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Abstract 

 

The Internet of Things (IoT) is unquestionably here to stay as technology advances rapidly. 

Today, billions of physical devices are connected to the internet worldwide and send a massive 

amount of data (sensor measurements) daily. Often, the integrity of those data is crucial in real-

time decision-making if for example, they are used in SCADA (Supervisory Control and Data 

Acquisition) components. Thus, the trust in this technology is often compromised by significant 

security and scalability issues. An excellent way to address some of those challenges and 

accelerate the adoption of IoT technology is to store those data in a blockchain.  

In the past few years, Blockchain technology has attracted the eyes of millions of people mainly 

because of cryptocurrencies. Blockchain can alleviate the concerns associated with IoT by using 

methods like cryptographic algorithms and by building a tamper-proof distributed peer-to-peer 

system with multiple benefits. 

One of the first and best Companies that came up with a blockchain-based solution for IoT is 

Helium, a startup known as the first decentralized machine network in the world. After 

collecting IoT measurements with the use of an innovative model called “Proof-of-Coverage”, 

Helium propagates the data to a consensus group to verify them and create a new block to the 

blockchain. To achieve a high rate of confirmed transactions, this consensus group employs an 

asynchronous variant of the Byzantine Fault Tolerant protocol known as "HoneyBadgerBFT." 

This thesis could help the technology community better understand the benefits of a blockchain 

in the IoT world and, most importantly, understand what an asynchronous consensus protocol 

can offer. With the help of Amazon Web Services (AWS), I conducted an experiment across 

five different regions across the world with an asynchronous BFT protocol called “Dumbo” 

which is a better version of “HoneyBadgerBFT”. 
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Chapter 1 

 

1 Introduction 

 

 

Internet of Things is one of the most significant disruptive technologies of the last years and is 

recognized as the “the third wave in the development of the Internet” [39]. IoT is capable of 

interconnecting billions of devices over the internet, varying from the smallest sensor to a car. 

There are now more than 10 billion internet-connected devices, with that number predicted to 

rise to more than 50 billion by 2025 and the volume of data generated by them will reach 80ZB 

[40].  

 

Since IoT can benefit everyone and improve everyone's lives it is rapidly infiltrating various 

fields, such as healthcare, transportation, smart homes/cities, water systems and many more. 

Every IoT device collects sensitive data, and its security is becoming more and more crucial. 

However, the existing centralized architecture of the Internet of Things exposes plenty of 

security risks and cannot be trusted. 

 

A suitable solution to this problem could be blockchain. Blockchain is also one of the most 

talked about technologies the last years after the huge success of Bitcoin. Blockchain is 

essentially a growing list of blocks that is distributed to every member of the blockchain. 

Blockchain can overcome most of the current IoT challenges and eliminate the single point of 

failure as it is decentralized, immutable and no one can alter the blocks or add fake transactions. 

Aside from security features, IoT could benefit from this decentralized architecture, as it could 

manage billions of data from IoT devices without the need for massive and expensive data 

centers. 

 

A consensus mechanism is required for blockchains to function, as it is used to generate new 

blocks and guarantee that each member of the blockchain has the same copy. The majority of 
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the blockchains use consensus protocols with synchrony since they deploy timing assumptions 

for the submission of transactions in the blockchain. These timing assumptions are proven to  

 

be dangerous because if for any reason(e.g. Denial Of Service attack) the time threshold is 

exceeded, the performance of blockchain is greatly decreased. 

 

To overcome this problem, asynchronous consensus mechanisms could be used. The reason 

why asynchronous protocols were not used as much before is because of the well-known FLP 

impossibility result which states that it is impossible to develop a deterministic algorithm for 

reaching consensus in an asynchronous network with faulty nodes. The only way to create an 

asynchronous consensus protocol is with a source of randomness. Researchers spent many years 

attempting to develop a randomized algorithm for such cases, but they only managed to develop 

impractical theories until Andrew Miller et al.[29] developed the first practical asynchronous 

consensus protocol in 2016 called “HoneyBadgerBFT”. 

 

This thesis presents an overview of blockchain integration in the Internet of Things, as well as 

the benefits and challenges that must be addressed. The ultimate purpose of this thesis is to 

demonstrate that an asynchronous consensus protocol can outperform protocols with 

synchrony. I present "HoneyBadgerBFT" and "Dumbo," and then I demonstrate the results of 

the Amazon Web Services (AWS) experiments I conducted across five different regions. 
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2.1 Centralized vs Decentralized vs Distributed Systems 

 

In a Centralized system, every user must be connected to a central server, which serves as a 

single point of contact and keeps all data and user information. Although this type of system is 

simple and affordable to set up, it has a major flaw: a single point of failure. If the server crashes, 

no one will be able to access it (availability concerns), and data may be altered or lost 

permanently. 

 

A Decentralized system, on the other hand, instead of a single central server, it has multiple 

central servers, each of which holds a copy of the data and is able to make its own decision, 

with the final answer being an aggregate of all the decisions. In this manner, in the event of a 

failure, if at least one of the servers is available, the users can be served. Although such a 

network improves overall performance, cost is higher compared to a single server. 

 

In the case of Distributed system, computation is distributed among several interconnected  

nodes located in different physical locations, while decision making can be either centralized 

or decentralized. In order for this kind of system to work a consensus mechanism must be in 

place, enabling nodes to agree on a common value. 

 

 

2.2 Byzantine fault tolerance (BFT) 

 

Achieving consensus in the presence of faulty nodes is the most crucial problem in distributed 

systems. Lamport, Shostak, and Pease formally introduced the consensus problem in such 

circumstances in 1982, as a story of Byzantine generals in the presence of unreliable 

generals(fault tolerance) trying to agree on a single attack plan via exchanging messages[6]. 

Since then BFT has become one of the most studied topics in distributed computing and 

multiple BFT-based consensus protocols have been developed. 

 

In byzantine generals problem when an individual x makes a proposal y, an agreement between 

n generals can be achieved if: 
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I. All reliable generals agree on  the same plan/value y. 

II. The agreed upon value z is the same as the initial value the individual proposed y=z. 

 

2.3 Synchronous vs Asynchronous 

 

The consensus protocol can be considered in the case of differing assumptions of synchrony. 

 

Till today most of the consensus protocols have been working with synchrony assumptions, 

meaning they assume that there is a priori known bounded delays(in seconds or rounds) on all 

messages. The delay a synchronous algorithm has is usually proportional to the number of faults 

in the system. Furthermore, adversaries capable of launching DoS attacks can take advantage 

of these timing assumptions. 

 

On the contrary, in a fully asynchronous system there are no timing assumptions in place and 

messages might take an infinite amount of time to arrive at their destination or better arrive 

even faster than expected. Moreover, reaching consensus in such scenarios is much more 

difficult compared to scenarios with timing assumptions. The well-known FLP impossibility 

result demonstrates that developing a deterministic algorithm for reaching consensus in such a 

network with faulty nodes is impossible [26]. Given a specific input a deterministic algorithm 

will always have the same outcome. 

 

The only method to achieve consensus in a fully asynchronous system is by randomization. 

