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Abstract 

There are many forms of dementia, with Alzheimer’s disease (AD) being one of the most 

severe, which is a chronic condition that degenerates the cells of the brain leading to 

memory asthenia; while normal cognitive (NC) is a person with no neurological or 

psychiatric problems whose cognitive abilities decline with normal aging (Arvanitakis et 

al. 2019). Second-order optimization methods, such as Hessian-Free Optimization 

(HFO), have proven to be more suitable for optimizing objectives that exhibit 

pathological curvature (Martens, 2010). Such a case might be the AD/NC problem which 

uses a deep neural network, a Convolutional neural network (CNN) for the feature 

extraction of MRI scans. The combination of CNN with HFO for the AD/NC problem 

has never been attempted before, and this is the main novelty of this thesis.   

This dissertation aims to automate the detection of AD from MRI scans of the brain. To 

achieve this aim, CNN classifiers in combination with second-order optimization were 

used to classify AD and NC individuals. For the second-order optimization, the 

implementation of the HFO with the Gauss-Newton matrix for CNN (Wang et al. 2020) 

was used, based on the HFO algorithm by Martens (2010).  

More specifically, 9 datasets were used to compare the performance of the Stochastic 

Gradient Descent (SGD), Adaptive Moment Estimation (Adam), and HFO optimizers, in 

Multi-Layer Perceptron (MLP) and CNN. The dataset with the 10 hippocampal features 

(Achilleos et al. 2020) was tested in MLPs with a different number of hidden layers and 

neurons per layer. In the meanwhile, for the datasets with 2D slices of T1-weighted MRI 

scans, five distinct 2D CNN network architectures were utilized with 3, 4, 5, 7, and 19 

layers; with multiple configurations such as Dropout, Spatial Dropout, Max-Pooling, L1 

& L2 Regularization, Batch Normalization, etc. Also, 3D T1-weighted MRI scans were 

used in two different 3D network configurations with 4 and 5 layers.  

For all the experiments of this thesis, either 5-fold or 10-fold cross-validation was used. 

The best average validation accuracies of the folds, of all the experiments with the MLPs, 

were 90% and 87%, for the Adam and HFO optimizers respectively. For the CNN 

implementations, the highest average validation accuracies were 79% and 81%, for the 

Adam and HFO optimizers respectively. In general, the HFO algorithm performs better 

than Adam in 2D CNNs, but Adam is slightly better in MLPs and 3D CNNs. Most of the 



 

 

experiments suffer from overfitting, even after applying regularization techniques, most 

probably because the datasets were small due to the absence of data augmentation.  

The objective of this thesis is not to compete with state-of-the-art studies. The goal was 

to test the performance of HFO in comparison with Adam by using “toy” datasets of T1-

weighted MRI scans, with multiple network configurations, regularization techniques, 

and various hyperparameters, to find the optimal ones. Eventually, the outcomes of this 

thesis can be used in future work, with a larger dataset that will apply data augmentation 

to compete with state-of-the-art studies.  
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1.1 The Importance of Automating Dementia Diagnosis 

Dementia is a syndrome with characteristic symptoms of progressive cognitive decline, 

such as loss of memory, language disorders, and disorientation (Arvanitakis et al. 2019). 

The person in the early stages may be forgetting events or conversations. As the disease 

progresses the person might develop severe memory impairment and become unable to 

carry out everyday tasks. In Europe, approximately 8.8 million people are living with 

dementia in 2018 and are expected to double by 2050 (Alzheimer Europe, 2020). In 

Cyprus the statistics are even worse since for the period 2018 and 2050, the number of 

people suffers from dementia is expected to triple (Alzheimer Europe, 2020).  

The most common cause of dementia is Alzheimer’s disease (AD). More specifically, 

AD is a neurodegenerative disorder with characteristic symptoms of progressive loss of 

memory, language disorders, and disorientation. Identifying early stages of AD patients 

can influence the effects of the disease by supplying disease-modifying remedies. 

Therefore, this project focused on developing intelligent methods for automating the 

detection of AD.  

In healthy aging, there is usually a slight decline in a person’s cognitive abilities. If some 

cognitive functions decline to a greater degree than what is expected by healthy aging, 

then the patient may suffer from mild cognitive impairment (MCI). MCI is characterized 

by problems with memory, language, thinking, or judgment (Arvanitakis et al. 2019). 

MCI is diagnosed when the cognitive decline is abnormal for an individual’s age and 

educational level, but it does not meet the criteria to be diagnosed as AD (Petersen et al. 
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1997). MCI patients have a high risk of progression to AD (Gauthier et al. 2006), who 

are so-called MCI converters (MCI-C), with the conversion rate estimated to 

approximately 15% (Allison et al. 2014). Therefore, the diagnosis of MCI is also 

important for the early diagnosis of AD.  

The process for identifying whether a patient suffers from MCI, AD, or another form of 

dementia includes cognitive tests, interviews with family members of the patient, blood 

tests, and magnetic resonance imaging (MRI) scan (Arvanitakis et al. 2019). These scans 

are examined afterward by neurologists to identify the disease that the patient may have. 

The early diagnosis or the prediction of AD could provide the patient with early treatment 

and slow down the effects of the disease. The prediction of the disease is something that 

the neurologist may not always be able to do. The goal is to use advanced machine 

learning techniques to create models, that are going to assist the neurologist in early 

predicting AD and other forms of dementia.  

1.2 Previous Research on Automating Dementia Diagnosis 

Prior work on the problem can be separated into two main categories: attempts of 

traditional machine learning and deep learning approaches. The combination of 

traditional machine learning for classification and stacked auto-encoder (SAE) for feature 

selection (Suk et al. 2015), produced accuracies for the AD/NC classification up to 98.8% 

and for the AD/MCI classification, up to 83.7%. The deep learning approaches that use 

neuroimaging data, such as PET scans, with 3D Convolutional Neural Networks (CNN), 

have yield accuracies up to 96% (Choi and Jin, 2018). Also, the combination of the two 

methods, the 3D CNNs and 3D Convolutional Auto-Encoders (CAE) with MRI scans, 

have yielded accuracies for the AD/MCI/NC problem up to 94.8%, and the AD/NC 

problem up to 99.3% (Hosseini-Asl et al. 2018).  

We should keep in mind that the AD/NC problem is much simpler than the AD/MCI/NC, 

as the MRI scans of the two categories (AD and NC) are dissimilar, therefore, can be 

easily distinguished by a trained eye. Consequently, the deep learning algorithms for 

classifying AD/NC, MCI/NC, usually yield great accuracies; but there is still space for 

improvement for classifying all three of them simultaneously, AD/MCI/NC, which is 

challenging since usually MRI scans between AD and MCI can be confused.   
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Figure 1.1. AD/NC problem previous research. Comparison based on the validation/testing accuracy. 

Blue: Convolutional Neural Networks (CNN); Orange: Auto-Encoders (AE); 

Green: AE + CNN; Yellow: Augmentation Rules. (Jo et al. 2019) 

Figure 1.1 shows some remarkable previous studies for the AD/NC problem (Jo et al. 

2019). With the blue color, we can see studies that used Convolutional Neural Networks 

(CNN), with orange color studies with Auto-Encoders (AE), with green color, a 

combination of AE with CNN, and with yellow color studies with Augmentation Rules.  

Achilleos et al. (2020), extracted rules from MRI images, by using decision tress (DT) 

and random forests (RF) algorithms. Then, they integrated those rules in the Gorgias 

framework, an argumentation-based reasoning framework, and achieved an average 

accuracy of 91%. 

Suk and Shen (2013), yield a 95.9% accuracy by using MRI and PET scans with Sparse 

Auto-Encoders (SAE) to construct an augmented feature vector by concatenating the 

original features with outputs of the top hidden layer of the representative SAEs, and a 

multi-kernel Support Vector Machine (SVM) as a classifier. Later, Suk et al. (2015) 

extended their work by developing a two-step learning scheme. First, a greedy-layer-wise 
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pre-training and then a fine-tuning in deep learning, improved their model to achieve 

accuracy up to 98.8%.  

Recently, more deep learning approaches than traditional machine learning methods have 

been developed, because the CNNs were proven as one of the best techniques for 

analyzing visual imagery (LeCun et al. 2015), such as image and video recognition, image 

classification (Krizhevsky et al. 2012), natural language processing and in our case for 

medical image analysis. Different CNN network configurations have been used in many 

studies for the AD classification problem. Based on the dataset used, whether it contains 

2D slice-level or 3D subject-level MRIs; 2D CNNs (Liu et al. 2018) or 3D CNNs 

(Hosseini-Asl et al. 2018) are being used respectively.  

Li et al. (2014) introduced CNNs for the AD/NC problem with 3D CNN models on 

subjects with both MRI and PET scans, achieving an accuracy of 92.9%. When using 

only PET scans, the accuracy was 88.7%. The 3D CNN encoded the non-linear 

relationship between MRI and PET scans and then used the trained network to estimate 

the PET patterns for subjects with only MRI data. Hosseini-Asl et al. (2018), used 3D 

CNNs, pre-trained by 3D Convolutional Auto-Encoders (CAE), that yield an accuracy of   

97.6%. The application of SAE and 3D CNN on subjects with MRI and FDG PET scans 

from Vu et al. (2017), yield an accuracy of 91.1%. In Choi and Jin's (2018) study, the 

usage of 3D CNN models was reported with multimodal PET scans, which obtained an 

impressive accuracy of 96%. Oh et al. (2019), used 3D inception model-based CAE 

(ICAE) with 3D CNNs and achieved an accuracy of 86.6%.  

For the 2D CNN approaches, Aderghal et al. (2017), capture 2D slices from the 

hippocampal region in the axial, Sagittal, and Coronal directions. Then applied those 

three images as input in a multi-input model with three distinct 2D CNNs, which are 

combined at the end with a single FFNN. This method, yields an accuracy of 85.9%, not 

far away from our best accuracy of 81% when using only the Coronal 2D slice of a 

subject. Liu et al. (2018), used 2D slices from 3D PET scans, in a combination of CNNs 

and RNNs to learn the intra-slice and inter-slice features for classification. This study 

yields an accuracy of 91.2% for the AD/NC problem.  

Another technique that has been proposed was applying age-correction processing on the 

MRI images before extracting 2.5D patches which had to feed them in a 2D CNN (Lin et 
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al. 2018). We got inspired by this technique and we would like to try to provide the age 

of the patient as an extra feature in the HFO algorithm alongside the features extracted 

from the CNN in future studies. At the moment, no multi-input model was tested, which 

could potentially be consist of a Multi-Layer Perceptron (MLP) and a Convolutional 

Neural Network (CNN), but is highly suggested for future work. 

1.3 Automating Dementia Diagnosis with Hessian-Free Optimization 

(HFO) 

This thesis attempts to classify the two different categories: Alzheimer’s disease (AD), 

normal cognitive (NC), by using 2D slice-level and 3D subject-level MRIs as input in 

Convolutional neural networks (CNNs) combined with the Hessian-Free Optimization 

(HFO) (Wang et al. 2020). Additional experiments are going to be held with a dataset that 

contains the left hippocampal structure of patients provided by Achilleos et al. (2020). 

Also, a direct comparison between us and Achilleos et al. (2020) is going to be performed, 

by using the same dataset as them, with the 10 features extracted from the left 

hippocampal structure of AD and NC patients. The “AD/NC problem” in this thesis will 

be referred to as the classification between AD and NC; while the classification between 

AD, mild cognitive impairment (MCI), and NC will be called the “AD/MCI/NC 

problem”. The AD/MCI/NC problem is going to be approached by using 2D slice-level 

MRIs of AD, MCI, and NC patients, as input to CNNs with the HFO (Wang et al. 2020). 

