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Abstract 
 

Most high-performance processors today have multiple cores that can execute multiple 

programs simultaneously. Cores share processor resources, like the Last-Level Cache and 

Main Memory, which may be sources of performance variability because multiple cores 

may want to use them at the same time. In many research studies in Computer 

Architecture, a multicore processor is evaluated using microarchitecture simulators based 

on multi-program workload mixes. Specifically, for a multicore with C cores each mix 

used in a multi-program evaluation will contain a unique combination of C programs from 

a suite of benchmarks. The evaluation methodology in all previous multi-program studies 

considers each mix once, whereby each benchmark is assigned to a specific core. 

However, one can change the order that the C benchmarks in a mix are assigned to the C 

cores in multiple ways, to be exact, C! ways. The first question this project tries to answer 

is whether the order we run a benchmark mix affects the performance of a multicore 

simulation? In this work, we show, for a specific simulator and benchmark mixes, that 

changing the order of how benchmark’s in a mix are assigned to cores changes the 

performance of the programs. We evaluate the range of performance (minimum to 

maximum) of a multicore processor has when changing the order for many mixes and 

show that it can vary considerably (up to 1.26% the maximum over the minimum). The 

second question we answer, is whether when comparing the performance of two different 

multicore processors using the legacy multi-program evaluation methodology can lead to 

wrong conclusions as far as which of the two multicores is best? We compare two Last-

Level Cache replacement policies and show that the range of performance of the two 

policies overlap which means, legacy multi-program evaluation can lead to wrong 

conclusions for which policy is best. We propose a new evaluation methodology for 

multicore simulations that consider the range of performance for the processors we are 

studying so it would guide us better to understand which of the processors is best. Another 

important question we asked is, whether the performance variation due to the benchmark 

order in a mix appear on real machines also? We show that real machines may have 

variation on performance due to changing the order of a mix, but more data and analysis 

is needed to establish this clearly. 
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Chapter 1 
 

Introduction 
 

 

 

1.1 Introduction          1 

1.2 Outline           3 

 

 

 

1.1  Introduction 

 

With multicore processors nowadays the performance of a program can be affected by 

programs running simultaneously on the other cores, mostly because they all share 

resources (Last-Level Cache, Main Memory…). This impact varies depending on which 

are the other programs running and which core they are executing on.  

The study of multicore performance on benchmark mixes requires detailed simulations. 

The most common evaluation methodology for this kind of study is to consider a set of 

single-thread benchmarks and randomly define a fixed set of benchmark mixes, simulate 

them and quantify the performance with a combined metric, i.e., Weighted Speedup [1, 

2, 3, 4, 5, 6]. What this evaluation methodology does not take into consideration is on 

which core each benchmark of the mix is assigned, they run each mix once and each 

benchmark is assigned to a specific core. However, one can change the order that the C 

benchmarks of a mix are assigned to the C cores in various ways, to be exact C! ways.  

So, one question that comes up is, does the order we run a benchmark mix affects the 

performance of a multicore simulation? We investigate this by exploring all the possible 

permutations each benchmark mix has considering a set of benchmark mixes. We 

performed simulations with Champsim Simulator [7], a simple trace-based simulator for 

microarchitecture studies that measures the IPC as a performance metric. We show that,  
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changing the order of a benchmark mix affects the IPCs of the benchmarks that is 

consisted of. We also calculated the Weighted Speedups of the C! experiments for all the 

simulated benchmark mixes and show that changing the order of a benchmark mix affects 

also the Weighted Speedup of the benchmark mixes(Will be explained in detail in later 

sections) and evaluate the range of overall performance the multicore has (minimum to 

maximum) and it can vary significantly (up to 1.26% the maximum over the minimum). 

Hence, it is important to take into consideration the order the benchmarks are running. 

With all been said, the follow-up question is, when comparing two multicore processors 

performance using the Order-Aware multiprogram evaluation methodology, can lead us 

to wrong conclusions on which of the two is best? 

We examine that using as a case study a comparison of two last-level cache replacement 

policies, SHIP and SHIP++, which we know clearly which is the best from previous work 

[1, 3]. We show that, the range of performance of these 2 policies overlap, which means 

that the Order-Aware multiprogram evaluation can lead us to wrong conclusions on which 

policy is best. So, it is not safe to simulate just one fixed order of the benchmark mixes, 

as done in the previous studies.  

We propose a new multiprogram evaluation methodology, the Order-Aware 

Multiprogram evaluation methodology, in which we simulate all the potential orders for 

each benchmark mix and estimate the extremes (minimum and maximum) of the 

performance range for the multicore we study. That way, we'll have a better sense of a 

multicore processor's performance, which will aid us in making a more accurate 

conclusion regarding which processor is best in a comparison case study.  

Finally, we also evaluate how changing the order affects the real machine performance, 

we run for each benchmark mix all the possible orders like we did for the simulation 

experiments with only difference that we run every experiment multiple times because a 

machine is not deterministic like a simulation. We show that also real machine may have 

variation on performance due to changing the order, however more data and analysis is 

needed to establish this clearly. 
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1.2  Outline 

 

This dissertation consists of six chapters and is organized as follows. Chapter 1 was the 

introduction which presents what this work is, what problems this may have and why it’s 

important to evaluate them. Chapter 2 presents the background someone needs to have to 

understand this work. Chapter 3 presents the current practices, describes in detail the 

problem of order sensitivity and propose the new evaluation methodology to evaluate the 

order sensitivity. Chapter 4 describes the experimental details for the simulator and real 

machine we used. We evaluate order sensitivity in Chapter 5 for simulator and real 

machine results. Finally, Chapter 6 concludes this work and discusses future work. 
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Chapter 2 
 

