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Abstract 

Many new technologies and approaches have been developed in order to tackle modern 

problems when it comes to application development. Cloud-to-edge architectures are the go-to 

way for building IoT applications and Machine Learning has been introduced as a wonderful 

solver for a variety of problems the current world faces. On the one hand, the use of cloud 

computing and specifically containerizing applications to work on the cloud is certainly where 

the future is headed so any research done to optimize the whole procedure is vital. On the other 

hand, there are limited to almost no tools that help a business choose the best ML that will help 

save them costs and optimize their performance in the long run. Thus, there is a gap when it 

comes to optimizing these applications all ranging from application architecture, which Machine 

Learning model is most suited for the current task, and which is the best data reduction 

approach that keeps the network traffic low while also having the least drawbacks when it 

comes to performance. 

 

This thesis introduces an easy to configure cloud to edge architecture targeted towards ML, 

Dev-ops and Architecture engineers which utilizes ML that performs Object Detection. This 

tool is a perfect foundation for any of the above users to improve upon and test out their 

applications. ML engineers can easily replace the ML’s and the data sent to the edges to suit 

their custom problems; Dev-ops engineers can use the source code to create their own easy to 

launch multiservice application and lastly Architecture engineers can easily take the source code 

and extend it to any application of their liking which will already be configured to gather a 

multitude of important data to them. Finally, the tool provides post-experimentation analytic 

functions which help with data related tasks and the data the project generates, are important 

and lead to conclusive results.  
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 Abbreviation  Full Term 

→ ML …. Machine learning 

→ VM …. Virtual machine 

→ CNN …. Convolutional Neural network 

→ ANN …. Artificial Neural network 

→ APIs  …. Application Programming Interfaces 

→ URL  …. Uniform Resource Locator 

→ CV …. Computer vision 

→ IoT …. Internet of Things 

→ OS …. Operating System 

→ AI …. Artificial intelligence 

→ Vram …. Virtual RAM memory 

→ HW …. Hardware 
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Chapter 1: Introduction 

Cloud computing has taken the world by storm and now it is the most reliable and cost-effective 

way of acquiring computing recourses as well as anything you might need without having to 

maintain them yourself. Meaning that all sizes of enterprises use cloud providers to serve their 

applications or in general their solutions. IoT devices keep popping up in our lifestyle and serve 

to make our life easier. From our homes to our work, we are flooded with smart devices that 

collect and send data to their respective companies to be processed. These companies most often 

or not, have ML models running behind them because they provide solutions to a wide array of 

problems, from classification to regression to even Natural Language Processing.  

 

Despite how amazing Machine Learning is, there is a huge drawback to it. Firstly, it is heavily 

reliant on the amount of data its fed, and it requires immense computing resources. The modern 

world has solved both problems, the first is solved by the aforementioned IoT devices and the 

second by the cost-effective cloud services. 

 

Edge computing has also been a huge contributing factor to these companies since it helps 

optimize the IoT architecture by reducing the network bandwidth, reduces the workload of the 

cloud and can scale better.  But this is not as easy implement as it is to say since each subject 

bring their own set challenges to a company.  

 

Each solution caries over some challenges and merging them together can only cause even more 

trouble. Currently, there are many challenges an organization must solve to successfully launch 

such a deployment. Firstly, there are a plethora of ML models to choose from which all have 

their own benefits and drawbacks. So, deciding which ML to choose from a collection of 

implementations available online is hard has its own profession associated with it. ML engineers 

are tasked to find the best ML for a problem and even sometimes build it, train, and test 

themselves. This is a big challenge which can cause a company a lot of time and resources to 

get right. Secondly, since the topics are relatively new, deployments architecture has not been 

stabilized and each can vary depending on the problem, the devices, the data and even the MLs 

themselves. So, a lot of testing needs to be done on how an architectures solution must be. 

Lastly, coordinating containerized applications to be working together is no easy task. There are 

a lot of problems that can occur and a lot of bugs to be fixed. Networking can also be an issue 

since almost all of the times, the network available is not as powerful as one might hope so there 

must me compression challenges that have to be solved for the deployment to even be running. 

 

As briefly discussed in the abstract, We have created a system that launches multiple 

configurations of a multiservice application. This multiservice application has edge services 

receiving images and their annotations by a workloader service. These services can pre-process 

the images and then run an ML Object detection algorithm. While running they store their HW 

metrics and ML detection statistics for someone to apply data science on them. We can for 

example deduce which ML works best for compressed images or which one is the most efficient 

etc. 
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The application itself has provided with some satisfactory results and it its working flawlessly. 

The services themselves are built in such a way that someone can replace any part of the project 

and create his own problem solver and test out stuff. 

 

The System’s responsibility is to serve as fundamental project for anyone who wants to 

experiment with cloud and edge computing, as well Machine learning. 

Hopefully this project will help developers not to get stuck on the little bugs and configuration 

problems we had to resolve, and instead focus on their project.  

The main selling point is that an individual or a company could take the source code and then 

themselves built application architectures, run them, and collect any data they might want. It's 

all expandable with most of the important code already appearing in the fundamental version. 

Moreover, the system is preconfigured to collect HW data and can be customized to collect 

application specific data as well. In our case, it specifically collects ML object detection and the 

image’s size for each different configuration.  

 

Lastly, we have also gathered some Object detection data in which we have extracted which ML 

is the most accurate, the most efficient and which pre-processing technique works best with how 

much of a size reduction.  
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Chapter 2: Background and related work 

 

 

2.1 Cloud and Edge computing:         

2.2 Docker Ecosystem       

2.3 RESTful APIs and Server Programming      

2.4 ML and Data Analysis tools  

2.5 Related work to get familiar with the concept      

2.6 Helpful Documentation       

 

 

 

2.1 Cloud and Edge computing: 

Cloud computing is the on-demand availability of computer system resources, especially data 

storage (cloud storage) and computing power, without direct active management by the user. 

Large clouds often have functions distributed over multiple locations, each location being a 

datacentre. Cloud computing relies on sharing of resources to achieve coherence and typically 

using a "pay-as-you-go" model which can help in reducing capital expenses but may also lead to 

unexpected operating expenses for unaware users. (Hertzfeld) 

If an operator has an IoT application, it may not want to carry the costs needed to build and run 

a server capable of handling the task. It’s best to rent the server resources through a cloud 

provider. So, our sensors transmit their data to these servers to run our algorithms. This the 

standard practice in the IoT space since there are many reasons to prefer resorting to a cloud 

provider. 
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Figure 1 Cloud and Edge computing "https://www.alibabacloud.com/knowledge/what-is-edge-computing" 

Contrary to the centralised orientation of Cloud Computing, Edge computing is a technique used 

to bring computation and data storage closer to the sources of the data. For example, if we had 

some sensors that capture and send data, we could only apply edge computing if they had 

compute and store capabilities as well. (Edge computing) We could use these resources for 

example to lower the size and frequency of network traffic sent or even run some computation 

so that a cloud server does not have to take it upon itself to do it for thousands of edge 

machines. 