The background of the methodology of this thesis is based on Martens (2010) and Martens 

and Sutskever (2012), about using deep learning with the Hessian-Free Optimization 

(HFO) algorithm. Martens (2010) used the HFO algorithm to train deep auto-encoders. 

As he described, on backpropagation-based algorithms, gradient descent (GD) is being 

used to train the weights of a network with multiple layers of non-linear hidden units. The 

problem with GD is that it does not seem to generalize well in networks with many hidden 

layers, such as deep neural networks, as it progresses extremely slow, resulting in poor 

performance on the training set (under-fitting). Also, GD is unsuitable for optimizing 

objectives that exhibit pathological curvature. Thus, second-order optimization methods, 

such as HFO, have proven to be more effective on such objectives as they model the local 

curvature and correct it. 
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Our focus will be on using deep learning networks, CNNs with the HFO algorithm to 

solve the AD/NC problem. The AD problem, which we are trying to solve, is expected to 

exhibit pathological curvature as it uses a deep neural network, CNN for feature 

extraction. Thus, given that we are expecting for the GD, a curvature-blind method, it 

would be hard for it to successfully navigate on the multidimensional error surface fast 

enough; we are going to use HFO, a second-order method, which models the local 

curvature. The main novelty of our project lies in the fact that to the best of our 

knowledge, the CNN with HFO has never been used for AD diagnosis through MRIs. 

The general aim of this project is to solve the AD and NC classification problem, by using 

state-of-the-art machine learning techniques such as CNNs and HFO. Moreover, the 

project aims to create the foundations, the relatively “best” dataset, and network 

configuration for future work, which will try to detect multiple forms of dementia such 

as Parkinson’s MCI, MCI-C, AD. In the meantime, we want our dataset to be as less 

edited as possible. In the best-case scenario, the MRI image of the MRI scanner to be able 

to be feed immediately on our network without any heavy preprocessing.  

Our goal is not to replace the radiologist, the specially trained doctor who reads and 

analyses MRI scans. We aim to assist radiologists, by providing an additional prediction 

to their existing methods to avoid false NC diagnosis, in case the disorders AD and MCI 

are not visible in an MRI scan. More specifically, the radiologists should be able to 

provide a 2D slice MRI or the unedited 3D T1-weighted MRI brain scan, of a patient who 

potentially suffers from AD or MCI, and receive a prediction whether the patient has AD, 

MCI, or is NC.  

It is worth mentioning, that most of the previous studies have tried to solve a simpler 

problem than the one we are trying to solve, as they have tried to classify categories such 

as AD + MCI/NC, AD/NC, MCI/NC, and AD/MCI which consist only of two target 

outputs. Only a few studies exist for classifying the combination of all three categories 

AD/MCI/NC, with the current highest accuracy at 89.1% (Hosseini-Asl et al. 2018). To 

achieve our objectives, we will examine the performance of different architectures for the 

deep neural network CNN, (deep, shallow, narrow, and wide CNNs, with Dropout, Batch 

Normalization, L1 & L2 Regularization) which is going to be responsible for the feature 

extraction of the MRI scan.  
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Most of our implementations, are using 2D CNNs with datasets of 2D slices of MRIs. 

The issue with the 2D slices is that the T1-weighted MRI images are 3D, so, we have to 

select correctly the 2D Coronal slice (e.g., the 3rd image of Figure 2.4) to be the input 

pattern. The signs of AD on MRI scans are more evident in the entorhinal cortex and 

hippocampus (Leandrou et al. 2018; Leandrou et al. 2020). Therefore, the best choice of 

a 2D MRI slice based on the existing literature would be one that includes the entorhinal 

cortex and hippocampus. 

An advantage of using 2D CNNs over 3D CNNs is that existing CNNs, which had huge 

success for natural image classification, such as ResNet and VGGNet can be borrowed 

and used in a transfer learning fashion. Additionally, another benefit of 2D CNN models, 

is that much less computing power is required than a 3D CNN to be trained.  

A disadvantage of using 2D slices of the MRI scans, as input in 2D CNNs, is that usually 

in studies they suffer from data leakage (information from outside the training dataset is 

used to create the model) (Wen et al. 2020). This means, that the 2D slices of the same 

MRI scan should only be used either in the training, validation, or test set. In this thesis, 

we will address this issue by using StratifiedKFold (Section 3.1.3) and 

StratifiedGroupKFold (Section 3.1.5) for the splitting of our datasets.  

A pitfall that is usually being observed in 2D and 3D CNN implementations for the 

AD/NC problem is that an imbalanced performance metric can be computed on a severely 

imbalanced dataset (one class is less than half of the other) (Jo et al. 2019). Usually, for 

the AD/NC problem, more NCs are available than ADs, which results in an imbalanced 

test set. This means that the performance metrics are not representative of the model’s 

actual performance. For example, if a test set contains 80% NCs and 20% ADs, a test 

accuracy for a model that always predicts NC would be 80%, which does not reflect a 

real-world test case scenario. To encounter this issue, we are going to use balanced 

training, validation, and tests, all three have an equal number of AD and NC patients; and 

additionally, other performance metrics such as sensitivity, specificity, PPV, and NPV 

are going to be tracked.  

Experiments with 3D CNNs are going to be performed as well in this thesis, which 

basically will receive as input the whole 3D T1-weighted MRI scan. We are going to 

shrink the 3D MRI scan, by taking the mean of each 4 × 4 × 4 block, due to lack of time 
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and resources. Additionally, 3D CNNs, are going to be used for the dataset with the Left 

Hippocampus (Achilleos et al. 2020). Finally, the dataset with the brains cropped in the 

section of the left hippocampus is going to be used for training 3D CNNs as well. 

Recently, due to the boost of high-performance computing resources, 3D CNN 

approaches have been used for the AD problem. Previously, 2D CNN approaches had 

been used (Wen et al. 2020), in which, the 2D slices have to be selected manually 

carefully to represent the portion of the brain that will show signs of AD or MCI. On the 

other hand, with the 3D CNNs, we can provide the whole 3D MRI of a patient, where the 

spatial information is fully integrated, and so we let the deep neural network freely decide 

which features are most important. Besides, the 3D CNN approach ( Hosseini-Asl et al. 

2018), seems very promising, for classifying the three stages of the disease AD/MCI/NC, 

as in previous studies achieved accuracy 89.1%, by using MRIs as an input to a Pretrained 

Generic Feature Extraction 3D-ACNN. We should keep in mind though that the risk of 

overfitting increases with this technique, as the size of our data set is limited by the 

number of 3D MRI images we have, where on the other hand with the 2D CNN we could 

provide multiple slices as different patterns of the same subject.  

To overcome this issue, we have to increase the size of the dataset, either by finding more 

patients or performing data augmentation. Due to a lack of time and processing power, 

data augmentation is not going to be performed in this thesis. Additionally, to avoid 

overfitting, we are going to use the early stopping method (Caruana et al. 2001), as we 

are going to compare the training and test error, end terminate the training just before the 

validation error starts increasing while the training error keeps decreasing. Different 

techniques to encounter overfitting will be applied in the network’s topology as well such 

as Dropout, Spatial Dropout, Batch Normalization, L1 & L2 Regularization, Weight 

Decay, and KFold Cross-validation.  

Both deep neural network implementations, 2D, and 3D CNNs are going to be tested with 

two different learning algorithms. The first implementation, our benchmark for both CNN 

architectures, will be a simple first-order method, the Adam (Kingma and Ba, 2014). The 

second implementation is going to be the NewtonCG/HFO, a second-order method, 

which we expect to perform better than the Adam for such a problem, with a 

multidimensional error surface (Martens, 2010; Martens and Sutskever, 2012). From 

experiments with the Hessian-Free Optimization of TensorFlow in the MNIST dataset, it 
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has been proven in practice that Hessian-Free Optimization with the Newton-Gaussian 

Matrix is much more stable, with fewer fluctuations, and needs less space than the 

Hessian-Free Optimization with the Hessian Matrix. Thus, with any reference in this 

thesis to the HFO or NewtonCG algorithm, we mean the Hessian-Free Optimization with 

the Newton-Gaussian Matrix. 

In theory, the combination of CNN and HFO seems easy but in reality, it is not. Stochastic 

Gradient Descent (SGD) (Krizhevsky et al. 2012) usually was used for deep learning. 

When Adam was released by Kingma and Ba (2014), who had shown that it performs 

very well with computer vision, it became the next standard for CNNs. Very complicated 

operations are required for implementing Newton methods with CNN. This combination 

of a CNN and HFO had been proved to be feasible since a study after they developed its 

theoretical implementation, they had also implemented it in just several hundred lines of 

code in MATLAB and Python (Wang et al. 2020). 

A combination of Feed-Forward Neural Networks (FFNNs) with the HFO algorithm, by 

Charalambous et al. (2020) has shown that this combination achieves accuracies 

comparable to some of the state-of-the-art methods, for the Protein Secondary Structure 

Prediction (PSSP) problem. Charalambous et al. (2020) proved the importance of the right 

choice of algorithms; a powerful second-order algorithm, such as HFO, with one of the 

simplest neural networks such as FFNN, can be powerful enough to be compared with 

other methods designed specifically for such a challenging problem as PSSP. Therefore, 

for the hippocampal features (Achilleos et al. 2020), the three optimizers: SGD, Adam, 

and HFO are going to be compared, using FFNNs. 

The combination of CNN with the HFO algorithm was attempted for the first time too by 

Leontiou et al. (2021) for a different problem, the PSSP problem. The authors could not 

use the original HFO algorithm, because of the complex CNN structure, so they used a 

variation, the Subsamples Hessian Newton (SHN). An advantage of the SHN method 

(Wang et al. 2020) was that it did not require much tuning of the hyperparameters which 

made their training process much faster than other state-of-the-art methods of the PSSP 

problem.  

Nine distinct datasets are going to be used for the 80 experiments that are going to be 

described in this thesis for both the AD/NC and AD/MCI/NC problems. The datasets for 
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the AD/NC problem are (1) Hippocampus Features – Multiple Scans per Patient 

(Achilleos et al. 2020), (2) Single 2D Slice per Scan – Single Scan per Patient, (3) Five 

2D Slices per Scan – Single Scan per Patient, (4) Single 2D Slice per Scan – Multiple 

Scans per Patient, (5) Seven 2D Slices per Scan – Multiple Scans per Patient, (6) 3D Left 

Hippocampus isolated from a Single Scan per Patient (Achilleos et al. 2020), (7) 3D 

Shrunk Brains – Single Scan per Patient, (8) 3D Brains Cropped containing the Left 

Hippocampus from a Single Scan per Patient; and for the AD/MCI/NC problem the 

dataset (9) 2D Slices per Scan – Multiple Scans per Patient. For all five 2D datasets, the 

slice refers to the Coronal slice of the MRIs.  
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2.1 Biological Background 

2.1.1 Brain and Hippocampus 

The brain and spinal cord make up the central nervous system. The brain consists of the 

cerebrum, cerebellum, and brainstem (Figure 2.1 Left). The cerebrum consists of two 

hemispheres with four lobes: frontal, parietal, temporal, and occipital (Figure 2.1 Right).  

 

Figure 2.1. The human brain. Left: cerebrum, cerebellum, and brain stem are indicated. 

Right: The frontal, temporal, parietal, and occipital lobes of the cerebrum are highlighted. 