Background 
 

 

2.1 Multicore CPUs         4 

2.2 Simulators          6 

 

 

 

2.1  Multicore CPUs 

 

Multicore processors have been in existence over two decades ago but have gained more 

importance off late due to the limits that single-core processors face today, such as high 

throughput and energy efficiency. A multicore processor is a single processor which 

contains two or more cores on a chip. The cores are functional units containing 

computation units and caches like any other single-core processor. These cores work 

together in order to achieve the performance of the more complex faster single-core 

processor. The individual cores on a multicore processor doesn’t necessarily run as fast 

as the highest performing single-core processors, but they improve throughput by 

executing more tasks simultaneously. Multicore processors commonly have private level 

caches and a level of a shared cache. The Figure 2.1 shows a 4-core multicore processor 

with L1 and L2 private caches and each core is connected via an interconnection network 

to a shared L3 cache and this cache is connected also via an interconnection network to 

the main memory. 
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Figure 2.1 Multicore CPU Architecture 

 
 
 
 
 
On these 4 cores on Figure 2.1 we can run 4 programs simultaneously. These programs 

throughout their execution are using the resources of the core they are assigned to like the 

core’s Arithmetic Logic Unit (ALU), Instruction-Cache (IL1), Data-Cache (DL1) and 

maybe the L2 cache. As far as they use the private resources of the core they are assigned 

to there is no contention between the 4 programs. The problem of contention and 

performance variability comes when the 4 programs want to use the L3 cache and the 

Main Memory. So, an important challenge of multicore processors is the fair use of the 

shared resources because multiple cores access shared resources simultaneously and this 

may lead to variabilities on the performance of the programs that are running. For 

example, if a memory-intensive program executes on a multicore processor along with 

other 3 programs the same time it may use the shared resources a lot more time than the 

others, this will result to slow down the other 3 programs due to memory delays. Also, if 

we change the core on which the memory-intensive program executes, we might see a 

different result because the other 3 programs now may request access to the shared 

resources earlier than the memory-intensive program and get the data they want faster. 
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2.2  Simulators 

In general, simulators are programs that simulate a behavior we want to study. A 

computer architecture simulator is a program that simulates the execution of a 

microarchitecture we want to study. Simulators are often used by researchers in the field 

of computer architecture to develop and assess new ideas, as well as to evaluate a pre-

existing microarchitecture. It’s important that the simulators are reliable and 

representative of pre-existing real machines and machines we are prototyping, also it’s 

important that we use the right simulator for the study we want to do. Another objective 

to do simulation for a computer architect is to compare two multicore microarchitectures 

on execution time, multicore throughput, power consumption, etc. In this work, we look 

at how to evaluate better multicore throughput and how it varies under different 

conditions.  

 

A benefit of simulations is that we can change any parameter and model any processor 

we want without any cost.  For example, we can run a single-core run or multicore run, 

we can change how many levels of caches it has, the sizes of the caches, replacement 

policies of some caches and many more parameters. A downside is that detailed 

simulations are very slow, so we must be selective on the number of benchmarks we are 

going to use and how many combinations of these benchmarks we are going to create for 

multicore simulations. The selection process must be done carefully because we want to 

use a representative set of benchmarks to evaluate our model [2]. 
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Chapter 3 
 

Order Sensitivity 
 

 

3.1 Current Multiprogram Evaluation Methodology     7 

3.2 Order Sensitivity         9 

3.3 Order-Aware Multiprogram Evaluation Methodology    11 

 

 

 

3.1 Current Multicore Evaluation Methodology 

 

Simulations are widely used and very important for computer architects. One of the goals 

of simulations, especially with the emergence of multicore processors, is to evaluate the 

throughput of multicore processors, or the amount of work done by a machine while 

multiple independent applications are running at the same time. The most common 

evaluation methodology for multicore evaluation is to take a set of benchmarks and build 

random combinations of these benchmarks, called benchmark mixes, on which the 

processor will be evaluated. We call benchmark mix a combination of N benchmarks, N 

being the number of cores. Each benchmark mix consists of N unique benchmarks from 

a suite of benchmarks. Researchers consider a fixed sample of B benchmark mixes where 

B is just a few tens, for example 50 benchmark mixes, or sometimes 100 benchmark 

mixes, because detailed simulations are slow. The microarchitecture to be evaluated is 

simulated on all B benchmark mixes and they obtain a total of B x N IPC values. Then to 

determine the performance of each mix they use a combined metric, the most common 

metric is Weighted Speedup (WS). Equation 3.1 shows how the Weighted Speedup is 

calculated for each benchmark mix. 

 
Equation 3.1 Weighted Speedup Formula 
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Weighted Speedupmix[k] is the summation of the multiprogram IPC of benchmark “i” and 

benchmark mix “k” over the single-program IPC of benchmark “i”, the experiments that 

give us the single-program IPC are using a single-core baseline configuration. In Equation 

1 n represents the number of benchmarks the benchmark mix “k” contains. After they 

calculate the WS of all the benchmark mixes and for all the configurations they simulated, 

by configurations I refer to the multicore processor they want to evaluate and a reference 

multicore processor, they are doing the ratio of  benchmark mix “k” WS of the current 

processor to the same benchmark mix “k” WS of a reference processor. Equation 3.2 

show how they calculate the Ratio of each benchmark mix “k”. Basically, the Ratio 

represents how much better or worse the performance of each benchmark mix is 

compared to the reference multicore processor.  

