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Abstract 

Quality Diversity Optimization is a recent field that has shown promising results in 

generating a diversity of high-performing quality robotic skills [2]. However, QD 

Algorithms require a lot of execution time due to the number of solution evaluations 

needed to achieve good results. Work done so far focused on executing these algorithms 

mainly on CPUs, which could take days. Thus, a good question that arises first is can we 

speed up the execution of these algorithms? This question was recently touched on by 

Lim, Allard, Grillotti and Cully [69],  who tried to test the MAP-Elites and a simple 

variation on GPUs for robotic simulation problems. They showed that speeding QD 

Algorithms is possible on GPUs.  Another recent study introduced the Differentiable 

Quality Diversity (DQD) [4], and it showed that Differentiability in QD Algorithms could 

provide better results in the same number of iterations. This work aims to extend the work 

on the two aforementioned papers to make a solid start on whether QD and DQD 

Algorithms implemented on GPUs can help speed up the generations of solutions for QD 

problems. We attempt to investigate whether QD and DQD algorithms are affected by the 

increase of their parallelization (i.e. batch size) on GPUs, whether there is a speedup in 

wall-clock time in the execution of QD and DQD Algorithms on GPU compared to CPU 

and last whether Differentiable QD algorithms on GPUs can help get better results and 

faster.   
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1.1 Quality-Diversity Optimisation 

Quality Diversity (QD) Optimization is a recent field of Evolutionary algorithms that 

have shown promising results in generating a diversity of high-performing quality robotic 

skills [2]. Current algorithms such as MAP-Elites and variations were able to illuminate 

the relationship between the performance of each solution found and the diversity of the 

[1]. However, QD Algorithms require a lot of execution time due to the massive number 

of solution evaluations that ought to be executed. The work done on this branch of 

Evolutionary Algorithms focused on running these algorithms mainly on computer CPUs 

and scaling them to many Clusters’ CPUs. But, QD Algorithms, like many other 

algorithms, depend on operations, like matrix and vector manipulation, that are highly 

parallelizable. This nature of the QD Algorithms’ core makes it attractive to use 

specialized hardware, specifically GPU, to improve the performance of the QD 

Algorithms and specifically the runtime.  

1.2 The Importance of Accelerating Quality-Diversity for Robotics 

As mentioned in section 1.1, GPUs can help accelerate QD Algorithms by executing 

faster parallelizable operations. To be more specific, in general, QD Algorithms try to 

find high-performing solutions that vary across some features. These algorithms consist 

of four parts (1) selection of solutions from a collection, (2) variation of the selected 

solutions, (3) evaluation of the performance of the solutions and (4) addition of the 
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solutions to an archive of solutions. But the most time demanding part is the evaluation 

step, where the solutions are evaluated in terms of performance and some diversity 

attributes (features are chosen as points of variation in the solutions). The evaluation 

functions define the problem that the QD Algorithm tries to solve. Those functions could 

be simple, but they can also include complex operations, like simulations. For example, 

we could have a problem that provides as a solution the parameters of a policy (e.g., 

parameters and weights of a neural network) for a robot’s movements and as evaluation 

functions, a function that says how well the robot walks at a specific direction using a 

given policy and another function that is used for estimating how much time each robot’s 

leg touched the ground on average (i.e. the latter function is the function that defines the 

variation of the ) with the same policy. But, evaluating the policy in terms of those criteria 

(i.e., estimating the value of those functions) includes having the robot use that policy in 

either the real world or a simulation to see how it performs. Evaluations for such tasks 

are initially done via simulations, which are cheaper and faster than real-world 

evaluations. But physics simulations include complex and time expensive computations 

that require a significant amount of time when many of them are needed to be executed 

for the same problem. Getting good results on QD Algorithms on modern CPUs for 

complex tasks like teaching a robot to walk in many directions can take days. This need 

to make QD Algorithms execute faster is the source of motivation for our work. Our work 

primarily investigates the potential acceleration of running QD Algorithms on GPUs 

instead on CPUs as well as whether differentiability in QD (Differentiable Quality 

Diversity Optimization - DQD) can play a role in allowing better and faster exploration 

of solutions to be achieved by QD Algorithms on GPUs. 

1.3 Previous Quality-Diversity Research related to our work 

Our work depends on the foundations of all the QD work that has been done so far. But 

we primarily rely on a couple of recent results. More specifically, a recent study from 

Fontaine and Nikolaidis [4] introduced the Differentiable Quality Diversity (DQD) DQD 

uses the first derivative of the evaluation functions concerning the solution to guide the 

exploration of diverse high-performing solutions, and it showed that it is a promising 

approach for exploring more varied and higher performing solutions. More specifically, 

they showed that the Differentiable versions of some QD algorithms perform better than 

their original QD Algorithms regarding the number of diverse solutions they return and 
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the quality of those solutions. But the tests were made on CPUs and for a minimal number 

of batch sizes ranging between 32 and 100. A more recent work from  Lim, Allard, 

Grillotti and Cully [69] tested for the first time the performance of the one of the simplest 

QD Algorithms; MAP-Elites (line), on GPUs. More specifically, they tested those two 

QD Algorithms on different simulation tasks on the BRAX simulator. They observed that 

the performance of MAP-Elites (line) on those simulation problems was not statistically 

affected by increasing the batch size they used. They also showed that those two QD 

Algorithms being executed with more significant batch sizes finish earlier than when 

using smaller batch sizes. The QD Algorithms being executed on GPUs finish quicker 

than those on CPUs. Those observations showed the potential of exploiting GPUs for 

running MAP-Elites and MAP-Elites (line) faster. But their work is limited to only a 

minimal subset of the state-of-the-art QD and DQD Algorithms, which raises the question 

of whether those results and observations apply to the other QD and DQD algorithms. 

1.4 Objectives 

Our work examines the following three goals: (a) Effect of batch size on the Performance 

of QD and DQD Algorithms, (b) Runtime of QD and DQD Algorithms on GPU compared 

to CPU and (c) Performance of DQD Algorithms vs QD Algorithms on GPUs. In the first 

goal, we want to examine whether the algorithms are affected by increasing the batch size 

(the in-algorithm parallel manipulation of solutions) of QD Algorithms. In the second 

one, we want to examine the potential runtime improvement of QD and DQD Algorithms 

on GPUs vs CPUs. Lastly, in the third goal, we want to see whether Differentiable QD 

can help get better results faster on GPU and thus save some execution time. We structure 

this document based on those goals, and we start with a comprehensive but concise 

background revision of QD and associated work (Chapter 2). We move on to discuss the 

Domains (i.e. Problems) that we use for our experiments (Chapter 3); later in Chapter 4, 

we discuss the design and implementation of frameworks and QD Algorithms that we 

developed for our experiments. We discuss the experiments we performed in Chapter 5, 

and in chapter 6, we discuss our conclusion, some lessons learned and future work. 
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2.1 Mathematical Background 

2.1.1 Function 

A function 𝑓 is a process that associates an object of a set 𝑋 (called Domain of the 

function) to a single object of a set 𝑌 (called Subdomain of the function). This 

correspondence can be written as 𝑓: 𝑋 → 𝑌.   

2.1.2 Mathematical Optimization 

Given a real-valued function f(x), an optimization problem is the identification of a 

solution x belonging to the function’s domain that minimises (in which case is called a 

Minimisation Problem) or maximises (in which case is called a Maximisation Problem) 

the value of that function.  

More specifically, given a function, 𝑓:ℝ → ℝ, from real numbers to the real numbers, we 

seek a solution 𝑥0 ∈ ℝ (𝑜𝑓 𝑡ℎ𝑒 𝐷𝑜𝑚𝑎𝑖𝑛), such that: 

• In case of minimization, we want 𝑓(𝑥0) ≤ 𝑓(𝑥) for all 𝑥 ∈ ℝ. 

• In the case of maximization, we want 𝑓(𝑥0) ≥ 𝑓(𝑥) for all 𝑥 ∈ ℝ. 

2.1.3 Finite Difference Method (FDM) 
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The Finite Difference Method (FDM), or derivative of a function that estimates the 

derivative of a function. Given a first-order differentiable function 𝑓, its derivative at a 

point 𝑥 is: 

𝑓′(𝑥) =  lim
ℎ→0 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

2.1.4 Chain Rule in Derivatives 

The chain rule is a formula that specifies how to compute the derivatives of composites 

functions. A composite function is a function that receives as its domain values the values 

of the subdomain of a second value. A composite function is written as: 

𝑓(𝑥) = ℎ(𝑔(𝑥)) 

The derivative of the composite function is specified by the chain rule below: 

𝑑𝑓

𝑑𝑥
=

𝑑ℎ

𝑑𝑔
∙
𝑑𝑔

𝑑𝑥
 

Or differently written as: 

𝑓(𝑥) = ℎ′(𝑔(𝑥))  ∙  𝑔′(𝑥) 

 

2.1.5 Gradient 

The gradient of a first-order differentiable function 𝑓: ℝ𝑘 → ℝ is the vector field ∇𝑓 (∇ 

is the Del, or nabla symbol denoting the vector differential operator) in which each point 

x𝑖 is the first-order partial derivative of the function concerning the ith value of a vector 

that the function receives as input. That is, the gradient of the function f is a function  

∇𝑓: ℝ𝑘 → ℝ𝑘 defined as: 

∇𝑓(𝑥) =  

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

(𝑥)

⋮
𝜕𝑓

𝜕𝑥𝑘
(𝑥)

]
 
 
 
 

 

2.1.6 Jacobian Matrix 
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The Jacobian Matrix is the matrix of all first-order partial derivatives of a vector function. 

Given a vector function 𝑓:ℝ𝑘 → ℝ𝑚, whose first-order partial derivatives exist on ℝ𝑘, 

then the Jacobian matrix 𝐽 of  𝑓, is the 𝑚 ×  𝑘 matrix whose entry in row i and column j 

equals 𝐽𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
 (a partial derivative of f function’s jth input with respect to the function’s 

ith output ). 

𝐽𝑓 = 

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑘

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑘]

 
 
 
 

 

2.1.7 Tanh Activation Function 

 The hyperbolic tangent activation function, also referred as Tanh (or TanH or tanh) is a 

function that takes any real value as input and outputs values in the range (-1,1). That is, 

tanh function 𝑓:ℝ → (−1,1) is defined as: 

𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

Figure 2.1. Hyoerbolic Tangent Activation Function. 

2.1.8 Maximum 
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A local maximum value of a continuous function 𝑓: 𝐴 → 𝐵 is defined as the value x  A 

such that for each point 𝑥𝑙, 𝑎 ≤  𝑥𝑙 < 𝑥 it applies that 𝑓(𝑥𝑙) ≤ 𝑓(𝑥) and for each point 

𝑥𝑟 𝑥 < 𝑥𝑟 ≤ 𝑏, it applies 𝑓(𝑥𝑟) ≤ 𝑓(𝑥)  for some a  A and b  A. If the 𝑓(𝑥𝑖) < 𝑓(𝑥), 

for any 𝑥𝑖  A, then the 𝑥 is a global maximum. 

2.1.9 Minimum 

A local minimum value of a continuous function 𝑓: 𝐴 → 𝐵 is defined as the value x  A 

such that for each point 𝑥𝑙, 𝑎 ≤  𝑥𝑙 < 𝑥 it applies that 𝑓(𝑥) ≤ 𝑓(𝑥𝑙) and for each point 

𝑥𝑟, 𝑥 < 𝑥𝑟 ≤ 𝑏 it applies  𝑓(𝑥) ≤ 𝑓(𝑥𝑟) for some a  A and b  A. If the 𝑓(𝑥𝑖) > 𝑓(𝑥), 

for any 𝑥𝑖  A, then the 𝑥 is a global minimum. 

2.1.10 Mean 

Given a population of n real number 𝑥1, … , 𝑥𝑛 the mean or average μ is defined as: 

μ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

2.1.11 Standard Deviation 

Given a population of n real number 𝑥1, … , 𝑥𝑛 Standard Deviation 𝜎 is defined as: 

𝜎 = √
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

𝑛
 

where μ is the population mean. 

2.1.12 Median 

Given a population of n real number 𝑥1, … , 𝑥𝑛 , where n is an odd number, then the median 

is the number 𝑥𝑖 from the population that has 𝑓𝑙𝑜𝑜𝑟 (
𝑛

2
) elements of the population that 

have a value lower than it  and 𝑓𝑙𝑜𝑜𝑟 (
𝑛

2
) that has a value greater than it, where 𝑓𝑙𝑜𝑜𝑟 (

𝑛

2
) 

is the integer part of the division of n over 2. If n is an even number, then the mean can 

be the 𝑥𝑖 from the population that has either 
𝑛

2
− 1 population elements on its left (with 

lower values) and 
𝑛

2
 population elements on its right (with greater value) or 

𝑛

2
 on its left 

and 
𝑛

2
− 1 on its right. 
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2.1.13 Median Absolute Deviation (MAD) 

Median Absolute Deviation of a population of real numbers 𝑥1, … , 𝑥𝑛 is the median of 

the absolute deviations from the population’s median m (median of population). That is: 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑚|) 

2.1.14 Dot Product 

The dot product between two vectors 𝑣1 and 𝑣2 both of them of size n are defined as: 

𝑑𝑜𝑡 = 𝑣1 ∙ 𝑣2 = ∑𝑣1
(𝑖)

𝑛

𝑖=1

∙ 𝑣2
(𝑖)

 

where 𝑣𝑗
(𝑖)

 represents the ith element of the vector j. 

2.1.15 Rastrigin Function 

Rastrigin function is defined by the function f(x) defined as follows: 

𝑓(𝑥) = 10𝑑 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 

where d is the number of dimensions of the problem.The function has many local minima 

that make it high multimodal, and those minima are distributed regularly. 

 

Figure 2.2.  Two-dimensional (d = 2) Rastrigin Function with x1, x2 its parameters, from 

https://www.sfu.ca/~ssurjano/rastr.html 
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The function is usually evaluated for values of its parameters 𝑥𝑖 [−5.12, 5.12] for all i 

= 1, 2, …, d. The global minimum is located at x = 0, where 0 is the zero vector of length 

d with all its elements equal to zero. 

2.2 Artificial Neural Networks 

2.2.1 Regression 

Regression is a technique for learning the relationship between a set of independent 

variables or features and a dependent variable or outcome (in the case of many dependent 

outcomes, we can frame as many independent regression problems as the dependent 

outcomes are, each of them concerned with a single dependent outcome). In Machine 

Learning, it is used as a predictive type of model, in which an algorithm is used to predict 

continuous outcomes. 

The simplest form of Regression is Linear Regression, where the relationship between 

the independent variables and the outcome is linear. In the general case, the linear model 

we have is the following: 

𝑦 = 𝑎1 ∙ 𝑥1 + 𝑎2 ∙ 𝑥2 + ⋯+ 𝑎𝑛 ∙ 𝑥𝑛 + 𝑏 

And the relationship we want to learn is defined by the 𝑎1, 𝑎2, … , 𝑎𝑛 parameters of the 

equation above. 

2.2.2 Cost/Loss Function 

The cost function or loss function is a function used to learn the relationship between the 

output and the input for a function f. More specifically, given an input x and an output of 

a function f, f(x), the cost function can tell us how far away the value/solution of a 

different function g on x is with respect to f(x), That is the difference between g(x) and 

f(x). 

2.2.3 Supervised Learning 

In a supervised learning context, an algorithm tries to learn a function f such that for any 

input x defined for the function f to generate f(x). For an algorithm to learn that function 

f, it is provided with a set of input values and the expected output values (these are called 
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training datasets). The algorithm uses both the inputs and the expected outputs to learn 

the relationship between them. 

2.2.4 Artificial Neuron 

An Artificial Neuron in Machine Learning is considered the smallest and most basic 

computational unit of an Artificial Neural Network (ANN). They are inspired by the 

biological neurons and are simply mathematical functions taking some inputs and giving 

an output.  

The most well known artificial neuron is the McCulloch & Pitts (MCP) neuron which 

receives a set of input signals and outputs a single output. The output is just the application 

of a function (called activation function) on the weighted sum of its input signals. That 

is, if 𝑋 is a vector of the input signals of size n and 𝑊 is a list of weights for those input 

signals, then the output of the McCulloch & Pitts is: 

𝑎𝑐𝑡𝑓(𝑋 ∙ 𝑊) = 𝑎𝑐𝑡𝑓( ∑𝑋𝑖𝑊𝑖

𝑛

𝑖=1

) 

Where 𝑋 ∙ 𝑊 is the dot product between the two vectors and 𝑎𝑐𝑡𝑓 is an activation function. 

2.2.5 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) or Neural Networks (NNs) are networks of artificial 

neurons that mimic on a high-level the biological neural networks of animals’ and 

humans’ brains. In reality, ANNs are complex functions that have a set of inputs and 

outputs. It is usually graphically represented as a graph with nodes and edges. The nodes 

are artificial neurons, and the edges are considered synapses used to share information 

between neurons. An artificial neuron; in the network; receives a signal, processes it and 

passes the signal further to potentially another neuron. 

The typical structure of an ANN is a layered network (=graph) of nodes constituting a 

layer of input nodes that receive input signals,  a layer of output nodes that output signals 

and many layers of nodes, called hidden layers that just perform the core processing of 

network signals. 

2.2.6 Multi-Layer Perceptron  
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2.2.6.1 Introduction to MLPs 

Multi-Layer Perceptron (MLP) or also Vanilla” Neural Networks.  is a type of a feed-

forward ANN. Feed-forward means that the processing flow of the input signals follows 

a single direction from the input layer to the output layer and not the other way. MLPs 

consist of at least three layers of nodes; an input layer, one or two hidden layers, and an 

output layer. The input nodes are simple nodes that just forward the signal to the next 

hidden layer, whereas the hidden layers and the output layer contain McCulloch & Pitts 

artificial neurons.  

 

Figure 2.3. Multi-Layer Perceptron with three layers with McCulloch & Pitts neurons (two hidden and an output 

layer). Note that the input layer does not contain any neurons. 

 

2.2.6.2 Architecture 

The architecture of an MLP is defined as the number of hidden layers being used, the 

number of nodes in each layer, and whether it is a fully-connected or sparse network. In 

a fully connected network, each node of a layer is connected with each node o the next 

layer (except the output layer that does not have any further layers in front of it). An 

example of that can be seen in the image above of a fully connected MLP. A sparse 

network is one where some of those connections that exist in the fully-connected network 

do not exist. Note that each edge is weighted by a specific number. The architecture of an 

ANN and its weights define the function that the ANN approximates. 
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Because an MLP depends on its architecture to define a function, different architectures 

can be restricted to a different class of functions. For instance, in the classification 

problem where we try to categorize/classify an input point to a group of specific 

characteristics, a single layer MLP (only output layer) is capable of creating a linear 

function (first entry in the figure below) that simply can separate two different classes in 

their input space by a line. Two-layer MLP (1 hidden & 1 output layer)  is capable of 

creating a function that separates input points by two an open convex or closed region 

(second entry below). Three-layer MLP (2 hidden & 1 output layer) is capable of creating 

a function that separates input points, using arbitrary complex shapes (third entry below) 

that are capable of separating any classes. Thus, based on Kolmogorov Theorem, no more 

than three layers are needed in an MLP network. That is, they can approximate any 

function with at most three layers. Take into consideration that this theorem also depends 

on the use of non-linear activation function in each neuron. 

 

Figure 2.4. Three types of Multi-Layer Perceptron (MLP) as distinguished by the different types of Decision Regions 

they create. Single-Layer or Perceptron: Solves only Linearly Separable problems. Creates Decision 

Lines/Planes/Hyperplanes. Two-Layer: Solves Non-linearly Separable problems. Constructs Convex Regions. 

Three-Layer: Separates any classes. Any Arbitrary Convex Region. 

<https://www.verypossible.com/insights/machine-learning-algorithms-what-is-a-neural-network> 

2.2.6.3 Activation Function 

Activation functions are usually used by artificial neurons of ANN, and they are functions 

applied to the inputs of a neuron. There are different activation functions, including the 

Heaviside Step Function (outputs one if the inputs are greater than zero; otherwise 0), the 

Sigmoid/Logistic ( a smoother differentiable version of the Heaviside Step Function), 

Tanh (described in section 2.1.7), etc.  
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2.2.6.4 Forward Propagation 

In forward propagation, the input data received by a network’s input layer are propagated 

forward through the network until the output layer, where the latter’s outputs are the 

output of the network. That is, it is a process of an ANN to take a set of inputs and generate 

a set of outputs. This process is defined from left to right, taking layer by layer and doing 

the following: For each layer, take the output of each node as the application of an 

activation function to the weighted sum of the input signals to the node. The output of 

each node in a layer is the set of input signals for the next layer. The output signals of the 

output layer are the outputs of the ANN.  

2.2.6.5 How an Artificial Neural Network learns to approximate a function 

An Artificial Neural Network has an architecture and a set of weights, one for each edge 

connecting two network nodes. The weights of an ANN are adjustable, and they are 

responsible for weighting the signals going from one layer to another. For a given ANN 

architecture, they define the function that the ANN represents. A specific set of values of 

weights approximates a different function than a different set of values for the weights.  

The most well known and used way for learning those weights is the back-propagation 

method, where for a given initial set of weights for an ANN (usually random), the output 

values of the ANN for a given set of input values are evaluated on how well it 

approximates the expected value of the function the ANN tries to match and the error 

between the ANN’s output and the function’s desired output is propagated backwards 

(from the output to the input layer) as feedback to adjust the weights of the network.  

But, there are also other ways more straightforward but potentially less efficient in 

defining those weights. For example, we could randomly choose those weights until those 

weights lead the ANN to approximate the function; that is, the ANN generates 

approximately the same outputs with the function it tries to learn for the same inputs. The 

issue, though is that the more the weights of the ANN and the greater the set of values 

those weights can take, the more difficult it is to find those weights randomly. 

Quality Diversity which we will discuss later (section 2.5), is another way of finding those 

weights in a more guided way than just randomly choosing those weights.  

2.3 Optimisers Background 
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2.3.1 Optimisers 

Optimisers are used in different fields with the sole purpose of helping improve a set of 

coefficients so that to optimise (maximise or minimise) a specific function. For example, 

an optimizer can be used in a neural network to adapt the neural network's weights to 

minimize the difference between a set of expected outputs and the actual outputs of a 

neural network. Below, you can see some of them. 

2.3.2 Gradient Descent (GD) 

Gradient Descent (GD) was introduced by Rumelhart et al. [51] and is the most 

straightforward optimization algorithm for minimizing first-order differentiable 

functions. The idea of the gradient descent is that since the gradient of a function always 

points toward the maximum point, then by moving the point of the function where the 

gradient was derived, in a direction opposite; that is, negative; to the direction of the 

gradient, then the point derived will most likely (likely because it depends on the step and 

on whether the point is already a local minimum) give a value for the function lower than 

before. That is, it will approach a local minimum.  

2.3.2.1 GD Mathematical Definition 

Consider a first-order differentiable vector function 𝑓 whose minimum value we seek for. 

If  the derivative of the function with respect to its vector input x is: 

∇𝑓(𝑥) =  〈
𝛿𝑓

𝛿𝑥1
,
𝛿𝑓

𝛿𝑥2
, … ,

𝛿𝑓

𝛿𝑥𝑛

〉 

Then the GD algorithm amends each value 𝑥𝑖 of the input vector x using the derivative 

of the function’s output with respect to the ith value of the vector (∇𝑓(𝑥𝑖)) as follows: 

𝑥𝑖′ = 𝑥𝑖 − 𝑎∇𝑓(𝑥𝑖) 

Where a is a real number between 0 and 1 chosen to represent the step of the change on 

the vector’s value. 

2.3.3 Momentum 

The momentum is an extension of gradient descent that, at each iteration, replaces the 

current gradient with a “momentum”, m which is an aggregate of gradients. This 
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aggregate is an exponential moving average of past gradients, including the current one 

up to time t (see below). The update process of solutions θ becomes: 

𝜃𝑡+1 = 𝜃𝑡 − 𝑎 · 𝑚𝑡 

where  

𝑚𝑡 = 𝛽 · 𝑚𝑡−1 + (1 − 𝛽) ·
𝜕𝑓

𝜕𝜃𝑡
 

A common value for the hyperparameter β is 0.9. 

2.3.4 Adaptive Moment Estimation (Adam) 

Adaptive Moment Estimation (Adam) is a stochastic gradient-based optimizer that was 

proposed by Kingma and Ba [51].  

Adam stores an exponentially decaying average of past squared gradients v (like Adadelta 

[52] and RMSprop [53]) and also kept an exponentially decaying average of past 

gradients m, similar to momentum. Their update process is: 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

The parameter  𝑚 is the first moment, just like the momentum that records the past 

normalized gradient. It is initialized to a vector of zeros. 

The 𝑣 is the second moment, as introduced in Adaptive Gradient Descent & RMSprop. It 

is initialized to a vector of zeros. 

The parameters 𝛽1 and 𝛽2 control the decay rates of the exponential moving averages 

gradient (initialized AS 𝛽1= 0.9, 𝛽2= 0.999). 

The updates of m and v moments based on the equations above make them biased towards 

0, especially during the initial steps after they start from 0 values. To counteract these 

biases, ADAM uses bias-corrected first and second-moment estimates, which extend the 

moment updates from above with the following two updates: 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 
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𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 

Last, the bias-fixed  �̂�𝑡 and 𝑣𝑡 moments are used to update the given parameters θ as 

follows: 

𝜃𝑡 = 𝜃𝑡−1 − 𝑎 ·
�̂�𝑡

√𝑣𝑡 + 𝜀
 

Where 𝜀 is proposed by its authors to be equal to 10−8 and a = 0.001. 

 

Figure 2.5. Adam optimizer algorithm pseudocode for stochastic optimization from Kingma and Ba[50] 

2.4 Evolutionary Algorithms & Strategies 

2.4.1 Introduction to Evolutionary Algorithms & Strategies 

Evolutionary algorithms are algorithms that use evolutionary computation inspired by 

nature to solve different problems, usually Optimization problems More specifically, 

evolutionary algorithms simulate the process of natural selection and are an effective tool 

for discovering high-performing reinforcement-learning policies.  

Evolution strategies (ES) are a family of evolutionary algorithms that specialize in 

optimizing continuous spaces by sampling a generation (a population of solutions) and 

gradually moving the population toward areas of highest fitness.  

2.4.2 (µ/µ, λ)-ES 
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One canonical type of Evolutionary Strategy is the (µ/µ, λ) Evolutionary Strategy 

abbreviated as (µ/µ, λ)-ES, where a population of λ sample solutions is created, and then 

from the population, the µ most high-performing solutions are selected to generate new 

samples in the next generation. The speciality of the  (µ/µ, λ)-ES is that it recombines the 

µ best-sampled solutions through weighted average into one mean that describes the 

centre of the population distribution of the next generation.  Thus, in a few words, the µ 

best-sampled solutions will create the centre of distribution (mean value)  for the sampled 

solutions of the next iteration. This can be seen as moving the focus of exploration (centre 

of distribution) in the solution space towards areas with high-performing solutions, 

always based on the solutions that have already been discovered.  

2.4.3 CMA-ES 

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a particular type of 

the (µ/µ, λ)-ES. It is considered one of the most competitive derivative-free optimizers 

for single-objective optimization of continuous spaces [34]. CMA-ES models the 

sampling distribution of the population as a multivariate normal distribution N(m, C), 

where m is the distribution mean and C is its covariance matrix. There are two main steps 

in CMA-ES: the selection and ranking of the µ most high-performing solutions, which 

update the next generation’s sampling distribution, N (m, C). Last, CMA-ES maintains a 

history of aggregate changes to m called an evolution path, which helps search for 

solutions (similar to how momentum works in stochastic gradient descent). For a more 

in-depth explanation of the steps performed in CMA-ES, refer to the Hansen tutorial in 

CMA-ES [35]. 

2.5 Quality-Diversity Background 

2.5.1 Introduction to Quality-Diversity 

Quality Diversity (QD) Optimisation  (or illumination)  is a recent branch of  Evolutionary 

algorithms whose primary goal is to generate a large set of diverse solutions that satisfy 

two attributes: (a) All solutions produced are high-performing solutions (High Performing 

Solutions), and (b) the solutions created differ concerning a set of specific characteristics 

(Solutions Diversity). The assumption taken by QD algorithms is that solving those two 

problems together is likely to be faster than by independent constrained optimizations. 
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Based on the definition above, the overall performance of a QD algorithm is defined by 

scores on the quality of the produced collection of solutions according to: 

1) The coverage of the feature space (across which the diversity of the solutions is set).  

2) The uniformity of the feature space coverage.  

3) The performance of the solution found for each type of solution from feature space. 

 

QD algorithms are potent exploration algorithms that seem to efficiently solve sparse-

reward hard-exploration tasks in robotics [54]. In addition to that, Quality-Diversity (QD) 

algorithms have recently shown to be an auspicious and valuable tool in the field of 

robotics[55, 56], where these algorithms can be used to generate a repertoire of diverse 

and high-performing robotic skills, together with by solving a single instance of the QD 

problem. This repertoire can then be used for rapid adaptation to unknown mechanical 

damage [57, 3, 58] and coupled with planning algorithms to perform long-horizon tasks 

[57]. 

2.5.2 QD Problem Definition 

Quality Diversity considers an objective function 𝑓 ∶  𝑅𝑛 →  𝑅 in a continuous n-

dimensional space 𝑅𝑛And k behavioural functions  𝑚𝑖: 𝑅
𝑛 →  𝑅, or altogether a function 

𝑚:𝑅𝑛 → 𝑅𝑘 . Then considering that 𝑚(𝑅𝑛) = 𝐵 is the behavioural space with the 

behavioural function’s values; QD’s goal is to find a solution 𝐱  𝑅𝑛 for every 𝑏  B  

such that 𝑚(𝐱) = 𝒃 and 𝑓(𝐱) are maximized. 

The objective function f evaluates a solution (described by n parameters) for a specific 

problem and returns a value (named objective value) denoting how good the solution is 

for the particular problem. For example, in the scenario of teaching a robot to walk 

forward, a solution could be a policy on the robot's low-level movements in each situation. 

The objective function could be the distance the robot covers forward with a specific 

solution. The k behavioural functions or the combined single behavioural function give a 

collection of k values (or a vector of k values) for k characteristics of a solution and is 

called a behavioural or feature descriptor. In the example of the robot moving forward, 

the behavioural descriptor could be the energy consumed with the specific solution, the 

final state of the robot at the end, how much time each robot’s leg touches the ground on 



27 

 

average etc. Sometimes, the objective function and behaviour function can be seen as part 

of the same function, which is usually called an evaluation function. 

From the Evolutionary Algorithms’ jargon, a QD solution is called an organism, 

phenotype, or individual. A genome or genotype describes a solution, and it is the 

representation of the solution that is used in an algorithm to generate other solutions. The 

actions performed by the organism (=solution) are the organism’s behaviour, and they 

create what we defined previously as the behavioural descriptor. The performance of a 

QD Algorithm is called fitness, and the expression, simulation or function that gives the 

fitness value is called fitness function. 

2.5.3 QD and Illumination 

 

Fig 2.6. Difference between Global, Multimodal and QD (Illumination) Optimisation from Chatzilygeroudis, 

Cully, Vassiliades, and Mouret [2] 

With the introduction of the Multi-dimensional Archive of Phenotypic Elites (MAP-

Elites) algorithm, the concept of illumination, which was initially introduced in the field 

of evolutionary robotics (to encourage diversity in space), was introduced in QD, which 

made clearer the difference between Quality Diversity Optimisation and other 

Optimisation approaches. More specifically, MAP-Elites was the first algorithm in QD 

to be considered an “illumination algorithm”, a type of an algorithm that illuminates the 

fitness potential of each area of the feature space and takes into consideration tradeoffs 

between performance and the features of the solutions that we are interested in.  

The concept of the Illumination in QD  draws a harder line between what QD aims to do 

and what Global Optimisation and Multimodal Optimisation try to do. More specifically, 

Algorithms for global optimization aim to find a single global optimum of the underlying 

parameter space in interest. Multimodal optimization (MMO) algorithms can be 

considered an extension of Global Optimisation that aims at finding multiple optima of 

the parameter space. In contrast to those two approaches, Illumination algorithms, such 
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as MAP-Elites, aim at discovering significantly more solutions than Multimodal 

Optimisation, where each solution is the elite of some local neighbourhood defined in 

some feature space of interest. This process is like “illuminating” the feature space with 

the highest-performing solutions, thus called Illumination. 

 

2.5.4 Early QD Algorithms 

2.5.4.1 Random Sampling 

The most basic approach used by different fields of Sciences is Random Sampling, where 

you randomly choose from the solution space solutions to evaluate using the objective 

and behavioural functions. It is mainly used as a benchmark to compare it against new 

algorithms in different fields. 

2.5.4.2 Novelty Search + Local Competition (NS+LC) 

There are many ways to solve the QD problem, even using approaches from other 

Optimisation sectors, like Multimodal Optimisation and Multi-Task Optimisation, but 

there are a lot of specialities in the QD Problem that encourage new approaches. For 

example, finding the most high-performing solutions while preserving diversity in the set 

of the selected solutions. Regarding this matter in 2011,  Lehman and Stanley [5]  said 

that it is not fair to allow any solution to compete against any other solution based on the 

same performance objective for a position in the set of the selected ones. This appears 

because each solution may be associated with different interesting features (= different 

behavioural descriptors) and thus may be constrained to different values of a performance 

objective. It is like comparing a leopard with a turtle for speed. But the point here is that 

we are not interested only in the speed (=objective function) but in other characteristics 

of them as well so that to encourage diversity. 

Lehman and Stanley proposed the algorithm Novelty Search + Local Competition 

(NS+LC) [5] to promote diversity in the feature space (=behavioural space) but at the 

same time have each organism (=solution) compete on performance only with other 

organisms that are close to it in the feature space. NS+LC uses a multi-objective algorithm 

to accomplish two objectives: (1) maximise an organism’s performance with respect to 

its closest 15 neighbours in the feature space, and (2) maximise a novelty objective that 
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encourages diversity of organisms selected by rewarding organisms the further they are 

in feature space from their 15 closest neighbours. Maximizing an organism’s performance 

has two phases, one for local competition concerning an organism’s neighbours and a 

second for comparing the relative scores of organisms with their neighbours globally 

(=with all the other organisms), which is considered a global competition. 

NS+LS has its own drawbacks, including, firstly, a very costly search of neighbours of 

𝑛 ∙ 𝑙𝑜𝑔(𝑛) complexity [28]. Secondly, it could fall into a phenomenon called “cycling”, 

where it searches in the same place of the feature space twice or more consecutively. It 

can happen because of how it handles the already discovered solutions, the selected 

solutions (=in what is called archive) and a set of solutions, named population, used to 

generate new solutions for evaluation. Thirdly, it does not evenly and simultaneously 

search the feature space for new solutions. Instead, it focuses on exploring an area of the 

feature space with either many unexplored solutions or many high performing already 

discovered solutions. Anything in between them could be potentially skipped, and thus 

many interesting areas could be ignored, leaving them unexploited and unexplored. 

2.5.4.3 Multi-Objective Landscape Exploration (MOLE) 

Multi-Objective Landscape Exploration (MOLE) was introduced by Clune et al. [26] and 

is a multi-objective optimization search [27] that has two objectives: (1) find organisms 

with high performance, (2) each organism to be as far from others already discovered 

organisms as possible, where the distance is measured in user-defined Cartesian feature 

space with connection costs on the x-axis and modularity on the y-axis[26].  

A few things to note about MOLE are that it considers one global performance 

competition for all organisms. Thus, a few high-performing solutions will dominate the 

set with the selected solutions prohibiting other solutions with slightly less performance 

from being discovered and selected. Secondly, it does not evenly and simultaneously 

search the feature space for new solutions just like in NS + LS. Instead, it focuses on 

exploring an area of the feature space with either many unexplored solutions or many 

high performing already discovered solutions. Anything in between them could be 

potentially skipped, and thus many interesting areas could be ignored, leaving them 

unexploited and unexplored. 
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2.5.5 QD Framework 

Cully and Demiris [29] developed a Quality Diversity Optimisation framework to make 

the study and development of QD algorithms easier and more accessible. They discussed 

how two of the most well-studied QD algorithms (MAP-Elites and NS+LC) could be 

instantiated from the same high-level algorithm (Fig 2.5.5) with different choices in some 

of its main steps.  

 

Fig 2.7. Pseudocode Snippet of QD Optimisation Algorithm from Cully and Demiris [29] 

The introduced QD Optimisation high-level algorithm has three different operators via 

which QD algorithms can vary. (1) The data structure used to store the solutions 

discovered so far called container, (2) the way to generate new solutions from a set of 

solutions (population), called selection operator and (3) the type scores used inside the 

algorithm for the container and the selection operator called population scores. Despite 

this definition of the QD framework, there can be variations in other operators mentioned, 

like mutation or cross-over operators. Later we will see some latest examples of variation 

operators, including how differentiability can potentially help mutate individuals towards 

undiscovered and higher-performing solutions. Still, we stick to the latest updated QD 

framework mentioned in Chatzilygeroudis, Cully, Vassiliades & Mouret [2]. 

Choosing the types of components for those three parts instantiates a QD Algorithm that 

works as follows: 

Randomly initialize your initial values in the first iteration and repeat four steps until a 

stopping condition 
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1. Produce a new set of individuals (=solutions 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠) using the selector operator 

that will be altered to create new individuals (𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) 

2. Evaluate each individual from 𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 using an objective function to get its 

performance score (=objective value) and a behavioural function to get its 

behavioural descriptor 

3. Potentially add an individual generated to the container of individuals considering 

already added individuals to the collection and the scores of the individual 

4. Update the population scores 

Below you can see more details for each of the three main parts of a QD Algorithm 

2.5.5.1 Containers 

A container is an ordered collection used to store the best and most diverse solutions 

discovered by the QD Algorithm. 

2.5.5.1.1 N-dimensional grid structure 

The most popular type of container is the N-dimensional grid structure. This container 

discretises the whole Behavioural space (feature space) into a grid of cells, where each 

cell represents a different type of solution. Usually, this container stores a single solution 

per cell (e.g. used in MAP-Elites), but some implementations use more than one solution 

per cell, e.g. for multi-objective optimization or noisy optimization [30, 31]. 

2.5.5.1.2 Centroidal Voronoi Tessellation 

Centroidal Voronoi Tessellation (CVT) container was introduced in Vassiliades, 

Chatzilygeroudis, and Mouret [7] and is used in high-dimensional spaces where the N-

dimensional grid structure is impractical due to the great amount of computer memory 

required for storage (i.e. number of cells times the size of memory needed for storing 

solutions per cell is significant). 

Centroidal Voronoi tessellation Container uses the method from computational geometry 

with the same name to partition a high-dimensional space into well-spread geometric 

regions. Due to the complexity of constructing Voronoi tessellations to partition a space 

into geometric areas, it uses a simpler method based on Monte Carlo that applies an 

approach similar to k-means on a set of random points and random centroids. The latter 

process forces several centroids to be well spread in the feature space. Those centroids 
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can then be used as the geometric sites (i.e. the centres of the geometric regions similar 

to those returned from Centroidal Voronoi tessellation).  

2.5.5.1.3 Distanced-based archive 

The distanced-based archive keeps the solutions not ordered but in an unstructured array 

using the solutions’ behavioural descriptors and their Euclidean distance. The way that a 

solution is added to this archive is by examining whether the Euclidean distance of a 

given solution with another solution from the container is greater than a prespecified 

threshold (denoting that the solution is far away in the feature space from the solutions 

already discovered) or if it has better performance than its neighbours. 

2.5.5.2 Selection Operators 

Selection operators are responsible for generating new solutions based on a given 

population of solutions. Below you can see the most common ones. 

2.5.5.2.1 No Selection   

No Selection does not use the container to generate new solutions but directly samples 

new solutions from the solutions’ parameter space. 

2.5.5.2.2 Uniform Random Selection   

Uniform Random Selection samples uniformly new solutions from the solutions stored 

in the container. The new solutions are solutions from the container perturbed with noise. 

2.5.5.2.3 Score Proportionate Selection  

Score Proportionate Selection is an extension of random sampling approaches working 

on the container that applies score-based weighting on the selection. It biases the selection 

of new individuals based on a particular score called population score.  

2.5.5.3 Population Score 

In order to generate new solutions and maintain a container, a QD algorithm uses a 

population score. Evolutionary algorithms usually use the fitness score, which considers 

each solution's performance only. That is, the selection biases solutions with higher 

fitness (=performance). There is also the novelty score that favors solutions with greater 

distance (in feature space) from other solutions in a container. Moreover, the curiosity 

score estimates the propensity of a solution to generate solutions that are added to the 

container. Last, Go-Explore [32,33] introduced a new score that biases the selection 
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towards newly discovered solutions with the idea that newly discovered solutions contain 

interesting features that can lead to more unexplored regions in the feature space. 

2.5.6 Criteria for Measuring the QD Algorithms 

There are many different ways to quantify the quality of QD Algorithms. The most used 

measures for the performance of a QD algorithm focus on the produced collection of 

solutions and examine two different criteria:  

1. The performance of the solution found for each cell of the container (type of 

solution). This measures how much the solutions found were optimized. 

2. The coverage of the behaviour space (how much of the feature space is 

explored/covered). 

There are a lot of different specific measures that can be derived from those criteria, like 

Global Performance (highest performance of a solution found divided by the highest 

performance of a solution that is possible to be found in the defined space), Global 

Reliability (average across all cells of the division between the highest performing 

solution found for a cell by a specific algorithm and the highest possible performance of 

a solution that was ever found by any algorithm for that cell – all cells for which a solution 

was not found are considered as 0  ) and Precision (same as Global Reliability but does 

not include cells for which a solution was not found) [1]. 

2.5.7 The concept of Emitters 

The concept of Emitters in QD was Introduced by  Fontaine, Nikolaidis, Togelis and 

Hoover [6] with the proposal of the CMA-ME algorithm. An Emitter is an instance of a 

QD Algorithm that uses a specific selection operator (how to select new solutions at each 

iteration) and an adaptation rule (how to update/adapt the QD instance’s rule for selecting 

new solutions in the next iteration). Different QD Emitters can use different selection 

operators and/or different adaptation rules. Solutions generated by the emitters are saved 

in a single unified archive based on their corresponding behaviours.  

In general, the use of the selection operator and adaptation rule is defined with two 

methods following an ask-tell interface adopted from Pycma [66] and described below:  
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2.5.7.1 Ask 

The ask method of an emitter operates on an emitter and does not usually take any other 

argument except the emitter itself. It basically implements the selection operator. It 

interacts with an archive (container) to generate some solutions using a selection operator, 

and returns those solutions. The ask method can be specified on each emitter, and it can 

perform different operations for each emitter. 

2.5.7.2 Tell 

 This method is used to provide feedback to the selector operator and adapt its rules so 

that to guide the selector operator towards better solution generation in the next iteration. 

This adaptation mechanism, includes updating the archive (=container) based on the 

solutions given as argument, and using a policy for adding solutions to the container with 

the help of a population score. The tell method usually takes as arguments some solutions 

(e.g. the solutions given from the ask method), the performance of each solution 

(objective values) and the behavioural descriptor of each solution (and, of course, the 

emitter it operates on).  Like the ask method, the tell method can be specific on each 

emitter and can perform different operations for each emitter. 

2.5.8 Quality-Diversity Emitters/Algorithms 

There are different QD Algorithms developed, as well as variations of them. Here we will 

describe the most used ones in the literature on QD. 

2.5.8.1 MAP-Elites 

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is the first of the simplest 

and most well-studied QD algorithms that were also the first to introduce the concept of 

Illumination. It was inspired by Novelty Search + Local Competition (NS+LC) [5] and 

the Multi-Objective Landscape Exploration algorithm (MOLE) [26].  In a few words, 

MAP-Elites generates a large diversity of high-performing solutions that are different 

according to specific features of interest. MAP-Elites explores more of the available 

solutions search space, and it tends to find a better overall solution than state-of-the-art 

search algorithms. Because of Isotropic Gaussian Distribution in its core, it is also called 

MAP-Elites Iso to differentiate it from other variations. 
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Figure 2.8. MAP-Elites pseudocode from Mouret and Clune [1] 

 

MAP-Elites is quite simple, both conceptually and to implement. The pseudocode of the 

algorithm can be seen above.  

2.5.8.1.1 Algorithmic Decisions 

Initially, for the algorithm to work, three decisions need to be made, described in the next 

three steps: 

First, a user chooses an objective function f(θ) that evaluates the performance of a solution 

θ. For example, if searching for robot morphologies, the objective function could be how 

fast the robot is.  

Second, the user chooses the features of the solutions (N dimensions of solution variation) 

to define the feature space. One feature (dimension of interest ) for robot morphologies 

could be how tall the robot is; another could be its weight, a third could be its energy 

consumption per meter moved, etc. Using those features, we can define a behavioural 

function m(θ) to return a 1-d vector of length N representing the solution's features. 

Third, each feature (dimension of variation) is discretized based on user preference or 

available computational resources. This granularity could be set manually or 

automatically based on the available resources. For instance, if we have a feature space 

defined by two features taking values between 0 and 1 inclusive, and we wanted to use 

the n-dimension grid container, we could describe each dimension with ten cells. Thus 10 

times 10  for both dimensions would give us 100 different behavioural descriptors (cells 

representing a different combination of the two features in the feature space) to discretise 

the feature space.  
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2.5.8.1.2 Mapping Solutions Descriptions to Solutions 

Before we dive into the main steps of the algorithm, there are two things to consider:  

First, Given a particular discretization, MAP-Elites searches for the highest performing 

solution for each cell in the N-dimensional feature space. For example, MAP-Elites will 

search for the fastest robot that is tall, heavy, efficient etc. The search is done in the space 

of the descriptions of solutions, referred to as a search space. In our example, the search 

space contains all possible descriptions of robot morphologies (note that we search the 

space of descriptions of robot morphologies and not directly the morphologies or the 

feature space). Using the Evolutionary jargon, the description of the robot morphology is 

a genome or genotype, and the robot morphology itself is the phenotype, or px.  

Second, there are two main ways two map genotypes (descriptions of solutions) to 

phenotypes (actual solutions). Using direct encoding, in which each element in the 

genome specifies an independent component of the phenotype [36, 37, 38]. In that case, 

it is straightforward to map genotypes into phenotypes and then measure performance 

and features (evaluating the phenotype in a simulator or the real world if necessary). 

Using indirect encoding, also known as generative or developmental encoding, in which 

information in the genome can be reused to affect many parts of the phenotype. The latter 

showed that they could improve regularity, performance, and evolvability [36 - 45 ]. In 

other words, a complex process can exist that maps genome x → to phenotype px → to 

features bx and performance fx.  

2.5.8.1.3 Main Algorithm 

MAP-Elites starts by randomly generating λ genomes (created from a fixed distribution 

θ ∼ N (0, I) where I is the covariance matrix of the distribution restricted to a 

multiplication between a scalar 𝜎2 and an identity matrix 𝐼 ; in this case 𝜎2 is 1) and 

determining the performance and features of each of them using the objective and 

behavioural functions, respectively. In random order, those genomes are placed into the 

cells to which they belong in the feature space. In the case when multiple genomes map 

to the same cell, the highest-performing genome per cell is retained (there are also 

variations of this step that can allow more than one). At that point, the algorithm is 

considered fully initialized and repeats the following steps until a termination criterion is 

reached.  
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(1) λ cells in the feature map are uniformly randomly selected,  and the genomes of those 

cells produce offspring’s via mutation and/or crossover. Each genome selected is 

perturbed with a fixed-variance σ isotropic Gaussian noise. If θ is a chosen solution, then 

the solution generated from that solution is going to be 𝜃′ =  𝜃𝑖  +  𝜎 · 𝑁 (0, 𝐼). 

(2) The features and performance of the offspring solutions are determined with the use 

of the behavioural and objective functions, and for each offspring solution, (a) if its 

corresponding cell is empty, the offspring is placed in the cell, or (b) if the offspring is 

higher-performing than the current genome stored in the cell, then the latter is replaced 

(discarded from the container) by the former. 

There are a lot of conditions that can be used as termination criteria, such as if a set 

amount of time expires, a fixed amount of computational resources are consumed, or 

some property of the archive is accomplished (e.g. percentage of the container’s cells 

being filled).  

2.5.8.1.4 MAP-Elites Details 

MAP-Elites does not guarantee to fill all the cells in the feature space because: 

 (1) There may be no genome that maps to a particular cell in the feature space. For 

example, it may be impractical for a robot to have a certain height and weight (i.e. due to 

laws of nature).  

(2) Even if a genome exists for a specific cell of the feature space, the algorithm may not 

generate a genome for that cell.  

Moreover, MAP-Elites can map many genotypes to the same cell in the feature space. In 

reality, there might be an infinite number of genotypes for some or all cells of feature 

space. For example, many different blueprints of robot morphology can produce a robot 

with the same height, weight, and energy consumption. Thus, because of this difficulty 

in understanding with certainty which cells of the feature space will be filled with 

genomes, it is not possible to consider searching the feature space directly. 