The frontal lobe is responsible for higher intellect, personality, mood, social conduct, and 

language in the dominant hemisphere side only (Hoffmann, 2013). The parietal lobe 

controls the language, calculations on the dominant hemisphere side, and visuospatial 

function on the non-dominant hemisphere side (Brownsett and Wise, 2010). The occipital 
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lobe is mostly responsible for vision (Bender et al. 1957). The temporal lobe is 

responsible for memory, language, and hearing (Kiernan, 2012).  

In the temporal lobe, the hippocampus is located, which plays a major role in Alzheimer’s 

disease (Arvanitakis et al. 2019). Humans have two hippocampi, one at each side of the 

brain, and are part of the limbic system (Figure 2.2). The hippocampus plays a major role 

in the consolidation of information from short-term memory to long-term memory 

(Squire and Wixted, 2011). Additionally, the hippocampus is a key component for 

navigation and spatial memory (O’Keefe and Dostrovsky, 1971; O’Keefe and Recce, 

1993; Maguire et al. 2006).  

The brain regions which are initially affected by Alzheimer’s disease and other forms of 

dementia are the hippocampus and entorhinal cortex (Braak and Braak 1991; Frisoni et 

al. 2010). Neurodegeneration in the temporal lobe is visible in structural MRI and is 

commonly used to confirm the diagnosis of AD (Chandra et al 2019). 

 

Figure 2.2. Left & Right hippocampus (blue) in coronal, horizontal, and sagittal slices of a brain (Gerardin, 2012). 

2.1.2 T1-weighted MRI  

Magnetic resonance imaging (MRI) is a medical image that represents the anatomy and 

the physiological processes of the body. For generating images of the organs in the body, 

MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves 

(Figure 2.3). In this study, we are going to use T1-weighted MRI scans, which are 3D 

MRI images that show the anatomy of the brain. The precision may vary based on the 

scanner’s brand and its capabilities. 
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Figure 2.3. Brain MRI scanner with a patient and a doctor. 

Figure 2.4 shows the three different slices of an MRI scan. The first is the Sagittal slice, 

the second the Horizontal slice, and the third the Coronal slice of a 3D brain MRI scan of 

an NC patient. In the Sagittal slice (1st image), we can spot in the image the nose of the 

patient on the right side. In the Horizontal slice (2nd image), we can spot the two eyeballs 

of the patient at the bottom of the image. In the Coronal slice (3rd image), the ears of the 

patient can be spotted on the left and right sides. 

 

Figure 2.4. Slices of NC patient’s MRI scan. First: Sagittal Slice. Second: Horizontal Slice. Third: Coronal Slice 

2.1.3 Alzheimer’s Disease, Mild Cognitive Impairment, and Normal Cognitive 

Alzheimer’s disease (AD) is a neurodegenerative disorder with pathological hallmarks of 

β-amyloid plaques and neurofibrillary tangles (Braak and Braak 1991) and characteristic 

brain atrophy especially in the temporal lobes (Chandra et al 2019). Some characteristic 

symptoms are progressive loss of memory, language disorders, and disorientation. AD is 

the most common cause of dementia. At the early stages, the person may be forgetting 

recent events or conversations, while as the disease progresses, he might develop severe 

memory impairment and become unable to carry out everyday tasks (Arvanitakis et al. 

2019).  
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Mild cognitive impairment (MCI) is the decline in some cognitive functions, that is 

greater than expected by normal aging. MCI is characterized by problems with memory, 

language, thinking, or judgment, and might progress to become dementia, including AD 

(Arvanitakis et al. 2019). The cognitive decline in MCI is abnormal for an individual’s 

age and educational level but it does not meet the criteria to be diagnosed as AD (Petersen 

et al. 1997).  

Normal cognitive (NC) is any person with no neurological or psychiatric problem. The 

cognitive abilities of the person decline with normal aging (Arvanitakis et al. 2019).  

 

Figure 2.5. Comparison of the Hippocampus region from Coronal slices of the T1-weighted MRI of NC, MCI, and 

AD patients respectively. (Ahmed et al. 2017) 

Figure 2.5 shows Coronal slices of different patients’ T1-weighted MRI scans, with each 

one of them being in a different class; NC, MCI, and AD respectively. We can distinguish 

the differences between the three conditions by observing for example their hippocampus 

(zoomed part of the images). The hippocampal area of the NC patient is larger than the 

MCI, while the area of AD is even smaller than the MCI’s.   

2.1.4 Biological Neuron and Action Potential 

Our brain has 100 billion neurons approximately (Herculano-Houzel, 2012). Neurons or 

so-called biological neurons can be considered major information processing units 

because they encode and decode information. For example, when neurons receive a 

stimulus (input), they generate sharp electrical action potentials, “spikes”, across their 

cell membrane, which are being transmitted along the axon and synapses (output) to reach 

other neurons (Figure 2.6).  
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Figure 2.6. Biological neuron, which receives a single short electrical pulse, called “spike”, that flows from the 

dendrites (input) to axon terminals (output). (Prof. Loc Vu-Quoc, University of Florida, 2012) 

Action potentials are crucial for the neural code, i.e., ‘language’ by which neurons 

communicate in our nerve system (examples include Adrian and Zotterman (1926); Hubel 

and Wiesel (1959); Henry et al. (1974); Georgopoulos et al. (1982)). More specifically, 

an action potential occurs when the resting membrane potential of a neuron rapidly rises 

and falls. It propagates along neurons’ axons to reach the synaptic boutons where it can 

be transmitted to other neurons, motor cells, or glands. 

An input signal or multiple input signals can be summed in a neuron and increase its 

membrane potential. When the membrane potential is greater than a threshold, then the 

neuron fires and an action potential is being created inevitably (Figure 2.7).  

 

Figure 2.7. The shape of a typical action potential. 

Inspired by the biological characteristics of an action potential, artificial neurons (Section 

2.3.5) were created, which sum multiple inputs to produce an output based on an 

activation function, which can play the role of the threshold.   
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2.2 Mathematical Background 

2.2.1 Function 

A function 𝑓 is a process that associates each element of a set 𝑋 to a single element of a 

set 𝑌, 𝑓: 𝑋 → 𝑌. The 𝑋 and 𝑌 are respectively called the domain and subdomain of a 

function.   

2.2.2 Mathematical Optimization (minimization or maximization) 

An optimization problem consists of minimizing or maximizing a real function, by 

selecting the best element, with respect to some criterion, from the available set of values 

in the function’s domain.  

For example, given a function, 𝑓: 𝐴 → ℝ, from set 𝐴 to the real numbers, sought an 

element 𝑥0 ∈ 𝐴, such that for minimization 𝑓(𝑥0) ≤ 𝑓(𝑥), or for maximization 𝑓(𝑥0) ≥

𝑓(𝑥) for all 𝑥 ∈ 𝐴. 

2.2.3 Quadratic Form 

The quadratic form is a polynomial where all terms are of degree two. For example, the 

polynomial 5𝑥2 + 4𝑥𝑦 +  3𝑦2, is in quadratic form. 

2.2.4 Derivative / Finite Difference Method (FDM) 

The Finite Difference Method (FDM), or the so-called derivative of a function, is one of 

the methods used to solve differential equations that are very difficult or even impossible 

to solve analytically. Given a differentiable function 𝑓, its derivative at a point 𝑥 is: 

𝑓′(𝑥) =  lim
ℎ→0 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

2.2.5 Chain Rule 

The chain rule is a formula that calculates the derivatives of composite functions, which 

are functions that are composed of functions inside other functions. An example of a 

composite function is: 

𝑓(𝑥) = ℎ(𝑔(𝑥)) 

We use the chain rule to find the derivative of 𝑓(𝑥) that is equal to: 
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𝑑𝑓

𝑑𝑥
=

𝑑ℎ

𝑑𝑔
∙
𝑑𝑔

𝑑𝑥
 

For example, given a function 𝑓 that is composed of the nested functions 𝐴, 𝐵, and 𝐶: 

𝑓(𝑥) = 𝐴 (𝐵(𝐶(𝑥))) 

By applying the chain rule to the 𝑓 we get the derivative: 

𝑑𝑓

𝑑𝑥
=

𝑑𝐴

𝑑𝐵
∙
𝑑𝐵

𝑑𝐶
∙
𝑑𝐶

𝑑𝑥
 

In a different notation, the derivative of 𝑓 by using the chain rule is: 

𝑓′(𝑥) = 𝐴′(𝐵(𝐶(𝑥))) ∙ 𝐵′(𝐶(𝑥)) ∙ 𝐶′(𝑥) 

2.2.6 Gradient 

The gradient of a differentiable function 𝑓 is the vector field ∇𝑓 in which each point 𝑝 is 

the vector that represents the partial derivative of 𝑓 at 𝑝. Given 𝑓:ℝ𝑛 →  ℝ, its gradient  

∇𝑓: ℝ𝑛 → ℝ𝑛 is defined at the point 𝑥 = (𝑥1, … , 𝑥𝑛) as the vector: 

∇𝑓(𝑥) =  

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

(𝑥)

⋮
𝜕𝑓

𝜕𝑥𝑛
(𝑥)

]
 
 
 
 

 

2.2.7 Hessian Matrix 

The Hessian Matrix, in the case of Neural Networks, is a square matrix with the number 

of rows and columns equal to the total number of parameters in the Neural Network, 

which describes the local curvature of a multi-variable function. Each parameter is a 

second-order partial derivative of a scalar.  

𝐻(𝑒) =  

[
 
 
 
 
 
 
 

𝜕2𝑒

𝜕𝑤1
2

𝜕2𝑒

𝜕𝑤1𝜕𝑤2

𝜕2𝑒

𝜕𝑤2𝜕𝑤1

𝜕2𝑒

𝜕𝑤2
2

⋯

𝜕2𝑒

𝜕𝑤1𝜕𝑤𝑛

𝜕2𝑒

𝜕𝑤2𝜕𝑤𝑛

⋮ ⋱ ⋮
𝜕2𝑒

𝜕𝑤𝑛𝜕𝑤1

𝜕2𝑒

𝜕𝑤𝑛𝜕𝑤2

⋯
𝜕2𝑒

𝜕𝑤𝑛
2 ]
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2.2.8 Jacobian Matrix 

The Jacobian Matrix is the matrix of all first-order partial derivatives of a vector function. 

If the matrix is squared, its determinant is referred to as the Jacobian determinant. Given 

𝑓:ℝ𝑛 → ℝ𝑚, a function such that each first-order partial derivatives exists on ℝ𝑛. The 

function takes as input a point 𝑥 ∈ ℝ𝑛, produces as output the vector 𝑓(𝑥) ∈ ℝ𝑚. So, the 

Jacobian matrix 𝐽 of  𝑓, is the 𝑚 ×  𝑛 matrix in which each entry is 𝐽𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
. 

𝐽𝑓 = 

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

 
 
 
 

 

2.2.9 Convolution 

Convolution is the process of adding each element/pixel value of an image to its local 

neighbors, weighted by a filter. The filter is a matrix of values. To perform the 

Convolution, we slide the filter, usually from the top left corner, across the image. 

Afterward, we apply the Hadamard product between the two matrices, the filter, and the 

underlying image values.  

The Hadamard product (𝐴 ∘ 𝐵) takes as input two matrices of the same dimensions and 

produces a third matrix of the same dimensions as well, where each [i, j] value is the 

product between the [i, j] positions of the two input matrices. The sum of the values of 

the Hadamard product is the new value of the specific element of the image. For example, 

the following 3 × 3 matrix represents the values of the top left corner of an image.  