 

 
Equation 3.2 Ratio Formula 

 

After Equation 3.2 they end up with B Ratio values, where B as we said earlier is the 

number of benchmark mixes. The next and final step for the current evaluation 

methodology is to aggregate these B Ratio values in order to end up with a value that 

represents the overall performance of the processor they are studying. The aggregate 

metric that is most used is the geometric mean. Equation 3.3 show the formula of the 

geometric mean, which is the Bth root  

 

 
Equation 3.3 Formula of Geometric Mean 
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of the products of the Ratio’s, where Rmix[i] is the Ratio of benchmark mix “i” and B is the 

number of benchmark mixes simulated. This value now quantifies the overall 

performance of a multicore processor, and it can be used to compare two or more 

microarchitectures. The one with the highest Geometric Mean is deemed to be the best. 

This multiprogram evaluation method was used by a lot of studies to evaluate or compare 

multicore processors [1, 2, 3, 4, 5, 6]. 

 

 

3.2 Order Sensitivity 

 

The issue we intend to present in this dissertation is that the current multiprogram 

evaluation methodology does not account for which core each benchmark in the mix 

executes on. They consider each benchmark mix once, whereby each benchmark executes 

on a specific core. However, one can change the order that the 4 benchmarks in a mix are 

assigned to the 4 cores in multiple ways, to be exact, 4! ways. Figure 3.1 shows a scenario 

where we have a 4-core processor model for a simulator and we assign 4 different 

programs on each core. Suppose we use the programs cactuBBSN, Lbm, Blender and 

Xalancbmk from the SPEC CPU 2017 suite [8]. For the first experiment we are assigning 

the programs in the order shown on Figure 3.1 on the left side processor and for the second 

experiment using the exact same programs we assign them in a different order on the 

cores shown on Figure 3.1 on the right side processor. These two experiments run the 

exact same 4 programs, on the same multicore processor, however the results may differ. 

By results I refer to the individual IPC values of the programs. Figure 3.2 shows an 

example of what the 24 IPC values of each benchmark look like when changing the order 

they are assigned on the cores all the possible ways. 
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Figure 3.1 Two Multicore CPUs with different orders of benchmarks assigned 

 
Figure 3.2 Ratio of 24 IPCs over the minimum IPC of the 24 orders for each benchmark 

 

 

In Figure 3.2 we have ratio of the 24 IPCs over the minimum IPC of the 24 orders. 

Equation 3.4 show the formula I used to calculate the values shown in Figure 3.2. We can 

observe that each benchmark varies differently in performance. For example, cactuBBSN 

is affected the least from changing the order but we can see that Lbm has an IPC that is 

higher 8% over the minimum IPC which is significant. 
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Equation 3.4 IPC Ratio over minimum IPC 

In general, for a C-core processor we have C! experiments for each benchmark mix we 

must simulate and for a set of N benchmark mixes we have C!N experiments to evaluate, 

in other words C!N different Geometric Mean values. This means we have a difficult 

problem to solve due to the large number of experiments we would have.  

 

 

3.3 Order-Aware Multicore Evaluation Methodology 

 

Due to the observation in Figure 3.2 we decided to propose a new multiprogram 

evaluation methodology, the Order-Aware Multicore Evaluation Methodology, that takes 

into consideration the orders of each benchmark mix and evaluates the range of 

performance a processor may have. So, we use a set of B benchmark mixes and for each 

benchmark mix we run the C! orders. For each processor we want to evaluate, we obtain 

B x N x C! IPC values. Then to determine the performance of each mix and order we use 

the combined metric Weighted Speedup as they use in the current methodology with the 

difference that we will end up with B x C! Weighted Speedups. Equation 3.5 show the 

formula of the WS, where 𝑊𝑆!"#[%,!], is the WS of benchmark mix “k” and order “m”, 

 
Equation 3.5 Weighted Speedup Formula (With Orders) 

 
and 𝐼𝑃𝐶%,!,"()  , where is the multiprogram IPC of benchmark mix “k”, order “m” and 

benchmark “i”, the “n” is the number of benchmarks the benchmark mix “k” consists of. 

𝐼𝑃𝐶"*), is the single program IPC of benchmark “i” where the benchmark is simulated on 

a single-core baseline processor. After we calculate the WS of all the benchmark mixes 

and their orders for the multicore processors we simulate, including a baseline multicore 

processor, we calculate the ratio of the WS, Equation 3.6 shows the Ratio formula, where 

𝑅𝑎𝑡𝑖𝑜!"#[%,!], is the Ratio  
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Equation 3.6 Ratio Formula (With Orders) 

 

of benchmark mix “k” and order “m”, 𝑊𝑆!"#[%,!]+,--  is the WS of the multicore processor 

to be evaluated of the mix “k” and order “m” over the 𝑊𝑆!"#[%,!]
-./ , where is the WS of 

the reference multicore processor of the mix “k” and order “m”. The ratio represents how 

much better or worse is a benchmark mix’s WS for a specific order on the current 

multicore processor compared to the WS of the same benchmark mix and order on the 

reference multicore processor. After the ratio calculation we end up with 24 ratios for 

each benchmark mix. 

 

 

The next step of our methodology is to determine the extremes (minimum and maximum) 

of the performance range for the set of B mixes and C! orders. We do this using the 

Equation 3.7 and Equation 3.8. These equations obtain for each benchmark mix the 

minimum ratio out of the C! orders ratios and the maximum ratio of each benchmark mix 

and out of the C! orders ratios. 

