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Abstract 

Despite all their known vulnerabilities, passwords remain the most common basis for user 

authentication. Data breaches often take some months until discovered. In this thesis we 

propose Lethe; a deterministic honeywords-based data breach detection framework that 

detects a database leakage timely.  

Honeywords are essentially decoy passwords that are associated with each user account. 

Lethe utilizes a Honeyword Generation Technique (HGT) that leverages Machine 

Learning to produce honeywords. This implies that the HGT ensures its non-reversibility 

property. This means that even inserting the same password in the HGT will not result in 

the production of the same honeywords. Hence, the adversary is unable to revert the 

algorithm and tell which is the real password, even if fully compromising the HGT. In 

fact, Lethe does not assume of a trusted HGT, contrarily to all previous efforts.  

Additionally, the only person that knows their genuine password (i.e., the one used during 

registration), is the user themselves. Our system is unaware of the real password of the 

user. Fundamentally what happens is that Lethe keeps a record of all logins that occur 

during a day and replays these logins in an auxiliary server which will detect if different 

honeywords were used under the same account. In that case, the server sets of an alarm 

since a data breach has been reliably detected. 

Currently implemented approaches that utilize honeywords are based on the need of a 

trusted component to distinguish the real password out of the sweetwords. In contrast, 

Lethe keeps a zero persistent secret state and requires no trusted components, other than 

a trusted bootstrap. Similar efforts also require the need of a legitimate user action in 

order to signal an alarm.  Opposed to these approaches, Lethe can detect a data breach 

even if a user has logged in just once during registration. In addition, Lethe is a 

deterministic approach instead of detecting a data breach probabilistically like previous 

similar attempts do.  

In this thesis, we provide the first fully functionate prototype of Lethe. We explain Lethe’s 

architecture and describe the system’s implementation in great depth. We then further 

evaluate Lethe in terms of security and prove that Lethe is effective and ensures the 

detection of a data breach without the use of a trusted component, nor any actions taken 

by the legitimate users. 
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Chapter 1  

 

Introduction 

 

Traditional passwords still remain the most widespread technique used for user 

authentication since they are an inexpensive, uncomplicated, and convenient method to 

use. Even though passwords are considered to be an exceptionally poor form of security 

and are generally known for being vulnerable to attacks [9], [34], it seems likely that 

passwords will stay prevalent for some time, despite some suggestions to replace them 

[7]. Despite the fact that there is a plethora of counterattack mechanisms [5], [27], their 

use is still limited due to the complexity in terms of implementation.   

The password-focused authentication systems that are currently used, store the 

cryptographic digest of the passwords of users in a database. The database containing this 

sensitive information is an extremely appealing target for attackers. If retrieved and 

restored in plain text, these passwords can be sold and posted online [32] with the 

adversary staying undetectable. 

Note that there is usually a significant delay between the data breach and its discovery 

[18], [19], and it might take some months for the breach to be detected [2], [28] when the 

attackers have already exploited the passwords. Few of the biggest data breaches in recent 

history are those of Yahoo [17], Alibaba [25], LinkedIn [22], Facebook [8] and Target 

[30] which are some of the most popular web services out there. Thanks to these 

compromises, millions, even billions in the case of Yahoo and Alibaba, of passwords 

were leaked, leaving the companies with great damage in terms of revenue and brand 

reputation. 

The fact that password leakages take such a long time to be detected, is the reason why 

Dionysiou, Vassiliadis and Athanasopoulos [13] propose Lethe; a system that will be able 

to detect a data breach timely, as early as at the end of the day. This approach makes use 

of honeywords, initially proposed by Juels and Rivest [21]. Honeywords are essentially 

false passwords that are associated with each user’s account and are injected in a database 

for the sole purpose of detecting a data breach. Hence, when an attacker compromises the 

database that has the hashed passwords of users, even with cracking and recovering the 
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passwords, they cannot tell which of the sweetwords is the real password. The adversary 

must still decide between k different sweetwords, where only one of those is the real 

password. The attempted submission of a honeyword to login will be detected by an 

auxiliary server i.e., the checking server C. C will set off an alarm when a honeyword is 

used, as a data breach has been detected. 

To address this major password leaks and their late detections, various methods have been 

implemented. Currently implemented approaches are based on the need of a trusted 

component to distinguish the real password out of the k sweetwords [11], [14], [21], [26], 

[29]. If, however, this trusted component is compromised, honeywords become useless 

in identifying a data breach. 

One approach that does not require a secret state to detect the injection of a honeyword is 

Amnesia, proposed by Wang et al [33]. Amnesia is a framework that uses a probabilistic 

model verification. In summary, this framework utilizes a marking technique where the 

most recently used sweetword is marked. The rest of the sweetwords are marked 

separately with a specific probability. In the case where the adversary logs in an account 

using a honeyword (i.e., a sweetword that is not the user chosen password), then the real 

password of the user gets unmarked. Consequently, the next time the legitimate user logs 

in, giving a password that is not marked, an alarm sets off since a data breach has been 

reliably detected. However, previous research has shown that users seldom authenticate 

themselves by inputting their credentials explicitly [15], [35]. Thus, the fact that Amnesia 

identifies a breach only after users verify their credentials and assuming that they are not 

using established cookies is a strong assumption.  

Furthermore, whilst Juels and Rivest [21] were the first to propose the use of honeywords, 

their approach’s success relies on various assumptions based on the resulting 

honeywords. The effectiveness of honeywords depends on the indistinguishability of the 

real password [32]. If the attacker can easily determine the user chosen password out of 

the k distinct sweetwords, consequently, this method fails. This is the reason why 

Dionysiou, Vassiliadis and Athanasopoulos [13] highlight the need for a Honeyword 

Generation Technique (HGT) that can meet the expected security requirements [21], [32]. 

In particular, the authors introduce HoneyGen, a HGT that generates realistic looking 

honeywords using representation learning. Also, a HGT should ensure its non-

reversibility property [32]; reversing the algorithm should be computationally hard. 

HoneyGen uses machine learning technologies that by nature ensure this property. 
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This research problem is important since, as we said, there is a need for methods that can 

timely detect a data breach, in order to protect companies and most importantly the 

sensitive information of users. Detecting password leakages before an attacker gets the 

opportunity to exploit the users’ information provides safety to both users and web 

services. Therefore, implementing such systems will have a great impact in today’s 

vulnerable world. 

 

This thesis makes the following contributions. 

 

1. We design and implement the first prototype of Lethe [12], a system that utilizes 

honeywords to detect data-breaches. Lethe keeps a zero persistent secret state and 

requires no trusted components, other than a trusted bootstrap. For the honeyword 

generation, we use HoneyGen [13] to guarantee that the attacker, when 

compromises the database and cracks the cryptographic digests, cannot 

distinguish the real password out of the k sweetwords. Hence, the adversary has 

no more than 1/k successful attack rate. 

2. We further evaluate Lethe, by impersonating the adversary’s behavior. We attack 

our system by simulating logins using random sweetwords on a database that 

contains 10000 users and their generated honeywords. We do a true verification 

of the system and discover that Lethe manages to detect 95% of all data breaches. 

Hence, only 5% of all data breaches are successful, revealing that the adversary 

cannot achieve more than the random choosing success rate. 

 

The remainder of this thesis is structured as follows. In Chapter 2, we discuss about the 

preliminaries and the concepts that are utilized throughout this thesis. In Chapter 3, we 

analyze the architecture of Lethe in depth. Chapter 4 follows, in which we provide the 

detailed implementation of the first prototype of Lethe. In Chapter 5, we evaluate our 

prototype and in Chapter 6 and 7 we discuss about related and future work respectively. 

Lastly, the conclusion of this work can be found in Chapter 8. 
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Chapter 2  

Background 

 

 

2.1 Passwords                 4 

2.1.1 Password Based Authentication             4 

2.1.2 Data Breaches                5 

2.2 Honeywords                5 

      2.2.1 Honeyword Generation Techniques            6   

      2.2.2 HoneyGen: Lethe’s HGT              6 

 

 

Certain background knowledge is required in order to have a better understanding of this 

thesis. In this section, we first explain what password authentication is and how data 

breaches work. Next, we discuss about different Honeyword Generation Techniques 

(HGTs) and their limitations. Then, we analyze HoneyGen; the HGT used to implement 

Lethe.  

 

2.1 Passwords 

 

2.1.1 Password Based Authentication 

Passwords are still the most widely used user authentication method since they are a 

cheap, non-complex, and simple technique to implement and use. Essentially, password-

based authentication is the process of acquiring access and retrieving a user’s entitled 

information by providing a username and password that are unique for each account. 