2.2 Docker Ecosystem: 

Docker is an open-source containerization platform. It enables developers to package 

applications into containers—standardised executable components combining application 

source code with the operating system (OS) libraries and dependencies required to run that code 

in any environment. Every single node in a microservice architecture runs in its own 

containerized OS. (What is Docker? - India, 2021) 

 

 

Figure 2 Docker Architecture "https://thingsolver.com/hello-docker/" 
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The services use the environment variables of their container to set up configurations or pass 

parameters in a running containerized program. Docker allows the easy build and launch of a 

service while also allowing it to act as an independent environment. Information about the 

docker build and launch exists in the “dockerfile” of each node. Lastly, prebuilt docker images 

with all possible technologies and libraries needed usually are utilised by developers to 

minimise the development and build time. So that the services don’t have to redownload and 

build everything and can build faster.  

 

Moreover, Docker-compose is a tool that was developed to help define and share multi-

container applications. With Compose, one can create a YAML file to define the services and 

with a single command, can spin everything up or tear it all down. The big advantage of using 

Compose is that a user can define his/her application stack in a file, and then can easily deploy 

the multi-serviced application by calling Docker-compose. (Use Docker Compose) 

 

Figure 3 Docker Compose Demo “https://hosting.analythium.io/shiny-apps-with-docker-compose-part-1-

development/" 

Essentially Docker-compose was the glue that allows independent docker containers to launch 

together as a single architecture. Through it, one could dynamically set up each container's 

environment variables and easily stop a launch after a specified time and relaunch the same but 

with different application properties (e.g., ML’s configurations). Lastly, it creates its own 

network so that each container could easily talk to the other using its name as URL and did not 

need further setup. 
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2.3 Restful APIs and Server programming 

Restful APIs became the default way for service-to-service communication in a microservice-

based application. Flask is a web framework, it’s a Python module that lets you develop web 

applications easily.  (What is Flask Python) For instance, a server could receive a post request 

from the workloader that contains the encoded images, and has to process, running ML and/or 

pre-processing, forward the compressed image to the cloud. A server can be supposed to store 

or retrieve data from a Database. Furthermore, communication between backends and 

underlying operating systems can be conducted via automated bash script execution. For 

instance, a program may run by creating a dynamic bash script that runs Docker-compose, waits 

a specific time and then stops the architecture. A bash script is a file in which Linux commands 

are written and can be run in a sequence.  

 

Figure 4 REST API Demonstration "https://www.astera.com/type/blog/rest-api-definition/" 

2.4 ML and Data Analysis tools 

 

Machine learning (ML) is the study of computer algorithms that can improve automatically 

through experience and by the use of data. It is seen as a part of artificial intelligence. Machine 

learning algorithms build a model based on sample data, known as training data, in order to 

make predictions or decisions without being explicitly programmed to do so. Machine learning 

algorithms are used in a wide variety of applications, such as in medicine, email filtering, 

speech recognition, and computer vision, where it is difficult or unfeasible to develop 

conventional algorithms to perform the needed tasks. (Machine learning) ML models are often 

very computationally expensive to train and run so they are one of the most common uses of 

using the cloud, as cloud providers like Microsoft have developed products such as Azure 

Machine Learning to have better efficiency and pricing on such specific use cases. Moreover, in 
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most cases the data fed into them needs to be pre-processed so edge computing can help their 

application even more.  

 

Figure 5 Machine learning illustration "https://www.researchgate.net/figure/Illustration-of-the-differences-in-

complexity-and-implementation-between-traditional_fig3_336660735" 

PyTorch is an open-source machine learning (ML) framework based on the Python 

programming language and the Torch library. It is one of the preferred platforms for deep 

learning research. The framework is built to speed up the process between research prototyping 

and deployment. The popularity of PyTorch continues to rise as it simplifies the creation of 

artificial neural network (ANN) models. PyTorch is mainly used for applications of research, 

data science and artificial intelligence (AI) (Lewis). Fifty-one library provides 5 CNN ML 

models that can perform image classification and with a few lines users could download a pre-

trained ML model and be able to get its predictions on the sample images. 

 

To manipulate ML datasets and generally data in python, Pandas is a well-known open-source 

Python package that is most widely used. Specifically, scientists utilise pandas for data 

science/data analysis and machine learning tasks. It is built on top of another package named 

Numpy, which provides support for multi-dimensional arrays and a high-performance in-

memory data structure that amplifies the performance of data processing. As one of the most 

popular data wrangling packages, Pandas works well with many other data science modules 

inside the Python ecosystem and is typically included in every Python distribution. (What Is 

Pandas in Python? Everything You Need to Know, 2021) 

 

Except for the purely ML libraries, there are also utility tools that help developers in ML 

pipelines and implementation. For instance, FiftyOne is the first open-source tool that empowers 

CV/ML engineers and scientists to rapidly evaluate their datasets and models. FiftyOne helps 

developers to visualise and explore datasets, identify key scenarios, and debug your models, 

enabling you to build better ML models more quickly. (FiftyOne — FiftyOne 0.15.0 
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documentation) It provides an easy way for downloading datasets, querying a number of images 

and their annotations and encoding them to be sent over the network. Moreover, it allows for 

ML models to run predictions on the images and provides performance evaluations. Each 

dataset is represented by “Samples” so the user can select the size of a sample for his/her 

project. Then, samples are stored in specific dictionaries and reverse, so users can reuse them at 

any future time. Additionally, each sample can have multiple tags attached to it which can help 

in predictions and evaluation of each ML algorithm.  

 

Last part of an analytic process is the data plotting and graph presentation. Matplotlib is a 

comprehensive library for creating static, animated, and interactive visualisations in Python. 

(Matplotlib — Visualization with Python) This library can be used to create plots of the data 

that users want to analyse and display to visualise their analysis results. Some examples of 

charts are bar charts, scatter plots, box plots, timelines, and, generally, every commonly used 

plotting technique. So, users can compare diverse metrics on the same plot or graph in order to 

extract intuitive information and insights about their metrics. 
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2.5 Related work to get familiar with the concept 

When we started this journey, we first had to understand what microservice applications were 

and why there are used as a default architecture in modern applications. There is a plethora of 

positives of this approach, and we needed to see some implementation examples as well as some 

papers on the architecture’s performance and ease of use. So, we read the below sources to get 

better acquainted with it. 