 

 
Equation 3.7 Minimum Ratio out of C! Ratios of each benchmark mix 

 

 
Equation 3.8 Maximum Ratio out of C! Ratios of each benchmark mix 

 
In Equation 3.7 we obtain 𝑚𝑖𝑛𝑅𝑎𝑡𝑖𝑜!"#[%] , where is the minimum Ratio of benchmark 
mix “k” out of C! 𝑅𝑎𝑡𝑖𝑜𝑠!"#[%]  of benchmark mix “k”. In Equation 3.8 similarly we 
obtain 𝑚𝑎𝑥𝑅𝑎𝑡𝑖𝑜!"#[%] , where is the maximum Ratio of benchmark “k” out of the same 
C! 𝑅𝑎𝑡𝑖𝑜𝑠!"#[%] , of benchmark mix “k”. After these 2 equations are done we end up with 
B minimum ratios and B maximum ratios, where B as we said earlier is the number of 
benchmark mixes. 
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Then, to aggregate the B minRatios and maxRatios calculated in Equations 3.7 and 
Equation 3.8 respectively we use the aggregate metric Geometric Mean. Equation 3.9 and 
Equation 3.10 show the formula of geometric means that determine the extreme values. 
 

 
Equation 3.9 Formula of Geometric mean of minimum Ratios 

 

 
Equation 3.10 Formula of Geometric mean of maximum Ratios 

 

The 𝐺𝑀!"0  , represents the minimum performance of the multicore processor we are 

studying, which is the Bth root of the products of the 𝑚𝑖𝑛𝑅𝑎𝑡𝑖𝑜!"#[1] ,and the 𝐺𝑀!2#, 

represents the maximum performance of the multicore processor we are studying, which 

is the Bth root of the products of the 𝑚𝑎𝑥𝑅𝑎𝑡𝑖𝑜!"#[1] . These two values as I said 

determine the extreme values of the performance range of the multicore processor. 

 

 

 

 

Throughout the Order-Aware Multicore Evaluation Methodology, we evaluate for the 

individual IPCs of each benchmark and the Weighted Speedups (WS) of each benchmark 

their Coefficient of Variations (CV) in order to show that the performance varies within 

a benchmark mix in addition to overall performance. Equation 3.11 and Equation 3.12 

show how we calculate the CV of the IPCs and the WS of each benchmark mix 

respectively. 

 

 
Equation 3.11 CV of IPC of each benchmark in a mix 
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Equation 3.12 CV of WS of each benchmark mix 

 

In Equation 3.11 it’s the calculation of 𝐶𝑉3.0+4[%,"]5)6  , which is the standard deviation of 

the IPCs of all the C! orders of benchmark “i” included in the benchmark mix “k” over 

the mean of the same C! IPCs. Equation 3.12 is the calculation of 𝐶𝑉!"#[%]7*  , which is the 

standard deviation of the WS of all the C! orders of benchmark mix “k” over the mean of 

the same C! WS. 

 

 

So, with our proposed methodology we show only the extreme values (the maximum and 

minimum performance) of the performance range and not the whole distribution of 

performance a processor may has. This is far less difficult because we only use C! x N 

simulations and we don’t evaluate all the different C!N performance values which is a 

huge number. However, the distribution of the performance would have helped us 

understand better where most of the geometric mean values rely. Are they closer to the 

maximum or minimum? Are they distributed in the whole range of performance? 
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4.1 SPEC CPU 2017 Benchmark Suite 

 

The Benchmarks included in the SPEC 2017 package [8] are an industrial standard 

benchmark suite for CPUs, designed to stress the system processor, memory subsystem 

and compiler. 

 

The SPEC organization designed this suite to provide a comparative measure of 

computive-intensive performance across the widest practical range of hardware using 

workloads developed from real user applications. The benchmarks are provided as source 

code and require the user to compile the into binaries. In our case, we statically compiled 

the benchmarks to run on X86 architecture. We compiled them statically in order for them 

to run as deterministic as possible. 

 

 

For our study we decided to use 12 of the 23 benchmarks that are included in the SPEC 

2017 suite and are the following shown in Table 4.1. 
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Integer Benchmarks Floating Point 
Benchmarks 

Gcc cactuBSSN 

Mcf Parest 

Omnetpp Lbm 

Xalancbmk Wrf 

 Blender 

 Cam4 

 Fotonik3d 

 Roms 

Table 4.1 SPEC CPU 2017 Benchmarks we used divided in Floating Point and Integer 

 

We selected those 12 benchmarks under the criterion of having LLC Misses Per kilo 

Instructions more than 1 simulated on a baseline single-core configuration. For the real 

machine tests, we run the compiled binaries until completion of the benchmarks. Using 

the 12 benchmark above we created a set of 50 benchmark mix randomly. 

 

4.1.1 Traces Description 

 

For simulation tests, we created our own traces for the 12 benchmarks we selected using 

the PIN Tool [9] champsim_tracer which is included in the Champsim Simulator 

repository and strongly suggested by the Champsim team. For each benchmark we 

created the single-program trace of 500 million instructions. We traced the 500 million 

instructions of the representative region of each benchmark, so that means for each 

benchmark we skipped different number of instructions. Each trace contains the 

information we can see on Table 4.2. This information is written in the output file in 

binary format so that the compression ratio of the trace file its high, that’s because the 

Champsim simulator only accepts trace file that are compressed in gz or xz format, we 

compressed our traces in “.gz” format. 
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Instruction pointer (Program counter) value 

If the Instruction is branch or not 

If branch contains if taken or not taken 

Destination registers (output registers) 

Source registers (Input registers) 

Destination Memory Address (Output memory) 

Source Memory Address (Input memory) 

Table 4.2 Trace file output of each Instruction 

 

4.2 Champsim Simulator 

 

We use the Champsim simulator which is a trace-based simulator for microarchitecture 

study. This simulator was used in various contests, such as the 3rd Data Prefetching 

Championship [10] and the 2nd Cache Replacement Championship [11]. This simulator 

models a multi-core out-of-order processor. 