This implies that the outcome may not necessarily be consistent across executions with the 

same inputs [27]. 

 

2.4 Blockchain Technology 

 

In 2008, Satoshi Nakamoto, a mysterious figure, proposed the first decentralized blockchain 

with significant improvements to the architecture that keep the pace of block additions steady. 

A year after, the idea was successfully implemented as an essential part of the cryptocurrency 

bitcoin by the same figure(Nakamoto). Blockchain acts as the public ledger for all bitcoin 

network transactions. [1] 
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Blockchain is essentially a distributed growing sequence of records called “blocks”, connected 

to each other using cryptography. It is used to form a trustless digital ledger of transactions 

shared across an entire network of computer systems, often called ”nodes”. This method is 

called “Distributed Ledger Technology”, and each time new transactions occur, a new block 

containing those transactions must be created and added to every node in the network. In 

addition every user of the blockchain owns an address instead of personal information. 

 

2.4.1 Block 

 

As Figure 2.1 illustrates, each block in bitcoin is divided into two parts: the header, which 

summarizes the block, and the body [2]. The block body includes  a group of valid transactions 

and their counter, and the block header is made up of the following six components: 

I. Version: specifies the block validation rules that the block employs. 

II. Parent block hash: a 32-byte hash value pointing to the preceding block. 

III. Merkle tree root: a 32-byte hash value of all the transactions in the block. 

IV. Timestamp: a 4-byte field representing the universal time as seconds since January 

1970. 

V. Difficulty Target: a value or a target threshold of a valid block hash. 

VI. Nonce: a number that blockchain miners try to solve. 

 

Figure 2.1: Block Structure 
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2.4.2 Digital signature  

 

Every user except from the address he also owns a private and public key pair, and in order to 

send a transaction, it must be signed with the private key, which must be kept secret. Therefore, 

the signed value of the hashed transaction is broadcasted across all nodes of the network, and 

each node with the use of the known public key can verify that the transaction had not been 

manipulated. The elliptic curve digital signature algorithm is the most common digital signature 

algorithm used in blockchains(ECDSA).[3] 

 

 

2.4.3 Smart Contracts 

 

A smart contract is simply a set of contractual terms agreed upon from stakeholders that are 

encoded in computer programs and run automatically as soon as certain conditions are 

satisfied[38]. 

 

Smart contracts are built on top of blockchains and are saved and updated on every node of the 

blockchain to guarantee proper contract execution. This improves the conventional contracts 

where a trusted middleman who requires a fee is responsible for the execution of the 

contract[38]. 

 

Contractual terms are written in the form of "if-else-if" statements, and a contract execution is 

also recorded on the blockchain, providing the following advantages [38]: 

I. Contracts cannot be altered. 

II. Additional fees are not required. 

III. A computer executes the contract fast which saves time. 

IV. Guarantee that contract is executed correctly as soon as conditions are satisfied. 
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2.4.4 Advantages of Blockchain 

Blockchain technology has multiple security benefits, gained from the following key 

characteristics [4]: 

V. Immutability: It is impossible to change any block or transaction since it is distributed 

across every node in the network. 

VI. Decentralized: A transaction can be completed between two peers without the use of 

an intermediary, which can be time-saving and offer discretion between the peers. 

VII. Anonymity: Users hide their identity since they can produce many addresses and 

communicate with the blockchain network using just those addresses. 

 

2.4.5 Types of blockchains and Applications 

 

Until today there are three types of blockchain: public, private, and consortium[5]. 

I. Public: It is permissionless, which implies that anybody with an internet connection 

may join the network. 

II. Private: It is permissioned, and a central authority governs who is permitted to join the 

network. 

III. Consortium: It is permissioned, and more than one authority governs who is permitted 

to join the network. 

 

Each category is employed in a distinct context and has its own set of benefits and drawbacks. 

 

Blockchain may have begun as a distributed ledger technology for cryptocurrencies, but the 

more confidence it obtains, the more diversified its applications grow. It starts to integrate with 

fields except for Finance like Video Games, Entertainment, Supply chains, Security services, 

and IoT. 
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2.4.6 Consensus Algorithms 

 

A consensus is required for all nodes to agree on a block of transactions, construct a block and 

finally make sure that every node keeps the same blockchain. Because nodes in a blockchain 

system are untrustworthy, the consensus mechanism is needed to tolerate Byzantine failures[6] 

and ensure that every node in the network has the same blockchain. Day by day, blockchain 

gets integrated into many different fields, and thus several types of consensus are developed 

with different approaches and intentions. Two of the most known consensus protocols that fit 

the requirements of a permissionless blockchain(scalable) are the following: 

 

I. Proof of Work (PoW): Markus Jakobsson and Ari Juels initially developed and 

standardized the term "proof of work" in a 1999 publication[7]. Later, in 2009, the 

Bitcoin network implemented PoW as the permissionless decentralized network's 

consensus protocol. In each round of consensus, a cryptographic challenge is solved 

with the help of computer power in order to choose one node to build a new block. To 

solve the complex cryptographic puzzle, each node or “miner” must keep modifying the 

nonce value until the correct solution is obtained. PoW is extremely costly in terms of 

computing and power usage[8].  

II. Proof of Stake (PoS): Due to the exorbitant cost of PoW, PPcoin[11] introduced a 

second consensus protocol, Proof-of-stake, which determines a node's capacity to create 

a new block based on its stake in the blockchain. To put it another way, if you own 1% 

of the currency, you will be responsible for 1% of all proof-of-stake blocks[8]. 

 

Permissionless protocols manage to scale well in terms of network size, but they have very low 

throughput of validated transactions. On the other hand, a permissioned network is capable of 

achieving very high throughput of validated transactions since all nodes are verified and 

obligated to operate properly and therefore, there is no need for an expensive consensus process. 

Furthermore, the majority of permissioned blockchains use BFT-based consensus protocols 

which have a high level of communication complexity, often tolerate 30% unreliable nodes, 

and function badly under adverse conditions. Due to the high communication complexity BFT-

based consensus protocols also scale badly in terms of validator nodes but as long as the nodes 

are well validated and honest that shouldn’t be a problem. 
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Two popular examples of consensus protocols for permissioned blockchains are the following: 

 

I. Practical Byzantine Fault Tolerance (PBFT): In distributed systems, PBFT is the first 

partially synchronous Byzantine Fault Tolerant protocol with a low algorithm 

complexity and great practicality. It employs a stable leadership model, in which a 

leader is only replaced when a problem shows up. It is also partially synchronous since 

it can function in an asynchronous network like the internet while yet having time 

assumptions(synchrony), ensuring both safety and liveness. Time assumptions ensure 

that clients will ultimately receive responses to their queries (liveness). In order for the 

protocol to work, messages must be broadcasted to everyone, creating a complexity 

O(n2) for the communication[9]. 

II. Hotstuff: Hotstuff, like PBFT, is partially synchronous and is one of the most recent 

BFT protocols that provide both linearity and responsiveness. It employs a rotating 

leadership model, in which a leader is rotated after a single epoch. For the protocol to 

work, messages do not have to be broadcasted to everyone and create a complexity O(n) 

for the communication. It also manages to reach high throughput compared to other 

BFT protocols[10]. 

