
Thesis Dissertation

INTEGRATING FIDO2 AUTHENTICATION WITH

AUTH.JS

Marios Papadiomedous

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2021

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

Integrating FIDO2 Authentication with auth.js

Marios Papadiomedous

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfilment of the requirements for the

award of degree of Bachelor in Computer Science at University

of Cyprus

May 2021

Acknowledgments

Seizing the opportunity, I would like to express my sincere gratitude to my the-

sis supervisor, Dr Elia Athanasopoulo, whose expertise was valuable in guiding

me throughout my thesis.

Finally, I would like to thank my friends and family, and especially Gregoris

Christodoulou, for their physical and mental support that they generously pro-

vided and their continuous encouragement throughout the thesis process.

1

Abstact

Simple authentication schemas exist since the beginning of the internet. Over

the years, these schemas upgraded themselves from plain-text to a relatively

more secure version by hashing the password before saving. The security that

these old-fashioned schemas provide is relatively low, considering the modern

authentication schemas that are based on public-private key encryption.

The reasoning behind the usage of these traditional authentication schemas

relies on the simple implementation that they require. This paper series intro-

duces a simple, easy-to-use framework, auth.js, based on advanced authenti-

cation schemas using public-private key encryption. auth.js can be easily set

up and used as the primary authentication schema. This specific paper is a

walkthrough on how auth.js allows advance authentication using the FIDO2

Authentication schema that uses the WebAuthn standard. Finally, the FIDO2

Authentication and auth.js integration is tested and evaluated using an open-

source, real web application, WordPress.

2

Contents

1 Introduction 8

2 Background 10

2.1 Cryptographic Authenticator . 10

2.2 PublicKey Cryptography . 10

2.3 Web Authentication (WebAuthn) 11

2.4 Client to Authenticator Protocol (CTAP) 11

3 Architecture 12

3.1 Components . 12

3.2 Procedure . 13

3.3 Auth.js . 14

4 Implementation 16

4.1 Python3 and WebAuthn . 16

4.1.1 RP configuration . 16

4.1.2 Registration . 18

4.1.3 Assertion . 19

4.1.4 Assertion . 21

4.1.5 Database Schema . 26

4.2 Real Life Scenario (WordPress) . 29

4.2.1 Environment Setup . 29

4.2.2 Registration Procedure . 31

4.2.3 Authentication Procedure . 33

4.2.4 After the Authentication . 36

5 Evaluation 40

5.1 Setup . 40

5.2 RP Evaluation . 40

5.3 auth.js & WordPress Evaluation . 41

3

6 Related Work 42

7 Conclusion 43

4

List of Figures

3.1 auth.js (WebAuthn implementation) Structure. 13

3.2 auth.js, webauthn registration/authentication procedure 14

4.1 Registration Ceremony overview 18

4.2 attestationObject Structure, Source :https://www.w3.org/TR/webauthn-

2/images/fido-attestation-structures.svg 22

4.3 Registration Ceremony overview 22

4.4 Database Schema . 29

5

List of Tables

5.1 RP :Average time for registration and assertion ceremony. 41

5.2 Total :Average time for registration and assertion ceremony. . . . 41

6

Listings

3.1 Web application html header file 14

3.2 auth.js authentication scheme initialization 15

4.1 Registration Ceremony Server’s basic requirements for authenti-

cator . 17

4.2 ServerConfigRegistration Avaliable Options 17

4.3 Registration Ceremony Server’s accepted JSON structure 19

4.4 clientDataJSON Stracture . 20

4.5 Assertion Ceremony Server’s basic requirements for authenticator 23

4.6 Registration Ceremony Server’s accepted JSON structure 24

4.7 RP Authentication secure cookie 26

4.8 RegisterUserAndCred Implementation 27

4.9 RegisterCredential Implementation 27

4.10FindUser Implementation . 28

4.11FindUser UpdateSig . 28

4.12Deleteusercred implementation . 29

4.13Web-server Configuration FIle . 30

4.14Include auth.js scripts to WordPress 31

4.15FIDO2 Authentication Checkbox for registration in HTML code . 32

4.16WordPress Registration Interruption 33

4.17FIDO2 Authentication Checkbox for authentication in HTML code 33

4.18WordPress Authentication Interruption 34

4.19WordPress function definition for allowing the use of cookie for

registration . 35

4.20Enabling wp_authenticate_using_webauthn function using a new

filter in WordPress . 36

4.21Generating webauthn_login cookie using WordPress 37

4.22WordPress HTML buttons addition 37

4.23WordPress Add New Key Interruption 38

4.24WordPress Delete All Keys Interruption 39

7

Chapter 1

Introduction

One of the most critical parts of a website, from a security perspective, is the

way that allows the user to prove their identity, formally known as the Authen-

tication Procedure. This proof of identity procedure in web development may

be, if vulnerable, a single point of failure in the system as a whole.

To be able to deliver personalized content to the end-user or restrict ac-

cess, any web system must have a way to distinguish different kinds of users.

Some widely used schemes for authentication are SSO, SAP, SAML. In most

websites today, the Username/Password authentication is used as a default.

In some cases, the user can enable second-factor authentication within the ac-

count settings. This verification follows the routine procedure by comparing

the saved hashed version of the password against the given password. The

authentication is successful only if the two hashes match.

If extra layers of security are not added, the adoption of Username/Pass-

word as the primary authentication method makes the system vulnerable.

When choosing a new password, users tend to enter a password related to

them(e.g. Birthday, pet name, anniversary), recycle common passwords or

slightly modify a recycled password. The aftermath is to increase vulnerabil-

ities. With today’s computers compute speeds and algorithms, these hashes

can easily be matched. Using rainbow, brute force, dictionary, and social engi-

neering attacks, password cracking became easier. Strict password policies,

password managers, expiring passwords and SFA are some safeguards used

for eliminating vulnerability exploitation.

Despite all the vulnerabilities that username/password authentication has,

web development still uses it as its primary authentication method. This

method’s straightforward implementation makes it preferable compared to

other, more secure methods that need more effort to integrate into a new or

preexisting system.

8

To eliminate the exploitable vulnerabilities associated with passwords as

much as possible, username/password authentication based schemes need to

add some extra steps to the authentication procedure, such as second step

verification. One alternative to Username/Password authentication is to use

Public/Private key pairs.

Auth.js is a framework that allows developers to use advanced authenti-

cation schemas effortlessly. By this time, three authentication methods are

available(plain,scrypt_seed_ed25519_keypair, webauthn).This paper focused

on the FIDO2 Authentication schema,the integration with auth.js and finally,

the evaluation using a real-life scenario(wordpress)

9

Chapter 2

Background

In this section, some common terminology and background knowledge will be

mentioned to help with the entire paper understanding. Fast IDentity Online

(FIDO) Alliance is a non-profit organization that seeks to reduce the world’s

overreliance on passwords by developing authentication standards and spec-

ifications.This paper focuses on one of their latest standards called FIDO2

Authentication.

The FIDO Alliance’s specification CTAP and the W3C WebAuthn standard

are combined in FIDO2 authentication, which allows users to authenticate

to online services using an ondevice or external cryptographic authentica-

tors from both mobile and desktop devices.This passwordless schema relies

on publickey cryptography.More indepth details about FIDO2 Authentication

on section 4

2.1 Cryptographic Authenticator

An cryptographic authenticator is a device that confirms a user’s identity by

performing digital authentication using symmetrickey or publickey cryptogra-

phy. There are no memorized secrets(such as passwords) involved, regardless

of the key used.

2.2 PublicKey Cryptography

Asymmetric cryptography (also referred to as Publickey cryptography) is a

type of cryptography that uses a keypair consisted of two keys, a public (which

others maybe know) and a private key (which no one knows except the owner).

