
1

Bachelor Thesis

Fast Learning of Diverse Robotic Skills

Valentinos Pariza

vpariz01@ucy.ac.cy

University of Cyprus

Department of Computer Science

May 2022

2

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Fast Learning of Diverse Robotic Skills

Valentinos Pariza

Supervisors

Professor Chris Christodoulou

Dr. Vassilis Vassiliades

Thesis submitted in partial fulfillment of the requirements for the award of

a Bachelor of Science degree in Computer Science at the University of

Cyprus

May 2022

3

Acknowledgements

I want to thank my supervisors, Professor Chris Christodoulou and Dr Vassilis

Vassiliades, for the guidance and help they provided me with throughout the whole time

working on my Bachelor Thesis. I am grateful for the time and effort they devoted to

supporting me to complete it.

4

Abstract

Quality Diversity Optimization is a recent field that has shown promising results in

generating a diversity of high-performing quality robotic skills [2]. However, QD

Algorithms require a lot of execution time due to the number of solution evaluations

needed to achieve good results. Work done so far focused on executing these algorithms

mainly on CPUs, which could take days. Thus, a good question that arises first is can we

speed up the execution of these algorithms? This question was recently touched on by

Lim, Allard, Grillotti and Cully [69], who tried to test the MAP-Elites and a simple

variation on GPUs for robotic simulation problems. They showed that speeding QD

Algorithms is possible on GPUs. Another recent study introduced the Differentiable

Quality Diversity (DQD) [4], and it showed that Differentiability in QD Algorithms could

provide better results in the same number of iterations. This work aims to extend the work

on the two aforementioned papers to make a solid start on whether QD and DQD

Algorithms implemented on GPUs can help speed up the generations of solutions for QD

problems. We attempt to investigate whether QD and DQD algorithms are affected by the

increase of their parallelization (i.e. batch size) on GPUs, whether there is a speedup in

wall-clock time in the execution of QD and DQD Algorithms on GPU compared to CPU

and last whether Differentiable QD algorithms on GPUs can help get better results and

faster.

5

Contents

Chapter 1 Introduction 9

1.1 Quality-Diversity Optimisation 9

1.2 The Importance of Accelerating Quality-Diversity for Robotics 9

1.3 Previous Quality-Diversity Research related to our work 10

1.4 Objectives 11

Chapter 2 Background 12

2.1 Mathematical Background 12

2.1.1 Function 12

2.1.2 Mathematical Optimization 12

2.1.3 Finite Difference Method (FDM) 12

2.1.4 Chain Rule in Derivatives 13

2.1.5 Gradient 13

2.1.6 Jacobian Matrix 13

2.1.7 Tanh Activation Function 14

2.1.8 Maximum 14

2.1.9 Minimum 15

2.1.10 Mean 15

2.1.11 Standard Deviation 15

2.1.12 Median 15

2.1.13 Median Absolute Deviation (MAD) 16

2.1.14 Dot Product 16

2.1.15 Rastrigin Function 16

2.2 Artificial Neural Networks 17

2.2.1 Regression 17

2.2.2 Cost/Loss Function 17

2.2.3 Supervised Learning 17

6

2.2.4 Artificial Neuron 18

2.2.5 Artificial Neural Network (ANN) 18

2.2.6 Multi-Layer Perceptron 18

2.3 Optimisers Background 21

2.3.1 Optimisers 22

2.3.2 Gradient Descent (GD) 22

2.3.3 Momentum 22

2.3.4 Adaptive Moment Estimation (Adam) 23

2.4 Evolutionary Algorithms & Strategies 24

2.4.1 Introduction to Evolutionary Algorithms & Strategies 24

2.4.2 (µ/µ, λ)-ES 24

2.4.3 CMA-ES 25

2.5 Quality-Diversity Background 25

2.5.1 Introduction to Quality-Diversity 25

2.5.2 QD Problem Definition 26

2.5.3 QD and Illumination 27

2.5.4 Early QD Algorithms 28

2.5.5 QD Framework 30

2.5.6 Criteria for Measuring the QD Algorithms 33

2.5.7 The concept of Emitters 33

2.5.8 Quality-Diversity Emitters/Algorithms 34

2.5.9 Differentiable Quality-Diversity (DQD) 45

Chapter 3 Domains 53

3.1 Rastrigin Function with a simple encoding 53

3.1.1 Objective Function – rastrigin(x) 53

3.1.2 Behaviour Function – b_simple(x) 53

3.2 Rastrigin Function with Distorted Behavior Space 54

3.2.1 Objective Function – rastrigin(x) 54

3.2.2 Behaviour Function – b_distorted(x) 54

7

3.3 Arm Repertoire 56

3.3.1 Objective Function – grasp_obj(x) 56

3.3.2 Objective Function – grasp_bds(x) 57

Chapter 4 Design & Implementation 58

4.1 Hardware Acceleration for Machine Learning 58

4.2 JAX 59

4.2.1 Introduction to JAX 59

4.2.2 JAX JIT 59

4.2.3 JAX GRAD 59

4.2.4 JIT Constraints 60

4.2.5 Static vs Traced Operations & Data 60

4.2.6 JAX Classes, Objects and Pytrees 62

4.2.7 JAX control flow 62

4.3 Developing Optimized and Efficient QD Algorithms on JAX 64

4.3.1 Minimizing the overhead of moving data between CPU and GPU 64

4.3.2 A new framework for building QD Algorithms with the ask-tell interface 65

4.3.3 Improve Emitters’ efficiency for GPUs 71

4.4 Implementations of QD and DQD Emitters on Jax 72

4.5 Optimizers 73

4.6 Containers 73

Chapter 5 Experiments, Results, and Discussion 74

5.1 Introduction to Experiments, Results, and Discussion 74

5.2 Methodology & Design 74

5.2.1 Experiment Design 74

5.2.2 Metrics 76

5.2.3 Hardware 76

5.2.4 JAX Configurations 76

5.3 Results & Analysis 77

8

5.3.1 Effect of batch sizes and problem sizes on the Performance of QD and DQD

Algorithms 78

5.3.2 The runtime of QD + DQD Algorithms on GPU compared to CPU 95

5.3.3 Performance of DQD Algorithms vs QD Algorithms on GPUs 99

Chapter 6 Conclusion & Future Work 104

6.1 Lessons Learnt 104

6.2 Conclusions 105

6.3 Future Work 108

References 109

Appendix A - Implementations A-1

A.1 QD Functions A-1

A.2 Optimizers A-5

A.3 QD Emitters (Array Version) A-17

A.4 DQD Emitters (Array Version) A-38

A.5 QD Emitters (PyTree Version) A-51

A.6 Emitters’ Utilities A-74

A.7 Containers A-76

A.8 Experiment Utilities A-81

Appendix B - Algorithms Parameters B-123

Appendix C - Results C-127

C.1 Heatmap of QD Scores of algorithms on different problem sizes and batch sizes C-127

C.2 QD Scores, Best Fitness and Coverage of algorithms Error! Bookmark not defined.

9

Chapter 1

Introduction

1.1 Quality-Diversity Optimisation ... 9

1.2 The Importance of Accelerating Quality-Diversity for Robotics 9

1.3 Previous Quality-Diversity Research related to our work... 10

1.4 Objectives .. 11

1.1 Quality-Diversity Optimisation

Quality Diversity (QD) Optimization is a recent field of Evolutionary algorithms that

have shown promising results in generating a diversity of high-performing quality robotic

skills [2]. Current algorithms such as MAP-Elites and variations were able to illuminate

the relationship between the performance of each solution found and the diversity of the

[1]. However, QD Algorithms require a lot of execution time due to the massive number

of solution evaluations that ought to be executed. The work done on this branch of

Evolutionary Algorithms focused on running these algorithms mainly on computer CPUs

and scaling them to many Clusters’ CPUs. But, QD Algorithms, like many other

algorithms, depend on operations, like matrix and vector manipulation, that are highly

parallelizable. This nature of the QD Algorithms’ core makes it attractive to use

specialized hardware, specifically GPU, to improve the performance of the QD

Algorithms and specifically the runtime.

1.2 The Importance of Accelerating Quality-Diversity for Robotics

As mentioned in section 1.1, GPUs can help accelerate QD Algorithms by executing

faster parallelizable operations. To be more specific, in general, QD Algorithms try to

find high-performing solutions that vary across some features. These algorithms consist

of four parts (1) selection of solutions from a collection, (2) variation of the selected

solutions, (3) evaluation of the performance of the solutions and (4) addition of the

10

solutions to an archive of solutions. But the most time demanding part is the evaluation

step, where the solutions are evaluated in terms of performance and some diversity

attributes (features are chosen as points of variation in the solutions). The evaluation

functions define the problem that the QD Algorithm tries to solve. Those functions could

be simple, but they can also include complex operations, like simulations. For example,

we could have a problem that provides as a solution the parameters of a policy (e.g.,

parameters and weights of a neural network) for a robot’s movements and as evaluation

functions, a function that says how well the robot walks at a specific direction using a

given policy and another function that is used for estimating how much time each robot’s

leg touched the ground on average (i.e. the latter function is the function that defines the

variation of the) with the same policy. But, evaluating the policy in terms of those criteria

(i.e., estimating the value of those functions) includes having the robot use that policy in

either the real world or a simulation to see how it performs. Evaluations for such tasks

are initially done via simulations, which are cheaper and faster than real-world

evaluations. But physics simulations include complex and time expensive computations

that require a significant amount of time when many of them are needed to be executed

for the same problem. Getting good results on QD Algorithms on modern CPUs for

complex tasks like teaching a robot to walk in many directions can take days. This need

to make QD Algorithms execute faster is the source of motivation for our work. Our work

primarily investigates the potential acceleration of running QD Algorithms on GPUs

instead on CPUs as well as whether differentiability in QD (Differentiable Quality

Diversity Optimization - DQD) can play a role in allowing better and faster exploration

of solutions to be achieved by QD Algorithms on GPUs.

1.3 Previous Quality-Diversity Research related to our work

Our work depends on the foundations of all the QD work that has been done so far. But

we primarily rely on a couple of recent results. More specifically, a recent study from

Fontaine and Nikolaidis [4] introduced the Differentiable Quality Diversity (DQD) DQD

uses the first derivative of the evaluation functions concerning the solution to guide the

exploration of diverse high-performing solutions, and it showed that it is a promising

approach for exploring more varied and higher performing solutions. More specifically,

they showed that the Differentiable versions of some QD algorithms perform better than

their original QD Algorithms regarding the number of diverse solutions they return and

11

the quality of those solutions. But the tests were made on CPUs and for a minimal number

of batch sizes ranging between 32 and 100. A more recent work from Lim, Allard,

Grillotti and Cully [69] tested for the first time the performance of the one of the simplest

QD Algorithms; MAP-Elites (line), on GPUs. More specifically, they tested those two

QD Algorithms on different simulation tasks on the BRAX simulator. They observed that

the performance of MAP-Elites (line) on those simulation problems was not statistically

affected by increasing the batch size they used. They also showed that those two QD

Algorithms being executed with more significant batch sizes finish earlier than when

using smaller batch sizes. The QD Algorithms being executed on GPUs finish quicker

than those on CPUs. Those observations showed the potential of exploiting GPUs for

running MAP-Elites and MAP-Elites (line) faster. But their work is limited to only a

minimal subset of the state-of-the-art QD and DQD Algorithms, which raises the question

of whether those results and observations apply to the other QD and DQD algorithms.

1.4 Objectives

Our work examines the following three goals: (a) Effect of batch size on the Performance

of QD and DQD Algorithms, (b) Runtime of QD and DQD Algorithms on GPU compared

to CPU and (c) Performance of DQD Algorithms vs QD Algorithms on GPUs. In the first

goal, we want to examine whether the algorithms are affected by increasing the batch size

(the in-algorithm parallel manipulation of solutions) of QD Algorithms. In the second

one, we want to examine the potential runtime improvement of QD and DQD Algorithms

on GPUs vs CPUs. Lastly, in the third goal, we want to see whether Differentiable QD

can help get better results faster on GPU and thus save some execution time. We structure

this document based on those goals, and we start with a comprehensive but concise

background revision of QD and associated work (Chapter 2). We move on to discuss the

Domains (i.e. Problems) that we use for our experiments (Chapter 3); later in Chapter 4,

we discuss the design and implementation of frameworks and QD Algorithms that we

developed for our experiments. We discuss the experiments we performed in Chapter 5,

and in chapter 6, we discuss our conclusion, some lessons learned and future work.

12

Chapter 2

Background

2.1 Mathematical Background ... 12

2.2 Artificial Neural Networks ... 17

2.3 Optimisers Background .. 21

2.4 Evolutionary Algorithms & Strategies ... 24

2.5 Quality-Diversity Background ... 25

2.1 Mathematical Background

2.1.1 Function

A function 𝑓 is a process that associates an object of a set 𝑋 (called Domain of the

function) to a single object of a set 𝑌 (called Subdomain of the function). This

correspondence can be written as 𝑓: 𝑋 → 𝑌.

2.1.2 Mathematical Optimization

Given a real-valued function f(x), an optimization problem is the identification of a

solution x belonging to the function’s domain that minimises (in which case is called a

Minimisation Problem) or maximises (in which case is called a Maximisation Problem)

the value of that function.

More specifically, given a function, 𝑓:ℝ → ℝ, from real numbers to the real numbers, we

seek a solution 𝑥0 ∈ ℝ (𝑜𝑓 𝑡ℎ𝑒 𝐷𝑜𝑚𝑎𝑖𝑛), such that:

• In case of minimization, we want 𝑓(𝑥0) ≤ 𝑓(𝑥) for all 𝑥 ∈ ℝ.

• In the case of maximization, we want 𝑓(𝑥0) ≥ 𝑓(𝑥) for all 𝑥 ∈ ℝ.

2.1.3 Finite Difference Method (FDM)

13

The Finite Difference Method (FDM), or derivative of a function that estimates the

derivative of a function. Given a first-order differentiable function 𝑓, its derivative at a

point 𝑥 is:

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

2.1.4 Chain Rule in Derivatives

The chain rule is a formula that specifies how to compute the derivatives of composites

functions. A composite function is a function that receives as its domain values the values

of the subdomain of a second value. A composite function is written as:

𝑓(𝑥) = ℎ(𝑔(𝑥))

The derivative of the composite function is specified by the chain rule below:

𝑑𝑓

𝑑𝑥
=

𝑑ℎ

𝑑𝑔
∙
𝑑𝑔

𝑑𝑥

Or differently written as:

𝑓(𝑥) = ℎ′(𝑔(𝑥)) ∙ 𝑔′(𝑥)

2.1.5 Gradient

The gradient of a first-order differentiable function 𝑓: ℝ𝑘 → ℝ is the vector field ∇𝑓 (∇

is the Del, or nabla symbol denoting the vector differential operator) in which each point

x𝑖 is the first-order partial derivative of the function concerning the ith value of a vector

that the function receives as input. That is, the gradient of the function f is a function

∇𝑓: ℝ𝑘 → ℝ𝑘 defined as:

∇𝑓(𝑥) =

[

𝜕𝑓1
𝜕𝑥1

(𝑥)

⋮
𝜕𝑓

𝜕𝑥𝑘
(𝑥)

]

2.1.6 Jacobian Matrix

14

The Jacobian Matrix is the matrix of all first-order partial derivatives of a vector function.

Given a vector function 𝑓:ℝ𝑘 → ℝ𝑚, whose first-order partial derivatives exist on ℝ𝑘,

then the Jacobian matrix 𝐽 of 𝑓, is the 𝑚 × 𝑘 matrix whose entry in row i and column j

equals 𝐽𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
 (a partial derivative of f function’s jth input with respect to the function’s

ith output).

𝐽𝑓 =

[

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑘

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑘]

2.1.7 Tanh Activation Function

 The hyperbolic tangent activation function, also referred as Tanh (or TanH or tanh) is a

function that takes any real value as input and outputs values in the range (-1,1). That is,

tanh function 𝑓:ℝ → (−1,1) is defined as:

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Figure 2.1. Hyoerbolic Tangent Activation Function.

2.1.8 Maximum

15

A local maximum value of a continuous function 𝑓: 𝐴 → 𝐵 is defined as the value x A

such that for each point 𝑥𝑙, 𝑎 ≤ 𝑥𝑙 < 𝑥 it applies that 𝑓(𝑥𝑙) ≤ 𝑓(𝑥) and for each point

𝑥𝑟 𝑥 < 𝑥𝑟 ≤ 𝑏, it applies 𝑓(𝑥𝑟) ≤ 𝑓(𝑥) for some a A and b A. If the 𝑓(𝑥𝑖) < 𝑓(𝑥),

for any 𝑥𝑖 A, then the 𝑥 is a global maximum.

2.1.9 Minimum

A local minimum value of a continuous function 𝑓: 𝐴 → 𝐵 is defined as the value x A

such that for each point 𝑥𝑙, 𝑎 ≤ 𝑥𝑙 < 𝑥 it applies that 𝑓(𝑥) ≤ 𝑓(𝑥𝑙) and for each point

𝑥𝑟, 𝑥 < 𝑥𝑟 ≤ 𝑏 it applies 𝑓(𝑥) ≤ 𝑓(𝑥𝑟) for some a A and b A. If the 𝑓(𝑥𝑖) > 𝑓(𝑥),

for any 𝑥𝑖 A, then the 𝑥 is a global minimum.

2.1.10 Mean

Given a population of n real number 𝑥1, … , 𝑥𝑛 the mean or average μ is defined as:

μ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛

2.1.11 Standard Deviation

Given a population of n real number 𝑥1, … , 𝑥𝑛 Standard Deviation 𝜎 is defined as:

𝜎 = √
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

𝑛

where μ is the population mean.

2.1.12 Median

Given a population of n real number 𝑥1, … , 𝑥𝑛 , where n is an odd number, then the median

is the number 𝑥𝑖 from the population that has 𝑓𝑙𝑜𝑜𝑟 (
𝑛

2
) elements of the population that

have a value lower than it and 𝑓𝑙𝑜𝑜𝑟 (
𝑛

2
) that has a value greater than it, where 𝑓𝑙𝑜𝑜𝑟 (

𝑛

2
)

is the integer part of the division of n over 2. If n is an even number, then the mean can

be the 𝑥𝑖 from the population that has either
𝑛

2
− 1 population elements on its left (with

lower values) and
𝑛

2
 population elements on its right (with greater value) or

𝑛

2
 on its left

and
𝑛

2
− 1 on its right.

16

2.1.13 Median Absolute Deviation (MAD)

Median Absolute Deviation of a population of real numbers 𝑥1, … , 𝑥𝑛 is the median of

the absolute deviations from the population’s median m (median of population). That is:

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑚|)

2.1.14 Dot Product

The dot product between two vectors 𝑣1 and 𝑣2 both of them of size n are defined as:

𝑑𝑜𝑡 = 𝑣1 ∙ 𝑣2 = ∑𝑣1
(𝑖)

𝑛

𝑖=1

∙ 𝑣2
(𝑖)

where 𝑣𝑗
(𝑖)

 represents the ith element of the vector j.

2.1.15 Rastrigin Function

Rastrigin function is defined by the function f(x) defined as follows:

𝑓(𝑥) = 10𝑑 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

where d is the number of dimensions of the problem.The function has many local minima

that make it high multimodal, and those minima are distributed regularly.

Figure 2.2. Two-dimensional (d = 2) Rastrigin Function with x1, x2 its parameters, from

https://www.sfu.ca/~ssurjano/rastr.html

17

The function is usually evaluated for values of its parameters 𝑥𝑖 [−5.12, 5.12] for all i

= 1, 2, …, d. The global minimum is located at x = 0, where 0 is the zero vector of length

d with all its elements equal to zero.

2.2 Artificial Neural Networks

2.2.1 Regression

Regression is a technique for learning the relationship between a set of independent

variables or features and a dependent variable or outcome (in the case of many dependent

outcomes, we can frame as many independent regression problems as the dependent

outcomes are, each of them concerned with a single dependent outcome). In Machine

Learning, it is used as a predictive type of model, in which an algorithm is used to predict

continuous outcomes.

The simplest form of Regression is Linear Regression, where the relationship between

the independent variables and the outcome is linear. In the general case, the linear model

we have is the following:

𝑦 = 𝑎1 ∙ 𝑥1 + 𝑎2 ∙ 𝑥2 + ⋯+ 𝑎𝑛 ∙ 𝑥𝑛 + 𝑏

And the relationship we want to learn is defined by the 𝑎1, 𝑎2, … , 𝑎𝑛 parameters of the

equation above.

2.2.2 Cost/Loss Function

The cost function or loss function is a function used to learn the relationship between the

output and the input for a function f. More specifically, given an input x and an output of

a function f, f(x), the cost function can tell us how far away the value/solution of a

different function g on x is with respect to f(x), That is the difference between g(x) and

f(x).

2.2.3 Supervised Learning

In a supervised learning context, an algorithm tries to learn a function f such that for any

input x defined for the function f to generate f(x). For an algorithm to learn that function

f, it is provided with a set of input values and the expected output values (these are called

18

training datasets). The algorithm uses both the inputs and the expected outputs to learn

the relationship between them.

2.2.4 Artificial Neuron

An Artificial Neuron in Machine Learning is considered the smallest and most basic

computational unit of an Artificial Neural Network (ANN). They are inspired by the

biological neurons and are simply mathematical functions taking some inputs and giving

an output.

The most well known artificial neuron is the McCulloch & Pitts (MCP) neuron which

receives a set of input signals and outputs a single output. The output is just the application

of a function (called activation function) on the weighted sum of its input signals. That

is, if 𝑋 is a vector of the input signals of size n and 𝑊 is a list of weights for those input

signals, then the output of the McCulloch & Pitts is:

𝑎𝑐𝑡𝑓(𝑋 ∙ 𝑊) = 𝑎𝑐𝑡𝑓(∑𝑋𝑖𝑊𝑖

𝑛

𝑖=1

)

Where 𝑋 ∙ 𝑊 is the dot product between the two vectors and 𝑎𝑐𝑡𝑓 is an activation function.

2.2.5 Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) or Neural Networks (NNs) are networks of artificial

neurons that mimic on a high-level the biological neural networks of animals’ and

humans’ brains. In reality, ANNs are complex functions that have a set of inputs and

outputs. It is usually graphically represented as a graph with nodes and edges. The nodes

are artificial neurons, and the edges are considered synapses used to share information

between neurons. An artificial neuron; in the network; receives a signal, processes it and

passes the signal further to potentially another neuron.

The typical structure of an ANN is a layered network (=graph) of nodes constituting a

layer of input nodes that receive input signals, a layer of output nodes that output signals

and many layers of nodes, called hidden layers that just perform the core processing of

network signals.

2.2.6 Multi-Layer Perceptron

19

2.2.6.1 Introduction to MLPs

Multi-Layer Perceptron (MLP) or also Vanilla” Neural Networks. is a type of a feed-

forward ANN. Feed-forward means that the processing flow of the input signals follows

a single direction from the input layer to the output layer and not the other way. MLPs

consist of at least three layers of nodes; an input layer, one or two hidden layers, and an

output layer. The input nodes are simple nodes that just forward the signal to the next

hidden layer, whereas the hidden layers and the output layer contain McCulloch & Pitts

artificial neurons.

Figure 2.3. Multi-Layer Perceptron with three layers with McCulloch & Pitts neurons (two hidden and an output

layer). Note that the input layer does not contain any neurons.

2.2.6.2 Architecture

The architecture of an MLP is defined as the number of hidden layers being used, the

number of nodes in each layer, and whether it is a fully-connected or sparse network. In

a fully connected network, each node of a layer is connected with each node o the next

layer (except the output layer that does not have any further layers in front of it). An

example of that can be seen in the image above of a fully connected MLP. A sparse

network is one where some of those connections that exist in the fully-connected network

do not exist. Note that each edge is weighted by a specific number. The architecture of an

ANN and its weights define the function that the ANN approximates.

20

Because an MLP depends on its architecture to define a function, different architectures

can be restricted to a different class of functions. For instance, in the classification

problem where we try to categorize/classify an input point to a group of specific

characteristics, a single layer MLP (only output layer) is capable of creating a linear

function (first entry in the figure below) that simply can separate two different classes in

their input space by a line. Two-layer MLP (1 hidden & 1 output layer) is capable of

creating a function that separates input points by two an open convex or closed region

(second entry below). Three-layer MLP (2 hidden & 1 output layer) is capable of creating

a function that separates input points, using arbitrary complex shapes (third entry below)

that are capable of separating any classes. Thus, based on Kolmogorov Theorem, no more

than three layers are needed in an MLP network. That is, they can approximate any

function with at most three layers. Take into consideration that this theorem also depends

on the use of non-linear activation function in each neuron.

Figure 2.4. Three types of Multi-Layer Perceptron (MLP) as distinguished by the different types of Decision Regions

they create. Single-Layer or Perceptron: Solves only Linearly Separable problems. Creates Decision

Lines/Planes/Hyperplanes. Two-Layer: Solves Non-linearly Separable problems. Constructs Convex Regions.

Three-Layer: Separates any classes. Any Arbitrary Convex Region.

<https://www.verypossible.com/insights/machine-learning-algorithms-what-is-a-neural-network>

2.2.6.3 Activation Function

Activation functions are usually used by artificial neurons of ANN, and they are functions

applied to the inputs of a neuron. There are different activation functions, including the

Heaviside Step Function (outputs one if the inputs are greater than zero; otherwise 0), the

Sigmoid/Logistic (a smoother differentiable version of the Heaviside Step Function),

Tanh (described in section 2.1.7), etc.

21

2.2.6.4 Forward Propagation

In forward propagation, the input data received by a network’s input layer are propagated

forward through the network until the output layer, where the latter’s outputs are the

output of the network. That is, it is a process of an ANN to take a set of inputs and generate

a set of outputs. This process is defined from left to right, taking layer by layer and doing

the following: For each layer, take the output of each node as the application of an

activation function to the weighted sum of the input signals to the node. The output of

each node in a layer is the set of input signals for the next layer. The output signals of the

output layer are the outputs of the ANN.

2.2.6.5 How an Artificial Neural Network learns to approximate a function

An Artificial Neural Network has an architecture and a set of weights, one for each edge

connecting two network nodes. The weights of an ANN are adjustable, and they are

responsible for weighting the signals going from one layer to another. For a given ANN

architecture, they define the function that the ANN represents. A specific set of values of

weights approximates a different function than a different set of values for the weights.

The most well known and used way for learning those weights is the back-propagation

method, where for a given initial set of weights for an ANN (usually random), the output

values of the ANN for a given set of input values are evaluated on how well it

approximates the expected value of the function the ANN tries to match and the error

between the ANN’s output and the function’s desired output is propagated backwards

(from the output to the input layer) as feedback to adjust the weights of the network.

But, there are also other ways more straightforward but potentially less efficient in

defining those weights. For example, we could randomly choose those weights until those

weights lead the ANN to approximate the function; that is, the ANN generates

approximately the same outputs with the function it tries to learn for the same inputs. The

issue, though is that the more the weights of the ANN and the greater the set of values

those weights can take, the more difficult it is to find those weights randomly.

Quality Diversity which we will discuss later (section 2.5), is another way of finding those

weights in a more guided way than just randomly choosing those weights.

2.3 Optimisers Background

22

2.3.1 Optimisers

Optimisers are used in different fields with the sole purpose of helping improve a set of

coefficients so that to optimise (maximise or minimise) a specific function. For example,

an optimizer can be used in a neural network to adapt the neural network's weights to

minimize the difference between a set of expected outputs and the actual outputs of a

neural network. Below, you can see some of them.

2.3.2 Gradient Descent (GD)

Gradient Descent (GD) was introduced by Rumelhart et al. [51] and is the most

straightforward optimization algorithm for minimizing first-order differentiable

functions. The idea of the gradient descent is that since the gradient of a function always

points toward the maximum point, then by moving the point of the function where the

gradient was derived, in a direction opposite; that is, negative; to the direction of the

gradient, then the point derived will most likely (likely because it depends on the step and

on whether the point is already a local minimum) give a value for the function lower than

before. That is, it will approach a local minimum.

2.3.2.1 GD Mathematical Definition

Consider a first-order differentiable vector function 𝑓 whose minimum value we seek for.

If the derivative of the function with respect to its vector input x is:

∇𝑓(𝑥) = 〈
𝛿𝑓

𝛿𝑥1
,
𝛿𝑓

𝛿𝑥2
, … ,

𝛿𝑓

𝛿𝑥𝑛

〉

Then the GD algorithm amends each value 𝑥𝑖 of the input vector x using the derivative

of the function’s output with respect to the ith value of the vector (∇𝑓(𝑥𝑖)) as follows:

𝑥𝑖′ = 𝑥𝑖 − 𝑎∇𝑓(𝑥𝑖)

Where a is a real number between 0 and 1 chosen to represent the step of the change on

the vector’s value.

2.3.3 Momentum

The momentum is an extension of gradient descent that, at each iteration, replaces the

current gradient with a “momentum”, m which is an aggregate of gradients. This

23

aggregate is an exponential moving average of past gradients, including the current one

up to time t (see below). The update process of solutions θ becomes:

𝜃𝑡+1 = 𝜃𝑡 − 𝑎 · 𝑚𝑡

where

𝑚𝑡 = 𝛽 · 𝑚𝑡−1 + (1 − 𝛽) ·
𝜕𝑓

𝜕𝜃𝑡

A common value for the hyperparameter β is 0.9.

2.3.4 Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation (Adam) is a stochastic gradient-based optimizer that was

proposed by Kingma and Ba [51].

Adam stores an exponentially decaying average of past squared gradients v (like Adadelta

[52] and RMSprop [53]) and also kept an exponentially decaying average of past

gradients m, similar to momentum. Their update process is:

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2

The parameter 𝑚 is the first moment, just like the momentum that records the past

normalized gradient. It is initialized to a vector of zeros.

The 𝑣 is the second moment, as introduced in Adaptive Gradient Descent & RMSprop. It

is initialized to a vector of zeros.

The parameters 𝛽1 and 𝛽2 control the decay rates of the exponential moving averages

gradient (initialized AS 𝛽1= 0.9, 𝛽2= 0.999).

The updates of m and v moments based on the equations above make them biased towards

0, especially during the initial steps after they start from 0 values. To counteract these

biases, ADAM uses bias-corrected first and second-moment estimates, which extend the

moment updates from above with the following two updates:

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

24

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡

Last, the bias-fixed �̂�𝑡 and 𝑣𝑡 moments are used to update the given parameters θ as

follows:

𝜃𝑡 = 𝜃𝑡−1 − 𝑎 ·
�̂�𝑡

√𝑣𝑡 + 𝜀

Where 𝜀 is proposed by its authors to be equal to 10−8 and a = 0.001.

Figure 2.5. Adam optimizer algorithm pseudocode for stochastic optimization from Kingma and Ba[50]

2.4 Evolutionary Algorithms & Strategies

2.4.1 Introduction to Evolutionary Algorithms & Strategies

Evolutionary algorithms are algorithms that use evolutionary computation inspired by

nature to solve different problems, usually Optimization problems More specifically,

evolutionary algorithms simulate the process of natural selection and are an effective tool

for discovering high-performing reinforcement-learning policies.

Evolution strategies (ES) are a family of evolutionary algorithms that specialize in

optimizing continuous spaces by sampling a generation (a population of solutions) and

gradually moving the population toward areas of highest fitness.

2.4.2 (µ/µ, λ)-ES

25

One canonical type of Evolutionary Strategy is the (µ/µ, λ) Evolutionary Strategy

abbreviated as (µ/µ, λ)-ES, where a population of λ sample solutions is created, and then

from the population, the µ most high-performing solutions are selected to generate new

samples in the next generation. The speciality of the (µ/µ, λ)-ES is that it recombines the

µ best-sampled solutions through weighted average into one mean that describes the

centre of the population distribution of the next generation. Thus, in a few words, the µ

best-sampled solutions will create the centre of distribution (mean value) for the sampled

solutions of the next iteration. This can be seen as moving the focus of exploration (centre

of distribution) in the solution space towards areas with high-performing solutions,

always based on the solutions that have already been discovered.

2.4.3 CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a particular type of

the (µ/µ, λ)-ES. It is considered one of the most competitive derivative-free optimizers

for single-objective optimization of continuous spaces [34]. CMA-ES models the

sampling distribution of the population as a multivariate normal distribution N(m, C),

where m is the distribution mean and C is its covariance matrix. There are two main steps

in CMA-ES: the selection and ranking of the µ most high-performing solutions, which

update the next generation’s sampling distribution, N (m, C). Last, CMA-ES maintains a

history of aggregate changes to m called an evolution path, which helps search for

solutions (similar to how momentum works in stochastic gradient descent). For a more

in-depth explanation of the steps performed in CMA-ES, refer to the Hansen tutorial in

CMA-ES [35].

2.5 Quality-Diversity Background

2.5.1 Introduction to Quality-Diversity

Quality Diversity (QD) Optimisation (or illumination) is a recent branch of Evolutionary

algorithms whose primary goal is to generate a large set of diverse solutions that satisfy

two attributes: (a) All solutions produced are high-performing solutions (High Performing

Solutions), and (b) the solutions created differ concerning a set of specific characteristics

(Solutions Diversity). The assumption taken by QD algorithms is that solving those two

problems together is likely to be faster than by independent constrained optimizations.

26

Based on the definition above, the overall performance of a QD algorithm is defined by

scores on the quality of the produced collection of solutions according to:

1) The coverage of the feature space (across which the diversity of the solutions is set).

2) The uniformity of the feature space coverage.

3) The performance of the solution found for each type of solution from feature space.

QD algorithms are potent exploration algorithms that seem to efficiently solve sparse-

reward hard-exploration tasks in robotics [54]. In addition to that, Quality-Diversity (QD)

algorithms have recently shown to be an auspicious and valuable tool in the field of

robotics[55, 56], where these algorithms can be used to generate a repertoire of diverse

and high-performing robotic skills, together with by solving a single instance of the QD

problem. This repertoire can then be used for rapid adaptation to unknown mechanical

damage [57, 3, 58] and coupled with planning algorithms to perform long-horizon tasks

[57].

2.5.2 QD Problem Definition

Quality Diversity considers an objective function 𝑓 ∶ 𝑅𝑛 → 𝑅 in a continuous n-

dimensional space 𝑅𝑛And k behavioural functions 𝑚𝑖: 𝑅
𝑛 → 𝑅, or altogether a function

𝑚:𝑅𝑛 → 𝑅𝑘 . Then considering that 𝑚(𝑅𝑛) = 𝐵 is the behavioural space with the

behavioural function’s values; QD’s goal is to find a solution 𝐱 𝑅𝑛 for every 𝑏 B

such that 𝑚(𝐱) = 𝒃 and 𝑓(𝐱) are maximized.

The objective function f evaluates a solution (described by n parameters) for a specific

problem and returns a value (named objective value) denoting how good the solution is

for the particular problem. For example, in the scenario of teaching a robot to walk

forward, a solution could be a policy on the robot's low-level movements in each situation.

The objective function could be the distance the robot covers forward with a specific

solution. The k behavioural functions or the combined single behavioural function give a

collection of k values (or a vector of k values) for k characteristics of a solution and is

called a behavioural or feature descriptor. In the example of the robot moving forward,

the behavioural descriptor could be the energy consumed with the specific solution, the

final state of the robot at the end, how much time each robot’s leg touches the ground on

27

average etc. Sometimes, the objective function and behaviour function can be seen as part

of the same function, which is usually called an evaluation function.

From the Evolutionary Algorithms’ jargon, a QD solution is called an organism,

phenotype, or individual. A genome or genotype describes a solution, and it is the

representation of the solution that is used in an algorithm to generate other solutions. The

actions performed by the organism (=solution) are the organism’s behaviour, and they

create what we defined previously as the behavioural descriptor. The performance of a

QD Algorithm is called fitness, and the expression, simulation or function that gives the

fitness value is called fitness function.

2.5.3 QD and Illumination

Fig 2.6. Difference between Global, Multimodal and QD (Illumination) Optimisation from Chatzilygeroudis,

Cully, Vassiliades, and Mouret [2]

With the introduction of the Multi-dimensional Archive of Phenotypic Elites (MAP-

Elites) algorithm, the concept of illumination, which was initially introduced in the field

of evolutionary robotics (to encourage diversity in space), was introduced in QD, which

made clearer the difference between Quality Diversity Optimisation and other

Optimisation approaches. More specifically, MAP-Elites was the first algorithm in QD

to be considered an “illumination algorithm”, a type of an algorithm that illuminates the

fitness potential of each area of the feature space and takes into consideration tradeoffs

between performance and the features of the solutions that we are interested in.

The concept of the Illumination in QD draws a harder line between what QD aims to do

and what Global Optimisation and Multimodal Optimisation try to do. More specifically,

Algorithms for global optimization aim to find a single global optimum of the underlying

parameter space in interest. Multimodal optimization (MMO) algorithms can be

considered an extension of Global Optimisation that aims at finding multiple optima of

the parameter space. In contrast to those two approaches, Illumination algorithms, such

28

as MAP-Elites, aim at discovering significantly more solutions than Multimodal

Optimisation, where each solution is the elite of some local neighbourhood defined in

some feature space of interest. This process is like “illuminating” the feature space with

the highest-performing solutions, thus called Illumination.

2.5.4 Early QD Algorithms

2.5.4.1 Random Sampling

The most basic approach used by different fields of Sciences is Random Sampling, where

you randomly choose from the solution space solutions to evaluate using the objective

and behavioural functions. It is mainly used as a benchmark to compare it against new

algorithms in different fields.

2.5.4.2 Novelty Search + Local Competition (NS+LC)

There are many ways to solve the QD problem, even using approaches from other

Optimisation sectors, like Multimodal Optimisation and Multi-Task Optimisation, but

there are a lot of specialities in the QD Problem that encourage new approaches. For

example, finding the most high-performing solutions while preserving diversity in the set

of the selected solutions. Regarding this matter in 2011, Lehman and Stanley [5] said

that it is not fair to allow any solution to compete against any other solution based on the

same performance objective for a position in the set of the selected ones. This appears

because each solution may be associated with different interesting features (= different

behavioural descriptors) and thus may be constrained to different values of a performance

objective. It is like comparing a leopard with a turtle for speed. But the point here is that

we are not interested only in the speed (=objective function) but in other characteristics

of them as well so that to encourage diversity.

Lehman and Stanley proposed the algorithm Novelty Search + Local Competition

(NS+LC) [5] to promote diversity in the feature space (=behavioural space) but at the

same time have each organism (=solution) compete on performance only with other

organisms that are close to it in the feature space. NS+LC uses a multi-objective algorithm

to accomplish two objectives: (1) maximise an organism’s performance with respect to

its closest 15 neighbours in the feature space, and (2) maximise a novelty objective that

29

encourages diversity of organisms selected by rewarding organisms the further they are

in feature space from their 15 closest neighbours. Maximizing an organism’s performance

has two phases, one for local competition concerning an organism’s neighbours and a

second for comparing the relative scores of organisms with their neighbours globally

(=with all the other organisms), which is considered a global competition.

NS+LS has its own drawbacks, including, firstly, a very costly search of neighbours of

𝑛 ∙ 𝑙𝑜𝑔(𝑛) complexity [28]. Secondly, it could fall into a phenomenon called “cycling”,

where it searches in the same place of the feature space twice or more consecutively. It

can happen because of how it handles the already discovered solutions, the selected

solutions (=in what is called archive) and a set of solutions, named population, used to

generate new solutions for evaluation. Thirdly, it does not evenly and simultaneously

search the feature space for new solutions. Instead, it focuses on exploring an area of the

feature space with either many unexplored solutions or many high performing already

discovered solutions. Anything in between them could be potentially skipped, and thus

many interesting areas could be ignored, leaving them unexploited and unexplored.

2.5.4.3 Multi-Objective Landscape Exploration (MOLE)

Multi-Objective Landscape Exploration (MOLE) was introduced by Clune et al. [26] and

is a multi-objective optimization search [27] that has two objectives: (1) find organisms

with high performance, (2) each organism to be as far from others already discovered

organisms as possible, where the distance is measured in user-defined Cartesian feature

space with connection costs on the x-axis and modularity on the y-axis[26].

A few things to note about MOLE are that it considers one global performance

competition for all organisms. Thus, a few high-performing solutions will dominate the

set with the selected solutions prohibiting other solutions with slightly less performance

from being discovered and selected. Secondly, it does not evenly and simultaneously

search the feature space for new solutions just like in NS + LS. Instead, it focuses on

exploring an area of the feature space with either many unexplored solutions or many

high performing already discovered solutions. Anything in between them could be

potentially skipped, and thus many interesting areas could be ignored, leaving them

unexploited and unexplored.

30

2.5.5 QD Framework

Cully and Demiris [29] developed a Quality Diversity Optimisation framework to make

the study and development of QD algorithms easier and more accessible. They discussed

how two of the most well-studied QD algorithms (MAP-Elites and NS+LC) could be

instantiated from the same high-level algorithm (Fig 2.5.5) with different choices in some

of its main steps.

Fig 2.7. Pseudocode Snippet of QD Optimisation Algorithm from Cully and Demiris [29]

The introduced QD Optimisation high-level algorithm has three different operators via

which QD algorithms can vary. (1) The data structure used to store the solutions

discovered so far called container, (2) the way to generate new solutions from a set of

solutions (population), called selection operator and (3) the type scores used inside the

algorithm for the container and the selection operator called population scores. Despite

this definition of the QD framework, there can be variations in other operators mentioned,

like mutation or cross-over operators. Later we will see some latest examples of variation

operators, including how differentiability can potentially help mutate individuals towards

undiscovered and higher-performing solutions. Still, we stick to the latest updated QD

framework mentioned in Chatzilygeroudis, Cully, Vassiliades & Mouret [2].

Choosing the types of components for those three parts instantiates a QD Algorithm that

works as follows:

Randomly initialize your initial values in the first iteration and repeat four steps until a

stopping condition

31

1. Produce a new set of individuals (=solutions 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠) using the selector operator

that will be altered to create new individuals (𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

2. Evaluate each individual from 𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 using an objective function to get its

performance score (=objective value) and a behavioural function to get its

behavioural descriptor

3. Potentially add an individual generated to the container of individuals considering

already added individuals to the collection and the scores of the individual

4. Update the population scores

Below you can see more details for each of the three main parts of a QD Algorithm

2.5.5.1 Containers

A container is an ordered collection used to store the best and most diverse solutions

discovered by the QD Algorithm.

2.5.5.1.1 N-dimensional grid structure

The most popular type of container is the N-dimensional grid structure. This container

discretises the whole Behavioural space (feature space) into a grid of cells, where each

cell represents a different type of solution. Usually, this container stores a single solution

per cell (e.g. used in MAP-Elites), but some implementations use more than one solution

per cell, e.g. for multi-objective optimization or noisy optimization [30, 31].

2.5.5.1.2 Centroidal Voronoi Tessellation

Centroidal Voronoi Tessellation (CVT) container was introduced in Vassiliades,

Chatzilygeroudis, and Mouret [7] and is used in high-dimensional spaces where the N-

dimensional grid structure is impractical due to the great amount of computer memory

required for storage (i.e. number of cells times the size of memory needed for storing

solutions per cell is significant).

Centroidal Voronoi tessellation Container uses the method from computational geometry

with the same name to partition a high-dimensional space into well-spread geometric

regions. Due to the complexity of constructing Voronoi tessellations to partition a space

into geometric areas, it uses a simpler method based on Monte Carlo that applies an

approach similar to k-means on a set of random points and random centroids. The latter

process forces several centroids to be well spread in the feature space. Those centroids

32

can then be used as the geometric sites (i.e. the centres of the geometric regions similar

to those returned from Centroidal Voronoi tessellation).

2.5.5.1.3 Distanced-based archive

The distanced-based archive keeps the solutions not ordered but in an unstructured array

using the solutions’ behavioural descriptors and their Euclidean distance. The way that a

solution is added to this archive is by examining whether the Euclidean distance of a

given solution with another solution from the container is greater than a prespecified

threshold (denoting that the solution is far away in the feature space from the solutions

already discovered) or if it has better performance than its neighbours.

2.5.5.2 Selection Operators

Selection operators are responsible for generating new solutions based on a given

population of solutions. Below you can see the most common ones.

2.5.5.2.1 No Selection

No Selection does not use the container to generate new solutions but directly samples

new solutions from the solutions’ parameter space.

2.5.5.2.2 Uniform Random Selection

Uniform Random Selection samples uniformly new solutions from the solutions stored

in the container. The new solutions are solutions from the container perturbed with noise.

2.5.5.2.3 Score Proportionate Selection

Score Proportionate Selection is an extension of random sampling approaches working

on the container that applies score-based weighting on the selection. It biases the selection

of new individuals based on a particular score called population score.

2.5.5.3 Population Score

In order to generate new solutions and maintain a container, a QD algorithm uses a

population score. Evolutionary algorithms usually use the fitness score, which considers

each solution's performance only. That is, the selection biases solutions with higher

fitness (=performance). There is also the novelty score that favors solutions with greater

distance (in feature space) from other solutions in a container. Moreover, the curiosity

score estimates the propensity of a solution to generate solutions that are added to the

container. Last, Go-Explore [32,33] introduced a new score that biases the selection

33

towards newly discovered solutions with the idea that newly discovered solutions contain

interesting features that can lead to more unexplored regions in the feature space.

2.5.6 Criteria for Measuring the QD Algorithms

There are many different ways to quantify the quality of QD Algorithms. The most used

measures for the performance of a QD algorithm focus on the produced collection of

solutions and examine two different criteria:

1. The performance of the solution found for each cell of the container (type of

solution). This measures how much the solutions found were optimized.

2. The coverage of the behaviour space (how much of the feature space is

explored/covered).

There are a lot of different specific measures that can be derived from those criteria, like

Global Performance (highest performance of a solution found divided by the highest

performance of a solution that is possible to be found in the defined space), Global

Reliability (average across all cells of the division between the highest performing

solution found for a cell by a specific algorithm and the highest possible performance of

a solution that was ever found by any algorithm for that cell – all cells for which a solution

was not found are considered as 0) and Precision (same as Global Reliability but does

not include cells for which a solution was not found) [1].

2.5.7 The concept of Emitters

The concept of Emitters in QD was Introduced by Fontaine, Nikolaidis, Togelis and

Hoover [6] with the proposal of the CMA-ME algorithm. An Emitter is an instance of a

QD Algorithm that uses a specific selection operator (how to select new solutions at each

iteration) and an adaptation rule (how to update/adapt the QD instance’s rule for selecting

new solutions in the next iteration). Different QD Emitters can use different selection

operators and/or different adaptation rules. Solutions generated by the emitters are saved

in a single unified archive based on their corresponding behaviours.

In general, the use of the selection operator and adaptation rule is defined with two

methods following an ask-tell interface adopted from Pycma [66] and described below:

34

2.5.7.1 Ask

The ask method of an emitter operates on an emitter and does not usually take any other

argument except the emitter itself. It basically implements the selection operator. It

interacts with an archive (container) to generate some solutions using a selection operator,

and returns those solutions. The ask method can be specified on each emitter, and it can

perform different operations for each emitter.

2.5.7.2 Tell

 This method is used to provide feedback to the selector operator and adapt its rules so

that to guide the selector operator towards better solution generation in the next iteration.

This adaptation mechanism, includes updating the archive (=container) based on the

solutions given as argument, and using a policy for adding solutions to the container with

the help of a population score. The tell method usually takes as arguments some solutions

(e.g. the solutions given from the ask method), the performance of each solution

(objective values) and the behavioural descriptor of each solution (and, of course, the

emitter it operates on). Like the ask method, the tell method can be specific on each

emitter and can perform different operations for each emitter.

2.5.8 Quality-Diversity Emitters/Algorithms

There are different QD Algorithms developed, as well as variations of them. Here we will

describe the most used ones in the literature on QD.

2.5.8.1 MAP-Elites

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is the first of the simplest

and most well-studied QD algorithms that were also the first to introduce the concept of

Illumination. It was inspired by Novelty Search + Local Competition (NS+LC) [5] and

the Multi-Objective Landscape Exploration algorithm (MOLE) [26]. In a few words,

MAP-Elites generates a large diversity of high-performing solutions that are different

according to specific features of interest. MAP-Elites explores more of the available

solutions search space, and it tends to find a better overall solution than state-of-the-art

search algorithms. Because of Isotropic Gaussian Distribution in its core, it is also called

MAP-Elites Iso to differentiate it from other variations.

