

Thesis Dissertation

Utilizing Mobile Nodes for Fault-Management in Wireless Sensor

Networks and IoT Networks

Andreas Naoum

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2022

ii

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Utilizing Mobile Nodes for Fault-Management in Wireless Sensor Networks and IoT

Networks

Andreas Naoum

Supervisor

Dr. Vasos Vassiliou

A thesis submitted in partial fulfilment of the requirements for the award of a Bachelor's

degree in Computer Science at the University of Cyprus

May 2022

iii

Acknowledgements

Throughout the process of writing my thesis dissertation, I received a great deal of help and

support. First and foremost, I'd want to convey my gratitude to Associate Professor Vasos

Vassiliou, whose expertise was crucial in developing the research questions and methodology.

His insightful feedback encouraged me to refine my thoughts and raise the quality of my work.

I want to thank Ms Natalie Temene for her patient support, guidance and for all the

opportunities I was given to further my research. I have significantly benefited from her wealth

of knowledge and meticulous editing. Finally, I would like to thank my parents and friends for

their support.

iv

Abstract

Wireless Sensor Networks (WSN) and Internet of Things (IoT) networks have gained a lot of

attention in the last decade because of their numerous applications in domains such as defense,

health monitoring, environmental monitoring, and disaster management. Several problems,

such as node faults, congestion, and security attacks, are the main reason that often disrupts the

operation of WSNs and IoT networks.

Fault tolerance is a major challenge in WSN and IoT that attracts a lot of research attention.

The main goal of fault tolerance is to ensure that the system is available for usage in the

occurrence of failures. As a result, fault tolerance improves the wireless network system's

availability, reliability, and dependability. One of the most common approaches for increasing

a network's fault tolerance is fault management.

One technique for resolving the issue of failure is to inject extra resources into the network,

such as utilizing mobile nodes. Mobile nodes are sensor nodes that can change their location

in the network. Their goal is to be used and act as static nodes by either replacing faulty nodes

or assisting existing nodes in performing their tasks. The primary objective of this work is to

develop a strategic solution that utilizes mobile nodes efficiently and effectively in order to

detect failures, reconnect and improve the lifetime of the network.

In this work, we present a Replacement Fault Management Mechanism, a Decentralized Fault

Management Mechanism, a Centralized Fault Management Mechanism and finally, the

MobileFM, a Fault Management Framework that utilizes mobile nodes to handle failures in

Wireless Sensor Networks. All mechanisms consist of the detection phase and the recovery

phase. The first phase is focused on detecting faults and investigating the affected area, and the

second phase focuses on placing mobile nodes in the network to reconnect the affected areas.

The algorithms are implemented in the Contiki O/S in the C programming language.

Simulation results demonstrate that the proposed algorithm can significantly contribute to

detecting and recovering faults in IoT and WSNs. Finally, the mechanisms are analyzed to

define their major challenges, including the percentage of successfully received packets, packet

loss ratio and energy consumption.

v

Contents

Chapter 1 Introduction………………………………………………...………………...1

 1.1 Motivation 1

 1.2 Objective and Contribution 2

 1.3 Methodology 2

 1.4 Document Organization 3

Chapter 2 Background………………………………….……………………….………4

 2.1 WSNs and IoT Networks 4

2.2 Fault-tolerance 6

2.3 Mobility 7

2.4 Related Work 8

Chapter 3 Clustering and Node Placement Algorithms……………………….…10

 3.1 Clustering 10

 3.1.1 K-means Algorithm 11

 3.1.2 Semisupervised Partitional Clustering 11

 3.1.3 Constraints for the modified K-means Algorithm 12

 3.1.4 Modified K-means Algorithm with Constraints 13

 3.1.5 Examples of Clustering 14

3.2 Node Placement Algorithms 16

 3.2.1 Geometric Functions 16

 3.2.2 Dynamic MobileFT Algorithm 18

 3.2.3 Direct MobileFT Algorithm 19

 3.2.4 Combination of Clustering and Node Placement Algorithm 20

Chapter 4 Fault Detection and Recovery Mechanisms…………………………….....22

4.1 Model and Assumptions 22

4.2 Replacement Fault Management Mechanism (RFFM) 24

4.2.1 Distributed Fault Detection 27

 4.2.2 Fault Reporting 28

 4.2.3 Mobile Node Investigation 28

 4.2.4 Replacement Method 30

vi

 4.3 Decentralized Fault Management Mechanism (DFMM) 33

 4.3.1 Detection, Reporting and Investigation 36

 4.3.2 Mobile Node Discovery 37

 4.3.3 Mobile Node Placement 39

 4.3.4 Limitations 40

4.4 Centralized Fault Management Mechanism (CFMM) 41

 4.4.1 Centralized Fault Detection 43

 4.4.2 Mobile Node Discovery 43

 4.4.3 Mobile Node Placement 44

 4.5 Fault Management Framework (MobileFM) 46

Chapter 5 Evaluation, Results and Discussion………………..………………………49

 5.1 Evaluation Setup 49

 5.2 Resulting Topologies 52

 5.3 Numerical Results 59

 5.3.1 Mobile Nodes 59

 5.3.2 Received Packet Ratio 60

 5.3.3 Packet Loss Ratio 64

 5.3.4 Energy 68

 5.4 Random Fault 72

Chapter 6 Conclusion ………………………………………………………………….74

 6.1 Summary 74

6.2 Challenges 74

 6.3 Future Work 75

Βibliography ………………………………………………………..……………………….76

1

Chapter 1

Introduction

1.1 Motivation 1

1.2 Objective and Contribution 2

1.3 Methodology 2

1.4 Document Organization 3

Motivation

The Internet of Things (IoT) is a new technology with many applications in everyday life. In

terms of devices and communication capabilities, the IoT is a direct descendant of Wireless

Sensor Networks (WSNs), a networked and resource-constrained system [13]. In fact, WSNs,

which consist of many small and inexpensive devices, are used in a variety of applications

(military, industry, agriculture etc.). Due to the unique characteristics of the devices, this

deployment faces additional problems (small size, limited battery, limited memory, etc.).

Many issues arise due to failure, energy exhaustion, and the inability to recharge or replace

batteries [13,16]. Based on the position of the failure, a whole area of the network can become

disconnected. This can highlight the need for strategies to mitigate these problems and assist

these networks in performing their intended functions, even in the face of faults, in order to

increase fault tolerance.

A promising solution for faults and disconnections is the use of mobile nodes. The ability of

mobile nodes to move around can help deal with a variety of network problems [13]. Place

mobile nodes in specific locations can reconnect the network and extend the network's lifetime

[1,5,6].

With little human interaction, this vision proposes that WSNs and IoT networks should monitor

and reconfigure themselves in response to various events (e.g., a faulty node, congestion). In

2

order to accomplish this, an effective management architecture is required to provide a variety

of functions. Motivated by these intentions, we started to theoretical study and practical

developed a fault management framework with the aim of making WSNs and IoT networks

reliable against faults and disconnections.

Objective and Contribution

The main objective of this thesis is to provide a solution that utilizes mobile nodes efficiently

and effectively for fault detection, fault recovery, and assuring network connectivity in the

event of a disconnection. We were particularly interested in designing and developing

algorithms, as well as implementing them in real-world-like simulations and determining

whether the algorithm's goal was achieved. We discussed its usefulness by performing a variety

of metrics, including the percentage of successfully received packets, packet losses, and energy

consumption. The end goal was to compare these measurements against the simple replacement

strategy to see if they were beneficial in any specific area.

Methodology

This work extends the prior work presented by Ms Natalie Temene, Ms Nicolaou Antonia, Dr

Vasos Vasiliou and Dr Chryssis Georgiou under the title "Utilizing Mobile Nodes for

Congestion Control in Wireless Sensor Networks" [9]. This work presents an algorithm that

utilizes mobile nodes to assist the existing nodes when congestion occurs in the network. The

algorithm starts when existing congestion control algorithms fail to resolve the problem. Our

extension utilizes mobile nodes in a network to deal with failures and disconnections.

Initially, we started investigating the area of interest by reading papers about mobility and fault

tolerance approaches in WSNs and IoT Networks. Then, we got familiar with the COOJA

Simulator of the Contiki OS [3]. COOJA simulator is a network simulator specifically designed

for these networks and is a valuable tool for our work because it allows the development of

algorithms and observes the nodes and network behavior. Finally, we designed and

implemented algorithms in the COOJA simulator to validate the strategies and generate

performance metrics.

3

Document Organization

In Chapter 2, we provide an overview of WSNs and IoT networks, as well as fault-tolerance

approaches, mobility in WSNs and IoT networks, and related work of our thesis. In Chapter 3,

we go through the clustering method and the node placement algorithms in detail (Dynamic

MobileFT, Direct MobileFT). Next, in Chapter 4, we provide a detailed description of the three

strategies: replacement fault management mechanism, decentralized fault management and

centralized fault management, and finally present the MobileFM Framework, which uses the

three strategies. In Chapter 5, the experimental environment and scenarios are presented, and

a discussion on the results obtained. Finally, we conclude in Chapter 6 with a conclusion on

the results, the challenges and the future work.

4

Chapter 2

Background and Related Work

2.1 WSN and IoT Networks 4

2.2 Fault Tolerance 6

2.3 Mobility 7

2.4 Related Work 8

2.1 WSNs and IoT Networks

WSNs are self-configuring wireless networks made up of several small devices (nodes) with

specialized sensors and wireless transceivers [16]. The main goal of WSNs is to collect data

from the environment, process them and then transfer them to the base station, normally in a

hop-by-hop fashion. A wireless sensor device collects data in response to a specific event or

periodically. Each WSN sensor node can find a path to the selected sink, and the path is based

on criteria such as the number of hops from the sink, the delay, the remaining energy, etc.

WSN applications can be categorized into two categories: (a) monitoring and (b) tracking [16].

Environmental sensing, hazardous environment investigation, and health monitoring are

examples of monitoring applications. Natural disaster relief efforts, tracking animals, and

tracking items or individuals are all examples of tracking applications.

The IoT is a new technology that has a lot of applications in everyday life and refers to devices

that are connected to the Internet. WSNs can be a subset of an IoT-based system known as IoT-

enabled WSNs, in which each sensor node is defined as an IoT-enabled sensor node that will

monitor the environment and gather real-time data. IoT-enabled WSNs is defined as a network

of sensor nodes connected to a base station that functions as an access point and is also

connected to an end-user through the Internet [13]. In this manner, the proposed mechanisms

and framework in this work can be applied to IoT-enabled WSNs.

A network, that consists of many low-power sensor nodes, comes with significant limits [16].

The low-power sensor node's hardware and software capabilities in terms of computing,

5

memory, energy, and other factors are severely limited due to the small dimension design. The

energy supply constraint is the most crucial of these constraints. The sensor nodes are expected

to function independently from days to years and typically only have a limited amount of

battery capacity. Since the battery life of sensor nodes is limited, the network lifetime can be

affected in case of holes. These limitations are the reason that WSNs are error prone.