 

● https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf 

● https://www.slideshare.net/DemetrisTrihinas/designing-scalable-and-secure-

microservices-by-embracing-devopsasaservice-offerings       

● http://linc.ucy.ac.cy/assets/files/publications/pdfs/cloudcom_v1.pdf  

● https://github.com/microservices-demo/microservices-demo  

● https://github.com/GoogleCloudPlatform/microservices-demo  

● https://github.com/UCY-LINC-LAB/CloudCom2018-Tutorial  

2.6 Helpful documentation 

 

When it was time to get into implementing our system there were a lot of technologies and 

subjects that we had to get familiar with in order to make  everything run together seamlessly. 

Firstly, we needed to read the documentations on Docker and Docker-compose to make an 

application run on multiple containers and communicate with each other. Then we needed to 

read the Flask Server RESTful documentation to make it listen on requests and Fifty-One 

documentation to understand how to work with datasets and samples. Lastly, we went over 

which object detention models Pytorch has and how to download them pretrained and use them. 

Some of the sources we needed for the above are below: 

● https://docs.docker.com/engine/  

● https://docs.docker.com/compose/  

● https://flask.palletsprojects.com/en/2.1.x/  

● https://voxel51.com/docs/fiftyone/user_guide/evaluation.html  

● https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html  

 

 

  

https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://www.slideshare.net/DemetrisTrihinas/designing-scalable-and-secure-microservices-by-embracing-devopsasaservice-offerings
https://www.slideshare.net/DemetrisTrihinas/designing-scalable-and-secure-microservices-by-embracing-devopsasaservice-offerings
http://linc.ucy.ac.cy/assets/files/publications/pdfs/cloudcom_v1.pdf
https://github.com/microservices-demo/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/UCY-LINC-LAB/CloudCom2018-Tutorial
https://docs.docker.com/engine/
https://docs.docker.com/compose/
https://flask.palletsprojects.com/en/2.1.x/
https://voxel51.com/docs/fiftyone/user_guide/evaluation.html
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
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Chapter 3: Systems overview  

 

 

3.1 High level overview 

3.1.1 Description: 

3.1.2 Pipeline of operations: 

 

3.2 Targeted users and what to expect from the system: 

 3.2.1 ML engineers: 

3.2.2 Dev-ops engineers: 

3.2.3 Architecture optimizers: 

 

 

3.1 High level description: 

3.1.1 Description: 

In short, we have made a simple edge to cloud architecture in dockerized containers. Each edge 

container receives several images from a workload container, from there the edges can pre-

process the images and/or run an ML algorithm on them (simulating edge computing) and then 

sending their results and the images to a cloud service container. The most powerful part of our 

system is that it’s easy to configure each launch parameters as we will see below. 
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Figure 6 Architecture overview 

I have made it so that this whole procedure can be launched automatically and dynamically 

using docker-compose to launch different configurations and variations of the architecture. We 

can tweak stuff like how much compression should be done in an image, what ML model each 

edge runs, how many images are sent and more.  

I have also implemented some metric data collection while the architecture runs like how much 

time each image takes, how much network traffic is sent/received and more. 

Lastly, after collecting the data, we have made some analysis on our public google colab file: 

https://colab.research.google.com/drive/1MkReYIf3Qu63cK5pZX87qUCGNbxeZtw6?usp=shar

ing  

In which we extract some results on the effects of the different ML models and pre-processing. 

3.1.2 Pipeline of operations: 

Firstly, we launch the project by running a python file that dynamically changes the 

environment of the workspace thus dynamically changing the runtime configuration of the 

architecture’s nodes. Then it calls upon Docker-compose to build and run the project for a 

predetermined number of minutes. When the time passes, the project stops, and a new 

environment is written for the new runtime and the whole process repeats until all the 

configurations are done. 

 

https://colab.research.google.com/drive/1MkReYIf3Qu64cK5pZX87qUCGNbxeZtw6?usp=sharing
https://colab.research.google.com/drive/1MkReYIf3Qu64cK5pZX87qUCGNbxeZtw6?usp=sharing
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Figure 7 Visualization of how relaunching the project works 

  

The configurations that our current project experiments with are how many edges there are, the 

ML model and which pre-processing options each edge runs and how many seconds the HW for 

that container sleeps for to get the new data. What we mean by pre-processing options, we 

currently support making an image black and white, reducing its width and height dimensions 

and reducing the quality of the stored image. 

 

So, when we need to create 2 edge configurations (we have 2 processors to work with), we let 

the python file edit the configuration file to add the appropriate environmental variables for each 

edge (check section 4.2.4) , and creates a docker-compose.yml file with all the services required 

and the environment variables names each was assigned above. Then the python file creates a 

bash file that consists of 3 commands. Start the docker-compose project in the background, 

sleep for T time and then call docker-compose stop. 

 

As mentioned above, the workload node sends an N number of random images and their 

annotations X times to an edge. When this process is done X times, the workload goes to the 

next edge and does the same. So, for all the time T the project is up, an N*X number of images 

are sent to each edge circulating each one so its fair and have chance to test out their 

predictions. 

 

When an edge receives the images, it can run an ML algorithm to predict what the images 

contain and/or run some pre-processing on it which can reduce the quality and/or the image 

dimensions. It then sends the new image and its results to the cloud container. 
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Figure 8 Docker-compose containers communication visualized 

When it comes to the metrics we collect, from all the nodes we collect some HW metrics like 

CPU cycles, RAM usage and network traffic (sent and received) with an internal timer that we 

specify in the environments, currently it is set at 4 seconds. 

The edges since they are running an ML model and pre-process the image, also collect the 

predictions and prediction metrics, much pre-processing affected the image size and how much 

time each of these took. 

 

Lastly with the metrics we collected we extract some information like which ML is the most 

accurate, which was the fastest, how pre-processing effects the predictions and more. You can 

view our result for the fundamental project at section 6. 
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Figure 9 Visualization of which data each node collects 

 

3.2 Targeted users and what to expect from the system: 

As we have already mentioned this system is targeted towards ML engineers, Dev-ops 

engineers, Architecture optimizers or in general anyone who wants to build a multiservice 

application which  utilises ML. A user should expect a system that on runs out of the box a 

Machine Learning multiservice application that solves an object recognition problem. The 

system should run smoothly and collect data as we mentioned above. From there on the user can 

come and alter any component of the system with their implementations and the rest will stay 

intact so they can still for example say communicate between services or collect data. 

