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Abstract 

 

In distributed systems, Byzantine Fault Tolerance (BFT) is essential for normal operation as 

BFT algorithms offer protection in several situations, such as when having crashed or 

malicious processes in the system. BFT algorithms, however, are not immune to transient 

faults, which can alter the state of the system unexpectedly and lead it to an unsafe one. Due 

to this, over the last few years, the development of self-stabilizing algorithms, which can 

automatically recover from transient faults, has gained a significant role in the research 

community. 

Moreover, total order reliable broadcast, namely atomic broadcast, is a fundamental building 

block in several real-life applications. Any distributed system that needs to store the same 

states of its objects across its processes, requires the atomic delivery of the states of these 

items. Therefore, the increased popularity of distributed environments with the necessity of 

state machine replication leads to a rise in the usage of atomic broadcast protocols. 

In this thesis, a stack of new self-stabilizing Byzantine-resistant algorithms is implemented 

and validated. Namely, a known stack of protocols that has been transformed to self-

stabilizing was evaluated for its behavior. This stack consists of vector consensus and atomic 

broadcast protocols with each of them operating in an asynchronous decentralized 

environment. Both are optimal in resilience as they can tolerate up to f faulty nodes out of n, 

where f < n/3.  

The deployment of the above-mentioned algorithms is completed in the Go programming 

language by using the ZeroMQ library for message exchanges. The implementation was used 

to evaluate the algorithms’ correctness and convergence in several scenarios. These 

validation unit tests consist of different environment configurations based on the existence of 

failures. Specifically, various tests took place with the presence of Byzantine processes, 

transient faults, or the combination of these failures. The protocols were assessed in fault-free 

scenarios, too, where every node in the system corresponds to a correct process. 

Furthermore, one of the goals of this thesis is to present an experimental evaluation of the 

proposed algorithms. That is, to measure their performance beyond the theoretical scope. 

These evaluations include scenarios with different number of system processes and unit tests 

to assess the ability of the protocols to tolerate Byzantine nodes and transient faults. In 

addition, convergence time experiments took place to find the required time of the algorithms 

to converge to a safe state from an arbitrary one. The experiments indicate the additional 

overhead of self-stabilization. 
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• CSP: Communicating Sequential Processes 
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• FLP Impossibility Result: Fischer-Lynch-Patterson Impossibility Result 
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• PK: Public Key 
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• SK: Secret Key 
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Chapter 1  

Introduction  

 

 

1.1 Motivation            1 

1.2 Contributions           2 

1.3 Methodology           2 

1.4 Thesis Structure           3 

 

 

1.1 Motivation 

 

The agreement of several distributed processes on some values proposed by them is essential 

for various real-world applications, such as state machine replication, atomic broadcast and 

more broadly blockchains and cloud computing systems. The addition of crash-prone or 

malicious processes makes the achievement of system reliability more difficult. This is 

defined as the consensus problem [20, 43], where the correct processes, out of the n total, 

must agree on a value based on their proposals, despite the existence of f Byzantine ones that 

exhibit arbitrary behavior. Each non-faulty process proposes a value and every one of them 

decides the same value. As a result of its significance, the research community devoted much 

effort to study the consensus problem and its applications [16, 28, 40].  

Regarding consensus, Byzantine Fault Tolerance (BFT) can be achieved in synchronous 

environments as long as the number of Byzantine processes, f, is less than a third of the 

overall system processes, n, where f < n/3 [34]. In asynchronous systems, however, the FLP 

impossibility [23] implies that consensus is impossible even with one crashed process. 

Researchers use different approaches to circumvent the FLP, such as synchronous 

assumptions or randomized methods either with the usage of cryptographic methods [21, 30] 

or not [15].  

In addition, the state of a system could be altered as a virtue of the existence of transient 

failures. Transient faults can corrupt the local state of an algorithm, like messages in 

communication channels or its memory. Therefore, this is a critical flaw to be considered in 

algorithmic thinking, as the results of transient faults could be disastrous. Distributed 
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algorithms can be designed to be self-stabilizing, which means that if they deviate from a 

correct state, due to a transient fault, they always converge to a correct one in finite steps. 

Despite BFT consensus being a well-studied problem, there are not many self-stabilizing 

solutions. 

Consequently, the creation and study of self-stabilizing BFT algorithms for the consensus 

problem is essential for a wide range of systems, because they offer very strong safety 

guarantees against various faults. The future of technology could be brighter, as it would 

excel by the development of real-world applications based on these principles. 

 

1.2 Contributions 

 

The goal of this thesis is to implement, and experimentally validate and evaluate self-

stabilizing Byzantine fault tolerant randomized algorithms for the Vector Consensus and 

Atomic Broadcast problems, which are based on the corresponding non-self-stabilizing 

versions of Correia et al. [15]. In detail, the algorithms developed were validated for their 

correctness and their applicability to real world scenarios as they were executed in real world-

like simulations. Comparisons between self-stabilizing algorithms and their non-self-

stabilizing counterparts took place to assess the difference in execution time and performance 

in general. 

 

1.3 Methodology 

 

At first, a background study took place to get more familiar with terms, principles, and 

problems of distributed computing. The study was mainly around fault tolerance by learning 

about the consensus and atomic broadcast problems [15, 20, 43], state machine replication 

[8], Byzantine fault tolerance [8, 12, 15, 20], and self-stabilization [17, 18, 19, 37]. Next, an 

in-depth study of the BFT consensus algorithms stack of Correia et al. [15] followed, to 

understand the basis of the creation and development of the corresponding self-stabilizing 

versions of vector consensus and atomic broadcast. Afterwards, a study of the 

implementation of the system we use took place, which was developed in an older thesis [35], 

and lead to the understanding of the simulation environment for several experiments that 

would take place. In addition, a learning period was required to practice the syntax and 

programming of the Go programming language’s [39] scripts, as well as the usage of the 

ZeroMQ [42] messaging library to exchange information between processes.   
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The Agile Software Development process was applied throughout the implementation period. 

The focus of this process was the functionality of the system, while continual improvement 

and implementation changes took place to fully cover the possible execution scenarios. 

During this period, many meetings with the team of the Efficient Self-stabilizing Byzantine 

Fault Tolerance (ESS – BFT) project [22] were held to decide on crucial details of the 

algorithms. In addition, various debugging tests were used to find possible bugs and logical 

algorithmic errors. Succeeding the implementation phase, a lot of unit tests and experiments 

were applied to check the algorithms’ validity. Moreover, their performance was evaluated in 

real-world situations, more specifically in a five-machine cluster. Finally, comparisons were 

made based on the measurements of the newly developed self-stabilizing algorithms and their 

non-self-stabilizing counterparts. 

 

1.4 Thesis Structure 

 

This thesis continues with the following chapters: 

• Chapter Two: The background required for the formation of this thesis’ algorithms 

regarding fault tolerance, consensus, self-stabilization, the Go language and the 

ZeroMQ library. 

• Chapter Three: An overview of the original and the new self-stabilizing BFT atomic 

broadcast stacks. 

• Chapter Four: A detailed presentation of the algorithms’ implementation and 

specific decisions that had to be made. 

• Chapter Five: Description of the experimental environment used with reference to 

the testing scenarios that took place. 

• Chapter Six: Conclusions of this thesis and suggestions on future work to be done. 
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2.1 State Machine Replication 

 

Distributed systems are a crucial part of modern Internet infrastructure as they contribute to 

many applications. These systems ought to be fault-tolerant as system failures of any form in 

software, hardware (e.g., power failures, cyber-attacks) have severe results and stop the 

system from operating smoothly. One technique to tackle the fault-tolerance problem is 

redundancy. Redundancy based systems have distributed objects copied in multiple processes 

to provide scaling and to hide processor failures in the overall system. However, this design 

introduces the problem of consistency as every replica of each object must exist in the same 
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state in every process. State machine replication (SMR) [10] is one of the suggested methods 

that preserve the consistency of the replicated items. The state of the machine is determined 

by a set of inputs, known as transactions. More precisely, transactions are atomic operations, 

therefore they cannot be in an intermediate state [25]. This means that they are either 

complete or do not happen at all. SMR shares identical state transitions of an object’s copy to 

ensure that object is similarly maintained in every process of the system. 

 

2.2 Asynchrony  

 

Safety and liveness are two aspects of a system that must be preserved for smooth operation. 

Safety implies that nothing bad happens, while liveness states that something good will occur 

eventually. Violation of safety can get a system to an undesirable state. For instance, one 

could get multiple different valid transaction logs and a non-responding system, by violating 

safety. In synchronous environments with knowledge of the maximum processor clock speed 

or message delay, it is trivial to decide for the transactions to be completed. This could 

happen by voting in each round, which is determined by the maximum time bounds of the 

system. 

In asynchronous systems, information about processor speeds or message delays does not 

exist. Thus, it is a lot harder to satisfy safety and liveness in asynchronous environments. In 

addition, the FLP impossibility result illustrates that even with failure of one process, 

distributed consensus among processes in an asynchronous environment is not possible [23].  

The FLP impossibility can be overcome by either applying more strict synchrony constraints, 

with coordinating leaders and timeouts, or by introducing non-deterministic components that 

have high probability of achieving consensus. 

 

2.3 Broadcast and Consensus 

 

Reliable Broadcast (RBC) is an important broadcast functionality which enables information 

delivery to achieve SMR. Basically, RBC ensures that a message will be delivered on every 

correct process and satisfies the following properties for a message m [8, 13]: 

• Validity: every correct process that broadcasts m, will eventually deliver m. 

• Agreement: if a correct process delivers m, all correct processes eventually deliver m. 

• Integrity: the delivery of m happens only once, and only if broadcast by its sender. 

Atomic Broadcast (ABC) is a stricter primitive, which satisfies total order in addition to 

RBC’s properties [13]. Total order indicates that if two correct processes p and q deliver m 
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and m’, then p delivers m before m’ if and only if q delivers m before m’. In essence, ABC is 

a reliable broadcast which guarantees that messages are delivered to every process in 

identical order.  

 

The following properties are satisfied by the consensus primitive [8, 13]: 

• Termination: each correct process eventually decides. 

• Integrity: each correct process decides at most once. 

• Agreement: if one correct process decides v and another decides u, then v = u. 

• Validity: if a correct process decides u, at least one correct process proposed u. 

Principally, consensus is the agreement of a system’s processes, which will eventually 

happen, on a specific value. 

 

In general, a hierarchy of protocols from binary consensus to atomic broadcast exists and is 

presented in Figure 2.1. Upper layer primitives can be built by using functionality from the 

previous layer. Binary and multi-valued consensus are procedures which provide agreement 

on a value from a set of possible values of size 2 and greater than 2, respectively. Vector 

consensus ensures that a predetermined vector will be filled with values in every position 

with processors agreeing on the values placed. Hence, multi-valued consensus can be applied 

to fill vector positions. In atomic broadcast, correct processes agree on specific values and 

their position in the overall placement sequence (transaction log). 

 

Atomic Broadcast 

Vector Consensus 

Multi-valued Consensus 

Binary Consensus Reliable Broadcast 

 

Figure 2.1: Binary consensus to atomic broadcast hierarchy 

 

2.4 Crash Fault Tolerance  

 

The general objective of a fault-tolerant system is to continue operating as intended despite 

having failures in some processes [38]. One category of malfunctions in distributed 

computing is crash failures. In a crash fault a process halts, hence it cannot lie or act 

maliciously to other processes. Crash fault tolerance is enforced by achieving consensus in a 

majority vote way. This is possible if the processes of a system are at least 2f + 1, where f 



 

7 

indicates the maximum number of crashed machines. As previously mentioned, in 

asynchronous systems deterministic agreement is impossible if a processor fails [23]. 

 

2.5 Byzantine Fault Tolerance  

 

Byzantine faults make a process to behave undesirably by not executing the defined 

algorithm and it is the most critical kind of failure in distributed systems. Both non-

intentional faults and malicious ones are included in this category. Synchronous 

environments can achieve consensus as long as the total number of processes in the system is 

at least 3f + 1, where f is the maximum number of Byzantine processors allowed [34].  

Byzantine Fault Tolerance (BFT) can be achieved by either solving Byzantine atomic 

broadcast or Byzantine consensus. Byzantine atomic broadcast ensures that all correct 

processes in a system will receive the same set of messages in the same sequence or all of 

them will abort the delivery without consequences. Byzantine consensus defines the 

agreement of a value by the correct processes of the system, despite the existence of 

malicious ones. Both BFT leading directions are equivalent [5, 31], thus the FLP 

impossibility holds for Byzantine atomic broadcast, too, as it was introduced for the 

Byzantine consensus problem. Liskov and Castro suggested Practical Byzantine Fault 

Tolerance (PBFT) [12], which is a consensus BFT algorithm in asynchronous environments. 

This approach achieves consensus by using the majority rule with nodes being sequentially 

ordered and one of them being the primary – leader node, whereas the remaining ones are 

marked as secondary. Several assumptions are required for PBFT to operate appropriately. 

Namely, the following are necessary for PBFT: 

i. the number of Byzantine processors must be at lower than a third of the total 

processes of the system  

ii. cryptographic mechanisms availability 

iii. unbounded local memory  

iv. consistent initial state. 

 

2.6 Randomized Byzantine Fault Tolerance  

 

Randomized algorithms have great impact on a variety of topics in computer science due to 

their simplicity and their loose time expectations [36]. Moreover, they offer the only known 

polynomial solution to specific problems. Randomized agreement to tackle the FLP 

impossibility without the need of timing speculations was introduced by Rabin [36] and Ben-
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Or [5]. These works inspired many papers with similar approach [1, 2, 10], although they 

lack efficiency as they have high computational complexity and communication as a virtue of 

the applied cryptography and many communication steps [32].  Another suggestion was 

proposed by Cachin et al. [9], which achieves BFT atomic broadcast with the use of coin-

tossing, digital signatures, and public-key cryptography. Overall, protocols that use 

probabilistic decisions are called optimal in resilience if they are fault-tolerant when the total 

number of processes in the system is 3f +1, with f  being the number of faulty machines.  

 

2.7 Self-stabilization 

 

Fault-tolerant systems are crucial to overcome processes’ failures of any kind, although they 

operate based on special assumptions. For instance, the number of failed processes will not 

necessarily be strictly within the predetermined bounds of the system during operation, or 

fortuitous bit flips may occur, which make the system unresponsive. These events fall into the 

category of transient failures, which are temporary, and can affect the system state but not its 

behavior. Despite their rare occurrence or their limited lifespan, transient faults can lead a 

system to an arbitrary state where recovery is impossible without human intervention. 

Self-stabilizing models are able to cope with transient failures and can recover the system to a 

legitimate state as long as they do not occur continuously. Formally, a system S is self-

stabilizing with respect to a predicate P, which signifies the proper execution of the system, if 

it satisfies the following [3, 37]:  

• Convergence: starting from any possible system state, S will converge to a safe state 

where P is satisfied, in finite system state transitions. 

• Closure: if the system is in a safe state satisfying P, then P cannot be falsified by the 

proper execution of S. 

In general, states that satisfy predicate P are known as legitimate or safe, whereas the 

arbitrary ones which do not assure P are called illegitimate or unsafe.  

 

2.8 Self-stabilizing BFT 

 

The self-stabilizing BFT problem was approached by different works with dissimilar 

assumptions. Dolev et al. [18] check for malicious behavior of the PBFT leader [12] by using 

failure detection. The global state of the system is also monitored and when a transient fault 

is detected, the system transitions to a default state. It is important to mention that 

recognizing the difference between arbitrary state and malicious messages’ corruption is 
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extremely difficult for a process in an inconsistent state. Binun et al.s’ [6] approach is based 

on semi-synchronous environments and assures Byzantine consensus in every clock pulse by 

using a self-stabilizing BFT clock synchronization algorithm [17].  

A common factor of several solutions for BFT, i.e., Byzantine consensus and atomic 

broadcast, is the use of cryptographic procedures, which are not self-stabilizing. The 

existence of private keys that could be altered by transient faults make the system ineffective 

in transient-prone environments. This increases the difficulty of self-stabilization algorithms’ 

design. Usually, cryptography for authenticating the sender of a message is replaced by 

having trusted bidirectional communication channels between processes, which ensure that 

malicious processes cannot send messages that seem to have other processes as senders. 

Overall, the amount of research works that try to solve the self-stabilizing BFT problem are 

only a few. 