 

 

4.2.1 Champsim Configuration 

 

We modeled a 4-core out-of-order processor with 3 levels of cache. The configuration we 

used is described in Table 4.3. For LLC replacement policy we used the following 

policies: LRU,SHIP and SHIP++. 
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Parameter Configuration 

L1 I-Cache 
 
(Private) 

32KB, 64B blocks, 8-way 
 
8 MSHRs, 1 cycle latency 
 
LRU Replacement Policy 
 

L1 D-Cache  
 
(Private) 

32KB, 64B blocks, 8-way 
 
8 MSHRs. 4 cycles latency 
 
LRU Replacement Policy 
 
Next-Line Prefetcher 

L2 Cache 
 
(Private) 

256KB, 64B Blocks, 8-way 
 
16 MSHRs, 8 cycles latency 
LRU Replacement Policy 
 
IP-Based Stride Prefetcher 

L3 Cache 
(Shared) 

2MB per core, 64B Blocks, 16-way 
 
32 MSHRs, 20 cycles latency 
 
Replacement Policy can be specified 

Frequency 4GHz 

Fetch, Decode, and retire 4 wide 

Execution 6 wide 
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DRAM 2 channels (1 DIMM per channel) 
 
8 banks (64MB per bank) 
 
8 ranks (512MB per rank) 
 
4GB per DIMM 

DRAM I/O Frequency 800MHz 

Branch Predictor Perceptron 

Reorder Buffer Size 256 
Table 4.3 Champsim Simulator Configuration 

 
 
4.2.2 Experiments Specifications 

 

In this subsection, we describe how we did our simulations on champsim. It’s divided in 

two parts, the single-core experiments that was used as reference to calculate the 

Weighted Speedups and the multi-core experiments which we use for our multiprogram 

evaluation methodology. 

 

For the single-core experiments we used the configuration described in Table 1. The LLC 

cache baseline size is 2MB and this is multiplied by the number of cores, so for a single-

core processor the LLC size is 2MB. Also, we chose the LRU replacement policy for the 

LLC cache to be our reference. We run each benchmark trace for 500 million instructions 

with warm-up 100 million instructions. 

 

For the multi-core experiments the configuration is described in Table 1. For LLC 

replacement policies we used LRU, SHIP and SHIP++. For each replacement policy we 

run the 50 benchmark mixes we randomly created. For each benchmark mix we run the 

24 orders that the Order-Aware multiprogram evaluation methodology suggests. So, for 

each policy we run 1200 experiments (50 mixes x 24 orders). Each benchmark runs for 

500 million instructions with 100 million instructions warm-up. If any benchmark 

finished faster than the others, the fast one will continue its execution in order to provide 
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pressure to the shared resources. When all the benchmarks complete executing 500 

million instructions the simulation is complete. 

 

 

4.3 Real Machine Specifications 

The real machine we use has the Intel Core i5-2400 4-core CPU. The specifications of 

the machine is described in Table 4.4. We wanted to use 4-core single socket processor 

so that way we change the orders of the benchmarks within the same socket because this 

is what we try to evaluate, the variation we may have between 4 cores that share the same 

socket. Maybe in future work we evaluate the variation when changing where the 

benchmarks executes between 2 sockets 

 

 

 

Parameter Configuration 

CPU Intel Core i5-2400 @ 3.10 GHz 

Cores 4 cores 
 
Single socket CPU 

Architecture x86_64 

OS Ubuntu 20.04, Kernel 5.11.0-38 

Frequency 3.192GHz 

L1 I-Cache 32KB per core 

L1 D-Cache 32KB per core 

L2 Cache 256KB per core 
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L3 Cache 6MB 

DRAM Size 8GB 

Table 4.4 Real Machine Specifications 

 

 

4.3.1 Experiments Specifications 

 

In this subsection, we describe what experiments we did and how we did them on the real 

machine. For real machines we did 2 kinds of experiments, single-program and multi-

program experiments. We did that because we wanted to check if variation in 

performance happens on single-program runs and how they compare to the multi-program 

runs coefficient of variation. We didn't need to evaluate the variation of single-program 

runs for simulations because the simulator for single-program produces the same results 

no matter how many times we run it. 

 

For the single-program runs, for every benchmark of the 12 we mentioned before we run 

the compiled binary until it’s fully executed. For each benchmark we run the following 

experiments, we assign it with taskset on only one core and run it 12 times and we do this 

for all 4 cores. So, in total we have 48 runs (4 cores x 12 runs) for each benchmark. On 

simulator we didn’t had to evaluate the single program experiments because if we run the 

same experiment multiple times we would get the exact same result, on the other hand on 

the real hardware there might be variation between the same experiments run multiple 

time so we do this in order to evaluate how much variation comes from the core itself. 

 

For the multi-program runs, for 21 benchmark mixes of the 50 we created we run the 

following experiments, for each benchmark mix we run the 24 orders for 4 times each 

order. Also on simulator we didn’t run multiple times each benchmark mix because as I 

said for the single-program experiments the same applies to the multicore, if we run the 

same order of a benchmark mix multiple times we will get the exact same results. The 

order in which we run the experiments is first we run each of the 24 orders and when they 

all finish, we continue to the next repetition of the 24 orders until we finish 4 repetitions. 