[
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] 

If we apply Convolution by using the following 3 × 3 matrix which represents our filter: 

[
1 2 3
4 5 6
7 8 9

] 

The value of the element at coordinates [2, 2], the central element of the top left corner 

of the input image will be:  
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∑([

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] ∘ [
1 2 3
4 5 6
7 8 9

])

𝑖𝑗𝑖𝑗

= 

(𝑎 ∗ 1) + (𝑏 ∗ 2) + (𝑐 ∗ 3) + (𝑑 ∗ 4) + (𝑒 ∗ 5) + (𝑓 ∗ 6) + (𝑔 ∗ 7) + (ℎ ∗ 8) + (𝑖 ∗ 9)  

2.2.10 Linear Separability 

Linear Separability in Euclidean geometry is a property of two sets of points, where the 

two sets are linearly separable if at least one line exists in the plane, in which all points 

of the first set are on the left of the line, and all the points of the second set are on the 

right of the line. In other words, at least a line should exist that perfectly separates the two 

sets into two subsets without having elements of one set in the group of the other (Figure 

2.8). Linear Separability generalizes to higher-dimensional Euclidean spaces, other than 

2-D if the line is replaced with a plane for 3-D and hyperplane for N-D.  

 

Figure 2.8. Left: Linearly Separable sets. Right: Non-linearly Separable sets. 

2.2.11 Heaviside Step Function 

Heaviside Step Function, 𝐻 (Figure 2.9) is a step function, the value of which is zero (0) 

for negative input and one (1) for positive input.  

𝐻(𝑥) =  {
 0, 𝑥 < 0
 1, 𝑥 ≥ 0

 

The Heaviside Step Function was used in the McCulloch & Pitts Model (Section 2.3.7) 

as an activation function (McCulloch and Pitts, 1943). 
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Figure 2.9. The Heaviside Step Function. Outputs 0 for negative inputs and 1 for positive inputs. 

2.2.12 Logistic/Sigmoid Function 

Logistic function or Logistic curve or Sigmoid function (Figure 2.10) is a common S-

shaped curve, with the equation: 

𝑓(𝑥) =  
𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)
 

The Sigmoid function is generally been used by neurons as a non-linear activation 

function in the back-propagation algorithm of Multi-Layer Perceptron (Section 2.3.9). 

The function is continuous, monotonically increases, and approaches asymptotes at both 

positive and negative infinity. It is extremely important for an effective learning law in 

the back-propagation algorithm that the Sigmoid function is differentiable. In 

contradiction with the Heaviside Step Function’s output (0 or 1), the Sigmoid function’s 

output (from 0 to 1) is more informative in terms of how close we are to the threshold, 

𝑓(0) = 0.5. 

 

Figure 2.10. Standard Logistic Sigmoid function with 𝐿 =  1, 𝑘 =  1, 𝑥0 =  0. Outputs a value between 0 and 1. 
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2.2.13 Rectified Linear Unit (ReLU) 

The Rectified Linear Unit (ReLU) (Figure 2.11) is usually being used as an activation 

function in Artificial Neural Networks (Section 2.3.6). It is defined as the positive value 

of its input. For each 𝑥 being the input of a neuron the output results from the following 

equation: 

𝑓(𝑥) = max (0, 𝑥) 

ReLU was first demonstrated to enable better training of deep neural networks in 

comparison to other widely used activation functions such as the Logistic/Sigmoid or 

Hyperbolic Tangent (Glorot et al. 2010). Some of its applications are in computer vision, 

speech recognition using deep neural networks, and computational neuroscience. 

 

Figure 2.11. ReLU activation function. For negative inputs, it returns 0, otherwise, it returns the input. 

2.2.14 SoftMax Function 

SoftMax function or so-called SoftArgMax function is a generalization of the 

Logistic/Sigmoid function to multiple dimensions. It is usually being used as the last 

activation function of a neural network to normalize the output of a network to the 

probability distribution of the output classes.   

SoftMax takes as input a vector x of 𝑛 real numbers and normalizes it into a probability 

distribution to the exponentials of the input numbers. Therefore, the vector can have 

negative values or greater than one, but after applying softmax they will be in the interval 

(0, 1) and they will sum to 1 as well. The equation of SoftMax is: 

𝜎(𝑥)𝑖 = 
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑛
𝑗=1

 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 𝑎𝑛𝑑 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 
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For example, given an input array: 

𝑎𝑟𝑟 =  [−2, 1, 5, 0] 

the output of the SoftMax function will be: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑟𝑟) = [0.0009, 0.0179, 0.9747, 0.0066] 

where the values are normalized between 0 and 1. Also, the sum of SoftMax’s outputs is 

approximately equal to 1: 

0.0009 +  0.0179 +  0.9747 +  0.0066 = ~1 

2.2.15 ArgMax Function 

Given an input vector, the ArgMax function returns the index of the element with the 

maximum value. It is frequently used in the output layer of the neural networks, to identify 

which class has the highest probability, therefore, the network predicted matches best the 

given input to the network. For example, given as input to the ArgMax function the 

vector: 

𝑥 = ([1, 2, 3, 100, 4, 5]) 

the output will be: 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑥) = [0, 0, 0, 1, 0, 0] = 4 

where 4 represents that the 4th element is the largest in 𝑥. Another example, if we give to 

ArgMax the input array:  

𝑎𝑟𝑟 =  [−2, 1, 5, 0] 

the same as in the SoftMax (Section 2.2.15), the output of the ArgMax will be: 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑎𝑟𝑟) = [0, 0, 1, 0] = 3 

2.2.16 Maximum & Minimum 

Maximum and Minimum are respectively the largest and the smallest value of a function. 

For a given range, the largest and smallest value of a function is called local maximum 

and minimum, otherwise, for function’s entire domain is called global maximum and 

minimum.  
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2.2.17 Mean 

Mean, also known as average is the central value of a finite set. It is the sum of the set’s 

values divided by the set’s length.   

2.3 Artificial Neural Networks Background 

2.3.1 Linear Regression 

Linear regression is a machine learning model where the relationship between 

independent variables x, and dependent variables y, is linear. This means that it predicts 

a line, an output that is continuous and has a constant slope (Figure 2.12). The line can be 

modeled by using the linear equation: 

𝑦 = 𝛼𝑥 + 𝛽 

Therefore, in such a case we are searching for the values of α and β. Mostly, is being used 

for predicting values within a continuous range rather than classification. For example, 

given the same facial characteristics of a person to predict his age.  

 

Figure 2.12. Linear Regression model. Red dot: Data. Blue Line: Best fit a straight line on the given data. 

The two main types of regression are simple regression and multivariable regression. In 

this thesis, we are going to use classification (Section 2.3.2) instead of regression since 

we want to identify the exact class [AD, MCI, NC] which the patience fits better based 

on his T1-weighted MRI scan.    
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2.3.2 Classification  

Classification is the process of predicting a categorical output. For example, given an 

email, predict whether the email is spam or not. This is an example of Binary 

classification since it predicts one of two possible outcomes. Consequently, if I have to 

predict one of the multiple possible outcomes, we call it Multi-class classification (Figure 

2.13). An example of Multi-class classification is this thesis, which tries to predict the 

class of an MRI scan from the three possible classes [AD, MCI, NC]. 

 

Figure 2.13. Left: Binary classification, classifying the two classes ('o's & 'x's) 

Right: Multi-class classification, classifying the three classes ('o's, 'x's, & triangles) 

2.3.3 Cost/Loss Function 

The cost function or so-called loss function is being regularly used for weight 

optimization in ANNs (Sections 2.3.8). In general, loss functions measure how far an 

estimated value is from its true value. We are converting a learning problem into an 

optimization problem, where the goal is to minimize the loss function by optimizing the 

algorithm and consequently improve the accuracy of the model.  

2.3.4 Mean Squared Error (MSE) Loss 

An example of a lost function (Section 2.3.3) that is mostly used in regression problems 

(Section 2.3.1) is the Mean Squared Error (MSE) which measures the average squared 

difference between a target and a real output value of the network. The loss is always 

positive regardless of the sign of the predicted and actual values. A perfect model should 

have an MSE loss equal to 0. The MSE loss is not sensitive towards the outliers therefore 

is good to use it when the dataset contains only a small Gaussian noise, however, the 

model is inaccurate when the data contain outliers (Liano, 1996). This could be an issue 
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since most of our experiments use MSE loss and no outliers had been removed from our 

datasets. 

2.3.5 Cross-entropy Loss 

Another example of a loss function (Section 2.3.3) that is frequently used mostly for 

classification problems (Section 2.3.2) is the Cross-entropy. More specifically, Cross-

entropy measures the performance of a classification model whose output is a value 

between 0 and 1. The loss of Cross-entropy increases as the predicted probability diverges 

from the actual label. For example, if the predicting probability is 0.023, and the actual 

label is 1, then this would result in a high loss value. The perfect model should have a 

perfect Cross-entropy loss equal to 0.  

2.3.6 Supervised Learning 

In a supervised learning algorithm, the training set consists of the training examples and 

the target outputs. The algorithm needs to learn a function that maps the input to the 

output based on input-output pairs. The goal is to predict the output of inputs that are not 

part of the training set, thus the algorithm had never seen them before.  

The simplest form of such an algorithm is linear regression (Section 2.3.1). In linear 

regression, the algorithm tries to approximate a line that predicts a y value given as input 

an x value. Another supervised learning model is classification (Section 2.3.2) where it 

separates the inputs into two or more distinct classes.  

2.3.7 Artificial Neuron 

The artificial neurons, inspired by the biological neurons (Section 2.1.4), are a 

representation of a mathematical function (Section 2.2.1). They are the elementary units 

of an ANN (Section 2.3.8). Each input of the artificial neuron usually is weighted and the 

sum passes through an activation function. 

2.3.8 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) or Neural Networks (NNs) are networks of artificial 

neurons (Section 2.3.7) that are inspired by biological neural networks of animal and 

human brains. ANNs have usually the form of a graph, where each vertex is an artificial 
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neuron, that represents a biological neuron, and the edges of the graph represent the 

synapses.  

Usually, each artificial neuron can receive a signal, process it, and send the signal to 

adjacent neurons. The edges can be directional or not, and are typically weighted, which 

value can be increased or decreased. Typically, the neurons are aggregated into layers, 

and the signal travels from the first layer (input layers) to the last layer (output layer). 

Also, the layers between the input and output layers are usually called the hidden layers. 

When an ANN has multiple hidden layers, the is frequently called Deep Neural Network 

(DNN). Different layers can apply different transformations to their inputs.  

2.3.9 McCulloch and Pitts (MCP) 

2.3.9.1 Introduction to MCP 

The McCulloch & Pitts model is a single artificial neuron model (Section 2.3.8) that is 

being used for supervised learning (Section 2.3.6) of binary classifiers. In other words, 

the MCP model is a binary threshold unit that receives multiple weighted inputs and a 

bias, uses the step function (Section 2.2.11) as its activation function (Section 2.3.11.3), 

and generates outputs either 0 or 1 (Figure 2.14). The model was inspired by the biological 

neurons (Section 2.1.4) but cannot be considered biologically realistic. This model is 

limited to only linearly separable problems (Section 2.2.10). (McCulloch and Pitts, 1943) 

 

Figure 2.14. A McCulloch & Pitts neuron. Takes as input a vector of size n. The weight 𝑤0 represents the bias. The 

weighted sum passes through the step function (activation function) and produces the output, which is either 0 or 1. 

