a rule RID1 of the same policy if they have different effects,

the first has lower priority and is a subset of the second. A generalization rule is used to exclude

a particular request from the general evaluation of the policy. Suppose we have a policy with

rule R1 that is matched and evaluated to permit by all request coming from surgeons and

another rule R2 of the same policy, that is matched specifically by a surgeon with the name

“John Hopkins” and its effect is deny. If R1 has a higher priority, then it is considered a

generalization of R2. Generalization is considered only an anomaly warning because the

specific rule, R2 in this case, makes an exception of the general rule. It is important to highlight

its effect to the policy developers for confirmation.

simple_generalization_anomaly_rule(RID1, RID2) :-

 rule(RN1, RID1, PN, RE1),

62

 rule(RN2, RID2, PN, RE2),

 RID2 > RID1,

 RE1 != RE2,

 subset_rule(RID1, RID2).

2.4.7 Inter-policy anomalies

Inter-policy anomalies are anomalies which occur between policies of the same Policy Set.

These anomalies, like intra-policy anomalies, consist of simple shadow, simple redundancy,

correlation, generalization, total redundancy, usefulness, and reachability of a policy. The

XACBench tool contains ASP programs and ASP rules similar those in the previous Section

2.4.7 but in this case, they are applied to policies of same policy sets. The motivation for the

verification of these properties is the improvement of policy analysis through removal of

unnecessary policies.

2.5 ASP request generator

To analyse an XACML policy for specific properties (Section 2.4), we need to generate all

possible requests for that policy. XACBench contains an ASP program called

“generate_all.asp” which represents the request generator. The first four lines represent the

domains of the four standard attribute types (Action, Environment, Resource, and Subject).

Each domain is a set of values defined by a policy administrator, which in this case are the

developers of XACBench. Rule (39) from Section 2.3.1 creates a request for each combination

of the values of the attribute type domains.

action_domain(act_value1; act_value2; act_value3; …).

environment_domain(env_value1; env_value2; env_value3; …).

resource_domain(res_value1; res_value2; res_value3; …).

subject_domain(sub_value1; sub_value2; sub_value3; …).

request(ActReq, EnvReq, ResReq, SubReq) :- action_domain(ActReq),

environment_domain(EnvReq), resource_domain(ResReq), subject_domain(SubReq).

63

Chapter 3

Modifying XACBench

3.1 Introduction 61

 3.2 Arbitrary attribute types of XACML 3.0 62

 3.3 Conditions of XACML 3.0 64

 3.4 Automatic target matching 69

 3.5 Reducing atom arity for query analysis 71

3.6 Authorization hierarchy 74

3.1 Introduction

Although XACBench (Section 2.2.2) is a useful prototype tool that helps us generate synthetic

XACML policies, its XACML 3.0 to ASP translation functionality is incomplete. In this

section we will present some problems in XACBench that stop us from being able to correctly

analyze properties of XACML 3.0 policies. There are limitations imposed by both the

predefined ASP programs and by the java code that is responsible for translating the input

XACML policies into equivalent ASP programs. To overcome these issues, we propose and

implement a variety of adjustments. These adjustments help us generate accurate translations

of the input XACML 3.0 policies and in turn let us proceed with XACML 3.0 policy analysis.

In this section we also propose a way to improve the query analysis process and a new ASP

program which will give us an insight into the authorization hierarchies of attribute type values

within XACML 3.0 policies.

3.2 Arbitrary attribute types of XACML 3.0

64

As we have mentioned in Section 1.2.5, we have chosen to work with a tool that translates

XACML 3.0 policies to ASP equivalent programs because XACML 3.0 allows us to define

custom arbitrary attribute types which makes it more expressive than its previous version,

XACML 2.0. The problem we found in XACBench, is that this expressiveness is neglected

because all of its predefined ASP programs (“all_rules_total_redundancy.asp”,

“completeness.asp”, “effectiveness_isomorphism.asp”, “effectiveness_policy.asp”,

“effectiveness_policyset.asp”, “effectiveness_rule.asp”, “inter_policy_anomalies.asp”, and

“intra_policy_anomalies.asp”, “match_common.asp”, “match_target_v3.asp”) are policy

independent, which means that they do not adapt to the XACML 3.0 policy given as input. The

number of arguments(arity) of the atoms in the predefined ASP programs is fixed, specifically

there are four dedicated attribute types indicated by the sequence ActReq, EnvReq, ResReq,

SubReq. On the other hand, the number of arguments(arity) of the atoms in the policy

dependent ASP program generated by the translation java code, fluctuates based on the number

of attributes found by the translator’s parser when it goes through the input XACML 3.0 policy.

This number is arbitrary since XACML 3.0 policies have an arbitrary number of attribute types.

The difference in the number of arguments(arity) and adaptability means that the rules within

the generated policy dependent ASP translation program, which are facts that describe the input

XACML policy, cannot be matched to the atoms within the bodies of the rules in the predefined

policy independent ASP programs. Without common atom arities we are incapable of

producing new atoms such as program, policy, rule, target decisions and without these atoms

we cannot perform policy analysis.

In Figure 3.1 we have the predefined policy independent ASP program “match_target_v3.asp”,

which contains ASP rules for matching AnyOf, AllOf, and Target components of XACML 3.0.

In Figure 3.2 we have a fragment of the policy dependent ASP translation program generated

by the XACBench translator, with the input policy being “continue-a.xml”. In this fragment

we can see that the atom with the anyof predicate has 15 parameters, 13 of which are dedicated

to the attribute types found in “continue-a.xml” by the parser. On the other hand, in the

predefined programs, the atoms with the predicate anyof, which is needed for the matching of

an AnyOf component to a request in “match_target_v3.asp”, has 6 parameters, 4 of which are

dedicated to attribute types.

65

Figure 3.1: XACBench predefined policy independent ASP program “match_target_v3.asp”.

Figure 3.2: Fragment of the “continue-a.xml” policy translation ASP program.

In our modified version of XACBench we overcome this problem by turning the predefined

policy independent ASP programs into policy dependent programs. When our modified java

translator reads the input XACML policy, it does not only generate a translation ASP program

of the input XACML policy, but it also generates a new set of ASP programs using the

predefined ASP programs and the arguments found by the parser. This new set of programs

contains atoms whose arguments are derived from the input XACML policy. With this

adjustment the number of arguments of atoms among all ASP programs is the same and we can

run the solver on the generated XACML policy translation and the new set of ASP programs

derived from the predefined ones.

As an example, we show in Figure 3.3 one of the ASP programs “kmarket-sliver-

policy_match_target_v3.asp” of our new set of programs generated from the predefined policy

independent “match_target_v3.asp” ASP program of Figure 3.1.

66

Figure 3.3: Policy dependent ASP program generated from “match_target_v3.asp”.

Figure 3.4: Fragment of the ASP translation program of “kmarket-sliver-policy.xml”.

The atoms with the AnyOf predicates in both ASP programs in Figures 3.3 and 3.4 have the

same number of arguments and can now be matched to create new atoms.

3.3 Conditions of XACML 3.0

As we have mentioned before, a rule’s condition is a Boolean expression that refines the rule’s

applicability beyond its target and in an ASP program the condition component can be

evaluated merely using facts and constraints. The syntax for condition translation in the

predefined ASP programs of XACBench is described by rules (15-19) in Section 2.3.2. Again,

we see that these rules neglect XACML 3.0’s expressiveness by bounding the possible Boolean

expressions to two simple predicates (is_subject, is_subject_resource) which can only check

67

for equality of values of the subject and resource attribute types as shown in Figure 3.5.

Figure 3.5: Fragment of the predefined policy independent ASP program

“match_common.asp”.

With XACML 3.0, attribute types are arbitrary, and the functions used by conditions are much

more diverse and offer more than just checking for equality as shown in Figure 3.6 where the

attribute type is http://kmarket.com/id/totalAmount and the function is integer-greater-than.