2.5.8.2 MAP-Elites (Iso-LineDD) 

Multi-dimensional Archive of Phenotypic Elites with Isotropic and line Distance-

Dependent variation is a variation of MAP-Elites that differs only on the variation step. 

More specifically, it picks two genotypes from the container (instead of one) and mutates 
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one of them using Isotropic Gaussian Noise (just in MAP-Elites) plus the distance 

between those two genotypes (their distance simulates the correlation between the two 

solutions). Below we describe in depth some concepts and, finally the Iso-LineDD 

variation operator. 

2.5.8.2.1 Elite Hypervolume 

Vassiliades and Mouret [19] supported that all the high-performing solutions (named 

elites) of the search space, as found by MAP-Elites, are likely to be concentrated in a sub-

part of the genotypic space. This statement was derived from the observation that many 

genotypes can be mapped to the same behavioural cell in the feature space because the 

relationship between a genotype and its behaviour can be non-linear. Thus high-

performing solutions can be located around the same area. Therefore, they introduced the 

“elite hypervolume”, describing this subpart of genotypic space that can be seen in the 

image below.   

Mathematically, an Elite Hypervolume H is the subset of the n-dimensional valued 

genotype space, assumed symbolized X (H  ⊂ X), that encloses a set of m individuals, 

E, each of them being the  highest-performing solution (i.e. an elite) of its 

corresponding are/niche in the feature space (= behaviour space): 

𝐸 = {a𝑟𝑔 max
𝑥1

𝑓(𝑥1) , … , a𝑟𝑔 max
𝑥𝑞

𝑓(𝑥𝑞)} ⊆ 𝐻  𝑠. 𝑡.  𝑥𝑖 ∈ 𝐶𝑖 

Where 𝐶𝑖  ⊂ 𝑋, and 𝐶𝑖 is the subset of the genotype space that corresponds to the ith 

region in feature space, for i = 1 … m, m  ≤ k (k is the niche capacity).  

The goal of an Illumination algorithm with the Elite Hypervolume is to find the set E 

since finding the H is computationally expensive. 
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Fig 2.9. The concept of Elite Hypervolume from Vassiliades and Mouret [19] 

 

2.5.8.2.2 Directional Variation 

Vassiliades and Mouret [19] used the idea of elite hypervolume to support that if we 

assume that we have two genotype elites that share a large part of their genome (part of 

their solutions’ descriptions is similar), then we could bias the variation operator 

(variation operator applied on genotypes) to guide the genome generation towards 

producing new candidates in the elite hypervolume, and thus finding other elites more 

efficiently. 

These similarities between different genotype elites can be extracted by extracting 

correlations on the level of the genotypes and then sampling new genotypes based on 

those correlations. For example, such a way of generating new genotypes can be done 

using a multivariate Gaussian distribution N (µ, Σ), where the covariance matrix Σ models 

the correlations. 

Below you can see three different ways of sampling new genotypes using genotypes’ 

similarities even with the way mentioned above. The different approaches can create a 

different variation operator for a QD Algorithm. Below you can see a description of three 

of them from Vassiliades and Mouret [19]: 
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2.5.8.2.2.1 Iso 

Use an Isotropic Gaussian distribution to sample new elites around one genotype. The 

second elite is not used. This selection operator is the one used by the MAP-Elites. 

2.5.8.2.2.2 LineDD  

Distance-Dependent line variance (LineDD) uses the correlation between two elites and 

samples a new elite around the first genotype but only across the line that connects the 

two elites. 

2.5.8.2.2.3 Iso + LineDD 

It is a combination of  Iso + LineDD operators that generates a new elite from a two-

parent elite by sampling a new elite around the first elite using Isotropic Gaussian 

distribution biased towards the direction of correlation of the second elite thus taking into 

consideration the correlation between those two elites.  

More specifically, this selector operator works as follows: 

1) Select uniformly randomly two elite genotypes 𝑥𝑖 and 𝑥𝑗 from the container. 

2) Generate a new genotype as follows: 

𝑥𝑖
′ = 𝑥𝑖 + 𝜎1 · 𝑁(0, 𝐼) + 𝜎2 · (𝑥𝑗 − 𝑥𝑖) · 𝑁(0,1) 

Note that the direction used here is considered positive 𝑥𝑗 − 𝑥𝑖, whereas we could also 

use a negative direction, that is, 𝑥𝑖 − 𝑥𝑗 in the equation above. 

  

Fig 2.10. Variation Operators that use the Direction Correlation between two elites to bias the variation of one 

of them from Vassiliades and Mouret [19] 
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Note that, in the variation operators mentioned above, we used the word elite referring to 

elites of Elite Hypervolume because those three variation operators were a discussion on 

why Iso+LineDD could perform better especially when used on an Elite Hypervolume.  

2.5.8.3 CMA-ME 

Covariance Matrix Adaptation MapElites (CMA-ME) is a scheduling algorithm that 

combines MAP-Elites and CMA-ES for an improved search of solutions in search space. 

CMA-ME introduced the concept that the emitters discussed above can be defined using 

specific types of emitters that are an extension of CMA-ES instances.  

To clarify how CMA-ME is an emitter that uses emitters, consider the pseudocode below 

of the general structure of CMA-ME. That is, CMA-ME generates solutions in search 

space in a round-robin fashion. The solutions are generated using emitters. Each solution 

is generated in the same way for all emitters by sampling from the distribution N(m, C). 

The method generate_solution below is the ask method from the Emitters framework 

above, and it operates in the same way for each emitter working with. 

On the other hand, the method return_solution is the tell method from the Emitters 

framework above and represents the procedure for adapting the sampling distribution(the 

Covariance Matric of distribution N(m, C)) of an Emitter and maintaining the sampled 

population for further processing in next iterations. Here the tell method depends on the 

type of each emitter since it requires different operations per Emitter. 

There are three different types of CMA-ME Emitters: Improvement, Optimising and the 

Random Direction, all of which are discussed in detail below. 
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Fig 2.11. Pseudocode Snippet of general CMA-ME from Fontaine, Nikolaidis, Togelis and Hoover [6] 

2.5.8.3.1 CMA-ES Instances vs CMA-ME Emitters 

An optimizing Emitter is an extension of a CMA-ES instance that uses the CMA-ES 

instance according to a rule for ranking solutions to  Each emitter maintains a sampling 

mean m, a covariance matrix C, and a parameter set P that contains additional CMA-ES 

related parameters (e.g., evolution path). One of the differences between Emitters and 

CMA-ES instances is that CMA-ES instances increase the likelihood of successful future 

evolution steps, whereas CMA-ME Emitters take an additional step to what a CMA-ES 

instance does by adjusting the ranking rules that guide which solutions are updating the 

container should be used to update the Covariance Matrix of a CMA-ES Instance used by 

the Emitter. This guided update of the Covariance Matrix is done to maximize the 

likelihood that future steps in a given direction will result in archive improvements. 

Another difference is that while CMA-ES restarts its search based on the best current 

solution, emitters rank the solutions that will update the container based on specific to 

each Emitter rules that guide when the search will be restarted and when the sampling 

distribution of a CMA-ES instance should be adapted. 

 

2.5.8.3.2 Improvement Emitter 

Improvement emitters adjust their goals based on where progress (improvement in the 

performance of the archive) is currently being made. The pseudocode above shows the 

implementation of the return_solution (method tell of the CMA-ME Emitter).  

At each iteration, solutions are generated from distribution N(m, C), and each of them is 

given to the tell function of the emitter (return_solution method as appears in the 

pseudocode above). Each solution given to the return_solution method is mapped to a 

behaviour 𝛽𝑖 and a cell 𝛭[𝛽𝑖] in the archive (container or map). If the cell is empty (line 

2), or if 𝛽𝑖 has higher fitness than the existing solution in the cell (line 6), 𝑥𝑖 is added to 

the new generation’s parents, and the container (=archive) is updated. Note that each 

solution's improvement to the archive is recorded (lines 4 and 7).  The process repeats 

until the generation of solutions 𝑥𝑖 reaches size λ (line 9), where the emitter is adapted. 

When the time to adapt the Emitter comes, if there are parents that improved the archive, 

all the parents are ranked before being given to update the Emitter’s m, C and P 

parameters. They are ranked firstly based on whether they fill a new cell, then by whether 
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they improve an existing one and last by not changing anything. Each of those groups is 

ranked in descending order by the improvement in the objective value that they provided 

to the archive when they were added to the archive (i.e. ranked by the difference between 

their performance and the performance of the solution occupying the cell they refer to in 

the container; if the cell is not occupied then the performance of the parent is considered 

only) (line 11). If, at an iteration, the parents do not improve the map, the emitter 

restarts(line 15). 

 

Fig 2.12. Pseudocode Snippet of CMA-ME Improvement Emmiter’s tell (here called return_solution) method 

from Fontaine, Nikolaidis, Togelis and Hoover [6] 

 

2.5.8.3.3 Optimising Emitter 

Optimising Emitter is an exploration to ask the question of whether the restarts alone in 

CMA-ES are enough to promote good exploration as they are in multi-modal methods 

[6].  
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Overall, at each iteration, solutions are generated from distribution N(m, C), and then the 

solutions that will update the Emitter later are the ones that improve the archive (fill an 

empty cell of the container or replace a solution in a cell with a more high-performing 

solution). Those solutions are recorded and used when λ such solutions are collected to 

update the parameters m, C and P of the Emitter. Before they update the Emitter, they are 

ranked in descending order by their performance (objective values), prioritising the 

solutions that fill empty cells in the archive. This can be thought of as going toward areas 

in the space with high-performing solutions that are likely to discover new solutions but 

not necessarily improve existing archive cells. 

The only conceptual difference with a CMA-ES instance is that when the Emitter is 

restarted, the mean m of the distribution N(m, C) selected is chosen from the location of 

an elite rather than the fittest solution discovered so far. 

2.5.8.3.4 Random Direction Emitter 

Random direction Emitter tries to perform a “random walk” in the feature space to find 

high-performing solutions. This means that it operates a search in the feature space. But 

doing so poses the issue of working with a non-linear encoding or mapping from solutions 

(genotypes) to behavioural descriptors, thus making the exact calculation of the inverse 

mapping from a behavioural descriptor to the right solution very difficult or even 

impossible. Random direction emitter is designed to estimate this inverse encoding of this 

correspondence problem.  

In general, at each iteration, solutions are generated from the distribution N(m, C), and 

the solutions that will update the Emitter later are the ones that improve the archive (fill 

a new cell of the container or replace a solution with a more high-performing solution). 

Those solutions are recorded and used when λ such solutions are gathered to update the 

parameters m, C and P of the Emitter. Before they update the Emitter, they are ranked in 

descending order based on their projection value (dot product between a behaviour 

descriptor of a solution and a bias vector denoting the direction which is defined when 

initializing or restarting the CMA-ES instance), giving priority first to the solutions that 

fill empty cells in the archive. 

More specifically, when a Random Direction Emitter restarts, it emulates a step in a 

random walk by selecting a bias vector 𝑣𝛽 that indicates a random direction to move 
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toward in behaviour space. At later iterations (where a restart does not happen) and when 

having accumulated λ solutions that improve the archive (parents of the next generation), 

this random direction selected is enforced by creating a new covariance matrix for the 

CMA-ES instance such that it biases the search in the direction 𝑣𝛽 . To create this new 

covariance matrix, solutions 𝜃𝑖 from the search, space is mapped to behaviour space 𝛽𝑖. 

The mean 𝑚𝛽 of the behaviour descriptors of the λ parents is calculated in behaviour 

space, and each direction of the parents’ behavioural descriptors with respect to the mean 

is calculated. The parents used to update the Emitter are ranked by their projection value 

(dot product between behaviour descriptor and the bias vector 𝑣𝛽) against the line 𝑚𝛽 +

𝑣𝛽. If, at an iteration, none of the solutions examined to improve the archive, the emitter 

restarts from a randomly chosen elite with a new bias vector 𝑣𝛽.  

2.5.9 Differentiable Quality-Diversity (DQD) 

Differentiable Quality Diversity (DQD) Optimisation is an extension of Quality Diversity 

concerned with how the gradients of the objective and behavioural functions can help 

guide the search for high-performing yet qualitatively diverse solutions in QD. It was 

introduced by Fontaine and Nikolaidis [4]. 

2.5.9.1 DQD Problem Definition 

To help define the DQD problem, let us relax some constraints of the general  QD 

Problem first. First of all, let us consider that the feature space (or behaviour space) B  

𝑅𝑘 is discretised (defined above in the containers section and used for the first time in 

MAP-Elites) via a tessellation method. Let us call T the tessellation of B and let us assume 

that the tessellation T has M unique cells. In each cell i a solution 𝜃𝑖 can be stored. The 

occupants of the cells in T at any single moment form an archive of solutions. Each 

solution can be evaluated using an objective function f(𝜃𝑖) that measures its performance 

and a behavioural function m(𝜃𝑖) that provides its features or behaviour descriptors that 

determine its cell position in the Tesselation T. Thus, the goal of QD is to find a set of 

solutions 𝜃𝑖 , i ∊  {1, … ,M}, such that each 𝜃𝑖 occupies one unique cell in T and that each 

solution maximises the objective value of its cell in the archive: 

𝑚𝑎𝑥 ∑𝑓(𝜃𝑖 )

𝑀

𝑖=1
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Using this relaxed definition of QD, the DQD problem is defined as a QD problem where 

both the objective function f and the behaviour function m are first-order differentiable. 

2.5.9.2 Gradient Arborescence 

The idea of Gradient arborescence is similar to the idea of gradient ascent. It makes 

greedy ascending steps based on the objective function f. In addition to the ascending 

steps trend towards higher objective values, gradient arborescence, unlike gradient ascent,  

encourages exploration by branching via the behavioural function m. Note that there is 

no meaning of ascending or descending with the behavioural function m since the goal is 

not maximisation nor minimization of a function, but instead an exploration of its value 

space. The term arborescence was adopted from the minimum arborescence problem in 

graph theory [48]. 

2.5.9.3 DQD Emitters/Algorithms 

2.5.9.3.1 OMG-MEGA  

Objective and Measure Gradient MAP-Elites via Gradient Arborescence (OMG-MEGA) 

is the exploitation of the gradients of an objective function f and a behaviour function m 

that are first-order differentiable derived in MAP-Elites. 

The idea is that maximizing a linear combination of scalar behavioural functions (also 

called here measures) ∑ 𝑐𝑗
𝑘
𝑗=1 𝑚𝑗(𝜃), where c is a k-dimensional vector of coefficients  

(or otherwise maximizing the dot product of a vectorized behavioural function m with a 

vector of coefficients c: 𝑚 · 𝑐) enables movement in a k-dimensional feature space. 

Including the objective function f in the linear sum enables movement in an objective-

measure space. Thus, the problem can be considered maximizing the following function: 

𝑔(𝜃) = |𝑐0|𝑓(𝜃) + ∑𝑐𝑗

𝑘

𝑗=1

𝑚𝑗(𝜃) 

Note that the coefficient in front of the objective function needs to be positive so that 

maximizing g will result in maximising g (and not minimising). The direction in the 

feature space is determined by the sign and magnitude of the coefficients 𝑐𝑗. 

Based on this maximization problem, a gradient function can be derived that can be used 

to perturb a solution θ (in the variation operator). This gradient function is: 
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∇g(𝜃) = |𝑐0|∇𝑓(𝜃) + ∑𝑐𝑗

𝑘

𝑗=1

∇𝑚𝑗(𝜃) 

Thus, the gradient perturbation/variation of a solution 𝜃𝑖 is defined as: 

𝜃′ = 𝜃𝑖 + ∇g(𝜃𝑖) = |𝑐0|∇𝑓(𝜃𝑖) + ∑ 𝑐𝑗

𝑘

𝑗=1

∇𝑚𝑗(𝜃𝑖) 

The coefficients c are sampled from 𝑁(0, 𝜎𝑔𝛪). Last, the gradients are normalized to 

balance the contribution of each function. 

Below you can see more information on how this variation operator can be used in MAP-

Elites creating two variations of DQD Algorithms. 

2.5.9.3.1.1 OMG-MEGA (iso) 

The algorithm works similar to the MAP-Elites with Isotropic Gaussian distribution. It 

repeats the four steps below until a termination condition: 

1. Initially, the algorithm selects λ solutions from container and perturbs them with 

Isotropic Gaussian noise. 

2. It derives each solution's objective value and behaviour descriptor by evaluating 

it with the objective and behavioural functions, respectively. It also derives the 

derivatives of the objective function f and the behavioural function m with respect 

to each solution, vectors ∇𝑓and ∇m, respectively. 

3. Uses the gradient perturbation for OMG-MEGA above to create a new solution 

for each of the initial λ solutions. 

4. Stores the original λ solutions as well as the perturbed ones in the container. 

2.5.9.3.1.2 OMG-MEGA (line) 

The algorithm works exactly as the OMG-MEGA (iso), with the only difference the step 

1, where instead of Isotropic Gaussian distribution, it uses the selection operator with Iso 

+ LineDD. 

2.5.9.3.2 OG-MAP-Elites 

Objective Gradient MAP-Elites (OG-MAP-Elites) operates only on performing 

ascending steps on the objective function and not using the gradients of the behavioural 

function to explore the feature space. Thus, the maximization is done on the function: 
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𝑔(𝜃) = |𝑐0|𝑓(𝜃) 

 

And therefore, the gradient perturbation/variation of a solution 𝜃𝑖 is defined as: 

𝜃′ = 𝜃𝑖 + ∇g(𝜃𝑖) = |𝑐0|∇𝑓(𝜃𝑖) 

2.5.9.3.2.1 OG-MAP-Elites (iso) 

The algorithm works exactly as OMG-MEGA, but instead of considering the derivatives 

of both the objective and behavioural functions, it only considers the ones for the 

objective function. Other than that, they are exactly the same.  

Initially, the algorithm samples λ solutions from Isotropic Gaussian distribution. It repeats 

the four steps below until a termination condition: 

1. It derives each solution's objective value and behaviour descriptor by evaluating 

it with the objective and behavioural functions, respectively. It also derives the 

derivatives of the objective function f, vector ∇𝑓. 

2. Uses the gradient perturbation for OG-MEGA above to create a new solution for 

each of the initial λ solutions. 

3. Stores the original λ solutions as well as the perturbed ones in the container. 

4. Stores the original λ solutions as well as the perturbed ones in the container. 

2.5.9.3.2.2 OG-MAP-Elites (line) 

The algorithm works exactly as the OG-MEGA (iso), with the only difference the step 1, 

where instead of Isotropic Gaussian distribution, it uses the selection operator with Iso + 

LineDD. 

2.5.9.3.3 CMA-MEGA 

Covariance Matrix Adaptation MAP-Elites via a Gradient Arborescence (CMA-MEGA) 

uses Gradient Arborescence in the same way as OMG-MEGA, but in addition to that, it 

uses CMA-ES to optimise the c coefficients of the g(θ) sum so that to search for high-

performing solutions and improve the exploration of the feature space. 

More specifically, the goal remains the same as in CMA-MEGA. To maximise the 

following sum: 
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𝑔(𝜃) = |𝑐0|𝑓(𝜃) + ∑𝑐𝑗

𝑘

𝑗=1

𝑚𝑗(𝜃) 

Where ∑ 𝑐𝑗
𝑘
𝑗=1 𝑚𝑗(𝜃) enables movement in a k-dimensional feature space and |𝑐0|𝑓(𝜃) 

enables movement in objective space. The c are coefficients that are adjusted using CMA-

ES. From the function above, the following gradient equation can be derived: 

∇g(𝜃) = |𝑐0|∇𝑓(𝜃) + ∑𝑐𝑗

𝑘

𝑗=1

∇𝑚𝑗(𝜃) 

Thus, the gradient perturbation of the solutions using the gradient equation is: 

𝜃′ = 𝜃𝑖 + ∇g(𝜃𝑖) = |𝑐0|∇𝑓(𝜃𝑖) + ∑ 𝑐𝑗

𝑘

𝑗=1

∇𝑚𝑗(𝜃𝑖) 

In OMG-MEGA, the coefficients c in the equations above are sampled from a fixed 

Gaussian distribution 𝑁(0, 𝜎𝑔𝛪). The idea of CMA-MEGA is to adapt those coefficients 

to help both the exploration of the feature space and the search for high-performing 

solutions.  

Thus the selection of coefficients c is considered an optimization problem with the goal 

of maximizing the QD objective: 

𝑚𝑎𝑥 ∑𝑓(𝜃𝑖 )

𝑀

𝑖=1

 

 

The coefficients c  are modelled as a distribution of a k + 1-dimensional Gaussian N (µ, 

Σ). Given those Gaussian distributions and a solution θ, the coefficients can be sampled 

from the distribution c ∼ N (µ, Σ), and can be used to perturb θ using the gradient 

perturbation above. Last, the N (µ, Σ) Gaussians are adapted towards the direction of 

maximum increase of the QD objective.  

The way N (µ, Σ) is updated is: Sample a population of λ coefficients from 𝑐𝑖 ∼ N (µ, Σ) 

and generate λ solutions 𝜃𝑖 using the gradient perturbation. Then compute 𝛥𝑖 from CMA-

ME’s improvement ranking (𝛥𝑖 is the improvement that each solution adds to a cell of 
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the archive; the same approach as the CMA-ME Improvement Emitter) for each candidate 

solution 𝜃𝑖. Update N (µ, Σ) with CMA-ES update rules for the ranking 𝛥𝑖 To dynamically 

adapt the distribution of coefficients c to maximize the QD objective. 

 

Fig. 2.13: Overview of CMA-MEGA from Fontaine and Nikolaidis [4] 

The figure below shows the pseudocode for CMA-MEGA. In line 3, a current solution is 

evaluated, returning an objective value f, vector of behaviour values m, a gradient vector 

for the objective function (gradient of a function with a vector as input and a scalar as 

output) and a Jacobian matrix for the behaviour function (gradient of a function with a 

vector as input and a vector as output).  The objective and behaviour gradients are 

normalised for stability (line 4). Then a solution is added to the archive (line 5) only if 

the solution discovers an empty cell in the archive or if it improves an existing cell. The 

feature space is tessellated, and thus the behavioural function m places a solution θ into 

one of the M cells of the archive. In line 7, a population of λ coefficients is sampled from 

a multi-variate Gaussian retained by CMA-ES. In lines 8-9, the solutions are perturbed 

using the gradient perturbation equation described above. Then the perturbed solutions 

are evaluated (line 10) and added to the archive (line 11). Note that adding the new 

solutions to the archive includes computing the improvement that each solution adds to 

its cell in the archive. This improvement 𝛥𝑖 is the difference in the objective value 

between the sampled solution 𝜃𝑖  and the existing solution, if one exists, or as the absolute 

objective value of the sampled solution if 𝜃𝑖 belongs to an empty cell. In line 13, those 

improvement values are used to rank the sampled gradients ∇𝑖. As in CMA-ME, the 

ranking prioritises first all samples that discover new cells and subsequently all samples 

that improve existing cells, retaining an in-class descending order by their improvement 

value 𝛥𝑖.  Then an ascending gradient step is computed as a linear combination of 

gradients (line 14), following the recombination weights wi from CMA-ES [35] based on 

the computed improvement ranking. These weights correspond to the log-likelihood 
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probabilities of the samples in the natural gradient interpretation of CMA-ES [49]. 

Afterwards, in line 16, CMA-ES adapts the multi-variate Gaussian parameters μ and Σ as 

well as internal search parameters p of the Emitter, using the improvement ranking of the 

coefficients.  

2.5.9.3.4 CMA-MEGA (ADAM)  

The only difference between CMA-MEGA and CMA-MEGA(ADAM) is in the use of 

the ascending gradient step. That is, the ascending gradient step computed in line 14 and 

used in line 15 is now used in an Adam gradient optimization step [50] that replaces line 

15. 

Fig. 2.14: Pseudocode of CMA-MEGA from Fontaine and Nikolaidis [4] 

2.5.9.4 Importance of Normalizing Gradients in DQD 

Fontaine and Nikolaidis [4] showed with experiments that using unnormalized gradients 

is likely to allow the objective gradients to dominate over behaviour gradients and for 

positions in feature space far ay from an optimum. This was observed with OMG-MEGA 

Emitter that when was used with unnormalised gradients, it filled cells near the global 

optimum but did not fill cells further below in the feature space to positions with lower 
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objective values. In contrast, when it was used with normalized gradients, it could fill the 

archive more evenly. 

 

 



53 

 

Chapter 3 

Domains 

 

3.1 Rastrigin Function with a simple encoding .................................................................... 53 

3.2 Rastrigin Function with Distorted Behavior Space ........................................................ 54 

3.3 Arm Repertoire .............................................................................................................. 56 

 

A QD problem requires an objective and a behavioural function. Each objective and 

behavioural function selection can define a different domain. Initially, we conducted our 

experiments on three toy domains (i.e. experimental domains with relatively simple 

functions) which we define below: 

3.1 Rastrigin Function with a simple encoding 

3.1.1 Objective Function – rastrigin(x) 

We used the Rastrigin function (2.1.15); which takes as input a vector of n values; as an 

objective function with the additional modifications: 

1. The Rastrigin function is shifted so that the optimal value is at x = 2.048. This is 

done to avoid having the global minimum point of the rastrigin function at 

position x’ = [0,0,0,...,0], i.e. f(0,0,0,...,0) = 0 because the position x’ = [0,0,0,...,0] 

is usually used as an initial point for the search. 

2. We flip the function up-side-down so that the problem becomes a maximization 

problem (because Rastrigin is used in minimization problems), and we normalize 

its output value between 0 and 100 (inclusive) by considering that the maximum 

output it can have is 0 (best solution) and the minimum (worst solution) to be at 

the value of the Rastrigin function at -5.12 minus the shift (=2.048). 

Refer to A.1.1 for the implementation of the objective function. 

3.1.2 Behaviour Function – b_simple(x) 
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The behaviour function is defined using a simple encoding from a description of a 

solution (genotype) to the behaviour descriptor. From a genotype x described by a vector 

< 𝑥1, 𝑥2, … , 𝑥𝑛 > the behavioural function returns as a behavioural descriptor of the 

genotype a vector containing the first two entries of the genotype’s vector; i.e. < 𝑥1, 𝑥2 >. 

The partial derivative of the b_simple function with respect to a genotype vector <

𝑥1, 𝑥2, … , 𝑥𝑛 > is the Jacobian matrix  

[
1 0      0 …   0 
0 1      0 …   0

] 

Note that the boundaries of the behavioural space are [0,1] for each dimension of the 

behavioural space.  

For the implementation of this function, please refer to section A.1.2 (Appendix A). 

3.2 Rastrigin Function with Distorted Behavior Space 

3.2.1 Objective Function – rastrigin(x) 

The same as was defined in section 3.1.1.1. 

3.2.2 Behaviour Function – b_distorted(x) 

This behaviour function aims to introduce a high degree of distortion in the behaviour 

space. Distortion in a behaviour space is caused by dimensionality reduction from search 

space to behaviour space. The dimensionality reduction does not need to be complex. A 

linear projection from a high-dimensional search space to a low-dimensional behaviour 

space distorts the distribution of solutions in behaviour space pretty well. The behavioural 

function b_distorted(x) is defined with the help of a clip function: 

𝑐𝑙𝑖𝑝(𝑥𝑖) = {

𝑥𝑖 𝑖𝑓 − 5.12 ≤ 𝑥𝑖 ≤ 5.12
5.12

𝑥𝑖
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

And the b_distorted(x) is defined as: 

b_distorted(x)  =  (∑𝑐𝑙𝑖𝑝(𝑥𝑖),

⌊
𝑛
2
⌋

𝑖=1

∑ 𝑐𝑙𝑖𝑝(𝑥𝑗)

𝑛

𝑗=⌊
𝑛
2
⌋+1

) 
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Note that the partial derivative of the function for any value of the input values in [−5.12, 

5.12] is 1.  

What makes this behavioural function more difficult for a QD algorithm to navigate in 

the behavioural space defined by it is that the behavioural descriptors of a solution are 

computed from all the parameters of the solution’s descriptions and not a subpart of it 

like in the 3.1.2. In addition to this, when a solution description’s parameters contribute 

equally to the definition of a behavioural descriptor (i.e. are equal), then a QD Algorithm 

needs to move in a direction in the search space, taking into consideration potentially 

updating all of the parameters so that to navigate to extremes in the behaviour space. That 

is, there are more parameters to be updated to navigate in the behaviour space. The 

difficulty becomes bigger as the size of the problem becomes bigger, i.e. the number of 

the Rastrigin function’s dimensions increases. This can be seen from the observation that 

when sampling uniformly randomly solutions from the search space and projecting them 

to the behaviour space, each behavioural descriptor is the sum of n uniform random 

variables that, when divided by n for normalization between 0 and 1, result in the Bates 

Distribution shown in the figure below. This observation and the behaviour function were 

first introduced in Fontaine, Nikolaidis, Togelis and Hoover [6].  

 

Fig. 3.1: A Bates Distribution as it changes with the number of random variables and shows the effect of narrowing 

behaviour spaces when formed by a linear projection from Fontaine, Nikolaidis, Togelis and Hoover [6]. 

With this function, the authors expected the CMA-ME Algorithm to perform better than 

MAP-Elites by better covering the distorted behaviour space.  
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Note that the boundaries of the behavioural space are [−
5.12·𝑛

2
,
5.12·𝑛

2
] for each dimension 

of the behavioural space. 

For the implementation of this function, please refer to section A.1.3 (Appendix A). 

3.3 Arm Repertoire 

Arm repertoire is a problem where an arm tries to move in space. The arm is fixed in one 

position, and it changes the angles of different joints to accomplish a goal. 

 

 

Fig. 3.26: Arm Repertoire visualization from the Pyribs Tutorial [65]. 

The arm has two sets of parameters, the lengths of each link between two joints and the 

angles of the joints. Consider the lengths of the links to be a vector v= <𝑙1, 𝑙2, …,𝑙𝑛> and 

the angles of the joints to be x= <𝜃1, 𝜃2, …,𝜃𝑛>. 

3.3.1 Objective Function – grasp_obj(x) 

The goal of the objective function grasp_obj(x) is to minimise the variance of the joint 

angles. That is, to maximise the negative of the variance of the joint angles. It is defined 

as: 

grasp_obj(x) = 100 · (1 −
∑ (𝑥𝑖 − 𝜇)𝑛

𝑖=1

𝑛 − 1
) 
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where μ is the mean of the joint angles, note that the input parameters to the objective 

function are the angles of the joints, whereas the links are considered constants and are 

decided beforehand (in our experiments, we used unit-length links). 

Note that the boundaries of the behavioural space are [−𝑠, 𝑠] where 𝑠 = ∑ 𝑙𝑖
𝑛
𝑖=1  for each 

dimension of the behavioural space. 

The implementation of this function can be found in A.1.4 (Appendix A). 

3.3.2 Behavioural Function – grasp_bds(x) 

The behavioural function grasp_bds computes the final x and y coordinates of the arm’s 

end-effector using the forward kinematics equations 

(https://en.wikipedia.org/wiki/Forward_kinematics):  

𝑥 = 𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) + ⋯+ 𝑙𝑛 cos(𝜃1 + 𝜃2 + ⋯+ 𝜃𝑛) 

𝑦 = 𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2) + ⋯+ 𝑙𝑛 sin(𝜃1 + 𝜃2 + ⋯+ 𝜃𝑛) 

An implementation of this function can be found in section A.1.5 (Appendix A). 

Again, the links are considered constants and are decided beforehand (in our experiments, 

we used unit-length links). Thus, the input parameters to the function are the joint angles. 

 

 

https://en.wikipedia.org/wiki/Forward_kinematics
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4.1 Hardware Acceleration for Machine Learning 

In the modern time, where vast amounts of data are easily accessible, Machine Learning 

and especially Deep Learning can be significantly benefited. The only request is the ask 

for speed. That is, the processing of a vast amount of data in a timely fashion. This is done 

with the use of specialized hardware accelerators. 

In the mid-2000, Graphical Processing Units (GPU) began being used to train neural 

networks[59] because of their capabilities of high parallelization and high memory 

bandwidth. With this opportunity, the general-purpose GPUs started being introduced in 

every part of computation in Sciences, especially with access to specialized GPU 

compatible code for Deep Learning methods [60]. This enabled a few orders of magnitude 

faster training of networks on general-purpose GPUs than on CPUs. 

To exploit the incredible power of GPUs, accessible and efficient frameworks have been 

developed, such as Tensorflow[61], Torch [62],  Pytorch[63]  and Jax[64], to allow 

running different numerical computations on GPUs efficiently. The access to such 

frameworks caused an explosion in the development and research conducted on Machine 

and Deep Learning and allowed people without any experience in how to use GPUs to 

build fast ML and DL models.  
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Based on these, our decision was to use the JAX to implement our QD Algorithms and 

conduct our experiments. 

4.2 JAX 

4.2.1 Introduction to JAX 

JAX is a Machine Learning framework developed for bringing together Autograd (library 

for automatically differentiating native Python and Numpy code) and XLA (Optimising 

Compiler for accelerated Linear Algebra and Machine Learning used with TensorFlow) 

and making them available to be used on specialized accelerators, i.e., GPUs and TPUs. 

Even though it is developed for specialized accelerators, JAX also supports CPU as well. 

The two main powers of JAX are the jit (just in time compilation optimiser) and grad 

(auto-differentiation of methods) that are developed in accordance with XLA  and 

Autograd, respectively. 

4.2.2 JAX  JIT 

As we mentioned, JAX uses XLA to compile and run NumPy programs on GPUs and 

TPUs. JAX’s compilation for the specialized accelerators happens under the hood by 

default, with library calls getting just-in-time (jit) compiled and executed.  

These just-in-time compilations performed by JAX are also available to be performed by 

a user. JAX provides the one-function API for jit to just-in-time compile Python functions 

into XLA-optimized kernels.   

Note that code compiled with jit is always executed on the specified device that we 

configured JAX to run with. Thus, all data used by the optimised code (passed as 

arguments to a jit compiled function) are transferred to the corresponding device. This 

means that the overhead of moving the data to the device needs to be taken into 

consideration when developing code for JAX. 

4.2.3 JAX GRAD 

In addition to optimizing code with the JAX compiler, JAX provides an API interface to 

transform functions. One transformation is the Automatic Differentiation. That is, JAX 

provides, among many others, the function grad that can compute gradients of functions. 



60 

 

JAX’s grad is used to compute the derivatives of functions that can take as input any tree-

like data structure but which return a scalar value. More advanced autodiff methods for 

allowing the computation of gradients on methods that return multiple values, JAX 

provides the jacfwd and jacrev for forward-mode jacobian-vector computation and 

reverse-mode jacobian-vector computation, respectively. 

4.2.4 JIT Constraints 

JAX provides a set of amazing capabilities for helping you develop efficient algorithms 

that are able to run on many devices (GPU, TPU and CPU as well) with absolutely no 

change to your code. The capabilities come to the point that even JAX optimized code 

for CPUs can run faster on CPUs than similar code that is developed to run only on CPUs. 

As you might understand, this power comes with a cost. Developing algorithms on JAX 

is not the same as normally developing code in python. In order for JAX to optimize your 

code for a specific device (i.e., using just-in-time compilation), JAX requires a set of 

constraints in your python code to be true in order to optimize it. Let’s explore these 

constraints by quickly overviewing the  JIT mechanisms. 

Jit works by tracing your code and by depending on the values of static variables. That is, 

there are two main concepts of how jit works: 

1. Jit (as well as other function transformations) works by tracing a pure Python 

function (all data the function uses become available as arguments and all its 

changes appear only on the outputs – no side-effects) to determine its effect on 

the inputs 

2. The inputs of a jit compiled function need to be of a predetermined shape and type 

(i.e. static) 

In addition to that JAX-JIT does not allow the use of conventional python if-statements 

due to the difficulty of tracing multiple control flows in JAX compile-time. These 

constraints are required so that by tracing the code and recording the exact sequence of 

operations to be performed (jit compiling), we can use the same sequence of optimized 

operations efficiently within XLA but with different inputs. 

4.2.5 Static vs Traced Operations & Data 
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Static Data are the data that are available at compile time of a function with XLA, whereas 

traced data are the data that become available at the run-time in XLA.  

In the same way, static operations are evaluated at compile-time in Python, whereas traced 

operations are compiled and evaluated at run-time in XLA. The distinction of static vs 

traced operations in code is supported by the introduction of the JAX’s implemented 

library of NumPy, which makes available most of the NumPy methods but as traced 

operations. That is, someone should use JAX’s NumPy when they want traced operations 

in JAX and NumPy for static operations. 

To understand the distinction between those two things, consider the following example: 

import jax 

import numpy as np 

import jax.numpy as jnp 

 

def my_funct(x): 

    return x.reshape(jnp.array(x.shape).prod()) 

 

x = jnp.ones((2, 3)) 

# Optimise the my_funct and execute it 

jax.jit(my_funct)(x) 
 

Code Snippet 4.1:  Example of error from JAX-JIT compilation due to the creation of an array with a non-static 

shape  

The code above will not work because at Python compile-time, the shape of x becomes 

available to method my_funct, but because of the use of jax.numpy.prod instead of 

numpy.prod the outcome of the jax.numpy.prod will give a traced value and not a static 

one; thus, the function will not know what to do.  

If we replace jnp.prod with np.prod it will work because np.prod is a static operation, and 

thus it outputs static values and not traced values when used within jit compiled code. 

The following code will work: 

import jax 

import numpy as np 

import jax.numpy as jnp 

 

def my_funct(x): 

  return x.reshape((np.prod(x.shape),)) 

 

x = jnp.ones((2, 3)) 



62 

 

# Optimise the my_funct and execute it 

jax.jit(my_funct)(x) 
 

Code Snippet 4.2:  Static Operations that can be JAX-JIT compiled 

4.2.6 JAX Classes, Objects and Pytrees 

As we mentioned above, JAX Jit compilation operates on pure functions, takes a set of 

inputs and produces a set of outputs. Any set of side-effects like accessing or changing 

global variables may cause the optimized code not to work properly. 

At the same time, JAX optimized functions cannot receive and operate on any kind of 

Object. The elementary data they accept are numerical data (i.e. integers, floating-point 

numbers) but not strings. In addition to that, they can receive any tree-like data structure 

built out of container-like Python objects. These data structures are called PyTrees, and 

they include lists, tuples, and dictionaries. In general, there are two rules for creating 

PyTrees: (1) an object that is not in the PyTree container registry of supported PyTrees is 

considered a lead PyTree, (2) any object that is in the PyTree supported registry of 

accepted PyTrees, and which contains PyTrees is considered a PyTree. Last, any other 

object that is passed as an argument and used in a JIT-compiled code needs to be a data 

class (i.e. flax.struct.dataclass). The definition of data classes allows someone to define a 

class that can instantiate objects that are more considered primarily as objects carrying 

data rather than carrying operations. Modifying a data class in the same way as modifying 

attributes of a Python object is not permitted. The way to do that is by using the method  

replace on the data class object in order to change the desired attribute. Objects of a data 

class can also have instance methods but remember those methods cannot have side 

effects on the objects. But, dataclasses are immutable. Thus, most of the time, it is more 

desirable to define and use static methods of objects rather than instance methods. 

4.2.7 JAX control flow 

Function transformers that implement Auto-differentiation allow any control flow 

operation to be used in the function. On the other hand, though, JAX JIT-compiled code 

cannot use if-statements, nor for-loops and while-loops, unless those control flow 

operations can be determined statically, i.e. with static data at JIT, compile-time.  

More specifically, JIT optimization traces the output of a function to its inputs with the 

goal of identifying an exact sequence of operations to be done. The if-statement splits the 
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flow of a program in two different directions. Tracing two different control flows can lead 

to an exponential number of different outputs at the end, which would make compiling a 

function impractical because of requiring a great amount of time and computer memory. 

Fig. 4,1: Operators that can be used in JIT-compiled functions and GRAD transformed functions. Note that * denotes 

that it is possible to use the loop only if the number of iterations is statically determined. The loop will be unrolled to 

the contents of the loop's body as many times as the number of iterations. Taken from JAX’s official website tutorials 

On the other hand, loops like for-loop and while-loop are allowed only if the number of 

iterations of the loop can be determined at JIT compile time. Even in that case, JIT 

compiling code that includes for-loops and/or while-loop takes a lot of time due to 

unrolling the loop as many times as the number of iterations and which consequently can 

lead to inefficient code. 

To replace the conventional control-flow statements, JAX introduced methods that can 

do approximately the same work as Python’s control flow, with the only cost that they 

will be potentially performing more operations to accomplish them. More precisely, if-

statement in JIT-compiled code is accomplished with lax.cond method, which can be 

considered equivalent to the function defined by the pseudocode below: 

def cond(pred, true_function, false_function, operand): 

  if pred: 

    return true_function(operand) 

  else: 

    return false_function(operand) 

Code Snippet 4.3:  The meaning of cond function in JAX 

The only consequence of using this method is that it leads to executing both the true and 

the false functions provided as arguments. This might not be a problem even for expensive 
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operations because of the optimizations performed, but sometimes it might be a drawback 

of performing a significantly more number of operations than a normal python code. To 

avoid such cases, it is recommended that the lax.cond method does not use too time-

demanding functions for the true and false functions, in order not to see any performance 

degrading. 

In the same manner, JAX provides the lax.while_loop for the Pythonic while-loop and 

the lax.fori_loop for the Pythonic for-loop, implemented with the low-level lax.scan 

operation. 

4.3 Developing Optimized and Efficient QD Algorithms on JAX 

The implementation of the QD Algorithms we used in our experiments was done using 

the JAX to allow our algorithms to be executed on GPUs. To do that, we wanted our 

algorithms to be developed satisfying the following requirements: 

1. Minimize the overhead of moving data between CPUs and GPUs 

2. Use a custom-made framework to implement QD algorithms using the ask-tell 

interface from Pycma [66] 

3. Improve Emitters’ efficiency for GPUs 

Below, we discuss the design and implementation decisions that led us to create efficient 

implementations of QD Emitters on JAX and to create a new framework for developing 

efficient QD algorithms on JAX. 

4.3.1 Minimizing the overhead of moving data between CPU and GPU 

To accomplish minimizing the time cost of moving data from CPU to GPU and vice versa, 

we decided to minimize the number of times that we move data between GPU and CPU 

by adopting two tactics: 

1. The core logic of an iteration of a QD algorithm will be executed on GPU only 

(Minimize the number of times data are moved between CPU and GPU) 

2. All of the data that a QD algorithm will use at a specific iteration on the GPU will 

be available to the GPU from the beginning of the iteration (Move all the required 

data to the GPU from the beginning of the iteration), and no other data transfers 

will take place for the rest of the iteration. 
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The last tactic allows iterations on GPU after the first one to use the already output 

data from the previous iteration and thus the algorithm can run all the iterations on 

GPU without any interrupt. 

 

4.3.2 A new framework for building QD Algorithms with the ask-tell interface 

Our algorithms on JAX were implemented using the ask-tell interface from Pycma [66]. 

More specifically, a QD Algorithm or Emitter provides two methods: 

def ask(static_settings, emitter, repertoire, key) 
 

Code Snippet 4.4:  Method Signature of the ask method for a QD Emitter 

def tell(static_settings, emitter, solutions, objective_values, behavior_values, 

dead, repertoire, key) 
 

Code Snippet 4.5:  Method Signature of the tell method for a QD Emitter 

Where static_settings is a named-tuple with static settings used to define complete 

arguments of a method before compiling the method (the idea will be explained below), 

the emitter is a data class holding data for the QD emitter; solutions is an array of 

solutions, objective values are the values as derived from an objective function on the 

solutions, behavioural values are the behavioural descriptors as derived from the 

behavioural function on the solutions, dead in an array denoting whether a solution should 

be ignored, the repertoire is the container where the solutions are stored, and the key is 

the Pseudo-Random Number Generator State of a JAX PRNG instance (used for 

generating a sequence pseudo-random numbers). 

A DQD Emitter, in addition to the two method signatures above it, also has another two 

methods  

def ask_grad_estimate(static_settings, emitter, repertoire, key) 
 

Code Snippet 4.6:  Method Signature of the gradient ask method of DQD Emitter 

def tell_jacobian(static_settings, emitter, solutions, objective_values, 

behavior_values, dead, repertoire, key, jacobian) 
 

Code Snippet 4.7:  Method Signature of the gradient tell method of a DQD Emitter 
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where the jacobian is a matrix holding the jacobian matrix of the behaviour function for 

each of the solutions given and the gradient vector of the objective function for each of 

the solutions given. 

The reason for using two different ask-tell pairs of methods for the DQD Emitters is 

because, as you remember, the DQD Emitters (e.g., OMG-MEGA (iso) section 

2.5.9.3.1.1) have two evaluations of solutions that happen per iteration, one with the 

sampled solutions from the archive and second the gradient perturbation on the sampled 

solutions. Thus, two sets of solutions are generated and, consequently, two different 

additions to the container per iteration. 

4.3.2.1 The need for an object-oriented implementation of QD Emitters in JAX 

The implementation of those Emitters’ methods (QD and DQD) on the CPU is usually 

done in an object-oriented way. That is, an Emitter is an object carrying the necessary 

data and providing those methods as instance methods. But, as we said above in section 

4.3.1, we want all of those methods to be executed in a JIT optimized code. We know, 

though, that JAX implementation and object-oriented programming cannot exist together 

in the form that we know them. 

Thus, to address this issue and accomplish the two requirements aforementioned, we 

defined a new framework for building QD Algorithms or Emitters in JAX 

4.3.2.2 Building Python-like Objects from Data-classes 

The idea of the new framework is to use the data classes (i.e. flax.struct.dataclass) as a 

Classes of objects but eliminate side effects. I.e. let’s say that we want to create a Person 

class with a single method to set and get the height of a person. In normal python, we 

could do that like the following code: 

class Person: 

    def __init__(self, height): 

        self.height = height 

 

    def get_height(self): 

        return self.height 

 

    def set_height(self, height): 

        self.height = height 
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Code Snippet 4.8:  Person class in python 

Instead in JAX we could do define the class above in the following way:  

import flax 

 

@flax.struct.dataclass 

class Person: 

    height: int 

 

    @classmethod 

    def create(cls, height): 

        return cls.__init__(height) 

 

    def get_height(person): 

        return person.height 

 

    def set_height(person, height): 

       person = person.replace(height = height) 

       return person 
 

Code Snippet 4.9:  Person class as a DataClass 

We can see that the get methods do not change unless they update the state of the data 

class, whereas the set methods change by using the replace method of a data class to 

change its state, and also they return the new altered object back since each data-class is 

immutable. Last, the __init__ method of a data class is already defined and cannot be 

overwritten. It requires passing all the data elements of the data class. To be able to define 

our own init method, we define the create a class method that allows us to perform any 

operations before we create a data class and which can create any number of arguments 

we want. 

Thus, there are three important things when creating a data class from a Python Object.  

1. Define the data attributes of the data class; i.e. include the data elements 

(=attributes) of the object at the top of the class (below its name definition) with 

their appropriate type 

2. Use a class method to define your own __init__ (e.g. create) 

3. Each method should that alters a data-class object passed as an argument should 

return back the altered data-class object 

Note that because data-class objects are immutable, no other attribute can be added 

dynamically to the object during run-time. 
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Despite this ease of converting approximately any Python class to a Data-class, we 

haven’t talked about how those objects can actually be used in JIT optimized code. How 

can we develop complex QD Algorithms with such objects? 

4.3.2.3 Implementing QD Emitters in JAX 

Most of our programs and algorithms use different types of control-flow statements that 

are really useful and important. But at the same time, they are expensive as computer 

operations compared to simple arithmetic operations. Unfortunately, most of the time, 

they cannot be removed from our code or expressed to avoid them. The same thing applies 

to QD Algorithms. We cannot avoid using if-statements, but what we can do is to separate 

the logic and the if-statements that depend on the initialization of the algorithm with the 

core logic of the algorithm.  