35

Figure 2.8. MAP-Elites pseudocode from Mouret and Clune [1]

MAP-Elites is quite simple, both conceptually and to implement. The pseudocode of the

algorithm can be seen above.

2.5.8.1.1 Algorithmic Decisions

Initially, for the algorithm to work, three decisions need to be made, described in the next

three steps:

First, a user chooses an objective function f(θ) that evaluates the performance of a solution

θ. For example, if searching for robot morphologies, the objective function could be how

fast the robot is.

Second, the user chooses the features of the solutions (N dimensions of solution variation)

to define the feature space. One feature (dimension of interest) for robot morphologies

could be how tall the robot is; another could be its weight, a third could be its energy

consumption per meter moved, etc. Using those features, we can define a behavioural

function m(θ) to return a 1-d vector of length N representing the solution's features.

Third, each feature (dimension of variation) is discretized based on user preference or

available computational resources. This granularity could be set manually or

automatically based on the available resources. For instance, if we have a feature space

defined by two features taking values between 0 and 1 inclusive, and we wanted to use

the n-dimension grid container, we could describe each dimension with ten cells. Thus 10

times 10 for both dimensions would give us 100 different behavioural descriptors (cells

representing a different combination of the two features in the feature space) to discretise

the feature space.

36

2.5.8.1.2 Mapping Solutions Descriptions to Solutions

Before we dive into the main steps of the algorithm, there are two things to consider:

First, Given a particular discretization, MAP-Elites searches for the highest performing

solution for each cell in the N-dimensional feature space. For example, MAP-Elites will

search for the fastest robot that is tall, heavy, efficient etc. The search is done in the space

of the descriptions of solutions, referred to as a search space. In our example, the search

space contains all possible descriptions of robot morphologies (note that we search the

space of descriptions of robot morphologies and not directly the morphologies or the

feature space). Using the Evolutionary jargon, the description of the robot morphology is

a genome or genotype, and the robot morphology itself is the phenotype, or px.

Second, there are two main ways two map genotypes (descriptions of solutions) to

phenotypes (actual solutions). Using direct encoding, in which each element in the

genome specifies an independent component of the phenotype [36, 37, 38]. In that case,

it is straightforward to map genotypes into phenotypes and then measure performance

and features (evaluating the phenotype in a simulator or the real world if necessary).

Using indirect encoding, also known as generative or developmental encoding, in which

information in the genome can be reused to affect many parts of the phenotype. The latter

showed that they could improve regularity, performance, and evolvability [36 - 45]. In

other words, a complex process can exist that maps genome x → to phenotype px → to

features bx and performance fx.

2.5.8.1.3 Main Algorithm

MAP-Elites starts by randomly generating λ genomes (created from a fixed distribution

θ ∼ N (0, I) where I is the covariance matrix of the distribution restricted to a

multiplication between a scalar 𝜎2 and an identity matrix 𝐼 ; in this case 𝜎2 is 1) and

determining the performance and features of each of them using the objective and

behavioural functions, respectively. In random order, those genomes are placed into the

cells to which they belong in the feature space. In the case when multiple genomes map

to the same cell, the highest-performing genome per cell is retained (there are also

variations of this step that can allow more than one). At that point, the algorithm is

considered fully initialized and repeats the following steps until a termination criterion is

reached.

37

(1) λ cells in the feature map are uniformly randomly selected, and the genomes of those

cells produce offspring’s via mutation and/or crossover. Each genome selected is

perturbed with a fixed-variance σ isotropic Gaussian noise. If θ is a chosen solution, then

the solution generated from that solution is going to be 𝜃′ = 𝜃𝑖 + 𝜎 · 𝑁 (0, 𝐼).

(2) The features and performance of the offspring solutions are determined with the use

of the behavioural and objective functions, and for each offspring solution, (a) if its

corresponding cell is empty, the offspring is placed in the cell, or (b) if the offspring is

higher-performing than the current genome stored in the cell, then the latter is replaced

(discarded from the container) by the former.

There are a lot of conditions that can be used as termination criteria, such as if a set

amount of time expires, a fixed amount of computational resources are consumed, or

some property of the archive is accomplished (e.g. percentage of the container’s cells

being filled).

2.5.8.1.4 MAP-Elites Details

MAP-Elites does not guarantee to fill all the cells in the feature space because:

 (1) There may be no genome that maps to a particular cell in the feature space. For

example, it may be impractical for a robot to have a certain height and weight (i.e. due to

laws of nature).

(2) Even if a genome exists for a specific cell of the feature space, the algorithm may not

generate a genome for that cell.

Moreover, MAP-Elites can map many genotypes to the same cell in the feature space. In

reality, there might be an infinite number of genotypes for some or all cells of feature

space. For example, many different blueprints of robot morphology can produce a robot

with the same height, weight, and energy consumption. Thus, because of this difficulty

in understanding with certainty which cells of the feature space will be filled with

genomes, it is not possible to consider searching the feature space directly.

2.5.8.2 MAP-Elites (Iso-LineDD)

Multi-dimensional Archive of Phenotypic Elites with Isotropic and line Distance-

Dependent variation is a variation of MAP-Elites that differs only on the variation step.

More specifically, it picks two genotypes from the container (instead of one) and mutates

38

one of them using Isotropic Gaussian Noise (just in MAP-Elites) plus the distance

between those two genotypes (their distance simulates the correlation between the two

solutions). Below we describe in depth some concepts and, finally the Iso-LineDD

variation operator.

2.5.8.2.1 Elite Hypervolume

Vassiliades and Mouret [19] supported that all the high-performing solutions (named

elites) of the search space, as found by MAP-Elites, are likely to be concentrated in a sub-

part of the genotypic space. This statement was derived from the observation that many

genotypes can be mapped to the same behavioural cell in the feature space because the

relationship between a genotype and its behaviour can be non-linear. Thus high-

performing solutions can be located around the same area. Therefore, they introduced the

“elite hypervolume”, describing this subpart of genotypic space that can be seen in the

image below.

Mathematically, an Elite Hypervolume H is the subset of the n-dimensional valued

genotype space, assumed symbolized X (H ⊂ X), that encloses a set of m individuals,

E, each of them being the highest-performing solution (i.e. an elite) of its

corresponding are/niche in the feature space (= behaviour space):

𝐸 = {a𝑟𝑔 max
𝑥1

𝑓(𝑥1) , … , a𝑟𝑔 max
𝑥𝑞

𝑓(𝑥𝑞)} ⊆ 𝐻 𝑠. 𝑡. 𝑥𝑖 ∈ 𝐶𝑖

Where 𝐶𝑖 ⊂ 𝑋, and 𝐶𝑖 is the subset of the genotype space that corresponds to the ith

region in feature space, for i = 1 … m, m ≤ k (k is the niche capacity).

The goal of an Illumination algorithm with the Elite Hypervolume is to find the set E

since finding the H is computationally expensive.

39

Fig 2.9. The concept of Elite Hypervolume from Vassiliades and Mouret [19]

2.5.8.2.2 Directional Variation

Vassiliades and Mouret [19] used the idea of elite hypervolume to support that if we

assume that we have two genotype elites that share a large part of their genome (part of

their solutions’ descriptions is similar), then we could bias the variation operator

(variation operator applied on genotypes) to guide the genome generation towards

producing new candidates in the elite hypervolume, and thus finding other elites more

efficiently.

These similarities between different genotype elites can be extracted by extracting

correlations on the level of the genotypes and then sampling new genotypes based on

those correlations. For example, such a way of generating new genotypes can be done

using a multivariate Gaussian distribution N (µ, Σ), where the covariance matrix Σ models

the correlations.

Below you can see three different ways of sampling new genotypes using genotypes’

similarities even with the way mentioned above. The different approaches can create a

different variation operator for a QD Algorithm. Below you can see a description of three

of them from Vassiliades and Mouret [19]:

40

2.5.8.2.2.1 Iso

Use an Isotropic Gaussian distribution to sample new elites around one genotype. The

second elite is not used. This selection operator is the one used by the MAP-Elites.

2.5.8.2.2.2 LineDD

Distance-Dependent line variance (LineDD) uses the correlation between two elites and

samples a new elite around the first genotype but only across the line that connects the

two elites.

2.5.8.2.2.3 Iso + LineDD

It is a combination of Iso + LineDD operators that generates a new elite from a two-

parent elite by sampling a new elite around the first elite using Isotropic Gaussian

distribution biased towards the direction of correlation of the second elite thus taking into

consideration the correlation between those two elites.

More specifically, this selector operator works as follows:

1) Select uniformly randomly two elite genotypes 𝑥𝑖 and 𝑥𝑗 from the container.

2) Generate a new genotype as follows:

𝑥𝑖
′ = 𝑥𝑖 + 𝜎1 · 𝑁(0, 𝐼) + 𝜎2 · (𝑥𝑗 − 𝑥𝑖) · 𝑁(0,1)

Note that the direction used here is considered positive 𝑥𝑗 − 𝑥𝑖, whereas we could also

use a negative direction, that is, 𝑥𝑖 − 𝑥𝑗 in the equation above.

Fig 2.10. Variation Operators that use the Direction Correlation between two elites to bias the variation of one

of them from Vassiliades and Mouret [19]

41

Note that, in the variation operators mentioned above, we used the word elite referring to

elites of Elite Hypervolume because those three variation operators were a discussion on

why Iso+LineDD could perform better especially when used on an Elite Hypervolume.

2.5.8.3 CMA-ME

Covariance Matrix Adaptation MapElites (CMA-ME) is a scheduling algorithm that

combines MAP-Elites and CMA-ES for an improved search of solutions in search space.

CMA-ME introduced the concept that the emitters discussed above can be defined using

specific types of emitters that are an extension of CMA-ES instances.

To clarify how CMA-ME is an emitter that uses emitters, consider the pseudocode below

of the general structure of CMA-ME. That is, CMA-ME generates solutions in search

space in a round-robin fashion. The solutions are generated using emitters. Each solution

is generated in the same way for all emitters by sampling from the distribution N(m, C).

The method generate_solution below is the ask method from the Emitters framework

above, and it operates in the same way for each emitter working with.

On the other hand, the method return_solution is the tell method from the Emitters

framework above and represents the procedure for adapting the sampling distribution(the

Covariance Matric of distribution N(m, C)) of an Emitter and maintaining the sampled

population for further processing in next iterations. Here the tell method depends on the

type of each emitter since it requires different operations per Emitter.

There are three different types of CMA-ME Emitters: Improvement, Optimising and the

Random Direction, all of which are discussed in detail below.

42

Fig 2.11. Pseudocode Snippet of general CMA-ME from Fontaine, Nikolaidis, Togelis and Hoover [6]

2.5.8.3.1 CMA-ES Instances vs CMA-ME Emitters

An optimizing Emitter is an extension of a CMA-ES instance that uses the CMA-ES

instance according to a rule for ranking solutions to Each emitter maintains a sampling

mean m, a covariance matrix C, and a parameter set P that contains additional CMA-ES

related parameters (e.g., evolution path). One of the differences between Emitters and

CMA-ES instances is that CMA-ES instances increase the likelihood of successful future

evolution steps, whereas CMA-ME Emitters take an additional step to what a CMA-ES

instance does by adjusting the ranking rules that guide which solutions are updating the

container should be used to update the Covariance Matrix of a CMA-ES Instance used by

the Emitter. This guided update of the Covariance Matrix is done to maximize the

likelihood that future steps in a given direction will result in archive improvements.

Another difference is that while CMA-ES restarts its search based on the best current

solution, emitters rank the solutions that will update the container based on specific to

each Emitter rules that guide when the search will be restarted and when the sampling

distribution of a CMA-ES instance should be adapted.

2.5.8.3.2 Improvement Emitter

Improvement emitters adjust their goals based on where progress (improvement in the

performance of the archive) is currently being made. The pseudocode above shows the

implementation of the return_solution (method tell of the CMA-ME Emitter).

At each iteration, solutions are generated from distribution N(m, C), and each of them is

given to the tell function of the emitter (return_solution method as appears in the

pseudocode above). Each solution given to the return_solution method is mapped to a

behaviour 𝛽𝑖 and a cell 𝛭[𝛽𝑖] in the archive (container or map). If the cell is empty (line

2), or if 𝛽𝑖 has higher fitness than the existing solution in the cell (line 6), 𝑥𝑖 is added to

the new generation’s parents, and the container (=archive) is updated. Note that each

solution's improvement to the archive is recorded (lines 4 and 7). The process repeats

until the generation of solutions 𝑥𝑖 reaches size λ (line 9), where the emitter is adapted.

When the time to adapt the Emitter comes, if there are parents that improved the archive,

all the parents are ranked before being given to update the Emitter’s m, C and P

parameters. They are ranked firstly based on whether they fill a new cell, then by whether

43

they improve an existing one and last by not changing anything. Each of those groups is

ranked in descending order by the improvement in the objective value that they provided

to the archive when they were added to the archive (i.e. ranked by the difference between

their performance and the performance of the solution occupying the cell they refer to in

the container; if the cell is not occupied then the performance of the parent is considered

only) (line 11). If, at an iteration, the parents do not improve the map, the emitter

restarts(line 15).

Fig 2.12. Pseudocode Snippet of CMA-ME Improvement Emmiter’s tell (here called return_solution) method

from Fontaine, Nikolaidis, Togelis and Hoover [6]

2.5.8.3.3 Optimising Emitter

Optimising Emitter is an exploration to ask the question of whether the restarts alone in

CMA-ES are enough to promote good exploration as they are in multi-modal methods

[6].

44

Overall, at each iteration, solutions are generated from distribution N(m, C), and then the

solutions that will update the Emitter later are the ones that improve the archive (fill an

empty cell of the container or replace a solution in a cell with a more high-performing

solution). Those solutions are recorded and used when λ such solutions are collected to

update the parameters m, C and P of the Emitter. Before they update the Emitter, they are

ranked in descending order by their performance (objective values), prioritising the

solutions that fill empty cells in the archive. This can be thought of as going toward areas

in the space with high-performing solutions that are likely to discover new solutions but

not necessarily improve existing archive cells.

The only conceptual difference with a CMA-ES instance is that when the Emitter is

restarted, the mean m of the distribution N(m, C) selected is chosen from the location of

an elite rather than the fittest solution discovered so far.

2.5.8.3.4 Random Direction Emitter

Random direction Emitter tries to perform a “random walk” in the feature space to find

high-performing solutions. This means that it operates a search in the feature space. But

doing so poses the issue of working with a non-linear encoding or mapping from solutions

(genotypes) to behavioural descriptors, thus making the exact calculation of the inverse

mapping from a behavioural descriptor to the right solution very difficult or even

impossible. Random direction emitter is designed to estimate this inverse encoding of this

correspondence problem.

In general, at each iteration, solutions are generated from the distribution N(m, C), and

the solutions that will update the Emitter later are the ones that improve the archive (fill

a new cell of the container or replace a solution with a more high-performing solution).

Those solutions are recorded and used when λ such solutions are gathered to update the

parameters m, C and P of the Emitter. Before they update the Emitter, they are ranked in

descending order based on their projection value (dot product between a behaviour

descriptor of a solution and a bias vector denoting the direction which is defined when

initializing or restarting the CMA-ES instance), giving priority first to the solutions that

fill empty cells in the archive.

More specifically, when a Random Direction Emitter restarts, it emulates a step in a

random walk by selecting a bias vector 𝑣𝛽 that indicates a random direction to move

45

toward in behaviour space. At later iterations (where a restart does not happen) and when

having accumulated λ solutions that improve the archive (parents of the next generation),

this random direction selected is enforced by creating a new covariance matrix for the

CMA-ES instance such that it biases the search in the direction 𝑣𝛽 . To create this new

covariance matrix, solutions 𝜃𝑖 from the search, space is mapped to behaviour space 𝛽𝑖.

The mean 𝑚𝛽 of the behaviour descriptors of the λ parents is calculated in behaviour

space, and each direction of the parents’ behavioural descriptors with respect to the mean

is calculated. The parents used to update the Emitter are ranked by their projection value

(dot product between behaviour descriptor and the bias vector 𝑣𝛽) against the line 𝑚𝛽 +

𝑣𝛽. If, at an iteration, none of the solutions examined to improve the archive, the emitter

restarts from a randomly chosen elite with a new bias vector 𝑣𝛽.

2.5.9 Differentiable Quality-Diversity (DQD)

Differentiable Quality Diversity (DQD) Optimisation is an extension of Quality Diversity

concerned with how the gradients of the objective and behavioural functions can help

guide the search for high-performing yet qualitatively diverse solutions in QD. It was

introduced by Fontaine and Nikolaidis [4].

2.5.9.1 DQD Problem Definition

To help define the DQD problem, let us relax some constraints of the general QD

Problem first. First of all, let us consider that the feature space (or behaviour space) B

𝑅𝑘 is discretised (defined above in the containers section and used for the first time in

MAP-Elites) via a tessellation method. Let us call T the tessellation of B and let us assume

that the tessellation T has M unique cells. In each cell i a solution 𝜃𝑖 can be stored. The

occupants of the cells in T at any single moment form an archive of solutions. Each

solution can be evaluated using an objective function f(𝜃𝑖) that measures its performance

and a behavioural function m(𝜃𝑖) that provides its features or behaviour descriptors that

determine its cell position in the Tesselation T. Thus, the goal of QD is to find a set of

solutions 𝜃𝑖 , i ∊ {1, … ,M}, such that each 𝜃𝑖 occupies one unique cell in T and that each

solution maximises the objective value of its cell in the archive:

𝑚𝑎𝑥 ∑𝑓(𝜃𝑖)

𝑀

𝑖=1

46

Using this relaxed definition of QD, the DQD problem is defined as a QD problem where

both the objective function f and the behaviour function m are first-order differentiable.

2.5.9.2 Gradient Arborescence

The idea of Gradient arborescence is similar to the idea of gradient ascent. It makes

greedy ascending steps based on the objective function f. In addition to the ascending

steps trend towards higher objective values, gradient arborescence, unlike gradient ascent,

encourages exploration by branching via the behavioural function m. Note that there is

no meaning of ascending or descending with the behavioural function m since the goal is

not maximisation nor minimization of a function, but instead an exploration of its value

space. The term arborescence was adopted from the minimum arborescence problem in

graph theory [48].

2.5.9.3 DQD Emitters/Algorithms

2.5.9.3.1 OMG-MEGA

Objective and Measure Gradient MAP-Elites via Gradient Arborescence (OMG-MEGA)

is the exploitation of the gradients of an objective function f and a behaviour function m

that are first-order differentiable derived in MAP-Elites.

The idea is that maximizing a linear combination of scalar behavioural functions (also

called here measures) ∑ 𝑐𝑗
𝑘
𝑗=1 𝑚𝑗(𝜃), where c is a k-dimensional vector of coefficients

(or otherwise maximizing the dot product of a vectorized behavioural function m with a

vector of coefficients c: 𝑚 · 𝑐) enables movement in a k-dimensional feature space.

Including the objective function f in the linear sum enables movement in an objective-

measure space. Thus, the problem can be considered maximizing the following function:

𝑔(𝜃) = |𝑐0|𝑓(𝜃) + ∑𝑐𝑗

𝑘

𝑗=1

𝑚𝑗(𝜃)

Note that the coefficient in front of the objective function needs to be positive so that

maximizing g will result in maximising g (and not minimising). The direction in the

feature space is determined by the sign and magnitude of the coefficients 𝑐𝑗.

Based on this maximization problem, a gradient function can be derived that can be used

to perturb a solution θ (in the variation operator). This gradient function is:

47

∇g(𝜃) = |𝑐0|∇𝑓(𝜃) + ∑𝑐𝑗

𝑘

𝑗=1

∇𝑚𝑗(𝜃)

Thus, the gradient perturbation/variation of a solution 𝜃𝑖 is defined as:

𝜃′ = 𝜃𝑖 + ∇g(𝜃𝑖) = |𝑐0|∇𝑓(𝜃𝑖) + ∑ 𝑐𝑗

𝑘

𝑗=1

∇𝑚𝑗(𝜃𝑖)

The coefficients c are sampled from 𝑁(0, 𝜎𝑔𝛪). Last, the gradients are normalized to

balance the contribution of each function.

Below you can see more information on how this variation operator can be used in MAP-

Elites creating two variations of DQD Algorithms.

2.5.9.3.1.1 OMG-MEGA (iso)

The algorithm works similar to the MAP-Elites with Isotropic Gaussian distribution. It

repeats the four steps below until a termination condition:

1. Initially, the algorithm selects λ solutions from container and perturbs them with

Isotropic Gaussian noise.

2. It derives each solution's objective value and behaviour descriptor by evaluating

it with the objective and behavioural functions, respectively. It also derives the

derivatives of the objective function f and the behavioural function m with respect

to each solution, vectors ∇𝑓and ∇m, respectively.

3. Uses the gradient perturbation for OMG-MEGA above to create a new solution

for each of the initial λ solutions.

4. Stores the original λ solutions as well as the perturbed ones in the container.

2.5.9.3.1.2 OMG-MEGA (line)

The algorithm works exactly as the OMG-MEGA (iso), with the only difference the step

1, where instead of Isotropic Gaussian distribution, it uses the selection operator with Iso

+ LineDD.

2.5.9.3.2 OG-MAP-Elites

Objective Gradient MAP-Elites (OG-MAP-Elites) operates only on performing

ascending steps on the objective function and not using the gradients of the behavioural

function to explore the feature space. Thus, the maximization is done on the function:

48

𝑔(𝜃) = |𝑐0|𝑓(𝜃)

And therefore, the gradient perturbation/variation of a solution 𝜃𝑖 is defined as:

𝜃′ = 𝜃𝑖 + ∇g(𝜃𝑖) = |𝑐0|∇𝑓(𝜃𝑖)

2.5.9.3.2.1 OG-MAP-Elites (iso)

The algorithm works exactly as OMG-MEGA, but instead of considering the derivatives

of both the objective and behavioural functions, it only considers the ones for the

objective function. Other than that, they are exactly the same.

Initially, the algorithm samples λ solutions from Isotropic Gaussian distribution. It repeats

the four steps below until a termination condition:

1. It derives each solution's objective value and behaviour descriptor by evaluating

it with the objective and behavioural functions, respectively. It also derives the

derivatives of the objective function f, vector ∇𝑓.

2. Uses the gradient perturbation for OG-MEGA above to create a new solution for

each of the initial λ solutions.

3. Stores the original λ solutions as well as the perturbed ones in the container.

4. Stores the original λ solutions as well as the perturbed ones in the container.

2.5.9.3.2.2 OG-MAP-Elites (line)

The algorithm works exactly as the OG-MEGA (iso), with the only difference the step 1,

where instead of Isotropic Gaussian distribution, it uses the selection operator with Iso +

LineDD.

2.5.9.3.3 CMA-MEGA

Covariance Matrix Adaptation MAP-Elites via a Gradient Arborescence (CMA-MEGA)

uses Gradient Arborescence in the same way as OMG-MEGA, but in addition to that, it

uses CMA-ES to optimise the c coefficients of the g(θ) sum so that to search for high-

performing solutions and improve the exploration of the feature space.

More specifically, the goal remains the same as in CMA-MEGA. To maximise the

following sum:

49

𝑔(𝜃) = |𝑐0|𝑓(𝜃) + ∑𝑐𝑗

𝑘

𝑗=1

𝑚𝑗(𝜃)

Where ∑ 𝑐𝑗
𝑘
𝑗=1 𝑚𝑗(𝜃) enables movement in a k-dimensional feature space and |𝑐0|𝑓(𝜃)

enables movement in objective space. The c are coefficients that are adjusted using CMA-

ES. From the function above, the following gradient equation can be derived:

∇g(𝜃) = |𝑐0|∇𝑓(𝜃) + ∑𝑐𝑗

𝑘

𝑗=1

∇𝑚𝑗(𝜃)

Thus, the gradient perturbation of the solutions using the gradient equation is:

𝜃′ = 𝜃𝑖 + ∇g(𝜃𝑖) = |𝑐0|∇𝑓(𝜃𝑖) + ∑ 𝑐𝑗

𝑘

𝑗=1

∇𝑚𝑗(𝜃𝑖)

In OMG-MEGA, the coefficients c in the equations above are sampled from a fixed

Gaussian distribution 𝑁(0, 𝜎𝑔𝛪). The idea of CMA-MEGA is to adapt those coefficients

to help both the exploration of the feature space and the search for high-performing

solutions.

Thus the selection of coefficients c is considered an optimization problem with the goal

of maximizing the QD objective:

𝑚𝑎𝑥 ∑𝑓(𝜃𝑖)

𝑀

𝑖=1

The coefficients c are modelled as a distribution of a k + 1-dimensional Gaussian N (µ,

Σ). Given those Gaussian distributions and a solution θ, the coefficients can be sampled

from the distribution c ∼ N (µ, Σ), and can be used to perturb θ using the gradient

perturbation above. Last, the N (µ, Σ) Gaussians are adapted towards the direction of

maximum increase of the QD objective.

The way N (µ, Σ) is updated is: Sample a population of λ coefficients from 𝑐𝑖 ∼ N (µ, Σ)

and generate λ solutions 𝜃𝑖 using the gradient perturbation. Then compute 𝛥𝑖 from CMA-

ME’s improvement ranking (𝛥𝑖 is the improvement that each solution adds to a cell of

50

the archive; the same approach as the CMA-ME Improvement Emitter) for each candidate

solution 𝜃𝑖. Update N (µ, Σ) with CMA-ES update rules for the ranking 𝛥𝑖 To dynamically

adapt the distribution of coefficients c to maximize the QD objective.

Fig. 2.13: Overview of CMA-MEGA from Fontaine and Nikolaidis [4]

The figure below shows the pseudocode for CMA-MEGA. In line 3, a current solution is

evaluated, returning an objective value f, vector of behaviour values m, a gradient vector

for the objective function (gradient of a function with a vector as input and a scalar as

output) and a Jacobian matrix for the behaviour function (gradient of a function with a

vector as input and a vector as output). The objective and behaviour gradients are

normalised for stability (line 4). Then a solution is added to the archive (line 5) only if

the solution discovers an empty cell in the archive or if it improves an existing cell. The

feature space is tessellated, and thus the behavioural function m places a solution θ into

one of the M cells of the archive. In line 7, a population of λ coefficients is sampled from

a multi-variate Gaussian retained by CMA-ES. In lines 8-9, the solutions are perturbed

using the gradient perturbation equation described above. Then the perturbed solutions

are evaluated (line 10) and added to the archive (line 11). Note that adding the new

solutions to the archive includes computing the improvement that each solution adds to

its cell in the archive. This improvement 𝛥𝑖 is the difference in the objective value

between the sampled solution 𝜃𝑖 and the existing solution, if one exists, or as the absolute

objective value of the sampled solution if 𝜃𝑖 belongs to an empty cell. In line 13, those

improvement values are used to rank the sampled gradients ∇𝑖. As in CMA-ME, the

ranking prioritises first all samples that discover new cells and subsequently all samples

that improve existing cells, retaining an in-class descending order by their improvement

value 𝛥𝑖. Then an ascending gradient step is computed as a linear combination of

gradients (line 14), following the recombination weights wi from CMA-ES [35] based on

the computed improvement ranking. These weights correspond to the log-likelihood

51

probabilities of the samples in the natural gradient interpretation of CMA-ES [49].

Afterwards, in line 16, CMA-ES adapts the multi-variate Gaussian parameters μ and Σ as

well as internal search parameters p of the Emitter, using the improvement ranking of the

coefficients.

2.5.9.3.4 CMA-MEGA (ADAM)

The only difference between CMA-MEGA and CMA-MEGA(ADAM) is in the use of

the ascending gradient step. That is, the ascending gradient step computed in line 14 and

used in line 15 is now used in an Adam gradient optimization step [50] that replaces line

15.

Fig. 2.14: Pseudocode of CMA-MEGA from Fontaine and Nikolaidis [4]

2.5.9.4 Importance of Normalizing Gradients in DQD

Fontaine and Nikolaidis [4] showed with experiments that using unnormalized gradients

is likely to allow the objective gradients to dominate over behaviour gradients and for

positions in feature space far ay from an optimum. This was observed with OMG-MEGA

Emitter that when was used with unnormalised gradients, it filled cells near the global

optimum but did not fill cells further below in the feature space to positions with lower

52

objective values. In contrast, when it was used with normalized gradients, it could fill the

archive more evenly.

53

Chapter 3

Domains

3.1 Rastrigin Function with a simple encoding .. 53

3.2 Rastrigin Function with Distorted Behavior Space .. 54

3.3 Arm Repertoire .. 56

A QD problem requires an objective and a behavioural function. Each objective and

behavioural function selection can define a different domain. Initially, we conducted our

experiments on three toy domains (i.e. experimental domains with relatively simple

functions) which we define below:

3.1 Rastrigin Function with a simple encoding

3.1.1 Objective Function – rastrigin(x)

We used the Rastrigin function (2.1.15); which takes as input a vector of n values; as an

objective function with the additional modifications:

1. The Rastrigin function is shifted so that the optimal value is at x = 2.048. This is

done to avoid having the global minimum point of the rastrigin function at

position x’ = [0,0,0,...,0], i.e. f(0,0,0,...,0) = 0 because the position x’ = [0,0,0,...,0]

is usually used as an initial point for the search.

2. We flip the function up-side-down so that the problem becomes a maximization

problem (because Rastrigin is used in minimization problems), and we normalize

its output value between 0 and 100 (inclusive) by considering that the maximum

output it can have is 0 (best solution) and the minimum (worst solution) to be at

the value of the Rastrigin function at -5.12 minus the shift (=2.048).

Refer to A.1.1 for the implementation of the objective function.

3.1.2 Behaviour Function – b_simple(x)

54

The behaviour function is defined using a simple encoding from a description of a

solution (genotype) to the behaviour descriptor. From a genotype x described by a vector

< 𝑥1, 𝑥2, … , 𝑥𝑛 > the behavioural function returns as a behavioural descriptor of the

genotype a vector containing the first two entries of the genotype’s vector; i.e. < 𝑥1, 𝑥2 >.

The partial derivative of the b_simple function with respect to a genotype vector <

𝑥1, 𝑥2, … , 𝑥𝑛 > is the Jacobian matrix

[
1 0 0 … 0
0 1 0 … 0

]

Note that the boundaries of the behavioural space are [0,1] for each dimension of the

behavioural space.

For the implementation of this function, please refer to section A.1.2 (Appendix A).

3.2 Rastrigin Function with Distorted Behavior Space

3.2.1 Objective Function – rastrigin(x)

The same as was defined in section 3.1.1.1.

3.2.2 Behaviour Function – b_distorted(x)

This behaviour function aims to introduce a high degree of distortion in the behaviour

space. Distortion in a behaviour space is caused by dimensionality reduction from search

space to behaviour space. The dimensionality reduction does not need to be complex. A

linear projection from a high-dimensional search space to a low-dimensional behaviour

space distorts the distribution of solutions in behaviour space pretty well. The behavioural

function b_distorted(x) is defined with the help of a clip function:

𝑐𝑙𝑖𝑝(𝑥𝑖) = {

𝑥𝑖 𝑖𝑓 − 5.12 ≤ 𝑥𝑖 ≤ 5.12
5.12

𝑥𝑖
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

And the b_distorted(x) is defined as:

b_distorted(x) = (∑𝑐𝑙𝑖𝑝(𝑥𝑖),

⌊
𝑛
2
⌋

𝑖=1

∑ 𝑐𝑙𝑖𝑝(𝑥𝑗)

𝑛

𝑗=⌊
𝑛
2
⌋+1

)

55

Note that the partial derivative of the function for any value of the input values in [−5.12,

5.12] is 1.

What makes this behavioural function more difficult for a QD algorithm to navigate in

the behavioural space defined by it is that the behavioural descriptors of a solution are

computed from all the parameters of the solution’s descriptions and not a subpart of it

like in the 3.1.2. In addition to this, when a solution description’s parameters contribute

equally to the definition of a behavioural descriptor (i.e. are equal), then a QD Algorithm

needs to move in a direction in the search space, taking into consideration potentially

updating all of the parameters so that to navigate to extremes in the behaviour space. That

is, there are more parameters to be updated to navigate in the behaviour space. The

difficulty becomes bigger as the size of the problem becomes bigger, i.e. the number of

the Rastrigin function’s dimensions increases. This can be seen from the observation that

when sampling uniformly randomly solutions from the search space and projecting them

to the behaviour space, each behavioural descriptor is the sum of n uniform random

variables that, when divided by n for normalization between 0 and 1, result in the Bates

Distribution shown in the figure below. This observation and the behaviour function were

first introduced in Fontaine, Nikolaidis, Togelis and Hoover [6].

Fig. 3.1: A Bates Distribution as it changes with the number of random variables and shows the effect of narrowing

behaviour spaces when formed by a linear projection from Fontaine, Nikolaidis, Togelis and Hoover [6].

With this function, the authors expected the CMA-ME Algorithm to perform better than

MAP-Elites by better covering the distorted behaviour space.

56

Note that the boundaries of the behavioural space are [−
5.12·𝑛

2
,
5.12·𝑛

2
] for each dimension

of the behavioural space.

For the implementation of this function, please refer to section A.1.3 (Appendix A).

3.3 Arm Repertoire

Arm repertoire is a problem where an arm tries to move in space. The arm is fixed in one

position, and it changes the angles of different joints to accomplish a goal.

Fig. 3.26: Arm Repertoire visualization from the Pyribs Tutorial [65].

The arm has two sets of parameters, the lengths of each link between two joints and the

angles of the joints. Consider the lengths of the links to be a vector v= <𝑙1, 𝑙2, …,𝑙𝑛> and

the angles of the joints to be x= <𝜃1, 𝜃2, …,𝜃𝑛>.

3.3.1 Objective Function – grasp_obj(x)

The goal of the objective function grasp_obj(x) is to minimise the variance of the joint

angles. That is, to maximise the negative of the variance of the joint angles. It is defined

as:

grasp_obj(x) = 100 · (1 −
∑ (𝑥𝑖 − 𝜇)𝑛

𝑖=1

𝑛 − 1
)

57

where μ is the mean of the joint angles, note that the input parameters to the objective

function are the angles of the joints, whereas the links are considered constants and are

decided beforehand (in our experiments, we used unit-length links).

Note that the boundaries of the behavioural space are [−𝑠, 𝑠] where 𝑠 = ∑ 𝑙𝑖
𝑛
𝑖=1 for each

dimension of the behavioural space.

The implementation of this function can be found in A.1.4 (Appendix A).

3.3.2 Behavioural Function – grasp_bds(x)

The behavioural function grasp_bds computes the final x and y coordinates of the arm’s

end-effector using the forward kinematics equations

(https://en.wikipedia.org/wiki/Forward_kinematics):

𝑥 = 𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) + ⋯+ 𝑙𝑛 cos(𝜃1 + 𝜃2 + ⋯+ 𝜃𝑛)

𝑦 = 𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2) + ⋯+ 𝑙𝑛 sin(𝜃1 + 𝜃2 + ⋯+ 𝜃𝑛)

An implementation of this function can be found in section A.1.5 (Appendix A).

Again, the links are considered constants and are decided beforehand (in our experiments,

we used unit-length links). Thus, the input parameters to the function are the joint angles.

https://en.wikipedia.org/wiki/Forward_kinematics

58

Chapter 4

Design & Implementation

4.1 Hardware Acceleration for Machine Learning .. 58

4.2 JAX .. 59

4.3 Developing Optimized and Efficient QD Algorithms on JAX 64

4.4 Implementations of QD and DQD Emitters on Jax ... 72

4.5 Optimizers .. 73

4.6 Containers .. 73

4.1 Hardware Acceleration for Machine Learning

In the modern time, where vast amounts of data are easily accessible, Machine Learning

and especially Deep Learning can be significantly benefited. The only request is the ask

for speed. That is, the processing of a vast amount of data in a timely fashion. This is done

with the use of specialized hardware accelerators.

In the mid-2000, Graphical Processing Units (GPU) began being used to train neural

networks[59] because of their capabilities of high parallelization and high memory

bandwidth. With this opportunity, the general-purpose GPUs started being introduced in

every part of computation in Sciences, especially with access to specialized GPU

compatible code for Deep Learning methods [60]. This enabled a few orders of magnitude

faster training of networks on general-purpose GPUs than on CPUs.

To exploit the incredible power of GPUs, accessible and efficient frameworks have been

developed, such as Tensorflow[61], Torch [62], Pytorch[63] and Jax[64], to allow

running different numerical computations on GPUs efficiently. The access to such

frameworks caused an explosion in the development and research conducted on Machine

and Deep Learning and allowed people without any experience in how to use GPUs to

build fast ML and DL models.

59

Based on these, our decision was to use the JAX to implement our QD Algorithms and

conduct our experiments.

4.2 JAX

4.2.1 Introduction to JAX

JAX is a Machine Learning framework developed for bringing together Autograd (library

for automatically differentiating native Python and Numpy code) and XLA (Optimising

Compiler for accelerated Linear Algebra and Machine Learning used with TensorFlow)

and making them available to be used on specialized accelerators, i.e., GPUs and TPUs.

Even though it is developed for specialized accelerators, JAX also supports CPU as well.

The two main powers of JAX are the jit (just in time compilation optimiser) and grad

(auto-differentiation of methods) that are developed in accordance with XLA and

Autograd, respectively.

4.2.2 JAX JIT

As we mentioned, JAX uses XLA to compile and run NumPy programs on GPUs and

TPUs. JAX’s compilation for the specialized accelerators happens under the hood by

default, with library calls getting just-in-time (jit) compiled and executed.

These just-in-time compilations performed by JAX are also available to be performed by

a user. JAX provides the one-function API for jit to just-in-time compile Python functions

into XLA-optimized kernels.

Note that code compiled with jit is always executed on the specified device that we

configured JAX to run with. Thus, all data used by the optimised code (passed as

arguments to a jit compiled function) are transferred to the corresponding device. This

means that the overhead of moving the data to the device needs to be taken into

consideration when developing code for JAX.

4.2.3 JAX GRAD

In addition to optimizing code with the JAX compiler, JAX provides an API interface to

transform functions. One transformation is the Automatic Differentiation. That is, JAX

provides, among many others, the function grad that can compute gradients of functions.

60

JAX’s grad is used to compute the derivatives of functions that can take as input any tree-

like data structure but which return a scalar value. More advanced autodiff methods for

allowing the computation of gradients on methods that return multiple values, JAX

provides the jacfwd and jacrev for forward-mode jacobian-vector computation and

reverse-mode jacobian-vector computation, respectively.

4.2.4 JIT Constraints

JAX provides a set of amazing capabilities for helping you develop efficient algorithms

that are able to run on many devices (GPU, TPU and CPU as well) with absolutely no

change to your code. The capabilities come to the point that even JAX optimized code

for CPUs can run faster on CPUs than similar code that is developed to run only on CPUs.

As you might understand, this power comes with a cost. Developing algorithms on JAX

is not the same as normally developing code in python. In order for JAX to optimize your

code for a specific device (i.e., using just-in-time compilation), JAX requires a set of

constraints in your python code to be true in order to optimize it. Let’s explore these

constraints by quickly overviewing the JIT mechanisms.

Jit works by tracing your code and by depending on the values of static variables. That is,

there are two main concepts of how jit works:

1. Jit (as well as other function transformations) works by tracing a pure Python

function (all data the function uses become available as arguments and all its

changes appear only on the outputs – no side-effects) to determine its effect on

the inputs

2. The inputs of a jit compiled function need to be of a predetermined shape and type

(i.e. static)

In addition to that JAX-JIT does not allow the use of conventional python if-statements

due to the difficulty of tracing multiple control flows in JAX compile-time. These

constraints are required so that by tracing the code and recording the exact sequence of

operations to be performed (jit compiling), we can use the same sequence of optimized

operations efficiently within XLA but with different inputs.

4.2.5 Static vs Traced Operations & Data

61

Static Data are the data that are available at compile time of a function with XLA, whereas

traced data are the data that become available at the run-time in XLA.

In the same way, static operations are evaluated at compile-time in Python, whereas traced

operations are compiled and evaluated at run-time in XLA. The distinction of static vs

traced operations in code is supported by the introduction of the JAX’s implemented

library of NumPy, which makes available most of the NumPy methods but as traced

operations. That is, someone should use JAX’s NumPy when they want traced operations

in JAX and NumPy for static operations.

To understand the distinction between those two things, consider the following example:

import jax

import numpy as np

import jax.numpy as jnp

def my_funct(x):

 return x.reshape(jnp.array(x.shape).prod())

x = jnp.ones((2, 3))

Optimise the my_funct and execute it

jax.jit(my_funct)(x)

Code Snippet 4.1: Example of error from JAX-JIT compilation due to the creation of an array with a non-static

shape

The code above will not work because at Python compile-time, the shape of x becomes

available to method my_funct, but because of the use of jax.numpy.prod instead of

numpy.prod the outcome of the jax.numpy.prod will give a traced value and not a static

one; thus, the function will not know what to do.

If we replace jnp.prod with np.prod it will work because np.prod is a static operation, and

thus it outputs static values and not traced values when used within jit compiled code.

The following code will work:

import jax

import numpy as np

import jax.numpy as jnp

def my_funct(x):

 return x.reshape((np.prod(x.shape),))

x = jnp.ones((2, 3))

62

Optimise the my_funct and execute it

jax.jit(my_funct)(x)

Code Snippet 4.2: Static Operations that can be JAX-JIT compiled

4.2.6 JAX Classes, Objects and Pytrees

As we mentioned above, JAX Jit compilation operates on pure functions, takes a set of

inputs and produces a set of outputs. Any set of side-effects like accessing or changing

global variables may cause the optimized code not to work properly.

At the same time, JAX optimized functions cannot receive and operate on any kind of

Object. The elementary data they accept are numerical data (i.e. integers, floating-point

numbers) but not strings. In addition to that, they can receive any tree-like data structure

built out of container-like Python objects. These data structures are called PyTrees, and

they include lists, tuples, and dictionaries. In general, there are two rules for creating

PyTrees: (1) an object that is not in the PyTree container registry of supported PyTrees is

considered a lead PyTree, (2) any object that is in the PyTree supported registry of

accepted PyTrees, and which contains PyTrees is considered a PyTree. Last, any other

object that is passed as an argument and used in a JIT-compiled code needs to be a data

class (i.e. flax.struct.dataclass). The definition of data classes allows someone to define a

class that can instantiate objects that are more considered primarily as objects carrying

data rather than carrying operations. Modifying a data class in the same way as modifying

attributes of a Python object is not permitted. The way to do that is by using the method

replace on the data class object in order to change the desired attribute. Objects of a data

class can also have instance methods but remember those methods cannot have side

effects on the objects. But, dataclasses are immutable. Thus, most of the time, it is more

desirable to define and use static methods of objects rather than instance methods.

4.2.7 JAX control flow

Function transformers that implement Auto-differentiation allow any control flow

operation to be used in the function. On the other hand, though, JAX JIT-compiled code

cannot use if-statements, nor for-loops and while-loops, unless those control flow

operations can be determined statically, i.e. with static data at JIT, compile-time.

More specifically, JIT optimization traces the output of a function to its inputs with the

goal of identifying an exact sequence of operations to be done. The if-statement splits the

63

flow of a program in two different directions. Tracing two different control flows can lead

to an exponential number of different outputs at the end, which would make compiling a

function impractical because of requiring a great amount of time and computer memory.

Fig. 4,1: Operators that can be used in JIT-compiled functions and GRAD transformed functions. Note that * denotes

that it is possible to use the loop only if the number of iterations is statically determined. The loop will be unrolled to

the contents of the loop's body as many times as the number of iterations. Taken from JAX’s official website tutorials

On the other hand, loops like for-loop and while-loop are allowed only if the number of

iterations of the loop can be determined at JIT compile time. Even in that case, JIT

compiling code that includes for-loops and/or while-loop takes a lot of time due to

unrolling the loop as many times as the number of iterations and which consequently can

lead to inefficient code.

To replace the conventional control-flow statements, JAX introduced methods that can

do approximately the same work as Python’s control flow, with the only cost that they

will be potentially performing more operations to accomplish them. More precisely, if-

statement in JIT-compiled code is accomplished with lax.cond method, which can be

considered equivalent to the function defined by the pseudocode below:

def cond(pred, true_function, false_function, operand):

 if pred:

 return true_function(operand)

 else:

 return false_function(operand)

Code Snippet 4.3: The meaning of cond function in JAX

The only consequence of using this method is that it leads to executing both the true and

the false functions provided as arguments. This might not be a problem even for expensive

64

operations because of the optimizations performed, but sometimes it might be a drawback

of performing a significantly more number of operations than a normal python code. To

avoid such cases, it is recommended that the lax.cond method does not use too time-

demanding functions for the true and false functions, in order not to see any performance

degrading.

In the same manner, JAX provides the lax.while_loop for the Pythonic while-loop and

the lax.fori_loop for the Pythonic for-loop, implemented with the low-level lax.scan

operation.

4.3 Developing Optimized and Efficient QD Algorithms on JAX

The implementation of the QD Algorithms we used in our experiments was done using

the JAX to allow our algorithms to be executed on GPUs. To do that, we wanted our

algorithms to be developed satisfying the following requirements:

1. Minimize the overhead of moving data between CPUs and GPUs

2. Use a custom-made framework to implement QD algorithms using the ask-tell

interface from Pycma [66]

3. Improve Emitters’ efficiency for GPUs

Below, we discuss the design and implementation decisions that led us to create efficient

implementations of QD Emitters on JAX and to create a new framework for developing

efficient QD algorithms on JAX.

4.3.1 Minimizing the overhead of moving data between CPU and GPU

To accomplish minimizing the time cost of moving data from CPU to GPU and vice versa,

we decided to minimize the number of times that we move data between GPU and CPU

by adopting two tactics:

1. The core logic of an iteration of a QD algorithm will be executed on GPU only

(Minimize the number of times data are moved between CPU and GPU)

2. All of the data that a QD algorithm will use at a specific iteration on the GPU will

be available to the GPU from the beginning of the iteration (Move all the required

data to the GPU from the beginning of the iteration), and no other data transfers

will take place for the rest of the iteration.

65

The last tactic allows iterations on GPU after the first one to use the already output

data from the previous iteration and thus the algorithm can run all the iterations on

GPU without any interrupt.

4.3.2 A new framework for building QD Algorithms with the ask-tell interface

Our algorithms on JAX were implemented using the ask-tell interface from Pycma [66].

More specifically, a QD Algorithm or Emitter provides two methods:

def ask(static_settings, emitter, repertoire, key)

Code Snippet 4.4: Method Signature of the ask method for a QD Emitter

def tell(static_settings, emitter, solutions, objective_values, behavior_values,

dead, repertoire, key)

Code Snippet 4.5: Method Signature of the tell method for a QD Emitter

Where static_settings is a named-tuple with static settings used to define complete

arguments of a method before compiling the method (the idea will be explained below),

the emitter is a data class holding data for the QD emitter; solutions is an array of

solutions, objective values are the values as derived from an objective function on the

solutions, behavioural values are the behavioural descriptors as derived from the

behavioural function on the solutions, dead in an array denoting whether a solution should

be ignored, the repertoire is the container where the solutions are stored, and the key is

the Pseudo-Random Number Generator State of a JAX PRNG instance (used for

generating a sequence pseudo-random numbers).

A DQD Emitter, in addition to the two method signatures above it, also has another two

methods

def ask_grad_estimate(static_settings, emitter, repertoire, key)

Code Snippet 4.6: Method Signature of the gradient ask method of DQD Emitter

def tell_jacobian(static_settings, emitter, solutions, objective_values,

behavior_values, dead, repertoire, key, jacobian)

Code Snippet 4.7: Method Signature of the gradient tell method of a DQD Emitter

66

where the jacobian is a matrix holding the jacobian matrix of the behaviour function for

each of the solutions given and the gradient vector of the objective function for each of

the solutions given.

The reason for using two different ask-tell pairs of methods for the DQD Emitters is

because, as you remember, the DQD Emitters (e.g., OMG-MEGA (iso) section

2.5.9.3.1.1) have two evaluations of solutions that happen per iteration, one with the

sampled solutions from the archive and second the gradient perturbation on the sampled

solutions. Thus, two sets of solutions are generated and, consequently, two different

additions to the container per iteration.