 

Table 2.1 illustrates a small comparison of the Consensuses. 

 

Table 2.1: Consensus comparison 

 

2.4.7 Blockchain Challenges 

 

Nobody can deny that blockchain is a brilliant technology, but as a new technology there are 

several significant issues that must be addressed before more people would trust and accept it. 

Below are some of the most important challenges: 
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I. Scalability: When a large number of transactions occur at once, blockchain becomes 

extremely sluggish. 

II. Energy Consumption: Consensuses like PoW require significant amount of energy 

usage to operate miners. 

III. Privacy: In a public blockchain, a user can maintain his anonymity, but transaction 

details and balances are publicly visible, which is a huge issue for some 

people/organizations. 

IV. Regulatory: As a new technology there aren’t any laws around it. 

 

 

2.5 Internet of Things (IoT) 

 

The Internet of Things (IoT) is essentially the collection of billions of interconnected devices 

or “things” over the internet. Sensors are built into each device, which gather data that may be 

saved and analyzed to display meaningful results, with the potential to enhance everyone's life. 

 

2.5.1 History 

 

British computer scientist Kevin Ashton officially introduced the Internet of Things term in 

1999 and even said, “The Internet of Things has the potential to change the world, just as the 

Internet did. Maybe even more so.” [13] 

 

The world’s first internet-connected refrigerator was introduced by LG Electronics in 2000, 

enabling users to complete their food shopping online. However, it was too costly for consumers 

to purchase, and so it failed. [14] After the term was referenced in many mainstream 

publications between 2003-2004, the International Telecommunication Union (ITU) in 2005 

issued the first official report and hence definition of the IoT concept as “A global infrastructure 

for the information society, enabling advanced services by interconnecting (physical and 

virtual) things based on existing and evolving interoperable information and communication 

technologies”.[16] 
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2.5.2 Present & Future of IoT 

 

Currently a centralized server/client model is mainly used in order for the Internet of things to 

work. Such architecture requires every device to be authenticated through a central server. IoT 

devices are billions and can be found anywhere from the smallest things like light bulbs to the 

biggest like cars. By 2025, according to former Cisco CEO John Chambers, there will be 500 

billion connected devices. 

 

The advantages of such a concept are numerous for both individuals and businesses. Some of 

the capabilities could be: 

I. Boost productivity in businesses by reducing human work and hence increase 

profitability. 

II. Improve quality of life by monitoring pollution and air quality in real-time. 

III. Save money by automating multiple devices. 

IV. Assist in predicting anything from a lack of stock to any other kind of behavior. 

 

 

Based on these facts the current architecture will start to fail and many challenges will start to 

rise as the number of IoT devices keep increasing and it will only be capable of supporting 

small-scale IoT networks. Despite the benefits of IoT, those challenges will manage to slow 

down the adoption in the world. Most of the challenges arise due to the centralized structure 

and the single point of failure of the architecture which causes the following concerns: 

 

I. Scalability: As the number of devices grows rapidly, the volume of communication 

required by the central servers would become unmanageable. 

II. Security: Centralized systems are known for their single point of failure that may 

bring the whole network down in case of an availability attack like a distributed 

denial-of-service attack (DDOS). Also, such systems are very vulnerable to data 

tampering by either the central owner or an adversary. Therefore Confidentiality, 

Integrity, and Availability may be compromised. 
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2.5.3 Integrating blockchain to IoT 

 

A good solution which can address most of the current IoT issues could be the blockchain 

technology(section2.4). It is a strong and innovative technology that has the power to  

 

decentralize the IoT system and address many of the ever-growing problems. Blockchain, with 

its peer-to-peer capabilities and decentralized structure, has the potential to benefit the IoT 

world by  

 

distributing computational and storage demands among several nodes. Some of the benefits it 

could get from this integration are: 

I. There will be no central owner who will be able to verify or tamper the transactions. 

II. It will be nearly impossible for anyone to tamber the transactions as they are copied 

to every node and everyone would have to verify any change. 

III. Minimize the operational expenses involved compared to centralized data centers. 

IV. Using cryptographic techniques, transactions can be kept private. 

V. Owners' identities can be protected since the blockchain is typically accessed using 

simply an address. 

VI. It will be able to handle billions of IoT devices as the number of devices rises fast. 

 

Integrating blockchain to IoT would undoubtedly provide several benefits, but being a relatively 

new technology, is not a flawless solution and has issues of its own. Most of these issues are 

mentioned in Blockchain section2.4.6. The main problem that must be addressed is the poor 

throughput of validated transactions, which occurs as a result of time-consuming consensus 

protocols.  

 

2.6 LoRa & LoRaWAN 

 

IoT devices are often battery-powered sensors used inside houses, industrial buildings, or even 

in the middle of a forest, so they must not only handle battery life carefully, but they must also 

be able to communicate from a long distance. An ideal solution for such cases is the LoRaWAN 

protocol which is developed and maintained by the LoRa Alliance. In 2015, the first LoRaWAN 
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standard was issued [18]. LoRa is a wireless radio modulation technique that encodes 

information on radio waves and its name derives from Long Range since it can provide long-

distance communication links of up to 15 kilometers and is installed in a star topology network 

based on the open LoRaWAN protocol [17].  

 

 

 

 

Figure 2.2: Range vs Power Consumption vs Costs vs Data Rates (Adapted from [17]) 

 

As we can observe from figure2.2, LoRaWAN excels in all areas over the other network 

technologies except data rate which is necessary to achieve the rest[17]: 

I. It is capable of covering very long range distances 

II. Optimizes the battery life since it has very low power consumption. (~10years 

lifetime) 

III. The cost for deployment and maintenance is minimal compared to other network 

technologies. 

 

Some additional advantages of this technology are: 

I. Accuracy: accurate location without the need for GPS. 

II. Security: end-to-end encryption. 

III. High Capacity: it can support millions of messages. 
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2.7 Helium 

 

Helium is the world's first peer-to-peer blockchain-based IoT solution, offering a safe and cost-

effective mechanism for low-power smart devices to communicate with the Internet. It is open-

source and it makes use of the largest secure decentralized worldwide network of LoRaWAN 

devices known as “Hotspots” or “Miners”. Each hotspot is owned and operated by individuals 

who are motivated by the rewards they get from expanding and securing the Network. Asides 

from that, each hotspot provides connectivity to nearby LoRaWAN compatible devices [19]. 

 

 

2.7.1 Helium History 

 

Helium startup was founded in 2013 by Shawn Fanning, Amir Haleem, and Sean Carey. Later 

in July 2019, the helium network was launched with the goal of creating a blockchain powered 

global decentralized network of hotspots for IoT devices [20]. Helium has seen tremendous 

adoption from people the last 2 years and as of today there are more than 820000 hotspots all 

over the world [21]. It is becoming more powerful every day and has managed to form 

partnerships in a variety of fields, including fields like environment, agriculture, asset tracking 

and more [20]. Every hotspot can be seen in helium`s map explorer along with other information 

and statistics of the network. As we can see from figure2.3 the entire world is filled with 

hotspots including Cyprus. 