The last part that concludes our framework and which defines how complex object-

oriented QD Algorithms (from CPU) can be implemented in JAX and in such a manner 

to be more time-efficient depends on the observation that most of the QD algorithms’ 

control-flow statements depend on values of parameters that are set at the time of the 

object’s initialization and then they are never changed. User-defined parameters that 

define what the QD algorithm will do usually do not change. Thus, it is clear that since 

the JIT compilation can be done manually in runtime (using jax.jit), we could isolate the 

attributes of an object that are defined in its initialization and never change from the rest 

of the attributes and make available their values to the methods that we want to JIT-

compile before they are jit compiled. To make this idea clearer, let’s say that in the 

example of the Python Person Class above, we had an additional field for the person 

denoting whether the person is alive or dead and also an if-statement in set_height 

checking that the person is alive and then updating the Person object, i.e., 

class Person: 

    def __init__(self, height, is_alive): 

        self.height = height 

        self.is_alive = is_alive 

 

    def get_height(self): 

        return self.height 

 

    def set_height(self, height): 

        if self.is_alive: 

            self.height = height 
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Code 4.10:  Person class in python that uses if-statements 

If we were going to keep the if-statement in the Data-Class implementation of the Person 

class (look at the code snippet below), and then JIT compile the set_height method as 

follows: 

jax.jit(person.set_height)(person,178) 
 

Code Snippet 4.11:  JIT Compiling the set_height method of Person data-class in JAX. The method uses an if-

statement that is not statically determined, and thus the method won’t be able to be optimized 

we would get an error from the JAX JIT Compiler because the if-statement JAX doesn’t 

know which side of the if-statement to execute when it is executed by the XLA (after its 

compilation). 

import flax 

 

@flax.struct.dataclass 

class Person: 

    height: int 

    is_alive: int # we use int instead of bool because JAX JIT compilation does not  

                  # accept as an attribute of a data-class 

     

    @classmethod 

    def create(cls, height, is_alive): 

        return cls.__init__(height, is_alive) 

 

    def get_height(person): 

        return person.height 

 

    def set_height(person, height): 

        if person.is_alive == 1: 

            person.replace(height = height) 

        return person 
 

Code Snippet 4.12:  Person data-class in JAX that uses if-statements (method set_height will not be able to be 

optimised) 

But we can clearly see that once the Data-class instance of Person is initialized, the 

is_alive attribute never changes and thus, all the if-statements depending on the is_alive 

could be replaced with the one or the other sides of the if-statement (depending on the 

value of the is_alive in the specific if-statement).  



70 

 

To accomplish this change to the code after the initialization of an object, we change the 

signature of the method to receive the is_alive as an additional argument and then provide 

the argument is_alive to the method set_height before it is compiled. Doing so, and thus 

compiling the new method with the argument, is_alive determined, the if-statement in the 

set_height can be statically determined in runtime (JIT compile time).  More specifically, 

this would be the new signature of the set_height method: 

    def set_height(person, is_alive,  height): 

        if is_alive == 1: 

            person.replace(height = height) 

        return person 
 

Code Snippet 4.13:  Redefining the method set_height of the Person data-class in JAX 

And below, you can see the use of functools.partial that creates a new method from a 

method given by partially filling parameters of the function given with arguments. In this 

case, we created a new set_height method that takes as an argument the person's data-

class object and the height (since the is_alive was “embedded” in the new method). 

jax.jit(functools.partial(person.set_height, is_alive = person.is_alive)) (person, 

178) 
 

Code Snippet 11:  Compiling the method set_height of a data-class object of the Person data-class in JAX by 

providing the argument is_alive that determines the outcome of the if-statement used in the method 

Because of the fact that an object can have many such parameters that can be statically 

defined, we enforce this idea to the whole data class with the following class: 

1. The method for creating and initializing a data-class instance returns; in addition 

to the data-class instance, a data structure of static settings containing a set of 

parameters and methods that are used by any method of the data-class instances 

to statically determine control flows, dynamic shapes of arrays etc. (dynamic 

operations and data) before being compiled by JAX JIT.  

2. Each method of the data-class receives as an additional argument, the static 

settings 

Thus, a method f of an object o of a data-class defined in the way above will be compiled 

and executed in the following way. 

jax.jit(functools.partial(o.f, static_settings)) (…) 
 

Code Snippet 4.14:  Compiling and Executing a method of  the QD Emitters framework 
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For completeness of our explanation, consider below the implementation of the Person 

Python Class as a Data-class, that each of its methods (except the one used for 

initialization – create method) can be JIT-compiled when before that, the static_settings 

data structure is provided. 

import jax 

import functools 

import flax 

from collections import namedtuple 

 

@flax.struct.dataclass 

class Person: 

    height: int 

    is_alive: int # we use int instead of bool because JAX JIT compilation does not  

                  # accept as an attribute of a data-class 

     

    @classmethod 

    def create(cls, height, is_alive): 

        # define the static settings as a namedtuple 

        static_settings = dict() 

        static_settings['is_alive'] = is_alive 

        StaticSettings = namedtuple('StaticSettings', static_settings) 

        ssd = StaticSettings(**static_settings) 

        return ssd, cls.__init__(height, is_alive)  

     

   # private method used to access specific attributes from the static settings 

    def _is_alive(ssd): 

        return ssd.is_alive 

 

    def get_height(person): 

        return person.height 

 

    def set_height(ssd, person,  height): 

        # use the static_settings’ attributes via private methods 

        # specifically defined to access its attributes 

        if _is_alive(ssd) == 1: 

            person.replace(height = height) 

        return person 

 

ssd, p = Person.create(160, 1) 

jax.jit(functools.partial(p.set_height, ssd))(p,178) 
 

Code Snippet 4.15:  Redefining the method set_height of the Person data-class in JAX 

4.3.3 Improve Emitters’ efficiency for GPUs 
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In the previous section (4.3.1), we talked about how we can transform object-oriented QD 

Emitters implemented in Python (for CPU) to code that can be JIT-compiled in JAX. The 

use of JIT compilation optimizes our Emitters for GPU. An additional step that we took 

to create more efficient implementations of QD Algorithms is that we transform 

inefficient code into efficient code. More specifically, we converted loops to vectorized 

approaches, where instead of using for-loops to operate over arrays, we used NumPy 

operations over arrays. Doing so allows for better parallelization and memory usage in 

GPUs. 

Another change we made to our implementations that improved the performance of the 

QD Emitters is the minimization of the use of JAX’s structured control-flow functions 

(i.e. lax.cond, lax.fori_loop and lax.while_loop ) in our code by replacing many of them 

with arithmetic vectorised operations that could lead to the same outcome. 

4.4 Implementations of QD and DQD Emitters on Jax 

We have implemented all of the available QD Algorithms from Pyribs in JAX. We created 

two versions for each of them, the Array Version, where the Emitters require that a 

solution is strictly a one-dimensional array and the PyTree version, where the Emitters 

can work with solutions of any PyTree structure. These implementations are: 

• Gaussian Emitter implements MAP-Elites (iso) (Code for the Array Version is 

found in Appendix A’s section A.3.1 and for the PyTree Version in Appendix A’s 

section A.5.1 ) 

• Iso Line Emitter implements the MAP-Elites (iso+lineDD) (Code for the Array 

Version is found in Appendix A’s section A.3.2 and for the PyTree Version in 

Appendix A’s section A.5.2 ) 

• Improvement Emitter implements CMA-ME (Improvement)  (Code for the Array 

Version is found in Appendix A’s section A.3.3 and for the PyTree Version in 

Appendix A’s section A.5.3 ) 

• Optimizing Emitter implements CMA-ME (Optimizing) (Code for the Array 

Version is found in Appendix A’s section A.3.4 and for the PyTree Version in 

Appendix A’s section A.5.4 ) 
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• Random Direction Emitter implements CMA-ME (Random Direction) (Code for 

the Array Version is found in Appendix A’s section A.3.5 and for the PyTree 

Version in Appendix A’s section A.5.5 ) 

All the QD Emitters operate on a batch of solutions called batch size or population size 

instead of a single solution. Thus, they generate a number of solutions at each iteration 

proportional to the batch size selected for them.  

4.5 Optimizers 

We have implemented in JAX three Optimisers that are used by the QD and DQD 

Emitters. These are: 

• Covariance Matrix Adaptation Evolution Strategy (Appendix A - Section A.2.1) 

• Adam Optimiser (Appendix A – Section A.2.2) 

• Gradient Ascent Optimiser (Appendix A – Section A.2.3) 

4.6 Containers 

We have adapted the N-dimensional Grid Archive implementation for our own purposes 

from the Lim, Grillotti, Allard and Cully [69]. The implementation of our own version 

can be found in Appendix A, section A.7.1. 
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Chapter 5 

Experiments, Results, and Discussion 
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5.1 Introduction to Experiments, Results, and Discussion 

In this section, we describe the details of the experiments that we performed to investigate 

the three goals that we defined:  (a) Effect of batch size on the Performance of QD and 

DQD Algorithms, (b) Runtime of QD and DQD Algorithms on GPU compared to CPU 

and (c) Performance of DQD Algorithms vs QD Algorithms on GPUs. 

5.2 Methodology & Design 

5.2.1 Experiment Design 

5.2.1.1 Independent Variables 

The independent variables of our experimental design are: 

1. The QD and DQD algorithms  MAP-Elites (iso), MAP-Elites (line), CMA-ME 

(imp), CMA-ME (opt), CMA-ME (rd), OMG-MEGA (line), OG-MAP-Elites 

(line), CMA-MEGA (Gradient Ascent) and CMA-MEGA (Adam) 

2. The domain or type of problem; i.e. Rastrigin with Simple Encoding, Rastrigin 

with Distorted Behavior Space and Arm Repertoire. We did not have the time to 

include results on more complex simulation domains. 

3. The batch size used by the QD and DQD Algorithms 

4. The problem size (also seen as Solutions Dimensions) for each type of problem 
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5. The device on which algorithms are executed (GPU or CPU) 

5.2.1.2 Dependent Variables 

For our experiments, we measure the diversity and the quality of the solutions returned 

by each algorithm via the Coverage, Best Fitness and QD Score metrics. We also measure 

the speed of execution of each algorithm via their runtime. These metrics are described 

below. 

5.2.1.3 Methodology & Experimental Details 

Our experiments considered the number of evaluations for the  DQD algorithms, except 

CMA-MEGA variations to be twice as much as that used in QD algorithms for the same 

number of iterations and the same batch size. This decision is because, at each iteration, 

all the DQD algorithms perform two evaluations (one with the solutions derived from the 

container and one with the gradient amended solutions derived from those initially 

generated solutions). Thus, considering that we perform two evaluations at each iteration 

of a DQD algorithm, we chose to keep the number of epochs of the DQD algorithms in 

half so that the number of evaluations of the QD and DQD algorithms is the same and 

thus, their performances comparable.  

All the algorithms were executed for 5 million evaluations on various batch sizes, types 

of problems, problem sizes, and devices. Their performance (metrics) was recorded on a 

per-iteration basis. More specifically, all the QD and DQD algorithms were executed on 

both GPUs and CPUs. The algorithms executed on CPUs were tested on the batch sizes: 

512, 2048, 8192 and 16384, and problem sizes: 128, 256, 512, 1024 and 2048 for all the 

different types of problems. The algorithms executed on GPUs for types of problems 

(domains) were tested with batch sizes: 512, 2048, 8192, 16384, 32768 and 131072 and 

problem sizes: 128, 256, 512, 1024 and 2048. For each of those times, the algorithms 

were executed 10 times and the median was considered the representative of all the 10 

executions (median absolute deviation was considered for showing any deviation). 

For each problem type examined, the parameters of each algorithm selected (e.g. standard 

deviation of distributions used) were the best across a set of indicative parameters 

covering all the possible combinations of good parameters. For example, for the standard 

deviation of distributions used in the QD and DQD Algorithms, I tested all the values 

between 0 and 0.1 with step 0.01, all the values between 0.1 and 1 with a 0.1 step, and 
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the values between 1 and 20 with a 5 step (i.e. 1, 5, 10, 15 and 20).  By best parameters, 

we mean in terms of the Algorithm’s accomplished QD Score when using those 

parameters. Those parameters can be found in Appendix B. 

The code used for finding those best parameters and executing the algorithms for the 

experiments can be found in section A.8 of Appendix A. 

5.2.2 Metrics  

For our experiments, we will use the Coverage Score, the Best Fitness, the QD-Score and 

the Runtime in terms of seconds to measure the performance of each algorithm and have 

comparisons. 

Given a collection of t bins {𝑏1, 𝑏2, . . , 𝑏𝑡} of the container used in a QD Algorithm, each 

with performance scores (objective values) {𝑂1, 𝑂2, . . , 𝑂𝑡} (where 𝑂𝑖 𝑖𝑠 0, if there is no 

solution stored in  𝑏𝑖 otherwise, it is nonzero) the coverage is defined as the number of 

bins that have a solution inside (𝑂𝑖 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜). The Best Fitness is defined as the 

maximum objective value held by any solution in the container, i.e. max{𝑂1, 𝑂2, . . , 𝑂𝑡} 

and QD-Score is the sum of all the solutions’ objective values that are stored in the 

container; i.e. ∑ 𝑂𝑖
𝑡
𝑖=1 . 

5.2.3 Hardware 

The CPUs that we used for our experiments were the Intel(R) Xeon(R) Gold 6240 CPU 

@ 2.60GHz, and the GPUs that we used were the Tesla V100 32GB. All the algorithms 

executed with GPUs used a single GPU device (i.e. Tesla V100 32GB), and all the 

algorithms executed on CPUs used a single CPU with eight cores. Parallelization on the 

GPU and the CPU was managed via the JAX framework. We did not manually use 

commands like pmap to map operations to different cores or devices. The latter was done 

to avoid extra costs when moving data between cores/devices. 

5.2.4 JAX Configurations 

For our experiments, we used version 0.2.26 of JAX with the CUDA library 

cuda11_cudnn805. We also used XLA pre-allocation of 80% of the memory on GPUs to 

save time allocating memory during runtime. 
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5.3 Results & Analysis 

Before we dive into the primary goal of this work, i.e. “Does GPU and Differentiability 

help speed up the performance of QD Algorithms?”, we shall try to examine whether QD 

and DQD Algorithms continue to perform well when we increase their batch size (also 

called population size denoting the number of solutions being handled simultaneously by 

a QD Algorithm). To our knowledge, examining the effects on QD Algorithms when 

increasing the batch size they work with hasn’t been investigated so far on all the QD and 

DQD algorithms. There is a small work on the effects of big batch sizes on two variations 

of MAP-Elites (MAP-Elites iso+lineDD and MAP-Elites iso) on GPUs, which showed 

that MAP-Elites with the iso+lineDD operator seems to be stable in terms of their 

performance (i.e. QD Score) on greater batch sizes. Here we will work with all the state-

of-the-art QD and DQD Algorithms, and we will examine the effect on their performance 

not only when changing their batch size but also when increasing the size of the problem 

on which they operate. 

Changes in the problem size and/or batch size are an essential matter that needs to be 

investigated to allow better exploitation of parallelization. We need to understand that it 

is a complex problem since there are a lot of direct and indirect factors that might come 

to play and affect the performance of QD and DQD Algorithms while examining them 

with bigger batch and problem sizes. For example, the state-of-the-art QD and DQD 

Algorithms generate a collection of solutions (based on the configured batch size) at each 

iteration, and they all use randomness in their selection and variation operations. Due to 

this randomness, there is a chance that the same solutions are generated either at the same 

iteration (i.e. two or more solutions from the collection of solutions generated are the 

same) or at a different iteration. When the batch size is increased, the number of solutions 

generated at each iteration increases and thus, it is more likely that the same solution will 

be generated at a specific iteration. Suppose the algorithm generates a significant number 

of already discovered solutions repeatedly. In that case, it doesn’t exploit the different 

evaluations efficiently (i.e. it wastes the time of evaluating the same solutions again and 

again) and thus becomes unattractive to be used.   

In addition to the batch size, the problem size or the solutions’ dimension could appear to 

affect the performance of the QD and DQD algorithms. For example, increasing the 

problem size could make generating the same solutions at each iteration less likely to 
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appear due to the many parameters of each solution being changed using some 

randomness (in the variation operations). At the same time, increasing the dimensions of 

a solution being used could make feature space exploration more difficult, especially in 

feature spaces that depend on the dimensions of their solution (i.e. problem size).  

A different factor that might affect the performance of the QD Algorithms while 

examining them with bigger batch sizes is the type of problem or task that we use. More 

specifically, a QD Problem defines an objective function and a behavior function. They 

define the performance and the behavior descriptor of a solution, respectively. Changing 

them can provide completely different performances and behavior descriptors. For 

example, a high-performing solution in one task can be a low-performing one in a 

different one. Or a solution being mapped in the center of the behavior space for a specific 

task can be mapped at the edges of the feature space. Thus, QD Algorithms can perform 

better in specific QD Tasks and worse in others.  

These and other factors can affect the performance of QD Algorithms when we change 

the batch size and problem size. Thus, in the first section, we will try to examine the 

performance of QD Algorithms on three different QD Tasks (Rastrigin with simple 

encoding, Arm Repertoire and Rastrigin with distorted behavior space) with different 

batch sizes and a different number of solutions’ dimensions (=problem sizes). Our 

examination is not exhaustive but tries to identify some traits that can help further 

exploration of the benefits and drawbacks of using a greater number of batch sizes in QD 

Algorithms for speeding up the QD and DQD Algorithms. 

5.3.1 Effect of batch sizes and problem sizes on the Performance of QD and DQD 

Algorithms  

5.3.1.1 Rastrigin Function 

The first task (=problem) we examined is the Rastrigin Function (Section 3.1.1) with 

simple mapping to behavioral space.  

Initially, let’s see how the problem size affects the performance of QD and DQD 

Algorithms. Below, in figure 5.1, you can see the QD Scores of all the QD and DQD 

Algorithms for the Rastrigin Problem when using batch size equal to 2048 for different 
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problem sizes. Similarly, in figures 5.2 and 5.3, you can see the best fitness and coverage 

scores for the same case above.  

 

Fig. 5.1:  QD Scores of QD and DQD Algorithms on different problems and for different problem sizes (Constant 

Batch size equal to 2048) 

 

What we can see initially from the Coverage scores below (figure 5.3) for the Rastrigin 

problem is that all of the algorithms fill the Archive fully (10,000 coverage). Thus, the 

difference in the performances of the algorithms on this problem is on the quality (or 

fitness) of the solutions they store in their archive and not the number of cells they filled 

in the archive. Moving to the QD Scores (figure 3.1 ) above, we can see that all of the 

QD and DQD Algorithms are affected negatively by the problem size increase. Some 

of them are affected more (CMA-ME and MAP-Elites-iso), and some of them are affected 
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less (CMA-MEGA, OMG-MEGA-line and OG-MAP-Elites-line, MAP-Elites (line)). By 

observing the changes in the best-fitness graphs (figure 3.2) for the Algorithms on the 

Rastrigin function, we can see that their best-fitness score decreases as the problem size 

increases. Therefore, the decrease of the QD Score as the problem size increases can be 

attributed to the decline in the quality of solutions stored in the archive when the problem 

size increases. Despite that the QD Score of all the QD and DQD Algorithms decreases, 

the algorithms whose performance decreases the least with the increase of the problem 

size for the Rastrigin problem are the CMA-ME, OMG-MEGA (line) and OG-MAP-

Elites (line). 

 

 

Fig. 5.2:  Best Fitnesss of QD and DQD Algorithms on different problems and for different problem sizes (Constant 

Batch size equal to 2048) 
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From the figures below, 5.4 for QD Score, 5.6 for Coverage and 5.5 for Best Fitness, we 

examine the effect of increasing the batch size and keeping constant the problem size 

(=1024) for all the QD and DQD Algorithms examined on the Rastrigin function. From 

the QD Scores set of charts (figure 5.4), it is clear that the increase in the batch size 

decreases the QD-Score performance of all the CMA-ME variations and MAP-Elites 

(iso) algorithms on the Rastrigin problem significantly. CMA-MEGA is affected 

slightly less than CMA-ME variations, but its performance still decreases with the 

decrease of the batch size. Similarly, the QD Scores of MAP-Elites (line) , OMG-

MEGA (line) and OG-MAP-Elites (line) algorithms decrease as the batch size 

increases, but the decrease is minimal and the least compared to the reduction that 

appeared in the other mentioned algorithms. This might seem counter-intuitive since 

someone might believe the statement we said before that greater batch sizes increase the 

number of times that we generate the same solutions. This could be true, but in fact, it is 

more unlikely for the MAP-Elites (line) to generate two or more solutions that are the 

same since the generation of each solution is done via a combination of two elite 

solutions, thus making it more unlikely to generate the same solutions twice (more 

unlikely, still possible though).  

A few more observations that can be made are that CMA-ME algorithms perform really 

well for small problem sizes and small batch sizes. More specifically, for batch sizes equal 

to 2048 and problem sizes of 128 and 256, CMA-ME (imp) and CMA-ME (opt) had the 

best QD Scores found from any algorithm on the Rastrigin Function. But, as we keep the 

batch size constant and increase the problem size, their QD Scores are significantly 

reduced. On the other hand, increasing the batch size for all the CMA-ME variations 

decreases their performance significantly for all the problem sizes, but the interesting 

thing is that instead of performing better for smaller problem sizes in bigger batch sizes, 

just like how they performed in smaller batch sizes, they perform better in bigger problem 

sizes than in smaller problem sizes as the batch size increases.  
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Fig. 5.3:  Coverage Scores of QD and DQD Algorithms on different problems and for different problem sizes 

(Constant Batch size equal to 2048) 

 

Last, the OMG-MEGA (line) and OG-MAP-Elites (line) have the highest QD Scores 

among all the other algorithms examined for almost all combinations of problem sizes 

and batch sizes examined. The latter two algorithms are affected the least among the QD 

and DQD Algorithms from the increase of the problem sizes on the Rastrigin problem. 

Following them, the next best QD Scores for most of the combinations of problem sizes 

and batch sizes examined are accomplished by MAP-Elites (line).  

For the scores about combinations of batch sizes and problem sizes that we haven’t 

included their charts here, there is no other difference than the things we mentioned. To 

see a complete list of those results, please refer to the Appendices. 
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In general, for the Rastrigin Task: 

• Increasing the problem size decreases the performance of all the QD and DQD 

Algorithms in general (Best Fitness is primarily affected, which means that the 

quality of the solutions stored in the archive is decreased; less high-performant 

solutions are stored and more low-performant) 

• Changes in problem and batch sizes affect coverage score the most (instead of the 

fitness of the solutions in the archive) 

• MAP-Elites (iso) almost all of the time, gives worse results than all the other QD 

and DQD algorithms 

• CMA-ME algorithms give really good results in small batch sizes, but the quality 

of their results becomes significantly worse with the increase in the batch size  

• The quality of the results returned by CMA-MEGA variations decreases with the 

increase of the batch size, but that decrease is much smaller than that observed in 

CMA-ME algorithms 

• The quality of the results returned by MAP-Elites (line), OMG-MEGA(line) and 

OG-MAP-Elites (line) remains approximately constant with the increase of the 

batch size (Stable with the increase of the batch size). Moreover, with the increase 

of the problem size their performance in terms of QD Score decreases the least. 

• OMG-MEGA (line) and OG-MAP-Elites (line) perform better most of the time 

than all the other QD and DQD algorithms on both small and big batch sizes 

Note that the quality of their results refers to the QD Score of the archive of solutions 

returned by an Algorithm at the end of their execution. 

5.3.1.2 Arm Repertoire 

In the task of Arm Repertoire, the difficulty increases compared to the Rastrigin function 

examined above since exploring the feature space is done by calculating the x and y 

positions of the arm’s end, which is a combination of all the arm’s link angles (i.e., all 

solution’s parameters).  

Examining how the problem size affects the performance of QD and DQD Algorithms 

when keeping constant the batch size (here equal to 2048 ), from the charts of the figures 

5.1 for QD Score, 5.2 for Best Fitness and 5.3 for the Coverage above on the Arm 
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Repertoire problem, we can see that the QD Scores of all the QD and DQD Algorithms 

decreases as the problem size of the Arm Repertoire increases.  

From the figure of Best Fitness 5.2, we can see that the Best Fitness Score of all the 

algorithms except MAP-Elites (iso) remains close to the maximum (=100) in this 

problem. The Best-Fitness score for the MAP-Elites (line) though seems to be decreased 

more than the other QD and DQD Algorithms (except MAP-Elites-iso) as the problem 

size increases. The Coverage and Best-Fitness score (figure 5.3) significantly decreases 

for the MAP-Elites (iso) as the problem size increases (just below 8000 out of 10000 cells 

filled at problem size 128 becomes just over 2000 cells filled at problem size 2048 for 

Coverage and for the same problem sizes we have around 100 and then around 70 for 

Best Fitness respectively). This is the reason why its QD Score has the same decreasing 

trend. Despite that the increase of the problem size decreases the QD Score of each 

algorithm, this high degree of reduction in MAP-Elites (iso) cannot be seen in the other 

algorithms. CMA-MEGA algorithms significantly underperform in all the problem 

sizes examined compared to the other DQD Algorithms, the CMA-ME variations and 

the MAP-Elites (line).   
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Fig. 5.4:  QD Scores of QD and DQD Algorithms on different problems and for different batch sizes (Constant 

Problem size equal to 1024) 

QD Scores of CMA-ME (imp), CMA-ME(rd), OMG-MEGA (line) and OG-MAP-Elites 

(line) are affected the least by the increase of the problem size on the Arm Repertoire 

when using batch size equal to 2048, but in greater batch sizes (e.g. 32,768) things change 

and only OMG-MEGA (line) and OG-MAP-Elites(line) are still stable with the increase 

of the problem size. This can be explained by the same trend in their Coverage (i.e., filling 

more cells in their archive even in bigger problem sizes). For the batch size equal to 2048, 

CMA-ME (rd) followed by CMA-ME (imp) were the algorithms that gave the highest 

QD Scores for all the problem sizes examined but as the batch size increases their QD 

Scores get smaller and smaller pushing them away from accomplishing the best QD 

Scores.  

From the examination of the effect of increasing the batch size and keeping constant the 

problem size (=1024) for all the QD and DQD Algorithms on the Arm Repertoire ( See 

figures 5.4 for QD Score, 5.6 for Coverage and 5.5 for Best Fitness), we observed that 

CMA-MEGA variations and MAP-Elites (iso) are affected the most from the batch size 
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increase. For example, from figure 5.4 of QD Scores, CMA-MEGA (adam) on Arm 

Repertoire with problem size 1024 had QD Score just below 600,000 when using batch 

size equal to 512, whereas when using batch size equal to 32,768, its QD Score fell to 

below 100,000. CMA-MEGA and MAP-Elites (iso) algorithms give the worst QD Scores 

for all the combinations of batch sizes and problem sizes examined on Arm Repertoire.  

QD Scores of CMA-ME variations also eventually decrease with the increase of the batch 

size, and this can be attributed to the reduction of the Coverage Score as well, which 

means that their exploration ability of new genotypes decreases with the increase of the 

batch size. More specifically, with batch sizes greater than 16384, CMA-ME(rd) and 

CMA-ME (imp) start to accomplish lower QD Scores than OMG-MEGA (line), OG-

MAP-Elites (line) and MAP-Elites (line). For small batch sizes (i.e. 512 and 2048), CMA-

ME (imp) and CMA-ME (rd) perform better in terms of QD Scores in smaller problem 

sizes (128, 256 and 512) and worse in bigger problem sizes (1024 and 2048), whereas in 

bigger batch sizes (i.e. 16384, 32768 and 131072) they perform better in bigger problem 

sizes (1024 and 2048)  and worse in smaller ones (128, 256 and 512).  

QD Scores of MAP-Elites (line), OMG-MEGA (line) and OG-MAP-Elites (line) remain 

approximately the same with the increase of the batch size.  
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Fig. 5.5:  Best Fitness of QD and DQD Algorithms on different problems and for different batch sizes (Constant 

Problem size equal to 1024) 

 

In general, for the Arm Repertoire Task: 

• Increasing the problem size decreases the performance of the QD and DQD 

Algorithms (Coverage is affected) 

• Changes in problem and batch sizes affect coverage score the most (instead of the 

fitness of the solutions in the archive) 

• The QD Scores of OMG-MEGA (line) and OG-MAP-Elites (line) are the only 

ones not significantly reduced with the increase of the problem size (Stable to 

problem size increase). 

• MAP-Elites (line) is significantly affected by the increase of the problem size. 

• CMA-MEGA and MAP-Elites (iso) algorithms perform really bad (low QD 

Scores) and their QD Scores become worse with the increase of the batch size 
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• MAP-Elites (line), OMG-MEGA (line) and OG-MAP-Elites (line) can be 

benefited by the increase of the batch size and thus accomplish better results 

(higher QD Scores) in bigger batch sizes.  

• CMA-ME (imp) and CMA-ME (rd) algorithms are promising for small batch 

sizes (i.e. 512 and 2048) where they seem to accomplish the best QD Scores,  but 

their accomplished QD Scores decrease as the batch size increases. 

Note that quality of their results refers to QD Score of the archive of solutions returned 

by an Algorithm at the end of their execution. 

 

Fig. 5.6:  Coverage of QD and DQD Algorithms on different problems and for different batch sizes (Constant 

Problem size equal to 1024) 

5.3.1.3 Rastrigin Function with Distorted Behaviour Space 

Moving to the Rastrigin Function with distorted Behavior Space, we can start again by 

examining the QD Scores of the QD and DQD Algorithms on different problem sizes and 

batch sizes equal to 2048 (figure 5.1 above). It is clear that all the algorithms’ QD Scores 

significantly decrease with the increase of the problem size for the Distorted Rastrigin.  
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This decrease seems to depend on the decreasing trend appearing in the algorithms’ 

Coverage scores. CMA-MEGA Algorithms significantly outperform all the other QD, 

and DQD Algorithms for all the problem sizes examined with batch sizes equal to 2048. 

CMA-MEGA and CMA-ME are affected the least by the increase of the problem size 

compared to the other QD and DQD Algorithms. 

Examining now the effect of increasing the batch size on the QD and DQD Algorithms 

while we keep constant the problem size (=1024) (figure 5.4), we can see that increasing 

the batch size used by the CMA-ME and CMA-MEGA algorithms deteriorates their QD 

Scores the most. More specifically, for the CMA-ME and MAP-Elites (iso) algorithms, 

their performance increases until batch size 32,768 (not inclusive), from where their 

performance starts to decrease. For CMA-MEGA, with a problem size equal to 1024 and 

batch size equal to 512, CMA-MEGA variations (CMA-MEGA and CMA-MEGA-adam) 

accomplish around 600,000 QD Score, but with a batch size equal to 131,072 , they fall 

to QD Score equal to around 300,000. MAP-Elites (line), OMG-MEGA (line) and OG-

MAP-Elites (line) accomplish better and better QD Scores until around batch size (2048), 

after which their QD Scores get smaller and smaller but in a slower trend than the other 

algorithms.  

QD Scores of MAP-Elites(line), OMG-MEGA(line), and OG-MAP-Elites (line) are 

approximately the same. Despite that, OMG-MEGA(line) and OG-MAP-Elites (line) find 

fitter solutions than MAP-Elites(line) (can also be seen by higher Best Fitness Scores in 

OMG-MEGA-line and OG-MAP-Elites-line), whereas MAP-Elites(line) seems to have 

slightly better Coverage Scores.  

Last, CMA-MEGA algorithms have the highest Best-Fitness Scores (See Figure 5.8), 

followed by OMG-MEGA(line) and OG-MAP-Elites(line) with slightly lower scores, 

which are decreased with the increase of the batch size. The Coverage Scores, of CMA-

MEGA are significantly higher than of OMG-MEGA (line) and OG-MAP-Elites (line).  
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Fig. 5.8:  Archives of CMA-MEGA(adam) for problem size 1024 and batch sizes 512 (left) and 131,072  (right) on 

the Rastrigin Function with distorted Behaviour Space 

 

 

Fig. 5.9:  Archives of OMG-MEGA(line) for problem size 1024 and batch sizes 512 (left) and 131,072 (right) on the 

Rastrigin Function with distorted Behaviour Space 

From figure 5.8, we can see the archive of the CMA-MEGA (adam) for batch size 512 

(left) and for batch size 131,072 (right)  for the Rastrigin with Distorted Behavior Space 

problem with a problem size equal to 1024.  Similarly, figures 5.9 and 5.10 show the same 

thing for the OMG-MEGA (line) and MAP-Elites (line) algorithms, respectively. From 

figure 5.8, we can see that CMA-MEGA fills most of its archive with solutions and also 

finds many local optima of the Rastrigin function with Distorted Behavior Space.  The 

archive size, though, is decreased when moving from batch size 512 (left) to batch size 

131,072 (right). The archives of OMG-MEGA (line) and MAP-Elites (line) are also 

negatively affected by the increase in their batch size, and OMG-MEGA (line) seems to 
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find fitter solutions (more area with red colour) than MAP-Elites (line) (the red area in 

OMG-MEGA-line is orange in MAP-Elites-line), but MAP-Elites (line) seems to have 

slightly bigger size of an archive than OMG-MEGA (line). 

Fig. 5.10:  Archives of MAP-Elites(line) for problem size 1024 and batch sizes 512 (left) and 131,072 (right) on the 

Rastrigin Function with distorted Behaviour Space 

 

Fig. 5.11:  QD Scores of QD and DQD algorithms on different problem sizes and batch sizes for the Rastrigin with 

Distorted Behaviour Space problem 
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From figure 5.11, we can see an overview of the QD Scores (represented by a color which 

can be interpreted to a value from the bar on the right) of all the QD and DQD Algorithms 

on all the combinations of batch size and problem size examined on the Rastrigin 

Function with Distorted Behavior Space. The interesting thing to note here is that the QD 

Scores of MAP-Elites (line), OG-MAP-Elites (line) and OMG-MEGA (line) (bottom 

three heat-maps) are significantly affected when we increase the problem size (change of 

the color vertically). In contrast, the batch size increase does not affect them as much as 

what happens with the increase of the problem size (change of the color horizontally is 

not as strong as how the color changes vertically). Moreover, from the same figure, CMA-

MEGA variations can be seen to have significantly better QD Scores than the other QD 

and DQD Algorithms for small batch sizes (leftmost columns of heatmap with yellowish 

color). For greater batch sizes, their QD Scores decrease significantly (rightmost columns 

of heatmap where the color becomes bluer).  

 

Fig. 5.12:  Coverage Scores of QD and DQD algorithms on different problem sizes and batch sizes for the Rastrigin 

with Distorted Behaviour Space problem 
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From figure 5.12, we can see the Coverage scores of the of all the QD and DQD 

Algorithms on all the combinations of batch size and problem size examined on the 

Rastrigin Function with Distorted Behavior Space. We can see that the Coverage Scores 

of the algorithms represent their QD Scores (i.e., same patterns). Thus, the change of 

problem size and/or batch size affects the Coverage Score (the size of the archive) and 

then the QD Score. 

 

Fig. 5.13:  QD Scores of QD and DQD algorithms on different problem sizes and batch sizes for the Arm Repertoire 

 

From figure 5.13, we can see the QD scores of the of all the QD and DQD Algorithms on 

all the combinations of batch size and problem size examined on the Arm Repertoire. The 

interesting thing is that OMG-MEGA(line) and OG-MAP-Elites(line) are stable in the 

increase of both the batch size and problem size (retain same color), whereas the QD 

Scores of MAP-Elites(line) are deteriorated in bigger problem sizes. 
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In general, for the Rastrigin with distorted behavior space problem: 

• Increasing the problem size decreases the QD Scores (QD Scores) of the QD and 

DQD Algorithms in general (Coverage seems to be affected) 

• Increasing the batch size decreases the QD Scores of the QD Algorithms, 

especially when working on bigger problem sizes. 

• Changes in problem and batch sizes affect coverage score the most (instead of the 

fitness of the solutions in the archive) 

• CMA-ME algorithms and MAP-Elites (iso) accomplish the lowest QD Scores 

compared to the other QD and DQD Algorithms for all the combinations of 

problem size and batch size examined 

• CMA-MEGA Algorithms outperform all the other QD and DQD Algorithms. 

They perform that well primarily because they fill more container cells (greater 

archive size) than the other QD and DQD Algorithms. 

• MAP-Elites(line), OMG-MEGA (line) and OG-MAP-Elites (line) accomplish 

approximately the same QD Scores, but all three of them can be benefited from 

big batch sizes more than the other QD and DQD Algorithms since the increase 

of the batch size decreases their QD Scores less than what happens with the other 

Algorithms (128 and 256).  

In conclusion we can identify a few general conclusions: 

• MAP-Elites(line), OMG-MEGA (line) and OG-MAP-Elites (line) are benefited 

from batch size increase (until 131,072 which was tested)  

• CMA-ME and CMA-MEGA algorithms cannot be used with big batch sizes, 

and they can perform better than all the other QD and DQD algorithms when 

used with small problem size in problems with difficult mapping of genotypes to 

the feature space  

→ Should only be used with small batch sizes (<512) 

• OMG-MEGA (line) and OG-MAP-Elites (line) accomplish higher QD Scores 

than MAP-Elites(line) 

→ Use OMG-MEGA (line) and OG-MAP-Elites (line) instead of MAP-

Elites(line) when the runtime of OMG-MEGA (line) and OG-MAP-Elites (line) 



95 

 

is not prohibitively higher (e.g., when calculating derivatives leads to much 

higher runtimes) than of MAP-Elites (line) 

 

5.3.2 The runtime of QD + DQD Algorithms on GPU compared to CPU 

 

Fig 5.14: Runtime of QD  Emitters on Rastrigin Function with simple encoding for batch size equal to 512 and 

increasing problem sizes 

In the previous section, we have investigated the performance (in terms of the metrics QD 

Scores, Best Fitness and Archive Size/Coverage) of QD and DQD Algorithms for bigger 

batch sizes and bigger problem sizes.  

We saw that the batch size can negatively affect the performance of QD and DQD 

Algorithms in some tasks/problems but at the same time it can have no significant 

negative effect (e.g. OMG-MEGA(line) and OG-MAP-Elites (line) performing well in 

Arm Repertoire and Rastrigin with simple encoding but not well in Rastrigin with 
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distorted Behavior Space ). Thus, there is potential for some QD and DQD Algorithms to 

exploit greater sizes of batch sizes and improve their runtime performance when executed 

on GPUs. Consequently, our second experimental goal is to investigate whether there is 

any significant speedup in runtime when using GPUs instead of CPUs.  

Before we investigate the potential of speeding up the algorithms while we increase the 

batch size, let us investigate what happens to the runtime of QD and DQD algorithms on 

CPU and GPUs, when we increase the problem size that they use. Below, at the chart 5.15 

we can see the runtimes of QD and DQD Algorithms with batch size 512 on CPU and 

GPU, with different problem sizes on the Rastrigin Function with simple encoding. 
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Fig 5.15: Runtime of QD  Emitters on Rastrigin Function with simple encoding for problem size equal to 512 and 

increasing batch size 

From this set of charts, it is obvious that increasing the problem size increases the runtime 

of all the QD and DQD algorithms on both the GPUs and CPUs. Despite that, the runtimes 

on GPUs increase much less with the increase of the problem size than the runtimes of 

CPUs. The difference in runtimes between CPUs and GPUs is significant. For example, 

MAP-Elites (line) with 512 batch size and 2048 problem size takes 20 seconds on GPUs 

whereas it takes 2106 (36 minutes) on CPUs. 

Now, moving to the examination of the effect on the runtimes of the QD and DQD 

algorithms when increasing the batch size, we can clearly see that there is a significant 

acceleration in the runtimes of QD and DQD Algorithms when being executed on GPUs, 

instead of CPUs. This applies in all the three Domains (Rastrigin, Arm Repertoire and 

Rastrigin with Distorted Behavior Space) examined, but we will show the results for the 

Rastrigin function with simple encoding. 

Above, in figure 5.15,  you can see the Runtimes of all the QD and DQD Algorithms for 

increasing batch sizes and for a constant problem size (dimensions of a solution) equal to 

1024. The runtimes of the QD +  DQD algorithms on CPU and GPU significantly 

decrease with the increase of the batch size. The runtimes from the GPUs are considerably 

smaller than the runtimes from CPUs for all the combinations of batch sizes and problem 

sizes examined. More specifically, for batch size equal to 512 and problem size equal to 

1024, all the QD Algorithms (excluding the DQD) executed on CPUs needed at least 

around 30 minutes (>1800 seconds). On the other hand, QD Algorithms executed on 

GPUs needed around a minute for problem size equal to 1024 and batch size equal to 512, 

except the CMA-ME (rd), which needed more time (248 seconds).  For the DQD 

algorithms, we can see something similar for batch size 512 and problem size 1024 but 

with shorter runtimes. Concisely, all the DQD algorithms executed on GPU took less than 

a minute to complete for problem size equal to 1024 and batch size 512, whereas the 

runtime of the same algorithms on CPUs for the same problem size and batch size needed 

not less than 10 minutes. 

Despite that increasing the batch size decreases the runtime of both QD and DQD 

algorithms, this reduction in runtime depends on the number of evaluations we want to 

perform since, from the figure 5.15, we can see that the improvement in runtime becomes 
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smaller and smaller with the increase of the batch size. Reducing the number of epochs 

by increasing the batch size improves the runtime, but there is for sure a natural limitation 

on how big the batch size can be. 

The CMA-ME algorithms take more time to execute than the MAP-Elites iso and line 

algorithms. This is true for both CPU and GPU executions (Table 1 and Table 2 below). 

The same can be observed for the DQD Algorithms between the CMA-MEGA 

Algorithms (gradient variant of CMA-ME improvement) and the OMG-MEGA or OG-

MAP-Elites (gradient variants of MAP-Elites).  

Runtime 

(Seconds) 

MAP-

Elites 

(iso) 

MAP-

Elites 

(line) 

CMA-

ME 

(imp) 

CMA-

ME 

(opt) 

CMA-

ME 

(rd) 

OMG-

MEGA 

(line) 

OG-

MAP-

Elites 

(line) 

CMA-

MEGA 

CMA-

MEGA 

(ADAM) 

CPU 156 160 332 380 332 182 169 126 129 

GPU 2 3 22 23 25 5 5 11 11 

Fig 5.1: Runtime of QD  Emitters on Rastrigin Function with simple encoding for problem size equal to 1024 and 

batch size 2048 

 

Runtime 

(Seconds) 

MAP-

Elites 

(iso) 

MAP-

Elites 

(line) 

CMA-

ME 

(imp) 

CMA-

ME 

(opt) 

CMA-

ME (rd) 

OMG-

MEGA 

(line) 

OG-

MAP-

Elites 

(line) 

CMA-

MEGA 

CMA-

MEGA 

(ADAM) 

CPU 283 291 525 620 1048 215 177 233 234 

GPU 9 9 69 62 159 8 8 25 26 

Table 5.2: Runtime of QD  Emitters on Rastrigin Function with simple encoding for problem size equal to 1024 and 

batch size 16,384 

OMG-MEGA (line) and OG-MAP-Elites (line) take approximately the same runtime to 

finish with MAP-Elites (line). 
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Last, the CMA-ME algorithms are the slowest algorithms from all the other QD and DQD 

algorithms (Table 1 and Table 2 above). CMA-MEGA though are faster than CMA-ME 

algorithms, but slower than all the rest QD and DQD algorithms. 

All of the observations mentioned for the Runtimes of the algorithms on the Rastrigin 

Function with simple encoding problem can be generalized since the same things appear 

for the other tasks as well. That is, all these observations apply for the Rastrigin Function 

with Distorted Behavior Space and the Arm Repertoire problems as well. 

To see the runtimes of all the QD and DQD Algorithms for 5 million evaluations on the 

Rastrigin Function with simple encoding, Rastrigin Function with Distorted Behavior 

Space, and the Arm Repertoire problems, please refer to the Appendices. 

 

In general: 

• CMA-ME algorithms are the slowest algorithms from all the other QD and DQD 

algorithms examined.  

• Increasing the problem size increases the runtime of the QD and DQD 

Algorithms. 

• Increasing the batch size of each algorithm reduces their runtime, but the 

improvement becomes less and less with each batch size increase. 

• The use of GPUs is beneficial compared to using CPUs since the runtime on CPUs 

is significantly greater than on GPUs 

 

5.3.3 Performance of DQD Algorithms vs QD Algorithms on GPUs 

Now that we have seen the performances of all the Algorithms on two different 

dimensions (QD Scores, Coverage, Best Fitness vs Runtime) separately, it is important 

to combine the results we have identified and try to understand which algorithms can 

provide sufficiently good results fast and also whether DQD Algorithms can be beneficial 

for accomplishing that (i.e. good results in a short amount of time). That is, which 

algorithms are able to exploit parallelization in order to be executed fast and at the same 

time give good results comparable to not using parallelization (not significantly degraded 

performance) and also whether DQD can be beneficial in accomplishing that. 
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First of all, the runtimes of CMA-ME algorithms compared to the other QD Algorithms, 

and the runtimes of CMA-MEGA algorithms compared to the other DQD Algorithms is 

significantly higher. This could be a problem in the case of using the algorithms with 

more complex tasks (e.g. learning robot tasks via simulations). But at the end of the day, 

the final outcome of the algorithms might matter more (i.e. getting many high-performing 

solutions that vary sufficiently across different features). More specifically, we have seen 

that the CMA-ME Algorithms take more time to be executed than the other QD 

algorithms (they require, at minimum, twice the amount of time that the other QD 

Algorithms require, and the runtime difference between the other QD and CMA-ME 

algorithms becomes bigger as the problem size increases) and do not do well in both of 

the Rastrigin problems examined. Only for the task of Arm-Repertoire, their QD Scores 

were, in general, better than the other Algorithms’ QD Scores, but that was true for small 

batch sizes. Thus, the current implementation of CMA-ME  is not beneficial with big 

batch sizes (>=512). The potential speedup through when increasing the batch size is 

clearly big; the only problem is that the current implementation of CMA-ME gives worse 

results. 

CMA-MEGA is faster than its CMA-ME variants but slightly slower than all the other 

QD and DQD Algorithms. It performs really bad in terms of QD Scores in Arm-

Repertoire, and generally, it performs worse than the CMA-ME variants in terms of QD 

Scores in Arm-Repertoire and Rastrigin with simple encoding. The thing that makes it 

really promising though is its performance on the task of Rastrigin with Distorted 

Behavior Space, where it significantly outperformed all the other QD and DQD 

algorithms for all the problem sizes and batch sizes examined. But the bigger the batch 

size, the lower its accomplished QD Score. Thus, for the CMA-MEGA algorithms using 

big batch sizes does not help the quality and size of the collection of solutions they return. 

OMG-MEGA (line) and OG-MAP-Elites (line) showed really good QD Scores in the 

Rastrigin with simple encoding and Arm-Repertoire problems. More specifically, in the 

Rastrigin with simple encoding, they had the best QD scores for all the combinations of 

problem sizes and batch sizes examined, whereas, in the Arm-Repertoire, their QD scores 

were close to the best ones. They are generally not affected by the increase of the batch 

size and problem size (Stable). But in some cases, like in Rastrigin with distorted behavior 

space, the increase of the batch size and problem size made clearer their decrease in their 
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QD Scores. These algorithms performed better than their QD original MAP-Elites (line). 

In terms of Runtime, OMG-MEGA (line) and OG-MAP-Elites (line) seem to be as fast 

as MAP-Elites (line). More specifically, OMG-MEGA (line) and OG-MAP-Elites (line) 

are faster with smaller batch sizes (e.g., 512 MAP-Elites-line takes around 30 seconds, 

whereas the OMG-MEGA-line and OG-MAP-Elites-line take around 20 seconds for all 

the different problem sizes examined), but slightly slower with bigger batch sizes (e.g., 

16384 MAP-Elites-line takes around 3 seconds whereas the OMG-MEGA-line and OG-

MAP-Elites-line take between 5-7 seconds for all the different problem sizes examined).  

MAP-Elites (line) performed really well in Rastrigin with simple encoding and Arm 

Repertoire. Still, in those two problems we could see that it was affected significantly by 

the problem size (a bigger problem size led to lower QD Scores). In contrast, its DQD 

variants OMG-MEGA (line) and OG-MAP-Elites (line), weren’t significantly affected by 

the problem size. In terms of their runtime, they are faster than all of the CMA-ME and 

CMA-MEGA algorithms and are as fast as the OMG-MEGA and OG-MAP-Elites 

Algorithms. 

MAP-Elites (iso) are the fastest but the worst in terms of quality of results (i.e., lowest 

QD Scores) in all the problems examined. 

Thus, in conclusion, we can see that the performance of each algorithm depends on the 

task examined. Experiments on different tasks, can show different Algorithms performing 

better. Despite the fact that there does not seem to be a single global ideal algorithm, we 

can note a few general observations: 

• MAP-Elites (line), OMG-MEGA (line) and OG-MAP-Elites (line) are generally 

faster than the CMA-ME and CMA-MEGA Algorithms, and in general, the batch 

size can help them speed up their execution without losing a significant quality of 

their results. Depending on the task and its difficulty exploring the feature space, 

they are capable of performing really good and even better than the CMA-ME and 

CMA-MEGA algorithms. 

• Depending on the task and its difficulty exploring the feature space OMG-MEGA 

(line) and OG-MAP-Elites (line) can perform better than MAP-Elites (line) (e.g. 

Rastrigin with simple encoding) because they can usually find fitter solutions, and 
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they seem to be slightly more stable than MAP-Elites (line) when increasing the 

problem size (e.g. Arm Repertoire). 

• CMA-MEGA algorithms do not do well with the increase of the batch size they 

use (i.e. the size and the quality of the collection of solutions they return are 

degraded), and they seem to be very promising when they use small batch size 

and when they are used in particular types of problems,  that introduce a 

significant difficulty in exploring the feature space from solutions generated. In 

those problems, they seem to explore better the feature space and, thus, fill more 

empty cells in their archive. 

• CMA-ME algorithms seem to require the most time to be executed, and in general, 

they perform better in smaller batch sizes. Despite that, they also seem promising 

for particular types of problems when they use small batch sizes. 