The science behind asymmetric cryptography relies on the fact that these two

10

keys are mathematically related to eachother, with their generation to be the

outcome of mathematical problems known as oneway functions. The usage of

such keys is that the owner of these keys allows others to send him encrypted

messages using his public key. These encrypted messages can be decrypted

only using the private key linked with the specific public key.

2.3 Web Authentication (WebAuthn)

WebAuthn is an open standard that uses PublicKey Cryptography to create a

standardized interface for passwordless authentication to webbased services.

2.4 Client to Authenticator Protocol (CTAP)

CTAP is a specification that describes how an application (such as a browser)

and operating system communicate with a authentication device through USB,

NFC, or Bluetooth

• CTAP1 or U2F : CTAP1 (also known as Universal 2nd Factor) is a stan-

dard that defines how the communication is established between FIDO2-

enabled browsers and operating systems and a FIDO U2F device to achieve

secondfactor authentication.

• CTAP2 : Specifies how to communicate between FIDO2enabled browsers

and operating systems and external authenticators (FIDO Security Keys,

mobile devices) to empower passwordless,second or multifactor authen-

tication.

11

Chapter 3

Architecture

This section focuses on how the components communicate to complete the

registration and accession procedure.

3.1 Components

• Replaying Party: It is a trusted service that runs on the server side. RP

is the service that will decide whether the assertion and registration are

successful.

• Internal Authenticator: Located within the client device. Uses device

built-in sensors/procedures in order to authenticate the user. IA consists

of Fingerprint/FaceID/Iris Recognition and anything else that does not

require the Client’s device to interact with another physical component.

• External Authenticator: This is a physical device that the user owns and

uses against the client device to authenticate themselves. A physical

authenticator may be a security key (e.g. Yubikey) that uses NFC, WiFi

or USB to communicate with the client’s device.

• Auth.js: A framework that communicates with the RP in order to com-

plete registration and assertion procedures.

All necessary components interact with each other in order to complete

a task. At this time being, auth.js supports four tasks; registration, authen-

tication, new key registration to a pre-existing webauthn enabled user and

finally, the ability to delete all the saved keys.Registration and authentication

are the only non-restricted procedures.Figure 3.1 shows the categorization of

the available auth.js procedures accosted with FIDO2 Authentication.

12

auth.js

Registration

Authentication

Non-Restricted Procedures

Register a new Key

Delete all keys

Restricted Procedures

WebAuthn Operations

Figure 3.1: auth.js (WebAuthn implementation) Structure.

3.2 Procedure

Shown at Figure 3.2 is the higher level idea about how FIDO2 Authentication

works.

• At first, the web page will request from the relying party to start the

matching ceremony (2).

• After the ceremony initialization, the RP will send some data to the

client’s device, requesting the authenticator to use and include some

settings provided within the received data (3).

• Based on the received data, the client’s device will ask the user to iden-

tify themselves using an authenticator in order to finish the procedure

(4).

• The used authenticator will generate some new data containing some

key information from the data that were sent from the RP (5).

• After the response generation, the new data will be sent to the RP in

order to verify or register the new data (6-8).

13

Users Identity

Clients Device

Website

Relying Party

Client

Database

Server

Internal Authenticator

External Authenticator

1:Login/Register Intention2:Login/Register desire
3: Needed data

4:Process data
5:Generate Response using provided identification

4.1:Proof/Provide Identity

4.2:Choose Identification Method

4.3: Provide Identification
6:Send Response

7: Validate Response

8: Accept/Decline Login/Registration

Figure 3.2: auth.js, webauthn registration/authentication procedure

3.3 Auth.js

The first step to use webauthn implementation is to include auth.js in the

source code of the web page. auth.js uses some external libraries such as

base64.js for encoding and Jquery for AJAX requests.Listing 3.1, shows The

client that is being directed to get auth.js from a trusted source.base64.js and

jQuery.js can be included from trusted online-sources.

1 <html>

2 <head>

3 . . .

4 <script type = " text / javascript " src = "https : / / trusted_domain .com/auth . js "></

script>

5 <script type = " text / javascript " src = "https : / / trusted_domain .com/base64. js "

></script>

6 <script type = " text / javascript " src = "https : / / trusted_domain .com/ jQuery . js "

></script>

7 . . .

8 </head>

9 <body>

10 /* Registration and login form */

11 </body>

12 </html>

Listing 3.1: Web application html header file

The programmer has the freedom to use all the available authentication

methods (default,scrypt_seed_ed25519_keypair and webautn) because webau-

14

thn is a stand-alone implementation that does not require any initialization

unlike scrypt_seed_ed25519_keypair.Listing 3.2 both authentication methods

being used. The only parameter that webauthn methods take as an input is

a username. If the parameter ’credential’ is given instead of null during the

registration procedure, the new Credential will be registered as another au-

thorized device.

1 initializeCredentialType({

2 passwordMinLength: 8,

3 passwordProccessMethod: "scrypt_seed_ed25519_keypair" ,

4 }) ;

5 let username = document.getElementById("username") ;

6 let password = document.getElementById("password") ;

7 /* On registration action using scrypt_seed_ed25519_keypair */

8 let credential = register (password) ;

9 /* On registration action using WebAuthn */

10 webauthn_registration (username, null) . catch(function (promise){

11 console . log (promise)

12 }) ;

13 /* On login action using scrypt_seed_ed25519_keypair */

14 let message = document.getElementById("nonce") ;

15 /* On Authentication action using WebAuthn */

16 webauthn_authentication(username) . catch(function (promise){

17 console . log (promise)

18 }) ;

19 let credential = authenticate (password, message) ;

20 /* Send credential and other necessary information to the server */

Listing 3.2: auth.js authentication scheme initialization

15

Chapter 4

Implementation

FIDO2 authentication relies on two components, WebAuthn and CTAP stan-

dards. Keeping in mind that most of today’s browsers support CTAP, the only

missing part to complete the FIDO2 authentication puzzle is the Relying Party

that serves based on WebAuthn Standard. This section will describe the im-

plementation of WebAuthn standard in Python3 and the integration of auth.js

with WordPress in technical details.

4.1 Python3 and WebAuthn

As mentioned before, using the username and password authentication

schema, the only process that needs to be done server-side is the password

hashing and the association between the user and the hashed password or

comparing the stored hash with the calculated one when authenticating.

4.1.1 RP configuration

The responsibilities of RP do not stop at validating incoming responses. One

other main task is to send the configuration options for the authentication to

use when creating or retrieving the credentials.

The first steps for both ceremonies require that the RP has been configured

correctly. Some constant global settings can be found within the constant.py

script file, such as Database credentials, supported hashing algorithms and

public/private key file names for cookie signing procedures. At the beginning,

a GET request will be placed to the server requesting a JSON structured re-

sponse containing settings needed by the authenticator.

RP ceremony settings can be configured using the ServerConfigRegistra-

tion class located within the Classes.py. Usage of the ServerConfigRegistra-

16

tion class can be seen at listing 4.2. The comments show the available values

that each parameter can take. After the initialization of the RP server us-

ing the to_json() function against the object type ServerConfigRegistration, a

JSON structured configuration will be generated.

The basic structure of a JSON response can be seen at listing 4.1. This

structure consists of some information identifying the RP, the user and the

session. RP/.id represents the domain that RP is in charge of serving, while

pubKeyCredParams represents the supported, by the RP, type of credentials.

Also, the alg contains the supported cryptographic algorithms represented

by their COSE identifier and the type of the credential. User data contain

the user’s entered username as a value to the displayName field along with a

unique identifier encoded using base64. Challenge is a one/-time use nonce

encoded in base64 used for validating each different session.