3.2.1 ML engineers: 

A machine learning engineer can use the project to test out multiple models and their 

performance in a real runtime scenario. For example, if the engineer has created 10 different 

ML models all specialising in object detection, then it will be extremely easy in adapting the 

current source code to exchange current ML models to her/his.  She/He will simply have to 

replace the model names in the runconf.py as well as implement her/his own function of 
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predicting and gathering metrics and replacing the current implementation. The project will run 

the same and she/he will be able to extract the results by running the colab file with his own zip 

of the source. 

3.2.2 Dev-ops engineers: 

The project uses a lot of technologies which are vital for developing application back-ends and 

in general a multiservice app. Meaning that the engineer can easily take any part of the 

architecture and use it in developing its own implementation of a similar project. 

 

She/He could simply use the N number of already preconfigured http servers to run distributed 

computing algorithms and respond back with their results. In general, she/he could use it a 

fundamental and basic multiservice application and from there, extend it to serve an even bigger 

purpose while also collecting various important metrics. 

3.2.3 Architecture optimizers: 

The Docker-compose that the project utilizes to launch is an amazing tool in the modern world, 

since it helps launching a project with a single command anywhere. 

So, an architecture engineer could easily take our source code and replace and add other nodes 

to do other stuff. It is quite easy to change what the workloader sends to the edges. Moreover, 

they can also increase the number of edges and make them handle the new data to serve a 

different purpose. The core architecture will still be the same and capture the HW metrics so the 

engineer will be able to measure the performance and then optimize his project. 
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Chapter 4: Implementation 

 

 

 

4.1 Implementation details: 

4.1.1: Dockerfiles and Docker-compose information: 

 4.1.1.1: Common elements seen in the compose YAML file: 

4.1.1.2: Cloud container: 

4.1.1.3: Edges container: 

4.1.1.4: Workload container: 

4.1.2: Dockerfile information: 

4.1.3: Flask Server information: 

4.1.4: Fifty-one information: 

 

4.2 How to run and gather results: 

 4.2.1 Requirements: 

 4.2.1.1 Software Requirements  

4.2.1.2 Hardware Requirements 

  4.2.2: Building the Base_image:  

 4.2.3: How to run the default project configurations: 

 4.2.4: How to edit the configurations: 

 4.2.5: Where to view the results: 

 4.2.6: Interpreting the csv’s: 

 4.2.6.1: Edge Request csv’s: 

4.2.6.2: Workload Request csv’s: 

4.2.6.3: Edge and Workload Monitor csv’s: 
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4.1 Implementation details: 

4.1.1 Dockerfiles and Docker-compose information: 

Here is the Docker-compose file:  

 

 
Figure 10 Docker-compose YAML file 

As you can here, we declare that we want a total of 4 containers being deployed. 

4.1.1.1 Common elements seen in the compose YAML file: 

Before starting, there are some common elements you will see in the docker-compose YAML 

file and the dockerfiles. Whenever you see ${var}, it means that that value is located in the .env 

file. For example, one line of the .env file at one runtime instance is “edge2_ml = 

'fasterrcnn_resnet50_fpn'\n”. Meaning that when the project launches the docker container 

edge2 will have in its environment a key-value pair ('ML' , ’ fasterrcnn_resnet50_fpn’ ). In each 

configuration of a launch, these values change depending on the .env file. 

Additionally, the “PYTHONBUFFERED:1” means that we want the stdout to be on the console 

when we run the containers, “dns: <DNS server IP>” helps the docker containers use the 

established dns of the host to send data to other containers by a URL like 
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http://edge1:5000/endpoint and ”monitor_sleep” is how many seconds the containers monitors 

sleeps until it records the results. 

 

Lastly the most vital part each container has it the volume arguments. They are used as way to 

bind directories between the host and the container so that we have persistent storage. The data 

the container contains are also saved on our local directory as well as the original container, so 

when we stop the container, we still have the data generated. 

 

4.1.1.2 Cloud container: 

Starting with the cloud, we do not have much environmental variables since in the current case 

as soon as it gets forwarded the image and an edge results it immediately responds back without 

doing anything. It is capable though of running its own ML model or doing many stuffs with the 

data it collects, but it was not the main point of this experiment so for now it’s not utilised.  

4.1.1.3 Edges containers: 

As you can see, we have 2 services called “edge1” and “edge2” each with their own set of 

environmental variables. As you can probably guess, we can easily add an N number of edges in 

the project as long as we update the runconf.py to set their environmental variables as well to 

run. The ML environmental variable can be one of the 4 PyTorch  ML models we work with 

and the pre-processing can be a string of “BW”,” quality” or ” resize” with their values like, for 

example we can have “edge1_pre = 'BW,1,quality,50%' and edge2_pre = 

'BW,1,resize,50%,quality,25%'” and try to avoid spaces. 

4.1.1.4 Workload containers: 

As you can see the last service is the “workload” container which is responsible for sending the 

images to the edges. Here you specify the edges in the “Edges” variable like “workload_edges = 

'edge1,edge2,edgeN'” and images is how many images to send to each edge, and the final one is 

how many iterations. For example, “workload_num_of_images = '1,1,5'” means that we will 

send 1 image to edge1 and 2 5 times in a row and then switch. 

4.1.2 Dockerfile information: 

As mentioned above all the above are Docker containers which at their core are a single file 

which contains instructions on how to build the container. 

 

 
Figure 11 Edge container's Dockerfile 

 

As you can see, the dockerfile for an edge simply says from the docker image 

“base_image:latest” which we built above, copy everything to an “app” folder in the container, 

http://edge1:5000/endpoint
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use that a working directory and then always start by executing the command “python3 app.py” 

which starts the flask server and its ready to go. 

4.1.3 Flask Server information: 

All edges and the cloud containers run a Flask application. They all start running on host 

“0.0.0.0” so that they can be accessible by anyone and listen on port 5000 on  endpoint 

“endpoint”. Meaning that when the workloader wants to send a post request containing a json of 

information we use  

 

requests.post(" http://edge1:5000/endpoint", json=json.dumps( 

    DictionaryOfStuffToSend), proxies={"http": None, "https": None, }) 

 

Then we have the app.py which at its core we have  

@app.route('/endpoint', methods=['POST']) 

async def hello(): 

    content = json.loads(request.get_json()) 

 

Which we then use the content dictionary to do what we want.  

 

We also use in these some functions which are worth mentioning like 

image = Image.open(BytesIO(b64decode(content[0][data]))) 

 

Which we use to create a PIL image by the encoded bytes of each of the request’s image.  

4.1.4 Fifty-one information: 

As we mentioned in the beginning, Fifty-one is a library which makes it easy to work with 

datasets.  

 

We first need to have access to a dataset by downloading it locally. Thankfully all our nodes are 

built on the “base_image” which already has downloaded the whole dataset so all of them have 

access to it. 