These lead us to the following general conclusions: 

• OMG-MEGA (line) and OG-MAP-Elites (line)  

o can provide a speedup when used with GPUs and with bigger batch 

sizes (just like MAP-Elites-line but requiring around the same runtime; 

thus can replace MAP-Elites-line) 

o can provide better results than all the other QD and DQD algorithms 

in Simple Problems (i.e., Rastrigin with simple encoding) 

• CMA-ME and CMA-MEGA  

o can be benefited from optimized code on GPUs but not from the increase 

of their batch size (No possible further speedup) 

o can get better results than all the other QD and DQD algorithms when 

using small batch size and especially in difficult problems (Arm 

Repertoire and Rastrigin with distorted Behavioral Space) where the 

mapping of solutions to their feature space is not simple like in Rastrigin 

with simple encoding  

Concisely, OMG-MEGA(line) and OG-MAP-Elites (line) can be sped up without 

losing the quality of their results, whereas the CMA-ME and CMA-MEGA cannot 

be sped up. Despite that CMA-ME and CMA-MEGA cannot be sped up, they continue 

to outperform the other QD and DQD algorithms in terms of the quality of their 
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solutions in the archive and the size of their archive, but they require more runtime 

because they accomplish that with smaller batch sizes. 
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6.1 Lessons Learnt 

There are different lessons that we learned when working with JAX, which we include in 

this section. 

1. Avoid the use of loops and conditions: We have seen that in JAX, loops and 

conditions, like if-statements, are some of the things that cannot be used as they 

are used in conventional python. These limitations are introduced to make tracing 

your code easier but, at the same time, can improve the performance of your code. 

For example, a for-loop that can be statically defined  (the number of iterations is 

known before the code with the for-loop is compiled) by the JAX-JIT compiler is 

unrolled in the final optimized code. The unrolled loop creates more code for 

compilation and execution, leading to greater compilation and potentially 

execution times. Thus, avoiding loops when this can be done is a good step to 

make your code JAX-Compatible and also make it more efficient. 

2. Think Vectorizing your code: A better alternative to using loops in 

implementations of ML, DL and RL algorithms is the use of vectorization. That 

is, organize your data that you need to perform operations on vectors and matrices 

and the operations on those data as vector and matrix operations. The benefit of 

vectorization is that many libraries execute these operations efficiently, and many 

times they automatically take advantage of available hardware that can improve 

the speed of the operations. 

3. Optimizing your code for efficiency on specific hardware pays off:  

There are many libraries (e.g. Numba and JAX) that can optimize your code for a 
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specific device you want to run it for in order to speed up different operations (e.g. 

linear algebra operations). We used JAX, and via the JAX-JIT compiler, we were 

able to compile the same code for either CPUs, CUDA GPUs or TPUs. Compiled 

code for CPUs was much faster than conventional Python code. For example, the 

CMA-ME-imp algorithm we implemented needed more than twice as much time 

when being run without being optimized than when being optimized with JAX-

JIT.  

4. Implementing algorithms in JAX does not include replacing NumPy with JAX-

NumPy: One of the misinterpretations of JAX that we have seen people have is 

that you can take an algorithm that uses the NumPy library and change the 

references to NumPy to be JAX-NumPy. Despite that this can work, in the general 

case, it is not that simple and not all the NumPy references are always needed to 

be replaced with JAX-NumPy. As we mentioned again, writing code in JAX 

includes replacing loops with method-like structures, removing if-statement, 

eliminating side-effects in methods etc. 

5. Avoid parallelizing work on CPU’s cores manually using JAX’s pmap: The 

command pmap defined by the JAX framework is used to map a function on data 

on multiple devices in parallel. It is primarily used for different devices (e.g. 

different GPU devices), but it can also be used with different CPUs. The different 

CPUs can be different cores on the same or different chips. When using pmap, the 

data are copied to the other device so that the other device can work with them. 

Thus, using the pmap for cores of the same CPU that use the same memory will 

cause the data to be copied as many times as it is your degree of parallelization 

with pmap. Thus, using pmap with cores of the same chip is unnecessary since 

JAX can manage them automatically and also, the use of pmap on the cores of the 

same chip can create performance degradation if not careful. 

6.2 Conclusions 

The exploration of the question of whether GPUs can help speed up QD and DQD 

Algorithms led us to the exploration of the technologies and frameworks available to 

support executing Machine, Deep and Reinforcement Learning algorithms on GPUs. In 

reality, we have seen that there are many of them, like JAX and PyTorch, that make the 

development of algorithms on specialized hardware like GPUs and TPUs easier. 
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Choosing the JAX framework allowed us to see the ease that a framework like JAX offers 

in developing algorithms for GPUs and TPUs, but we have also seen the constraints that 

are being introduced with them. These constraints are enforced for optimizing code to be 

executed on specialized hardware, including but not limited to not using conventional 

Python Objects and not using Python if-statements in the code. To address that, we 

created a framework that makes the development of QD Algorithms optimized on JAX 

for specialized hardware easier and more scalar. Based on that framework, we have 

implemented all the state-of-the-art QD and DQD Algorithms and used them to help us 

answer our question on whether GPUs can help speed up QD and DQD Algorithms. 

Then we tested those algorithms on a set of different tasks, different batch sizes and for 

different problem sizes (Rastrigin with distorted Behavior Space, Rastrigin with simple 

encoding and Arm Repertoire) on both GPU and CPU. We investigated three things: (1) 

how these algorithms are affected by the increase of the batch size, (2) whether running 

the algorithms on GPUs can help speed up the algorithms, and (3) whether it is beneficial 

to use both GPUs and Differentiability in the QD Algorithms (i.e. use DQD algorithms 

on GPUs) to get better results and faster.  

Based on our experiments we made on MAP-Elites(line), OMG-MEGA (line) and OG-

MAP-Elites (line) we have seen that they (1) are benefited from batch size increase 

(until 131,072 which was tested), (2) are faster than the family of CMA-MEGA and 

CMA-ME algorithms, (3) perform as good or even better than CMA-MEGA and 

CMA-ME in simple problems where the mapping of genotypes to the feature space is 

simple (e.g., Rastrigin with simple encoding), (4) that OMG-MEGA (line) and OG-

MAP-Elites (line)  perform better than MAP-Elites(line) and are as fast as MAP-

Elites(line). These led us to the conclusion that OMG-MEGA (line) and OG-MAP-Elites 

(line) in general are stable in batch size and problem size changes and thus can provide 

a beneficial speedup when used with GPUs and with bigger batch sizes replacing the 

MAP-Elites (line) algorithm.  

On the other hand, from our work with CMA-ME and CMA-MEGA algorithms we have 

seen that they (1) cannot be used with big batch sizes, (2) they usually perform better than 

all the other QD and DQD algorithms when used with small batch size (i.e. 32 batch size 

in Fontaine & Nikolaidis [4] and in our experiments with batch size 512 CMA-ME were 

the best in Arm Repertoire and CMA-MEGA were the best in Rastrigin with Distorted 
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Behavior Space), (3) their performance (QD Scores) power is clear in problems where 

the mapping of solutions to their feature space is not simple like in Rastrigin with simple 

encoding but more difficult (e.g., CMA-MEGA in Rastrigin function and CMA-ME in 

Arm Repertoire), (4) that the CMA-ME are the slowest algorithms, (5) CMA-MEGA are 

faster than CMA-ME. Thus, we concluded that CMA-ME and CMA-MEGA still 

outperform the other QD and DQD algorithms in terms of archive size and quality of 

solutions in archive in small batch sizes, especially in more difficult problems where the 

mapping of solutions to the feature space is not simple(e.g. Rastrigin with Distorted 

Behavioral Space and Arm Repertoire). But, despite that they can be benefited from 

optimized code on GPUs, the increase of the batch size significantly decreases their 

performance, which means that there is no beneficial further speedup for them requiring 

them to be executed more time to get better results than OMG-MEGA (line) and OG-

MAP-Elites (line).  

Overall, with this final section we conclude that we found a significant speedup for all 

the QD and DQD algorithms when being executed on GPUs compared to CPUs, but only 

MAP-Elites(line), OMG-MEGA (line) and OG-MAP-Elites (line) are accomplishing 

beneficial further speedup with the batch size increase (>512). In this opportunity for 

speedup, OMG-MEGA (line) and OG-MAP-Elites (line) are proven more attractive to be 

used in any kind of problem than MAP-Elites (line) since they require approximately the 

same time as MAP-Elites (line) and they accomplish most of the time better QD Scores. 

CMA-MEGA and CMA-ME algorithms continue to outperform in terms of QD Scores 

the other QD and DQD algorithms in problems where the mapping of solutions to their 

feature space is not simple, but their current implementations do not benefit them for a 

speed up by increasing their batch size (i.e., they work well with small batch sizes e.g. 32 

as tested by Fontaine and Nikolaidis [4]). 

Through this work, we hope to see the community start using our ideas, code and even 

implementations to accelerate QD and DQD algorithms on specialized hardware like 

GPUs. We also hope to encourage the community to work on the limitations and issues 

of the QD and DQD algorithms that arise when trying to exploit parallelisation (i.e. using 

greater sizes of batch sizes), and we hope to see new algorithmic ideas that could address 

those limitations and leverage the massive parallelism offered by specialized hardware to 

improve performance of QD and DQD algorithms. 
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6.3 Future Work 

Our work focused on examining the performance of QD and DQD Algorithms on Toy 

Domains (Types of QD Problems) on GPUs and CPUs. But our final goal is to do the 

same examination on more complex Domains, including learning robotic skills (e.g., 

allowing a hexapod to learn to move in each direction of the space) via simulations (i.e. 

BRAX Simulator). Thus, in the future, the performance of all the QD and DQD 

Algorithms on Complex Domains, on GPUs and CPUs should be examined to investigate 

the three questions that we investigated. That is, (1) What happens to the performance of 

the algorithms when the batch size and the problem size change, (2) What is the speedup 

acquired by executing QD and DQD algorithms on those more complex environments on 

GPUs compared to CPUs and (3) “Can DQD be proven to help get high-performing 

solutions quickly on GPU for those more complex Domains?”. There are more things to 

be considered in more complex QD Domains. For example, in more complex 

environments, the size of the solutions can be significantly bigger than in Toy Problems 

since a solution there can be more complex things like the parameters of a Neural 

Network.  In addition to that, DQD Algorithms depend on calculating the derivatives of 

the solutions with respect to the objective and behavioural functions’ outputs. In more 

complex Domains, the derivatives are not usually computed analytically, just in our case, 

where hardcoded equations were calculating the derivatives, but auto-differentiation is 

usually used. The auto-differentiation calculates the derivatives of complex functions by 

repeatedly applying the chain rule. This thing costs more in terms of computational time, 

and it would probably change the runtimes of the DQD Algorithms in those complex QD 

Domains.  

In addition to that, more investigation should be done on why the QD and DQD 

algorithms are affected by the big batch sizes and whether using multiple individual 

Emitters (instances of QD and DQD Algorithms) with smaller batch sizes can be more 

beneficial than using a single Emitter with huge batch size. This investigation should also 

include more information about the limits of the performance of QD and DQD algorithms 

using big batch sizes (e.g., how big batch sizes can MAP-Elites(line) be used before its 

performance starts to decrease?). 
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Appendix A - Implementations 

A.1 QD Functions 

A.1.1 Rastrigin Objective Function 

import jax 

from jax import lax 

import jax.numpy as jnp 

 

def calc_rastrigin(sol): 

    C = 5.12 

    A = 10.0 

    dim = sol.shape[1] 

 

    # Shift the Rastrigin function so that the optimal value is at x_i = 2.048. 

    # This is to avoid having the lowest point of the rastrigin functionat  

    # position x = [0,0,0,...,0], i.e. f(0,0,0,...,0) = 0 because the position 

    # x = [0,0,0,...,0] is usually used as an initial point for the search 

    # That is, an initial solution 

    target_shift = C * 0.4 

    # sol = 2*C*sol - C 

    best_obj = jnp.zeros(len(sol)) 

    displacement = -C * jnp.ones(sol.shape) - target_shift 

    sum_terms = jnp.square(displacement) - A * jnp.cos(2 * jnp.pi * displacement) 

    worst_obj = A * dim + jnp.sum(sum_terms, axis=1) 

 

    displacement = sol - target_shift 

    sum_terms = jnp.square(displacement) - A * jnp.cos(2 * jnp.pi * displacement) 

    raw_obj = A * dim + jnp.sum(sum_terms, axis=1) 

 

    # Normalize the objective to the range [0, 100] where 100 is optimal. 

    # Approximate 0 by the bottom-left corner. 

    objs = (raw_obj - worst_obj) / (best_obj - worst_obj) * 100 

 

    derivatives = -(2 * displacement + 2 * jnp.pi * A * jnp.sin(2 * jnp.pi * displacement)) 

 

    return objs, derivatives 
 

Code Snippet A.1:  Objective Function Rastrigin(x) defined by the shifted and flipped Rastrigin Function 
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A.1.2 Simple Behavioural Function – simple_b(x) 

import jax 

from jax import lax 

import jax.numpy as jnp 

 

def calc_bds_rastrigin_simple(sol): 

    mask_1 = jnp.zeros(sol.shape).at[:,0].set(1) 

    mask_2 = jnp.zeros(sol.shape).at[:,1].set(1) 

    return ( jnp.stack((sol[:,0], sol[:,1]), axis=-1),  

                jnp.stack((mask_1, mask_2), axis=1) 

            ) 
 

Code Snippet A.2:  Simple Behavioural Function b_simple(x) 

 

A.1.3 Behavioural Function distorted_b(x)  

import jax 

from jax import lax 

import jax.numpy as jnp 

 

def calc_bds_rastrigin(sol): 

    C = 5.12 

    dim = sol.shape[1] 

 

    mask_greater = jnp.where(sol > C, 1, 0) 

    mask_less = jnp.where(sol < -C, 1, 0) 

 

    mask_range=jnp.invert((mask_greater+mask_less).astype(dtype=bool)).astype(dtype=jnp.int32) 

 

    clipped = (mask_greater + mask_less) * (C / sol) + sol * mask_range 

    measures = jnp.concatenate( 

        ( 

            jnp.sum(clipped[:, :dim // 2], axis=1, keepdims=True), 

            jnp.sum(clipped[:, dim // 2:], axis=1, keepdims=True), 

        ), 

        axis=1, 

    ) 

 

    derivatives = (mask_greater + mask_less) * ( -C / jnp.square(sol)) + mask_range 
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    mask_0 = jnp.concatenate((jnp.ones(dim//2), jnp.zeros(dim-dim//2))) 

    mask_1 = jnp.concatenate((jnp.zeros(dim//2), jnp.ones(dim-dim//2))) 

 

    d_measure0 = jnp.multiply(derivatives, mask_0) 

    d_measure1 = jnp.multiply(derivatives, mask_1) 

     

    jacobian = jnp.stack((d_measure0, d_measure1), axis=1) 

    return measures, jacobian 
 

Code Snippet A.3:  Behavioural Function distorted_b(x)  

A.1.4 Objective Function grasp_obj(x)  

import jax 

from jax import lax 

import jax.numpy as jnp 

 

def calc_grasp_objs(joint_angles, link_lengths, calc_jacobians=True): 

 

    n_dim = link_lengths.shape[0] 

    objs = -jnp.var(joint_angles, axis=1) 

 

    # Remap the objective from [-1, 0] to [0, 100] 

    objs = (objs+1.0)*100.0 

     

    if calc_jacobians: 

        means = jnp.mean(joint_angles, axis=1) 

        means = jnp.expand_dims(means, axis=1) 

        base = n_dim * jnp.ones(n_dim) 

        obj_derivatives = -2 * (joint_angles - means) / base 

         

        return objs, obj_derivatives 

    return objs, None 
 

Code Snippet A.4:  Objective Function grasp(x)  

A.1.5 Behavioural Function grasp_b(x)  

import jax 

from jax import lax 

import jax.numpy as jnp 

 

def _step_calc_bd_gradients(data): 

    i, bds_derivatives, link_lengths, cum_theta, sum_0, sum_1 = data 

 

    sum_0 += -link_lengths[i] * jnp.sin(cum_theta[:, i]) 

    sum_1 += link_lengths[i] * jnp.cos(cum_theta[:, i]) 
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    bds_derivatives.at[:, 0, i].set(sum_0) 

    bds_derivatives.at[:, 1, i].set(sum_1) 

 

    return (i - 1, bds_derivatives, link_lengths, cum_theta, sum_0, sum_1 ) 

 

def calc_grasp_bds(joint_angles, link_lengths, calc_jacobians=True): 

    # max_val = jnp.sum(link_lengths) 

    # joint_angles = joint_angles * 2*max_val - max_val 

    n_dim = link_lengths.shape[0] 

 

    # theta_1, theta_1 + theta_2, ... 

    cum_theta = jnp.cumsum(joint_angles, axis=1) 

    # l_1 * cos(theta_1), l_2 * cos(theta_1 + theta_2), ... 

    x_pos = link_lengths[None] * jnp.cos(cum_theta) 

    # l_1 * sin(theta_1), l_2 * sin(theta_1 + theta_2), ... 

    y_pos = link_lengths[None] * jnp.sin(cum_theta) 

 

    bds = jnp.concatenate( 

        ( 

            jnp.sum(x_pos, axis=1, keepdims=True), 

            jnp.sum(y_pos, axis=1, keepdims=True), 

        ), 

        axis=1 

    ) 

 

    if calc_jacobians: 

        sum_0 = jnp.zeros(joint_angles.shape[0])  

        sum_1 = jnp.zeros(joint_angles.shape[0]) 

 

        bds_derivatives = jnp.zeros((joint_angles.shape[0], 2, n_dim)) 

        data = (n_dim-1, bds_derivatives, link_lengths, cum_theta, sum_0, sum_1) 

        lax.while_loop(lambda d: d[0] >= 0,  

            _step_calc_bd_gradients, 

            data 

        ) 

 

        return bds, bds_derivatives 

    return bds, None 
 

Code Snippet A.5:  Behavioural Function grasp_b(x)  
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A.2 Optimizers 

A.2.1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

"""Implementation of CMA-ES that can be used across various emitters. 

Adapted from Nikolaus Hansen's pycma: 

https://github.com/CMA-ES/pycma/blob/master/cma/purecma.py 

""" 

from typing import Any, Callable, Dict, Optional, Tuple, List 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

import functools 

 

D_TYPE = jnp.float32 

 

Array = jnp.ndarray 

 

class WeightRules: 

    TRUNCATION = 1 

    ACTIVE = 2  

 

@flax.struct.dataclass 

class DecompMatrix: 

    """Maintains a covariance matrix and its eigendecomposition. 

    CMA-ES requires the inverse square root of the covariance matrix in order to 

    sample new solutions from a multivariate normal distribution. However, 

    calculating the inverse square root is an O(n^3) operation because an 

    eigendecomposition is involved. (n is the dimensionality of the search 

    space). To amortize the operation to O(n^2) and avoid recomputing, this 

    class maintains the inverse square root and waits several evals before 

    recomputing the inverse square root. 

    """ 

 

    cov: Array 

    eigenbasis: Array 

    eigenvalues: Array 

    condition_number: jnp.float32 

    invsqrt: Array 

    updated_eval: jnp.int32 

 

    @classmethod 

    def create(cls, dimension): 

        cov = jnp.eye(dimension, dtype=D_TYPE) 

        eigenbasis = jnp.eye(dimension, dtype=D_TYPE) 

        eigenvalues = jnp.ones((dimension,), dtype=D_TYPE) 
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        condition_number = 1.0 

        invsqrt = jnp.eye(dimension, dtype=D_TYPE)  # C^(-1/2) 

        # The last evaluation on which the eigensystem was updated. 

        updated_eval = 0 

        return cls(cov, eigenbasis, eigenvalues, condition_number, invsqrt, updated_eval) 

     

    @staticmethod 

    def check_update_eigensystem(decompMatrix, current_eval, lazy_gap_evals): 

        return lax.cond(current_eval <= decompMatrix.updated_eval + lazy_gap_evals,  

                lambda x: decompMatrix,  

                lambda x: DecompMatrix._update_eigensystem(decompMatrix, current_eval), 

                    current_eval 

            ) 

 

    @staticmethod 

    def _update_eigensystem(decompMatrix, current_eval): 

        """Updates the covariance matrix. 

        """ 

        # Force symmetry. 

        cov = jnp.maximum(decompMatrix.cov, jnp.transpose(decompMatrix.cov)) 

 

        # Note: eigh returns float64, so we must cast it. 

        eigenvalues, eigenbasis = jnp.linalg.eigh(cov) 

        eigenvalues = eigenvalues.real.astype(D_TYPE) 

        eigenbasis = eigenbasis.real.astype(D_TYPE) 

        condition_number = (jnp.max(eigenvalues) / 

                                jnp.min(eigenvalues)) 

        invsqrt = jnp.matmul( (eigenbasis * 

                        (1 / jnp.sqrt(eigenvalues))), jnp.transpose(eigenbasis)) 

 

        # Force symmetry. 

        invsqrt = jnp.maximum(invsqrt, jnp.transpose(invsqrt)) 

 

        updated_eval = current_eval 

        return decompMatrix.replace(cov = cov,  

                            eigenbasis = eigenbasis,  

                            eigenvalues = eigenvalues,  

                            condition_number = condition_number, 

                            invsqrt = invsqrt, 

                            updated_eval = updated_eval) 

 

@flax.struct.dataclass 

class CMAEvolutionStrategy: 

    """CMA-ES optimizer for use with emitters. 

    The basic usage is: 

    - Initialize the optimizer and reset it. 

    - Repeatedly: 
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      - Request new solutions with ask() 

      - Rank the solutions in the emitter (better solutions come first) and pass 

        them back with tell(). 

      - Use check_stop() to see if the optimizer has reached a stopping 

        condition, and if so, call reset(). 

    """ 

    batch_size: jnp.int32 

    sigma0: jnp.float32 

    solution_dim: jnp.int32 

    lazy_gap_evals: jnp.float32 

    current_eval: jnp.int32 

    mean: jnp.float32 

    sigma: jnp.float32 

    pc: Array 

    ps: Array 

    cov: DecompMatrix 

    weight_rule: str 

 

    @classmethod 

    def create(cls, sigma0, batch_size, solution_dim, weight_rule): 

        batch_size = (4 + int(3 * jnp.log(solution_dim)) 

                           if batch_size is None else batch_size) 

        sigma0 = float(sigma0) 

 

        if weight_rule not in [WeightRules.TRUNCATION, WeightRules.ACTIVE]: 

            raise ValueError(f"Invalid weight_rule {weight_rule}") 

 

 

         

        calc_strat_params_fn = jax.jit(functools.partial(           

        CMAEvolutionStrategy._calc_strat_params, weight_rule, batch_size, solution_dim)) 

        static_settings = dict() 

        static_settings['calc_strat_params_fn'] = calc_strat_params_fn 

        static_settings['solution_dim'] = solution_dim 

        static_settings['batch_size'] = batch_size 

        static_settings['should_update_eigensystem'] = False 

 

        # Calculate gap between covariance matrix updates. 

        num_parents = batch_size // 2 

        temp_indices = jnp.arange(0, batch_size, 1) 

        parents_mask = jnp.where(temp_indices < num_parents, 1, 0) 

        *_, c1, cmu = calc_strat_params_fn(num_parents, parents_mask) 

        lazy_gap_evals = (0.5 * solution_dim * batch_size * 

                               (c1 + cmu)**-1 / solution_dim**2) 

 

        # Strategy-specific params -> initialized in reset(). 

        current_eval = None 
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        mean = None 

        sigma = None 

        pc = None 

        ps = None 

        cov = None 

 

        return cls(batch_size, sigma0, solution_dim, lazy_gap_evals, current_eval, 

                    mean, sigma, pc, ps, cov, weight_rule), static_settings 

 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings['batch_size'] 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings['solution_dim'] 

 

    @staticmethod 

    def _get_calc_strat_params_fn(static_settings): 

        return static_settings['calc_strat_params_fn'] 

 

    @staticmethod 

    def reset(static_settings, cmaEvolStrategy, x0): 

        """Resets the optimizer to start at x0. 

        Args: 

            x0 (jnp.ndarray): Initial mean. 

        """ 

        solution_dim = cmaEvolStrategy._get_solution_dim(static_settings) 

        current_eval = 0 

        sigma = cmaEvolStrategy.sigma0 

        mean = jnp.array(x0, D_TYPE) 

 

        # Setup evolution path variables. 

        pc = jnp.zeros(solution_dim, dtype=D_TYPE) 

        ps = jnp.zeros(solution_dim, dtype=D_TYPE) 

         

        # Setup the covariance matrix. 

        cov = DecompMatrix.create(solution_dim) 

 

        return cmaEvolStrategy.replace(cov = cov, pc = pc, ps = ps, sigma = sigma,  

                                        mean = mean, current_eval = current_eval) 

 

    @staticmethod 

    def check_stop(cmaEvolStrategy, ranking_values, new_sols): 

        """Checks if the optimization should stop and be reset. 

        Tolerances come from CMA-ES. 

        """ 
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        area = cmaEvolStrategy.sigma * jnp.sqrt(jnp.asarray(  

                                           cmaEvolStrategy.cov.eigenvalues).max()) 

 

        a = cmaEvolStrategy.cov.condition_number > 1e14 

        b = area < 1e-11 

        c = new_sols >= 2 

        d = jnp.abs(ranking_values[0] - ranking_values[-1]) < 1e-12 

 

        # condition number > 1e14 or 

        # Area of distribution too small or  

        # Fitness is too flat (only applies if there are at least 2 parents). 

        # return cmaEvolStrategy.cov.condition_number > 1e14 or area < 1e-11 or (new_sols >= 2 

and 

        #           jnp.abs(ranking_values[0] - ranking_values[-1]) < 1e-12) 

        return jnp.logical_or(jnp.logical_or(a,b),jnp.logical_and(c,d)) 

 

    @staticmethod 

    def _transform_and_check_sol( transform_mat, mean, lower_bounds, upper_bounds, 

                                 unscaled_params): 

        """Helper for transforming parameters to the solution space.""" 

        solutions = (jnp.transpose(jnp.matmul(transform_mat,  

                        jnp.transpose(unscaled_params))) + 

                     jnp.expand_dims(mean, axis=0)) 

        out_of_bounds = jnp.logical_or( 

            solutions < jnp.expand_dims(lower_bounds, axis=0), 

            solutions > jnp.expand_dims(upper_bounds, axis=0), 

        ) 

        return solutions, out_of_bounds 

 

    @staticmethod 

    def _get_remaining_out_of_bounds(batch_size, solution_dim, sigma, 

                                           _transform_and_check_sol_fn, data): 

        # jax.jit requires that not working with code that generate output array shape that is 

data-dependent 

        # (e.g. use jnp.where to find indices of an array that satisfy a condition) 

        # Thus, we generate deterministically each time as many solutions as it is the number 

of batch sizes 

        # and we exploit only a fraction of it. Should be investigated whether it can be 

optimised further 

        out_of_bounds_all, solutions, key = data 

        tempkey, key2 = jax.random.split(key, 2) 

        unscaled_params = sigma * jax.random.normal(key2,  

                                shape=solutions.shape, 

                                dtype=D_TYPE)  

 

        new_solutions, out_of_bounds = _transform_and_check_sol_fn(unscaled_params) 
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        # Change the solutions that previously were out of bounds 

        mask = jnp.repeat(jnp.expand_dims(out_of_bounds_all,axis=-1), solution_dim, axis=-1) 

        solutions = jnp.where(mask, new_solutions, solutions) 

 

        # update which solutions are still out of bounds 

        out_of_bounds_all = jnp.logical_and( 

                out_of_bounds_all, 

                jnp.any(out_of_bounds, axis=1), 

            ) 

        return (out_of_bounds_all, solutions , tempkey) 

 

    @staticmethod 

    def _more_out_of_bounds(data): 

        return jnp.sum(data[0].astype(jnp.int32)) > 0 

 

    @staticmethod 

    def ask(static_settings, cmaEvolStrategy, lower_bounds, upper_bounds, seed): 

        """Samples new solutions from the Gaussian distribution. 

        """ 

        solution_dim = cmaEvolStrategy._get_solution_dim(static_settings) 

        batch_size = cmaEvolStrategy._get_batch_size(static_settings) 

        decompMatrix = DecompMatrix.check_update_eigensystem(cmaEvolStrategy.cov,  

                       cmaEvolStrategy.current_eval, cmaEvolStrategy.lazy_gap_evals) 

 

        solutions = jnp.empty((batch_size, solution_dim),dtype=D_TYPE) 

        transform_mat = decompMatrix.eigenbasis * jnp.sqrt(decompMatrix.eigenvalues) 

        cmaEvolStrategy = cmaEvolStrategy.replace(cov = decompMatrix) 

         

        # keeps a flag (= True or False) for each solution whether any of its parameter's 

value is out of bounds 

        out_of_bounds_all = jnp.full(batch_size,True) 

        tempkey = seed 

        # to_ones = jnp.vectorize(lambda x: lax.cond(x, lambda x: 1, lambda x: 0, x)) 

        _transform_and_check_sol_partial = functools.partial(  

                             CMAEvolutionStrategy._transform_and_check_sol, 

                             transform_mat, cmaEvolStrategy.mean, lower_bounds, upper_bounds) 

 

        get_remaining_out_of_bounds_fn = 

functools.partial(CMAEvolutionStrategy._get_remaining_out_of_bounds,  

                                                            batch_size,  

                                                            solution_dim,  

                                                            cmaEvolStrategy.sigma,  

                                                            _transform_and_check_sol_partial) 

 

        return cmaEvolStrategy, jnp.asarray( 

lax.while_loop(CMAEvolutionStrategy._more_out_of_bounds,  

                                                get_remaining_out_of_bounds_fn,  
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                                                (out_of_bounds_all, solutions, tempkey))[1]  

                                            ) 

 

        # Resampling method for bound constraints -> sample new solutions until 

        # all solutions are within bounds. 

        while jnp.sum(out_of_bounds_all.astype(jnp.int32)) > 0: 

            # jax.jit requires that not working with code that generate output array shape 

that is data-dependent 

            # (e.g. use jnp.where to find indices of an array that satisfy a condition) 

            # Thus, we generate deterministically each time as many solutions as it is the 

number of batch sizes 

            # and we exploit only a fraction of it. Should be investigated whether it can be 

optimised further 

            tempkey, key2 = jax.random.split(tempkey, 2) 

            unscaled_params = cmaEvolStrategy.sigma * jax.random.normal(key2,  

                                    shape=(cmaEvolStrategy.batch_size,  

                                    cmaEvolStrategy.solution_dim), 

                                    dtype=cmaEvolStrategy.dtype)  

 

            new_solutions, out_of_bounds = _transform_and_check_sol_partial(unscaled_params) 

            # Change the solutions that previously were out of bounds 

            mask = jnp.repeat(jnp.expand_dims(out_of_bounds_all,axis=-1),  

                               cmaEvolStrategy.solution_dim,axis=-1) 

            solutions = jnp.where(mask,new_solutions,solutions) 

 

            # update which solutions are still out of bounds 

            out_of_bounds_all = jnp.logical_and( 

                    out_of_bounds_all, 

                    jnp.any(out_of_bounds, axis=1), 

                ) 

 

        return jnp.asarray(solutions) 

 

    @staticmethod 

    def _calc_strat_params(weight_rule, batch_size, solution_dim, num_parents, parents_mask): 

        """Calculates weights, mueff, and learning rates for CMA-ES.""" 

        # Create fresh weights for the number of parents found. 

        if weight_rule == WeightRules.TRUNCATION: 

            # The first num_parents weights are used that depend on the number of parents  

            # but the array has size equal to solution_dim to allow it to be jit compiled 

            weights = (jnp.log(num_parents + 0.5) - 

                       jnp.log(jnp.arange(1, batch_size + 1))) 

            # make the non-parent entries to zero arrays so that the sum is not affected 

            # by the extra entries in the array (elements that are not parents) 

            filtered_weights = jnp.multiply(weights, parents_mask) 

            total_weights = jnp.sum(filtered_weights) 

            weights = filtered_weights / total_weights 
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            # mueff = jnp.sum(weights)**2 / jnp.sum(weights**2) 

            mueff = jnp.square(total_weights) / jnp.sum(jnp.square(filtered_weights)) 

        elif weight_rule == WeightRules.ACTIVE: 

            weights = None 

 

        # Dynamically update these strategy-specific parameters. 

        cc = ((4 + mueff / solution_dim) / 

              (solution_dim + 4 + 2 * mueff / solution_dim)) 

        cs = (mueff + 2) / (solution_dim + mueff + 5) 

        c1 = 2 / ((solution_dim + 1.3)**2 + mueff) 

        cmu = jnp.minimum( 

            1 - c1, 

            2 * (mueff - 2 + 1 / mueff) / ((solution_dim + 2)**2 + mueff), 

        ) 

        return weights, mueff, cc, cs, c1, cmu 

 

     

    @staticmethod 

    def _calc_mean(solutions, parents_mask, weights): 

        """Helper for calculating the new mean.""" 

        masked_solutions = jnp.multiply(solutions, jnp.expand_dims(parents_mask, axis=-1)) 

        return jnp.sum(jnp.multiply(masked_solutions, jnp.expand_dims(weights, axis=1)), 

                                       axis=0) 

 

    @staticmethod 

    def _calc_weighted_ys(solutions, parents_mask, old_mean, weights): 

        """Calculates y's for use in rank-mu update.""" 

        ys = solutions - jnp.expand_dims(old_mean, axis=0) 

         

        expanded_parents_mask = jnp.expand_dims(parents_mask,axis=-1) 

        masked_ys = jnp.multiply(ys, expanded_parents_mask) 

        masked_weighted_ys = jnp.multiply(masked_ys, jnp.expand_dims(weights, axis=1)) 

         

        return masked_weighted_ys, masked_ys 

 

    @staticmethod 

    def _calc_cov_update(cov, c1a, cmu, c1, pc, sigma, rank_mu_update): 

        """Calculates covariance matrix update.""" 

        rank_one_update = c1 * jnp.outer(pc, pc) 

        return (cov * (1 - c1a - cmu) + rank_one_update * c1 + 

                rank_mu_update * cmu / (sigma**2)) 

 

    @staticmethod 

    def tell(static_settings, cmaEvolStrategy, solutions, num_parents): 

        """Passes the solutions back to the optimizer. 

        """ 

        current_eval = cmaEvolStrategy.current_eval + len(solutions) 
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        def pass_solutions(static_settings, cmaEvolStrategy, solutions, num_parents,  

                                    current_eval): 

            # parents = solutions[:num_parents] 

            calc_strat_params_fn = cmaEvolStrategy._get_calc_strat_params_fn(static_settings) 

            solution_dim = cmaEvolStrategy._get_solution_dim(static_settings) 

            batch_size = cmaEvolStrategy._get_batch_size(static_settings) 

             

            temp_indices = jnp.arange(0,batch_size, 1) 

            parents_mask = jnp.where(temp_indices < num_parents, 1, 0) 

            weights, mueff, cc, cs, c1, cmu = calc_strat_params_fn(num_parents, parents_mask) 

 

            damps = (1 + 2 * jnp.maximum( 

                0, 

                jnp.sqrt((mueff - 1) / (solution_dim + 1)) - 1, 

            ) + cs) 

 

            # Recombination of the new mean. 

            old_mean = cmaEvolStrategy.mean 

            mean = CMAEvolutionStrategy._calc_mean(solutions, parents_mask, weights)   

 

            # Update the evolution path. 

            y = mean - old_mean 

            z = jnp.matmul(cmaEvolStrategy.cov.invsqrt, y) 

            ps = ((1 - cs) * cmaEvolStrategy.ps + 

                    (jnp.sqrt(cs * (2 - cs) * mueff) / cmaEvolStrategy.sigma) * z)         

            left = (jnp.sum(jnp.square(ps)) / solution_dim / 

                    (1 - (1 - cs)**(2 * current_eval / batch_size))) 

            right = 2 + 4. / (solution_dim + 1) 

 

            hsig = lax.cond(left < right, lambda x: 1, lambda x: 0, None) 

 

            pc = ((1 - cc) * cmaEvolStrategy.pc + hsig * jnp.sqrt(cc * (2 - cc) * mueff) * 

y)            

 

            # Adapt the covariance matrix.     

            weighted_ys, ys = CMAEvolutionStrategy._calc_weighted_ys(solutions, parents_mask,  

                                                                     old_mean, weights) 

            # Equivalent to calculating the outer product of each ys[i] with itself 

            # and taking a weighted sum of the outer products. Unfortunately, numba 

            # does not support einsum. 

            rank_mu_update = jnp.einsum("ki,kj", jnp.asarray(weighted_ys, dtype=D_TYPE),  

                                          jnp.asarray(ys, dtype=D_TYPE))  

 

            c1a = c1 * (1 - (1 - hsig**2) * cc * (2 - cc)) 

            cov = CMAEvolutionStrategy._calc_cov_update(cmaEvolStrategy.cov.cov, c1a, cmu, c1, 

                                                pc, cmaEvolStrategy.sigma, 

                                                rank_mu_update) 
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            cov = cmaEvolStrategy.cov.replace(cov = cov) 

            # Update sigma. 

            cn, sum_square_ps = cs / damps, jnp.sum(jnp.square(ps)) 

            sigma = cmaEvolStrategy.sigma * jnp.exp( 

                jnp.minimum(1,cn * (sum_square_ps / solution_dim - 1) / 2) 

                )       

             

            return cmaEvolStrategy.replace(cov=cov, current_eval = current_eval, mean = mean, 

ps = ps, pc = pc, sigma = sigma) 

         

        # Examine whether num_parents == 0 is required as a check 

        return lax.cond(num_parents == 0,  

                        lambda x: cmaEvolStrategy.replace(current_eval = current_eval), 

                        lambda x: pass_solutions(static_settings, cmaEvolStrategy, solutions, 

num_parents, current_eval), 

                        None 

                    ) 

 

 

Code Snippet A.6:  Implementation of the CMA-ES  in JAX (_cma_es.py) 

A.2.2 ADAM 

# Adapted from: https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/opt/_adam.py 

from typing import Any 

import jax.numpy as jnp 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

import functools 

 

D_TYPE = jnp.float32 

Array = jnp.ndarray 

 

# Adam Gradient Ascent 

@flax.struct.dataclass 

class AdamOpt: 

    beta1: D_TYPE 

    beta2: D_TYPE 

    stepsize: jnp.int32 

    dim: jnp.int32 

    t: D_TYPE 

    epsilon: D_TYPE 

    theta: Array 

    m: Array 

    v: Array 
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    @classmethod 

    def create(cls, theta0, stepsize, betas=(0.9, 0.999), epsilon=1e-8): 

        t = 0 

        dim = len(theta0) 

        beta1 = betas[0] 

        beta2 = betas[1] 

        # The following attributes will be initialised with the use of reset 

        theta = jnp.array([]) 

        m = jnp.array([]) 

        v = jnp.array([]) 

        static_settings = dict() 

        static_settings['dim'] = dim 

        return cls.reset(static_settings, cls(beta1, beta2, stepsize, 

            dim, t, epsilon, theta, m, v), jnp.array(theta0)), static_settings 

 

    @staticmethod 

    def _get_dim(static_settings): 

        return static_settings['dim'] 

 

    @staticmethod 

    def reset(static_settings, adamOpt, theta0): 

        dim = adamOpt._get_dim(static_settings) 

        theta = theta0 

        m = jnp.zeros(dim, dtype=D_TYPE) 

        v = jnp.zeros(dim, dtype=D_TYPE) 

        return adamOpt.replace(m = m, v = v, theta = theta) 

 

    @staticmethod 

    def _compute_step(adamOpt, grad): 

        a = adamOpt.stepsize * jnp.sqrt(1 - jnp.power(adamOpt.beta2,  

                        adamOpt.t)) / (1 - jnp.power(adamOpt.beta1, adamOpt.t)) 

        m = adamOpt.beta1 * adamOpt.m + (1 - adamOpt.beta1) * grad 

        v = adamOpt.beta2 * adamOpt.v + (1 - adamOpt.beta2) * (grad * grad) 

        step = a * m / (jnp.sqrt(v) + adamOpt.epsilon) 

        return adamOpt.replace(m = m, v = v), step 

     

    @staticmethod 

    def step(static_settings, adamOpt, grad): 

        t = adamOpt.t + 1 

        adamOpt, step = adamOpt._compute_step(adamOpt.replace(t = t), grad) 

        theta = adamOpt.theta + step 

        return adamOpt.replace(theta = theta) 

 
 

Code Snippet A.7:  Implementation of the Adap Optimiser  in JAX (_adam.py) 
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A.2.3 Gradient Ascent 

# Adapted from: https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/opt/_adam.py 

from typing import Any 

import jax.numpy as jnp 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

import functools 

 

D_TYPE = jnp.float32 

Array = jnp.ndarray 

 

# Adam Gradient Ascent 

@flax.struct.dataclass 

class AdamOpt: 

    beta1: D_TYPE 

    beta2: D_TYPE 

    stepsize: jnp.int32 

    dim: jnp.int32 

    t: D_TYPE 

    epsilon: D_TYPE 

    theta: Array 

    m: Array 

    v: Array 

 

    @classmethod 

    def create(cls, theta0, stepsize, betas=(0.9, 0.999), epsilon=1e-8): 

        t = 0 

        dim = len(theta0) 

        beta1 = betas[0] 

        beta2 = betas[1] 

        # The following attributes will be initialised with the use of reset 

        theta = jnp.array([]) 

        m = jnp.array([]) 

        v = jnp.array([]) 

        static_settings = dict() 

        static_settings['dim'] = dim 

        return cls.reset(static_settings, cls(beta1, beta2, stepsize, 

            dim, t, epsilon, theta, m, v), jnp.array(theta0)), static_settings 

 

    @staticmethod 

    def _get_dim(static_settings): 

        return static_settings['dim'] 

 

    @staticmethod 
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    def reset(static_settings, adamOpt, theta0): 

        dim = adamOpt._get_dim(static_settings) 

        theta = theta0 

        m = jnp.zeros(dim, dtype=D_TYPE) 

        v = jnp.zeros(dim, dtype=D_TYPE) 

        return adamOpt.replace(m = m, v = v, theta = theta) 

 

    @staticmethod 

    def _compute_step(adamOpt, grad): 

        a = adamOpt.stepsize * jnp.sqrt(1 - jnp.power(adamOpt.beta2,  

                        adamOpt.t)) / (1 - jnp.power(adamOpt.beta1, adamOpt.t)) 

        m = adamOpt.beta1 * adamOpt.m + (1 - adamOpt.beta1) * grad 

        v = adamOpt.beta2 * adamOpt.v + (1 - adamOpt.beta2) * (grad * grad) 

        step = a * m / (jnp.sqrt(v) + adamOpt.epsilon) 

        return adamOpt.replace(m = m, v = v), step 

     

    @staticmethod 

    def step(static_settings, adamOpt, grad): 

        t = adamOpt.t + 1 

        adamOpt, step = adamOpt._compute_step(adamOpt.replace(t = t), grad) 

        theta = adamOpt.theta + step 

        return adamOpt.replace(theta = theta) 

 
 

Code Snippet A.8:  Implementation of the Gradient Ascent Optimizer  in JAX (_adam.py) 

 

A.3 QD Emitters (Array Version) 

A.3.1 MAP-Elites (Isotropic Gaussian) 

"""Provides the GaussianEmitter. 

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_gaussian_emitter.py 

""" 

 

from typing import Any 

import jax.numpy as jnp 

import flax 

import jax 

from qd_utils.grid_archive import Repertoire 

from training.emitters.emitters_utils import EmitterBase 

from collections import namedtuple 

 

D_TYPE = jnp.float32 

Array = jnp.ndarray 
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@flax.struct.dataclass 

class GaussianEmitter: 

    """Emits solutions by adding Gaussian noise to existing archive solutions. 

 

    If the archive is empty, calls to :meth:`ask` will generate solutions from a 

    user-specified Gaussian distribution with mean ``x0`` and standard deviation 

    ``sigma0``. Otherwise, this emitter selects solutions from the archive and 

    generates solutions from a Gaussian distribution centered around each 

    solution with standard deviation ``sigma0``. 

 

    This is the classic variation operator presented in `Mouret 2015 

    <https://arxiv.org/pdf/1504.04909.pdf>`_. 

 

    """ 

    x0: Array 

    sigma0: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    solution_dim: jnp.int32 

 

     

    @classmethod 

    def create(cls, 

                 x0, 

                 sigma0, 

                 batch_size, 

                 bounds=None): 

        solution_dim = len(x0) 

        x0 = jnp.array(x0, dtype=D_TYPE) 

        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim) 

        batch_size = batch_size 

        sigma0 = float(sigma0) 

        static_settings = dict() 

        static_settings['batch_size'] = batch_size 

        static_settings['solution_dim'] = solution_dim 

        StaticSettings = namedtuple('StaticSettings', static_settings) 

         

        return (cls(x0, sigma0, lower_bounds, upper_bounds, batch_size, solution_dim),  

                            StaticSettings(**static_settings)) 

 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 
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    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _ask_clip(parents, lower_bounds, upper_bounds): 

        return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds) 

     

    @staticmethod 

    def ask(static_settings, gaussian_emitter, repertoire, key): 

        """Creates solutions by adding Gaussian noise to elites in the archive. 

        """ 

        batch_size = gaussian_emitter._get_batch_size(static_settings) 

        solution_dim = gaussian_emitter._get_solution_dim(static_settings) 

        key_selection, key_variation = jax.random.split(key, 2) 

 

        # SELECTION # 

        idx_p1 = jax.random.randint(key_selection, shape=(batch_size,), minval=0, 

                                            maxval=repertoire.num_indivs) 

        tot_indivs = repertoire.fitness.ravel().shape[0] 

        indexes = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)), size = 

                                   tot_indivs) 

        indexes = jnp.transpose(indexes, axes=(1, 0)) 

        indiv_indices = jnp.array(jnp.ravel_multi_index(indexes, repertoire.fitness.shape, 

                                     mode='clip')).astype(int) 

 

        idx_p1 = indiv_indices.at[idx_p1].get() 

        sols = jax.tree_map(lambda x: x.at[idx_p1].get(),repertoire.archive) 

 

        # # VARIATION - MUTATION # 

        # # Better approach since it operates directly on the tree  

        # # structure of the solutions 

        # num_vars = len(jax.tree_leaves(sols)) 

        # treedef = jax.tree_structure(sols) 

        # all_keys = jax.random.split(key_variation, num=num_vars) 

 

        # # Gaussian noise 

        # noise = jax.tree_multimap( 

        #     lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols, 

        #     jax.tree_unflatten(treedef, all_keys)) 

 

        # # Added noise in positive direction 

        # mutated_sols = jax.tree_multimap(lambda g, n: g + n * gaussian_emitter.sigma0, sols,  

        #                                    noise) 

        # # Added noise in negative direction 

        # anit_mutated_sols = jax.tree_multimap(lambda g, n: g - n * gaussian_emitter.sigma0,        

        #                                        sols, noise) 
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        # return gaussian_emitter, mutated_sols 

 

        noise = jax.random.normal(key_variation, shape=(batch_size, solution_dim),  

                                         dtype=D_TYPE) * gaussian_emitter.sigma0 

         

        return gaussian_emitter, gaussian_emitter._ask_clip(sols + noise, 

                                     gaussian_emitter.lower_bounds,  

                                     gaussian_emitter.upper_bounds) 

 

    @staticmethod 

    def tell(static_settings, gaussian_emitter, solutions, objective_values, behavior_values, 

               dead, repertoire, key): 

        """Inserts entries into the archive. 

        """ 

        repertoire = repertoire.add_to_archive(repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

        return gaussian_emitter, repertoire 
 

Code Snippet A.9: Implementation of the MAP-Elites with Isotropic Gaussian in JAX (_gaussian_emitter.py) 

A.3.2 MAP-Elites (Iso + LineDD) 

"""Provides the IsoLineEmitter. 

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_iso_line_emitter.py 

""" 

 

import jax.numpy as jnp 

import flax 

import jax 

from training.emitters.emitters_utils import EmitterBase 

from collections import namedtuple 

 

D_TYPE = jnp.float32 

Array = jnp.ndarray 

 

@flax.struct.dataclass 

class IsoLineEmitter: 

    """Emits solutions that are nudged towards other archive solutions. 

    If the archive is empty, calls to :meth:`ask` will generate solutions from 

    an isotropic Gaussian distribution with mean ``x0`` and standard deviation 

    ``iso_sigma``. Otherwise, to generate each new solution, the emitter selects 

    a pair of elites :math:`x_i` and :math:`x_j` and samples from 

    .. math:: 

        x_i + \\sigma_{iso} \\mathcal{N}(0,\\mathcal{I}) + 
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            \\sigma_{line}(x_j - x_i)\\mathcal{N}(0,1) 

    This emitter is based on the Iso+LineDD operator presented in `Vassiliades 

    2018 <https://arxiv.org/abs/1804.03906>`_. 