 

 

Figure 2.3: World – helium network coverage 



16 

 

2.7.2 Network Structure 

 

Figure2.4 illustrates a simplified structure of the helium network where devices inside a miner 

coverage are capable of connecting to the miner if they are LoRaWAN compatible and other 

entities communicate with each other in a manner which will be explained below. 

 

 

Figure 2.4: World – helium network coverage 

 

2.7.2.1 Hotspots & IoT devices 

 

Hotspots are very easy to deploy by anyone and are also called miners because each individual 

can earn Helium`s blockchain token “HNT“ as a reward simply by extending the coverage of 

the network. Hotspots are basically LoRaWAN gateways which by combining LoRaWAN 

features, and helium`s blockchain they form the so-called LongFi protocol created by Helium 

systems. They provide wireless network coverage to LoRa compatible devices. 

 

IoT devices compatible with LoRa do not require any credentials like other networks do in 

order to make a transaction. They just transmit an electronic payment along with a data request 

to the nearest hotspot. In addition, each Hotspots and IoT device has a private key stored in its 

hardware as well as their public keys on the blockchain. 
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The absence of any battery consuming GPS in the hotspots and the deployment of the 

innovative PoW protocol called “Proof-Of-Coverage” results in the low energy consumption 

for each(5W of energy). 

 

 

2.7.2.2 Routers - LoRaWan Network Server (LNS) 

 

Helium treats the LoRaWAN Network Server(LNS) differently than traditional LoRaWAN 

Networks in which a central or regional LNS is controlled by a single authority. Helium allows 

multiple routers to exist in the network and be owned and operated by individuals. 

Routers(LNS) are basically internet applications that accept packets from IoT devices through 

hotspots and route them to appropriate endpoints like HTTP. Some of its functions are: 

I. The Uplink and Downlink data from and to the IoT devices accordingly. 

II. Third-party cloud services are provided with authentication and routing capabilities. 

III. Have a local copy of the blockchain. 

Each router is assigned to a unique OUI (Organization Unique Identifier) and is saved into the 

blockchain along with a list of IoT devices that it is responsible for. As a result, whenever a 

hotspot receives data from an IoT device for Uplink, it must first query the blockchain to 

discover which router to transfer the data to. This feature enables the secure delivery of data to 

a router of your choice that may even be yours [22]. 

 

2.7.3 Proof of Coverage 

 

In order to guarantee the security and coverage of the network, Helium came up with a novel 

consensus algorithm called Proof-of-Coverage (PoC) that is built on top of the Helium`s 

blockchain consensus responsible for the creation of blocks. Proof-of-Coverage essentially 

proves that each hotspot is located where it claims it is and that it provides wireless network 

coverage to that location [23].  

 

PoC uses RF(Radio Frequency) signals to determine the locations of hotspots. This is possible 

because the strength of an RF signal is proportional to the distance from the hotspot 
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transmitting. PoC frequently conducts checks called PoC challenges to assess network`s quality 

and stores the results into the blockchain. During a challenge hotspots divide in 3 roles: 

I. Challenger: Hotspot conducting the challenge. Every hotspot conducts one 

approximately every  6 hours. 

II. Beaconer or “Challengee”: Hotspot that is being evaluated. 

III. Witness: Hotspots in close proximity to the Beaconer that were able to "witness" 

the challenge packets sent by the Beaconer. 

              

 

Figure 2.5: PoC Challenge example (Recovered from [21]) 

 

Figure2.5 illustrates a challenge that happened on 4th of May with challenger a hotspot in 

Brazil, beaconer a hotspot in Cyprus and 14 witnesses nearby beaconer. 

 

2.7.4 Validators & Consensus protocol 

 

Validators are hotspots responsible for the process and generation of blocks, and the group of 

validators is also called “consensus group” of the blockchain. To become a validator you must 

stake 10,000 HNT which is currently equivalent to 150000€. Every epoch(creation of 30 

blocks) a new set of 40 validators is elected at random to form the consensus group and they 

get rewarded [24]. Anything that needs to be added to the blockchain is sent to the consensus 

group which is in charge of validating and ordering all the transactions, generating the block, 

and adding it to the blockchain [24]. 
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Helium`s Consensus Protocol is permissionless because every hotspot following the rules of 

validators can join the consensus group and they will also be visible to all entities of the 

network. Due to the fact that the network is spread all over the world Helium chose an 

asynchronous Byzantine Fault Tolerant consensus protocol called HoneyBadgerBFT(HBBFT) 

that allows a group of known nodes to reach consensus over unreliable connectivity. HBBFT 

also achieves high throughput of validated transactions and censorship-resistance [25]. This 

protocol will be further analyzed in chapter 3. 

 

2.7.5 Helium`s blockchain 

 

Hotspots and Routers maintain a ledger of the blockchain and continuously sync their local 

blockchain by getting chain updates from other hotspots or routers in the network. This is 

achieved by propagating new blocks to the network as long as they are added to the blockchain. 

Helium`s blockchain stores data about the locations and coverage of the network and additional 

information like the OUI discussed in section2.7.2.2 and token transactions. However, the data 

from the IoT devices are not stored in the blockchain but either in the router or in a third-party 

cloud service. 

 

The current latency of block generation is 60 seconds and inside each block there is a version, 

a height, the previous block hash, a Merkle hash of the transactions, and a threshold signature 

from the current consensus group [24]. Helium`s blockchain records everything from PoC 

challenges to current validators and a payment. 
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Chapter 3 

 

3 HoneyBadgerBFT 
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 3.4.1 Threshold Encryption         23 

 3.4.2 Detailed Explanation         24 

 3.4.3 Asynchronous Common Subset (ACS)       25 

 

 

 

The requirements that arose as a result of the cryptocurrency's popularity inspired Andrew 

Miller and his colleagues to develop HoneyBadger BFT (HBBFT) at the University of Illinois. 

HBBFT is the first practical asynchronous BFT protocol [29]. 

 

3.1 HoneyBadger`s solution 

 

As explained in Section2.3 in an asynchronous system where no timing assumptions are made, 

it's impossible to develop a deterministic consensus algorithm. As a solution, HBBFT employs 

a randomization source(cryptography) to circumvent the FLP impossibility. Although 

randomness almost always guarantees correctness, the performance of such protocols has been 

a concern for many years compared to synchronous protocols [28]. 

 

HoneyBadger manages to overcome this issue by cherry-picking better methods from the 

literature that have never been present together. It's the first BFT atomic broadcast 

protocol(“consensus”)  that achieved optimal asymptotic efficiency in an asynchronous 

network.  
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3.2 Issues with timing assumptions 

 

Miller and his colleagues claim that timing assumptions are harmful in an unstable network 

with physical or adversarial delays. If any timing assumptions exist and aren't met due to faulty 

nodes or network delays the consensus has to make certain corrective actions to recover. As a 

result throughput is significantly decreased. Furthermore, setting the time boundaries is 

challenging since an improper value may need continuous corrective actions [29]. 

