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Summary 

Stress-tests that maximize the microarchitectural activity are extremely important as 

they affect the stability and the performance of a system. The aim of my dissertation is 

to build a strong knowledge on the parallelism and how the system handles the 

parallelism. I am doing this by reverse engineer certain features of the ARM Mali T-624 

GPU in order to facilitate the creation of stress tests for the GPU in the future. 

 

I achieve this by executing simple kernels written in OpenCL[3] on real hardware. 

During the execution of my kernels, I collect metrics such as execution time and power 

consumption. By carefully constructing the kernels and correlating their structure with 

their execution time and power consumption, I am able to reveal a number of different 

characteristics of the GPU. 

 

The insights of this work can be used to create or to accelerate the creation of stress 

tests for the ARM Mali T-624 GPU. This is due to the fact that the thesis indirectly 

shows what are the units that can cause significant increase in the activity of GPU in 

terms of power consumption (power virus - stress test) and also performance (IPC virus 

- stress test).   

 

There have been many attempts to generate viruses and stress-tests on real hardware 

such as CPUs (even ARM) and multiple for NVIDIA graphics cards but nothing like 

this has ever been done for ARM Mali graphics cards 
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Chapter 1 

 

 

Introduction 

 

 

1.1 Background Problem                  1 

1.2 Contributions          2 

1.3 Outline                                        2 

 

 

 

1.1 Background Problem 

Thermal Design Point or TDP is the power consumption of a processor under maximum 

load. It is consider one major design parameter for various reasons including green 

computing. The cooling system of processors is designed so that the system operates 

safely only under this “upper” limit[7].  

 

The procedure of determining the TDP is very complex because it has to be 

representative[7]. The manufacturers cannot just use the sum of the maximum power 

consumption achieved by each component of the microarchitecture because there is no 

workload that can cause maximum activity to all microarchitectural components 

simultaneously. Also, by over-provisioning the power of a design, designers will waste 

resources on big heat-sinks, cooling systems and power delivery networks that could be 

used instead for computational reasons, like including extra cores to the design.[7] 

 

To choose representative limits, hardware vendors use stress tests (or power stress tests 

in the case above). Stress tests are small programs that maximize microarchitectural 

activity such as power consumption, voltage noise and IPC. We try to facilitate the 

representative creation of stress tests for the GPU ARM Mali T-624 by revealing 

different undocumented characteristics of its architecture. 
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1.2 Contributions 

Some of the main achievements that I have achieved Some of the things I managed to 

discover or validate by having taken into account the concept of parallelism and its 

management combined with the power consumption in the Mali T-624 are described 

below in figure 1.1. 

 

Figure 1.1 Validated and Discovered features 

 

1.3 Outline  

To begin with we are going through a brief look on the OPENCL framework(chapter 2) 

that we will use. After in the next chapter we are going to mention some important 

things about the Graphics cards on the architectural side and how they manage to 

achieve multi-way parallelism. To continue with in the chapter 4 I will then list various 

metrics that will be critical in the next steps such as power and time execution. 

Moreover next step in the chapter 5 is to list various publicly known or unknown 

features and which of them we are going to validate or discover. Chapter 6 will be all 

about how I setup the hardware and how I manage to take the measurements of power, 

execution time and our approach for analysis. Later on chapter 7 we are examining the 

available cores, also I will refer to the arithmetic pipelines and their depth and the job 

scheduling. In addition I am going to discover more about the addition units(vector & 

scalar) inside an arithmetic pipeline. Furthermore will be related work in that specific 

field(chapter 9) and in chapter 10 I will conclude the observations and the future work 

of this thesis. Last thing presented on this dissertation is the appendix A where is an 

examination of register file.        
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Chapter 2 

 

 

OpenCL 

 

 

2.1 OpenCL terminology        3 

2.2 OpenCL Execution Model       4 

2.3 OpenCL Synchronization                     5 

2.4 OpenCL Data Types        6 

 

 

2.1 OpenCL terminology 

In this section we will cover some basic terms about OPENCL[3]. 

OpenCL: is widely used for parallel programming in both CPU and GPU processors. It 

is a perfect way to make portable code across different platforms. 

Device: compute units that can execute OPENCL code e.g. a GPU or a CPU is a single 

compute unit. OpenCL devices typically correspond to a GPU. 

Host: Responsible for sending data to device and important parameters for the execution 

to the device. 

Kernel: function using OpenCL language. Can be compiled and executed on any 

supported devices.  Kernel  are always starting with the __kernel keyword. 

Compute Unit: Can have multiple cores so the device can have single or multiple 

processing units. Work-group is something similar to a block and can be processed 

within one processing unit.  

Work-group: group of work-items which are going to be executed on one available 

processing unit.  

Work-item: is basically a thread equivalent. Work-items are part of a work-group. A 

group of work-items are executing the same kernel code but processing data for each 

one should be different. Also it can be identified by the global ID among every existing 

work-item or its local ID inside a workgroup. 
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2.2 OpenCL execution model  

We use the OpenCL framework in order to be able to take advantage of the parallel 

processing of a GPU. Developers can make code that is optimized for each processing 

unit for any kind of platforms.  

 

 The OpenCL model is divided into two parts, the host and the devices. The host  is 

connected and can communicate with a single or many devices. Most common scenario 

for parallel program is that the host is the CPU and the device is the GPU that can 

handle parallel code much faster and efficient. The GPU can be considered as a series of 

multiple compute units (CUs). 

  

There are two things that every OpenCL program has: A kernel that is executed by the 

device/s and a host program that is managed by the host and is responsible for the 

context and the execution of the kernels. Work-items(threads) are instances of a kernel.  

Work–items are organized into groups called work-groups[3].  They can be identified 

locally by their parent workgroup or by a globally unique identifier(figure 2.1). The 

NDRange(figure 2.2) in the OpenCL can be 1D, 2D or 3D but in this research we are 

focusing on1D. The number of work-groups and their containg work-items must be 

declared by the programmer based on the NDRange chosen[3]. 

As reported by the OpenCL manual each thread or work-item can access 4 types of 

memory spaces[3]: 

1. Global Memory: can be accessed by every work-item regardless of the work-group 

that belong to. Read/Write accesses may be cached. 

2. Constant Memory: It is part of the global region but everything that is stored remains 

constant. It is host’s responsibility to insert memory objects in this region. 

3. Local Memory: can be accessed only inside a single workgroup. Mainly used for  

shared variables among the work-items. Sometimes is divided to small sections of the 

Global memory. 

4. Private Memory: has the scope-range of a single work-item. So each work-item has 

its own variables that are hidden from the others. 
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2.3 OpenCL synchronization  

The main way to achieve synchronization for the work-items that belong in the same 

parent work-group is a work-group barrier. If a barrier is present in the code all the 

work-items that are part of the same work-group must execute all the code that is above 

the barrier and later they will be able to continue with the execution of the rest of the 

code. Unfortunately OpenCL doesn’t have anything to synchronize the races between 

work-groups[3]. Example of barrier can be found in figure 2.3 

For the Command-queue there is also a certain barrier which is called Command-queue 

barrier. The command-queue barrier makes sure that the previously queued commands 

on the kernel have being executed and every single change on a memory object are 

being forwarded on any next enqueued commands.  