 

Each fifty-one dataset consists of samples. So, when we choose N number of images we call  

 dataset.take(images[i]) 

 

and then for each sample of the above view of the dataset. We convert the sample to a 

dictionary (sample.to_dict()) , we encode the original image and add it to the data to be sent by   

 

sample['data'] = b64encode(open(sample.filepath, "rb").read()).decode('utf-8') 

 

and then post to the edge the json.dumps(sample). 

 

When an edge or cloud flask receive a request, as we saw they decode the string to a dictionary 

of samples. 
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4.2 How to run and gather results: 

4.2.1 Requirements:  

In order to run the runconf.py file which basically automatically runs the project you need to 

fulfil specific hardware and software requirements. 

4.2.1.2 Software requirements: 

You are required to run in a Linux distribution OS which has Docker and Docker-compose set 

up. Moreover, you need to have a python3 interpreter and be available on the $HOME variable 

so that you can call it from a terminal.  

4.2.1.3 Hardware requirements: 

It is suggested to have at least a 2-core processor and 8 Gb of RAM in order to be able to handle 

the Docker-compose launch. Lastly at least 10 GB of free memory are needed to be able to store 

the images and the created data. 

 

4.2.2 Building the Base_image: 

Firstly, it is needed to build the “Base image” which is an Ubuntu Docker image with all 

necessary libraries needed. It takes approximately 7GB of memory and consists of all python 

libraries needed to run the project, the COCO 2017 Validation dataset (2GB) and about 1GB of 

5 pretrained Machine learning models from pytorch. Building the base image takes dozens of 

minutes but it is worth it since creating it will make it so when building all other containers 

build instantly since all their data and dependency is already downloaded. 

 

To build it, simply navigate to the root project directory (cd Diplomatic_project) and run  

‘ docker build --rm -f "base_image/Dockerfile" -t base_image:latest "base_image"  ‘  

4.2.3 How to run the default project configurations: 

The project runs on the background by navigating to the root directory and running “nohup 

python3 run_conf.py &” which runs the python file in the background. From there on you can 

check out the progress.txt for updates on what has configuration has been ran until the project 

stops, and all configurations are done. While running, files will be created to the volume 

directory in the project containing runtime results. 

 

If at any case you want to stop the process entirely before all configurations are done. You can 

kill the python command and then calling “docker-compose stop” to stop the containers as well. 
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Last thing you should do is “./clear_logs.sh” which cleans up the volume directory so that no 

leftover data are left from the previous executions. 

 

One example of the progress.txt is: 

1. BW,0,quality,50%,resize,75%,BW,0,quality,50%,resize,75%,0,fasterrcnn_mobilenet_v

3_large_320_fpn,maskrcnn_resnet50_fpn,13_59_14_04 

2. Pog 

3. DONE,14_06_14_04 

4. BW,0,quality,50%,resize,75%,BW,0,quality,50%,resize,75%,0,fasterrcnn_mobilenet_v

3_large_fpn,fasterrcnn_mobilenet_v3_large_320_fpn,14_06_14_04 

 

Which indicates that at 13.59 14/4 it started a project launch with without making the images 

black and white (BW,0), the edges make the image 75% of the original on both width and 

height (9/16 of the original pixels), and the quality saved is 50% which means the image is not 

as sharp. Lastly, we can see that the first edge is using as a ML a 

“fasterrcnn_mobilenet_v3_large_fpn” whereas the edge2 is running “maskrcnn_resnet50_fp”. 

The “Pog” keyword means that the environment was written and the docker containers started. 

The Done as implied means that the time limit of the executions successfully is reached. In the 

default environment each project is launched for 6 mins and then stopped. Which you can see 

from the next run starting 7 minutes later but now, the model on the second edge is different. 
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4.2.4 How to edit the configurations: 

As mentioned above the runconf.py file is the bread and butter of the whole operation.  

 
Figure 12 runconf.py Default runtime configurations 

 

This project makes it easy to dynamically change the configuration of the edges and the 

workloader. Here as we can see on the step 1 function. We pass how many seconds we want 

each launch to take. Then we can use python’s list operations to use custom aspects. 

 

We first indicate that we do not want to experiment with black and white images since we found 

that the default .jpeg image format did not benefit in size when making the image black and 

white. 

Secondly, we indicate that the quality and resize variables will be chosen separately, then the 

models are chosen so that they are not the same and we write to the current environment our 

current runtime variables. 

 

This setup will launch 1 * 4 * 4 * 5 * 4 = 320 projects, with each taking about 7 mins, so we can 

safely say that it will run 320*7 mins = 37.3 hours or about 1,5 days. 
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You can easily modify or add configurations to your liking like running more pre-processing 

qualities and using a static ML instead.  

 

This all works because in the end we modify the .env file that Docker-compose will look to 

assign the environment variables to our architecture’s containers. So essentially, we 

dynamically edit the .env file for the project to behave different.  

 

Lastly, the project in each runtime is launched by creating a bash file which we then run. It 

launches a project in the background, sleeps for the number of second we had as arguments and 

then calls docker compose stop. When everything stops it leaves and then a new .env is written 

and the whole process is repeated. 

4.2.5 Where to view the results: 

When a launch is initiated, some new files are created in the /volume directory. There we have 5 

different folders. In the current version we only care about 3. The cloud, edges and workload 

folder. In each of these folders, there 2 subfolders, logs and stats which capture data for each 

node of the architecture. As the name implies the logs folder contains the logs of the of each of 

the containers launch and its only there for debugging run time issues. 

 

What we care about is the stats folder. There you will find 2 kinds of files, a monitor and a 

requests csv we will see more about them below. Each file is unique and identifiable by 4 

variables in its name. Each file first starts by a time stamp, then the containers name, which of 

the 2 kinds of files is and then the runtime parameters.  

 

For example, if we look in the {root}/volume/edges/stats you will see a file a called 

“04_15_02_11_edge2_requests_retinanet_resnet50_fpn_BW_0_quality_75%_resize_75%.csv” 

This means that this file was created at 15/4 at 2.11 am on the edge 2 container in which it was 

running the “retinanet_resnet50_fpn” ML, No grayscale, 75% original quality, and 75% of the 

original image dimensions. This way we can sort the results and then easily create a dictionary 

of each configuration to extract data from. Please see google colab for this implementation.  

4.2.6 Interpreting the csv’s: 

4.2.6.1 Edge Request csv’s: 

04_13_16_18_edge1_requests_fasterrcnn_mobilenet_v3_large_320_fpn_BW_0.csv 

 
Figure 13 An edge request csv 
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In the current configurations we select 5 random images and send them one at a time in each 

edge. Then after sending 5 images, we switch and do the same for the other edge. We do this for 

the whole duration of the project. The project can also be configured to send batches of N 

images, but we decided to send them one by one for clarity. 