The fixed rules in Figure 3.5 are incapable of describing XACML 3.0s expressiveness

regarding conditions.

Figure 3.6: Fragment of the XACML 3.0 policy “kmarket-sliver-policy.xml”.

Apart from the limitations of the predefined ASP programs, there are some modifications

needed in the java code of XACBench responsible for the translation of XACML 3.0 policies

into equivalent ASP programs.

http://kmarket.com/id/totalAmount

68

Figure 3.7: Snippet of java code in XACBench responsible for translating XACML 3.0

Conditions.

As shown in Figure 3.7, during parsing XACBench translates each rule’s condition using rule

(4) from Section 2.3.1. Which is equivalent to saying that all rules within the input policy have

an empty condition. In some cases, this may lead to inaccurate policy analysis results.

In our modified version of XACBench we address this issue by defining a new syntax and by

changing the parsing process. We introduce a new way to describe the condition component of

XACML 3.0 using ASP rules.

First, we adjust the parsing process. Unlike XACBench, where the parser would only look for

attribute types used in target components, we parse the XACML input policy and find all

attribute types and their values within target and condition xml element tags. This creates an

attribute mapper, a HashMap, which maps attribute types of targets and conditions found in the

policy to a list with all values associated to that attribute type. The new list of attribute types

defines the atom parameters of our set of ASP programs that will be used to analyse the policy.

We then parse the input XACML file again and during this parsing we define new policy

Dependent rules that accurately describe conditions of XACML 3.0 policies. Figure 3.8

exhibits an example of such a rule, which depicts the condition in Figure 3.6.

Figure 3.8: Fragment of the “kmarket-sliver-policy.xml” policy translation ASP program with

an example of the newly defined condition matching.

The newly defined syntax for translating XACML 3.0 Conditions to ASP rules such as the one

in Figure 3.8 is as follows:

69

condition(RN, Attr1, Attr2, …, AttrN):-

request(Attr1, Attr2, …, AttrN),

expr1, expr2, …, exprK.

The rule above states that the condition element of rule RN is matched by a request with values

Attr1, Attr2, …, AttrN for the N attribute types, which are defined by the attribute type list

created after the first parsing, under certain conditions.

The first condition is that there is a request with values Attr1, Attr2, …, AttrN, indicated by

the atom [request(Attr1, Attr2, …, AttrN)]. The rest of the conditions are defined by the atoms

expr1, expr2, …, exprK, which are boolean expression/constraints that depend on the condition

of the rule of the input XACML policy. These expressions have the from <attribute type value

assigned by request><function type><attribute type value defined by policy>.

When a rule RN has an empty condition element, the rule generated is as follows:

condition(RN, Attr1, Attr2, …, AttrN):-

request(Attr1, Attr2, …, AttrN).

As for the predefined ASP programs, we remove rules (14-17) and then we modify rule (18)

from Section 2.3.2, shown in Figure 3.9, by removing the atom with the bool_expr predicate.

The result is a new rule shown in Figure 3.10.

Figure 3.9: Modified XACBench Rule matching.

Figure 3.10: Modified Rule matching.

70

The rule in Figure 3.10 states that a rule RN with id RID that belongs to the policy PN will

have the affect E on the request with values ActReq, EnvReq, ResReq, SubReq under certain

conditions.

The first condition is that there is a rule RN with id RID, and effect E, that belongs to policy

PN, indicated by the atom [rule(RN, RID, PN, E)]. The second condition is that there is a

request with values ActReq, EnvReq, ResReq, SubReq indicated by the atom [request(ActReq,

EnvReq, ResReq, SubReq)]. The third condition is that the target of rule RN is matched to a

request with values ActReq, EnvReq, ResReq, SubReq, indicated by the atom

[match_target(RN, ActReq, EnvReq, ResReq, SubReq)]. The fourth condition is that the rule

RN’s condition element is matched by the request with values ActReq, EnvReq, ResReq,

SubReq, indicated by the atom [condition(RN, ActReq, EnvReq, ResReq, SubReq)] which is

generated by the newly defined input policy dependent rule:

condition(RN, Attr1, Attr2, …, AttrN):-

request(Attr1, Attr2, …, AttrN),

expr1, expr2, …, exprK.

Suppose we have a real-world XACML 3.0 policy called “kmarket-gold-policy.xml” in

Appendix A. The modified XACBench tool will generate a policy dependent ASP translation

program as follows:

71

In lines 6-10, we use our newly defined ASP rule for the Condition of the first Rule of the

Policy (lines 21-30 of Appendix A). In lines 13-17, we use our newly defined ASP rule for the

Condition of the second Rule of the Policy (lines 53-362 of Appendix A). Finally in lines 20-

24, we use our newly defined ASP rule for the empty Condition of the third Rule of the Policy

(lines 72 of Appendix A), indicated by the missing <Condition> xml tag.

3.4 Automatic target matching

In this section we go over the rule (3) from Section 2.3.1. This rule belongs to the policy

dependent rules which means that it is generated by the XACBench java code during the

translation of the input XACML policy. During the parsing phase, XACBench checks for each

of the main components of XACML (rule, policy, Policy Set) whether they have and empty

target element. If a component does have an empty target, the XACBench translator generates

a fact rule such as rule (2) from Section 2.3.1:

target(rname).

72

Otherwise, if a component does not have an empty target, meaning that it has at least one

AnyOf element, the XACBench translator generates a set of fact rules such as rule (1) from

Section 2.3.1:

anyof(rname, anyid, action_value, environment_value, resource_value, subject_value).

This set of rules depends on the number of AnyOf elements that the target of the component

has, and the number of AllOf elements within each one of them. Notice that if the target is not

empty at least one fact rule with predicate AnyOf will be generated.

Together with the fact rules above XACBench also generates a second rule such as rule (3)

from Section 2.3.1:

target(rname) :- anyof(rname ,anyid, _, _).

Generating both of these rules for targets which are not empty, creates an automatic matching

of the anyof fact to the body of the rule above. This matching in turn generates the atom

target(rname), which means that the target of the component rname is empty. This atom

together with rule (12) from Section 2.3.2

match_target(TN, ActReq, EnvReq, ResReq, SubReq) :-

 request(ActReq, EnvReq, ResReq, SubReq),

 target(TN).

generates the atom match_target. This means that we have matched a target to a request without

checking if the request matches the target’s requirements. With this logic, any request can

bypass rules (10,11,13) from Section 2.3.2, which is equivalent to saying that any request can

match any policy’s target element.

We overcome this issue by removing rule (3) of Section 2.3.1 from the XACML to ASP

translation syntax and by adjusting code within XACBench so that it does not generate such

rules when the Targets of elements are not empty. The result is a policy dependent ASP

translation program with no rules such as (3). Appendix D is an example of such the translation

73

of the real-world XACML 3.0 policy called “kmarket-gold-policy.xml”. We can see that this

new translation has no rules of type (3) despite having Target elements.

3.5 Reducing atom arity for query analysis

As we have previously stated in Section 2.5, to verify properties of a XACML 3.0 policy, we

need to generate all possible requests for that policy in a single answer set. This stands true

when the goal is to verify specific policy properties, like the ones in Section 2.4. But when it

comes to query analysis (checking what decision the policy comes to when faced with some

request), we do not need to generate all requests at once in a single answer set. With this in

mind, we decided to create variant of our initial ASP programs generated by the modified

XACBench tool. In this variation we will have a separate answer set for each request that can

be created through the combination of attribute type values. Each answer set and all of its atoms

will refer to the single request which exists within the answer set. This will allow us to reduce

the arity of atoms within the ASP programs by removing parameters that indicated values given

to attribute types by the request. The reduced arity of atoms should lead to a smaller number

of ground rules and atoms, faster grounding and solving, which in turn means more efficient

query analysis.

As an example, we demonstrate how a rule defined in our previous ASP programs will look

like in the variation set of ASP programs.