 

 
Figure (2.1) This figure visualizes the work-items and the existance of multiple 

work-items inside a workgroup 

 

 

Figure(2.2) The figures shows the supported ND Range in OPENCL. 

Depends on the programmer which one is going to use(depends on the problem) 
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2.4 OpenCL Data Types 

OpenCL supports scalar as well as vector types. Scalar data types include char, bool, 

short, int, long, float, double, half. Vector data types are the same as scalar ones except 

that they don’t support the bool data type. Additionally, the vector types are all followed 

by a literal n where values of n can be: 2, 3, 4, 8, and 16 (figure 2.4) for any vector 

type[3]. The value of n shows the number of elements that are part of the vector. 

Elements inside a vector can be accessed individually with the name of the 

VectorName.sN where N is the position that we want to modify/access. E.g. float4 

x=(float4)(1.01f, 21.0f, 31.0f, 4.10f); the programmer declares a 128 bit vector with 

4x32 bit float type numbers as can be seen in figure 2.5 and performs an addition. Each 

iteration it adds the value of vector b in the corresponding position in vector a. 

 

 
Figure 2.4 shows how different data types are existing inside a 128bit vector 

 

 

 
Figure 2.5 Kernel that uses Vector data types and performs add operation between 

vectors 

 
Figure2.3 Multiple work-items that are waiting until the all threads finish the 

execution 
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Chapter 3 

 

 

GPU Architecture 

 

 

3.1 GPU Definition         7 

3.2 Core Level Parallelism        7 

3.3 Pipeline Parallelism         8 

3.4 Instruction Level Parallelism (VLIW instructions)    10 

3.5 Data Level Parallelism         11 

3.6 Cache          12 

 

 

3.1 GPU Definition 

GPU which stands for Graphics Processing unit is an essential part of a  system, and it is 

also known as an “accelerator”. GPUs are designed with the aim to support the parallel 

processing of data. Their architectural characteristics (multi-level parallelism), allows 

them to achieve greater parallelism than CPUs and therefore surpass their performance 

when processing large non-sequential problems. GPUs are multithreaded meaning that 

they support the creation and execution of threads (sequence of code that can be 

executed in parallel). In general GPUs are in need of higher memory bandwidth and 

larger register file size due to the fact that they execute many threads at a time and 

produce more result than the CPU’s do. 

 

Today GPUs find applications in graphics, video rendering, gaming, machine learning 

model training  etc. They can be found in any type of device from mobile devices and 

desktops, to servers and supercomputers.  

 

3.2 Core Level Parallelism  

GPU’s most important hardware specification is the fact that they can handle 

embarrassingly parallel code much more better than a modern CPU. The total amount of 
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work is often split to multiple threads which are part of a workgroup. Work-group is a 

term that refers to a group of threads sometimes 16, 32 or 64 that are going to be 

executed together among the available cores of the GPU. Multiple threads running at the 

same time sometimes share some hardware resources. To be more specific the threads 

can be executed in different cores in parallel and that offers extra a level of parallelism 

which is called core level parralelism. In order to achieve core level parallelism the 

programmer must find a way to distribute the problem into multiple cores and make 

each thread as much independent from the others as possible. This is achieved by 

dividing the problem into subproblems that can be solved simultaneously-indepedently 

using threads. Threads can be distributed more easily and fairly among cores. Generally 

speaking Core Level Parallelism is the parallelism offered by the GPU in the form of 

multiple cores. 

 

 

3.3 Pipeline Parallelism 

Pipeline is a structure that organizes the execution part of the instructions. For example 

during the lifetime of an execution of an instruction it has to go through different stages. 

This stages include fetching, decoding, executing, memory and write back. In a non-

pipelined system an instruction has to pass through all the stages in order for the next 

one to start executing. This means that an instruction has to pass throughout all the 

stages in order for the next one to start executing. For example if the execution time of 

the stages is 5s the throughput will be 0.2 instruction/second. Instead we divide the 

 

Figure 3.1 This is an example of multiple 

cores connected together 
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execution lifetime into stages. Allowing based on the assumption above the execution of 

5 instructions simultaneously. For example we have 5 stages, each stage has execution 

time of 1 second. If the pipeline is full we have throughput 1 because each cycles one 

instruction is being executed. Each core has some different types of pipelines such as 

arithmetic pipeline, instruction pipelines. Although there are some type of hazards and 

data dependencies like Read After Writes( RAW ) that make the execution inside a 

pipeline much slower sometimes known as Stalls. 

 

There are different kinds of pipelines that differ in the way the threads that are ready to 

be executed are treated. First of all there are different policies for fetching instructions 

in “in order” policy instructions are being fetched in the program order. On the other 

hand in the “out of order” execution the instructions are dynamically scheduled and the 

instructions are being fetched in the sequence that the compiler generates.  

 

Moreover there are different kinds of pipelines policies–mechanisms that differ in the 

thread switching inside a pipeline .The ones that are commonly used in modern GPU’s 

are fine grained: which allows only a single instruction per thread inside the pipeline at 

a time and allows interleave execution in order to be able to hide stalls – latencies. Also 

inside a Pipeline there are many pipeline stages which can be used from different 

threads in order to increase the parallelism. To make this more specific multiple 

instructions from different threads can be executed together with the number of threads 

inside the pipeline being limited by the number of pipeline stages inside a core. Each 

pipeline has many stages that are used for different purposes. In fine-grained 

multithreading each clock cycle that passes the thread that contains the instruction is 

transferred to some other stage later in the hierarchy of pipeline while for each one that 

is being fully executed and has passed all the stages of the pipeline another new one 

enters the pipeline and starts from the very first stage. While at the same time those that 

are already in the pipeline and have not been finished are shifted on to the next stage. So 

if we have a thread which executes only two instructions, the pipeline depth is 5 (each 

stage needs only 1 cycle) and the pipeline uses fine-grained multithreading then each 

instruction needs exactly 5 cycles because the execution of the instructions for a certain 

thread can not be interleaved inside the pipeline(only one instruction per thread can be 

found at a time inside a pipeline) so 10 cycles in total for this thread to be executed. So 
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if another same thread is assigned to be executed with the same amount of instructions 

then both threads can have one of their instruction at the same time inside the pipeline. 

Then both threads need one more cycle to be executed because the second thread will 

finish in the next cycle right after the first thread finishes(11 cycles in total) the 

execution. In the scenario that we have multiple identical threads(more than the pipeline 

depth) with one instructions each  then the total cycles needed for all of those is 

NumberOfThreads+pipelineDepth.  

On the opposite side Coarse grained multithreading is a multithreading “policy” in 

which the thread switching is  visible when thread that executes inside the pipeline is 

suddenly triggering stall cycles. So the point of pipeline is that it significantly improves 

pipeline utilization by taking advantage of multiple instruction and/or multiple threads. 

 

 

 

 

3.4 Instruction Level Parallelism (VLIW instructions)  

Instruction level parallelism is when we are able to execute multiple instructions at the 

same time. There are two techniques to achieve instruction level parallelism. 