 

Asynchronous protocols, on the other hand, impose no time assumptions and even under 

unstable network conditions, progress is made whenever messages are delivered. 

 

3.3 HoneyBadger`s System Model 

 

Their system model consists of a purely asynchronous network of N known nodes(P0,...,PN-1). 

The network employs a leaderless consensus in which every node is a proposer rather than only 

the leader, as most known BFT consensuses do. 

 

Transactions can be generated and sent by any client to all of the nodes of the network and are 

considered committed after the client gathers from the majority of  the nodes signatures as 

shown in figure3.1 Each transaction committed by a client is a unique string. 

 

 

Figure 3.1: HoneyBadger`s System Model 

 

Each network node gets transactions as input and attempts to achieve consensus on a transaction 

order. 
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To be able able to function correctly, their system model makes the following assumptions: 

I. Each connection between nodes uses a reliable channel that delivers every message. 

II. Nodes have unbounded buffers for queuing transactions regardless of  the potential 

delay. 

III. Consensus can withstand up to f faulty nodes, where 3f+1≤N (N=number of Nodes) 

IV. A distributed key generation protocol must be deployed to distribute keys during 

setup. 

 

 

3.4 HoneyBadger`s Consensus Mechanism 

 

HoneyBadger has a modular approach and is composed of the following modules that will be 

explained in this section: 

I. HoneyBadgerBFT 

II. Asynchronous Common Subset (ACS)  -  Ben-Or et al. [32] 

III. Reliable Broadcast (RBC)  -  Bracha [33] & Cachin and Tessaro[34] 

IV. Asynchronous Binary Agreement (BA)  -  Moustefaoui et al [35] 

V. CommonCoin  -  Moustefaoui et al [35] 

 

Consensus occurs in epochs, with each epoch allowing up to B transactions (batch size) to be 

committed. At a high level, incoming transactions in each node are kept in an unbounded buffer 

(FIFO), and B/N transactions are chosen at random from the buffer at each epoch. They are 

chosen randomly in order to propose as many different transactions as possible. The selected 

transactions are then given as input to the protocol where the final set of transactions is chosen. 

 

The random selection of transactions from the buffer may jeopardize censorship resistance since 

an adversary might choose a transaction that does not wish to be submitted, and prevent it by 

eliminating whatever node proposes it. This problem is addressed by threshold cryptography, 

which conceals which transactions are suggested by which nodes until after consensus has been 

reached. 
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3.4.1 Threshold Encryption 

 

Threshold cryptography allows nodes to encrypt a set of transactions with a master public key 

M. We can split M to multiple secret key shares and distribute one to each node. The network 

of nodes then have to collaborate to decrypt it. The number of shares required to decrypt the 

ciphertext is f+1 which means we need at least one correct node to share its decryption share. 

Until that happens an adversary does not know anything about the set of transactions [29]. 

 

 

 

Figure 3.2: Threshold Encryption 

 

 

Figure3.2 illustrates an execution of an example of threshold cryptography with 4 Nodes and 1 

faulty node which means that at least 2 nodes must collaborate to decrypt the ciphertext [31]: 

 

I. Node 1 encrypts p (set of transactions) with M (master public key) 

II. Node 1 sends c (ciphertext) to every node. 

III. Node 2 & 3 collaborate to decrypt it by inserting c and their sks (secret key share) 

into the Decrypt Share function. 

IV. Decrypt Share function outputs a decryption share which is afterwards exchanged 

between nodes. 

V. Each node then can insert c and the decryption shares collected into the Threshold 

Decryption function that outputs the original set of transactions. 
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3.4.2 Detailed Explanation 

 

 

Figure 3.3: HoneyBadgerBFT Algorithm 

 

 

In each epoch HoneyBadgerBFT is executed as shown in figure3.3 [30]: 

 

I. Each node selects B/N transactions from their buffer to submit to the consensus. 

II. After the set of transactions are selected they are encrypted using threshold 

cryptography and the master public key. 

III. Encrypted sets of transactions  are afterwards given to the ACS 

module(Asynchronous Common Subset). 

IV. The ACS module enables the network to agree on a subset of the encrypted set of 

transactions from at least N-f nodes and outputs it. 

V. Each node uses Decrypt Share function to get a decryption share and then multicasts 

decrypted share to every node (Block transactions determined before the adversary 

is able to see the proposed transactions). 

VI. If a node wants to decrypt the original set of transactions agreed upon it has to 

receive more than a threshold share of decryptions. 

VII. Original set of transactions agreed upon is afterwards decrypted and this epoch`s 

block is generated. 
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3.4.3 Asynchronous Common Subset (ACS) 

 

After each node proposes a set of transactions and gets encrypted, inputs encrypted transactions 

to ACS where the network of nodes agrees on a subset from all the proposed encrypted set of 

transactions. ACS as shown in figure3.4 consists of 2 modules executed in order: 

I. Reliable Broadcast (RBC) 

II. Asynchronous Binary Agreement (ABA) 

 

 

Figure 3.4: ACS decomposition 

 

Reliable Broadcast is responsible for broadcasting the proposed values to every node and to do 

so N concurrent RB instances are run in each node. For it to work and reduce the 

communication complexity, erasure coding is used. With erasure coding proposed values are 

split into N pieces and then passed along. Furthermore, RBC ensures that every honest node 

receives the same output if one honest node manages to receive it. 

 

After RBC finishes execution, ABA decides on a bit vector that indicates which set of encrypted 

transactions were successfully broadcasted by RBC. It is calculated by combining the votes of 

all network nodes. N concurrent ABA instances are run in each node in order to vote (1 or 0) 

for each RBC and agree on a bit for each. ABA terminates as soon as more than 2/3 of the 

network nodes agree that the set of transactions should be included in the block. 

 

                                     

Figure 3.5: ABA pseudocode 
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As pseudocode in figure3.5 illustrates, if the ⅔ threshold is not met, ABA in order to properly 

terminate deploys a source of randomness using CommonCoin module which generates a 

random coin shared to every node that determines if a specific set of transactions is going to be 

included or not. CommonCoin also uses threshold cryptography too to ensure that coins cannot 

be manipulated by any adversary [36]. 
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Chapter 4 

 

4 Dumbo 
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4.4 Speeding Dumbo Performance and future       29 

 

 

 

As mentioned in section2.3 no deterministic algorithm can be developed for asynchronous  

consensus protocol. Despite the efforts of many researchers to find a practical solution to 

overcome this problem with various methods none of them actually succeeded and most of 

them were mostly theoretical. Following the promising performance of Andrew Miller and his 

colleagues' recent work (described in chapter3), people began to wonder if such protocols could 

somehow be practical. 

 

 

 

 

Figure 4.1: Asynchronous Protocols history 

 

Due to this development, a joint work of researchers at New Jersey Institute of Technology and 

Chinese academy of sciences in 2020 proposed a new protocol based on HoneyBadgerBFT 

called Dumbo. Since then, they published 3 more papers improving Dumbo more and they are 

still working on it to improve it even more. This new protocol outperforms HoneyBadgerBFT 

in terms of both latency and throughput [41][42][43]. 
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4.1 How Dumbo improved HoneyBadger 

 

After running experiments they identified the main bottleneck of HoneyBadger was the 

execution of a large number of asynchronous binary agreements (ABA) in each node. Due to 

this really slow agreement, the latency was very high.  