(a) Wireless Sensor Network (b) IoT-enabled WSN

Figure: 2.1

Several problems, such as node faults, congestion, and security attacks, are the main reason

that often disrupts the operation of these networks and because of the mentioned limitations is

hard to handle them . Faults in these networks is an important issue that needs to be addressed

[2,8]. The hardware constraints lead sensor nodes to frequently fail. Failures in these networks

can happen for different reasons, such as energy exhaustion, destruction by an external event,

environmental factors, and attacks. In the case of the existence of a single path leading to the

sink, a single failure can be fatal for the connectivity of the network [1]. Further, sensor nodes

may be difficult to reach, or the battery could not be replaced.

6

2.2 Fault-Tolerance

Fault tolerance is a technique for describing a system's ability to deal with failures while

maintaining its functionality [2]. Sensor node failures are divided into two categories: single

node and multiple nodes. Single node failures indicate the loss of one node at a time, and multi-

node failures indicate multiple node failures at the same time. Many researchers have

developed fault-tolerant algorithms that can improve accuracy, energy efficiency and the

network lifetime, as well as reduce failure of network components [2,8].

Fault management is one of the most prevalent methods for increasing a network's fault

tolerance and is important for WSNs because of their unique features and characteristics [8].

Fault detection, diagnosis, and recovery are the three processes in a fault management

framework see Fig. 2.2.

Figure 2.2: Fault Management Phases

The fault detection step is capable of identifying anything that may have an impact on the

network or a node. There are three approaches to this technique: centralized, distributed, and

self-managed. A centralized node, such as the sink, is responsible for managing the network

and diagnosing a faulty node in the first approach. The detection is achieved by all nodes in the

second approach, which makes use of neighboring nodes and clustering approaches. In the third

approach, a node is in the duty of investigating, analyzing and reporting.

The fault diagnosis step specifies the failure in terms of type, cause, and network impact, among

other things. This step is subdivided into four types of monitoring: passive, active, proactive,

Fault
Detection

•1st Phase

Fault
Diagnosis •2nd Phase

Fault
Recovery

•3rd Phase

7

and reactive. Sensor nodes are required to report their existence to a control center node (e.g.,

sink) with alive messages in passive monitoring. In active monitoring sensor nodes are

instructed to report their existence to a control center node (e.g., sink). In proactive monitoring,

every previous diagnosis is analyzed, and future events are predicted in order to keep the

network running smoothly. Reactive monitoring is a management system that collects data on

the state of a network in order to recognize interesting previous events and perform specific

adaptive measures to reconfigure the network.

The recovery step is in control of redesigning or rebuilding the network therefore that faulty

nodes don't affect its functionality or performance. This means that the network's dysfunctional

state is replaced with one that is fully functional. Recovery and reconfiguration are two subsets

of this method. The former mitigates the impact of the problem, whereas the latter modifies the

network's topology without affecting overall output.

2.3 Mobility in WSNs and IoT Networks

Mobility in WSNs and IoT Networks is the ability of network devices to change their position

[13]. Mobile devices can be robots or drones, examples of such devices are illustrated in Fig.

2.3. The use of mobile devices in a network as extra resources can be advantageous and

untangle serious network problems such as congestions caused by high traffic and

disconnections caused by failures in the network [1,9,14]. Moreover, bottlenecks in nodes can

be created because of the multi-hop communication and as a result battery of these nodes will

be exhausted. Strategies aim to improve the lifetime of the network by taking advantage of

mobility.

(a) Mobile Node 1 (b) Mobile Node 2

Figure 2.3: Examples of mobile devices

8

In the literature, different approaches exist that include the use of mobile sink(s), mobile nodes

and mobile robots. A mobile sink can move around the network and collect data from the nodes.

This approach can mitigate the problem of disconnection by balancing the nodes’ energy

consumption and avoiding bottlenecks. Algorithms have been proposed using mobile nodes

with different solutions approaches [13]. A mobile node has all characteristics of a normal

sensor node with the addition of the ability to move. This approach can prevent the network

from getting disconnection, reconnect the network from disconnection and ensure area

coverage [13]. Mobile robots have more computational power than mobile nodes and they can

achieve more complicated tasks, e.g., a mobile robot can move to the locations of failed nodes

and unload functional nodes [7].

2.4 Related Work

Joshi et al. (2016) proposed a novel solution to the challenge of restoring connectivity in

resource-constrained WSNs [5]. A distributed Resource-Constrained Recovery (RCR)

technique that strategically repositions nodes to act as relays to rejoin a network partitioned

into disjoint segments is presented. In this technique, if there are insufficient survivor

relocatable nodes to build a stable inter-segment topology, some of them are used as mobile

data collectors with optimized tours to reduce latency. RCR’s effectiveness is proven by

mathematical analysis and simulation results.

Lalouani et al (2017) presented a novel approach to tackle the topic of restoring connectivity

in a highly partitioned network with the fewest number of relay nodes possible [6]. To address

this issue, they present a novel Boundary-aware optimized Interconnection of Disjoint

Segments technique (BIND), that attempts to restore network connectivity by establishing the

least length topology in the Euclidean plane, which interconnects a subset of nodes on segment

boundaries by extra Steiner points, ensuring that a path exists between each pair of segments.

The simulation developed in python and the simulation findings show that BIND is effective

and has an edge over rival methods.

Rao et al. (2020) presented an SDN-based strategy for reducing the number of hops in WSNs

by employing mobile nodes for reliable data transmission [15]. This strategy increases the

packet transmission ratio and as a result it reduces the end-to-end delay as well as the energy

consumption of each sensor in the network. Simulation results show that this approach

outperforms the reliability of data transmission compared with traditional methods.

Anuradha et al. (2020) presented a variety of mechanisms for restoring network connectivity

[1]. The algorithm provides a faulty node detection system, which is divided into two

approaches. The first approach uses periodic alert messages to detect malfunctioning nodes.

9

The network's nodes send an occasional alert message to the gateway containing all the node's

information. The node is determined alive after the getaway receives such a message. When a

message is not received the first time, the getaway waits for the second round of alarm

messages to determine the node's issue. The node is considered faulty at this phase. The second

approach is a residual energy-based faulty node detection method. Each node must calculate

its own energy to decide whether it is faulty or not. When the node's energy level reaches the

threshold, it is marked faulty, and the getaway is notified. The mobile relay node is informed

of the faulty node in both detection methods and moves to the position to replace it. The

proposed mechanism is tested using emulators. The results show that the proposed methods are

appropriate for resource-constrained devices and perform well when restoring network

connectivity.

Temene et al. (2022) proposed a Node Placement Algorithm with two variations to assist

existing congestion control algorithms in facing congestion in WSNs [14]. The first variation

employs mobile nodes that create locally significant alternative paths leading to the sink. The

second variation employs mobile nodes that create completely individual (disjoint) paths to the

sink. The results of the simulations have proven that both variations can significantly contribute

to the alleviation of congestion in WSNs.

Contrarily to the bulk of existing methods using mobile nodes for the recovery phase in the

literature, we propose the utilization of mobile nodes for both phases, fault detection and fault

recovery, and we present a holistic approach that deals with failures in these networks.

10

Chapter 3

Clustering and Node Placement Algorithms

3.1 Clustering 10

 3.1.1 K-means Algorithm 11

 3.1.2 Semisupervised Partitional Clustering 11

 3.1.3 Constraints for the modified K-means Algorithm 12

 3.1.4 Modified K-means Algorithm with Constraints 13

3.1.5 Examples of Clustering 14

3.2 Node Placement Algorithms 16

 3.2.1 Geometric Functions 16

 3.2.2 Dynamic MobileFT Algorithm 18

 3.2.3 Direct MobileFT Algorithm 19

3.2.4 Combination of Clustering and Node Placement Algorithm 20

The upcoming mechanisms and the MobileFM framework are based on node placement and

clustering algorithms that calculate positions where a mobile node can investigate suspicious

faults in the detection phase and determine the placement position for the mobile node in the

recovery phase. The use of these functions will be explained later in this thesis. In this chapter,

we describe the clustering and node placement algorithms in detail.

3.1 Clustering

Clustering [11,12] is an unsupervised machine learning technique, which means we don't have

any external knowledge to guide or supervise the process. It can be defined as the task of

identifying subgroups in data so that data points within the same cluster are similar while data

points within different clusters are very dissimilar. There are different clustering approaches

such as partitioning, density-based, and hierarchical.

11

In partitioning clustering algorithms, the clusters are compact sets of points, and the parameters

are usually the number k of clusters, the distance measure (e.g., Euclidean distance) and the

points. The aim is the flat partitioning of points into k clusters with maximal compactness. The

clustering method we developed is a variation of the k-means partitioning clustering algorithm

with constraints to satisfy specific requirements for the upcoming strategies.

3.1.1 k-means Algorithm

The k-means algorithm [12] is an iterative technique that attempts to partition a dataset into k

separate non-overlapping clusters, where each point belongs to only one cluster. This technique

tries to make intra-cluster points as identical as possible and keep other clusters as distinct as

possible. It distributes data points to clusters in such a way that the sum of the squared distances

between them and the cluster's centroid, the arithmetic mean of all the points in that cluster, is

as minimal as possible. In other words, this algorithm uses distance-based measurements to

determine the similarity between data points.

The centroids of the k-means algorithm are the cluster representatives.

The centroid, 𝜇 , can be calculated based on the centroid Ci as follow:

𝜇𝐶𝑖
=

1

|𝐶𝑖|
 ∗ ∑ 𝑝

𝑝∈𝐶𝑖

 ,

The k-means method is one of the most popular partitioning clustering methods and is easy to

implement due to its simplicity. It’s efficient; however, it’s not guaranteed to converge to the

global optimum and often terminates at a local optimum.

3.1.2 Semisupervised Partitional Clustering

As we have already mentioned, unsupervised clustering operates without guidance or

knowledge. In our mechanisms, it is necessary to incorporate existing knowledge in the

clustering method. For this reason, semisupervised learning fits our needs as general rules about

the concept can be satisfied.

12

Figure 3.1: Constrained Clustering Explanation [11]

Constrained clustering [11] is a semisupervised learning technique that aims to extend the

classic clustering algorithms with existing domain knowledge. This knowledge may derive

from general rules, as constraints, about the application. A constrained clustering algorithm

accepts the same inputs as an unsupervised clustering algorithm, as well as a set of constraints.

In addition, these methods can enforce constraints in the solution (hard requirements) or/and

use constraints as guidance.

Constrained clustering algorithms have now been applied to a wide variety of applications,

such as web search result grouping, object identification, document clustering, etc. [11].

3.1.3 Constraints for the modified K-means Algorithm

The constrained clustering algorithm that we have developed consists of two constraints: (a) a

constraint as a hard requirement and (b) a constraint as guidance.

The constraint as a hard requirement is about the coverage range of the cluster centroid. As a

result, the distance between a cluster member and the centroid point of their cluster must be

less than the coverage range. For the need of our algorithm, a criterion must be added as hard

requirement to the k-means algorithm, the coverage criterion.