First way to achieve this is Very Long Instruction Word also known as VLIW 

instructions can have a wider instruction “format” in order to be able to issue many 

instructions and fit up to four instructions in one[8]. VLIW uses very long instructions 

in order to merge instructions that can be executed at the same time on different units 

 
Figure 3.3 This figure shows a non-

pipelined and a pipelined processor with 4 

stages 

 

 
Figure 3.2 This figure shows 2 thread 

switching mechanisms Fine-Grained 

vs Coarse Grained thread with 

pipeline depth 4 
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into one. This merging can only happen if the hardware and software dependencies 

allow it. Another key thing to remember is the that in this architecture instruction 

latencies are predetermined and there we need more registers[8]. Also VLIW 

architectures are in the need of high bandwidth instruction fetch mechanisms to bring 

the instruction words from the cache to the execution pipeline[8]. Example can be found 

on figure 3.4. 

The other way to achieve instruction level parallelism is the Instruction fusion which is 

something similar but it merges smaller number of instructions and is using specialized 

units which can handle the operations of the instructions that are fused.  

 

 

3.5 Data Level parallelism 

In this subsection we are going to discuss the data level parallelism techniques that take 

advantage of vector units. Vector instructions are type of instructions that are 

performing  parallel processing of data sets and store them in vector registers at the 

same time. There are different types of vector units such as vector addition and multiply 

units. Each vector can hold up many elements and every single operation inside of the 

vector does not depend from the others[9]. So this type of instructions are increasing the 

parallelism and they can be pipelined (overlapped during the execution). Vector type 

elements can be declared by the programmer or the compiler can make it for the 

programmer and this process is also called auto-vectorization[3]. 

 

 

 
Figure 3.4 An example of VLIW instruction that contains 4 independent instructions 

those are using different available units 
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3.6 Cache 

Cache is widely used in every modern processing unit (e.g. GPU) in order to decrease 

the energy and the delay to store/load data from DRAM. Moreover cache is 

significantly smaller in capacity, faster than main memory as is a high-speed static 

random access memory (SRAM) and is placed close to the processor. Every modern 

processing unit has many cache levels such as Level 1 or 2 (Multi-Level Hierarchy), 

some of them are used to store instructions(I-caches) or data(D-cache)[10]. As we go 

upwards in the hierarchy the corresponding level is smaller but faster than the previous 

ones. 

Everything that moves from DRAM to cache has a certain size and being limited to the 

size of cache lines. A copied cache line from DRAM that goes into the cache means that 

a cache entry is created[10]. The entry consists of the data as well as the tag which is the 

memory location. Processors that request to load or store in the memory are first 

checking the entries inside the caches then if the requested memory location is part of 

any cache lines then we have cache hit and the processor reads or writes inside the line 

instantly.[10] On the side if the memory location is missing from the cache then we 

have a cache miss and the cache handle this event by allocating a new cache entry and 

brings the stores the data from the DRAM and the missed request is then served. 
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4.5 Performance Metrics        15 

 

 

4.1 Power Consumption 

Power consumption in a modern system is the amount of energy per unit time and the 

main measurement unit is the Watts. Every processing unit has an idle state which no 

background processes are running and the power can be described as idle state power 

consumption. The idle state can change and becomes active if any processes are running. 

Moreover the Power consumption decreases or increases depending on how many 

functional units are used to execute a program in a certain time. Power consumption 

shoots up in a multiple cores CPU/GPU when more cores are activated. More work 

done (using more processors, functional units) in certain time indicates that we consume 

more power (Power=Energy/Time). 

 

4.2 Dynamic Power Consumption 

Dynamic Power indicates the switching activity of transistors. Dynamic Power 

equation[13]: 

 

• First parameter in the PDynamic equation is the Capacitance (C): which must be 

known from the manufacturer as it states the function of wire length and the 

transistor size.  
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• Supply voltage (V): has been improved over years with every new generation of 

processors .  

• Activity factor (A): The activity factor  states how often on average do the wires 

switch from 0 to 1.  

• Clock frequency ( f ): The clock frequency of the Processor has the greatest 

impact on the power during the evolution of new processors. Clocking in higher 

frequencies requires a higher supply voltage that why the dynamic power 

equation has voltage parameter cubic impact. 

 

4.3 Leakage Power Consumption 

Leakage or Static Power Consumption : 

 

Indicates the Power that is consumed by the system due to the fact that transistors are 

not turnoff completely even if the system is idle[13]. 

Parameters inside the equations: 

• N: indicates the number of transistor 

• V:Voltage  

• Vt: Voltage where the transistors conduct. Higher Value means faster transistor 

that leak more power. 

 

4.4 Power Consumption Metrics 

1. Energy: Measurement unit is joules  is often considered the most basic from the 

metrics 

2. Power: is consider to be the rate of energy dissipation in the processor. 

Measurement unit of the power consumption is watts( joules per second).  

3. Energy-per-instruction: Indicates the energy consumed when the system is 

getting optimized and we want to see side by side the techniques the  in the 

aspect of energy(microarchitecture optimizations)  
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4.5 Performance Metrics 

Another performance metric which is consider fundamental is the time execution: is the 

time that passes between the start and the end of the execution of a program(depends on 

the type and number of the instructions that have been executed ).it is an important 

metric because it has a direct correlation with power. Although the time execution is so 

important the processors are synchronizing everything using their own clock rate. Their 

clock cycle time is given by :  

 

  

 

Clock cycles for an executed program is the amount of  clock cycles needed to passed in 

order to execute the program and they can be used to calculate the time execution: 

 

 

 

Cycles per instruction: Another useful metric that computes on average how many 

cycles each instruction needs to be executed:  

 

 

 

Another way to compute the Execution time is : 
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5.1 ARM MALI T-624 GPU Specifications 

 

The GPU that we are focusing on this dissertation is the ARM Mali T-624 which is part 

of the Arm Midgard Family and is located on the ARM Junoboard r2. The GPU that we 

are discovering and validating certain features as well as the parallelism and how the 

GPU handles it. In this section we will emphasize on the hardware components and 

units that we already know as can be seen in figure 5.1 from the manufacturer of the 

GPU. First of all this GPU was made explicitly for the smartphone market. The reason I 

mention this is because mobile devices are  generally consume low amounts of energy. 

On the hardware side we have 4 identical cores(which I am going to validate) inside 

which are also called shader cores by the manufacturer. The shader core clock rate for 

the Mali is 600 Mhz. Inside each core we can find 2 arithmetic pipelines which we are 

 
Figure 5.1 Mali T624 known characteristics 



17 

 

going to validate in an upcoming section. Each arithmetic pipeline is containing Scalar 

and Vector units for both Multiplication and addition as well as a special function unit. 

To continue with a shader core has also a load/store pipeline as well as a texture 

pipeline that is mainly used for graphics purposes (we are not going to investigate the 

texture pipeline is out of the scope of this dissertation). 