The password-focused authentication systems that are currently used, store the 

cryptographic digest of the passwords of users in a database. Fundamentally what 

happens is that a user first provides their password during registration. Then, the hashed 

password is stored in the database and not the plain text of the password itself. A system 

maintains a sensitive database that contains the hashed passwords of all users that are 

registered in the system.  
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When logging in, a user provides their password. Then, the cryptographic digest is again 

calculated and compared with the one that is stored in the database. If the two match, then 

the user is gained access to the system, else access is denied. 

 

2.1.2 Data Breaches 

Traditional passwords still dominate the authentication landscape, despite their well-

known security vulnerabilities. In fact, passwords are a major point of weakness in 

computer security [9], [34]. As we previously mentioned, a system maintains a sensitive 

database that contains the hashed passwords of all users that are registered in the system. 

The database containing this sensitive information is an extremely appealing target for 

attackers. If retrieved and restored in plain text, these passwords can be sold and posted 

online with the adversary staying undetectable. 

Credential database breaches have become a widespread security problem. Following a 

successful database leak, the adversary now has the cryptographic digests of the 

passwords and their corresponding hashing function. These are enough for the attacker to 

attempt to crack the passwords in various ways [23], [34]. For example, they can do a 

brute-force or an offline dictionary attack [16], [27]. In the former, the attacker creates all 

the possible permutations in the given password space and see if it matches any of the 

hashes in the leaked dataset. If it does match, then that user password is revealed. In the 

latter, the attacker uses extensive lists of the most used passwords, popular pet names, 

fictional characters, or literally just words from a dictionary. Then, similarly as in the 

brute-force attack, the adversary computes a list of the aforementioned hashes and 

systematically checks if any word in the list matches any of the hashes in the leaked 

dataset. 

 

2.2 Honeywords 

We previously mentioned, that honeywords are false passwords associated with each 

user’s account [21]. Their effectiveness relies on the indistinguishability of the real 

password. 

Honeywords fail if the adversary can clearly find out the user chosen password out of the 

k different sweetwords [32]. 
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2.2.1 Honeyword Generation Techniques 

To evaluate the effectiveness of a HGT, Wang et al. [32], proposed two new metrics: 

flatness graph and success-number graph. These two measures assess a technique’s 

resilience against the adversary’s ability to distinguish the real password from the rest of 

the sweetwords in both the average and the worst-case scenarios. 

Note that, Juels and Rivest [21] recommend using 20 sweetwords for each account 

hence, k = 20. 

A flatness graph illustrates the likelihood of recognizing the real password against the 

number of login attempts using a sweetword, inferring that a point (x, y) in this graph 

demonstrates that the genuine password is found in the first x attempts with a probability 

y. Ideally, a perfect method does not allow more than x / 20 success rate. 

A success-number graph plots the total number of logins using a real password against 

the number of logins using any of the rest of the honeywords. Therefore, a point (x, y) in 

this graph indicates that an attacker could successfully detect y real passwords before the 

xth honeyword login attempt. In the best-case scenario, a HGT produces k sweetwords, 

where each one has the same likelihood (i.e., 1 / 20) of being the real password. 

In addition, the non-reversibility property should be guaranteed by any HGT, i.e., 

reversing the algorithm should be computationally inefficient or impossible. 

 

2.2.2 HoneyGen: Lethe’s HGT 

For the honeywords generation we utilize HoneyGen, proposed by Dionysiou, Vassiliadis 

and Athanasopoulos [13]. HoneyGen satisfies the aforementioned security requirements 

(flatness and success-number graphs) [21], [32].  

Particularly, HoneyGen is a highly robust honeywords generation framework, that 

leverages representation learning to generate high-quality honeywords resulting in the 

adversary unable achieve more than the random choosing success rate. Also, HoneyGen 

uses machine learning technologies that automatically ensure the non-reversibility 

property. 

Essentially, HoneyGen is a hybrid HGT and has two phases. The first phase trains the 

ML model on a real-world dataset of passwords. This allows the model to get familiar 

with the input’s form and generate a word embedding for each password. Then, they 

leverage this ML model to get the top-k nearest neighbors of a password. At the second 

phase, they generate out-of-vocabulary honeywords using a chaffing-by-tweaking 

technique. 
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In the paper, the authors include HoneyGen’s flatness and success-number graphs for 

different numbers of sweetwords per user. By observing these results, we can see that 

HoneyGen is very close to the random guessing baseline, which is the optimal solution. 

From further research, the authors concluded that HoneyGen has a very high resistance 

against sophisticated attackers, since a big percentage of the respondents could not 

distinguish the real password out of the generated honeywords. All these indicate that this 

HGT meets the expected requirements [21], [32]. 
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Chapter 3  

 

Architecture 

 

 

3.1 Lethe                 8 

3.2 Lethe’s Phases                9 
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 3.2.1 Registration Phase              9 

 3.2.2 Authentication Phase            10 

 3.2.3 Data Breach Detection Phase           11 

 3.2.4 Password Reset             13 

 

 

 

In this section we outline the architecture of Lethe [12]. Lethe makes use of two servers; 

the authentication server S and the checking server C, which are responsible for the 

authentication and validation of logins, and the data breach detections respectively. The 

two servers communicate with the TLS Protocol. Compromising either server does not 

reveal any information about the real user passwords since neither server is aware of the 

real passwords of the users. 

 

3.1 Lethe 

At the start of Lethe’s operation, the two servers initialize a cryptographically secure 

random number generator (CSRNG). Both servers initialize a CSRNG with a same 

random seed which is later discarded. That makes the two CSRNGs synchronized. We 

call that step the trusted bootstrap phase. 

After the trusted bootstrap phase, Lethe begins to perform the authentication and the data 

breach detection phases. 

During the authentication phase, the authentication server S keeps track of and saves all 

the user logins. The authentication phase is triggered every time a user logs into the 

system, and each time, it sets off the CSRNG of S (Rs), which gives the new position of 
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the used password. The rest of the sweetwords are then shuffled. The random value 

released is discarded after it’s been used, and server S adds to the record that a user has 

logged in the system (their user ID along with the position of the password used, before 

the permutation). 

At the end of each epoch, the Data Breach Detection phase occurs, where the checking 

server C checks if there has been a data breach. Since server S has recorded all the login 

events, and the two servers have synchronized CSRNGs, server C is able to replay these 

events and check whether a user used the same sweetword for all their logins. C does that 

using its own CSRNG (Rc) that has been initialized with the same seed as Rs during the 

trusted bootstrap. If different sweetwords have been used under a single account, then 

there has been a data breach.  

We expand each phase in more depth below. 

 

3.2 Lethe’s Phases 

As we said, there are four main phases; the registration phase, the authentication phase, 

the data breach detection phase, and the password reset. The authentication server S is 

responsible for the registration and authentication phases and checking server C does the 

data breach detection phase at the end of each epoch. Lethe’s operation requires a trusted 

bootstrap preceding those phases. 

 

3.2.1 Trusted Bootstrap 

The trusted bootstrap initializes the system. During this phase, each server initializes a 

cryptographically secure random number generator (CSRNG). Both servers use the same 

sensitive seed to initialize their CSRNGs and the seed is then discarded. Consequently, 

the two CSRNGs (i.e., Rs and Rc) are synchronized. 

 

3.2.2 Registration Phase 

The registration phase occurs every time a user registers in the system. During this phase, 

(as shown in Figure 3.1) a Honeyword Generation Technique (HGT) is used. The HGT is 

fed with the real password given by the user, and results in the production of 19 

honeywords based on it.  The 20 sweetwords (19 honeywords plus the real password) are 

then stored to the authentication server S’s database (DBs) along with the user’s ID. 

Furthermore, the user ID and the slots “a” through “t” are stored in the checking server 
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C’s database (DBc). By using slots instead of the actual sweetwords, we emphasize once 

again that the checking server does not even know what the real password is, neither what 

the sweetwords of the user are. 

After the registration phase, the user’s ID and given password are used to log the user 

into the system and that triggers a login event. As we mentioned, all login events set off 

the authentication phase, which is explained thoroughly below.  