The coverage criterion can be defined as:

The Euclidean distance between the cluster representative and every cluster member’s

position must be equal to or less than the constant coverage ratio R

𝐷𝑖𝑠𝑡𝑎𝑐𝑛𝑒(𝜇𝐶𝑖
, 𝑜) ≤ 𝑅 , 𝑜 ∈ 𝐶𝑖 ,

The constraint as guidance is responsible for speeding up the process of clustering. Nodes out

of their cluster range and empty clusters are the two main reasons to delay the procedure. The

13

idea is that every time a node is within a cluster, and the distance between the node and the

centroid is greater than the range, it will be assigned to an empty cluster, and all clusters are

then rearranged. In this manner, solutions with nodes out of range and empty clusters are

avoided. In the end, all points should be assigned to a cluster, and each cluster member should

have a distance under the range from the centroid point. Thus, the need arises to use guidance

for the coverage criterion in our modified k-means algorithm to help the processing speed up.

The definition of the guidance for the coverage criterion is defined as follows:

For every iteration in the clustering method, if a cluster member is not in the coverage

area of its representative and there is an empty cluster, then this node becomes a new

member of the empty cluster.

3.1.4 Modified K-means Algorithm with Constraints

The k-means algorithm must be modified because we need the algorithm to satisfy the

constraints we mentioned before and return specific information. The algorithm would require

the number k and the nodes as points in a two-dimensional space as parameters. In this work,

the points in the two-dimensional space are considered as physical points (coordinates) on the

plane. The k-means algorithm needs to return a clustering with this information: the number k,

a list of the centroids (centroids), and each cluster's member(s).

The minimum number of clusters can be calculated because the maximum number of neighbors

in these networks is known. The number k of clusters is unknown, and it’s preferable for our

purposes to find the minimum k number because fewer clusters will lead to fewer mobile nodes.

In order to estimate the minimum number of clusters in our method, we proposed an estimation

function, which can be defined as follow:

Function for the minimum number of clusters:

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = |𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠| 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠⁄

The algorithm's complexity is O(kn) per iteration and the number of iterations is usually in the

order of 10; thus, the algorithm is efficient in comparison with other clustering algorithms.

The algorithm (see Fig.3.2), for every k = min, ..., n (min is estimated and n is the number of

nodes), does 30 iterations of clustering with different random initial representatives (lines 2-

8), guiding the process (lines 6-7), and if the coverage criterion is satisfied (lines 9-10), then

the clustering is completed.

14

1. For k=min to n (number of nodes)

2. For times = 1 to max_iterations

3. Randomly assigned the points

4. Do

5. change = assign_points() // any change

6. if (not satisfyConstraintRange())

7. reassign_points() // constraint as guidance

8. While (change and iter<max_iterations)

9. If(satisfyConstraintRange)//constaint as hard requirement

10. Return clustering

Figure 3.2: Pseudocode of constrained clustering algorithm

3.1.5 Examples of Clustering

The examples below are the results of the clustering in the COOJA simulator, where the

clustering algorithm is implemented. More details about the COOJA simulator will be

discussed in Chapter 5.

(a) Network Topology (b) Partitioning Clustering

Figure 3.3: Example 1 of partitioning Clustering

15

In the example of Figure 1, the list of points consists of nodes 2-20. The algorithm divides the

list into 5 different clusters. Cluster 0 consists of nodes 9,17 and 18, cluster 1 consists of nodes

2,3 and 4, cluster 2 consists of the nodes 5,12,13 and 14, and cluster 3 consists of the nodes

10,11,19 and 20 and finally cluster 4 consists of the nodes 6,7,8,15 and 16. The coverage

criterion is satisfied for every cluster, which means a mobile node can move to a specific

position and be able to communicate with all cluster members.

(a) Network Topology (b) Partitioning Clustering

Figure 3.4: Example 2 of partitioning clustering

Another example is presented in Figure 2, the list of points consists of nodes 8,12,13,14,15 and

16. The modified k-means algorithm partitioned the list into two different clusters. The first

cluster consists of the nodes 8,15 and 16 and the second cluster consists of the nodes 12,13 and

14. As a result, every cluster satisfies the coverage criterion.

16

3.2 Node Placement Algorithms

In the expectation of carefully computation of the mobile node position to reconnect the

problematic area and solve the disconnection problem, we designed and implemented two

Node Placement algorithms, the Dynamic MobileFT algorithm and the Direct MobileFT

algorithm.

3.2.1 Geometric Functions

The node placement algorithms are designed to solve geometric problems. They require in-

depth knowledge of mathematical subjects and geometric functions to find the best node

placement position. These geometric functions are based on these equations and methods: (a)

Euclidean Distance, (b) Line through two points and (c) Intersection points of a line and a

circle.

a) The well-known Euclidean Distance Equation is:

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 ,

where the d is the distance, (x1,y1) is the coordinates of the first point and (x2,y2) are the

coordinates of the second point.

b) The equation of a line through two points:

𝑦 = 𝑚𝑥 + 𝑐 ,

The straight line through two points will have an equation in the above form. Based on

the coordinates (x1,y1) of the first point and the coordinates (x2,y2) of the second point,

we can find the equation of the straight line between the two points using the following

method:

1) We can find the value of m, the gradient of the line, by forming a right-angled

triangle using the coordinates of the two points.

2) Then, we can find the value of the y-intercept, by substituting the coordinates

of one point into the equation.

17

c) Method to find the intersection points of a line and a circle

1) A line and a circle can intersect in one of three ways: they can intersect in two

points, one point, or none at all. If the line and the circle intersect, the

coordinates of their intersection point (or points) simultaneously solve the line

and the circle's equations. This allows us to utilize algebra to determine if a line

and a circle intersect and the coordinates of their intersection points.

2) Given the equation of the line:

𝑦 = 𝑚𝑥 + 𝑐 ,

and the equation of the circle in the standard form:

(𝑥 − ℎ) + (𝑦 − 𝑘) = r ,

We can substitute the expression mx+b for y in the equation of the circle to

obtain a quadratic equation in x in this form:

𝐴𝑥 + 𝐵𝑥 + 𝐶 = 0 ,

3) The discriminant Δ=𝐵−4𝐴𝐶 of the quadratic 𝐴𝑥+𝐵𝑋+𝐶=0 tells us about the

line and circle intersections. If Δ>0, the line and the circle intersect in two

points. If Δ=0, then the line is tangent to the circle. If Δ<0, then the line and the

circle are disjoint.

4) If Δ>0 or Δ=0, we can solve the quadratic 𝐴𝑥+𝐵𝑋+𝐶=0 to find the 𝑥-

coordinates of the points of intersection of the line and the circle.

5) We can then substitute these values back into the equation of the

line 𝑦=𝑚𝑥+𝑏 to find the 𝑦-coordinates of the points of intersection.

18

3.2.2 Dynamic MobileFT Algorithm

The first node placement algorithm is called Dynamic MobileFT. The main idea is to find the

position of a mobile node that can serve all target nodes and communicate with the destination

node in case of a disconnection. The target nodes are all members of the same cluster, where a

centroid point is defined. Based on this centroid point, the algorithm finds the best position that

can serve all target nodes. The best position of the deployed node can be defined as the position

nearest to the destination node; however, if there is no such position, the centroid position is

guaranteed to communicate with all the target nodes (coverage criterion in section 3.1.3).

1. line = findLine(centroid,s)

2. For each node in targetList do

3. Pos = intersectionPointOfLine&Circle(line,node)

4. For each member in targetList do

5. flagRange = checkInRange(pos_member,pos_dest)

6. If (flagRange == true)

7. count++

8. If (count == targetList.size)

9. Add pos to positionList

10. If (positionList is not empty)

11. Return nearestPos(positionList,dest)

12. Return centroid

Figure 3.5: Pseudocode of Dynamic MobileFT Algorithm

The calculation of the node position is performed as follows: Firstly, the line through the

centroid and the destination s is calculated (see Alg., line 1). The target list (targetList) contains

all the cluster members. For each node n in the target list, the intersection point of the virtual

line and the circle, which is created by the radius of the transmitting range of the node n, is

calculated (see Alg., line 3). Then, the algorithm checks if the selected position is in the range

of other cluster members and if that is true then this position is added to the possible positions.

node (see Alg., lines 4-9) The selected position will be the one nearest the destination and that

is decided by the nearestPos function (see Alg., lines 10-11). If no position is selected, then the

centroid is selected to place a node (see Alg., line 12).

19

Figure 3.6: Node Placement position calculated by Dynamic MobileFT

An example of the estimated mobile node position is illustrated in Fig. 3.6. Initially, nodes

1,2,3 are all assigned to a cluster with centroid c1, and node M is the destination node to where

the disconnected nodes of the cluster need to connect to. A virtual line that connects the

destination node M with the centroid c1 is created. For each node in the cluster (1,2,3), the

intersection point between the virtual line and the circle that is created by the radius of the

transmitting range of the node is calculated. Then, a position that can serve all nodes in the

cluster and is closer to the destination node is selected.

3.2.3 Direct MobileFT Algorithm

1. pos = DynamicMobileFT()

2. flagdp = false

3. While (flagdp == false)

4. inRange = checkInRange(pos,dest)

5. If (inRange == true)

6. Place node to pos

7. Flagdp = true

8. Else

9. Place node to pos

10. Pos = intersectionPointOfLine&Circle(pos,dest)

11. return

Figure 3.7: Pseudocode of constrained clustering algorithm

20

The Direct MobileFT algorithm is the second node placement algorithm. The main aim is to

create a path of mobile nodes toward the destination in the case the selected position is not in

the range of the destination. At first, the Dynamic MobileFT (see Fig. 3.7, line 1) is called to

calculate the position of the first mobile node placed in the path. Then, it creates the direct line

starting from the first placed mobile node and ending at the destination point. On this line, it

places additional mobile nodes until one of them is in the range of the destination node and can

forward packets directly to it (see Fig.3.7., line 2-10).

Figure 3.8: Node Placement positions calculated by the Direct MobileFT Algorithm

An example of the positions calculated by the Direct MobileFT algorithm is illustrated in Fig.

3.8. The estimated position of the first mobile node is selected by the Dynamic MobileFT

algorithm and then another node, the second mobile node, is placed in the range of the

previously placed mobile node. As the second mobile node is in the range of the destination

node M, the procedure stops, and no more mobile nodes are placed in this path.

3.2.4 Combination of Clustering and Node Placement Algorithm

The example in the next page is the result of the combination of the clustering algorithm and

the node placement algorithm in the COOJA simulator (evaluation setup), where the clustering

and node placement algorithm are implemented. More details about the simulator will be

discussed in Chapter 5.

21

The combination of the clustering algorithm and the node placement algorithm can be

beneficial. Mobile nodes can be placed to specific positions in such way disconnected nodes

can communicate with the destination node, that is explained further in the chapter 4.