Suppose we have rule from Figure 3.9:

match_rule(RN, RID, PN, E, ActReq, EnvReq, ResReq, SubReq) :-

 rule(RN, RID, PN, E),

 request(ActReq, EnvReq, ResReq, SubReq),

 match_target(RN, ActReq, EnvReq, ResReq, SubReq),

 condition(RN, ActReq, EnvReq, ResReq, SubReq).

The variant set of ASP programs will contain an equivalent rule defined as:

match_rule(RN, RID, PN, E) :-

 rule(RN, RID, PN, E),

 match_target(RN),

74

 condition(RN).

If our solver generates an answer set that contains the fact match_rule(RN, RID, PN, E), we

know to which request the rule RN was matched to since there is only one request within the

answer set. On the other hand if the solver generates an answer set that does not contain the

fact match_rule(RN, RID, PN, E) we know that the request within that answer set could not be

matched to rule RN of the access policy.

Other rules and their original ASP definition follow similar logic to the rule above when it

comes to our variation set of ASP programs. The sequence of parameters reserved for attribute

types is removed from all atoms. As another example, suppose we have the following rule

found in one of the ASP translation programs of our modified tool:

Where A, B, C, D, F, G are a sequence of parameters reserved for attribute types of the input

policy. The variation of this rule is as follows:

match_policyset(PSN, PSID, PPS, CN, RN, E) :-

 policy_set(PSN, PSID, PPS, ALG),

 match_target(PSN),

 match_policyset_child(CN, _, PSN, RN, E),

 match_policyset_alg(PS, CN, RN, ALG, E).

Notice we have removed the sequence of A, B, C, D, F, G from all atoms, reduction in arity.

For us to have an answer set for each possible request we will create a separate request

generator called “generate_one.asp”. Both request generators, “generate_all.asp” and

“generate_one.asp” will have the same attribute type domains with the same values within

those domains, which are defined by the HashMap created during parsing of the input XACML

policy.

The general form of the ASP program “generate_all.asp” for the request generator is as follows:

75

attr1_domain(Attr1_value1; Attr1_value2; Attr1_value3; …).

attr2_domain(Attr2_value1; Attr2_value2; Attr2_value3; …).

…

attrk_domain(Attrk_value1; Attrk_value2; Attrk_value3; …).

request(Attr1Req,Attr2Req,…,AttrkReq) :-

attr1_domain(Attr1Req),

attr2_domain(Attr2Req),

…,

attrk_domain(AttrkReq).

The general form of the ASP program “generate_one.asp” for the request generator is as

follows:

attr1_domain(Attr1_value1; Attr1_value2; Attr1_value3; …).

attr2_domain(Attr2_value1; Attr2_value2; Attr2_value3; …).

…

attrk_domain(Attrk_value1; Attrk_value2; Attrk_value3; …).

1{pick_attr1_domain(X): attr1_domain(X)}1.

1{pick_attr2_domain(X): attr2_domain(X)}1.

…

1{pick_attrk_domain(X): attrk_domain(X)}1.

request(Attr1Req,Attr2Req,…,AttrkReq) :-

pick_attr1_domain(Attr1Req),

pick_attr2_domain(Attr2Req),

…,

pick_attrk_domain(AttrkReq).

3.6 Authorization hierarchy

A hierarchy is commonly known as a system in which members of a group are ranked according

to relative status. In this thesis we specify our own definition of a hierarchy for XACML, where

the system is a XACML policy, the members are values associated with attribute type, the

76

groups are the attribute types, and the values are ranked based on the range of access and

authorization they have on different types of requests.

In our extended version of the XACBench tool, we have added a new functionality which

generates an ASP program that helps with the observation of authorization hierarchies for each

attribute type of a given input XACML 3.0 policy.

For better understanding, we give a high-level description of a simple made-up XACML policy

that specifies which employees of a hospital have access to which recourses of the hospital.

Suppose the employees, are either doctors, nurses, or ITs, and the resources are medical files,

database, and patient records. The doctors are permitted to access both medical files and patient

records but are denied access to the database. The nurses are permitted to access medical files

but are denied access to both the database and the patient records. Finally, the IT is permitted

to access the database, but there is no clarification to whether he can access patient records or

medical files.

The adjusted tool we have described so far will parse the XACML policy and create a list of

attribute types, which in this case are SubReq and ResReq. The domain of the attribute type

SubReq, which represents the employees of the hospital, will have the values nurse, doctor,

and IT, while the domain of the attribute type ResReq, which represent the resources of the

hospital, will have the values medical_file, patient_record, and database.

Without the added functionality, the tool would generate all the standard ASP programs that

are needed for policy analysis. Then the Clingo solver given the ASP programs as input, would

produce an answer set which would contain the following atoms:

match_program(psroot, cn, rn, permit, doctor, patient_record).

match_program(psroot, cn, rn, permit, doctor, medical_file).

match_program(psroot, cn, rn, deny, doctor, database).

match_program(psroot, cn, rn, deny, nurse, patient_record).

match_program(psroot, cn, rn, permit, nurse, medical_file).

match_program(psroot, cn, rn, deny, nurse, database).

match_program(psroot, cn, rn, indeterminate, it, patient_record).

match_program(psroot, cn, rn, indeterminate, it, medical_file).

match_program(psroot, cn, rn, permit, it, database).

77

With the added functionality, the tool will now generate an additional ASP program with the

following rules:

no_hier(SubReq2 , SubReq1, subreq) :-

match_program(PSRoot, CN, RN, permit, ResReq, SubReq1),

 match_program(PSRoot, CN, RN, deny, ResReq, SubReq2),

 request(ResReq, _).

no_hier(SubReq2 , SubReq1, subreq) :-

match_program(PSRoot, CN, RN, permit,ResReq, SubReq1),

 match_program(PSRoot,CN,RN,indeterminate,ResReq,

 SubReq2),

 request(ResReq, _).

The two rules above state that the subject SubReq2 is not hierarchically above subject SubReq1

if subject SubReq1 is permited access by the policy under some specific request (access to

resource ResReq) and subject SubReq2 is either denied access or the access cannot be

determined by the policy under that same request.

hier(SubReq1, SubReq2, subreq) :-

match_program(PSRoot, CN, RN, permit, ResReq, SubReq1),

match_program(PSRoot, CN, RN, indeterminate, ResReq,

SubReq2),

 not no_hier(SubReq1, SubReq2, subreq).

hier(SubReq1, SubReq2, subreq) :-

match_program(PSRoot, CN, RN, permit, ResReq, SubReq1),

 match_program(PSRoot, CN, RN, deny, ResReq, SubReq2),

 not no_hier(SubReq1, SubReq2, subreq).

The two rules above state that the subject SubReq1 is hierarchically above subject SubReq2

under certain conditions. The first condition is that subject SubReq1 is permited access by the

policy to at least one request (access to resource ResReq) and subject SubReq2 is either denied

78

access or the access cannot be determined by the policy under that same request. The second

condition is that it is not the case that SubReq1 is not hierarchically above subject SubReq2.

top_hier(SubReq, subreq):- match_program(PSRoot, CN, RN, permit, ResReq, SubReq),

 not hier(_,SubReq, subreq).

The rule above states that subject SubReq is on top of a hierarchy under certain conditions.

The first condition is that the subject SubReq must be permitted access by the policy to at least

one request, because we consider that a value that has no permissions cannot be on top of a

hierarchy even none of the values have permissions either. The second condition is that subject

SubReq is not hierarchically below any other subject.

The five rules described above are used to determine hierarchy among the values of the attribute

type SubReq and the five rules below which follow similar logic to the ones above are instead

used to determine hierarchy among the values of the attribute type ResReq.

no_hier(ResReq2 , ResReq1, resreq) :-

match_program(PSRoot, CN, RN, permit, ResReq1, SubReq),

 match_program(PSRoot, CN, RN, deny, ResReq2, SubReq),

 request(_, SubReq).

no_hier(ResReq2 , ResReq1, resreq) :-

match_program(PSRoot, CN, RN, permit,ResReq1, SubReq),

match_program(PSRoot, CN, RN, indeterminate,ResReq2,

SubReq),

 request(_, SubReq).

hier(ResReq1, ResReq2, resreq) :-

match_program(PSRoot, CN, RN, permit, ResReq1, SubReq),

match_program(PSRoot, CN, RN, indeterminate, ResReq2,

SubReq),

 not no_hier(ResReq1, ResReq2, resreq).