 

For each request an edge receives from the workloader, we add a row to the csv with some stats 

we have captured. 

We first add some stats the for the top 10 items the ML predicted. We add the item names, the 

precisions, recall, support, f1_score and then we add some hardware metrics like the time and 

cycles the ML and pre-processing part took as well as the request as whole. 

4.2.6.2 Workload Request csv’s: 

04_13_16_18_workload_requests_edge1_1_edge2_1__sleepTime_4.csv

 
Figure 14 A workload's Request csv 

 

The name of the csv indicates that it was made at16:18 on the 13/4 at a workloader container 

where it was sending one image at each of 2 total edges and the monitor who we will see below 

sleeps and wakes up after every 4 seconds. 

 

The workloader requests csv’s just contain the times each batch of images it took. For example, 

above we have that for the first request each images took about between about 35m milliseconds 

to 733. Whereas the second edge was in general faster. There appear to be some edge cases in 

which sometimes are too little but that’s because probably the request was dropped by chance. 

In the grand scale of things this does not affect us. Moreover, we do an exhaustive data 

collection with each edge running the same variables as the other at another time so the errors 

will be distributed in all ML’s and Pre-processing configurations. Lastly, we are working with 

dozens of thousands requests so if errors appear, they will not affect our results at all. 

 

4.2.6.3 Edge and Workload Monitor csv’s: 

04_13_16_18_edge1_monitor_fasterrcnn_mobilenet_v3_large_320_fpn_BW_0_sleepTime_4 
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Figure 15 A monitor csv of a node 

 

As mentioned above, the second type of files are monitor CVSs. Which have a thread that 

monitors HW metrics every couple of seconds which can be specified at the launch. Currently it 

was set at 4 seconds. 

 

So, the rows we will be seeing here are the network metrics of each container after resetting the 

counter and the current Vram our container takes up of the host device as well as the actual ram 

it takes. 

 

4.3 How to use the colab file: 

As mentioned above there will be thousands of csv’s in the volume directory, so we need an 

easy way of finding the metrics of the stuff we want. So, we came up with the below code: 
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Figure 16 Code that organises the csv's to each runtime configuration 

Which creates a dictionary of many iterations of dictionaries that help determine each csv. Here 

is a very vital part if you wish to change the configurations. If you create your own 

configurations, then they must be added here with the same order as we see above so that each 

csv gets assigned to its own runtime.  

****Do not run this program when the Year changes because then the naming scheme of the 

csv’s gets a reset. If its vital you can sort them by date modified and not name and you should 

be good. 
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Figure 17 Visualization of the runtime configurations dictionary 

 

As you can see above, if we want to see the csv’s relating to 25% quality and 25% dimension 

reduction with the model as X we can call  

dict_of_names = get_dict_of_names_per_var()[“25%”][“25%”][X][“requests”] and we can see 

all the 5 or 4 times the model has been called. 

This makes it great because the list of csv’s that this returns can be dynamically created, and we 

can get for example all instances of this specific pre-processing by making X be ALL the 

models. 

 

I have created a function that takes as input the list of csv’s a user passes and returns a 

DataFrame object of all of them combined: 
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Figure 18 How we create a DataFrame from a list of csv's 

 

From there on its just a matter of creating a list of csv’s using the method above and using the 

method below it to have a dataframe to work on. 

 

For example, with simple dynamic model in the appropriate dictionary position, we can read the 

Dataframe and find how much the average time of a request was. 

 

If you are familiar with python, then it will be trivial to be able to do the same stuff for your 

records as well.  
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Figure 19 Sample of how to query the DataFrame and get the average time each ML model took to process 

 

Then we can plot the average times. But we will see it below in the results section. 
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Chapter 5: Experimentation 

 

 

5.1 Experimentation goals: 

6.2 What to experiment to achieve said goals: 

6.3 Experimentation details: 

 6.3.1 Using different models: 

 6.3.2 Using reduced dimensions: 

6.3.3 Using reduced quality: 

 

 

5.1 Experimentation goals: 

When we were creating the project, we wanted to experiment on how a different architecture 

effects a multiservice application, how ML models can influence the architectures performance 

and how image preprocessing can affect image size and prediction accuracy. 

 

So the goals are to experiment a variety of different options and configurations of the SAME 

architecture so that we can see how each tweak on a subject effect each part of the architecture 

experimentation goal. 

5.2 What to experiment with to achieve said goals: 

Firstly we have experimented running the application with different ML models to see each 

model’s accuracy compared to the other models and crown a winner. Moreover we wanted to 

see the performance impact of the models and then crown a new winner which is the fastest but 

also relatively the most accurate in object recognition. 

 

Secondly, we have experimented with different preprocessing settings on the image. 

We have firstly reduced the image dimensions to 25%,50%,75% of their original to see how 

much smaller the file size becomes and how it affects the accuracy. Moreover we have also 

reduced the image quality to again  25%,50%,75% to see if it has a more positive on negative 

impact than reducing dimensions. 
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5.3 Experimentation details: 

5.3.1 Using different models: 

Pytorch offers 6 pretrained model architectures on object recognition which you can read about 

here : https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-

and-person-keypoint-detection 

 

Which have used all of them!  

(models = [ 

"fasterrcnn_mobilenet_v3_large_320_fpn", 

 "fasterrcnn_mobilenet_v3_large_fpn", 

 "fasterrcnn_resnet50_fpn", 

 "retinanet_resnet50_fpn", 

 "maskrcnn_resnet50_fpn" , 

 "fcos_resnet50_fpn"  

,"keypointrcnn_resnet50_fpn" 

,"ssdlite320_mobilenet_v3_large"  

, "ssd300_vgg16" ]) 

 

The models took several GBs for storage but after they were downloaded once they could be 

used by one image without redownloading. Also there are already some metrics on the models 

in the above link like their RAM usage which can vary wildly. 

 

The models are chosen by their name which is set as the environment variable ‘’ edge1_ml” = 

‘fasterrcnn_resnet50_fpn’ for example and so in the edge container we dynamically assign it in 

the edge: 

 
So now in the edge1 we have model = torchvision.models.detection. 

fasterrcnn_resnet50_fpn(pretrained = True) 

5.3.2 Using reduced dimensions: 

As you can see above, we can pass a reduction in the image’s dimensions. If we have in an 

edge’s preprocessing variable ‘resize,X%’ then when the edge preprocesses the image like 

below: 

 

https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-and-person-keypoint-detection
https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-and-person-keypoint-detection
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So if resize was 50% then it becomes 50/100 = 0.5 and then we create the new X,Y by 

multiplying the images dimensions and changing them in the end. 