(a) Topology (b) Mobile Nodes placement

Figure 3.9: Clustering and Node Placement algorithms

As illustrated in Fig. 3.9 static nodes 6,7,8,14,15,16 and17 were unable to communicate with

the mobile node 26. A static node can be either relay or source node. The clustering algorithm

(section 3.1.4) had achieved to divide the static nodes into non-overlapping subsets such that

all nodes in a cluster can communicate with a node. Especially, three clusters were constructed,

the first consists of nodes 16,17, the second one consists of nodes 7,8 and the third one consists

of nodes 6,14,15. Then for each cluster, the node placement algorithm is performed to connect

the cluster nodes (as target nodes) with the mobile node 26. Finally, it’s obvious in Fig. 3.9 (b)

that the static nodes were connected successfully to the destination node after the selected

positions of the combination of the clustering algorithm and the node placement algorithm.

22

Chapter 4

Fault Detection and Recovery Mechanisms

4.1 Model and Assumptions 22

4.2 Replacement Fault Management Mechanism (RFMM) 24

 4.2.1 Distributed Fault Detection 27

 4.2.2 Fault Reporting 28

 4.2.3 Mobile Node Investigation 28

 4.2.4 Mobile Node Replacement 30

4.3 Decentralized Fault Management Mechanism (DFMM) 33

 4.3.1 Detection, Reporting and Investigation 36

 4.3.2 Mobile Node Discovery 37

 4.3.3 Mobile Node Placement 39

4.3.4 Limitations 40

4.4 Centralized Fault Management Mechanism (CFMM) 41

 4.4.1 Centralized Fault Detection 43

 4.4.2 Mobile Node Discovery 43

 4.4.3 Fault Reporting 43

 4.4.4 Mobile Node Placement 44

4.5 MobilleFM: Fault Management Framework 46

In this chapter, we propose solutions that make efficient and effective use of mobile nodes in

order to detect faults, recover faults, and ensure network connectivity in the event of a

disconnection. Initially, we present the network model and then the three mechanisms for fault

management: (a) Replacement Fault Management Mechanism (b) Decentralized Fault

Management Mechanism (c) Centralized Fault Management Mechanism. Finally, we present

the MobileFM Framework that consists of the three previous mechanisms.

23

4.1 Model and Assumptions

We consider a network that consists of static nodes (source and relay) and a small number of

mobile nodes that reside near the sink. We also assume the following:

• We employ a simple MAC protocol, like CSMA/CA

• The sink node knows the locations of all sensor nodes in the network, and all nodes

are aware of their location in relation to the location of the sink.

• Static (relay and source) nodes and mobile nodes are sensors that collect

environmental data periodically and send them to the sink node with a multi-hop

communication.

• All static and mobile nodes are identical in terms of computation power,

communication capabilities, sensing and transmission range, etc.

• Mobile nodes change their position only when it receives such an instruction from the

sink node and can move straight to an arbitrary location in the field without

considering any obstacles on their way. While the mobile node moves to its new

position, its radio is turned off to prevent any interference. When it arrives at the

target location, it turns its radio back on.

(a) Network Topology 1 (b) Network Topology 2

Figure 4.1: Example Network Topologies

Figure 4.1 shows two examples of different WSN topologies, where node 1 is the sink node,

nodes 2-11 are the relay nodes, nodes 12-20 are the source nodes and 21-26 are the mobile

nodes. The source nodes are responsible to collect the data and send it to the sink node. The

relay nodes forward the received data from the source node towards the sink node. The sink

node is the base of the network and is responsible to collect the data and the mobile nodes are

nodes with the ability to move that are used as extra resources in case of any needs that occur

in the network.

24

4.2 Replacement Fault Management Mechanism

The Replacement Fault Management Mechanism (RFMM) is a solution used for fault

occurrence in the network. This mechanism is based on the distributed fault detection, which

is performed by each node in the network. After the sink node is notified from a node about

the failure, it will send one or more mobile nodes for investigation and replace the faulty

node(s). The main idea of recovery is to replace each faulty node with a mobile node once the

sink node is informed about the failure from a neighboring or a mobile node.

The RFMM consists of the following steps:

Figure 4.2: Replacement Fault Management Mechanisms Steps

The mechanism is divided into two processes: (a) detection and (b) recovery. In the detection

process, the distributed fault detection, the fault reporting and the mobile node investigation

are performed. Distributed fault detection aims to recognize the faults, while fault reporting

aims to report the failure once a neighboring node acknowledges it. Mobile node investigation

is performed by a mobile node and aims to investigate further for other faults in the affected

area. In the recovery process, the replacement of the faulty node by a mobile node is performed.

Distributed
Fault Detection

Fault Reporting

Mobile Node
Investigation

Replacement

25

1. Upon receive (“Faulty Notification(fn,level)”) then
2. // find the position of the faulty node

3. pos = findPosition(fn)

4. // number of expected neighbors

5. neighbors = numberOfNeighbors(fn)

6. // select an available mobile node

7. mobile = selectMobileNode(pos)

8. // send investigation notification to mobile node

9. sendInvestigation(pos,level,neighbors,mobile)

10.

11. Upon receive (“Investigation Notification

Response(aliveList)”) from m then

12. // find faulty nodes

13. faultyList = findFaultyNodes(m,aliveList)

14. // replace mobile nodes

15. level = findMobileLevel(m) + 1

16. For each faulty in faultyList

17. pos findPosition(faulty)

18. neighbors = numberOfNeighbors(faulty)

19. mobile = selectMobileNode(pos)

20. sendInvestigation(pos,level,neighbors,mobile)

Figure 4.3: Replacement Fault Management algorithm for sink node

1. Upon receive (“Investigation Notification

(pos,level,expected)”) from sink then

2. move(pos) // move to position

3. my_level = level

4. broadcastAliveRequest()// broadcast alive request

5. waitForTime(T) // wait for T time

6. alive = countResponses() // count the alive nodes

7. // send Investigation respond to sink if it s needed

8. If responses != expected

9. sendInvestigationResponse(neighbors)

10. idle = false // start acting as a static node

11. sendAnnouncementReconnect()

Figure 4.4: Replacement Fault Management algorithm for mobile node

26

1. // periodically checking for neighbors failure

2. Upon detect failure

3. // battery exhaustion

4. if (batteryExhaustion == true)

5. sendFaultyNotification(my_ID, my_level)

6. Return

7. // suspicious faulty neighbor

8. sendAliveRequest(s)

9. waitForTime(T)

10. // if suspicious is alive, just return

11. if response == true

12. return

13. // neighbor from downstream, before it was receiving

packets from this neighbor

14. if (s.level > mylevel and receiving==true)

15. sendFaultyNotification(s.ID, s.level)

16. setFaulty(s)

17. return

18. // if the node does not have other upper nodes, it

disconnected from the network

19. if (s.level < mylevel and noUpperNode() == true)

20. disconnection = true

21. sendAnnouncementNoPath(mylevel)

22.

23. Upon receive (“Announcement No Path”) from n then

24. n.reachSink = false

25. // if there is no other upper node

26. if (noUpperNode() == true)

27. sendAnnouncementNoPath()

28. disconnection = true

29.

30. Upon receive (“Announcement Reconnect”) from n then

31. n.reachSink = true

32. if (noUpperNode() == false and disconnection == true)

33. disconnection = false

34. sendAnnouncementReconnect()

Figure 4.5: Replacement Fault Management algorithm for static node

27

4.2.1 Distributed Fault Detection

Each node in the network broadcasts an alive message periodically, intending to announce its

healthy status to its neighbors. Additionally, each node executes the detection method

periodically to identify any faults in the network.

Figure 4.6: Distributed Fault Detection

Specifically, the node can recognize:

1. The different levels of its energy. If the energy consumption is lower than a given

threshold, the node immediately informs the sink node about the upcoming node failure

(informs about battery exhaustion).

2. A faulty node from its downstream neighboring nodes. The node can identify a

suspicious faulty node from its neighboring lists when a certain amount of time has

passed from the last time of their communication. Upon identifying such a situation,

the node will send an alive request message to the suspicious node and wait for its reply.

When the waiting timer expires, and the neighboring node does not reply, it considers

it a faulty node and immediately informs the sink node.

3. A faulty node from its upstream neighboring nodes. The node considers the suspicious

faulty node as a faulty node by following the process in the previous point.

D
is

tr
ib

u
te

d
 F

au
lt

 D
et

ec
ti

o
n

Battery Exhaustion

Faulty Node
(Downstream)

Faulty Node
(Upstream)

28

4.2.2 Fault Reporting

The node, which has detected the fault from its downstream nodes or the battery exhaustion,

sends a Faulty Notification Message (FNM) to the sink node. The FNM contains all the

information needed, such as the nodes ID and its level. When the fault is referred to as energy

exhaustion, the node sends the information of itself. In the case of a neighboring node failure,

the node sends the neighbor’s information, which can be found in its neighboring table.

FNM Message:

“FNM” ID Level

Figure 4.7: FNM Message Structure

The node, which has detected the fault from its upstream neighboring nodes, will recognize if

there is no other upstream node, thus there is no path leading to the sink node. If the sink is not

reachable, the node will inform its neighbors with an announcement that there is no path toward

the sink and if there is no alternative path for them then the nodes will stop sending packets to

not drain their energy.

4.2.3 Mobile Node Investigation

Upon receiving an FNM message, the sink node will calculate the number of expected

neighboring nodes and then send a mobile node to resolve the problem. The sink node sends

an Investigate Notification Message (INM), which includes the target position, the number of

expected neighboring nodes, and its new level. Both position and level are the same as the

faulty node.

INM Message:

“INM” Coord X Coord Y
#Excpected
Neighbors

Level

Figure 4.8: INM message structure

The investigation process starts once the mobile node arrives at its target position. The first

step is to broadcast introduction messages and wait for all nodes in its range to reply. When the

waiting timer expires, the mobile node starts the next step.

29

The following process is based on the replies received from the mobile node and is divided into

two approaches: (a) single node failure and (b) multi-node failure. If the mobile node receives

the expected number of replies (single node failure scenario), which means that the number of

responses is equal to the number of expected neighbors; then the process stops as no other

failure was detected. However, further investigation is needed in case of receiving fewer

responses than expected (multi-node failure scenario).

(a) Single Node Failure (b) Multi-Node Failure

Figure 4.9: Types of Sensor Nodes Failures

In the single node failure approach, a node is the only failure in the neighborhood. In the

investigation process, the mobile node will replace the faulty node by acting as a static node.

The replacement method starts by introducing itself to the neighborhood and creating its

neighbor list. It will recognize that the number of neighbors is the expected one; thus, there is

no other failure in the neighborhood.

In the multi-node failure approach, the failure was created by more than one node in a row. The

failure detection is the same as the single failure scenario. However, in this case, it will observe

that its neighboring list has not the expected number of neighboring nodes, which was

calculated by the sink. This indicates the existence of at least another faulty node in the

network. The mobile node informs the sink node about its finding with an Investigate Results

Notification Message (IRNM), including all the nodes’ IDs in its neighbor table.

IRNM Message:

“IRNM” ID ID ….