It is important to mention that this GPU is using the fine-grained multithreading policy 

to put threads to run inside a pipeline (Section 2.3). Also to increase the instruction level 

parallelism it uses VLIW in order to execute independent instruction in different 

available units. For caching purposes the GPU has a Level 1 (L1) cache that is for 

private usage[12] for each core and it can store data up to 16Kb. Following this there is 

a Level 2 (L2) cache that is 32-256Kb that is shared among the 4 shader cores. It should 

be noted that all the cache lines are 64 bytes. Also each register in the GPU can store 

data exactly up to 128 bits[14].   

 

Some important software and microarchitectural parts shown in figure 5.2 that I have to 

explain: 

 

1. JOB MANAGER: A part of the GPU which manages the connection with the Mali’s 

driver : 1.Get in contact with the memory and then read the job descriptors 2. Tracking 

some job’s dependencies 3. Assign  jobs to the 4 cores in the GPU 4. Divides jobs to 

per-core tasks [4]. 

2. MEMORY MANAGER: There is one for all 4 shader cores. It handles the requests 

from memory Loads/Stores for each thread[4].   

3. THREAD POOL: Is a software program that is mainly used to achieve concurrency 

in an parallel program. A thread pool “queues” the threads that wait for tasks to be 

allocated for execution[11]. This part of the GPU helps the performance and can handle 

short living tasks[11]. Also this unit knows the cycles needed for each thread to finish 

the execution. 

 

4. THREAD RETIRE: This unit is responsible to keep track of the work-items/threads 

that finish the execution and maybe operates like a barrier that allows synchronization 

among the work-items.  
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5. MALI GPU DRIVER: Equivalent to the compiler. Compiles the code and makes 

optimizations such as merging multiple instructions to a more complex VLIW 

instructions if possible. 

 

5.2 ARM MALI T-624 GPU Specifications to reveal 

The main goal of my dissertation is to reveal more about the microarchitecture of the 

Mali T-624. First thing to do is that I am going to discover more about the number of 

the pipelines that exists in this GPU and the depth of the pipeline.  

Moreover we are going to discuss more about the Job Manager the way that the work-

items and workgroups are going to split across the four shader cores ( Work-load 

distribution among cores ). In addition I will try to verify exactly the number of the 

scalar and vector functional units that exist in the arithmetic pipelines. Those units are 

especially made for addition. Besides this, I will try to write parallel code that is using 

as many work-items as possible so that I can examine the register spilling event and  the 

register file and if it’s shared in scalar and vector data types. To sum up the 

characteristics of the microarchitecture that I am going to validate and explore will help 

me to understand more about the upper limits of the Mali T-624 when executing a 

parallel program. 

 
Figure 5.2 Shows the microarchitecture of the GPU Arm Mali T-624  
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Chapter 6 

 

 

ARM MALI T-624 GPU Methodology  

 

In this chapter I explain  the methodology I followed to conduct my experiments and 

extract the different characteristics of the Mali GPU. 

 

 

6.1 Hardware Characteristics        19 

6.2 GPU Kernel Setup        19 

6.3 Power measurements Methodology      20 

6.4 Power measurements Validation       22 

6.5 Approach for analysis        24 

 

 

6.1 Hardware Characteristics 

Some hardware characteristics where already known to us (figure 5.1). First and most 

important is that in order to eliminate the variations we disable dynamic frequency 

scaling, instead we set the clock of the GPU to fixed frequency, specifically to 600 Mhz. 

This value is called nominal value too and we make sure that it is always locked by 

setting the GPU governor to performance model. There are no fluctuations of the 

frequency even if the system is idle and does not run any process.   

 

6.2 GPU Kernel Setup  

First I have to explain how I get the value of the metric cycles per iteration of the 

kernels I execute. The equation is described on figure 6.1 

 
Figure 6.1 cycles per iteration 
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 In detail, the execution time in seconds is the time it takes for the parallel program to be 

executed, followed by the number of repetitions of the loop and finally the clock cycle 

time of the system which is (1/frequency) and its constant value is approximately 1.66e-

9ns. Time execution is measured by an OpenCL routine the “clGetEventProfilingInfo”. 

 

 Ιt would be good to repeat that all my experiments are taking place on the Junoboard r2 

that has an arm CPU and the GPU Arm Mali T-624. The host in the OPENCL 

framework is the CPU (Arm Cortex A53 & A72) and the device is the Arm Mali T-624. 

I am always have a 1D space of work-items and I am always passing and returning a list 

which at the end of the execution is going to contain the output results produced from 

the GPU in order to prevent dead code elimination as the compiler can easily inspect the 

code and execute only the code that produces data that are going to be used. Some of the 

parameters I pass to the device through host is a flag which deactivates and prevents the 

OpenCL optimizations during the compilation of the parallel code in order to make the 

execution easier to predict. It is also worth noting that the number of work-group and 

work-items changes and is not always constant in all experiments.  

 

6.3 Power measurements Methodology 

 
Figure 6.2 Graph for 1 day  experiment measuring idle power 
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Furthermore is important to mention how I extract the GPU power. The value of Power 

in a certain time is given to the programmer using on-board power meter. Over time as I 

was executing different types of experiments I observed that the ambient temperature 

changes throughout the day see figure 6.2 and as a result the idle power of the GPU 

changes see equation section. We want to eliminate the effect that the idle power 

consumption has on the overall power consumption and so we decided to measure idle 

power for each experiment while there are no background processes in the system and 

remove it from the average power consumption of the experiment (active power). For 

statistical confidence and stability in my methodology I subtract the idle power from the 

active power value in order to avoid any mistakes due to volatility (because the 

experiments were executed in different ambient temperatures throughout the year) and I 

ran each kernel multiple times with 100 million inside the for loops. 

More over to see how stable and predictable is our method for extracting the power and 

 
Figure 6.3 increasing workgroups and keeping the work-items to 64 

 

 
Figure 6.4 increasing work-items and keeping the work-groups to 1 
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find our reference-base kernel that has a for loop with 100million iterations(figure 6.5) 

we did the following experiments. In the figure 6.3 we have a graph that presents the 

actual power consumption vs the expected power consumption. We can see that the 

expected values are identical with the real values(expected values are found by 

subtracting the power consumption of work-group=2 with the values of workgroup=1) 

and that the power consumption when increasing the workgroups of size 64 is about 

0.140 watts each time. We did the exact same experiment (figure 6.4) by increasing the 

number of work-items(keeping the work-groups to 1) and comparing the actual vs 

expected values of the power consumption. We can see that the expected values are a 

little higher than the actual values but the difference is negligible (expected values are 

found by subtracting the power consumption of work-item=2 with the values of work-

item=1 and adding it each time). The values of power consumption when increasing the 

work-items are steady. In conclusion we can make the kernel (figure 6.5) our reference 

kernel as the power consumption of it when increasing work-groups or work-items 

follows a stable trendline. 

 

6.4 Power measurements Validation 

Objectives for this task was to make sure that the power consumption reported is as 

expected when changing the frequency and see that  the frequency was actually set to 

the desirable  value that I set it and its relationship with the power due to the DVFS part 

of the hardware that increases or decreases both proportional. Moreover I wanted to 

make sure that the execution time is getting increased linearly while we set the 

frequency each time to lower values. 