    """ 

    x0: Array 

    iso_sigma: D_TYPE 

    line_sigma: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    solution_dim: jnp.int32 

 

     

    @classmethod 

    def create(cls, 

                 x0, 

                 iso_sigma, 

                 line_sigma, 

                 batch_size, 

                 bounds=None): 

        solution_dim = len(x0) 

        x0 = jnp.array(x0, dtype=D_TYPE) 

        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim) 

        batch_size = batch_size 

        iso_sigma = float(iso_sigma) 

        line_sigma = float(line_sigma) 

        static_settings = dict() 

        static_settings['batch_size'] = batch_size 

        static_settings['solution_dim'] = solution_dim 

        StaticSettings = namedtuple('StaticSettings', static_settings) 

 

        return (cls(x0, iso_sigma, line_sigma, lower_bounds, upper_bounds, batch_size, 

                     solution_dim), StaticSettings(**static_settings)) 

 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _ask_clip(parents, lower_bounds, upper_bounds): 

        return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds) 

     

    @staticmethod 
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    def ask(static_settings, iso_emitter, repertoire, key): 

        """Generates ``batch_size`` solutions. 

        """ 

        batch_size = iso_emitter._get_batch_size(static_settings) 

        solution_dim = iso_emitter._get_solution_dim(static_settings) 

        key_selection, key_variation = jax.random.split(key, 2) 

 

        # SELECTION # 

        key_select_p1, key_select_p2 = jax.random.split(key_selection, 2) 

        idx_s1 = jax.random.randint(key_select_p1, shape=(batch_size,),  

                    minval=0, maxval=repertoire.num_indivs) 

        idx_s2 = jax.random.randint(key_select_p2, shape=(batch_size,),  

                    minval=0, maxval=repertoire.num_indivs) 

        tot_indivs = repertoire.fitness.ravel().shape[0] 

        indices = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)),  

                        size = tot_indivs) 

        indices = jnp.transpose(indices, axes=(1, 0)) 

        indiv_indices = jnp.array(jnp.ravel_multi_index(indices,  

                        repertoire.fitness.shape, mode='clip')).astype(int) 

 

        idx_s1 = indiv_indices.at[idx_s1].get() 

        idx_s2 = indiv_indices.at[idx_s2].get() 

        sols_1 = jax.tree_map(lambda x: x.at[idx_s1].get(), 

                repertoire.archive) 

        sols_2 = jax.tree_map(lambda x: x.at[idx_s2].get(), 

                repertoire.archive) 

 

        # # VARIATION # 

        # # Better approach since it operates directly on the tree  

        # # structure of the solutions 

        # num_vars = len(jax.tree_leaves(sols_1)) 

        # treedef = jax.tree_structure(sols_1) 

        # key_a, key_b = jax.random.split(key_variation, 2) 

        # all_keys_a = jax.random.split(key_a, num_vars) 

        # all_keys_b = jax.random.split(key_b, num_vars) 

 

        # noise_a = jax.tree_multimap( 

        #     lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_1, 

        #     jax.tree_unflatten(treedef, all_keys_a)) 

        # noise_b = jax.tree_multimap( 

        #     lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_2, 

        #     jax.tree_unflatten(treedef, all_keys_b)) 

 

        # new_sols = jax.tree_multimap(lambda x, y, a, b:  

        #                             x + a * iso_emitter.iso_sigma +  

        #                             b * iso_emitter.line_sigma * (x - y), 

        #                                 sols_1, sols_2, noise_a, noise_b) 
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        # return iso_emitter, new_sols 

 

        key_a, key_b = jax.random.split(key_variation, 2) 

        iso_gaussian = jax.random.normal(key_a,  

                            shape=(batch_size, solution_dim),  

                            dtype=D_TYPE) * iso_emitter.iso_sigma 

         

        # expanded last dimension used for multiplication later 

        line_gaussian = jax.random.normal(key_b,  

                            shape=(batch_size, 1),  

                            dtype=D_TYPE) * iso_emitter.line_sigma 

 

        directions = (sols_1 - sols_2).astype(D_TYPE) 

 

        new_sols = sols_2 + iso_gaussian + jnp.multiply( 

                        jnp.array(line_gaussian), directions) 

 

        return iso_emitter, iso_emitter._ask_clip(new_sols, 

                        iso_emitter.lower_bounds,  

                        iso_emitter.upper_bounds) 

 

    @staticmethod 

    def tell(static_settings, iso_emitter, solutions, objective_values,  

                    behavior_values, dead, repertoire, key): 

        """Inserts entries into the archive. 

        """ 

        repertoire = repertoire.add_to_archive(repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

        return iso_emitter, repertoire 
 

Code Snippet A.10:  Implementation of the  MAP-Elites (Iso + LineDD) in JAX (_iso_line_emitter.py) 

A.3.3 Covariance Matrix Adaptation MAP-Elites (CMA-ME) - Improvement 

"""Provides the ImprovementEmitter. 

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_improvement_emitter.py 

""" 

 

from typing import Any 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

import functools 



A-24 

 

 

 

from qd_utils.grid_archive import Repertoire 

from training.emitters.emitters_utils import EmitterBase 

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules 

from collections import namedtuple 

 

Array = jnp.ndarray 

 

class SelectionRules: 

    MU = 1 

    FILTER = 2 

 

class RestartRules: 

    BASIC = 1 

    NO_IMPROVEMENT = 2 

 

D_TYPE = jnp.float32 

 

@flax.struct.dataclass 

class ImprovementEmitter: 

    """Adapts a covariance matrix towards changes in the archive. 

 

    This emitter originates in `Fontaine 2020 

    <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and 

    uses CMA-ES to search for solutions that improve the archive, i.e. solutions 

    that add new entries to the archive or improve existing entries. Once CMA-ES 

    restarts (see ``restart_rule``), the emitter starts from a randomly chosen 

    elite in the archive and continues searching for solutions that improve the 

    archive. 

    """ 

 

    x0: Array 

    sigma0: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    opt: CMAEvolutionStrategy 

    solution_dim: jnp.int32 

    num_parents: jnp.int32 

    restarts: jnp.int32 

    restart_rule: jnp.int32 

    selection_rule: jnp.int32 

 

    @classmethod 

    def create(cls, 

                 x0, 

                 sigma0, 
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                 selection_rule=SelectionRules.FILTER, 

                 restart_rule=RestartRules.NO_IMPROVEMENT, 

                 weight_rule=WeightRules.TRUNCATION, 

                 bounds=None, 

                 batch_size=None): 

        solution_dim = len(x0) 

        x0 = jnp.array(x0, dtype=D_TYPE) 

        sigma0 = sigma0 

        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim) 

        batch_size = batch_size 

 

        if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]: 

            raise ValueError(f"Invalid selection_rule {selection_rule}") 

 

        if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]: 

            raise ValueError(f"Invalid restart_rule {restart_rule}") 

         

        opt, static_settings_opt = CMAEvolutionStrategy.create(sigma0,  

                        batch_size, solution_dim, weight_rule) 

        opt = opt.reset(static_settings_opt, opt, x0) 

        get_num_of_parents_fn = jax.jit(functools.partial(cls._get_num_of_parents,  

                            selection_rule)) 

        num_parents = (opt.batch_size // 2  

                    if selection_rule == SelectionRules.MU else None) 

        batch_size = opt.batch_size 

 

        static_settings = dict() 

        static_settings['get_num_of_parents_fn'] = get_num_of_parents_fn 

        static_settings['solution_dim'] = solution_dim 

        static_settings['batch_size'] = batch_size 

        static_settings['restart_rule'] = restart_rule 

        static_settings['opt_settings'] = static_settings_opt 

        StaticSettings = namedtuple('StaticSettings', static_settings) 

 

        restarts = 0 

        return (cls(x0, sigma0, lower_bounds, upper_bounds ,  

                    batch_size, opt,solution_dim, num_parents,  

                    restarts, restart_rule, selection_rule),  

                    StaticSettings(**static_settings)) 

     

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 

    def _get_restart_rule(static_settings): 

        return static_settings.restart_rule 
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    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _get_num_of_parents_fn(static_settings): 

        return static_settings.get_num_of_parents_fn 

 

    @staticmethod 

    def _get_optimiser_settings(static_settings): 

        return static_settings.opt_settings 

 

    @staticmethod 

    def _get_num_of_parents(selection_rule, new_sols, num_parents): 

        return (new_sols if selection_rule == SelectionRules.FILTER  

                else num_parents) 

 

    @staticmethod 

    def ask(static_settings, imp_emitter, repertoire, key): 

        """Samples new solutions from a multivariate Gaussian. 

 

        The multivariate Gaussian is parameterized by the CMA-ES optimizer. 

        """ 

        opt, solutions = imp_emitter.opt.ask(imp_emitter._get_optimiser_settings( 

                        static_settings),  

                        imp_emitter.opt, imp_emitter.lower_bounds,  

                        imp_emitter.upper_bounds, key) 

 

        return imp_emitter.replace(opt = opt), solutions 

 

    @staticmethod 

    def _check_restart(restart_rule, num_parents): 

        """Emitter-side checks for restarting the optimizer. 

 

        The optimizer also has its own checks. 

        """ 

        return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0 

 

    @staticmethod 

    def _reset_opt(static_settings, imp_emitter, repertoire, elite_key): 

        new_x0 = Repertoire.get_random_elite(repertoire, elite_key)  

        opt = imp_emitter.opt.reset( 

                    imp_emitter._get_optimiser_settings(static_settings),  

                    imp_emitter.opt, new_x0) 

        restarts = imp_emitter.restarts + 1 

        return imp_emitter.replace(opt = opt, restarts =  
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                    restarts), repertoire 

 

    @staticmethod 

    def tell(static_settings, imp_emitter, solutions, objective_values,  

                        behavior_values, dead, repertoire, key): 

        """Gives the emitter results from evaluating solutions. 

 

        As solutions are inserted into the archive, we record their "improvement 

        value" -- conveniently, this is the ``value`` returned by 

        :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions 

        according to their add status (new solutions rank in front of 

        solutions that improved existing entries in the archive, which rank 

        ahead of solutions that were not added), followed by their improvement 

        value.  We then pass the ranked solutions to the underlying CMA-ES 

        optimizer to update the search parameters. 

        """ 

        get_num_of_parents_fn = ImprovementEmitter._get_num_of_parents_fn(static_settings) 

        solution_dim = ImprovementEmitter._get_solution_dim(static_settings) 

        restart_rule = ImprovementEmitter._get_restart_rule(static_settings) 

        # new_sols = repertoire.num_indivs 

        repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended( 

                                        repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

        # Find the indices of the sorted array on status codes and then objective/evaluation 

scores 

        r_indices = jnp.lexsort((sols_entries[:,2], sols_entries[:,1], sols_entries[:,0])) 

        ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0) 

        # new_sols = repertoire.num_indivs - new_sols  

        # we want the descending order of the rankings and not the ascending 

        indices = ranked_sols_entries[:,2].astype(jnp.int32) 

        num_parents = get_num_of_parents_fn(new_sols, imp_emitter.num_parents) 

 

        opt = CMAEvolutionStrategy.tell(imp_emitter._get_optimiser_settings(static_settings),  

                                            imp_emitter.opt, solutions[indices], num_parents) 

 

        key, elite_key = jax.random.split(key, 2) 

         

        imp_emitter = imp_emitter.replace(opt = opt) 

 

        should_reset_opt = jnp.logical_or( 

                                    CMAEvolutionStrategy.check_stop(opt,  

                                            ranked_sols_entries[:,1], num_parents),  

                                    ImprovementEmitter._check_restart(restart_rule,  

                                            new_sols) 
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                                ) 

 

        return lax.cond(should_reset_opt, 

                lambda x: ImprovementEmitter._reset_opt(static_settings,  

                            imp_emitter, repertoire, elite_key), 

                lambda x: (imp_emitter, repertoire), 

                None 

            ) 
 

Code Snippet A.11:  Implementation of CMA-ME Improvement the in JAX (_improvement_emitter.py) 

A.3.4 Covariance Matrix Adaptation MAP-Elites (CMA-ME) - Optimizing 

"""Provides the OptimizingEmitter. 

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_optimizing_emitter.py 

""" 

from typing import Any 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

from training.emitters.emitters_utils import EmitterBase 

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules 

from collections import namedtuple 

 

Array = jnp.ndarray 

 

class SelectionRules: 

    MU = 1 

    FILTER = 2 

 

class RestartRules: 

    BASIC = 1 

    NO_IMPROVEMENT = 2 

 

D_TYPE = jnp.float32 

 

@flax.struct.dataclass 

class OptimizingEmitter: 

    """Adapts a covariance matrix towards the objective. 

 

    This emitter originates in `Fontaine 2020 

    <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and 

    uses CMA-ES to optimize for objective values. After CMA-ES converges, the 

    emitter restarts the optimizer. It picks a random elite in the archive and 

    begins optimizing from there. 

    """ 
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    x0: Array 

    sigma0: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    opt: CMAEvolutionStrategy 

    solution_dim: jnp.int32 

    num_parents: jnp.int32 

    restarts: jnp.int32 

    restart_rule: jnp.int32 

    selection_rule: jnp.int32 

 

    @classmethod 

    def create(cls, 

                 x0, 

                 sigma0, 

                 selection_rule=SelectionRules.FILTER, 

                 restart_rule=RestartRules.NO_IMPROVEMENT, 

                 weight_rule=WeightRules.TRUNCATION, 

                 bounds=None, 

                 batch_size=None): 

        solution_dim = len(x0) 

        x0 = jnp.array(x0, dtype=D_TYPE) 

        sigma0 = sigma0 

        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim) 

        batch_size = batch_size 

 

        if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]: 

            raise ValueError(f"Invalid selection_rule {selection_rule}") 

 

        if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]: 

            raise ValueError(f"Invalid restart_rule {restart_rule}") 

         

        opt, static_settings_opt = CMAEvolutionStrategy.create(sigma0,  

                        batch_size, solution_dim, weight_rule) 

        opt = opt.reset(static_settings_opt, opt, x0) 

        # get_num_of_parents_fn = jax.jit(functools.partial(cls._get_num_of_parents, 

selection_rule)) 

        num_parents = (opt.batch_size // 2 if selection_rule ==  

                        SelectionRules.MU else None) 

        batch_size = opt.batch_size 

 

        static_settings = dict() 

        # static_settings['get_num_of_parents_fn'] = get_num_of_parents_fn 

        static_settings['solution_dim'] = solution_dim 

        static_settings['batch_size'] = batch_size 

        static_settings['restart_rule'] = restart_rule 
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        static_settings['selection_rule'] = selection_rule 

        static_settings['opt_settings'] = static_settings_opt 

        StaticSettings = namedtuple('StaticSettings', static_settings) 

 

        restarts = 0 

        return (cls(x0, sigma0, lower_bounds, upper_bounds ,  

                    batch_size, opt, 

                    solution_dim, num_parents, restarts,  

                    restart_rule, selection_rule),  

                    StaticSettings(**static_settings)) 

 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 

    def _get_restart_rule(static_settings): 

        return static_settings.restart_rule 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _get_selection_rule(static_settings): 

        return static_settings.selection_rule 

 

    @staticmethod 

    def _get_optimiser_settings(static_settings): 

        return static_settings.opt_settings 

 

    @staticmethod 

    def ask(static_settings, otEmitter, repertoire, key): 

        """Samples new solutions from a multivariate Gaussian. 

 

        The multivariate Gaussian is parameterized by the CMA-ES optimizer. 

        """ 

        opt, solutions = otEmitter.opt.ask(otEmitter._get_optimiser_settings( 

                        static_settings),  

                        otEmitter.opt, otEmitter.lower_bounds,  

                        otEmitter.upper_bounds, key) 

        return otEmitter.replace(opt = opt), solutions 

 

    @staticmethod 

    def _check_restart(restart_rule, num_parents): 

        """Emitter-side checks for restarting the optimizer. 
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        The optimizer also has its own checks. 

        """ 

        return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0 

 

    @staticmethod 

    def _reset_opt(static_settings, optEmitter, repertoire, elite_key): 

        new_x0 = repertoire.get_random_elite(repertoire, elite_key)  

        opt = optEmitter.opt.reset(optEmitter._get_optimiser_settings(static_settings),  

                        optEmitter.opt, new_x0) 

        restarts = optEmitter.restarts + 1 

        return optEmitter.replace(opt = opt, restarts = restarts), repertoire 

 

    @staticmethod 

    def tell(static_settings, optEmitter, solutions, objective_values,  

                    behavior_values, dead, repertoire, key): 

        """Gives the emitter results from evaluating solutions. 

 

        As solutions are inserted into the archive, we record their "improvement 

        value" -- conveniently, this is the ``value`` returned by 

        :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions 

        according to their add status (new solutions rank in front of 

        solutions that improved existing entries in the archive, which rank 

        ahead of solutions that were not added), followed by their improvement 

        value.  We then pass the ranked solutions to the underlying CMA-ES 

        optimizer to update the search parameters. 

        """ 

        solution_dim = optEmitter._get_solution_dim(static_settings) 

        restart_rule = optEmitter._get_restart_rule(static_settings) 

        selection_rule = optEmitter._get_selection_rule(static_settings) 

 

        repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended( 

                                        repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

         

        if selection_rule == SelectionRules.FILTER: 

            # Sort by whether the solution was added into the archive, followed 

            # by objective value. 

            sort_elements = (objective_values[sols_entries[:,2].astype(jnp.int32)],  

                                    sols_entries[:,0]) 

        elif selection_rule == SelectionRules.MU: 

            # Sort only by objective value. 

            sort_elements = (objective_values[sols_entries[:,2].astype(jnp.int32)]) 
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        # Find the indices of the sorted array on status codes and then objective/evaluation 

scores 

        r_indices = jnp.lexsort(sort_elements) 

        ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0) 

        # we want the descending order of the rankings and not the ascending 

        indices = ranked_sols_entries[:,2].astype(jnp.int32) 

 

        num_parents = (new_sols if selection_rule == SelectionRules.FILTER  

                        else optEmitter.num_parents) 

 

        opt = optEmitter.opt.tell(optEmitter._get_optimiser_settings(static_settings),  

                        optEmitter.opt, solutions[indices], num_parents) 

 

        key, elite_key = jax.random.split(key, 2) 

         

        optEmitter = optEmitter.replace(opt = opt) 

 

        should_reset_opt = jnp.logical_or( 

                                    CMAEvolutionStrategy.check_stop(opt,  

                                    ranked_sols_entries[:,1], num_parents),  

                                    optEmitter._check_restart(restart_rule, new_sols) 

                                ) 

 

        return lax.cond(should_reset_opt, 

                lambda x: optEmitter._reset_opt(static_settings, optEmitter,  

                                repertoire, elite_key), 

                lambda x: (optEmitter, repertoire), 

                None 

            ) 

 
 

Code Snippet A.12:  Implementation of the CMA-ME - Optimizing in JAX (_optimizing_emitter.py) 

A.3.5 Covariance Matrix Adaptation MAP-Elites (CMA-ME) – Random Direction 

"""Provides the RandomDirectionEmitter. 

Adapted from https://github.com/icaros-

usc/dqd/blob/main/ribs/emitters/_random_direction_emitter.py 

""" 

from typing import Any 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

from qd_utils.grid_archive import Repertoire 

from training.emitters.emitters_utils import EmitterBase 

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules 

from collections import namedtuple 
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Array = jnp.ndarray 

 

class SelectionRules: 

    MU = 1 

    FILTER = 2 

 

class RestartRules: 

    BASIC = 1 

    NO_IMPROVEMENT = 2 

 

D_TYPE = jnp.float32 

 

@flax.struct.dataclass 

class RandomDirectionEmitter(EmitterBase): 

    """Performs a random walk in behavior space by pursuing randomly chosen 

    behavior space directions. 

 

    This emitter originates in `Fontaine 2020 

    <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and 

    uses CMA-ES to search for solutions along a randomly chosen direction. Once 

    CMA-ES restarts (see ``restart_rule``), the emitter starts from a randomly 

    chosen elite in the archive and pursues a new random direction. 

    """ 

 

    x0: Array 

    sigma0: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    opt: CMAEvolutionStrategy 

    solution_dim: jnp.int32 

    num_parents: jnp.int32 

    restarts: jnp.int32 

    restart_rule: jnp.int32 

    selection_rule: jnp.int32 

    archive_bounds: Array 

    target_behavior_dir:Array 

 

    @classmethod 

    def create(cls, 

                 x0, 

                 sigma0, 

                 archive_bounds, 

                 key, 

                 selection_rule=SelectionRules.FILTER, 

                 restart_rule=RestartRules.NO_IMPROVEMENT, 
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                 weight_rule=WeightRules.TRUNCATION, 

                 bounds=None, 

                 batch_size=None): 

 

        solution_dim = len(x0) 

        x0 = jnp.array(x0, dtype=D_TYPE) 

        sigma0 = sigma0 

        lower_bounds, upper_bounds = EmitterBase.process_bounds( 

                    bounds, solution_dim) 

        batch_size = batch_size 

 

        if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]: 

            raise ValueError(f"Invalid selection_rule {selection_rule}") 

 

        if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]: 

            raise ValueError(f"Invalid restart_rule {restart_rule}") 

         

        opt, static_settings_opt = CMAEvolutionStrategy.create(sigma0,  

                        batch_size, solution_dim, weight_rule) 

        opt = opt.reset(static_settings_opt, opt, x0) 

 

        num_parents = (opt.batch_size // 2 if selection_rule ==  

                    SelectionRules.MU else None) 

        batch_size = opt.batch_size 

 

        static_settings = dict() 

        static_settings['solution_dim'] = solution_dim 

        static_settings['solution_dim'] = solution_dim 

        static_settings['batch_size'] = batch_size 

        static_settings['restart_rule'] = restart_rule 

        static_settings['selection_rule'] = selection_rule 

        static_settings['archive_bounds'] = archive_bounds 

        static_settings['opt_settings'] = static_settings_opt 

        StaticSettings = namedtuple('StaticSettings', static_settings) 

         

        target_behavior_dir = cls._generate_random_direction( 

                        static_settings, archive_bounds, key) 

 

        restarts = 0 

        return cls(x0, sigma0, lower_bounds, upper_bounds ,  

                    batch_size, opt, solution_dim,  

                    num_parents, restarts, restart_rule,  

                    selection_rule, archive_bounds,  

                    target_behavior_dir), StaticSettings(**static_settings) 

 

    @staticmethod 

    def _get_batch_size(static_settings): 
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        return static_settings.batch_size 

 

    @staticmethod 

    def _get_restart_rule(static_settings): 

        return static_settings.restart_rule 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _get_selection_rule(static_settings): 

        return static_settings.selection_rule 

 

    @staticmethod 

    def _get_archive_bounds(static_settings): 

        return static_settings.archive_bounds 

 

    @staticmethod 

    def _get_optimiser_settings(static_settings): 

        return static_settings.opt_settings 

 

    @staticmethod 

    def ask(static_settings, randomDirEmitter, repertoire, key): 

        """Samples new solutions from a multivariate Gaussian. 

 

        The multivariate Gaussian is parameterized by the CMA-ES optimizer. 

 

        Returns: 

            ``(batch_size, solution_dim)`` array -- contains ``batch_size`` new 

            solutions to evaluate. 

        """ 

        opt, solutions = randomDirEmitter.opt.ask( 

                randomDirEmitter._get_optimiser_settings(static_settings),  

                randomDirEmitter.opt, randomDirEmitter.lower_bounds, 

                randomDirEmitter.upper_bounds, key) 

        return randomDirEmitter.replace(opt = opt), solutions 

 

    @staticmethod 

    def _generate_random_direction(static_settings, archive_bounds, key): 

        """Generates a new random direction in the behavior space. 

 

        The direction is sampled from a standard Gaussian -- since the standard 

        Gaussian is isotropic, there is equal probability for any direction. The 

        direction is then scaled to the behavior space bounds. 

        """ 
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        ranges = archive_bounds[:,1] - archive_bounds[:,0]  

        behavior_dim = archive_bounds.shape[0] 

        unscaled_dir = jax.random.normal(key,  

                                shape=(behavior_dim,), 

                                dtype=D_TYPE) 

        return unscaled_dir * ranges 

 

    @staticmethod 

    def _check_restart(restart_rule, num_parents): 

        """Emitter-side checks for restarting the optimizer. 

 

        The optimizer also has its own checks. 

        """ 

        return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0 

 

    @staticmethod 

    def _reset_opt(static_settings, randomDirEmitter, repertoire, key): 

        dir_key, elite_key = jax.random.split(key, 2) 

        new_x0 = repertoire.get_random_elite(repertoire, elite_key)  

        opt = randomDirEmitter.opt.reset( 

            randomDirEmitter._get_optimiser_settings(static_settings),  

            randomDirEmitter.opt, new_x0) 

        archive_bounds = randomDirEmitter._get_archive_bounds(static_settings) 

        target_behavior_dir = randomDirEmitter._generate_random_direction( 

                    static_settings,  

                    archive_bounds, dir_key) 

        restarts = randomDirEmitter.restarts + 1 

        return randomDirEmitter.replace(opt = opt, restarts = restarts,  

                        target_behavior_dir = target_behavior_dir), repertoire 

 

    @staticmethod 

    def tell(static_settings, randomDirEmitter, solutions, objective_values,  

                        behavior_values, dead, repertoire, key): 

        """Gives the emitter results from evaluating solutions. 

 

        As solutions are inserted into the archive, we record their "improvement 

        value" -- conveniently, this is the ``value`` returned by 

        :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions 

        according to their add status (new solutions rank in front of 

        solutions that improved existing entries in the archive, which rank 

        ahead of solutions that were not added), followed by their improvement 

        value.  We then pass the ranked solutions to the underlying CMA-ES 

        optimizer to update the search parameters. 

        """ 

        solution_dim = randomDirEmitter._get_solution_dim(static_settings) 

        restart_rule = randomDirEmitter._get_restart_rule(static_settings) 

        selection_rule = randomDirEmitter._get_selection_rule(static_settings) 
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        repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended( 

                                        repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

        projection = jnp.dot(behavior_values, randomDirEmitter.target_behavior_dir) 

        # Rearrange based on their initial indices to make it parallel to sols_entries 

        projection = projection[sols_entries[:,2].astype(jnp.int32)] 

        if selection_rule == SelectionRules.FILTER: 

            # Sort by whether the solution was added into the archive, followed 

            # by projection. 

            sort_elements = (sols_entries[:,2], projection, sols_entries[:,0]) 

        elif selection_rule == SelectionRules.MU: 

            # Sort only by projection. 

            sort_elements = (projection) 

 

        # Find the indices of the sorted array on status codes and then objective/evaluation 

scores 

        r_indices = jnp.lexsort(sort_elements) 

        ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0) 

        # we want the descending order of the rankings and not the ascending 

        indices = ranked_sols_entries[:,2].astype(jnp.int32) 

 

        num_parents = (new_sols if selection_rule == SelectionRules.FILTER  

                                else randomDirEmitter.num_parents) 

 

        opt = randomDirEmitter.opt.tell(randomDirEmitter._get_optimiser_settings( 

                                static_settings),  

                                randomDirEmitter.opt,  

                                solutions[indices], num_parents) 

 

        key, reset_key = jax.random.split(key, 2) 

         

        randomDirEmitter = randomDirEmitter.replace(opt = opt) 

 

        should_reset_opt = jnp.logical_or( 

                                    CMAEvolutionStrategy.check_stop(opt,  

                                            projection, num_parents),  

                                    randomDirEmitter._check_restart(restart_rule,  

                                            new_sols) 

                                ) 

 

        return lax.cond(should_reset_opt, 

                lambda x: randomDirEmitter._reset_opt(static_settings, randomDirEmitter,  

                                                        repertoire, reset_key), 
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                lambda x: (randomDirEmitter, repertoire), 

                None 

            ) 
 

Code Snippet A.13:  Implementation of the CMA-ME Random Direction in JAX (_random_direction_emitter.py) 

A.4 DQD Emitters (Array Version) 

A.4.1 Gradient Emitter (OMG-MEGA iso & line, OG-MAP-Elites iso & line) 

"""Provides the GradientImprovementEmitter. 

Adapted from: https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_gradient_emitter.py 

""" 

import jax.numpy as jnp 

import flax 

import jax 

from collections import namedtuple 

from training.emitters.emitters_utils import EmitterBase 

 

Array = jnp.ndarray 

D_TYPE = jnp.float32 

 

class OperatorTypes: 

    ISOTROPIC = 1 

    ISO_LINE_DD = 2 

 

@flax.struct.dataclass 

class GradientEmitter: 

    """Generates new solutions based on the gradient of the objective and measures. 

    """ 

 

    x0: Array 

    sigma0: D_TYPE 

    sigma_g: D_TYPE 

    line_sigma: D_TYPE 

    num_coefficients: jnp.int32 

    measure_gradients: jnp.int32 

    normalize_gradients: jnp.int32 

    operator_type: jnp.int32 

    batch_size: jnp.int32 

    solution_dim: jnp.int32 

    lower_bounds: Array 

    upper_bounds: Array 

    jacobian: Array 

    parents: Array 

 

    @classmethod 
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    def create(cls, 

                 x0, 

                 sigma0, 

                 sigma_g, 

                 line_sigma, 

                 behavior_dim, 

                 measure_gradients=1,    # 0 --> false 1 --> true 

                 normalize_gradients=1,  # 0 --> false 1 --> true 

                 operator_type = OperatorTypes.ISOTROPIC, 

                 bounds=None, 

                 batch_size=None): 

 

        # static normalize_gradients solution_dim batch_size selection_rule restart_rule 

        # self._rng = np.random.default_rng(key) 

        x0 = jnp.array(x0, dtype=D_TYPE) 

        sigma0 = float(sigma0) 

        sigma_g = float(sigma_g) 

        line_sigma = float(line_sigma) 

        solution_dim = len(x0) 

        # What's the difference with the manual creation of bounds in ask? 

        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim) 

        num_coefficients = behavior_dim + 1 

        static_settings = dict() 

        static_settings['solution_dim'] = solution_dim 

        static_settings['batch_size'] = batch_size 

        static_settings['measure_gradients'] = measure_gradients 

        static_settings['normalize_gradients'] = normalize_gradients 

        static_settings['operator_type'] = operator_type 

        static_settings['num_coefficients'] = num_coefficients 

        StaticSettings = namedtuple('StaticSettings', static_settings) 

         

        jacobian = jnp.zeros((batch_size, num_coefficients, solution_dim)) 

        parents = jnp.zeros((batch_size, solution_dim)) 

        return (cls(x0, sigma0, sigma_g, line_sigma, num_coefficients,  

                    measure_gradients, 

                    normalize_gradients, operator_type,  

                    batch_size, solution_dim,  

                    lower_bounds, upper_bounds, jacobian,  

                    parents), 

                     StaticSettings(**static_settings)) 

                 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 
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        return static_settings.solution_dim 

 

    @staticmethod 

    def _get_measure_gradients(static_settings): 

        return static_settings.measure_gradients 

 

    @staticmethod 

    def _get_normalize_gradients(static_settings): 

        return static_settings.normalize_gradients 

 

    @staticmethod 

    def _get_operator_type(static_settings): 

        return static_settings.operator_type 

 

    @staticmethod 

    def _get_num_coefficients(static_settings): 

        return static_settings.num_coefficients  

 

    @staticmethod 

    def _ask_clip(parents, lower_bounds, upper_bounds): 

        return jnp.minimum(jnp.maximum(parents, lower_bounds),  

                upper_bounds) 

 

    @staticmethod 

    def _ask_as_gaussian_emitter(static_settings, grad_emitter, repertoire, key): 

        """Creates solutions by adding Gaussian noise to elites in the archive. 

        """ 

        batch_size = grad_emitter._get_batch_size(static_settings) 

        solution_dim = grad_emitter._get_solution_dim(static_settings) 

        key_selection, key_variation = jax.random.split(key, 2) 

 

        # SELECTION # 

        idx_p1 = jax.random.randint(key_selection, shape=(batch_size,),  

                    minval=0, maxval=repertoire.num_indivs) 

        tot_indivs = repertoire.fitness.ravel().shape[0] 

        indexes = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)),  

                    size = tot_indivs) 

        indexes = jnp.transpose(indexes, axes=(1, 0)) 

        indiv_indices = jnp.array(jnp.ravel_multi_index(indexes,  

                    repertoire.fitness.shape, mode='clip')).astype(int) 

 

        idx_p1 = indiv_indices.at[idx_p1].get() 

        sols = jax.tree_map(lambda x: x.at[idx_p1].get(),repertoire.archive) 

 

        # # VARIATION - MUTATION # 

        # # Better approach since it operates directly on the tree  

        # # structure of the solutions 
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        # num_vars = len(jax.tree_leaves(sols)) 

        # treedef = jax.tree_structure(sols) 

        # all_keys = jax.random.split(key_variation, num=num_vars) 

 

        # # Gaussian noise 

        # noise = jax.tree_multimap( 

        #     lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols, 

        #     jax.tree_unflatten(treedef, all_keys)) 

 

        # # Added noise in positive direction 

        # mutated_sols = jax.tree_multimap(lambda g, n: g + n * grad_emitter.sigma0, sols, 

noise) 

        # # Added noise in negative direction 

        # anit_mutated_sols = jax.tree_multimap(lambda g, n: g - n * grad_emitter.sigma0, 

sols, noise) 

         

        # return grad_emitter, mutated_sols 

 

        noise = jax.random.normal(key_variation, shape=(batch_size,  

                        solution_dim), dtype=D_TYPE) * grad_emitter.sigma0 

         

        return grad_emitter, grad_emitter._ask_clip(sols + noise, 

                                     grad_emitter.lower_bounds,  

                                     grad_emitter.upper_bounds) 

 

    @staticmethod 

    def _ask_as_iso_line_emitter(static_settings, grad_emitter, repertoire, key): 

        """Generates ``batch_size`` solutions. 

        """ 

        batch_size = grad_emitter._get_batch_size(static_settings) 

        solution_dim = grad_emitter._get_solution_dim(static_settings) 

        key_selection, key_variation = jax.random.split(key, 2) 

 

        # SELECTION # 

        key_select_p1, key_select_p2 = jax.random.split(key_selection, 2) 

        idx_s1 = jax.random.randint(key_select_p1, shape=(batch_size,),  

                    minval=0, maxval=repertoire.num_indivs) 

        idx_s2 = jax.random.randint(key_select_p2, shape=(batch_size,),  

                    minval=0, maxval=repertoire.num_indivs) 

        tot_indivs = repertoire.fitness.ravel().shape[0] 

        indices = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)),  

                    size = tot_indivs) 

        indices = jnp.transpose(indices, axes=(1, 0)) 

        indiv_indices = jnp.array(jnp.ravel_multi_index(indices,  

                    repertoire.fitness.shape, mode='clip')).astype(int) 

 

        idx_s1 = indiv_indices.at[idx_s1].get() 
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        idx_s2 = indiv_indices.at[idx_s2].get() 

        sols_1 = jax.tree_map(lambda x: x.at[idx_s1].get(),repertoire.archive) 

        sols_2 = jax.tree_map(lambda x: x.at[idx_s2].get(),repertoire.archive) 

 

        # # VARIATION # 

        # # Better approach since it operates directly on the tree  

        # # structure of the solutions 

        # num_vars = len(jax.tree_leaves(sols_1)) 

        # treedef = jax.tree_structure(sols_1) 

        # key_a, key_b = jax.random.split(key_variation, 2) 

        # all_keys_a = jax.random.split(key_a, num_vars) 

        # all_keys_b = jax.random.split(key_b, num_vars) 

 

        # noise_a = jax.tree_multimap( 

        #     lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_1, 

        #     jax.tree_unflatten(treedef, all_keys_a)) 

        # noise_b = jax.tree_multimap( 

        #     lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_2, 

        #     jax.tree_unflatten(treedef, all_keys_b)) 

 

        # new_sols = jax.tree_multimap(lambda x, y, a, b:  

        #                             x + a * grad_emitter.sigma0 +  

        #                             b * grad_emitter.line_sigma * (x - y), 

        #                                 sols_1, sols_2, noise_a, noise_b) 

         

        # return grad_emitter, new_sols 

 

        key_a, key_b = jax.random.split(key_variation, 2) 

        iso_gaussian = jax.random.normal(key_a,  

                            shape=(batch_size, solution_dim),  

                            dtype=D_TYPE) * grad_emitter.sigma0 

         

        # expanded last dimension used for multiplication later 

        line_gaussian = jax.random.normal(key_b,  

                            shape=(batch_size, 1),  

                            dtype=D_TYPE) * grad_emitter.line_sigma 

 

        directions = (sols_1 - sols_2).astype(D_TYPE) 

 

        new_sols = sols_2 + iso_gaussian + jnp.multiply(jnp.array(line_gaussian), directions) 

 

        return grad_emitter, grad_emitter._ask_clip(new_sols, 

                        grad_emitter.lower_bounds, grad_emitter.upper_bounds) 

 

    @staticmethod 

    def ask_grad_estimate(static_settings, grad_emitter, repertoire, key): 

        operator_type = grad_emitter._get_operator_type(static_settings) 
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        if operator_type == OperatorTypes.ISO_LINE_DD: 

            grad_emitter,sols = grad_emitter._ask_as_iso_line_emitter(static_settings,  

                            grad_emitter, repertoire, key) 

        else: 

            grad_emitter,sols = grad_emitter._ask_as_gaussian_emitter(static_settings,  

                            grad_emitter, repertoire, key) 

         

        return grad_emitter.replace(parents = sols), sols 

 

    @staticmethod 

    def ask(static_settings, grad_emitter, repertoire, key): 

        num_coefficients = grad_emitter._get_num_coefficients(static_settings) 

        batch_size = grad_emitter._get_batch_size(static_settings) 

        measure_gradients = grad_emitter._get_measure_gradients(static_settings) 

        if measure_gradients == 1: 

            # Calculate gradient offsets 

            noise = grad_emitter.sigma_g * jax.random.normal(key,  

                        shape=(batch_size,num_coefficients)) 

            noise = noise.at[:, 0].set(jnp.abs(noise[:, 0])) 

            noise = jnp.expand_dims(noise, axis=2) 

            offsets = jnp.sum(jnp.multiply(grad_emitter.jacobian, noise), axis=1) 

            # Calculate new solutions based on the gradient offsets 

            new_sols = jnp.add(grad_emitter.parents, offsets) 

        else: 

            # isolate the gradients of objective values 

            noise = grad_emitter.sigma_g * jax.random.normal(key,  

                        shape=(batch_size,1)) 

            noise = jnp.abs(noise) 

            jacobian = grad_emitter.jacobian[:,0,:] 

            # jnp.squeeze(grad_emitter.jacobian[:,0:1,:], axis=1) 

            offsets = jnp.multiply(jacobian, noise) 

            grad_emitter = grad_emitter.replace(jacobian = jacobian) 

            # Calculate new solutions based on the gradient offsets of only 

            new_sols = jnp.add(grad_emitter.parents, offsets) 

 

        return grad_emitter, new_sols 

 

    @staticmethod 

    def _normalize_gradients(jacobian): 

        """ 

        Normalises the gradients of the jacobian matrix. 

 

        More info can be found at the appendix E of the paper "Fontaine, 

        M. C., & Nikolaidis, S. (2021). Differentiable Quality 

        Diversity. arXiv [cs.AI]" for an in-depth explanation  

        """ 
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        norms = jnp.linalg.norm(jacobian, axis=2) 

        norms += 1e-8 # Make this configurable later 

        norms = jnp.expand_dims(norms, axis=2) 

        jacobian /= norms 

        return jacobian 

 

    @staticmethod 

    def tell_jacobian(static_settings, grad_emitter, solutions, objective_values,  

                    behavior_values, dead, repertoire, key, jacobian): 

        normalize_gradients = grad_emitter._get_normalize_gradients(static_settings) 

        if normalize_gradients > 0: 

            jacobian = grad_emitter._normalize_gradients(jacobian) 

 

        grad_emitter = grad_emitter.replace(jacobian = jacobian) 

        return grad_emitter.tell(static_settings, grad_emitter, solutions,  

                    objective_values, behavior_values, dead, repertoire, key) 

 

    @staticmethod 

    def tell(static_settings, iso_emitter, solutions, objective_values,  

                    behavior_values, dead, repertoire, key): 

        """Inserts entries into the archive. 

        """ 

        repertoire = repertoire.add_to_archive(repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

        return iso_emitter, repertoire 
 

Code Snippet A.14:  Implementation of the Gradient Emitter in JAX (_gradient_emitter.py) 

A.4.2 Gradient Improvement Emitter (CMA-MEGA & CMA-MEGA with Adam) 

"""Provides the GradientImprovementEmitter. 

Adapted from: https://github.com/icaros-

usc/dqd/blob/main/ribs/emitters/_gradient_improvement_emitter.py 

""" 

from typing import Any 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

 

from qdax.training.emitters.emitters_utils import EmitterBase 

from qdax.training.opt._cma_es import CMAEvolutionStrategy, WeightRules 

from qdax.training.opt._adam import AdamOpt 

from qdax.training.opt._gradient_ascent import  GradientAscentOpt 

from collections import namedtuple 
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Array = jnp.ndarray 

 

class SelectionRules: 

    MU = 1 

    FILTER = 2 

 

class RestartRules: 

    BASIC = 1 

    NO_IMPROVEMENT = 2 

 

class GradientOptimizers: 

    ADAM = 1 

    GRADIENT_ASCENT = 2 

 

D_TYPE = jnp.float32 

 

@flax.struct.dataclass 

class GradientImprovementEmitter(): 

    """Adapts a covariance matrix in behavior space towards changes in the archive. 

    """ 

 

    batch_size: jnp.int32 

    x0: Array 

    behavior_dim: jnp.int32 

    sigma_g: D_TYPE 

    normalize_gradients: jnp.int32 

    solution_dim: jnp.int32 

    lower_bounds: Array 

    upper_bounds: Array 

    gradient_opt: Any 

    selection_rule: jnp.int32 

    restart_rule: jnp.int32 

    num_coefficients: jnp.int32 

    num_parents: jnp.int32 

    opt: CMAEvolutionStrategy 

    restarts: jnp.int32 

    grad_coefficients: Array 

    jacobian: Array 

 

    @classmethod 

    def create(cls, 

                 x0, 

                 behavior_dim, 

                 sigma_g, 

                 stepsize, 
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                 selection_rule=SelectionRules.MU, 

                 restart_rule=RestartRules.NO_IMPROVEMENT, 

                 weight_rule=WeightRules.TRUNCATION, 

                 gradient_optimizer=GradientOptimizers.ADAM, 

                 normalize_gradients=1,  # 0 --> false 1 --> true 

                 bounds=None, 

                 batch_size=None): 

 

        # static normalize_gradients solution_dim batch_size selection_rule restart_rule 

        # self._rng = np.random.default_rng(key) 

        x0 = jnp.array(x0, dtype=D_TYPE) 

        solution_dim = len(x0) 

        # What's the difference with the manual creation of bounds in ask? 

        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim) 

         

        gradient_opt = None 

             

        if gradient_optimizer == GradientOptimizers.ADAM: 

            gradient_opt, static_settings_obj_opt = AdamOpt.create(x0, stepsize, betas=(0.9, 

0.999), epsilon=1e-8) 

        elif gradient_optimizer == GradientOptimizers.GRADIENT_ASCENT: 

            gradient_opt, static_settings_obj_opt = GradientAscentOpt.create(x0, stepsize, 

epsilon=1e-8) 

        else: 

            raise ValueError(f"Invalid Gradient Ascent Optimizer {gradient_optimizer}") 

 

        if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]: 

            raise ValueError(f"Invalid selection_rule {selection_rule}") 

 

        if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]: 

            raise ValueError(f"Invalid restart_rule {restart_rule}") 

         

        # key, elite_key = jax.random.split(key, 2) 

 

        num_coefficients = behavior_dim + 1 

        behavior_x0 = jnp.zeros(num_coefficients) 

   

        opt, static_settings_bd_opt = CMAEvolutionStrategy.create(sigma_g, batch_size,  

                                    num_coefficients, weight_rule) 

        opt = opt.reset(static_settings_bd_opt, opt, behavior_x0) 

        # get_num_of_parents_fn = jax.jit(functools.partial(cls._get_num_of_parents, 

selection_rule)) 

        num_parents = (opt.batch_size // 2 if selection_rule == SelectionRules.MU else None) 

        batch_size = opt.batch_size 

 

        static_settings = dict() 

        # static_settings['get_num_of_parents_fn'] = get_num_of_parents_fn 
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        static_settings['num_coefficients'] = num_coefficients 

        static_settings['batch_size'] = batch_size 

        static_settings['restart_rule'] = restart_rule 

        static_settings['selection_rule'] = selection_rule 

        static_settings['behavior_dim'] = behavior_dim 

        static_settings['normalize_gradients'] = normalize_gradients 

        static_settings['bd_opt_settings'] = static_settings_bd_opt 

        static_settings['obj_opt_settings'] = static_settings_obj_opt 

        StaticSettings = namedtuple('StaticSettings', static_settings) 

 

        restarts = 0  

        grad_coefficients = jnp.zeros((batch_size, num_coefficients)) 

        jacobian = jnp.zeros((batch_size, num_coefficients, solution_dim)) 

        return (cls(batch_size, x0, behavior_dim, sigma_g, normalize_gradients, solution_dim,  

                    lower_bounds, upper_bounds, gradient_opt, selection_rule, restart_rule, 

                    num_coefficients, num_parents, opt, restarts, grad_coefficients, 

jacobian), 

                    StaticSettings(**static_settings)) 

                 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 

    def _get_restart_rule(static_settings): 

        return static_settings.restart_rule 

 

    @staticmethod 

    def _get_num_coefficients(static_settings): 

        return static_settings.num_coefficients 

 

    @staticmethod 

    def _get_normalize_gradients(static_settings): 

        return static_settings.normalize_gradients 

 

    @staticmethod 

    def _get_selection_rule(static_settings): 

        return static_settings.selection_rule 

 

    @staticmethod 

    def _get_static_settings_bd_opt(static_settings): 

        return static_settings.bd_opt_settings 

 

    @staticmethod 

    def _get_obj_optimiser_settings(static_settings): 

        return static_settings.obj_opt_settings  
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    @staticmethod 

    def ask_grad_estimate(static_settings, gradImprEmitter, repertoire, key): 

        batch_size = gradImprEmitter._get_batch_size(static_settings) 

        sols = jnp.repeat(jnp.array([gradImprEmitter.gradient_opt.theta]), batch_size, axis=0) 

        return gradImprEmitter, sols 

 

    @staticmethod 

    def ask(static_settings, gradImprEmitter, repertoire, key): 

        """Samples new solutions from a multivariate Gaussian. 

 

        The multivariate Gaussian is parameterized by the CMA-ES optimizer. 

        """ 

        num_coefficients = gradImprEmitter._get_num_coefficients(static_settings) 

        lower_bounds = jnp.full(num_coefficients, -jnp.inf, dtype=D_TYPE) 

        upper_bounds = jnp.full(num_coefficients, jnp.inf, dtype=D_TYPE) 

        opt, noise = 

gradImprEmitter.opt.ask(gradImprEmitter._get_static_settings_bd_opt(static_settings),  

                        gradImprEmitter.opt, lower_bounds, upper_bounds, key) 

        grad_coefficients = noise 

        noise = jnp.expand_dims(noise, axis=2) 

        offset = jnp.sum(jnp.multiply(gradImprEmitter.jacobian, noise), axis=1) 

        sols = offset + gradImprEmitter.gradient_opt.theta 

        return gradImprEmitter.replace(grad_coefficients = grad_coefficients, opt = opt), sols 

 

    @staticmethod 

    def _check_restart(restart_rule, num_parents): 

        """Emitter-side checks for restarting the optimizer. 

 

        The optimizer also has its own checks. 

        """ 

        return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0 

 

    @staticmethod 

    def _normalize_gradients(jacobian): 

        """ 

        Normalises the gradients of the jacobian matrix. 

 

        More info can be found at the appendix E of the paper "Fontaine, 

        M. C., & Nikolaidis, S. (2021). Differentiable Quality 

        Diversity. arXiv [cs.AI]" for an in-depth explanation  

        """ 

        norms = jnp.linalg.norm(jacobian, axis=2) 

        norms += 1e-8 # Make this configurable later 

        norms = jnp.expand_dims(norms, axis=2) 

        jacobian /= norms 

        return jacobian 
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    @staticmethod 

    def _reset_opt(static_settings, gradImprEmitter, repertoire, elite_key): 

        obj_optimiser_settings = gradImprEmitter._get_obj_optimiser_settings(static_settings) 

        num_coefficients = gradImprEmitter._get_num_coefficients(static_settings) 

        new_x0 = repertoire.get_random_elite(repertoire, elite_key)  

        gradient_opt = gradImprEmitter.gradient_opt.reset(obj_optimiser_settings, 

gradImprEmitter.gradient_opt, new_x0) 

        behavior_x0 = jnp.zeros(num_coefficients) 

        opt = 

CMAEvolutionStrategy.reset(gradImprEmitter._get_static_settings_bd_opt(static_settings),  

                        gradImprEmitter.opt, behavior_x0) 

        restarts = gradImprEmitter.restarts + 1 

        return gradImprEmitter.replace(gradient_opt = gradient_opt, opt = opt, restarts = 

restarts), repertoire 

 

    @staticmethod 

    def tell_jacobian(static_settings, gradImprEmitter, solutions, objective_values,  

                    behavior_values, dead, repertoire, key, jacobian): 

        normalize_gradients = gradImprEmitter._get_normalize_gradients(static_settings) 

        if normalize_gradients > 0: 

            jacobian = gradImprEmitter._normalize_gradients(jacobian) 

 

        gradImprEmitter = gradImprEmitter.replace(jacobian = jacobian) 

        return gradImprEmitter.tell(static_settings, gradImprEmitter, solutions,  

                    objective_values, behavior_values, dead, repertoire, key) 

 

    @staticmethod 

    def tell(static_settings, gradImprEmitter, solutions, objective_values, behavior_values, 

dead, repertoire, key): 

        """Gives the emitter results from evaluating solutions. 