Figure 4.10: IRNM Message structure

30

4.2.4 Replacement method

In both cases, single failure and multi-node failure, the mobile node will replace the faulty

node, and depending on the role of the faulty node, the mobile node will act either as a relay or

a source node. In the single failure case, the mobile node will act as a bridge between the two

disconnected areas, the network will be reconnected, and the sink will be receiving all the

packets once the connection is reestablished.

In the multi-node failure case, the sink will receive the IRNM message and act as follow. Based

on the information received from the message, the sink will identify the missing nodes and

replace each one with a new mobile node. Each mobile node will start its investigation process

once it arrives to the target position, and in case of any other fault, it will inform the sink with

an IRNM message.

(a) Single Node Failure (b) Recovery

Figure 4.11: Recovery in Single Node Failure

Figure 4.11 shows an example of the single node failure case, where static nodes S1,S2,S3,S4

and S5 are part of the network. In the example of the Figure, sensor node S2 became faulty and

disconnected a whole area of the network. S3 and S5 nodes have no node to forward their

packets. Nodes S1, S3 and S5 recognizes that S2 stops functioning properly and takes action.

Specifically, S3 and S5 inform their neighbor about the failure and S1 sends to the sink node

an FNM message (Fault Reporting). Upon receiving the sink such a message, it sends a mobile

node to the position of the faulty node. The mobile node M1 is placed in the S2 position and

31

starts investigating the neighborhood. Mobile node M1 finds all the expected neighbors, thus

no further investigation is needed, and the network is successfully reconnected.

(a) Multi-Node Failure (b) Replacement of S2

© Replacement of S3 d) Replacement of S4

Figure 4.12: Recovery in Multi-Node Failure

Figure 4.12 shows an example of the multi-node failure case, where static nodes S1,S2,S3,S4

and S5 are part of the network. In this example, sensor nodes S2,S3 and S4 became faulty and

disconnected a whole area of the network (Fig. 4.12 a). Some of the nodes do not have paths

available to forward their packets to upper nodes. Nodes S1,S3 and S5 recognize that S2 stops

functioning properly and act accordingly. Specifically, S5 inform its neighbor about the failure

32

and S1 sends to the sink node a FNM message (Fault Reporting). Upon receiving the sink such

a message, it sends a mobile node to the position of the faulty node. The mobile node M1 is

placed to the S2 position and starts investigating the neighborhood (Fig. 4.12 b). Mobile node

M1 does not find all the expected neighbors and sends an IRNM message, which contains the

id of the S1 and S5 nodes, to report its findings to the sink node. The sink figures out that S3

is the missing expected neighbor, which means that it is faulty, and sends a new mobile node

to investigate this area and replace the faulty node S3. Mobile node M2 is placed to the position

of the node S3 and starts investigating ((Fig. 4.12 c). Mobile node M2 identifies that an

expected neighboring node is missing and sends to the sink node an IRNM message, that

contains only the ID of the M1 node. After that M2 starts acting as a static node. The sink finds

the missing node, node S4, and again sends a new mobile node to investigate further and replace

the faulty node. The mobile node M3 moves to the S4 position and during the investigation

process, all expected neighbors are found. All disconnected areas are successfully reconnected

to the rest of the network.

In the RFMM each faulty node is replaced by a new mobile node that takes its place in the

network. This mechanism achieves to reconnect the disconnected network; however, its

recovery method demands the use of many extra resources and indicate the necessity of other

mechanisms.

33

4.3 Decentralized Fault Management Mechanism (DFMM)

The Decentralized Fault Management Mechanism is based on distributed fault detection like

RFMM. The DFMM differs from the RFMM in both phases (detection and recovery), where

different technique is used in the discovery step and recovery solution. In the detection process,

the distributed fault detection, the fault reporting, and the investigation methods follow the

exact same steps as in the RFMM. After the sink is informed about the investigation process

results, if there are any other faults, mobile node discovery will be performed instead of sending

another mobile node. The sink will receive the results of the discovery process, calculate

positions for the mobile nodes, and place as few mobile nodes as needed to reconnect the

network. In the abstract, this mechanism places mobile nodes based on the gained knowledge

from the discovery process, however, this mechanism detects failures locally and has its

limitation. The DFMM consists of the following steps, which will be explained further:

Figure 4.13: Decentralized Fault Management Mechanism

The mechanism is divided into two processes: (a) detection and (b) recovery. The detection

process is responsible in identify the faults in the network and is divided into the following

methods: distributed fault detection, fault reporting, mobile node investigation and mobile node

discovery. Distributed fault detection aims to recognize the faults, while fault reporting aims

to report the failure once a neighboring node acknowledges it. Mobile node investigation is

performed by a mobile node and aims to investigate further for other faults in the affected area.

The mobile node discovery step is responsible to discover failures on a deeper level. In the

recovery process, the mobile nodes selected by the sink are placed at their calculated positions

in order to reconnect the network. The algorithm for the static node remains the same as in

RFFM. The algorithms are presented in Fig. 4.14 and 4.15:

Distributed
Fault Detection

Fault Reporting
Mobile Node
Investigation

Mobile Node
Discovery

Mobile Node
Placement

34

1. Upon receive (“Faulty Notification(fn,level)”) from n then

2. If anyNodeStopSending() == false

3. return

4. // find the position of the faulty node

5. pos = findPosition(fn)

6. // number of expected neighbors

7. neighbors = numberOfNeighbors(fn)

8. // select an available mobile node

9. mobile = selectMobileNode(pos)

10. // send investigation notification to mobile node

11. sendInvestigation(pos,level,neighbors,mobile)

12.

13. Upon receive (“Investigation Notification

Response(aliveList)”) from m then

14. // find faulty nodes

15. faultyList = findFaultyNodes(m,aliveList)

16. // create navigation path

17. For each faulty in faultyList

18. pos = findPosition(faulty)

19. path.add(pos)

20. // initial position of mobile node

21. pos = findPosition(m)

22. path.add(pos)

23. // send Investigation Path message to m (sender of msg)

24. sendInvestigationPath(path,m)

25.

26. Upon receive (“Investigation Path Response(aliveList)”) from

m then

27. // constrained clustering

28. noUpperNodesList = getNoUpper(aliveList)

29. clustering = clustering(noUpperNodesList)

30. For each cluster in clustering

31. // calculate the position

32. // target nodes are cluster members, dest is the mobile

33. pos = DynamicMobileFT(cluster.members,m)

34. mobile = selectMobileNode(pos)

35. sendNewPosition(pos,mobile)

Figure 4.14: Decentralized Fault Management algorithm for sink node

35

1. Upon receive (“Investigation Notification
(pos,level,expected)”) from sink then

2. move(pos) // move to position

3. my_level = level

4. // broadcast alive request

5. broadcastAliveRequest()

6. wait for T time

7. // count the alive nodes

8. alive = countResponses()

9. // send investigation respond to sink if it’s needed

10. If responses != expected

11. sendInvestigationResponse(neighbors,sink)

12. idle = true // wait for discovery phase

13. else

14. // start acting as static node

15. idle = false

16.

17. Upon receive (“Investigation Path(pathList)”) from sink then

18. pos = pathList.remove()

19. While (pathList.size() > 1)

20. move(pos)

21. broadcastAliveRequest()

22. waitForTime(T)

23. pos = pathList.remove()

24. // inform sink node for its findings

25. sendInvestigationPathResponse(findings,sink)

26. // start acting as static node

27. idle = false

28.

29. Upon receive (“New position(pos)”) from sink then

30. move(pos)

31. // introduce to neighbors and get the right level

32. introduceToNeighbors()

33. // start acting as static node

34. Idle = false

Figure 4.15: Decentralized Fault Management algorithm for mobile node

36

(a) Healthy Network (b) Disconnected Network

Figure 4.16: Network Disconnection

An example of disconnection is shown in figure 4.16. Relay nodes 4,5,6,7 crashed and as a

result, the whole network disconnected.

4.3.1 Detection, Reporting and Investigation

As we have mentioned before, the detection phase is very similar to the detection phase of the

RFMM. The distributed fault detection, the fault reporting and the mobile node investigation

processes remain the same. However, sink, before sending a mobile node for investigation,

checks if there are nodes that stops sending packets with the same threshold was set for

distributed fault detection to avoid sending mobile nodes without need.

Each node in the network broadcasts an alive message periodically, intending to announce its

healthy status to its neighbors. Additionally, each node executes the detection method

periodically to recognize any fault in the network (section 4.2.1). The node, which has detected

the fault from its downstream neighboring nodes, sends an FNM to the sink node. The node,

which has detected the fault from its upstream neighboring nodes, will recognize if there is no

other upstream node and inform the other nodes about the failure (section 4.2.2). The sink node,

when it receives an FNM message, checks if there are any nodes that sending packets. If there

are nodes that stops sending packets, then the sink sends an Investigation Notification to a

mobile node for investigating the affected area. After that, the mobile node moves to the target

position and starts the investigation process and informs the sink node about its finding using

an IRNM. At this point, DFMM will continue with the Mobile Node Discovery step and not

the Replacement method step.

37

4.3.2 Mobile Node Discovery

The sink upon receiving the IRNM finds which nodes did not respond to the message of the

mobile node. The positions of these nodes are sent to the mobile node with the IP Message. In

the one-level investigation, the mobile node receives from the sink the IP message that contains

the positions of the non-responding nodes that it should visit and investigate further. When the

mobile node arrives at these positions, it broadcast an “alive request” message and waits for

responses. Nodes, which receive this message request, will respond with an alive response that

contains if they have at least an upper node or not. At the end of this procedure, the mobile

node returns to its starting position and informs the sink about its finding with an Investigation

Path Response (IPR) , which includes all the nodes found alive (ID) and if they have an upper

node or not (0/1). By finding all nodes without an upper node, mobile node can inform the sink

about the nodes that need to be reconnected and not include the nodes that already are

connected somehow in the network.

IPR Message:

“IPR” ID 0/1 ID 0/1 ….

Figure 4.17: IRP Message Structure

Figure 4.18 shows an example of the mobile node discovery. At first, mobile node 17 places to

the faulty node position, investigate the area and recognize that other failures exist (Fig. 4.18a).

Report its findings to sink, and then it moves to the neighbors’ positions to discover other

failures (Fig. 4.18 b,c,d) At every position, it stops, sends alive requests and wait for the nodes

to reply. In the end of this method, mobile node 17 moves back to its initial position and sends

a message to the sink to notify it about the state of nodes in this neighborhood.

38

(a) (b)

(c) (d)

(e)

Figure 4.18: Mobile Node Investigation and Discovery

39

4.3.3 Mobile Node Placement

Based on the information collected by the IPR message, the sink calculates the number of

mobile nodes and their position that are needed for restoring the network. This procedure is

divided into two methods: (a) the constraint clustering method and (b) the positioning method.

Firstly, the clustering method is used, where the sink node divides all nodes without an upper

node into clusters based on their position with the modified k-means algorithm that is presented

in subchapter 3.1. After that, the positioning method is used, where the Dynamic MobileFT

algorithm (presented in section 3.2.3) runs to find the position of the mobile node for each

cluster created. When the position is calculated, the sink selects an available mobile node and

sends it to the target position. When a mobile node receives a New Position message it moves

to the position, introduces itself and starts acting like a static node.