5.3.3 Using reduced quality: 

Just like above when there is a string in the preprocessing variable like “quality,X%” then we 

save the image with the new quality: 
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Chapter 6: Evaluation 

 

 

6.1 Results overview: 

6.1.1 Machine Learning models results: 

 6.1.2 Preprocessing results: 

 6.1.3 Object recognition results: 

6.2 Results explanations: 

6.1 Machine Learning explanations: 

 6.1 Preprocessing explanations: 

 6.1 Object recognition explanations: 

6.3 Results comments: 

6.4 Limitations: 

 

 

 

6.1 Results overview:  

Here we will have an overview of the results we have gathered. In total we have gathered data 

when it comes to the object detection ML models, how the image’s size in bytes was affected by 

the preprocessing/compress it and lastly about the objects the ML’s we recognized. 

 

The experiment we have run is the default experiment we above at section 4.2.3. Where we 

have done a full  permutation of all possible configurations. We ran config permutation of 

[Q,R,ML1,ML2] where Q and R are the options for preprocessing X in [no pre,25%,50%,75%] 

and ML1 is 1 out of the 9 models and ML2 is all the other except ML1. Meaning we had a total 

of 4*4*9*8 = 1152 runs which took 9 days to complete running.  

 

The experiment was run on an azure virtual machine. It is running “Linux (ubuntu 18.04)” and 

has as specs “Standard E2s v3 (2 vcpus, 16 GiB memory)”. We have been running this VM for 

free since azure provided €100 worth of runtime to UCY students. In total we have spent the 

€64 since the day we started working with it. The cost for running the default configuration was 

about 18€. The other capital was spent in setting up the project, debugging it and running 

smaller incremental configurations. 
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6.1.1 Machine Learning models: 

6.1.1.1 Machine Learning models results: 

 

 

 
Figure 20 Chart of average f1_score 

Firstly, we have calculated the average f1_score. We chose this metric because as you can see 

below: 
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The F1-score combines the precision and recall of a classifier into a single metric by taking their 

harmonic mean. It is primarily used to compare the performance of two classifiers. Suppose that 

classifier A has a higher recall, and classifier B has higher precision. In this case, the F1-scores 

for both the classifiers can be used to determine which one produces better results. 

(https://www.educative.io/edpresso/what-is-the-f1-score ) 

 

We took into account all the top 10 items in all images that the model was more than 75% 

confident on them (can be less than 10 as well since we sent only 1 image). Then we summed 

up the f1_score for all these items for all the predictions each model had where the image was 

NOT PREPROCCESSED. Then we divided it by their number and got an average f1_score for 

each model.  

As you can see maskrcnn_resnet50 and fasterrcnn_resnet50 were the most accurate with 0.662 

and 0.658 avg f1_score. As you can probably guess by their names let’s see if the “faster” is 

actually faster and be considered a better candidate overall.  

  

https://www.educative.io/edpresso/what-is-the-f1-score
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Figure 21 Chart of average milliseconds taken per request 

Here we can see the average milliseconds each ML took to respond back WITHOUT 

PREPROCCESSING. We come to the conclusion that ssd300 and faster_mobilenet were the 

fastest to respond in general, meaning the detected stuff in an image the fastest. Moreover,  

maskrcnn was actually faster than fasterrcnn so we can probably guess that below, maskrcnn is 

the overall winner since it beat both categories. 
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Figure 22 Chart of average f1_score/milli_taken 

 

As a metric which would accurately represent an overall ML’s performance, we decided to use 

the average f1_score divided by the average time. Since we prefer higher accuracy and less time 

taken the higher this quotient is, the better the ML is overall. 

 

So, as you can see above maskrcnn has the highest f1_score per millisecond so we can declare it 

the “best” ML to use for object recognition with the current dataset. 
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6.1.1.1 Machine Learning explanations: 

As for ML model’s performances, its hard to determine a winner because each ML is depended 

in its implementation in the pytorch library. So technically our results are not 100% accurate 

since maybe some hyperparameter tuning in the ML could make them better for our purposes or 

maybe someone could come up with a faster python implementation in the future of the library. 

 

The point is in this fundamental block project, in in the current object recognition problem we 

have come up with. The models ran well and had nice and clear results. A person interested in 

the project can easily put his own ML’s inside and declare a winner as well with some custom 

statistics to go along with. 

 

6.1.2 Pre-processing : 

6.1.2.1 Preprocessing results: 

Quality of an image in as in our terms, is how compressed in JPEG format the image becomes. 

The amount of JPEG compression is typically measured as a percentage of the quality level. An 

image at 100% quality has (almost) no loss, and 1% quality is a very low quality image. In 

general, quality levels of 90% or higher are considered "high quality", 80%-90% is "medium 

quality", and 70%-80% is low quality. Anything below 70% is typically a very low quality 

image. 

( https://fotoforensics.com/tutorial.php?tt=estq#:~:text=The%20amount%20of%20JPEG%20co

mpression,%25%2D80%25%20is%20low%20quality. ) 

 

For example, on the top half we have on the left the image with 90% quality and on the right the 

“baseline” of that image which shows that the edges are not very “crisp” but we can easily tell 

what’s in the image. 

 

https://fotoforensics.com/tutorial.php?tt=estq#:~:text=The%20amount%20of%20JPEG%20compression,%25%2D80%25%20is%20low%20quality
https://fotoforensics.com/tutorial.php?tt=estq#:~:text=The%20amount%20of%20JPEG%20compression,%25%2D80%25%20is%20low%20quality
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The below half above is the same image but with 70% quality. Edges are no longer crisp and 

compression artifacts are visible. E.g., the base of the pitcher's curved handle (behind the nearly 

empty glass) is very blurry and distorted.  

 

   
 

Lastly, above we see the same image but with now at 20% quality. Significant JPEG artifacts 

are visible around all edges. Most appear as ripples and echo lines. But we can still distinguish 

the objects somewhat. 

 

In our project we have used 4 quality options, no quality change and 75%,50%,25% quality.    
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Figure 23 Chart of how quality change effects average f1_score 

 

As we see above, reducing the quality has small impact to the overall accuracies, but it is much 

more negatively effective to our best models. Let’s see below if the worse accuracies are worth 

the data we save. 
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Figure 24 Chart of quality vs image size reduction 

 

With blue we have the accuracies of the most accurate model (mask_rcnn) and on the right, we 

have the how much smaller the new file is in relation to the original one. 