  

 

3.2.3 Authentication Phase 

The authentication phase is invoked anytime a login event occurs. During this phase, 

which is shown in Figure 3.2, a user is attempting a login by giving their password, thus, 

the authentication server S receives a user ID and the password given by the user. Server 

S then uses that ID to retrieve the list of sweetwords (sws) associated with that user from 

its database. If the sws received does not contain the password given by the user, then the 

user is declined access to the system. However, if the given user password is one of the 

sweetwords in sws, then, Lethe removes the sweetword used from sws, shuffles sws and 

places the sweetword used to the position received by the authentication server S’s 

CSRNG (i.e., Rs). Finally, the user is approved access to the system. Once the login has 

Figure 3.1 Registration phase  

1. The user registers in the system by giving their password 
2. S gives the password to a Honeyword Generator and gets 20 sweetwords as a response (19 

honeywords and the 1 real password) 
3. The new user is saved to DBs along with the 20 sweetwords, and to DBc along with the slots 

“a” through “t” 

1 

2 

3 
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completed, the random value received by Rs is discarded and the event along with the 

initial position of the password used is recorded in logins file L and the action of this 

event (e.g., “user 1 logged in the system using password in position 3” would be “1, 3, 

login”).  

 

 

3.2.4 Data Breach Detection Phase 

This phase happens at the end of each epoch. As you can see in Figure 3.3, during this 

phase, the checking server C replays all the logins contained in the logins file L and 

checks if more than one sweetword was used under a single account. If yes, then a data 

breach has been detected. Notice, that C has access to the S’s database, which is shuffled 

at this point, but, also, has its own database that has stayed untouched since the previous 

data breach detection occurred. Furthermore, C sustains a dictionary last_used_sw where 

it stores the last used sweetword/slot for each user (e.g., {“1”: “c”}) 

3 
1 

2 

Figure 3.2 Authentication Phase 

1. The user tries to log in the system giving their password 

2. S retrieves the user’s sweetwords from DBs using the user’s ID.  

If the password given is not one of the sweetwords, then the user is declined access to the 

system. Else, the password used is placed at the position Rs as derived from S’s CSRNG 

and the rest of the sws is shuffled. 

3. Then, DBs is updated with the shuffled sws, and the login event is recorded in Logins file 

L. 

3 
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More thoroughly, checker C extracts the events one by one from the logins file L. The 

logins file contains a log with all the users (IDs) that logged in the system during this 

epoch along with the initial position of the sweetword used. For each login in the file, C 

replays the login on its own database. Firstly, C retrieves the user’s slots from its database 

(DBc) and gets the slot at the said position (P) from the logins file. Considering that DBc 

is untouched since the last data breach detection, then the slot at the position P, represents 

the sweetword used. The next step is to check whether the user and their last slot used 

exists in the last_used_sw. If they do not, then we add them to the dictionary along with 

their sweetword/slot used. If they do exist in last_used_sw, then we just check if the slot 

used in this current login is the same as the last used slot. If the two slots are identical, 

then the user did not use two different sweetwords and therefore we proceed to the next 

login, else an alarm is triggered since a data breach has been detected. Provided that no 

attack has been detected, then before moving on to the next login, we simulate the current 

login to DBc. Thus, we remove the slot used from the retrieved slots, shuffle them, and 

place the slot used to the position received by the checking server C’s CSRNG (i.e., Rc). 

Substantially, what happens is that the two CSRNGs stay synchronized because C replays 

all the events that happened in S during an epoch. And this can occur because the two 

CSRNGs (i.e., Rs and Rc) are initialized with the same seed. Therefore, only the server C 

can replay those logins. 

At the end of the data breach detection phase, what also happens is an overwrite of the L 

file with a simulation of one login for all users in this epoch using Rs. This implies that, 

even with just one login in the system, a user along with their real password is propagated 

in each data breach detection phase. 

Notice that, as we said in 3.2.2, 3.2.3 and above, during registration, the authentication 

phase is triggered, and the authentication phase keeps the log of all logins in file L. C then 

takes the L file and replays all the logins during the data breach detection phase. That 

along with the fact that we simulate logins at the end of the data breach detection phase, 

means that even if when a user has logged in during registration phase, then that password 

used, basically the real password, is passed on in all the rest of the epochs. 

Furthermore, in case of a password reset (“pReset” action), we reset the slots under that 

user. 
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3.2.5 Password Reset 

The Password Reset action essentially does the registration phase again for the user, by 

resetting their sweetwords and slots in both DBs and DBc.  

Remember that we said in 3.2.3; “the event along with the initial position of the password 

used is recorded in logins file L along with the action of this event”. In case of a password 

reset action the action recorded in L is “pReset”. First, of course, the system will provoke 

a registration phase, therefore will feed the new password to a HGT, and produce new 19 

sweetwords for the user. Assuming a “pReset” action, the Checker will receive a line in 

this format in its L file; “user ID, position of new password, pReset”. Then, during the 

Figure 3.3 Data Breach Detection Phase 

1. First, the checking server C takes the logins events (recorded during the authentication 

phase) from Logins file L, one by one 
2. Then, for each login, C retrieves the user’s slots from DBc using the user’s ID. If the slot 

given is not one of the saved in last_used_sw, then we save it. Else, if the current slot 

used is not the last used slot, then a data breach has been detected else the slot used is 

placed at the position Rc as derived from C’s CSRNG and the rest of the slots are shuffled. 

3. Then, DBc is updated with the shuffled slots 
4. After all the logins have been through the data breach detection phase, we simulate a login 

for every user in last_used_sw 
5. Notice that, in case of a “pReset” action, the slots of the user are rebooted 

1 

2 3 

4 
5 
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data breach detection phase, when the Checker detects that the action is pReset, it resets 

the slots of the user. 

However, naturally, for any password reset event to occur, one must first login into the 

system. In case an attacker has gotten access to the sweetwords and uses one of them to 

log into the system, if the sweetword used is not the real password, then, at the end of the 

epoch when the data breach detection occurs, a data breach will be reliably detected. So, 

even if the attacker changes the password, the data breach will be detected during the 

following data breach detection. But in case the attacker uses the real password of the 

user, and that is a 1/20 = 5% chance, then that would be a successful attack. 

 

 

 

 

 

 

 

 

 

Figure 3.4 Password Reset 

1. Firstly, a user must log into the system to be able to invoke password reset event 
2. After successfully logging in, when a user requests a password reset, they shall provide the 

new password. This will trigger the registration phase (thus, changing the DBs), which will 

also set off the authentication phase (since it will commit a pReset event) and the action will 

also reset the slots in DBc during the next data breach detection phase 

1 

2 
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To implement Lethe, as described in Chapter 3, we wrote a python system that supports 

multiple functions that when combined, built the Lethe system. We show and explain the 

implementation of each function that is a part of this system below.  

 

4.1 RC4 as the Cryptographically Secure Random Number Generator 

As we mentioned, both the Server S and the Checker C have their own Cryptographically 

Secure Random Number Generator (CSRNG). S’s and C’s CSRNGs must be always 

synchronized.  

We choose to implement RC4 as the used CSRNG, because it is significantly easy to use, 

therefore, it makes the implementation less complicated. Furthermore, because of its 

simplicity, RC4 is a faster and more efficient cipher [3].  

Since S’s and C’s RC4 implementation are identical, we only show the implementation 

for S, i.e., Rs. 

The steps of RC4, in general, are to first prepare a key array and then hand that key array 

to a Key Scheduling Algorithm (KSA). As shown in Listing 4.1, our RC4 implementation 

also creates the key array, consequently creating the Unicode of the seed given. Then, the 

key array is given to KSA, which returns the initial permutation of S. In KSA, we shuffle 

S according to the key, therefore we produce a random permutation of S (of all numbers 

between 0 and 255). 
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1 def preparing_key_array(s): 

2     return [ord(c) for c in s] 

3  

4 def KSA(key): 

5     keylength = len(key) 

6  

7     # Initially we have one list S that has all bytes from 0 to 255 

8     S = list(range(256)) 

9  

10     j = 0 

11     # Initial permutation of S 

12     for i in range(256): 

13         j = (j + S[i] + key[i % keylength]) % 256 

14         S[i], S[j] = S[j], S[i]  # swap 

15  

16     return S 

Listing 4.1 preparing_key_array and KSA functions 

 

 

Finally, we implement the Pseudo-random generation algorithm (PRGA) to get the 

wanted keystream. The PRGA is a loop that runs n times, where n is the fixed number of 

keys wanted. Each time, we get a byte from S. As shown in Listing 4.2, each time when 

calculating the “i” and “j”, we swap them in S. Consequently, each time we get something 

from S, we alter it, and it is never the same again.  