Experimental setup: The frequency of the GPU was clocked each time to 24 MHz less 

than the previous iteration starting from 600Mhz and going down to 432 MHz. For the 

purposes of this Task I wrote a simple script for automation reason that can run the 

executable file from the COM4 connection of the junoboard  keeping the work-items to 

64 and work group to size  4. 

Experimental results : 

For each one of the work items I assign to them 100 million iterations inside a for loop 

and a simple scalar addition (figure 6.5) 
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To make sure that the frequency was set to the desirable value I check the ratio of the 

first and second values of power and frequency to see if they were getting decreased the 

same. 

Results from the figure 6.6 

Power 0.853Watts/0.809Watts was equal to approx. 1.05 

Frequency 600MHz/576Mhz was equal to approx. 1.04 

Time 27.60sec/26.5sec was equal to 1.05  

Finally I kept the iterations for the total amount of the work-items the same. This means 

that frequency is getting linearly decreased like the power and the time gets increased as 

the two other parameters got decreased. 

 

 

 

 

 

 

 

 

To examine-validate why the power is getting reduced while we are reducing the 

frequency in a more theoretical model we can work with this equation  

P = C * V^2 * (a * f)  

 __kernel void add(__global  int * list){ 

int x=38; 

for(int i=100000000; i=0 ; i-- ){ 

  x=x+i;  

} 

  list[get_global_id(0)]=(int)x; 

} 
 

Figure 6.5 simple add kernel 

 
Figure 6.6 Power -Frequency-Time execution graph 
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So while we are reducing the frequency : 

• Capacitance stays the same  

• Voltage stays the same 

• A (switching activity= on average per cycle how many transistors are changing 

state 0 → 1) stays the same  

In conclusion I observed that in this theoretical equation only the f(frequency) can 

change the Power of the system. 

In the graph we have the red line that represents the theoretical power values while 

reducing the frequency from 600 down to 432(24 MHz each time). I observed that 

experimental values are close to the ones that theoretical model but not exactly the same. 

 

6.5 Approach for analysis  

In this section I am going to discuss more about the approach I followed in order to 

decide the parallelism within the GPU. 

 

 

 

This particular power equation will help a lot to discover parallelism. Because for 

example if we add another operation inside a kernel (e.g. scalar addition inside a kernel 

that is containing only scalar additions) and the power consumption gets increased  and 

takes the same time to be executed that means the system can handle the extra work in 

parallel (and that means it has the extra units to execute it). In other words more work 

done in the same time means higher power consumption. In the other side from this  

equation we can discover the constraints on this GPU.  So if we add more work than the 

GPU can handle in parallel we will see a time execution increment and at the same time 

because we add more work we need more energy. The energy that the GPU that needs 

to perform the extra work increases and for this reason after we overcome the maximum 

parallelism of the system we will see a stable value in the power consumption because 

the fraction of the power equation produces the same result because the extra work 

needs more time due to the fact that the extra work assigned have reached the 

parallelism limits and has to wait for the previous operations to finish (higher energy 

than before and higher time than before). 
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Another constraint that can help us decide the parallelism is the VLIW scheduling as it 

can fit only up to four independent instructions at the same time and not more. Also 

another constraint is possibly any dependences among the instructions of a kernel. For 

example  x=x+1;  and u=u+x; have dependence because u variable needs the result of x 

to be computed in order to add the correct value. 
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Chapter 7 

 

Arm Mali GPU Shader cores 
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7.4 Work-items Scheduling in Mali       37 

 

 

7.1 Available GPU Cores 

In this chapter we are going to validate the number of cores of the GPU Arm Mali T624. 

As we already the GPU achieves the Core Level Parallelism using simultaneously if it 

needs the 4 shader cores available at the same time. 

 

 

 
Figure7.1 Power-Cycles per iteration-Work-Groups 
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Experimental setup & Objectives: For this task I wrote two simple kernels figure 7.2 our 

base kernel. To make this more specific I have wrote this kernel and assign the most 

suitable number of workload each time to activate all the GPU Shader cores in order. I  

was keeping the number of work-items to 64 and I was increasing the number of 

workgroups each time by one as can be seen from the x-axis on the graph(figure 7.1). 

Also I have to say that the comparison (i!=0) depends for the value of  the loop counter 

(i--). Moreover the addition inside the kernel also depends on the value of the loop 

counter as it wants to add it on the variable x so the extra addition needs to be computed 

later than the loop counter 
 

Experimental results: 

We can see in the bars in the graph above (figure 7.1) we can break this experimental 

results into two phases. First of all phase 1 is where we are increasing the workgroups 

from 1 to 4 and the second one is when we have 5-16 work-groups. 

 

During the first phase the system power is getting increased approximately 0.14W each 

time we add another workgroup and the cycles per iteration are approximately 74 and 

remain stable up to 4 work-groups. So considering the fact that the power is increasing 

and the cycles per iteration are constant that shows that the system every 64 work-items 

inside a work-group a core gets activated. 

 

In the second phase we can see a pattern which the cycles per iteration are getting 

increased by 37 each time we add 4 more work-groups to be executed while the power 

remains the same(5-8, 9-12, 13-16). This is because from the power equation can see 

 __kernel void add(__global  int * list){ 

int x=38; 

for(int i=100000000; i=0 ; i-- ){ 

  x=x+i;  

} 

  list[get_global_id(0)]=(int)x; 

} 
 

Figure7.2 Base kernel 
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that adding more work needs more energy and more time if no available resources 

available. Energy and time factors are getting increased linearly so the fraction has the 

same impact on Power. 

 

All in all Cycles per iteration and Power measurements are helping us to understand the 

maximum parallelism in cores since as soon as the first factor increases means that we 

have no other resources-cores available to execute any other workgroup at the same 

time. So we can verify that there are 4 cores in the GPU Mali T-624 as long as the 

Cycles per iterations are increasing after 4 workgroups of 64 wi the certain pattern we 

examined above.  

 

7.2 Arithmetic Pipeline Depth 

Objectives for this task: we are focusing on extracting the exact number of Mali’s GPU 

Arithmetic pipeline depth (stages) which a thread could follow during the execution of a 

kernel 

 

 
Figure 7.3 cycles per iteration – work-items graph 
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Figure 7.4 Power – work-items graph 

 

 
Figure 7.5 cycles per iteration – work-items graph 
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Figure 7.6  Power – work-items graph 

 

 

 
Figure 7.7 above graphs combined 7.3-7.6 

 

Experimental setup: 

In order to make this experiment possible I wrote a simple kernel (figure 7.8) which 

from now on we will consider it as the base kernel and contains a simple loop with 100 

million iterations with a scalar add. Also I have to make clear that I used two execution 

Scenarios to assign threads for execution to the GPU. First scenario of execution : I kept 

the number of work-groups constant at 1 and I executed the experiment for many 

different work-items within range 1-256. The second type of execution I kept the 
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number of work-items inside a workgroup to 1 and I was increasing the number of 

workgroups within the range 1-256.  

Experimental Results:  

We already know that the system has two arithmetic pipelines in each core.  