4.3.2.1 The need for an object-oriented implementation of QD Emitters in JAX

The implementation of those Emitters’ methods (QD and DQD) on the CPU is usually

done in an object-oriented way. That is, an Emitter is an object carrying the necessary

data and providing those methods as instance methods. But, as we said above in section

4.3.1, we want all of those methods to be executed in a JIT optimized code. We know,

though, that JAX implementation and object-oriented programming cannot exist together

in the form that we know them.

Thus, to address this issue and accomplish the two requirements aforementioned, we

defined a new framework for building QD Algorithms or Emitters in JAX

4.3.2.2 Building Python-like Objects from Data-classes

The idea of the new framework is to use the data classes (i.e. flax.struct.dataclass) as a

Classes of objects but eliminate side effects. I.e. let’s say that we want to create a Person

class with a single method to set and get the height of a person. In normal python, we

could do that like the following code:

class Person:

 def __init__(self, height):

 self.height = height

 def get_height(self):

 return self.height

 def set_height(self, height):

 self.height = height

67

Code Snippet 4.8: Person class in python

Instead in JAX we could do define the class above in the following way:

import flax

@flax.struct.dataclass

class Person:

 height: int

 @classmethod

 def create(cls, height):

 return cls.__init__(height)

 def get_height(person):

 return person.height

 def set_height(person, height):

 person = person.replace(height = height)

 return person

Code Snippet 4.9: Person class as a DataClass

We can see that the get methods do not change unless they update the state of the data

class, whereas the set methods change by using the replace method of a data class to

change its state, and also they return the new altered object back since each data-class is

immutable. Last, the __init__ method of a data class is already defined and cannot be

overwritten. It requires passing all the data elements of the data class. To be able to define

our own init method, we define the create a class method that allows us to perform any

operations before we create a data class and which can create any number of arguments

we want.

Thus, there are three important things when creating a data class from a Python Object.

1. Define the data attributes of the data class; i.e. include the data elements

(=attributes) of the object at the top of the class (below its name definition) with

their appropriate type

2. Use a class method to define your own __init__ (e.g. create)

3. Each method should that alters a data-class object passed as an argument should

return back the altered data-class object

Note that because data-class objects are immutable, no other attribute can be added

dynamically to the object during run-time.

68

Despite this ease of converting approximately any Python class to a Data-class, we

haven’t talked about how those objects can actually be used in JIT optimized code. How

can we develop complex QD Algorithms with such objects?

4.3.2.3 Implementing QD Emitters in JAX

Most of our programs and algorithms use different types of control-flow statements that

are really useful and important. But at the same time, they are expensive as computer

operations compared to simple arithmetic operations. Unfortunately, most of the time,

they cannot be removed from our code or expressed to avoid them. The same thing applies

to QD Algorithms. We cannot avoid using if-statements, but what we can do is to separate

the logic and the if-statements that depend on the initialization of the algorithm with the

core logic of the algorithm.

The last part that concludes our framework and which defines how complex object-

oriented QD Algorithms (from CPU) can be implemented in JAX and in such a manner

to be more time-efficient depends on the observation that most of the QD algorithms’

control-flow statements depend on values of parameters that are set at the time of the

object’s initialization and then they are never changed. User-defined parameters that

define what the QD algorithm will do usually do not change. Thus, it is clear that since

the JIT compilation can be done manually in runtime (using jax.jit), we could isolate the

attributes of an object that are defined in its initialization and never change from the rest

of the attributes and make available their values to the methods that we want to JIT-

compile before they are jit compiled. To make this idea clearer, let’s say that in the

example of the Python Person Class above, we had an additional field for the person

denoting whether the person is alive or dead and also an if-statement in set_height

checking that the person is alive and then updating the Person object, i.e.,

class Person:

 def __init__(self, height, is_alive):

 self.height = height

 self.is_alive = is_alive

 def get_height(self):

 return self.height

 def set_height(self, height):

 if self.is_alive:

 self.height = height

69

Code 4.10: Person class in python that uses if-statements

If we were going to keep the if-statement in the Data-Class implementation of the Person

class (look at the code snippet below), and then JIT compile the set_height method as

follows:

jax.jit(person.set_height)(person,178)

Code Snippet 4.11: JIT Compiling the set_height method of Person data-class in JAX. The method uses an if-

statement that is not statically determined, and thus the method won’t be able to be optimized

we would get an error from the JAX JIT Compiler because the if-statement JAX doesn’t

know which side of the if-statement to execute when it is executed by the XLA (after its

compilation).

import flax

@flax.struct.dataclass

class Person:

 height: int

 is_alive: int # we use int instead of bool because JAX JIT compilation does not

 # accept as an attribute of a data-class

 @classmethod

 def create(cls, height, is_alive):

 return cls.__init__(height, is_alive)

 def get_height(person):

 return person.height

 def set_height(person, height):

 if person.is_alive == 1:

 person.replace(height = height)

 return person

Code Snippet 4.12: Person data-class in JAX that uses if-statements (method set_height will not be able to be

optimised)

But we can clearly see that once the Data-class instance of Person is initialized, the

is_alive attribute never changes and thus, all the if-statements depending on the is_alive

could be replaced with the one or the other sides of the if-statement (depending on the

value of the is_alive in the specific if-statement).

70

To accomplish this change to the code after the initialization of an object, we change the

signature of the method to receive the is_alive as an additional argument and then provide

the argument is_alive to the method set_height before it is compiled. Doing so, and thus

compiling the new method with the argument, is_alive determined, the if-statement in the

set_height can be statically determined in runtime (JIT compile time). More specifically,

this would be the new signature of the set_height method:

 def set_height(person, is_alive, height):

 if is_alive == 1:

 person.replace(height = height)

 return person

Code Snippet 4.13: Redefining the method set_height of the Person data-class in JAX

And below, you can see the use of functools.partial that creates a new method from a

method given by partially filling parameters of the function given with arguments. In this

case, we created a new set_height method that takes as an argument the person's data-

class object and the height (since the is_alive was “embedded” in the new method).

jax.jit(functools.partial(person.set_height, is_alive = person.is_alive)) (person,

178)

Code Snippet 11: Compiling the method set_height of a data-class object of the Person data-class in JAX by

providing the argument is_alive that determines the outcome of the if-statement used in the method

Because of the fact that an object can have many such parameters that can be statically

defined, we enforce this idea to the whole data class with the following class:

1. The method for creating and initializing a data-class instance returns; in addition

to the data-class instance, a data structure of static settings containing a set of

parameters and methods that are used by any method of the data-class instances

to statically determine control flows, dynamic shapes of arrays etc. (dynamic

operations and data) before being compiled by JAX JIT.

2. Each method of the data-class receives as an additional argument, the static

settings

Thus, a method f of an object o of a data-class defined in the way above will be compiled

and executed in the following way.

jax.jit(functools.partial(o.f, static_settings)) (…)

Code Snippet 4.14: Compiling and Executing a method of the QD Emitters framework

71

For completeness of our explanation, consider below the implementation of the Person

Python Class as a Data-class, that each of its methods (except the one used for

initialization – create method) can be JIT-compiled when before that, the static_settings

data structure is provided.

import jax

import functools

import flax

from collections import namedtuple

@flax.struct.dataclass

class Person:

 height: int

 is_alive: int # we use int instead of bool because JAX JIT compilation does not

 # accept as an attribute of a data-class

 @classmethod

 def create(cls, height, is_alive):

 # define the static settings as a namedtuple

 static_settings = dict()

 static_settings['is_alive'] = is_alive

 StaticSettings = namedtuple('StaticSettings', static_settings)

 ssd = StaticSettings(**static_settings)

 return ssd, cls.__init__(height, is_alive)

 # private method used to access specific attributes from the static settings

 def _is_alive(ssd):

 return ssd.is_alive

 def get_height(person):

 return person.height

 def set_height(ssd, person, height):

 # use the static_settings’ attributes via private methods

 # specifically defined to access its attributes

 if _is_alive(ssd) == 1:

 person.replace(height = height)

 return person

ssd, p = Person.create(160, 1)

jax.jit(functools.partial(p.set_height, ssd))(p,178)

Code Snippet 4.15: Redefining the method set_height of the Person data-class in JAX

4.3.3 Improve Emitters’ efficiency for GPUs

72

In the previous section (4.3.1), we talked about how we can transform object-oriented QD

Emitters implemented in Python (for CPU) to code that can be JIT-compiled in JAX. The

use of JIT compilation optimizes our Emitters for GPU. An additional step that we took

to create more efficient implementations of QD Algorithms is that we transform

inefficient code into efficient code. More specifically, we converted loops to vectorized

approaches, where instead of using for-loops to operate over arrays, we used NumPy

operations over arrays. Doing so allows for better parallelization and memory usage in

GPUs.

Another change we made to our implementations that improved the performance of the

QD Emitters is the minimization of the use of JAX’s structured control-flow functions

(i.e. lax.cond, lax.fori_loop and lax.while_loop) in our code by replacing many of them

with arithmetic vectorised operations that could lead to the same outcome.

4.4 Implementations of QD and DQD Emitters on Jax

We have implemented all of the available QD Algorithms from Pyribs in JAX. We created

two versions for each of them, the Array Version, where the Emitters require that a

solution is strictly a one-dimensional array and the PyTree version, where the Emitters

can work with solutions of any PyTree structure. These implementations are:

• Gaussian Emitter implements MAP-Elites (iso) (Code for the Array Version is

found in Appendix A’s section A.3.1 and for the PyTree Version in Appendix A’s

section A.5.1)

• Iso Line Emitter implements the MAP-Elites (iso+lineDD) (Code for the Array

Version is found in Appendix A’s section A.3.2 and for the PyTree Version in

Appendix A’s section A.5.2)

• Improvement Emitter implements CMA-ME (Improvement) (Code for the Array

Version is found in Appendix A’s section A.3.3 and for the PyTree Version in

Appendix A’s section A.5.3)

• Optimizing Emitter implements CMA-ME (Optimizing) (Code for the Array

Version is found in Appendix A’s section A.3.4 and for the PyTree Version in

Appendix A’s section A.5.4)

73

• Random Direction Emitter implements CMA-ME (Random Direction) (Code for

the Array Version is found in Appendix A’s section A.3.5 and for the PyTree

Version in Appendix A’s section A.5.5)

All the QD Emitters operate on a batch of solutions called batch size or population size

instead of a single solution. Thus, they generate a number of solutions at each iteration

proportional to the batch size selected for them.

4.5 Optimizers

We have implemented in JAX three Optimisers that are used by the QD and DQD

Emitters. These are:

• Covariance Matrix Adaptation Evolution Strategy (Appendix A - Section A.2.1)

• Adam Optimiser (Appendix A – Section A.2.2)

• Gradient Ascent Optimiser (Appendix A – Section A.2.3)

4.6 Containers

We have adapted the N-dimensional Grid Archive implementation for our own purposes

from the Lim, Grillotti, Allard and Cully [69]. The implementation of our own version

can be found in Appendix A, section A.7.1.

74

Chapter 5

Experiments, Results, and Discussion

5.1 Introduction to Experiments, Results, and Discussion .. 74

5.2 Methodology ... 74

5.3 Hardware ... 76

5.4 Examining the acceleration of QD Algorithms on GPU ... 77

5.5 Examining the acceleration of DQD Algorithms .. 99

5.1 Introduction to Experiments, Results, and Discussion

In this section, we describe the details of the experiments that we performed to investigate

the three goals that we defined: (a) Effect of batch size on the Performance of QD and

DQD Algorithms, (b) Runtime of QD and DQD Algorithms on GPU compared to CPU

and (c) Performance of DQD Algorithms vs QD Algorithms on GPUs.

5.2 Methodology & Design

5.2.1 Experiment Design

5.2.1.1 Independent Variables

The independent variables of our experimental design are:

1. The QD and DQD algorithms MAP-Elites (iso), MAP-Elites (line), CMA-ME

(imp), CMA-ME (opt), CMA-ME (rd), OMG-MEGA (line), OG-MAP-Elites

(line), CMA-MEGA (Gradient Ascent) and CMA-MEGA (Adam)

2. The domain or type of problem; i.e. Rastrigin with Simple Encoding, Rastrigin

with Distorted Behavior Space and Arm Repertoire. We did not have the time to

include results on more complex simulation domains.

3. The batch size used by the QD and DQD Algorithms

4. The problem size (also seen as Solutions Dimensions) for each type of problem

75

5. The device on which algorithms are executed (GPU or CPU)

5.2.1.2 Dependent Variables

For our experiments, we measure the diversity and the quality of the solutions returned

by each algorithm via the Coverage, Best Fitness and QD Score metrics. We also measure

the speed of execution of each algorithm via their runtime. These metrics are described

below.

5.2.1.3 Methodology & Experimental Details

Our experiments considered the number of evaluations for the DQD algorithms, except

CMA-MEGA variations to be twice as much as that used in QD algorithms for the same

number of iterations and the same batch size. This decision is because, at each iteration,

all the DQD algorithms perform two evaluations (one with the solutions derived from the

container and one with the gradient amended solutions derived from those initially

generated solutions). Thus, considering that we perform two evaluations at each iteration

of a DQD algorithm, we chose to keep the number of epochs of the DQD algorithms in

half so that the number of evaluations of the QD and DQD algorithms is the same and

thus, their performances comparable.

All the algorithms were executed for 5 million evaluations on various batch sizes, types

of problems, problem sizes, and devices. Their performance (metrics) was recorded on a

per-iteration basis. More specifically, all the QD and DQD algorithms were executed on

both GPUs and CPUs. The algorithms executed on CPUs were tested on the batch sizes:

512, 2048, 8192 and 16384, and problem sizes: 128, 256, 512, 1024 and 2048 for all the

different types of problems. The algorithms executed on GPUs for types of problems

(domains) were tested with batch sizes: 512, 2048, 8192, 16384, 32768 and 131072 and

problem sizes: 128, 256, 512, 1024 and 2048. For each of those times, the algorithms

were executed 10 times and the median was considered the representative of all the 10

executions (median absolute deviation was considered for showing any deviation).

For each problem type examined, the parameters of each algorithm selected (e.g. standard

deviation of distributions used) were the best across a set of indicative parameters

covering all the possible combinations of good parameters. For example, for the standard

deviation of distributions used in the QD and DQD Algorithms, I tested all the values

between 0 and 0.1 with step 0.01, all the values between 0.1 and 1 with a 0.1 step, and

76

the values between 1 and 20 with a 5 step (i.e. 1, 5, 10, 15 and 20). By best parameters,

we mean in terms of the Algorithm’s accomplished QD Score when using those

parameters. Those parameters can be found in Appendix B.

The code used for finding those best parameters and executing the algorithms for the

experiments can be found in section A.8 of Appendix A.

5.2.2 Metrics

For our experiments, we will use the Coverage Score, the Best Fitness, the QD-Score and

the Runtime in terms of seconds to measure the performance of each algorithm and have

comparisons.

Given a collection of t bins {𝑏1, 𝑏2, . . , 𝑏𝑡} of the container used in a QD Algorithm, each

with performance scores (objective values) {𝑂1, 𝑂2, . . , 𝑂𝑡} (where 𝑂𝑖 𝑖𝑠 0, if there is no

solution stored in 𝑏𝑖 otherwise, it is nonzero) the coverage is defined as the number of

bins that have a solution inside (𝑂𝑖 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜). The Best Fitness is defined as the

maximum objective value held by any solution in the container, i.e. max{𝑂1, 𝑂2, . . , 𝑂𝑡}

and QD-Score is the sum of all the solutions’ objective values that are stored in the

container; i.e. ∑ 𝑂𝑖
𝑡
𝑖=1 .

5.2.3 Hardware

The CPUs that we used for our experiments were the Intel(R) Xeon(R) Gold 6240 CPU

@ 2.60GHz, and the GPUs that we used were the Tesla V100 32GB. All the algorithms

executed with GPUs used a single GPU device (i.e. Tesla V100 32GB), and all the

algorithms executed on CPUs used a single CPU with eight cores. Parallelization on the

GPU and the CPU was managed via the JAX framework. We did not manually use

commands like pmap to map operations to different cores or devices. The latter was done

to avoid extra costs when moving data between cores/devices.

5.2.4 JAX Configurations

For our experiments, we used version 0.2.26 of JAX with the CUDA library

cuda11_cudnn805. We also used XLA pre-allocation of 80% of the memory on GPUs to

save time allocating memory during runtime.

77

5.3 Results & Analysis

Before we dive into the primary goal of this work, i.e. “Does GPU and Differentiability

help speed up the performance of QD Algorithms?”, we shall try to examine whether QD

and DQD Algorithms continue to perform well when we increase their batch size (also

called population size denoting the number of solutions being handled simultaneously by

a QD Algorithm). To our knowledge, examining the effects on QD Algorithms when

increasing the batch size they work with hasn’t been investigated so far on all the QD and

DQD algorithms. There is a small work on the effects of big batch sizes on two variations

of MAP-Elites (MAP-Elites iso+lineDD and MAP-Elites iso) on GPUs, which showed

that MAP-Elites with the iso+lineDD operator seems to be stable in terms of their

performance (i.e. QD Score) on greater batch sizes. Here we will work with all the state-

of-the-art QD and DQD Algorithms, and we will examine the effect on their performance

not only when changing their batch size but also when increasing the size of the problem

on which they operate.

Changes in the problem size and/or batch size are an essential matter that needs to be

investigated to allow better exploitation of parallelization. We need to understand that it

is a complex problem since there are a lot of direct and indirect factors that might come

to play and affect the performance of QD and DQD Algorithms while examining them

with bigger batch and problem sizes. For example, the state-of-the-art QD and DQD

Algorithms generate a collection of solutions (based on the configured batch size) at each

iteration, and they all use randomness in their selection and variation operations. Due to

this randomness, there is a chance that the same solutions are generated either at the same

iteration (i.e. two or more solutions from the collection of solutions generated are the

same) or at a different iteration. When the batch size is increased, the number of solutions

generated at each iteration increases and thus, it is more likely that the same solution will

be generated at a specific iteration. Suppose the algorithm generates a significant number

of already discovered solutions repeatedly. In that case, it doesn’t exploit the different

evaluations efficiently (i.e. it wastes the time of evaluating the same solutions again and

again) and thus becomes unattractive to be used.

In addition to the batch size, the problem size or the solutions’ dimension could appear to

affect the performance of the QD and DQD algorithms. For example, increasing the

problem size could make generating the same solutions at each iteration less likely to

78

appear due to the many parameters of each solution being changed using some

randomness (in the variation operations). At the same time, increasing the dimensions of

a solution being used could make feature space exploration more difficult, especially in

feature spaces that depend on the dimensions of their solution (i.e. problem size).

A different factor that might affect the performance of the QD Algorithms while

examining them with bigger batch sizes is the type of problem or task that we use. More

specifically, a QD Problem defines an objective function and a behavior function. They

define the performance and the behavior descriptor of a solution, respectively. Changing

them can provide completely different performances and behavior descriptors. For

example, a high-performing solution in one task can be a low-performing one in a

different one. Or a solution being mapped in the center of the behavior space for a specific

task can be mapped at the edges of the feature space. Thus, QD Algorithms can perform

better in specific QD Tasks and worse in others.

These and other factors can affect the performance of QD Algorithms when we change

the batch size and problem size. Thus, in the first section, we will try to examine the

performance of QD Algorithms on three different QD Tasks (Rastrigin with simple

encoding, Arm Repertoire and Rastrigin with distorted behavior space) with different

batch sizes and a different number of solutions’ dimensions (=problem sizes). Our

examination is not exhaustive but tries to identify some traits that can help further

exploration of the benefits and drawbacks of using a greater number of batch sizes in QD

Algorithms for speeding up the QD and DQD Algorithms.

5.3.1 Effect of batch sizes and problem sizes on the Performance of QD and DQD

Algorithms

5.3.1.1 Rastrigin Function

The first task (=problem) we examined is the Rastrigin Function (Section 3.1.1) with

simple mapping to behavioral space.

Initially, let’s see how the problem size affects the performance of QD and DQD

Algorithms. Below, in figure 5.1, you can see the QD Scores of all the QD and DQD

Algorithms for the Rastrigin Problem when using batch size equal to 2048 for different

79

problem sizes. Similarly, in figures 5.2 and 5.3, you can see the best fitness and coverage

scores for the same case above.

Fig. 5.1: QD Scores of QD and DQD Algorithms on different problems and for different problem sizes (Constant

Batch size equal to 2048)

What we can see initially from the Coverage scores below (figure 5.3) for the Rastrigin

problem is that all of the algorithms fill the Archive fully (10,000 coverage). Thus, the

difference in the performances of the algorithms on this problem is on the quality (or

fitness) of the solutions they store in their archive and not the number of cells they filled

in the archive. Moving to the QD Scores (figure 3.1) above, we can see that all of the

QD and DQD Algorithms are affected negatively by the problem size increase. Some

of them are affected more (CMA-ME and MAP-Elites-iso), and some of them are affected

80

less (CMA-MEGA, OMG-MEGA-line and OG-MAP-Elites-line, MAP-Elites (line)). By

observing the changes in the best-fitness graphs (figure 3.2) for the Algorithms on the

Rastrigin function, we can see that their best-fitness score decreases as the problem size

increases. Therefore, the decrease of the QD Score as the problem size increases can be

attributed to the decline in the quality of solutions stored in the archive when the problem

size increases. Despite that the QD Score of all the QD and DQD Algorithms decreases,

the algorithms whose performance decreases the least with the increase of the problem

size for the Rastrigin problem are the CMA-ME, OMG-MEGA (line) and OG-MAP-

Elites (line).

Fig. 5.2: Best Fitnesss of QD and DQD Algorithms on different problems and for different problem sizes (Constant

Batch size equal to 2048)

81

From the figures below, 5.4 for QD Score, 5.6 for Coverage and 5.5 for Best Fitness, we

examine the effect of increasing the batch size and keeping constant the problem size

(=1024) for all the QD and DQD Algorithms examined on the Rastrigin function. From

the QD Scores set of charts (figure 5.4), it is clear that the increase in the batch size

decreases the QD-Score performance of all the CMA-ME variations and MAP-Elites

(iso) algorithms on the Rastrigin problem significantly. CMA-MEGA is affected

slightly less than CMA-ME variations, but its performance still decreases with the

decrease of the batch size. Similarly, the QD Scores of MAP-Elites (line) , OMG-

MEGA (line) and OG-MAP-Elites (line) algorithms decrease as the batch size

increases, but the decrease is minimal and the least compared to the reduction that

appeared in the other mentioned algorithms. This might seem counter-intuitive since

someone might believe the statement we said before that greater batch sizes increase the

number of times that we generate the same solutions. This could be true, but in fact, it is

more unlikely for the MAP-Elites (line) to generate two or more solutions that are the

same since the generation of each solution is done via a combination of two elite

solutions, thus making it more unlikely to generate the same solutions twice (more

unlikely, still possible though).

A few more observations that can be made are that CMA-ME algorithms perform really

well for small problem sizes and small batch sizes. More specifically, for batch sizes equal

to 2048 and problem sizes of 128 and 256, CMA-ME (imp) and CMA-ME (opt) had the

best QD Scores found from any algorithm on the Rastrigin Function. But, as we keep the

batch size constant and increase the problem size, their QD Scores are significantly

reduced. On the other hand, increasing the batch size for all the CMA-ME variations

decreases their performance significantly for all the problem sizes, but the interesting

thing is that instead of performing better for smaller problem sizes in bigger batch sizes,

just like how they performed in smaller batch sizes, they perform better in bigger problem

sizes than in smaller problem sizes as the batch size increases.

82

Fig. 5.3: Coverage Scores of QD and DQD Algorithms on different problems and for different problem sizes

(Constant Batch size equal to 2048)

Last, the OMG-MEGA (line) and OG-MAP-Elites (line) have the highest QD Scores

among all the other algorithms examined for almost all combinations of problem sizes

and batch sizes examined. The latter two algorithms are affected the least among the QD

and DQD Algorithms from the increase of the problem sizes on the Rastrigin problem.

Following them, the next best QD Scores for most of the combinations of problem sizes

and batch sizes examined are accomplished by MAP-Elites (line).

For the scores about combinations of batch sizes and problem sizes that we haven’t

included their charts here, there is no other difference than the things we mentioned. To

see a complete list of those results, please refer to the Appendices.

83

In general, for the Rastrigin Task:

• Increasing the problem size decreases the performance of all the QD and DQD

Algorithms in general (Best Fitness is primarily affected, which means that the

quality of the solutions stored in the archive is decreased; less high-performant

solutions are stored and more low-performant)

• Changes in problem and batch sizes affect coverage score the most (instead of the

fitness of the solutions in the archive)

• MAP-Elites (iso) almost all of the time, gives worse results than all the other QD

and DQD algorithms

• CMA-ME algorithms give really good results in small batch sizes, but the quality

of their results becomes significantly worse with the increase in the batch size

• The quality of the results returned by CMA-MEGA variations decreases with the

increase of the batch size, but that decrease is much smaller than that observed in

CMA-ME algorithms

• The quality of the results returned by MAP-Elites (line), OMG-MEGA(line) and

OG-MAP-Elites (line) remains approximately constant with the increase of the

batch size (Stable with the increase of the batch size). Moreover, with the increase

of the problem size their performance in terms of QD Score decreases the least.

• OMG-MEGA (line) and OG-MAP-Elites (line) perform better most of the time

than all the other QD and DQD algorithms on both small and big batch sizes

Note that the quality of their results refers to the QD Score of the archive of solutions

returned by an Algorithm at the end of their execution.

5.3.1.2 Arm Repertoire

In the task of Arm Repertoire, the difficulty increases compared to the Rastrigin function

examined above since exploring the feature space is done by calculating the x and y

positions of the arm’s end, which is a combination of all the arm’s link angles (i.e., all

solution’s parameters).

Examining how the problem size affects the performance of QD and DQD Algorithms

when keeping constant the batch size (here equal to 2048), from the charts of the figures

5.1 for QD Score, 5.2 for Best Fitness and 5.3 for the Coverage above on the Arm

84

Repertoire problem, we can see that the QD Scores of all the QD and DQD Algorithms

decreases as the problem size of the Arm Repertoire increases.

From the figure of Best Fitness 5.2, we can see that the Best Fitness Score of all the

algorithms except MAP-Elites (iso) remains close to the maximum (=100) in this

problem. The Best-Fitness score for the MAP-Elites (line) though seems to be decreased

more than the other QD and DQD Algorithms (except MAP-Elites-iso) as the problem

size increases. The Coverage and Best-Fitness score (figure 5.3) significantly decreases

for the MAP-Elites (iso) as the problem size increases (just below 8000 out of 10000 cells

filled at problem size 128 becomes just over 2000 cells filled at problem size 2048 for

Coverage and for the same problem sizes we have around 100 and then around 70 for

Best Fitness respectively). This is the reason why its QD Score has the same decreasing

trend. Despite that the increase of the problem size decreases the QD Score of each

algorithm, this high degree of reduction in MAP-Elites (iso) cannot be seen in the other

algorithms. CMA-MEGA algorithms significantly underperform in all the problem

sizes examined compared to the other DQD Algorithms, the CMA-ME variations and

the MAP-Elites (line).

85

Fig. 5.4: QD Scores of QD and DQD Algorithms on different problems and for different batch sizes (Constant

Problem size equal to 1024)

QD Scores of CMA-ME (imp), CMA-ME(rd), OMG-MEGA (line) and OG-MAP-Elites

(line) are affected the least by the increase of the problem size on the Arm Repertoire

when using batch size equal to 2048, but in greater batch sizes (e.g. 32,768) things change

and only OMG-MEGA (line) and OG-MAP-Elites(line) are still stable with the increase

of the problem size. This can be explained by the same trend in their Coverage (i.e., filling

more cells in their archive even in bigger problem sizes). For the batch size equal to 2048,

CMA-ME (rd) followed by CMA-ME (imp) were the algorithms that gave the highest

QD Scores for all the problem sizes examined but as the batch size increases their QD

Scores get smaller and smaller pushing them away from accomplishing the best QD

Scores.

From the examination of the effect of increasing the batch size and keeping constant the

problem size (=1024) for all the QD and DQD Algorithms on the Arm Repertoire (See

figures 5.4 for QD Score, 5.6 for Coverage and 5.5 for Best Fitness), we observed that

CMA-MEGA variations and MAP-Elites (iso) are affected the most from the batch size

86

increase. For example, from figure 5.4 of QD Scores, CMA-MEGA (adam) on Arm

Repertoire with problem size 1024 had QD Score just below 600,000 when using batch

size equal to 512, whereas when using batch size equal to 32,768, its QD Score fell to

below 100,000. CMA-MEGA and MAP-Elites (iso) algorithms give the worst QD Scores

for all the combinations of batch sizes and problem sizes examined on Arm Repertoire.

QD Scores of CMA-ME variations also eventually decrease with the increase of the batch

size, and this can be attributed to the reduction of the Coverage Score as well, which

means that their exploration ability of new genotypes decreases with the increase of the

batch size. More specifically, with batch sizes greater than 16384, CMA-ME(rd) and

CMA-ME (imp) start to accomplish lower QD Scores than OMG-MEGA (line), OG-

MAP-Elites (line) and MAP-Elites (line). For small batch sizes (i.e. 512 and 2048), CMA-

ME (imp) and CMA-ME (rd) perform better in terms of QD Scores in smaller problem

sizes (128, 256 and 512) and worse in bigger problem sizes (1024 and 2048), whereas in

bigger batch sizes (i.e. 16384, 32768 and 131072) they perform better in bigger problem

sizes (1024 and 2048) and worse in smaller ones (128, 256 and 512).

QD Scores of MAP-Elites (line), OMG-MEGA (line) and OG-MAP-Elites (line) remain

approximately the same with the increase of the batch size.

87

Fig. 5.5: Best Fitness of QD and DQD Algorithms on different problems and for different batch sizes (Constant

Problem size equal to 1024)

In general, for the Arm Repertoire Task:

• Increasing the problem size decreases the performance of the QD and DQD

Algorithms (Coverage is affected)

• Changes in problem and batch sizes affect coverage score the most (instead of the

fitness of the solutions in the archive)

• The QD Scores of OMG-MEGA (line) and OG-MAP-Elites (line) are the only

ones not significantly reduced with the increase of the problem size (Stable to

problem size increase).

• MAP-Elites (line) is significantly affected by the increase of the problem size.

• CMA-MEGA and MAP-Elites (iso) algorithms perform really bad (low QD

Scores) and their QD Scores become worse with the increase of the batch size

88

• MAP-Elites (line), OMG-MEGA (line) and OG-MAP-Elites (line) can be

benefited by the increase of the batch size and thus accomplish better results

(higher QD Scores) in bigger batch sizes.

• CMA-ME (imp) and CMA-ME (rd) algorithms are promising for small batch

sizes (i.e. 512 and 2048) where they seem to accomplish the best QD Scores, but

their accomplished QD Scores decrease as the batch size increases.

Note that quality of their results refers to QD Score of the archive of solutions returned

by an Algorithm at the end of their execution.

Fig. 5.6: Coverage of QD and DQD Algorithms on different problems and for different batch sizes (Constant

Problem size equal to 1024)

5.3.1.3 Rastrigin Function with Distorted Behaviour Space

Moving to the Rastrigin Function with distorted Behavior Space, we can start again by

examining the QD Scores of the QD and DQD Algorithms on different problem sizes and

batch sizes equal to 2048 (figure 5.1 above). It is clear that all the algorithms’ QD Scores

significantly decrease with the increase of the problem size for the Distorted Rastrigin.

89

This decrease seems to depend on the decreasing trend appearing in the algorithms’

Coverage scores. CMA-MEGA Algorithms significantly outperform all the other QD,

and DQD Algorithms for all the problem sizes examined with batch sizes equal to 2048.

CMA-MEGA and CMA-ME are affected the least by the increase of the problem size

compared to the other QD and DQD Algorithms.

Examining now the effect of increasing the batch size on the QD and DQD Algorithms

while we keep constant the problem size (=1024) (figure 5.4), we can see that increasing

the batch size used by the CMA-ME and CMA-MEGA algorithms deteriorates their QD

Scores the most. More specifically, for the CMA-ME and MAP-Elites (iso) algorithms,

their performance increases until batch size 32,768 (not inclusive), from where their

performance starts to decrease. For CMA-MEGA, with a problem size equal to 1024 and

batch size equal to 512, CMA-MEGA variations (CMA-MEGA and CMA-MEGA-adam)

accomplish around 600,000 QD Score, but with a batch size equal to 131,072 , they fall

to QD Score equal to around 300,000. MAP-Elites (line), OMG-MEGA (line) and OG-

MAP-Elites (line) accomplish better and better QD Scores until around batch size (2048),

after which their QD Scores get smaller and smaller but in a slower trend than the other

algorithms.

QD Scores of MAP-Elites(line), OMG-MEGA(line), and OG-MAP-Elites (line) are

approximately the same. Despite that, OMG-MEGA(line) and OG-MAP-Elites (line) find

fitter solutions than MAP-Elites(line) (can also be seen by higher Best Fitness Scores in

OMG-MEGA-line and OG-MAP-Elites-line), whereas MAP-Elites(line) seems to have

slightly better Coverage Scores.

Last, CMA-MEGA algorithms have the highest Best-Fitness Scores (See Figure 5.8),

followed by OMG-MEGA(line) and OG-MAP-Elites(line) with slightly lower scores,

which are decreased with the increase of the batch size. The Coverage Scores, of CMA-

MEGA are significantly higher than of OMG-MEGA (line) and OG-MAP-Elites (line).

90

Fig. 5.8: Archives of CMA-MEGA(adam) for problem size 1024 and batch sizes 512 (left) and 131,072 (right) on

the Rastrigin Function with distorted Behaviour Space

Fig. 5.9: Archives of OMG-MEGA(line) for problem size 1024 and batch sizes 512 (left) and 131,072 (right) on the

Rastrigin Function with distorted Behaviour Space

From figure 5.8, we can see the archive of the CMA-MEGA (adam) for batch size 512

(left) and for batch size 131,072 (right) for the Rastrigin with Distorted Behavior Space

problem with a problem size equal to 1024. Similarly, figures 5.9 and 5.10 show the same

thing for the OMG-MEGA (line) and MAP-Elites (line) algorithms, respectively. From

figure 5.8, we can see that CMA-MEGA fills most of its archive with solutions and also

finds many local optima of the Rastrigin function with Distorted Behavior Space. The

archive size, though, is decreased when moving from batch size 512 (left) to batch size

131,072 (right). The archives of OMG-MEGA (line) and MAP-Elites (line) are also

negatively affected by the increase in their batch size, and OMG-MEGA (line) seems to

91

find fitter solutions (more area with red colour) than MAP-Elites (line) (the red area in

OMG-MEGA-line is orange in MAP-Elites-line), but MAP-Elites (line) seems to have

slightly bigger size of an archive than OMG-MEGA (line).

Fig. 5.10: Archives of MAP-Elites(line) for problem size 1024 and batch sizes 512 (left) and 131,072 (right) on the

Rastrigin Function with distorted Behaviour Space

Fig. 5.11: QD Scores of QD and DQD algorithms on different problem sizes and batch sizes for the Rastrigin with

Distorted Behaviour Space problem

92

From figure 5.11, we can see an overview of the QD Scores (represented by a color which

can be interpreted to a value from the bar on the right) of all the QD and DQD Algorithms

on all the combinations of batch size and problem size examined on the Rastrigin

Function with Distorted Behavior Space. The interesting thing to note here is that the QD

Scores of MAP-Elites (line), OG-MAP-Elites (line) and OMG-MEGA (line) (bottom

three heat-maps) are significantly affected when we increase the problem size (change of

the color vertically). In contrast, the batch size increase does not affect them as much as

what happens with the increase of the problem size (change of the color horizontally is

not as strong as how the color changes vertically). Moreover, from the same figure, CMA-

MEGA variations can be seen to have significantly better QD Scores than the other QD

and DQD Algorithms for small batch sizes (leftmost columns of heatmap with yellowish

color). For greater batch sizes, their QD Scores decrease significantly (rightmost columns

of heatmap where the color becomes bluer).

Fig. 5.12: Coverage Scores of QD and DQD algorithms on different problem sizes and batch sizes for the Rastrigin

with Distorted Behaviour Space problem

93

From figure 5.12, we can see the Coverage scores of the of all the QD and DQD

Algorithms on all the combinations of batch size and problem size examined on the

Rastrigin Function with Distorted Behavior Space. We can see that the Coverage Scores

of the algorithms represent their QD Scores (i.e., same patterns). Thus, the change of

problem size and/or batch size affects the Coverage Score (the size of the archive) and

then the QD Score.

Fig. 5.13: QD Scores of QD and DQD algorithms on different problem sizes and batch sizes for the Arm Repertoire

From figure 5.13, we can see the QD scores of the of all the QD and DQD Algorithms on

all the combinations of batch size and problem size examined on the Arm Repertoire. The

interesting thing is that OMG-MEGA(line) and OG-MAP-Elites(line) are stable in the

increase of both the batch size and problem size (retain same color), whereas the QD

Scores of MAP-Elites(line) are deteriorated in bigger problem sizes.

94

In general, for the Rastrigin with distorted behavior space problem:

• Increasing the problem size decreases the QD Scores (QD Scores) of the QD and

DQD Algorithms in general (Coverage seems to be affected)

• Increasing the batch size decreases the QD Scores of the QD Algorithms,

especially when working on bigger problem sizes.

• Changes in problem and batch sizes affect coverage score the most (instead of the

fitness of the solutions in the archive)

• CMA-ME algorithms and MAP-Elites (iso) accomplish the lowest QD Scores

compared to the other QD and DQD Algorithms for all the combinations of

problem size and batch size examined

• CMA-MEGA Algorithms outperform all the other QD and DQD Algorithms.

They perform that well primarily because they fill more container cells (greater

archive size) than the other QD and DQD Algorithms.

• MAP-Elites(line), OMG-MEGA (line) and OG-MAP-Elites (line) accomplish

approximately the same QD Scores, but all three of them can be benefited from

big batch sizes more than the other QD and DQD Algorithms since the increase

of the batch size decreases their QD Scores less than what happens with the other

Algorithms (128 and 256).

In conclusion we can identify a few general conclusions:

• MAP-Elites(line), OMG-MEGA (line) and OG-MAP-Elites (line) are benefited

from batch size increase (until 131,072 which was tested)

• CMA-ME and CMA-MEGA algorithms cannot be used with big batch sizes,

and they can perform better than all the other QD and DQD algorithms when

used with small problem size in problems with difficult mapping of genotypes to

the feature space

→ Should only be used with small batch sizes (<512)

• OMG-MEGA (line) and OG-MAP-Elites (line) accomplish higher QD Scores

than MAP-Elites(line)

→ Use OMG-MEGA (line) and OG-MAP-Elites (line) instead of MAP-

Elites(line) when the runtime of OMG-MEGA (line) and OG-MAP-Elites (line)

95

is not prohibitively higher (e.g., when calculating derivatives leads to much

higher runtimes) than of MAP-Elites (line)

5.3.2 The runtime of QD + DQD Algorithms on GPU compared to CPU

Fig 5.14: Runtime of QD Emitters on Rastrigin Function with simple encoding for batch size equal to 512 and

increasing problem sizes

In the previous section, we have investigated the performance (in terms of the metrics QD

Scores, Best Fitness and Archive Size/Coverage) of QD and DQD Algorithms for bigger

batch sizes and bigger problem sizes.

We saw that the batch size can negatively affect the performance of QD and DQD

Algorithms in some tasks/problems but at the same time it can have no significant

negative effect (e.g. OMG-MEGA(line) and OG-MAP-Elites (line) performing well in

Arm Repertoire and Rastrigin with simple encoding but not well in Rastrigin with

96

distorted Behavior Space). Thus, there is potential for some QD and DQD Algorithms to

exploit greater sizes of batch sizes and improve their runtime performance when executed

on GPUs. Consequently, our second experimental goal is to investigate whether there is

any significant speedup in runtime when using GPUs instead of CPUs.

Before we investigate the potential of speeding up the algorithms while we increase the

batch size, let us investigate what happens to the runtime of QD and DQD algorithms on

CPU and GPUs, when we increase the problem size that they use. Below, at the chart 5.15

we can see the runtimes of QD and DQD Algorithms with batch size 512 on CPU and

GPU, with different problem sizes on the Rastrigin Function with simple encoding.

97

Fig 5.15: Runtime of QD Emitters on Rastrigin Function with simple encoding for problem size equal to 512 and

increasing batch size

From this set of charts, it is obvious that increasing the problem size increases the runtime

of all the QD and DQD algorithms on both the GPUs and CPUs. Despite that, the runtimes

on GPUs increase much less with the increase of the problem size than the runtimes of

CPUs. The difference in runtimes between CPUs and GPUs is significant. For example,

MAP-Elites (line) with 512 batch size and 2048 problem size takes 20 seconds on GPUs

whereas it takes 2106 (36 minutes) on CPUs.

Now, moving to the examination of the effect on the runtimes of the QD and DQD

algorithms when increasing the batch size, we can clearly see that there is a significant

acceleration in the runtimes of QD and DQD Algorithms when being executed on GPUs,

instead of CPUs. This applies in all the three Domains (Rastrigin, Arm Repertoire and

Rastrigin with Distorted Behavior Space) examined, but we will show the results for the

Rastrigin function with simple encoding.

Above, in figure 5.15, you can see the Runtimes of all the QD and DQD Algorithms for

increasing batch sizes and for a constant problem size (dimensions of a solution) equal to

1024. The runtimes of the QD + DQD algorithms on CPU and GPU significantly

decrease with the increase of the batch size. The runtimes from the GPUs are considerably

smaller than the runtimes from CPUs for all the combinations of batch sizes and problem

sizes examined. More specifically, for batch size equal to 512 and problem size equal to

1024, all the QD Algorithms (excluding the DQD) executed on CPUs needed at least

around 30 minutes (>1800 seconds). On the other hand, QD Algorithms executed on

GPUs needed around a minute for problem size equal to 1024 and batch size equal to 512,

except the CMA-ME (rd), which needed more time (248 seconds). For the DQD

algorithms, we can see something similar for batch size 512 and problem size 1024 but

with shorter runtimes. Concisely, all the DQD algorithms executed on GPU took less than

a minute to complete for problem size equal to 1024 and batch size 512, whereas the

runtime of the same algorithms on CPUs for the same problem size and batch size needed

not less than 10 minutes.

Despite that increasing the batch size decreases the runtime of both QD and DQD

algorithms, this reduction in runtime depends on the number of evaluations we want to

perform since, from the figure 5.15, we can see that the improvement in runtime becomes

98

smaller and smaller with the increase of the batch size. Reducing the number of epochs

by increasing the batch size improves the runtime, but there is for sure a natural limitation

on how big the batch size can be.

The CMA-ME algorithms take more time to execute than the MAP-Elites iso and line

algorithms. This is true for both CPU and GPU executions (Table 1 and Table 2 below).

The same can be observed for the DQD Algorithms between the CMA-MEGA

Algorithms (gradient variant of CMA-ME improvement) and the OMG-MEGA or OG-

MAP-Elites (gradient variants of MAP-Elites).

Runtime

(Seconds)

MAP-

Elites

(iso)

MAP-

Elites

(line)

CMA-

ME

(imp)

CMA-

ME

(opt)

CMA-

ME

(rd)

OMG-

MEGA

(line)

OG-

MAP-

Elites

(line)

CMA-

MEGA

CMA-

MEGA

(ADAM)

CPU 156 160 332 380 332 182 169 126 129

GPU 2 3 22 23 25 5 5 11 11

Fig 5.1: Runtime of QD Emitters on Rastrigin Function with simple encoding for problem size equal to 1024 and

batch size 2048

Runtime

(Seconds)

MAP-

Elites

(iso)

MAP-

Elites

(line)

CMA-

ME

(imp)

CMA-

ME

(opt)

CMA-

ME (rd)

OMG-

MEGA

(line)

OG-

MAP-

Elites

(line)

CMA-

MEGA

CMA-

MEGA

(ADAM)

CPU 283 291 525 620 1048 215 177 233 234

GPU 9 9 69 62 159 8 8 25 26

Table 5.2: Runtime of QD Emitters on Rastrigin Function with simple encoding for problem size equal to 1024 and

batch size 16,384

OMG-MEGA (line) and OG-MAP-Elites (line) take approximately the same runtime to

finish with MAP-Elites (line).

99

Last, the CMA-ME algorithms are the slowest algorithms from all the other QD and DQD

algorithms (Table 1 and Table 2 above). CMA-MEGA though are faster than CMA-ME

algorithms, but slower than all the rest QD and DQD algorithms.

All of the observations mentioned for the Runtimes of the algorithms on the Rastrigin

Function with simple encoding problem can be generalized since the same things appear

for the other tasks as well. That is, all these observations apply for the Rastrigin Function

with Distorted Behavior Space and the Arm Repertoire problems as well.

To see the runtimes of all the QD and DQD Algorithms for 5 million evaluations on the

Rastrigin Function with simple encoding, Rastrigin Function with Distorted Behavior

Space, and the Arm Repertoire problems, please refer to the Appendices.

In general:

• CMA-ME algorithms are the slowest algorithms from all the other QD and DQD

algorithms examined.

• Increasing the problem size increases the runtime of the QD and DQD

Algorithms.

• Increasing the batch size of each algorithm reduces their runtime, but the

improvement becomes less and less with each batch size increase.

• The use of GPUs is beneficial compared to using CPUs since the runtime on CPUs

is significantly greater than on GPUs

5.3.3 Performance of DQD Algorithms vs QD Algorithms on GPUs

Now that we have seen the performances of all the Algorithms on two different

dimensions (QD Scores, Coverage, Best Fitness vs Runtime) separately, it is important

to combine the results we have identified and try to understand which algorithms can

provide sufficiently good results fast and also whether DQD Algorithms can be beneficial

for accomplishing that (i.e. good results in a short amount of time). That is, which

algorithms are able to exploit parallelization in order to be executed fast and at the same

time give good results comparable to not using parallelization (not significantly degraded

performance) and also whether DQD can be beneficial in accomplishing that.

100

First of all, the runtimes of CMA-ME algorithms compared to the other QD Algorithms,

and the runtimes of CMA-MEGA algorithms compared to the other DQD Algorithms is

significantly higher. This could be a problem in the case of using the algorithms with

more complex tasks (e.g. learning robot tasks via simulations). But at the end of the day,

the final outcome of the algorithms might matter more (i.e. getting many high-performing

solutions that vary sufficiently across different features). More specifically, we have seen

that the CMA-ME Algorithms take more time to be executed than the other QD

algorithms (they require, at minimum, twice the amount of time that the other QD

Algorithms require, and the runtime difference between the other QD and CMA-ME

algorithms becomes bigger as the problem size increases) and do not do well in both of

the Rastrigin problems examined. Only for the task of Arm-Repertoire, their QD Scores

were, in general, better than the other Algorithms’ QD Scores, but that was true for small

batch sizes. Thus, the current implementation of CMA-ME is not beneficial with big

batch sizes (>=512). The potential speedup through when increasing the batch size is

clearly big; the only problem is that the current implementation of CMA-ME gives worse

results.

CMA-MEGA is faster than its CMA-ME variants but slightly slower than all the other

QD and DQD Algorithms. It performs really bad in terms of QD Scores in Arm-

Repertoire, and generally, it performs worse than the CMA-ME variants in terms of QD

Scores in Arm-Repertoire and Rastrigin with simple encoding. The thing that makes it

really promising though is its performance on the task of Rastrigin with Distorted

Behavior Space, where it significantly outperformed all the other QD and DQD

algorithms for all the problem sizes and batch sizes examined. But the bigger the batch

size, the lower its accomplished QD Score. Thus, for the CMA-MEGA algorithms using

big batch sizes does not help the quality and size of the collection of solutions they return.

OMG-MEGA (line) and OG-MAP-Elites (line) showed really good QD Scores in the

Rastrigin with simple encoding and Arm-Repertoire problems. More specifically, in the

Rastrigin with simple encoding, they had the best QD scores for all the combinations of

problem sizes and batch sizes examined, whereas, in the Arm-Repertoire, their QD scores

were close to the best ones. They are generally not affected by the increase of the batch

size and problem size (Stable). But in some cases, like in Rastrigin with distorted behavior

space, the increase of the batch size and problem size made clearer their decrease in their

101

QD Scores. These algorithms performed better than their QD original MAP-Elites (line).