 

For our purposes, in our implementation (see Listing 4.2) we slightly transform RC4, to 

return each key one by one instead of giving a fixed number n for the number of keys 

wanted. Since we do not actually know how many users will be doing a login in the 

system at each epoch, we needed a function that would not return a fixed number of keys 

but give each key one by one anytime it is requested. The first step, which is equivalent 

to the first time a key is asked, is to give the seed to the RC4 algorithm. Then, each time 

a key is needed, we calculate and return a single key, the first key of a key stream the 

normal RC4 algorithm would return.  

For example, the original RC4 algorithm would be given a length n and return a key 

stream containing n keys, let’s say [key_1, key_2, …, key_n]. Our algorithm will return 

key_1 the first time that it is called, and any afterwards requests for a key will return 

key_2, key_3 and so forth. 
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1 # get one by one key 

2 def PRGA_one_by_one(): 

3     global i, j 

4     i = (i + 1) % 256 

5     j = (j + S[i]) % 256 

6     # swap 

7     S[i], S[j] = S[j], S[i] 

8  

9     # the next byte 

10     K = S[(S[i] + S[j]) % 256] 

11     return K 

12  

13 # retrieve the first key, given the seed (for server S) 

14 def rs(seed): 

15     global S 

16     seed = str(seed) 

17     seed = preparing_key_array(seed) 

18     S = KSA(seed) 

19  

20     key = PRGA_one_by_one() 

21     return key 

22  

23 # retrieve the rest of keys (for server S) 

24 def rs_rest(): 

25     return PRGA_one_by_one() 

Listing 4.2 RC4 Implementation to return keys one-by-one 

 

 

 

 

 

4.2 Trusted Bootstrap 

As we previously mentioned, the trusted bootstrap initializes the system. During this 

phase, each server initializes a cryptographically secure random number generator 

(CSRNG). The CSRNG implemented is the RC4 as explained above.  

Both servers use the same random seed to initialize their CSRNGs which is then 

discarded. As shown in Listing 4.3 our seed is set as the current datetime, thus it is a value 

that is depended on current time. Therefore, it is a true random value taken from the 

environment, and not a pseudo random value (e.g., the result of random()). We use that 

as our true random seed to initialize both the Authentication Server (Rs) and the Checking 

Server (Rc). 

Since both CSRNGs (i.e., Rs and Rc) are initialized with the same seed, consequently, 

they will be producing the same random values. 
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1 # This function initializes the system 

2 # Each server initializes a cryptographically secure random number sequence 

3 # Both servers use the same seed to initialize their CSRNGs and the seed is then 

4 Discarded 

5 # Consequently, the two CSRNGs (i.e., Rs and Rc) are synchronized. 

6 def trustedBootstrap(): 

7     # Calculate a true random seed based on the date 

8     seed = datetime.now() 

9     # Send seed to the checking server 

10     Checker.getSeed(seed) 

11     # Send seed to the authenticating server 

12     Authenticator.getSeed(seed) 

13     # Discard the seed 

14     del seed 

15     gc.collect() 

Listing 4.3 Trusted Bootstrap 

 

 

4.3 Registration Phase 

As previously discussed in Chapter 3, the registration phase takes place each time a user 

signs up in the system. During this phase (see Listing 4.4 for pseudocode), a HGT 

(Honeyword Generation Technique) is used to produce 19 honeywords based on the real 

password the user has given for their registration. These, 20 now, sweetwords are stored 

in DBs (authentication server S’s database) together with the user ID. Also, the user ID 

and the slots “a” through “t” are saved in DBc (checking server C’s database). Then, the 

user is logged into the system with the user ID and the password given during the 

registration. This activates a login event, which will then consequently trigger the 

authentication phase. 

Basically, what will happen is that when the authentication phase occurs, this first 

login/registration of the user is recorded in the logins file L, as previously mentioned in 

Chapter 3, Subsection 3.2.4. When the next data breach detection happens, the real 

password used to register/log in the user for the first time will be documented and passed 

on forever in all the following epochs (since, as we said, we simulate logins at the end of 

each data breach detection phase, see Subsection 4.5). 

 

1 def registrationPhase(userId, password):     

2     sws = HGT(password); 

3     insertDBs(userId, sws); 

4     

5     slots = "a, b, ..., t"; 

6     insertDBc(userId, slots); 

7      

8     authenticate(userId, password); 

Listing 4.4 Registration Phase – pseudocode 
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4.4 Authentication Phase 

We show the implementation for the authentication phase in Listing 4.5 and Listing 4.7. 

As previously stated in Chapter 3, Subsection 3.2.3, the authentication phase occurs each 

time a login event happens.  

As shown in Listing 4.5, the authentication phase is given a user ID and a password. Then, 

that user ID is used by the function to retrieve the user’s sweetwords (sws, produced and 

stored in DBs during the Registration Phase) if the user is not included in the blacklist. 

The blacklist is a list that contains all the users under which a data breach has been reliably 

detected. Hence, if the user is not in the blacklist, we retrieve their sws from DBs and 

check whether the provided password is one of the sweetwords contained in sws. If the 

password given is not contained in sws, subsequently the access in the system is declined. 

But, in the case where sws contains the given password, then the user is approved access 

to the system and consequently the system executes the functions in Listing 4.6 to update 

the row in DBs associated with the specific user. 

 

1 # This function does the authentication phase for the given user IDS and passwords. 

2 For each user, the function checks if the password provided is one of the sweetwords 

3 in the database for that user, and if it is then it approves access, else it denies 

4 it. Every EPOCHS logins, the function calls the Data Breach Detection phase. 

5 def authenticationPhase(user_ids, passwords): 

6   # a list where the accounts under which a data breach has been detected are stored 

7     blacklist = [] 

8     # get the next random value from the CSRNG 

9     rs = Rs.rs_rest() % Rs.LIMIT 

10     # open the L.txt to store all the logins, for the Data Breach detection 

11     f = open("L.txt", "a") 

12  

13     # For each login 

14     for i in range(len(user_ids)): 

15         if user_ids[i] in blacklist: 

16             Continue 

17         else: 

18             # retrieve the user's sweetwords from S's database 

19             sws = getSws(user_ids[i]); 

20  

21             # if password given is one of the sweetwords 

22             if passwords[i] in sws: 

23                Listing 4.6 Authentication Phase - Update row of current user 

24                Listing 4.7 Authentication Phase – Data Breach Detection call at the 

end of the epoch 

25                

26            # get next Rs and approve access to system since pass is in sweetwords 

27                 rs = Rs.rs_rest() % Rs.LIMIT 

28                 approveAccess() 

29          else: 

30            # decline access to system since pass given is not one of the sweetwords 

31              declineAccess() and exit  

32     f.close()        

Listing 4.5 Authentication Phase – Approve or Decline Access 
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If the given user password is one of the sweetwords in sws, then, as shown in Listing 4.6, 

Lethe first records the login in logins file L. After that, the sweetword used is removed 

from sws, sws is shuffled and the sweetword used is then placed to the position that was 

retrieved by Rs, which is the authentication server S’s CSRNG as we stated earlier. 

Finally, the user is approved access to the system. (Listing 4.5)  

Note that, each time we get the next value of Rs (e.g., line 27 in Listing 4.5), we mod the 

value with “LIMIT” so that we get a number between 0 and “LIMIT - 1”. “LIMIT” is the 

number of sweetwords used for any user, thus, in our case 20, but this can change with 

every implementation by simply changing LIMIT. 

 
1            action = "login" 

2            # before shuffling row in database and placing the pass used at Rs  

3            # position, write the user ID and the index of the password used in L.txt 

4                 f.write(str(user_ids[i]), ',', str(sws.index(passwords[i])) 

5                 f.write(',', action, "\n") 

6                 # remove pass used, shuffle rest, insert pass in place given by Rs 

7                 sws.remove(passwords[i]) 

8                 random.shuffle(sws) 

9                 sws.insert(rs, passwords[i]) 

10  

11                 # update row with new shuffled row 

12              updateSws(sws, user_ids[i]) 

Listing 4.6 Authentication Phase - Update row of current user 

 

 

 

As above stated, and demonstrated in Listing 4.7, at the end of an epoch, the 

authentication phase invokes the data breach detection phase which is explained in great 

depth in the next section. 

 

 
1             # if epoch has ended, check for data breach 

2             if endOfDay: 

3                 f.close() 

4                 # return the accounts for which a data breach has been detected 

5                 blacklist = Checker.dataBreachDetection().copy() 

6                 # dataBreachDetection will overwrite L and move some checks for next  

7                 f = open("L.txt", "a")           

Listing 4.7 Authentication Phase – Data Breach Detection call at the end of the epoch 
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4.3 Data Breach Detection Phase 

We have mentioned in the previous section that at the end of each epoch the data breach 

detection occurs. We will be explaining the implementation of the data breach detection 

step-by-step and thoroughly in this section. 