 

Τo address this bottleneck, Dumbo instead of using N binary agreements (ABA) in each node, 

uses a single Multi-valued Validated Byzantine Agreement (MVBA) in the ACS component. 

The structure of MVBA is very complicated and a large number of rounds is required in order 

to complete. It is basically constructed from two or three ABA instances and essentially outputs 

a set of transactions from a single node as long as the node's input matches a pre-defined global 

predicate [41][42]. 

 

Because of its extensive communication requirements, MVBA was not previously used but 

Dumbo shows that if it is used correctly and with a small input size it performs better than 

HoneyBadger`s ACS. 

Except for throughput Dumbo also improved the latency approximately by 90-95% but despite 

these improvements because it is a randomized protocol it was still quite slow compared to 

some synchronous protocols like HotStuff [41][42]. 

 

4.2 Dumbo Performance bottlenecks 

 

At this point Dumbo improved the agreement process but apart from still being the major 

percentage of the whole latency, the reliable broadcast (RBC) started to take a significant 

percentage of the whole latency(Approximately 20% in contrast with 0.5% that had before the 

improvements). 

Thus, the protocol still had the following bottlenecks: 

I. High message complexity in RBC module execution. 

II. Improved but still high latency in MVBA. 
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4.3 Speeding Dumbo (sDumbo) 

 

They later(in 2021) went ahead and implemented Speeding-Dumbo to overcome the previous 

bottlenecks [43]. 

To do so they had to develop a new ACS framework where Reliable Broadcast (RBC) was 

replaced by a Provable Broadcast (PB) which was defined by Abraham et al. [37]. PB manages 

to minimize the communication but to do so it loses the guarantee that RBC had which ensured 

that if one honest node received the message, eventually every honest node received it. PB only 

manages to guarantee that f+1 nodes receive the same message. As a result of this compromise, 

a recovery component was introduced at the end of the protocol to ensure that at the end of the 

consensus, every node had the messages [43]. 

 

This method improved the communication complexity bottleneck in the broadcast phase but 

the latency of MVBA was still dominant. To overcome this issue, they designed their own 

MVBA protocol called Speeding-MVBA, which is a more compact and efficient MVBA 

protocol than any other MVBAs. It minimizes the required rounds to come to consensus to 

more than 50% than other known MVBA protocols. 

 

4.4 Speeding Dumbo Performance and future 

 

Provable broadcast managed to improve latency and nearly double the throughput and 

Speeding-MVBA is 2 times faster than other MVBA protocols. In general Speeding Dumbo 

using the cheaper broadcast component and the compact MVBA protocol managed to double 

its throughput(figure4.2) and almost became 2 times faster than before. 

 

Figure 4.2: Throughput Comparison(HotStuff vs Dumbo vs sDumbo) [43] 
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Despite the very good performance in terms of throughput compared to prior Dumbo and 

HotSuff(synchrony), in terms of latency protocols like HotStuff are still considerably superior 

and for that the researchers are working on an even better solution. 
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5.1 Amazon Web Services(AWS) 

 

To conduct my experiments, I used Amazon web services (aws) and more specifically the 

T2.medium ec2 instances which consist of 4GB RAM and 2vCpus each. EC2 instances provide 

a balance of computation, memory, and networking resources. Each instance was a Speeding 

Dumbo consensus protocol node, and I ran the experiment with several numbers of nodes and 

Batch sizes to see how they performed. 

 

Each amazon instance was setup with an Ubuntu 20.04 server (focal). In addition each instance 

had a firewall which had to be modified to accept ssh access and enable communication with 

other instances. 

 

The instances in the experiment were distributed across the world in 5 different regions as the 

figure5.1 shows. 
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Figure 5.1: Instances in 5 different regions 

 

5.2 Libraries Used 

 

To complete the experiment the following python libraries were used: 

I. Boto3: 

Amazon Web Services SDK  for python that enable us to setup, launch and 

manage ec2 instances. 

II. Fabric: 

Enables us to execute multiple shell commands remotely over shh in order to: 

i. Install dependencies on every instance 

ii. Clone the GitHub repository 

iii. Launch the experiments 

III. Dash: 

Low code framework written on top of Plotly.js and React.js with which 

interactive data apps can be rapidly developed in Python. An example of the data 

app created is shown in figure5.2 . 
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Figure 5.2: Data app written with dash for results. 

 

5.3 Results 

 

5.3.1 Varying Batch Sizes 

 

In the following graphs the latency and throughput is compared based on the number of 

transactions proposed in each epoch. In figure5.3 x-axis is the batch size(number of transactions 

proposed) and y-axis is the latency(seconds needed for 1 block to be generated). Each coloured 

line indicates the number of nodes in the consensus. 

 

 

 

 

 

 

 

Figure 5.3: Latency(s) vs BatchSize(# proposed txs) 

 

We can easily see that while the batch size increases in every case the latency increases too. 

This occurs because as the Batch size increases the required communication between the nodes 

increases too. Consensus group with 30 nodes performs better than all the others latency from 

2 seconds at B=100 to 23 seconds at B=1500000. 
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In addition, as the number of nodes increased the latency was increased and this is also due to 

the fact that a larger consensus group requires higher communication complexity in both 

provable broadcast phase and speeding multi-value validated byzantine agreement(MVBA) 

phase. 

 

In figure5.4 x-axis is again the batch size(number of transactions proposed) and y-axis is the 

throughput(number of transactions submitted to block per second). Each coloured line indicates 

the number of nodes in the consensus. 

 

 

 

 

 

 

 

Figure 5.4: Throughput(txs/s) vs BatchSize(# proposed txs) 

 

Here  we can observe that as the batch size increases in each consensus group, so does the 

throughput, which makes sense given the increased number of proposed transactions in each 

epoch. Furthermore, the rate of increase of throughput decreases as soon as the batch size gets 

bigger than an instance can handle. 

 

The best performance is again in consensus group with 30 nodes with peak throughput at 

61000txs/s and this happens because as mentioned before the larger the number of nodes 

participating gets the communication required gets higher which results in higher latency and 

thus the lower throughput. 

 

5.3.2 Stable Batch Size with Varying number of Nodes Participating 

 

The following graphs compare the latency and throughput dependent on the number of nodes 

participating in the consensus group with a stable batch size.  
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In figure5.5 x-axis is the number of participating nodes and y-axis is the latency(seconds needed 

for 1 block to be generated). The stable Batch size used is 100000. 

 

 

 

 

 

 

 

 

Figure 5.5: Latency(s) vs Nodes(# participating nodes)   B=100000 

 

At the beginning of the graph, we can see an anomaly where latency is higher at 10 nodes than 

30 nodes and then it starts to increase. This occurs due to the fact that the 10 nodes cannot 

handle the communication complexity created by the B=100000. After the 30 nodes the latency 

starts to increase while the number of nodes rises because as stated in section5.3.1 the higher 

the consensus group the higher the required communication it gets. 