79

hier(ResReq1, ResReq2, resreq) :-

match_program(PSRoot, CN, RN, permit, ResReq1, SubReq),

 match_program(PSRoot, CN, RN, deny, ResReq2, SubReq),

not no_hier(ResReq1, ResReq2, resreq).

top_hier(ResReq, resreq):- match_program(PSRoot, CN, RN, permit, ResReq, SubReq),

 not hier(_,ResReq, resreq).

Now the Clingo solver given the set of ASP programs which contain the newly generated ASP

program with the hierarchy rules will produce an answer set with the following atoms:

top_hier(medical_file,subreq)

top_hier(database,subreq)

hier(medical_file,patient_record,subreq)

top_hier(doctor,resreq)

top_hier(it,resreq)

hier(doctor,nurse,resreq)

The first three atoms describe the hierarchy of the values of the attribute type SubReq and the

next three atoms describe the hierarchy of the values of the attribute type ResReq. We can use

these atoms to build two graphs, shown in Figure 3.11 and Figure 3.12, that represent the

hierarchies of the input XACML policy attribute types SubReq and ResReq respectively. The

arrows point towards values of attributes whose permissions are a subset of the values of

attributes from which the arrow starts. Nodes with no arrows are on top of the hierarchy.

Figure 3.11: Hospital employee hierarchy graph.

80

Figure 3.12: Hospital resource hierarchy graph.

This example was very simple, the policy contained only two attribute types with three values

in each type. Real life XACML 3.0 policies are made up of much more complex authorization

schemes, with many more attribute types and values making it impossible for the human eye

to see such hierarchies manually. Our added functionality allows policy developers and

analysers to get insight into the hierarchical structure of complex XACML 3.0 policies in a

more visually comprehensive way.

81

Chapter 4

Experiments and Results

4.1 Introduction 80

 4.1.1 Experimental environment 81

4.2 Policy property analysis 81

 4.2.1 Effectiveness 81

 4.2.1.1 Results 82

 4.2.2 Efficiency 83

 4.2.2.1 Results 85

4.3 Efficiency of variation ASP program for query analysis 87

 4.3.1 Results 88

4.4 Hierarchy 89

4.1 Introduction

In this chapter we present how we conducted experiments on our extended version of the

XACBench prototype tool and the results we got regarding both the adjustments to the

XACBench java code, predefined ASP programs and the additional functionalities that we have

implemented.

At first, we go over experiments and results regarding policy property verification, where we

examine the tool’s effectiveness and efficiency for property analysis. Then we present

experiments and results concerning our proposed variation ASP programs which we suggested

82

as a way to speed up query analysis. And our final experiment demonstrates how our added

ASP hierarchy program gives insight into the hierarchy of a real-world policy.

4.1.1 Experimental environment

All experiments were conducted on a AMD Ryzen 7 3700X 8-Core Processor3.59 GHz PC

with 8 GB of RAM running on Windows 10. Clingo 5.5.0 was used for both the grounding and

solving of the ASP programs.

4.2 Policy property analysis

4.2.1 Effectiveness

In this section we present experiments and their results regarding the effectiveness of our

modified version of the XACBench prototype tool and its XACML 3.0 to ASP translation

functionality for analysing policy properties.

The experimental process is as follows:

 First, we run our extended XACBench XACML3.0 to ASP translation functionality on a set

of real world XACML 3.0 policies: PolicySetMedicalDemo_Dhouha, kmarket-sliver-policy,

kmarket-gold-policy, kmarket-blue-policy, continue-a, xacml3-policyset-sli. The translation

of each policy generates a set of ASP programs. Note that attribute values within attribute type

domains of each translated Policy Set are created by the translator by parsing the input policy.

Manual changes to values within attribute type domains, performed by an administrator for

example, could lead to different results in property analysis. In the next step of the experimental

process, we define and add a new ASP program(count_properties.asp) to each set of

translations, which helps us track the number of occurrences of atoms that verify certain

properties. Finally, we run the Clingo (clingo --stats=2) solver once for each set of ASP

programs and it returns an answer set which contains atoms that describe various properties of

the initial real-world policy.

83

4.2.1.1 Results

Real-World Policy NR CR GR SR SRR USR URR

PolicySetMedicalDemo_Dhouha 6 0 0 0 0 2 2

continue-a 298 0 32 32 48 0 197

kmarket-gold-policy 3 0 2 0 1 2 2

kmarket-sliver-policy 5 0 4 0 2 2 2

kmarket-blue-policy 4 0 3 0 2 2 2

xacml3-policyset-sli 9 0 0 0 0 0 0

Figure 4.1: The number of: rules (NR), correlation anomalies between rules (CR),

generalization anomalies between rules (GR), shadow anomalies between rules (SR), simple

redundancy anomalies between rules (SRR), simple useless rules (USR), unreachable rules

(URR).

Real-World Policy NR CP GP SP SRP USP URP

PolicySetMedicalDemo_Dhouha 6 0 0 2 1 2 2

continue-a 298 0 0 0 1 0 165

kmarket-gold-policy 3 0 0 0 0 0 0

kmarket-sliver-policy 5 0 0 0 0 0 0

kmarket-blue-policy 4 0 0 0 0 0 0

xacml3-policyset-sli 9 0 0 0 0 0 0

Figure 4.2: The number of: rules (NR), correlation anomalies between policies (CP),

generalization anomalies between policies (GP), shadow anomalies between policies (SP),

simple redundancy anomalies between policies (SRP), useless policies (USP), unreachable

policies (URP).

Real-World Policy NR INC URPS USPS ISO TR

PolicySetMedicalDemo_Dhouha 6 12 0 0 0 4

continue-a 298 0 0 0 3476 33

kmarket-gold-policy 3 0 0 0 0 2

kmarket-sliver-policy 5 0 0 0 0 2

kmarket-blue-policy 4 0 0 0 0 2

xacml3-policyset-sli 9 241 0 0 0 0

Figure 4.3: The number of: rules (NR), requests not matched by policy (INC), unreachable

Policy Sets (URPS), useless Policy Set (USPS), isomorphisms (ISO), total redundancies

(TR).

84

Figures 4.1, 4.2, and 4.3 demonstrate the number of occurrences of different properties of each

one of the real-world policies. More specifically, Figure 4.3 shows numbers of occurrences of

properties associated with the Policy Set element of XACML 3.0 (apart from TR which is

associated with rules and policies), while figures 4.1 and 4.2 show properties which are

associated with rule and policy elements of XACML 3.0 respectively.

In Figure 4.3 we see that xacml3-policyset-sli has 241 requests that could not be matched by

the policy, which makes it incomplete. This incompleteness can lead to a variety of security

problems. An example of a security threat due to incompleteness could be the following: an

access-controlled system that by default permits indetermined requests paired with an attacker

that purposefully creates requests which lead to neither permit nor deny decisions. In this case

the attacker by default is permitted to perform malicious requests. The detection of unmatched

requests can incentivise the administrator to either define new rules and policies that will lead

the request to a deny or permit decision or adjust attribute domains so that such requests cannot

be created. We can also see in Figure 4.3 that continue-a has many isomorphisms, which means

that many pairs of Policy Sets within the policy match the same set off requests and also have

the same affect. In other words, there are unneeded Policy Sets. An administrator can remove

one of the Policy Sets from the isomorphic pair without altering the authorization scheme

(decisions for requests) of the policy. Removing unneeded Policy Sets result in a smaller

policy, which in turn leads to faster decision making and faster policy analysis itself.