 

2.9 Randomized Self-stabilization 

 

Randomization and self-stabilization are important design factors that have seen substantial 

focus on various works. However, the difference between self-stabilizing randomized 

algorithms and randomized self-stabilizing ones should be mentioned. In the first kind, 

protocols included are deterministic in their convergence, while often probabilistic in 

termination. The second ones converge with high chance, so they stabilize probabilistically.    

Randomized self-stabilizing algorithms are defined by either of the following: 

• Probability-based: protocol converges to a safe state with probability 1 [26]. 

• Expectation-based: the total number of rounds required for the protocol to get the 

system in a legitimate state from an arbitrary state has a constant upper bound [19]. 

Additionally, weak-stabilizing algorithms exist, which assure stabilization only in the best 

case. 

 

2.10 The Go Programming Language 

 

2.10.1 Introduction 

 

The Go Programming Language [31], or Golang, is a compiled, statically-typed programming 

language created at Google and was designed by Robert Griesemer, Rob Pike, and Ken 

Thompson. The main objective of Go is to increase programming productivity in 

environments with networked machines and multicore processors. Therefore, it was designed 
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to offer usability and readability of a high-level language, static typing and run-time 

efficiency of a low-level language, like C, and outrageous performance in multiprocessing 

and networked processes. 

 

2.10.2 Features 

 

Firstly, Go is an open-source project, thus, everyone can see its implementation, make more 

efficient functions, or report and fix various bugs. In the language offerings, garbage 

collection, which is automatic memory management, and memory safety; namely, protection 

from security vulnerabilities and bugs regarding memory access, such as buffer overflows 

and dangling pointers, are included. Additionally, CSP-style concurrency is provided, as well 

as structural programming, in which the equivalence of a type is defined by its actual 

structure. Anonymous functions and functions inside other functions can be created; hence, 

many features of functional programming are adopted. Powerful libraries with immerse 

capabilities are given out of the box, supporting various applications and use cases. Finally, 

the support for generic programming, i.e., programming style with types to be specified when 

instantiated, was added in version 1.18.  

 

2.10.3 Concurrency in Go 

 

The CSP-style concurrency provided, implements the formal language of interaction between 

communicating sequential processes (CSP). Go’s concurrency covers both CPU processes’ 

parallelism and asynchrony, where the program continues execution despite having some 

slow operations running. This offers the flexibility and applicability of Go in several 

environments with different scopes. The main form of its concurrency are light-weight 

processes, namely, goroutines. Goroutines are instantiated by calling a function with the go 

keyword in front. Moreover, a library handling goroutines’ synchronization is provided, with 

mutex locks and wait group functions, but communication between them is often done by 

channels, which can store messages in FIFO order. Channels are by default send and receive 

blocking functions unless buffering is used with available space for messages to be 

exchanged. To avoid blocking operations on channels, the built-in select statement can be 

used.  
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2.11 The ZeroMQ Messaging Library 

 

2.11.1 Introduction and Features 

 

ZeroMQ [42] (also known as ØMQ, 0MQ or ZMQ) is a high-performance messaging library 

for asynchronous environments. It is an open-source project based on simplicity and 

scalability. Its intended use is in both concurrent and distributed systems. Various messages, 

like serialized and binary data, can be sent over the network by different protocols, such as 

TCP and UDP, or between processes. Although ZeroMQ provides a message queue for the 

messages, it does not need an intermediary program responsible for formal messaging 

protocol translations between senders and receivers, namely message broker [29], to operate. 

Berkeley sockets, an API for Internet and Unix domain sockets for inter-process 

communication, is resembled in ZeroMQ’s design. Moreover, this API can be used on most 

operating systems for communication between programs of all kinds. 

 

2.11.2 Socket Types  

 

ZeroMQ provides several sockets in its API for many-to-many communication between 

endpoints. Each socket is optimized for the particular messaging pattern in which it is 

intended to be used. Here is a list of the supported sockets [41]:  

• REQ: Client processes use them to send requests and receive replies from service 

provider processes. The pattern send, receive, send, receive must be obeyed.  

• REP: Service provider processes receive requests and send replies to clients. The 

pattern receive, send, receive, send must be followed.  

• DEALER: Round-robin algorithms are used for sending and receiving messages from 

anonymous peers, in reliable fashion – messages do not get dropped. It is an 

asynchronous replacement for REQ, talking to REP or ROUTER servers.  

• ROUTER: Explicit addressing is used so that each outgoing message is sent to a 

specific peer connection. It is REP’s equivalent asynchronous socket with the 

common use case of servers talking to DEALER clients. 

• PUB: Used by a publisher to distribute data to all connected peers. It is not able to 

receive any messages.  

• SUB: Processes subscribe to messages distributed by publishers with this socket. It is 

not able to send any messages.  
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• XPUB: PUB equivalent, but subscriptions can be received as incoming messages 

(Subscription message is a byte 1 (for subscriptions) or byte 0 (for unsubscriptions) 

followed by the subscription body). 

• XSUB: SUB equivalent, but subscriptions can be created as outgoing messages to the 

socket (Subscription message is a byte 1 (for subscriptions) or byte 0 (for 

unsubscriptions) followed by the subscription body). 

• PUSH: Round-robin algorithms, for sending messages to anonymous PULL peers, are 

used. Receive operation does not exist.  

• PULL: Fair-queuing algorithm is used to receive messages from anonymous PUSH 

peers. Send operation does not exist. 

• PAIR: A connection to at most one peer can occur. Messages sent over this socket do 

not get routed or filtered.  

• CLIENT: Communication between many (1 or more) SERVER peers. Sent messages 

are scattered among many peers in a round-robin fashion, and messages do not get 

dropped in normal cases.  

• SERVER: Communication between many (0 or more) CLIENT peers. Outgoing 

messages are sent to specific peers. SERVER sockets only provide replies to 

incoming messages. 

 

2.11.3 Messaging Patterns 

 

The combination of several matching types of the abovementioned socket types enables 

ZeroMQ to offer many different messaging patterns to exchange messages from senders to 

receivers. The built-in core patterns are the following [41]: 

• Pub-sub: a single publisher distributes messages to a set of subscribers (one-to-many 

communication) - sender does not block, whereas data gets dropped on the receiver 

side if a hard limit of queued messages is reached. 

• Request-reply: processes use it to provide or receive services by having 

asynchronous sockets (DEALER and ROUTER) or synchronous sockets (REQ and 

REP) (many-to-many communication). 

• Exclusive pair: connection to only one peer at a time (one-to-one communication), 

which is usually used for inter-thread messaging when processes are architecturally 

stable. 
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• Pipeline: a scalable pattern for task distribution where a few nodes distribute the work 

to workers and forward the results to a few collectors while no message gets dropped, 

unless a node disconnects unexpectedly. 

• Client-server: developed to provide the capability of a server to talk to many clients 

(many-to-one communication) - clients always initiate the conversation, whereas 

neither entity drops messages and always blocks if the buffer of the other process is 

full. 
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3.1 Algorithm’s Structure 

 

The consensus problem is described as the agreement on a certain value in a distributed 

system, which contains faulty processes. An extension of the consensus problem is atomic 

broadcast, in which all the correct processes deliver the same values in the same order. As 

previously mentioned, an atomic broadcast algorithm can be built as a stack of several 

consensus protocols.  This stack is indicated in Figure 3.1 with reliable channels protocols 

being the foundation of the whole procedure.  

 

Atomic Broadcast 

Vector Consensus 

Multi-valued Consensus 

Binary Consensus Reliable Broadcast 
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Reliable Channels 

 

Figure 3.1: Atomic Broadcast Protocol Stack 

 

Every protocol used in this thesis, to achieve atomic broadcast, is built based on some 

structural properties. Firstly, all of them are optimally resilient. This means that the stacked 

consensus algorithms can tolerate up to f = ⌊(n − 1)/3⌋ Byzantine processes out of a total of n 

in the system. Additionally, they are completely decentralized, without the need of 

centralized coordination and decisions, and they are time-free. That is, no synchrony 

assumptions have been made. Performance bottlenecks are avoided by not using digital 

signatures based on public-key cryptography. 

In this thesis, the protocol stack of Correia et al. [15] is proposed as a comparison base 

between non-self-stabilizing and self-stabilizing consensus algorithms. The studied 

algorithms that are validated and evaluated for the purposes of this diploma are the Self-

stabilizing Vector Consensus and the Self-stabilizing Atomic Broadcast. Both are based on 

Correia et al. s’ versions of VC and ABC. To assess and compare the behavior of self-

stabilizing algorithms and their non-self-stabilizing equivalents, the implementation of the 

remaining stack of the atomic broadcast protocol is the same. That is, for the sake of the 

comparisons, the same implemented versions of binary consensus and multi-valued 

consensus, with their use of reliable broadcast, are used for both self-stabilizing and non-self-

stabilizing stacks. Therefore, the self-stabilizing stack looks like Figure 3.2. 

 

Self-stabilizing Atomic Broadcast 

Self-stabilizing Vector Consensus 

Multi-valued Consensus 

Binary Consensus Reliable Broadcast 

Reliable Channels 

 

Figure 3.2: Self-stabilizing Atomic Broadcast Protocol Stack 

 

3.2 Protocols’ Stack 

 

The protocol of each part of the stack is discussed in further detail in the following sections. 

Namely, the atomic broadcast stack of Figure 3.1 is presented, in addition with the two self-

stabilizing algorithms that differentiate the two protocols stacks. 
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3.2.1 Reliable Channels 

 

A distributed system, where messages are delivered if the sender is correct and faults do not 

occur in transmission, is called reliable message-passing [27]. Reliable message-passing 

environments require the presence of reliable channels between processes [27]. Reliable 

channels are communication channels between processes in which a fault in message 

transmission is always detected. Reliable channels are ensured by using message 

retransmissions and cryptography to correctly identify the sender of the message. Processes 

share symmetric keys before the execution of the protocols for encrypting and decrypting 

messages, therefore the decentralized algorithms do not get affected by the key sharing 

procedure. In our case, ZeroMQ ensures reliable channels between communicating processes 

because when a message is sent by a correct process it is eventually delivered intact, i.e., 

without modification, to other correct processes.   

 

3.2.2 Reliable Broadcast 

 

Reliable broadcast is a crucial building block used for every algorithm in the non-self-

stabilizing atomic broadcast protocol stack. As explained in Chapter 2, by having RBC in a 

system several conditions are met. Namely, messages broadcast by correct processes will be 

eventually delivered, every correct process delivers a message that is delivered by a correct 

process, and a message in RBC is delivered only once and only if it has already been 

broadcast. 

The RBC in our system is the one proposed by Bracha [7], which consists of four phases, 

indicated in Figure 3.3. 

There are three kinds of messages in this RBC algorithm: initial, echo, and ready. At first, 

each process sends its value v as an initial message to all the processes in the system. Then an 

echo message is sent with the value v if and only if the sender has received an (initial, v) 

message or enough supported echo or ready messages were received, i.e. (n+f)/2 (echo, v) or 

f+1 (ready, v). For a ready message to be sent, enough echo or ready messages must have 

been received, namely (n+f)/2 (echo, v) or f+1 (ready, v) respectively. A value v gets 

delivered if and only if 2f+1 ready messages with value v have been received.  
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ALGORITHM 1. Reliable Broadcast (for process p) 

step 0: Send (initial, v) to all the processes 

 

step 1: Wait until the receipt of, 

one (initial, v) message or 

(n+f)/2 (echo, v) messages or 

(f+1) (ready, v) messages for some v 

Send (echo, v) to all the processes 

 

step 2: Wait until the receipt of, 

(n+f)/2 (echo, v) messages or 

f+1 (ready, v) messages (including messages received in step 1) for some v 

Send (ready, v) to all the processes 

 

step 3: Wait until the receipt of, 

2f+1 (ready, v) messages (including messages received in step 1 and 2) for some v 

Accept v 

 

Figure 3.3 Reliable Broadcast as illustrated in [7, Fig. 1] 

 

3.2.3 Binary Consensus 

 

The binary consensus problem regards the agreement of the correct processes of a system on 

a binary value b ∈ {0, 1} [7, 33]. The protocol used for this problem is the one in Mostefaoui 

et al. [33], which satisfies the principles provided in Chapter 2. More precisely, its BC-

Validity ensures that a decided value was suggested by a correct process and its BC-

Termination and BC-Agreement indicate that every correct process will terminate and agree 

with each other, with at most one decision i.e., BC-one-shot. 

The BC algorithm contains a communication abstraction of a module called binary-value 

broadcast (BVB) algorithm, shown in Figure 3.4. Basically, when BV_broadcast is invoked 

with a value v, v gets broadcast. When a process gets v from at least one correct process, i.e., 

at least f+1 in total, it then broadcasts v to every process. A value v ∈ {0, 1} gets into the 

bin_values set if and only if 2f+1 instances of v have been received. 
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Binary-value Broadcast (for process pi) 

operation BV_broadcast MSG(vi) is  

1: broadcast B_VAL(vi).  

 

when B_VAL(v) is received  

2: if B_VAL(v) received from (f+1) processes and not yet broadcast: then broadcast 

B_VAL(v) 

3: if B_VAL(v) received from (2f+1) different processes: then bin_values←bin_values ∪ {v} 

 

Figure 3.4 Binary-value Broadcast as illustrated in [33, Fig. 1] 

 

The randomized consensus algorithm, shown in Figure 3.5, has a local variable est, which 

indicates the estimation of the decision. The execution is based on rounds and in each one the 

BVB gets called with the round number as identifier and the est as the value to exchange with 

others. Then, the process waits for at least one value to be present in bin_values to broadcast 

contained items with the tag AUX. The intention behind AUX broadcast is to inform the other 

processes about the estimated values, which were received in BVB by correct processes. 

Afterwards, the process discards Byzantine-only sent values by waiting for the predicate of 

line 5 to be true, before entering the local computation phase. The process gets a common 

coin random value, s, and follows one out of the two possible scenarios that depend on the 

size of the values set (defined in line 5). If the values set contains both 0 and 1, then the est of 

the next round is the value of the randomly selected s. Otherwise, the estimation of the next 

round is the value v contained in the values set, but if that value matches the random s, the 

process decides the value v. 

 

ALGORITHM 2. Binary Consensus protocol (for process pi) 

operation propose(vi)  

esti = vi  

ri = 0 

repeat forever 

1: ri ← ri + 1  

2: BVB (ri, esti, EST)  

3: wait until (bin_values ≠ ∅)  

4: broadcast (ri, w, AUX) where w ∈ bin_values  

5: wait until ∃ a set of (n-f) AUX messages delivered from distinct processes such that valuesi 
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⊆ bin_values where valuesi is the set of values x carried by these (n-f) messages  

6: s ←common_coin()  

7: if (valuesi = {v}) then 

8:  if (v = s) then decide(v) if not yet done 

9:  else esti← v  

10: else esti← s 

end repeat 

 

Figure 3.5 Binary Consensus as illustrated in [33, Fig. 2] 

 

3.2.4 Multi-valued Consensus 

 

Multi-valued consensus is defined similarly as binary consensus with the difference that 

processes have to decide a value from a set of size greater than two [15]. The algorithm 

proposed can lead processes to decide a proposed value or the default ⊥ value. As a 

consensus algorithm, agreement and termination as defined in Chapter 2 must be satisfied. 

The additional principles to be met are covered as three validity propositions in Correia et al. 

s’ work [15]: 

• MVC1 Validity 1: Same proposal v by all correct processes → all correct decide v.  

• MVC2 Validity 2: A decision v by a correct process means that v is either ⊥ or it was 

proposed by a process.  

• MVC3 Validity 3: A value v proposed only by faulty processes, is not decided by 

correct processes. 

MVC algorithm, shown in Figure 3.6, uses a vector V of size n, with each position 

corresponding to a system process. The function #w(W) returns the occurrences of w in vector 

W and the received INIT messages are saved in INIT_delivered. At first, both T1 and T2 tasks 

are activated concurrently. Task T2 basically receives and stores newly obtained INIT 

messages. Task T1 starts its execution by reliably broadcasting its process’ proposal, waits to 

receive at least n-f INIT messages (including its own), and builds a vector V with the received 

messages. Then, if a value v exists in V at least n-2f times (this is also the case when all 

correct propose the same value), the process broadcasts reliably as a VECT message the value 

v with the vector V, otherwise the value ⊥ is sent. With the receipt of n-f VECT messages 

(including its own), if no different values were received and a value w appears n-2f times, 

then the process proposes 1 to binary consensus, otherwise 0. According to the binary 

consensus decision, if the consensus value is 0, then ⊥ is decided, otherwise the process waits 
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to receive enough support from VECT messages with value w, namely at least n-2f, and 

decides w. 