<https://deepai.org/> 
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2.3.9.2 Mathematics of MCP 

Let’s assume 𝑋 is the input vector and 𝑊 is the vector of the weights, both of size 𝑛. The 

weighted sum is the dot product between the two vectors: 

𝑋 ∙ 𝑊 = ∑𝑋𝑖𝑊𝑖

𝑛

𝑖=1

 

Afterward, we pass as input the weighted sum into the Heaviside Step Function 

(Threshold Function), which returns 0 if the weighted sum was less than 0, otherwise 

returns 1. This is the output of the MCP neuron with 𝑊 weights, given 𝑋 as input.  

2.3.10 Perceptron 

Perceptron is an algorithm for supervised learning (Section 2.3.6) broadly used as a binary 

classifier, to identify whether an input vector belongs to a specific class. Perceptron is a 

single-layer feedforward network of MCP neurons (Section 2.3.9). The Perceptron 

learning algorithm is being used for training an MCP neuron but is limited to only linearly 

separable problems (Section 2.2.10). Let’s assume the Perceptron takes as input a vector 

of size N, the process is as follows:  

1. Randomly initialize N weights to small values close to 0.  

2. Multiply the input vector with the weights to produce a weighted sum.  

3. Apply the weighted sum to the activation function, to produce Perceptron’s 

output. A simple activation function that is frequently being used for Perceptron 

is the Heaviside Step Function (Section 2.2.11) which takes as input the weighted 

sum and returns 0 if the sum is less than zero, otherwise returns 1. 

4. Given the target output, since it is supervised learning, and the real output from 

step 3; adapt the weights based on the following rules: 

a. If the target output is the same as the real output, then the weights remain 

the same. 

b. If the target output is 1 and the real output is 0, then add to the weights the 

input vector multiplied by a scalar (learning rate). 

c. If the target output is 0 and the real output is 1, then subtract from the 

weights the input vector multiplied by a scalar (learning rate). 
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The weight adaption process transforms the decision line which separates the two classes. 

A bias can also be used to move the decision line vertically. 

2.3.11 Multi-Layer Perceptron (MLP) 

2.3.11.1 Introduction to MLP 

Multi-Layer Perceptron is a type of feed-forward ANN (Section 2.3.10). Feed-forward 

means that the flow goes in a single direction from the input layer to the output layer and 

not the other way (Figure 2.15). MLPs are usually referred to as “vanilla” Neural 

Networks. MLPs consist of at least three layers of nodes; an input layer, one or two hidden 

layers, and an output layer. MLP implements backpropagation (Section 2.3.11.5), a 

supervised learning technique that is being used during training.  

 

Figure 2.15. Multi-Layer Perceptron (MLP) with 3 layers with McCulloch & Pitts (MCP) neurons (two hidden, and 

an output layer). The input layer does not contain any neurons. 

The issue with the Perceptron unit is that it is not able to work for non-linearly separable 

problems (Section 2.2.10). MLP on the other hand, due to its multiple layers and non-

linear activation function (Section 2.3.11), can distinguish data that are not linearly 

separable. An example of a non-linearly separable problem is the XOR, which cannot be 

solved by using Perceptron (Figure 2.16).  
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Figure 2.16. Left: ‘OR’ linearly separable problem. Right: ‘XOR’, non-linearly separable problem 

2.3.11.2 Architecture 

MLP is a feedforward, usually, fully-connected, network which consists of multiple 

layers of MCP neurons. The input layer does not consist of MCP neurons, it just provides 

the input to the hidden layers of the network. The nodes of the hidden and output layers 

are MCP neurons (Section 2.3.9) that use a nonlinear activation function such as Sigmoid 

(Section 2.2.12). Three layers of Perceptron units (2 hidden & 1 output layer), can form 

arbitrary complex shapes, that are capable of separating any classes (Figure 2.17). Thus, 

based on Kolmogorov Theorem, no more than three layers are needed in an MLP network. 

(Lippmann, 1987). That is why MLPs are called universal approximations since they can 

approximate any function that we require (Csáji et al. 2001).  

 

Figure 2.17. Three types of Multi-Layer Perceptron (MLP) and the different types of Decision Regions they create. 

Single-Layer or Perceptron: Solves only Linearly Separable problems. Creates Decision Lines/Planes/Hyperplanes. 

Two-Layer: Solves Non-linearly Separable problems. Constructs Convex Regions. Three-Layer: Separates any 

classes. Any Arbitrary Convex Region. <https://www.verypossible.com/insights/machine-learning-algorithms-what-

is-a-neural-network> 
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2.3.11.3 Activation Function 

Activation functions are being used in nodes of ANN (Section 2.3.8) to define the output 

of each node given an input. One of the simplest forms of binary activation functions, that 

is being used for Perceptron (Section 2.3.10), is the Heaviside Step Function (Section 

2.2.11) which outputs 1 if the input is greater than zero, otherwise outputs 0. Another 

example of an activation function is the Sigmoid/Logistic (Section 2.2.12), which is 

frequently being used in MLPs (Section 2.3.11). The most frequently used activation 

functions can be divided into three categories: ridge functions, radial functions, and fold 

functions.   

Ridge functions act on a linear combination of the input variables since they are 

multivariate functions. The most frequently used ridge functions are Linear, ReLU, 

Heaviside, and Sigmoid/Logistic. The activation function is a simplified abstract 

representation of action potential in biological neurons (Section 2.1.4). The Heaviside 

Step Function (Section 2.2.11) represents a biological neuron that is firing or not. The 

Linear function with its positive slope reflects the increase in firing rate when input 

current increases. The Rectified Linear Unit (ReLU) (Section 2.2.13) simulates the 

biological neurons that cannot lower their firing rate below zero.  Last but not least, 

Sigmoid (Section 2.2.12) imitates the neurons that cannot fire faster than a certain rate 

due to their refractory period.  

Radial activation functions are also known are radial basis functions (RBFs) and are being 

used in RBF networks. RBF networks are extremely capable of function approximation. 

Some of these activation functions are the Gaussian, Multiquadratics, and Polyharmonical 

Splines.   

Folding activation functions are often used in the pooling layers of Convolutional Neural 

Networks (CNN). These types of functions perform an aggregation over the inputs. 

Examples of Folding activation functions are the Mean (section 2.2.17), Minimum or 

Maximum (Section 2.2.16), and SoftMax (Section 2.2.14).  

2.3.11.4 Forward Propagation 

In forward propagation, the input data given to a network, are propagated forward through 

the network until the final layer where it outputs the prediction.  
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Figure 2.18. Two-layer network with a single neuron per layer. 

Given a simple two-layer neural network with a single hidden neuron and a single output 

neuron (Figure 2.18), the outcome of a forward propagation for an input 𝑋, and an 

activation function 𝐴 (ReLU, Sigmoid, etc.), would be: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐴(𝐴(𝑋𝑊ℎ)𝑊𝑜) 

Pseudocode for the forward propagation algorithm for the neural network in Figure 2.19 

follows in Code Snippet 2.1. 

# Forward propagation algorithm 

 

def relu(z): 

    return max(0,z) 

 

def feed_forward(x, Wh, Wo): 

    # Hidden layer 

    Zh = x * Wh 

    H = relu(Zh) 

 

    # Output layer 

    Zo = H * Wo 

    output = relu(Zo) 

    return output 

 

Code Snippet 2.1. Forward propagation of a two-layer network with a single neuron per layer. 

2.3.11.5 Backpropagation 

In backpropagation, each weight of the networks is being adjusted based on how much it 

contributes to the overall error. Backpropagation is needed to propagate back the error 

inside the network to be able to adjust the weights of the hidden layers. This the algorithm 

that enabled us to solve non-linearly separable problems (Sectopm 2.2.10) by using MLPs 

(Section 2.3.11), a major limitation that the Perceptron algorithm had (Section 2.3.10). 

Since forward propagation is a long series of nested equations, backpropagation is merely 

an application of chain rule (Section 2.2.5) to find derivatives (Section 2.2.4) of cost with 

respect to any variable in the nested equation. Given 𝑥 the network’s inputs, and 𝐴, 𝐵, 𝐶 
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the activation functions in three different layers, the forward propagation function would 

be: 

𝑓(𝑥) = 𝐴 (𝐵(𝐶(𝑥))) 

Using the chain rule, the derivative 𝑓’(𝑥) of 𝑓(𝑥) for 𝑥 is: 

𝑓′(𝑥) = 𝑓′(𝐴) ∙ 𝐴′(𝐵) ∙ 𝐵′(𝐶) ∙ 𝐶′(𝑥) 

For example, to find the derivative of B, we pretend that 𝐵(𝐶(𝑥)) is a constant, we replace 

it with a placeholder variable 𝑏, and proceed to find the derivative with respect to 𝑏: 

𝑓′(𝑏) = 𝑓′(𝐴) ∙ 𝐴′(𝑏) 

We can use the chain rule to calculate the derivative of cost for any weight in the network, 

where the chain rule will identify how much each weight contributes to the overall error, 

and in which direction to update each weight to reduce the error. Given the weighted input 

𝑍, the ReLU activation 𝑅, and the cost function 𝐶: 

𝑍 = 𝑋𝑊 

𝑅 = max(0, 𝑍) 

𝐶 = 
1

2
(�̂� − 𝑦)2 

Their derivatives are: 

𝑍′(𝑋) = 𝑊,  𝑍′(𝑊) = 𝑋 

𝑅′(𝑍) = {
0 𝑍 < 0
1 𝑍 > 0

} 

𝐶′(�̂�) = (�̂� − 𝑦) 

The �̂� represents the predicted output of the network while the 𝑦 is the target/actual 

output. The cost of a network with a single neuron can be calculated by using: 

𝐶𝑜𝑠𝑡 = 𝐶(𝑅(𝑍(𝑋𝑊))) 

Figure 2.19 shows the two weighted inputs in the hidden and output layer, given as input 

to the neural network the value 𝑋. The 𝑍ℎ and 𝑍𝑜 represent the inputs of the hidden and 

output layer respectively. 
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Figure 2.19. Calculating the weighted input of the two-layer network with a single neuron on each layer. 

The derivative of the cost with respect to weight W can be calculated by using the chain 

rule: 

𝐶′(𝑊) = 𝐶′(𝑅) ∙ 𝑅′(𝑍) ∙ 𝑍′(𝑊) = (�̂� − 𝑦) ∙ 𝑅′(𝑍) ∙ 𝑋 

Given a neural network with a single hidden and a single output layer (Figure 2.19), the 

derivative of the cost with respect to 𝑊𝑜 is: 

𝐶′(𝑊𝑜) = 𝐶′(�̂�) ∙ �̂�′(𝑍𝑜) ∙ 𝑍′
𝑜(𝑊𝑜) = (�̂� − 𝑦) ∙ 𝑅′(𝑍𝑜) ∙ 𝐻 

To find the derivative of the cost with respect to 𝑊ℎ, we have to apply the chain rule 

recursively: 

𝐶′(𝑊ℎ) = 𝐶′(�̂�) ∙ 𝑂′(𝑍𝑜) ∙ 𝑍′
𝑜(𝐻) ∙ 𝐻′(𝑍ℎ) ∙ 𝑍′

ℎ(𝑊ℎ)

=  (�̂� − 𝑦) ∙ 𝑅′(𝑍𝑜) ∙ 𝑊𝑜 ∙ 𝑅′(𝑍ℎ) ∙ 𝑋 

The layer error is the derivative cost with respect to a layer’s input. To calculate the output 

layer error 𝐸𝑜, we need to find the derivative of cost with respect to the output layer’s 

input, 𝑍𝑜. 