1 {

2 "rp": {

3 "id": "example.com"

4 },

5 "user": {

6 "displayName": "user",

7 "id": "yf2dzb2QFGGxOg=="

8 },

9 "challenge": "nA+lhg4461nAp9K6sLxXtIAQwPAGXftGsdN2v0EB75Q=",

10 "pubKeyCredParams": [

11 {

12 "alg": /-7,

13 "type": "public/-key"

14 }

15]

16 }

Listing 4.1: Registration Ceremony Server’s basic requirements for

authenticator

1 ServerConfigRegistration (username, #Users entered username

2 type , #Ceremony type , " registration " OR

" login"

3 usernamelength=10, #Length Of the user . id that needs

to be generated

4 challengelength=32, #Length Of the challenge that

needs to be generated

17

5 timeout=600000, #Time in milliseconds

6 attestation="none" , #RP preferred attestation "none"

OR " indirect " OR "direct "

7 requireResidentKey=False , #Currently Not Supported

8 userVerification="discouraged" , #RP requirement Verification "

required" OR "preferred" OR "discouraged"

9 excludeCredentials=None, #Array containing the credential

that the authenticator excludes

10 pubKeyCredParams=constant .SUPPORTED_ALG, #Supported Algorithms for

credential creation

11 extensions=None, #Currently Not Supported

12 webpageid=constant .WEBPAGEID) #The domain name

Listing 4.2: ServerConfigRegistration Avaliable Options

4.1.2 Registration

Before committing the user’s public key to the database and associating it with

the user, the Relying Party must first decide whether the provided information

is legitimate or not. The Validation procedure consists of 24 critical steps. It is

mandatory mentioning that if any of the 24 censorious validation steps fails, so

does the registration procedure. In case something has been committed to the

database, then the specific transaction associated with the mentioned proce-

dure rollbacks.Figure 4.1 shows an overview about how registration ceremony

works.

RP

Database

Check session data

Validate requested information

Validate root certificate

Extract Public Key and ID
Commit data to Database

1

2

Figure 4.1: Registration Ceremony overview

18

4.1.3 Assertion

Pre-Validation Procedure

To start the registration ceremony, the user must initiate the procedure by

providing their username via completing a form. In this part the website must

have already set up auth.js (listing 3.2).

The handler responsible for the interaction between RP and Client is the

webauthn_registration() function. After the webauthn_registration() function

call, a GET request will be placed to the RP to retrieve the configuration

JSON object. After receiving the JSON object, the next step is to decrypt the

BASE64 encoded fields. The data that need to be decoded are the challenge

and User.id.

After the prementioned fields are successfully decoded, the data is ready to

passed to the Authenticator (navigator.credentials.create() function). Based

on the configuration file that RP sent, the user will be prompted to interact

with the authenticator using external media (CTAP Protocol) or provide their

identity using the U2F protocol. After the user’s interaction with the authenti-

cator, a new key pair will be generated. Finally, the Public key will be returned

among with other metadata to auth.js

The next step is to POST the generated data to the RP to decide about

their integrity. The RP only accepts a pre-defined JSON structure that can be

seen in Figure 4.3. After the RP receives the response, the validation of the

received response begins.

1 {

2 "id": Contains Authenticator assigned unique credential

identifier encoded in BASE64 ,

3 "type": Describes Credential key type.Currently only "Public

key" is supported,

4 "transport": Describes the authenticator used. Values:"usb","

nfc","ble" or"internal",

5 "response":{

6 "attestationObject":Contains an attestation object, which

is opaque to, and cryptographically protected against

tampering by, the client.,

7 "clientDataJSON": Contains a JSON formatted string,

representing the client data that was passed to the navigator

function.

8 }

19

9 }

Listing 4.3: Registration Ceremony Server’s accepted JSON structure

As mentioned before, the Client initiates the registration procedure. After

auth.js requests the configuration JSON structure, the received configuration

will be taken as an input by the Authenticator (navigator.credentials.create()

function). The majority of today’s browsers supports the authenticator func-

tion. The Authenticator will then generate the Public Key Pair. The Private key

will be safely stored on the client-side, while the public key will be encapsu-

lated within some extra meta-data and send back to the RP. Now the RP must

validate the received data. It is important to mention that in order for the nav-

igator.credentials.create () function to work, the web page must be running

on an HTTPS domain with a valid certificate or in localhost.

Credential Validation Procedure

After the RP receives the POSTed data, the RP will validate the data using

session data, predefined server configuration and trusted certificates. The

primary data session holds consists of the user’s username, challenge and

page.id. Before the validation starts, the RP deconstructs the received data to

JSONtext, attestationObject and transports by extracting the clientDataJSON,

attestationObject and attestationObject, respectively. Moreover, if needed, a

BASE64 or CBOR decoder will be applied to the extracted data.

Firstly, the JSONtext data must be validated. Listing 4.4 shows the internal

structure of the clientDataJSON after it run through a BASE64 decoder. Each

field must be matching with the corresponding session data within the placed

cookie. During registration, the "type" field can take only the value webau-

thn.create. The origin must be the same or a sub-domain of the provided by

rp.id. To continue with the next validation steps, the challenge must be the

same as the one provided previously by the RP, and both type and origin match

the pre-described values.

1 "clientDataJSON":{

2 "type":"webauthn.create" or "webauthn.get"

3 "challenge":"h5xSyIRMx2IQPr1mQk6GD98XSQOBHgMHVpJIkMV9Nkc"

4 "origin":"https://example.com"

5 }

Listing 4.4: clientDataJSON Stracture

20

The data that next needs to be verified is the information within the at-

testationObject. Firstly, in order to access the data, a BASE64 decoder must

be applied and then the result must be parsed into a CBOR2 using a com-

patible loader. Figure 4.2 shows the structure of attestationObject. As can

be seen, attestationObject consists of three sub-structures. FMT holds the

specific attestation format used. Attestation statement (attStmt) carries infor-

mation about the generated credential and the authenticator used. Attestation

signature is also contained in the attStmt. The final part of the attestationOb-

ject is the authenticator data (authData). AuthData contains bindings made

by the authenticator. The most important field of attestationObject is attest-

edCredentialData. The attestedCredentialData field contains the credentialId

and credentialPublicKey.

The validation of attestationObject begins by checking authData. In order

for authData to be valid, the length must be greater than 37 bytes. After

that, the rpIdHash is checked against the hashed version of the rp.id stored in

the session. The user’s presence is checked using the zeroth bit(UP) of flags

buffer. If the RP requested the authenticator to check about "user verification"

then the third bit(UV) must have the value of 1.

After the successful validation of authData, the attStmt must be checked.

The first part is to check whether the RP supports the attestation format used.

A list of all supported FMTS can be found within the constant.py file. If the

FMT is supported, then the RP will verify the attStmt based on the FMT. The

primary approach used for validating attStmt is first to check if the syntax of

the given statement is correct by checking if some specific fields are contained

(each FMT attStmt can be found on the W3C website). After that, if an X5C

certificate chain is found, the root certificates will be checked against the RP

saved certificates from multiple vendors saved on the root_certificates folder.

After the procedures mentioned above are completed successfully, the pub-

lic key and credential id will be gathered from attStmt and stored in the

database among the user’s unique assigned id. If no errors occur, then a

success code will be sent from the RP.

4.1.4 Assertion

The assertion ceremony, also known as the Login procedure, works with the

same principles as the registration ceremony. In order to proceed using the as-

sertion ceremony, the registration ceremony must be successfully completed.

As before, in order for the assertion ceremony to successfully complete, the

21

ATTESTATION OBJECT

“authData“: ...“fmt“: “packed“ “attStmt“: ...