In the first of execution scenario on the graph (figure 7.5) we can see that the cycles per 

iteration are remaining stable from 1-74 work-items and the power is getting increased 

as expected (figure 7.6) because we have more work done in the same time so that 

shows at this stage we have not fully filled both pipelines with work-items. Suddenly 

after 74 until 256 work-items the cycles per iteration are getting increased almost 

linearly in relation to the work we assign to the work-group so that indicates that we 

have reached the maximum parallelism when we executed 74 work-items. While this 

was happening the power was remaining stable approximately at 0.2 W. 

In the second execution scenario we can see that the cycles per iteration (figure 7.3) are 

remaining stable from 1-37 work-items in total and the power (figure 7.4)is getting 

increase so that shows at this stage that there are existing the facilities to support those 

work-items. Later we can see a strange behavior and the cycles per iteration are getting 

increased before 74 work-items like before and the power tends to stay stable from 38-

64 work-items. After that within the range of 65-256 the cycles per iteration are 

approximately 110 and the power is following the same pattern as 1-64 thread which 

means that the workload is shared among other cores. If it wasn’t distributed then we 

would see cycles per iteration increasing and the power remain  constant. 

The above experimental results (all combined in figure 7.7) can lead us to the 

conclusion that the first model is using both arithmetic pipelines inside a core that’s why 

it can support approximately double the amount of work. Moreover the second model of 

execution is using only the one arithmetic pipeline due to the power  stillness between 

37-64 wi. So the second execution model reveals that the pipeline depth inside an 

arithmetic pipeline of the Mali T-624 GPU  has 37 stages and with the fine grained 

multithreading policy combined  can support up to 37 different wi at the same time. The 

VLIW scheduling for this experiment can be found at figure 7.9. 

Another observation in this experiment is that a single workgroup can only contain up to 

256 Work-items. If a programmer assigns more than that number the Driver cannot 

support it and cannot execute any kernel so it gives this error message 

“CL_INVALID_WORK_ITEM_SIZE”. 
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From now on I can introduced safely the VLIW scheduling for each subsequent kernel 

in my experiments since I know now that the pipeline depth is 37. This knowledge 

combined with fine-grained multithreading makes us aware that each VLIW command 

needs 37 cycles to be executed. For example a kernel which has 2 VLIW instructions I 

expect it to need 74 cycles to be executed and not 38 cycles because Coarse-grained 

multithreading is not used in this GPU (more about this on section 3.3).The scheduling 

for the experiment’s kernel(figure 7.8) is presented in figure 7.9 

 

 __kernel void add(__global  int * list){ 

int x=38; 

for(int i=100000000; i=0 ; i-- ){ 

  x=x+i;  

} 

  list[get_global_id(0)]=(int)x; 

} 
 

Figure 7.8 Base kernel 

 

 

Figure 7.9 VLIW scheduling 

 

7.3 Work-Groups scheduling 

 

 __kernel void add(__global  int * list){ 

int x=38; 

for(int i=100000000; i=0 ; i-- ){ 

  x=x+i;  

} 

  list[get_global_id(0)]=(int)x; 

} 
 

Figure 7.10 Base kernel 
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Figure 7.11 Cycles-Power-Work Load 

 

 

Figure 7.12 Cycles-Power-Work Load 



34 

 

 

Figure 7.13 Cycles-Power-Work Load 

 

 

 Figure 7.14 All the above figures combined ( Figures 7.11 - 7.13 ) 
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Objectives for this task: In the previous section I managed to validate the number of 

Shader Cores inside the Mali T-624 GPU. Now we are taking a further step and in this 

section I am focusing to extract a model which the GPU tends to follow in order to 

distribute the workload among the cores. The life cycle of a thread begins with queuing 

in the thread pool, then passes to the GPU units and then retires after the execution of all 

its commands. 

Experimental Setup: In order to make this experiment possible we have used again the 

base kernel ( figure 7.10 ) and executed it with the following combinations of: 1,2 and 4 

workgroups and wi=1-256 in order to extract some results for the distribution of work 

among the cores. Also I have to mention that the graphs x-axis is containing the total 

workload of threads that means:   

 

 

 

Also I have to say that the comparison (i!=0) depends for the value of  the loop counter 

(i--). Moreover the addition inside the kernel also depends on the value of the loop 

counter as it wants to add it on the variable x.  

 

Experimental results: 

Phase 1(Results from figure 7.11): 

For example if we take the blue line that corresponds to the cycles per iteration from 1-

72 work-items ( 72=1*72 ) those work-items are executed in the same processor 

because the power consumption is getting increased almost negligible decimal digits 

between 0.1 - 0.2 and the cycles per iteration are stable to 74 (also can be seen from the 

power values of the shader core experiment that they are inside 1 core). The same thing 

can be applied on all three lines in the graph above (4*18 or 1*72) if the workload is 

less than 72(on figures 7.12 and 7.13). Suddenly after we pass 72 work-items the cycles 

per iteration are getting increased because in that point we have hit the maximum 

parallelism possible inside a single processor so each additional wi that is arriving needs 

few more cycles to be executed so the power stays the same because the GPU has more 

work to do in more time. ( Power = Energy / time execution ). I am referring to the 

workload 73-127 threads.   

Phase 2 (Results from figure 7.12) 
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For 2 work-groups we have the same distribution of the work as it was on the figure 7.2 

if the workload was less than 128 work-items in total ( e.g. 2*60=120 so it is executed  

like I discussed above on the phase 1 ( inside a single processor ). But then when the 

work-items inside a work-group are more than 64. For instance here we had 2 

workgroups and we assign 64 or more work-items inside those 2 workgroups so that 

leaves us with 128 work-items in total. Then we can see from the cycles per iteration 

that there is existing processing units to execute those work-items faster because a 

second core gets activated ( according to the higher power consumption in that 

moment ). Cycles per iteration got decreased from 124 to 74 when the new core got 

activated and the power increased ≈ 0.140W. Finally after the core gets activated all the 

rest work-items added were executed inside those two cores( no more than 2 cores got 

activated ). 

Phase 3 (Results from figure 7.13): 

Same thing can be applied to this figure 7.4 until the driver found out about the 

assignment of 64 work-items inside four workgroups( 4 * 64 = 256 ). Then at that 

particular moment the Job Manager split the work equally to all four cores. The reason 

that our assumption is validated is because the power consumption got increased and the 

cycles per iteration got decreased so the Job Manager took advantage of all the four 

shader cores of the Mali T-624. The rest work-items added after 288 have extra cycles 

per iteration penalty as there is no more cores to execute the extra work assigned so the 

power remains the same. 

Also in figure 7.15 I will show the scheduling inside a VLIW instruction for the kernel 

in 7.10 

 

 

Figure 7.15 VLIW Scheduling 

 

 

Models extracted from this experiment: 
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7.4 Work-Items Scheduling  

Objectives for this task: In the previous section I managed to show the scheduling in 

Arm Mali T-624 for a given number of work-groups. Now we are taking a further step 

and in this section I am focusing to extract a model which the GPU tends to follow in 

order to distribute the Work-Items among the cores.  

 

Experimental setup: For this task I wrote a simple kernel same as figure 7.10 ( our base 

kernel ). To make this more specific I have wrote this kernel and assign the most 

suitable number of workload each time to activate all the GPU Shader cores in order.  