In terms of Runtime, OMG-MEGA (line) and OG-MAP-Elites (line) seem to be as fast

as MAP-Elites (line). More specifically, OMG-MEGA (line) and OG-MAP-Elites (line)

are faster with smaller batch sizes (e.g., 512 MAP-Elites-line takes around 30 seconds,

whereas the OMG-MEGA-line and OG-MAP-Elites-line take around 20 seconds for all

the different problem sizes examined), but slightly slower with bigger batch sizes (e.g.,

16384 MAP-Elites-line takes around 3 seconds whereas the OMG-MEGA-line and OG-

MAP-Elites-line take between 5-7 seconds for all the different problem sizes examined).

MAP-Elites (line) performed really well in Rastrigin with simple encoding and Arm

Repertoire. Still, in those two problems we could see that it was affected significantly by

the problem size (a bigger problem size led to lower QD Scores). In contrast, its DQD

variants OMG-MEGA (line) and OG-MAP-Elites (line), weren’t significantly affected by

the problem size. In terms of their runtime, they are faster than all of the CMA-ME and

CMA-MEGA algorithms and are as fast as the OMG-MEGA and OG-MAP-Elites

Algorithms.

MAP-Elites (iso) are the fastest but the worst in terms of quality of results (i.e., lowest

QD Scores) in all the problems examined.

Thus, in conclusion, we can see that the performance of each algorithm depends on the

task examined. Experiments on different tasks, can show different Algorithms performing

better. Despite the fact that there does not seem to be a single global ideal algorithm, we

can note a few general observations:

• MAP-Elites (line), OMG-MEGA (line) and OG-MAP-Elites (line) are generally

faster than the CMA-ME and CMA-MEGA Algorithms, and in general, the batch

size can help them speed up their execution without losing a significant quality of

their results. Depending on the task and its difficulty exploring the feature space,

they are capable of performing really good and even better than the CMA-ME and

CMA-MEGA algorithms.

• Depending on the task and its difficulty exploring the feature space OMG-MEGA

(line) and OG-MAP-Elites (line) can perform better than MAP-Elites (line) (e.g.

Rastrigin with simple encoding) because they can usually find fitter solutions, and

102

they seem to be slightly more stable than MAP-Elites (line) when increasing the

problem size (e.g. Arm Repertoire).

• CMA-MEGA algorithms do not do well with the increase of the batch size they

use (i.e. the size and the quality of the collection of solutions they return are

degraded), and they seem to be very promising when they use small batch size

and when they are used in particular types of problems, that introduce a

significant difficulty in exploring the feature space from solutions generated. In

those problems, they seem to explore better the feature space and, thus, fill more

empty cells in their archive.

• CMA-ME algorithms seem to require the most time to be executed, and in general,

they perform better in smaller batch sizes. Despite that, they also seem promising

for particular types of problems when they use small batch sizes.

These lead us to the following general conclusions:

• OMG-MEGA (line) and OG-MAP-Elites (line)

o can provide a speedup when used with GPUs and with bigger batch

sizes (just like MAP-Elites-line but requiring around the same runtime;

thus can replace MAP-Elites-line)

o can provide better results than all the other QD and DQD algorithms

in Simple Problems (i.e., Rastrigin with simple encoding)

• CMA-ME and CMA-MEGA

o can be benefited from optimized code on GPUs but not from the increase

of their batch size (No possible further speedup)

o can get better results than all the other QD and DQD algorithms when

using small batch size and especially in difficult problems (Arm

Repertoire and Rastrigin with distorted Behavioral Space) where the

mapping of solutions to their feature space is not simple like in Rastrigin

with simple encoding

Concisely, OMG-MEGA(line) and OG-MAP-Elites (line) can be sped up without

losing the quality of their results, whereas the CMA-ME and CMA-MEGA cannot

be sped up. Despite that CMA-ME and CMA-MEGA cannot be sped up, they continue

to outperform the other QD and DQD algorithms in terms of the quality of their

103

solutions in the archive and the size of their archive, but they require more runtime

because they accomplish that with smaller batch sizes.

104

Chapter 6

Conclusion & Future Work

6.1 Lessons Learnt .. 104

6.2 Conclusions ... 105

6.3 Future Work .. 108

6.1 Lessons Learnt

There are different lessons that we learned when working with JAX, which we include in

this section.

1. Avoid the use of loops and conditions: We have seen that in JAX, loops and

conditions, like if-statements, are some of the things that cannot be used as they

are used in conventional python. These limitations are introduced to make tracing

your code easier but, at the same time, can improve the performance of your code.

For example, a for-loop that can be statically defined (the number of iterations is

known before the code with the for-loop is compiled) by the JAX-JIT compiler is

unrolled in the final optimized code. The unrolled loop creates more code for

compilation and execution, leading to greater compilation and potentially

execution times. Thus, avoiding loops when this can be done is a good step to

make your code JAX-Compatible and also make it more efficient.

2. Think Vectorizing your code: A better alternative to using loops in

implementations of ML, DL and RL algorithms is the use of vectorization. That

is, organize your data that you need to perform operations on vectors and matrices

and the operations on those data as vector and matrix operations. The benefit of

vectorization is that many libraries execute these operations efficiently, and many

times they automatically take advantage of available hardware that can improve

the speed of the operations.

3. Optimizing your code for efficiency on specific hardware pays off:

There are many libraries (e.g. Numba and JAX) that can optimize your code for a

105

specific device you want to run it for in order to speed up different operations (e.g.

linear algebra operations). We used JAX, and via the JAX-JIT compiler, we were

able to compile the same code for either CPUs, CUDA GPUs or TPUs. Compiled

code for CPUs was much faster than conventional Python code. For example, the

CMA-ME-imp algorithm we implemented needed more than twice as much time

when being run without being optimized than when being optimized with JAX-

JIT.

4. Implementing algorithms in JAX does not include replacing NumPy with JAX-

NumPy: One of the misinterpretations of JAX that we have seen people have is

that you can take an algorithm that uses the NumPy library and change the

references to NumPy to be JAX-NumPy. Despite that this can work, in the general

case, it is not that simple and not all the NumPy references are always needed to

be replaced with JAX-NumPy. As we mentioned again, writing code in JAX

includes replacing loops with method-like structures, removing if-statement,

eliminating side-effects in methods etc.

5. Avoid parallelizing work on CPU’s cores manually using JAX’s pmap: The

command pmap defined by the JAX framework is used to map a function on data

on multiple devices in parallel. It is primarily used for different devices (e.g.

different GPU devices), but it can also be used with different CPUs. The different

CPUs can be different cores on the same or different chips. When using pmap, the

data are copied to the other device so that the other device can work with them.

Thus, using the pmap for cores of the same CPU that use the same memory will

cause the data to be copied as many times as it is your degree of parallelization

with pmap. Thus, using pmap with cores of the same chip is unnecessary since

JAX can manage them automatically and also, the use of pmap on the cores of the

same chip can create performance degradation if not careful.

6.2 Conclusions

The exploration of the question of whether GPUs can help speed up QD and DQD

Algorithms led us to the exploration of the technologies and frameworks available to

support executing Machine, Deep and Reinforcement Learning algorithms on GPUs. In

reality, we have seen that there are many of them, like JAX and PyTorch, that make the

development of algorithms on specialized hardware like GPUs and TPUs easier.

106

Choosing the JAX framework allowed us to see the ease that a framework like JAX offers

in developing algorithms for GPUs and TPUs, but we have also seen the constraints that

are being introduced with them. These constraints are enforced for optimizing code to be

executed on specialized hardware, including but not limited to not using conventional

Python Objects and not using Python if-statements in the code. To address that, we

created a framework that makes the development of QD Algorithms optimized on JAX

for specialized hardware easier and more scalar. Based on that framework, we have

implemented all the state-of-the-art QD and DQD Algorithms and used them to help us

answer our question on whether GPUs can help speed up QD and DQD Algorithms.

Then we tested those algorithms on a set of different tasks, different batch sizes and for

different problem sizes (Rastrigin with distorted Behavior Space, Rastrigin with simple

encoding and Arm Repertoire) on both GPU and CPU. We investigated three things: (1)

how these algorithms are affected by the increase of the batch size, (2) whether running

the algorithms on GPUs can help speed up the algorithms, and (3) whether it is beneficial

to use both GPUs and Differentiability in the QD Algorithms (i.e. use DQD algorithms

on GPUs) to get better results and faster.

Based on our experiments we made on MAP-Elites(line), OMG-MEGA (line) and OG-

MAP-Elites (line) we have seen that they (1) are benefited from batch size increase

(until 131,072 which was tested), (2) are faster than the family of CMA-MEGA and

CMA-ME algorithms, (3) perform as good or even better than CMA-MEGA and

CMA-ME in simple problems where the mapping of genotypes to the feature space is

simple (e.g., Rastrigin with simple encoding), (4) that OMG-MEGA (line) and OG-

MAP-Elites (line) perform better than MAP-Elites(line) and are as fast as MAP-

Elites(line). These led us to the conclusion that OMG-MEGA (line) and OG-MAP-Elites

(line) in general are stable in batch size and problem size changes and thus can provide

a beneficial speedup when used with GPUs and with bigger batch sizes replacing the

MAP-Elites (line) algorithm.

On the other hand, from our work with CMA-ME and CMA-MEGA algorithms we have

seen that they (1) cannot be used with big batch sizes, (2) they usually perform better than

all the other QD and DQD algorithms when used with small batch size (i.e. 32 batch size

in Fontaine & Nikolaidis [4] and in our experiments with batch size 512 CMA-ME were

the best in Arm Repertoire and CMA-MEGA were the best in Rastrigin with Distorted

107

Behavior Space), (3) their performance (QD Scores) power is clear in problems where

the mapping of solutions to their feature space is not simple like in Rastrigin with simple

encoding but more difficult (e.g., CMA-MEGA in Rastrigin function and CMA-ME in

Arm Repertoire), (4) that the CMA-ME are the slowest algorithms, (5) CMA-MEGA are

faster than CMA-ME. Thus, we concluded that CMA-ME and CMA-MEGA still

outperform the other QD and DQD algorithms in terms of archive size and quality of

solutions in archive in small batch sizes, especially in more difficult problems where the

mapping of solutions to the feature space is not simple(e.g. Rastrigin with Distorted

Behavioral Space and Arm Repertoire). But, despite that they can be benefited from

optimized code on GPUs, the increase of the batch size significantly decreases their

performance, which means that there is no beneficial further speedup for them requiring

them to be executed more time to get better results than OMG-MEGA (line) and OG-

MAP-Elites (line).

Overall, with this final section we conclude that we found a significant speedup for all

the QD and DQD algorithms when being executed on GPUs compared to CPUs, but only

MAP-Elites(line), OMG-MEGA (line) and OG-MAP-Elites (line) are accomplishing

beneficial further speedup with the batch size increase (>512). In this opportunity for

speedup, OMG-MEGA (line) and OG-MAP-Elites (line) are proven more attractive to be

used in any kind of problem than MAP-Elites (line) since they require approximately the

same time as MAP-Elites (line) and they accomplish most of the time better QD Scores.

CMA-MEGA and CMA-ME algorithms continue to outperform in terms of QD Scores

the other QD and DQD algorithms in problems where the mapping of solutions to their

feature space is not simple, but their current implementations do not benefit them for a

speed up by increasing their batch size (i.e., they work well with small batch sizes e.g. 32

as tested by Fontaine and Nikolaidis [4]).

Through this work, we hope to see the community start using our ideas, code and even

implementations to accelerate QD and DQD algorithms on specialized hardware like

GPUs. We also hope to encourage the community to work on the limitations and issues

of the QD and DQD algorithms that arise when trying to exploit parallelisation (i.e. using

greater sizes of batch sizes), and we hope to see new algorithmic ideas that could address

those limitations and leverage the massive parallelism offered by specialized hardware to

improve performance of QD and DQD algorithms.

108

6.3 Future Work

Our work focused on examining the performance of QD and DQD Algorithms on Toy

Domains (Types of QD Problems) on GPUs and CPUs. But our final goal is to do the

same examination on more complex Domains, including learning robotic skills (e.g.,

allowing a hexapod to learn to move in each direction of the space) via simulations (i.e.

BRAX Simulator). Thus, in the future, the performance of all the QD and DQD

Algorithms on Complex Domains, on GPUs and CPUs should be examined to investigate

the three questions that we investigated. That is, (1) What happens to the performance of

the algorithms when the batch size and the problem size change, (2) What is the speedup

acquired by executing QD and DQD algorithms on those more complex environments on

GPUs compared to CPUs and (3) “Can DQD be proven to help get high-performing

solutions quickly on GPU for those more complex Domains?”. There are more things to

be considered in more complex QD Domains. For example, in more complex

environments, the size of the solutions can be significantly bigger than in Toy Problems

since a solution there can be more complex things like the parameters of a Neural

Network. In addition to that, DQD Algorithms depend on calculating the derivatives of

the solutions with respect to the objective and behavioural functions’ outputs. In more

complex Domains, the derivatives are not usually computed analytically, just in our case,

where hardcoded equations were calculating the derivatives, but auto-differentiation is

usually used. The auto-differentiation calculates the derivatives of complex functions by

repeatedly applying the chain rule. This thing costs more in terms of computational time,

and it would probably change the runtimes of the DQD Algorithms in those complex QD

Domains.

In addition to that, more investigation should be done on why the QD and DQD

algorithms are affected by the big batch sizes and whether using multiple individual

Emitters (instances of QD and DQD Algorithms) with smaller batch sizes can be more

beneficial than using a single Emitter with huge batch size. This investigation should also

include more information about the limits of the performance of QD and DQD algorithms

using big batch sizes (e.g., how big batch sizes can MAP-Elites(line) be used before its

performance starts to decrease?).

109

References

[1] Mouret, J.-B., & Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv

[cs.AI].

[2] Chatzilygeroudis, K., Cully, A., Vassiliades, V., & Mouret, J.-B. (2020). Quality-

Diversity Optimization: a novel branch of stochastic optimization. arXiv [cs.NE].

[3] Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like

animals. Nature, 521(7553), 503–507. doi:10.1038/nature14422

[4] Fontaine, M. C., & Nikolaidis, S. (2021). Differentiable Quality Diversity. arXiv [cs.AI].

[5] Lehman, J., & Stanley, K. O. (2011). Evolving a Diversity of Virtual Creatures through

Novelty Search and Local Competition. Proceedings of the 13th Annual Conference on

Genetic and Evolutionary Computation, 211–218.

[6] Fontaine, M. C., Togelius, J., Nikolaidis, S., & Hoover, A. K. (2019). Covariance Matrix

Adaptation for the Rapid Illumination of Behavior Space. CoRR, abs/1912.02400.

[7] Vassiliades, V., Chatzilygeroudis, K., & Mouret, J.-B. (2018). Using Centroidal Voronoi

Tessellations to Scale Up the Multidimensional Archive of Phenotypic Elites Algorithm.

IEEE Transactions on Evolutionary Computation, 22(4), 623–630.

[8] Grillotti, L., & Cully, A. (2021). Unsupervised Behaviour Discovery with Quality-

Diversity Optimisation. CoRR, abs/2106.05648.

[9] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural

networks. In: Z. Ghahramani and M. Welling and C. Cortes and N. Lawrence and K.Q.

Weinberger (Eds.), Advances in Neural Information Processing systems 27(NIPS 2014),

MIT Press, Cambridge MA, pp. 3104-3112.

[10] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

& Polosukhin, I. (2017). Attention is All you Need. In I. Guyon, U. V. Luxburg, S.

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in

Neural Information Processing Systems (Vol. 30). Curran Associates, Inc, Red Hook NY

, pp. 6000-6010.

110

[11] Schmidhuber, J., 2000, October. Evolutionary computation versus reinforcement

learning. In 2000 26th Annual Conference of the IEEE Industrial Electronics Society.

IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and

Instrumentation. 21st Century Technologies (Vol. 4, pp. 2992-2997). IEEE.

[12] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT

press, Cambridge MA

[13] Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I., & Bachem, O. (2021).

Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation. CoRR,

abs/2106.13281.

[14] Whitley, L. D. (1991). Fundamental Principles of Deception in Genetic Search (G. J. E.

Rawlins, Red). In (bll 221–241). doi:10.1016/B978-0-08-050684-5.50017-3

[15] Chatzilygeroudis, K., Vassiliades, V., & Mouret, J.-B. (2018). Reset-free Trial-and-Error

Learning for Robot Damage Recovery. Robotics and Autonomous Systems, 100, 236–

250. doi:10.1016/j.robot.2017.11.010

[16] M. Duarte, J. Gomes, S. M. Oliveira and A. L. Christensen, "Evolution of Repertoire-

Based Control for Robots With Complex Locomotor Systems," in IEEE Transactions on

Evolutionary Computation, vol. 22, no. 2, pp. 314-328, April 2018, doi:

10.1109/TEVC.2017.2722101.

[17] Cully, A., & Mouret, J.-B. (2013). Behavioral Repertoire Learning in Robotics.

Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation,

175–182.

[18] Vassiliades, V., Chatzilygeroudis, K., & Mouret, J.-B. (2017). A Comparison of

Illumination Algorithms in Unbounded Spaces. Proceedings of the Genetic and

Evolutionary Computation Conference Companion, 1578–1581. Presented at the Berlin,

Germany. doi:10.1145/3067695.3082531

[19] Vassiliades, V., & Mouret, J.-B. (2018). Discovering the Elite Hypervolume by

Leveraging Interspecies Correlation. CoRR, abs/1804.03906.

[20] Quality-Diversity Optimisation algorithms: https://quality-diversity.github.io/

https://quality-diversity.github.io/

111

[21] Rudin, N., Hoeller, D., Reist, P., & Hutter, M. (2021). Learning to Walk in Minutes

Using Massively Parallel Deep Reinforcement Learning. arXiv preprint

arXiv:2109.11978.

[22] Heiden, E., Millard, D., Coumans, E., Sheng, Y., & Sukhatme, G. S. (2020). NeuralSim:

Augmenting differentiable simulators with neural networks. arXiv preprint

arXiv:2011.04217.

[23] Differentiable Quality Diversity Algorithms, Code and Experiments:

https://github.com/icaros-usc/dqd

[24] Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey, K., Macklin, M., ... & State,

G. (2021). Isaac Gym: High

[26] J. Clune, J-B. Mouret, and H. Lipson. The evolutionary origins of modularity.

Proceedings of the Royal Society B, 280(20122863), 2013.

[27] Deb K. 2001 Multi-objective optimization using evolutionary algorithms. New York,

NY: Wiley.

[28] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding

best matches in logarithmic expected time. ACM Transactions on Mathematical

Software (TOMS), 3(3):209– 226, 1977.

[29] Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying

modular framework. IEEE Transactions on Evolutionary Computation, 22(2):245– 259,

2018

[30] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. Aerodynamic design

exploration through surrogate-assisted illumination. In 18th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, page 3330, 2017.

[31] Niels Justesen, Sebastian Risi, and Jean-Baptiste Mouret. Map-elites for noisy domains

by adaptive sampling. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion, pages 121–122. ACM, 2019.

[32] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-

explore: a new approach for hard-exploration problems. arXiv preprint

arXiv:1901.10995, 2019.

https://github.com/icaros-usc/dqd

112

[33] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First

return then explore. arXiv preprint arXiv:2004.12919, 2020.

[34]Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr PoÅąÃŋk. 2010.

Comparing Results of 31 Algorithms from the Black-Box Optimization Benchmarking

BBOB-2009. Proceedings of the 12th Annual Genetic and Evolutionary Computation

Conference, GECCO ’10 - Companion Publication, 1689–1696.

[35] Hansen, N. (2016). The CMA Evolution Strategy: A Tutorial.

doi:10.48550/ARXIV.1604.00772

[36] D. Floreano and C. Mattiussi. Bio-inspired artificial intelligence: theories, methods, and

technologies. The MIT Press, 2008.

[37] J. Clune, K.O. Stanley, R.T. Pennock, and C. Ofria. On the performance of indirect

encoding across the continuum of regularity. IEEE Transactions on Evolutionary

Computation, 15(4):346–367, 2011.

[38] K.O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life,

9(2):93–130, 2003.

[39] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Unshackling evolution: Evolving soft

robots with multiple materials and a powerful generative encoding. In Proceedings of the

Genetic and Evolutionary Computation Conference, pages 167–174, 2013.

[40] J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J.C. Zagal, and H. Lipson. Evolving robot

gaits in hardware: the hyperneat generative encoding vs. parameter optimization. In

Proceedings of the European Conference on Artificial Life, pages 890–897, 2011.

[41] S. Lee, J. Yosinski, K. Glette, H. Lipson, and J. Clune. Evolving gaits for physical robots

with the hyperneat generative encoding: the benefits of simulation. In Applications of

Evolutionary Computing. Springer, 2013.

[42] J. Clune, B.E. Beckmann, C. Ofria, and R.T. Pennock. Evolving coordinated quadruped

gaits with the HyperNEAT generative encoding. In Proceedings of the IEEE Congress

Evolutionary Computation, pages 2764–2771, 2009.

113

 [43] G.S. Hornby, H. Lipson, and J.B. Pollack. Generative representations for the automated

design of modular physical robots. IEEE Transactions on Robotics and Automation,

19(4):703–719, 2003.

[44] G.S. Hornby and J.B. Pollack. Creating high-level components with a generative

representation for body-brain evolution. Artificial Life, 8(3):223–246, 2002.

[45] G.S. Hornby. Functional scalability through generative representations: the evolution of

table designs. Environment and Planning B, 31(4):569–588, 2004.

[46] J. Lehman and K. O. Stanley. 2008. Exploiting Open-Endedness to Solve Problems

Through the Search for Novelty. In ALIFE. 329–336.

[47] N. Hansen and A. Ostermeier. 2001. Completely derandomized self-adaptation in

evolution strategies. Evol. Comput. 9, 2 (2001), 159–195.

[48] Yoeng-Jin Chu. On the shortest arborescence of a directed graph. Scientia Sinica,

14:1396–1400, 1965.

[49] Youhei Akimoto, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi. Bidirectional

relation between cma evolution strategies and natural evolution strategies. In

International Conference on Parallel Problem Solving from Nature, pages 154–163.

Springer, 2010.

[50] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[51] Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning Representations by

Back-propagating Errors. Nature, 323, 533--536. doi: 10.1038/323533a0

[52] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. CoRR,

abs/1212.5701.

[53] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine

learning lecture 6a overview of mini-batch gradient descent. page 14, 2012.

[54] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805 (2018).

114

[55] Antoine Cully and Yiannis Demiris. 2017. Quality and diversity optimization: A unifying

modular framework. IEEE Transactions on Evolutionary Computation 22, 2 (2017),

245–259.

[56] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. 2016. Quality diversity: A new

frontier for evolutionary computation. Frontiers in Robotics and AI 3 (2016), 40.

[57] Konstantinos Chatzilygeroudis, Vassilis Vassiliades, and Jean-Baptiste Mouret. 2018.

Reset-free trial-and-error learning for robot damage recovery. Robotics and Autonomous

Systems 100 (2018), 236–250.

[58] Rituraj Kaushik, Pierre Desreumaux, and Jean-Baptiste Mouret. 2020. Adaptive prior

selection for repertoire-based online adaptation in robotics. Frontiers in Robotics and AI

6 (2020), 151.

[59] Dave Steinkrau, Patrice Y. Simard, and Ian Buck. 2005. Using GPUs for Machine

Learning Algorithms. In Proceedings of the Eighth International Conference on

Document Analysis and Recognition (ICDAR ’05). IEEE Computer Society, USA,

1115–1119. https://doi.org/10.1109/ICDAR.2005.251

[60] Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-column Deep Neural

Networks for Image Classification. CoRR abs/1202.2745 (2012). arXiv:1202.2745

http://arxiv.org/abs/1202.2745

[61] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,

Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul

Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283.

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[62] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011. Torch7: A Matlab-

like Environment for Machine Learning. http://infoscience.epfl.ch/record/192376

[63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Z. Yang, Zach DeVito, Martin Raison, Alykhan

https://doi.org/10.1109/ICDAR.2005.251
http://arxiv.org/abs/1202.2745
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://infoscience.epfl.ch/record/192376

115

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. CoRR

abs/1912.01703 (2019). arXiv:1912.01703 http://arxiv.org/abs/1912. 01703

[64] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,

Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-

Milne, and Qiao Zhang. 2018. JAX: composable transformations of Python+NumPy

programs. http://github.com/google/jax

[65] Tjanaka, B., Fontaine, M. C., & Nikolaidis, S. (2021). Learning a Repertoire of Robot

Arm Configurations. https://docs.pyribs.org/en/stable/tutorials/arm_repertoire.html

[66] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github.

Zenodo, DOI:10.5281/zenodo.2559634, February 2019. URL

https://doi.org/10.5281/zenodo. 2559634.

[67] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier

Bachem. 2021. Brax - A Differentiable Physics Engine for Large Scale Rigid Body

Simulation. http://github.com/google/brax

[68] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,

Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel

State. 2021. Isaac Gym: High Performance GPU-Based Physics Simulation For Robot

Learning. CoRR abs/2108.10470 (2021). arXiv:2108.10470

https://arxiv.org/abs/2108.10470

[69] Lim, B., Allard, M., Grillotti, L., & Cully, A. (2022). Accelerated Quality-Diversity for

Robotics through Massive Parallelism. doi:10.48550/ARXIV.2202.01258

http://arxiv.org/abs/1912.%2001703
http://github.com/google/jax
https://docs.pyribs.org/en/stable/tutorials/arm_repertoire.html
https://doi.org/10.5281/zenodo.%202559634
http://github.com/google/brax
https://arxiv.org/abs/2108.10470

A-1

Appendix A - Implementations

A.1 QD Functions

A.1.1 Rastrigin Objective Function

import jax

from jax import lax

import jax.numpy as jnp

def calc_rastrigin(sol):

 C = 5.12

 A = 10.0

 dim = sol.shape[1]

 # Shift the Rastrigin function so that the optimal value is at x_i = 2.048.

 # This is to avoid having the lowest point of the rastrigin functionat

 # position x = [0,0,0,...,0], i.e. f(0,0,0,...,0) = 0 because the position

 # x = [0,0,0,...,0] is usually used as an initial point for the search

 # That is, an initial solution

 target_shift = C * 0.4

 # sol = 2*C*sol - C

 best_obj = jnp.zeros(len(sol))

 displacement = -C * jnp.ones(sol.shape) - target_shift

 sum_terms = jnp.square(displacement) - A * jnp.cos(2 * jnp.pi * displacement)

 worst_obj = A * dim + jnp.sum(sum_terms, axis=1)

 displacement = sol - target_shift

 sum_terms = jnp.square(displacement) - A * jnp.cos(2 * jnp.pi * displacement)

 raw_obj = A * dim + jnp.sum(sum_terms, axis=1)

 # Normalize the objective to the range [0, 100] where 100 is optimal.

 # Approximate 0 by the bottom-left corner.

 objs = (raw_obj - worst_obj) / (best_obj - worst_obj) * 100

 derivatives = -(2 * displacement + 2 * jnp.pi * A * jnp.sin(2 * jnp.pi * displacement))

 return objs, derivatives

Code Snippet A.1: Objective Function Rastrigin(x) defined by the shifted and flipped Rastrigin Function

A-2

A.1.2 Simple Behavioural Function – simple_b(x)

import jax

from jax import lax

import jax.numpy as jnp

def calc_bds_rastrigin_simple(sol):

 mask_1 = jnp.zeros(sol.shape).at[:,0].set(1)

 mask_2 = jnp.zeros(sol.shape).at[:,1].set(1)

 return (jnp.stack((sol[:,0], sol[:,1]), axis=-1),

 jnp.stack((mask_1, mask_2), axis=1)

)

Code Snippet A.2: Simple Behavioural Function b_simple(x)

A.1.3 Behavioural Function distorted_b(x)

import jax

from jax import lax

import jax.numpy as jnp

def calc_bds_rastrigin(sol):

 C = 5.12

 dim = sol.shape[1]

 mask_greater = jnp.where(sol > C, 1, 0)

 mask_less = jnp.where(sol < -C, 1, 0)

 mask_range=jnp.invert((mask_greater+mask_less).astype(dtype=bool)).astype(dtype=jnp.int32)

 clipped = (mask_greater + mask_less) * (C / sol) + sol * mask_range

 measures = jnp.concatenate(

 (

 jnp.sum(clipped[:, :dim // 2], axis=1, keepdims=True),

 jnp.sum(clipped[:, dim // 2:], axis=1, keepdims=True),

),

 axis=1,

)

 derivatives = (mask_greater + mask_less) * (-C / jnp.square(sol)) + mask_range

A-3

 mask_0 = jnp.concatenate((jnp.ones(dim//2), jnp.zeros(dim-dim//2)))

 mask_1 = jnp.concatenate((jnp.zeros(dim//2), jnp.ones(dim-dim//2)))

 d_measure0 = jnp.multiply(derivatives, mask_0)

 d_measure1 = jnp.multiply(derivatives, mask_1)

 jacobian = jnp.stack((d_measure0, d_measure1), axis=1)

 return measures, jacobian

Code Snippet A.3: Behavioural Function distorted_b(x)

A.1.4 Objective Function grasp_obj(x)

import jax

from jax import lax

import jax.numpy as jnp

def calc_grasp_objs(joint_angles, link_lengths, calc_jacobians=True):

 n_dim = link_lengths.shape[0]

 objs = -jnp.var(joint_angles, axis=1)

 # Remap the objective from [-1, 0] to [0, 100]

 objs = (objs+1.0)*100.0

 if calc_jacobians:

 means = jnp.mean(joint_angles, axis=1)

 means = jnp.expand_dims(means, axis=1)

 base = n_dim * jnp.ones(n_dim)

 obj_derivatives = -2 * (joint_angles - means) / base

 return objs, obj_derivatives

 return objs, None

Code Snippet A.4: Objective Function grasp(x)

A.1.5 Behavioural Function grasp_b(x)

import jax

from jax import lax

import jax.numpy as jnp

def _step_calc_bd_gradients(data):

 i, bds_derivatives, link_lengths, cum_theta, sum_0, sum_1 = data

 sum_0 += -link_lengths[i] * jnp.sin(cum_theta[:, i])

 sum_1 += link_lengths[i] * jnp.cos(cum_theta[:, i])

A-4

 bds_derivatives.at[:, 0, i].set(sum_0)

 bds_derivatives.at[:, 1, i].set(sum_1)

 return (i - 1, bds_derivatives, link_lengths, cum_theta, sum_0, sum_1)

def calc_grasp_bds(joint_angles, link_lengths, calc_jacobians=True):

 # max_val = jnp.sum(link_lengths)

 # joint_angles = joint_angles * 2*max_val - max_val

 n_dim = link_lengths.shape[0]

 # theta_1, theta_1 + theta_2, ...

 cum_theta = jnp.cumsum(joint_angles, axis=1)

 # l_1 * cos(theta_1), l_2 * cos(theta_1 + theta_2), ...

 x_pos = link_lengths[None] * jnp.cos(cum_theta)

 # l_1 * sin(theta_1), l_2 * sin(theta_1 + theta_2), ...

 y_pos = link_lengths[None] * jnp.sin(cum_theta)

 bds = jnp.concatenate(

 (

 jnp.sum(x_pos, axis=1, keepdims=True),

 jnp.sum(y_pos, axis=1, keepdims=True),

),

 axis=1

)

 if calc_jacobians:

 sum_0 = jnp.zeros(joint_angles.shape[0])

 sum_1 = jnp.zeros(joint_angles.shape[0])

 bds_derivatives = jnp.zeros((joint_angles.shape[0], 2, n_dim))

 data = (n_dim-1, bds_derivatives, link_lengths, cum_theta, sum_0, sum_1)

 lax.while_loop(lambda d: d[0] >= 0,

 _step_calc_bd_gradients,

 data

)

 return bds, bds_derivatives

 return bds, None

Code Snippet A.5: Behavioural Function grasp_b(x)

A-5

A.2 Optimizers

A.2.1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

"""Implementation of CMA-ES that can be used across various emitters.

Adapted from Nikolaus Hansen's pycma:

https://github.com/CMA-ES/pycma/blob/master/cma/purecma.py

"""

from typing import Any, Callable, Dict, Optional, Tuple, List

import jax.numpy as jnp

import flax

import jax

from jax import lax

import functools

D_TYPE = jnp.float32

Array = jnp.ndarray

class WeightRules:

 TRUNCATION = 1

 ACTIVE = 2

@flax.struct.dataclass

class DecompMatrix:

 """Maintains a covariance matrix and its eigendecomposition.

 CMA-ES requires the inverse square root of the covariance matrix in order to

 sample new solutions from a multivariate normal distribution. However,

 calculating the inverse square root is an O(n^3) operation because an

 eigendecomposition is involved. (n is the dimensionality of the search

 space). To amortize the operation to O(n^2) and avoid recomputing, this

 class maintains the inverse square root and waits several evals before

 recomputing the inverse square root.

 """

 cov: Array

 eigenbasis: Array

 eigenvalues: Array

 condition_number: jnp.float32

 invsqrt: Array

 updated_eval: jnp.int32

 @classmethod

 def create(cls, dimension):

 cov = jnp.eye(dimension, dtype=D_TYPE)

 eigenbasis = jnp.eye(dimension, dtype=D_TYPE)

 eigenvalues = jnp.ones((dimension,), dtype=D_TYPE)

A-6

 condition_number = 1.0

 invsqrt = jnp.eye(dimension, dtype=D_TYPE) # C^(-1/2)

 # The last evaluation on which the eigensystem was updated.

 updated_eval = 0

 return cls(cov, eigenbasis, eigenvalues, condition_number, invsqrt, updated_eval)

 @staticmethod

 def check_update_eigensystem(decompMatrix, current_eval, lazy_gap_evals):

 return lax.cond(current_eval <= decompMatrix.updated_eval + lazy_gap_evals,

 lambda x: decompMatrix,

 lambda x: DecompMatrix._update_eigensystem(decompMatrix, current_eval),

 current_eval

)

 @staticmethod

 def _update_eigensystem(decompMatrix, current_eval):

 """Updates the covariance matrix.

 """

 # Force symmetry.

 cov = jnp.maximum(decompMatrix.cov, jnp.transpose(decompMatrix.cov))

 # Note: eigh returns float64, so we must cast it.

 eigenvalues, eigenbasis = jnp.linalg.eigh(cov)

 eigenvalues = eigenvalues.real.astype(D_TYPE)

 eigenbasis = eigenbasis.real.astype(D_TYPE)

 condition_number = (jnp.max(eigenvalues) /

 jnp.min(eigenvalues))

 invsqrt = jnp.matmul((eigenbasis *

 (1 / jnp.sqrt(eigenvalues))), jnp.transpose(eigenbasis))

 # Force symmetry.

 invsqrt = jnp.maximum(invsqrt, jnp.transpose(invsqrt))

 updated_eval = current_eval

 return decompMatrix.replace(cov = cov,

 eigenbasis = eigenbasis,

 eigenvalues = eigenvalues,

 condition_number = condition_number,

 invsqrt = invsqrt,

 updated_eval = updated_eval)

@flax.struct.dataclass

class CMAEvolutionStrategy:

 """CMA-ES optimizer for use with emitters.

 The basic usage is:

 - Initialize the optimizer and reset it.

 - Repeatedly:

A-7

 - Request new solutions with ask()

 - Rank the solutions in the emitter (better solutions come first) and pass

 them back with tell().

 - Use check_stop() to see if the optimizer has reached a stopping

 condition, and if so, call reset().

 """

 batch_size: jnp.int32

 sigma0: jnp.float32

 solution_dim: jnp.int32

 lazy_gap_evals: jnp.float32

 current_eval: jnp.int32

 mean: jnp.float32

 sigma: jnp.float32

 pc: Array

 ps: Array

 cov: DecompMatrix

 weight_rule: str

 @classmethod

 def create(cls, sigma0, batch_size, solution_dim, weight_rule):

 batch_size = (4 + int(3 * jnp.log(solution_dim))

 if batch_size is None else batch_size)

 sigma0 = float(sigma0)

 if weight_rule not in [WeightRules.TRUNCATION, WeightRules.ACTIVE]:

 raise ValueError(f"Invalid weight_rule {weight_rule}")

 calc_strat_params_fn = jax.jit(functools.partial(

 CMAEvolutionStrategy._calc_strat_params, weight_rule, batch_size, solution_dim))

 static_settings = dict()

 static_settings['calc_strat_params_fn'] = calc_strat_params_fn

 static_settings['solution_dim'] = solution_dim

 static_settings['batch_size'] = batch_size

 static_settings['should_update_eigensystem'] = False

 # Calculate gap between covariance matrix updates.

 num_parents = batch_size // 2

 temp_indices = jnp.arange(0, batch_size, 1)

 parents_mask = jnp.where(temp_indices < num_parents, 1, 0)

 *_, c1, cmu = calc_strat_params_fn(num_parents, parents_mask)

 lazy_gap_evals = (0.5 * solution_dim * batch_size *

 (c1 + cmu)**-1 / solution_dim**2)

 # Strategy-specific params -> initialized in reset().

 current_eval = None

A-8

 mean = None

 sigma = None

 pc = None

 ps = None

 cov = None

 return cls(batch_size, sigma0, solution_dim, lazy_gap_evals, current_eval,

 mean, sigma, pc, ps, cov, weight_rule), static_settings

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings['batch_size']

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings['solution_dim']

 @staticmethod

 def _get_calc_strat_params_fn(static_settings):

 return static_settings['calc_strat_params_fn']

 @staticmethod

 def reset(static_settings, cmaEvolStrategy, x0):

 """Resets the optimizer to start at x0.

 Args:

 x0 (jnp.ndarray): Initial mean.

 """

 solution_dim = cmaEvolStrategy._get_solution_dim(static_settings)

 current_eval = 0

 sigma = cmaEvolStrategy.sigma0

 mean = jnp.array(x0, D_TYPE)

 # Setup evolution path variables.

 pc = jnp.zeros(solution_dim, dtype=D_TYPE)

 ps = jnp.zeros(solution_dim, dtype=D_TYPE)

 # Setup the covariance matrix.

 cov = DecompMatrix.create(solution_dim)

 return cmaEvolStrategy.replace(cov = cov, pc = pc, ps = ps, sigma = sigma,

 mean = mean, current_eval = current_eval)

 @staticmethod

 def check_stop(cmaEvolStrategy, ranking_values, new_sols):

 """Checks if the optimization should stop and be reset.

 Tolerances come from CMA-ES.

 """

A-9

 area = cmaEvolStrategy.sigma * jnp.sqrt(jnp.asarray(

 cmaEvolStrategy.cov.eigenvalues).max())

 a = cmaEvolStrategy.cov.condition_number > 1e14

 b = area < 1e-11

 c = new_sols >= 2

 d = jnp.abs(ranking_values[0] - ranking_values[-1]) < 1e-12

 # condition number > 1e14 or

 # Area of distribution too small or

 # Fitness is too flat (only applies if there are at least 2 parents).

 # return cmaEvolStrategy.cov.condition_number > 1e14 or area < 1e-11 or (new_sols >= 2

and

 # jnp.abs(ranking_values[0] - ranking_values[-1]) < 1e-12)

 return jnp.logical_or(jnp.logical_or(a,b),jnp.logical_and(c,d))

 @staticmethod

 def _transform_and_check_sol(transform_mat, mean, lower_bounds, upper_bounds,

 unscaled_params):

 """Helper for transforming parameters to the solution space."""

 solutions = (jnp.transpose(jnp.matmul(transform_mat,

 jnp.transpose(unscaled_params))) +

 jnp.expand_dims(mean, axis=0))

 out_of_bounds = jnp.logical_or(

 solutions < jnp.expand_dims(lower_bounds, axis=0),

 solutions > jnp.expand_dims(upper_bounds, axis=0),

)

 return solutions, out_of_bounds

 @staticmethod

 def _get_remaining_out_of_bounds(batch_size, solution_dim, sigma,

 _transform_and_check_sol_fn, data):

 # jax.jit requires that not working with code that generate output array shape that is

data-dependent

 # (e.g. use jnp.where to find indices of an array that satisfy a condition)

 # Thus, we generate deterministically each time as many solutions as it is the number

of batch sizes

 # and we exploit only a fraction of it. Should be investigated whether it can be

optimised further

 out_of_bounds_all, solutions, key = data

 tempkey, key2 = jax.random.split(key, 2)

 unscaled_params = sigma * jax.random.normal(key2,

 shape=solutions.shape,

 dtype=D_TYPE)

 new_solutions, out_of_bounds = _transform_and_check_sol_fn(unscaled_params)

A-10

 # Change the solutions that previously were out of bounds

 mask = jnp.repeat(jnp.expand_dims(out_of_bounds_all,axis=-1), solution_dim, axis=-1)

 solutions = jnp.where(mask, new_solutions, solutions)

 # update which solutions are still out of bounds

 out_of_bounds_all = jnp.logical_and(

 out_of_bounds_all,

 jnp.any(out_of_bounds, axis=1),

)

 return (out_of_bounds_all, solutions , tempkey)

 @staticmethod

 def _more_out_of_bounds(data):

 return jnp.sum(data[0].astype(jnp.int32)) > 0

 @staticmethod

 def ask(static_settings, cmaEvolStrategy, lower_bounds, upper_bounds, seed):

 """Samples new solutions from the Gaussian distribution.

 """

 solution_dim = cmaEvolStrategy._get_solution_dim(static_settings)

 batch_size = cmaEvolStrategy._get_batch_size(static_settings)

 decompMatrix = DecompMatrix.check_update_eigensystem(cmaEvolStrategy.cov,

 cmaEvolStrategy.current_eval, cmaEvolStrategy.lazy_gap_evals)

 solutions = jnp.empty((batch_size, solution_dim),dtype=D_TYPE)

 transform_mat = decompMatrix.eigenbasis * jnp.sqrt(decompMatrix.eigenvalues)

 cmaEvolStrategy = cmaEvolStrategy.replace(cov = decompMatrix)

 # keeps a flag (= True or False) for each solution whether any of its parameter's

value is out of bounds

 out_of_bounds_all = jnp.full(batch_size,True)

 tempkey = seed

 # to_ones = jnp.vectorize(lambda x: lax.cond(x, lambda x: 1, lambda x: 0, x))

 _transform_and_check_sol_partial = functools.partial(

 CMAEvolutionStrategy._transform_and_check_sol,

 transform_mat, cmaEvolStrategy.mean, lower_bounds, upper_bounds)

 get_remaining_out_of_bounds_fn =

functools.partial(CMAEvolutionStrategy._get_remaining_out_of_bounds,

 batch_size,

 solution_dim,

 cmaEvolStrategy.sigma,

 _transform_and_check_sol_partial)

 return cmaEvolStrategy, jnp.asarray(

lax.while_loop(CMAEvolutionStrategy._more_out_of_bounds,

 get_remaining_out_of_bounds_fn,

A-11

 (out_of_bounds_all, solutions, tempkey))[1]

)

 # Resampling method for bound constraints -> sample new solutions until

 # all solutions are within bounds.

 while jnp.sum(out_of_bounds_all.astype(jnp.int32)) > 0:

 # jax.jit requires that not working with code that generate output array shape

that is data-dependent

 # (e.g. use jnp.where to find indices of an array that satisfy a condition)

 # Thus, we generate deterministically each time as many solutions as it is the

number of batch sizes

 # and we exploit only a fraction of it. Should be investigated whether it can be

optimised further

 tempkey, key2 = jax.random.split(tempkey, 2)

 unscaled_params = cmaEvolStrategy.sigma * jax.random.normal(key2,

 shape=(cmaEvolStrategy.batch_size,

 cmaEvolStrategy.solution_dim),

 dtype=cmaEvolStrategy.dtype)

 new_solutions, out_of_bounds = _transform_and_check_sol_partial(unscaled_params)

 # Change the solutions that previously were out of bounds

 mask = jnp.repeat(jnp.expand_dims(out_of_bounds_all,axis=-1),

 cmaEvolStrategy.solution_dim,axis=-1)

 solutions = jnp.where(mask,new_solutions,solutions)

 # update which solutions are still out of bounds

 out_of_bounds_all = jnp.logical_and(

 out_of_bounds_all,

 jnp.any(out_of_bounds, axis=1),

)

 return jnp.asarray(solutions)

 @staticmethod

 def _calc_strat_params(weight_rule, batch_size, solution_dim, num_parents, parents_mask):

 """Calculates weights, mueff, and learning rates for CMA-ES."""

 # Create fresh weights for the number of parents found.

 if weight_rule == WeightRules.TRUNCATION:

 # The first num_parents weights are used that depend on the number of parents

 # but the array has size equal to solution_dim to allow it to be jit compiled

 weights = (jnp.log(num_parents + 0.5) -

 jnp.log(jnp.arange(1, batch_size + 1)))

 # make the non-parent entries to zero arrays so that the sum is not affected

 # by the extra entries in the array (elements that are not parents)

 filtered_weights = jnp.multiply(weights, parents_mask)

 total_weights = jnp.sum(filtered_weights)

 weights = filtered_weights / total_weights

A-12

 # mueff = jnp.sum(weights)**2 / jnp.sum(weights**2)

 mueff = jnp.square(total_weights) / jnp.sum(jnp.square(filtered_weights))

 elif weight_rule == WeightRules.ACTIVE:

 weights = None

 # Dynamically update these strategy-specific parameters.

 cc = ((4 + mueff / solution_dim) /

 (solution_dim + 4 + 2 * mueff / solution_dim))

 cs = (mueff + 2) / (solution_dim + mueff + 5)

 c1 = 2 / ((solution_dim + 1.3)**2 + mueff)

 cmu = jnp.minimum(

 1 - c1,

 2 * (mueff - 2 + 1 / mueff) / ((solution_dim + 2)**2 + mueff),

)

 return weights, mueff, cc, cs, c1, cmu

 @staticmethod

 def _calc_mean(solutions, parents_mask, weights):

 """Helper for calculating the new mean."""

 masked_solutions = jnp.multiply(solutions, jnp.expand_dims(parents_mask, axis=-1))

 return jnp.sum(jnp.multiply(masked_solutions, jnp.expand_dims(weights, axis=1)),

 axis=0)

 @staticmethod

 def _calc_weighted_ys(solutions, parents_mask, old_mean, weights):

 """Calculates y's for use in rank-mu update."""

 ys = solutions - jnp.expand_dims(old_mean, axis=0)

 expanded_parents_mask = jnp.expand_dims(parents_mask,axis=-1)

 masked_ys = jnp.multiply(ys, expanded_parents_mask)

 masked_weighted_ys = jnp.multiply(masked_ys, jnp.expand_dims(weights, axis=1))

 return masked_weighted_ys, masked_ys

 @staticmethod

 def _calc_cov_update(cov, c1a, cmu, c1, pc, sigma, rank_mu_update):

 """Calculates covariance matrix update."""

 rank_one_update = c1 * jnp.outer(pc, pc)

 return (cov * (1 - c1a - cmu) + rank_one_update * c1 +

 rank_mu_update * cmu / (sigma**2))

 @staticmethod

 def tell(static_settings, cmaEvolStrategy, solutions, num_parents):

 """Passes the solutions back to the optimizer.