 

        As solutions are inserted into the archive, we record their "improvement 

        value" -- conveniently, this is the ``value`` returned by 

        :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions 

        according to their add status (new solutions rank in front of 

        solutions that improved existing entries in the archive, which rank 

        ahead of solutions that were not added), followed by their improvement 

        value.  We then pass the ranked solutions to the underlying CMA-ES 

        optimizer to update the search parameters. 

        """ 

        # static settings that need to be provided before the rest of the method is compiled 

        normalize_gradients = gradImprEmitter._get_normalize_gradients(static_settings) 

        batch_size = gradImprEmitter._get_batch_size(static_settings) 

        restart_rule = gradImprEmitter._get_restart_rule(static_settings) 

        selection_rule = gradImprEmitter._get_selection_rule(static_settings) 

        obj_optimiser_settings = gradImprEmitter._get_obj_optimiser_settings(static_settings) 
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        repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended(repertoire = 

repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

     

        # Find the indices of the sorted array on status codes and then improvement scores 

        r_indices = jnp.lexsort((sols_entries[:,2], sols_entries[:,1], sols_entries[:,0])) 

        ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0) 

 

        # we want the descending order of the rankings and not the ascending 

        indices = ranked_sols_entries[:,2].astype(jnp.int32) 

        # Expected to be a statically defined if statement evaluated at jit compile time of 

this function 

        num_parents = (new_sols if selection_rule == SelectionRules.FILTER else 

gradImprEmitter.num_parents) 

 

        opt = 

gradImprEmitter.opt.tell(gradImprEmitter._get_static_settings_bd_opt(static_settings),  

                                    gradImprEmitter.opt, 

gradImprEmitter.grad_coefficients[indices], num_parents) 

        gradImprEmitter = gradImprEmitter.replace(opt = opt) 

 

        # Calculate a new mean in solution space 

        parents = solutions[indices] 

        # Create a mask for identifying the solutions that are parents 

        temp_indices = jnp.arange(0, batch_size, 1) 

        parents_mask = jnp.where(temp_indices < num_parents, 1, 0) 

        weights = (jnp.log(num_parents + 0.5) - 

                jnp.log(jnp.arange(1, batch_size + 1))) 

        # make the non-parent entries to zero arrays so that the sum is not affected 

        # by the extra entries in the array (elements that are not parents) 

        filtered_weights = jnp.multiply(weights, parents_mask) 

        total_weights = jnp.sum(filtered_weights) 

        weights = filtered_weights / total_weights 

        # calcualate the new mean 

        masked_parents = jnp.multiply(parents, jnp.expand_dims(parents_mask, axis=-1)) 

        new_mean = jnp.sum(jnp.multiply(masked_parents, jnp.expand_dims(weights, axis=1)), 

axis=0) 

 

        # Use the mean to calculate a gradient step and step the optimizer 

        gradient_step = new_mean - gradImprEmitter.gradient_opt.theta 

        gradient_opt = gradImprEmitter.gradient_opt.step(obj_optimiser_settings, 

gradImprEmitter.gradient_opt, gradient_step) 

 

        gradImprEmitter = gradImprEmitter.replace(gradient_opt = gradient_opt) 
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        should_reset_opt = jnp.logical_or( 

                                    gradImprEmitter.opt.check_stop(opt, 

ranked_sols_entries[:,1], num_parents),  

                                    gradImprEmitter._check_restart(restart_rule, new_sols) 

                                ) 

 

        key, elite_key = jax.random.split(key, 2) 

 

        return lax.cond(should_reset_opt, 

                lambda x: gradImprEmitter._reset_opt(static_settings, gradImprEmitter, 

repertoire, elite_key), 

                lambda x: (gradImprEmitter, repertoire), 

                None 

            ) 

 
 

Code Snippet A.15  Implementation of the Gradient Improvement Emitter in JAX 

(_gradient_improvement_emitter.py) 

 

A.5 QD Emitters (PyTree Version) 

A.5.1 MAP-Elites (Isotropic Gaussian) 

"""Provides the GaussianEmitter. 

https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_gaussian_emitter.py 

""" 

 

from typing import Any 

import jax.numpy as jnp 

import flax 

import jax 

from qd_utils.grid_archive import Repertoire 

from training.ext_emitters.emitters_utils import EmitterBase 

from collections import namedtuple 

 

D_TYPE = jnp.float32 

Array = jnp.ndarray 

 

@flax.struct.dataclass 

class GaussianEmitter: 

    """Emits solutions by adding Gaussian noise to existing archive solutions. 

 

    If the archive is empty, calls to :meth:`ask` will generate solutions from a 

    user-specified Gaussian distribution with mean ``x0`` and standard deviation 
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    ``sigma0``. Otherwise, this emitter selects solutions from the archive and 

    generates solutions from a Gaussian distribution centered around each 

    solution with standard deviation ``sigma0``. 

 

    This is the classic variation operator presented in `Mouret 2015 

    <https://arxiv.org/pdf/1504.04909.pdf>`_. 

 

    """ 

    x0: Array 

    sigma0: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    solution_dim: jnp.int32 

 

    @classmethod 

    def create(cls, 

                 x0, 

                 sigma0, 

                 batch_size, 

                 bounds=None): 

        batch_size = batch_size 

        sigma0 = float(sigma0) 

        (solution_dim, ravel_single, unravel_single, ravel_batch_size,  

                    unravel_batch_size) = EmitterBase.get_ravel_info(batch_size, x0) 

        x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE) 

        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim) 

        # Define the Static Settings 

        ssd = dict() 

        ssd['batch_size'] = batch_size 

        ssd['solution_dim'] = solution_dim 

        ssd['ravel_single'] = ravel_single 

        ssd['unravel_single'] = unravel_single 

        ssd['ravel_batch_size'] = ravel_batch_size 

        ssd['unravel_batch_size'] = unravel_batch_size 

        StaticSettings = namedtuple('StaticSettings', ssd) 

         

        return (cls(x0_raveled, sigma0, lower_bounds, upper_bounds, batch_size, solution_dim),  

                            StaticSettings(**ssd)) 

 

    @staticmethod 

    def ravel_single(static_settings, params): 

        return static_settings.ravel_single(params) 

 

    @staticmethod 

    def unravel_single(static_settings, params): 

        return static_settings.unravel_single(params) 
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    @staticmethod 

    def ravel_batch_size(static_settings, params): 

        return static_settings.ravel_batch_size(params) 

 

    @staticmethod 

    def unravel_batch_size(static_settings, params): 

        return static_settings.unravel_batch_size(params) 

 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _ask_clip(parents, lower_bounds, upper_bounds): 

        return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds) 

     

    @staticmethod 

    def ask(static_settings, gaussian_emitter, repertoire, key): 

        """Creates solutions by adding Gaussian noise to elites in the archive. 

        """ 

        batch_size = gaussian_emitter._get_batch_size(static_settings) 

        solution_dim = gaussian_emitter._get_solution_dim(static_settings) 

        key_selection, key_variation = jax.random.split(key, 2) 

 

        # SELECTION # 

        idx_p1 = jax.random.randint(key_selection, shape=(batch_size,), minval=0, 

maxval=repertoire.num_indivs) 

        tot_indivs = repertoire.fitness.ravel().shape[0] 

        indexes = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)), size = 

tot_indivs) 

        indexes = jnp.transpose(indexes, axes=(1, 0)) 

        indiv_indices = jnp.array(jnp.ravel_multi_index(indexes, repertoire.fitness.shape, 

mode='clip')).astype(int) 

 

        idx_p1 = indiv_indices.at[idx_p1].get() 

        sols = jax.tree_map(lambda x: x.at[idx_p1].get(),repertoire.archive) 

 

        sols = gaussian_emitter.ravel_batch_size(static_settings, sols) 

        # # VARIATION - MUTATION # 

        # # Better approach since it operates directly on the tree  

        # # structure of the solutions 

        # num_vars = len(jax.tree_leaves(sols)) 
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        # treedef = jax.tree_structure(sols) 

        # all_keys = jax.random.split(key_variation, num=num_vars) 

 

        # # Gaussian noise 

        # noise = jax.tree_multimap( 

        #     lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols, 

        #     jax.tree_unflatten(treedef, all_keys)) 

 

        # # Added noise in positive direction 

        # mutated_sols = jax.tree_multimap(lambda g, n: g + n * gaussian_emitter.sigma0, sols, 

noise) 

        # # Added noise in negative direction 

        # anit_mutated_sols = jax.tree_multimap(lambda g, n: g - n * gaussian_emitter.sigma0, 

sols, noise) 

         

        # return gaussian_emitter, mutated_sols 

 

        noise = jax.random.normal(key_variation, shape=(batch_size, solution_dim), 

dtype=D_TYPE) * gaussian_emitter.sigma0 

        new_sols = gaussian_emitter._ask_clip(sols + noise, 

                                     gaussian_emitter.lower_bounds,  

                                     gaussian_emitter.upper_bounds) 

        return gaussian_emitter, gaussian_emitter.unravel_batch_size(static_settings, 

new_sols) 

 

    @staticmethod 

    def tell(static_settings, gaussian_emitter, solutions, objective_values, behavior_values, 

dead, repertoire, key): 

        """Inserts entries into the archive. 

        """ 

        repertoire = repertoire.add_to_archive(repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

        return gaussian_emitter, repertoire 
 

Code Snippet A.16:  Implementation of the MAP-Elites with Isotropic Gaussian in JAX (_gaussian_emitter.py) 

A.5.2 MAP-Elites (Iso + LineDD) 

"""Provides the IsoLineEmitter. 

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_iso_line_emitter.py 

""" 

 

import jax.numpy as jnp 

import flax 

import jax 
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from qdax.training.ext_emitters.emitters_utils import EmitterBase 

from collections import namedtuple 

 

D_TYPE = jnp.float32 

Array = jnp.ndarray 

 

@flax.struct.dataclass 

class IsoLineEmitter: 

    """Emits solutions that are nudged towards other archive solutions. 

    If the archive is empty, calls to :meth:`ask` will generate solutions from 

    an isotropic Gaussian distribution with mean ``x0`` and standard deviation 

    ``iso_sigma``. Otherwise, to generate each new solution, the emitter selects 

    a pair of elites :math:`x_i` and :math:`x_j` and samples from 

    .. math:: 

        x_i + \\sigma_{iso} \\mathcal{N}(0,\\mathcal{I}) + 

            \\sigma_{line}(x_j - x_i)\\mathcal{N}(0,1) 

    This emitter is based on the Iso+LineDD operator presented in `Vassiliades 

    2018 <https://arxiv.org/abs/1804.03906>`_. 

    """ 

    x0: Array 

    iso_sigma: D_TYPE 

    line_sigma: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    solution_dim: jnp.int32 

 

     

    @classmethod 

    def create(cls, 

                 x0, 

                 iso_sigma, 

                 line_sigma, 

                 batch_size, 

                 bounds=None): 

        (solution_dim, ravel_single, unravel_single, ravel_batch_size,  

                    unravel_batch_size) = EmitterBase.get_ravel_info(batch_size, x0) 

        x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE) 

        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim) 

        batch_size = batch_size 

        iso_sigma = float(iso_sigma) 

        line_sigma = float(line_sigma) 

        ssd = dict() 

        ssd['batch_size'] = batch_size 

        ssd['solution_dim'] = solution_dim 

        ssd['ravel_single'] = ravel_single 

        ssd['unravel_single'] = unravel_single 
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        ssd['ravel_batch_size'] = ravel_batch_size 

        ssd['unravel_batch_size'] = unravel_batch_size 

        StaticSettings = namedtuple('StaticSettings', ssd) 

 

        return (cls(x0_raveled, iso_sigma, line_sigma, lower_bounds,  

                    upper_bounds, batch_size, 

                     solution_dim), StaticSettings(**ssd)) 

 

    @staticmethod 

    def ravel_single(static_settings, params): 

        return static_settings.ravel_single(params) 

 

    @staticmethod 

    def unravel_single(static_settings, params): 

        return static_settings.unravel_single(params) 

 

    @staticmethod 

    def ravel_batch_size(static_settings, params): 

        return static_settings.ravel_batch_size(params) 

 

    @staticmethod 

    def unravel_batch_size(static_settings, params): 

        return static_settings.unravel_batch_size(params) 

 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _ask_clip(parents, lower_bounds, upper_bounds): 

        return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds) 

     

    @staticmethod 

    def ask(static_settings, iso_emitter, repertoire, key): 

        """Generates ``batch_size`` solutions. 

        """ 

        batch_size = iso_emitter._get_batch_size(static_settings) 

        solution_dim = iso_emitter._get_solution_dim(static_settings) 

        key_selection, key_variation = jax.random.split(key, 2) 

 

        # SELECTION # 

        key_select_p1, key_select_p2 = jax.random.split(key_selection, 2) 

        idx_s1 = jax.random.randint(key_select_p1, shape=(batch_size,),  
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                    minval=0, maxval=repertoire.num_indivs) 

        idx_s2 = jax.random.randint(key_select_p2, shape=(batch_size,),  

                    minval=0, maxval=repertoire.num_indivs) 

        tot_indivs = repertoire.fitness.ravel().shape[0] 

        indices = jnp.argwhere(jnp.logical_not(jnp.isnan(repertoire.fitness)),  

                        size = tot_indivs) 

        indices = jnp.transpose(indices, axes=(1, 0)) 

        indiv_indices = jnp.array(jnp.ravel_multi_index(indices,  

                    repertoire.fitness.shape, mode='clip')).astype(int) 

 

        idx_s1 = indiv_indices.at[idx_s1].get() 

        idx_s2 = indiv_indices.at[idx_s2].get() 

        sols_1 = jax.tree_map(lambda x: x.at[idx_s1].get(),repertoire.archive) 

        sols_2 = jax.tree_map(lambda x: x.at[idx_s2].get(),repertoire.archive) 

 

        # # VARIATION # 

        # # Better approach since it operates directly on the tree  

        # # structure of the solutions 

        # num_vars = len(jax.tree_leaves(sols_1)) 

        # treedef = jax.tree_structure(sols_1) 

        # key_a, key_b = jax.random.split(key_variation, 2) 

        # all_keys_a = jax.random.split(key_a, num_vars) 

        # all_keys_b = jax.random.split(key_b, num_vars) 

 

        # noise_a = jax.tree_multimap( 

        #     lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_1, 

        #     jax.tree_unflatten(treedef, all_keys_a)) 

        # noise_b = jax.tree_multimap( 

        #     lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), sols_2, 

        #     jax.tree_unflatten(treedef, all_keys_b)) 

 

        # new_sols = jax.tree_multimap(lambda x, y, a, b:  

        #                             x + a * iso_emitter.iso_sigma +  

        #                             b * iso_emitter.line_sigma * (x - y), 

        #                                 sols_1, sols_2, noise_a, noise_b) 

         

        # return iso_emitter, new_sols 

 

        sols_1_raveled = iso_emitter.ravel_batch_size(static_settings, sols_1) 

        sols_2_raveled = iso_emitter.ravel_batch_size(static_settings, sols_2) 

 

        key_a, key_b = jax.random.split(key_variation, 2) 

        iso_gaussian = jax.random.normal(key_a,  

                            shape=(batch_size, solution_dim),  

                            dtype=D_TYPE) * iso_emitter.iso_sigma 

         

        # expanded last dimension used for multiplication later 
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        line_gaussian = jax.random.normal(key_b,  

                            shape=(batch_size, 1),  

                            dtype=D_TYPE) * iso_emitter.line_sigma 

 

        directions = (sols_1_raveled - sols_2_raveled).astype(D_TYPE) 

 

        new_sols = sols_2_raveled + iso_gaussian + jnp.multiply( 

                        jnp.array(line_gaussian), directions) 

 

        new_sols =  iso_emitter._ask_clip(new_sols, 

                        iso_emitter.lower_bounds, iso_emitter.upper_bounds) 

 

        return iso_emitter, iso_emitter.unravel_batch_size(static_settings, new_sols) 

 

    @staticmethod 

    def tell(static_settings, iso_emitter, solutions, objective_values,  

                    behavior_values, dead, repertoire, key): 

        """Inserts entries into the archive. 

        """ 

        repertoire = repertoire.add_to_archive(repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

        return iso_emitter, repertoire 
 

Code Snippet A.17:  Implementation of the  MAP-Elites (Iso + LineDD) in JAX (_iso_line_emitter.py) 

A.5.3 Covariance Matrix Adaptation MAP-Elites (CMA-ME) - Improvement 

"""Provides the ImprovementEmitter. 

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_improvement_emitter.py 

""" 

 

from typing import Any 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

import functools 

from qd_utils.grid_archive import Repertoire 

from training.ext_emitters.emitters_utils import EmitterBase 

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules 

from collections import namedtuple 

 

Array = jnp.ndarray 

 

class SelectionRules: 
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    MU = 1 

    FILTER = 2 

 

class RestartRules: 

    BASIC = 1 

    NO_IMPROVEMENT = 2 

 

D_TYPE = jnp.float32 

 

@flax.struct.dataclass 

class ImprovementEmitter: 

    """Adapts a covariance matrix towards changes in the archive. 

 

    This emitter originates in `Fontaine 2020 

    <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and 

    uses CMA-ES to search for solutions that improve the archive, i.e. solutions 

    that add new entries to the archive or improve existing entries. Once CMA-ES 

    restarts (see ``restart_rule``), the emitter starts from a randomly chosen 

    elite in the archive and continues searching for solutions that improve the 

    archive. 

    """ 

 

    x0: Array 

    sigma0: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    opt: CMAEvolutionStrategy 

    solution_dim: jnp.int32 

    num_parents: jnp.int32 

    restarts: jnp.int32 

    restart_rule: jnp.int32 

    selection_rule: jnp.int32 

 

    @classmethod 

    def create(cls, 

                 x0, 

                 sigma0, 

                 selection_rule=SelectionRules.FILTER, 

                 restart_rule=RestartRules.NO_IMPROVEMENT, 

                 weight_rule=WeightRules.TRUNCATION, 

                 bounds=None, 

                 batch_size=None): 

        (solution_dim, ravel_single, unravel_single, ravel_batch_size,  

                    unravel_batch_size) = EmitterBase.get_ravel_info(batch_size, x0) 

        x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE) 

        sigma0 = sigma0 
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        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds, solution_dim) 

        batch_size = batch_size 

 

        if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]: 

            raise ValueError(f"Invalid selection_rule {selection_rule}") 

 

        if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]: 

            raise ValueError(f"Invalid restart_rule {restart_rule}") 

         

        opt, ssd_opt = CMAEvolutionStrategy.create(sigma0, batch_size,  

                                            solution_dim, weight_rule) 

        opt = opt.reset(ssd_opt, opt, x0_raveled) 

        get_num_of_parents_fn = jax.jit(functools.partial( 

                    cls._get_num_of_parents, selection_rule)) 

        num_parents = (opt.batch_size // 2 if selection_rule ==  

                                SelectionRules.MU else None) 

        batch_size = opt.batch_size 

 

        ssd = dict() 

        ssd['get_num_of_parents_fn'] = get_num_of_parents_fn 

        ssd['solution_dim'] = solution_dim 

        ssd['batch_size'] = batch_size 

        ssd['restart_rule'] = restart_rule 

        ssd['opt_settings'] = ssd_opt 

        ssd['ravel_single'] = ravel_single 

        ssd['unravel_single'] = unravel_single 

        ssd['ravel_batch_size'] = ravel_batch_size 

        ssd['unravel_batch_size'] = unravel_batch_size 

        StaticSettings = namedtuple('StaticSettings', ssd) 

 

        restarts = 0 

        return (cls(x0_raveled, sigma0, lower_bounds, upper_bounds , batch_size, opt, 

                    solution_dim, num_parents, restarts, restart_rule, selection_rule),  

                    StaticSettings(**ssd)) 

     

    @staticmethod 

    def ravel_single(static_settings, params): 

        return static_settings.ravel_single(params) 

 

    @staticmethod 

    def unravel_single(static_settings, params): 

        return static_settings.unravel_single(params) 

 

    @staticmethod 

    def ravel_batch_size(static_settings, params): 

        return static_settings.ravel_batch_size(params) 
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    @staticmethod 

    def unravel_batch_size(static_settings, params): 

        return static_settings.unravel_batch_size(params) 

 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 

    def _get_restart_rule(static_settings): 

        return static_settings.restart_rule 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _get_num_of_parents_fn(static_settings): 

        return static_settings.get_num_of_parents_fn 

 

    @staticmethod 

    def _get_optimiser_settings(static_settings): 

        return static_settings.opt_settings 

 

    @staticmethod 

    def _get_num_of_parents(selection_rule, new_sols, num_parents): 

        return (new_sols if selection_rule == SelectionRules.FILTER else num_parents) 

 

    @staticmethod 

    def ask(static_settings, imp_emitter, repertoire, key): 

        """Samples new solutions from a multivariate Gaussian. 

 

        The multivariate Gaussian is parameterized by the CMA-ES optimizer. 

        """ 

        opt, solutions = imp_emitter.opt.ask( 

                    imp_emitter._get_optimiser_settings(static_settings),  

                    imp_emitter.opt, imp_emitter.lower_bounds,  

                    imp_emitter.upper_bounds, key) 

 

        unraveled_sols = imp_emitter.unravel_batch_size(static_settings, solutions) 

 

        return imp_emitter.replace(opt = opt), unraveled_sols 

 

    @staticmethod 

    def _check_restart(restart_rule, num_parents): 

        """Emitter-side checks for restarting the optimizer. 
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        The optimizer also has its own checks. 

        """ 

        return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0 

 

    @staticmethod 

    def _reset_opt(static_settings, imp_emitter, repertoire, elite_key): 

        new_x0 = Repertoire.get_random_elite_ext(repertoire, elite_key) 

        new_x0 = imp_emitter.ravel_single(static_settings, new_x0) 

        opt = imp_emitter.opt.reset(imp_emitter._get_optimiser_settings( 

                        static_settings), imp_emitter.opt, new_x0) 

        restarts = imp_emitter.restarts + 1 

        return imp_emitter.replace(opt = opt, restarts = restarts), repertoire 

 

    @staticmethod 

    def tell(static_settings, imp_emitter, solutions, objective_values,  

                behavior_values, dead, repertoire, key): 

        """Gives the emitter results from evaluating solutions. 

 

        As solutions are inserted into the archive, we record their "improvement 

        value" -- conveniently, this is the ``value`` returned by 

        :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions 

        according to their add status (new solutions rank in front of 

        solutions that improved existing entries in the archive, which rank 

        ahead of solutions that were not added), followed by their improvement 

        value.  We then pass the ranked solutions to the underlying CMA-ES 

        optimizer to update the search parameters. 

        """ 

        get_num_of_parents_fn = ImprovementEmitter._get_num_of_parents_fn(static_settings) 

        solution_dim = ImprovementEmitter._get_solution_dim(static_settings) 

        restart_rule = ImprovementEmitter._get_restart_rule(static_settings) 

        # new_sols = repertoire.num_indivs 

        repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended( 

                                        repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

        # Find the indices of the sorted array on status codes and then objective/evaluation 

scores 

        r_indices = jnp.lexsort((sols_entries[:,2], sols_entries[:,1], sols_entries[:,0])) 

        ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0) 

        # new_sols = repertoire.num_indivs - new_sols  

        # we want the descending order of the rankings and not the ascending 

        indices = ranked_sols_entries[:,2].astype(jnp.int32) 

        num_parents = get_num_of_parents_fn(new_sols, imp_emitter.num_parents) 

        raveled_sols = imp_emitter.ravel_batch_size(static_settings, solutions) 

        opt = CMAEvolutionStrategy.tell(imp_emitter._get_optimiser_settings(static_settings),  
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                                imp_emitter.opt, raveled_sols[indices], num_parents) 

 

        key, elite_key = jax.random.split(key, 2) 

         

        imp_emitter = imp_emitter.replace(opt = opt) 

 

        should_reset_opt = jnp.logical_or( 

                                    CMAEvolutionStrategy.check_stop(opt,  

                                    ranked_sols_entries[:,1], num_parents),  

                                    ImprovementEmitter._check_restart(restart_rule, new_sols) 

                                ) 

 

        return lax.cond(should_reset_opt, 

                lambda x: ImprovementEmitter._reset_opt(static_settings, imp_emitter,  

                        repertoire, elite_key), 

                lambda x: (imp_emitter, repertoire), 

                None 

            ) 

 

 

Code Snippet A.18:  Implementation of CMA-ME Improvement the in JAX (_improvement_emitter.py) 

A.5.4 Covariance Matrix Adaptation MAP-Elites (CMA-ME) - Optimizing 

"""Provides the OptimizingEmitter. 

Adapted from https://github.com/icaros-usc/dqd/blob/main/ribs/emitters/_optimizing_emitter.py 

""" 

from typing import Any 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

from qd_utils.grid_archive import Repertoire 

from training.ext_emitters.emitters_utils import EmitterBase 

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules 

from collections import namedtuple 

 

Array = jnp.ndarray 

 

class SelectionRules: 

    MU = 1 

    FILTER = 2 

 

class RestartRules: 

    BASIC = 1 

    NO_IMPROVEMENT = 2 
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D_TYPE = jnp.float32 

 

@flax.struct.dataclass 

class OptimizingEmitter: 

    """Adapts a covariance matrix towards the objective. 

 

    This emitter originates in `Fontaine 2020 

    <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and 

    uses CMA-ES to optimize for objective values. After CMA-ES converges, the 

    emitter restarts the optimizer. It picks a random elite in the archive and 

    begins optimizing from there. 

    """ 

 

    x0: Array 

    sigma0: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    opt: CMAEvolutionStrategy 

    solution_dim: jnp.int32 

    num_parents: jnp.int32 

    restarts: jnp.int32 

    restart_rule: jnp.int32 

    selection_rule: jnp.int32 

 

    @classmethod 

    def create(cls, 

                 x0, 

                 sigma0, 

                 selection_rule=SelectionRules.FILTER, 

                 restart_rule=RestartRules.NO_IMPROVEMENT, 

                 weight_rule=WeightRules.TRUNCATION, 

                 bounds=None, 

                 batch_size=None): 

        (solution_dim, ravel_single, unravel_single, ravel_batch_size,  

                    unravel_batch_size) = EmitterBase.get_ravel_info( 

                        batch_size, x0) 

        x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE) 

        sigma0 = sigma0 

        lower_bounds, upper_bounds = EmitterBase.process_bounds(bounds,  

                                    solution_dim) 

        batch_size = batch_size 

 

        if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]: 

            raise ValueError(f"Invalid selection_rule {selection_rule}") 

 

        if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]: 
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            raise ValueError(f"Invalid restart_rule {restart_rule}") 

         

        opt, ssd_opt = CMAEvolutionStrategy.create(sigma0, batch_size,  

                            solution_dim, weight_rule) 

        opt = opt.reset(ssd_opt, opt, x0_raveled) 

        # get_num_of_parents_fn = jax.jit(functools.partial(cls._get_num_of_parents, 

selection_rule)) 

        num_parents = (opt.batch_size // 2 if selection_rule == SelectionRules.MU else None) 

        batch_size = opt.batch_size 

 

        ssd = dict() 

        # static_settings['get_num_of_parents_fn'] = get_num_of_parents_fn 

        ssd['solution_dim'] = solution_dim 

        ssd['batch_size'] = batch_size 

        ssd['restart_rule'] = restart_rule 

        ssd['selection_rule'] = selection_rule 

        ssd['opt_settings'] = ssd_opt 

        ssd['ravel_single'] = ravel_single 

        ssd['unravel_single'] = unravel_single 

        ssd['ravel_batch_size'] = ravel_batch_size 

        ssd['unravel_batch_size'] = unravel_batch_size 

        StaticSettings = namedtuple('StaticSettings', ssd) 

 

        restarts = 0 

        return (cls(x0_raveled, sigma0, lower_bounds, upper_bounds , batch_size, opt, 

                    solution_dim, num_parents, restarts, restart_rule, selection_rule),  

                    StaticSettings(**ssd)) 

 

    @staticmethod 

    def ravel_single(static_settings, params): 

        return static_settings.ravel_single(params) 

 

    @staticmethod 

    def unravel_single(static_settings, params): 

        return static_settings.unravel_single(params) 

 

    @staticmethod 

    def ravel_batch_size(static_settings, params): 

        return static_settings.ravel_batch_size(params) 

 

    @staticmethod 

    def unravel_batch_size(static_settings, params): 

        return static_settings.unravel_batch_size(params) 

 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 
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    @staticmethod 

    def _get_restart_rule(static_settings): 

        return static_settings.restart_rule 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _get_selection_rule(static_settings): 

        return static_settings.selection_rule 

 

    @staticmethod 

    def _get_optimiser_settings(static_settings): 

        return static_settings.opt_settings 

 

    @staticmethod 

    def ask(static_settings, optEmitter, repertoire, key): 

        """Samples new solutions from a multivariate Gaussian. 

 

        The multivariate Gaussian is parameterized by the CMA-ES optimizer. 

        """ 

        opt, solutions = optEmitter.opt.ask( 

                optEmitter._get_optimiser_settings(static_settings),  

                optEmitter.opt,  

                optEmitter.lower_bounds,  

                optEmitter.upper_bounds, key) 

        unraveled_sols = optEmitter.unravel_batch_size(static_settings,  

                                solutions) 

        return optEmitter.replace(opt = opt), unraveled_sols 

 

    @staticmethod 

    def _check_restart(restart_rule, num_parents): 

        """Emitter-side checks for restarting the optimizer. 

 

        The optimizer also has its own checks. 

        """ 

        return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0 

 

    @staticmethod 

    def _reset_opt(static_settings, optEmitter, repertoire, elite_key): 

        new_x0 = Repertoire.get_random_elite_ext(repertoire, elite_key) 

        new_x0 = optEmitter.ravel_single(static_settings, new_x0) 

        opt = optEmitter.opt.reset(optEmitter._get_optimiser_settings( 

                        static_settings), optEmitter.opt, new_x0) 

        restarts = optEmitter.restarts + 1 
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        return optEmitter.replace(opt = opt, restarts = restarts), repertoire 

 

    @staticmethod 

    def tell(static_settings, optEmitter, solutions, objective_values,  

                    behavior_values, dead, repertoire, key): 

        """Gives the emitter results from evaluating solutions. 

 

        As solutions are inserted into the archive, we record their "improvement 

        value" -- conveniently, this is the ``value`` returned by 

        :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions 

        according to their add status (new solutions rank in front of 

        solutions that improved existing entries in the archive, which rank 

        ahead of solutions that were not added), followed by their improvement 

        value.  We then pass the ranked solutions to the underlying CMA-ES 

        optimizer to update the search parameters. 

        """ 

        solution_dim = optEmitter._get_solution_dim(static_settings) 

        restart_rule = optEmitter._get_restart_rule(static_settings) 

        selection_rule = optEmitter._get_selection_rule(static_settings) 

 

        repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended( 

                                        repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

         

        if selection_rule == SelectionRules.FILTER: 

            # Sort by whether the solution was added into the archive, followed 

            # by objective value. 

            sort_elements = (objective_values[sols_entries[:,2].astype(jnp.int32)],  

                                sols_entries[:,0]) 

        elif selection_rule == SelectionRules.MU: 

            # Sort only by objective value. 

            sort_elements = (objective_values[sols_entries[:,2].astype(jnp.int32)]) 

 

        # Find the indices of the sorted array on status codes and then objective/evaluation 

scores 

        r_indices = jnp.lexsort(sort_elements) 

        ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0) 

        # we want the descending order of the rankings and not the ascending 

        indices = ranked_sols_entries[:,2].astype(jnp.int32) 

 

        num_parents = (new_sols if selection_rule == SelectionRules.FILTER  

                                else optEmitter.num_parents) 

        raveled_sols = optEmitter.ravel_batch_size(static_settings, solutions) 

        opt = optEmitter.opt.tell(optEmitter._get_optimiser_settings(static_settings), 



A-68 

 

 

 

                             optEmitter.opt, raveled_sols[indices], num_parents) 

 

        key, elite_key = jax.random.split(key, 2) 

         

        optEmitter = optEmitter.replace(opt = opt) 

 

        should_reset_opt = jnp.logical_or( 

                                    CMAEvolutionStrategy.check_stop(opt,  

                                        ranked_sols_entries[:,1], num_parents),  

                                    optEmitter._check_restart(restart_rule, new_sols) 

                                ) 

 

        return lax.cond(should_reset_opt, 

                lambda x: optEmitter._reset_opt(static_settings, optEmitter,  

                            repertoire, elite_key), 

                lambda x: (optEmitter, repertoire), 

                None 

            ) 

 
 

Code Snippet A.19:  Implementation of the CMA-ME - Optimizing in JAX (_optimizing_emitter.py) 

A.5.5 Covariance Matrix Adaptation MAP-Elites (CMA-ME) – Random Direction 

"""Provides the RandomDirectionEmitter. 

Adapted from https://github.com/icaros-

usc/dqd/blob/main/ribs/emitters/_random_direction_emitter.py 

""" 

from typing import Any 

import jax.numpy as jnp 

import flax 

import jax 

from jax import lax 

from qd_utils.grid_archive import Repertoire 

from training.ext_emitters.emitters_utils import EmitterBase 

from training.opt._cma_es import CMAEvolutionStrategy, WeightRules 

from collections import namedtuple 

 

Array = jnp.ndarray 

 

class SelectionRules: 

    MU = 1 

    FILTER = 2 

 

class RestartRules: 

    BASIC = 1 

    NO_IMPROVEMENT = 2 

 



A-69 

 

 

 

D_TYPE = jnp.float32 

 

@flax.struct.dataclass 

class RandomDirectionEmitter(EmitterBase): 

    """Performs a random walk in behavior space by pursuing randomly chosen 

    behavior space directions. 

 

    This emitter originates in `Fontaine 2020 

    <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and 

    uses CMA-ES to search for solutions along a randomly chosen direction. Once 

    CMA-ES restarts (see ``restart_rule``), the emitter starts from a randomly 

    chosen elite in the archive and pursues a new random direction. 

    """ 

 

    x0: Array 

    sigma0: D_TYPE 

    lower_bounds: Array 

    upper_bounds: Array 

    batch_size: jnp.int32 

    opt: CMAEvolutionStrategy 

    solution_dim: jnp.int32 

    num_parents: jnp.int32 

    restarts: jnp.int32 

    restart_rule: jnp.int32 

    selection_rule: jnp.int32 

    archive_bounds: Array 

    target_behavior_dir:Array 

 

    @classmethod 

    def create(cls, 

                 x0, 

                 sigma0, 

                 archive_bounds, 

                 key, 

                 selection_rule=SelectionRules.FILTER, 

                 restart_rule=RestartRules.NO_IMPROVEMENT, 

                 weight_rule=WeightRules.TRUNCATION, 

                 bounds=None, 

                 batch_size=None): 

        (solution_dim, ravel_single, unravel_single, ravel_batch_size,  

                    unravel_batch_size) = EmitterBase.get_ravel_info( 

                                    batch_size, x0) 

        x0_raveled = jnp.array(ravel_single(x0), dtype=D_TYPE) 

        sigma0 = sigma0 

        lower_bounds, upper_bounds = EmitterBase.process_bounds( 

                            bounds, solution_dim) 

        batch_size = batch_size 
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        if selection_rule not in [SelectionRules.MU, SelectionRules.FILTER]: 

            raise ValueError(f"Invalid selection_rule {selection_rule}") 

 

        if restart_rule not in [RestartRules.BASIC, RestartRules.NO_IMPROVEMENT]: 

            raise ValueError(f"Invalid restart_rule {restart_rule}") 

         

        opt, ssd_opt = CMAEvolutionStrategy.create(sigma0, batch_size,  

                            solution_dim, weight_rule) 

        opt = opt.reset(ssd_opt, opt, x0_raveled) 

 

        num_parents = (opt.batch_size // 2 if selection_rule ==  

                                        SelectionRules.MU else None) 

        batch_size = opt.batch_size 

 

        ssd = dict() 

        ssd['solution_dim'] = solution_dim 

        ssd['solution_dim'] = solution_dim 

        ssd['batch_size'] = batch_size 

        ssd['restart_rule'] = restart_rule 

        ssd['selection_rule'] = selection_rule 

        ssd['archive_bounds'] = archive_bounds 

        ssd['opt_settings'] = ssd_opt 

        ssd['ravel_single'] = ravel_single 

        ssd['unravel_single'] = unravel_single 

        ssd['ravel_batch_size'] = ravel_batch_size 

        ssd['unravel_batch_size'] = unravel_batch_size 

        StaticSettings = namedtuple('StaticSettings', ssd) 

        target_behavior_dir = cls._generate_random_direction(ssd,  

                                archive_bounds, key) 

 

        restarts = 0 

        return cls(x0, sigma0, lower_bounds, upper_bounds , batch_size,  

                    opt, solution_dim, num_parents, restarts, restart_rule, 

                    selection_rule, archive_bounds,  

                    target_behavior_dir), StaticSettings(**ssd) 

 

    @staticmethod 

    def ravel_single(static_settings, params): 

        return static_settings.ravel_single(params) 

 

    @staticmethod 

    def unravel_single(static_settings, params): 

        return static_settings.unravel_single(params) 

 

    @staticmethod 

    def ravel_batch_size(static_settings, params): 
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        return static_settings.ravel_batch_size(params) 

 

    @staticmethod 

    def unravel_batch_size(static_settings, params): 

        return static_settings.unravel_batch_size(params) 

 

    @staticmethod 

    def _get_batch_size(static_settings): 

        return static_settings.batch_size 

 

    @staticmethod 

    def _get_restart_rule(static_settings): 

        return static_settings.restart_rule 

 

    @staticmethod 

    def _get_solution_dim(static_settings): 

        return static_settings.solution_dim 

 

    @staticmethod 

    def _get_selection_rule(static_settings): 

        return static_settings.selection_rule 

 

    @staticmethod 

    def _get_archive_bounds(static_settings): 

        return static_settings.archive_bounds 

 

    @staticmethod 

    def _get_optimiser_settings(static_settings): 

        return static_settings.opt_settings 

 

    @staticmethod 

    def ask(static_settings, randomDirEmitter, repertoire, key): 

        """Samples new solutions from a multivariate Gaussian. 

 

        The multivariate Gaussian is parameterized by the CMA-ES optimizer. 

 

        Returns: 

            ``(batch_size, solution_dim)`` array -- contains ``batch_size`` new 

            solutions to evaluate. 

        """ 

        opt, solutions = randomDirEmitter.opt.ask( 

                        randomDirEmitter._get_optimiser_settings(static_settings),  

                        randomDirEmitter.opt,  

                        randomDirEmitter.lower_bounds,  

                        randomDirEmitter.upper_bounds, key) 
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        unraveled_sols = randomDirEmitter.unravel_batch_size(static_settings,  

                                solutions) 

         

        return randomDirEmitter.replace(opt = opt), unraveled_sols 

 

    @staticmethod 

    def _generate_random_direction(static_settings, archive_bounds, key): 

        """Generates a new random direction in the behavior space. 

 

        The direction is sampled from a standard Gaussian -- since the standard 

        Gaussian is isotropic, there is equal probability for any direction. The 

        direction is then scaled to the behavior space bounds. 

        """ 

        ranges = archive_bounds[:,1] - archive_bounds[:,0]  

        behavior_dim = archive_bounds.shape[0] 

        unscaled_dir = jax.random.normal(key,  

                                shape=(behavior_dim,), 

                                dtype=D_TYPE) 

        return unscaled_dir * ranges 

 

    @staticmethod 

    def _check_restart(restart_rule, num_parents): 

        """Emitter-side checks for restarting the optimizer. 

 

        The optimizer also has its own checks. 

        """ 

        return restart_rule == RestartRules.NO_IMPROVEMENT and num_parents == 0 

 

    @staticmethod 

    def _reset_opt(static_settings, randomDirEmitter, repertoire, key): 

        dir_key, elite_key = jax.random.split(key, 2) 

        new_x0 = Repertoire.get_random_elite_ext(repertoire, elite_key) 

        new_x0 = randomDirEmitter.ravel_single(static_settings, new_x0) 

        opt = randomDirEmitter.opt.reset(randomDirEmitter._get_optimiser_settings( 

                                            static_settings),  

                                        randomDirEmitter.opt, new_x0) 

        archive_bounds = randomDirEmitter._get_archive_bounds(static_settings) 

        target_behavior_dir = randomDirEmitter._generate_random_direction( 

                                            static_settings,  

                                            archive_bounds, dir_key) 

        restarts = randomDirEmitter.restarts + 1 

        return randomDirEmitter.replace(opt = opt, restarts = restarts,  

                        target_behavior_dir = target_behavior_dir), repertoire 

 

    @staticmethod 

    def tell(static_settings, randomDirEmitter, solutions, objective_values,  

                        behavior_values, dead, repertoire, key): 
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        """Gives the emitter results from evaluating solutions. 

 

        As solutions are inserted into the archive, we record their "improvement 

        value" -- conveniently, this is the ``value`` returned by 

        :meth:`ribs.archives.ArchiveBase.add`. We then rank the solutions 

        according to their add status (new solutions rank in front of 

        solutions that improved existing entries in the archive, which rank 

        ahead of solutions that were not added), followed by their improvement 

        value.  We then pass the ranked solutions to the underlying CMA-ES 

        optimizer to update the search parameters. 

        """ 

        solution_dim = randomDirEmitter._get_solution_dim(static_settings) 

        restart_rule = randomDirEmitter._get_restart_rule(static_settings) 

        selection_rule = randomDirEmitter._get_selection_rule(static_settings) 

 

        repertoire, sols_entries, new_sols = repertoire.add_to_archive_extended( 

                                        repertoire = repertoire, 

                                        pop_p = solutions, 

                                        bds = behavior_values, 

                                        eval_scores = objective_values, 

                                        dead = dead) 

        projection = jnp.dot(behavior_values, randomDirEmitter.target_behavior_dir) 

        # Rearrange based on their initial indices to make it parallel to sols_entries 

        projection = projection[sols_entries[:,2].astype(jnp.int32)] 

        if selection_rule == SelectionRules.FILTER: 

            # Sort by whether the solution was added into the archive, followed 

            # by projection. 

            sort_elements = (sols_entries[:,2], projection, sols_entries[:,0]) 

        elif selection_rule == SelectionRules.MU: 

            # Sort only by projection. 

            sort_elements = (projection) 

 

        # Find the indices of the sorted array on status codes and then objective/evaluation 

scores 

        r_indices = jnp.lexsort(sort_elements) 

        ranked_sols_entries = jnp.flip(sols_entries[r_indices], axis=0) 

        # we want the descending order of the rankings and not the ascending 

        indices = ranked_sols_entries[:,2].astype(jnp.int32) 

 

        num_parents = (new_sols if selection_rule == SelectionRules.FILTER  

                                            else randomDirEmitter.num_parents) 

        raveled_sols = randomDirEmitter.ravel_batch_size(static_settings, solutions) 

        opt = randomDirEmitter.opt.tell(randomDirEmitter._get_optimiser_settings( 

                                static_settings), randomDirEmitter.opt,  

                                raveled_sols[indices], num_parents) 

 

        key, reset_key = jax.random.split(key, 2) 
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        randomDirEmitter = randomDirEmitter.replace(opt = opt) 

 

        should_reset_opt = jnp.logical_or( 

                                    CMAEvolutionStrategy.check_stop(opt, projection,  

                                        num_parents),  

                                    randomDirEmitter._check_restart(restart_rule, new_sols) 

                                ) 

 

        return lax.cond(should_reset_opt, 

                lambda x: randomDirEmitter._reset_opt(static_settings, randomDirEmitter,  

                                                        repertoire, reset_key), 

                lambda x: (randomDirEmitter, repertoire), 

                None 

            ) 

 

 

Code Snippet A.20:  Implementation of the CMA-ME Random Direction in JAX (_random_direction_emitter.py) 

 

A.6 Emitters’ Utilities 

import jax 

import jax.numpy as jnp 

from jax.flatten_util import ravel_pytree 

import functools 

D_TYPE = jnp.float32 

 

class EmitterBase: 

    @staticmethod 

    def process_bounds(bounds, solution_dim): 

        """Processes the input bounds. 

 

        Returns: 

            tuple: Two arrays containing all the lower bounds and all the upper 

                bounds. 

        Raises: 

            ValueError: There is an error in the bounds configuration. 