The multi-program runs take a long time to complete, taking an average of 24 hours per 
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benchmark mix, so that’s why we were unable to run all the 50 benchmark mixes, also 

we were unable to complete all of the repetitions we desired. In order to make a more fair 

comparison, we intended to run 12 repetitions for each benchmark mix to match the 

single-program runs.For all the experiments we ran, we collect the statistics with the perf 

stat tool. Also, the statistics perf stat collects contain user and system statistics in our case. 

The IPC value we use in our work we calculate it using the Instructions and Cycles perf 

stat counts. 
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5.1 Simulations Evaluation 

 

Our first analysis on the simulation results was to evaluate the coefficient of variation 

(CV) of the 24 IPCs (From the 24 orders) of each benchmark included in a benchmark 

mix. So, for each benchmark mix we show 4 CVs of the IPC. Figure 5.1 shows CV of the 

IPCs of each benchmark in a mix for the all the 50 benchmark mixes we ran for SHIP++. 

For a benchmark mix each column represents each benchmark of the mix. For example, 

the first 4 columns represent the 4 CVs of IPCs for the benchmark mix Cam4-Fotonik3d-

Lbm-Xalancbmk, the 1st column is the CV of Cam4, the 2nd the CV of Fotonik3d, the 3rd 

the CV of Lbm and the 4th the CV of Xalancbmk. The goal of this analysis is to show if 

changing the order of a benchmark mix can affect the performance of the individual 

benchmarks of the mix. So, based on the figure below we can see that for most of the 

benchmark mixes there is coefficient of variation which indicates that the performance of 

the benchmarks is affected by changing on which cores they are assigned. 

 

Figure 5.2 shows the same CV values we showed on Figure 5.1 but for this graph we 

grouped the CVs by benchmark instead of by benchmark mix. The goal here is to show 

that every benchmark has variability in performance. This figure is sorted in descending 

by the average CV of each benchmark. We can observe from Figure 5.2 that every 

benchmark has variation in performance and this variation is different among the 
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benchmarks but also different within the benchmarks, i.e., Lbm has the highest CV on 

average and the various CV values of Lbm range from 0.002 to 0.02. This means that 

every benchmark behaves differently when  changing the order of the benchmark mix, 

also, it means that each benchmark have different variations when running in different 

benchmark mixes. 

 
Figure 5.1 CV of the IPCs grouped by benchmark mix for SHIP++ 

 
Figure 5.2 CV of the IPCs grouped by Benchmark for SHIP++ 
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We also wanted to evaluate the CV of the Weighted Speedups of the 50 benchmarks in 

order to show the performance variability a benchmark mix has among the 24 orders. 

Figure 5.3 shows the CV of the 24 Weighted Speedups of each of the 50 benchmark 

mixes. We can observe from Figure 5.3 that each benchmark mix has different Coefficient 

of Variation, which means that each benchmark mix is affected more or less from 

changing the order of the benchmarks in it. We can also see that the CV of the Weighted 

Speedup is on the same range as the CV of the individual IPCs.  

 

 

 

 
Figure 5.3 CV of 24 Weighted Speedups of each benchmark mix 
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This next analysis on the simulation results is to answer the second question we asked. 

For this evaluation we calculated the weighted speedup as we explained in the Chapter 3 

for the 50 benchmark mixes for LRU, SHIP and SHIP++. Using the Order-Aware 

multiprogram evaluation methodology we explained in Chapter 3, with Figure 5.4 we 

show the GMmin and GMmax as a range for SHIP (The First Range) and SHIP++ (The 

3rd  Range), the 2nd and 4th performance ranges is the GMmin and GMmax of SHIP++ 

using the orders we selected as min and max from SHIP and the other range is the GMmin 

and GMmax of SHIP using the orders we selected as min and max from SHIP++ 

respectively. The arrows represent the GMmin and GMmax and you can see that the 

second range is using the same orders as the first range of performance and the GMmin 

is greater than the GMmax, also the 4th range is using the same orders as the 3rd range of 

performance. Firstly, we can see that each policy has different range of performance. For 

SHIP the range is small, from 5.81% to 6.12%, on the other hand, the range of SHIP++ 

is a lot larger, from 5.99% to 7.57%. Also, we can see that the when using the max and 

min orders of the other policy the ranges are negligible. After all, as we can see because 

the ranges of the 2 policies (1st and 3rd Ranges) overlap this means the Order-Aware 

evaluation methodology can lead us to wrong conclusions on which policy is best. There 

is a case that SHIP has the performance of 6.12% and a case that SHIP++ has the 

performance of 5.99% which means if we had these data, we would say that SHIP is better 

and there are other cases where we would say that SHIP++ is better. 

 
Figure 5.4 Range of Performance for SHIP and SHIP++ 
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For our next analysis we wanted to figure out what causes this variation. Our first guess 

was that this variation happens because of the simulator’s implementation. The 

Champsim simulator’s main loop that iterates through all the pipeline stages for each 

core, iterates through all the cores in a fixed order, the physical order, from core 0 to 3 

each cycle. This may cause the variation because if a memory-intensive benchmark is 

assigned to core 0, every cycle it will request data from the shared resources first, in result 

most of the LLC requests queue will be core’s 0 requests, this will slow down the 

fulfillment of the other cores requests. Now if the order of the benchmark mix changes 

and the memory-intensive benchmark is assigned on core 1 it will request data from the 

LLC second, this will give a chance to the benchmark that is assigned to core 0 to request 

data from LLC prior to the memory-intensive benchmark. Figure 5.5 show how the main 

loop is implemented in the Champsim simulator. Figure 5.6 shows how we changed the 

implementation of the main loop. We made a list that contains the numbers from 0 to 3 

(for our case that we have 4 cores) and each cycle we shuffle this list randomly and the 

core we are going to serve is selected from this list. This way, each cycle we serve the 

cores in a different way than the previous cycle.  