 

ALGORITHM 3. Multi-valued Consensus protocol (for process pi) 

Function M_V_Consensus (vi, cid)   {proposal vi, identifier cid} 

Initialization: 

1: INIT_deliveredi ← ∅;  {INIT messages delivered} 

2: activate task (T1, T2); 

 

Task T1: 

3: R_Broadcast ( <INIT, vi, cid, i> ); 

4: wait until (at least (n − f ) INIT messages have been delivered); 

5: ∀j : if (<INIT, vj , cid, j> has been delivered) then Vi[j] ←vj ; else Vi[j] ← ⊥; 

6: if (∃v : #v(Vi) ≥ (n − 2f )) then 

7:  wi ←v; 

8: else 

9:  wi ← ⊥; 

10: R_Broadcast ( <VECT, wi, Vi, cid, i> ); 

11: wait until (at least (n − f ) valid messages <VECT, wj , Vj , cid, j> have been delivered); 

12: ∀j : if (<VECT, wj , Vj , cid, j> has been delivered) then Wi[j] ←wj ; else Wi[j] ← ⊥; 

13: if (∀j,k Wi[j] ≠ Wi[k] ⇒ Wi[j] = ⊥ or Wi[k] = ⊥) and (∃w: #w(Wi) ≥ (n − 2f )) then 

14:  bi ←1; 

15: else 

16:  bi ←0; 

17: ci ←B_Consensus(bi, cid); 

18: if (ci = 0) then 

19:  return ⊥; 

20: wait until (at least (n − 2f ) valid messages <VECT, vj , Vj , cid, j> with vj = v have been         

delivered); 

21: return v; 

Task T2: 

22: when mi = <INIT, vj , cid, j> is delivered do 

23:  INIT_deliveredi ←INIT_deliveredi ∪ {mi}; 

 

Figure 3.6 Multi-valued Consensus illustrated in [15] as Algorithm 1 
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3.2.5 Vector Consensus 

 

An agreement on a subset of the proposed values in a distributed system is called vector 

consensus [15]. This is a useful building block for atomic broadcast only if the majority of 

the decided values are coming from correct processes. Thus, the values contained in the 

agreed vector must be at least 2f+1. The protocol proposed covers the vector validity 

property, which states that a vector V decided by a correct process has at least f+1 elements 

from correct processes and the i-th position of the vector contains a proposal of process pi or 

⊥. The agreement and termination propositions, as indicated in Chapter 2, are also satisfied. 

The algorithm, shown in Figure 3.7, works in rounds. After reliably broadcasting its proposal, 

each process starts its execution from round zero (r=0). In each round, a process waits to 

receive cumulatively from the beginning of the execution n-f+r messages from RBC. Then, a 

vector W is build based on the received values. Position j contains ⊥ if no message was 

received from pj, otherwise its value is placed in cell j. The vector is proposed to multi-valued 

consensus. If the consensus of MVC is not ⊥, then that vector is the decision of VC, 

otherwise the process continues with the execution of the next round. 

 

ALGORITHM 4. Vector Consensus protocol (for process pi) 

Function Vector_Consensus (vi, vcid)    {proposal vi, identifier vcid} 

1: ri ←0;  {round number}  

2: R_Broadcast ( <VC_INIT, vi, vcid, i> );  

3: repeat  

4:  wait until (at least(n−f +ri) VC_INIT messages have been delivered);  

5:  ∀j : if ( <VC_INIT, vj , vcid, j> has been delivered) then Wi[j] ←vj ; else Wi[j] ← ⊥;  

6:  Vi ←M_V_Consensus (Wi, (vcid,ri));  

7:  ri ←ri + 1;  

8: until (Vi ≠ ⊥);  

9: return Vi; 

 

Figure 3.7 Vector Consensus illustrated in [15] as Algorithm 2 

 

3.2.6 Atomic Broadcast 

 

As mentioned before, total reliable broadcast is the problem of delivering the same messages 

in the same order to every process. The algorithm proposed by Correia et al. [15], which is 
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shown in Figure 3.8, uses vector consensus as a building block. Moreover, it satisfies each 

one of the four atomic broadcast properties mentioned in Chapter 2, which indicates the 

correctness of the protocol. 

At first, an initialization phase exists where tasks T1 and T2 are activated to run concurrently, 

and the message number, num, and ABC identifier are set to zero. Broadcasting atomically a 

value requires from a process to call the A_broadcast procedure. Inside that function, the 

value is reliably broadcast with the current message number, num, and after that, num gets 

incremented by 1. The uniqueness of each message is guaranteed by the uniqueness of num’s 

value. Task T2, which does similar work with Task T2 of MVC, gets messages from RBC 

module and inserts them in the R_delivered set. Task T1, however, does the whole work of 

the protocol. The process tries to decide, with other processes, the order to deliver messages 

in R_delivered, whenever R_delivered contains a proposal. In the beginning, a vector H with 

the hashes of the messages in R_delivered is created. Then, H is proposed to the VC module, 

which basically decides a vector X. Each cell j of the vector X contains either the vector H of 

the process j or ⊥. Vector X has at least 2f+1 H vectors from different processors. A message 

gets into A_deliver if the process is confident that it has been proposed by at least one correct 

process. To ensure this, the hash of that message appears in at least f+1 H vectors inside the 

decided X vector. The process waits to receive in R_delivered every message that is in 

A_deliver. Then it delivers each message in a pre-determined deterministic order and 

removes them from R_delivered. 

 

ALGORITHM 5. Atomic Broadcast protocol (for process pi) 

Initialization:  

1: R_deliveredi ← ∅; {messages delivered by the reliable broadcast protocol}  

2: aidi ←0; {atomic broadcast identifier}  

3: numi ←0; {message number}  

4: activate task (T1, T2);  

 

When Procedure A_Broadcast (m) is called do  

5: R_Broadcast ( <A_MSG, numi, m, i> );  

6: numi ←numi + 1;  

 

Task T1:  

7: when (R_deliveredi ≠ ∅) do  

8:  Hi ←{hashes of the messages in R_deliveredi}; 
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9:  Xi ←Vector_Consensus (Hi, aidi);  

10:  wait until (all messages with hash in f+1 or more cells in vector Xi are in 

R_deliveredi);  

11:  A_deliveri ←{all messages with hash in f+1 or more cells in vector Xi};  

12:  atomically deliver messages in A_deliveri in a deterministic order;  

13:  R_deliveredi ← R_deliveredi - A_deliveri;  

14:  aidi ← aidi + 1;  

 

Task T2:  

15: when <A_MSG, num, m, i> is delivered by the reliable broadcast protocol do  

16: R_deliveredi ←R_deliveredi ∪ {<A_MSG, num, m, i>}; 

 

Figure 3.8 Atomic Broadcast illustrated in [15] as Algorithm 3 

 

3.3 Self-stabilizing Protocols 

 

Self-stabilization provides greater safety coverage as a stronger model of failure tolerance. 

Transient faults can alter the memory of a process, resulting inconsistent state of the program, 

or create transmission errors, such as corruption or reordering [37]. In this distributed 

environment, the system could be initialized inconsistently, or its state could not be 

compatible with the rest of the program, for example after recovery from a process failure 

[37]. Therefore, to overcome these faults with the existence of Byzantine processes and bring 

the system back to a safe state many things must be considered. One thing to be mentioned is 

that despite the changes of a system’s state, the program itself is inviolable, i.e., its behavior 

does not change. Moreover, in our system, the processes have an ID value in the range of 0 to 

n-1. 

The newly developed algorithms, namely Self-stabilizing Vector Consensus and Self-

stabilizing Atomic Broadcast are based on the non-self-stabilizing protocols of VC and ABC, 

which were developed by Correia et al. [15] and are described above. These algorithms 

provide optimal resilience as a base for consensus and their self-stabilizing equivalents have 

to satisfy additional properties for transient handling capabilities. To begin with, a wait-free 

operation is mandatory for a self-stabilizing solution to be valid. The reason behind this is the 

fact that the program counter can be corrupted and point to any part of the program. That is, if 

the program counter points to a wait command, for one or several processes, but did not 

perform other necessary actions, as indicated by the normal execution, the processes could be 
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deadlocked in that portion of the code. Thus, to avoid indefinite halt by program counter 

fault, wait-until statements should be transformed to if-statements, while a unification of 

every message exchanged should take place. In addition, the program could be transferred in 

an arbitrary state, even at the beginning of its execution, thus a repetitive behavior is 

obligatory for correction of itself. This implies the use of a do-forever loop for the program’s 

structure, namely for checks and instructions to be executed indefinitely until the protocol 

satisfies all its properties and delivers a value. 

At first, a self-stabilizing version of the reliable broadcast is embedded inside both algorithms 

with every message sent being stored. The Byzantine Reliable Broadcast used for self-

stabilizing transformation is the one created by Bracha [7], described in Section 3.2.2. In 

Bracha’s RB, there are three kinds of messages; init, echo, ready and all of them must be 

saved in the self-stabilizing version. Therefore, an array msg is utilized, which stores the 

messages of a process i in msg[i] with each RB type (rbMSG ∈ {init, echo, ready}) message 

stored in msg[i][rbMSG]. The unification of the messages for wait-free execution is provided 

in the fact that each process broadcasts all its init, echo, and ready messages every time. 

Packet loss and the altering of messages saved due to transient faults are tolerated by 

broadcast repetition and additional checks. The duplication of messages is not a problem as a 

virtue of the storage of the received messages as sets by the unification operation. Every wait 

operation of the original RB is transformed to an if-statement which performs checks on the 

content of the msg array. The reliably delivered values are calculated repetitively in each 

iteration and are used with the appropriate actions in the new protocols.  

 

3.3.1 Self-stabilizing Vector Consensus 

 

In this section, details for the SSVC algorithm are provided. The problem to be solved is 

defined in Section 3.2.5 as the agreement on a subset of the proposed values in a distributed 

system. The pseudo-code of the algorithm is shown in Figure 3.9. The getValue() interface 

provides the proposal given to the protocol by the upper layer. The only variable utilized for 

the algorithm is the msg array, which usage is described previously. This array stores 

messages in the corresponding msg[process_id][rbMSG] as sets, i.e., no duplicates exist. The 

messages stored are composed as (k,m) tuples, where k is the sender’s ID and m is the value 

proposed by k.  

The message receival part of the protocol handles new messages with some inspections. 

When a new message from pj arrives, the new echo and ready messages are saved in msg[j]. 

The newly received init message is stored in msg[j] if there is not a new echo or ready 

message (k,m′) received, while pi knows that pj has received (k,m) from some pk and m ≠ m′. 
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Additionally, there are some functions used in the main body of SSVC. RBcast() just inserts 

the proposal, getValue(), in process suggestion, msg[i][init]. The RB_Deliver(k) function 

takes as input the ID of a process. A value m is returned by it if at least 2f+1 nodes have sent 

a (k,m) ready message to the caller process, otherwise ⊥ is returned. To evaluate this, the 

examination that takes place is whether (k,m) exists in msg[b][ready] of 2f+1 b values, i.e., 

processes. Finally, the result() function returns a value based on three different scenarios:  

• If MVC module has returned ⊥ or the msg[i][init] is empty, then ⊥ is returned. 

• If MVC module has returned a transient fault, then the default transient symbol Ψ is 

returned. 

• If MVC module has returned a value, then that value is returned to the upper layer. 

Inside the main body of the protocol, namely the do-forever loop, several checks are made to 

revoke transient faults or to reliably deliver values. Msg[i] indicates the messages sent by 

process i, pi, whom code is shown below. At first, the process checks whether an echo 

message was sent by process pj, but an init message was not. Also, pi scans ready messages to 

find if one exists that is not reported by either (n+f)/2 processors who have seen an echo of 

this or by f+1 who have seen a ready of this. If either proposition is true, that means that a 

transient fault has occurred, and each type of message set is cleared. After the initial check, 

RBcast() is called and a loop over every process pk of the system begins. If either pi has more 

than one init value from pk or pi holds an init message in msg[k][init] that is neither ∅ nor 

some message from pk or pi holds two conflicting echo or ready messages in msg[k] then pk’s 

entry is reset to ∅. Then, an echo message (k,m) is added in pi’s msg entry when an init 

message (k,m) from pk is found and it is not already in msg[i][echo]. Furthermore, a ready 

message tuple (k,m) is appended to pi’s msg if (k,m) is received by either (n+f)/2 processes as 

an echo message or by at least f+1 nodes as a ready message. When exiting the processes’ 

loop, process pi performs a broadcast of its msg[i] values. Finally, a vector of size n, which 

has a position for each process ID, is created by invoking RB_Deliver() with argument j, for 

each position j. The MVC module gets invoked with the vector transformed as a value 

proposal, as long as the vector itself has at least n-f not ⊥ entries. If the vector does not pass 

this check, then the algorithm continues from the beginning of the do-forever loop. 

Otherwise, if the MVC module had been called and had provided a consensus value, then the 

result() function is called. As it is shown below, the time complexity of a do-forever iteration 

is O(n3), where n is the number of processes of the system, due to the steps needed to check 

every message when msg has the maximum number of values proposed. Namely, when each 

message type of every process’ entry contains one message for each process, i.e., msg 
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includes O(n2) values, thus, to evaluate message occurrence O(n) times in processes’ loop 

(line 9), O(n3) steps are required.   

 

ALGORITHM 6. Self-stabilizing Vector Consensus protocol (for process pi) 

Interfaces:  

getValue(): returns the value v from the calling function (upper layer). 

 

Variables:  

Array msg[x][rbMSG] is an array of messages with the reliable broadcast message field type 

rbMSG ∈ {init, echo, ready}. Array msgi[i][typ] stores pi’s messages of rbMSG type typ.  

 

Operations: 

/* Invocation operation: Reassign the value v = getvalue() to msg[i][init] */ 

RBcast():  

1: msg[i][init] ← msg[i][init] ∪ getValue() 

/* If there exists a ready message m supported by 2f + 1 then deliver */ 

RB Deliver(k): 

2: if ∃m : (2f + 1) ≤ |{pℓ ∈ P(k, m) ∈ msg[pℓ][ready]}| then return m else return ⊥; 

 

/* Returns results in {⊥, Ψ} ∪ V where V is the domain of values that may be proposed by 

processors via multivalued consensus */ 

result() :  

3: if MVC.result() = ⊥ ∨ msg[i][init] = ∅ then return ⊥; 

4: if MVC.result() ∉ {⊥} ∪ V then return Ψ; 

5: if MVC.result() = m then return m.v; 

  

do forever begin 

 // Consistency checks. Resets to empty set 

6: if ∃(j,m)∈msg[i][echo] (m ∉ msg[j][init]) ∨ ∃(j,m)∈msg[i][ready] ¬ ((n + f)/2 < 

|{pℓ∈P : (j, m) ∈ msg[ℓ][echo]}| ∨ (f + 1) ≤ |{pℓ ∈ P : (j, m) ∈ msg[ℓ][ready]}|) then  

7:  foreach s ∈ rbMSG do msg[i][s] ← ∅; 

8: RBcast(); 

 // Broadcast phase transition 

9: foreach pk ∈ P do { 
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10:  if |msg[k][init]| > 1 ∨ msg[k][init] ∉ {∅, {(k, −)}} ∨ ∃s≠init∃pj∈P 

∃(j,m),(j,m′)∈msg[k][s] m ≠ m′ then 

11:   msg[k][s] ← ∅; 

    

12:  if ∃m ∈ msg[k][init] then msg[i][echo] ← msg[i][echo] ∪ {(k, m)}; 

 

  // add new ready messages if conditions are met 

13:  if ∃m (n + f)/2 < |{pℓ ∈ P : (k, m), msg[ℓ][echo]}| then msg[i][ready] ← 

msg[i][ready] ∪ {(k, m)}; 

14:  if ∃m (f + 1) ≤ |{pℓ ∈ P : (k, m) ∈ msg[ℓ][ready]}| then msg[i][ready] ← 

msg[i][ready] ∪ {(k, m)}; 

 } 

 // Send 

15: broadcast MSG(msg[i]); 

 // Compile a vector of values that are RB Delivered 

16: foreach pk ∈ P do V [k] := RB Deliver(k); 

 // Check if ready to call MV consensus 

17: if MVC.result() = ⊥ ∧ (|{px ∈ P : V [x] ≠ ⊥}| ≥ n − f) then MVC.propose(V); 

 

// Receive actions 

18: upon MSG(mJ) arrival from pj do foreach s ∈ rbMSG, pk ∈ P : s ≠ init ∨ 

∄s≠init,(k,m),(k,m′)∈(msg[j][s]∪mJ[s]) m ≠ m′ do msg[j][s] ← msg[j][s] ∪ mJ[s]; 

 

Figure 3.9 Self-stabilizing Vector Consensus 

 

3.3.2 Self-stabilizing Atomic Broadcast 

 

The problem to be solved is the total broadcast, mentioned in Chapter 2. The self-stabilizing 

atomic broadcast is an extension of the ABC of Correia et al. [15], which is described in 

Section 3.2.6. The development of this algorithm is similar to the SSVC with several actions 

shared by both protocols. The pseudo-code of the algorithm is presented in Figure 3.10. 