𝐸𝑜 = 𝐶′(𝑍𝑜) = (�̂� − 𝑦) ∙ 𝑅′(𝑍𝑜) 

To calculate hidden’s layer error 𝐸ℎ, we need to find the derivative of cost with respect 

to hidden layer input, 𝑍ℎ . 

𝐸ℎ = 𝐶′(𝑍ℎ) = (�̂� − 𝑦) ∙ 𝑅′(𝑍𝑜) ∙ 𝑊𝑜 ∙ 𝑅′(𝑍ℎ)  

So by replacing 𝐸𝑜 we get: 

𝐸ℎ = 𝐸𝑜 ∙ 𝑊𝑜 ∙ 𝑅′(𝑍ℎ) 

This is the core of the backpropagation algorithm. The error of the current layer is being 

calculated, and the weighted error is being based on the previous layer, continuing the 
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process until we arrive at the first hidden layer. Along the way, we update the weights 

using the derivative of cost with respect to each weight.  

The formula for the derivative of cost with respect to the output layer weight 𝑊𝑜, by 

replacing 𝐸𝑜 becomes: 

𝐶′(𝑊𝑜) = 𝐸𝑜 ∙ 𝐻 

Consequently, to find the derivative of cost with respect to any weight in the network, the 

following equation can be used: 

𝐶′(𝑤) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑦𝑒𝑟𝐸𝑟𝑟𝑜𝑟 ∙ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑦𝑒𝑟𝐼𝑛𝑝𝑢𝑡 

Figure 2.20 visualizes step by step the backpropagation algorithm of a network with two 

layers and a single neuron per layer. 

 

Figure 2.20. Visualization of the backpropagation process. 

The Code Snippet 2.2 is the backpropagation algorithm applied in the network of Figure 

2.20, which has two layers, a hidden and an output layer, with a single neuron each. 

# Backpropagation algorithm 

 

def relu_prime(z): 

    if z > 0: 

        return 1 

    return 0 

 

def cost(yHat, y): 

    return 0.5 * (yHat - y)**2 

 

def cost_prime(yHat, y): 

    return yHat - y 

 

def backprop(x, y, Wh, Wo, lr): 

    yHat = feed_forward(x, Wh, Wo) 

 

    # Layer Error 

    Eo = (yHat - y) * relu_prime(Zo) 

    Eh = Eo * Wo * relu_prime(Zh) 

 



35 

 

    # Cost derivative for weights 

    dWo = Eo * H 

    dWh = Eh * x 

 

    # Update weights 

    Wh -= lr * dWh 

    Wo -= lr * dWo 

 

Code Snippet 2.2. Backpropagation algorithm for a two-layer network with a single neuron per layer 

2.3.12 Convolutional Neural Network (CNN) 

2.3.12.1 Introduction to CNN 

Convolutional Neural Networks (CNNs / ConvNets) are very similar to Neural Networks 

since they consist of neurons with adjustable weights and biases. They process data that 

come in the form of arrays. For example, a grayscale image is composed of a 2D array of 

integers between 0 and 255. More specifically, they are specialized in feature extraction 

from multidimensional arrays: 1D for sounds, or language processing, 2D for images, and 

3D for videos, or volumetric images such as the T1-weighted MRIs (LeCun et. al. 2015).  

Some applications of CNNs are image and video recognition, image classification, image 

segmentation, medical image analysis, natural language processing recommender 

systems, and time series. CNNs were inspired by biological processes and the 

connectivity patterns between biological neurons of the cat’s virtual cortex. Each cortical 

neuron responds to a stimulus only in a restricted region of the visual field. For example, 

some cortical neurons are responsible to recognize moving lines of specific rotation and 

direction (LeCun et al. 1998).   

CNNs are a variation of MLPs (Section 2.3.11), which means are fully connected 

networks, such as each neuron in one layer is connected to all neurons of the next layer. 

Overfitting (Section 2.3.13.1) may occur because CNNs are fully connected. As a result, 

regularization techniques (Section 2.3.13.2) such as data augmentation (Section 2.3.13.5), 

dropout (Section 2.3.13.9), and early stopping (Section 2.3.13.12) are being used to 

prevent this. The CNN detects features, such as straight and diagonal lines from the input 

image, assembles them, to create more complex feature detectors that can recognize more 

complicated structures such as faces, birds, clothes, cars, figures, etc. (LeCun et. al. 2015). 

The four main key ideas behind CNNs are the local connections, the shared weights, the 

pooling, and the use of many layers. Unlike MLPs, more layers for CNN imply better 

performance (LeCun et. al. 2015).    
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2.3.12.2 Architecture 

The architecture of the CNNs I am going to mostly use in this thesis consists of two main 

components. The first component performs feature extraction in the input array. The first 

component is responsible for feature extraction and is composed of two types of layers; 

the Convolutional Layers (Section 2.3.12.4) and the Pooling/Sub-sampling Layers 

(Section 2.3.12.5). The second component performs the classification, and it is a fully 

connected network which usually is an MLP (Section 2.3.11) (Figure 2.21).    

 

Figure 2.21. Example of Convolutional Neural Network (CNN) architecture with the Convolutional Layers, 

Pooling/Sub-sampling Layers and A Fully Connected MLP 

2.3.12.3 Filter/Kernel 

The filter, kernel, Convolution matrix, or mask is a matrix that is being used in image 

processing for blurring, sharpening, embossing, edge detection, and more. To achieve 

these results, you must apply Convolution (Section 2.2.9) between a filter and an image.  

An example of a filter that detects the edges of an image and is being frequently used for 

image processing is the Laplacian 3×3 Edge Detection filter. The filter is a 3×3 matrix 

of integers with the following values: 

[
−1 −1 −1
−1    8 −1
−1 −1 −1

] 

Figure 2.22 is an example of an application of the Laplacian 3×3 Edge Detection filter. 

Given the image (left) of a butterfly, it generated a grayscale image (right) which 

enhances the edges of the image. 
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Figure 2.22. Left: An image of a butterfly. Right: The application of Convolution between the Laplacian 3x3 Edge 

Detection filter and the image on the left. <https://softwarebydefault.com/tag/laplacian-of-gaussian/> 

2.3.12.4 Convolutional Layers 

In general, a Convolutional Layer, as its name implies, applies Convolution (Section 

2.2.9) to the input and passes its result to the next layer. More specifically, a 

Convolutional Layer consists of units that are organized in feature maps. A kernel/filter 

is a set of weights that connects each one of the units with local receptive fields/image 

patches in the feature maps of the previous layer. The results of the weighted sum, 

between the image patches and the filters, pass through a non-linearity such as Rectified 

Linear Unit (ReLU) (Section 2.2.13) (LeCun et. al. 2015). 

All units of a feature map share the same filter (weight sharing), and different feature 

maps in a layer corresponding to different filters. This is required since a feature could be 

anywhere across the entire image. For example, if a feature detector, searches for a bird’s 

beak, by using weight sharing in that filter, we can discover the beak, even if it is in the 

right bottom, top left, the center, or anywhere else in that image. This filtering operation 

that is performed by a feature map mathematically represents a discrete Convolution, 

hence the name (LeCun et. al. 2015) (Figure 2.23).  

 

Figure 2.23.  Convolutional Layer process in CNN. Convolution, the dot product of two matrices: an image patch 

and the filter/kernel. (Ph.D. Student Ahh Reynolds, Northwestern University, 2019) 
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2.3.12.5 Max-Pooling 

Max-Pooling is the most common type of pooling applied in the pooling layers of a CNN. 

It reduces the dimensions of the data, by selecting the maximum value of an 𝑛 × 𝑛 tile of 

the previous layer to be the input in the next layer in a 2D CNN. Usually, 2 × 2 tiles are 

being used in 2D CNNs (Figure 2.24) or 2 × 2 × 2 blocks in 3D CNNs. An alternative 

type of pooling is the average pooling which takes the average of an 𝑛 × 𝑛 tile. 

 

Figure 2.24. Max-Pooling with a tile size of 2x2.  

Left: Output of the previous layer. Right: Input to the next layer after applying Max-Pooling. 

2.3.12.6 Stride 

Stride is used during Convolution (Section 2.3.12.4) and Max-Pooling (Section 2.3.12.5). 

For the Convolution, the Stride controls how the filter convolves around the input volume. 

For stride equal to 1, the filter shifts 1 pixel horizontally or vertically per filter application 

in the input volume. Given an input volume of size 𝑛 × 𝑛 , a size of kernel/filter 𝑘 × 𝑘, 

and a stride 𝑠, results in an output volume of size: 

[(𝑛 − 𝑘 + 𝑠)/𝑠] × [(𝑛 − 𝑘 + 𝑠)/s] 

For the input volume of size 7 × 7 and a kernel 3 × 3, the size of the output volume will 

be 5 × 5 (Figure 2.25). 

 

Figure 2.25. Convolution of a 3 x 3 filter with stride = 1. 
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If the stride was equal to 2, on each filter application the filter would shift by 2 pixels 

horizontally or vertically. Given an input volume of size 7 × 7, results in an output 

volume of size 3 × 3 (Figure 2.26). 

 

Figure 2.26. Convolution of a 3 x 3 filter with stride = 2. 

In terms of the value of the stride during Max-Pooling, usually, it is equal to 2, Therefore 

the 2 × 2 filter shifts 2 pixels horizontally or vertically (Figure 2.27).  In the experiments 

of this thesis, the stride for the Convolution that is going to be used will be equal to 1, 

and for the Max-Pooling equal to 2. 

 

Figure 2.27. Max-Pooling with stride = 2. 

2.3.12.7 Padding 

During Convolution (Section 2.3.12.4), the application of filters with stride = 1 causes 

the image to lose its perimeter because the size of the image is reduced from 𝑛 × 𝑛 to 

(𝑛 − 2) × (𝑛 − 2).  Therefore, a few pixels are lost on each Convolutional Layer, but 

this adds up as we apply many successive Convolutional Layers. A solution to this issue 

is to apply padding the perimeter with 0s before applying the Convolution (Figure 2.28). 
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Figure 2.28. Padding of 0s applied before Convolution. 

2.3.12.8 Forward Propagation in CNNs 

The forward propagation between the fully connected layer, the Convolutional Layers, 

and the Max-Pooling layers, works slightly differently. For the fully connected layers, the 

forward propagation remains the same as in a simple MLP (Section 2.3.11.4). Therefore, 

now we are going to focus on the forward propagation of the Convolutional and Max-

Pooling layers.   

2.3.12.8.1 Forward Propagation in Convolutional Layers 

Suppose we have an 𝑁 × 𝑁 input layer that is followed by a Convolutional Layer. Given 

an 𝑚 × 𝑚 filter 𝑤, the output of the Convolutional Layer before applying any 0s padding 

would be (𝑁 − 𝑚 + 1) × (𝑁 − 𝑚 + 1). To compute some unit 𝑥𝑖𝑗
𝑙  in the new layer 𝑙, we 

sum up the contributions weighted by the filter’s components of the previous layer 𝑙 − 1: 

𝑥𝑖𝑗
𝑙 = ∑ ∑ 𝑤𝑎𝑏𝑦(𝑖+𝑎)(𝑗+𝑏)

𝑙−1

𝑚−1

𝑏=0

𝑚−1

𝑎=0

 

Then we apply the nonlinearity/activation function σ in the Convolutional Layer: 

𝑦𝑖𝑗
𝑙 = 𝜎(𝑥𝑖𝑗

𝑙 ) 

2.3.12.8.2 Forward Propagation in Max-Pooling Layers 

The Max-Pooling layers are very simple since they take some region 𝑘 × 𝑘, and the output 

a single value, the maximum of that region. If the stride is equal to 𝑘, given an input layer 

𝑁 × 𝑁, the output will be an 
𝑁

𝑘
×

𝑁

𝑘
 layer. 