 

 

 
Figure 5.5 Implementation of Champsim's main loop 
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Figure 5.6 Our implementation of Champsim's main loop (Our code is highlighted in red) 

 

 

After we implemented this, we ran again all the experiments that our evaluation 

methodology suggests for SHIP and SHIP++ in order to check if the variation in 

performance is less than before. Figure 5.7 and Figure 5.8 shows the average CV of the 4 

benchmarks of each mix for the Fixed Order implementation (Champsim’s 

implementation) and for the Random Order implementation (Our implementation) for 

SHIP and SHIP++ respectively. These graphs are presented as sigma curves graph, in 

other words, is in ascending order based on the Fixed Order values. As we can observe 

our implementation did not help reduce the variation of performance for both policies, 

there are as many degradations as improvements. 

 

 

We wanted to ensure that our implementation is correct. So, we run an experiment and 

we counted how many times each order the cores were served occurred. Turned out that 

the random function we implemented was not biased, each order occurred the same times 

the randomness of our implementation works correctly. 
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Figure 5.7 Sigma Curve Graph showing the average CV of benchmark mixes for Fixed and Random Implementation 
for SHIP 

 

 

 

 
Figure 5.8 Sigma Curve Graph showing the average CV of benchmark mixes for Fixed and Random Implementation 
for SHIP++ 
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We also compare the range of performance of SHIP with Fixed Order versus SHIP with 

Random Order and for SHIP++ also. For reference to calculate the weighted speedups for 

the Random Order results we used the LRU with Fixed Order implementation. We used 

the same reference for Fixed and Random order implementations because we wanted 

them to be comparable. From Figure 5.9 and Figure 5.10 we can observe that the range 

of performance remains the same for both of the policies as we expected because as we 

saw on Figure 5.7 and Figure 5.8 neither the individual IPCs changes significantly. 

 

In order to conclude the simulations evaluation, we wanted to give an explanation on the 

variation of performance using the simulator statistics such as LLC misses and LLC hits. 

We didn’t managed to have an explanation yet but it’s in our roadmap on doing it in the 

future. 

 

 

 

 
Figure 5.9 Comparison of Range of Performance for Fixed and Random Implementation for SHIP 
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Figure 5.10 Comparison of Range of Performance for Fixed and Random Implementation for SHIP++ 

 

 

5.2 Real Machine Evaluation 

 

Our first analysis on the real machine multiprogram results was to evaluate the coefficient 

of variation of the Total time, total time being the user time plus system time of each 

benchmark included in a benchmark mix. For the real machine, we run each order of 

every benchmark mix 4 times. So, for each benchmark mix we have 96 Total time values 

(24 orders x 4 iterations). So, we calculate the CV of these 96 values and we show in 

Figure 5.11 the CV of the benchmarks for the 21 benchmark mixes we run on the 

machine. We can observe that there is CV on Total time which means that changing the 

order may affect the performance of the benchmarks included in a mix running on a real 

machine. To tell for sure that this variation comes from changing the order we have to 

investigate it more. Throughout this evaluation we will investigate it. 
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Figure 5.11 CV of Total Time for Real Machine runs (Total of 21 benchmark mixes) grouped by benchmark mix 

 

 

 

Figure 5.12 shows the same CV as before but grouped by benchmark. This is the same 

analysis as we did for the simulator evaluation. The graph is sorted in descending by the 

average CV of each benchmark. The goal here is to see if on real machine we can observe 

if among the benchmarks we have different CV and if within the same benchmark we 

observe different CVs. From the Figure we can see that this is factual, for example 

Xalancbmk has the highest average CV and Wrf has the lowest average CV, Blender’s 

CV values range from 0.0019 to 0.0053. So, we can say that the variation of the 

benchmarks is affected by the order and the variation is different when a benchmark is 

running in different mixes. 
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Figure 5.12 CV of Total Time for real Machine runs grouped by Benchmark 

 

 

 

For our next analysis, we evaluate the CV of the Total time for the single program results 

on the real machine for the 12 benchmarks that were used to create the benchmark mixes 

versus the multiprogram CV of total time. For the single program analysis we ran each 

benchmark on the 4 different cores for 12 times. So in total for each benchmark we have 

48 runs. We calculated the CV of each benchmark removing the minimum and maximum 

value from each 12 runs of each core, this means we removed 8 values in total. For the 

multicore we took the average CV of each benchmark in order to compare it to the 

corresponding benchmark single core CV. For the multicore results we didn’t removed 

the minimum and maximum of each order because we only have 4 runs per order so we 

thought that there would not be sufficient data to make comparisons. Figure 5.13 shows 

the CV of multicore runs vs single runs for each benchmark. We can see that for 8 of the 

12 benchmarks the multiprogram CV is more than the single-program CV. With that we 

can say that some variation comes from just because the single-program runs have CV 

but some variation comes from changing the order of the benchmark mix in multiprogram 

experiment. 
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Figure 5.13 Total Time CV Comparison of Single Program vs Multi Program runs 

 

 

The following analysis aims to prove that the variation of total time we observe in single 

core experiments comes from the variation of the IPC and the Cycles and not from the 

variation of the Instructions. We collected these statistics with from the perf stat output 

and calculated the CV of every one statistic. Figure 5.14 shows for each benchmark the 