SSABC uses a bounded counter num, in the range of [0, MAXINT], to locally order messages 

along with the msg array used in SSVC. The getValue() interface returns the next client 

request which is not already atomically delivered. The RB_delivered and AB_Delivered sets 

mentioned below correspond to reliably delivered tuples and atomically delivered tuples, 
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respectively. The messages stored in msg are composed as (num,m,k) tuples, where num is the 

value of the local counter num of the process pk that received the request m, k is sender’s ID 

and m is the value proposed by k. The num part of the message tuple has a critical role in the 

behavior of the algorithm. It helps servers recognize that a newly received request, which is 

identical to a previous one, is indeed a distinct one which has not been already delivered so 

they try to atomically broadcast it. An important design decision was the handling of one 

client request per time. That is, servers only have to manage to deliver one request and then 

move on to the next one. This makes the protocol invulnerable to Denial-of-Service Attacks 

as no malicious process can monopolize server’s attention. 

As with the SSVC module, SSABC has some specific receive actions and some clearly 

defined functions that are being used. Its receival behavior is identical with that of its beneath 

stack protocol. However, some differences exist in the definitions of some functions. 

RBcast() puts the current request to be delivered in msg[i][init] as a tuple, but when a new 

request is ought to be handled, that is after the delivery of the current one, the new request is 

inserted as a newly constructed tuple before increasing num by one. A new method 

AB_Deliver() is responsible for atomically delivering values. It gets the decided SSVC vector 

as input, which is basically a vector of vectors. That is, the vector is composed of one vector 

per process, which can be either ⊥ or a proposal from a process to the SSVC. The function 

delivers in a pre-determined deterministic order every value m that was reliably delivered, 

i.e., present in RB_Deliver, and exists in at least f+1 vectors of the SSVC decision. The 

values that are atomically delivered are also returned as a set of tuples. The RB_Deliver(k) 

and result() functions are like the ones used in SSVC, with some small changes in the result() 

one. Instead of regarding the possible values of the MVC module, it takes into consideration 

the decision of SSVC. If transient Ψ or ⊥ is returned, then no action is taken, otherwise the 

value true is returned.  

The do-forever loop, in which several assessments are made to deal with transient faults or to 

reliably deliver values, is the core execution part of the protocol. As with SSVC, msg[i] 

indicates the messages sent by process i, pi, whom code is shown below. At first, the process 

makes the same checks as the first step of SSVC in addition with some extras that include the 

num counter. Namely, evaluations on whether num is larger or equal to its maximum value, a 

message tuple from pi has num larger or equal to the current num’s value, or an echo message 

was sent by process pj, but an init message was not, take place. Also, pi assesses if a ready 

message exists, and it is not reported by either (n+f)/2 processors who have seen an echo of 

this or by f+1 who have seen a ready of this. If either proposition of the first step evaluations 

is true, that means a transient fault has occurred. This results the clearance of each type of 

message set, while num is set to 0. The following checks do not consider the num section of a 
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process message as it is not required. The reason behind this is that at most one request is 

proposed by every process so a distinction between two values from the same process is not 

needed. Thus, the assessments of the remaining code check only the (k,m) part of the tuple, as 

shown in the pseudo-code from line 17, for clearly reading purposes. In reality the whole 3-

tuple is stored as a message. After the initial check, RBcast() is called and a loop over every 

process pk of the system begins. If either pi has more than one init value from pk or pi holds 

an init message in msg[k][init] that is neither ∅ nor some message from pk or pi holds two 

conflicting echo or ready messages in msg[k] then pk’s corresponding entry is reset to ∅. 

Then, an echo tuple (k,m) is added in pi’s msg when an init message (k,m) from pk is found 

that is not already in msg[i][echo]. Furthermore, a ready message (k,m) is appended to pi’s 

msg if (k,m) was sent to pi by either (n+f)/2 processes as an echo message or by at least f+1 

nodes as a ready message. When exiting the processes’ loop, process pi performs a broadcast 

of its message tuples, msg[i]. Afterwards, the reliably delivered but not atomically delivered 

messages are calculated from pi’s msg. That is, every ready tuple, which is sent by at least 

2f+1 different processes, is contained in set RB_delivered. Finally, if there is not a SSVC 

instance running and RB_delivered is not empty, then RB_delivered tuples are proposed as 

one value in SSVC. When this protocol provides a decision, the result() function is called. If 

the result() returns true, i.e., the decision is a valid vector, AB_deliver() method is called, 

otherwise no action is taken. The returned AB_delivered values are removed from the reliably 

delivered ones and an ACK message is replied to the client that provided the request. The 

server is ready to take a new request, unless the atomically delivered messages do not include 

its current one. In any case, the algorithm continues its execution to be available to handle 

new incoming queries. 

As it is indicated below, the time complexity of a do-forever loop is O(n3), where n is the 

number of processes in the system, due to the steps needed to count every message when msg 

has the maximum number of values proposed. Namely, when each message type of every 

process’ entry contains one message for each process, the msg includes O(n2) values, thus, to 

evaluate message occurrence O(n) times in processes’ loop (line 16), O(n3) steps are required.   

 

ALGORITHM 7. Self-stabilizing Atomic Broadcast protocol (for process pi) 

Interfaces:  

getValue(): returns the pending request, that was not already atomically delivered.  

VC is a vector consensus instance. The algorithm considers at most one such instance at any 

time. VC.propose(V) initiates the instance of VC and proposes an ordered set V. When there 

is no instance of VC initiated then VC = ⊥. 
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Variables:  

Array msg[x][rbMSG] is an array of messages with the reliable broadcast message field type 

rbMSG ∈ {init, echo, ready}. Array msgi[i][typ] stores pi’s messages of rbMSG type typ.  

Set RB_delivered maintains the messages that have been reliably delivered but have yet to be 

atomically delivered. 

Counter numi is the message number in [0, MAXINT], used by pi to locally order the 

messages it proposes. 

 

Operations: 

RBcast(): do  

1:  if NEW REQUEST RECEIVED ∨ numi = 0 then 

2:   {msg[i][init] ← ⟨numi, getValue(), i⟩; numi ← numi + 1}; 

3:  else  

4:   msg[i][init] ← msg[i][init] ∪ ⟨max(0, numi-1), getValue(), i⟩; 

  

// Return the ordered set of messages that exist in f + 1 places in the agreed vector 

AB_Deliver(V): do  

5: foreach pi ∈ P and m ∈ V [i] do: 

                        if m exists in f + 1 vectors V [k] then add m to set AB_delivered; 

6: AB_delivered.deliver() ; // Deliver messages in deterministic order. 

7: return AB_delivered; 

   

/* If there exists a ready message m supported by 2f + 1 then deliver */ 

8: RB_Deliver(k) do if ∃m : (2f + 1) ≤ |{pℓ ∈ P(k, m) ∈ msg[pℓ][ready]}| then return m else 

return ⊥; 

  

result() :  

9: if VC.result() = ⊥ ∨ msg[i][init] = ∅ then return ⊥; 

10: if VC.result() = Ψ then return Ψ; 

11: if VC.result = V then return True; 

 

do forever begin 

 // Consistency checks. Resets to empty set 

12: if (numi ≥ MAXINT) ∨ ∃(num,m,i)∈msg[i] num ≥ numi ∨ ∃(j,m)∈msg[i][echo] m ∉ 
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msg[j][init] ∨ ∃(j,m)∈msg[i][ready] ¬ ((n + f)/2 < |{pℓ ∈ P : (j, m) ∈ msg[ℓ][echo]}| ∨ (f + 1) 

≤ |{pℓ ∈ P : (j, m) ∈ msg[ℓ][ready]}|) then 

13:  foreach s ∈ rbMSG do msg[i][s] ← ∅; 

14:  numi ← 0; 

  

15: RBcast(); 

  

 // Broadcast phase transition 

16: foreach pk ∈ P do 

17:  if |msg[k][init]| > 1 ∨ msg[k][init] ∉ {∅, {(k, −)}} ∨ ∃s≠init∃pj∈P 

∃(j,m),(j,m′)∈msg[k][s] m ≠ m′ then 

18:   msg[k][s] ← ∅;   

19:  if ∃m ∈ msg[k][init] then msg[i][echo] ← msg[i][echo] ∪ {(k, m)}; 

   

20:  if ∃m(n + f)/2 < |{pℓ ∈ P : (k, m), msg[ℓ][echo]}| then msg[i][ready] ← 

msg[i][ready] ∪ {(k, m)}; 

21:  if ∃m(f + 1) ≤ |{pℓ ∈ P : (k, m) ∈ msg[ℓ][ready]}| then msg[i][ready] ← 

msg[i][ready] ∪ {(k, m)}; 

 // Send 

22: broadcast MSG(msg[i]); 

23: RB_delivered ← RB_delivered ∪ RB_Deliver(i); 

 // If VC complete then deliver VC agreed messages and remove these messages from 

RB delivered set 

24: if VC.result() = V then RB_delivered ← RB_delivered \ AB_Deliver(V); 

 // Call an instance of vector consensus 

25: if VC.result() = ⊥ ∧ RB_delivered ≠ ∅ then VC.propose(RB_delivered); 

 

// Receive actions 

26: upon MSG(mJ) arrival from pj do foreach s ∈ rbMSG, pk ∈ P : s ≠ init ∨ 

∄s≠init,(k,m),(k,m′)∈(msg[j][s]∪mJ[s]) m ≠ m′ do msg[j][s] ← msg[j][s] ∪ mJ[s]; 

 

Figure 3.10 Self-stabilizing Atomic Broadcast 
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4.1 Implementation Decisions 

 

The first decisions that must be taken for a randomized BFT algorithm development in an 

asynchronous environment is the programming language and the communication library to be 

used. As mentioned earlier, the Go programming language was used for the implementation 

and the ZeroMQ library for the asynchronous message exchanges. 

Go is the de facto programming language for concurrent and parallel development [39]. In 

our case, an asynchronous environment implies the usage of multiple threads locally to 

handle communication and for the logic of the program. Therefore Go, by simplifying 

concurrent programming with the use of goroutines and channels to handle their 

communication, is a perfect fit for the case of the atomic broadcast development. On top of 

that, Go is fast, with its direct compilation to machine code, and scales well as each goroutine 

takes up only 2kB of memory, which is ideal for the experimental evaluation of our system. 

The community of developers has grown a lot throughout the years because of its open-
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source nature. The provided resources regarding Go, either official documentation or 

developers’ feedback, helped tremendously the implementation of the algorithms. 

Furthermore, the general philosophy of ZeroMQ is to adhere on the technical goals of 

scalability and simplicity. With the open-source form of the protocols developed, ZeroMQ is 

the state-of-the-art library for distributed environments. Its widely spread nature flows from 

the fact that it is fast, lightweight and assures message delivery by using hidden queues, 

which provide reliability. Moreover, the implementation of the non-self-stabilizing atomic 

broadcast stack was done with ZeroMQ as the message-passage medium so for more accurate 

comparisons with the studied algorithms its usage is obligatory.  

 

4.2 Project Structure 

 

The general project structure followed is based on the implementation of the non-self-

stabilizing atomic broadcast stack, which was done in a previous thesis [35]. Primarily, the 

usage of that project structure is for compatibility with that implementation in order to be 

able to execute both atomic broadcast algorithms and to compare them in a similar 

environment. That is, an identical client behavior was used to provide accuracy to the studied 

protocols’ comparisons. Additionally, this compatibility was done to match and connect the 

studied algorithms with the implementation of the previous protocol stack, i.e., self-

stabilizing vector consensus connection with the multi-valued consensus. The full working 

code of the project can be found on my GitHub repository [4]. 

To begin with a brief description of the structure, a different Go project was used for servers’ 

actions and clients’ behavior. The two project structures are indicated in Figures 4.2 and 4.10 

for servers and clients respectively. Servers and clients share a similar structure with several 

common packages. Information and error messages of the execution of both are written in log 

files by the logger implemented in logger folder. The configuration of the appropriate 

scenario to be run with the set-up of the required IP addresses or ports of the system is 

handled in the config folder. The variables file contains shared variables of the program, like 

servers and clients number, maximum possibly existing Byzantine processes, and the ID of 

each process. The message structures, for each protocol, are held in the types package for 

processes to have a well-defined form of communication. The messenger package handles the 

message exchanges between either servers or servers and clients by using the ZeroMQ. The 

only thing that differentiates servers from clients is their general behavior as every algorithm 

mentioned in Chapter 3 is stored in the servers’ module package, whereas clients’ actions are 

contained in the app package. 
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4.3 Communication 

 

The communication structure used is the same as the one used in a previous thesis [35] as a 

virtue of developing the self-stabilizing algorithms in the same system. Therefore, the 

communication decisions made in that previous work are inherited in this project. As 

mentioned earlier, messenger makes use of ZeroMQ library for communication between 

processes. Each server deploys different kind of sockets, namely a REQ/REP pair for each 

server to communicate (request/reply) with each other and for each client a REP socket to get 

requests and a PUB one to send a response. On the other side, clients make use of a REQ and 

a SUB socket for every server, to send requests and receive replies respectively. The general 

socket formation is shown in Figure 4.1. 

When a server receives a request, it immediately responds with an empty message to make 

the REP socket free for the next request. Therefore, this avoids the duplicate consecutive 

sends and receives, which would crash the system. Neither clients nor servers block waiting 

for a message from the other side. Moreover, the preference for the usage of REQ/REP 

sockets is based on their reliability, despite being synchronous. To circumvent the synchrony 

of these sockets, a timeout and retransmission of messages was embedded in the project’s 

implementation with the use of Go. The CLIENT/SERVER sockets were added to ZeroMQ 

after the completion of the older thesis [35] so they were not utilized. 

 

Figure 4.1 Communication organization with ZeroMQ sockets 
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4.4 Server Implementation 

 

A closer look to the server project structure is indicated in Figure 4.2. Servers communicate 

both with other servers, to achieve consensus, and with clients, to exchange requests and 

replies. Every algorithm mentioned in Chapter 3 is implemented in the modules package with 

the intention of atomically broadcasting a message. Each server has a character array, in 

which clients’ request are delivered. The main objective is to have every server agree on the 

sequence of the delivered characters, thus achieving total order of messages. 

Sockets and goroutines for communication are the first things to be initiated with the launch 

of a server. After that, global variables of the program, like servers and clients number, the 

quantity of Byzantine processes, server’s ID, and the scenario to be executed are set to the 

appropriate values. The atomic broadcast or its self-stabilizing counterpart module is 

initialized, based on the execution scenario, while Request Handler gets ready to handle 

clients’ messages. Each server runs indefinitely or until it is shut down. 

 

BFTWithoutSignatures 

• config 

▪ ip.go 

▪ local.go 

▪ scenario.go 

• faults 

▪ byzantine.go 

▪ transient.go 

• logger 

▪ logger.go 

• messenger 

▪ messenger.go 

• modules 

▪ self_stabilized_atomic_broadcast.go 

▪ self_stabilized_vector_consensus.go 

▪ request_handler.go 

▪ atomic_broadcast.go 

▪ vector_consensus.go 

▪ multivalued_consensus.go 

▪ binary_consensus.go 
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▪ reliable_broadcast.go 

• threshenc 

▪ key_generator.go 

▪ key_reader.go 

▪ sign_and_verify.go 

• types 

▪ message.go 

▪ abc_ message.go 

▪ vc_ message.go 

▪ mvc_ message.go 

▪ bc_ message.go 

▪ rb_ message.go 

▪ client_ message.go 

▪ reply_ message.go 

▪ ssabc_ message.go 

▪ ssvc_ message.go 

• main.go 

 

Figure 4.2 Server project structure 

 

4.4.1 Config 

 

This package contains the information regarding the scenario to be executed and the low-

level communication details between processes.  

In the scenario.go file, a variable indicates the existence of transient faults in the to be 

executed test and defines the behavior of Byzantine processes i.e. idle, sending different or 

the same messages to processes. 