Speedup of the analysis process can also be achieved by removing rules(policies) which are

irrelevant, meaning that even if they were to be removed the policy’s scheme would remain the

same. Irrelevant rules(policies) are either simply redundant, totally redundant, shadowed by

some other rule(policy), unreachable, or useless. In figures 4.1 and 4.2 we can see that continue-

a has many unreachable rules and policies respectively. An administrator could remove these

elements without affecting the policy’s decision making.

4.2.2 Efficiency

In this section we present experiments and their results regarding the efficiency of our modified

version of the XACBench prototype tool and its XACML 3.0 to ASP translation functionality

in analysing policy properties.

The first experimental process is as follows:

85

We take a real world XACML 3.0 policy called PolicySetMedicalDemo_Dhouha and use the

XACBench synthetic policy generator to create synthetic XACML 3.0 policies with varying

number of rules (50, 100, 150, 200, 250, 300). Then we run our extended XACBench

XACML3.0 to ASP translation functionality on all synthetic policies generated from

PolicySetMedicalDemo_Dhouha, where each translation generates a set of ASP programs. For

all sets of ASP programs generated we manually define a common set of attribute values for

each attribute type domain, with the total number of requests being (15200). Finally, we run

the Clingo (clingo --stats=2) solver once for each set of ASP programs. In this experiment we

evaluate the efficiency of the tool based on the total time it took for the solver to generate the

answer sets (CPU Time), and the number of ground rules generated as opposed to the number

of rules in the XACML policy.

The second experimental process is as follows:

We take a real world XACML 3.0 policy called PolicySetMedicalDemo_Dhouha and use the

XACBench synthetic policy generator to create a synthetic XACML 3.0 policy with 300

rules. Then we run our extended XACBench XACML3.0 to ASP translation functionality on

the synthetic policy. This generates a set of ASP programs. Then step by step we change the

attribute values within the domains of the set of ASP programs. At each step we change the

number of values so that the total number of generated requests is 1120, 2080, 4160, 7904,

15200. In other words, we close to double the number of requests generated at each step. In

between the steps, we run the Clingo (clingo --stats=2) solver on the set of ASP programs. In

this experiment we evaluate the efficiency of the tool based on the total time it took for the

solver to generate the answer sets (CPU Time), and the number of ground rules generated as

opposed to the number of generated requests (attribute type domain size).

86

4.2.2.1 Results

Figure 4.4: Run time affected by number of policy rules.

Figure 4.5: Number of ground rules affected by number of policy rules.

Figures 4.4 and 4.5, illustrate how the solving time and number of ground rules generated

during solving is affected by the size of XACML 3.0 policy regarding the number of rules it

contains. We can see that both the CPU Time (run time, solving time) and the number of

generated ground rules grows exponentially compared to the number of rules. We must add

that the largest policy (number of rules within it) we managed to run successfully was with

400 rules. We ran tests on policies with 450, 500, 600 rules and the solver did not manage to

generate answer sets. This observation can be explained by the grounding process and its

0

200

400

600

800

1000

1200

50 100 150 200 250 300 400

C
P

U
 T

im
e(

s)

of rulse

of rules vs CPU Time

0

10000000

20000000

30000000

40000000

50000000

60000000

50 100 150 200 250 300 400

o

f
gr

o
u

n
d

 r
u

le
s

of rules

of rules vs # of ground rules

87

exponential space complexity. Grounding P on a program D, which in our case are the ASP

translation programs, leads to a propositional program P’ whose size is exponential in the size

of the fixed input database D [7]. Increasing the number of rules within a XACML 3.0 policy

leads to a larger input database D.

Figure 4.6: Run time affected by total number of generated requests (attribute type domain

size).

Figure 4.7: Number of ground rules affected by total number of generated requests (attribute

type domain size).

Figures 4.6 and 4.7, illustrate how the CPU Time (run time, solving time) and the number of

ground rules generated is affected by the total number of generated requests. We can see that

0

100

200

300

400

500

600

700

1120 2080 4160 7904 15200

C
P

U
 T

im
e(

s)

#requests

#requests vs CPU Time

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

1120 2080 4160 7904 15200

#g
ro

u
n

d
 r

u
le

s

#requests

#requests vs #ground rules

88

both the CPU Time (run time, solving time) and the number of generated ground rules grows

exponentially compared to the total number of generated requests. This observation can again

be explained by the grounding process and its exponential space complexity. Grounding P on

a program D, which in our case are the ASP translation programs, leads to a propositional

program P’ whose size is exponential in the size of the fixed input database D. Increasing the

domain size of a XACML 3.0 policy leads to a larger number of requests being generated

which in turn leads to a larger input database D.

4.3 Efficiency of variation ASP program for query analysis

In this section we present experiments and their results regarding the efficiency our variation

ASP programs and their query analysis functionality. The goal of the variation set of ASP

programs was to make query analysis more efficient by reducing the arity (number of

parameters) of atoms within the ASP programs which in turn would lead to faster grounding

times.

The experimental process is as follows. We take a real world XACML 3.0 policy called

PolicySetMedicalDemo_Dhouha and use the XACBench synthetic policy generation

functionality to create synthetic XACML 3.0 policies with varying number of rules (50, 100,

150, 200, 250, 300). Then we run our extended XACBench XACML3.0 to ASP translation

functionality on all synthetic policies generated from PolicySetMedicalDemo_Dhouha, where

each translation generates a set of ASP programs. For all the synthetic policy translations we

manually define a common set of attribute values for each attribute type domain, with the total

number of requests being (11968). For each set of ASP programs we then define (Section 3.5)

a variation ASP set of programs by manually making adjustments the ASP programs; main.pl,

match_target_v3.asp, match_common.asp, out.asp. We make sure that the variation ASP set

uses the request generator generate_one.asp instead of generate_all.asp. Finally, we evaluate

query analysis efficiency, by running the Clingo (clingo --stats=2) solver once on the standard

translation set and once on the variation set. Each pair of, synthetic policy translation, and its

variation are compared based on the time it took to for the solver to find the solution (answer

set), the number of generated rules, atoms, and bodies.

4.3.1 Results

89

Figure 4.8: Processing time comparison. Figure 4.9: Number of ground rules comparison.

Figure 4.10: Number of atoms comparison. Figure 4.11: Number of bodies comparison.

Figure 4.8 shows the solver processing time (combination of grounding and solving time) of

query analysis for the original ASP programs and the variation ASP programs where we can

see that the variation version is quite faster (1.232 average speedup) than the original. We can

also see in Figures 4.9, 4.10, and 4.11 that the number of generated ground rules, atoms, and

bodies using the original set of ASP programs grows at a much faster rate compared to the

variation set of ASP programs when the number of rules of the XACML 3.0 policy increases.

This observation can be explained by the grounding process and its exponential space

behaviour with the arity (number of parameters) of atoms being a big part of the exponent.

Since the atoms within the variation ASP programs have a smaller number of parameters the

grounder generates a much smaller number of ground rules, which in turn leads to a smaller

number of atoms, bodies, and of course faster grounding times.

4.4 Hierarchy

0

100

200

300

50 100 150 200 250 300

Ti
m

e(
s)

#policy rules

Processing time comparison

Original ASP Variation ASP

0

10000000

20000000

30000000

50 100 150 200 250 300

#g
ro

u
n

d
 r

u
le

s

#policy rules

Generated ground rules
comparison

Original ASP Variation ASP

0

10000000

20000000

30000000

50 100 150 200 250 300

#a
to

m
s

ge
n

er
at

ed

#policy rules

Generated atoms comparison

Original ASP Variation ASP

0

500000

1000000

1500000

2000000

50 100 150 200 250 300#b
o

d
ie

s
ge

n
er

at
ed

#policy rules

Generated bodies comparison

Original ASP Variation ASP

90

In this section we present experiments and results regarding the hierarchy property we have

added to the extended XACBench tool.