 

1 # This function does the Data Breach Detection phase for each login in L.txt 

2 def dataBreachDetection(): 

3     # L.txt contains a log with all the users (ids) that logged in during this epoch 

4     f = open("L.txt", 'r') 

5     lines = f.read().splitlines() 

6     f.close() 

7     # a dictionary to store each user's last used slot 

8     last_used_sw = {} 

9  

10     # for every login in L.txt 

11     for line in lines: 

12         user_id = line[0] 

13         pass_initial_position = line[1] 

14         action = line[2] 

15         # if the action is password reset then reset the row and 

16         # remove the user and last used slot from the dictionary 

17         if action == "pReset": 

18             resetRow(user_id) 

19             if user_id in last_used_sw: 

20                 last_used_sw.pop(user_id) 

21  

22         # get their slots from checker's 

23         sws = getSlots(user_id); 

24    # the slot used is the one at the initial position in the database of the checker 

25    # since checker's database has not been updated since the last epoch 

26         real_password = sws[int(pass_initial_position)] 

27  

28         # if the user is in the dictionary 

29         if user_id in last_used_sw: 

30  # if last used sw is not the same as the one used then there has been a data breach 

31             if last_used_sw[user_id] != real_password: 

32                 blacklist.append(int(user_id)) 

33                 print("A data breach has been reliably detected!\n") 

34             else: 

35                 print("User logged in with real password.\n") 

36         else: 

37             # add the user to the dictionary along with their used slot 

38             last_used_sw[user_id] = real_password 

39  

40         # remove the slot used, shuffle the rest of the slots and insert the 

41         # slot used at Rc as it was retrieved from checker's CSRNG 

42         sws.remove(real_password) 

43         random.shuffle(sws) 

44         sws.insert(rc, real_password) 

45         # get the next random value from the checker's CSRNG 

46         rc = Rc.rc_rest() % Rc.LIMIT 

47  

48         # update the slots in the checker's database 

49         updateSlots(sws, user_id)     

Listing 4.8 Data Breach Detection Phase – main functionality  
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During this phase (demonstrated in Listing 4.8), the checking server C iterates over all 

the logins in logins file L and replays them. Logins file L contains all the users that logged 

in during the last epoch along with the initial position of the password used (see Chapter 

3, Subsection 3.2.3). Throughout this phase, the user ID, the initial position of the 

password and the action performed are extracted from the logins file L and for each of 

these users there is a check whether more than one sweetword has been used. If that is the 

case, then a data breach has been reliably detected.  

Basically, what happens is that if the action extracted from L is a login (we expand the 

case of a “password reset” action in the next chapter), then C replays this login in its own 

database. Firstly, note that C keeps a dictionary where the last used slot is stored for each 

user (see last_used_sw in Listing 4.8). For each login, C checks whether this user exists 

in last_used_sw and if they do then it checks whether the current used slot is the same as 

the last used slot. If it is, then we move on to the next login, else if they are different then 

a data breach has been reliably detected and the account under which a data breach has 

been detected is added in the blacklist. In the case where the user does not exist in 

last_used_sw, then we simply add them to it along with their current used slot. 

The next step is to simulate this login in the checking’s server side too i.e., in DBc. Hence, 

and similarly as in the Authentication Phase (Chapter 4.2), we place the slot used at the 

position as retrieved by Cs (the checking server C’s CSRNG) and shuffle the rest of the 

slots. 

 
1 f = open("L.txt", "w") 

2 # simulate logins for users that did only one login 

3 for user in last_used_sw: 

4     # get the next random value from the authenticator's CSRNG 

5     rs = Rc.rs_rest() % Rc.LIMIT 

6     # simulate login for that user using the last used slot as the password 

7     position = simulate_login(user, last_used_sw[user], rs) 

8     # add the user along with the position of the sweetword used in L.txt 

9     f.write(user + "," + str(position) + "," + "login\n") 

10 f.close() 

Listing 4.9 – Data Breach Detection Phase – Pass on real password to all the next epochs 

 

 

The next and final step of the data breach detection phase is to simulate a login for all the 

users in last_used_sw, so that a login with the last sweetword used is simulated. Doing 

that will essentially propagate the first ever login, which happened during registration, in 

all the following epochs. This step is what makes our system able to detect a data breach 

under an account even if its user has logged in just once. In other words, it only takes one 
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log in with a different sweetword for the system to signal a data breach. As shown in 

Listing 4.9, for each user in last_used_sw we simulate a log in and record it in logins file 

L, to be used in the next data breach detection at the end of the following epoch.  

You can find the implementation of the simulation of a login in Listing 4.10, but basically 

the functionality is built with the same concept as the authentication phase described in 

the previous section. 

 

1 # This function simulates a login for the given user, using the given password 

2 def simulate_login(user, password, rs): 

3     # get the slots for this user from the checker's database 

4     swsC = getSlots(user) 

5  

6     # the position of the password/slot given, is the position of the real password 

7     # in S's database 

8     real_position = swsC.index(password) 

9     

10    # get the sweetwords of this user from the S's database 

11     sws = getSws(user) 

12  

13     # extract the real password 

14     password = sws[real_position] 

15  

16     # remove pass used, shuffle rest, insert pass in place given by Rs 

17     sws.remove(password) 

18     random.shuffle(sws) 

19     sws.insert(rs, password) 

20  

21     # update row with new shuffled row 

22     updateSws(sws, user) 

23  

24     return real_position 

Listing 4.10 Data Breach Detection Phase – Simulate Login 

 

 

4.6. Password Reset 

We mentioned in the previous section that an action recorded in the logins file L could 

either be a “login” or a “password reset”. We expanded in great depth what happens in 

the case of a “login” event. In this section, we explain how the system reacts in the case 

of a “password reset” action.  

Basically, as also stated in Chapter 3, Subsection 3.2.5, during this phase both the slots in 

DBc and the sweetwords in DBs are re-initialized. 

First of all, one must first log into their account in order to execute a password reset 

action. Thus, even if an attacker uses a sweetword to gain access in the system and 

attempts a password reset, at the end of the epoch the data breach will be detected.  
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When a “password reset” action occurs, in the server S’s side, the first thing that happens 

is that we reset DBs based on the new password. Thus, see Listing 4.11, we first feed the 

new password to a HGT, that will produce the new 20 sweetwords and update the row of 

the specific user with these new sweetwords. Then, we simulate a login for that user, so 

that the new password is now propagated through the rest of the epochs, but in this case, 

the action recorded in the logins file L will be “pReset” instead of “login”, so that the 

checker will know to execute the password reset on server C’s side as well. 

 

1 # This function resets the row in the Authenticator’s database in case of a 

2 # password reset, by updating the row with the new sweetwords retrieved by a HGT 

3 def resetDBs(userId, password): 

4     sws = HGT(password); 

5     updateDBs(userId, sws);     

6     authenticate(userId, password); 

Listing 4.11 - Password Reset DBs 

 

 

In case of a “pReset” event, C will function as shown Listing 4.12. Therefore, the row 

relevant to the specific user in DBc will be reinitialized, so this resets the slots of the 

user in the same state as when they first register. 

 

 
1 # This function resets the row in the Checker's database in case of a 

2 # password reset, by updating the row from slots 'a' through 't' 

3 def resetRow(user_id): 

4     alphabet_string = string.ascii_lowercase 

5     sws = list(alphabet_string) 

6     updateSlots(sws, user_id) 

Listing 4.12 - Password Reset DBc 

 

 

If you recall Chapter 4.3 and more specifically Listing 4.4, you will see that a password 

reset is essentially a registration phase for the user doing the password reset.  
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In this chapter we will be evaluating Lethe, whose implementation we built is described 

in the previous section. To effectively evaluate the system, we had to do a setup that we 

will be explaining in depth in this section. First, we had to populate our system with 

existing data from known data breaches. We have the function use of the paper’s 

“HoneyGen: Generating Honeywords Using Representation Learning” [13] setup that 

makes a database with honeywords.  