For process communication, the local.go or the ip.go programs are called for local or real-

world executions, respectively. In local.go, a different port number is given to each process, 

which matches the corresponding socket type, whereas in the ip.go file, the IP address of each 

computer is also present. Figure 4.3 indicates port assignment for processes in the localhost 

scenario. 

 

func InitializeLocal() { 

 RepAddresses = make(map[int]string, variables.N) 
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 ReqAddresses = make(map[int]string, variables.N) 

 ServerAddresses = make(map[int]string, variables.Clients)  

 ResponseAddresses = make(map[int]string, variables.Clients) 

 for i := 0; i < variables.N; i++ { 

  RepAddresses[i] = "tcp://*:"+strconv.Itoa(4000+(variables.ID*100)+i) 

  ReqAddresses[i] = "tcp://localhost:"+strconv.Itoa(4000+(i*100)+variables.ID) 

 } 

 for i := 0; i < variables.Clients; i++ { 

  ServerAddresses[i] = "tcp://*:"+strconv.Itoa(7000+(variables.ID*100)+i) 

  ResponseAddresses[i] = "tcp://*:"+strconv.Itoa(10000+(variables.ID*100)+i) 

 } 

} 

 

Figure 4.3 Ports configuration for local execution as illustrated in [35, Fig. 4.4] 

 

4.4.2 Types and Variables 

 

Every message sent in any part of the protocol stack consists of multiple fields, thus, message 

types are built in the system as Go structs. On the other hand, messages are sent as bytes 

through ZeroMQ, which implies the necessity of serialization and deserialization functions 

for our types. This obligation is fulfilled with a package called Gob [24], which manages 

stream of bytes exchanged between processes. Despite the encoding support of Go’s 

primitive types, the encoding of a more complex structure, like the message types created for 

our system, requires the GobEncoder and GobDecoder functions to be implemented as an 

interface for byte transformation.  

A general structure of a message used is define in the message.go file. This is a wrap up 

message for all different types, which includes the payload as a byte of streams, the type of 

the underlying message, and its origin. This structure is encoded as bytes to be sent over the 

network. This provides a more uniform method of communication which hides extra 

complexities and delays of handling different types of messages. According to the type of the 

message, its payload is decoded as the corresponding message type struct and it is forwarded 

to the appropriate channel to be handled by the process. The implementation of the studied 

self-stabilizing vector consensus and atomic broadcast types, as well as the simple atomic 

broadcast one, are shown in Figures 4.4, 4.5, and 4.6, respectively. In their type folder, both 

self-stabilizing protocols contain the implementation of a tuple of the suggestion exchanged 

in their build in reliable broadcast module as well as the message sent to other processes. 
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// Tuple containing the sender and the corresponding value of the sender 

type SSVCMessageTuple struct { 

 Sender int 

 Value []byte 

} 

 

// self stabilizing vector consensus SSVCMessage - SSvector consensus message struct 

type SSVCMessage struct { 

 SSVCid int 

 Content map[string][]SSVCMessageTuple 

} 

 

// NewSSVCMessage - Creates a new self stabilizing VC message 

func NewSSVCMessage(id int, content map[string][]SSVCMessageTuple) SSVCMessage { 

 return SSVCMessage{SSVCid: id, Content: content} 

} 

 

// GobEncode - vector consensus message encoder 

func (ssvcm SSVCMessage) GobEncode() ([]byte, error) { 

 w := new(bytes.Buffer) 

 encoder := gob.NewEncoder(w) 

 err := encoder.Encode(ssvcm.SSVCid) 

 if err != nil { 

  logger.ErrLogger.Fatal(err) 

 } 

 err = encoder.Encode(ssvcm.Content) 

 if err != nil { 

  logger.ErrLogger.Fatal(err) 

 } 

 return w.Bytes(), nil 

} 

 

// GobDecode - vector consensus message decoder 

func (ssvcm *SSVCMessage) GobDecode(buf []byte) error { 
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 r := bytes.NewBuffer(buf) 

 decoder := gob.NewDecoder(r) 

 err := decoder.Decode(&ssvcm.SSVCid) 

 if err != nil { 

  logger.ErrLogger.Fatal(err) 

 } 

 err = decoder.Decode(&ssvcm.Content) 

 if err != nil { 

  logger.ErrLogger.Fatal(err) 

 } 

 return nil 

} 

 

Figure 4.4 Self-stabilizing Vector Consensus message type [4] 

 

// Tuple containing the sender and the corresponding value of the sender 

type SSABCMessageTuple struct { 

 Sender int 

 Num uint32 

 Value []byte 

} 

 

// self stabilizing atomic broadcast - SSABCMessage message struct 

type SSABCMessage struct { 

 Content map[string][]SSABCMessageTuple 

} 

 

// NewSSABCMessage - Creates a new SS ABC message 

func NewSSABCMessage(content map[string][]SSABCMessageTuple) SSABCMessage { 

 return SSABCMessage{Content: content} 

} 

 

// GobEncode - SS atomic broadcast message encoder 

func (abcm SSABCMessage) GobEncode() ([]byte, error) { 

 w := new(bytes.Buffer) 
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 encoder := gob.NewEncoder(w) 

 err := encoder.Encode(abcm.Content) 

 if err != nil { 

  logger.ErrLogger.Fatal(err) 

 } 

 return w.Bytes(), nil 

} 

 

// GobDecode - SS atomic broadcast message decoder 

func (abcm *SSABCMessage) GobDecode(buf []byte) error { 

 r := bytes.NewBuffer(buf) 

 decoder := gob.NewDecoder(r) 

 err := decoder.Decode(&abcm.Content) 

 if err != nil { 

  logger.ErrLogger.Fatal(err) 

 } 

 return nil 

} 

 

Figure 4.5 Self-stabilizing Atomic Broadcast message type [4] 

 

// AbcMessage - atomic broadcast message struct 

type AbcMessage struct { 

 Num   int 

 Value []byte } 

  

// GobEncode - atomic broadcast message encoder  

func (abcm AbcMessage) GobEncode() ([]byte, error) { 

 w := new(bytes.Buffer) encoder := gob.NewEncoder(w) 

 err := encoder.Encode(abcm.Num)  

 if err != nil {  

  logger.ErrLogger.Fatal(err) 

 } 

 err = encoder.Encode(abcm.Value)  

 if err != nil {  
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  logger.ErrLogger.Fatal(err) 

 } 

 return w.Bytes(), nil 

} 

// GobDecode - atomic broadcast message decoder  

func (abcm *AbcMessage) GobDecode(buf []byte) error { 

 r := bytes.NewBuffer(buf) decoder := gob.NewDecoder(r) 

 err := decoder.Decode(&abcm.Num)  

 if err != nil {  

  logger.ErrLogger.Fatal(err) 

 } 

 err = decoder.Decode(&abcm.Value)  

 if err != nil {  

  logger.ErrLogger.Fatal(err) 

 } 

 return nil 

} 

 

Figure 4.6 Atomic Broadcast message type as illustrated in [35, Fig. 4.5] 

 

The variables.go file basically contains all the necessary global variables, which are 

initialized at the beginning of the execution. These variables are the number of servers and 

clients in the system, the maximum possible Byzantine processes, an indication of global or 

local execution, the ID of the process, the MVC, VC, SSVC default value, and the transient 

fault value for SSVC and SSABC. 

 

4.4.3 Threshenc 

 

In the threshenc folder, the signature and verification of messages take place. The 

key_generator.go file creates a secret key for each server which is used for further execution 

to sign and verify incoming messages. Even though the protocols do not need digital 

signatures to operate, the cryptographic process guarantees the validity of a server. That is, 

the messages between servers contain an appended digital signature of the message to make 

sure that the message is not malicious and therefore can be forwarded to the appropriate 

channels for algorithms’ execution. This signature and verification process takes place in the 

sign_and_verify.go file as shown in Figure 4.7. The generation of the keys is completed 
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before the execution of the atomic broadcast module; therefore, the only overhead of this 

procedure is the local file reading of the secret keys. The project design of using these digital 

signatures is followed as a virtue of the common system usage of the one developed in a 

previous thesis [35]. 

 

func SignMessage(message []byte) []byte { 

 hash := sha256.New() 

 _, err := hash.Write(message)  

 hashSum := hash.Sum(nil) 

 signature, err := rsa.SignPSS(rand.Reader, SecretKey, crypto.SHA256, hashSum, nil)  

 return signature 

} 

 

func VerifyMessage(message []byte, signature []byte, i int) bool { 

 hash := sha256.New() _, err := hash.Write(message) 

 err = rsa.VerifyPSS(VerificationKeys[i], crypto.SHA256, hash.Sum(nil), signature, 

nil)  

 if err != nil { 

  return false 

 } 

 return true 

} 

 

Figure 4.7 Sign and Verify methods as illustrated in [35, Fig. 4.6] 

 

4.4.4 Messenger 

 

The messenger.go is responsible for the communication of the system. Every necessary 

socket is initialized in that file, as well as the channels that receive the incoming messages. In 

addition, every function that transmits messages to other sockets or even broadcast a message 

to everyone, lies there. The binding of clients and server sockets happens at the initialization 

of messenger along with goroutines waiting to receive messages. Incoming messages are 

received as bytes, and they are transformed to the message struct to be handled appropriately. 

The newly received message is evaluated based on its type, it is transformed again to the 

correct message struct and it is forwarded to the corresponding protocol channel. The reverse 

procedure is also handled in messenger, as protocol messages are wrapped in a common 
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message structure and then serialized to bytes to be sent with ZeroMQ. Finally, the Byzantine 

modifications of the values to be sent to other processes take place in a few functions in 

messenger.go. According to the scenario, Byzantine messages have either the same value, 

different values according to the recipient of the message, or are not sent at all in the idle 

scenario. The message modifications in the executions where Byzantine processes 

communicate with others affect every message sent in the whole protocol stack. That is, a 

certain value is sent to every process from binary consensus to atomic broadcast, both for the 

original and self-stabilizing executions. These Byzantine alterations take place right before 

broadcasting a message to others. 

 

4.4.5 Modules 

 

Every algorithm presented in Chapter 3 is implemented in the modules package and can be 

viewed on my GitHub repository [4]. The binary consensus algorithm uses a boolean value, 

which is based on whether its round number is odd or even, as the common coin to provide 

randomness. This is not Byzantine tolerant but it does not affect the effectiveness of BC as 

Byzantines do not attack the common coin. Reliable broadcast is included in this package and 

as mentioned earlier, it is utilized by every non-self-stabilizing algorithm to share its 

messages with others. Moreover, BC, MVC, and VC need to combine two numbers, their 

operation id and round of execution, to provide their service correctly. Cantor’s pairing 

function [11], (a2 + 3a + 2ab + b + b2) / 2, is applied to merge the two numbers uniquely. 

The module that handles client requests lies in this package, too. Basically, when a request 

arrives, the request_handler.go receives the message from the messenger module and is 

responsible to call the atomic broadcast function for that request. Atomically delivered values 

are sent to request_handler.go and from that file they are forwarded to messenger to be 

provided as replies to clients. 

Regarding the self-stabilizing implementation, both of the newly designed algorithms embed 

a reliable broadcast to their main execution body.  To achieve that, the gathered messages are 

stored in a Go map type, called msg, where each process has its own init, echo, and ready 

messages. These messages are all the values that were already sent or the new to be sent in 

the next broadcast. Go’s map type is a dictionary which matches a key-pair value. 

Furthermore, the message tuples stored in a process’ message type, e.g. 

msg[process_id][message_type], are saved as sets. That is, duplicates are not allowed, so 

before inserting something a check on its existence takes place. A value is inserted only if not 

found. This helps with further checks that must be made, such as whether only one message 

is inserted in the init section or if multiple messages with the same sender exist in the same 
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message type, i.e., a message conflict exists. These investigations are performed faster by 

having to deal with sets as the only thing to be examined is the number of messages in a 

particular message type. Namely, when two messages exist, which have the same sender, a 

violation has occurred.  Both protocols execute at most one instance of the stack algorithm 

beneath them at any given time. The objective of this is to avoid perplexing incoming 

consensus decisions and to make the handling of their stored messages easier. While a lower-

level protocol is executing in a separate goroutine, servers continue to broadcast their 

messages to avoid process crash if goroutine crashes. This happens also to avoid the situation 

of several servers not being able to execute deeper stack protocols, while others are stuck in a 

lower-level algorithm and wait for more servers to join, i.e., deadlock. This could take place 

if some servers have entered a beneath layer’s execution, whereas others have cleared their 

msg values, as a virtue of a transient fault, after the last broadcast of the servers executing the 

lower consensus algorithm. In this scenario, some servers do not have the appropriate 

messages to reliably deliver any value in order to execute the lower-level consensus module, 

so they just wait for non-existent messages to arrive, which leads us to deadlock. 

Self-stabilizing Atomic Broadcast has some additional implementation details. To be more 

precise, the SSABC num value is declared as unsigned integer to prevent transient faults 

altering the sign of the variable and to be a bounded counter for self-stabilization purposes. 

Each server handles at most one request at a time which implies an inspection on whether the 

server is free of requests. SSABC signals the request handler that a request can be inserted 

when it does not have one for delivery, otherwise the request handler waits for permission to 

add the new to be delivered message. In addition, the response of the algorithms is different if 

the transient fault value is returned from a lower stack level to them. Self-stabilizing Vector 

Consensus just returns the transient fault signal to the upper layer, whereas Self-stabilizing 

Atomic Broadcast continues with execution without delivering anything, thus a new SSVC 

instance will be called in the next round of the infinite loop. Finally, to atomically deliver the 

appropriate values in a deterministic order, an ascending sorting of the byte requests takes 

place. Therefore, the requests are delivered identically by every server. 

 

4.4.6 Faults 

 

For the self-stabilizing versions of vector consensus and atomic broadcast, the presence of 

functions altering the values of stored messages in msg is essential to simulate Byzantine 

behavior and transient faults. Therefore, the faults package contains a modification for each 

message tuples’ set. The modification is similar for both protocols so only the changes of the 
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SSABC are shown in Figure 4.8 and 4.9. The whole code, however, can be found on GitHub 

[4].  

Basically, for the Byzantine modification in Figure 4.8, a complete message set is created, 

which has a message for each process in the system. Every value contained is equal to the 

byte of “0” character. This happens for Byzantine processes to have the ideal message set and 

try to confuse correct processes with values suggested even for correct servers. Additional 

message changes according to the scenario take place in messenger.  

Furthermore, the transient faults implemented alter any message in the whole msg set. The 

tuple values are changed to the byte of “0” character, while senders are changed to current 

IDs plus one. The atomic broadcast modification alters the num section of the messages to a 

specific number. These changes are done to a process according to a probability p, which is 

given as input. That is, if a server’s floating precision number, which is generated by a 

pseudo-random function in the range of [0, 1), is less than p, then its msg is modified. 

Moreover, functions assessing the clearance of the transient faults have been developed for 

debugging and testing purposes. These methods are used in validation unit tests to evaluate 

whether a process has cleared a transient fault, thus achieving a safe state.  