(a) (b)

(c) (d)

Figure 4.19: Recovery of Disconnected Network

40

we present in the figure 4.19 the recovery phase of the disconnected network (Fig. 4.18). Two

additional mobile nodes placed in order to reconnect the network (Fig. 4.19 b). Specifically,

mobile node 19 can communicate with static nodes 10,11 and 12 (Fig. 4.19 c) and mobile node

18 can communicate with static nodes 8, 13 and 14 (Fig. 4.19 d). Both mobile nodes 18 and 19

can forward packets to the mobile node 17.

4.3.4 Limitations

(a) (b)

(c)

Figure 4.20: Limitations of DFMM

As we can see in Figure 4.20, the DFMM was unable to reconnect the network. That happens

because in the discovery method mobile node couldn’t communicate with the node 9, and thus

couldn’t reconnect the area of this node.

In conclusion, the DFMM can reconnect the network in case of disconnection with the

minimum mobile nodes, however it cannot be used to resolve a two-level or more

disconnection.

41

4.4 Centralized Fault Management Mechanism (CFMM)

This mechanism is based on centralized fault detection where the detection is performed by the

sink node. As we mentioned before, DFMM comes with limitations, or to be more specific it

can resolve only one-level disconnections. In contrast, CFMM can solve two-level or more

disconnections, however it needs more time and energy in comparison with the DFMM. In this

mechanism, a mobile node is sent to the affected area by the failure to discover the faults and

comes back to the sink node to report its findings, thus the journey of the mobile node can be

time-consuming and energy consuming. However, it can place fewer mobile nodes in

comparison with the RFMM.

The CFMM consists of the following steps:

Figure 4.21: Centralized Fault Management Mechanism

The mechanism is divided into two processes: (a) detection and (b) recovery. The detection

process is responsible for detecting the fault in the network and includes the centralized fault

detection step and the mobile node discovery step. The recovery process is responsible for

resolving the failure that occurred in the network by placing mobile node(s).

Centralized
Fault Detection

Mobile Node
Discovery

Mobile Node
Placement

42

we previously presented a semi-supervised partitional clustering technique (subchapter 3.1).

This mechanism uses the clustering technique for the following reasons:

1. Divide the suspicious faulty nodes (SNF-list) into non-overlapping subsets such that all

nodes in a cluster can be investigated at the same time. (Mobile Node Discovery)

2. Divide the alive nodes into non-overlapping subsets such that all nodes in a cluster can

communicate with a mobile node and reconnect them to the network. (Mobile Node

Placement)

The algorithms for the static and mobile node remains the same as in DFFM. The centralized

fault management algorithm for the sink node is presented above in Fig. 4.22.

1. //centralized detection based on threshold

2. Upon detect failure then

3. // find the center based on nodes that stop sending packets

4. center = calculateCenterOfSupsiciousArea()

5. // a list of all nodes in suspicious area

6. SFN_list = createSFNList(center)

7. // clustering of SFN list and positions for mobile node

8. navigation_path = createNavigationPath(SFN_List)

9. // select an available mobile node

10. mobile_node = selectMobileNode()

11. // send Investigation Path Message to the mobile node

12. SendIPMsg(navigation_path, mobile_node)

13.

14. Upon receive (“Investigation Path Response(nodesList)”) from

m then

15. Clusters = clustering(nodesList)

16. For each cluster

17. pos = DirectMobileFT(cluster)

18. mobile_node = selectMobileNode()

19. sendMobile(mobile_node,pos)

Figure 4.22: Centralized Fault Management algorithm for sink node

43

4.4.1 Centralized Fault Detection

The sink node receives all collected data from the network and is aware from which node it

receives data. Based on the receiving information it can identify if a node stops sending packets.

The sink node once it recognizes that several nodes stop functioning correctly (sending packets)

based on a threshold which is greater than the previous mechanisms, it creates a Suspicious

Faulty Node list (SFN list). This list contains all the nodes that stop sending packets and nodes

in their neighborhood in case of a disconnection. Then, the mobile node discovery process

starts, where a mobile node should find out the alive nodes from the SFN list.

4.4.2 Mobile Node Discovery

The SFN list contains all the suspicious faulty nodes, and a mobile node should check the nodes

of the SFN list if they are still alive. In order to create the SFN list, the sink finds the faulty

area, which can define by calculating the centroid c of the nodes that stop sending packets and

then choosing the circular area with the centroid c as the center and radius r, in this model it is

twice as the coverage of the sensors. The suspicious faulty nodes are all the nodes inside this

faulty area. In this model, we assumed that faults could happen in a specific area only and can

be covered by the faulty area.

Once the SFN list is created, the sink uses the constraint clustering method to divide the SFN

list into clusters that all members can investigate at the same time by the mobile node. After

that, the sink sends an Investigation Path Message (IP) that contains the positions of the target

positions, which are the clusters’ centroids. When the mobile node arrives at these positions, it

broadcast an “alive request” message and waits for responses. Nodes, which receive this

message request, will reply with an alive response that contains if they have at least an upper

node or not. At the end of the mobile node discovery procedure, the mobile node returns to its

starting position, near the sink, and informs the sink about its finding with an Investigation Path

Response (IPR), which includes all the nodes found alive (ID) and if they have an upper node

or not (0/1).

Figure 4.23 shows an example of the mobile node discovery method, where the nodes 14,15

and 16 stop sending packets and the sink node suspects failures. The mobile node should visit

two positions, the first one aims to check nodes 7 and 8, and the second one aims to check

nodes 9,14,15 and 16. At the end of the method, the mobile node comes back to its initial

position and reports to the sink its findings. The recovery phase of this disconnection is shown

in Fig. 4.24.

44

(a) Healthy Network (b) Multi-node Failure

(c) Discovery Position 1 (d) Discovery Position 2

Figure 4.23: Mobile Node Discovery

4.4.3 Mobile Node Placement

Based on the information collected by the IPR message, the sink calculates the number of

mobile nodes and their position that are needed for restoring the network. This procedure is

divided into two methods: (a) the constraint clustering method and (b) the positioning method.

Firstly, the constraint clustering method is used, where the sink node divides all nodes without

an upper node into clusters based on their position. After that, the positioning method is used,

where the Direct MobileFT algorithm (presented in section 3.2.4) runs to find the position of

45

the mobile node for each cluster created. In the Direct MobileFT algorithm, the target nodes

are the clusters’ members, and the destination is the sink node, however, the algorithm is

modified to stop when finding a node in the coverage of the last-placed node. When the

positions are calculated, the sink selects available mobile nodes and sends them to the target

positions. When a mobile node receives a New Position message it moves to the position,

introduces itself and starts acting like a static node.

Figure 4.24: Mobile Nodes Placement

An example of the mobile node placement step is illustrated in Fig. 4.24, where two mobile

nodes are placed to reconnect the static nodes 14,15,16 to the network after the discovery step.

46

4.5 Mobile Fault Management (MobileFM) Framework

we present the Mobile Fault-Management (MobileFM) framework that utilizes mobile nodes

to reconnect the disconnected areas and handle failures of the network. The idea behind this

framework is to ensure the proper functionality of the network by replacing the faulty source

nodes and keeping the connectivity towards the sink node by placing mobile nodes. This

framework combines the Replacement Mechanism, the Decentralized Fault Management

Mechanism and the Centralized Fault Management Mechanism (Fig. 4.25).

Figure 4.25: MobileFM Framework

In this framework, the fault detection has two aspects. The first aspect is a distributed detection

(by itself or neighbors) where the detection method is done by each node, while in the second

aspect, the centralized detection, the detection is performed by the sink node. Based on the

detection a different approach to the solution is presented. Since the threshold for the

centralized fault detection is higher than the threshold for the distributed fault detection, it can

be expected that MobileFM tries to resolve the disconnection using the DFMM at first and then

if the network is not reconnected, the CFMM is triggered to try and resolve the disconnection

problem. The DFMM and CFMM should not perform simultaneously.

It is essential that the WSN is capable of reaching the desired coverage area. While the

MobileFM uses the DFMM and CFMM to ensure connectivity with the minimum number of

mobile nodes, it also uses the RFMM to ensure that the desired coverage area of our sensor

network is reached by replacing the source nodes with mobile nodes. When a mobile node

replaces a faulty source node, the mobile node investigates other source node failures.

MobileFM

Replacement Fault
Management

Decentralized Fault
Management

Centralized Fault
Management

47

(a) (b)

(c) (d)

(e)

Figure 4.25: Overcoming limitations of DFMM

48

Recalling the limitations of the DFMM back in section 4.3.4, the MobileFM could use the

CFMM when the DFMM cannot solve the disconnection in order to discover the affected area

and reconnect the disconnected area as in Fig. 4.25 (d). In particular, DFMM reconnects nodes

10,11,12 and 13 and recognize nodes 7 and 8 as faulty. The sink identifies that the nodes 14,15

and 16 stop sending packets and the CFMM is used to discover the affected area and reconnect

the nodes 14,15 and 16 by creating a path from node 9 to node 22.

(a) (b)

(c)

Figure 4.24: MobileFM

In Fig. 4.25 all mechanisms are used to ensure network functionality. In particular, static nodes

4,5,6,7,8,11 and 13 became faulty. Then DFMM placed the mobile nodes 20 and 21 to act as

relay nodes and reconnect the static nodes 10 and 12, RFMM placed mobile nodes 17 and 22

to act as source nodes and replace source nodes 11 and 13 and finally CFMM placed the mobile

node 18 to reconnect node 9 to the network.

49

Chapter 5

Evaluation, Results and Discussion

5.1 Evaluation Setup 49

5.2 Resulting Topologies 52

5.3 Numerical Results 59

5.3.1 Mobile Nodes 59

 5.3.2 Received Packet Ratio 60

 5.3.3 Packet Loss Ratio 64

 5.3.4 Energy 68

5.3 Random Faults 72

To prove the effectiveness of our strategies, different scenarios were implemented. For the

evaluation, we focus on solving the disconnection problem and how the suggested mechanisms

can be beneficial. In every scenario, the disconnection was solved by one of the mechanisms.

In particular, we compared the performance of the RFMM, as the simplest strategy, between

(a) the DFMM, (b) the CFMM, and (c) the MobileFM.

5.1 Evaluation Setup

The evaluation has been performed in the COOJA simulator, a dedicated simulator for Contiki

OS nodes [3]. The proposed strategies were implemented within the Contiki OS. Contiki is an

open-source operating system that runs on tiny low-power microcontrollers and makes it

possible to develop applications that make efficient use of the hardware while providing

standardized low-power wireless communication for a range of hardware platforms.

For simulating purposes, we developed a C source file for each type of node in the network.

Specifically, we developed the SinkNode, SoucreNodes, RelayNodes, MobileNodes and the

script file. The code is well-documented, without any warnings and known bug.