        """ 

        lower_bounds = jnp.full(solution_dim, -jnp.inf, dtype=D_TYPE) 

        upper_bounds = jnp.full(solution_dim, jnp.inf, dtype=D_TYPE) 

 

        if bounds is None: 

            return lower_bounds, upper_bounds 
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        # Handle array-like bounds. 

        if len(bounds) != solution_dim: 

            raise ValueError("If it is an array-like, bounds must have the " 

                             "same length as x0") 

        for idx, bnd in enumerate(bounds): 

            if bnd is None: 

                continue  # Bounds already default to -inf and inf. 

            if len(bnd) != 2: 

                raise ValueError("All entries of bounds must be length 2") 

            lower_bounds = lower_bounds.at[idx].set(-jnp.inf  

                            if bnd[0] is None else bnd[0]) 

            upper_bounds = upper_bounds.at[idx].set(jnp.inf  

                            if bnd[1] is None else bnd[1]) 

        return lower_bounds, upper_bounds 

     

    @staticmethod 

    def ravel_single(params): 

        return ravel_pytree(params) 

 

    @staticmethod 

    def unravel_single(unravel, params): 

        return unravel(params) 

 

    @staticmethod 

    def ravel_batch_size(params): 

        batch_size = jax.tree_util.tree_leaves(params)[0].shape[0] 

        params_leaves_transposed = jax.tree_map(lambda x:  

                                jnp.transpose(x), params) 

        flatten_params, unravel = ravel_pytree(params_leaves_transposed) 

        raveled_sols = flatten_params.reshape(-1, batch_size) 

        return jnp.transpose(raveled_sols), unravel 

 

    @staticmethod 

    def unravel_batch_size(unravel_f, params): 

        flatten_params = jnp.ravel(params,  order='F') 

        params_tree = unravel_f(flatten_params) 

        params_tree = jax.tree_map(lambda x: jnp.transpose(x), params_tree) 

        return params_tree 

 

    @staticmethod 

    def expand_params_to_batch_size(batch_size, params): 

        return jax.tree_map(lambda x: jnp.repeat(jnp.expand_dims(x, axis=0),  

                    batch_size , axis=0), params) 

 

    @staticmethod 

    def get_ravel_info(batch_size, x0): 
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        if isinstance(x0, jnp.ndarray): 

            solution_dim = len(x0) 

            ravel_single = lambda x: x 

            unravel_single = lambda x: x 

            ravel_batch_size = lambda x: x 

            unravel_batch_size = lambda x: x 

        else: 

            # Calculate ravel and unravel method for a single instance of sols 

            raveled_x, unravel_single_fn = EmitterBase.ravel_single(x0) 

            ravel_single = lambda x: EmitterBase.ravel_single(x)[0] 

            unravel_single = functools.partial(EmitterBase.unravel_single,  

                            unravel_single_fn) 

            # unravel_single = jax.tree_util.Partial(EmitterBase.unravel_single, 

unravel_single_fn) 

            solution_dim = len(raveled_x) 

            # Calculate ravel and unravel method for a batch size instances of sols 

            expanded_xs = EmitterBase.expand_params_to_batch_size(batch_size, x0) 

            raveled_xs, unravel_bs_fn = EmitterBase.ravel_batch_size(expanded_xs) 

            ravel_batch_size = lambda x: EmitterBase.ravel_batch_size(x)[0] 

            unravel_batch_size = functools.partial( 

                            EmitterBase.unravel_batch_size, unravel_bs_fn) 

            # unravel_batch_size = jax.tree_util.Partial( 

            #                 EmitterBase.unravel_batch_size, unravel_bs_fn) 

        return (solution_dim, ravel_single, unravel_single, ravel_batch_size,  

                    unravel_batch_size) 
 

Code Snippet A.21:  Emitters’ Utilities file (emitters_utils.py) 

A.7 Containers 

A.7.1 N-Dimensional Grid  Archive 

""" 

Adapted from QDax:  

https://github.com/adaptive-intelligent-robotics/QDax/blob/main/qdax/qd_utils/grid_archive.py 

""" 

 

from typing import Any,List 

import numpy as np 

import jax.numpy as jnp 

import flax 

import jax 

from jax import jit,vmap,grad 

from training import simple_emitters 

Array = Any 
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# Adding solutions to archive Status 

# Higher number means higher importance 

class AddStatus: 

    NEW = 2 

    IMPROVE_EXISTING = 1 

    NOT_ADDED = 0 

 

@flax.struct.dataclass 

class Repertoire: 

    archive: List 

    fitness: Array 

    bd: Array 

    grid_shape: Array 

    min: np.float64 

    max: np.float64 

    num_indivs: int 

    indiv_indices: Array 

 

    select_elite_from_repertoire = simple_emitters.get_select_from_repertoire_fn(1, 1) 

     

    @staticmethod 

    def get_random_elite(repertoire, key): 

        return Repertoire.select_elite_from_repertoire(repertoire, key)[0][0] 

 

    @staticmethod 

    def get_random_elite_ext(repertoire, key): 

        sols = Repertoire.select_elite_from_repertoire(repertoire, key) 

        return jax.tree_map(lambda x: jnp.squeeze(x), sols[0]) 

 

    @staticmethod 

    def _clip_bds( min_bound, max_bound, bds): 

        lower_bounds, upper_bounds = (jnp.repeat(min_bound, bds.shape[1]),  

                            jnp.repeat(max_bound,bds.shape[1])) 

        return jnp.minimum(jnp.maximum(bds, jnp.expand_dims(lower_bounds,axis=0)), 

                            jnp.expand_dims(upper_bounds,axis=0)) 

 

    @classmethod 

    def create(cls, policy_params, max, min, grid_shape): 

        grid_shape = jnp.array(grid_shape) 

        num_indivs = 0 

        indiv_indices = jnp.array([]) 

 

        bd = jnp.zeros(grid_shape) 

        fitness = jnp.full(grid_shape,jnp.nan) 

        #NOTE only 2D atm 

        archive = jax.tree_map(lambda x: jnp.zeros(jnp.repeat( 

                        jnp.expand_dims(x, axis=0), jnp.prod(grid_shape),  
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                        axis=0).shape), policy_params) 

        return cls(archive, fitness, bd, grid_shape,  min, max, num_indivs, indiv_indices) 

     

    @staticmethod 

    def binning(normed, shape): 

        return tuple(jnp.multiply(normed, shape - 1).astype(int)) 

     

    @staticmethod 

    def add_to_archive(repertoire, pop_p, bds, eval_scores, dead): 

        # bds = repertoire._clip_bds(repertoire.min, repertoire.max, bds) 

        normalized_bds = ((bds-repertoire.min)/(repertoire.max-repertoire.min))  #Normlalized 

BD should be between zero and 1 

        bd_cells = jit(jax.vmap(Repertoire.binning, in_axes=(0,None), 

                    out_axes=0))(normalized_bds,repertoire.grid_shape) 

        # print(bd_cells) 

        bd_indexes = jnp.ravel_multi_index(bd_cells, repertoire.bd.shape,mode = 'clip') 

        maximum_fitness = jax.ops.segment_max(eval_scores, bd_indexes,  

                    num_segments=repertoire.fitness.ravel().shape[0]) 

        eval_scores_filtered = jnp.where(maximum_fitness.at[bd_indexes].get()==eval_scores, 

                        eval_scores,np.iinfo(np.int32).min) 

        keep_eval_scores_filtered = jnp.where(maximum_fitness.at[bd_indexes].get() 

                                    ==eval_scores,True,False) 

        # Checking Conditions for fitness function 

        current_fitness = repertoire.fitness.ravel().at[bd_indexes].get() 

        # Checking if fitness function is nan or not, since nan means we do not have an 

individual yet 

        current_fitness_nan = jnp.logical_and(jnp.isnan(current_fitness), 

                                    keep_eval_scores_filtered) 

        # Checking if fitness that we have is better than the one we observed 

        better_fitness = current_fitness < eval_scores_filtered 

 

        #NOTE We need to check if two individuals have the same bd and different fitness!! 

        #Adding both boolean arrays to perform an OR 

        to_be_added = better_fitness + current_fitness_nan 

 

        #We Apply the Mask to remove dead individuals 

        to_be_added = jnp.where(dead,False,to_be_added) 

 

        #Every Individual that is not valid will be assigned index 100000 because we cannot 

cut our arrays. Jit needs to know the size of the array. 

        #When adding, every individual will be clipped and sent to the same location 

        mult_to_be_added = jnp.where(to_be_added,0,100000) 

 

        bd_insertion = bd_indexes + mult_to_be_added 

 

        # Adding individuals indivs to grid 
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        leaves = [] 

        for i, weight in enumerate(jax.tree_leaves(pop_p)): 

            leaf = jax.tree_leaves(repertoire.archive)[i].at[bd_insertion].set(weight) 

            leaves.append(leaf) 

        # replacing grid with new leaves that have the updated weights 

        new_archive = jax.tree_unflatten(jax.tree_structure(repertoire.archive), leaves) 

        unraveled_indices = jnp.unravel_index(bd_insertion, repertoire.fitness.shape) 

        # new_fitness = repertoire.fitness.at[jnp.unravel_index(bd_insertion, 

repertoire.fitness.shape)].set(eval_scores,mode='clip') 

 

        new_fitness = jnp.reshape(repertoire.fitness.ravel() 

                        .at[bd_insertion].set(eval_scores),repertoire.fitness.shape) 

        # print(repertoire.fitness) 

        num_indivs = (jnp.where(~jnp.isnan(new_fitness),1,0)).sum() 

 

        #returning this to make it jit friendly 

        return repertoire.replace(archive = new_archive, fitness =  

                         new_fitness, num_indivs =  num_indivs) 

     

    @staticmethod 

    # @jax.jit 

    def add_to_archive_extended(repertoire, pop_p, bds, eval_scores,dead): 

 

        normalized_bds = ((bds-repertoire.min)/(repertoire.max-repertoire.min))  #Normlalized 

BD should be between zero and 1 

        bd_cells = jit(jax.vmap(Repertoire.binning, 

in_axes=(0,None),out_axes=0))(normalized_bds,repertoire.grid_shape) 

        # print(bd_cells) 

        bd_indexes = jnp.ravel_multi_index(bd_cells, repertoire.bd.shape,mode = 'clip') 

        maximum_fitness = jax.ops.segment_max(eval_scores, bd_indexes,  

                            num_segments=repertoire.fitness.ravel().shape[0]) 

        eval_scores_filtered = jnp.where(maximum_fitness.at[bd_indexes] 

                            .get()==eval_scores,eval_scores,np.iinfo(np.int32).min) 

        keep_eval_scores_filtered = jnp.where(maximum_fitness 

                            .at[bd_indexes].get()==eval_scores,True,False) 

        # Checking Conditions for fitness function 

        current_fitness = repertoire.fitness.ravel().at[bd_indexes].get() 

        # Checking if fitness function is nan or not, since nan means we do not have an 

individual yet 

        current_fitness_nan = jnp.logical_and(jnp.isnan(current_fitness), 

                                                keep_eval_scores_filtered) 

        # Checking if fitness that we have is better than the one we observed 

        better_fitness = current_fitness < eval_scores_filtered 

 

        #NOTE We need to check if two individuals have the same bd and different fitness!! 

        #Adding both boolean arrays to perform an OR 

        to_be_added = better_fitness + current_fitness_nan 
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        imp_values = eval_scores - jnp.where(current_fitness_nan 

                                    , 0, current_fitness) 

 

        #We Apply the Mask to remove dead individuals 

        to_be_added = jnp.where(dead,False,to_be_added) 

        # new individuals that were added to the archive 

        new_indvds = jnp.sum(to_be_added.astype(jnp.int32)) 

        #Every Individual that is not valid will be assigned index 100000 because we cannot 

cut our arrays. Jit needs to know the size of the array. 

        #When adding, every individual will be clipped and sent to the same location 

        mult_to_be_added = jnp.where(to_be_added,0,100000) 

 

        bd_insertion = bd_indexes + mult_to_be_added 

 

        new_sols = jnp.where(jnp.logical_and( 

                    current_fitness_nan, 

                    to_be_added, 

                ), AddStatus.NEW,  AddStatus.NOT_ADDED) 

        better_sols = jnp.where(jnp.logical_and( 

                    better_fitness, 

                    to_be_added, 

                ), AddStatus.IMPROVE_EXISTING,  AddStatus.NOT_ADDED) 

        sols_statuses = new_sols + better_sols 

        # Sols entries is an array showing the add to archive status and objective/evaluation 

score 

        #  of each solution 

        sols_entries = jnp.stack((sols_statuses, imp_values, jnp.arange(0,  

                                len(sols_statuses), 1, dtype=int)),axis=-1) 

 

        # Adding individuals indivs to grid 

        leaves = [] 

        for i, weight in enumerate(jax.tree_leaves(pop_p)): 

            leaf = jax.tree_leaves(repertoire.archive)[i].at[bd_insertion].set(weight) 

            leaves.append(leaf) 

        # replacing grid with new leaves that have the updated weights 

        new_archive = jax.tree_unflatten(jax.tree_structure(repertoire.archive), leaves) 

        unraveled_indices = jnp.unravel_index(bd_insertion, repertoire.fitness.shape) 

        # new_fitness = repertoire.fitness.at[jnp.unravel_index(bd_insertion, 

repertoire.fitness.shape)].set(eval_scores,mode='clip') 

 

        new_fitness = 

jnp.reshape(repertoire.fitness.ravel().at[bd_insertion].set(eval_scores),repertoire.fitness.sh

ape) 

        # print(repertoire.fitness) 

        num_indivs = (jnp.where(~jnp.isnan(new_fitness),1,0)).sum() 
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        #returning this to make it jit friendly 

        return repertoire.replace(archive = new_archive, fitness =   

                            new_fitness, num_indivs =  num_indivs), sols_entries, new_indvds 

     
 

Code Snippet A.22:  Implementation of N-Dimensional Grid Archive (grid_archive.py) 

A.8 Experiment Utilities 

A.8.1 Module for Instantiating QD and DQD Emitters 

import functools 

import jax.numpy as jnp 

from training import qd_loop_simple as qd_simple  

# Import QD Behavioral and Objective functions  

from training.qd_functions import calc_rastrigin 

from training.qd_functions import calc_bds_rastrigin, calc_bds_rastrigin_simple 

from training.qd_functions import calc_grasp_bds, calc_grasp_objs 

# Import different emitters 

from training.emitters._optimizing_emitter import OptimizingEmitter 

import training.emitters._optimizing_emitter as opt_emitter 

from training.emitters._improvement_emitter import ImprovementEmitter 

import training.emitters._improvement_emitter as impr_emitter 

from training.emitters._random_direction_emitter import RandomDirectionEmitter 

import training.emitters._random_direction_emitter as rand_dir_emitter 

from training.emitters._gradient_improvement_emitter import GradientImprovementEmitter 

import training.emitters._gradient_improvement_emitter as grad_impr_emitter 

from training.emitters._gaussian_emitter import GaussianEmitter 

from training.emitters._iso_line_emitter import IsoLineEmitter 

from training.emitters._gradient_emitter import GradientEmitter 

import training.emitters._gradient_emitter as grad_emitter 

from training.opt._cma_es import WeightRules 

 

QD_EMITTERS_SUPPORTED = ["map_elites", "map_elites_line", "cma_me_imp",  

                        "cma_me_rd", "cma_me_opt"] 

DQD_EMITTERS_SUPPORTED = ["og_map_elites_iso", "og_map_elites_line",  

                          "omg_mega_iso", "omg_mega_line",  

                          "omg_mega",  "cma_mega", "cma_mega_adam"] 

ALL_EMITTERS_SUPPORTED = QD_EMITTERS_SUPPORTED + DQD_EMITTERS_SUPPORTED 

 

ENVS = ['rastrigin-distorted', 'rastrigin', 'arm'] 

 

def get_env_info(args): 

  env_name = args.env_name 

  sols_dim = args.sols_dim 

  min_bound = 0 

  max_bound = 1 
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  archive_bounds = jnp.array([[min_bound, max_bound] for _ in range(2)]) 

  bounds = None 

  # Environment selection 

  if env_name == "rastrigin-distorted": 

    max_bound = args.sols_dim / 2 * 5.12 

    min_bound = -max_bound 

    archive_bounds = jnp.array([[min_bound, max_bound] for _ in range(2)]) 

    # bounds = [[-5.12, 5.12] for _ in range(args.sols_dim)] 

    bounds = None 

    return archive_bounds, bounds, calc_rastrigin, calc_bds_rastrigin 

  elif env_name == "rastrigin": 

    max_bound = 1 

    min_bound = 0 

    archive_bounds = jnp.array([[min_bound, max_bound] for _ in range(2)]) 

    # bounds = [[min_bound, max_bound] for _ in range(args.sols_dim)] 

    # bounds = None 

    return archive_bounds, bounds, calc_rastrigin, calc_bds_rastrigin_simple 

  elif env_name == "arm": 

    link_lengths = jnp.ones(sols_dim) 

    max_bound = sols_dim 

    min_bound = -max_bound 

    archive_bounds = jnp.array([[min_bound, max_bound] for _ in range(2)]) 

    # bounds = [[min_bound, max_bound] for _ in range(args.sols_dim)] 

    # bounds = None 

    calc_grasp_objs_p = functools.partial(calc_grasp_objs, 

                                          link_lengths=link_lengths, 

                                          calc_jacobians=True 

                                          ) 

    calc_grasp_bds_p = functools.partial(calc_grasp_bds, 

                                          link_lengths=link_lengths, 

                                          calc_jacobians=True 

                                          ) 

    return archive_bounds, bounds, calc_grasp_objs_p, calc_grasp_bds_p 

  return archive_bounds, bounds, None, None 

 

def get_emitter(args, qd_params, key): 

 

  archive_bounds, bounds, _, _= get_env_info(args) 

 

  emitter_name = args.emitter 

  sigma0 = args.sigma0 

  sigma1 = args.sigma1 

  sigma_g = args.sigma_g 

  batch_size = args.batch_size 

  selection_rule = args.selection_rule 

  restart_rule = args.restart_rule 

  weight_rule = args.weight_rule 
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  sols_dim = args.sols_dim 

  norm_grad = args.norm_grad 

  stepsize = args.stepsize 

  initial_sol = jnp.zeros(sols_dim) 

  behavior_dim = len(archive_bounds) 

  use_dqd = 0 

  if emitter_name == "cma_me_opt": 

    sigma0 = sigma0 if sigma0 else 0.5 

    emitter, static_settings = OptimizingEmitter.create( 

                  x0=initial_sol, 

                  sigma0=sigma0, 

                  selection_rule=opt_emitter.SelectionRules.FILTER  

                                      if selection_rule is None else selection_rule, 

                  restart_rule=opt_emitter.RestartRules.NO_IMPROVEMENT  

                                      if restart_rule is None else restart_rule, 

                  weight_rule=WeightRules.TRUNCATION  

                                      if weight_rule is None else weight_rule, 

                  bounds=None, 

                  batch_size=batch_size) 

  elif emitter_name == "cma_me_imp": 

    sigma0 = sigma0 if sigma0 else 0.5 

    emitter, static_settings = ImprovementEmitter.create( 

                  x0=initial_sol, 

                  sigma0=sigma0, 

                  selection_rule=impr_emitter.SelectionRules.FILTER  

                                      if selection_rule is None else selection_rule, 

                  restart_rule=impr_emitter.RestartRules.NO_IMPROVEMENT  

                                      if restart_rule is None else restart_rule, 

                  weight_rule=WeightRules.TRUNCATION  

                                      if weight_rule is None else weight_rule, 

                  bounds=None, 

                  batch_size=batch_size) 

  elif emitter_name == "cma_me_rd": 

    sigma0=sigma0 if sigma0 else 0.5 

    emitter, static_settings = RandomDirectionEmitter.create( 

                  x0=initial_sol, 

                  sigma0=sigma0, 

                  archive_bounds=archive_bounds, 

                  key=key, 

                  selection_rule=rand_dir_emitter.SelectionRules.FILTER 

                                      if selection_rule is None else selection_rule, 

                  restart_rule=rand_dir_emitter.RestartRules.NO_IMPROVEMENT  

                                      if restart_rule is None else restart_rule, 

                  weight_rule=WeightRules.TRUNCATION  

                                      if weight_rule is None else weight_rule, 

                  bounds=None, 

                  batch_size=batch_size) 
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  elif emitter_name == "cma_mega": 

    sigma_g=sigma_g if sigma_g else 10.0 

    stepsize=stepsize if stepsize else 1.0 

    emitter, static_settings = GradientImprovementEmitter.create( 

                  x0=initial_sol, 

                  behavior_dim = behavior_dim, 

                  sigma_g=sigma_g, 

                  stepsize=stepsize, 

                  selection_rule=grad_impr_emitter.SelectionRules.MU 

                                      if selection_rule is None else selection_rule, 

                  restart_rule=grad_impr_emitter.RestartRules.NO_IMPROVEMENT  

                                      if restart_rule is None else restart_rule, 

                  weight_rule=WeightRules.TRUNCATION  

                                      if weight_rule is None else weight_rule, 

                  gradient_optimizer = grad_impr_emitter.GradientOptimizers.GRADIENT_ASCENT, 

                  normalize_gradients=norm_grad if norm_grad else 1, 

                  bounds=None, 

                  batch_size=batch_size) 

    use_dqd = 1 

  elif emitter_name == "cma_mega_adam": 

    sigma_g=sigma_g if sigma_g else 10.0 

    stepsize=stepsize if stepsize else 0.002 

    emitter, static_settings = GradientImprovementEmitter.create( 

                  x0=initial_sol, 

                  behavior_dim = behavior_dim, 

                  sigma_g=sigma_g, 

                  stepsize=stepsize, 

                  selection_rule=grad_impr_emitter.SelectionRules.MU 

                                      if selection_rule is None else selection_rule, 

                  restart_rule=grad_impr_emitter.RestartRules.NO_IMPROVEMENT  

                                      if restart_rule is None else restart_rule, 

                  weight_rule=WeightRules.TRUNCATION  

                                      if weight_rule is None else weight_rule, 

                  gradient_optimizer = grad_impr_emitter.GradientOptimizers.ADAM, 

                  normalize_gradients=norm_grad if norm_grad else 1, 

                  bounds=None, 

                  batch_size=batch_size) 

    use_dqd = 1 

  elif emitter_name == "map_elites": 

    sigma0=sigma0 if sigma0 else 0.5 

    emitter, static_settings = GaussianEmitter.create( 

                  x0=initial_sol, 

                  sigma0=sigma0, 

                  batch_size=batch_size, 

                  bounds=bounds) 

  elif emitter_name == "map_elites_line": 

    sigma0=sigma0 if sigma0 else 0.5 
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    sigma1=sigma1 if sigma1 else 0.5 

    emitter, static_settings = IsoLineEmitter.create( 

                  x0=initial_sol, 

                  iso_sigma=sigma0, 

                  line_sigma=sigma1, 

                  batch_size=batch_size, 

                  bounds=bounds) 

  elif emitter_name == "og_map_elites_iso": 

    sigma0=sigma0 if sigma0 else 0.5 

    sigma_g=sigma_g if sigma_g else 0.5 

    sigma1=sigma1 if sigma1 else 0.5 

    emitter, static_settings = GradientEmitter.create( 

                  x0=initial_sol, 

                  sigma0=sigma0, 

                  sigma_g=sigma_g, 

                  line_sigma=sigma1, 

                  behavior_dim = behavior_dim,  

                  measure_gradients = 0, 

                  normalize_gradients=norm_grad if norm_grad else 1, 

                  operator_type = grad_emitter.OperatorTypes.ISOTROPIC, 

                  bounds=bounds, 

                  batch_size=batch_size) 

    use_dqd = 1 

  elif emitter_name == "og_map_elites_line": 

    sigma0=sigma0 if sigma0 else 0.5 

    sigma_g=sigma_g if sigma_g else 0.5 

    sigma1=sigma1 if sigma1 else 0.5 

    emitter, static_settings = GradientEmitter.create( 

                  x0=initial_sol, 

                  sigma0=sigma0, 

                  sigma_g=sigma_g, 

                  line_sigma=sigma1, 

                  behavior_dim = behavior_dim,  

                  measure_gradients = 0, 

                  normalize_gradients=norm_grad if norm_grad else 1, 

                  operator_type = grad_emitter.OperatorTypes.ISO_LINE_DD, 

                  bounds=bounds, 

                  batch_size=batch_size) 

    use_dqd = 1 

  elif emitter_name == "omg_mega": 

    sigma0=0 

    sigma_g=sigma_g if sigma_g else 0.5 

    sigma1=0 

    emitter, static_settings = GradientEmitter.create( 

                  x0=initial_sol, 

                  sigma0=sigma0, 

                  sigma_g=sigma_g, 



A-86 

 

 

 

                  line_sigma=sigma1, 

                  behavior_dim = behavior_dim,  

                  measure_gradients = 0, 

                  normalize_gradients=norm_grad if norm_grad else 1, 

                  operator_type = grad_emitter.OperatorTypes.ISOTROPIC, 

                  bounds=bounds, 

                  batch_size=batch_size) 

    use_dqd = 1 

  elif emitter_name == "omg_mega_iso": 

    sigma0=sigma0 if sigma0 else 0.5 

    sigma_g=sigma_g if sigma_g else 0.5 

    sigma1=sigma1 if sigma1 else 0.5 

    emitter, static_settings = GradientEmitter.create( 

                  x0=initial_sol, 

                  sigma0=sigma0, 

                  sigma_g=sigma_g, 

                  line_sigma=sigma1, 

                  behavior_dim = behavior_dim,  

                  measure_gradients = 0, 

                  normalize_gradients=norm_grad if norm_grad else 1, 

                  operator_type = grad_emitter.OperatorTypes.ISOTROPIC, 

                  bounds=bounds, 

                  batch_size=batch_size) 

    use_dqd = 1 

  elif emitter_name == "omg_mega_line": 

    sigma0=sigma0 if sigma0 else 0.5 

    sigma_g=sigma_g if sigma_g else 0.5 

    sigma1=sigma1 if sigma1 else 0.5 

    emitter, static_settings = GradientEmitter.create( 

                  x0=initial_sol, 

                  sigma0=sigma0, 

                  sigma_g=sigma_g, 

                  line_sigma=sigma1, 

                  behavior_dim = behavior_dim,  

                  measure_gradients = 0, 

                  normalize_gradients=norm_grad if norm_grad else 1, 

                  operator_type = grad_emitter.OperatorTypes.ISO_LINE_DD, 

                  bounds=bounds, 

                  batch_size=batch_size) 

    use_dqd = 1 

  qd_params['emitter'] = emitter_name 

  qd_params['use_dqd'] = use_dqd 

  if sigma0 is not None: 

    qd_params['s0'] = sigma0 

  if sigma1 is not None: 

    qd_params['s1'] = sigma1 

  if sigma_g is not None: 
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    qd_params['sg'] = sigma_g 

  if stepsize is not None: 

    qd_params['stepsize'] = stepsize 

  return emitter, static_settings, qd_params 

 

def get_num_epochs_and_evaluations(num_epochs, num_evaluations,  

                      population_size, use_dqd=0): 

  if num_epochs is not None: 

    num_evaluations = (num_epochs * population_size  

                * (2 if use_dqd >= 1 else 1)) 

    return num_epochs, num_evaluations 

  elif num_evaluations is not None: 

    num_epochs = ((num_evaluations // population_size)  

                        // (2 if use_dqd >= 1 else 1) + 1) 

    return num_epochs, num_evaluations 

  else: 

    raise ValueError("One of the 2 following variables should " 

          +"be defined: num_epochs or num_evaluations") 

 
 

Code Snippet A.23:  Module for instantiating QD and DQD emitters (run_qd_utils.py) 

A.8.2 Main QD and DQD Module for executing QD and DQD Algorithms 

""" 

Quality-Diversity Evolution Strategy training. 

""" 

# TO USE MULTIPLE CPUs  

# import os 

# os.environ['XLA_FLAGS'] = '--xla_force_host_platform_device_count=16' 

 

import functools 

import time 

from typing import Any, Callable, Dict, Optional 

 

import jax 

from jax import lax 

import jax.numpy as jnp 

from absl import logging 

 

from qdax.qd_utils import grid_archive 

from qdax.stats.metrics import Metrics 

from qdax.stats.saving_loading_utils import make_results_folder 

from qdax.stats.timings import Timings 

from qdax.stats.training_state_simple import SimpleTrainingState 

from qdax.tasks import BraxTask 

from qdax.training.configuration import Configuration 
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# print('Jax devices: ',jax.devices()) 

 

Array = Any 

 

def _update_metrics(log_frequency: int, 

                    metrics: Metrics, 

                    epoch: int, 

                    repertoire: grid_archive.Repertoire): 

 

  index = jnp.ceil(epoch / log_frequency).astype(int) 

  scores = metrics.scores.at[index, 0].set(epoch) 

  scores = scores.at[index, 1].set(repertoire.num_indivs) 

  scores = scores.at[index, 2].set(jnp.nanmax(repertoire.fitness)) 

  scores = scores.at[index, 3].set(jnp.nansum(repertoire.fitness)) 

  archives = metrics.archives.at[index, :, :].set(repertoire.fitness) 

  return Metrics(scores=scores, archives=archives) 

 

def _eval_and_add_simple(local_devices_to_use, 

                  objective_fn, 

                  bds_fn, 

                  population_size, 

                  add_to_archive_fn, 

                  training_state: SimpleTrainingState, 

                  params, 

                  key): 

 

  # params = training_state.state 

 

  pparams_device = jnp.reshape(params, [local_devices_to_use, -1] + list(params.shape[1:])) 

 

  # run evaluations - evaluate params 

  eval_start_t = time.time() 

  prun_obj_eval = jax.pmap(objective_fn, in_axes=(0,)) 

  prun_bd_eval = jax.pmap(bds_fn, in_axes=(0,)) 

  objs, _ = prun_obj_eval(pparams_device) 

  bds, _ = prun_bd_eval(pparams_device) 

  logging.debug("Time Evaluation: %s ", time.time() - eval_start_t) 

 

  dead = jnp.zeros(population_size) 

  objs_flat = jnp.reshape(objs, (population_size, -1)).ravel() 

  bds_flat = jnp.reshape(bds,(-1,bds.shape[-1])) 

 

  # Update archive 

  update_archive_start_t = time.time() 

  repertoire = add_to_archive_fn(repertoire = training_state.repertoire, 

                                 pop_p = params, 

                                 bds = bds_flat, 
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                                 eval_scores = objs_flat, 

                                 dead = dead) 

  logging.debug("Time took for Adding: %s ", time.time() - update_archive_start_t) 

 

  return repertoire, params 

 

def _eval_and_add(local_devices_to_use, 

                  objective_fn, 

                  bds_fn, 

                  population_size, 

                  emitter_static_settings, 

                  emitter, 

                  training_state: SimpleTrainingState, 

                  params, 

                  key): 

  key, key_tell= jax.random.split(key, 2) 

  # params = training_state.state 

 

  pparams_device = jnp.reshape(params, [local_devices_to_use, -1] + list(params.shape[1:])) 

 

  # run evaluations - evaluate params 

  eval_start_t = time.time() 

  prun_obj_eval = jax.pmap(objective_fn, in_axes=(0,)) 

  prun_bd_eval = jax.pmap(bds_fn, in_axes=(0,)) 

  objs, _ = prun_obj_eval(pparams_device) 

  bds, _ = prun_bd_eval(pparams_device) 

  logging.debug("Time Evaluation: %s ", time.time() - eval_start_t) 

 

  dead = jnp.zeros(population_size) 

  objs_flat = jnp.reshape(objs, (population_size, -1)).ravel() 

  bds_flat = jnp.reshape(bds,(-1,bds.shape[-1])) 

 

  # Update archive 

  update_archive_start_t = time.time() 

  emitter, repertoire = emitter.tell(emitter_static_settings, emitter, params, objs_flat, 

bds_flat, dead,  

                                       training_state.repertoire, key_tell) 

  logging.debug("Time took for Adding: %s ", time.time() - update_archive_start_t) 

 

  return emitter, repertoire, params 

 

def _eval_and_add_grad(local_devices_to_use, 

                  objective_fn, 

                  bds_fn, 

                  population_size, 

                  emitter_static_settings, 

                  emitter, 
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                  training_state: SimpleTrainingState, 

                  params, 

                  key): 

  key, key_tell= jax.random.split(key, 2) 

  # params = training_state.state 

 

  pparams_device = jnp.reshape(params, [local_devices_to_use, -1] + list(params.shape[1:])) 

 

  # run evaluations - evaluate params 

  eval_start_t = time.time() 

  prun_obj_eval = jax.pmap(objective_fn, in_axes=(0,)) 

  prun_bd_eval = jax.pmap(bds_fn, in_axes=(0,)) 

  objs, jac_objs = prun_obj_eval(pparams_device) 

  bds, jac_bds = prun_bd_eval(pparams_device) 

  # Prepare combined objective and behavioral jacobian matrix 

  jac_objs = jnp.reshape(jac_objs,[-1] + list(jac_objs.shape[2:])) 

  jac_bds = jnp.reshape(jac_bds,[-1] + list(jac_bds.shape[2:])) 

  jac_objs = jnp.expand_dims(jac_objs, axis=1) 

  jacobian = jnp.concatenate((jac_objs, jac_bds), axis=1) 

  logging.debug("Time Evaluation: %s ", time.time() - eval_start_t) 

 

  dead = jnp.zeros(population_size) 

  objs_flat = jnp.reshape(objs, (population_size, -1)).ravel() 

  bds_flat = jnp.reshape(bds,(-1,bds.shape[-1])) 

 

  # Update archive 

  update_archive_start_t = time.time() 

  emitter, repertoire = emitter.tell_jacobian(emitter_static_settings, emitter, params, 

objs_flat, bds_flat, dead,  

                                       training_state.repertoire, key_tell, jacobian) 

  logging.debug("Time took for Adding: %s ", time.time() - update_archive_start_t) 

 

  return emitter, repertoire, params 

 

def _init_phase(population_size, 

                sols_dim, 

                eval_and_add_fn, 

                update_metrics_fn, 

                training_state: SimpleTrainingState): 

 

  logging.info(" Initialisation with random parameters") 

  init_start_t = time.time() 

  key, key_params, key_eval = jax.random.split(training_state.key, 3) 

  params = jax.random.normal(key_params,shape=(population_size,sols_dim)) 

  logging.debug("Time Random Init: %s ", time.time() - init_start_t) 

 

  repertoire, state = eval_and_add_fn(training_state, params, key_eval) 
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  metrics = update_metrics_fn(training_state.metrics, 0, repertoire) 

 

  return SimpleTrainingState(key=key, repertoire=repertoire, metrics=metrics, state=state) 

 

def _es_one_epoch_grad(eval_and_add_fn, 

                  eval_and_add_grad_fn, 

                  update_metrics_fn, 

                  emitter_static_settings, 

                  emitter, 

                  epoch: int, 

                  training_state: SimpleTrainingState 

                  ): 

  epoch_start_t = time.time() 

 

  # generate keys for emmitter and evaluations 

  key_1, key_2, key_emitter_1, key_es_eval_1, key_emitter_2, key_es_eval_2 = 

jax.random.split(training_state.key, 6) 

 

  # EMITTER: SELECTION AND MUTATION - GRADIENT ESTIMATION # 

  sel_mut_start_t = time.time() 

  emitter, params =  emitter.ask_grad_estimate(emitter_static_settings, emitter, 

training_state.repertoire, key_emitter_1) 

  logging.debug("Time Selection and Mutation: %s ", time.time() - sel_mut_start_t) 

 

  # EVALUATION # 

  emitter, repertoire, state = eval_and_add_grad_fn(emitter, training_state, params, 

key_es_eval_1) 

 

  training_state = training_state.replace(key = key_1, repertoire = repertoire, state = state) 

 

  # EMITTER: SELECTION AND MUTATION # 

  sel_mut_start_t = time.time() 

  emitter, params =  emitter.ask(emitter_static_settings, emitter, training_state.repertoire, 

key_emitter_2) 

  logging.debug("Time Selection and Mutation: %s ", time.time() - sel_mut_start_t) 

 

  # EVALUATION # 

  emitter, repertoire, state = eval_and_add_fn(emitter, training_state, params, key_es_eval_2) 

  logging.debug("ES Epoch Time: %s",time.time()-epoch_start_t) 

 

  # UPDATE METRICS # 

  #metrics = jax.lax.cond((epoch+1)%log_frequency == 0 , update_metrics, lambda x:x[0], 

(training_state.metrics, epoch//log_frequency+1, repertoire)) 

  logging.debug("ES Start metrics:") 

  metrics = update_metrics_fn(training_state.metrics, epoch, repertoire) 

  logging.debug("ES Metrics Time: %s",time.time()-epoch_start_t) 
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  return SimpleTrainingState(key = key_2, repertoire = repertoire, metrics = metrics, state = 

state), emitter 

 

def _es_one_epoch(eval_and_add_fn, 

                  update_metrics_fn, 

                  emitter_static_settings, 

                  emitter, 

                  epoch: int, 

                  training_state: SimpleTrainingState 

                  ): 

  epoch_start_t = time.time() 

 

  # generate keys for emmitter and evaluations 

  key, key_emitter, key_es_eval = jax.random.split(training_state.key, 3) 

 

  # EMITTER: SELECTION AND MUTATION # 

  sel_mut_start_t = time.time() 

  emitter, params =  emitter.ask(emitter_static_settings, emitter, training_state.repertoire, 

key_emitter) 

  logging.debug("Time Selection and Mutation: %s ", time.time() - sel_mut_start_t) 

 

  # EVALUATION # 

  emitter, repertoire, state = eval_and_add_fn(emitter, training_state, params, key_es_eval) 

  logging.debug("ES Epoch Time: %s",time.time()-epoch_start_t) 

 

  # UPDATE METRICS # 

  #metrics = jax.lax.cond((epoch+1)%log_frequency == 0 , update_metrics, lambda x:x[0], 

(training_state.metrics, epoch//log_frequency+1, repertoire)) 

  logging.debug("ES Start metrics:") 

  metrics = update_metrics_fn(training_state.metrics, epoch, repertoire) 

  logging.debug("ES Metrics Time: %s",time.time()-epoch_start_t) 

 

  return SimpleTrainingState(key = key, repertoire = repertoire, metrics = metrics, state = 

state), emitter 

 

def train( 

    configuration: Configuration, 

    emitter, 

    emitter_static_settings, 

    objective_fn, 

    bds_fn, 

    experiment_name: str, 

    result_path: str, 

    key = None, 

    progress_fn: Optional[Callable[[int, Dict[str, Any]], None]] = None, 

    save_results=True 
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): 

  # Extract QD Parameters  

  qd_params = configuration.qd_params 

  use_dqd = int(str(qd_params['use_dqd'])) 

  sols_dim = int(qd_params["sols_dim"]) 

  # Extract Execution Condifurations 

  num_epochs = configuration.num_epochs 

  episode_length = configuration.episode_length 

  action_repeat = configuration.action_repeat 

  max_devices_per_host = configuration.max_devices_per_host 

  population_size = configuration.population_size 

  seed = configuration.seed 

  log_frequency = configuration.log_frequency 

 

  timings = Timings(log_frequency = log_frequency, num_epochs = num_epochs) 

  start_t = time.time() 

  framework_t = time.time() 

  # INIT FRAMEWORK # 

  # Initialization of env parameters and devices # 

  num_envs = population_size   

  process_count = jax.process_count() 

  process_id = jax.process_index() 

  local_device_count = jax.local_device_count() 

  local_devices_to_use = local_device_count 

 

  if max_devices_per_host: 

    local_devices_to_use = min(local_devices_to_use, max_devices_per_host) 

  logging.info( 

      'Device count: %d, process count: %d (id %d), local device count: %d, ' 

      'devices to be used count: %d', 

      jax.device_count(), process_count, process_id, local_device_count, 

      local_devices_to_use) 

  logging.info("Local devices to use: %d ", local_devices_to_use) 

  logging.info("Batch size on 1 device for env: %d", num_envs // local_devices_to_use // 

process_count) 

 

  # Initialize keys for random processes - need to handle for jax. 

  if key is None: 

    key = jax.random.PRNGKey(seed) 

  key, key_params, key_env = jax.random.split(key, 3) #key for main training state, policy 

model init and train environment 

 

  timings.init_framework = time.time() - framework_t 

 

  # Core training environment 

  env_t = time.time() # NOTE: this timing doesnt work anymore at the moment - environment is 

initialized outside the train_fn 
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  # Calculate initial/first states, one per local acceleration device 

  key_envs = jax.random.split(key_env, local_devices_to_use) 

  # The inital states are just one dimensional ndarrays  

  first_state = jax.vmap(lambda x: 

jax.random.normal(x,shape=(population_size,sols_dim)),0,0)(key_envs) 

 

  logging.info("Initialize env time: %s ", time.time() - env_t) 

  timings.init_env = time.time() - env_t 

 

  # Initialize model/policy # 

  policy_t = time.time() 

 

  # Initialize archive 

  min_bd = configuration.min_bd 

  max_bd = configuration.max_bd 

  grid_shape = configuration.grid_shape 

  repertoire = grid_archive.Repertoire.create(jax.random.normal(key_params,shape=(sols_dim,)), 

min=min_bd, max=max_bd, grid_shape=grid_shape) 

   

  # ============= METRICS UPDATE FN ============ # 

  update_metrics_fn = functools.partial( 

    _update_metrics, 

    log_frequency, 

  ) 

 

  # ============ ENVIRONMENT EVAL FUNCTIONS AND ARCHIVE ADDITION ============# 

  eval_and_add_simple_fn = jax.jit(functools.partial( 

    _eval_and_add_simple, 

    local_devices_to_use, 

    objective_fn, 

    bds_fn, 

    population_size, 

    jax.jit(repertoire.add_to_archive), 

  )) 

  # ============ ENVIRONMENT EVAL FUNCTIONS AND ARCHIVE ADDITION ============# 

  # Based on the parameter use_dqd choose whether to use gradients to extend solutions 

 

  # Simple evaluation and addition of solutions to the archive 

  eval_and_add_fn = jax.jit(functools.partial( 

    _eval_and_add, 

    local_devices_to_use, 

    objective_fn, 

    bds_fn, 

    population_size, 

    emitter_static_settings 

  )) 
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  if use_dqd > 0: 

    # Evaluation and addition of solutions to the archive using gradients 

    eval_and_add_grad_fn = jax.jit(functools.partial( 

      _eval_and_add_grad, 

      local_devices_to_use, 

      objective_fn, 

      bds_fn, 

      population_size, 

      emitter_static_settings 

    )) 

 

  # ========== INIT REPERTOIRE BY RANDOM POLICIES =============== # 

  init_phase_fn = functools.partial( 

    _init_phase, 

    population_size, 

    sols_dim, 

    eval_and_add_simple_fn, 

    update_metrics_fn, 

  ) 

 

  # ========== ONE GENERATION/EPOCH OF ALGORITHM FN ===============# 

  es_one_epoch_fn = None 

  if use_dqd == 0: 

    es_one_epoch_fn = jax.jit(functools.partial( 

      _es_one_epoch, 

      eval_and_add_fn, 

      update_metrics_fn, 

      emitter_static_settings, 

    )) 

  else: 

    es_one_epoch_fn = jax.jit(functools.partial( 

      _es_one_epoch_grad, 

      eval_and_add_fn, 

      eval_and_add_grad_fn, 

      update_metrics_fn, 

      emitter_static_settings, 

    )) 

 

  key_debug = jax.random.PRNGKey(seed + 777) 

  timings.init_policies = time.time() - policy_t 

 

  # ================= MAIN QD ALGORITHM LOOP =================== # 

  logging.info("######### START QD ALGORITHM ############") 

  qd_t = time.time() 

 

  # INIT TRAINING STATE # 

  training_state = SimpleTrainingState( 
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    key=key, 

    repertoire = repertoire, 

    metrics = Metrics.create(log_frequency =  

        log_frequency, num_epochs = num_epochs,  

        grid_shape = repertoire.grid_shape), 

    state = first_state 

  ) 

  # INIT REPERTOIRE # 

  training_state = init_phase_fn(training_state) 

  timings.init_QD = time.time() - qd_t 

 

  logging.info('Starting Main QD Loop') 

   

  for i in range (1, num_epochs+1): 

    epoch_t = time.time() 

    # print('EPOCH {}'.format(i)) 

    training_state, emitter = es_one_epoch_fn(emitter, i, training_state) 

    # log timings 

    epoch_duration = time.time() - epoch_t  

    logging.debug("epoch loop Time: %s ", epoch_duration) 

    epoch_runtime = time.time() - start_t 

    # Average epoch time in seconds 

    timings.avg_epoch = ((i-1) * timings.avg_epoch + (epoch_duration)) / float(i) 

    use_dqd_weight = 1 

    if use_dqd > 0: 

      use_dqd_weight = 2 

    # Average number of evaluations per second 

    # @TO-BE-INVESTIGATED in DQD, do we consider two evaluations per normal evaluation or 

twice? 

    # Because we have the variation of the normal algorithm and the variation with the 

gradients 

    # So far, we do consider it as two evaluations per single iteration (i.e. when batch size 

is 1) 

    timings.avg_eval_per_sec = ((i-1) * timings.avg_eval_per_sec + (use_dqd_weight * 

population_size)/epoch_duration ) / float(i) 

    # Find the index of the record based on the current iteration/epoch and the 

    # frequency of keeping records/logging 

    index = jnp.ceil(i / log_frequency).astype(int) 

    timings.epoch_runtime = timings.epoch_runtime.at[index, 0].set(epoch_runtime) 

    #print("Index: ",index, epoch_runtime) 

 

  timings.full_training = time.time() - start_t 

  logging.info(timings) 

  #training_state.repertoire.fitness.block_until_ready() 

  logging.debug("Total main loop Time: %s ", time.time() - start_t) 

  logging.info("Total main loop Time: %s ", time.time() - start_t) 

  logging.info("Repertoire size: %d ", training_state.repertoire.num_indivs) 
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  logging.info("Scores [epoch, num_indivs, best fitness, QD score]:\n %s ", 

training_state.metrics.scores) 

 

  # ===== SAVE RESULTS AND CONFIGS ==== # 

  if save_results: 

    res_dir = make_results_folder(result_path, experiment_name, configuration) 

    logging.info("Saving results in %s ", res_dir) 

    configuration.save_to_json(folder=res_dir) 

    timings.save(folder=res_dir) 

    training_state.save(folder=res_dir) 

    training_state.metrics.save(folder=res_dir) 

 

  if(progress_fn): 

    metrics = dict( 

          **dict({ 

             'train/generation': num_epochs+1, 

             'repertoire/repertoire_size': training_state.repertoire.num_indivs, 

          })) 

    progress_fn(metrics, training_state.repertoire) 

   

  return training_state 

 

 

Code Snippet A.24:  Main Module for running the QD and DQD Algorithms on GPUs (qd_loop_simple.py) 

 

A.8.3 Module for scheduling the execution of QD and DQD Algorithms  

import argparse 

import os 

from absl import logging,flags 

from run_qd_args_parsers import add_args_for_qd_run, check_validity_args 

 

QD_EMITTERS_SUPPORTED = ["map_elites", "map_elites_line", "cma_me_imp",  

                        "cma_me_rd", "cma_me_opt"] 

DQD_EMITTERS_SUPPORTED = ["og_map_elites_iso", "og_map_elites_line",  

                          "omg_mega_iso", "omg_mega_line","omg_mega", 

                          "cma_mega", "cma_mega_adam"] 

ALL_EMITTERS_SUPPORTED = QD_EMITTERS_SUPPORTED + DQD_EMITTERS_SUPPORTED 

 

ENV_SUPPORTED = ['rastrigin-distorted', 'rastrigin', 'arm'] 

 

# from jax.config import config 

# config.update("jax_enable_x64", True) 

# import sys 
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# jax.numpy.set_printoptions(threshold=sys.maxsize) 

args = None 

 

def process_args(): 

    parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) 

    add_args_for_qd_run(parser, ALL_EMITTERS_SUPPORTED, env_supported=ENV_SUPPORTED) 

    parsed_arguments = parser.parse_args() 

    check_validity_args(parser, parsed_arguments) 

    return parsed_arguments 

 

# Set the environmental variables for Hardware and 

#  Jax before importing Jax Library 

if __name__ == "__main__": 

  try: 

    args = process_args() 

    # Change environmental variables based on 

    # whether to use only cpu or not 

    if not args.use_cpu != 0: 

      os.environ["CUDA_VISIBLE_DEVICES"] = args.devices 

      # Just uncomment the line below if you want to enforce it 

      # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count) 

    else: 

      os.environ["JAX_PLATFORM_NAME"] = "cpu" 

      # Just uncomment the line below if you want to enforce it 

      # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count) 

 

  except Exception as e: 

    logging.fatal(e, exc_info=True) 

 

# Then import ll the rest necessary libraries 

import jax 

from jax.lib import xla_bridge 

from training.configuration import Configuration 

from training import qd_loop_simple as qd_simple  

from run_qd_utils import get_num_epochs_and_evaluations, get_emitter, get_env_info 

import datetime 

import random 

import sys 

 

def main(parsed_arguments): 

  if parsed_arguments.log_folder: 

    if not os.path.exists(parsed_arguments.log_folder): 

      raise FileNotFoundError("Folder {} not found.".format(parsed_arguments.log_folder)) 

    else: 

      datetime_now = datetime.datetime.now().strftime("%Y-%m-%d_T_%H-%M-%S") 
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      logging.get_absl_handler().use_absl_log_file('log_{0}.log'.format(datetime_now),  

                          parsed_arguments.log_folder) 

      flags.FLAGS.mark_as_parsed() 

  results_saving_folder = parsed_arguments.directory 

  # logging.get_absl_handler().setFormatter(None) 

 

  if not os.path.exists(results_saving_folder): 

    raise FileNotFoundError(f"Folder {results_saving_folder} not found.") 

 

  levels = {'fatal': logging.FATAL, 

            'error': logging.ERROR, 

            'warning': logging.WARNING, 

            'info': logging.INFO, 

            'debug': logging.DEBUG} 

 

  logging.set_verbosity(levels[parsed_arguments.log_level]) 

  population_size = parsed_arguments.batch_size 

  local_device_count = jax.local_device_count() 

  local_devices_to_use = local_device_count 

  process_count = jax.process_count() 

 

  logging.info(f"Hardware Details:\n" 

               f"\t Platform: {xla_bridge.get_backend().platform}\n" 

               f"\t Local_device_count: {local_device_count}\n" 

               f"\t process_count: {process_count}\n") 

 

  seed = ( random.randrange(sys.maxsize) if parsed_arguments.seed  

                              is None else parsed_arguments.seed  

            ) 

  key = jax.random.PRNGKey(seed) 

  key, key_emitter_init = jax.random.split(key, 2) 

 

  qd_params = dict() 

  emitter, static_settings, qd_params = get_emitter(parsed_arguments, qd_params, 

key_emitter_init) 

 

  num_epochs, num_evaluations = 

get_num_epochs_and_evaluations(num_epochs=parsed_arguments.num_epochs, 

                                                               num_evaluations=parsed_argument

s.num_evaluations, 

                                                               population_size=parsed_argument

s.batch_size, 

                                                               use_dqd=qd_params['use_dqd']) 

   

  qd_params['device'] = xla_bridge.get_backend().platform # 'cpu' if args.use_cpu == 1 else 

'gpu' 

  qd_params['sols_dim'] = parsed_arguments.sols_dim 
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  logging.info(f"Options:\n" 

               f"\t Log_level:{parsed_arguments.log_level}\n" 

               f"\t Seed: {seed}\n" 

               f"\t Batch_size:{parsed_arguments.batch_size}\n" 

               f"\t Num_epochs:{num_epochs}\n" 

               f"\t Num_evaluations:{num_evaluations}\n" 

               f"\t Episode_length:{parsed_arguments.episode_length}\n" 

               f"\t Log_frequency:{parsed_arguments.log_frequency}\n") 

 

  archive_bounds, _, calc_objs, calc_bds = get_env_info(parsed_arguments) 

 

  configuration = Configuration(args.env_name, 

                                num_epochs, 

                                parsed_arguments.episode_length, 

                                action_repeat=1, 

                                population_size=parsed_arguments.batch_size, 

                                seed=seed, 

                                log_frequency=parsed_arguments.log_frequency, 

                                qd_params=qd_params, 

                                min_bd=float(archive_bounds[0,0]), # 

float(args.min_max_bd[0]), 

                                max_bd=float(archive_bounds[0,1]), # 

float(args.min_max_bd[1]), 

                                grid_shape=tuple(parsed_arguments.grid_shape), 

                                max_devices_per_host=None, 

                                ) 

 

  qd_simple.train( 

    emitter=emitter, 

    emitter_static_settings = static_settings, 

    objective_fn=calc_objs, 

    bds_fn=calc_bds, 

    configuration=configuration, 

    progress_fn=None, 

    experiment_name=parsed_arguments.exp_name, 

    key=key, 

    result_path=results_saving_folder, 

    save_results=True 

  ) 

 

if __name__ == "__main__": 

  try: 

    main(args) 

  except Exception as e: 

    logging.fatal(e, exc_info=True) 
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Code Snippet A.25:  Module for scheduling the execution of QD and DQD Algorithms (run_qd_loop_simple.py) 

A.8.4 Module for providing command line input parsers for the different 

functionalities 

import os 

import argparse 

 

def add_args_for_qd_run(parser: argparse.ArgumentParser, emitters_supported, 

env_supported=['rastrigin']): 

    parser.add_argument('--seed', default=None, type=int) 

    # Options for algorithm execution space 

    parser.add_argument('--episode_length', default=100, type=int) 

    parser.add_argument('--num_evaluations', default=None, type=int) 

    parser.add_argument('--batch_size', default=2048, type=int) 

    parser.add_argument('--num_epochs', default=None, type=int) 

    parser.add_argument('--sols_dim', default=10, type=int) 

    # Emitter Options 

    parser.add_argument('--emitter', 

                        default=emitters_supported[0], 

                        choices=emitters_supported) 

    # Covariance Matrix Adaptation Options - CMA (Used only if the emitter is of CMA type) 

    parser.add_argument('--selection_rule', default=None, type=int) 

    parser.add_argument('--restart_rule', default=None, type=int) 

    parser.add_argument('--weight_rule', default=None, type=int) 

    parser.add_argument('--stepsize', default=None, type=float) 

    parser.add_argument('--norm_grad', default=None, type=int) 

    # Algorithm Grid shape of archive 

    parser.add_argument('--grid_shape', nargs='+', type=int, required=True) 

    # Standard deviations for algorithm 

    parser.add_argument('--sigma0', default=None, type=float) 

    parser.add_argument('--sigma1', default=None, type=float) 

    parser.add_argument('--sigma_g', default=None, type=float, 

                        help='Standard Deviation for the noise of gradients.') 