“sig“: ...“alg“: ... “x5c“: ...If Basic or Privacy CA:

“ecdaaKeyId“: ...If ECDAA:

RP ID hash FLAGS

0 0 0 UV 0ATED UP

COUNTER ATTESTED CRED. DATA EXTENSIONS

32 bytes 1 byte 4 bytes (big-endian uint32) variable length variable length if present (CBOR)

7

AUTHENTICATOR DATA

AAGUID

L CREDENTIAL ID CREDENTIAL PUBLIC KEY

variable length (COSE_Key)LENGTH L
(variable length)

2 bytes16 bytes

0

ATTESTATION STATEMENT (in "packed" attestation statement format)

“sig“: ...“alg“: ...
[Other attestation statement formats are as defined in their respective sections below]

Figure 4.2: attestationObject Structure, Source

:https://www.w3.org/TR/webauthn-2/images/fido-attestation-structures.svg

authenticator’s response must go through all 22 RP checkpoints.Figure 4.3

shows an overview about how authentication ceremony works.

RP

Database

Check session data

Validate requested information

Validate Public Key ID

Validate Signature

2

Update users information

Retrieve users information 1

3

Figure 4.3: Registration Ceremony overview

22

Pre-Validation Procedure

To start the assertion ceremony, the user must initiate the procedure by click-

ing the corresponding button on the web form.

The only information needed from the user in order to initiate the assertion

ceremony is the username. Supposedly that the website has integrated the

auth.js framework as demonstrated in Chapter 3 and successfully connected

the webauthn_authentication() handle, the pre-validation procedure will be

similar to the pre-validation procedure of the registration ceremony.

Firstly, a GET request will be placed to the server to retrieve the configu-

ration file, which is different from the registration ceremony. The basic server

JSON respond file can be seen on listing 4.5. The only new field that the

authenticator needs for retrieving the previously generated credential is the

allowCredentials. As the name suggests, this field is an array containing infor-

mation regarding the associated keys with the given account. ID represents

the unique credentials identifier assigned by the authenticator at registra-

tion.RP.ID field that was used on registration is now renamed to rpid. The

server configuration can be seen at listing 4.2.In order to use the ServerCon-

figRegistration for the Assertion, the parameter type="login" must be given.

The rest of the configuration is as described at the Registration ceremony.

After the configuration is retrieved by the client and the necessary parts

were decoded, the next task is to retrieve the credentials stored in the au-

thenticator, supposed that the user has successfully registered. The naviga-

tor.credentials.get() will retrieve the credentials from the authenticator using

the configuration file provided by the RP. Then navigator.credentials.get() will

ask the user to interact with the authenticator to prove his identity and re-

lease the stored credentials associated with the user’s chosen authentication

method. After collecting and formatting the results gathered from naviga-

tor.credentials.get() the JSON string will be sent to the RP to finish the As-

sertion ceremony. The structure that the RP accepts can be seen at listing

4.6

1 {

2 "allowCredentials": [

3 {

4 "id": "QxmXKURjzSjqtqSyXEI0G9Xd3Y02D1fZo40tqeMs3i8=",

5 "type": "public-key"

6 },

7 {

23

8 "id": "AXIPSeUq0vYLSzOi1WiS0DHiImal64g8mfFrFb06E8OXh0gT8yIP

55ldj9NkE5dv8W85K9XZwsUtkLkaD76gbXc=",

9 "type": "public-key"

10 }

11],

12 "challenge": "vvxBGQyzkp6u4yUnv5rmloejF6YinRSfNHcVwbwBgMU=",

13 "rpid": "mariosfidotest.com"

14 }

Listing 4.5: Assertion Ceremony Server’s basic requirements for authenticator

1 {

2 "id": Contains Authenticator assigned unique credential

identifier encoded in BASE64 ,

3 "type": Describes Credential key type.Currently only "Public

key" is supported,

4 "response":{

5 "authenticatorData":Also known as AuthData, contains

bindings made by the authenticator,

6 "clientDataJSON":" Contains a JSON formatted string,

representing the client data that was passed to the navigator

function,

7 "userHandle": Users ID given by RP on the registration

ceremony,

8 "signature": Contains the signature of the authenticator

for both authenticatorData and a SHA-256 hash of the

clientDataJSON.

9 "clientExtensionResults":contains a map between the

extensions identifiers and their results after having being

processed by the client if any extensions are enabled by RP.

10 }

11 }

Listing 4.6: Registration Ceremony Server’s accepted JSON structure

Credential Validation Procedure

After the RP receives the data POSTed, the validation procedure will start.

The first step is to extract the needed data from the response. The re-

sponse.authenticatorData, clientDataJSON and signature must be extracted

24

from the received JSON string and stored to the authData, cData and sig, re-

spectively. Because auth.js encodes all the data using BASE64 encoder, all

data must be decoded before continuing the validation procedure.

The validation of the received data starts by retrieving all users data from

the database associated with FIDO2 authentication.The database schema will

be described later in this section. In order to continue with the procedure, the

received id and uhandle must be checked against the database records. In the

case of id not matching with any credential ID retrieved from the database or

uhandle not matching with the user ID that id is linked to, then the procedure

is failed.

The next step is to verify the data provided by the RP for the authentica-

tor with the data that the authenticator included, located within the cData.

The basic structure of the clientDataJSON can be seen once again to the list-

ing 4.4.clientDataJSON. More specifically,cData.challenge must match the one

that RP sent at the beginning of the authentication session. cData.type must

be equal to "webauthn.get" and lastly, as before, the origin must the the same

as the domain or a valid sub-domain of the provided one.

The next step is to validate the data within the authData. The authData

structure can be seen at figure 4.2 as part of the Attestation Object. Firstly

rpIdHash, located within the first 32 bytes of authData, must be the same as

the expected domain stored in session data. In order to validate the rpIdHash,

the session stored domain must be hashed using SHA-256 and compare the

digest with the rpIdHash. The next step is to verify the flags that RP requested

on the configuration file. It is mandatory to check for the User Present, bit is

equal to 1. If RP requests no other flags, then the procedure will continue to

the next validation step.

The final step is to verify the received signature using the public key re-

trieved from the database at the beginning of the ceremony with the received

id. In order to verify the signature, a hashed version of cData must be created

using SHA-256. After that, using the public key and the COSEAlgorithmI-

dentifier used on the specific key, a signature verifier will be applied on the

concatenation of the digest on the previously generated cData hash and the

authData.

The only process left after all the previous verifications are success-

fully completed is to update the signature counter,SignCount value from the

Database. SignCount is located within the 34-38 bytes of authData. In order

to successfully complete the ceremony, the value of SignCount stored with the

database must be strictly grater that the SignCount value that authData has.

25

This is an extra layer of protection that W3 uses to ensure that each time an

assertion ceremony occurs, the clients authenticator used and not some other

impersonator.

After the assertion ceremony finishes successfully, the RP will place a

secure session cookie named webauthn_login, on the client’s browser. The

cookie structure can be seen on listing 4.7 as a JSON structure. The cookie

contains the username of the successfully authenticated user as well as a sig-

nature for the digested username. The signature is generated using the RSA

public/private key-pair that RP owns. The specific key pair is only used for

encrypting and decrypting the cookie.

The successful cookie placement signals the end of the assertion ceremony.

1 {

2 "Username": Authenticated users username ,

3 "Signature": The signed username digest

4 }

Listing 4.7: RP Authentication secure cookie

4.1.5 Database Schema

The data generated or released from the authenticator during the registration

or assertion ceremony respectively need to be stored in a database for the

next ceremony to use. Like the traditional authentication methods that store

the hashed version of the password, in this case, an encoded version of the

public key is stored along with some other information.