50

Figure 5.1: Project Structure

All Contiki programs are divided into different processes. A process is a piece of code that is

executed regularly by the Contiki system. In the simulation, processes are auto started at the

beginning and then each process runs when something happens, such as a timer firing. We are

using the Contiki timer library for real-time task scheduling. For the purposes of our evaluation,

we set three processes for each node as follows: (a) multi-hop process (b) energy process (c)

fault detection. Below the processes of a source node is shown:

Figure 5.3: Energy Process

In the energy process (see Fig.5.2), the node calculates its consumed energy every twenty

seconds based on energy equations that will be present in subchapter 5.3.4.

51

Figure 5.3: Fault Detection Process

In fault detection process (see Fig. 5.3), the node check if there is any failure in its

neighborhood every 30 seconds.

Figure 5.4: Multi-hop Process

52

In the multi-hop process (see Fig.5.4), the node enables its multi-hop and announcement

channels and sends a periodic message every 10 seconds (only source nodes). If a node loses

its connection to the network, it stops sending packets until the connection is restored.

The following table presents the simulation parameter:

Simulator/OS COOJA/Contiki 3.0

Protocol Contiki Multihop/Rime

MAC Contiki MAC/CSMA

Simulation Time 30-60 mins

Emulated Mote Tmote sky

Number of Nodes (Sink/Fixed/Mobile) 1/16-19/6

Transmission Range (m) 50

Max Data Rate (kbps) 250

Queue Length (Pkts) 8

Packet Size (Bytes) 48

Initial Source Rate (Pkts/sec) 25

Mobile Node Speed 0.65 m/s

Table 5.1: Simulator Parameters

In the simulation, all sensors are Sky Mote nodes and have a 50m radio range. Each sensor

node transmits one data packet of 48 bytes every 10 seconds. The network is set up and let to

reach a steady state for one minute. Then, between the second and third minute of operation

failures occur, and the mechanisms identify and resolve them.

5.2 Resulting Topologies

In this section, we present the resulting topologies for the evaluation scenarios used. In each

scenario, the network topology and the faults in the network are presented. Then, the recovery

phase of the simple replacement mechanism RFMM and the recovery phase of the mechanism

DFMM/CFMM/MobileFM are illustrated, thus the differences in the topology can be observed.

53

(a) Initial Topology (b) Faults in the Network

Figure 5.2: Scenario 1

(a) RFMM (b) DFMM

Figure 5.3: Recovery in Scenario 1

As illustrated in Fig 5.2 and 5.3, nodes 7 and 8 became faulty, and two disjoint segments

disconnected from the network. RFMM replaced all the faulty nodes with mobile nodes.

However, the DFMM achieved to place 2 mobile nodes instead of 3 for reconnecting the

disconnected segments.

54

(a) RFMM (b) DFMM

Figure 5.5: Recovery in Scenario 2

As illustrated in Fig 5.4 and 5.5, nodes 7 and 8 became faulty and a part of the network

disconnected. RFMM replace all the faulty nodes with mobile nodes, and the DFMM placed 2

mobile nodes in slightly different positions.

(a) Initial Topology (b) Faults in the Network

Figure 5.4: Scenario 2

55

(a) Initial Topology (b) Faults in the Network

Figure 5.6: Scenario 3

(a) RFMM (b) DFMM

Figure 5.7: Recovery in Scenario 3

As illustrated in Fig 5.6 and 5.7, the nodes 4,5 and failed and three healthy segments

disconnected from the network. RFMM replace four faulty nodes with four mobile nodes (at

the same positions), however the DFMM sent 3 mobile nodes instead of 4 and reconnected

successfully the disconnected segments.

56

(a) Initial Topology (b) Faults in the Network

Figure 5.8: Scenario 4

(a) RFMM (b) CFMM

Figure 5.9: Recovery in Scenario 4

As illustrated in Fig 5.8 and 5.9, nodes 7 and 8 became faulty and an area of the network cannot

communicate with the sink node anymore. RFMM replace all the faulty nodes with mobile

nodes, however the CFMM positioned one mobile node instead of 2 and reconnect the

disconnected area.

57

(a) Initial Topology (b) Faults in the Network

Figure 5.10: Scenario 5

(a) RFMM (b) CFMM

Figure 5.11: Recovery in Scenario 5

As illustrated in Fig 5.10 and 5.11, nodes 7, 8 and 9 became faulty and three source nodes

(14,15,16) were unable to send packets toward the sink. RFMM replaced all the 3 faulty nodes

with mobile nodes, whereas the CFMM placed only 2 mobile nodes instead of 3 and the source

nodes 14,15 and 16 found a path toward the sink (by the mobile nodes).

58

(a) Initial Topology (b) Faults in the Network

Figure 5.12: Scenario 6

(a) RFMM (b) MobileFM

Figure 5.13: Recovery in Scenario 6

As illustrated in Fig 5.12 and 5.13, nodes 4,5,6,7 and 8 became faulty and three disjoint

segments disconnected from the network. RFMM replace all the 5 faulty nodes with mobile

nodes, however the DFMM utilized just 3 mobile nodes instead of 5 and reconnect the

disconnected segments.

59

5.3 Numerical Results

For each scenario, we present the number of utilized mobile nodes, the percentage of

successfully received packets, the packet loss ratio, and the network energy.

5.3.1 Mobile Nodes

Considering the limited number of mobile nodes, mechanisms that use fewer mobile nodes can

be useful to solve problems in the network and extend its lifetime.

Figure 5.14 : Graph of utilized mobile nodes

The DFMM, the CFMM and the MobileFM are taking advantage of the position of the affected

nodes and calculating positions for mobile nodes to serve as many as possible nodes. As a

result, they require fewer mobile nodes compared to the RFMM, which just replaces the faulty

nodes with mobile nodes. Because of this characteristic, these mechanisms are expected to

consume less energy in the long term.

In Scenario 2, DFMM uses as many nodes as the RFMM because of the faulty node’s position,

thus the numerical results of scenario 2 can be interesting for the evaluation and indicate any

drawback of the suggested mechanism.

3

2

4

2

3

5

2 2

3

1

2

3

0

1

2

3

4

5

6

1 2 3 4 5 6

N
u

m
b

er
 o

f
M

o
b

ile
 N

o
d

es

Scenario

Utilized Mobile Nodes

RFFM DFMM/CFMM/MobileFM

60

5.3.2 Received Packet Ratio

The percentage of successfully received packets presents the ratio of packets received (overall

packets generated by the sources during the simulation) versus the load of the network and is

calculated with the equation below:

 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡 𝑅𝑎𝑡𝑖𝑜 =
Succesfully Received Packets

Total Sent packets

In the graphs below, the DFMM, CFMM and MobileFM are compared with the RFFM

(Replacement Fault Management Mechanism) as the simplest strategy. In scenarios 1,2 and 3

the simulation was performed with the DFMM, however the MobileFM would behave exactly

the same with DFMM in these scenarios.

Figure 5.15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ec

ei
ve

d
 P

ac
ke

t
R

at
io

 (
%

)

Time (s)

Scenario 1

RFMM DFMM/MobileFM

61

Figure 5.16

Figure 5.17

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ec

ei
ve

d
 P

ac
ke

t
R

at
io

 (
%

)

Time (s)

Scenario 2

RFMM DFMM/MobileFM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ec

ei
ve

d
 P

ac
ke

t
R

at
io

 (
%

)

Time (s)

Scenario 3

RFMM DFMM/MobileFM

62

Figure 5.18

Figure 5.19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

R
ec

ei
ve

d
 P

ac
ke

t
R

at
io

 (
%

s)

Time (s)

Scenario 4

RFMM CFMM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

R
ec

ei
ve

d
 P

ac
ke

t
R

at
io

 (
%

)

Time (s)

Scenario 5

RFMM CFMM

63

Figure 5.20

The percentage of successfully received packets is an important metric in WSNs for the Quality

of Service (QoS). Firstly, the graphs show that all methods achieve to reconnect the network

after a disconnection. The disconnections cause the received packet ratio to decrease

remarkably, and then the mechanisms rose the received packet ratio with the deployment of

the mobile nodes.

The main reason for the fall of the received packet ratio is the position of the failure, since

some nodes can be the only path toward the sink and when the failure occurs, a whole area or

even the whole network can be disconnected. The phenomenon of the whole network being

disconnected is illustrated in Scenarios 3 and 6, where all source nodes were unable to send

packets to the sink node, and there was a dramatic fall in the received packet ratio. After the

utilization of the mobile nodes, the network recovers.

It can be observed that DFMM, CFMM and MobileFM need more time to reconnect and return

to a stable state than the RFMM because the discovery method requires extra time. However,

the received packet ratio in these mechanisms is increasing at a higher pace than the RFFM.

DFMM seems to have very similar results with the RFMM in Scenario 2 (Fig. 5.16), where the

same number of mobile nodes needed to reconnect the network.

It must be address that the DFMM, CFMM and MobileFM placed the mobile node closer to

the destination node in comparison to RFMM, and that can be the reason of the better recovery

rate in these mechanisms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

R
ec

ei
ve

d
 P

ac
ke

t
R

at
io

 (
%

)

Time (s)

Scenario 6

MobileFM RFMM

64

5.3.3 Packet Loss Ratio

Packet loss ratio is another important metric in WSNs for the QoS. The packet loss ratio is the

ratio between the number of lost packets to the total number of packets sent within a specific

amount of time.

𝑃𝑎𝑐𝑘𝑒𝑡 𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =
Packets Lost

Total Packets
 𝑥 100%

In the graphs below, the DFMM, CFMM and MobileFM are compared with the RFFM

(Replacement Fault Management Mechanism) as the simplest strategy. In scenarios 1,2 and 3

the simulation was performed with the DFMM, however the MobileFM would behave exactly

the same with DFMM in these scenarios.

Figure 5.21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ac

ke
t

Lo
ss

 R
at

io
 (

%
s)

Time (s)

Scenario 1

RFMM DFMM/MobileFM

65

Figure 5.22

Figure 5.23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ac

ke
t

Lo
ss

 R
at

io
 (

%
)

Time (s)

Scenario 2

RFMM DFMM/MobileFM

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ac

ke
t

Lo
ss

 R
at

io
 (

%
s)

Time (s)

Scenario 3

DFMM/MobileFM RFMM

66

Figure 5.24

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500 4000

P
ac

ke
t

Lo
ss

 R
at

io
 (

%
s)

Time (s)

Scenario 4

RFMM CFMM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000 3500 4000

P
ac

ke
t

Lo
ss

 R
at

io
 (

%
)

Time (s)

Scenario 5

CFMM RFMM

67

Figure 5.25

Figure 5.26

Packet losses happen mainly because of congestion or failures in these networks. Congestion

is responsible for a small packet loss ratio in all the simulation time. The graphs show that a

disconnection happened around 100-200 seconds and the packet losses rose sharply. In every

scenario, a whole area of the network was disconnected. Despite rising, the packet loss ratio

in all scenarios then falls after the placement of the mobile nodes. In Scenarios 3 and 6, it is

noticeable that the packet loss ratio reaches 100% because the whole network was

disconnected. Lastly, it is shown that the ratio after the recovery phase is slightly better in

DFMM and CFMM in comparison with the RFMM. The mobile nodes are placed in different

position by the DFMM, CFMM and MobileFM than in RFMM. These positions can be the

reason of the differences in rate of the average throughput and in the packet loss ratio.