41 

 

2.3.12.9 Backpropagation in CNNs 

For the backpropagation in CNNs, there are two types of updates performed in the 

Convolutional Layers, for the weights and the deltas.  

2.3.12.9.1 Backpropagation in Convolutional Layers 

Given an error function 𝐸, and we know the error values at the Convolutional Layer, 

therefore the partial derivative with respect or each neuron output: 

𝜕𝐸

𝜕𝑦𝑖𝑗
𝑙  

To figure out what the gradient component is for each weight, we can apply the chain rule 

(Section 2.2.5), which will sum the contributions of all expressions in which the variable 

occurs.  

𝜕𝐸

𝜕𝑤𝑎𝑏
= ∑ ∑

𝜕𝐸

𝜕𝑥𝑖𝑗
𝑙

𝜕𝑥𝑖𝑗
𝑙

𝜕𝑤𝑎𝑏

𝑁−𝑚

𝑗=0

𝑁−𝑚

𝑖=0

= ∑ ∑
𝜕𝐸

𝜕𝑥𝑖𝑗
𝑙 𝑦(𝑖+𝑎)(𝑗+𝑏)

𝑙−1

𝑁−𝑚

𝑗=0

𝑁−𝑚

𝑖=0

 

We sum overall 𝑥𝑖𝑗
𝑙  expressions in which 𝑤𝑎𝑏 occurs. This corresponds to the weight-

sharing in the Convolutional neural networks. We knew from forwarding propagation 

that: 

𝜕𝑥𝑖𝑗
𝑙

𝜕𝑤𝑎𝑏
= 𝑦(𝑖+𝑎)(𝑗+𝑏)

𝑙−1  

To compute the gradient, we need to know the deltas: 

𝛿𝑖,𝑗
𝑙 =

𝜕𝐸

𝜕𝑥𝑖𝑗
𝑙  

which are fairly straightforward to be computed, by using the chain rule again and the 

derivative of the activation function 𝜎: 

𝜕𝐸

𝜕𝑥𝑖𝑗
𝑙 =

𝜕𝐸

𝜕𝑦𝑖𝑗
𝑙

𝜕𝑦𝑖𝑗
𝑙

𝜕𝑥𝑖𝑗
𝑙 =

𝜕𝐸

𝜕𝑦𝑖𝑗
𝑙

𝜕

𝜕𝑥𝑖𝑗
𝑙 (𝜎(𝑥𝑖𝑗

𝑙 )) =  
𝜕𝐸

𝜕𝑦𝑖𝑗
𝑙 𝜎′(𝑥𝑖𝑗

𝑙 ) 

We also need to propagate the errors back to the previous layers to compute the weights 

for this Convolutional Layer, so we apply once more the chain rule.  
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𝜕𝐸

𝜕𝑦𝑖𝑗
𝑙 = ∑ ∑

𝜕𝐸

𝜕𝑥(𝑖−𝑎)(𝑗−𝑏)
𝑙

𝜕𝑥(𝑖−𝑎)(𝑗−𝑏)
𝑙

𝜕𝑦𝑖𝑗
𝑙

𝑚−1

𝑏=0

𝑚−1

𝑎=0

= ∑ ∑
𝜕𝐸

𝜕𝑥(𝑖−𝑎)(𝑗−𝑏)
𝑙 𝑤𝑎𝑏

𝑚−1

𝑏=0

𝑚−1

𝑎=0

 

2.3.12.9.2 Backpropagation in Max-Pooling Layers 

The Max-Pooling layers do not provide any learning, since they just introduce sparseness. 

In forward propagation, 𝑘 × 𝑘 blocks are reducing to a single value. From the 

backpropagation of the next Convolutional Layer, the single value acquires an error, and 

that error is propagated back to the  𝑘 × 𝑘 block where it came from.  

2.3.12.10 Types of Convolution 

Based on the input data of a CNN for a certain problem, the type of Convolution applied 

changes accordingly. Some CNN architectures, frequently used in machine learning are 

1D CNNs, 2D CNNs, and 3D CNNs. These architectures apply respectively 1D, 2D, and 

3D Convolutions in their Convolutional Layers.  

2.3.12.10.1 Convolution Type: 1D Convolutions 

1D Convolutions are used on sequence datasets and can be used to extract local 1D 

subsequences from input sequences and identify local patterns within the window of the 

Convolution (Figure 2.29). An example of usage is in Natural Language Processing 

(NLP) where every sentence is represented as a sequence of words. No dataset in this 

thesis will use 1D Convolutions. 

 

Figure 2.29. Example of 1D Convolution 
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2.3.12.10.2 Convolution Type: 2D Convolutions 

2D Convolutions are mostly used on image datasets. The filter moves in 2-dimensions, 

horizontally and vertically to calculate the dimensional features from the image data. The 

output feature map is still a 2D matrix (Figure 2.30). For the 2D slice-level Brain MRI 

scans in this thesis, 2D CNNs network architectures with 2D Convolutions applied are 

going to be used.  

 

Figure 2.30. Example of 2D Convolution 

2.3.12.10.3 Convolution Type: 3D Convolutions 

3D Convolutions apply a 3-dimensional filter to the dataset and the filter moves in 3 

directions to calculate the feature representations. The output feature map is a 3D matrix 

as well (Figure 2.31). They are helpful in event detection in videos, 3D medical images, 

etc. In this thesis, for the 3D subject-level Brain MRI scans, and the 3D Left Hippocampus 

dataset, network architectures with 3D Convolutions are going to be used.  

 

Figure 2.31. Example of 3D Convolution with a 3x3 filter (orange), and stride = 1. 
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2.3.13 Overfitting / Regularization  

2.3.13.1 Overfitting 

Overfitting in neural networks is the lack of the network’s ability to predict inputs that 

had never been seen before. That is to say, the network learns extremely well its training 

set throughout the training process, and as a result, it fails to generalize. This implies 

much poorer accuracy while predicting future observations, than the accuracy levels 

performed during fitting.    

2.3.13.2 Regularization Techniques 

Several techniques are available to find overfitting during the training process of a CNN. 

Those techniques are so-called regularization techniques and are combating overfitting to 

improve models' performance on unseen data. As a result, the model generalizes better 

and achieves better accuracies during testing. 

Some of them are Cross-validation, train with more data, remove features, change the 

dataset, data augmentation, L1 & L2 Regularization, Dropout, Spatial Dropout, early 

stopping, use a shuffled and balanced dataset, use different activation functions, and batch 

normalization. In this thesis, most of these techniques will be tested in practice to compare 

their performance results.  

2.3.13.3 Cross-validation (CV) 

Cross-validation (CV) is one of the strongest allies against overfitting. It allows us to tune 

the hyperparameters with the whole initial dataset. That means, that we do not need to 

separate the set into a test and training set, which will make us lose a percentage of the 

initial set just for testing. We can use k-fold CV (Section 3.1.2), which splits the dataset 

into k-folds, and utilizes efficiently all the data in the initial dataset since all of them will 

be used as part of the training set.  

A relatively bad decision we made on this thesis, was to isolate some data for the test set 

and then use the rest of the data for the CV. There is no real benefit from doing this since 

we just lost the benefits of CV against overfitting because that data could be used for our 

training process since the initial dataset was already too small. In future work, I highly 

suggest using a 5-fold CV and initially do not isolate data for the testing. 
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2.3.13.4 Number of Samples 

Increase the number of samples in the original dataset, and make sure that the data are not 

noisy. In this thesis, we did not isolate the outliers which is a potentially major drawback 

for us, since the MSE loss function used is not as sensitive as other loss functions to 

outliers (Liano 1996).  

We tried to increase the number of samples by using multiple scans of different periods 

of the same patient, or multiple slices of the same 3D MRI scan. An assumption could be 

made that this decision could encourage the model to overfit instead of preventing it since 

the model can learn explicitly unique features of a specific patient (e.g., the shape of the 

brain). For example, if ten scans were used from the same patient, and 7 different slices 

per scan as input, those sum up in total to 70 samples of 2D MRIs from the same patient. 

In the case that this patient has a unique feature such as a smaller right hemisphere, this 

could potentially harm the training process and therefore increase overfitting.     

2.3.13.5 Data Augmentation 

Having more training data increases the performance of the ML model. To obtain those 

data is being proven an extremely difficult task, especially for medical images, since the 

data have to be labeled as well. Data augmentation is a regularization technique that helps 

to reduce the aforementioned problem by generating new training data from the given 

original dataset. It increases the amount of training data, cheaply and easily. Examples of 

data augmentation on images are horizontal/vertical shifting and flipping, random 

rotation, zoom, changing the brightness, adding noise, etc. (Figure 2.32).   

 

Figure 2.32. Data augmentation techniques of a 2D slice of a brain MRI scan. (Nalepa et al. 2019) 

Unfortunately, due to the lack of time in this thesis, data augmentation was not tested in 

practice. This technique should be really helpful since the size, rotation, and brightness 

between scans are usually different. Only flipping the image should not be helpful in the 

case of MRI scans. 
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2.3.13.6 Different Datasets 

Changing completely the dataset at some point may be the only solution against 

overfitting. If a lot of regularization techniques against overfitting do not show any 

improvement then maybe the initial data used are not the appropriate ones for the 

problem. In our case, maybe more detailed scans are needed, or a dataset with the original 

dimensions of the T1-weighted MRI brain scans, or a different perspective for the 2D 

slices such as the Horizontal or Sagittal slice instead of the Coronal.  

2.3.13.7 L1 & L2 Regularization 

Regularization aims to reduce the complexity of a model by adding a penalty term to the 

loss function. Two common techniques of regularization are being used L1 & L2 which 

can either be used separately or together (Andrew, 2004). In this thesis, both of these 

techniques were applied (L2 alone, L1 & L2) with no major improvements.  

The L1 (Lasso Regression) penalty aims to minimize the absolute value of the weights 

(Figure 2.33). The L1 helps to generate a model that is simple and interpretable and is 

robust to outliers. In general, L1 shrinks the less important feature’s coefficient to zero, 

thus it is good for feature selection.  

 

Figure 2.33. Loss/Cost function with L1 applied (yellow highlighted term). For λ = 0, it is like not using L1. 

The L2 (Ridge Regression) penalty aims to minimize the square magnitude of the weights 

(Figure 2.34). The L2 can learn complex data patterns but is not robust to outliers. 

Usually, L2 is a better choice than L1 regularization since it is better to learn inherent 

patterns present in complex data. L1 on the other hand is robust to outliers.  

 

Figure 2.34. Loss/Cost function with L2 applied (yellow highlighted term). For λ = 0, it is like not using L2. 
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In Code Snippet 2.3, kernel regularizer applies a penalty on the layer’s kernel/filter, bias 

regularizer, applies a penalty on the layer’s bias, and activity regularizer applies a penalty 

on the layer’s output.  

import tensorflow.compat.v1 as tf 

. . .  

tf.keras.layers.Conv2D( 

            filters=32, 

            kernel_size=[3, 3], 

            padding='SAME', 

            activation=tf.nn.relu, 

            kernel_regularizer=tf.keras.regularizers.l1_l2(l1=1e-5, l2=1e-4), 

            bias_regularizer=tf.keras.regularizers.l2(1e-4), 

            activity_regularizer=tf.keras.regularizers.l2(1e-5) 

            ) 

. . .  