 """

 current_eval = cmaEvolStrategy.current_eval + len(solutions)

A-13

 def pass_solutions(static_settings, cmaEvolStrategy, solutions, num_parents,

 current_eval):

 # parents = solutions[:num_parents]

 calc_strat_params_fn = cmaEvolStrategy._get_calc_strat_params_fn(static_settings)

 solution_dim = cmaEvolStrategy._get_solution_dim(static_settings)

 batch_size = cmaEvolStrategy._get_batch_size(static_settings)

 temp_indices = jnp.arange(0,batch_size, 1)

 parents_mask = jnp.where(temp_indices < num_parents, 1, 0)

 weights, mueff, cc, cs, c1, cmu = calc_strat_params_fn(num_parents, parents_mask)

 damps = (1 + 2 * jnp.maximum(

 0,

 jnp.sqrt((mueff - 1) / (solution_dim + 1)) - 1,

) + cs)

 # Recombination of the new mean.

 old_mean = cmaEvolStrategy.mean

 mean = CMAEvolutionStrategy._calc_mean(solutions, parents_mask, weights)

 # Update the evolution path.

 y = mean - old_mean

 z = jnp.matmul(cmaEvolStrategy.cov.invsqrt, y)

 ps = ((1 - cs) * cmaEvolStrategy.ps +

 (jnp.sqrt(cs * (2 - cs) * mueff) / cmaEvolStrategy.sigma) * z)

 left = (jnp.sum(jnp.square(ps)) / solution_dim /

 (1 - (1 - cs)**(2 * current_eval / batch_size)))

 right = 2 + 4. / (solution_dim + 1)

 hsig = lax.cond(left < right, lambda x: 1, lambda x: 0, None)

 pc = ((1 - cc) * cmaEvolStrategy.pc + hsig * jnp.sqrt(cc * (2 - cc) * mueff) *

y)

 # Adapt the covariance matrix.

 weighted_ys, ys = CMAEvolutionStrategy._calc_weighted_ys(solutions, parents_mask,

 old_mean, weights)

 # Equivalent to calculating the outer product of each ys[i] with itself

 # and taking a weighted sum of the outer products. Unfortunately, numba

 # does not support einsum.

 rank_mu_update = jnp.einsum("ki,kj", jnp.asarray(weighted_ys, dtype=D_TYPE),

 jnp.asarray(ys, dtype=D_TYPE))

 c1a = c1 * (1 - (1 - hsig**2) * cc * (2 - cc))

 cov = CMAEvolutionStrategy._calc_cov_update(cmaEvolStrategy.cov.cov, c1a, cmu, c1,

 pc, cmaEvolStrategy.sigma,

 rank_mu_update)

A-14

 cov = cmaEvolStrategy.cov.replace(cov = cov)

 # Update sigma.

 cn, sum_square_ps = cs / damps, jnp.sum(jnp.square(ps))

 sigma = cmaEvolStrategy.sigma * jnp.exp(

 jnp.minimum(1,cn * (sum_square_ps / solution_dim - 1) / 2)

)

 return cmaEvolStrategy.replace(cov=cov, current_eval = current_eval, mean = mean,

ps = ps, pc = pc, sigma = sigma)

 # Examine whether num_parents == 0 is required as a check

 return lax.cond(num_parents == 0,

 lambda x: cmaEvolStrategy.replace(current_eval = current_eval),

 lambda x: pass_solutions(static_settings, cmaEvolStrategy, solutions,

num_parents, current_eval),

 None

)

Code Snippet A.6: Implementation of the CMA-ES in JAX (_cma_es.py)

A.2.2 ADAM

Adapted from: https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/opt/_adam.py

from typing import Any

import jax.numpy as jnp

import jax.numpy as jnp

import flax

import jax

from jax import lax

import functools

D_TYPE = jnp.float32

Array = jnp.ndarray

Adam Gradient Ascent

@flax.struct.dataclass

class AdamOpt:

 beta1: D_TYPE

 beta2: D_TYPE

 stepsize: jnp.int32

 dim: jnp.int32

 t: D_TYPE

 epsilon: D_TYPE

 theta: Array

 m: Array

 v: Array

A-15

 @classmethod

 def create(cls, theta0, stepsize, betas=(0.9, 0.999), epsilon=1e-8):

 t = 0

 dim = len(theta0)

 beta1 = betas[0]

 beta2 = betas[1]

 # The following attributes will be initialised with the use of reset

 theta = jnp.array([])

 m = jnp.array([])

 v = jnp.array([])

 static_settings = dict()

 static_settings['dim'] = dim

 return cls.reset(static_settings, cls(beta1, beta2, stepsize,

 dim, t, epsilon, theta, m, v), jnp.array(theta0)), static_settings

 @staticmethod

 def _get_dim(static_settings):

 return static_settings['dim']

 @staticmethod

 def reset(static_settings, adamOpt, theta0):

 dim = adamOpt._get_dim(static_settings)

 theta = theta0

 m = jnp.zeros(dim, dtype=D_TYPE)

 v = jnp.zeros(dim, dtype=D_TYPE)

 return adamOpt.replace(m = m, v = v, theta = theta)

 @staticmethod

 def _compute_step(adamOpt, grad):

 a = adamOpt.stepsize * jnp.sqrt(1 - jnp.power(adamOpt.beta2,

 adamOpt.t)) / (1 - jnp.power(adamOpt.beta1, adamOpt.t))

 m = adamOpt.beta1 * adamOpt.m + (1 - adamOpt.beta1) * grad

 v = adamOpt.beta2 * adamOpt.v + (1 - adamOpt.beta2) * (grad * grad)

 step = a * m / (jnp.sqrt(v) + adamOpt.epsilon)

 return adamOpt.replace(m = m, v = v), step

 @staticmethod

 def step(static_settings, adamOpt, grad):

 t = adamOpt.t + 1

 adamOpt, step = adamOpt._compute_step(adamOpt.replace(t = t), grad)

 theta = adamOpt.theta + step

 return adamOpt.replace(theta = theta)

Code Snippet A.7: Implementation of the Adap Optimiser in JAX (_adam.py)

A-16

A.2.3 Gradient Ascent

Adapted from: https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/opt/_adam.py

from typing import Any

import jax.numpy as jnp

import jax.numpy as jnp

import flax

import jax

from jax import lax

import functools

D_TYPE = jnp.float32

Array = jnp.ndarray

Adam Gradient Ascent

@flax.struct.dataclass

class AdamOpt:

 beta1: D_TYPE

 beta2: D_TYPE

 stepsize: jnp.int32

 dim: jnp.int32

 t: D_TYPE

 epsilon: D_TYPE

 theta: Array

 m: Array

 v: Array

 @classmethod

 def create(cls, theta0, stepsize, betas=(0.9, 0.999), epsilon=1e-8):

 t = 0

 dim = len(theta0)

 beta1 = betas[0]

 beta2 = betas[1]

 # The following attributes will be initialised with the use of reset

 theta = jnp.array([])

 m = jnp.array([])

 v = jnp.array([])

 static_settings = dict()

 static_settings['dim'] = dim

 return cls.reset(static_settings, cls(beta1, beta2, stepsize,

 dim, t, epsilon, theta, m, v), jnp.array(theta0)), static_settings

 @staticmethod

 def _get_dim(static_settings):

 return static_settings['dim']

 @staticmethod

A-17

 def reset(static_settings, adamOpt, theta0):

 dim = adamOpt._get_dim(static_settings)

 theta = theta0

 m = jnp.zeros(dim, dtype=D_TYPE)

 v = jnp.zeros(dim, dtype=D_TYPE)

 return adamOpt.replace(m = m, v = v, theta = theta)

 @staticmethod

 def _compute_step(adamOpt, grad):

 a = adamOpt.stepsize * jnp.sqrt(1 - jnp.power(adamOpt.beta2,

 adamOpt.t)) / (1 - jnp.power(adamOpt.beta1, adamOpt.t))

 m = adamOpt.beta1 * adamOpt.m + (1 - adamOpt.beta1) * grad

 v = adamOpt.beta2 * adamOpt.v + (1 - adamOpt.beta2) * (grad * grad)

 step = a * m / (jnp.sqrt(v) + adamOpt.epsilon)

 return adamOpt.replace(m = m, v = v), step

 @staticmethod

 def step(static_settings, adamOpt, grad):

 t = adamOpt.t + 1

 adamOpt, step = adamOpt._compute_step(adamOpt.replace(t = t), grad)

 theta = adamOpt.theta + step

 return adamOpt.replace(theta = theta)

Code Snippet A.8: Implementation of the Gradient Ascent Optimizer in JAX (_adam.py)

A.3 QD Emitters (Array Version)

A.3.1 MAP-Elites (Isotropic Gaussian)

"""Provides the GaussianEmitter.

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_gaussian_emitter.py

"""

from typing import Any

import jax.numpy as jnp

import flax

import jax

from qd_utils.grid_archive import Repertoire

from training.emitters.emitters_utils import EmitterBase

from collections import namedtuple

D_TYPE = jnp.float32

Array = jnp.ndarray

A-18

@flax.struct.dataclass

class GaussianEmitter:

 """Emits solutions by adding Gaussian noise to existing archive solutions.

 If the archive is empty, calls to :meth:`ask` will generate solutions from a

 user-specified Gaussian distribution with mean ``x0`` and standard deviation

 ``sigma0``. Otherwise, this emitter selects solutions from the archive and

 generates solutions from a Gaussian distribution centered around each

 solution with standard deviation ``sigma0``.

 This is the classic variation operator presented in `Mouret 2015

 <https://arxiv.org/pdf/1504.04909.pdf>`_.

 """

 x0: Array

 sigma0: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 solution_dim: jnp.int32

 @classmethod

 def create(cls,

 x0,

 sigma0,

 batch_size,

 bounds=None):

 solution_dim = len(x0)

 x0 = jnp.array(x0, dtype=D_TYPE)

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim)

 batch_size = batch_size

 sigma0 = float(sigma0)

 static_settings = dict()

 static_settings['batch_size'] = batch_size

 static_settings['solution_dim'] = solution_dim

 StaticSettings = namedtuple('StaticSettings', static_settings)

 return (cls(x0, sigma0, lower_bounds, upper_bounds, batch_size, solution_dim),

 StaticSettings(**static_settings))

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

A-19

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _ask_clip(parents, lower_bounds, upper_bounds):

 return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds)

 @staticmethod

 def ask(static_settings, gaussian_emitter, repertoire, key):

 """Creates solutions by adding Gaussian noise to elites in the archive.

 """

 batch_size = gaussian_emitter._get_batch_size(static_settings)

 solution_dim = gaussian_emitter._get_solution_dim(static_settings)

 key_selection, key_variation = jax.random.split(key, 2)

 # SELECTION #

 idx_p1 = jax.random.randint(key_selection, shape=(batch_size,), minval=0,

 maxval=repertoire.num_indivs)

 tot_indivs = repertoire.fitness.ravel().shape[0]

 indexes = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)), size =

 tot_indivs)

 indexes = jnp.transpose(indexes, axes=(1, 0))

 indiv_indices = jnp.array(jnp.ravel_multi_index(indexes, repertoire.fitness.shape,

 mode='clip')).astype(int)

 idx_p1 = indiv_indices.at[idx_p1].get()

 sols = jax.tree_map(lambda x: x.at[idx_p1].get(),repertoire.archive)

 # # VARIATION - MUTATION #

 # # Better approach since it operates directly on the tree

 # # structure of the solutions

 # num_vars = len(jax.tree_leaves(sols))

 # treedef = jax.tree_structure(sols)

 # all_keys = jax.random.split(key_variation, num=num_vars)

 # # Gaussian noise

 # noise = jax.tree_multimap(

 # lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols,

 # jax.tree_unflatten(treedef, all_keys))

 # # Added noise in positive direction

 # mutated_sols = jax.tree_multimap(lambda g, n: g + n * gaussian_emitter.sigma0, sols,

 # noise)

 # # Added noise in negative direction

 # anit_mutated_sols = jax.tree_multimap(lambda g, n: g - n * gaussian_emitter.sigma0,

 # sols, noise)

A-20

 # return gaussian_emitter, mutated_sols

 noise = jax.random.normal(key_variation, shape=(batch_size, solution_dim),

 dtype=D_TYPE) * gaussian_emitter.sigma0

 return gaussian_emitter, gaussian_emitter._ask_clip(sols + noise,

 gaussian_emitter.lower_bounds,

 gaussian_emitter.upper_bounds)

 @staticmethod

 def tell(static_settings, gaussian_emitter, solutions, objective_values, behavior_values,

 dead, repertoire, key):

 """Inserts entries into the archive.

 """

 repertoire = repertoire.add_to_archive(repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 return gaussian_emitter, repertoire

Code Snippet A.9: Implementation of the MAP-Elites with Isotropic Gaussian in JAX (_gaussian_emitter.py)

A.3.2 MAP-Elites (Iso + LineDD)

"""Provides the IsoLineEmitter.

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_iso_line_emitter.py

"""

import jax.numpy as jnp

import flax

import jax

from training.emitters.emitters_utils import EmitterBase

from collections import namedtuple

D_TYPE = jnp.float32

Array = jnp.ndarray

@flax.struct.dataclass

class IsoLineEmitter:

 """Emits solutions that are nudged towards other archive solutions.

 If the archive is empty, calls to :meth:`ask` will generate solutions from

 an isotropic Gaussian distribution with mean ``x0`` and standard deviation

 ``iso_sigma``. Otherwise, to generate each new solution, the emitter selects

 a pair of elites :math:`x_i` and :math:`x_j` and samples from

 .. math::

 x_i + \\sigma_{iso} \\mathcal{N}(0,\\mathcal{I}) +

A-21

 \\sigma_{line}(x_j - x_i)\\mathcal{N}(0,1)

 This emitter is based on the Iso+LineDD operator presented in `Vassiliades

 2018 <https://arxiv.org/abs/1804.03906>`_.

 """

 x0: Array

 iso_sigma: D_TYPE

 line_sigma: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 solution_dim: jnp.int32

 @classmethod

 def create(cls,

 x0,

 iso_sigma,

 line_sigma,

 batch_size,

 bounds=None):

 solution_dim = len(x0)

 x0 = jnp.array(x0, dtype=D_TYPE)

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim)

 batch_size = batch_size

 iso_sigma = float(iso_sigma)

 line_sigma = float(line_sigma)

 static_settings = dict()

 static_settings['batch_size'] = batch_size

 static_settings['solution_dim'] = solution_dim

 StaticSettings = namedtuple('StaticSettings', static_settings)

 return (cls(x0, iso_sigma, line_sigma, lower_bounds, upper_bounds, batch_size,

 solution_dim), StaticSettings(**static_settings))

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _ask_clip(parents, lower_bounds, upper_bounds):

 return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds)

 @staticmethod

A-22

 def ask(static_settings, iso_emitter, repertoire, key):

 """Generates ``batch_size`` solutions.

 """

 batch_size = iso_emitter._get_batch_size(static_settings)

 solution_dim = iso_emitter._get_solution_dim(static_settings)

 key_selection, key_variation = jax.random.split(key, 2)

 # SELECTION #

 key_select_p1, key_select_p2 = jax.random.split(key_selection, 2)

 idx_s1 = jax.random.randint(key_select_p1, shape=(batch_size,),

 minval=0, maxval=repertoire.num_indivs)

 idx_s2 = jax.random.randint(key_select_p2, shape=(batch_size,),

 minval=0, maxval=repertoire.num_indivs)

 tot_indivs = repertoire.fitness.ravel().shape[0]

 indices = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)),

 size = tot_indivs)

 indices = jnp.transpose(indices, axes=(1, 0))

 indiv_indices = jnp.array(jnp.ravel_multi_index(indices,

 repertoire.fitness.shape, mode='clip')).astype(int)

 idx_s1 = indiv_indices.at[idx_s1].get()

 idx_s2 = indiv_indices.at[idx_s2].get()

 sols_1 = jax.tree_map(lambda x: x.at[idx_s1].get(),

 repertoire.archive)

 sols_2 = jax.tree_map(lambda x: x.at[idx_s2].get(),

 repertoire.archive)

 # # VARIATION #

 # # Better approach since it operates directly on the tree

 # # structure of the solutions

 # num_vars = len(jax.tree_leaves(sols_1))

 # treedef = jax.tree_structure(sols_1)

 # key_a, key_b = jax.random.split(key_variation, 2)

 # all_keys_a = jax.random.split(key_a, num_vars)

 # all_keys_b = jax.random.split(key_b, num_vars)

 # noise_a = jax.tree_multimap(

 # lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_1,

 # jax.tree_unflatten(treedef, all_keys_a))

 # noise_b = jax.tree_multimap(

 # lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_2,

 # jax.tree_unflatten(treedef, all_keys_b))

 # new_sols = jax.tree_multimap(lambda x, y, a, b:

 # x + a * iso_emitter.iso_sigma +

 # b * iso_emitter.line_sigma * (x - y),

 # sols_1, sols_2, noise_a, noise_b)

A-23

 # return iso_emitter, new_sols

 key_a, key_b = jax.random.split(key_variation, 2)

 iso_gaussian = jax.random.normal(key_a,

 shape=(batch_size, solution_dim),

 dtype=D_TYPE) * iso_emitter.iso_sigma

 # expanded last dimension used for multiplication later

 line_gaussian = jax.random.normal(key_b,

 shape=(batch_size, 1),

 dtype=D_TYPE) * iso_emitter.line_sigma

 directions = (sols_1 - sols_2).astype(D_TYPE)

 new_sols = sols_2 + iso_gaussian + jnp.multiply(

 jnp.array(line_gaussian), directions)

 return iso_emitter, iso_emitter._ask_clip(new_sols,

 iso_emitter.lower_bounds,

 iso_emitter.upper_bounds)

 @staticmethod

 def tell(static_settings, iso_emitter, solutions, objective_values,

 behavior_values, dead, repertoire, key):

 """Inserts entries into the archive.

 """

 repertoire = repertoire.add_to_archive(repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 return iso_emitter, repertoire

Code Snippet A.10: Implementation of the MAP-Elites (Iso + LineDD) in JAX (_iso_line_emitter.py)

A.3.3 Covariance Matrix Adaptation MAP-Elites (CMA-ME) - Improvement

"""Provides the ImprovementEmitter.

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_improvement_emitter.py

"""

from typing import Any

import jax.numpy as jnp

import flax

import jax

from jax import lax

import functools

A-24

from qd_utils.grid_archive import Repertoire

from training.emitters.emitters_utils import EmitterBase

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules

from collections import namedtuple

Array = jnp.ndarray

class SelectionRules:

 MU = 1

 FILTER = 2

class RestartRules:

 BASIC = 1

 NO_IMPROVEMENT = 2

D_TYPE = jnp.float32

@flax.struct.dataclass

class ImprovementEmitter:

 """Adapts a covariance matrix towards changes in the archive.

 This emitter originates in `Fontaine 2020

 <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and

 uses CMA-ES to search for solutions that improve the archive, i.e. solutions

 that add new entries to the archive or improve existing entries. Once CMA-ES

 restarts (see ``restart_rule``), the emitter starts from a randomly chosen

 elite in the archive and continues searching for solutions that improve the

 archive.

 """

 x0: Array

 sigma0: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 opt: CMAEvolutionStrategy

 solution_dim: jnp.int32

 num_parents: jnp.int32

 restarts: jnp.int32

 restart_rule: jnp.int32

 selection_rule: jnp.int32

 @classmethod

 def create(cls,

 x0,

 sigma0,

A-25

 selection_rule=SelectionRules.FILTER,

 restart_rule=RestartRules.NO_IMPROVEMENT,

 weight_rule=WeightRules.TRUNCATION,

 bounds=None,

 batch_size=None):

 solution_dim = len(x0)

 x0 = jnp.array(x0, dtype=D_TYPE)

 sigma0 = sigma0

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim)

 batch_size = batch_size

 if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]:

 raise ValueError(f"Invalid selection_rule {selection_rule}")

 if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]:

 raise ValueError(f"Invalid restart_rule {restart_rule}")

 opt, static_settings_opt = CMAEvolutionStrategy.create(sigma0,

 batch_size, solution_dim, weight_rule)

 opt = opt.reset(static_settings_opt, opt, x0)

 get_num_of_parents_fn = jax.jit(functools.partial(cls._get_num_of_parents,

 selection_rule))

 num_parents = (opt.batch_size // 2

 if selection_rule == SelectionRules.MU else None)

 batch_size = opt.batch_size

 static_settings = dict()

 static_settings['get_num_of_parents_fn'] = get_num_of_parents_fn

 static_settings['solution_dim'] = solution_dim

 static_settings['batch_size'] = batch_size

 static_settings['restart_rule'] = restart_rule

 static_settings['opt_settings'] = static_settings_opt

 StaticSettings = namedtuple('StaticSettings', static_settings)

 restarts = 0

 return (cls(x0, sigma0, lower_bounds, upper_bounds ,

 batch_size, opt,solution_dim, num_parents,

 restarts, restart_rule, selection_rule),

 StaticSettings(**static_settings))

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

 def _get_restart_rule(static_settings):

 return static_settings.restart_rule

A-26

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _get_num_of_parents_fn(static_settings):

 return static_settings.get_num_of_parents_fn

 @staticmethod

 def _get_optimiser_settings(static_settings):

 return static_settings.opt_settings

 @staticmethod

 def _get_num_of_parents(selection_rule, new_sols, num_parents):

 return (new_sols if selection_rule == SelectionRules.FILTER

 else num_parents)

 @staticmethod

 def ask(static_settings, imp_emitter, repertoire, key):

 """Samples new solutions from a multivariate Gaussian.

 The multivariate Gaussian is parameterized by the CMA-ES optimizer.

 """

 opt, solutions = imp_emitter.opt.ask(imp_emitter._get_optimiser_settings(

 static_settings),

 imp_emitter.opt, imp_emitter.lower_bounds,

 imp_emitter.upper_bounds, key)

 return imp_emitter.replace(opt = opt), solutions

 @staticmethod

 def _check_restart(restart_rule, num_parents):

 """Emitter-side checks for restarting the optimizer.

 The optimizer also has its own checks.

 """

 return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0

 @staticmethod

 def _reset_opt(static_settings, imp_emitter, repertoire, elite_key):

 new_x0 = Repertoire.get_random_elite(repertoire, elite_key)

 opt = imp_emitter.opt.reset(

 imp_emitter._get_optimiser_settings(static_settings),

 imp_emitter.opt, new_x0)

 restarts = imp_emitter.restarts + 1

 return imp_emitter.replace(opt = opt, restarts =

A-27

 restarts), repertoire

 @staticmethod

 def tell(static_settings, imp_emitter, solutions, objective_values,

 behavior_values, dead, repertoire, key):

 """Gives the emitter results from evaluating solutions.

 As solutions are inserted into the archive, we record their "improvement

 value" -- conveniently, this is the ``value`` returned by

 :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions

 according to their add status (new solutions rank in front of

 solutions that improved existing entries in the archive, which rank

 ahead of solutions that were not added), followed by their improvement

 value. We then pass the ranked solutions to the underlying CMA-ES

 optimizer to update the search parameters.

 """

 get_num_of_parents_fn = ImprovementEmitter._get_num_of_parents_fn(static_settings)

 solution_dim = ImprovementEmitter._get_solution_dim(static_settings)

 restart_rule = ImprovementEmitter._get_restart_rule(static_settings)

 # new_sols = repertoire.num_indivs

 repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended(

 repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 # Find the indices of the sorted array on status codes and then objective/evaluation

scores

 r_indices = jnp.lexsort((sols_entries[:,2], sols_entries[:,1], sols_entries[:,0]))

 ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0)

 # new_sols = repertoire.num_indivs - new_sols

 # we want the descending order of the rankings and not the ascending

 indices = ranked_sols_entries[:,2].astype(jnp.int32)

 num_parents = get_num_of_parents_fn(new_sols, imp_emitter.num_parents)

 opt = CMAEvolutionStrategy.tell(imp_emitter._get_optimiser_settings(static_settings),

 imp_emitter.opt, solutions[indices], num_parents)

 key, elite_key = jax.random.split(key, 2)

 imp_emitter = imp_emitter.replace(opt = opt)

 should_reset_opt = jnp.logical_or(

 CMAEvolutionStrategy.check_stop(opt,

 ranked_sols_entries[:,1], num_parents),

 ImprovementEmitter._check_restart(restart_rule,

 new_sols)

A-28

)

 return lax.cond(should_reset_opt,

 lambda x: ImprovementEmitter._reset_opt(static_settings,

 imp_emitter, repertoire, elite_key),

 lambda x: (imp_emitter, repertoire),

 None

)

Code Snippet A.11: Implementation of CMA-ME Improvement the in JAX (_improvement_emitter.py)

A.3.4 Covariance Matrix Adaptation MAP-Elites (CMA-ME) - Optimizing

"""Provides the OptimizingEmitter.

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_optimizing_emitter.py

"""

from typing import Any

import jax.numpy as jnp

import flax

import jax

from jax import lax

from training.emitters.emitters_utils import EmitterBase

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules

from collections import namedtuple

Array = jnp.ndarray

class SelectionRules:

 MU = 1

 FILTER = 2

class RestartRules:

 BASIC = 1

 NO_IMPROVEMENT = 2

D_TYPE = jnp.float32

@flax.struct.dataclass

class OptimizingEmitter:

 """Adapts a covariance matrix towards the objective.

 This emitter originates in `Fontaine 2020

 <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and

 uses CMA-ES to optimize for objective values. After CMA-ES converges, the

 emitter restarts the optimizer. It picks a random elite in the archive and

 begins optimizing from there.

 """

A-29

 x0: Array

 sigma0: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 opt: CMAEvolutionStrategy

 solution_dim: jnp.int32

 num_parents: jnp.int32

 restarts: jnp.int32

 restart_rule: jnp.int32

 selection_rule: jnp.int32

 @classmethod

 def create(cls,

 x0,

 sigma0,

 selection_rule=SelectionRules.FILTER,

 restart_rule=RestartRules.NO_IMPROVEMENT,

 weight_rule=WeightRules.TRUNCATION,

 bounds=None,

 batch_size=None):

 solution_dim = len(x0)

 x0 = jnp.array(x0, dtype=D_TYPE)

 sigma0 = sigma0

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim)

 batch_size = batch_size

 if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]:

 raise ValueError(f"Invalid selection_rule {selection_rule}")

 if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]:

 raise ValueError(f"Invalid restart_rule {restart_rule}")

 opt, static_settings_opt = CMAEvolutionStrategy.create(sigma0,

 batch_size, solution_dim, weight_rule)

 opt = opt.reset(static_settings_opt, opt, x0)

 # get_num_of_parents_fn = jax.jit(functools.partial(cls._get_num_of_parents,

selection_rule))

 num_parents = (opt.batch_size // 2 if selection_rule ==

 SelectionRules.MU else None)

 batch_size = opt.batch_size

 static_settings = dict()

 # static_settings['get_num_of_parents_fn'] = get_num_of_parents_fn

 static_settings['solution_dim'] = solution_dim

 static_settings['batch_size'] = batch_size

 static_settings['restart_rule'] = restart_rule

A-30

 static_settings['selection_rule'] = selection_rule

 static_settings['opt_settings'] = static_settings_opt

 StaticSettings = namedtuple('StaticSettings', static_settings)

 restarts = 0

 return (cls(x0, sigma0, lower_bounds, upper_bounds ,

 batch_size, opt,

 solution_dim, num_parents, restarts,

 restart_rule, selection_rule),

 StaticSettings(**static_settings))

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

 def _get_restart_rule(static_settings):

 return static_settings.restart_rule

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _get_selection_rule(static_settings):

 return static_settings.selection_rule

 @staticmethod

 def _get_optimiser_settings(static_settings):

 return static_settings.opt_settings

 @staticmethod

 def ask(static_settings, otEmitter, repertoire, key):

 """Samples new solutions from a multivariate Gaussian.

 The multivariate Gaussian is parameterized by the CMA-ES optimizer.

 """

 opt, solutions = otEmitter.opt.ask(otEmitter._get_optimiser_settings(

 static_settings),

 otEmitter.opt, otEmitter.lower_bounds,

 otEmitter.upper_bounds, key)

 return otEmitter.replace(opt = opt), solutions

 @staticmethod

 def _check_restart(restart_rule, num_parents):

 """Emitter-side checks for restarting the optimizer.

A-31

 The optimizer also has its own checks.

 """

 return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0

 @staticmethod

 def _reset_opt(static_settings, optEmitter, repertoire, elite_key):

 new_x0 = repertoire.get_random_elite(repertoire, elite_key)

 opt = optEmitter.opt.reset(optEmitter._get_optimiser_settings(static_settings),

 optEmitter.opt, new_x0)

 restarts = optEmitter.restarts + 1

 return optEmitter.replace(opt = opt, restarts = restarts), repertoire

 @staticmethod

 def tell(static_settings, optEmitter, solutions, objective_values,

 behavior_values, dead, repertoire, key):

 """Gives the emitter results from evaluating solutions.

 As solutions are inserted into the archive, we record their "improvement

 value" -- conveniently, this is the ``value`` returned by

 :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions

 according to their add status (new solutions rank in front of

 solutions that improved existing entries in the archive, which rank

 ahead of solutions that were not added), followed by their improvement

 value. We then pass the ranked solutions to the underlying CMA-ES

 optimizer to update the search parameters.

 """

 solution_dim = optEmitter._get_solution_dim(static_settings)

 restart_rule = optEmitter._get_restart_rule(static_settings)

 selection_rule = optEmitter._get_selection_rule(static_settings)

 repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended(

 repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 if selection_rule == SelectionRules.FILTER:

 # Sort by whether the solution was added into the archive, followed

 # by objective value.

 sort_elements = (objective_values[sols_entries[:,2].astype(jnp.int32)],

 sols_entries[:,0])

 elif selection_rule == SelectionRules.MU:

 # Sort only by objective value.

 sort_elements = (objective_values[sols_entries[:,2].astype(jnp.int32)])

A-32

 # Find the indices of the sorted array on status codes and then objective/evaluation

scores

 r_indices = jnp.lexsort(sort_elements)

 ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0)

 # we want the descending order of the rankings and not the ascending

 indices = ranked_sols_entries[:,2].astype(jnp.int32)

 num_parents = (new_sols if selection_rule == SelectionRules.FILTER

 else optEmitter.num_parents)

 opt = optEmitter.opt.tell(optEmitter._get_optimiser_settings(static_settings),

 optEmitter.opt, solutions[indices], num_parents)

 key, elite_key = jax.random.split(key, 2)

 optEmitter = optEmitter.replace(opt = opt)

 should_reset_opt = jnp.logical_or(

 CMAEvolutionStrategy.check_stop(opt,

 ranked_sols_entries[:,1], num_parents),

 optEmitter._check_restart(restart_rule, new_sols)

)

 return lax.cond(should_reset_opt,

 lambda x: optEmitter._reset_opt(static_settings, optEmitter,

 repertoire, elite_key),

 lambda x: (optEmitter, repertoire),

 None

)

Code Snippet A.12: Implementation of the CMA-ME - Optimizing in JAX (_optimizing_emitter.py)

A.3.5 Covariance Matrix Adaptation MAP-Elites (CMA-ME) – Random Direction

"""Provides the RandomDirectionEmitter.

Adapted from https://github.com/icaros-

usc/dqd/blob/main/ribs/emitters/_random_direction_emitter.py

"""

from typing import Any

import jax.numpy as jnp

import flax

import jax

from jax import lax

from qd_utils.grid_archive import Repertoire

from training.emitters.emitters_utils import EmitterBase

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules

from collections import namedtuple

A-33

Array = jnp.ndarray

class SelectionRules:

 MU = 1

 FILTER = 2

class RestartRules:

 BASIC = 1

 NO_IMPROVEMENT = 2

D_TYPE = jnp.float32

@flax.struct.dataclass

class RandomDirectionEmitter(EmitterBase):

 """Performs a random walk in behavior space by pursuing randomly chosen

 behavior space directions.

 This emitter originates in `Fontaine 2020

 <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and

 uses CMA-ES to search for solutions along a randomly chosen direction. Once

 CMA-ES restarts (see ``restart_rule``), the emitter starts from a randomly

 chosen elite in the archive and pursues a new random direction.

 """

 x0: Array

 sigma0: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 opt: CMAEvolutionStrategy

 solution_dim: jnp.int32

 num_parents: jnp.int32

 restarts: jnp.int32

 restart_rule: jnp.int32

 selection_rule: jnp.int32

 archive_bounds: Array

 target_behavior_dir:Array

 @classmethod

 def create(cls,

 x0,

 sigma0,

 archive_bounds,

 key,

 selection_rule=SelectionRules.FILTER,

 restart_rule=RestartRules.NO_IMPROVEMENT,

A-34

 weight_rule=WeightRules.TRUNCATION,

 bounds=None,

 batch_size=None):

 solution_dim = len(x0)

 x0 = jnp.array(x0, dtype=D_TYPE)

 sigma0 = sigma0

 lower_bounds, upper_bounds = EmitterBase.process_bounds(

 bounds, solution_dim)

 batch_size = batch_size

 if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]:

 raise ValueError(f"Invalid selection_rule {selection_rule}")

 if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]:

 raise ValueError(f"Invalid restart_rule {restart_rule}")

 opt, static_settings_opt = CMAEvolutionStrategy.create(sigma0,

 batch_size, solution_dim, weight_rule)

 opt = opt.reset(static_settings_opt, opt, x0)

 num_parents = (opt.batch_size // 2 if selection_rule ==

 SelectionRules.MU else None)

 batch_size = opt.batch_size

 static_settings = dict()

 static_settings['solution_dim'] = solution_dim

 static_settings['solution_dim'] = solution_dim

 static_settings['batch_size'] = batch_size

 static_settings['restart_rule'] = restart_rule

 static_settings['selection_rule'] = selection_rule

 static_settings['archive_bounds'] = archive_bounds

 static_settings['opt_settings'] = static_settings_opt

 StaticSettings = namedtuple('StaticSettings', static_settings)

 target_behavior_dir = cls._generate_random_direction(

 static_settings, archive_bounds, key)

 restarts = 0

 return cls(x0, sigma0, lower_bounds, upper_bounds ,

 batch_size, opt, solution_dim,

 num_parents, restarts, restart_rule,

 selection_rule, archive_bounds,

 target_behavior_dir), StaticSettings(**static_settings)

 @staticmethod

 def _get_batch_size(static_settings):

A-35

 return static_settings.batch_size

 @staticmethod

 def _get_restart_rule(static_settings):

 return static_settings.restart_rule

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _get_selection_rule(static_settings):

 return static_settings.selection_rule

 @staticmethod

 def _get_archive_bounds(static_settings):

 return static_settings.archive_bounds

 @staticmethod

 def _get_optimiser_settings(static_settings):

 return static_settings.opt_settings

 @staticmethod

 def ask(static_settings, randomDirEmitter, repertoire, key):

 """Samples new solutions from a multivariate Gaussian.

 The multivariate Gaussian is parameterized by the CMA-ES optimizer.

 Returns:

 ``(batch_size, solution_dim)`` array -- contains ``batch_size`` new

 solutions to evaluate.

 """

 opt, solutions = randomDirEmitter.opt.ask(

 randomDirEmitter._get_optimiser_settings(static_settings),

 randomDirEmitter.opt, randomDirEmitter.lower_bounds,

 randomDirEmitter.upper_bounds, key)

 return randomDirEmitter.replace(opt = opt), solutions

 @staticmethod

 def _generate_random_direction(static_settings, archive_bounds, key):

 """Generates a new random direction in the behavior space.

 The direction is sampled from a standard Gaussian -- since the standard

 Gaussian is isotropic, there is equal probability for any direction. The

 direction is then scaled to the behavior space bounds.

 """

A-36

 ranges = archive_bounds[:,1] - archive_bounds[:,0]

 behavior_dim = archive_bounds.shape[0]

 unscaled_dir = jax.random.normal(key,

 shape=(behavior_dim,),

 dtype=D_TYPE)

 return unscaled_dir * ranges

 @staticmethod

 def _check_restart(restart_rule, num_parents):

 """Emitter-side checks for restarting the optimizer.

 The optimizer also has its own checks.

 """

 return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0

 @staticmethod

 def _reset_opt(static_settings, randomDirEmitter, repertoire, key):

 dir_key, elite_key = jax.random.split(key, 2)

 new_x0 = repertoire.get_random_elite(repertoire, elite_key)

 opt = randomDirEmitter.opt.reset(

 randomDirEmitter._get_optimiser_settings(static_settings),

 randomDirEmitter.opt, new_x0)

 archive_bounds = randomDirEmitter._get_archive_bounds(static_settings)

 target_behavior_dir = randomDirEmitter._generate_random_direction(

 static_settings,

 archive_bounds, dir_key)

 restarts = randomDirEmitter.restarts + 1

 return randomDirEmitter.replace(opt = opt, restarts = restarts,

 target_behavior_dir = target_behavior_dir), repertoire

 @staticmethod

 def tell(static_settings, randomDirEmitter, solutions, objective_values,

 behavior_values, dead, repertoire, key):

 """Gives the emitter results from evaluating solutions.

 As solutions are inserted into the archive, we record their "improvement

 value" -- conveniently, this is the ``value`` returned by

 :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions

 according to their add status (new solutions rank in front of

 solutions that improved existing entries in the archive, which rank

 ahead of solutions that were not added), followed by their improvement

 value. We then pass the ranked solutions to the underlying CMA-ES

 optimizer to update the search parameters.

 """

 solution_dim = randomDirEmitter._get_solution_dim(static_settings)

 restart_rule = randomDirEmitter._get_restart_rule(static_settings)

 selection_rule = randomDirEmitter._get_selection_rule(static_settings)

A-37

 repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended(

 repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 projection = jnp.dot(behavior_values, randomDirEmitter.target_behavior_dir)

 # Rearrange based on their initial indices to make it parallel to sols_entries

 projection = projection[sols_entries[:,2].astype(jnp.int32)]

 if selection_rule == SelectionRules.FILTER:

 # Sort by whether the solution was added into the archive, followed

 # by projection.

 sort_elements = (sols_entries[:,2], projection, sols_entries[:,0])

 elif selection_rule == SelectionRules.MU:

 # Sort only by projection.

 sort_elements = (projection)

 # Find the indices of the sorted array on status codes and then objective/evaluation

scores

 r_indices = jnp.lexsort(sort_elements)

 ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0)

 # we want the descending order of the rankings and not the ascending

 indices = ranked_sols_entries[:,2].astype(jnp.int32)

 num_parents = (new_sols if selection_rule == SelectionRules.FILTER

 else randomDirEmitter.num_parents)

 opt = randomDirEmitter.opt.tell(randomDirEmitter._get_optimiser_settings(

 static_settings),

 randomDirEmitter.opt,

 solutions[indices], num_parents)

 key, reset_key = jax.random.split(key, 2)

 randomDirEmitter = randomDirEmitter.replace(opt = opt)

 should_reset_opt = jnp.logical_or(

 CMAEvolutionStrategy.check_stop(opt,

 projection, num_parents),

 randomDirEmitter._check_restart(restart_rule,

 new_sols)

)

 return lax.cond(should_reset_opt,

 lambda x: randomDirEmitter._reset_opt(static_settings, randomDirEmitter,

 repertoire, reset_key),

A-38

 lambda x: (randomDirEmitter, repertoire),

 None

)

Code Snippet A.13: Implementation of the CMA-ME Random Direction in JAX (_random_direction_emitter.py)

A.4 DQD Emitters (Array Version)

A.4.1 Gradient Emitter (OMG-MEGA iso & line, OG-MAP-Elites iso & line)

"""Provides the GradientImprovementEmitter.

Adapted from: https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_gradient_emitter.py

"""

import jax.numpy as jnp

import flax

import jax

from collections import namedtuple

from training.emitters.emitters_utils import EmitterBase

Array = jnp.ndarray

D_TYPE = jnp.float32

class OperatorTypes:

 ISOTROPIC = 1

 ISO_LINE_DD = 2

@flax.struct.dataclass

class GradientEmitter:

 """Generates new solutions based on the gradient of the objective and measures.

 """

 x0: Array

 sigma0: D_TYPE

 sigma_g: D_TYPE

 line_sigma: D_TYPE

 num_coefficients: jnp.int32

 measure_gradients: jnp.int32

 normalize_gradients: jnp.int32

 operator_type: jnp.int32

 batch_size: jnp.int32

 solution_dim: jnp.int32

 lower_bounds: Array

 upper_bounds: Array

 jacobian: Array

 parents: Array

 @classmethod

A-39

 def create(cls,

 x0,

 sigma0,

 sigma_g,

 line_sigma,

 behavior_dim,

 measure_gradients=1, # 0 --> false 1 --> true

 normalize_gradients=1, # 0 --> false 1 --> true

 operator_type = OperatorTypes.ISOTROPIC,

 bounds=None,

 batch_size=None):

 # static normalize_gradients solution_dim batch_size selection_rule restart_rule

 # self._rng = np.random.default_rng(key)

 x0 = jnp.array(x0, dtype=D_TYPE)

 sigma0 = float(sigma0)

 sigma_g = float(sigma_g)

 line_sigma = float(line_sigma)

 solution_dim = len(x0)

 # What's the difference with the manual creation of bounds in ask?

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim)

 num_coefficients = behavior_dim + 1

 static_settings = dict()

 static_settings['solution_dim'] = solution_dim

 static_settings['batch_size'] = batch_size

 static_settings['measure_gradients'] = measure_gradients

 static_settings['normalize_gradients'] = normalize_gradients

 static_settings['operator_type'] = operator_type

 static_settings['num_coefficients'] = num_coefficients

 StaticSettings = namedtuple('StaticSettings', static_settings)

 jacobian = jnp.zeros((batch_size, num_coefficients, solution_dim))

 parents = jnp.zeros((batch_size, solution_dim))

 return (cls(x0, sigma0, sigma_g, line_sigma, num_coefficients,

 measure_gradients,

 normalize_gradients, operator_type,

 batch_size, solution_dim,

 lower_bounds, upper_bounds, jacobian,

 parents),

 StaticSettings(**static_settings))

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

 def _get_solution_dim(static_settings):

A-40

 return static_settings.solution_dim

 @staticmethod

 def _get_measure_gradients(static_settings):

 return static_settings.measure_gradients

 @staticmethod

 def _get_normalize_gradients(static_settings):

 return static_settings.normalize_gradients

 @staticmethod

 def _get_operator_type(static_settings):

 return static_settings.operator_type

 @staticmethod

 def _get_num_coefficients(static_settings):

 return static_settings.num_coefficients

 @staticmethod

 def _ask_clip(parents, lower_bounds, upper_bounds):

 return jnp.minimum(jnp.maximum(parents, lower_bounds),

 upper_bounds)

 @staticmethod

 def _ask_as_gaussian_emitter(static_settings, grad_emitter, repertoire, key):

 """Creates solutions by adding Gaussian noise to elites in the archive.

 """

 batch_size = grad_emitter._get_batch_size(static_settings)

 solution_dim = grad_emitter._get_solution_dim(static_settings)

 key_selection, key_variation = jax.random.split(key, 2)

 # SELECTION #

 idx_p1 = jax.random.randint(key_selection, shape=(batch_size,),

 minval=0, maxval=repertoire.num_indivs)

 tot_indivs = repertoire.fitness.ravel().shape[0]

 indexes = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)),

 size = tot_indivs)

 indexes = jnp.transpose(indexes, axes=(1, 0))

 indiv_indices = jnp.array(jnp.ravel_multi_index(indexes,

 repertoire.fitness.shape, mode='clip')).astype(int)

 idx_p1 = indiv_indices.at[idx_p1].get()

 sols = jax.tree_map(lambda x: x.at[idx_p1].get(),repertoire.archive)

 # # VARIATION - MUTATION #

 # # Better approach since it operates directly on the tree

 # # structure of the solutions

A-41

 # num_vars = len(jax.tree_leaves(sols))

 # treedef = jax.tree_structure(sols)

 # all_keys = jax.random.split(key_variation, num=num_vars)

 # # Gaussian noise

 # noise = jax.tree_multimap(

 # lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols,

 # jax.tree_unflatten(treedef, all_keys))

 # # Added noise in positive direction

 # mutated_sols = jax.tree_multimap(lambda g, n: g + n * grad_emitter.sigma0, sols,

noise)

 # # Added noise in negative direction

 # anit_mutated_sols = jax.tree_multimap(lambda g, n: g - n * grad_emitter.sigma0,

sols, noise)

 # return grad_emitter, mutated_sols

 noise = jax.random.normal(key_variation, shape=(batch_size,

 solution_dim), dtype=D_TYPE) * grad_emitter.sigma0

 return grad_emitter, grad_emitter._ask_clip(sols + noise,

 grad_emitter.lower_bounds,

 grad_emitter.upper_bounds)

 @staticmethod

 def _ask_as_iso_line_emitter(static_settings, grad_emitter, repertoire, key):

 """Generates ``batch_size`` solutions.

 """

 batch_size = grad_emitter._get_batch_size(static_settings)

 solution_dim = grad_emitter._get_solution_dim(static_settings)

 key_selection, key_variation = jax.random.split(key, 2)

 # SELECTION #

 key_select_p1, key_select_p2 = jax.random.split(key_selection, 2)

 idx_s1 = jax.random.randint(key_select_p1, shape=(batch_size,),

 minval=0, maxval=repertoire.num_indivs)

 idx_s2 = jax.random.randint(key_select_p2, shape=(batch_size,),

 minval=0, maxval=repertoire.num_indivs)

 tot_indivs = repertoire.fitness.ravel().shape[0]

 indices = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)),

 size = tot_indivs)

 indices = jnp.transpose(indices, axes=(1, 0))

 indiv_indices = jnp.array(jnp.ravel_multi_index(indices,

 repertoire.fitness.shape, mode='clip')).astype(int)

 idx_s1 = indiv_indices.at[idx_s1].get()

A-42

 idx_s2 = indiv_indices.at[idx_s2].get()

 sols_1 = jax.tree_map(lambda x: x.at[idx_s1].get(),repertoire.archive)

 sols_2 = jax.tree_map(lambda x: x.at[idx_s2].get(),repertoire.archive)

 # # VARIATION #

 # # Better approach since it operates directly on the tree

 # # structure of the solutions

 # num_vars = len(jax.tree_leaves(sols_1))

 # treedef = jax.tree_structure(sols_1)

 # key_a, key_b = jax.random.split(key_variation, 2)

 # all_keys_a = jax.random.split(key_a, num_vars)

 # all_keys_b = jax.random.split(key_b, num_vars)

 # noise_a = jax.tree_multimap(

 # lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_1,

 # jax.tree_unflatten(treedef, all_keys_a))

 # noise_b = jax.tree_multimap(

 # lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_2,

 # jax.tree_unflatten(treedef, all_keys_b))

 # new_sols = jax.tree_multimap(lambda x, y, a, b:

 # x + a * grad_emitter.sigma0 +

 # b * grad_emitter.line_sigma * (x - y),

 # sols_1, sols_2, noise_a, noise_b)

 # return grad_emitter, new_sols

 key_a, key_b = jax.random.split(key_variation, 2)

 iso_gaussian = jax.random.normal(key_a,

 shape=(batch_size, solution_dim),

 dtype=D_TYPE) * grad_emitter.sigma0

 # expanded last dimension used for multiplication later

 line_gaussian = jax.random.normal(key_b,

 shape=(batch_size, 1),

 dtype=D_TYPE) * grad_emitter.line_sigma

 directions = (sols_1 - sols_2).astype(D_TYPE)

 new_sols = sols_2 + iso_gaussian + jnp.multiply(jnp.array(line_gaussian), directions)

 return grad_emitter, grad_emitter._ask_clip(new_sols,

 grad_emitter.lower_bounds, grad_emitter.upper_bounds)

 @staticmethod

 def ask_grad_estimate(static_settings, grad_emitter, repertoire, key):

 operator_type = grad_emitter._get_operator_type(static_settings)

A-43

 if operator_type == OperatorTypes.ISO_LINE_DD:

 grad_emitter,sols = grad_emitter._ask_as_iso_line_emitter(static_settings,

 grad_emitter, repertoire, key)

 else:

 grad_emitter,sols = grad_emitter._ask_as_gaussian_emitter(static_settings,

 grad_emitter, repertoire, key)

 return grad_emitter.replace(parents = sols), sols

 @staticmethod

 def ask(static_settings, grad_emitter, repertoire, key):

 num_coefficients = grad_emitter._get_num_coefficients(static_settings)

 batch_size = grad_emitter._get_batch_size(static_settings)

 measure_gradients = grad_emitter._get_measure_gradients(static_settings)

 if measure_gradients == 1:

 # Calculate gradient offsets

 noise = grad_emitter.sigma_g * jax.random.normal(key,

 shape=(batch_size,num_coefficients))

 noise = noise.at[:, 0].set(jnp.abs(noise[:, 0]))

 noise = jnp.expand_dims(noise, axis=2)

 offsets = jnp.sum(jnp.multiply(grad_emitter.jacobian, noise), axis=1)

 # Calculate new solutions based on the gradient offsets

 new_sols = jnp.add(grad_emitter.parents, offsets)

 else:

 # isolate the gradients of objective values

 noise = grad_emitter.sigma_g * jax.random.normal(key,

 shape=(batch_size,1))

 noise = jnp.abs(noise)

 jacobian = grad_emitter.jacobian[:,0,:]

 # jnp.squeeze(grad_emitter.jacobian[:,0:1,:], axis=1)

 offsets = jnp.multiply(jacobian, noise)

 grad_emitter = grad_emitter.replace(jacobian = jacobian)

 # Calculate new solutions based on the gradient offsets of only

 new_sols = jnp.add(grad_emitter.parents, offsets)

 return grad_emitter, new_sols

 @staticmethod

 def _normalize_gradients(jacobian):

 """

 Normalises the gradients of the jacobian matrix.