The experimental process is as follows:

We take a real world XACML 3.0 policy called PolicySetMedicalDemo_Dhouha.xml and use

it as input for our extended XACML3.0 to ASP translation functionality. Once the translation

is complete, a set of ASP programs is generated. Among those programs is hierarchy.asp,

which contains rules based on the logic defined in Section 3.6. After the translation is

completed, we manually add some values to the attribute type domains in the ASP program

“generate_all.asp”. Finally, we run the Clingo solver on the set of ASP programs and get an

answer set which contains the following hierarchy related atoms:

top_hier(administrator,urnoasisnamestcxacml2_0subjectrole)

hier(administrator,clinical_researcher,urnoasisnamestcxacml2_0subjectrole)

hier(administrator,radiologist,urnoasisnamestcxacml2_0subjectrole)

hier(administrator,physician,urnoasisnamestcxacml2_0subjectrole)

top_hier(europe,urnoasisnamestcxacml2_0subjectlocation)

hier(europe,not_europe,urnoasisnamestcxacml2_0subjectlocation)

top_hier(val_de_grace,urnoasisnamestcxacml2_0subjecthospital)

hier(val_de_grace,not_val_de_grace,urnoasisnamestcxacml2_0subjecthospital)

top_hier(personal,urnoasisnamestcxacml1_0resourceresource_confidentiality)

hier(personal,not_personal,urnoasisnamestcxacml1_0resourceresource_confidentiality)

top_hier(medical_file,urnoasisnamestcxacml1_0resourceresource_id)

top_hier(radiography,urnoasisnamestcxacml1_0resourceresource_id)

top_hier(patient_record,urnoasisnamestcxacml1_0resourceresource_id)

top_hier(read,urnoasisnamestcxacml1_0actionaction_id)

top_hier(write,urnoasisnamestcxacml1_0actionaction_id)

91

From these atoms we build a more visually comprehensive representation of the hierarchies,

using a graph for each attribute type [8]. The last parameter value of each atom indicates to

which attribute type (graph) the atom belongs to.

Figure 4.12: Role hierarchy graph. Figure 4.13: Action hierarchy graph.

Figure 4.14: Resource hierarchy graph. Figure 4.15: Confidentiality hierarchy graph.

92

Figure 4.16: Hospital hierarchy graph. Figure 4.17: Location hierarchy graph.

In Figures 4.12, 4.13, 4.14, 4.15, 4.16, and 4.17 we can see the hierarchical graphs for the

attribute types subjectrole, action_id, resource_id, resource_confidentiality, subjecthospital,

and subjectlocation respectively. Nodes with no arrows pointed towards them are attribute

values which are on top of the associated attribute type hierarchy. On the other hand, nodes

that have arrows pointed towards them have a subset of the authority of the nodes that point

towards them.

93

Chapter 5

Conclusions

5.1 Summary 92

5.2 Limitations 93

5.3 Future work 93

5.1 Summary

Our goal in this thesis was to study and extend a tool that would allow developers and analysers

of web access policies to efficiently and effectively analyse XACML 3.0 policies. Our first

objective was to modify an already existing prototype tool called XACBench so that it could

accurately translate XACML 3.0 policies. By adjusting XACBench’s java code and some of

its predefined ASP programs we managed to create a tool capable of handling XACML 3.0s

arbitrary attribute types. Given a XACML 3.0 policy as input, the modified tool creates an

accurate translation set of ASP programs that can then be used by an ASP solver such as Clingo

to effectively analyse the access policies as show in Section 4.2.1. As an overall showcase of

our work regarding translation of XACML 3.0 policies to ASP programs we show two different

translations of the real-world XACML 3.0 policy called “kmarket-gold-policy.xml”. In

Appendix C we have the first translation, which was generated using the original XACBench

tool and in Appendix D we can see the second more accurate translation generated by our

modified tool. Unfortunately, we did not manage to come to a satisfactory conclusion regarding

the tool’s efficiency in policy property analysis, since our experiments with translations of large

XACML 3.0 policies (i.e., 500 rules) that were given to the Clingo solver could not generate

answer sets in satisfactory time frames. We believe that this is caused by the grounding

94

process’s exponential space complexity and the limited capabilities of our experimental

environment. Our second objective was to create a variation set of ASP programs that would

be more efficient in policy query analysis than the translation set of ASP programs generated

by the modified XACBench tool. The variation set of ASP programs created had a reduced

number of parameters in its atoms which we believed would lead to faster grounding and in

turn to faster query analysis of XACML 3.0 policies. This variation did in fact lead to a

considerable average speedup of 1.232. Lastly, we defined a new property for XACML 3.0

policy property analysis called hierarchy. More specifically, we created a policy dependent

ASP program that contains rules capable of generating atoms which describe hierarchies of

each attribute type found in access policies. Using a real-world policy, we managed to show

how this property can give developers and analysers of access policies insight into the

hierarchical authorization structure of different attribute type values within a policy.

5.2 Limitations

The experiments of our extended tool’s policy property analysis and the results they yielded

were largely affected, in a negative way, by the experimental environment and the

computational power we had at hand. As we have mentioned before, the grounding size is

exponential in the size of a given XACML policy, either in the number of rules or in the size

of the domains of attribute types. This exponentiality together with the fact that the experiments

were conducted on a single computing machine, as described in Section 4.1.1, obstructs us

from coming to a satisfactory conclusion regarding the tool’s efficiency in policy analysis.

5.3 Future work

For future testing and a more accurate evaluation of the tool’s efficiency, we will need to create

a more realistic experimental environment, where the computational power is analogous to the

size and complexity of the access policies enforced by real-world authorization parties. Besides

testing, we can look to add a new functionality that will give insight into how an undesired

property can be resolved or avoided. More specifically, we could add to the tool new ASP

programs which rules that can generate atoms which in turn can help guide developers and

analysers to resolving different policy properties and anomalies. In the future we could try and

improve our tool’s efficiency for property analysis, in a similar way that we did for query

95

analysis, by defining an ASP variation syntax that will contain atoms with smaller number of

parameters. This will be a more challenging task that will need some ASP logic workarounds

because during property analysis we are forced to generate all possible request in a single

answer set in order to verify various properties of the access policy.

96

References

[1] Rezvani, M., Rajaratnam, D., Ignjatovic, A., “Analyzing XACML policies using

answer set programming”, 26 November 2018. [Online].

Available: https://doi.org/10.1007/s10207-018-0421-5.

[2] Organization for the Advancement of Structured Information Standards (OASIS),

“eXtensible Access Control Markup Language (XACML) Version 3.0”, 22 January

2013. [Online]. Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-

os-en.html.

[3] Kaufmann, B., Leone, N., Perri, S., Schaub, T., “Grounding and Solving in Answer

Set Programming”. AIMag 2016, p. 26. [Online].

Available: https://doi.org/10.1609/aimag.v37i3.2672.

[4] University of Potsdam, “clingo and gringo, Potassco, the Potsdam Answer Set Solving

Collection”. [Online]. Available: https://potassco.org/clingo/.

[5] Lierler. Y., "Basics behind Answer Sets", August 2020, pp. 1-2. [Online].

Available: http://works.bepress.com/yuliya_lierler/71/.

[6] Lifschitz, V., “Answer Set Programming”, 5 April 2019, pp. 9-31.

[7] Dantsin, E., Eiter, T., Gottlob, G., Voronko, A., “Complexity and Expressive Power

of Logic Programming”, February 1999, pp. 4-15. [Online]. Available:

https://www.researchgate.net/publication/200034372_Complexity_and_Expressive_P

ower_of_Logic_Programming.

[8] CS Academy, “Graph Editor”. [Online].

Available: https://csacademy.com/app/graph_editor/.

https://doi.org/10.1007/s10207-018-0421-5
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.1609/aimag.v37i3.2672
https://potassco.org/clingo/
http://works.bepress.com/yuliya_lierler/71/
https://www.researchgate.net/publication/200034372_Complexity_and_Expressive_Power_of_Logic_Programming
https://www.researchgate.net/publication/200034372_Complexity_and_Expressive_Power_of_Logic_Programming
https://csacademy.com/app/graph_editor/

97

[9] Ahmadi, S., Nassiri, M., Rezvani, M., “XACBench”. [Online].