 

5.1 SQLite3 

To test Lethe, we use SQLite3, which is a free database engine, to easily create and 

manage the database of the Server (S), as well as the Checker’s (C). We choose SQLite3 

because it is a file-based SQL database, so it has the advantage of easier installation and 

use [31]. Listing 5.1 shows how the database was created. We simply import the SQLite3 

package and create the database by creating a connection object. We then create a cursor 

object to execute queries. 
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1 # create the database by creating a connection object 

2 connection = sqlite3.connect("honeywords.db") 

3 # create a cursor object in order to execute queries 

4 cursor = connection.cursor() 

Listing 5.1 - SQLite3 

 

5.2 System Population 

 

5.2.1 Table Creation 

As shown in Listing 5.2, we create two tables with the use of the cursor described in the 

previous section. The creation of the tables is simple and makes use of SQL queries, since 

we are using SQLite3.The first table, cheggHoneywords, is the database of the Server S 

i.e., DBs, whereas the second table, cheggHoneywordsChecker, is the database of the 

Checker C i.e., DBc. Both databases have 21 fields, the first one is the User ID; therefore, 

it is the primary key of the tables. Table cheggHoneywords has 20 more “TEXT” fields 

from which 19 are the generated honeywords for each user and 1 is the real password of 

the user. Equivalently, cheggHoneywordsChecker has 20 more “TEXT” fields where all 

will be filled with slots (“a” through “t”). 

 
1 def initialBootstrap(): 

2     # Drop the tables each time to recreate 

3     cursor.execute("DROP TABLE cheggHoneywords") 

4     cursor.execute("DROP TABLE cheggHoneywordsChecker") 

5      

6     # Create the tables for each server respectively 

7     cursor.execute("CREATE TABLE cheggHoneywords (ID INT PRIMARY KEY NOT 

8                     NULL,Honeyword_0 TEXT,... Honeyword_19 TEXT)") 

9    cursor.execute("CREATE TABLE cheggHoneywordsChecker (ID INT PRIMARY KEY NOT 

10                    NULL,Honeyword_0 TEXT,... Honeyword_19 TEXT)") 

Listing 5.2 Initial Bootstrap – Creation of tables DBs & DBc 

 

 

5.2.1 Database Filling 

To fill the table cheggHoneywords, we use existing passwords taken from known data 

breaches. We chose passwords leaked from chegg.com and generated their HoneyWords 

using HoneyGen [13]We then populate cheggHoneywords with 10000 users and their 19 

sweetwords (produced using HoneyGen when fed with the real password) and one real 

password (from chegg.com known data breach), accordingly, as shown in Listing 5.3. We 

have these data placed in the file “chegg-com_sorted_preprocessed.txt” in the format 
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where the real password of each user is the first one in each line followed by the 19 

generated sweetwords comma separated. 

It is also important to mention that there should be a certain behavior for passwords that 

include special characters, like apostrophe (‘), since they result in “end of string” and thus 

cannot be entered in the database. This is the reason why we replace any apostrophes with 

double apostrophes, to overcome this problem and take any apostrophe as a character 

rather than an end of string. 

 

11 f = open("chegg-com_sorted_preprocessed.txt") 

12 lines = f.read().splitlines() 

13 for line in lines: 

14     sws = line.split() 

15     query = "INSERT INTO cheggHoneywords VALUES ( {}, ".format(k) 

16     real_passwords.insert(k, sws[0]) 

17  

18     for i in range(0, len(sws)): 

19         # help with special characters 

20         sws[i] = sws[i].replace("'", "''") 

21         query = query + '\'' + sws[i] + '\'' 

22         if i == len(sws) - 1: 

23             query = query + ')' 

24         else: 

25             query = query + "," 

26     cursor.execute(query) 

27  

28     query = "INSERT INTO cheggHoneywordsChecker VALUES ( {}, ".format(k) 

29     c = 'a' 

30     for j in range(20): 

31         query = query + '\'' + c + '\'' 

32         if j == 19: 

33             query = query + ')' 

34         else: 

35             query = query + "," 

36         c = chr(ord(c) + 1) 

37     cursor.execute(query) 

38  

39 connection.commit()           

Listing 5.3 - Database Filling 

 

 

After filling S’s database with 10000 users and their honeywords and real passwords, we 

fill C’s database with slots from “a” to “t”. 

It is shown in Listing 5.3 that we carefully built the insertion query for both the servers 

and then simply executing it to populate the databases. 

 

It is also very crucial to do a “connection.commit()” to commit the current transaction. 

Failing to do so, will result in no changes in the database. Equivalently, anything done is 

not visible and the data are not actually saved in the database. 
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Furthermore, note that in line 16 of Listing 5.3 we save each user’s real password i.e., the 

first string in the line. We will be using that in a following section. 

 

5.3 Database Shuffle 

The next step after the creation of the tables and filling them in, is to do a shuffle of the 

database, since, as we said, the real password of all users is the first field inserted in each 

row. Thus, as shown in Listing 5.4, firstly, we fetch all the rows that were previously 

inserted in “cheggHoneywords”, shuffle them using the “shuffle” function of the random 

built-in module in Python, and then update the row in the database for each user. 

 

1 # This function shuffles the Authenticator's database randomly 

2 # ----------------------- For evaluation purposes ---------------------- # 

3 def shuffleDatabase(): 

4     rows = cursor.execute("SELECT * FROM cheggHoneywords").fetchall() 

5     k = 0 

6     for sws in rows: 

7         sws = list(sws) 

8         sws.remove(k) 

9         random.shuffle(sws) 

10         sws.insert(0, k) 

11  

12         for i in range(1, len(sws)): 

13             sws[i] = sws[i].replace("'", "''") 

14  

15         connection.execute("UPDATE cheggHoneywords set " 

16                            "Honeyword_0 = \'{}\', ..., Honeyword_19 = \'{}\'" 

17                            "WHERE ID = {}".format(sws[1], ..., sws[20], k)) 

18         k += 1 

19         connection.commit() 

Listing 5.4 - Database Shuffle 

 

 

5.4 Mass Registration 

As we mentioned in the previous chapter, in a real-life application, whenever a user 

registers into the system, the registration phase occurs. For our purposes, where we 

populated the system with existing data, we had to do a massive registration phase for all 

10000 users we inserted in our database, as described in the previous sections of this 

Chapter. Recall that the Registration Phase is basically the first login for each user, as that 

is what happens when a user registers into a system. 

 

As mentioned in 5.2.2, we saved each user’s real password during the creation of the 

tables. We use that, as well as the implementation of the authentication phase described 

in Chapter 4.4 of this thesis, to simulate each user’s first login.  
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1 # This function does a mass registration phase for each user inserted in the  

2 # Authenticator's database. 

3 # That is, for every login, the real password is used to log in the user to the 

4 # system. 

5 # The login sets off the authentication phase. 

6 # ----------------------- For evaluation purposes ----------------------- # 

7 def massRegistrationPhase(): 

8     # The fist step is to initialize/sychronize the CSRNG of both servers 

9     trustedBootstrap() 

10  

11     # Log in each user 

12     for i in range(len(real_passwords)): 

13         Authenticator.authenticate(i, real_passwords[i]) 

Listing 5.5 - Mass Registration Phase 

 

As you can see in Listing 5.5, the first step is to initialize the system using the trusted 

bootstrap (see Listing 4.3). Then, for each user, we use the authentication phase 

implementation to simulate a login using their real password (see Listing 4.6). 

This completes the Registration Phase for all 10000 users currently in our database. Now, 

every user in the system has logged in once, thus the password used in this first login is 

the considered real password and will from now on be passed through all epochs. This is 

the only sweetword that shall be used to login a user and that means that the use of any 

other sweetword will mark a data breach under the account.  

 

5.5 Login Simulation 

After creating and filling the databases for both the Server S and the Checker C and doing 

the first login with the correct password for each user, now it’s time to simulate some 

logins for each user and check at the end of the epoch if the Checker will detect a Data 

Breach if it happens. We then calculate the possibility of a successful attack. 

 

5.5.1 Simulation using correct password 

To simulate logins, firstly, we took “iterations” random user ids. Then, we use the same 

file used during the Database filling, to get the real passwords of the users and simply call 

the authentication phase for each random user using the correct password. 