 More info can be found at the appendix E of the paper "Fontaine,

 M. C., & Nikolaidis, S. (2021). Differentiable Quality

 Diversity. arXiv [cs.AI]" for an in-depth explanation

 """

A-44

 norms = jnp.linalg.norm(jacobian, axis=2)

 norms += 1e-8 # Make this configurable later

 norms = jnp.expand_dims(norms, axis=2)

 jacobian /= norms

 return jacobian

 @staticmethod

 def tell_jacobian(static_settings, grad_emitter, solutions, objective_values,

 behavior_values, dead, repertoire, key, jacobian):

 normalize_gradients = grad_emitter._get_normalize_gradients(static_settings)

 if normalize_gradients > 0:

 jacobian = grad_emitter._normalize_gradients(jacobian)

 grad_emitter = grad_emitter.replace(jacobian = jacobian)

 return grad_emitter.tell(static_settings, grad_emitter, solutions,

 objective_values, behavior_values, dead, repertoire, key)

 @staticmethod

 def tell(static_settings, iso_emitter, solutions, objective_values,

 behavior_values, dead, repertoire, key):

 """Inserts entries into the archive.

 """

 repertoire = repertoire.add_to_archive(repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 return iso_emitter, repertoire

Code Snippet A.14: Implementation of the Gradient Emitter in JAX (_gradient_emitter.py)

A.4.2 Gradient Improvement Emitter (CMA-MEGA & CMA-MEGA with Adam)

"""Provides the GradientImprovementEmitter.

Adapted from: https://github.com/icaros-

usc/dqd/blob/main/ribs/emitters/_gradient_improvement_emitter.py

"""

from typing import Any

import jax.numpy as jnp

import flax

import jax

from jax import lax

from qdax.training.emitters.emitters_utils import EmitterBase

from qdax.training.opt._cma_es import CMAEvolutionStrategy, WeightRules

from qdax.training.opt._adam import AdamOpt

from qdax.training.opt._gradient_ascent import GradientAscentOpt

from collections import namedtuple

A-45

Array = jnp.ndarray

class SelectionRules:

 MU = 1

 FILTER = 2

class RestartRules:

 BASIC = 1

 NO_IMPROVEMENT = 2

class GradientOptimizers:

 ADAM = 1

 GRADIENT_ASCENT = 2

D_TYPE = jnp.float32

@flax.struct.dataclass

class GradientImprovementEmitter():

 """Adapts a covariance matrix in behavior space towards changes in the archive.

 """

 batch_size: jnp.int32

 x0: Array

 behavior_dim: jnp.int32

 sigma_g: D_TYPE

 normalize_gradients: jnp.int32

 solution_dim: jnp.int32

 lower_bounds: Array

 upper_bounds: Array

 gradient_opt: Any

 selection_rule: jnp.int32

 restart_rule: jnp.int32

 num_coefficients: jnp.int32

 num_parents: jnp.int32

 opt: CMAEvolutionStrategy

 restarts: jnp.int32

 grad_coefficients: Array

 jacobian: Array

 @classmethod

 def create(cls,

 x0,

 behavior_dim,

 sigma_g,

 stepsize,

A-46

 selection_rule=SelectionRules.MU,

 restart_rule=RestartRules.NO_IMPROVEMENT,

 weight_rule=WeightRules.TRUNCATION,

 gradient_optimizer=GradientOptimizers.ADAM,

 normalize_gradients=1, # 0 --> false 1 --> true

 bounds=None,

 batch_size=None):

 # static normalize_gradients solution_dim batch_size selection_rule restart_rule

 # self._rng = np.random.default_rng(key)

 x0 = jnp.array(x0, dtype=D_TYPE)

 solution_dim = len(x0)

 # What's the difference with the manual creation of bounds in ask?

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim)

 gradient_opt = None

 if gradient_optimizer == GradientOptimizers.ADAM:

 gradient_opt, static_settings_obj_opt = AdamOpt.create(x0, stepsize, betas=(0.9,

0.999), epsilon=1e-8)

 elif gradient_optimizer == GradientOptimizers.GRADIENT_ASCENT:

 gradient_opt, static_settings_obj_opt = GradientAscentOpt.create(x0, stepsize,

epsilon=1e-8)

 else:

 raise ValueError(f"Invalid Gradient Ascent Optimizer {gradient_optimizer}")

 if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]:

 raise ValueError(f"Invalid selection_rule {selection_rule}")

 if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]:

 raise ValueError(f"Invalid restart_rule {restart_rule}")

 # key, elite_key = jax.random.split(key, 2)

 num_coefficients = behavior_dim + 1

 behavior_x0 = jnp.zeros(num_coefficients)

 opt, static_settings_bd_opt = CMAEvolutionStrategy.create(sigma_g, batch_size,

 num_coefficients, weight_rule)

 opt = opt.reset(static_settings_bd_opt, opt, behavior_x0)

 # get_num_of_parents_fn = jax.jit(functools.partial(cls._get_num_of_parents,

selection_rule))

 num_parents = (opt.batch_size // 2 if selection_rule == SelectionRules.MU else None)

 batch_size = opt.batch_size

 static_settings = dict()

 # static_settings['get_num_of_parents_fn'] = get_num_of_parents_fn

A-47

 static_settings['num_coefficients'] = num_coefficients

 static_settings['batch_size'] = batch_size

 static_settings['restart_rule'] = restart_rule

 static_settings['selection_rule'] = selection_rule

 static_settings['behavior_dim'] = behavior_dim

 static_settings['normalize_gradients'] = normalize_gradients

 static_settings['bd_opt_settings'] = static_settings_bd_opt

 static_settings['obj_opt_settings'] = static_settings_obj_opt

 StaticSettings = namedtuple('StaticSettings', static_settings)

 restarts = 0

 grad_coefficients = jnp.zeros((batch_size, num_coefficients))

 jacobian = jnp.zeros((batch_size, num_coefficients, solution_dim))

 return (cls(batch_size, x0, behavior_dim, sigma_g, normalize_gradients, solution_dim,

 lower_bounds, upper_bounds, gradient_opt, selection_rule, restart_rule,

 num_coefficients, num_parents, opt, restarts, grad_coefficients,

jacobian),

 StaticSettings(**static_settings))

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

 def _get_restart_rule(static_settings):

 return static_settings.restart_rule

 @staticmethod

 def _get_num_coefficients(static_settings):

 return static_settings.num_coefficients

 @staticmethod

 def _get_normalize_gradients(static_settings):

 return static_settings.normalize_gradients

 @staticmethod

 def _get_selection_rule(static_settings):

 return static_settings.selection_rule

 @staticmethod

 def _get_static_settings_bd_opt(static_settings):

 return static_settings.bd_opt_settings

 @staticmethod

 def _get_obj_optimiser_settings(static_settings):

 return static_settings.obj_opt_settings

A-48

 @staticmethod

 def ask_grad_estimate(static_settings, gradImprEmitter, repertoire, key):

 batch_size = gradImprEmitter._get_batch_size(static_settings)

 sols = jnp.repeat(jnp.array([gradImprEmitter.gradient_opt.theta]), batch_size, axis=0)

 return gradImprEmitter, sols

 @staticmethod

 def ask(static_settings, gradImprEmitter, repertoire, key):

 """Samples new solutions from a multivariate Gaussian.

 The multivariate Gaussian is parameterized by the CMA-ES optimizer.

 """

 num_coefficients = gradImprEmitter._get_num_coefficients(static_settings)

 lower_bounds = jnp.full(num_coefficients, -jnp.inf, dtype=D_TYPE)

 upper_bounds = jnp.full(num_coefficients, jnp.inf, dtype=D_TYPE)

 opt, noise =

gradImprEmitter.opt.ask(gradImprEmitter._get_static_settings_bd_opt(static_settings),

 gradImprEmitter.opt, lower_bounds, upper_bounds, key)

 grad_coefficients = noise

 noise = jnp.expand_dims(noise, axis=2)

 offset = jnp.sum(jnp.multiply(gradImprEmitter.jacobian, noise), axis=1)

 sols = offset + gradImprEmitter.gradient_opt.theta

 return gradImprEmitter.replace(grad_coefficients = grad_coefficients, opt = opt), sols

 @staticmethod

 def _check_restart(restart_rule, num_parents):

 """Emitter-side checks for restarting the optimizer.

 The optimizer also has its own checks.

 """

 return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0

 @staticmethod

 def _normalize_gradients(jacobian):

 """

 Normalises the gradients of the jacobian matrix.

 More info can be found at the appendix E of the paper "Fontaine,

 M. C., & Nikolaidis, S. (2021). Differentiable Quality

 Diversity. arXiv [cs.AI]" for an in-depth explanation

 """

 norms = jnp.linalg.norm(jacobian, axis=2)

 norms += 1e-8 # Make this configurable later

 norms = jnp.expand_dims(norms, axis=2)

 jacobian /= norms

 return jacobian

A-49

 @staticmethod

 def _reset_opt(static_settings, gradImprEmitter, repertoire, elite_key):

 obj_optimiser_settings = gradImprEmitter._get_obj_optimiser_settings(static_settings)

 num_coefficients = gradImprEmitter._get_num_coefficients(static_settings)

 new_x0 = repertoire.get_random_elite(repertoire, elite_key)

 gradient_opt = gradImprEmitter.gradient_opt.reset(obj_optimiser_settings,

gradImprEmitter.gradient_opt, new_x0)

 behavior_x0 = jnp.zeros(num_coefficients)

 opt =

CMAEvolutionStrategy.reset(gradImprEmitter._get_static_settings_bd_opt(static_settings),

 gradImprEmitter.opt, behavior_x0)

 restarts = gradImprEmitter.restarts + 1

 return gradImprEmitter.replace(gradient_opt = gradient_opt, opt = opt, restarts =

restarts), repertoire

 @staticmethod

 def tell_jacobian(static_settings, gradImprEmitter, solutions, objective_values,

 behavior_values, dead, repertoire, key, jacobian):

 normalize_gradients = gradImprEmitter._get_normalize_gradients(static_settings)

 if normalize_gradients > 0:

 jacobian = gradImprEmitter._normalize_gradients(jacobian)

 gradImprEmitter = gradImprEmitter.replace(jacobian = jacobian)

 return gradImprEmitter.tell(static_settings, gradImprEmitter, solutions,

 objective_values, behavior_values, dead, repertoire, key)

 @staticmethod

 def tell(static_settings, gradImprEmitter, solutions, objective_values, behavior_values,

dead, repertoire, key):

 """Gives the emitter results from evaluating solutions.

 As solutions are inserted into the archive, we record their "improvement

 value" -- conveniently, this is the ``value`` returned by

 :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions

 according to their add status (new solutions rank in front of

 solutions that improved existing entries in the archive, which rank

 ahead of solutions that were not added), followed by their improvement

 value. We then pass the ranked solutions to the underlying CMA-ES

 optimizer to update the search parameters.

 """

 # static settings that need to be provided before the rest of the method is compiled

 normalize_gradients = gradImprEmitter._get_normalize_gradients(static_settings)

 batch_size = gradImprEmitter._get_batch_size(static_settings)

 restart_rule = gradImprEmitter._get_restart_rule(static_settings)

 selection_rule = gradImprEmitter._get_selection_rule(static_settings)

 obj_optimiser_settings = gradImprEmitter._get_obj_optimiser_settings(static_settings)

A-50

 repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended(repertoire =

repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 # Find the indices of the sorted array on status codes and then improvement scores

 r_indices = jnp.lexsort((sols_entries[:,2], sols_entries[:,1], sols_entries[:,0]))

 ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0)

 # we want the descending order of the rankings and not the ascending

 indices = ranked_sols_entries[:,2].astype(jnp.int32)

 # Expected to be a statically defined if statement evaluated at jit compile time of

this function

 num_parents = (new_sols if selection_rule == SelectionRules.FILTER else

gradImprEmitter.num_parents)

 opt =

gradImprEmitter.opt.tell(gradImprEmitter._get_static_settings_bd_opt(static_settings),

 gradImprEmitter.opt,

gradImprEmitter.grad_coefficients[indices], num_parents)

 gradImprEmitter = gradImprEmitter.replace(opt = opt)

 # Calculate a new mean in solution space

 parents = solutions[indices]

 # Create a mask for identifying the solutions that are parents

 temp_indices = jnp.arange(0, batch_size, 1)

 parents_mask = jnp.where(temp_indices < num_parents, 1, 0)

 weights = (jnp.log(num_parents + 0.5) -

 jnp.log(jnp.arange(1, batch_size + 1)))

 # make the non-parent entries to zero arrays so that the sum is not affected

 # by the extra entries in the array (elements that are not parents)

 filtered_weights = jnp.multiply(weights, parents_mask)

 total_weights = jnp.sum(filtered_weights)

 weights = filtered_weights / total_weights

 # calcualate the new mean

 masked_parents = jnp.multiply(parents, jnp.expand_dims(parents_mask, axis=-1))

 new_mean = jnp.sum(jnp.multiply(masked_parents, jnp.expand_dims(weights, axis=1)),

axis=0)

 # Use the mean to calculate a gradient step and step the optimizer

 gradient_step = new_mean - gradImprEmitter.gradient_opt.theta

 gradient_opt = gradImprEmitter.gradient_opt.step(obj_optimiser_settings,

gradImprEmitter.gradient_opt, gradient_step)

 gradImprEmitter = gradImprEmitter.replace(gradient_opt = gradient_opt)

A-51

 should_reset_opt = jnp.logical_or(

 gradImprEmitter.opt.check_stop(opt,

ranked_sols_entries[:,1], num_parents),

 gradImprEmitter._check_restart(restart_rule, new_sols)

)

 key, elite_key = jax.random.split(key, 2)

 return lax.cond(should_reset_opt,

 lambda x: gradImprEmitter._reset_opt(static_settings, gradImprEmitter,

repertoire, elite_key),

 lambda x: (gradImprEmitter, repertoire),

 None

)

Code Snippet A.15 Implementation of the Gradient Improvement Emitter in JAX

(_gradient_improvement_emitter.py)

A.5 QD Emitters (PyTree Version)

A.5.1 MAP-Elites (Isotropic Gaussian)

"""Provides the GaussianEmitter.

https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_gaussian_emitter.py

"""

from typing import Any

import jax.numpy as jnp

import flax

import jax

from qd_utils.grid_archive import Repertoire

from training.ext_emitters.emitters_utils import EmitterBase

from collections import namedtuple

D_TYPE = jnp.float32

Array = jnp.ndarray

@flax.struct.dataclass

class GaussianEmitter:

 """Emits solutions by adding Gaussian noise to existing archive solutions.

 If the archive is empty, calls to :meth:`ask` will generate solutions from a

 user-specified Gaussian distribution with mean ``x0`` and standard deviation

A-52

 ``sigma0``. Otherwise, this emitter selects solutions from the archive and

 generates solutions from a Gaussian distribution centered around each

 solution with standard deviation ``sigma0``.

 This is the classic variation operator presented in `Mouret 2015

 <https://arxiv.org/pdf/1504.04909.pdf>`_.

 """

 x0: Array

 sigma0: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 solution_dim: jnp.int32

 @classmethod

 def create(cls,

 x0,

 sigma0,

 batch_size,

 bounds=None):

 batch_size = batch_size

 sigma0 = float(sigma0)

 (solution_dim, ravel_single, unravel_single, ravel_batch_size,

 unravel_batch_size) = EmitterBase.get_ravel_info(batch_size, x0)

 x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE)

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim)

 # Define the Static Settings

 ssd = dict()

 ssd['batch_size'] = batch_size

 ssd['solution_dim'] = solution_dim

 ssd['ravel_single'] = ravel_single

 ssd['unravel_single'] = unravel_single

 ssd['ravel_batch_size'] = ravel_batch_size

 ssd['unravel_batch_size'] = unravel_batch_size

 StaticSettings = namedtuple('StaticSettings', ssd)

 return (cls(x0_raveled, sigma0, lower_bounds, upper_bounds, batch_size, solution_dim),

 StaticSettings(**ssd))

 @staticmethod

 def ravel_single(static_settings, params):

 return static_settings.ravel_single(params)

 @staticmethod

 def unravel_single(static_settings, params):

 return static_settings.unravel_single(params)

A-53

 @staticmethod

 def ravel_batch_size(static_settings, params):

 return static_settings.ravel_batch_size(params)

 @staticmethod

 def unravel_batch_size(static_settings, params):

 return static_settings.unravel_batch_size(params)

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _ask_clip(parents, lower_bounds, upper_bounds):

 return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds)

 @staticmethod

 def ask(static_settings, gaussian_emitter, repertoire, key):

 """Creates solutions by adding Gaussian noise to elites in the archive.

 """

 batch_size = gaussian_emitter._get_batch_size(static_settings)

 solution_dim = gaussian_emitter._get_solution_dim(static_settings)

 key_selection, key_variation = jax.random.split(key, 2)

 # SELECTION #

 idx_p1 = jax.random.randint(key_selection, shape=(batch_size,), minval=0,

maxval=repertoire.num_indivs)

 tot_indivs = repertoire.fitness.ravel().shape[0]

 indexes = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)), size =

tot_indivs)

 indexes = jnp.transpose(indexes, axes=(1, 0))

 indiv_indices = jnp.array(jnp.ravel_multi_index(indexes, repertoire.fitness.shape,

mode='clip')).astype(int)

 idx_p1 = indiv_indices.at[idx_p1].get()

 sols = jax.tree_map(lambda x: x.at[idx_p1].get(),repertoire.archive)

 sols = gaussian_emitter.ravel_batch_size(static_settings, sols)

 # # VARIATION - MUTATION #

 # # Better approach since it operates directly on the tree

 # # structure of the solutions

 # num_vars = len(jax.tree_leaves(sols))

A-54

 # treedef = jax.tree_structure(sols)

 # all_keys = jax.random.split(key_variation, num=num_vars)

 # # Gaussian noise

 # noise = jax.tree_multimap(

 # lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols,

 # jax.tree_unflatten(treedef, all_keys))

 # # Added noise in positive direction

 # mutated_sols = jax.tree_multimap(lambda g, n: g + n * gaussian_emitter.sigma0, sols,

noise)

 # # Added noise in negative direction

 # anit_mutated_sols = jax.tree_multimap(lambda g, n: g - n * gaussian_emitter.sigma0,

sols, noise)

 # return gaussian_emitter, mutated_sols

 noise = jax.random.normal(key_variation, shape=(batch_size, solution_dim),

dtype=D_TYPE) * gaussian_emitter.sigma0

 new_sols = gaussian_emitter._ask_clip(sols + noise,

 gaussian_emitter.lower_bounds,

 gaussian_emitter.upper_bounds)

 return gaussian_emitter, gaussian_emitter.unravel_batch_size(static_settings,

new_sols)

 @staticmethod

 def tell(static_settings, gaussian_emitter, solutions, objective_values, behavior_values,

dead, repertoire, key):

 """Inserts entries into the archive.

 """

 repertoire = repertoire.add_to_archive(repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 return gaussian_emitter, repertoire

Code Snippet A.16: Implementation of the MAP-Elites with Isotropic Gaussian in JAX (_gaussian_emitter.py)

A.5.2 MAP-Elites (Iso + LineDD)

"""Provides the IsoLineEmitter.

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_iso_line_emitter.py

"""

import jax.numpy as jnp

import flax

import jax

A-55

from qdax.training.ext_emitters.emitters_utils import EmitterBase

from collections import namedtuple

D_TYPE = jnp.float32

Array = jnp.ndarray

@flax.struct.dataclass

class IsoLineEmitter:

 """Emits solutions that are nudged towards other archive solutions.

 If the archive is empty, calls to :meth:`ask` will generate solutions from

 an isotropic Gaussian distribution with mean ``x0`` and standard deviation

 ``iso_sigma``. Otherwise, to generate each new solution, the emitter selects

 a pair of elites :math:`x_i` and :math:`x_j` and samples from

 .. math::

 x_i + \\sigma_{iso} \\mathcal{N}(0,\\mathcal{I}) +

 \\sigma_{line}(x_j - x_i)\\mathcal{N}(0,1)

 This emitter is based on the Iso+LineDD operator presented in `Vassiliades

 2018 <https://arxiv.org/abs/1804.03906>`_.

 """

 x0: Array

 iso_sigma: D_TYPE

 line_sigma: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 solution_dim: jnp.int32

 @classmethod

 def create(cls,

 x0,

 iso_sigma,

 line_sigma,

 batch_size,

 bounds=None):

 (solution_dim, ravel_single, unravel_single, ravel_batch_size,

 unravel_batch_size) = EmitterBase.get_ravel_info(batch_size, x0)

 x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE)

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim)

 batch_size = batch_size

 iso_sigma = float(iso_sigma)

 line_sigma = float(line_sigma)

 ssd = dict()

 ssd['batch_size'] = batch_size

 ssd['solution_dim'] = solution_dim

 ssd['ravel_single'] = ravel_single

 ssd['unravel_single'] = unravel_single

A-56

 ssd['ravel_batch_size'] = ravel_batch_size

 ssd['unravel_batch_size'] = unravel_batch_size

 StaticSettings = namedtuple('StaticSettings', ssd)

 return (cls(x0_raveled, iso_sigma, line_sigma, lower_bounds,

 upper_bounds, batch_size,

 solution_dim), StaticSettings(**ssd))

 @staticmethod

 def ravel_single(static_settings, params):

 return static_settings.ravel_single(params)

 @staticmethod

 def unravel_single(static_settings, params):

 return static_settings.unravel_single(params)

 @staticmethod

 def ravel_batch_size(static_settings, params):

 return static_settings.ravel_batch_size(params)

 @staticmethod

 def unravel_batch_size(static_settings, params):

 return static_settings.unravel_batch_size(params)

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _ask_clip(parents, lower_bounds, upper_bounds):

 return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds)

 @staticmethod

 def ask(static_settings, iso_emitter, repertoire, key):

 """Generates ``batch_size`` solutions.

 """

 batch_size = iso_emitter._get_batch_size(static_settings)

 solution_dim = iso_emitter._get_solution_dim(static_settings)

 key_selection, key_variation = jax.random.split(key, 2)

 # SELECTION #

 key_select_p1, key_select_p2 = jax.random.split(key_selection, 2)

 idx_s1 = jax.random.randint(key_select_p1, shape=(batch_size,),

A-57

 minval=0, maxval=repertoire.num_indivs)

 idx_s2 = jax.random.randint(key_select_p2, shape=(batch_size,),

 minval=0, maxval=repertoire.num_indivs)

 tot_indivs = repertoire.fitness.ravel().shape[0]

 indices = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)),

 size = tot_indivs)

 indices = jnp.transpose(indices, axes=(1, 0))

 indiv_indices = jnp.array(jnp.ravel_multi_index(indices,

 repertoire.fitness.shape, mode='clip')).astype(int)

 idx_s1 = indiv_indices.at[idx_s1].get()

 idx_s2 = indiv_indices.at[idx_s2].get()

 sols_1 = jax.tree_map(lambda x: x.at[idx_s1].get(),repertoire.archive)

 sols_2 = jax.tree_map(lambda x: x.at[idx_s2].get(),repertoire.archive)

 # # VARIATION #

 # # Better approach since it operates directly on the tree

 # # structure of the solutions

 # num_vars = len(jax.tree_leaves(sols_1))

 # treedef = jax.tree_structure(sols_1)

 # key_a, key_b = jax.random.split(key_variation, 2)

 # all_keys_a = jax.random.split(key_a, num_vars)

 # all_keys_b = jax.random.split(key_b, num_vars)

 # noise_a = jax.tree_multimap(

 # lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_1,

 # jax.tree_unflatten(treedef, all_keys_a))

 # noise_b = jax.tree_multimap(

 # lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_2,

 # jax.tree_unflatten(treedef, all_keys_b))

 # new_sols = jax.tree_multimap(lambda x, y, a, b:

 # x + a * iso_emitter.iso_sigma +

 # b * iso_emitter.line_sigma * (x - y),

 # sols_1, sols_2, noise_a, noise_b)

 # return iso_emitter, new_sols

 sols_1_raveled = iso_emitter.ravel_batch_size(static_settings, sols_1)

 sols_2_raveled = iso_emitter.ravel_batch_size(static_settings, sols_2)

 key_a, key_b = jax.random.split(key_variation, 2)

 iso_gaussian = jax.random.normal(key_a,

 shape=(batch_size, solution_dim),

 dtype=D_TYPE) * iso_emitter.iso_sigma

 # expanded last dimension used for multiplication later

A-58

 line_gaussian = jax.random.normal(key_b,

 shape=(batch_size, 1),

 dtype=D_TYPE) * iso_emitter.line_sigma

 directions = (sols_1_raveled - sols_2_raveled).astype(D_TYPE)

 new_sols = sols_2_raveled + iso_gaussian + jnp.multiply(

 jnp.array(line_gaussian), directions)

 new_sols = iso_emitter._ask_clip(new_sols,

 iso_emitter.lower_bounds, iso_emitter.upper_bounds)

 return iso_emitter, iso_emitter.unravel_batch_size(static_settings, new_sols)

 @staticmethod

 def tell(static_settings, iso_emitter, solutions, objective_values,

 behavior_values, dead, repertoire, key):

 """Inserts entries into the archive.

 """

 repertoire = repertoire.add_to_archive(repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 return iso_emitter, repertoire

Code Snippet A.17: Implementation of the MAP-Elites (Iso + LineDD) in JAX (_iso_line_emitter.py)

A.5.3 Covariance Matrix Adaptation MAP-Elites (CMA-ME) - Improvement

"""Provides the ImprovementEmitter.

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_improvement_emitter.py

"""

from typing import Any

import jax.numpy as jnp

import flax

import jax

from jax import lax

import functools

from qd_utils.grid_archive import Repertoire

from training.ext_emitters.emitters_utils import EmitterBase

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules

from collections import namedtuple

Array = jnp.ndarray

class SelectionRules:

A-59

 MU = 1

 FILTER = 2

class RestartRules:

 BASIC = 1

 NO_IMPROVEMENT = 2

D_TYPE = jnp.float32

@flax.struct.dataclass

class ImprovementEmitter:

 """Adapts a covariance matrix towards changes in the archive.

 This emitter originates in `Fontaine 2020

 <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and

 uses CMA-ES to search for solutions that improve the archive, i.e. solutions

 that add new entries to the archive or improve existing entries. Once CMA-ES

 restarts (see ``restart_rule``), the emitter starts from a randomly chosen

 elite in the archive and continues searching for solutions that improve the

 archive.

 """

 x0: Array

 sigma0: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 opt: CMAEvolutionStrategy

 solution_dim: jnp.int32

 num_parents: jnp.int32

 restarts: jnp.int32

 restart_rule: jnp.int32

 selection_rule: jnp.int32

 @classmethod

 def create(cls,

 x0,

 sigma0,

 selection_rule=SelectionRules.FILTER,

 restart_rule=RestartRules.NO_IMPROVEMENT,

 weight_rule=WeightRules.TRUNCATION,

 bounds=None,

 batch_size=None):

 (solution_dim, ravel_single, unravel_single, ravel_batch_size,

 unravel_batch_size) = EmitterBase.get_ravel_info(batch_size, x0)

 x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE)

 sigma0 = sigma0

A-60

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim)

 batch_size = batch_size

 if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]:

 raise ValueError(f"Invalid selection_rule {selection_rule}")

 if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]:

 raise ValueError(f"Invalid restart_rule {restart_rule}")

 opt, ssd_opt = CMAEvolutionStrategy.create(sigma0, batch_size,

 solution_dim, weight_rule)

 opt = opt.reset(ssd_opt, opt, x0_raveled)

 get_num_of_parents_fn = jax.jit(functools.partial(

 cls._get_num_of_parents, selection_rule))

 num_parents = (opt.batch_size // 2 if selection_rule ==

 SelectionRules.MU else None)

 batch_size = opt.batch_size

 ssd = dict()

 ssd['get_num_of_parents_fn'] = get_num_of_parents_fn

 ssd['solution_dim'] = solution_dim

 ssd['batch_size'] = batch_size

 ssd['restart_rule'] = restart_rule

 ssd['opt_settings'] = ssd_opt

 ssd['ravel_single'] = ravel_single

 ssd['unravel_single'] = unravel_single

 ssd['ravel_batch_size'] = ravel_batch_size

 ssd['unravel_batch_size'] = unravel_batch_size

 StaticSettings = namedtuple('StaticSettings', ssd)

 restarts = 0

 return (cls(x0_raveled, sigma0, lower_bounds, upper_bounds , batch_size, opt,

 solution_dim, num_parents, restarts, restart_rule, selection_rule),

 StaticSettings(**ssd))

 @staticmethod

 def ravel_single(static_settings, params):

 return static_settings.ravel_single(params)

 @staticmethod

 def unravel_single(static_settings, params):

 return static_settings.unravel_single(params)

 @staticmethod

 def ravel_batch_size(static_settings, params):

 return static_settings.ravel_batch_size(params)

A-61

 @staticmethod

 def unravel_batch_size(static_settings, params):

 return static_settings.unravel_batch_size(params)

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

 def _get_restart_rule(static_settings):

 return static_settings.restart_rule

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _get_num_of_parents_fn(static_settings):

 return static_settings.get_num_of_parents_fn

 @staticmethod

 def _get_optimiser_settings(static_settings):

 return static_settings.opt_settings

 @staticmethod

 def _get_num_of_parents(selection_rule, new_sols, num_parents):

 return (new_sols if selection_rule == SelectionRules.FILTER else num_parents)

 @staticmethod

 def ask(static_settings, imp_emitter, repertoire, key):

 """Samples new solutions from a multivariate Gaussian.

 The multivariate Gaussian is parameterized by the CMA-ES optimizer.

 """

 opt, solutions = imp_emitter.opt.ask(

 imp_emitter._get_optimiser_settings(static_settings),

 imp_emitter.opt, imp_emitter.lower_bounds,

 imp_emitter.upper_bounds, key)

 unraveled_sols = imp_emitter.unravel_batch_size(static_settings, solutions)

 return imp_emitter.replace(opt = opt), unraveled_sols

 @staticmethod

 def _check_restart(restart_rule, num_parents):

 """Emitter-side checks for restarting the optimizer.

A-62

 The optimizer also has its own checks.

 """

 return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0

 @staticmethod

 def _reset_opt(static_settings, imp_emitter, repertoire, elite_key):

 new_x0 = Repertoire.get_random_elite_ext(repertoire, elite_key)

 new_x0 = imp_emitter.ravel_single(static_settings, new_x0)

 opt = imp_emitter.opt.reset(imp_emitter._get_optimiser_settings(

 static_settings), imp_emitter.opt, new_x0)

 restarts = imp_emitter.restarts + 1

 return imp_emitter.replace(opt = opt, restarts = restarts), repertoire

 @staticmethod

 def tell(static_settings, imp_emitter, solutions, objective_values,

 behavior_values, dead, repertoire, key):

 """Gives the emitter results from evaluating solutions.

 As solutions are inserted into the archive, we record their "improvement

 value" -- conveniently, this is the ``value`` returned by

 :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions

 according to their add status (new solutions rank in front of

 solutions that improved existing entries in the archive, which rank

 ahead of solutions that were not added), followed by their improvement

 value. We then pass the ranked solutions to the underlying CMA-ES

 optimizer to update the search parameters.

 """

 get_num_of_parents_fn = ImprovementEmitter._get_num_of_parents_fn(static_settings)

 solution_dim = ImprovementEmitter._get_solution_dim(static_settings)

 restart_rule = ImprovementEmitter._get_restart_rule(static_settings)

 # new_sols = repertoire.num_indivs

 repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended(

 repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 # Find the indices of the sorted array on status codes and then objective/evaluation

scores

 r_indices = jnp.lexsort((sols_entries[:,2], sols_entries[:,1], sols_entries[:,0]))

 ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0)

 # new_sols = repertoire.num_indivs - new_sols

 # we want the descending order of the rankings and not the ascending

 indices = ranked_sols_entries[:,2].astype(jnp.int32)

 num_parents = get_num_of_parents_fn(new_sols, imp_emitter.num_parents)

 raveled_sols = imp_emitter.ravel_batch_size(static_settings, solutions)

 opt = CMAEvolutionStrategy.tell(imp_emitter._get_optimiser_settings(static_settings),

A-63

 imp_emitter.opt, raveled_sols[indices], num_parents)

 key, elite_key = jax.random.split(key, 2)

 imp_emitter = imp_emitter.replace(opt = opt)

 should_reset_opt = jnp.logical_or(

 CMAEvolutionStrategy.check_stop(opt,

 ranked_sols_entries[:,1], num_parents),

 ImprovementEmitter._check_restart(restart_rule, new_sols)

)

 return lax.cond(should_reset_opt,

 lambda x: ImprovementEmitter._reset_opt(static_settings, imp_emitter,

 repertoire, elite_key),

 lambda x: (imp_emitter, repertoire),

 None

)

Code Snippet A.18: Implementation of CMA-ME Improvement the in JAX (_improvement_emitter.py)

A.5.4 Covariance Matrix Adaptation MAP-Elites (CMA-ME) - Optimizing

"""Provides the OptimizingEmitter.

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_optimizing_emitter.py

"""

from typing import Any

import jax.numpy as jnp

import flax

import jax

from jax import lax

from qd_utils.grid_archive import Repertoire

from training.ext_emitters.emitters_utils import EmitterBase

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules

from collections import namedtuple

Array = jnp.ndarray

class SelectionRules:

 MU = 1

 FILTER = 2

class RestartRules:

 BASIC = 1

 NO_IMPROVEMENT = 2

A-64

D_TYPE = jnp.float32

@flax.struct.dataclass

class OptimizingEmitter:

 """Adapts a covariance matrix towards the objective.

 This emitter originates in `Fontaine 2020

 <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and

 uses CMA-ES to optimize for objective values. After CMA-ES converges, the

 emitter restarts the optimizer. It picks a random elite in the archive and

 begins optimizing from there.

 """

 x0: Array

 sigma0: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 opt: CMAEvolutionStrategy

 solution_dim: jnp.int32

 num_parents: jnp.int32

 restarts: jnp.int32

 restart_rule: jnp.int32

 selection_rule: jnp.int32

 @classmethod

 def create(cls,

 x0,

 sigma0,

 selection_rule=SelectionRules.FILTER,

 restart_rule=RestartRules.NO_IMPROVEMENT,

 weight_rule=WeightRules.TRUNCATION,

 bounds=None,

 batch_size=None):

 (solution_dim, ravel_single, unravel_single, ravel_batch_size,

 unravel_batch_size) = EmitterBase.get_ravel_info(

 batch_size, x0)

 x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE)

 sigma0 = sigma0

 lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds,

 solution_dim)

 batch_size = batch_size

 if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]:

 raise ValueError(f"Invalid selection_rule {selection_rule}")

 if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]:

A-65

 raise ValueError(f"Invalid restart_rule {restart_rule}")

 opt, ssd_opt = CMAEvolutionStrategy.create(sigma0, batch_size,

 solution_dim, weight_rule)

 opt = opt.reset(ssd_opt, opt, x0_raveled)

 # get_num_of_parents_fn = jax.jit(functools.partial(cls._get_num_of_parents,

selection_rule))

 num_parents = (opt.batch_size // 2 if selection_rule == SelectionRules.MU else None)

 batch_size = opt.batch_size

 ssd = dict()

 # static_settings['get_num_of_parents_fn'] = get_num_of_parents_fn

 ssd['solution_dim'] = solution_dim

 ssd['batch_size'] = batch_size

 ssd['restart_rule'] = restart_rule

 ssd['selection_rule'] = selection_rule

 ssd['opt_settings'] = ssd_opt

 ssd['ravel_single'] = ravel_single

 ssd['unravel_single'] = unravel_single

 ssd['ravel_batch_size'] = ravel_batch_size

 ssd['unravel_batch_size'] = unravel_batch_size

 StaticSettings = namedtuple('StaticSettings', ssd)

 restarts = 0

 return (cls(x0_raveled, sigma0, lower_bounds, upper_bounds , batch_size, opt,

 solution_dim, num_parents, restarts, restart_rule, selection_rule),

 StaticSettings(**ssd))

 @staticmethod

 def ravel_single(static_settings, params):

 return static_settings.ravel_single(params)

 @staticmethod

 def unravel_single(static_settings, params):

 return static_settings.unravel_single(params)

 @staticmethod

 def ravel_batch_size(static_settings, params):

 return static_settings.ravel_batch_size(params)

 @staticmethod

 def unravel_batch_size(static_settings, params):

 return static_settings.unravel_batch_size(params)

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

A-66

 @staticmethod

 def _get_restart_rule(static_settings):

 return static_settings.restart_rule

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _get_selection_rule(static_settings):

 return static_settings.selection_rule

 @staticmethod

 def _get_optimiser_settings(static_settings):

 return static_settings.opt_settings

 @staticmethod

 def ask(static_settings, optEmitter, repertoire, key):

 """Samples new solutions from a multivariate Gaussian.

 The multivariate Gaussian is parameterized by the CMA-ES optimizer.

 """

 opt, solutions = optEmitter.opt.ask(

 optEmitter._get_optimiser_settings(static_settings),

 optEmitter.opt,

 optEmitter.lower_bounds,

 optEmitter.upper_bounds, key)

 unraveled_sols = optEmitter.unravel_batch_size(static_settings,

 solutions)

 return optEmitter.replace(opt = opt), unraveled_sols

 @staticmethod

 def _check_restart(restart_rule, num_parents):

 """Emitter-side checks for restarting the optimizer.

 The optimizer also has its own checks.

 """

 return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0

 @staticmethod

 def _reset_opt(static_settings, optEmitter, repertoire, elite_key):

 new_x0 = Repertoire.get_random_elite_ext(repertoire, elite_key)

 new_x0 = optEmitter.ravel_single(static_settings, new_x0)

 opt = optEmitter.opt.reset(optEmitter._get_optimiser_settings(

 static_settings), optEmitter.opt, new_x0)

 restarts = optEmitter.restarts + 1

A-67

 return optEmitter.replace(opt = opt, restarts = restarts), repertoire

 @staticmethod

 def tell(static_settings, optEmitter, solutions, objective_values,

 behavior_values, dead, repertoire, key):

 """Gives the emitter results from evaluating solutions.

 As solutions are inserted into the archive, we record their "improvement

 value" -- conveniently, this is the ``value`` returned by

 :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions

 according to their add status (new solutions rank in front of

 solutions that improved existing entries in the archive, which rank

 ahead of solutions that were not added), followed by their improvement

 value. We then pass the ranked solutions to the underlying CMA-ES

 optimizer to update the search parameters.

 """

 solution_dim = optEmitter._get_solution_dim(static_settings)

 restart_rule = optEmitter._get_restart_rule(static_settings)

 selection_rule = optEmitter._get_selection_rule(static_settings)

 repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended(

 repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 if selection_rule == SelectionRules.FILTER:

 # Sort by whether the solution was added into the archive, followed

 # by objective value.

 sort_elements = (objective_values[sols_entries[:,2].astype(jnp.int32)],

 sols_entries[:,0])

 elif selection_rule == SelectionRules.MU:

 # Sort only by objective value.

 sort_elements = (objective_values[sols_entries[:,2].astype(jnp.int32)])

 # Find the indices of the sorted array on status codes and then objective/evaluation

scores

 r_indices = jnp.lexsort(sort_elements)

 ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0)

 # we want the descending order of the rankings and not the ascending

 indices = ranked_sols_entries[:,2].astype(jnp.int32)

 num_parents = (new_sols if selection_rule == SelectionRules.FILTER

 else optEmitter.num_parents)

 raveled_sols = optEmitter.ravel_batch_size(static_settings, solutions)

 opt = optEmitter.opt.tell(optEmitter._get_optimiser_settings(static_settings),

A-68

 optEmitter.opt, raveled_sols[indices], num_parents)

 key, elite_key = jax.random.split(key, 2)

 optEmitter = optEmitter.replace(opt = opt)

 should_reset_opt = jnp.logical_or(

 CMAEvolutionStrategy.check_stop(opt,

 ranked_sols_entries[:,1], num_parents),

 optEmitter._check_restart(restart_rule, new_sols)

)

 return lax.cond(should_reset_opt,

 lambda x: optEmitter._reset_opt(static_settings, optEmitter,

 repertoire, elite_key),

 lambda x: (optEmitter, repertoire),

 None

)

Code Snippet A.19: Implementation of the CMA-ME - Optimizing in JAX (_optimizing_emitter.py)

A.5.5 Covariance Matrix Adaptation MAP-Elites (CMA-ME) – Random Direction

"""Provides the RandomDirectionEmitter.

Adapted from https://github.com/icaros-

usc/dqd/blob/main/ribs/emitters/_random_direction_emitter.py

"""

from typing import Any

import jax.numpy as jnp

import flax

import jax

from jax import lax

from qd_utils.grid_archive import Repertoire

from training.ext_emitters.emitters_utils import EmitterBase

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules

from collections import namedtuple

Array = jnp.ndarray

class SelectionRules:

 MU = 1

 FILTER = 2

class RestartRules:

 BASIC = 1

 NO_IMPROVEMENT = 2

A-69

D_TYPE = jnp.float32

@flax.struct.dataclass

class RandomDirectionEmitter(EmitterBase):

 """Performs a random walk in behavior space by pursuing randomly chosen

 behavior space directions.

 This emitter originates in `Fontaine 2020

 <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and

 uses CMA-ES to search for solutions along a randomly chosen direction. Once

 CMA-ES restarts (see ``restart_rule``), the emitter starts from a randomly

 chosen elite in the archive and pursues a new random direction.

 """

 x0: Array

 sigma0: D_TYPE

 lower_bounds: Array

 upper_bounds: Array

 batch_size: jnp.int32

 opt: CMAEvolutionStrategy

 solution_dim: jnp.int32

 num_parents: jnp.int32

 restarts: jnp.int32

 restart_rule: jnp.int32

 selection_rule: jnp.int32

 archive_bounds: Array

 target_behavior_dir:Array

 @classmethod

 def create(cls,

 x0,

 sigma0,

 archive_bounds,

 key,

 selection_rule=SelectionRules.FILTER,

 restart_rule=RestartRules.NO_IMPROVEMENT,

 weight_rule=WeightRules.TRUNCATION,

 bounds=None,

 batch_size=None):

 (solution_dim, ravel_single, unravel_single, ravel_batch_size,

 unravel_batch_size) = EmitterBase.get_ravel_info(

 batch_size, x0)

 x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE)

 sigma0 = sigma0

 lower_bounds, upper_bounds = EmitterBase.process_bounds(

 bounds, solution_dim)

 batch_size = batch_size

A-70

 if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]:

 raise ValueError(f"Invalid selection_rule {selection_rule}")

 if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]:

 raise ValueError(f"Invalid restart_rule {restart_rule}")

 opt, ssd_opt = CMAEvolutionStrategy.create(sigma0, batch_size,

 solution_dim, weight_rule)

 opt = opt.reset(ssd_opt, opt, x0_raveled)

 num_parents = (opt.batch_size // 2 if selection_rule ==

 SelectionRules.MU else None)

 batch_size = opt.batch_size

 ssd = dict()

 ssd['solution_dim'] = solution_dim

 ssd['solution_dim'] = solution_dim

 ssd['batch_size'] = batch_size

 ssd['restart_rule'] = restart_rule

 ssd['selection_rule'] = selection_rule

 ssd['archive_bounds'] = archive_bounds

 ssd['opt_settings'] = ssd_opt

 ssd['ravel_single'] = ravel_single

 ssd['unravel_single'] = unravel_single

 ssd['ravel_batch_size'] = ravel_batch_size

 ssd['unravel_batch_size'] = unravel_batch_size

 StaticSettings = namedtuple('StaticSettings', ssd)

 target_behavior_dir = cls._generate_random_direction(ssd,

 archive_bounds, key)

 restarts = 0

 return cls(x0, sigma0, lower_bounds, upper_bounds , batch_size,

 opt, solution_dim, num_parents, restarts, restart_rule,

 selection_rule, archive_bounds,

 target_behavior_dir), StaticSettings(**ssd)

 @staticmethod

 def ravel_single(static_settings, params):

 return static_settings.ravel_single(params)

 @staticmethod

 def unravel_single(static_settings, params):

 return static_settings.unravel_single(params)

 @staticmethod

 def ravel_batch_size(static_settings, params):

A-71

 return static_settings.ravel_batch_size(params)

 @staticmethod

 def unravel_batch_size(static_settings, params):

 return static_settings.unravel_batch_size(params)

 @staticmethod

 def _get_batch_size(static_settings):

 return static_settings.batch_size

 @staticmethod

 def _get_restart_rule(static_settings):

 return static_settings.restart_rule

 @staticmethod

 def _get_solution_dim(static_settings):

 return static_settings.solution_dim

 @staticmethod

 def _get_selection_rule(static_settings):

 return static_settings.selection_rule

 @staticmethod

 def _get_archive_bounds(static_settings):

 return static_settings.archive_bounds

 @staticmethod

 def _get_optimiser_settings(static_settings):

 return static_settings.opt_settings

 @staticmethod

 def ask(static_settings, randomDirEmitter, repertoire, key):

 """Samples new solutions from a multivariate Gaussian.

 The multivariate Gaussian is parameterized by the CMA-ES optimizer.

 Returns:

 ``(batch_size, solution_dim)`` array -- contains ``batch_size`` new

 solutions to evaluate.

 """

 opt, solutions = randomDirEmitter.opt.ask(

 randomDirEmitter._get_optimiser_settings(static_settings),

 randomDirEmitter.opt,

 randomDirEmitter.lower_bounds,

 randomDirEmitter.upper_bounds, key)

A-72

 unraveled_sols = randomDirEmitter.unravel_batch_size(static_settings,

 solutions)

 return randomDirEmitter.replace(opt = opt), unraveled_sols

 @staticmethod

 def _generate_random_direction(static_settings, archive_bounds, key):

 """Generates a new random direction in the behavior space.

 The direction is sampled from a standard Gaussian -- since the standard

 Gaussian is isotropic, there is equal probability for any direction. The

 direction is then scaled to the behavior space bounds.

 """

 ranges = archive_bounds[:,1] - archive_bounds[:,0]

 behavior_dim = archive_bounds.shape[0]

 unscaled_dir = jax.random.normal(key,

 shape=(behavior_dim,),

 dtype=D_TYPE)

 return unscaled_dir * ranges

 @staticmethod

 def _check_restart(restart_rule, num_parents):

 """Emitter-side checks for restarting the optimizer.

 The optimizer also has its own checks.

 """

 return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0

 @staticmethod

 def _reset_opt(static_settings, randomDirEmitter, repertoire, key):

 dir_key, elite_key = jax.random.split(key, 2)

 new_x0 = Repertoire.get_random_elite_ext(repertoire, elite_key)

 new_x0 = randomDirEmitter.ravel_single(static_settings, new_x0)

 opt = randomDirEmitter.opt.reset(randomDirEmitter._get_optimiser_settings(

 static_settings),

 randomDirEmitter.opt, new_x0)

 archive_bounds = randomDirEmitter._get_archive_bounds(static_settings)

 target_behavior_dir = randomDirEmitter._generate_random_direction(

 static_settings,

 archive_bounds, dir_key)

 restarts = randomDirEmitter.restarts + 1

 return randomDirEmitter.replace(opt = opt, restarts = restarts,

 target_behavior_dir = target_behavior_dir), repertoire

 @staticmethod

 def tell(static_settings, randomDirEmitter, solutions, objective_values,

 behavior_values, dead, repertoire, key):

A-73

 """Gives the emitter results from evaluating solutions.

 As solutions are inserted into the archive, we record their "improvement

 value" -- conveniently, this is the ``value`` returned by

 :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions

 according to their add status (new solutions rank in front of

 solutions that improved existing entries in the archive, which rank

 ahead of solutions that were not added), followed by their improvement

 value. We then pass the ranked solutions to the underlying CMA-ES

 optimizer to update the search parameters.