 

func ByzantinevaluesSSABC(msg map[int]map[string][]ssabcMT) 

map[int]map[string][]ssabcMT { 

  // change values to their corresponding sending ones 

 halfScenario := config.Scenario == "HALF_&_HALF" 

 for i := 0; i < variables.N; i++ { 

    msg[i]["init"] = []ssabcMT{} 

   msg[i]["echo"] = []ssabcMT{} 

   msg[i]["ready"] = []ssabcMT{} 

 

  valueToSend := "0" 

  if halfScenario { 

   valueToSend = strconv.Itoa(i % 2) 

  } 

  msg[i]["init"] = []ssabcMT{{Sender:i,Num:0,Value:[]byte(valueToSend)}} 

  for _,t := range []string{"echo", "ready"} { 

   for j:=0; j<variables.N;j++{ 

    msg[i][t] = append(msg[i][t], 

ssabcMT{Sender:j,Num:0,Value:[]byte(valueToSend)}) 



 

46 

   } 

  } 

 } 

  return msg 

} 

 

Figure 4.8 Self-stabilizing Atomic Broadcast message set’s Byzantine modification [4] 

 

func CreateSSABCTransientMsg(initFault, echoFault, readyFault, senderFault, 

    valueFault, numFault bool, msg map[int]map[string][]ssabcMT, p float64) 

map[int]map[string][]ssabcMT{ 

 

 s := rand.NewSource(time.Now().UnixNano()) 

 r := rand.New(s) 

 

 if r.Float64() < p { 

  faultTypes := []string{} 

 

  // init 

  if initFault { 

    faultTypes = append(faultTypes, "init") 

  } 

  // echo 

  if echoFault { 

    faultTypes = append(faultTypes, "echo") 

  } 

  // ready 

  if readyFault { 

    faultTypes = append(faultTypes, "ready") 

  } 

 

  // transient fault occurence 

  for _, ftype := range faultTypes { 

   logger.OutLogger.Print("SSABC: ",ftype," transient fault:\n") 

   for id:=0;id<variables.N;id++{ 
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    for i,_ := range msg[id][ftype]{ 

                               if senderFault{ // change sender 

     logger.OutLogger.Print(id," sender --> sender + 1\n") 

       msg[id][ftype][i].Sender = msg[id][ftype][i].Sender+1 

                               } 

                               if valueFault{ // change value 

     logger.OutLogger.Print(id," values --> all '0'\n") 

                                      msg[id][ftype][i].Value = []byte("0") 

                               } 

         if numFault{ // change num 

                logger.OutLogger.Print(id,"num--> all MaxUint32/2\n") 

                                      msg[id][ftype][i].Num = math.MaxUint32/2 

                               } 

    } 

   } 

  } 

 } 

 return msg 

} 

 

Figure 4.9 Self-stabilizing Atomic Broadcast message set’s transient fault modification [4] 

 

4.5 Client Implementation 

 

The client implementation, as shown in Figure 4.10, contains almost the same components as 

the server’s one. Similar procedures, like the servers’ ones, are followed with the beginning 

of the execution of clients’ code. These include socket, global variables (in variables file), 

and goroutines for message exchanges initialization. For compatibility purposes, the client 

behavior utilized is identical to the one used in a previous thesis [35]. 

 

BFTWithoutSignatures_Client 

• app 

▪ client.go 

• messenger 

▪ messenger.go 



 

48 

• config 

▪ ip.go 

▪ local.go 

• types 

▪ client_message.go 

▪ reply_message.go 

• variables 

▪ variables.go 

• logger 

▪ logger.go 

• main.go 

 

Figure 4.10 Client project structure as illustrated in [35, Fig. 4.7] 

 

The folders config, logger, types, variables and messenger serve similar purpose as their 

server counterparts, despite the fewer number of functions in modules. The variables and 

logger packages are identical with the server ones and the types folder only contains the 

struct of a client message. The config module is similar to the one that servers use, with a 

small difference of missing the transient scenario set-up as clients are not prone to transient 

faults like servers. The messenger module developed is like the servers’ one, but it misses the 

Byzantine modification functions. The methods needed for communication are implemented 

in messenger for message exchange capabilities between servers and clients, i.e., requests and 

replies.  

The major difference of the client implementation in comparison with the server code is their 

behavior. In Figure 4.11, the behavior of client processes is presented. Clients’ actions are 

defined in the app package in which clients handle requests and replies. Before sending any 

request, each client blocks for a few seconds to avoid the simultaneous request arrival to 

servers from every client. The blocking time is defined by client’s ID number; thus it is 

unique for each one. Consequently, clients create a request, which contains a randomly 

selected character chosen by a pseudorandom Go function, to be atomically delivered and it 

is sent to f+1 servers, to ensure a correct recipient of the request. Then, every client waits to 

get f+1 ACK messages from different servers to be confident that the request was indeed 

successfully delivered, before sending the next one. In total, two different character values 

are sent from each client. The client keeps track of the response time of the f+1 servers and 

runs indefinitely or until it is shut down. 
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var ( 

 runes = []rune("!\"#$%&'()*+,-

./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrs

tuvwxyz{|}~") 

 

 replies  = make(map[int]map[int]bool) // num, from 

 accepted = make(map[int]bool)         // if this num is accepted 

 

 // Client metrics regarding the experiment evaluation 

 sentTime  = make(map[int]time.Time) 

 OpLatency = time.Duration(0) 

 num = 0 

 Total = 0 

) 

 

func Client() { 

 rand.Seed(int64((variables.ID + 3) * 9000))              // Pseudo-Random Generator 

 time.Sleep(time.Duration(variables.ID%10) * time.Second) // Wait a bit before 

sending 1st request 

 

 sendRune() 

 

 go func() { 

  for message := range messenger.ResponseChannel { 

   if _, in := replies[message.value][message.From]; in { 

    continue // Only one value can be received from each server 

   } 

   if replies[message.value] == nil { 

    replies[message.value] = make(map[int]bool) 

   } 

   replies[message.value][message.From] = true 

 

   // If more than F+1 with the same value, accept the array. 

   if len(replies[message.value]) >= (variables.F+1) && 
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!accepted[message.value] { 

    accepted[message.value] = true 

    OpLatency += time.Since(sentTime[message.value]) 

    Total++ 

    logger.OutLogger.Print("RECEIVED ACK for ", 

message.value, " [", time.Since(sentTime[message.value]), "]\n") 

 

    if num < 2 { 

     sendRune() 

    } 

   } 

  } 

 }() 

} 

 

func sendRune() { 

 num++ 

 message := types.NewClientMessage(variables.ID, num, runes[rand.Intn(len(runes))]) 

 randServer := rand.Intn(variables.N) 

 

 for i := 0; i < (variables.F + 1); i++ { 

  to := (randServer + i) % variables.N 

  flag := messenger.SendRequest(message, to) 

  if !flag { 

   randServer = rand.Intn(variables.N) 

   i-- 

  } 

 } 

 

 sentTime[num] = time.Now() 

} 

 

Figure 4.11 Client behavior as illustrated in [35, Fig. 4.8] 
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5.1 Validation Unit Tests 

 

For the correctness assessment of the studied algorithms in specific scenarios, several unit 

tests regarding various situations have taken place. The protocols must be evaluated in the 

presence of Byzantine faults to estimate the influence of Byzantines nodes in the consensus, 

and transient faults for the convergence property. Besides this, scenarios without transient 

faults reveal the satisfaction of the self-stabilizing closure property as the algorithm should 

not deviate from its safe state. Thus, it has to preserve the properties of the consensus 

problem. The following Sections present all the unit tests that were used. 

Furthermore, the correctness of the algorithm was assessed by comparing the decision value 

of each process. Satisfying the consensus or atomic broadcast properties is the desired way to 

indicate the error-free execution of the protocols. If every non-faulty server holds the same 

decision at the end of the experiment, then the algorithm was proven correct in that specific 

unit test. This check has taken place both in transient prone and in transient free 

environments, regardless of the existence or behavior of Byzantine processes. 

The evaluation of the convergence property, however, was done differently. We know the 

altered values of a message as a virtue of the manually created transient faults’ contents 

mentioned in the following Sections. Therefore, the check of whether the algorithm was able 

to clear the transient faults, i.e., return to a safe state, was done by evaluating the content of 

the message tuples. When none of the messages stored in the msg array contained a value 

which was created by a transient fault, it means that the process has managed to clear these 

temporary errors. Namely, the amount of messages that is affected by a transient fault is the 

number of messages in msg that match the transient fault values used in the experiment. 

Consequently, the clearance of transient faults in every process manifested the capability of 

the algorithm to converge in that specific unit test.   

In addition, several validation tests have taken place both for self-stabilizing atomic broadcast 

and vector consensus algorithms. Their correctness and convergence properties were 

evaluated as defined above. More specifically, every unit test mentioned below has assessed 

the behavior of the self-stabilizing atomic broadcast, whereas each one except from the num 

based transient faults has evaluated the actions of self-stabilizing vector consensus. Both 

protocols were successful in completing their corresponding unit tests in terms of correctness 

and convergence. 
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5.1.1 Failure-free Unit Test 

 

The base unit test consists of a system with neither Byzantine processes nor transient faults. It 

is mainly focused to evaluate whether the processes behave correctly with the proposed 

algorithm. This is considered as the ideal working scenario and can serve us by having the 

metrics of this scenario as a base for comparisons with other more complicated ones. Another 

reason to have this unit test is to compare the results and measurements of the studied 

algorithms with other algorithms proposed in the bibliography, especially with the non-self-

stabilizing version of the protocol.  

 

5.1.2 Byzantine-only Unit Tests 

 

The proposed algorithm ought to be tested with Byzantine processes, acting in various ways, 

to evaluate the behavior of the system when processes that act arbitrarily exist. The scenarios 

presented below were developed to assess these kinds of faults. An important thing to 

mention is that the changes of the values sent by Byzantine processes are implemented as 

modifications of the messages just before broadcast. For the sake of simplicity, but not 

affecting the effect of the scenario, the values sent from Byzantines are 1-byte characters, 

either “0” or “1”, for every message stored in their array. For example, if a Byzantine process 

was supposed to send an echo and a ready message with another process as the sender in the 

message tuple, the value of every message is overwritten with the 1 byte one.  

 

5.1.2.1 Byzantine Idle Scenario 

 

This is another crucial test to gauge the behavior of the system with crash faults. In this case, 

Byzantine processes do not send any messages throughout the execution of the algorithm, so 

the only processes that send messages are the n-f correct ones. The absence of the Byzantine 

processes in the consensus procedure can show the tolerance of the algorithm when having f 

idle participants.  

 

5.1.2.2 Half and Half Attack Scenario 

 

Half and Half scenario considers the manipulation of the messages by Byzantine processes 

and their effort to confuse correct processes by sending different values to them. More 

specifically, Byzantine processes send a specific value to half of the correct processes and a 
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different one to the other half. They are coordinated to send the same value to each process, 

so correct nodes receive a specific value from every faulty process. In detail, any message 

send from BC to SSABC is modified based on the ID of the receiver – the “0” character is 

sent as one byte to servers with even IDs and the “1” character is sent to those with odd IDs. 

 

5.1.2.3 All Attack Scenario 

 

This scenario is an expansion of the previous Half and Half scenario and has a greater impact 

on the confusion of correct nodes. Byzantines send coordinately a specific byte, the “0” 

character, throughout the consensus stack for every outgoing message. This creates greater 

support for Byzantine proposed values and achieves the maximum confusion of correct 

nodes. The BFT nature of the algorithms, however, ensures that correct processes cannot be 

affected by the coordinated attack of the Byzantine nodes. 

 

5.1.3 Transient Faults-only Unit Tests 

 

The algorithms studied in this thesis are self-stabilizing, so scenarios having transient faults 

must be considered for the appropriate evaluation of them. The following scenarios ought to 

test that with faults disturbing majorly the memory of a process, namely changes in every 

saved message, the protocol continues to execute as intended. 

When a transient fault takes place, the properties of the consensus problem cannot be ensured 

because the system is not in a safe state. Nevertheless, the algorithm must converge to a safe 

state, in finite steps, and continue its safe state execution without ever deviating from it. With 

a focus on convergence, the following unit tests were executed and tested the ability of the 

system to expel the transient faults. To achieve that, a module testing the saved messages of a 

process was implemented, which checks for each message if the simulated transient fault is 

present. That is, it evaluates whether every message carries the correct value, based on the 

sender in the corresponding testing scenario, and whether the sender of the message has an ID 

which belongs to the ID range of the system. In SSABC scenarios, stored tuples are tested 

also for the correct values of their num section. This module is not part of the algorithm, and 

it was just used for debugging purposes to evaluate the convergence property. 

Transient faults can change any part of a message tuple saved by a process. Every scenario 

mentioned below was executed with the transient fault affecting every process of the system 

or just half of them, based on a given probability. The faults used, however, affect every 

message in each category. After transient clearance, the test continued its execution to 
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evaluate the protocols’ correctness in transient prone systems, i.e., if processes decide the 

same values. 

 

5.1.3.1 Value Transient Fault Unit Tests 

 

Value transient faults can affect the convergence of the algorithm as they can lead to wrong 

content of the msg array. The remainders of these faults in the system means that the studied 

algorithm is not transient fault resilient. The studied algorithm must be able to eventually 

clean up the system from these faults and to be able to continue the safe execution with 

values that are proposed by processes of the system. For simplicity purposes, but without 

affecting the impact of the scenario, value contaminant transient faults overwrite the value of 

every affected message with the “0” 1-byte character. 

The above-mentioned test was held multiple times to affect all init, echo, and ready messages 

separately and messages of any other type’ combination possible. 

 

5.1.3.2 Sender Transient Fault Unit Tests 

 

The goal of this scenario is to evaluate the capability of the algorithm to eliminate messages 

with senders’ IDs that do not correspond to the consensus participant processes. Transient 

faults can alter the ID of a sender in a message tuple, which can lead to several problems of 

the expected execution. These messages should be removed from the system to achieve a safe 

state. In detail, two-unit tests were executed with sender altering transient faults. In the first, 

the sender part of the message tuple was changed from sender ID to sender ID+1 and in the 

second sender ID-1 was the transient sender value. This is sufficient to test the behavior of 

the algorithm in these situations.  

The above-mentioned test was held multiple times to affect all init, echo, and ready messages 

separately and messages of any other type’ combination possible. 

 

5.1.3.3 Num Transient Fault Unit Tests 

 

This experiment targets the self-stabilizing atomic broadcast protocol as it is the only 

algorithm where its message tuple contains a num section.  Basically, the num of each 

message is changed and set to a specific value. The objective of this is the evaluation of 

convergence in this kind of transient faults. The studied protocol is able to circumvent the 

disturbance while moving on to a safe state execution. The above-mentioned test was held 
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multiple times to affect all init, echo, and ready messages separately and messages of any 

other type’ combination possible. 

Moreover, separate experiments were done to assess the behavior of SSABC when the value 

of its local counter is changed. These changes regard the altering of the counter to a lower or 

greater value compared to the correct number, at that specific time. In any situation, the 

protocol was able to circumvent the alterations and managed to reach a safe state. 

 

5.1.3.4 Full Tuple Transient Fault Unit Tests 

 

This unit test, which contains the most distractive and general kind of transient fault, provides 

the most difficult assessment of the algorithms as every fault mentioned in Section 5.1.3 

occurs simultaneously. These faults alter the values of every stored message based on the 

types of messages that are affected by the transient failure. In detail, the sender part of a 

message is changed to sender ID+1, the value part is altered to a constant byte, namely the 

“0” character, and if the message tuple contains a num component it is set to a constant value. 

Fundamentally, this transient fault completely changes the state of the system with messages 

that have the required support for their existence. For instance, the existence of ready 

messages is supported by init and echo messages as all of them contain the same value. 

Despite the severity of this scenario, the algorithms can restore system’s safety by vanishing 

faulty messages. 

The above-mentioned test was held multiple times to affect all init, echo, and ready messages 

separately and messages of any other type’ combination possible. 

 

5.1.4 Combined Byzantine and Transient Faults Unit Tests 

 

The system developed must be able to withstand both transient faults and Byzantine 

processes simultaneously. In this scenario, Byzantine processes act arbitrarily while the 

transient unit test of Section 5.1.3.4 takes place with effect on every message stored. These 

unit tests basically assess every aforementioned Byzantine behavior with the Full-Tuple 

transient fault. To make things tougher, transient faults alter the values of messages to the 

same values sent by Byzantine processes. Despite the severity of these scenarios, the 

algorithms are able to tolerate these faults by reestablishing the system’s safety and reaching 

a consensus while satisfying the properties mentioned in Section 2.3. 
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5.2 Experimental Environment 

 

The experiments that assessed the behavior of the algorithms were concluded in a real-world 

environment. More specifically, a cluster of five machines was used to simulate processes’ 

actions in an asynchronous distributed system. All machines run the protocols in parallel, 

while communicating with each other by using their public IP and ZeroMQ library. 

Machines’ specifications are presented in Table 5.1. In detail, there are two machines with 

quad-core CPUs, while others have single-core or dual-core CPUs. According to the scenario, 

every machine run one server instance, except from the two quad-core ones, 0 and 1, which 

run the extra server instances when the number of servers exceeded four. A different machine 

handled all client requests, but when the amount of clients was 50, an extra machine was 

allocated for client behavior, with each machine having 25 client processes. That is, the 

number of machines used for requests in relation to the number of clients in the system is the 

following:  

• Client number ≤ 25 → one machine. 

• Client number equal to 50 → two machines. 

In the experiments with multiple client machines, servers’ instances were executed on our 

two best machines. Specifically, in these assessments, only four servers were used therefore 

each one of the quad-core processors had two active server instances. 