At figure 4.4 the database schema can be seen. The database schema fol-

lows a minimalistic design approach. There are only two tables. The first one

is the FIDOUSER where the association between username, user fidoid (also

referred as userid) and origin is held. The FIDOCREDENTIAL table stores the

multiple credentials for each user. The two tables are linked together using

a foreign key constrain between FIDOUSERḞIDOID (Primary Key) and FIDO-

CREDENTIALḞIDOID (Foreign Key). FIDOCREDENTIAL consists of an auto

indexing field(ID), the FIDOID Foreign Key and some basic information about

the credential such as the credential ID, the attestation type, the transport,

the public key as well as the signature counter. The use of each field was

described in the previous subsection.

Insert, Update and Delete transactions are done by stored procedures lo-

cated within the database and not by standalone statements from the RP.

26

The RP only needs to call the procedure corresponding to the action needed

and pass the correct parameters. There are five stored procedures: Regis-

terUserAndCred, RegisterCredential, FindUser, UpdateSig and Deleteuser-

cred. All procedures that execute multiple statements will rollback and throw

an exception if one statement within the transaction fails.

The first stored procedure to be explained is the RegisterUserAndCred,

the implementation can be seen in listing 4.8. This specific procedure takes

as input the FIDOID (unique user ID encoded in BASE64), ORIGIN (Web Page,

used when RP serves multiple domains), USERNAME, CREDID (the unique

credential identification encoded in BASE64), CREDKEY (the corresponding

Public Key assigned to CREDID encoded in BASE64), CREDTYPE (the creden-

tial type, in this case is "Public-Key"), CREDATTTYPE (the attestation used for

the specific credential), CREDTRANSPORT (the transport used for the specific

credential) and COUNTER (signature counter). This procedure is only used in

the registration ceremony.

1 START TRANSACTION;

2 INSERT INTO FIDOUSER(‘FIDOID‘,‘USERNAME‘,‘ORIGIN‘) VALUES (

FIDOID,ORIGIN,USERNAME);

3 IF CREDTRANSPORT = ’None’ THEN

4 INSERT INTO FIDOCRETENTIAL(‘FIDOID‘,‘CREDID‘,‘CREDKEY‘,‘

CREDTYPE‘,‘CREDATTTYPE‘,‘COUNTER‘) VALUES (FIDOID,CREDID,

CREDKEY,CREDTYPE,CREDATTTYPE,COUNTER);

5 ELSE

6 INSERT INTO FIDOCRETENTIAL(‘FIDOID‘,‘CREDID‘,‘CREDKEY‘,‘

CREDTYPE‘,‘CREDATTTYPE‘,‘CREDTRANSPORT‘,‘COUNTER‘) VALUES (

FIDOID,CREDID,CREDKEY,CREDTYPE,CREDATTTYPE,CREDTRANSPORT,

COUNTER);

7 END IF;

8 COMMIT;

Listing 4.8: RegisterUserAndCred Implementation

The next procedure is the RegisterCredential. This specific procedure is

used when a preexisting FIDO user needs to enrol a new key/Device to their

account. The implementation can be seen in listing 4.9. The set of parameters

that this procedure takes as an input is the same as the RegisterUserAndCred

but without the FIDOID, ORIGIN and USERNAME. The order of the argu-

ments is the same as before.

1 IF CREDTRANSPORT = ’None’ THEN

27

2 INSERT INTO FIDOCRETENTIAL(‘FIDOID‘,‘CREDID‘,‘CREDKEY‘,‘

CREDTYPE‘,‘CREDATTTYPE‘,‘COUNTER‘) VALUES (FIDOID,CREDID,

CREDKEY,CREDTYPE,CREDATTTYPE,COUNTER);

3 ELSE

4 INSERT INTO FIDOCRETENTIAL(‘FIDOID‘,‘CREDID‘,‘CREDKEY‘,‘

CREDTYPE‘,‘CREDATTTYPE‘,‘CREDTRANSPORT‘,‘COUNTER‘) VALUES (

FIDOID,CREDID,CREDKEY,CREDTYPE,CREDATTTYPE,CREDTRANSPORT,

COUNTER);

5 END IF;

Listing 4.9: RegisterCredential Implementation

The FindUser is used in both procedures. During the registration cere-

mony, FindUser is used to validate whether the given username and the gen-

erated FIDOID is already registered. In the assertion ceremony, it is used for

retrieving the information regarding the user that needs to be authenticated.

The way that this procedure works is by applying a query to both FIDOCRE-

DENTIAL and FIDOUSER tables and returning the retrieved information from

FIDOCREDENTIAL for the given user. The implementation can be seen in list-

ing 4.10. The procedure takes as an input the username of the user that

needed to gather information.

1 select cred.*

2 from FIDOCRETENTIAL cred, FIDOUSER users

3 where users.USERNAME=input and users.FIDOID=cred.FIDOID;

Listing 4.10: FindUser Implementation

UpdateSig is only used during the assertion ceremony. As the name im-

plies, this specific stored procedure aims to update the signature counter for

a specific credential. The implementation can be seen in listing 4.11. The pro-

cedure takes as an input the signature counter number (count) and the row

identification number(input). The row identification number, which is set as

auto-increment, is returned when the procedure FindUser is called.

1 update FIDOCRETENTIAL set counter=count where ID=input;

Listing 4.11: FindUser UpdateSig

Finally, the Deleteusercred procedure can only be accessed when the we-

bauthn_login cookie is set, meaning that the user must be authenticated first.

The purpose of the procedure is to remove all user data from the database. The

implementation can be seen in listing 4.12. The procedure takes as an input

28

the username,UNAME, of the user to be deleted. Implementation-wise, it is

seen that the delete statement removes only the records from the FIDOUSER

table. The data within the FIDOCREDENTIAL will be removed automatically

due to the ON DELETE CASCADE option on the foreign key constraint.

1 DELETE FROM FIDOUSER WHERE USERNAME=UNAME;

Listing 4.12: Deleteusercred implementation

FIDOCRETENTIAL

ID INT

FIDOID VARCHAR(64)

CREDID VARCHAR(500)

CREDKEY VARCHAR(500)

CREDTYPE VARCHAR(40)

CREDATTTYPE VARCHAR(20)

CREDTRANSPORT VARCHAR(20)

COUNTER INT

Indexes

PRIMARY

CREDID

CREDKEY

FIDOID

FIDOUSER

FIDOID VARCHAR(64)

ORIGIN VARCHAR(100)

USERNAME VARCHAR(60)

Indexes

PRIMARY

USERNAME_UNIQUE

Figure 4.4: Database Schema

4.2 Real Life Scenario (WordPress)

This last subjection of the Implementation section focuses on allowing Word-

Press to use FIDO2 Authentication from auth.js as the main authentication

schema.

4.2.1 Environment Setup

Setting Up WordPress is a straightforward procedure. In order to allow FIDO2

Authentication to function as expected, some necessary changes must be first

29

made in both the web-server and the database.

In this specific implementation, the webserver used was NGINX. In listing

4.13 the configuration settings of the webserver can be seen. In order for

the Navigator.credentials API to work an HTTPS connection is needed, thus

a self-signed certificate is being added to the server. Now that the domain

runs under a secure channel the server is redirecting the connection from the

standard webserver port(80) to the secure port(443).