The execution scenario I followed was used before when we discovered the pipeline 

depth. I  was keeping the number of work-items to 1 and I was increasing work-groups 

in the range  1 – 256. 

 

Figure 7.16 Cycles per iteration 

 

Figure 7.17 Cycles per Iteration and Power 
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Experimental results: Like discussed before in the experiment that I discovered the 

pipeline depth this execution model is taking advantage of only the one of the two 

arithmetic pipelines that exist inside each core. That is validated because as can be seen 

from the figure 7.16 the Cycles are stable to 74 because he have only two VLIW 

instructions and each one takes 37 cycles per iteration and the power gets increased 

when we get closer to 37 ( more work done at the same time ). But after 37 until 64 

there is no space inside the single arithmetic pipeline inside a core to execute more 

VLIW instructions ( figure 7.15 ) as we increasing the number of work-items so each 

additional work-item added has to wait for an old one to finish execution( fine-grained 

multithreading ) and the power consumption fraction remains constant due to the energy 

and time linear increment.  

When I had assigned more than 64 work-items a new core got activated because cycles 

per iteration dropped significantly and the power got increased in the same pattern like 

1-64 work-items and the cycles per iteration remained constant because the work-items 

after 64 got assigned to a new processor. As can be seen the power is significantly lower  

than the other experiments( figure 7.11 ) where both arithmetic pipelines were utilized 

with work-items. 

In conclusion with this execution scenario a core gets activated every 64 new work-

items that got assigned. 
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8.1 Scalar data type addition units 

 

Objectives for this task: Discover how many scalar additions can  the GPU handle in 

parallel. Moreover I wanted to make sure that the execution time is getting increased 

linearly while I add more additions for each work-item if were no more available units 

inside a core. 

 

Experimental setup: For the purposes of this Task I wrote a simple kernel(figure 8.3) 

which consists of a for loop with 100m iterations and inside of it I was adding one more 

independent addition each time starting from 1 up to 13 scalar additions ( additions 

 
Figure 8.1 Power - Cycles – Scalar add operations 
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added are equal to the number on the x-axis on the graph ). Each work-item was 

executing A * N additions + N additions for the loop ( A=additions N=number of 

iterations ). There is dependence between the comparison ( i!=0 ) and the loop 

decrement ( i-- ) so the are not executed in the same VLIW instruction. Moreover the 

first addition inside the kernel also depends on the value of the loop counter as it wants 

to add it on the variable x.  

 

Observations for this experiment: A simple thing of the utmost importance to mention is 

the fact that the loop is using an addition unit to accomplish the counter increment. 

According to the graph (figure 8.1)we can see that the GPU can execute 4 scalar 

additions in parallel. Τhe fact that confirms this is again the cycles per iteration and the 

power in the graph. The cycles can show that the addition parallelism inside the GPU is 

4 because each additional scalar add after a group of 4 costs 37 more cycles(VLIW 

scheduling figure 8.2). The first addition added depends on the value of the counter(i) 

that is why is executed in the next VLIW instruction and not the same as that. 

Also is essential to mention that although it has 10 addition slots( =2*1 scalar + 2*4 

vector ) the GPU tends to: 

• use both vector unit and scalar units to 

execute multiple scalar additions only 1 addition 

inside(more later on the next section). When a 

scalar operation is assigned to a wi is executed by 

scalar or vector unit inside the core. 

 

Theoretical models extracted from this 

experiment: 

 

 

 

 

 

 
Figure 8.2 VLIW Scheduling 

 
Figure 9.3 

 
Figure 8.3 kernel 
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8.2 Vector data type addition units 

 

Objectives for this task: Discover how many Vector additions can  the GPU handle in 

parallel and what is the cost in cycles when we exceed the amount of parallel vector 

additions the GPU can handle.  

 

Experimental setup: For the purposes of this Task I wrote a simple kernel ( figure 8.5 ) 

which consists of a for loop with 100 million  iterations for statistical confidence when 

measuring power and inside of it I was adding one more vector type addition each time 

starting from 1 up to 14 vector additions (additions added are equal to the number on the 

x-axis on the graph). Each vector was independent from the others added inside the 

“for” loop. As I mentioned above in the OPENCL data types section the int4 in the 

kernel code stands for  128 bit  vector that has 4x32 bit integers. Also I have to say that 

the comparison ( i!=0 ) depends for the value of  the loop counter ( i-- ). Moreover the 

addition inside the kernel also depends on the value of the loop counter as it wants to 

add it on the variable y.  

 

Experimental results: According to the graph on figure 8.4 the GPU tends to execute 2 

vector additions in parallel as we can see from the cycles per iteration(VLIW scheduling 

figure 8.6). The first addition added depends on the value of the counter(i) that is why is 

executed in the next VLIW instruction and not the same as that. 

 
Figure 8.4 Power - Cycles – Vector add operations 
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The reason that we can support our hypothesis is 

simply because the cycles per iteration are getting 

increased by 37 cycles every N/2 (where N the 

vector additions ). Also the power consumption is 

getting increased enough in the first two operations. 

After the first 2 additions the power keeps an 

almost constant pattern in its consumption. 

Combining those together with the power equation  

our hypothesis is getting confirmed because as we 

assign more operation and need more time to 

execute them because of the fact that there are no 

more than 2 vector units. All in all power remain 

stable after the first 2 additions. 

 

We can also say with confidence that both 

pipelines have the same number of addition vector 

units (specifically 2) since the experiment was 

performed by filling both pipelines completely 

with wi, however the time remained constant 

depending on the operations of additions that I put in the kernel (the corresponding 

values on the x-axis) 

 

Theoretical models extracted from this experiment: 

 

 
Figure 8.5 kernel  
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8.3 Scalar and Vector data type addition units   

 
Figure 8.6 VLIW Scheduling 

 
Figure 8.7 Power - Cycles – Scalar and Vector add operations 

 
Figure 8.8 kernel 
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Objectives for this task: validate the assumptions we made before on the 2 previous 

sections of this chapter for the vector and scalar units. Previous we assumed that there 

are two units for vector and scalar additions respectively. So in this experiment we are 

trying to validate that assumption by adding both operations in the same kernel. 
Experimental setup: I made for the purposes of this task a kernel (figure 8.8) only with 

add operations which combines both scalar and vector data types. Important note: the 

loop is using an addition unit to accomplish the counter increment. Also I have to 

mention that each addition is independent from the others added inside the kernel and 

the counter comparison with zero depends on the loop counter subtraction( i-- ). 
 

Experimental results: For the convenience of the reader I should mention that the x-axis 

states how many scalar (sc) and vector (vec) instructions I insert in the kernel at any 

time.  

This kernel validates: 

1. The number of Vector units are 2 in each pipeline 

2. The number of Scalar units are 2 in each pipeline and during the execution it 

also uses vector units to achieve 4 additions in parallel. 