 

Machine 

Number 
CPU(s) 

Threads per 

core 

Core(s) per 

socket 
Socket(s) CPU Model 

0 8 1 4 2 
Intel™ Xeon™ CPU 

E5320 

1 8 1 4 2 
Intel™ Xeon™ CPU 

E5320 

2 1 1 1 1 
AMD Opteron™ 

Processor 252 

3 2 1 1 2 
AMD Opteron™ 

Processor 246 

4 1 1 1 1 
AMD Opteron™ 

Processor 252 

 

Table 5.1 Cluster machines’ specifications 
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5.3 Assessment Metrics 

 

The studied algorithms must be evaluated on various aspects to conclude their general 

behavior in experimental scenarios. These measurements should assess every theoretical 

complexity component for distributed protocols. Therefore, for every experiment taken the 

evaluation metrics consist of three aspects: 

• average operation time: time needed by servers to atomically deliver a client 

request. It is measured by clients as the time between the transmission of their request 

to the servers until they receive f+1 ACK replies. 

• average message complexity: the amount of messages exchanged between servers to 

correctly atomically deliver a set of values in one atomic broadcast round. Measured 

as the total number of messages sent to cover every request divided by the number of 

SSABC rounds, i.e., the amount of consensus calls made in which requests were 

delivered. 

• average message size: the size of a message sent in one atomic broadcast round in 

MBs. Measured as the cumulative size of the exchanged messages divided by the total 

number of messages sent. 

Scenarios with transient faults have been tested for convergence time, too. That is defined as 

the time between the last transient fault and the atomic delivery of a correct message. In our 

unit tests for convergence quantification, the system starts from an arbitrary state, therefore 

convergence time is the time the system needs, from its initialization, to deliver its first 

correct request. 

None of the measurements taken regard Byzantine processes in their calculation as we want 

to evaluate only the behavior of the correct processes of the system and not arbitrary 

behaving ones. Moreover, in our experiments, clients’ requests are already available to 

servers when they start their execution. Specifically, all the numerical assessments are taken 

from the moment clients’ requests are available until the atomic delivery of all of them. This 

makes our measurements more robust as we do not consider initialization and starting 

network overheads.  

 

5.4 Experimental Results and Analysis 

 

The following experiments took into consideration different number of clients, servers along 

with Byzantine processes’ actions, in each environment. The amount of clients and servers 

used in each scenario is indicated on each graph. Byzantines’ behavior is also mentioned in 
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the following figures. As a summary of the four different types of behaviors mentioned in 

Section 5.1, we have the following: 

• NORMAL: no presence of Byzantine processes. 

• IDLE: only crash failures exist in the system. 

• HALF and HALF (H&H): Byzantines send one value to even numbered processes 

and a different one to the oddly numbered servers. 

• ALL: Byzantines send one value to any other process. 

Moreover, two versions of the tests took place: one with transient fault presence and one 

without. When transient failures existed, every process was affected by a given probability p. 

That is, every process picks a random number in the [0,1) range and if it is less than p, then a 

transient fault affects the process. In the clients and servers scalability tests every process was 

affected (p=1). These faults altered the content of the messages in the msg array in the way 

described in Section 5.1.3.4. Every stored message was affected, and each tuple component 

was altered. The value and num parts of the message were set to a predefined constant value, 

whereas the sender component was changed to sender ID+1. They struck when the msg array 

contained at least one ready message for the first time. This provides a random transient fault 

occurrence to make its impact larger. Basically, the transient fault took place only once as the 

evaluation of a system prone to these failures considers the last transient fault and onwards. 

In the following graphs, several abbreviations are mentioned. Here are their explanations: 

• T: Transient fault probability, p. 

• S: Servers used. 

• C: Clients used. 

The chance of a server to begin in an arbitrary state in convergence tests is defined as 

transient appearance probability. That is, if the probability is 1, every server is affected, but if 

it is 0.5 only half of them start with a faulty state. 

 

5.4.1 Clients Scalability 

 

These measurements take into consideration all the previously mentioned experiments. That 

is, a version of the graph with both Byzantine and transient faults exists and another one only 

with Byzantine faults. These tests have been executed with the same amount of servers, four 

to be exact. This was done to assess only the effect of soaring clients in the aspects mentioned 

in Section 5.3. Specifically, executions were completed with 1, 10, 25, and 50 clients. 
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5.4.1.1 Operation Time 

 

 

 

Figure 5.1 Operation Time - constant servers and increasing clients without transient faults 

 

 

 

Figure 5.2 Operation Time - constant servers and increasing clients with transient faults 



 

61 

 

The operation time of the applied unit tests is shown in Figures 5.1 and 5.2. These regard the 

absence and presence of transient faults, respectively.  

To begin with, in both graphs, the time needed to deliver every incoming request surges as 

the number of clients climbs. This is due to servers’ proposal of at most one request, i.e., they 

cannot suggest a new request until they atomically deliver their current one. Therefore, as 

clients soar the same thing happens to the incoming requests. Due to a server’s proposal of 

only one of them at a time, servers need more time to accomplish their task. The time 

escalates the most when we go from 10-clients to 25-clients simulations, as it gets tripled. 

This indicates a critical point of the system in which servers’ work is at its maximum at any 

given moment.  

The influence of Byzantine behavior does not affect dramatically the time in any experiment, 

but the time needed in the absence of Byzantines when the clients are larger than 10 is 

significantly more compared to scenarios with Byzantine failures. This is not a foreseeable 

result as the malicious actions of Byzantines target the confusion of correct nodes. However, 

this could be explained as the size of the values sent by Byzantines is notably less compared 

to the values of correct processes. This influence both the computation time of a server to 

evaluate the content of a message and the time required for a message to be sent over the 

network. To elaborate more, the influence of messages’ size is more prone to appear on 

occasions where a lot more messages are sent to fulfill the requirements of the experiment. 

The reason behind this is that as more and more messages are smaller, the difference in time 

needed to handle only normal messages and several smaller ones cumulatively stacks up and 

eventually appears largely.  

Additionally, in crash faults environments, there are less messages sent over the network and 

less values stored in msg to be checked. Therefore, the least operation time among any 

experiment with the same clients is when failed processes only halt indefinitely. The time 

needed in normal and transient prone environments is nearly identical for any experimental 

scenario. The slight difference between them exists as a virtue of the time required to flush 

and recompute values in several msg entries to circumvent the transient fault. It is also shown 

in practice that despite the influence of a transient failure, the protocol continues and 

completes its task in times that are almost inseparable to situations where no transient faults 

take place. This means that the studied algorithms effectively handle these corruptions and 

therefore could be applied in real-world scenarios. Furthermore, the slopes of the graphs are 

interchangeable, which further supports the small influence of tolerating a transient fault.  
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5.4.1.2 Message Complexity 

 

 

 

Figure 5.3 Message Complexity - constant servers and increasing clients, no transient faults 

 

 

 

Figure 5.4 Message Complexity - constant servers and increasing clients with transient faults 
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Moving on to message complexity graphs, we observe different behaviors between the 

transient and normal scenarios. For clarification, in the self-stabilizing protocols processes 

broadcast messages in the do-forever body before proposing a value to the lower layer and 

while waiting to get a response from it. This means that more executions of lower stack 

protocols or more iterations of the do-forever loop result in more messages sent. This pattern 

is shown in both experiments, as indicated in Figures 5.3 and 5.4.  

In both unit tests, the number of messages sent is increasing almost linearly as clients in the 

system soar. As mentioned before, the surge in incoming requests requires more iterations 

and executions of every algorithm in the stack which result the rise of messages exchanged. 

With more clients we have more incoming requests, thus the graph form is as anticipated. 

Moreover, the amount of messages sent is similar in transient and normal environments with 

slightly more values exchanged in systems with transient presence. This is completely normal 

as the extra messages are needed for clearing the incorrect values and for bringing the 

protocol back in its safe state track. 

Additionally, in both environments the NORMAL scenario is the test with the most messages 

sent over the network. However, in transient free systems, a substantially larger number of 

values are exchanged. On the other hand, the least transmitted messages are measured in 

experiments where faulty nodes halt indefinitely. This is the case in both systems as IDLE 

tests are the lowest in almost any scenario. Furthermore, the metrics gained when Byzantine 

processes propose malicious values are almost identical when considering each environment 

separately, which is defined by transient presence or absence. This indicates a general 

stability of the protocol regardless of malicious actions.  
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5.4.1.3 Message Size 

 

 

 

Figure 5.5 Message Size - constant servers and increasing clients without transient faults 

 

 

 

Figure 5.6 Message Size - constant servers and increasing clients with transient faults 
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Finally, average message size is shown in Figures 5.5 and 5.6. The message size is defined as 

the size of the msg[i] entry of pi’s array, which is basically what is broadcast to others. Since 

servers only propose at most one value, the messages in a process msg array are only affected 

by the amount of servers suggesting a value for delivery. Therefore, each msg’s entry is 

bounded by the number of servers in the system. When fewer servers have a request to 

deliver, we expect smaller messages to be sent.  

As expected, the size of the messages is almost constant as they fluctuate slightly in every 

line graph. This is due to the unification of the protocol messages where on every broadcast 

all the init, echo, and ready values of a process are sent over the network. Since msg entries 

are bounded and the number of the servers is persistent, the results are foreseeable. The 

fluctuation is seen in simulations with fewer clients. More specifically, in the one client test 

the message size is significantly less compared to the other scenarios. This is due to the fact 

that only some of the servers have a proposal as a virtue of the client’s behavior to send 

requests to f+1 servers, thus leaving some servers without one. This implies fewer messages 

in msg to be broadcast and therefore less average message size. 

When more clients are utilized, servers constantly get a value to deliver from some client. 

This implies that in most of the atomic broadcast rounds all servers have a request to propose 

so the average size moves towards the value of a full msg entry, with either Byzantine values 

or only correct ones. In contrast, with fewer clients the exact opposite happens, and some 

broadcasts contain less than four values in messages, which lower the average. These two 

observations explain the slight increase of message size in environments with more clients. 

Furthermore, as anticipated, the smallest and largest sizes occur in IDLE and NORMAL 

scenarios respectively. In unit tests with crash prone processes, there are less messages stored 

in msg entries as these nodes do not send any suggestions at all. Additionally, in invulnerable 

systems only correct messages are sent, which are larger compared to the ones sent by 

Byzantines. In detail, because of the altering of the Byzantine messages, which propose a 

one-byte value instead of a several byte correct message, several msg entries contain these 

smaller messages from faulty processes. The result of this is the shrinkage of the message to 

be broadcast as messages from Byzantine processes, which are forwarded by correct nodes, 

are smaller in size. Thus, in NORMAL experiments the average message size is significantly 

larger, while HALF and HALF and ALL scenarios’ sizes are very similar. 

Finally, as presented in the two systems, transient failures do not influence the measurements 

crucially. There are certainly more fluctuations in transient tests which are expected because 

of the nature of transient faults in our system. These faults alter the values stored in correct 

processes to a one-byte value. Thus, the average size is affected when a memory corruption 

takes place as it lowers the outgoing message size for a portion of the execution. Due to 
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transient faults, however, more messages are needed to be sent for correct servers to 

eventually clear the corruption. Consequently, more messages are sent with requests from 

every server, either a new one or a delayed previous one. Therefore, if the execution time is 

not vastly larger compared to the convergence time, i.e., 1 client exists, the average size is 

lower as a virtue of smaller sized messages. Otherwise, the total average size is slightly larger 

because of the extra full msg entries sent for a longer period of time. 

 

5.4.2 Servers Scalability 

 

The following assessments take into consideration all the scenarios of Section 5.4. Namely, 

graphs for both only Byzantine failures and Byzantine with transient faults exist. These 

experiments have been taken with the same number of clients, which were 25. This was done 

to evaluate only the effect of soaring servers in the aspects mentioned previously. 

Specifically, executions were completed with 4, 7, 10, and 13 servers. 

 

5.4.2.1 Operation Time 

 

 

 

Figure 5.7 Operation Time – constant clients and increasing servers without transient faults 
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Figure 5.8 Operation Time – constant clients and increasing servers with transient faults 

 

At first, the operation times of our observations are shown in Figures 5.7 and 5.8. There are 

many similarities between the environments with the absence and existence of transient 

faults. 

Both unit tests indicate a positive association between server number and operation latency. 

This is anticipated as the time complexity of a do-forever iteration is O(n3), where n is the 

number of servers in the system. This implies that the time to deliver every request is larger 

as server number rises. One would expect that operation time would decrease as more servers 

exist in the system. With more servers, more requests can be proposed simultaneously for 

consensus. However, the time needed for the checks of the msg array circumvents the impact 

of more requests being proposed. This linear time climb occurs in both experiments up to a 

certain point, with thirteen servers, where the larger proposal set has more influence in time 

compared to smaller systems, therefore, disturbing the overall time increase. 

Furthermore, the lowest time is recorded with crash failures, whereas the maximum time 

happens when Byzantines propose a malicious value for everyone. In crash prone 

environments, less messages, specifically n-f, are stored in each process’ msg array so less 

time is required for the inspections to take place. In addition, the malicious values suggested 

by Byzantines confuse correct processes by making them flush incoherent values and refilling 

the gaps with new messages, which enlarge protocol time. These observations explain the 



 

68 

time measurements. The presence of transient faults lowers moderately the operation latency 

in ten server or smaller systems as smaller messages, which exist due to transient faults, need 

less transmission time. In larger environments, transient faults increase slightly the operation 

time as a virtue of the extra flushes and messages sent to clear these temporary failures. In 

total, transient faults quantifications do not have significant distinctions compared to the 

transient free measurements.  

 

5.4.2.2 Message Complexity 

 

 

 

Figure 5.9 Message Complexity – constant clients and increasing servers without transient 

faults 
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Figure 5.10 Message Complexity – constant clients and increasing servers with transient 

faults 

 

Moving on to message complexity, both graphs indicate the expected experimental 

measurements. The amount of messages sent is affected by the number of servers in the 

system, and the iterations of the do-forever loop for broadcasts either in the main body of the 

loop or during the waiting for the consensus results. 

At first, in either transient or normal environment, messages sent surge as servers’ number 

rises. This is expected due to the message complexity’s dependency on servers as the 

broadcast operation sends values to more recipients. However, this rising trend changes in the 

system with thirteen servers. Thirteen servers need less iterations of the do-forever loop to 

deliver all the requests, which are produced from a constant number of clients, thus, the 

broadcast module is called significantly less times. The fewer iterations needed are supported 

by the decrease of operation latency’s trend in Figures 5.7 and 5.8. Consequently, the 

message complexity’s trend gets lowered in such environments despite the increase of 

broadcasts’ recipients. 

Furthermore, the message measurements between any Byzantine behavior in each system 

separately are nearly identical. This presents the anticipated result that correct servers’ 

actions are not defined by the behavior of malicious ones, therefore they exchange 

approximately the same amount of messages in any scenario. Some minor differences appear 
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in crash prone systems as a virtue of more messages sent due to the slightly less time needed 

for checking the msg array. Moreover, in transient environments marginally more messages 

are required as some extra values are exchanged to bring the system back to a safe state. This 

happens to overwrite incorrect messages, which were transmitted earlier. 

 

5.4.2.3 Message Size 

 

 

 

Figure 5.11 Message Size – constant clients and increasing servers without transient faults 
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Figure 5.12 Message Size – constant clients and increasing servers with transient faults 

 

Lastly, regarding message size, an increase is indicated in Figures 5.11 and 5.12 as more 

servers are added to the system. Message size is affected by the number of servers and the 

size of their proposal, which is stored in each process’ msg array. Transient faults alter the 

stored messages to a one-byte value, while Byzantines transmit one-byte messages. 

Size soars with more servers as a virtue of having more proposals saved at any given time. As 

expected, the lowest average message size is when faulty nodes remain idle. This means that 

they do not send values to other servers, thus correct nodes only store suggestions from non-

faulty servers. This makes the msg[i] of each process pi smaller due to a n-f upper bound of 

maximum number of messages contained. On the other hand, in faulty clean experiments we 

have the most MBs required for the exchanged messages. This is anticipated as the message 

of a correct server is larger than the values proposed by Byzantine processes. Therefore, in 

HALF and HALF and ALL unit tests, where f values of a full msg[i] are Byzantine proposals, 

the message size is similar as indicated in their graphs. Their size is moderately smaller than 

the size in NORMAL scenarios, too. 

The same growth trend is shown in both transient environments and transient free ones. The 

differences among the experiments where Byzantines send values are almost negligible. 

Nevertheless, messages in transient environments are slightly smaller in comparison with the 

non-transient systems. This is the case for any scenario that has taken place. This is a 
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completely normal observation due to transient value altering. When messages are altered, 

their size is equal to one byte as the only goal of the transient fault in our environment is the 

confusion of correct processes. Therefore, until the fault gets cleared in every process, 

msg[i]’s messages are gradually compacter. These broadcasts of smaller values lower the 

average message size measured. 