1 server {

2 l isten 443 ssl ;

3 l isten [: :] :443 ssl ;

4 ssl_cert i f icate / etc / ssl / certs / localhost2 . crt ;

5 ssl_certif icate_key / etc / ssl / private / localhost2 .key ;

6 ssl_protocols TLSv1.2 TLSv1.1 TLSv1;

7 server_name example .com www.example .com;

8 include fcgiwrap . conf ;

9

10 root / var /www/wordpress .com;

11 index index .php index .html index .htm;

12 error_log / var / log / nginx / mysite . com_error . log ;

13 access_log / var / log / nginx / mysite . com_access . log ;

14 client_max_body_size 100M;

15

16 location / {

17 t ry_ f i les $uri $uri / / index .php?$args ;

18 }

19

20 location ~ \ .php$ {

21 include snippets / fastcgi−php. conf ;

22 fastcgi_pass unix : / run /php/php7.4−fpm. sock ;

23 fastcgi_param SCRIPT_FILENAME

24 $document_root$fastcgi_script_name ;

25 }

26

27 location / req / {

28 include proxy_params;

29 proxy_pass http : / / localhost :5000/;

30 }

31 }

32 server {

33 l isten 80;

34 l isten [: :] : 80 ;

35 server_name example .com www.example .com;

36 include fcgiwrap . conf ;

37

30

38 return 301 https : / / $server_name$request_uri ;

39 }

Listing 4.13: Web-server Configuration FIle

The way that RP interacts with WordPress is by a reverse proxy.RP in this im-

plementation is a Python3 server implemented using the FLASK WEB FRAME-

WORK. The client can access the RP using API calls to the example.com/req/

URL. Registration ceremony, Assertion ceremony, Register a new credential

and Delete a key can be accessed through adding the corresponding sub-

category to the example.com/req/ URL. The sub-category for the previously

mentioned procedures are register, login, register/cred and del/all respec-

tively.

4.2.2 Registration Procedure

In order to allow users to register using the FIDO2 Authentication, some

changes must be made within the WordPress Source code. The first modi-

fication must be made within the wp-login.php file.

The first step is to make sure that WordPress can read and load the in-

cluded webauthn files successfully. In order to load these files, a function

must be added and executed, before the predefined login_head is called. At

total, four scripts are required for FIDO2 Authentication Schema to function

properly. authj̇s needs the jqueryṁinj̇s and base64j̇s. The final JavaScript file

that is needed is the webauth_interruption.js. The prementioned script is used

to link the authj̇s with the preexisting forms. In listing 4.14 the way that the

necessary scripts are linked with WordPress is shown.

1 /* *
2 * Enqueue scripts and styles for the login page.

3 *
4 * @since 3.1.0

5 */

6 add_action (’webauthn_enqueue_scripts ’ , ’enqueue_authjs ’) ;

7 function enqueue_authjs ($page) {

8 wp_enqueue_script (’ jquery−webauthn ’ , ’ https : / / ajax . googleapis .com/ ajax / l ibs

/ jquery /3.5.1/ jquery .min. js ’ , array () , null , true) ;

9 wp_enqueue_script (’webauthn ’ , home_url () . ’ /wp−includes / js /webauthn/auth .

js ’ , array (’ jquery−webauthn ’) , null , true) ;

10 wp_enqueue_script (’base64 ’ , home_url () . ’ /wp−includes / js /webauthn/base64.

js ’ , null , null , true) ;

11 wp_enqueue_script (’webauth_interruption ’ , home_url () . ’ /wp−includes / js /

webauthn/ webauth_interruption . js ’ , array (’ jquery−webauthn ’) , null , true) ;

31

12 }

13 do_action (’webauthn_enqueue_scripts ’) ;

14

15 /* *
16 * Fires in the login page header after scripts are enqueued.

17 *
18 * @since 2.1.0

19 */

20 do_action (’ login_head ’) ;

Listing 4.14: Include auth.js scripts to WordPress

To allow the end-user to choose the authentication schema that they wish

to use, the HTML code of the registration screen has to be slightly modified. A

new check box will be added to allow the user to use the FIDO2 Authentication

Schema. In listing 4.15 the addition of the FIDO2 check box to the preexisting

WordPress source code is shown (lines 14-16).

1 .

2 .

3 .

4 <form name="registerform" id="registerform" action="<?php echo esc_url (

site_url (’wp−login .php?action=register ’ , ’ login_post ’)) ; ?>" method="

post" novalidate="novalidate">

5 <p>

6 <label for="user_login"><?php _e(’Username’) ; ?></label>

7 <input type=" text " name="user_login" id="user_login" class="input"

value="<?php echo esc_attr (wp_unslash($user_login)) ; ?>" size="20"

autocapitalize=" off " />

8 </p>

9 <p>

10 <label for="user_email"><?php _e(’Email ’) ; ?></label>

11 <input type="email" name="user_email" id="user_email" class="input"

value="<?php echo esc_attr (wp_unslash($user_email)) ; ?>" size="25" />

12 </p>

13 <p>

14 <input name="registerusingwebauthn" type="checkbox" id="

registerusingwebauthn"/>

15 <label for="registerusingwebauthn"><?php esc_html_e (’Use

Webauthn Standart ’) ; ?></label

16 </p>

17 .

18 .

19 .

Listing 4.15: FIDO2 Authentication Checkbox for registration in HTML code

32

The linking between WordPress and auth.js, as mentioned before, is hap-

pening within the webauth_interruption.js. The linking is achieved by inter-

rupting the form submission, finishing the FIDO2 Registration and resuming

the form submission. The above procedure can function properly because RP

is an independent service running alongside with WordPress. Listing 4.16

demonstrates how the interruption is happening during the registration form

submission and how the auth.js is called. If any error occurs during the regis-

tration ceremony, the error will be printed on the console. This procedure is no

blocking, meaning that if the FIDO2 Authentication fails, then the registration

procedure that WordPress follows will be resumed.

1 jQuery("#loginform") .on("submit" , function (e) {

2 e . preventDefault () ; / / Stop form submission

3 let sel f = jQuery(this) ;

4

5 i f (jQuery("#loginusingwebauthn") . is (" :checked")) {

6 let username = jQuery("#user_login") . val () ;

7 webauthn_authentication(username) . then(function (promise){

8 console . log (promise)

9 }) ;

10 }

11 sel f . unbind () . submit () ;

12 }) ;

Listing 4.16: WordPress Registration Interruption

4.2.3 Authentication Procedure

Allowing the user to authenticate using the FIDO2 Authentication schema is a

bit more challenging than allowing them to register using the same schema.

Due to the reason that both registration and authentication pages are

both under the same PHP page, in this case, the wp-login.php, the required

JavaScript files are already linked with WordPress authentication page. The

next step is to add a button that will allow the user to authenticate using the

FIDO2 Authentication schema. This addition will be made at the HTML code

within the wp-login.php, but at the authentication screen section. In listing

4.17 the addition of the FIDO2 check box to the preexisting WordPress source

code is shown (lines 8-11).

1 .

2 .

3 .

33

4 <form name="loginform" id="loginform" action="<?php echo esc_url (site_url (’wp

−login .php ’ , ’ login_post ’)) ; ?>" method="post">

5 .

6 .

7 <p class="forgetmenot"><input name="rememberme" type="checkbox" id="rememberme"

value="forever" <?php checked($rememberme) ; ?> /> <label for="rememberme

"><?php esc_html_e (’Remember Me’) ; ?></label></p>

8 <p>

9 <input name="loginusingwebauthn" type="checkbox" id="loginusingwebauthn

"/>

10 <label for="loginusingwebauthn"><?php esc_html_e (’Use Webauthn

Standart ’)?></label>

11 </p>

12 .

13 .

14 .

Listing 4.17: FIDO2 Authentication Checkbox for authentication in HTML

code

To pass the authentication flow to the auth.js, an interruption before sub-

mitting the login form is needed. Listing 4.18 shows how the interruption

is declared within the webauth_interruption.js file. Same as before, if the

user checks the ’Use Webauthn Standart’ then the control will be given to

the webauthn_authentication until the RP accepts or declines the authentica-

tion. After the RP returns a response, then the form submission is resumed.

WordPress procedures will continue the authentication process by verifying

the placed cookie.