 

 

In figure5.6 where the Batch size is smaller(B=5000) than figure5.5 we can observe than every 

consensus group can handle the batch size and the latency always increases with the size of the 

consensus group. 

 

 

 

 

 

 

 

 

Figure 5.6: Latency(s) vs Nodes(# participating nodes)   B=5000 
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In figure5.7 x-axis is again the number of participating nodes and y-axis is the 

throughput(number of transactions submitted to block per second). The stable Batch size used 

is 100000. 

 

 

 

 

 

 

 

 

Figure 5.7: Throughput(txs/s) vs Nodes(# participating nodes)   B=100000 

 

For the same reason here as figure5.5 throughput is lower at 10 nodes since they  cannot handle 

100000 batch size and the latency gets higher. As the latency increases after 30 nodes due to 

the communication complexity the throughput decreases. In addition, we can also see that 

consensus group with 30 nodes performs better than everyone else with throughput at more 

than 20000 at B=100000. 

 

5.3.3 Comparing Latency to Throughput with a Stable Number of Nodes Participating 

 

The following graph(figure5.8) compares the latency to the throughput with a stable number of 

participating nodes and dynamic Batch size. 

 

 

 

 

 

 

 

 

Figure 5.8: Latency(s) vs Throughput(txs/s)   N=85 
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We can easily see that while the latency increases because the batch size gets 

bigger(communication complexity) the throughput increases too which happens because each 

block is delayed more and more to be generated and thus the number of transactions per second 

decreases too. 

 

 

5.3.4 Stable B and N with Varying number of faulty nodes 

 

In figure5.9 we see the effect that the number of faulty nodes has on both latency and 

throughput. In both graphs the x-axis is the number of faulty nodes, the Batch size is 50000 and 

the number of participating nodes is 30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: (Latency(s) & Throughput(txs/s)) vs Faulty nodes     B=50000 & N=30 

 

It is obvious that as the number of faulty nodes increases the latency increases too and thus the 

throughput decreases since: 

I. In Provable Broadcast(PB) the algorithm waits for at least one honest node(f+1) to 

receive the set of transactions.  



38 

 

II. In Speeding-MVBA the protocol achieves consensus as soon as 2f+1 nodes agree on 

the set of transactions to supply the block.  

 

Therefore, the bigger the number of faulty nodes the bigger the effort of the involved nodes 

gets and the latency increases. 

 

5.3.5 Scheduler randomness 

 

HoneyBadger and Dumbo are leaderless consensus protocols which means that every epoch 

every node proposes a number of transactions from its buffer and the end of the epoch the 

overlapping transactions are eliminated. 

 

As stated in every paper of both HoneyBadger and Dumbo the selection of transactions from 

the unbounded buffer should be random in order to select as much distinct transactions as 

possible and thus increase the number of committed transactions in blocks per 

second(throughput). 

 

However, the selection from the buffer in the open source code of Speeding Dumbo was First 

In First Out (FIFO) and thus I replaced it with random selection and compared the latencies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Latency(s) vs Randomness 
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The experiment was setup with Batch size = 10000 and N=10 and after checking the latency of 

the consensus without including the time needed for selection, I noticed that there was no 

alteration in the latency. Although as figure 5.10 illustrates, when I compared the latency of the 

selection phase only, I noticed that the time needed from the random selection commands was 

making a big difference(from 0.0005s to 0.01s) but not enough to affect the overall latency. 

 

 

5.4 Results Conclusion 

 

Taking into account each graph, we may conclude that Dumbo performance is very promising 

and proves that an asynchronous consensus protocol can be practical and as shown in figure5.11 

the peak throughput of speeding Dumbo outperforms every consensus protocol with timing 

assumptions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Peak throughput(txs/s) vs (Consensus protocols & blockchains) 

 

However, except from throughput which has always room for improvement, the latency still 

needs large improvement to reach the performance (in terms of latency) of some consensus 

protocols with synchrony like Hotstuff that have a deterministic algorithm and thus latency 

lower than 1 second. 

 

Every modification I made in the source code can be found in my GitHub repository [44]. 
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Chapter 6 

 

6 Future Work 

 

 

6.1 High Level Proposed Model         40  

 

 

 

Nobody can argue that the performance of speeding Dumbo is highly promising, and more 

research should be dedicated in the asynchronous consensus protocols to improve  even more 

the performance and exploit the advanced security features it offers compared to synchronous 

consensus protocols. 

 

In addition, further experiments should be conducted to verify the security of such protocols in 

an adversarial environment make improvements to withstand the volume of data that will 

probably be generated in a few years by IoT devices. 

6.1 High Level Proposed Model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Proposed model 
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A possible architecture of the blockchain integrated in Internet of Things is illustrated in 

figure6.1. There could be LoraWAN gateways with processing power like in Helium network 

and each IoT device could send data to the closest gateway i.  

 

Any gateway could be participating in the consensus group if he stakes a predefined amount of 

tokens, and each epoch(creation of 30-60 blocks) a new consensus group will be voted 

randomly. To perform well both in terms of throughput and security an asynchronous BFT 

protocol should be used like speeding Dumbo. The number of participating gateways should be 

kept around 30 which is a small number it terms of security(speeding Dumbo performs better) 

but should be okay if every member is staked and most probably honest. If for any reason a 

gateway is deemed unreliable it should be removed from the consensus group immediately. 

 

Furthermore, smart contracts should be deployed to handle with safety triggers for IoT devices. 

For example, if a temperature sensor in the forest sends an unusually high temperature the smart 

contract should inform the closest fire station or if a sensor sense smoke in a building the smart 

contracts should send a downlink to start the water sprinklers. 

 

An IoT device should submit a transaction in the following order: 

I. IoT device sends data packets to LoRaWAN gateway encrypted with its private key. 

II. LoRaWAN gateway sends data packets to consensus group. 

III. Consensus group verifies the authenticity of transactions IoT device`s public key 

and starts the consensus protocol. 

IV. Consensus group generates a block with the transaction included. 
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Chapter 7 

 

7 Conclusions 

 

IoT technology has been widely adopted and has reached nearly every household on the planet. 

By connecting any device with sensors to the Internet a massive amount of raw data is collected 

and by using analysis tools many useful statistics (related to environment, device state, etc.) can 

be gathered and improve everyone's life. 

 

The security of such technology is critical since the data gathered and processed is usually 

sensitive or personal information. However, existing IoT architecture is based on a centralized 

approach that has a lot of security and scalability issues that must be resolved in order for IoT 

to be adopted even more widely and to harvest all of its benefits. 

 

Blockchain is a suitable technology that could address the majority of the current issues and 

enable the IoT world to expand even further. Blockchain is a relatively new technology that 

still has a lot of legal and technical questions unanswered and challenges that need to be 

addressed but it has already demonstrated and proved that it can offer many solutions to the 

present problems. 

 

The performance and security of any blockchain are mainly controlled by its deployed 

consensus mechanism, which is responsible for the generation and acceptance of a block of 

transactions in the presence of malfunctioning nodes. The importance of an asynchronous 

consensus in such environments is explained in this thesis in contrast to the consensus with any 

timing assumptions which are prone to any delays. 