For example if we have an f1 score for an image of 0.60 for a non-compressed image and it is 

1000 bytes, then if we were to lower the quality down to 75% we would achieve a 75% 

reduction on image size while only dropping the f1_score by 0.037 which we believe is worth 

the it. 
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Next aspect of the image we have compressed is the images dimensions.  

For example, if an image had as original dimensions a width of 1000 pixels and a height of 800 

pixels then if we were to resize it to 75%, we would have an image of 750 x 600 thus reducing 

the pixel by 1000*800 – 750*600 = 350 000. So, we actually reduced the total pixel count by 

43.75%! 

 
Figure 25 Chart of how resizing effects f1_score 

 

Above we see again that as expected the accuracies drop when we resize the image, but the 

results are as we saw them in the quality graph. What is different though is that at 25% resize 

the accuracies drops much more significantly than the quality had. We will see a direct 

comparison a few graphs below. 
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Figure 26 Chart of resizing vs image size reduction 

 

 

Here we compare how much the image size was reduced to. As you can see changing the quality 

has more effect than changing the resize. But at 25% smaller image the picture is so small in 

dimensions that it prevails. 

 

As we saw above, resizing intuitively should reduce the image size more efficiently than 

quality. This however is not true because the JPEG format we are using is a really amazing 

compression algorithm which can is really complicated as een below: 

 
Figure 27 Illustration of the JPEG compression algorithm https://www.eetimes.com/wp-

content/uploads/media-1101219-fig1.jpg 
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Point is that by reducing the quality of an image can make it more efficient than reducing the 

dimensional size. We cannot explain this but as the data shows, the image has less size on disk. 

But we can expect that at 25% the quality must yield better results to be this bigger. 

 

 
Figure 28 Chart comparing f1_score per pre-processing option 

 Above we see how accuracies are affected by each processing. We see that both methods all 

have about the same effect but at 25% it is better to reduce quality instead of size (as we saw 

above its also bigger in size) so we can say we expected it.   
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6.1.2.2 Preprocessing explanations: 

One clear problem someone can see is that 0.75% quality or resize reduction results in less than 

75% of the original image size. This is normal since the PIL library uses optimization in saving 

jpeg images meaning that it can further compress than what the original images were.  

 
 

As for the results we have gotten, we see that nothing can beat not preprocessing, but in 

actuality we believe 75% dimensions reductions and a 75% quality instead of 100% does not 

affect the accuracy that much and is preferable when someone will want to test a out a 

deployment with limited bandwidth. 

 

When it comes to object recognition, our system has helped us form the above opinion and 

helped justifying it. So if anyone wants to grab our project and run his own processing on any 

kinds of data it wants to send, for example compressing text files. Then our system will come 

and assist them in making decisions about it without needing to change a lot of stuff. 

6.1.3 Object recognition: 

6.1.3.1 Object recognition statistics: 

Here we will see all the items that appeared in all models handling them with NO 

PREPROCESSING. In total we saw 80 distinct types of objects in the images. We will display 

the top and bottom 3 and 1 for every 7 of the rest. All sorted by either the support or f1_score. 

So we are only displaying the [0, 1, 2, 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 77, 78, 79] 

numbered items as seen below in the red. 
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Figure 29 Chart of items f1_score and support sorted by f1_score 

Here we see the items sorted by their f1_score on our best ML, the “mask_rcnn”. We had 

giraffes having the top average f1_score of 0.8 but a total support of 74. So, they did not appear 

that many times. But chairs for example appeared 448 times but we failed miserably at detecting 

them. Lastly, even though handbags, and backpacks appeared 233 and 170 times we still had a 

score less than 0.05. 

  



54 

 
Figure 30 Chart of items f1_score and support sorted by support 

Here we see the items with the same form as we saw before, but now they are sorted by their 

support, i.e., how many times they appeared in total in the predictions. We see that there were 

many people in the images, specifically 1325 but their average f1_score was an ok 0.63. So, we 

can say that the Dataset contained many pictures with people on them and the ML’s were ok at 

spotting them, but the dataset may contain a lot of people so in general application we could 

have an equal distribution of objects. 

6.1.3.2 Object recognition explanations: 

We see above there is a clear confusion when it comes to the objects we detected. Well, again 

this just comes down to the ML models themselves, their hyperparameters and with what 

dataset and how much they have been trained. 

 

We do know that Models we used in this problem were trained on the same dataset so we can 

safely say they were operating normally on data they could have been trained on. 

 

Point is, in this object recognition problem we have established that we have the ability to 

recognize objects well enough and have found the approach to do so. Someone could come up 

and change the project to recognition of other stuff like fraud detections. Then after changing 

the relative code it could use the same structure seen in the colab to extract results easily saving 

a lot of hassle of rewriting stuff. 

6.2 Results comments and limitations: 

6.2.1 Comments: 
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For the sake of this project, the results were sufficient for our analysis and we got the project ran 

without any unexpected problems. Our focus was the ability of the project to gather data for a 

wide range of purposes to fulfill the users’ needs. It can easily be expanded to gather more or 

different data depending on what is the ML inference application a user wants to put it through. 

 

6.2.2 limitations: 

 

There are a lot of limitations when it comes to the results, the most important one being time. 

We have made the project to run a total of 3 days in order to gather results. In a better scenario, 

we want to run it for 20 to gather much more data with better variety. But since we rushed a bit 

in order to prepare for this thesis and colab notebook we are satisfied with the current ones. 

 

Another limitation was the hardware. We needed to rent an Azure VM with 2 cores and 16 GB 

of RAM in order to run this project. If it were for example 4 cores, we could have 4 edges 

running sparing execution time. Since Docker is multithreaded, we can see that both edges 

utilized all the cores of the system: 

 

 
 

Lastly there are limitations to this approach since there are many points of failure. A lot of 

systems need to be orchestrated to work with each other so it too a lot of time in building and 

debugging it. Which could have been spent in building a better problem to get better results 

about a different subject.  
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Chapter 7: Conclusions 

 

 

To sum up, we are pretty happy for the system we have developed, the results we got and in 

general we believe it serves its purpose well. This system was really hard to develop and test 

but, in the end, we pulled through and delivered a complete system despite the limitations. 

 

When it comes to the results, we are really happy with the results we got. They are accurate and 

most of, informative for the specific problem we are addressing. When it comes to object 

recognition, maskrcnn from pytorch is the best of its kind and a reduction of quality and 

dimensions of 75% of the original delivers a great accuracy while also reducing its size 

considerably. 

 

Our system is complete and has a lot of future ahead. As we mentioned above it can serve as a 

great building block for future systems. They can simply form our publicly available source 

code and build their own implementations of cloud to edge implementations with their own 

problems and solutions in mind. 
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