 

In the graph figure 8.7 we see that the cycles per iteration are getting increase 37 cycles 

each time we add 2sc and 2vec instruction combined. Moreover in some point in the 

graph and the VLIW scheduling( figure 8.9 ) we can see that if we add 2 scalar and 2 

vector and trying to add another scalar there is a cycles penalty of 37 so it is a proof that 

my second scenario is true. Also we managed to validate and the first scenario because 

when we add a third vector to be executed the we will observe the same penalty as 

before while we where using both pipelines inside each one of the two cores. The first 

addition added depends on the value of the counter ( i ) that is why is executed in the 

next VLIW instruction and not the same as the counter. 

 

Theoretical models extracted from this experiment: 
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Figure 8.9 VLIW Scheduling 
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9.1 Related Work 

As I have mentioned before there are some related works in the creation of Power 

viruses in the modern GPU’s and CPU’s but nothing the same have ever been done in 

Arm GPU’s. I found some other studies that have be done on the GPU NVIDIA 

GeForce GTX 2080 “Power and Performance Characterization of Computational 

Kernels on the GPU”[15]. In that paper the authors are trying to do a power modelling 

and performance characterization for various types of kernels such as computationally 

or memory intensive ones. Also they mentioned that they were executing the kernels 

and changing the clock speed of the memory and processor to see the affects in power 

and performance. Secondly I have managed to find another one study “Highly 

Configurable Power Virus for GPGPUs”[16] that focuses on Power viruses 

development with a tool that the authors made. During the experiments they were 

measuring the power consumption on different NVIDIA GeForce series 

GPU(eg.GTX480) for various viruses made using genetic algorithms. Finally I found a 

related work that was about power virus development for Arm Cortex CPU’s also using 

generic algorithms  “GeST: An Automatic Framework For Generating CPU Stress-

Tests”[1] 
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10.1 Conclusion  

This work presents the reverse engineering analysis of ARM Mali GPU T-624. The aim 

of this work is to reverse engineer characteristics of the GPU in order to facilitate future 

power virus generation targeting the specific GPU architecture. The analysis is focused 

on both validating publicly available features of the GPU like number of cores and 

number of arithmetic pipelines and also discovering new ones like pipeline depth, 

scheduling etc. This is achieved by monitoring the cycles per iteration and the power 

consumption of simple kernels. As far as we know there is no other publicly available 

work apart from [17], that characterizes the specific model of GPU with the aim to use 

the analysis for stress test generation. We extend the previous work by investigating 

additional microarchitectural features of the GPU. Finally, the thesis main contribution 

is that it provides insights regarding the maximum parallelism achieved and how is 

managed by the GPU. 

      

10.2 Future Work 

There are many things that can be done in the future to improve my work. First of all it 

will be great to see an attempt that manages to extract more about the parallelism of the 

Arm Mali T-624 for units I haven’t discovered such as Multiply unit, Dot 

product(VLUT) unit parallelism. Also it will be great to see the affect that have in the 

power consumption more computationally and memory expensive programs that take 

full advantage of all functional units such as Image processing or various benchmarks. 



48 

 

Further more it will be ideal to see another attempt that tries to reveal more about the 

power consumption and performance impact when trying to load/store on L1 and L2.  

Most importantly the findings of my dissertation can be also used to create more 

representative stress tests(Power Viruses) for the GPU either manually or by 

incorporating the findings to an existing framework. An example of such framework is 

GeST[1][2]. GeST is an automatic framework for generating CPU stress tests. It uses 

genetic algorithms search and can be used to maximize different metrics. GeST, is 

publicly available and it’s software architecture provide the flexibility to incorporate 

easily extra features to the framework such as support for GPU stress-tests. 

 

10.3 Lessons Learned 

One of many things  I learned in the context of dissertation is that the Mali GPU Driver 

is intelligent  enough to understand that if the code has constant input and produces no 

output can easily eliminate most of the code also known as Dead Code elimination. 

Also even though the GPU was targeting the smartphone market and it was a low 

powered device and clocked in a low frequencies it can handle heavy load very well by 

achieving multi-way parallelism. In conclusion smartphone targeting GPU’s by Arm are 

promising. 
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Appendix A - Register File Size 

 

Scalar data type register spilling 

To start with I want to I want to mention and explain the term register spilling: when the 

Mali Driver(Compiler) does the register assignment for each variable in a kernel when 

producing the machine code if the kernel has more variables than the GPU register file 

can handle-support then the GPU has to transfer some registers to the cache. 

 

The main purpose was to examine the register file in the Arm Mali T-624 GPU for 

scalar data type and to see the penalty in cycles when the register spilling phenomenon 

is happening. 

 

For the purposes of this experiment I wrote a kernel with multiply and addition pair. In 

this kernel every addition dependents on the result of the multiplication above it. Also 

the counter comparison with zero(i!=0) dependents from the result of counter 

subtraction. For the sake of brevity I did not put the whole kernel in the figure A.3 

above, however for each subsequent operation(corresponding to the x-axis at the graph 

in figure A.1) I used different variables.  

 

Experimental Results: We can see two major phases in the graph according to the cycles 

per iteration (orange line). The VLIW scheduling contains is presented on figure A.4 

1st  phase of execution(1-5 mult-adds): First pair of mult-add take 74 cycles and each 

subsequent mult-add takes an additional 37 cycles in order to be executed. 

2st  phase of execution(6-9 mult-adds): At the previous phase we saw that the penalty 

for each subsequent mult-add was 37 cycles. Example of register assignment for the 

kernel I use can be found at figure A.2. Also cycles penalty as can be seen  in the figure 

A.5 below. 
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Figure A.2 Register Assignment 

 

 

Figure A.3 kernel 

 

 

 
Figure A.1 Register Spilling Experiment 
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Vector data type register spilling 

Main objectives for this task was to examine the register file in the Arm Mali T-624 

GPU for Vector data type and to see the penalty in cycles when the register spilling 

phenomenon is happening. 

 

For the purposes of this experiment I wrote a kernel with multiply and addition pair for 

vector data types ( figureA.7 ). In this kernel every addition dependents on the result of 

the multiplication above it. For the sake of brevity I did not put the whole kernel in the 

figure A.7 above, however for each subsequent operation(corresponding to the x-axis at 

the graph in figure A.6) I used different variables. In figure A.9 there is a VLIW 

scheduling for the code in figure A.7  

 

Experimental Results: We can see two major phases in the graph on figure A.6 

according to the cycles per iteration ( orange line ).  

1st  phase of execution( 1 - 5 mult-adds ): First pair of mult-add take 74 cycles ( same as 

scalar ) and each subsequent mult-add takes an additional 37 cycles in order to be 

executed  

 
Figure A.5 Cycles per iteration actual vs expected 

 
Figure A.4 VLIW Scheduling 
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2st  phase of execution(6 - 9 mult-adds): At the previous phase we saw that the penalty 

for each subsequent vector mult-add was 37 cycles. Example of register assignment for 

the kernel I use can be found at figure A.2 as it can get applied in the same way for 

vectors). Vector register spilling has a few more cycles penalty as can be seen in the 

figure A.8 ( penalty cycles highlighted with red color ) below. 

 

 

 

 

 

 

 

 

 

 

 
Figure A.6 Register Spilling vector data types 

 
Figure A.7 kernel 
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Figure A.9 VLIW Scheduling 

 
Figure A.8 Cycles actual vs expected 