 

We tested this function simulating 200 correct logins. This experiment resulted in all the 

logins being successful and no data breach was detected, which is what was expected 

since all the logins were happening with the real password, the one used to register the 

user to the system. 
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1 # This function simulates correct logins "iterations" times, using random user IDs 

2 # and their correct passwords, as retrieved from the file used during filling the DB 

3 # --------------------------- For evaluation purposes --------------------------- # 

4 def simulateCorrectLogins(): 

5     # Find total number of users 

6     number_of_users = cursor.execute("SELECT COUNT(*) FROM cheggHoneywords") 

7     for u in number_of_users: 

8         u = list(u) 

9         number_of_users = u[0] 

10  

11 # Fill an array of "iterations" size, with random user IDs from 0 to total number of 

12 # users 

13     user_ids = np.random.randint(number_of_users, size=iterations) 

14  

15     # Open the file to get the correct passwords of each user 

16     f = open("chegg-com_sorted_preprocessed.txt", "r") 

17     lines = f.read().splitlines() 

18     f.close() 

19     correct_passes = [] 

20     for user_id in user_ids: 

21         line = lines[user_id] 

22         sws = line.split() 

23         correct_passes.append(sws[0]) 

24  

25     # Simulate a login event for each user, which will each time trigger an 

26     # authentication phase 

27     Authenticator.authenticationPhase(user_ids, correct_passes) 

Listing 5.6 - Simulate logins with real passwords 

 

 

Hence, we know that our system successfully recognizes a correct login without 

mistakenly recognizing a data breach and invoking any actions. 

 

5.5.2 Simulation using random sweetword 

Similarly, as in the simulation of correct logins, to do a random login we also firstly take 

“iterations” random user ids. However, in order to choose which random sweetword we 

will be logging in the user with, we fill an array of “iterations” size with random numbers 

from 1 to 20. Each number stands for the random position of password for each user. We, 

then, fetch each user’s sweetwords from DBs and use the random position to log them in. 

It could be the real password or not. Statistically, there is a 1/20 possibility that the 

random position contains the user’s real password. Then, in the same manner as before, 

we call the authentication phase for each random user using the random sweetword. 
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1 # This function simulates random logins "iterations" times, using random user IDs 

2 # and a random password between the 20 retrieved from Authentication Server S's 

3 # database 

4 # --------------------------- For evaluation purposes --------------------------- # 

5 def simulateRandomLogins(): 

6     # Find total number of users 

7     number_of_users = cursor.execute("SELECT COUNT(*) FROM cheggHoneywords") 

8     for u in number_of_users: 

9         u = list(u) 

10         number_of_users = u[0] 

11  

12     # Fill an array of "iterations" size, with random user IDs from 0 to total 

13     # number of users 

14     user_ids = np.random.randint(low=0, high=number_of_users, size=iterations) 

15     # Fill an array of "iterations" size, with random numbers from 1 to 20, which 

16     # stands for the random position of password of each user 

17     passes_positions = np.random.randint(low=1, high=20, size=iterations) 

18  

19     # For each user, retrieve the random password from the authenticator's database 

20     passes = [] 

21     for i in range(len(user_ids)): 

22         sws = cursor.execute("SELECT Honeyword_0, ..., Honeyword_19 FROM 

23                         cheggHoneywords WHERE ID={}".format(user_ids[i])).fetchall() 

24         sws = list(sws[0]) 

25         passes.append(sws[passes_positions[i]]) 

26  

27     # Simulate a login event for each user, which will each time trigger an    

28     # authentication phase 

29     Authenticator.authenticationPhase(user_ids, passes) 

Listing 5.7 - Simulate logins with random sweetwords 

 

5.6 Results 

The function in Listing 5.7 - Simulate logins with random sweetwords is the one that we 

will be using to conduct our results, since it basically impersonates the actions of an 

attacker. In the case where an attacker has compromised the database and has the 

sweetwords, they would be doing random logins with a 5% possibility to choose the 

correct sweetword. We are hoping to see that Lethe will be able to detect the rest 95% of 

the attacks.  

 

Also, for the effective evaluation of our implementation, we consider that the end of an 

epoch i.e., when the Data Breach Detection phase occurs, is after every “EPOCHS” 

number of logins. 

 

5.6.1 Password Reset 

To make the matters more realistic, we introduced the possibility of a “password reset” 

event, thus not all actions are “logins” since an attacker might attempt to also change the 
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password of an account they have successfully compromised. In fact, we pass some 

“password reset” actions with a possibility of 20% (see Listing 5.8). 

 

1 if rand <= 0.2: 

2     # user should have logged in before doing a preset 

3     logged = user_ids[0:i - 1] 

4     if user_ids[i] in logged: 

5         action = "pReset" 

Listing 5.8 - Introducing possibility of password reset 

 

As we said, a user must login first before doing a password reset. If an attacker has used 

a sweetword to log in first before doing a password reset, and that sweetword is not the 

real password, then our system will be able to detect the data breach at the end of an 

epoch, regardless of the fact if they attempted a password reset or not.  

 

5.6.2 Experiment Results 

 

Experiment 1 

We simulated random logins for 2000, 4000, 6000, 8000 and 10000 iterations with an 

epoch of 1000 logins, and show the results in Figure 5.1 and Listing 5.9. 

 

 
Figure 5.1 - Results of Experiment 1 – 2000 to 10000 logins 
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As you can see in Error! Reference source not found., for every number of logins, the 

number of successful attacks at the end of the last epoch was around 5%, which was what 

we predicted since as we said, the attacker has a 1/20 possibility to guess the real password 

out of the 20 sweetwords. More specifically, Lethe was able to detect around 95% of all 

the attacks.  

 

1 Start Random logins for 2000 logins: 

2 Successful Attacks: 107 / 1890, 5.661375661375661% 

3 Detected Attacks: 1783 / 1890, 94.33862433862434% 

4 Done with random logins for 2000 logins. 

5  

6 Start Random logins for 4000 logins: 

7 Successful Attacks: 130 / 2732, 4.758418740849195% 

8 Detected Attacks: 2602 / 2732, 95.2415812591508% 

9 Done with random logins for 4000 logins. 

10  

11 Start Random logins for 6000 logins: 

12 Successful Attacks: 236 / 4810, 4.906444906444907% 

13 Detected Attacks: 4574 / 4810, 95.0935550935551% 

14 Done with random logins for 6000 logins. 

15  

16 Start Random logins for 8000 logins: 

17 Successful Attacks: 311 / 5866, 5.301738833958405% 

18 Detected Attacks: 5555 / 5866, 94.6982611660416% 

19 Done with random logins for 8000 logins. 

20  

21 Start Random logins for 10000 logins: 

22 Successful Attacks: 343 / 6762, 5.072463768115942% 

23 Detected Attacks: 6419 / 6762, 94.92753623188406% 

24 Done with random logins for 10000 logins. 

Listing 5.9 - Results of Experiment 1 (console) - 2000 to 10000 logins 

 

 

The specific measurements of our experiment is shown in Listing 5.9. As you can see, the 

total number of logins that actually occurred is less than what we initiated at first (e.g., 

instead of 2000, only 1890 actually happened) and that is because when Lethe detected 

the attacks under some specific accounts, it added those users in the blacklist and therefore 

did not accept any more logins from them. For all the simulations, we can see that Lethe 

always detected around 95% of the attacks.  

This experiment brings us to the conclusion that Lethe will only be unable to detect an 

average of around 5.14% of all attacks (grey intermittent line in Figure 5.2), since an 

attacker might actually guess the real password out of the 20 sweetwords. 

 

Experiment 2 

We also consulted a second experiment with even more simulations of logins. As shown 
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in Figure 5.2, in this experiment we simulated from 2000 to up to 20000 logins. 

 

 

 

 

Similarly, as in the first experiment, for all the simulations, the number of successful 

attacks in the end is around 5%. Thus, again, Lethe was able to detect around 95% of all 

the attacks. 

 

During this experiment, Lethe, actually, did not detect an average of less than 5% of all 

attacks (see grey intermittent line in Figure 5.2), which is even less than the 1/20 

possibility of an attacker picking a random sweetword. This of course can fluctuate since 

we got the sweetwords randomly whereas a real attacker might choose a sweetword based 

on a strategy. However, we anticipate on HoneyGen’s guarantee that it meets all the 

expected security requirements and, therefore, does not allow more than the random 

guessing baseline, which is the optimal solution [32]. HoneyGen is proved to achieve 

close to the optimal robustness against state-of-the-art honeyword- distinguishing attacks 

[13]. 