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000 2500 3000 3500 4000

P
ac

ke
t

Lo
ss

 R
at

io
 (

%
)

Time (s)

Scenario 6

MobileFM RFMM

68

5.3.4 Energy

The network energy is the total energy consumed in the network, measured in mJ, during the

operation of the network. To measure this metric, we calculated the energy consumed by each

node (energy_i) with the equation below:

𝐸𝑛𝑒𝑟𝑔𝑦𝑖 = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦𝑖 + 𝑀𝑜𝑣𝑒 𝐸𝑛𝑒𝑟𝑦𝑖 ,

where Operation-Energy is the computational energy usage and Move-Energy is the energy

usage of moving. The Move-Energy of static nodes is zero.

The Operation-Energy of each node is calculated with the equation:

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 = (𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 ∗ 19.5𝑚𝐴 + 𝑙𝑖𝑠𝑡𝑒𝑛 ∗ 21.8𝑚𝐴 + 𝐶𝑃𝑈 ∗ 1.8 𝑚𝐴 +

 𝐿𝑃𝑀 ∗ 0.0545 𝑚𝐴) 𝑥 3𝑉/4096 ∗ 8 ,

where transmit is the total time of the radio transmitting, listen is the total time of the radio

listening, CPU is the total time of the CPU being active, and LPM is the total time of the

CPU being in low power mode [4].

The Move-Energy of each mobile node is calculated with the equation below:

𝑀𝑜𝑣𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑃𝑢 𝑥
𝑠

𝑢
 ,

where Pu is the power consumption of a given speed u and s is the total travelling distance

[10].

The total energy consumed by the network is calculated by the equation below:

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ Energy𝑖 ,

𝑛

𝑖=1

where n is the number of nodes.

69

Figure 5.27

Figure 5.28

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l E
n

er
gy

 C
o

n
su

m
ed

 (
m

J)

Time (s)

Scenario 1

RFMM DFMM/MobileFM

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l E
n

er
gy

 C
o

n
su

m
ed

 (
m

J)

Time (s)

Scenario 2

RFMM DFMM/MobileFM

70

Figure 5.29

Figure 5.30

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0 200 400 600 800 1000 1200 1400 1600 1800

To
ta

l E
n

er
gy

 C
o

n
su

m
ed

 (
m

J)

Time (s)

Scenario 3

DFMM/MobileFM RFMM

0

2000000

4000000

6000000

8000000

10000000

12000000

0 500 1000 1500 2000 2500 3000 3500 4000

To
ta

l E
n

er
gy

 C
o

n
su

m
ed

 (
m

J)

Time (s)

Scenario 4

RFMM CFMM

71

Figure 5.31

Figure 5.32

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0 500 1000 1500 2000 2500 3000 3500 4000

To
ta

l E
n

er
gy

 C
o

n
su

m
ed

 (
m

J)

Time (s)

Scenario 5

CFMM RFMM

0

2000000

4000000

6000000

8000000

10000000

12000000

0 500 1000 1500 2000 2500 3000 3500 4000

To
ta

l E
n

er
gy

 C
o

n
su

m
p

ti
o

n
 (

m
J)

Time (s)

Scenario 6

MobileFM RFMM

72

Energy consumption is critical for the lifetime of the network. The plots show the total energy

consumed in the network. The RFMM reconnects the network faster than the other

mechanisms, thus the disconnected area starts to operate and consume energy earlier than the

other mechanisms. It must be pointed out that the total energy consumed by the RFMM in

every scenario is rising at a rapid rate, and this rate is higher than the other mechanisms.

Following this, it is expected to increase faster and has a significant difference from the other

mechanisms after hours or days.

Therefore, DFMM and CFMM can deal with disconnections and consumed less energy than

the RFMM. Having mechanisms that solve the disconnection problem with fewer resources is

very crucial in these networks. This shows how much it is beneficial to use the MobileFM,

which combines the DFMM and the CFMM to solve disconnections, compared to a simple

replacement strategy. In addition, MobileFM uses the replacement strategy only for the source

nodes, assuming that their positions are important for the coverage.

5.4 Random Faults

Figure 5.33 : Scenario Random Faults

73

When a failure occurred, the packet loss ratio increased, and the received packet ratio declined.

It can be obsessed that after every failure, the network recovered successfully because the

packet loss ratio decreased importantly, and the received packet ratio increased.

The MobileFM expected to maintain the network functionality as long as extra resources are

available. If there is no mobile node, the network cannot reconnect the disconnected area and

the packet loss ratio will not drop.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200 1400

P
ac

ke
t

lo
ss

 r
at

io
 (

%
)

Time (s)

MobileFM - Packet Loss Ratio

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

R
ec

ei
ve

d
 P

ac
ke

t
R

at
io

 (
%

)

Time (s)

MobileFM - Received Packet Ratio

74

Chapter 6

Conclusion

6.1 Summary 74

6.2 Challenges 74

6.3 Future Work 75

6.1 Summary

This thesis focuses on designing strategies and developing algorithms for utilizing mobile

nodes for fault detection and fault recovery in WSNs and IoT networks. We present novel

algorithms for partitioning the nodes in the network in such a way that they can be investigated

or connected by one node and find positions to place the mobile nodes to minimize the number

of utilized mobile nodes. Based on these algorithms, we present mechanisms that deal with

failures and disconnections. we combine all the mechanisms to design a framework. The

proposed mechanisms are implemented in a simulation and successfully tackled failures and

disconnections in these networks. The evaluation results demonstrate that DFMM, CFMM and

MobileFM can consume less energy than a simple replacement strategy, which can be crucial

for the network lifetime and the management of the extra resources of the network.

6.2 Challenges

One of the most challenging parts of this thesis was the implementation of the simulation. The

documentation for the Contiki OS is available online and is very helpful. However, the

simulation demands code in C programming language for all the types of nodes (sink, mobile,

relay, source) and each file is 1000-2500 lines of code. Once we got familiar with the

environment, we were able to test and develop the algorithms and then came up with better

ideas about the algorithms. Moreover, many challenges arose in the simulator, and we needed

to think creatively. Few of them are getting the position of the nodes dynamically (using the

75

script), the mobility of the nodes, the failure of nodes, the use of the processes for the evaluation

in Contiki OS and developing a java program to get the results (measure packet loss ratio, sum

energies, etc.).

6.3 Future Work

For future work, the current mechanisms can be evaluated by using random faults and different

topologies and also compared with different fault management mechanisms.

Additionally, the clustering and node placement algorithms can be used to tackle other

problems in WSNs, such as congestion or attacks. In particular, a mobile node can navigate to

the problematic area, get information and act accordingly.

Finally, another future work could be the employment of the RPL protocol, that reconstructs

the topology when a failure happens, in the MobileFM.

76

Bibliography

[1] Anuradha, M., Swetha, A., & Doraipandian, M. (2020, April). Fault Node Detection

and Connectivity Restoration with Mobile Relay Node in Wireless Sensor Networks.

Journal of Computer Science, 551–558. https://doi.org/10.3844/jcssp.2020.551.558

[2] Chouikhi, S., el Korbi, I., Ghamri-Doudane, Y., & Azouz Saidane, L. (2015,

September). A survey on fault tolerance in small and large scale wireless sensor

networks. Computer Communications, 22–37.

https://doi.org/10.1016/j.comcom.2015.05.007

[3] Contiki. (2018). [The open source os for the internet of things]. http://www.contiki-

os.org/

[4] Hou, L., Zhang, L., & Kim, J. (2018, December). Energy Modeling and Power

Measurement for Mobile Robots. Energies, 27. https://doi.org/10.3390/en12010027

[5] Joshi, Y. K., & Younis, M. (2016, May). Restoring connectivity in a resource

constrained WSN. Journal of Network and Computer Applications, 151–165.

https://doi.org/10.1016/j.jnca.2016.03.009

[6] Lalouani, W., Younis, M., & Badache, N. (2017, December). Optimized repair of a

partitioned network topology. Computer Networks, 63–77.

https://doi.org/10.1016/j.comnet.2017.02.003

[7] Mei, Y., Xian, C., Das, S., Hu, Y. C., & Lu, Y. H. (2007, September). Sensor

replacement using mobile robots. Computer Communications, 2615–2626.

https://doi.org/10.1016/j.comcom.2007.05.047

[8] Moridi, E., Haghparast, M., Hosseinzadeh, M., & Jassbi, S. J. (2020, April). Fault

management frameworks in wireless sensor networks: A survey. Computer

Communications, 205–226. https://doi.org/10.1016/j.comcom.2020.03.011

77

[9] Nicolaou, A., Temene, N., Sergiou, C., Georgiou, C., & Vassiliou, V. (2019). Utilizing

Mobile Nodes for Congestion Control in Wireless Sensor Networks. IEEE PIMRC.

[10] Raza, S., Wallgren, L., & Voigt, T. (2013, November). SVELTE: Real-time intrusion

detection in the Internet of Things. Ad Hoc Networks, 2661–2674.

https://doi.org/10.1016/j.adhoc.2013.04.014

[11] Sammut, C., & Webb, G., I. (2011). Encyclopedia of Machine Learning (2010th ed.).

Springer.

[12] Tan Et Al, P. (2022). Introduction to Data Mining: Global Edition. PEARSON.

[13] Temene, N., Sergiou, C., Georgiou, C., & Vassiliou, V. (2022, February). A Survey on

Mobility in Wireless Sensor Networks. Ad Hoc Networks, 102726.

https://doi.org/10.1016/j.adhoc.2021.102726

[14] Temene, N., Sergiou, C., Ioannou, C., Georgiou, C., & Vassiliou, V. (2022). A Node

Placement Algorithm Utilizing Mobile Nodes in WSN and IoT Networks. Telecom,

3(1), 17–51. https://doi.org/10.3390/telecom3010002

[15] Rao, V.S., Dakshayini, M., 2020. An sdn-based strategy for reliable data transmission

in mobile wireless sensor networks, in: EAI International Conference on Big Data

Innovation for Sustainable Cognitive Computing, Springer. pp. 87{96.

doi:10.1007/978-3-030-19562-5 9.

[16] Zhao, F., & Guibas, L. (2004). Wireless Sensor Networks: An Information Processing

Approach (The Morgan Kaufmann Series in Networking) (1st ed.). Morgan Kaufmann.

https://doi.org/10.3390/telecom3010002

1

Appendix Α

Scenario A

• •
®

®

• 0

•
®

Θ

® ο

ο • ® 0
ο <D
Θ • Θ • @

•

2

• •
®

®

@
®

@
ω @ • <D

Θ
@ • • @

• •
®

®

• •

0
ο

0
ω ο

©
@

@

3

• •

•
•

•
•

•

®

•

•

•

•
®

®

~

-

•
®

®

4

• •
®

®

•
• •

• •
®

®

•

5

• •

Θ
@

@

Θ
@

©

6

Scenario B

7

8

9

10