    # Name of the environment to use 

    parser.add_argument('--env_name', type=str, required=True,  

                        help='Name of the environment to use', choices=env_supported) 

    # Logging Options 

    parser.add_argument('--log_level', 

                        default='info', 

                        choices=['fatal', 'error', 'warning', 'info', 'debug']) 

    parser.add_argument('--log_folder', default=None, type=str) 

    parser.add_argument('--log_frequency', default=1, type=int) 

    # Other details 

    parser.add_argument('--exp_name', type=str, default="qd") 

    parser.add_argument('-d', '--directory', type=str, default=os.curdir) 

    # Hardware Options  
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    parser.add_argument('--use_cpu', default=0, type=int,help='Use CPU only?') 

    parser.add_argument('--devices', default="0", type=str, 

                    help='Which GPU(s) (identified by their Device ids) to use?'+  

                                'E.g. "0,2" use device 0 and 2') 

    parser.add_argument('--device_count', default=1, type=str, 

                    help='Number of cores available to use/devices') 

    return parser 

 

def add_args_for_finding_best_params(parser: argparse.ArgumentParser): 

    parser.add_argument('-n', '--number_replications', type=int, required=True) 

    parser.add_argument('--sols_dim_list',type=int ,nargs='+',default=None) # [16, 64, 256, 

1024] 

   

    # Options for algorithm execution space 

    parser.add_argument('--episode_len_list',type=int ,nargs='+',default=None) 

    parser.add_argument('--num_evaluations', default=None, type=int) 

    parser.add_argument('--batch_size', default=2048, type=int) 

    parser.add_argument('--num_epochs', default=None, type=int) 

 

    # Covariance Matrix Adaptation Options - CMA (Used only if the emitter is of CMA type) 

    parser.add_argument('--stepsize_list', default=None, type=float) 

    parser.add_argument('--norm_grad', default=None, type=int) 

    # Algorithm Grid shape of archive 

    parser.add_argument('--grid_shape', nargs='+', type=int, required=True) 

    # Standard deviations for algorithm 

    parser.add_argument('--sigma0_list', nargs='+', default=None, type=float) 

    # Standard deviations for algorithm 

    parser.add_argument('--sigma1_list', nargs='+', default=None, type=float) 

    # parser.add_argument('--sigma1', default=0, type=int) 

    parser.add_argument('--sigma_g_list',nargs='+', default=None, type=float, 

                        help='Standard Deviation for the noise of gradients.') 

    # Name of the environment to use 

    parser.add_argument('--env_name', type=str, required=True,  

                        help='Name of the environment to use') 

                        # help='Name of the environment to use', choices=['rastrigin']) 

    # Logging Options 

    parser.add_argument('--log_level', 

                        default='info', 

                        choices=['fatal', 'error', 'warning', 'info', 'debug']) 

    parser.add_argument('--log_folder', default=None, type=str) 

    parser.add_argument('--log_frequency', default=1, type=int) 

    # Other details 

    parser.add_argument('--exp_name', type=str, default="qd") 

    parser.add_argument('-d', '--directory', type=str, default=os.curdir) 

    parser.add_argument('--results_f', type=str, default='scores') 

    # Hardware Options  

    parser.add_argument('--use_cpu', default=0, type=int,help='Use CPU only?') 
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    parser.add_argument('--devices', default="0", type=str, 

                    help='Which GPU(s) (identified by their Device ids) to use?'+  

                                'E.g. "0,2" use device 0 and 2') 

    parser.add_argument('--device_count', default=1, type=str, 

                    help='Number of cores available to use/devices') 

    return parser.parse_args() 

 

def add_args_for_batch_sizes_comp(parser: argparse.ArgumentParser, emitters_supported): 

    parser.add_argument('-n', '--number_replications', type=int, required=True) 

    parser.add_argument('--sols_dim_list',type=int ,nargs='+',default=None) # [16, 64, 256, 

1024] 

    parser.add_argument('--batch_size_list',type=int ,nargs='+',default=None) # [16, 64, 256, 

1024] 

   

    parser.add_argument('--emitter', 

                        default=emitters_supported[0], 

                        choices=emitters_supported) 

 

    # Options for algorithm execution space 

    parser.add_argument('--episode_len_list',type=int ,nargs='+',default=None) 

    parser.add_argument('--num_evaluations', default=None, type=int) 

    parser.add_argument('--num_epochs', default=None, type=int) 

 

    # Covariance Matrix Adaptation Options - CMA (Used only if the emitter is of CMA type) 

    parser.add_argument('--selection_rule', default=None, type=int) 

    parser.add_argument('--restart_rule', default=None, type=int) 

    parser.add_argument('--weight_rule', default=None, type=int) 

    parser.add_argument('--stepsize', default=None, type=float) 

    parser.add_argument('--norm_grad', default=None, type=int) 

    # Algorithm Grid shape of archive 

    parser.add_argument('--grid_shape', nargs='+', type=int, required=True) 

    parser.add_argument('--sigma0', default=None, type=float) 

    parser.add_argument('--sigma1', default=None, type=float) 

    parser.add_argument('--sigma_g', default=None, type=float, 

                        help='Standard Deviation for the noise of gradients.') 

    # Name of the environment to use 

    parser.add_argument('--env_name', type=str, required=True,  

                        help='Name of the environment to use') 

                        # help='Name of the environment to use', choices=['rastrigin']) 

    # Logging Options 

    parser.add_argument('--log_level', 

                        default='info', 

                        choices=['fatal', 'error', 'warning', 'info', 'debug']) 

    parser.add_argument('--log_folder', default=None, type=str) 

    parser.add_argument('--log_frequency', default=1, type=int) 

    # Other details 

    parser.add_argument('--exp_name', type=str, default="qd") 
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    parser.add_argument('-d', '--directory', type=str, default=os.curdir) 

    parser.add_argument('--results_f', type=str, default='scores') 

    # Hardware Options  

    parser.add_argument('--use_cpu', default=0, type=int,help='Use CPU only?') 

    parser.add_argument('--devices', default="0", type=str, 

                    help='Which GPU(s) (identified by their Device ids) to use?'+  

                                'E.g. "0,2" use device 0 and 2') 

    parser.add_argument('--device_count', default=1, type=str, 

                    help='Number of cores available to use/devices') 

    return parser.parse_args() 

 

def check_validity_args(parser: argparse.ArgumentParser, 

                        parsed_arguments): 

  num_epochs = parsed_arguments.num_epochs 

  num_evaluations = parsed_arguments.num_evaluations 

 

  if num_epochs is None and num_evaluations is None: 

    parser.error("One (and only one) of the following arguments should be set: --num-epochs or 

--num-evaluations") 

  elif num_epochs is not None and num_evaluations is not None: 

    parser.error("One (and only one) of the following arguments should be set: --num-epochs or 

--num-evaluations") 
 

Code Snippet A.26:  Module for provides command line input parsers for allowing the use of the library’s 

functionalities via command line (run_qd_args_parsers.py) 

 

A.8.5 Module for finding the best parameters for a QD/DQD Emitter for a specific 

problem size 

import argparse 

import os 

from absl import logging,flags 

from run_qd_args_parsers import add_args_for_finding_best_params, check_validity_args 

 

from scipy import stats 

 

# QD_EMITTERS_SUPPORTED = ["cma_me_imp", "cma_me_rd", "cma_me_opt"] 

# DQD_EMITTERS_SUPPORTED = ["cma_mega", "cma_mega_adam"] 

# ALL_EMITTERS_SUPPORTED = QD_EMITTERS_SUPPORTED + DQD_EMITTERS_SUPPORTED 

 

# from jax.config import config 

# config.update("jax_enable_x64", True) 

# import sys 

# jax.numpy.set_printoptions(threshold=sys.maxsize) 

args = None 
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def process_args(): 

    parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) 

    add_args_for_finding_best_params(parser) 

    parsed_arguments = parser.parse_args() 

    check_validity_args(parser, parsed_arguments) 

    return parsed_arguments 

 

# Set the environmental variables for Hardware and 

#  Jax before importing Jax Library 

if __name__ == "__main__": 

  try: 

    args = process_args() 

    # Change environmental variables based on 

    # whether to use only cpu or not 

    if not args.use_cpu != 0: 

      os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false" 

      os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".5" 

      os.environ["CUDA_VISIBLE_DEVICES"] = args.devices 

      # Just uncomment the line below if you want to enforce it 

      # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count) 

    else: 

      os.environ["JAX_PLATFORM_NAME"] = "cpu" 

      # Just uncomment the line below if you want to enforce it 

      # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count) 

 

  except Exception as e: 

    logging.fatal(e, exc_info=True) 

 

# Then import ll the rest necessary libraries 

import jax 

import jax.numpy as jnp 

import numpy as np 

from jax.lib import xla_bridge 

from qdax.training.configuration import Configuration 

from qdax.training import qd_loop_simple as qd_simple  

from run_qd_utils import get_num_epochs_and_evaluations, get_emitter, get_env_info 

import datetime 

import random 

import sys 

import pandas as pd 

import json 

import csv 

 

def get_score_entries(scores, with_mad=True): 
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  score_entries = list() 

   

  for emitter, emitter_dict in scores.items(): 

    for sol_dim, sol_dim_dict in emitter_dict.items(): 

      scores = list() 

      local_scores = list() 

      local_params = list() 

      local_indicators = list() 

      for p, score_stats in sol_dim_dict.items(): 

        if with_mad: 

          local_scores.append(float(score_stats['mean'])) 

          plus_minus_symbol  ='\u00b1' 

          local_indicators.append(str(score_stats['mean']) + " " + plus_minus_symbol  

                            + " " + str(score_stats['mad'])) 

          local_params.append(p) 

        else: 

          local_scores.append(float(score_stats['mean'])) 

          local_indicators = local_scores 

          local_params.append(p) 

 

      max_idx = np.argmax(np.array(local_scores)) 

      score_entry = [emitter, sol_dim, local_params[max_idx], local_indicators[max_idx]] 

      score_entries.append(score_entry) 

   

  return score_entries 

 

def save_as_csv(score_entries, filename): 

  with open(filename, "w", newline="") as f: 

      writer = csv.writer(f) 

      writer.writerows(score_entries) 

      # pd.DataFrame(np.array(score_entries)).to_csv(filename) 

 

def save_scores_json(scores_dict, filename): 

  with open(filename, 'w') as fp: 

      json.dump(scores_dict, fp, sort_keys=True, indent=4) 

 

def run_qd(emitter_args, results_saving_folder): 

  # Random seed 

  seed = random.randrange(sys.maxsize) 

  key = jax.random.PRNGKey(seed) 

  key, key_emitter_init = jax.random.split(key, 2) 

  qd_params = dict() 

  # Define arguments of emitter and environemnt 

  emitter, static_settings, qd_params = get_emitter(emitter_args, qd_params, key_emitter_init) 

  num_epochs, num_evaluations = 

get_num_epochs_and_evaluations(num_epochs=emitter_args.num_epochs, 
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                                                              num_evaluations=emitter_args.num

_evaluations, 

                                                              population_size=emitter_args.bat

ch_size, 

                                                              use_dqd=qd_params['use_dqd']) 

   

  logging.info(f"Emitter Details:\n" 

               f"\t Emitter: {emitter_args.emitter}\n" 

               f"\t sigma0: {emitter_args.sigma0}\n" 

               f"\t sigma1: {emitter_args.sigma1}\n" 

               f"\t sigma_g: {emitter_args.sigma_g}\n"  

               f"\t stepsize: {emitter_args.stepsize}\n") 

 

  qd_params['device'] = xla_bridge.get_backend().platform # 'cpu' if args.use_cpu == 1 else 

'gpu' 

  qd_params['sols_dim'] = emitter_args.sols_dim 

  archive_bounds, _, calc_objs, calc_bds = get_env_info(emitter_args) 

  configuration = Configuration(args.env_name, 

                                num_epochs, 

                                0, 

                                action_repeat=1, 

                                population_size=emitter_args.batch_size, 

                                seed=seed, 

                                log_frequency=emitter_args.log_frequency, 

                                qd_params=qd_params, 

                                min_bd=float(archive_bounds[0,0]), # 

float(args.min_max_bd[0]), 

                                max_bd=float(archive_bounds[0,1]), # 

float(args.min_max_bd[1]), 

                                grid_shape=tuple(emitter_args.grid_shape), 

                                max_devices_per_host=None, 

                                ) 

   

  training_state = qd_simple.train( 

        emitter=emitter, 

        emitter_static_settings = static_settings, 

        objective_fn=calc_objs, 

        bds_fn=calc_bds, 

        configuration=configuration, 

        progress_fn=None, 

        experiment_name=emitter_args.exp_name, 

        key=key, 

        result_path=results_saving_folder, 

        save_results=True 

      ) 

  return training_state 
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def save_scores(results_f, scores_dict): 

  score_entries = get_score_entries(scores_dict) 

  current_time = datetime.datetime.now().strftime("%Y-%m-%d_T_%H-%M-%S") 

  csv_filename =  '{0}_{1}_best_scores.csv'.format(results_f, str(current_time)) 

  save_as_csv(score_entries, csv_filename) 

  json_filename =  '{0}_{1}_scores.json'.format(results_f, str(current_time)) 

  save_scores_json(scores_dict, json_filename) 

 

def main(parsed_arguments): 

  if parsed_arguments.log_folder: 

    if not os.path.exists(parsed_arguments.log_folder): 

      raise FileNotFoundError("Folder {} not found.".format(parsed_arguments.log_folder)) 

    else: 

      datetime_now = datetime.datetime.now().strftime("%Y-%m-%d_T_%H-%M-%S") 

      logging.get_absl_handler().use_absl_log_file('log_{0}.log'.format(datetime_now),  

                          parsed_arguments.log_folder) 

      flags.FLAGS.mark_as_parsed() 

  results_saving_folder = parsed_arguments.directory 

  # logging.get_absl_handler().setFormatter(None) 

 

  if not os.path.exists(results_saving_folder): 

    raise FileNotFoundError(f"Folder {results_saving_folder} not found.") 

 

  levels = {'fatal': logging.FATAL, 

            'error': logging.ERROR, 

            'warning': logging.WARNING, 

            'info': logging.INFO, 

            'debug': logging.DEBUG} 

 

  logging.set_verbosity(levels[parsed_arguments.log_level]) 

  population_size = parsed_arguments.batch_size 

  local_device_count = jax.local_device_count() 

  local_devices_to_use = local_device_count 

  process_count = jax.process_count() 

 

  logging.info(f"Hardware Details:\n" 

               f"\t Platform: {xla_bridge.get_backend().platform}\n" 

               f"\t Local_device_count: {local_device_count}\n" 

               f"\t process_count: {process_count}\n") 

 

  sols_dim_list = parsed_arguments.sols_dim_list 

  sols_dim_list = sols_dim_list if sols_dim_list else [1024] 

  sigma0_list =  parsed_arguments.sigma0_list 

  sigma0_list = sigma0_list if sigma0_list else [0.005, 0.01, 0.02, 0.03, 0.04, 0.05,  

                                                0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 

                                                 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

                                                  0.9, 1, 2,3,4, 5, 7, 10, 15, 20] 
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  sigma1_list = parsed_arguments.sigma1_list 

  sigma1_list = sigma1_list if sigma1_list else [0.01, 0.05, 0.1, 0.2, 0.5, 1] 

  sigma_g_list = parsed_arguments.sigma_g_list 

  sigma_g_list = sigma_g_list if sigma_g_list else [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 5, 10] 

  stepsize_list = parsed_arguments.stepsize_list 

  stepsize_list = stepsize_list if stepsize_list else [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 5, 

10] 

  number_replications = parsed_arguments.number_replications 

 

  scores_dict = dict() 

 

  # for emitter_name in ["cma_mega", "cma_mega_adam"]: 

  #   scores_dict[emitter_name] = dict() 

  #   emitter_scores = scores_dict[emitter_name] 

  #   for sols_dim in sols_dim_list: 

  #     emitter_scores[sols_dim] = dict() 

  #     sol_dim_scores = emitter_scores[sols_dim] 

  #     for sigma_g in sigma_g_list: 

  #       for stepsize in stepsize_list: 

  #         args_dict = vars(parsed_arguments) 

  #         emitter_args = argparse.Namespace(**args_dict) 

  #         emitter_args.emitter = emitter_name 

  #         emitter_args.sigma0 = None 

  #         emitter_args.sigma1 = None 

  #         emitter_args.sigma_g = sigma_g 

  #         emitter_args.selection_rule = None 

  #         emitter_args.restart_rule = None 

  #         emitter_args.weight_rule = None 

  #         emitter_args.sols_dim = sols_dim 

  #         emitter_args.stepsize = stepsize 

  #         scores = list() 

 

  #         for _ in range(number_replications): 

  #           training_state = run_qd(emitter_args, results_saving_folder) 

  #           epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:] 

  #           scores.append(qd_score) 

             

  #         scores = np.array(scores) 

  #         score = np.median(scores) 

  #         # Median Absolute Deviation 

  #         mad = stats.median_absolute_deviation(scores, axis=None) 

  #         key = 'sigma_g={0}-stepsize={1}'.format(sigma_g,stepsize) 

  #         sol_dim_scores[key] = dict() 

  #         sol_dim_scores[key]['mean'] = str(score) 

  #         sol_dim_scores[key]['mad'] = str(mad) 

 

  # results_f = parsed_arguments.results_f 
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  # save_scores(results_f, scores_dict) 

 

  for emitter_name in ["cma_me_imp", "cma_me_rd", "cma_me_opt"]: # "map_elites",  

    scores_dict[emitter_name] = dict() 

    emitter_scores = scores_dict[emitter_name] 

    for sols_dim in sols_dim_list: 

      emitter_scores[sols_dim] = dict() 

      sol_dim_scores = emitter_scores[sols_dim] 

      for sigma0 in sigma0_list: 

          args_dict = vars(args) 

          emitter_args = argparse.Namespace(**args_dict) 

          emitter_args.emitter = emitter_name 

          emitter_args.sigma0 = sigma0 

          emitter_args.sigma1 = None 

          emitter_args.sigma_g = None 

          emitter_args.selection_rule = None 

          emitter_args.restart_rule = None 

          emitter_args.weight_rule = None 

          emitter_args.sols_dim = sols_dim 

          emitter_args.stepsize = None 

          scores = list() 

 

          for _ in range(number_replications): 

            training_state = run_qd(emitter_args, results_saving_folder) 

            epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:] 

            scores.append(qd_score) 

 

          scores = np.array(scores) 

          score = np.median(scores) 

          # Median Absolute Deviation 

          mad = stats.median_absolute_deviation(scores, axis=None) 

          key = 'sigma0={0}'.format(sigma0) 

          sol_dim_scores[key] = dict() 

          sol_dim_scores[key]['mean'] = str(score) 

          sol_dim_scores[key]['mad'] = str(mad) 

 

  results_f = parsed_arguments.results_f 

  save_scores(results_f, scores_dict) 

 

  return  

 

  for emitter_name in ["map_elites_iso"]: 

    scores_dict[emitter_name] = dict() 

    emitter_scores = scores_dict[emitter_name] 

    for sols_dim in sols_dim_list: 

      emitter_scores[sols_dim] = dict() 

      sol_dim_scores = emitter_scores[sols_dim] 
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      for sigma0 in sigma0_list: 

        for sigma1 in sigma1_list: 

          args_dict = vars(args) 

          emitter_args = argparse.Namespace(**args_dict) 

          emitter_args.emitter = emitter_name 

          emitter_args.sigma0 = sigma0 

          emitter_args.sigma1 = sigma1 

          emitter_args.sigma_g = None 

          emitter_args.selection_rule = None 

          emitter_args.restart_rule = None 

          emitter_args.weight_rule = None 

          emitter_args.sols_dim = sols_dim 

          emitter_args.stepsize = None 

          scores = list() 

 

          for _ in range(number_replications): 

            training_state = run_qd(emitter_args, results_saving_folder) 

            epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:] 

            scores.append(qd_score) 

 

          scores = np.array(scores) 

          score = np.median(scores) 

          # Median Absolute Deviation 

          mad = stats.median_absolute_deviation(scores, axis=None) 

          key = 'sigma0={0},sigma1={1}'.format(sigma0, sigma1) 

          sol_dim_scores[key] = dict() 

          sol_dim_scores[key]['mean'] = str(score) 

          sol_dim_scores[key]['mad'] = str(mad) 

 

  results_f = parsed_arguments.results_f 

  save_scores(results_f, scores_dict) 

 

  for emitter_name in ["og_map_elites_line", "omg_mega_line"]: 

    scores_dict[emitter_name] = dict() 

    emitter_scores = scores_dict[emitter_name] 

    for sols_dim in sols_dim_list: 

      emitter_scores[sols_dim] = dict() 

      sol_dim_scores = emitter_scores[sols_dim] 

      for sigma0 in sigma0_list: 

        for sigma1 in sigma1_list: 

          for sigma_g in sigma_g_list: 

            args_dict = vars(args) 

            emitter_args = argparse.Namespace(**args_dict) 

            emitter_args.emitter = emitter_name 

            emitter_args.sigma0 = sigma0 

            emitter_args.sigma1 = sigma1 

            emitter_args.sigma_g = sigma_g 
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            emitter_args.selection_rule = None 

            emitter_args.restart_rule = None 

            emitter_args.weight_rule = None 

            emitter_args.sols_dim = sols_dim 

            emitter_args.stepsize = None 

            scores = list() 

 

            for _ in range(number_replications): 

              training_state = run_qd(emitter_args, results_saving_folder) 

              epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:] 

              scores.append(qd_score) 

 

            scores = np.array(scores) 

            score = np.median(scores) 

            # Median Absolute Deviation 

            mad = stats.median_absolute_deviation(scores, axis=None) 

            key = 'sigma0={0},sigma1={1},sigma_g={2}'.format(sigma0, sigma1, sigma_g) 

            sol_dim_scores[key] = dict() 

            sol_dim_scores[key]['mean'] = str(score) 

            sol_dim_scores[key]['mad'] = str(mad) 

 

  results_f = parsed_arguments.results_f 

  save_scores(results_f, scores_dict) 

 

  # for emitter_name in ["og_map_elites", "omg_mega"]: 

  #   scores_dict[emitter_name] = dict() 

  #   emitter_scores = scores_dict[emitter_name] 

  #   for sols_dim in sols_dim_list: 

  #     emitter_scores[sols_dim] = dict() 

  #     sol_dim_scores = emitter_scores[sols_dim] 

  #     for sigma0 in sigma0_list: 

  #       for sigma_g in sigma_g_list: 

  #         args_dict = vars(args) 

  #         emitter_args = argparse.Namespace(**args_dict) 

  #         emitter_args.emitter = emitter_name 

  #         emitter_args.sigma0 = sigma0 

  #         emitter_args.sigma1 = None 

  #         emitter_args.sigma_g = sigma_g 

  #         emitter_args.selection_rule = None 

  #         emitter_args.restart_rule = None 

  #         emitter_args.weight_rule = None 

  #         emitter_args.sols_dim = sols_dim 

  #         emitter_args.stepsize = None 

  #         scores = list() 

 

  #         for _ in range(number_replications): 

  #           training_state = run_qd(emitter_args, results_saving_folder) 
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  #           epoch, archive_size, best_fit, qd_score = training_state.metrics.scores[-1,:] 

  #           scores.append(qd_score) 

 

  #         scores = np.array(scores) 

  #         score = np.median(scores) 

  #         # Median Absolute Deviation 

  #         mad = stats.median_absolute_deviation(scores, axis=None) 

  #         key = 'sigma0={0},sigma_g={1}'.format(sigma0, sigma_g) 

  #         sol_dim_scores[key] = dict() 

  #         sol_dim_scores[key]['mean'] = str(score) 

  #         sol_dim_scores[key]['mad'] = str(mad) 

 

  # results_f = parsed_arguments.results_f 

  # save_scores(results_f, scores_dict) 

 

if __name__ == "__main__": 

  try: 

    main(args) 

  except Exception as e: 

    logging.fatal(e, exc_info=True) 

 
 

Code Snippet A.27:  Module used for identifying the parameters of QD and DQD algorithms that give the best QD 

Scores (find_best_params.py) 

A.8.6 Module to execute a QD or DQD Emitter for different combinations of batch 

sizes and problem sizes 

import argparse 

import os 

from absl import logging,flags 

from run_qd_args_parsers import add_args_for_batch_sizes_comp, check_validity_args 

 

from scipy import stats 

 

QD_EMITTERS_SUPPORTED = ["map_elites", "map_elites_iso", "cma_me_imp",  

                        "cma_me_rd", "cma_me_opt"] 

DQD_EMITTERS_SUPPORTED = ["og_map_elites", "og_map_elites_line",  

                          "omg_mega", "cma_mega", "cma_mega_adam", "omg_mega_line"] 

ALL_EMITTERS_SUPPORTED = QD_EMITTERS_SUPPORTED + DQD_EMITTERS_SUPPORTED 

 

# from jax.config import config 

# config.update("jax_enable_x64", True) 

# import sys 

# jax.numpy.set_printoptions(threshold=sys.maxsize) 
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args = None 

 

def process_args(): 

    parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) 

    add_args_for_batch_sizes_comp(parser, ALL_EMITTERS_SUPPORTED) 

    parsed_arguments = parser.parse_args() 

    check_validity_args(parser, parsed_arguments) 

    return parsed_arguments 

 

# Set the environmental variables for Hardware and 

#  Jax before importing Jax Library 

if __name__ == "__main__": 

  try: 

    args = process_args() 

    # Change environmental variables based on 

    # whether to use only cpu or not 

    if not args.use_cpu != 0: 

      os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false" 

      os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".5" 

      os.environ["CUDA_VISIBLE_DEVICES"] = args.devices 

      # Just uncomment the line below if you want to enforce it 

      # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count) 

    else: 

      os.environ["JAX_PLATFORM_NAME"] = "cpu" 

      # Just uncomment the line below if you want to enforce it 

      # os.environ["XLA_FLAGS"] = "--

xla_force_host_platform_device_count="+str(args.device_count) 

 

  except Exception as e: 

    logging.fatal(e, exc_info=True) 

 

# Then import ll the rest necessary libraries 

import jax 

import jax.numpy as jnp 

import numpy as np 

from jax.lib import xla_bridge 

from qdax.training.configuration import Configuration 

from qdax.training import qd_loop_simple as qd_simple  

from run_qd_utils import get_num_epochs_and_evaluations, get_emitter, get_env_info 

import datetime 

import random 

import sys 
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def run_qd(emitter_args, results_saving_folder, local_devices_to_use, process_count): 

  # Random seed 

  seed = random.randrange(sys.maxsize) 

  key = jax.random.PRNGKey(seed) 

  key, key_emitter_init = jax.random.split(key, 2) 

  qd_params = dict() 

  # Define arguments of emitter and environemnt 

  emitter, static_settings, qd_params = get_emitter(emitter_args, qd_params, key_emitter_init) 

  num_epochs, num_evaluations = 

get_num_epochs_and_evaluations(num_epochs=emitter_args.num_epochs, 

                                                              num_evaluations=emitter_args.num

_evaluations, 

                                                              population_size=emitter_args.bat

ch_size, 

                                                              use_dqd=qd_params['use_dqd']) 

   

  logging.info(f"Emitter Details:\n" 

               f"\t Emitter: {emitter_args.emitter}\n" 

               f"\t sigma0: {emitter_args.sigma0}\n" 

               f"\t sigma1: {emitter_args.sigma1}\n" 

               f"\t sigma_g: {emitter_args.sigma_g}\n"  

               f"\t stepsize: {emitter_args.stepsize}\n") 

 

  qd_params['device'] = xla_bridge.get_backend().platform # 'cpu' if args.use_cpu == 1 else 

'gpu' 

  qd_params['sols_dim'] = emitter_args.sols_dim 

  archive_bounds, _, calc_objs, calc_bds = get_env_info(emitter_args) 

  configuration = Configuration(args.env_name, 

                                num_epochs, 

                                0, 

                                action_repeat=1, 

                                population_size=emitter_args.batch_size, 

                                seed=seed, 

                                log_frequency=emitter_args.log_frequency, 

                                qd_params=qd_params, 

                                min_bd=float(archive_bounds[0,0]), # 

float(args.min_max_bd[0]), 

                                max_bd=float(archive_bounds[0,1]), # 

float(args.min_max_bd[1]), 

                                grid_shape=tuple(emitter_args.grid_shape), 

                                max_devices_per_host=None, 

                                ) 

   

  training_state = qd_simple.train( 

        emitter=emitter, 

        emitter_static_settings = static_settings, 

        objective_fn=calc_objs, 
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        bds_fn=calc_bds, 

        configuration=configuration, 

        progress_fn=None, 

        experiment_name=emitter_args.exp_name, 

        key=key, 

        result_path=results_saving_folder, 

        save_results=True 

      ) 

  return training_state 

 

def main(parsed_arguments): 

  if parsed_arguments.log_folder: 

    if not os.path.exists(parsed_arguments.log_folder): 

      raise FileNotFoundError("Folder {} not found.".format(parsed_arguments.log_folder)) 

    else: 

      datetime_now = datetime.datetime.now().strftime("%Y-%m-%d_T_%H-%M-%S") 

      logging.get_absl_handler().use_absl_log_file('log_{0}.log'.format(datetime_now),  

                          parsed_arguments.log_folder) 

      flags.FLAGS.mark_as_parsed() 

  results_saving_folder = parsed_arguments.directory 

  # logging.get_absl_handler().setFormatter(None) 

 

  if not os.path.exists(results_saving_folder): 

    raise FileNotFoundError(f"Folder {results_saving_folder} not found.") 

 

  levels = {'fatal': logging.FATAL, 

            'error': logging.ERROR, 

            'warning': logging.WARNING, 

            'info': logging.INFO, 

            'debug': logging.DEBUG} 

 

  logging.set_verbosity(levels[parsed_arguments.log_level]) 

  local_device_count = jax.local_device_count() 

  local_devices_to_use = local_device_count 

  process_count = jax.process_count() 

 

  logging.info(f"Hardware Details:\n" 

               f"\t Platform: {xla_bridge.get_backend().platform}\n" 

               f"\t Local_device_count: {local_device_count}\n" 

               f"\t process_count: {process_count}\n") 

 

  sols_dim_list = parsed_arguments.sols_dim_list 

  sols_dim_list = sols_dim_list if sols_dim_list else [128, 256, 512, 1024, 2048] 

  batch_size_list = parsed_arguments.batch_size_list 

  batch_size_list = batch_size_list if batch_size_list else [512, 2048, 8192, 16384] 
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  number_replications = parsed_arguments.number_replications 

 

  for sols_dim in sols_dim_list: 

    for batch_size in batch_size_list: 

        args_dict = vars(args) 

        emitter_args = argparse.Namespace(**args_dict) 

        emitter_args.sols_dim = sols_dim 

        emitter_args.batch_size = batch_size 

        scores = list() 

        for _ in range(number_replications): 

          run_qd(emitter_args, results_saving_folder, local_devices_to_use, process_count) 

 

if __name__ == "__main__": 

  try: 

    main(args) 

  except Exception as e: 

    logging.fatal(e, exc_info=True) 

 
 

Code Snippet A.28:  Module for executing different QD and DQD Algorithms with different combinations of batch 

sizes and problem sizes (run_batch_and_problem_sizes.py) 

 

A.8.7 Module for the Training State of a QD or DQD Algorithm 

import os 

import pickle 

 

import flax.struct 

 

from brax.training.types import PRNGKey 

from qd_utils import grid_archive 

from stats.metrics import Metrics 

import stats.saving_loading_utils as saving_loading_utils 

import jax.numpy as jnp 

 

''' 

This class represents a simple training state as opposed to the actual TrainingState class. 

Simplicity occurs at the attributes of this class. Currently, the only difference is the 

state attribute which instead of envs.State it's just a one dimensional ndarray 

''' 

 

@flax.struct.dataclass 

class SimpleTrainingState: 

  """Contains training state for the learner.""" 

  key: PRNGKey 

  repertoire: grid_archive.Repertoire 
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  metrics: Metrics 

  state: jnp.ndarray 

 

  def save(self, 

           folder: str = os.curdir, 

           name_file: str = "training_state.pkl", 

           ) -> None: 

    saving_loading_utils.save_dataclass( 

      dataclass_object=self, 

      folder=folder, 

      name_file=name_file, 

    ) 

 
 

Code Snippet A.29: Module for storing the progress of a QD or DQD Algorithm (training_state_simple.py) 

 

A.8.8 Module for storing the general configurations of a QD or DQD Algorithm 

import json 

import os 

from typing import Dict, Any, Optional, Tuple 

 

import dataclasses 

from dataclasses import dataclass 

 

@dataclass 

class Configuration: 

  env_name: str 

  num_epochs: int 

  episode_length: int 

  action_repeat: int 

  population_size: int 

  seed: int 

  log_frequency: int 

  qd_params: Dict[str, Any] 

  min_bd: float  # Assume  each BD dimension has same bounds 

  max_bd: float 

  grid_shape: tuple 

  max_devices_per_host: Optional[int] = None 

 

  def save_to_json(self, 

                   folder: str = os.curdir, 

                   name_file: str = "configuration.json", 

                   ): 
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    path_file = os.path.join(folder, name_file) 

    with open(path_file, "w") as json_file: 

      json.dump(dataclasses.asdict(self), 

                json_file, 

                indent=1, 

                ) 

 

  @staticmethod 

  def get_evaluations_num(self): 

    if self.qd_params.get('use_dqd') >= 1: 

      return self.num_epochs*self.population_size*2 

    else: 

      return self.num_epochs*self.population_size 

 

  @classmethod 

  def load_from_json(cls, 

                     path_file: str 

                     ) -> 'Configuration': 

    with open(path_file, "r") as json_file: 

      configuration_dictionary = json.load(json_file) 

 

    return cls(**configuration_dictionary) 

 

  def get_results_folder(self, experiment_name): 

    current_results_dict = dataclasses.asdict(self) 

    current_results_dict.pop("seed") 

    current_results_dict.pop("log_frequency") 

    current_results_dict.pop("max_devices_per_host") 

    current_results_dict.pop("min_bd") 

    current_results_dict.pop("max_bd") 

    current_results_dict.pop("action_repeat") 

 

    return 

f"{experiment_name}{self.fix_name_folder(self.get_all_variables_str_from_dict(current_results_

dict))}" 

 

  @staticmethod 

  def get_all_variables_str_from_dict(dictionary): 

    all_variables_str = "" 

 

    for variable_str, value in dictionary.items(): 

      # print("Variable str: ",variable_str, "value: ", value) 

      if isinstance(value, int) or isinstance(value, float) or isinstance(value, str): 

        all_variables_str = all_variables_str + f"_{variable_str}-{value}" 

      elif isinstance(value, dict): 

        all_variables_str += Configuration.get_all_variables_str_from_dict(value) 
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      elif isinstance(value, tuple): 

        all_variables_str = all_variables_str + f"_{variable_str}-{'-'.join(map(str, value))}" 

      else: 

        print(f"WARNING: Unexpected type encountered when computing results folder name, for 

variable {variable_str}") 

 

    return Configuration.fix_name_folder(all_variables_str) 

 

  @staticmethod 

  def fix_name_folder(name_folder): 

    return name_folder\ 

      .strip()\ 

      .lower()\ 

      .replace(' ', '')\ 

      .replace('.', '-')\ 

      .replace('=', '-') 

 
 

Code Snippet A.30:  Module for storing the general QD or DQD configurations of a single run (configurations.py) 

 

A.8.9 Module for storing metrics for QD or DQD Execution 

import os 

from typing import Any 

 

import flax.struct 

import numpy as np 

from dataclasses import dataclass 

from jax import numpy as jnp 

 

from stats import saving_loading_utils 

 

Array = Any 

 

@dataclass 

class MetricsData: 

  archives: np.ndarray 

  scores: np.ndarray 

 

  def save(self, 

           folder: str = os.curdir, 

           name_file: str = "metrics.pkl", 

           ): 

    saving_loading_utils.save_dataclass( 
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      dataclass_object=self, 

      folder=folder, 

      name_file=name_file, 

    ) 

 

  @classmethod 

  def from_metrics(cls, 

                   metrics: 'Metrics' 

                   ) -> 'MetricsData': 

    return cls( 

      archives=np.asarray(metrics.archives), 

      scores=np.asarray(metrics.scores) 

    ) 

 

@flax.struct.dataclass 

class Metrics: 

  archives: Array 

  scores: Array 

 

  @classmethod 

  def create(cls, num_epochs, log_frequency, grid_shape): 

    log_size = jnp.ceil(num_epochs / log_frequency).astype(int) + 1 

    archives = jnp.zeros(tuple(jnp.append(jnp.array([log_size]), grid_shape))) 

    scores = jnp.zeros([log_size, 4])  # epoch, archive size, best fit, QD score 

    return Metrics(archives=archives, scores=scores) 

 

  def save(self, 

           folder: str = os.curdir, 

           name_file: str = "metrics.pkl", 

           ): 

    saving_loading_utils.save_dataclass( 

      dataclass_object=self, 

      folder=folder, 

      name_file=name_file, 

    ) 

 
 

Code Snippet A.31:  Module for storing the metrics of a QD or DQD execution (metrics.py) 

 

A.8.10 Utilities module for saving and loading a QD’s or DQD’s execution data 

import datetime 

import os 

import os.path as osp 
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import pickle 

import uuid 

from typing import Any 

 

from training.configuration import Configuration 

 

def save_dataclass( 

    dataclass_object, 

    folder: str, 

    name_file: str, 

) -> None: 

  path_save_file = os.path.join(folder, name_file) 

  with open(path_save_file, "wb") as file_to_save: 

    pickle.dump(dataclass_object, file_to_save) 

 

def load_dataclass( 

    path_file_to_load: str, 

) -> Any: 

  with open(path_file_to_load, "rb") as file_to_load: 

    return pickle.load(file_to_load) 

 

# Saving metrics and timings 

def make_results_folder(result_path, 

                        experiment_name, 

                        configuration: Configuration): 

 

  path_folder_replication = osp.join( 

    result_path, 

    configuration.get_results_folder(experiment_name), 

    f"{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}_{uuid.uuid4()}", 

  ) 

 

  os.makedirs(path_folder_replication) 

 

  return path_folder_replication 

 
 

Code Snippet A.32: Utilities module for saving and loading a QD’s or DQD’s execution data 

(saving_loading_utils.py) 
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Appendix B - Algorithms Parameters 

B.1.1 MAP-Elites (Isotropic Gaussian) 

• Rastrigin function with simple encoding 

o Sigma_0 = 0.01 

• Arm Repertoire 

o Sigma_0 = 0.05 

• Rastrigin function with distorted behavior space 

o Sigma_0 = 1 

B.1.2 MAP-Elites (Iso+lineDD) 

• Rastrigin function with simple encoding 

o Sigma_0 (iso sigma) = 0.01 

o Sigma_1 (line sigma)= 0.2 

• Arm Repertoire 

o Sigma_0 (iso sigma) = 0.01 

o Sigma_1 (line sigma)= 0.5 

• Rastrigin function with distorted behavior space 

o Sigma_0 (iso sigma) = 0.5 

o Sigma_1 (line sigma)= 0.5 

B.1.3 CMA-ME (Improvement) 

• Rastrigin function with simple encoding 

o Sigma_0 = 0.05 

• Arm Repertoire 

o Sigma_0 = 0.02 

• Rastrigin function with distorted behavior space 

o Sigma_0 = 2 

For all the cases above we also used the following global parameters: 

• Selection Rule = FILTER 

• Restart Rule = No Improvement 
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• Weight Rule = Truncation 

• Normalize Gradients = True 

 

B.1.4 CMA-ME (Optimizing) 

• Rastrigin function with simple encoding 

o Sigma_0 = 0.05 

• Arm Repertoire 

o Sigma_0 = 0.05 

• Rastrigin function with distorted behavior space 

o Sigma_0 = 2 

For all the cases above we also used the following global parameters: 

• Selection Rule = FILTER 

• Restart Rule = No Improvement 

• Weight Rule = Truncation 

• Normalize Gradients = True 

B.1.5 CMA-ME (Random Direction) 

• Rastrigin function with simple encoding 

o Sigma_0 = 0.01 

• Arm Repertoire 

o Sigma_0 = 0.01 

• Rastrigin function with distorted behavior space 

o Sigma_0 = 2 

For all the cases above we also used the following global parameters: 

• Selection Rule = FILTER 

• Restart Rule = No Improvement 

• Weight Rule = Truncation 

• Normalize Gradients = True 
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B.1.6 OMG-MEGA (line) 

• Rastrigin function with simple encoding 

o Sigma_0 (iso sigma) = 0.01 

o Sigma_1 (line sigma) = 0.5 

o Sigma_g (gradient sigma) = 10 

• Arm Repertoire 

o Sigma_0 (iso sigma) = 0.01 

o Sigma_1 (line sigma) = 0.1 

o Sigma_g (gradient sigma) = 1 

• Rastrigin function with distorted behavior space 

o Sigma_0 (iso sigma) = 0.5 

o Sigma_1 (line sigma) = 0.5 

o Sigma_g (gradient sigma) = 10 

B.1.7 OG-MAP-Elites (line) 

• Rastrigin function with simple encoding 

o Sigma_0 (iso sigma) = 0.01 

o Sigma_1 (line sigma) = 1 

o Sigma_g (gradient sigma) = 10 

• Arm Repertoire 

o Sigma_0 (iso sigma) = 0.01 

o Sigma_1 (line sigma) = 0.2 

o Sigma_g (gradient sigma) = 5 

• Rastrigin function with distorted behavior space 

o Sigma_0 (iso sigma) = 0.5 

o Sigma_1 (line sigma) = 0.2 

o Sigma_g (gradient sigma) = 5 

B.1.8 CMA-MEGA (Gradient Ascent) 

• Rastrigin function with simple encoding 

o Sigma_g (gradient sigma) = 1 

o Stepsize = 0.01 
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• Arm Repertoire 

o Sigma_g (gradient sigma) = 5 

o Stepsize = 0.05 

• Rastrigin function with distorted behavior space 

o Sigma_g (gradient sigma) = 10 

o Stepsize = 0.5 

For all the cases above we also used the following global parameters: 

• Selection Rule = MU 

• Restart Rule = No Improvement 

• Weight Rule = Truncation 

• Normalize Gradients = True 

B.1.9 CMA-MEGA (Adam) 

• Rastrigin function with simple encoding 

o Sigma_g (gradient sigma) = 0.5 

o Stepsize = 0.1 

• Arm Repertoire 

o Sigma_g (gradient sigma) = 2 

o Stepsize = 1  

• Rastrigin function with distorted behavior space 

o Sigma_g (gradient sigma) = 10 

o Stepsize = 0.05 

For all the cases above we also used the following global parameters: 

• Selection Rule = MU 

• Restart Rule = No Improvement 

• Weight Rule = Truncation 

• Normalize Gradients = True 
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Appendix C - Results 

C.1 Heatmap of QD Scores of algorithms on different problem sizes 

and batch sizes 

All the charts below show the QD Scores (the bar on the right shows the value of the QD 

Score each color represents) of QD and DQD algorithms for different combinations of 

batch sizes and problem sizes. 

C.1.1 Rastrigin with Distorted Behavior Space 

 

Fig C.1:  Best Fitness of QD and DQD Algorithms on the Rastrigin with Distorted Behavior Space problem for 
different batch sizes and problem sizes  
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C.1.2 Arm Repertoire 

 

Fig C.2:  Best Fitness of QD and DQD Algorithms on the Arm Repertoire problem for different batch sizes and 
problem sizes  
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Fig C.3:  Coverage of QD and DQD Algorithms on the Arm Repertoire problem for different batch sizes and problem 
sizes 

 

  



C-130 

 

 

 

C.1.3 Rastrigin with simple encoding 

 

Fig C.4:  QD Scores of QD and DQD Algorithms on the Rastrigin with simple encoding problem for different batch 
sizes and problem sizes  
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Fig C.5:  Best Fitness of QD and DQD Algorithms on the Rastrigin with simple encoding problem for different batch 
sizes and problem sizes  
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Fig C.6:  Coverage  of QD and DQD Algorithms on the Rastrigin with simple encoding problem for different batch 
sizes and problem sizes  
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C.2 Batch Size Variation Charts 

Fig C.7:  Best Fitness  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 

problem size equal to 128 
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Fig C.8:  Coverage  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 128 

Fig C.9:  QD Score  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 128 
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Fig C.10:  Best Fitness  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 256 

Fig C.11: Coverage  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 

problem size equal to 256 
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Fig C.12: QD Score  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 

problem size equal to 256 

Fig C.13: Best Fitness  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 512 
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Fig C.14: Coverage  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 512 

 

 

 

 

 

 

 

 

 

 

Fig C.15: QD Score  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 512 
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Fig C.16: Best Fitness  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 1024 

Fig C.17: Coverage  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 1024 
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Fig C.18: QD Score  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 1024 

Fig C.19: Best Fitness  of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 2048 
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Fig C.20: Coverage of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 2048 

Fig C.21: QD Score of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 2048 
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C.3 Problem Size Variation Charts 

Fig C.22: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 512 
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Fig C.23: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 512 
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Fig C.24: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 512 
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Fig C.25: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 2048 
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Fig C.26: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 2048 
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Fig C.27: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 2048 
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Fig C.28: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 8192 
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Fig C.29: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 8192 
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Fig C.30: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 8192 
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Fig C.31: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 32768 
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Fig C.32: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 32768 
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Fig C.33: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 32768 

 

 

 

 

 

 

 



C-153 

 

 

 

 

Fig C.34: Best Fitness of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 131072 
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Fig C.35: Coverage of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 131072 
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Fig C.36: QD Score of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 131072 
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C.4 Runtime - Problem Size Variation Charts 

C.4.1 Arm Repertoire 

 

Fig C.37: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 512 
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Fig C.38: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 2048 

Fig C.39: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 8192 
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Fig C.40: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 16384 

 

C.4.2 Rastrigin with Distorted Behavioral Space 
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Fig C.41: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 512 

Fig C.42: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 2048 
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 Fig C.43: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 8192 

Fig C.44: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 16384 
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C.4.3 Rastrigin with simple encoding  
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 Fig C.45: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 512 

Fig C.46: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 2048 
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Fig C.47: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 8192 

Fig C.48: Runtime of QD and DQD Algorithms on all the three problems for different problem sizes and constant 
batch size equal to 16384 
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C.5 Runtime - Batch Size Variation Charts 

C.6 Arm Repertoire 

 

Fig C.49: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 128 
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Fig C.50: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 

problem size equal to 256 
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Fig C.51: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 512 
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Fig C.52: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 1024 
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Fig C.53: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 2048 
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C.6.1 Rastrigin with Distorted Behavior Space 

 

Fig C.54: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 128 
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Fig C.55: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 256 
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Fig C.56: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 512 
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Fig C.57: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 1024 
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Fig C.58: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 2048 
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C.6.2 Rastrigin with simple encoding 

 

Fig C.59: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 128 
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Fig C.60: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 256 
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Fig C.61: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 512 
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Fig C.62: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 1024 
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Fig C.63: Runtime of QD and DQD Algorithms on all the three problems for different batch sizes and constant 
problem size equal to 2048 
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The End. 

 