Available: https://github.com/nassirim/xacBench.

[10] E. S. Al-Shaer and H. H. Hamed, "Discovery of policy anomalies in distributed

firewalls”, 2004. [Online].

 Available: https://ieeexplore.ieee.org/document/1354680.

[11] Leone, N., Ricca, F., “Answer Set Programming: A Tour from the Basics to Advanced

Development”, 2005. [Online].

Availabe:

https://www.researchgate.net/publication/300646285_Answer_Set_Programming_A_

Tour_from_the_Basics_to_Advanced_Development_Tools_and_Industrial_Applicati

ons.

[12] Genesereth, M., Vinay K. Chaudhri, “Introduction to Logic Programming: (Synthesis

Lectures on Artificial Intelligence and Machine Learning)”, February 2020. [Online].

Availabe:

https://www.researchgate.net/publication/339156051_Introduction_to_Logic_Progra

mming/stats.

https://github.com/nassirim/xacBench
https://ieeexplore.ieee.org/document/1354680
https://www.researchgate.net/publication/300646285_Answer_Set_Programming_A_Tour_from_the_Basics_to_Advanced_Development_Tools_and_Industrial_Applications
https://www.researchgate.net/publication/300646285_Answer_Set_Programming_A_Tour_from_the_Basics_to_Advanced_Development_Tools_and_Industrial_Applications
https://www.researchgate.net/publication/300646285_Answer_Set_Programming_A_Tour_from_the_Basics_to_Advanced_Development_Tools_and_Industrial_Applications
https://www.researchgate.net/publication/339156051_Introduction_to_Logic_Programming/stats
https://www.researchgate.net/publication/339156051_Introduction_to_Logic_Programming/stats

98

Appendix A

Real-world XACML 3.0 policy “kmarket-gold-policy”

<?xml version=11ι. 0 11 encoding=11υτF-8 11 s tandal o ne=11yes 11

2 <PolicySet xmlns=11 urn :oas i s : names : t c : xacml: 3 , Ο : core : schema : wd-ι7 11

3 PolicyCoπJ>iningAlgld=11 urn : oas i s : names : t c : xacml: ι. Ο :policy - combi n i ng- al gor i thm : f i rst- applicabl e 11

PolicySet ld=11RPSlist11 Version=11ι. 0 11 >
5 <Τ ar<Je t I>

- <Policy xmlns=11 Urn : oas i s : names : t c : xacml: 3 , Ο : core : s chema: wd-ι7 11 Policyld=11ΚmarketGoldPolicy 11 RuleCoπJ>iningAlgld=
11 Urn : oas i s : names : t c : xacml: 3 , Ο : rul e - combi n i ng- al gor i thm : deny - overri des 11 Version=11 ι. Ο 11 >

7 <Tar<Je t>
8 <Any0f >
9 <AllOf>

10 <Match Matchld=11 urn : oas i s : names : t c : xacml: ι. Ο : funct i on : stri ng- equal 11>
11 <AttributeVa 1ue DataType=11http : //www . w3 . oro/200ι /XMLSchemattstrinq11>qold

12 </ AttributeVa 1ue>
13 <AttributeDes i gnator Attributeld=11http : //kmar ket . com/i d /rol e 11

14 c.ategor y=11 Urn : oas i s : names : t c : xacml: ι. Ο : subject - cateqorJ : access -subject 11

15 DataType=11http : //www . w3 . oro/200ι /XMLSchemattstrinq11 Mus tBePresent =11 true11 Ι>

16 </ Match>
17 </ AllOf >
18 </ AnyOf>
19 </ Tar<Je t>
20 <Ru1e Effect=11Deny 11 Ru1eld=11 t ot al-amount11 >
21 <Condi t i on>
22 <App1y Functionld=11 urn : oas i s : names : t c : xacml: ι. Ο : funct i on : i nteqer- greater- than11>
23 <App1y Functionld=11 urn : oas i s : names : t c : xacml: ι. Ο : funct i on : i nteqer- one- and- onl y 11 >
24 <AttributeDes i gnator Attributeld=11http : //kmar ket . com/id/total.Άmoιtnt11

25 c.ategor y=11http : //kmar ket . com/cateσorf 11

26 DataType=11http : //www . w3 . oro/200ι /XMLSchemattinteσer11 Mus t BePresent =11 true11 Ι>

27 </ App1y>
28 <AttributeVa 1ue DataType=11http : //www . w3 . oro/200ι /XMLSchemattinteσer11>ιOOO</AttributeVa 1ue>

29 </ App1y>
30 </Condi t i on>
31 <Advi ceExpr ess i ons>
32 <Advi ceExpr ess i on Adviceld=11deny -liquor -medi ci ne- advi ce 11 AppliesTo= 11Deny 11 >
33 <AttributeAss i gnmentExpr ess i on Attributeld=11 urn : oas i s : names : t c : xacml: 2 . Ο : exampl e : attri bute: text11 >
34 <AttributeVa 1ue DataType=11http : //www . w3 . oro/200ι /XMLSchemattstrinq11 >You are not allowed to do more
35 than sιοοο purchas e from ΚMarket on-line tradi ng sys tem</ AttributeVa 1ue>
36 </ AttributeAss i gnmentExpr ess i on>
37 </ Advi ceExpr essi on>

33 </Adv:.ceExpress iorιs>

;j~ <! HU! e>
40 <nu:.c Eff~c'C-11D<:ny11 I\'.tlcid-11mαιc: liqι;.or αιnount11>

4 _ <Ίarαet>

42 <Any0f>
43 <AllOf>
44 <:Μc:t .. ι;)ι Μαι..ι;)ιΙ<.i=" uηι : uct:s.i::; : t .cuut:s : Ι.ι; : JΙ.ctι:ul: : , 0 ; Cwιι;ιivll : :sιι·.iJιy -~uctl ";ι

45 <Aτ:ri:,uτ:Value Dcι.τaTypε=111-.ttp ~ //wwv . w3 . orσ/2001 /XM:LS :h~a.#~tτing11 >Liqι·.or</AtτributeVa lue>

4€ <At:ri~ut:Des ignator Attrit·uteld=11 Urn : oas : s : names : t c : xacml :ι. Ο : resoι:.rcε : res ource-id 11

4ϊ c.ategory=11 um: oas i s : namεs : t c : xacnl: 3 . Ο : attribute-c.:ιte.~orι : resource11

43 DataTY?e=11http : //www . w3 .orc/2001 iXMLSchematts: r i nq 11 MustBePresent =11 true11 Ι>

411 </M~'Cch>

50 <IA110 f>
5 _ </ AnyOf >
52 </ Tar<Jet>
53 <.Conctι :ιοn>

S.f <Λpply Func'Cionid- 11 urn : oa.s i s : r.a.me.s : t c : xa.cnl: : , Ο : func t i o n : i nt.&ger-qrea.ter- t .h a..r. 11 >
55 <App1y Fu:'lctίonid=11 um : oas i s : r:ames : t c : xacnl: : . Ο : functίon: i nteQer-one- ar.d - onl) 11 >
5€ <At.:ri~ut.:Des ignator Attrit·uteld=11http : / /}:marke: . O)m/id/amoιmt11

Sϊ c.ategor y=11http : //kmar ket .. com/categoτy 11

58 Dcι.aTyi-k=='Ίιιιu : 1/www . w3 . vn;/2001 /XHLSι;h~ι:t#.iHιt::U~t·" Μ.ι::1ι.8~Ρ.t'"'c:'~οι.=" ιι·ut" />
~<ι ·::'/~pp1 1">

60 <At.: r i but.: Val ue DataType=11t.ttp: liwww . w3. oro/2001 /XM:LS:he.:nattinteσer11>ιO</Att.ributeVa 1ue>