 

However, deterministic asynchronous consensus protocols are impossible to implement  

without a source of randomness due to the FLP-impossibility. The first practical asynchronous 

protocol (HoneyBadgerBFT) was implemented in 2016 and since then, scientists have been 

looking for ways to improve it or experimenting with alternative randomization methods to 

implement a practical asynchronous protocol. 
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This thesis describes a promising asynchronous byzantine fault tolerant consensus called 

speeding Dumbo. It demonstrates exceptional throughput performance while providing security 

and censorship resilience compared to consensus protocols with any sense of timing 

assumptions. Unfortunately, there is still room for improvement in terms of latency, which is 

why experts are continuously working on it. 

 

To conclude, in general we are at a very good point but a deeper investigation in integrating 

blockchain in IoT is required. Furthermore, research should be conducted on how to increase 

the efficiency of blockchain while preserving all the security benefits to satisfy the high 

demands of IoT technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

Bibliography 
 

[1] Wikipedia Contributors (2019). Blockchain. [online] Wikipedia. Available at: 

https://en.wikipedia.org/wiki/Blockchain. 

[2] (Zheng, 2017) An Overview of Blockchain Technology. 

[3] (Johnson, 2001) The elliptic curve digital signature algorithm (ecdsa). 

[4] (Atlam, 2018) Blockchain with Internet of Things: Benefits, Challenges and Future 

Directions. 

[5] Sharma, T.K. (2020). Types of Blockchains Explained- Public Vs. Private Vs. Consortium. 

[online] Blockchain council. Available at: https://www.blockchain-

council.org/blockchain/types-of-blockchains-explained-public-vs-private-vs-consortium/. 

[6] (Lamport, 1982) The byzantine generals problem. 

[7] (Jakobsson, 1999) Proofs of Work and Bread Pudding Protocols. 

[8] (Zhanga, 2020) Analysis of the main consensus protocols of blockchain. 

[9] (Castro, 1999) Practical Byzantine Fault Tolerance. 

[10] (Yin, 2018) HotStuff: BFT Consensus in the Lens of Blockchain. 

[11] (King, 2012) Ppcoin: Peer-to-peer crypto-currency with proofof-stake 

[12] Touron, M. (2019). Centralized vs Decentralized vs Distributed Systems · Berty 

Technologies. [online] Berty Technologies. Available at: https://berty.tech/blog/decentralized-

distributed-centralized. 

[13] (Ashton, 2009) That ‘Internet of Things’ Thing. 

[14] Wikipedia. (2020). Smart refrigerator. [online] Available at: 

https://en.wikipedia.org/wiki/Smart_refrigerator. 

[15] Cisco and ITU (2016). Harnessing IoT Global Development. [online] Available at: 

https://www.itu.int/en/action/broadband/Documents/Harnessing-IoT-Global-

Development.pdf. 

[16] (ITU & Cisco, 2016) Harnessing the Internet of Things for Global Development, 2016 

[17] (LoRa Alliance, 2019) A Technical Overview Semtech Corporation December. 

[18] The Things Network. (n.d.). What are LoRa and LoRaWAN? [online] Available at: 

https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/.  



45 

 

[19] Gemini. (n.d.). Helium Network: Proof of Coverage & Helium Hotspots. [online] 

Available at: https://www.gemini.com/cryptopedia/helium-network-token-map-helium-

hotspot-hnt-coin#section-introduction-to-the-helium-network. 

[20] Martinez, A. (2021). What is Helium Network? [online] Coinmonks. Available at: 

https://medium.com/coinmonks/what-is-helium-network-fad1dc1e09c2. 

[21] Helium (n.d.). Helium Explorer. [online] Helium Explorer. Available at: 

https://explorer.helium.com/hotspots. 

[22] (Helium, 2018) Helium: A Decentralized Wireless Network whitepaper 

[23] Helium (n.d.). proof-of-coverage | Helium Documentation. [online] docs.helium.com. 

Available at: https://docs.helium.com/blockchain/proof-of-coverage/.  

[24] Helium (n.d.). proof-of-coverage | Helium Documentation. [online] docs.helium.com. 

Available at: https://docs.helium.com/blockchain/blockchain-primitives /. 

[25] Helium (n.d.). proof-of-coverage | Helium Documentation. [online] docs.helium.com. 

Available at: https://docs.helium.com/blockchain/consensus-protocol /. 

[26] (Fischer, 1985) Impossibility of Distributed Consensus with One Faulty Process. 

[27] (Chondros, 2014) Practical Asynchronous Interactive Consistency. 

[28] (Vukolic, 2015) The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT 

Replication. 

[29] (Miller, 2016) The Honey Badger of BFT Protocols. 

[30] YongraeJo (2019). Honeybadger of BFT Protocols. [online] Available at: 

https://www.slideshare.net/YongraeJo/honeybadger-of-bft-protocols.  

[31] https://www.xdaichain.com/for-validators/consensus/honeybadger-bft-consensus/honey-

badger-bft-and-threshold-cryptography-part-3#threshold-cryptography 

[32] (Ben-Or, 1994) Asynchronous secure computations with optimal resilience. 

[33] (Bracha, 1987) Asynchronous byzantine agreement protocols. Information and 

Computation. 

[34] (Cachin, 2005) Asynchronous verifiable information dispersal. In Reliable Distributed 

Systems. 

[35] (Mostefaoui, 2014) Signature-free asynchronous byzantine consensus with t< n/3 and o (n 

2) messages. 

[36] Network, P.O.A. (2018). POA Network: How Honey Badger BFT Consensus Works. 

[online] POA Network. Available at: https://medium.com/poa-network/poa-network-how-

honey-badger-bft-consensus-works-4b16c0f1ff94.  

https://docs.helium.com/blockchain/consensus-protocol%20/


46 

 

[37] (Abraham, 2019) Asymptotically optimal validated asynchronous byzantine agreement. 

[38] (Zheng, 2020) An Overview on Smart Contracts: Challenges, Advances and Platforms. 

[39] Banafa, A. (2015). Internet of Things (IoT): The Third Wave. [online] OpenMind. 

Available at: https://www.bbvaopenmind.com/en/technology/digital-world/internet-of-things-

iot-the-third-wave/.  

[40] Hojlo, J. (2021). Future of Industry Ecosystems: Shared Insights & Data | IDC Blog. 

[online] blogs.idc.com. Available at: https://blogs.idc.com/2021/01/06/future-of-industry-

ecosystems-shared-data-and-insights/#:~:text=IDC%20estimates%20there%20will%20be. 

[41] (Lu, 2020) Dumbo-MVBA: Optimal Multi-Valued Validated Asynchronous Byzantine 

Agreement. 

[42] (Lu, 2020) Dumbo: Faster Asynchronous BFT Protocols. 

[43] (Lu, 2022) Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice. 

[44] https://github.com/pmikel01/Dumbo_UCY 

 

 

 

 

 

 

 

 

 

 

https://github.com/pmikel01/Dumbo_UCY