1 / / login interruption

2 jQuery("#loginform") .on("submit" , function (e) {

3 e . preventDefault () ; / / Stop form submission

4 let sel f = jQuery(this) ;

5

6 i f (jQuery("#loginusingwebauthn") . is (" :checked")) {

7 let username = jQuery("#user_login") . val () ;

8 webauthn_authentication(username) . then(function (promise){

9 console . log (promise)

10 sel f . unbind () . submit () ;

11 }) ;

12

13 }else{

14 sel f . unbind () . submit () ;

15 }

16 }) ;

34

Listing 4.18: WordPress Authentication Interruption

A new authentication procedure must be added to WordPress source code

to allow the authentication process to not only check for username and pass-

word but also for a specific cookie. The basic idea behind this new procedure

is that given the cookie that RP placed and the username submitted from

the registration form, this procedure will retrieve the user’s data from the

WordPress’s database and lead the authentication procedure that WordPress

is using to continue executing. Listing 4.19 shows the procedure definition

within the user.php file. This procedure will first read the data within the

webauthn_login cookie. Using the $username parameter that is passed from

the submitted form, the external cookie.py script will be called. This external

script using the public-private key pair that RP is using for signing the cookie

will try to verify that the signature within the webauthn_login cookie using

the provided cookie. If the verification is completed successfully, then the pro-

cedure will return an WP_User object for the provided user. If the verification

fails, then an error will be returned. Finally, to link the aforementioned func-

tion with the authentication procedure, a new filter must be added within the

default-filters.php file. The filter can be seen at listing 4.20.

1 function wp_authenticate_using_webauthn($user , $username) {

2 i f ($user instanceof WP_User) {

3 return $username;

4 }

5 i f (empty($username)) {

6 i f (is_wp_error ($user)) {

7 return $user ;

8 }

9

10 $error = new WP_Error() ;

11

12 i f (empty($username)) {

13 $error−>add(’empty_username ’ , __ (’Error: The

username f ie ld is empty. ’)) ;

14 }

15 return $error ;

16 }

17 $user = get_user_by (’ login ’ , $username) ;

18 i f (! $user) {

19 return new WP_Error(

20 ’ invalid_username ’ ,

21 __ (’Unknown username. Check again or try your email address . ’)

35

22) ;

23 }

24

25 i f (! isset ($_COOKIE[’webauthn_login ’])) {

26 $error = new WP_Error() ;

27 $error−>add(’missing_webauthn_cookie ’ , __ (’Error:

Webauthn Authentication Cookie Missing ’)) ;

28 return $error ;

29 }

30 $data= $_COOKIE["webauthn_login"] ;

31 $key_path=" / var /www/wordpress .com/wp−content / public_key .pem" ;

32 $command = escapeshellcmd("python3 / var /www/wordpress .com/wp−content / cookie

.py verify $key_path $data") ;

33 $output = exec($command) ; ;

34 i f (strpos ($output , "ERROR: ") == true){

35 $error = new WP_Error() ;

36 $error−>add(’ verification_webauthn_cookie ’ , __ (’Error: Unable to verify Signature ’)) ;

37 return $error ;

38 }

39 i f (strcmp($username, $output)!==0){

40 $error = new WP_Error() ;

41 $error−>add(’ verification_webauthn_cookie ’ , __ (’Error: Cookie Username and given username does not match ’)) ;

42 return $error ;

43 }

44

45 return $user ;

46 }

Listing 4.19: WordPress function definition for allowing the use of cookie for

registration

1 / / Default authentication f i l t e r s .

2 add_filter (’ authenticate ’ , ’wp_authenticate_using_webauthn ’ , 20, 3) ;

Listing 4.20: Enabling wp_authenticate_using_webauthn function using a new

filter in WordPress

4.2.4 After the Authentication

This subsection focuses on the actions that the user can do, related with FIDO2

Authentication after they successfully logged in to the system using both the

traditional authentication schema or the FIDO2 Authentication.

36

After the successful user authentication, the user can enrol a new key or

delete all the saved ones. The way that RP distinguishes whether a user is

authenticated is through the webauthn_login cookie. If the default username

and password schema handled the authentication, then WordPress must gen-

erate and place the cookie to the browser to allow the user to manage its

keys.

The pre-existing function that handles the cookie generation when authen-

ticating is the wp_set_auth_cookie located within the pluggable.php file. List-

ing 4.21 shows some additional code that must be added which creates the

webauthn_login cookie. The additional code after retrieving the user’s user-

name, the cookie.py script will be called. The script, using the given username

and the pre-mentioned public/private key, will generate the cookie data. The

structure of the cookie can be seen at listing 4.7.

1 function wp_set_auth_cookie ($user_id , $remember = false , $secure = ’ ’ , $token

= ’ ’) {

2 .

3 .

4 .

5 i f (! isset ($_COOKIE[’wwebauthn_login ’])) {

6 $data=get_userdata ($user_id)−>user_login ;

7 $key_path=" / var /www/wordpress .com/wp−content / private_key .pem" ;

8 $command = escapeshellcmd("python3 / var /www/wordpress .com/wp−content /

cookie .py sign $key_path $data") ;

9 $output = exec($command) ;

10 i f (!empty($output))

11 setrawcookie (’webauthn_login ’ , "$output" , $expire , COOKIEPATH,

COOKIE_DOMAIN, false , true) ;

12 }

13 }

Listing 4.21: Generating webauthn_login cookie using WordPress

To allow users to access the Remove All Keys and the Add This Device

as a key functions, some buttons must be added to the user’s profile set-

tings page. Listing 4.22 shows the HTML code additions within the user-

edit.php. These changes include the placement of one new page subsection

and two new buttons. The next step is to connect the buttons with the cor-

responding handle. As happened before, the handles are located within the

webauth_interruption.js. Listings 4.23 and 4.24 demonstrate the Add This De-

vice as a key and Remove All Keys interruption declaration. As before, both

handles connect the corresponding function with the correct button.

37

1 .

2 .

3 .

4 ?php elsei f (! IS_PROFILE_PAGE && $sessions−>get_all ()) : ?>

5 <tr class="user−sessions−wrap hide−i f−no−j s ">

6 <th><?php _e(’Sessions ’) ; ?></th>

7 <td>

8 <p><button type="button" class="button" id="destroy−sessions"><?php _e(’

Log Out Everywhere ’) ; ?></button></p>

9 <p class="description">

10 <?php

11 /* translators : %s : User ’s display name. */

12 printf (__ (’Log %s out of a l l locations . ’) , $profileuser−>

display_name) ;

13 ?>

14 </p>

15 </td>

16 </tr>

17 <?php endif ; ?>

18 </table>

19 <h2><?php _e(’WebAuthn Keys ’) ; ?></h2>

20 <table class="form−table" role="presentation">

21 <tr id="Webauthn_key">

22 <th><label><?php _e(’Register New Key ’) ; ?></label></th>

23 <td>

24 <button id = "webauthnregcred" type="button" class="button wp−
generate−pw hide−i f−no−j s " aria−expanded=" false "><?php _e(’Add This Device

as a key ’) ; ?></button>

25 </td>

26 </tr>

27 <tr id="Webauthn_key_del">

28 <th><label for="pass1"><?php _e(’Delete a l l Webauthn Keys ’) ; ?></

label></th>

29 <td>

30 <button id = "webauthnredallkeys" type="button" class="button

wp−generate−pw hide−i f−no−j s " aria−expanded=" false " style="background−color

: red ; color : white"><?php _e(’Remove All Keys ’) ; ?></button>

31 </td>

32 </tr>

33 </table>

34 .

35 .

36 .