6_ </ Appl 1>
Ol <ι<.:οnaι t.l on>
63 <Adviccε:φrc::ι::ι ion:ι>

64 <AdviceE:<Press ίon Adviceld=11max-drink -amount - advi ce 11 AP"PliesT·:ι=11)en'{ 11>
65 <Att.r:.bu:eAss ignm:nt.Ξ:xpress ion Attribt:.te1d=1'urn : oas i s : names : t : : x.:ιcml : 2. Ο :exampl e : attri bute :text 11>
6€ <Att.r:.bu:eVa1ue D!ltaType=11http : //W"r.w . ι.ι.•3 . oroi2001 /DfLSchemalstr i nq11>You are not allowed to buy more
C:" t.ha 1 0 Lιquor rro:n RMartet. on-11ne t.racιιng system<./Atτ.rιbu:eV2 lu:>

62 </.lττribuτeλss ign.rιentExpress ion:'\

69 </Adv:.ceExpress iorι>

70 </Adv:.ceεxpress iorιs>

7 _ </ Ru1e >
72 <Rul e Ru1eld- "per:ni t - rule" Effec'C-"Peπnit"/>

73 < 1Po1icν>

7 4 </PolicySet~

99

Appendix B

Request for “kmarket-gold-policy”

1 ~1 version='' ι. oιι encoding=''υτF'-8 '' .

2 <Reques t. κmlns='' um: oasis : names : t c : xacml: 3 , Ο : core : schema : wd-ι7''

3 κmlns : κsi=11http : //www . w3 . oro/200ι /XMLSchema-instance11

4 κsi : s chemaLocat.i o n=11 Urn: oas i s : names : t c : xacml: 3 , Ο : core : s chema : wd-ι7
5 http : //d ocs . oas i s - open , oro/ xacml /3 . O /xacml-core-v3 -schema-wd-ι7 . xsd11

6 Re t.ur nPolicyldList.=11 f a l se11 Corobi nedDecisio n=11 f a l se11>
7 <At.t.r i but.es Cat.egor y=11 urn: oas i s : names : t c : xacml: ι. Ο : sιtbject-cateqorJ : access - subjec t '' >
8 <At.t.r ibut.e I ncl udelnRes u l t.='' f a l se''
9 At.t.ribut.eld =11http : //kmar ket . com/i d /rol e '' >

10 <At.t.ribut.eVa 1ue
11 Dat.aType=11http : //www . w3 . oro/200ι /XMLSchemattstrinq11>qold</At.t.ribut.eVa lue>

12 </ Attr i bute>
13 </ At.t.r ibut.es >
14 <At.t.r i but.es Cat.egor y=11http : //kmar ket . com/cateσort '' >

15 <At.t.r i but.e I ncl udelnRes u l t.='' f a l se''
16 At.t.ribut.eld =11http : //kmar ket . com/id/total.Amoιuιt''>

1·1 <At.t.rlJ:)ut.eVa l ue
18 Dat.aType=11http : //www . w3 . oro/ 2001 /XMLSchemattstri n q 11>550</ At.t.r i but.eVa l ue>
19 </ Attr i bute>
20 </ At.t.r i but.es >
21 <At.t.r i but.es Cat.eg or y=11 urn: oas i s : names : t c : xacml: 3 . Ο : attri bute- cateqorJ : resource 11 >
22 <At.t.r i but.e I ncl udelnResul t.='' f a l se''
23 At.t.ribut.eld ='' urn: oas i s : names : t c : xacml: ι. Ο : resource : resource -id '' >
24 <At.t.ribut.eVa l ue
25 Dat.aType=11http : //www . w3 . oro/2001 /XMLSchemattstri n q 11>Li quor </ At.t.r i but.eVa l ue>
26 </ Attr i bute>
27 </ At.t.r i but.es >
28 <At.t.r i but.es Cat.eg or y=11http : //kmar ket . com/cateσorγ '' >

29 <At.t.r i but.e I ncl udelnResul t.='' f a l se''
30 At.t.ribut.eld =11http : //kmar ket . com/id/amoιuιt'' >

31 <At.t.ribut.eVa l ue
32 Dat.aType=11http : //kmar ket . com/id/amoιuιt11>20</At.t.riJ:ut.eVa lue>

33 </ Attr i bute>
34 </ At.t.r i but.es >
35 </Reque sτ>

100

Appendix C

XACBench translation of “kmarket-gold-policy”

1 effect (pennit; deny ; i ndetenninate} .
2 comb a l q (deny overri des ;permit overri des ; f i rst_applicabl e ; onl y_one_applicabl e) ,
3 comb_ a 1g (d o ; po; fa; ooa} .
4 boo1_expr (true} .
5
6 target (r l } .
7 condi t i on (r l , true} .
8 rul e (r l , 1 , pl , deny} .
9

10 anyof (r2 1 any2 1 any 1 liquor) .

11
12 target (r2) : - anyo f (r2 , any2 , _ , _) .
13 condi t i on (r2 , true) .
14 rul e (r2 , 2 , pl , deny) .
15
16 target (r3} .
17 condi t i on (r3 , true) .
18 rul e (r3 , 3 , pl , permit) .
19
20 anyo f (p l , any2 , g ol d , any} .
21
22 target (p l } - anyo f (p l , any2 , _ , _ J .
23 policy (pl , 1 , psO , deny_ overri des) .
24
25 target (psOJ .
26 policy_set (psO , Ο , psO , f i rst_ applicabl e} .

101

Appendix D

Modified XACBench translation of “kmarket-gold-policy”

1 e ffec t (pennit ; d e ny ; i nde t ennin ate} .
2 comb al q (deny overri des ;permit overri d es ; f i r s t _applicabl e ; onl y_one_applicabl e} ,
3 comb_ a1g (d o ; po; f a ; ooa} .
4 boo1_expr (true} .
5
6 targe t (r l } .
7 condi t i on (r l , Http __ kmar ket com i d amount, Http __ kmar ket _com_id_rol e ,
8 Http __ kmar ket _com_id_total amount, Urnoasisnames t cxacmll _Ores ourceres ource_i d) : -
9 reques t (Http_ kmar ke t com i d amoω1t, Http_ kmar ke t _com_i d_rol e ,

10 Http_ kmar ke t com i d total amoW1t, Urnoasisnames t cxacmll Ores ourceres ource i d) 1

11 Http __ kmar ke t com i d total amount>l OOO .
12
13 rul e (r l , 1 , p l , deny) .
14
15 anyof (r 2 1 any2 1 any 1 any 1 any 1 liquor) .

16 Ι
17 condi t i on (r 2 , Http __ kmar ke t com i d amount, Http __ kmar ke t _com_id_rol e ,
18 Http_ kmar ke t com i d totalamoω1t, Urnoasisnames t cxacmll Ores ourceres ource_i d) : -
19 reques t (Http_ kmar ke t com i d amoω1t, Http_ kmar ke t _com_i d_rol e ,
20 Http_ kmar ke t com i d total amoW1t, Urnoasisnames t cxacmll _Ores ourceres ource_i d) 1

21 Http __ kmar ke t com i d amount>l O.
22
23 rul e (r 2, 2, pl , deny) .
24
25 target (r 3} .
26 condi t i on (r 3, Http __ kmar ket com i d amount, Http __ kmar ket _com_id_rol e ,
27 Http __ kmar ket _com_id_total amount, Urnoasisnames t cxacmll _Ores ourceres ource_i d) : -
28 reques t (Http __ kmar ket com i d amount, Http __ kmar ket _com_i d_rol e ,
29 Http __ kmar ket com i d total amount, Urnoasisnames t cxacmll _Ores ourceres ource_i d) .
30
31 rul e (r 3 , 3 , p l , permit } .
32
33 anyof (pl , any2 , any , qol d , any , any) .
34
35 policy (pl , 1 , ps O, deny_overri des) ,
36
37 target (p s OJ .
38 oolicγ s et (ps O. ο . ps O. f i r s t applicabl e) .