 

5.4.3 Convergence Time 

 

The bar chart in Figure 5.13 indicates the convergence time, as defined previously, for 

several execution scenarios. These scenarios contain a constant number of clients, 25, with an 

increasing number of servers, i.e., 4, 7, and 10. Additionally, every unit test was assessed 

with two versions of transient appearance probability, namely 0.5 and 1. The transient fault 

considered in these experiments is the arbitrary state initialization of a server. That is, servers 

in this arbitrary state, launch the protocol with messages in msg, which include faulty values 

for every process in the system. These faulty messages hold similar content for every process, 

namely the byte of “0” character as value and a constant num number. All the types of 

messages are created, i.e., init, echo, and ready messages for each system node. Thus, the 

faulty messages with the same sender support each other’s existence. Consequently, 

convergence time is measured as the time between the beginning of the algorithm until its 

first delivery of a correct message. Descriptions used in x-axis specify the behavior of 

Byzantine processes, as presented previously.  

 

 

Figure 5.13 Convergence Time graph 
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Figure 5.14 Average Convergence Time graph with different transient probabilities  

 

As it is shown in Figure 5.13, the more servers in the system the more time is needed for 

convergence. This is expected because of the time needed to check for messages in msg, 

which is in the order of O(n3) as mentioned above, as well as the time required for a server to 

get messages from every affected node and realize that messages contained in its msg array 

are incorrect. In same Byzantine behavior scenarios, the relationship between the two 

measurements with the same servers is the same regardless of system size. Figure 5.14 

indicates that transient probability does not affect the average convergence time of the 

experiments. This average is calculated by considering all the different Byzantine behaviors 

of each system. Nevertheless, larger systems require more time to reach a safe state.  

Furthermore, when Byzantine processes send malicious values, a greater transient probability 

indicates an increase in convergence time, whereas in correct environments or in crash failure 

scenarios the opposite is the case. This is expected due to the dichotomy of the transient 

affected and transient free servers in NORMAL and IDLE scenarios, where malicious values 

are not transmitted, when transient probability is equal to 0.5. Faulty messages supplement 

each other’s existence so when every process is affected and no malicious values are sent, 

servers are able to detect the transient fault more easily as they check the messages that are 

stored in their msg array and detect the presence of messages that were not broadcast by 

them. In tests where only half of the servers are affected, it is more difficult for them to detect 
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the transient fault as they have stored messages from nodes that did not actually send 

anything. The unaffected processes have a clear msg array in their memory initially, so they 

do not detect any fault in their state. Hence, transient free servers do not send any message 

with contents capable to indicate to others that a transient fault has altered values in their 

memory. This would happen when they get their first request. Therefore, the time required 

for servers to realize that a transient fault has occurred when only half of them are affected is 

greater than the time needed when all of them have altered values in msg. 

The largest system needs the least amount of time to converge when there are crash failures 

in the system. The main reason behind this is the fewer messages contained in msg array, 

which decrease the time needed for several algorithm’s evaluations and flushes to take place. 

This is not shown in smaller systems as a virtue of the small difference of the affected servers 

among the two cases of the same configuration. They achieve their fastest time in 

environments with no presence of Byzantine faults. The longest time is needed when 

Byzantine malicious messages are sent, which support transient faults value-wise, regardless 

of the number of servers. The ten-process system has a moderate time difference between 0.5 

and 1 probability values in the first two scenarios. This difference diminishes as Byzantines 

start to send inappropriate values. In any other experiment, the pattern followed is the exact 

opposite as malicious messages worsen the time gap between identically sized systems. 

Overall, the general structure of the measurements on each Byzantine behavior separately is 

identical among the different number of servers. The size of the system affects the average 

convergence time, whereas transient probability has less influence on the latency to achieve a 

safe state. 

 

5.5 Comparison with Existing Work 

 

Our protocols are compared with the experimental measurements of the algorithms of Correia 

et al. [15]. The usage of these algorithms as a base for the newly designed ones implies the 

essence of these comparisons. This indicates the exact difference created by self-stabilization 

as the two atomic broadcast algorithms have a common origin. The evaluation of the studied 

algorithms and its non-self-stabilizing counterparts are in terms of the main three metrics 

mentioned above. Namely, operation time, average message complexity, and average 

message size. Because of the non-transient fault tolerance nature of the Correia et al. s’ [15] 

protocols, the comparisons made refer to the scalability of either clients’ or servers’ aspect 

only. The systems used for the measurements of both protocol stacks are identical as the 

studied algorithms have been developed on top of the work done in a previous thesis [35]. 

That is, the graphs presented below are the ones shown in that diploma project. Our testing 
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scenarios take into consideration the coordinated attack of the Byzantine processes, i.e., ALL, 

which send the same value to every node, whereas the graphs in the previous thesis [35] do 

not contain measurements regarding this unit test. Therefore, the comparisons were made 

based on the common scenarios, which are defined by the behavior of the Byzantine 

processes and the number of servers and clients used. It is critical to be mentioned that our 

experiments took place in a five-machine cluster, whereas the tests of the original ABC stack 

were done in a nine-machine one. Additionally, an important thing to consider is that ABC’s 

message metrics take into consideration the faulty processes, whereas our graphs are covering 

up only correct servers. 

 

5.5.1 Clients Scalability Comparison 

 

The non-self-stabilizing atomic broadcast graphs of operation time, message complexity, and 

message size, with constant severs, are presented in Figures 5.15, 5.16, and 5.17, 

respectively. The tests executed for gathering the data of the graphs below kept the number of 

servers steady and equal to four, just like our experiments. Comparisons include only the 

transient clear tests to be able to evaluate similar context metrics. These are presented in 

Figures 5.1, 5.3, and 5.5, which correspond to operation time, message complexity, and 

message size respectively. 

 

 

Figure 5.15 Operation Latency affected by the increase of clients as illustrated in [35, Fig. 

5.4] 
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Figure 5.16 Message Complexity affected by the increase of clients as illustrated in [35, Fig. 

5.5] 

 

 

Figure 5.17 Message Size affected by the increase of clients as illustrated in [35, Fig. 5.6] 

 

To start with, operation time is significantly lower in original atomic broadcast compared to 

its self-stabilizing version. This is expected because to achieve self-stabilization, additional 

assessments on saved values are made, which increase the overall execution time. To 

elaborate more, the shape of the graphs is different as ABC’s time is increasing in the same 

way, whereas SSABC lowers the climb in fifty client environments. The studied protocol is 

more stable among the different Byzantine behaviors, while the original atomic broadcast 

algorithm needs substantially more time when Byzantines send malicious values, i.e., HALF 

and HALF scenario. In detail, the time needed in ABC for NORMAL and IDLE experiments 

is less than a second even with fifty clients. In contrast, the studied protocol requires more 

than 10 seconds to deliver requests from fifty clients but only three times the ABC latency to 

atomically broadcast them in HALF and HALF tests. These differences are anticipated 
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because each server that uses the self-stabilizing algorithms can only manage at most one 

request per time. Additionally, more messages are sent over the network, which imply extra 

transmissions overhead and supplementary time to manage. 

Furthermore, the message complexity graph shape of the self-stabilizing stack is like its 

original counterpart. Messages sent increase in a linear fashion as more clients are added to 

the system. Nevertheless, the studied algorithm sends more values until the end of its 

operation. This is due to the periodic broadcasts that are needed to circumvent the problems 

of transient faults. More proposal rounds because of the limited suggestion capabilities of 

servers result in more iterations of the main do-forever body, which means more messages 

are sent. In addition, each process broadcasts its values while waiting to get the consensus 

result of the beneath layer. All these extra exchanges make the message complexity slightly 

larger in the studied protocol with even 1.5 times more messages in NORMAL tests. 

However, the transmission of multiple echo and ready messages in one broadcast, instead of 

a separate one for each message, drops the difference of the two protocols. Moreover, in 

ABC, messages exchanged are relatively stable among the various Byzantine behaviors by 

considering each system instance separately. In contrast, the studied algorithm sends an 

additional considerable number of messages in fault free scenarios.  

Lastly, original atomic broadcast’s message size rises with more clients, while the studied 

protocol’s size is steady along several tests. As mentioned previously, our measurements 

consider the size of correct servers only, which explains the overall stability of our graph in 

Figure 5.5. In the older thesis, the smaller size in IDLE experiments is due to the 

consideration of the crashed processes in the average calculation. All the other scenarios have 

a similar size estimation. The most notable difference, however, lies in the actual amount of 

MBs required for each message. Our protocol needs more memory for each message in 

environments with 1 or 10 clients. This is the case as a virtue of the storage of every server 

proposal and the broadcast of a msg entry which contains them. In addition, each process 

broadcasts all its messages every time. On the contrary, ABC’s message size in systems with 

twenty-five or more clients is greater than the average size of the studied protocol. This is 

explained by the larger vector proposals of the non-self-stabilizing atomic broadcast. Our 

algorithm can suggest at most an n-sized vector to SSVC, whereas in the normal ABC servers 

do not have a limit on the suggestion. As more requests are received, due to the climb of 

clients, servers propose larger vectors to VC, which affect the average message size in an 

upwards manner.   
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5.5.2 Servers Scalability Comparison 

 

The non-self-stabilizing atomic broadcast graphs of operation time, message complexity, and 

message size of constant client tests are presented in Figures 5.18, 5.19, and 5.20, 

respectively. These experiments used a constant number of clients, namely twenty-five, 

similar to our servers’ scalability scenarios. For better comparisons, we only consider our 

transient free unit tests. These metrics are indicated in Figures 5.7, 5.9, and 5.11, which 

correspond to operation time, message complexity, and message size, respectively. 

 

 

Figure 5.18 Operation Latency affected by the increase of servers as illustrated in [35, Fig. 

5.7] 

 

 

Figure 5.19 Message Complexity affected by the increase of servers as illustrated in [35, Fig. 

5.8] 
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Figure 5.20 Message Size affected by the increase of servers as illustrated in [35, Fig. 5.9] 

 

To begin with, the operation latency of both protocols is vastly affected by the number of 

servers in the system. While time increases in both protocol stacks, the studied algorithm’s 

rising trend slightly decreases in larger systems. Crash prone environments have the lowest 

operation time both in our work and in ABC. The maximum time in our system, however, is 

achieved when Byzantine nodes send malicious values, whereas in the older thesis’ 

experiments the NORMAL scenarios take the most time. These differences could be explained 

by the hardware setup used for the experiments. Similarly with client scalability, the absolute 

time variation is the major distinction of these graphs. As expected, the studied protocol 

needs significantly more time to deliver every request due to the enforced proposal number 

limitation. Also, the additional evaluations of the msg array to track transient faults 

cumulatively contribute to operation time.  

Moreover, the amount of the exchanged messages surges with the addition of more servers. 

This is due to the necessity of broadcasting values to more recipients for the correct operation 

of the algorithms. The actual messages sent in fault-free environments is similar to both 

original and self-stabilizing protocols. A larger variation exists among ABC’s messages in 

different Byzantine behaviors, whereas the studied protocol is more stable with malicious 

actions. Besides this, the IDLE test of the original algorithm stack exchanges the least number 

of messages, while our IDLE scenarios are approximately the same as the other experiments. 

This is due to the consideration of crashed processes in the ABC’s average message 

complexity metric, which plunges the actual average value calculated. 

Finally, the message size increases in both protocol stacks. The reason behind this growth is 

different among the two atomic broadcast algorithms. While the climb of the studied protocol 
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is because of the more proposals stored in msg entries, the rise of the original ABC is due to 

the greater size of the suggestions to lower levels. The different causes affect the MBs needed 

for the average message. The self-stabilizing algorithm has a growth which is expected with 

the linear addition of servers because of the analogous increase of the proposals in msg. 

Conversely, the original protocol stack’s size soars in a faster rate. Servers propose larger 

vectors, as a virtue of constructing a vector with all the reliably delivered items, thus, the 

messages to transmit them are substantially larger. As more nodes do the same, the average 

size of the messages exchanged moves towards the size of the proposed vectors, which is 

proportionate to clients’ requests instead of system’s servers, which is the case in SSABC. 

 

5.6 Experimental Summary 

 

In general, the measurements that took place indicate the expected behavior of the studied 

algorithm. None of the metrics is vastly affected by the presence of either Byzantine or 

transient faults. This is crucial to present the stability of the protocol and the fact that the 

extra messages and time overhead required to clear a transient fault is almost negligible 

compared to its transient free execution. Byzantine malicious actions produce only minor 

variations in the evaluated metrics and crash failures are managed more easily in the studied 

protocol. Despite the difference between the utilized machines in our cluster and the one used 

in the original ABC evaluations; significant conclusions were made. The time-wise 

scalability of the self-stabilizing atomic broadcast is worse compared to the original. This is 

anticipated as more checks have been placed in the algorithm’s main body to assess whether 

a transient fault has occurred. Additionally, the enforced constraint of at most one request 

proposal leads to this difference between the studied protocol and the non-self-stabilizing 

one. Nevertheless, SSABC needs smaller messages to be transmitted, which depletes the 

network’s bandwidth and lowers the transmission time. Moreover, only a few extra messages 

are required to enforce self-stabilization due to the forward of many echo or ready messages 

in one broadcast instead of separate ones. The last observations indicate that message-wise, 

the benefits of transient tolerance certainly circumvent the drawbacks of its absence. Finally, 

the convergence time is approximately the same regardless of the amount of the affected 

processes, but systems with more servers require more time to achieve a safe state. 
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6.1 Summary 

 

The main objective of this thesis was the validation and experimental evaluation of self-

stabilizing versions of vector consensus and atomic broadcast. The algorithms proposed by 

Correia et al. [15] were used for the self-stabilizing transformation. After the study of the 

protocols, a development phase took place using the de facto language for distributed 

systems, Go, and a state-of-the-art communication library, namely ZeroMQ. The 

implementation of the algorithms was used to assess their behavior in various scenarios, 

while performing an experimental evaluation. These unit tests were used to evaluate 

algorithms’ correctness and for measurements that had to do with the number of messages 

sent, message size, operation latency, and their convergence time. A general performance 

profile of the algorithms was concluded, based on their numerical assessments. Comparisons 

between the studied protocols and their non-self-stabilizing counterparts took place to 

estimate the influence of the self-stabilizing changes. Consequently, the creation of a 

transient tolerant Atomic Broadcast algorithm is demonstrated to be possible as a virtue of the 

present study.  

 

6.2 Challenges 

 

Some challenges of this thesis regard the transformation of the pseudo-code to Go code. This 

was an issue because Go does not support set types and the map variable used for storing 

messages could not take our message tuple structs as keys. Additionally, Go does not support 

functional programming despite having a lot of features where functional principles are 
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applied. The benefits of Go language, however, circumvent the impact of its drawbacks so we 

proceeded with its usage. Moreover, the limitation of the cluster resources provided another 

obstacle for this project. The number of machines in the cluster is bounded to 5, while many 

of them are low spec machines. This made the scalability of the results difficult as 

experiments with greater number of servers and clients could not be tested properly. Despite 

that, the results of our measurements are representative enough for the amount of processes 

considered in the system. Therefore, the effectiveness of the self-stabilizing protocols could 

be assessed and comparisons with other algorithms could be performed. 

 

6.3 Future Work 

 

In the future, some optimizations of the studied protocols could take place. At first, an effort 

to lower the time complexity of the do-forever loop as this will help dramatically the 

operation latency. This could be done by either using better data structures for storing 

messages, like trees with logarithmic depth, or by handling differently the actions done on 

messages. Message broadcasting could occur periodically and not in every iteration of the do-

forever loop to lower the number of messages sent over the network and the time to process 

them on the recipient’s side. Moreover, the studied atomic broadcast algorithm could be 

altered for servers to be able to propose multiple requests at a time. This introduces a 

complexity on its proof of correctness and additional self-stabilization properties guarantees. 

However, this would certainly decrease the lower layer’s function calls, thus plunging the 

overall operation time. Furthermore, the same experiments could take place but, in our 

cluster’s full capacity by using all nine machines for better results through finer evaluation of 

the protocol’s scalability with more servers and more clients. Another suggestion is to test the 

system in a more geographically distributed processes’ network or in higher performance 

machines to gain a better sense of its real-life applicability. Finally, a full self-stabilizing 

stack could be implemented, with self-stabilizing binary and multivalued consensus modules. 

This would provide more accurate comparisons between transient tolerant and other ABC 

stacks. This would be a more representative self-stabilizing implementation and would help 

to assess transient tolerant behaviors of algorithms in real-world simulations.  
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