CV of the IPC, Cycles, Total Time and Instructions. As we can observe the CV of IPC, 

Cycles and Total Time are the same for every benchmark, on the other hand, the CV of 

Instructions is zero in comparison with the other CVs. So, this observation tells us that 

the variation we see in Total time comes from the change of IPC and cycles while the 

instructions executed remains the same. The 3 benchmarks Gcc, Cam4 and Wrf has a 

small variation in Instructions but it’s because they use the system more than the other 

benchmarks, so this variation in instructions come from system instructions. For example, 

Gcc is the c language compiler which opens a lot of large files and process them so it uses 

a lot of I/O. The next step is to investigate this more by analyzing the other statistics like 

the LLC cache misses in order to understand why this variation in Total time happens. 
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Figure 5.14 CV of Total Time, IPC, Cycles and Instructions for Single Program runs 
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6.1  Conclusion 

In the present thesis, by studying a multicore processor, we were able to evaluate how the 

performance of a benchmark or benchmark mix gets affected by changing on which core 

each benchmark will execute on. Using the Order-Aware multiprogram evaluation 

methodology appeared that the order affects a lot the overall performance of a multicore 

CPU giving us a range of performance that can vary significantly, up to 1.26% the 

maximum over the minimum for SHIP++.  

 

Hence, we think that it’s important one that studies multiprogram simulations to use our 

evaluation methodology in order to come to conclusions with more accuracy than before 

now that will have a range of performance and not a singular performance value of a 

processor configuration. We think it is not safe to make a decision about which processor 

is best when only simulating a benchmark mix only once and not consider the other C! 

ways that it can be simulated. 

 

As a case study, we compared two LLC replacement policies, SHIP and SHIP++ and we 

showed that our multiprogram evaluation methodology can lead us to wrong conclusions 

about which policy is best even if we known from previous work that SHIP++ 

outperforms SHIP. 
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Then, we tried to implement a random version of how the simulator serves the cores each 

cycle. We run again all the experiments with the new implementation to check whether 

the variation gets lower, but we showed that the variation does not change. That means 

that the variation we saw on the simulator was not caused by the biased implementation 

of the order they serve the cores but because the order we run a benchmark mix affects 

the performance. 

 

After showing the variation of performance on simulators, we tried to use the Order-

Aware multiprogram evaluation methodology to show that the same variation happens on 

real machines also because in the end this is what’s important to prove. We showed for 

one specific real machine that there is variation when changing the order.  

 

To back this up we also compared the variation of multiprogram experiments with single-

program experiments variation and showed that the multiprogram variation for the 

majority of the benchmark were more. This means that the variation doesn’t fully come 

from the single-program variation but also comes from changing the order a benchmark 

executes in a mix. 

 

 It was also important to show for single-program runs that the variation of Total Time 

correlates with the variation of IPC and Cycles and does not correlate with the variation 

of instructions. This analysis showed us that we were executing the same instructions 

each iteration, but the performance changed. However, for this analysis we need more 

multiprogram runs to establish our conclusions clearly. 

 

6.2  Future Work 

 

Our goal is to continue and evolve the Order-Aware evaluation methodology in order to 

have an accurate methodology to evaluate or compare two or more multicore processors.  

 

In the future we want to evaluate not only the minimum and maximum performance but 

all the distribution of the performance. This will help us more to have a better image about 

the overall performance. 
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One important point of future work is to analyze the simulators statistics in order to 

explain why the variation happens. Our guess on why the variation happens is because of 

different timing of events among the different orders. We want to visualize this difference 

in timing by calculating for aech load instruction how many cycles it was in the pipeline, 

in other words, how many cycles each load instruction took to commit for different orders. 

To isolate this, we will break down the load instructions to load that was miss in L2 or hit 

in L2 for example, to check if there is a pattern that explains why the order the benchmarks 

run affects the performance. This understanding of why the order the benchmarks run 

affects performance will maybe help us to understand some characteristics of some 

benchmarks that will then benefit us assigning them on a specific order to achieve better 

performance. 

 

Another way to understand why the variation happens is to create a micro-benchmark of 

our own that targets to pressure resources like the LLC or the Main Memory. Then we 

will run this micro-benchmark with other benchmarks and simulate all the possible 

orders. This way we have more control of what the micro-benchmark do and if something 

changes in the statistics we will isolate it easier and explain why this variation happens. 

 

Another point of future work is to run all the necessary experiments to complete the 

multiprogram runs in order to conclude if the real machine has variation or not. Also, for 

real machines we want to compare two different machines that is known the one 

outperforms the other, and using our evaluation methodology, evaluate the performance 

of the two and  whether it can change the outcome of which of the 2 machines is best. 

 

We also want in future to evaluate other microarchitecture simulators with the Order-

Aware multiprogram evaluation methodology to check if it also happens that the order 

the benchmarks run affects the performance on these other simulators. 

 

Finally, for future progress of our methodology we want to address the problem that our 

evaluation methodology is not scalable for more than 4 cores because the permutations 

are C! which gets huge for 8 cores and more. For example, for 8 cores we will have to 

run for each benchmark mix around forty thousand permutations which we can 

understand it’s impossible. We want to find a way to reduce or eliminate the factorial of 
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the equation so our evaluation methodology can be scalable. One idea is to build a genetic 

algorithm that it’s goal is to search for orders that maximize the variation of performance. 

This way we won’t have to do all the experiments our evaluation methodology requires 

but only run the most impactful benchmark mix orders that will meet the criteria we will 

require in the genetic algorithm for the maximum and minimum performance. 
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