 

 

Figure 5.2 - Results of Experiment 2 - 2000 to 20000 logins 
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1 Start Random logins for 2000 logins: 

2 Successful Attacks: 83 / 1894, 4.382259767687434% 

3 Detected Attacks: 1811 / 1894, 95.61774023231257% 

4 Done with random logins for 2000 logins. 

5 … 

6 Start Random logins for 10000 logins: 

7 Successful Attacks: 301 / 5802, 5.187866253016201% 

8 Detected Attacks: 5501 / 5802, 94.81213374698379% 

9 Done with random logins for 10000 logins. 

10  

11 Start Random logins for 12000 logins: 

12 Successful Attacks: 345 / 7338, 4.701553556827474% 

13 Detected Attacks: 6993 / 7338, 95.29844644317252% 

14 Done with random logins for 12000 logins. 

15  

16 Start Random logins for 14000 logins: 

17 Successful Attacks: 389 / 7839, 4.962367648934813% 

18 Detected Attacks: 7450 / 7839, 95.03763235106518% 

19 Done with random logins for 14000 logins. 

20  

21 Start Random logins for 16000 logins: 

22 Successful Attacks: 400 / 8621, 4.639832966013223% 

23 Detected Attacks: 8221 / 8621, 95.36016703398677% 

24 Done with random logins for 16000 logins. 

25  

26 Start Random logins for 18000 logins: 

27 Successful Attacks: 451 / 9102, 4.954954954954955% 

28 Detected Attacks: 8651 / 9102, 95.04504504504504% 

29 Done with random logins for 18000 logins. 

30  

31 Start Random logins for 20000 logins: 

32 Successful Attacks: 461 / 8489, 5.430557191659795% 

33 Detected Attacks: 8028 / 8489, 94.56944280834021% 

34 Done with random logins for 20000 logins. 

Listing 5.10 - Results of Experiment 2 (console) - 2000 to 20000 logins 
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Chapter 6  

 

Related Work 

 

In this chapter we discuss other proposes of data breach detection systems. Firstly, we go 

through papers that require a trusted component. We then discuss about Amnesia, which 

is an approach that does not require a secret state. 

 

Various papers exist that propose different data breach detection systems; however, they 

all require some form of a trusted component. This component is assumed that it will not 

be compromised, even if the attacker breaches the target. 

Erguler [14], introduces an alternative approach that focuses on realistic looking 

honeywords. Basically, this method suggests a honeyword generation algorithm that 

chooses the honeywords by exploiting the existing user passwords in the system. While 

this HGT strives to result in honeywords that are indistinguishable from the correct 

passwords, it has not yet verified the expected measurements i.e., flatness and success-

number graphs [32]. Also, this method still requires a trusted component i.e., the 

honeychecker. 

I. Mokube and M. Adams [26] suggest the use of Honeypots. Essentially, Honeypots use 

false accounts that if accessed, set of a data breach alarm. A Honeypot is a network that 

is closely monitored and uses decoys to take advantage of cyberattacks and collect data 

about the adversary. Therefore, compromising or attacking a honeypot, increases its 

success. Fundamentally, Honeypots distract the adversary using false accounts, warn 

about attacks and in case of an attack and provide an examination regarding the attack. 

Hence, a Honeypot’s worth relies on its interaction with the cybercriminals since it 

observes the attacker’s behavior. If someone interacts with a honeypot, then that 

interaction is considered an attack. However, implemented Honeypot systems assume that 

a part of the system under measurement is trusted. 
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Tripwire, proposed by DeBlasio et al. [11], utilizes Honeypots but does not rely on an 

aspect of the system under measurement to not be compromised. Tripwire focuses its 

operation on the problem of password reuse. Particularly, this schema uses decoy emails, 

indistinguishable from the rest of the user’s emails, and use them to register honey 

accounts in Internet sites. These accounts share the same unique email and password, 

hence attracts attackers with a password reuse attack opportunity. Thus, if access is gained 

any of these false account, this instantly signals a data leakage. Still, Tripwire relies on 

the assumption of a trusted component i.e., the email provider. 

Several other methods have been suggested [4], [24], but they also seem to have 

limitations. For example, Almeshekah’s approach [4] requires a machine-depended 

function. 

 

One approach that does not require a persistent secret state at the target to detect the 

injection of a honeyword is Amnesia, proposed by Wang et al [33]. Amnesia is a 

honeywords-based breach detection framework that uses honeywords to detect a target’s 

database breach probabilistically. 

Amnesia trains the target by utilizing monitors. Essentially, the target monitors the entry 

of passwords stolen from other sites. Incorrect passwords entered under the same 

accounts at monitors act like they have been entered locally at the target. In this paper, a 

cryptographic protocol i.e., private containment retrieval (PCR), is used. By leveraging 

this protocol, in the case of an unsuccessful login, a monitor transfers the used password 

to the target. This happens only in the case where the attempted password is one of the 

sweetwords associated with the same user account, else the target does not learn. 

Amnesia is a framework that uses a probabilistic model verification. In summary, this 

framework utilizes a marking technique where the most recently used sweetword is 

marked (with probability 1). The rest of the sweetwords are marked separately with a 

specific probability (pmark). In the case where the adversary logs in an account using a 

honeyword (i.e., a sweetword that is not the user chosen password), then the real password 

of the user gets unmarked (with probability premark = 1 - pmark). Consequently, the next 

time the legitimate user logs in, giving a password that is not marked, an alarm sets off 

since a data breach has been reliably detected. 
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Chapter 7  

Future Work 

 

 

3.1 Lethe’s Limitations             38 

3.2 Advancing Lethe              39 

 

 

In this chapter, we first outline the limitations Lethe faces. Then, we briefly discuss some 

possible improvements of Lethe. 

 

6.1 Lethe’s Limitations 

 

Recall that Lethe is initialized by a trusted bootstrap (Chapter 3, Section 3.2.1). During 

this phase, each server initializes a cryptographically secure random number generator 

(CSRNG). Both servers use the same sensitive seed to initialize their CSRNGs and the 

seed is then discarded. Consequently, the two CSRNGs (i.e., Rs and Rc) are synchronized. 

If an attacker compromises the CSRNGs and gets the seed before it gets discarded, then 

they will be able to produce the same random integers and consequently have access to 

the positions of the used sweetwords. The real password for each user is more likely the 

sweetword that is mostly used. 

 

As we previously mentioned, Lethe is unaware of the users’ real passwords. In fact, if 

any of the sweetwords under an account is given, Lethe authorizes access to the system. 

It is only at the end of the day, when the data breach detection occurs, that Checker checks 

whether two sweetwords were used under the same account and if so, declares a data 

breach. Therefore, even though Lethe reduces the delay between a data breach and its 

detection [18], it still permits attackers to operate unnoticed for a limited period. 

Nevertheless, the target system might still sustain serious harm in this time span. 
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Additionally, like all the existing approaches at the moment, Lethe cannot guard against 

attackers that have gained full access on the system’s memory and passively monitor the 

system for the entirety of its operation. Doing that for an extended length of time might 

disclose some of the users’ real passwords, similar to other honeywords-based data breach 

detection systems [6], [26], [29], [33]. However, note that legitimate users seldom 

authenticate themselves explicitly [15], [35]. Hence, attackers might not risk getting 

detected by monitoring a system for a long duration, to only get a few passwords. 

 

6.2 Advancing Lethe 

 

Currently, Lethe does the data breach detection offline and consequently reduces the 

probability of compromising the checking server C. C is placed in a different isolated 

environment. However, one could utilize SGX [1], [10], [20], and place the selected code 

and data in an enclave inside the main authentication server S.  

Fundamentally, SGX helps protect data in use via unique application isolation 

technology. Therefore, C’s CSRNG could be protected inside a hardened enclave using 

Intel SGX. Enclaves are protected memory regions, essentially non-addressable memory 

pages, reserved from the system’s physical RAM and then encrypted. This prevents 

software attacks even when the app, operating system and BIOS are compromised. 

Hence, by isolating C’s CSRNG we allow Lethe to leverage just a single main server for 

both authentication and data breach detection. Doing that, consequently, minimizes the 

overall network communication overhead.  
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Chapter 8  

Conclusion 

 

In this thesis, we provide the first fully functionate prototype of Lethe; a deterministic 

honeywords-based data breach detection framework that detects a database leakage 

timely. Lethe keeps a zero persistent secret state and requires no trusted components, 

other than a trusted bootstrap, in contrast to currently implemented approaches that utilize 

honeywords. Based on our results, by mimicking a sophisticated adversary’s behavior, 

Lethe ensures the detection of 95% of all data breaches. Hence, only 5% of all data 

breaches are successful, revealing that the adversary cannot achieve more than the random 

choosing success rate. 

Additionally, Lethe allows attackers to fully compromise the utilized HGT, since it 

leverages machine learning technologies that automatically ensure the non-reversibility 

property; even by giving the same password, it is impossible to reproduce the same 

honeywords. 

Finally, Lethe reduces the delay between a data breach and its detection. If the adversary 

attempts a login using a different sweetword than the one used by the user during the 

registration phase, Lethe guarantees the detection of a data breach at the end of the day, 

when the data breach detection occurs. 
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