 """

 solution_dim = randomDirEmitter._get_solution_dim(static_settings)

 restart_rule = randomDirEmitter._get_restart_rule(static_settings)

 selection_rule = randomDirEmitter._get_selection_rule(static_settings)

 repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended(

 repertoire = repertoire,

 pop_p = solutions,

 bds = behavior_values,

 eval_scores = objective_values,

 dead = dead)

 projection = jnp.dot(behavior_values, randomDirEmitter.target_behavior_dir)

 # Rearrange based on their initial indices to make it parallel to sols_entries

 projection = projection[sols_entries[:,2].astype(jnp.int32)]

 if selection_rule == SelectionRules.FILTER:

 # Sort by whether the solution was added into the archive, followed

 # by projection.

 sort_elements = (sols_entries[:,2], projection, sols_entries[:,0])

 elif selection_rule == SelectionRules.MU:

 # Sort only by projection.

 sort_elements = (projection)

 # Find the indices of the sorted array on status codes and then objective/evaluation

scores

 r_indices = jnp.lexsort(sort_elements)

 ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0)

 # we want the descending order of the rankings and not the ascending

 indices = ranked_sols_entries[:,2].astype(jnp.int32)

 num_parents = (new_sols if selection_rule == SelectionRules.FILTER

 else randomDirEmitter.num_parents)

 raveled_sols = randomDirEmitter.ravel_batch_size(static_settings, solutions)

 opt = randomDirEmitter.opt.tell(randomDirEmitter._get_optimiser_settings(

 static_settings), randomDirEmitter.opt,

 raveled_sols[indices], num_parents)

 key, reset_key = jax.random.split(key, 2)

A-74

 randomDirEmitter = randomDirEmitter.replace(opt = opt)

 should_reset_opt = jnp.logical_or(

 CMAEvolutionStrategy.check_stop(opt, projection,

 num_parents),

 randomDirEmitter._check_restart(restart_rule, new_sols)

)

 return lax.cond(should_reset_opt,

 lambda x: randomDirEmitter._reset_opt(static_settings, randomDirEmitter,

 repertoire, reset_key),

 lambda x: (randomDirEmitter, repertoire),

 None

)

Code Snippet A.20: Implementation of the CMA-ME Random Direction in JAX (_random_direction_emitter.py)

A.6 Emitters’ Utilities

import jax

import jax.numpy as jnp

from jax.flatten_util import ravel_pytree

import functools

D_TYPE = jnp.float32

class EmitterBase:

 @staticmethod

 def process_bounds(bounds, solution_dim):

 """Processes the input bounds.

 Returns:

 tuple: Two arrays containing all the lower bounds and all the upper

 bounds.

 Raises:

 ValueError: There is an error in the bounds configuration.

 """

 lower_bounds = jnp.full(solution_dim, -jnp.inf, dtype=D_TYPE)

 upper_bounds = jnp.full(solution_dim, jnp.inf, dtype=D_TYPE)

 if bounds is None:

 return lower_bounds, upper_bounds

A-75

 # Handle array-like bounds.

 if len(bounds) != solution_dim:

 raise ValueError("If it is an array-like, bounds must have the "

 "same length as x0")

 for idx, bnd in enumerate(bounds):

 if bnd is None:

 continue # Bounds already default to -inf and inf.

 if len(bnd) != 2:

 raise ValueError("All entries of bounds must be length 2")

 lower_bounds = lower_bounds.at[idx].set(-jnp.inf

 if bnd[0] is None else bnd[0])

 upper_bounds = upper_bounds.at[idx].set(jnp.inf

 if bnd[1] is None else bnd[1])

 return lower_bounds, upper_bounds

 @staticmethod

 def ravel_single(params):

 return ravel_pytree(params)

 @staticmethod

 def unravel_single(unravel, params):

 return unravel(params)

 @staticmethod

 def ravel_batch_size(params):

 batch_size = jax.tree_util.tree_leaves(params)[0].shape[0]

 params_leaves_transposed = jax.tree_map(lambda x:

 jnp.transpose(x), params)

 flatten_params, unravel = ravel_pytree(params_leaves_transposed)

 raveled_sols = flatten_params.reshape(-1, batch_size)

 return jnp.transpose(raveled_sols), unravel

 @staticmethod

 def unravel_batch_size(unravel_f, params):

 flatten_params = jnp.ravel(params, order='F')

 params_tree = unravel_f(flatten_params)

 params_tree = jax.tree_map(lambda x: jnp.transpose(x), params_tree)

 return params_tree

 @staticmethod

 def expand_params_to_batch_size(batch_size, params):

 return jax.tree_map(lambda x: jnp.repeat(jnp.expand_dims(x, axis=0),

 batch_size , axis=0), params)

 @staticmethod

 def get_ravel_info(batch_size, x0):

A-76

 if isinstance(x0, jnp.ndarray):

 solution_dim = len(x0)

 ravel_single = lambda x: x

 unravel_single = lambda x: x

 ravel_batch_size = lambda x: x

 unravel_batch_size = lambda x: x

 else:

 # Calculate ravel and unravel method for a single instance of sols

 raveled_x, unravel_single_fn = EmitterBase.ravel_single(x0)

 ravel_single = lambda x: EmitterBase.ravel_single(x)[0]

 unravel_single = functools.partial(EmitterBase.unravel_single,

 unravel_single_fn)

 # unravel_single = jax.tree_util.Partial(EmitterBase.unravel_single,

unravel_single_fn)

 solution_dim = len(raveled_x)

 # Calculate ravel and unravel method for a batch size instances of sols

 expanded_xs = EmitterBase.expand_params_to_batch_size(batch_size, x0)

 raveled_xs, unravel_bs_fn = EmitterBase.ravel_batch_size(expanded_xs)

 ravel_batch_size = lambda x: EmitterBase.ravel_batch_size(x)[0]

 unravel_batch_size = functools.partial(

 EmitterBase.unravel_batch_size, unravel_bs_fn)

 # unravel_batch_size = jax.tree_util.Partial(

 # EmitterBase.unravel_batch_size, unravel_bs_fn)

 return (solution_dim, ravel_single, unravel_single, ravel_batch_size,

 unravel_batch_size)

Code Snippet A.21: Emitters’ Utilities file (emitters_utils.py)

A.7 Containers

A.7.1 N-Dimensional Grid Archive

"""

Adapted from QDax:

https://github.com/adaptive-intelligent-robotics/QDax/blob/main/qdax/qd_utils/grid_archive.py

"""

from typing import Any,List

import numpy as np

import jax.numpy as jnp

import flax

import jax

from jax import jit,vmap,grad

from training import simple_emitters

Array = Any

A-77

Adding solutions to archive Status

Higher number means higher importance

class AddStatus:

 NEW = 2

 IMPROVE_EXISTING = 1

 NOT_ADDED = 0

@flax.struct.dataclass

class Repertoire:

 archive: List

 fitness: Array

 bd: Array

 grid_shape: Array

 min: np.float64

 max: np.float64

 num_indivs: int

 indiv_indices: Array

 select_elite_from_repertoire = simple_emitters.get_select_from_repertoire_fn(1, 1)

 @staticmethod

 def get_random_elite(repertoire, key):

 return Repertoire.select_elite_from_repertoire(repertoire, key)[0][0]

 @staticmethod

 def get_random_elite_ext(repertoire, key):

 sols = Repertoire.select_elite_from_repertoire(repertoire, key)

 return jax.tree_map(lambda x: jnp.squeeze(x), sols[0])

 @staticmethod

 def _clip_bds(min_bound, max_bound, bds):

 lower_bounds, upper_bounds = (jnp.repeat(min_bound, bds.shape[1]),

 jnp.repeat(max_bound,bds.shape[1]))

 return jnp.minimum(jnp.maximum(bds, jnp.expand_dims(lower_bounds,axis=0)),

 jnp.expand_dims(upper_bounds,axis=0))

 @classmethod

 def create(cls, policy_params, max, min, grid_shape):

 grid_shape = jnp.array(grid_shape)

 num_indivs = 0

 indiv_indices = jnp.array([])

 bd = jnp.zeros(grid_shape)

 fitness = jnp.full(grid_shape,jnp.nan)

 #NOTE only 2D atm

 archive = jax.tree_map(lambda x: jnp.zeros(jnp.repeat(

 jnp.expand_dims(x, axis=0), jnp.prod(grid_shape),

A-78

 axis=0).shape), policy_params)

 return cls(archive, fitness, bd, grid_shape, min, max, num_indivs, indiv_indices)

 @staticmethod

 def binning(normed, shape):

 return tuple(jnp.multiply(normed, shape - 1).astype(int))

 @staticmethod

 def add_to_archive(repertoire, pop_p, bds, eval_scores, dead):

 # bds = repertoire._clip_bds(repertoire.min, repertoire.max, bds)

 normalized_bds = ((bds-repertoire.min)/(repertoire.max-repertoire.min)) #Normlalized

BD should be between zero and 1

 bd_cells = jit(jax.vmap(Repertoire.binning, in_axes=(0,None),

 out_axes=0))(normalized_bds,repertoire.grid_shape)

 # print(bd_cells)

 bd_indexes = jnp.ravel_multi_index(bd_cells, repertoire.bd.shape,mode = 'clip')

 maximum_fitness = jax.ops.segment_max(eval_scores, bd_indexes,

 num_segments=repertoire.fitness.ravel().shape[0])

 eval_scores_filtered = jnp.where(maximum_fitness.at[bd_indexes].get()==eval_scores,

 eval_scores,np.iinfo(np.int32).min)

 keep_eval_scores_filtered = jnp.where(maximum_fitness.at[bd_indexes].get()

 ==eval_scores,True,False)

 # Checking Conditions for fitness function

 current_fitness = repertoire.fitness.ravel().at[bd_indexes].get()

 # Checking if fitness function is nan or not, since nan means we do not have an

individual yet

 current_fitness_nan = jnp.logical_and(jnp.isnan(current_fitness),

 keep_eval_scores_filtered)

 # Checking if fitness that we have is better than the one we observed

 better_fitness = current_fitness < eval_scores_filtered

 #NOTE We need to check if two individuals have the same bd and different fitness!!

 #Adding both boolean arrays to perform an OR

 to_be_added = better_fitness + current_fitness_nan

 #We Apply the Mask to remove dead individuals

 to_be_added = jnp.where(dead,False,to_be_added)

 #Every Individual that is not valid will be assigned index 100000 because we cannot

cut our arrays. Jit needs to know the size of the array.

 #When adding, every individual will be clipped and sent to the same location

 mult_to_be_added = jnp.where(to_be_added,0,100000)

 bd_insertion = bd_indexes + mult_to_be_added

 # Adding individuals indivs to grid

A-79

 leaves = []

 for i, weight in enumerate(jax.tree_leaves(pop_p)):

 leaf = jax.tree_leaves(repertoire.archive)[i].at[bd_insertion].set(weight)

 leaves.append(leaf)

 # replacing grid with new leaves that have the updated weights

 new_archive = jax.tree_unflatten(jax.tree_structure(repertoire.archive), leaves)

 unraveled_indices = jnp.unravel_index(bd_insertion, repertoire.fitness.shape)

 # new_fitness = repertoire.fitness.at[jnp.unravel_index(bd_insertion,

repertoire.fitness.shape)].set(eval_scores,mode='clip')

 new_fitness = jnp.reshape(repertoire.fitness.ravel()

 .at[bd_insertion].set(eval_scores),repertoire.fitness.shape)

 # print(repertoire.fitness)

 num_indivs = (jnp.where(~jnp.isnan(new_fitness),1,0)).sum()

 #returning this to make it jit friendly

 return repertoire.replace(archive = new_archive, fitness =

 new_fitness, num_indivs = num_indivs)

 @staticmethod

 # @jax.jit

 def add_to_archive_extended(repertoire, pop_p, bds, eval_scores,dead):

 normalized_bds = ((bds-repertoire.min)/(repertoire.max-repertoire.min)) #Normlalized

BD should be between zero and 1

 bd_cells = jit(jax.vmap(Repertoire.binning,

in_axes=(0,None),out_axes=0))(normalized_bds,repertoire.grid_shape)

 # print(bd_cells)

 bd_indexes = jnp.ravel_multi_index(bd_cells, repertoire.bd.shape,mode = 'clip')

 maximum_fitness = jax.ops.segment_max(eval_scores, bd_indexes,

 num_segments=repertoire.fitness.ravel().shape[0])

 eval_scores_filtered = jnp.where(maximum_fitness.at[bd_indexes]

 .get()==eval_scores,eval_scores,np.iinfo(np.int32).min)

 keep_eval_scores_filtered = jnp.where(maximum_fitness

 .at[bd_indexes].get()==eval_scores,True,False)

 # Checking Conditions for fitness function

 current_fitness = repertoire.fitness.ravel().at[bd_indexes].get()

 # Checking if fitness function is nan or not, since nan means we do not have an

individual yet

 current_fitness_nan = jnp.logical_and(jnp.isnan(current_fitness),

 keep_eval_scores_filtered)

 # Checking if fitness that we have is better than the one we observed

 better_fitness = current_fitness < eval_scores_filtered

 #NOTE We need to check if two individuals have the same bd and different fitness!!

 #Adding both boolean arrays to perform an OR

 to_be_added = better_fitness + current_fitness_nan

A-80

 imp_values = eval_scores - jnp.where(current_fitness_nan

 , 0, current_fitness)

 #We Apply the Mask to remove dead individuals

 to_be_added = jnp.where(dead,False,to_be_added)

 # new individuals that were added to the archive

 new_indvds = jnp.sum(to_be_added.astype(jnp.int32))

 #Every Individual that is not valid will be assigned index 100000 because we cannot

cut our arrays. Jit needs to know the size of the array.

 #When adding, every individual will be clipped and sent to the same location

 mult_to_be_added = jnp.where(to_be_added,0,100000)

 bd_insertion = bd_indexes + mult_to_be_added

 new_sols = jnp.where(jnp.logical_and(

 current_fitness_nan,

 to_be_added,

), AddStatus.NEW, AddStatus.NOT_ADDED)

 better_sols = jnp.where(jnp.logical_and(

 better_fitness,

 to_be_added,

), AddStatus.IMPROVE_EXISTING, AddStatus.NOT_ADDED)

 sols_statuses = new_sols + better_sols

 # Sols entries is an array showing the add to archive status and objective/evaluation

score

 # of each solution

 sols_entries = jnp.stack((sols_statuses, imp_values, jnp.arange(0,

 len(sols_statuses), 1, dtype=int)),axis=-1)

 # Adding individuals indivs to grid

 leaves = []

 for i, weight in enumerate(jax.tree_leaves(pop_p)):

 leaf = jax.tree_leaves(repertoire.archive)[i].at[bd_insertion].set(weight)

 leaves.append(leaf)

 # replacing grid with new leaves that have the updated weights

 new_archive = jax.tree_unflatten(jax.tree_structure(repertoire.archive), leaves)

 unraveled_indices = jnp.unravel_index(bd_insertion, repertoire.fitness.shape)

 # new_fitness = repertoire.fitness.at[jnp.unravel_index(bd_insertion,

repertoire.fitness.shape)].set(eval_scores,mode='clip')

 new_fitness =

jnp.reshape(repertoire.fitness.ravel().at[bd_insertion].set(eval_scores),repertoire.fitness.sh

ape)

 # print(repertoire.fitness)

 num_indivs = (jnp.where(~jnp.isnan(new_fitness),1,0)).sum()

A-81

 #returning this to make it jit friendly

 return repertoire.replace(archive = new_archive, fitness =

 new_fitness, num_indivs = num_indivs), sols_entries, new_indvds

Code Snippet A.22: Implementation of N-Dimensional Grid Archive (grid_archive.py)

A.8 Experiment Utilities

A.8.1 Module for Instantiating QD and DQD Emitters

import functools

import jax.numpy as jnp

from training import qd_loop_simple as qd_simple

Import QD Behavioral and Objective functions

from training.qd_functions import calc_rastrigin

from training.qd_functions import calc_bds_rastrigin, calc_bds_rastrigin_simple

from training.qd_functions import calc_grasp_bds, calc_grasp_objs

Import different emitters

from training.emitters._optimizing_emitter import OptimizingEmitter

import training.emitters._optimizing_emitter as opt_emitter

from training.emitters._improvement_emitter import ImprovementEmitter

import training.emitters._improvement_emitter as impr_emitter

from training.emitters._random_direction_emitter import RandomDirectionEmitter

import training.emitters._random_direction_emitter as rand_dir_emitter

from training.emitters._gradient_improvement_emitter import GradientImprovementEmitter

import training.emitters._gradient_improvement_emitter as grad_impr_emitter

from training.emitters._gaussian_emitter import GaussianEmitter

from training.emitters._iso_line_emitter import IsoLineEmitter

from training.emitters._gradient_emitter import GradientEmitter

import training.emitters._gradient_emitter as grad_emitter

from training.opt._cma_es import WeightRules

QD_EMITTERS_SUPPORTED = ["map_elites", "map_elites_line", "cma_me_imp",

 "cma_me_rd", "cma_me_opt"]

DQD_EMITTERS_SUPPORTED = ["og_map_elites_iso", "og_map_elites_line",

 "omg_mega_iso", "omg_mega_line",

 "omg_mega", "cma_mega", "cma_mega_adam"]

ALL_EMITTERS_SUPPORTED = QD_EMITTERS_SUPPORTED + DQD_EMITTERS_SUPPORTED

ENVS = ['rastrigin-distorted', 'rastrigin', 'arm']

def get_env_info(args):

 env_name = args.env_name

 sols_dim = args.sols_dim

 min_bound = 0

 max_bound = 1

A-82

 archive_bounds = jnp.array([[min_bound, max_bound] for _ in range(2)])

 bounds = None

 # Environment selection

 if env_name == "rastrigin-distorted":

 max_bound = args.sols_dim / 2 * 5.12

 min_bound = -max_bound

 archive_bounds = jnp.array([[min_bound, max_bound] for _ in range(2)])

 # bounds = [[-5.12, 5.12] for _ in range(args.sols_dim)]

 bounds = None

 return archive_bounds, bounds, calc_rastrigin, calc_bds_rastrigin

 elif env_name == "rastrigin":

 max_bound = 1

 min_bound = 0

 archive_bounds = jnp.array([[min_bound, max_bound] for _ in range(2)])

 # bounds = [[min_bound, max_bound] for _ in range(args.sols_dim)]

 # bounds = None

 return archive_bounds, bounds, calc_rastrigin, calc_bds_rastrigin_simple

 elif env_name == "arm":

 link_lengths = jnp.ones(sols_dim)

 max_bound = sols_dim

 min_bound = -max_bound

 archive_bounds = jnp.array([[min_bound, max_bound] for _ in range(2)])

 # bounds = [[min_bound, max_bound] for _ in range(args.sols_dim)]

 # bounds = None

 calc_grasp_objs_p = functools.partial(calc_grasp_objs,

 link_lengths=link_lengths,

 calc_jacobians=True

)

 calc_grasp_bds_p = functools.partial(calc_grasp_bds,

 link_lengths=link_lengths,

 calc_jacobians=True

)

 return archive_bounds, bounds, calc_grasp_objs_p, calc_grasp_bds_p

 return archive_bounds, bounds, None, None

def get_emitter(args, qd_params, key):

 archive_bounds, bounds, _, _= get_env_info(args)

 emitter_name = args.emitter

 sigma0 = args.sigma0

 sigma1 = args.sigma1

 sigma_g = args.sigma_g

 batch_size = args.batch_size

 selection_rule = args.selection_rule

 restart_rule = args.restart_rule

 weight_rule = args.weight_rule

A-83

 sols_dim = args.sols_dim

 norm_grad = args.norm_grad

 stepsize = args.stepsize

 initial_sol = jnp.zeros(sols_dim)

 behavior_dim = len(archive_bounds)

 use_dqd = 0

 if emitter_name == "cma_me_opt":

 sigma0 = sigma0 if sigma0 else 0.5

 emitter, static_settings = OptimizingEmitter.create(

 x0=initial_sol,

 sigma0=sigma0,

 selection_rule=opt_emitter.SelectionRules.FILTER

 if selection_rule is None else selection_rule,

 restart_rule=opt_emitter.RestartRules.NO_IMPROVEMENT

 if restart_rule is None else restart_rule,

 weight_rule=WeightRules.TRUNCATION

 if weight_rule is None else weight_rule,

 bounds=None,

 batch_size=batch_size)

 elif emitter_name == "cma_me_imp":

 sigma0 = sigma0 if sigma0 else 0.5

 emitter, static_settings = ImprovementEmitter.create(

 x0=initial_sol,

 sigma0=sigma0,

 selection_rule=impr_emitter.SelectionRules.FILTER

 if selection_rule is None else selection_rule,

 restart_rule=impr_emitter.RestartRules.NO_IMPROVEMENT

 if restart_rule is None else restart_rule,

 weight_rule=WeightRules.TRUNCATION

 if weight_rule is None else weight_rule,

 bounds=None,

 batch_size=batch_size)

 elif emitter_name == "cma_me_rd":

 sigma0=sigma0 if sigma0 else 0.5

 emitter, static_settings = RandomDirectionEmitter.create(

 x0=initial_sol,

 sigma0=sigma0,

 archive_bounds=archive_bounds,

 key=key,

 selection_rule=rand_dir_emitter.SelectionRules.FILTER

 if selection_rule is None else selection_rule,

 restart_rule=rand_dir_emitter.RestartRules.NO_IMPROVEMENT

 if restart_rule is None else restart_rule,

 weight_rule=WeightRules.TRUNCATION

 if weight_rule is None else weight_rule,

 bounds=None,

 batch_size=batch_size)

A-84

 elif emitter_name == "cma_mega":

 sigma_g=sigma_g if sigma_g else 10.0

 stepsize=stepsize if stepsize else 1.0

 emitter, static_settings = GradientImprovementEmitter.create(

 x0=initial_sol,

 behavior_dim = behavior_dim,

 sigma_g=sigma_g,

 stepsize=stepsize,

 selection_rule=grad_impr_emitter.SelectionRules.MU

 if selection_rule is None else selection_rule,

 restart_rule=grad_impr_emitter.RestartRules.NO_IMPROVEMENT

 if restart_rule is None else restart_rule,

 weight_rule=WeightRules.TRUNCATION

 if weight_rule is None else weight_rule,

 gradient_optimizer = grad_impr_emitter.GradientOptimizers.GRADIENT_ASCENT,

 normalize_gradients=norm_grad if norm_grad else 1,

 bounds=None,

 batch_size=batch_size)

 use_dqd = 1

 elif emitter_name == "cma_mega_adam":

 sigma_g=sigma_g if sigma_g else 10.0

 stepsize=stepsize if stepsize else 0.002

 emitter, static_settings = GradientImprovementEmitter.create(

 x0=initial_sol,

 behavior_dim = behavior_dim,

 sigma_g=sigma_g,

 stepsize=stepsize,

 selection_rule=grad_impr_emitter.SelectionRules.MU

 if selection_rule is None else selection_rule,

 restart_rule=grad_impr_emitter.RestartRules.NO_IMPROVEMENT

 if restart_rule is None else restart_rule,

 weight_rule=WeightRules.TRUNCATION

 if weight_rule is None else weight_rule,

 gradient_optimizer = grad_impr_emitter.GradientOptimizers.ADAM,

 normalize_gradients=norm_grad if norm_grad else 1,

 bounds=None,

 batch_size=batch_size)

 use_dqd = 1

 elif emitter_name == "map_elites":

 sigma0=sigma0 if sigma0 else 0.5

 emitter, static_settings = GaussianEmitter.create(

 x0=initial_sol,

 sigma0=sigma0,

 batch_size=batch_size,

 bounds=bounds)

 elif emitter_name == "map_elites_line":

 sigma0=sigma0 if sigma0 else 0.5

A-85

 sigma1=sigma1 if sigma1 else 0.5

 emitter, static_settings = IsoLineEmitter.create(

 x0=initial_sol,

 iso_sigma=sigma0,

 line_sigma=sigma1,

 batch_size=batch_size,

 bounds=bounds)

 elif emitter_name == "og_map_elites_iso":

 sigma0=sigma0 if sigma0 else 0.5

 sigma_g=sigma_g if sigma_g else 0.5

 sigma1=sigma1 if sigma1 else 0.5

 emitter, static_settings = GradientEmitter.create(

 x0=initial_sol,

 sigma0=sigma0,

 sigma_g=sigma_g,

 line_sigma=sigma1,

 behavior_dim = behavior_dim,

 measure_gradients = 0,

 normalize_gradients=norm_grad if norm_grad else 1,

 operator_type = grad_emitter.OperatorTypes.ISOTROPIC,

 bounds=bounds,

 batch_size=batch_size)

 use_dqd = 1

 elif emitter_name == "og_map_elites_line":

 sigma0=sigma0 if sigma0 else 0.5

 sigma_g=sigma_g if sigma_g else 0.5

 sigma1=sigma1 if sigma1 else 0.5

 emitter, static_settings = GradientEmitter.create(

 x0=initial_sol,

 sigma0=sigma0,

 sigma_g=sigma_g,

 line_sigma=sigma1,

 behavior_dim = behavior_dim,

 measure_gradients = 0,

 normalize_gradients=norm_grad if norm_grad else 1,

 operator_type = grad_emitter.OperatorTypes.ISO_LINE_DD,

 bounds=bounds,

 batch_size=batch_size)

 use_dqd = 1

 elif emitter_name == "omg_mega":

 sigma0=0

 sigma_g=sigma_g if sigma_g else 0.5

 sigma1=0

 emitter, static_settings = GradientEmitter.create(

 x0=initial_sol,

 sigma0=sigma0,

 sigma_g=sigma_g,

A-86

 line_sigma=sigma1,

 behavior_dim = behavior_dim,

 measure_gradients = 0,

 normalize_gradients=norm_grad if norm_grad else 1,

 operator_type = grad_emitter.OperatorTypes.ISOTROPIC,

 bounds=bounds,

 batch_size=batch_size)

 use_dqd = 1

 elif emitter_name == "omg_mega_iso":

 sigma0=sigma0 if sigma0 else 0.5

 sigma_g=sigma_g if sigma_g else 0.5

 sigma1=sigma1 if sigma1 else 0.5

 emitter, static_settings = GradientEmitter.create(

 x0=initial_sol,

 sigma0=sigma0,

 sigma_g=sigma_g,

 line_sigma=sigma1,

 behavior_dim = behavior_dim,

 measure_gradients = 0,

 normalize_gradients=norm_grad if norm_grad else 1,

 operator_type = grad_emitter.OperatorTypes.ISOTROPIC,

 bounds=bounds,

 batch_size=batch_size)

 use_dqd = 1

 elif emitter_name == "omg_mega_line":

 sigma0=sigma0 if sigma0 else 0.5

 sigma_g=sigma_g if sigma_g else 0.5

 sigma1=sigma1 if sigma1 else 0.5

 emitter, static_settings = GradientEmitter.create(

 x0=initial_sol,

 sigma0=sigma0,

 sigma_g=sigma_g,

 line_sigma=sigma1,

 behavior_dim = behavior_dim,

 measure_gradients = 0,

 normalize_gradients=norm_grad if norm_grad else 1,

 operator_type = grad_emitter.OperatorTypes.ISO_LINE_DD,

 bounds=bounds,

 batch_size=batch_size)

 use_dqd = 1

 qd_params['emitter'] = emitter_name

 qd_params['use_dqd'] = use_dqd

 if sigma0 is not None:

 qd_params['s0'] = sigma0

 if sigma1 is not None:

 qd_params['s1'] = sigma1

 if sigma_g is not None:

A-87

 qd_params['sg'] = sigma_g

 if stepsize is not None:

 qd_params['stepsize'] = stepsize

 return emitter, static_settings, qd_params

def get_num_epochs_and_evaluations(num_epochs, num_evaluations,

 population_size, use_dqd=0):

 if num_epochs is not None:

 num_evaluations = (num_epochs * population_size

 * (2 if use_dqd >= 1 else 1))

 return num_epochs, num_evaluations

 elif num_evaluations is not None:

 num_epochs = ((num_evaluations // population_size)

 // (2 if use_dqd >= 1 else 1) + 1)

 return num_epochs, num_evaluations

 else:

 raise ValueError("One of the 2 following variables should "

 +"be defined: num_epochs or num_evaluations")

Code Snippet A.23: Module for instantiating QD and DQD emitters (run_qd_utils.py)

A.8.2 Main QD and DQD Module for executing QD and DQD Algorithms

"""

Quality-Diversity Evolution Strategy training.

"""

TO USE MULTIPLE CPUs

import os

os.environ['XLA_FLAGS'] = '--xla_force_host_platform_device_count=16'

import functools

import time

from typing import Any, Callable, Dict, Optional

import jax

from jax import lax

import jax.numpy as jnp

from absl import logging

from qdax.qd_utils import grid_archive

from qdax.stats.metrics import Metrics

from qdax.stats.saving_loading_utils import make_results_folder

from qdax.stats.timings import Timings

from qdax.stats.training_state_simple import SimpleTrainingState

from qdax.tasks import BraxTask

from qdax.training.configuration import Configuration

A-88

print('Jax devices: ',jax.devices())

Array = Any

def _update_metrics(log_frequency: int,

 metrics: Metrics,

 epoch: int,

 repertoire: grid_archive.Repertoire):

 index = jnp.ceil(epoch / log_frequency).astype(int)

 scores = metrics.scores.at[index, 0].set(epoch)

 scores = scores.at[index, 1].set(repertoire.num_indivs)

 scores = scores.at[index, 2].set(jnp.nanmax(repertoire.fitness))

 scores = scores.at[index, 3].set(jnp.nansum(repertoire.fitness))

 archives = metrics.archives.at[index, :, :].set(repertoire.fitness)

 return Metrics(scores=scores, archives=archives)

def _eval_and_add_simple(local_devices_to_use,

 objective_fn,

 bds_fn,

 population_size,

 add_to_archive_fn,

 training_state: SimpleTrainingState,

 params,

 key):

 # params = training_state.state

 pparams_device = jnp.reshape(params, [local_devices_to_use, -1] + list(params.shape[1:]))

 # run evaluations - evaluate params

 eval_start_t = time.time()

 prun_obj_eval = jax.pmap(objective_fn, in_axes=(0,))

 prun_bd_eval = jax.pmap(bds_fn, in_axes=(0,))

 objs, _ = prun_obj_eval(pparams_device)

 bds, _ = prun_bd_eval(pparams_device)

 logging.debug("Time Evaluation: %s ", time.time() - eval_start_t)

 dead = jnp.zeros(population_size)

 objs_flat = jnp.reshape(objs, (population_size, -1)).ravel()

 bds_flat = jnp.reshape(bds,(-1,bds.shape[-1]))

 # Update archive

 update_archive_start_t = time.time()

 repertoire = add_to_archive_fn(repertoire = training_state.repertoire,

 pop_p = params,

 bds = bds_flat,

A-89

 eval_scores = objs_flat,

 dead = dead)

 logging.debug("Time took for Adding: %s ", time.time() - update_archive_start_t)

 return repertoire, params

def _eval_and_add(local_devices_to_use,

 objective_fn,

 bds_fn,

 population_size,

 emitter_static_settings,

 emitter,

 training_state: SimpleTrainingState,

 params,

 key):

 key, key_tell= jax.random.split(key, 2)

 # params = training_state.state

 pparams_device = jnp.reshape(params, [local_devices_to_use, -1] + list(params.shape[1:]))

 # run evaluations - evaluate params

 eval_start_t = time.time()

 prun_obj_eval = jax.pmap(objective_fn, in_axes=(0,))

 prun_bd_eval = jax.pmap(bds_fn, in_axes=(0,))

 objs, _ = prun_obj_eval(pparams_device)

 bds, _ = prun_bd_eval(pparams_device)

 logging.debug("Time Evaluation: %s ", time.time() - eval_start_t)

 dead = jnp.zeros(population_size)

 objs_flat = jnp.reshape(objs, (population_size, -1)).ravel()

 bds_flat = jnp.reshape(bds,(-1,bds.shape[-1]))

 # Update archive

 update_archive_start_t = time.time()

 emitter, repertoire = emitter.tell(emitter_static_settings, emitter, params, objs_flat,

bds_flat, dead,

 training_state.repertoire, key_tell)

 logging.debug("Time took for Adding: %s ", time.time() - update_archive_start_t)

 return emitter, repertoire, params

def _eval_and_add_grad(local_devices_to_use,

 objective_fn,

 bds_fn,

 population_size,

 emitter_static_settings,

 emitter,

A-90

 training_state: SimpleTrainingState,

 params,

 key):

 key, key_tell= jax.random.split(key, 2)

 # params = training_state.state

 pparams_device = jnp.reshape(params, [local_devices_to_use, -1] + list(params.shape[1:]))

 # run evaluations - evaluate params

 eval_start_t = time.time()

 prun_obj_eval = jax.pmap(objective_fn, in_axes=(0,))

 prun_bd_eval = jax.pmap(bds_fn, in_axes=(0,))

 objs, jac_objs = prun_obj_eval(pparams_device)

 bds, jac_bds = prun_bd_eval(pparams_device)

 # Prepare combined objective and behavioral jacobian matrix

 jac_objs = jnp.reshape(jac_objs,[-1] + list(jac_objs.shape[2:]))

 jac_bds = jnp.reshape(jac_bds,[-1] + list(jac_bds.shape[2:]))

 jac_objs = jnp.expand_dims(jac_objs, axis=1)

 jacobian = jnp.concatenate((jac_objs, jac_bds), axis=1)

 logging.debug("Time Evaluation: %s ", time.time() - eval_start_t)

 dead = jnp.zeros(population_size)

 objs_flat = jnp.reshape(objs, (population_size, -1)).ravel()

 bds_flat = jnp.reshape(bds,(-1,bds.shape[-1]))

 # Update archive

 update_archive_start_t = time.time()

 emitter, repertoire = emitter.tell_jacobian(emitter_static_settings, emitter, params,

objs_flat, bds_flat, dead,

 training_state.repertoire, key_tell, jacobian)

 logging.debug("Time took for Adding: %s ", time.time() - update_archive_start_t)

 return emitter, repertoire, params

def _init_phase(population_size,

 sols_dim,

 eval_and_add_fn,

 update_metrics_fn,

 training_state: SimpleTrainingState):

 logging.info(" Initialisation with random parameters")

 init_start_t = time.time()

 key, key_params, key_eval = jax.random.split(training_state.key, 3)

 params = jax.random.normal(key_params,shape=(population_size,sols_dim))

 logging.debug("Time Random Init: %s ", time.time() - init_start_t)

 repertoire, state = eval_and_add_fn(training_state, params, key_eval)

A-91

 metrics = update_metrics_fn(training_state.metrics, 0, repertoire)

 return SimpleTrainingState(key=key, repertoire=repertoire, metrics=metrics, state=state)

def _es_one_epoch_grad(eval_and_add_fn,

 eval_and_add_grad_fn,

 update_metrics_fn,

 emitter_static_settings,

 emitter,

 epoch: int,

 training_state: SimpleTrainingState

):

 epoch_start_t = time.time()

 # generate keys for emmitter and evaluations

 key_1, key_2, key_emitter_1, key_es_eval_1, key_emitter_2, key_es_eval_2 =

jax.random.split(training_state.key, 6)

 # EMITTER: SELECTION AND MUTATION - GRADIENT ESTIMATION #

 sel_mut_start_t = time.time()

 emitter, params = emitter.ask_grad_estimate(emitter_static_settings, emitter,

training_state.repertoire, key_emitter_1)

 logging.debug("Time Selection and Mutation: %s ", time.time() - sel_mut_start_t)

 # EVALUATION #

 emitter, repertoire, state = eval_and_add_grad_fn(emitter, training_state, params,

key_es_eval_1)

 training_state = training_state.replace(key = key_1, repertoire = repertoire, state = state)

 # EMITTER: SELECTION AND MUTATION #

 sel_mut_start_t = time.time()

 emitter, params = emitter.ask(emitter_static_settings, emitter, training_state.repertoire,

key_emitter_2)

 logging.debug("Time Selection and Mutation: %s ", time.time() - sel_mut_start_t)

 # EVALUATION #

 emitter, repertoire, state = eval_and_add_fn(emitter, training_state, params, key_es_eval_2)

 logging.debug("ES Epoch Time: %s",time.time()-epoch_start_t)

 # UPDATE METRICS #

 #metrics = jax.lax.cond((epoch+1)%log_frequency == 0 , update_metrics, lambda x:x[0],

(training_state.metrics, epoch//log_frequency+1, repertoire))

 logging.debug("ES Start metrics:")

 metrics = update_metrics_fn(training_state.metrics, epoch, repertoire)

 logging.debug("ES Metrics Time: %s",time.time()-epoch_start_t)

A-92

 return SimpleTrainingState(key = key_2, repertoire = repertoire, metrics = metrics, state =

state), emitter

def _es_one_epoch(eval_and_add_fn,

 update_metrics_fn,

 emitter_static_settings,

 emitter,

 epoch: int,

 training_state: SimpleTrainingState

):

 epoch_start_t = time.time()

 # generate keys for emmitter and evaluations

 key, key_emitter, key_es_eval = jax.random.split(training_state.key, 3)

 # EMITTER: SELECTION AND MUTATION #

 sel_mut_start_t = time.time()

 emitter, params = emitter.ask(emitter_static_settings, emitter, training_state.repertoire,

key_emitter)

 logging.debug("Time Selection and Mutation: %s ", time.time() - sel_mut_start_t)

 # EVALUATION #

 emitter, repertoire, state = eval_and_add_fn(emitter, training_state, params, key_es_eval)

 logging.debug("ES Epoch Time: %s",time.time()-epoch_start_t)

 # UPDATE METRICS #

 #metrics = jax.lax.cond((epoch+1)%log_frequency == 0 , update_metrics, lambda x:x[0],

(training_state.metrics, epoch//log_frequency+1, repertoire))

 logging.debug("ES Start metrics:")

 metrics = update_metrics_fn(training_state.metrics, epoch, repertoire)

 logging.debug("ES Metrics Time: %s",time.time()-epoch_start_t)

 return SimpleTrainingState(key = key, repertoire = repertoire, metrics = metrics, state =

state), emitter

def train(

 configuration: Configuration,

 emitter,

 emitter_static_settings,

 objective_fn,

 bds_fn,

 experiment_name: str,

 result_path: str,

 key = None,

 progress_fn: Optional[Callable[[int, Dict[str, Any]], None]] = None,

 save_results=True

A-93

):

 # Extract QD Parameters

 qd_params = configuration.qd_params

 use_dqd = int(str(qd_params['use_dqd']))

 sols_dim = int(qd_params["sols_dim"])

 # Extract Execution Condifurations

 num_epochs = configuration.num_epochs

 episode_length = configuration.episode_length

 action_repeat = configuration.action_repeat

 max_devices_per_host = configuration.max_devices_per_host

 population_size = configuration.population_size

 seed = configuration.seed

 log_frequency = configuration.log_frequency

 timings = Timings(log_frequency = log_frequency, num_epochs = num_epochs)

 start_t = time.time()

 framework_t = time.time()

 # INIT FRAMEWORK #

 # Initialization of env parameters and devices #

 num_envs = population_size

 process_count = jax.process_count()

 process_id = jax.process_index()

 local_device_count = jax.local_device_count()

 local_devices_to_use = local_device_count

 if max_devices_per_host:

 local_devices_to_use = min(local_devices_to_use, max_devices_per_host)

 logging.info(

 'Device count: %d, process count: %d (id %d), local device count: %d, '

 'devices to be used count: %d',

 jax.device_count(), process_count, process_id, local_device_count,

 local_devices_to_use)

 logging.info("Local devices to use: %d ", local_devices_to_use)

 logging.info("Batch size on 1 device for env: %d", num_envs // local_devices_to_use //

process_count)

 # Initialize keys for random processes - need to handle for jax.

 if key is None:

 key = jax.random.PRNGKey(seed)

 key, key_params, key_env = jax.random.split(key, 3) #key for main training state, policy

model init and train environment

 timings.init_framework = time.time() - framework_t

 # Core training environment

 env_t = time.time() # NOTE: this timing doesnt work anymore at the moment - environment is

initialized outside the train_fn

A-94

 # Calculate initial/first states, one per local acceleration device

 key_envs = jax.random.split(key_env, local_devices_to_use)

 # The inital states are just one dimensional ndarrays

 first_state = jax.vmap(lambda x:

jax.random.normal(x,shape=(population_size,sols_dim)),0,0)(key_envs)

 logging.info("Initialize env time: %s ", time.time() - env_t)

 timings.init_env = time.time() - env_t

 # Initialize model/policy #

 policy_t = time.time()

 # Initialize archive

 min_bd = configuration.min_bd

 max_bd = configuration.max_bd

 grid_shape = configuration.grid_shape

 repertoire = grid_archive.Repertoire.create(jax.random.normal(key_params,shape=(sols_dim,)),

min=min_bd, max=max_bd, grid_shape=grid_shape)

 # ============= METRICS UPDATE FN ============ #

 update_metrics_fn = functools.partial(

 _update_metrics,

 log_frequency,

)

 # ============ ENVIRONMENT EVAL FUNCTIONS AND ARCHIVE ADDITION ============#

 eval_and_add_simple_fn = jax.jit(functools.partial(

 _eval_and_add_simple,

 local_devices_to_use,

 objective_fn,

 bds_fn,

 population_size,

 jax.jit(repertoire.add_to_archive),

))

 # ============ ENVIRONMENT EVAL FUNCTIONS AND ARCHIVE ADDITION ============#

 # Based on the parameter use_dqd choose whether to use gradients to extend solutions

 # Simple evaluation and addition of solutions to the archive

 eval_and_add_fn = jax.jit(functools.partial(

 _eval_and_add,

 local_devices_to_use,

 objective_fn,

 bds_fn,

 population_size,

 emitter_static_settings

))

A-95

 if use_dqd > 0:

 # Evaluation and addition of solutions to the archive using gradients

 eval_and_add_grad_fn = jax.jit(functools.partial(

 _eval_and_add_grad,

 local_devices_to_use,

 objective_fn,

 bds_fn,

 population_size,

 emitter_static_settings

))

 # ========== INIT REPERTOIRE BY RANDOM POLICIES =============== #

 init_phase_fn = functools.partial(

 _init_phase,

 population_size,

 sols_dim,

 eval_and_add_simple_fn,

 update_metrics_fn,

)

 # ========== ONE GENERATION/EPOCH OF ALGORITHM FN ===============#

 es_one_epoch_fn = None

 if use_dqd == 0:

 es_one_epoch_fn = jax.jit(functools.partial(

 _es_one_epoch,

 eval_and_add_fn,

 update_metrics_fn,

 emitter_static_settings,

))

 else:

 es_one_epoch_fn = jax.jit(functools.partial(

 _es_one_epoch_grad,

 eval_and_add_fn,

 eval_and_add_grad_fn,

 update_metrics_fn,

 emitter_static_settings,

))

 key_debug = jax.random.PRNGKey(seed + 777)

 timings.init_policies = time.time() - policy_t

 # ================= MAIN QD ALGORITHM LOOP =================== #

 logging.info("######### START QD ALGORITHM ############")

 qd_t = time.time()

 # INIT TRAINING STATE #

 training_state = SimpleTrainingState(

A-96

 key=key,

 repertoire = repertoire,

 metrics = Metrics.create(log_frequency =

 log_frequency, num_epochs = num_epochs,

 grid_shape = repertoire.grid_shape),

 state = first_state

)

 # INIT REPERTOIRE #

 training_state = init_phase_fn(training_state)

 timings.init_QD = time.time() - qd_t

 logging.info('Starting Main QD Loop')

 for i in range (1, num_epochs+1):

 epoch_t = time.time()

 # print('EPOCH {}'.format(i))

 training_state, emitter = es_one_epoch_fn(emitter, i, training_state)

 # log timings

 epoch_duration = time.time() - epoch_t

 logging.debug("epoch loop Time: %s ", epoch_duration)

 epoch_runtime = time.time() - start_t

 # Average epoch time in seconds

 timings.avg_epoch = ((i-1) * timings.avg_epoch + (epoch_duration)) / float(i)

 use_dqd_weight = 1

 if use_dqd > 0:

 use_dqd_weight = 2

 # Average number of evaluations per second

 # @TO-BE-INVESTIGATED in DQD, do we consider two evaluations per normal evaluation or

twice?