Listing 4.22: WordPress HTML buttons addition

38

1 jQuery("#webauthnregcred") . click (function (){

2 let username = jQuery("#user_login") . val () ;

3 webauthn_registration (username, "credential ") . then(function (promise){

4 console . log (promise)

5 sel f . unbind () . submit () ;

6 }) ;

7 }) ;

Listing 4.23: WordPress Add New Key Interruption

1 jQuery("#webauthnredallkeys") . click (function (){

2 webauthn_delete_credentials ()

3 . then(function (promise){

4 console . log (promise)

5 alert (" All keys Deleted")

6 })

7 . catch(function (promise){

8 console . log (promise)

9 }) ;

10 }) ;

Listing 4.24: WordPress Delete All Keys Interruption

39

Chapter 5

Evaluation

This section focuses on the performance evaluation of auth.js. More specifi-

cally, the FIDO2 Authentication schema will be used for evaluation purposes.

5.1 Setup

For the performance evaluation, the WordPress project and Python3 RP ser-

vice were used as described in section 4. All necessary components such as

Website, Server and Database were setup into an Ubuntu virtual server with

the following specs:

• Ubuntu Version: 20.04.1 LTS

• Available Memory: 8GB

• Number Of Processors: 2

• Python Version: 3.8.5

• PHP Version: 8.0.1

• MYSQL Version: 8.0.25-0

• WebServer Version: NGINX 1.18.0

5.2 RP Evaluation

Table 5.2 shows the average time that the RP took to complete the registra-

tion and assertion ceremony. The browsers used to test the auth.js framework

were Google Chrome, Microsoft Edge and Mozilla Firefox on both Windows

40

and Android based systems. Apple devices did not participate in the testing

phase due to the WebAuthn standard not being fully supported yet. The test-

ing was done using real users rather than an automated script due to the

complexity of replaying the Authenticator output.

Table 5.1: RP :Average time for registration and assertion ceremony.

Ceremony RP Average Time

Registration 263 ms

Assertion 43 ms

5.3 auth.js & WordPress Evaluation

Table 5.3 shows the total execution time the registration and authentication

procedures need to complete. The total time is calculated by adding the time

the RP took to complete each procedure and the time that PHP needed to

verify the cookie. In this specific set of tests, the communication time between

server and client is considered negligible. The testing method is as described

in the previous subsection. The timing results are highly dependent on the

user’s authenticator. Thus, the results will vary for each user.

Table 5.2: Total :Average time for registration and assertion ceremony.

Ceremony Average WordPress Time Average RP Time Total Time

Registration 256ms - ms 256 ms

Assertion 300ms 43 ms 343 ms

41

Chapter 6

Related Work

In recent years, there is a push to move from the default authentication

schema to more secure ones. In the previous sections, the FIDO2 Authentica-

tion was described as a part of the auth.js framework. There are also other

approaches that strengthen web authentication using different mechanisms

and approaches.

Authentication schemes based on PAKE protocol allow the end-user to

prove their identity by securely exchanging a secret. Using this method, the

user does not send his actual password. Another password base authenti-

cation schema that increases the security of such schemes is the usage of

HoneyWords. HoneyWords are slightly modified versions of the real password

that are being stored along with the actual password. If an attack occurs and

a HoneyWord is used, then a trigger will be enabled.

Some papers suggest that if some modifications are made to the Authen-

ticator’s components, it can increase the security level of the authentication

schema. More specifically, simTPM aims to replace the vulnerable TPM on

mobile platforms with a newer User-centric implementation that uses the SIM

card. This approach allows for a mobile TPM that avoids additional hardware

and allows credential portability between devices.

Others took a different approach and created a multi-factored authentica-

tion schema using QR-Code. Just as FIDO2 Authentication, 3CAuth supports

similar authentication methods and additionally supports users’ registered

numbers and smart cards. The QR-Code functionality is replacing the SMS

method for retrieving the OTP.

42

Chapter 7

Conclusion

This paper focused on implementing the FIDO2 Authentication schema as

one of the available authentication schemes that the auth.js framework sup-

ports. More specifically, FIDO2 Authentication uses asymmetric cryptogra-

phy instead of secrets. auth.js focuses on enabling web developers to use

newer and more advanced authentication schemes effortlessly. The frame-

work itself is written in Javascript, and it is considered a trusted component

of the authentication schema. At this point, auth.js supports two authenti-

cation schemes based on asymmetric encryption and the primary password

base schema. Finally, auth.js framework was tested by allowing WordPress to

use FIDO2 Authentication as the primary authentication schema. This testing

required some crucial modifications and additions to the preexisting authenti-

cation schemes. Performance-wise, the RP can take up to 300 ms to complete

each ceremony. This timing will vary for different FTMS as verifications dif-

fer. The most considerable timing overhead comes from the user’s side and

specifically from the authenticator.

43

Bibliography

[1] A demo of the webauthn specification. https://webauthn.io/.

[2] Enabling strong authentication with webauthn | google developers.

https://developers.google.com/web/updates/2018/05/webauthn.

[3] Guide to web authentication. https://webauthn.guide/.

[4] Mdn web docs. https://developer.mozilla.org/en-US/.

[5] D. Chakraborty and S. Bugiel. simfido: Fido2

user authentication with simtpm: Semantic scholar.

https://www.semanticscholar.org/paper/simFIDO:

-FIDO2-User-Authentication-with-simTPM-Chakraborty-Bugiel/

7ee68251acb59237fe215e88a3d0a2d4dd4a75c5, 2019.

[6] R. S. Chowhan and R. Tanwar. Password-less authentication. Machine

Learning and Cognitive Science Applications in Cyber Security Advances

in Computational Intelligence and Robotics, page 190–212, 2019.

[7] D. D. H. Latha, A. Mubeen, and D. D. R. K. Reddy. Password substantiation

with negative password encryption. International Journal of Advanced Re-

search in Science, Communication and Technology, page 184–190, 2020.

[8] K.-C. Liao and W.-H. Lee. A novel user authentication scheme based on

qr-code. Journal of Networks, 5(8), 2010.

[9] R. Libfeld. What is client to authenticator protocol (ctap)?: Se-

curity wiki. https://doubleoctopus.com/security-wiki/protocol/

client-to-authenticator-protocol/, journal=Secret Double Octopus.

44

https://webauthn.io/
https://developers.google.com/web/updates/2018/05/webauthn
https://webauthn.guide/
https://developer.mozilla.org/en-US/
https://www.semanticscholar.org/paper/simFIDO:-FIDO2-User-Authentication-with-simTPM-Chakraborty-Bugiel/7ee68251acb59237fe215e88a3d0a2d4dd4a75c5
https://www.semanticscholar.org/paper/simFIDO:-FIDO2-User-Authentication-with-simTPM-Chakraborty-Bugiel/7ee68251acb59237fe215e88a3d0a2d4dd4a75c5
https://www.semanticscholar.org/paper/simFIDO:-FIDO2-User-Authentication-with-simTPM-Chakraborty-Bugiel/7ee68251acb59237fe215e88a3d0a2d4dd4a75c5
https://doubleoctopus.com/security-wiki/protocol/client-to-authenticator-protocol/
https://doubleoctopus.com/security-wiki/protocol/client-to-authenticator-protocol/

	Introduction
	Background
	Cryptographic Authenticator
	PublicKey Cryptography
	Web Authentication (WebAuthn)
	Client to Authenticator Protocol (CTAP)

	Architecture
	Components
	Procedure
	Auth.js

	Implementation
	Python3 and WebAuthn
	RP configuration
	Registration
	Assertion
	Assertion
	Database Schema

	Real Life Scenario (WordPress)
	Environment Setup
	Registration Procedure
	Authentication Procedure
	After the Authentication

	Evaluation
	Setup
	RP Evaluation
	auth.js & WordPress Evaluation

	Related Work
	Conclusion