 # Because we have the variation of the normal algorithm and the variation with the

gradients

 # So far, we do consider it as two evaluations per single iteration (i.e. when batch size

is 1)

 timings.avg_eval_per_sec = ((i-1) * timings.avg_eval_per_sec + (use_dqd_weight *

population_size)/epoch_duration) / float(i)

 # Find the index of the record based on the current iteration/epoch and the

 # frequency of keeping records/logging

 index = jnp.ceil(i / log_frequency).astype(int)

 timings.epoch_runtime = timings.epoch_runtime.at[index, 0].set(epoch_runtime)

 #print("Index: ",index, epoch_runtime)

 timings.full_training = time.time() - start_t

 logging.info(timings)

 #training_state.repertoire.fitness.block_until_ready()

 logging.debug("Total main loop Time: %s ", time.time() - start_t)

 logging.info("Total main loop Time: %s ", time.time() - start_t)

 logging.info("Repertoire size: %d ", training_state.repertoire.num_indivs)

A-97

 logging.info("Scores [epoch, num_indivs, best fitness, QD score]:\n %s ",

training_state.metrics.scores)

 # ===== SAVE RESULTS AND CONFIGS ==== #

 if save_results:

 res_dir = make_results_folder(result_path, experiment_name, configuration)

 logging.info("Saving results in %s ", res_dir)

 configuration.save_to_json(folder=res_dir)

 timings.save(folder=res_dir)

 training_state.save(folder=res_dir)

 training_state.metrics.save(folder=res_dir)

 if(progress_fn):

 metrics = dict(

 **dict({

 'train/generation': num_epochs+1,

 'repertoire/repertoire_size': training_state.repertoire.num_indivs,

 }))

 progress_fn(metrics, training_state.repertoire)

 return training_state

Code Snippet A.24: Main Module for running the QD and DQD Algorithms on GPUs (qd_loop_simple.py)

A.8.3 Module for scheduling the execution of QD and DQD Algorithms

import argparse

import os

from absl import logging,flags

from run_qd_args_parsers import add_args_for_qd_run, check_validity_args

QD_EMITTERS_SUPPORTED = ["map_elites", "map_elites_line", "cma_me_imp",

 "cma_me_rd", "cma_me_opt"]

DQD_EMITTERS_SUPPORTED = ["og_map_elites_iso", "og_map_elites_line",

 "omg_mega_iso", "omg_mega_line","omg_mega",

 "cma_mega", "cma_mega_adam"]

ALL_EMITTERS_SUPPORTED = QD_EMITTERS_SUPPORTED + DQD_EMITTERS_SUPPORTED

ENV_SUPPORTED = ['rastrigin-distorted', 'rastrigin', 'arm']

from jax.config import config

config.update("jax_enable_x64", True)

import sys

A-98

jax.numpy.set_printoptions(threshold=sys.maxsize)

args = None

def process_args():

 parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)

 add_args_for_qd_run(parser, ALL_EMITTERS_SUPPORTED, env_supported=ENV_SUPPORTED)

 parsed_arguments = parser.parse_args()

 check_validity_args(parser, parsed_arguments)

 return parsed_arguments

Set the environmental variables for Hardware and

Jax before importing Jax Library

if __name__ == "__main__":

 try:

 args = process_args()

 # Change environmental variables based on

 # whether to use only cpu or not

 if not args.use_cpu != 0:

 os.environ["CUDA_VISIBLE_DEVICES"] = args.devices

 # Just uncomment the line below if you want to enforce it

 # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count)

 else:

 os.environ["JAX_PLATFORM_NAME"] = "cpu"

 # Just uncomment the line below if you want to enforce it

 # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count)

 except Exception as e:

 logging.fatal(e, exc_info=True)

Then import ll the rest necessary libraries

import jax

from jax.lib import xla_bridge

from training.configuration import Configuration

from training import qd_loop_simple as qd_simple

from run_qd_utils import get_num_epochs_and_evaluations, get_emitter, get_env_info

import datetime

import random

import sys

def main(parsed_arguments):

 if parsed_arguments.log_folder:

 if not os.path.exists(parsed_arguments.log_folder):

 raise FileNotFoundError("Folder {} not found.".format(parsed_arguments.log_folder))

 else:

 datetime_now = datetime.datetime.now().strftime("%Y-%m-%d_T_%H-%M-%S")

A-99

 logging.get_absl_handler().use_absl_log_file('log_{0}.log'.format(datetime_now),

 parsed_arguments.log_folder)

 flags.FLAGS.mark_as_parsed()

 results_saving_folder = parsed_arguments.directory

 # logging.get_absl_handler().setFormatter(None)

 if not os.path.exists(results_saving_folder):

 raise FileNotFoundError(f"Folder {results_saving_folder} not found.")

 levels = {'fatal': logging.FATAL,

 'error': logging.ERROR,

 'warning': logging.WARNING,

 'info': logging.INFO,

 'debug': logging.DEBUG}

 logging.set_verbosity(levels[parsed_arguments.log_level])

 population_size = parsed_arguments.batch_size

 local_device_count = jax.local_device_count()

 local_devices_to_use = local_device_count

 process_count = jax.process_count()

 logging.info(f"Hardware Details:\n"

 f"\t Platform: {xla_bridge.get_backend().platform}\n"

 f"\t Local_device_count: {local_device_count}\n"

 f"\t process_count: {process_count}\n")

 seed = (random.randrange(sys.maxsize) if parsed_arguments.seed

 is None else parsed_arguments.seed

)

 key = jax.random.PRNGKey(seed)

 key, key_emitter_init = jax.random.split(key, 2)

 qd_params = dict()

 emitter, static_settings, qd_params = get_emitter(parsed_arguments, qd_params,

key_emitter_init)

 num_epochs, num_evaluations =

get_num_epochs_and_evaluations(num_epochs=parsed_arguments.num_epochs,

 num_evaluations=parsed_argument

s.num_evaluations,

 population_size=parsed_argument

s.batch_size,

 use_dqd=qd_params['use_dqd'])

 qd_params['device'] = xla_bridge.get_backend().platform # 'cpu' if args.use_cpu == 1 else

'gpu'

 qd_params['sols_dim'] = parsed_arguments.sols_dim

A-100

 logging.info(f"Options:\n"

 f"\t Log_level:{parsed_arguments.log_level}\n"

 f"\t Seed: {seed}\n"

 f"\t Batch_size:{parsed_arguments.batch_size}\n"

 f"\t Num_epochs:{num_epochs}\n"

 f"\t Num_evaluations:{num_evaluations}\n"

 f"\t Episode_length:{parsed_arguments.episode_length}\n"

 f"\t Log_frequency:{parsed_arguments.log_frequency}\n")

 archive_bounds, _, calc_objs, calc_bds = get_env_info(parsed_arguments)

 configuration = Configuration(args.env_name,

 num_epochs,

 parsed_arguments.episode_length,

 action_repeat=1,

 population_size=parsed_arguments.batch_size,

 seed=seed,

 log_frequency=parsed_arguments.log_frequency,

 qd_params=qd_params,

 min_bd=float(archive_bounds[0,0]), #

float(args.min_max_bd[0]),

 max_bd=float(archive_bounds[0,1]), #

float(args.min_max_bd[1]),

 grid_shape=tuple(parsed_arguments.grid_shape),

 max_devices_per_host=None,

)

 qd_simple.train(

 emitter=emitter,

 emitter_static_settings = static_settings,

 objective_fn=calc_objs,

 bds_fn=calc_bds,

 configuration=configuration,

 progress_fn=None,

 experiment_name=parsed_arguments.exp_name,

 key=key,

 result_path=results_saving_folder,

 save_results=True

)

if __name__ == "__main__":

 try:

 main(args)

 except Exception as e:

 logging.fatal(e, exc_info=True)

A-101

Code Snippet A.25: Module for scheduling the execution of QD and DQD Algorithms (run_qd_loop_simple.py)

A.8.4 Module for providing command line input parsers for the different

functionalities

import os

import argparse

def add_args_for_qd_run(parser: argparse.ArgumentParser, emitters_supported,

env_supported=['rastrigin']):

 parser.add_argument('--seed', default=None, type=int)

 # Options for algorithm execution space

 parser.add_argument('--episode_length', default=100, type=int)

 parser.add_argument('--num_evaluations', default=None, type=int)

 parser.add_argument('--batch_size', default=2048, type=int)

 parser.add_argument('--num_epochs', default=None, type=int)

 parser.add_argument('--sols_dim', default=10, type=int)

 # Emitter Options

 parser.add_argument('--emitter',

 default=emitters_supported[0],

 choices=emitters_supported)

 # Covariance Matrix Adaptation Options - CMA (Used only if the emitter is of CMA type)

 parser.add_argument('--selection_rule', default=None, type=int)

 parser.add_argument('--restart_rule', default=None, type=int)

 parser.add_argument('--weight_rule', default=None, type=int)

 parser.add_argument('--stepsize', default=None, type=float)

 parser.add_argument('--norm_grad', default=None, type=int)

 # Algorithm Grid shape of archive

 parser.add_argument('--grid_shape', nargs='+', type=int, required=True)

 # Standard deviations for algorithm

 parser.add_argument('--sigma0', default=None, type=float)

 parser.add_argument('--sigma1', default=None, type=float)

 parser.add_argument('--sigma_g', default=None, type=float,

 help='Standard Deviation for the noise of gradients.')

 # Name of the environment to use

 parser.add_argument('--env_name', type=str, required=True,

 help='Name of the environment to use', choices=env_supported)

 # Logging Options

 parser.add_argument('--log_level',

 default='info',

 choices=['fatal', 'error', 'warning', 'info', 'debug'])

 parser.add_argument('--log_folder', default=None, type=str)

 parser.add_argument('--log_frequency', default=1, type=int)

 # Other details

 parser.add_argument('--exp_name', type=str, default="qd")

 parser.add_argument('-d', '--directory', type=str, default=os.curdir)

 # Hardware Options

A-102

 parser.add_argument('--use_cpu', default=0, type=int,help='Use CPU only?')

 parser.add_argument('--devices', default="0", type=str,

 help='Which GPU(s) (identified by their Device ids) to use?'+

 'E.g. "0,2" use device 0 and 2')

 parser.add_argument('--device_count', default=1, type=str,

 help='Number of cores available to use/devices')

 return parser

def add_args_for_finding_best_params(parser: argparse.ArgumentParser):

 parser.add_argument('-n', '--number_replications', type=int, required=True)

 parser.add_argument('--sols_dim_list',type=int ,nargs='+',default=None) # [16, 64, 256,

1024]

 # Options for algorithm execution space

 parser.add_argument('--episode_len_list',type=int ,nargs='+',default=None)

 parser.add_argument('--num_evaluations', default=None, type=int)

 parser.add_argument('--batch_size', default=2048, type=int)

 parser.add_argument('--num_epochs', default=None, type=int)

 # Covariance Matrix Adaptation Options - CMA (Used only if the emitter is of CMA type)

 parser.add_argument('--stepsize_list', default=None, type=float)

 parser.add_argument('--norm_grad', default=None, type=int)

 # Algorithm Grid shape of archive

 parser.add_argument('--grid_shape', nargs='+', type=int, required=True)

 # Standard deviations for algorithm

 parser.add_argument('--sigma0_list', nargs='+', default=None, type=float)

 # Standard deviations for algorithm

 parser.add_argument('--sigma1_list', nargs='+', default=None, type=float)

 # parser.add_argument('--sigma1', default=0, type=int)

 parser.add_argument('--sigma_g_list',nargs='+', default=None, type=float,

 help='Standard Deviation for the noise of gradients.')

 # Name of the environment to use

 parser.add_argument('--env_name', type=str, required=True,

 help='Name of the environment to use')

 # help='Name of the environment to use', choices=['rastrigin'])

 # Logging Options

 parser.add_argument('--log_level',

 default='info',

 choices=['fatal', 'error', 'warning', 'info', 'debug'])

 parser.add_argument('--log_folder', default=None, type=str)

 parser.add_argument('--log_frequency', default=1, type=int)

 # Other details

 parser.add_argument('--exp_name', type=str, default="qd")

 parser.add_argument('-d', '--directory', type=str, default=os.curdir)

 parser.add_argument('--results_f', type=str, default='scores')

 # Hardware Options

 parser.add_argument('--use_cpu', default=0, type=int,help='Use CPU only?')

A-103

 parser.add_argument('--devices', default="0", type=str,

 help='Which GPU(s) (identified by their Device ids) to use?'+

 'E.g. "0,2" use device 0 and 2')

 parser.add_argument('--device_count', default=1, type=str,

 help='Number of cores available to use/devices')

 return parser.parse_args()

def add_args_for_batch_sizes_comp(parser: argparse.ArgumentParser, emitters_supported):

 parser.add_argument('-n', '--number_replications', type=int, required=True)

 parser.add_argument('--sols_dim_list',type=int ,nargs='+',default=None) # [16, 64, 256,

1024]

 parser.add_argument('--batch_size_list',type=int ,nargs='+',default=None) # [16, 64, 256,

1024]

 parser.add_argument('--emitter',

 default=emitters_supported[0],

 choices=emitters_supported)

 # Options for algorithm execution space

 parser.add_argument('--episode_len_list',type=int ,nargs='+',default=None)

 parser.add_argument('--num_evaluations', default=None, type=int)

 parser.add_argument('--num_epochs', default=None, type=int)

 # Covariance Matrix Adaptation Options - CMA (Used only if the emitter is of CMA type)

 parser.add_argument('--selection_rule', default=None, type=int)

 parser.add_argument('--restart_rule', default=None, type=int)

 parser.add_argument('--weight_rule', default=None, type=int)

 parser.add_argument('--stepsize', default=None, type=float)

 parser.add_argument('--norm_grad', default=None, type=int)

 # Algorithm Grid shape of archive

 parser.add_argument('--grid_shape', nargs='+', type=int, required=True)

 parser.add_argument('--sigma0', default=None, type=float)

 parser.add_argument('--sigma1', default=None, type=float)

 parser.add_argument('--sigma_g', default=None, type=float,

 help='Standard Deviation for the noise of gradients.')

 # Name of the environment to use

 parser.add_argument('--env_name', type=str, required=True,

 help='Name of the environment to use')

 # help='Name of the environment to use', choices=['rastrigin'])

 # Logging Options

 parser.add_argument('--log_level',

 default='info',

 choices=['fatal', 'error', 'warning', 'info', 'debug'])

 parser.add_argument('--log_folder', default=None, type=str)

 parser.add_argument('--log_frequency', default=1, type=int)

 # Other details

 parser.add_argument('--exp_name', type=str, default="qd")

A-104

 parser.add_argument('-d', '--directory', type=str, default=os.curdir)

 parser.add_argument('--results_f', type=str, default='scores')

 # Hardware Options

 parser.add_argument('--use_cpu', default=0, type=int,help='Use CPU only?')

 parser.add_argument('--devices', default="0", type=str,

 help='Which GPU(s) (identified by their Device ids) to use?'+

 'E.g. "0,2" use device 0 and 2')

 parser.add_argument('--device_count', default=1, type=str,

 help='Number of cores available to use/devices')

 return parser.parse_args()

def check_validity_args(parser: argparse.ArgumentParser,

 parsed_arguments):

 num_epochs = parsed_arguments.num_epochs

 num_evaluations = parsed_arguments.num_evaluations

 if num_epochs is None and num_evaluations is None:

 parser.error("One (and only one) of the following arguments should be set: --num-epochs or

--num-evaluations")

 elif num_epochs is not None and num_evaluations is not None:

 parser.error("One (and only one) of the following arguments should be set: --num-epochs or

--num-evaluations")

Code Snippet A.26: Module for provides command line input parsers for allowing the use of the library’s

functionalities via command line (run_qd_args_parsers.py)

A.8.5 Module for finding the best parameters for a QD/DQD Emitter for a specific

problem size

import argparse

import os

from absl import logging,flags

from run_qd_args_parsers import add_args_for_finding_best_params, check_validity_args

from scipy import stats

QD_EMITTERS_SUPPORTED = ["cma_me_imp", "cma_me_rd", "cma_me_opt"]

DQD_EMITTERS_SUPPORTED = ["cma_mega", "cma_mega_adam"]

ALL_EMITTERS_SUPPORTED = QD_EMITTERS_SUPPORTED + DQD_EMITTERS_SUPPORTED

from jax.config import config

config.update("jax_enable_x64", True)

import sys

jax.numpy.set_printoptions(threshold=sys.maxsize)

args = None

A-105

def process_args():

 parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)

 add_args_for_finding_best_params(parser)

 parsed_arguments = parser.parse_args()

 check_validity_args(parser, parsed_arguments)

 return parsed_arguments

Set the environmental variables for Hardware and

Jax before importing Jax Library

if __name__ == "__main__":

 try:

 args = process_args()

 # Change environmental variables based on

 # whether to use only cpu or not

 if not args.use_cpu != 0:

 os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"

 os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".5"

 os.environ["CUDA_VISIBLE_DEVICES"] = args.devices

 # Just uncomment the line below if you want to enforce it

 # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count)

 else:

 os.environ["JAX_PLATFORM_NAME"] = "cpu"

 # Just uncomment the line below if you want to enforce it

 # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count)

 except Exception as e:

 logging.fatal(e, exc_info=True)

Then import ll the rest necessary libraries

import jax

import jax.numpy as jnp

import numpy as np

from jax.lib import xla_bridge

from qdax.training.configuration import Configuration

from qdax.training import qd_loop_simple as qd_simple

from run_qd_utils import get_num_epochs_and_evaluations, get_emitter, get_env_info

import datetime

import random

import sys

import pandas as pd

import json

import csv

def get_score_entries(scores, with_mad=True):

A-106

 score_entries = list()

 for emitter, emitter_dict in scores.items():

 for sol_dim, sol_dim_dict in emitter_dict.items():

 scores = list()

 local_scores = list()

 local_params = list()

 local_indicators = list()

 for p, score_stats in sol_dim_dict.items():

 if with_mad:

 local_scores.append(float(score_stats['mean']))

 plus_minus_symbol ='\u00b1'

 local_indicators.append(str(score_stats['mean']) + " " + plus_minus_symbol

 + " " + str(score_stats['mad']))

 local_params.append(p)

 else:

 local_scores.append(float(score_stats['mean']))

 local_indicators = local_scores

 local_params.append(p)

 max_idx = np.argmax(np.array(local_scores))

 score_entry = [emitter, sol_dim, local_params[max_idx], local_indicators[max_idx]]

 score_entries.append(score_entry)

 return score_entries

def save_as_csv(score_entries, filename):

 with open(filename, "w", newline="") as f:

 writer = csv.writer(f)

 writer.writerows(score_entries)

 # pd.DataFrame(np.array(score_entries)).to_csv(filename)

def save_scores_json(scores_dict, filename):

 with open(filename, 'w') as fp:

 json.dump(scores_dict, fp, sort_keys=True, indent=4)

def run_qd(emitter_args, results_saving_folder):

 # Random seed

 seed = random.randrange(sys.maxsize)

 key = jax.random.PRNGKey(seed)

 key, key_emitter_init = jax.random.split(key, 2)

 qd_params = dict()

 # Define arguments of emitter and environemnt

 emitter, static_settings, qd_params = get_emitter(emitter_args, qd_params, key_emitter_init)

 num_epochs, num_evaluations =

get_num_epochs_and_evaluations(num_epochs=emitter_args.num_epochs,

A-107

 num_evaluations=emitter_args.num

_evaluations,

 population_size=emitter_args.bat

ch_size,

 use_dqd=qd_params['use_dqd'])

 logging.info(f"Emitter Details:\n"

 f"\t Emitter: {emitter_args.emitter}\n"

 f"\t sigma0: {emitter_args.sigma0}\n"

 f"\t sigma1: {emitter_args.sigma1}\n"

 f"\t sigma_g: {emitter_args.sigma_g}\n"

 f"\t stepsize: {emitter_args.stepsize}\n")

 qd_params['device'] = xla_bridge.get_backend().platform # 'cpu' if args.use_cpu == 1 else

'gpu'

 qd_params['sols_dim'] = emitter_args.sols_dim

 archive_bounds, _, calc_objs, calc_bds = get_env_info(emitter_args)

 configuration = Configuration(args.env_name,

 num_epochs,

 0,

 action_repeat=1,

 population_size=emitter_args.batch_size,

 seed=seed,

 log_frequency=emitter_args.log_frequency,

 qd_params=qd_params,

 min_bd=float(archive_bounds[0,0]), #

float(args.min_max_bd[0]),

 max_bd=float(archive_bounds[0,1]), #

float(args.min_max_bd[1]),

 grid_shape=tuple(emitter_args.grid_shape),

 max_devices_per_host=None,

)

 training_state = qd_simple.train(

 emitter=emitter,

 emitter_static_settings = static_settings,

 objective_fn=calc_objs,

 bds_fn=calc_bds,

 configuration=configuration,

 progress_fn=None,

 experiment_name=emitter_args.exp_name,

 key=key,

 result_path=results_saving_folder,

 save_results=True

)

 return training_state

A-108

def save_scores(results_f, scores_dict):

 score_entries = get_score_entries(scores_dict)

 current_time = datetime.datetime.now().strftime("%Y-%m-%d_T_%H-%M-%S")

 csv_filename = '{0}_{1}_best_scores.csv'.format(results_f, str(current_time))

 save_as_csv(score_entries, csv_filename)

 json_filename = '{0}_{1}_scores.json'.format(results_f, str(current_time))

 save_scores_json(scores_dict, json_filename)

def main(parsed_arguments):

 if parsed_arguments.log_folder:

 if not os.path.exists(parsed_arguments.log_folder):

 raise FileNotFoundError("Folder {} not found.".format(parsed_arguments.log_folder))

 else:

 datetime_now = datetime.datetime.now().strftime("%Y-%m-%d_T_%H-%M-%S")

 logging.get_absl_handler().use_absl_log_file('log_{0}.log'.format(datetime_now),

 parsed_arguments.log_folder)

 flags.FLAGS.mark_as_parsed()

 results_saving_folder = parsed_arguments.directory

 # logging.get_absl_handler().setFormatter(None)

 if not os.path.exists(results_saving_folder):

 raise FileNotFoundError(f"Folder {results_saving_folder} not found.")

 levels = {'fatal': logging.FATAL,

 'error': logging.ERROR,

 'warning': logging.WARNING,

 'info': logging.INFO,

 'debug': logging.DEBUG}

 logging.set_verbosity(levels[parsed_arguments.log_level])

 population_size = parsed_arguments.batch_size

 local_device_count = jax.local_device_count()

 local_devices_to_use = local_device_count

 process_count = jax.process_count()

 logging.info(f"Hardware Details:\n"

 f"\t Platform: {xla_bridge.get_backend().platform}\n"

 f"\t Local_device_count: {local_device_count}\n"

 f"\t process_count: {process_count}\n")

 sols_dim_list = parsed_arguments.sols_dim_list

 sols_dim_list = sols_dim_list if sols_dim_list else [1024]

 sigma0_list = parsed_arguments.sigma0_list

 sigma0_list = sigma0_list if sigma0_list else [0.005, 0.01, 0.02, 0.03, 0.04, 0.05,

 0.06, 0.07, 0.08, 0.09, 0.1, 0.15,

 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

 0.9, 1, 2,3,4, 5, 7, 10, 15, 20]

A-109

 sigma1_list = parsed_arguments.sigma1_list

 sigma1_list = sigma1_list if sigma1_list else [0.01, 0.05, 0.1, 0.2, 0.5, 1]

 sigma_g_list = parsed_arguments.sigma_g_list

 sigma_g_list = sigma_g_list if sigma_g_list else [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 5, 10]

 stepsize_list = parsed_arguments.stepsize_list

 stepsize_list = stepsize_list if stepsize_list else [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 5,

10]

 number_replications = parsed_arguments.number_replications

 scores_dict = dict()

 # for emitter_name in ["cma_mega", "cma_mega_adam"]:

 # scores_dict[emitter_name] = dict()

 # emitter_scores = scores_dict[emitter_name]

 # for sols_dim in sols_dim_list:

 # emitter_scores[sols_dim] = dict()

 # sol_dim_scores = emitter_scores[sols_dim]

 # for sigma_g in sigma_g_list:

 # for stepsize in stepsize_list:

 # args_dict = vars(parsed_arguments)

 # emitter_args = argparse.Namespace(**args_dict)

 # emitter_args.emitter = emitter_name

 # emitter_args.sigma0 = None

 # emitter_args.sigma1 = None

 # emitter_args.sigma_g = sigma_g

 # emitter_args.selection_rule = None

 # emitter_args.restart_rule = None

 # emitter_args.weight_rule = None

 # emitter_args.sols_dim = sols_dim

 # emitter_args.stepsize = stepsize

 # scores = list()

 # for _ in range(number_replications):

 # training_state = run_qd(emitter_args, results_saving_folder)

 # epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:]

 # scores.append(qd_score)

 # scores = np.array(scores)

 # score = np.median(scores)

 # # Median Absolute Deviation

 # mad = stats.median_absolute_deviation(scores, axis=None)

 # key = 'sigma_g={0}-stepsize={1}'.format(sigma_g,stepsize)

 # sol_dim_scores[key] = dict()

 # sol_dim_scores[key]['mean'] = str(score)

 # sol_dim_scores[key]['mad'] = str(mad)

 # results_f = parsed_arguments.results_f

A-110

 # save_scores(results_f, scores_dict)

 for emitter_name in ["cma_me_imp", "cma_me_rd", "cma_me_opt"]: # "map_elites",

 scores_dict[emitter_name] = dict()

 emitter_scores = scores_dict[emitter_name]

 for sols_dim in sols_dim_list:

 emitter_scores[sols_dim] = dict()

 sol_dim_scores = emitter_scores[sols_dim]

 for sigma0 in sigma0_list:

 args_dict = vars(args)

 emitter_args = argparse.Namespace(**args_dict)

 emitter_args.emitter = emitter_name

 emitter_args.sigma0 = sigma0

 emitter_args.sigma1 = None

 emitter_args.sigma_g = None

 emitter_args.selection_rule = None

 emitter_args.restart_rule = None

 emitter_args.weight_rule = None

 emitter_args.sols_dim = sols_dim

 emitter_args.stepsize = None

 scores = list()

 for _ in range(number_replications):

 training_state = run_qd(emitter_args, results_saving_folder)

 epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:]

 scores.append(qd_score)

 scores = np.array(scores)

 score = np.median(scores)

 # Median Absolute Deviation

 mad = stats.median_absolute_deviation(scores, axis=None)

 key = 'sigma0={0}'.format(sigma0)

 sol_dim_scores[key] = dict()

 sol_dim_scores[key]['mean'] = str(score)

 sol_dim_scores[key]['mad'] = str(mad)

 results_f = parsed_arguments.results_f

 save_scores(results_f, scores_dict)

 return

 for emitter_name in ["map_elites_iso"]:

 scores_dict[emitter_name] = dict()

 emitter_scores = scores_dict[emitter_name]

 for sols_dim in sols_dim_list:

 emitter_scores[sols_dim] = dict()

 sol_dim_scores = emitter_scores[sols_dim]

A-111

 for sigma0 in sigma0_list:

 for sigma1 in sigma1_list:

 args_dict = vars(args)

 emitter_args = argparse.Namespace(**args_dict)

 emitter_args.emitter = emitter_name

 emitter_args.sigma0 = sigma0

 emitter_args.sigma1 = sigma1

 emitter_args.sigma_g = None

 emitter_args.selection_rule = None

 emitter_args.restart_rule = None

 emitter_args.weight_rule = None

 emitter_args.sols_dim = sols_dim

 emitter_args.stepsize = None

 scores = list()

 for _ in range(number_replications):

 training_state = run_qd(emitter_args, results_saving_folder)

 epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:]

 scores.append(qd_score)

 scores = np.array(scores)

 score = np.median(scores)

 # Median Absolute Deviation

 mad = stats.median_absolute_deviation(scores, axis=None)

 key = 'sigma0={0},sigma1={1}'.format(sigma0, sigma1)

 sol_dim_scores[key] = dict()

 sol_dim_scores[key]['mean'] = str(score)

 sol_dim_scores[key]['mad'] = str(mad)

 results_f = parsed_arguments.results_f

 save_scores(results_f, scores_dict)

 for emitter_name in ["og_map_elites_line", "omg_mega_line"]:

 scores_dict[emitter_name] = dict()

 emitter_scores = scores_dict[emitter_name]

 for sols_dim in sols_dim_list:

 emitter_scores[sols_dim] = dict()

 sol_dim_scores = emitter_scores[sols_dim]

 for sigma0 in sigma0_list:

 for sigma1 in sigma1_list:

 for sigma_g in sigma_g_list:

 args_dict = vars(args)

 emitter_args = argparse.Namespace(**args_dict)

 emitter_args.emitter = emitter_name

 emitter_args.sigma0 = sigma0

 emitter_args.sigma1 = sigma1

 emitter_args.sigma_g = sigma_g

A-112

 emitter_args.selection_rule = None

 emitter_args.restart_rule = None

 emitter_args.weight_rule = None

 emitter_args.sols_dim = sols_dim

 emitter_args.stepsize = None

 scores = list()

 for _ in range(number_replications):

 training_state = run_qd(emitter_args, results_saving_folder)

 epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:]

 scores.append(qd_score)

 scores = np.array(scores)

 score = np.median(scores)

 # Median Absolute Deviation

 mad = stats.median_absolute_deviation(scores, axis=None)

 key = 'sigma0={0},sigma1={1},sigma_g={2}'.format(sigma0, sigma1, sigma_g)

 sol_dim_scores[key] = dict()

 sol_dim_scores[key]['mean'] = str(score)

 sol_dim_scores[key]['mad'] = str(mad)

 results_f = parsed_arguments.results_f

 save_scores(results_f, scores_dict)

 # for emitter_name in ["og_map_elites", "omg_mega"]:

 # scores_dict[emitter_name] = dict()

 # emitter_scores = scores_dict[emitter_name]

 # for sols_dim in sols_dim_list:

 # emitter_scores[sols_dim] = dict()

 # sol_dim_scores = emitter_scores[sols_dim]

 # for sigma0 in sigma0_list:

 # for sigma_g in sigma_g_list:

 # args_dict = vars(args)

 # emitter_args = argparse.Namespace(**args_dict)

 # emitter_args.emitter = emitter_name

 # emitter_args.sigma0 = sigma0

 # emitter_args.sigma1 = None

 # emitter_args.sigma_g = sigma_g

 # emitter_args.selection_rule = None

 # emitter_args.restart_rule = None

 # emitter_args.weight_rule = None

 # emitter_args.sols_dim = sols_dim

 # emitter_args.stepsize = None

 # scores = list()

 # for _ in range(number_replications):

 # training_state = run_qd(emitter_args, results_saving_folder)

A-113

 # epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:]

 # scores.append(qd_score)

 # scores = np.array(scores)

 # score = np.median(scores)

 # # Median Absolute Deviation

 # mad = stats.median_absolute_deviation(scores, axis=None)

 # key = 'sigma0={0},sigma_g={1}'.format(sigma0, sigma_g)

 # sol_dim_scores[key] = dict()

 # sol_dim_scores[key]['mean'] = str(score)

 # sol_dim_scores[key]['mad'] = str(mad)

 # results_f = parsed_arguments.results_f

 # save_scores(results_f, scores_dict)

if __name__ == "__main__":

 try:

 main(args)

 except Exception as e:

 logging.fatal(e, exc_info=True)

Code Snippet A.27: Module used for identifying the parameters of QD and DQD algorithms that give the best QD

Scores (find_best_params.py)

A.8.6 Module to execute a QD or DQD Emitter for different combinations of batch

sizes and problem sizes

import argparse

import os

from absl import logging,flags

from run_qd_args_parsers import add_args_for_batch_sizes_comp, check_validity_args

from scipy import stats

QD_EMITTERS_SUPPORTED = ["map_elites", "map_elites_iso", "cma_me_imp",

 "cma_me_rd", "cma_me_opt"]

DQD_EMITTERS_SUPPORTED = ["og_map_elites", "og_map_elites_line",

 "omg_mega", "cma_mega", "cma_mega_adam", "omg_mega_line"]

ALL_EMITTERS_SUPPORTED = QD_EMITTERS_SUPPORTED + DQD_EMITTERS_SUPPORTED

from jax.config import config

config.update("jax_enable_x64", True)

import sys

jax.numpy.set_printoptions(threshold=sys.maxsize)

A-114

args = None

def process_args():

 parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)

 add_args_for_batch_sizes_comp(parser, ALL_EMITTERS_SUPPORTED)

 parsed_arguments = parser.parse_args()

 check_validity_args(parser, parsed_arguments)

 return parsed_arguments

Set the environmental variables for Hardware and

Jax before importing Jax Library

if __name__ == "__main__":

 try:

 args = process_args()

 # Change environmental variables based on

 # whether to use only cpu or not

 if not args.use_cpu != 0:

 os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"

 os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".5"

 os.environ["CUDA_VISIBLE_DEVICES"] = args.devices

 # Just uncomment the line below if you want to enforce it

 # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count)

 else:

 os.environ["JAX_PLATFORM_NAME"] = "cpu"

 # Just uncomment the line below if you want to enforce it

 # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count)

 except Exception as e:

 logging.fatal(e, exc_info=True)

Then import ll the rest necessary libraries

import jax

import jax.numpy as jnp

import numpy as np

from jax.lib import xla_bridge

from qdax.training.configuration import Configuration

from qdax.training import qd_loop_simple as qd_simple

from run_qd_utils import get_num_epochs_and_evaluations, get_emitter, get_env_info

import datetime

import random

import sys

A-115

def run_qd(emitter_args, results_saving_folder, local_devices_to_use, process_count):

 # Random seed

 seed = random.randrange(sys.maxsize)

 key = jax.random.PRNGKey(seed)

 key, key_emitter_init = jax.random.split(key, 2)

 qd_params = dict()

 # Define arguments of emitter and environemnt

 emitter, static_settings, qd_params = get_emitter(emitter_args, qd_params, key_emitter_init)

 num_epochs, num_evaluations =

get_num_epochs_and_evaluations(num_epochs=emitter_args.num_epochs,

 num_evaluations=emitter_args.num

_evaluations,

 population_size=emitter_args.bat

ch_size,

 use_dqd=qd_params['use_dqd'])

 logging.info(f"Emitter Details:\n"

 f"\t Emitter: {emitter_args.emitter}\n"

 f"\t sigma0: {emitter_args.sigma0}\n"

 f"\t sigma1: {emitter_args.sigma1}\n"

 f"\t sigma_g: {emitter_args.sigma_g}\n"

 f"\t stepsize: {emitter_args.stepsize}\n")

 qd_params['device'] = xla_bridge.get_backend().platform # 'cpu' if args.use_cpu == 1 else

'gpu'

 qd_params['sols_dim'] = emitter_args.sols_dim

 archive_bounds, _, calc_objs, calc_bds = get_env_info(emitter_args)

 configuration = Configuration(args.env_name,

 num_epochs,

 0,

 action_repeat=1,

 population_size=emitter_args.batch_size,

 seed=seed,

 log_frequency=emitter_args.log_frequency,

 qd_params=qd_params,

 min_bd=float(archive_bounds[0,0]), #

float(args.min_max_bd[0]),

 max_bd=float(archive_bounds[0,1]), #

float(args.min_max_bd[1]),

 grid_shape=tuple(emitter_args.grid_shape),

 max_devices_per_host=None,

)

 training_state = qd_simple.train(

 emitter=emitter,

 emitter_static_settings = static_settings,

 objective_fn=calc_objs,

A-116

 bds_fn=calc_bds,

 configuration=configuration,

 progress_fn=None,

 experiment_name=emitter_args.exp_name,

 key=key,

 result_path=results_saving_folder,

 save_results=True

)

 return training_state

def main(parsed_arguments):

 if parsed_arguments.log_folder:

 if not os.path.exists(parsed_arguments.log_folder):

 raise FileNotFoundError("Folder {} not found.".format(parsed_arguments.log_folder))

 else:

 datetime_now = datetime.datetime.now().strftime("%Y-%m-%d_T_%H-%M-%S")

 logging.get_absl_handler().use_absl_log_file('log_{0}.log'.format(datetime_now),

 parsed_arguments.log_folder)

 flags.FLAGS.mark_as_parsed()

 results_saving_folder = parsed_arguments.directory

 # logging.get_absl_handler().setFormatter(None)

 if not os.path.exists(results_saving_folder):

 raise FileNotFoundError(f"Folder {results_saving_folder} not found.")

 levels = {'fatal': logging.FATAL,

 'error': logging.ERROR,

 'warning': logging.WARNING,

 'info': logging.INFO,

 'debug': logging.DEBUG}

 logging.set_verbosity(levels[parsed_arguments.log_level])

 local_device_count = jax.local_device_count()

 local_devices_to_use = local_device_count

 process_count = jax.process_count()

 logging.info(f"Hardware Details:\n"

 f"\t Platform: {xla_bridge.get_backend().platform}\n"

 f"\t Local_device_count: {local_device_count}\n"

 f"\t process_count: {process_count}\n")

 sols_dim_list = parsed_arguments.sols_dim_list

 sols_dim_list = sols_dim_list if sols_dim_list else [128, 256, 512, 1024, 2048]

 batch_size_list = parsed_arguments.batch_size_list

 batch_size_list = batch_size_list if batch_size_list else [512, 2048, 8192, 16384]

A-117

 number_replications = parsed_arguments.number_replications

 for sols_dim in sols_dim_list:

 for batch_size in batch_size_list:

 args_dict = vars(args)

 emitter_args = argparse.Namespace(**args_dict)

 emitter_args.sols_dim = sols_dim

 emitter_args.batch_size = batch_size

 scores = list()

 for _ in range(number_replications):

 run_qd(emitter_args, results_saving_folder, local_devices_to_use, process_count)

if __name__ == "__main__":

 try:

 main(args)

 except Exception as e:

 logging.fatal(e, exc_info=True)

Code Snippet A.28: Module for executing different QD and DQD Algorithms with different combinations of batch

sizes and problem sizes (run_batch_and_problem_sizes.py)

A.8.7 Module for the Training State of a QD or DQD Algorithm

import os

import pickle

import flax.struct

from brax.training.types import PRNGKey

from qd_utils import grid_archive

from stats.metrics import Metrics

import stats.saving_loading_utils as saving_loading_utils

import jax.numpy as jnp

'''

This class represents a simple training state as opposed to the actual TrainingState class.

Simplicity occurs at the attributes of this class. Currently, the only difference is the

state attribute which instead of envs.State it's just a one dimensional ndarray

'''

@flax.struct.dataclass

class SimpleTrainingState:

 """Contains training state for the learner."""

 key: PRNGKey

 repertoire: grid_archive.Repertoire

A-118

 metrics: Metrics

 state: jnp.ndarray

 def save(self,

 folder: str = os.curdir,

 name_file: str = "training_state.pkl",

) -> None:

 saving_loading_utils.save_dataclass(

 dataclass_object=self,

 folder=folder,

 name_file=name_file,

)

Code Snippet A.29: Module for storing the progress of a QD or DQD Algorithm (training_state_simple.py)

A.8.8 Module for storing the general configurations of a QD or DQD Algorithm

import json

import os

from typing import Dict, Any, Optional, Tuple

import dataclasses

from dataclasses import dataclass

@dataclass

class Configuration:

 env_name: str

 num_epochs: int

 episode_length: int

 action_repeat: int

 population_size: int

 seed: int

 log_frequency: int

 qd_params: Dict[str, Any]

 min_bd: float # Assume each BD dimension has same bounds

 max_bd: float

 grid_shape: tuple

 max_devices_per_host: Optional[int] = None

 def save_to_json(self,

 folder: str = os.curdir,

 name_file: str = "configuration.json",

):

A-119

 path_file = os.path.join(folder, name_file)

 with open(path_file, "w") as json_file:

 json.dump(dataclasses.asdict(self),

 json_file,

 indent=1,

)

 @staticmethod

 def get_evaluations_num(self):

 if self.qd_params.get('use_dqd') >= 1:

 return self.num_epochs*self.population_size*2

 else:

 return self.num_epochs*self.population_size

 @classmethod

 def load_from_json(cls,

 path_file: str

) -> 'Configuration':

 with open(path_file, "r") as json_file:

 configuration_dictionary = json.load(json_file)

 return cls(**configuration_dictionary)

 def get_results_folder(self, experiment_name):

 current_results_dict = dataclasses.asdict(self)

 current_results_dict.pop("seed")

 current_results_dict.pop("log_frequency")

 current_results_dict.pop("max_devices_per_host")

 current_results_dict.pop("min_bd")

 current_results_dict.pop("max_bd")

 current_results_dict.pop("action_repeat")

 return

f"{experiment_name}{self.fix_name_folder(self.get_all_variables_str_from_dict(current_results_

dict))}"

 @staticmethod

 def get_all_variables_str_from_dict(dictionary):

 all_variables_str = ""

 for variable_str, value in dictionary.items():

 # print("Variable str: ",variable_str, "value: ", value)

 if isinstance(value, int) or isinstance(value, float) or isinstance(value, str):

 all_variables_str = all_variables_str + f"_{variable_str}-{value}"

 elif isinstance(value, dict):

 all_variables_str += Configuration.get_all_variables_str_from_dict(value)

A-120

 elif isinstance(value, tuple):

 all_variables_str = all_variables_str + f"_{variable_str}-{'-'.join(map(str, value))}"

 else:

 print(f"WARNING: Unexpected type encountered when computing results folder name, for

variable {variable_str}")

 return Configuration.fix_name_folder(all_variables_str)

 @staticmethod

 def fix_name_folder(name_folder):

 return name_folder\

 .strip()\

 .lower()\

 .replace(' ', '')\

 .replace('.', '-')\

 .replace('=', '-')

Code Snippet A.30: Module for storing the general QD or DQD configurations of a single run (configurations.py)

A.8.9 Module for storing metrics for QD or DQD Execution

import os

from typing import Any

import flax.struct

import numpy as np

from dataclasses import dataclass

from jax import numpy as jnp

from stats import saving_loading_utils

Array = Any

@dataclass

class MetricsData:

 archives: np.ndarray

 scores: np.ndarray

 def save(self,

 folder: str = os.curdir,

 name_file: str = "metrics.pkl",

):

 saving_loading_utils.save_dataclass(

A-121

 dataclass_object=self,

 folder=folder,

 name_file=name_file,

)

 @classmethod

 def from_metrics(cls,

 metrics: 'Metrics'

) -> 'MetricsData':

 return cls(

 archives=np.asarray(metrics.archives),

 scores=np.asarray(metrics.scores)

)

@flax.struct.dataclass

class Metrics:

 archives: Array

 scores: Array

 @classmethod

 def create(cls, num_epochs, log_frequency, grid_shape):

 log_size = jnp.ceil(num_epochs / log_frequency).astype(int) + 1

 archives = jnp.zeros(tuple(jnp.append(jnp.array([log_size]), grid_shape)))

 scores = jnp.zeros([log_size, 4]) # epoch, archive size, best fit, QD score

 return Metrics(archives=archives, scores=scores)

 def save(self,

 folder: str = os.curdir,

 name_file: str = "metrics.pkl",

):

 saving_loading_utils.save_dataclass(

 dataclass_object=self,

 folder=folder,

 name_file=name_file,

)

Code Snippet A.31: Module for storing the metrics of a QD or DQD execution (metrics.py)

A.8.10 Utilities module for saving and loading a QD’s or DQD’s execution data

import datetime

import os

import os.path as osp

A-122

import pickle

import uuid

from typing import Any

from training.configuration import Configuration

def save_dataclass(

 dataclass_object,

 folder: str,

 name_file: str,

) -> None:

 path_save_file = os.path.join(folder, name_file)

 with open(path_save_file, "wb") as file_to_save:

 pickle.dump(dataclass_object, file_to_save)

def load_dataclass(

 path_file_to_load: str,

) -> Any:

 with open(path_file_to_load, "rb") as file_to_load:

 return pickle.load(file_to_load)

Saving metrics and timings

def make_results_folder(result_path,

 experiment_name,

 configuration: Configuration):

 path_folder_replication = osp.join(

 result_path,

 configuration.get_results_folder(experiment_name),

 f"{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}_{uuid.uuid4()}",

)

 os.makedirs(path_folder_replication)

 return path_folder_replication

Code Snippet A.32: Utilities module for saving and loading a QD’s or DQD’s execution data

(saving_loading_utils.py)

B-123

Appendix B - Algorithms Parameters

B.1.1 MAP-Elites (Isotropic Gaussian)

• Rastrigin function with simple encoding

o Sigma_0 = 0.01

• Arm Repertoire

o Sigma_0 = 0.05

• Rastrigin function with distorted behavior space

o Sigma_0 = 1

B.1.2 MAP-Elites (Iso+lineDD)

• Rastrigin function with simple encoding

o Sigma_0 (iso sigma) = 0.01

o Sigma_1 (line sigma)= 0.2

• Arm Repertoire

o Sigma_0 (iso sigma) = 0.01

o Sigma_1 (line sigma)= 0.5

• Rastrigin function with distorted behavior space

o Sigma_0 (iso sigma) = 0.5

o Sigma_1 (line sigma)= 0.5

B.1.3 CMA-ME (Improvement)

• Rastrigin function with simple encoding

o Sigma_0 = 0.05

• Arm Repertoire

o Sigma_0 = 0.02

• Rastrigin function with distorted behavior space

o Sigma_0 = 2

For all the cases above we also used the following global parameters:

• Selection Rule = FILTER

• Restart Rule = No Improvement

B-124

• Weight Rule = Truncation

• Normalize Gradients = True

B.1.4 CMA-ME (Optimizing)

• Rastrigin function with simple encoding

o Sigma_0 = 0.05

• Arm Repertoire

o Sigma_0 = 0.05

• Rastrigin function with distorted behavior space

o Sigma_0 = 2

For all the cases above we also used the following global parameters:

• Selection Rule = FILTER

• Restart Rule = No Improvement

• Weight Rule = Truncation

• Normalize Gradients = True

B.1.5 CMA-ME (Random Direction)

• Rastrigin function with simple encoding

o Sigma_0 = 0.01

• Arm Repertoire

o Sigma_0 = 0.01

• Rastrigin function with distorted behavior space

o Sigma_0 = 2

For all the cases above we also used the following global parameters:

• Selection Rule = FILTER

• Restart Rule = No Improvement

• Weight Rule = Truncation

• Normalize Gradients = True

B-125

B.1.6 OMG-MEGA (line)

• Rastrigin function with simple encoding

o Sigma_0 (iso sigma) = 0.01

o Sigma_1 (line sigma) = 0.5

o Sigma_g (gradient sigma) = 10

• Arm Repertoire

o Sigma_0 (iso sigma) = 0.01

o Sigma_1 (line sigma) = 0.1

o Sigma_g (gradient sigma) = 1

• Rastrigin function with distorted behavior space

o Sigma_0 (iso sigma) = 0.5

o Sigma_1 (line sigma) = 0.5

o Sigma_g (gradient sigma) = 10

B.1.7 OG-MAP-Elites (line)

• Rastrigin function with simple encoding

o Sigma_0 (iso sigma) = 0.01

o Sigma_1 (line sigma) = 1

o Sigma_g (gradient sigma) = 10

• Arm Repertoire

o Sigma_0 (iso sigma) = 0.01

o Sigma_1 (line sigma) = 0.2

o Sigma_g (gradient sigma) = 5

• Rastrigin function with distorted behavior space

o Sigma_0 (iso sigma) = 0.5

o Sigma_1 (line sigma) = 0.2

o Sigma_g (gradient sigma) = 5

B.1.8 CMA-MEGA (Gradient Ascent)

• Rastrigin function with simple encoding

o Sigma_g (gradient sigma) = 1

o Stepsize = 0.01

B-126

• Arm Repertoire

o Sigma_g (gradient sigma) = 5

o Stepsize = 0.05

• Rastrigin function with distorted behavior space

o Sigma_g (gradient sigma) = 10

o Stepsize = 0.5

For all the cases above we also used the following global parameters:

• Selection Rule = MU

• Restart Rule = No Improvement

• Weight Rule = Truncation

• Normalize Gradients = True

B.1.9 CMA-MEGA (Adam)

• Rastrigin function with simple encoding

o Sigma_g (gradient sigma) = 0.5

o Stepsize = 0.1

• Arm Repertoire

o Sigma_g (gradient sigma) = 2

o Stepsize = 1

• Rastrigin function with distorted behavior space

o Sigma_g (gradient sigma) = 10

o Stepsize = 0.05

For all the cases above we also used the following global parameters:

• Selection Rule = MU

• Restart Rule = No Improvement

• Weight Rule = Truncation

• Normalize Gradients = True

C-127

Appendix C - Results

C.1 Heatmap of QD Scores of algorithms on different problem sizes

and batch sizes

All the charts below show the QD Scores (the bar on the right shows the value of the QD

Score each color represents) of QD and DQD algorithms for different combinations of

batch sizes and problem sizes.

C.1.1 Rastrigin with Distorted Behavior Space

Fig C.1: Best Fitness of QD and DQD Algorithms on the Rastrigin with Distorted Behavior Space problem for
different batch sizes and problem sizes

C-128

C.1.2 Arm Repertoire

Fig C.2: Best Fitness of QD and DQD Algorithms on the Arm Repertoire problem for different batch sizes and
problem sizes

C-129

Fig C.3: Coverage of QD and DQD Algorithms on the Arm Repertoire problem for different batch sizes and problem
sizes

C-130

C.1.3 Rastrigin with simple encoding

Fig C.4: QD Scores of QD and DQD Algorithms on the Rastrigin with simple encoding problem for different batch
sizes and problem sizes

C-131

Fig C.5: Best Fitness of QD and DQD Algorithms on the Rastrigin with simple encoding problem for different batch
sizes and problem sizes

C-132

Fig C.6: Coverage of QD and DQD Algorithms on the Rastrigin with simple encoding problem for different batch
sizes and problem sizes

C-133

C.2 Batch Size Variation Charts

Fig C.7: Best Fitness of QD and DQD Algorithms on all the three problems for different batch sizes and constant

problem size equal to 128

C-134

Fig C.8: Coverage of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 128

Fig C.9: QD Score of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 128

C-135

Fig C.10: Best Fitness of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 256

Fig C.11: Coverage of QD and DQD Algorithms on all the three problems for different batch sizes and constant

problem size equal to 256

C-136

Fig C.12: QD Score of QD and DQD Algorithms on all the three problems for different batch sizes and constant

problem size equal to 256

Fig C.13: Best Fitness of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 512

C-137

Fig C.14: Coverage of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 512

Fig C.15: QD Score of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 512

C-138

Fig C.16: Best Fitness of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 1024

Fig C.17: Coverage of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 1024

C-139

Fig C.18: QD Score of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 1024

Fig C.19: Best Fitness of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 2048

C-140

Fig C.20: Coverage of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 2048

Fig C.21: QD Score of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 2048

C-141

C.3 Problem Size Variation Charts

Fig C.22: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 512

C-142

Fig C.23: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 512

C-143

Fig C.24: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 512

C-144

Fig C.25: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 2048

C-145

Fig C.26: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 2048

C-146

Fig C.27: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 2048

C-147

Fig C.28: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 8192

C-148

Fig C.29: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 8192

C-149

Fig C.30: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 8192

C-150

Fig C.31: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 32768

C-151

Fig C.32: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 32768

C-152

Fig C.33: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 32768

C-153

Fig C.34: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 131072

C-154

Fig C.35: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 131072

C-155

Fig C.36: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 131072

C-156

C.4 Runtime - Problem Size Variation Charts

C.4.1 Arm Repertoire

Fig C.37: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 512

C-157

Fig C.38: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 2048

Fig C.39: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 8192

C-158

Fig C.40: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 16384

C.4.2 Rastrigin with Distorted Behavioral Space

C-159

Fig C.41: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 512

Fig C.42: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 2048

C-160

 Fig C.43: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 8192

Fig C.44: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 16384

C-161

C.4.3 Rastrigin with simple encoding

C-162

 Fig C.45: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 512

Fig C.46: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 2048

C-163

Fig C.47: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 8192

Fig C.48: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant
batch size equal to 16384

C-164

C.5 Runtime - Batch Size Variation Charts

C.6 Arm Repertoire

Fig C.49: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 128

C-165

Fig C.50: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant

problem size equal to 256

C-166

Fig C.51: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 512

C-167

Fig C.52: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 1024

C-168

Fig C.53: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 2048

C-169

C.6.1 Rastrigin with Distorted Behavior Space

Fig C.54: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 128

C-170

Fig C.55: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 256

C-171

Fig C.56: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 512

C-172

Fig C.57: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 1024

C-173

Fig C.58: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 2048

C-174

C.6.2 Rastrigin with simple encoding

Fig C.59: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 128

C-175

Fig C.60: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 256

C-176

Fig C.61: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 512

C-177

Fig C.62: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 1024

C-178

Fig C.63: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant
problem size equal to 2048

C-179

The End.