 

Code Snippet 2.3. L1 and L2 regularization in a Convolutional Layer. λ = 1e-4 for L1, λ = 1e-5 for L2. 

2.3.13.8 Weight Decay (C) 

After calculating the loss function, to penalize complexity, we could add to all weights 

the loss function, but this would not work because some weights are negative and others 

are positive. We could add the square of all weights, but this might result in a huge loss 

and the best model would be the one with all the weights being equal to 0.  

A solution to this problem is the weight decay or so-called in Wang et al. (2020) the 

regularization parameter C. We are using the term C in this thesis in most of the 

experiments with CNNs since the implementations are based on Wang et al. (2020). We 

multiply the sum of the squares with C, the weight decay to avoid the situation where the 

loss gets too large. The loss function when using MSE loss, as we do in most of our 

experiments, is equal to: 

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸(�̂�, 𝑦) + 𝐶 ∙ ∑𝑤𝑖
2

𝑖

 

Generally, values of C such as C = 0.1, or C = 0.01 works pretty well. It is worth 

mentioning that weight decay is not the same as L2 Regularization. For the two of them 

to be the same, the SGD optimizer should be used, and the learning rate to be equal to 1. 

Then the regularization term C for the weight decay is the same as the L2 regularization 

term, and so their effects are the same. In the case of Adam, AdaGrad, etc. optimizers the 

learning rate is adaptive, thus, the effect of the two regularization methods is different. 
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Usually, Adam performs poorly when L2 Regularization is used compare to SGD, while 

the weight decay performs equally well on both SGD and Adam.  

2.3.13.9 Dropout 

Dropout is a regularization technique that prevents overfitting as well. Is a frequently used 

regularization technique, especially in deep neural networks. It reduces overfitting by 

preventing complex co-adaptions on training data. Unlike L1 and L2 which are modifying 

the loss function, dropout modifies the network itself. It normally drops neurons from the 

neural network during training based on a probability (Srivastava et. al. 2014) (Figure 

2.35). Code Snippet 2.4 shows an example of the Dropout layer used in this thesis. 

import tensorflow.compat.v1 as tf 

. . . 

tf.keras.layers.Dropout(0.3) 

. . . 

 

Code Snippet 2.4. Dropout layer with drop rate = 0.3. 

Therefore, the contribution of those neurons during the forward pass (Section 2.3.12.8) is 

removed and any weight updates are not being applied to them during the backward pass 

(Section 2.3.12.9). This means that on each iteration, different neurons are trained which 

helps to reduce overfitting. Dropout was applied in most of the implementations and it 

helped significantly the reduction of overfitting.  

 

Figure 2.35. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by 

applying dropout to the network on the left. Crossed units have been dropped. (Srivastava et. al. 2014) 
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2.3.13.10 Spatial Dropout 

Spatial Dropout works similarly to normal Dropout but in CNNs is preferable. The reason 

is that Dropout drops individual elements while Spatial Dropout drops entire 2D feature 

maps (Figure 2.36). The feature map is the output of one filter applied to the previous 

layer. This is preferable because if adjacent pixels within a feature map are strongly 

correlated, then regular Dropout will not recognize the activation and will otherwise just 

result in an effective learning rate decrease. In such a case, Spatial Dropout provides 

independence between feature maps (Tompson et al. 2015).  

import tensorflow.compat.v1 as tf 

. . . 

tf.keras.layers.SpatialDropout2D(0.5) 

. . . 

 

Code Snippet 2.5. Spatial Dropout layer with drop rate = 0.5. 

Spatial Dropout was applied in some of the experiments with the 2D Brain scans by using 

the code in Code Snippet 2.5. Anyhow, no major improvements were reported against the 

Dropout.  

 

Figure 2.36. Left: Dropout drops randomly individual elements of each feature in the feature map. 

Right: Spatial Dropout, drops the entire 2nd feature of the 4 features of the feature map. 

2.3.13.11 Batch Normalization  

Neural networks with multiple Convolutional Layers are sensitive to the initial random 

weights. The distribution of the inputs to layers deep in the network may change after 

each mini-batch when the weights are updated, and this can cause the algorithm to forever 

chase a moving target. The change of inputs distribution to layers in a network is referred 

to as “internal covariate shift” (Ioffe and Szegedy, 2015).  



50 

 

Batch normalization is a technique that standardizes the input to a layer for each mini-

batch, which stabilizes the learning process and reduces the number of training epochs 

required, and additionally reduces overfitting. Standardizing means that the data are 

rescaled to have a mean of zero and a standard deviation of one (whitening). 

Batch normalization was tested on some experiments of this thesis but was not being 

utilized the most. In Code Snippet 2.6 we can see an example of a BatchNormalization 

layer for a CNN from the scikit-learn’s library. In future work, batch normalization should 

be applied before each Convolutional Layer and not just in the last layer.   

import tensorflow.compat.v1 as tf 

. . . 

tf.keras.layers.BatchNormalization() 

. . . 

 

Code Snippet 2.6. Batch normalization layer. 

2.3.13.12 Early Stopping 

The training time of the model does not always improve the accuracy of the model. It 

may seem that the training accuracy increases but in reality, usually the test accuracy at 

some point starts to decrease. This means that the model overfits the training set. 

Early stopping is a technique where you stop training just before the validation loss starts 

increasing while the training loss keeps decreasing. In such a case, if you do not do so, 

the training loss will continue to decrease while the generalization error will increase. 

 

Figure 2.37. Early stopping example. The early stop training process at epoch 6, 

before validation loss starts increasing while training loss keeps decreasing  
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As shown in Figure 2.37, we should stop the training process just before the validation 

accuracy starts increasing. Consequently, early stopping is the method in which the 

training process is stopped when the accuracy of the model on the validation dataset starts 

to degrade. In all the experiments of this thesis, early stopping was used. Instead of saving 

the weights of the model in the last iteration, the model with the best validation accuracy 

was saved, which was the model just before overfitting.  

2.3.13.13 Shuffled & Balanced Dataset 

The datasets should be shuffled and balanced to avoid overfitting into one class. For 

example, if a dataset contains 50 ADs and 50 NCs, it is a mistake for the network to see 

first all the ADs and then all the NCs. This will destroy the learning of the ADs samples; 

therefore, the datasets have to be shuffled.   

The dataset should be balanced, i.e., the training test and validation sets should have an 

equal number of samples for each class. Imagine a scenario wherein in a validation set 

there are 80 NCs and 20 ADs, and a model cannot recognize ADs. Therefore, the 

validation accuracy would be 80% since it correctly detects all the NCs but no ADs. Does 

this mean that our model is great? Not at all, in reality, it performs very badly. That is 

why the datasets need to be balanced and other metrics such as sensitivity and specificity 

should be taken into account to ensure that something like this will not happen.  

2.3.13.14 Network Topology 

Another way to reduce overfitting is by modifying the network’s topology by decreasing 

the complexity of the model. We can do this by removing layers or reduce the number of 

feature maps in the case of CNNs. Usually, deep and narrow CNNs are preferred 

(Krizhevsky et al. 2012). Several experiments were performed in this thesis with different 

network topologies to fight against overfitting (Section 4.3).  

2.4 Optimizers Background 

2.4.1 Optimizers 

During the training process, an algorithm tweaks and optimizes the weights of the model, 

to make the predictions more correct and accurate. The algorithm, which is responsible 

for when and by how much to update the weights, is called an optimizer. Optimizers 
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update the weights based on the output of the loss function. In other words, the loss 

function is the terrain that notifies the optimizer whether it is moving in the right or wrong 

direction towards the minimum. Examples of optimizers are SGD, AdaGrad, Adam, 

RMSProp, Newton's Method, etc.  

2.4.2 Gradient Descent (GD) 

Gradient Descent (GD) is the simplest algorithm for minimizing differentiable functions 

(Rumelhart et al. 1986). The gradient of a function is defined as the vector of its partial 

derivatives. As the gradient of a function always moves toward the maximum point, if we 

take any point and keep moving to the negative of the gradient, we will reach a local or 

global minimum. As we only use the first derivatives of the function in the gradient 

descent, this method is being called the first-order method. We can imagine this method 

not having any problems in a plane, but usually, on our problems the error surface is 

multidimensional and, in those cases, the curvature of the surface may cause our training 

to progress very slowly.   

 

Figure 2.38. Gradient Descent algorithm in an error surface moving towards the global minimum. 

In an analogy, in Figure 2.38 the dot represents the optimizer algorithm, and the path 

taken down the hills represents the sequence of parameter settings that the algorithm 

explored. The hills represent the error surface, wherewith red being the largest error and 

blue the smallest. The steepness of the hill represents the slope of the error surface at that 

point. To measure the steepness we use differentiation, by taking the derivative of the 

squared error function at that point. The direction the algorithm chooses to travel aligns 
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with the gradient, which is a vector whose components are the partial derivatives of the 

error surface at that point. The step size is the amount of time the algorithm travels before 

taking another measurement.  

2.4.2.1 Mathematics behind GD 

Consider 𝑓 a differentiable function which we want to find the minimum. In the case of 

NN, the differentiable function is the loss function (Section 2.3.3). We differentiate the 

function with respect to the network weights 𝑥, we obtain a vector of partial derivatives 

or a gradient vector: 

∇𝑓(𝑥) =  〈
𝛿𝑓

𝛿𝑥1
,

𝛿𝑓

𝛿𝑥2
, … ,

𝛿𝑓

𝛿𝑥𝑛
〉. 

Since we want to minimize the function and the gradient always pointing the direction of 

the maximum growth, we take the negative of the gradient (−∇𝑓(𝑥)). 

2.4.2.2 GD Algorithm 

1. Initialize randomly the weights 𝑥0. 

2. Calculate the gradient ∇𝑓(𝑥𝑖). 

3. Update the parameters in the direction of the negative gradient: 𝑥𝑖+1 = 𝑥𝑖 −

𝑎∇𝑓(𝑥𝑖), where 𝑎 is the learning rate.  

4. Repeat from step 2 until the gradient is close to zero. 

2.4.3 Stochastic Gradient Descent (SGD) 

Stochastic Gradient Descent (SGD), selects a few samples randomly, or so-called batches, 

instead of the whole dataset for each iteration as Gradient Descent (Section 2.4.2) does. 

Batches are useful when the dataset is large, but using the whole dataset is preferable for 

getting to the minima less noisy or randomly (Robbins and Monro, 1951).  

In SGD usually, momentum is being used (Rumelhard et al. 1986). Momentum helps to 

increase the speed of training since the momentum will produce large changes in the 

weights if the changes are currently large, and will decrease as the changes become less. 

The method remembers the update 𝛥𝑤 of the weights at each iteration and determines the 

next update as a linear combination of the gradient and the previous update. 
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More specifically, the term 𝛼𝛥𝑤 is added also when updating a weight, where 0 < 𝛼 < 1 

is the momentum term and 𝛥𝑤 = 𝑤(𝑡) − 𝑤(𝑡 − 1), the difference between the weight's 

current value and in the previous iteration.  

2.4.4 Adaptive Moment Estimation (Adam) 

Adaptive Moment Estimation (Adam) is a stochastic gradient-based optimizer that was 

proposed by Kingma and Ba, (2014). Adam combines ideas from both RMSprop (Hinton 

et al. 2012) and AdaGrad (Duchi et al. 2011). The algorithm is computationally efficient 

and has few memory requirements (Kingma and Ba, 2014). The optimizer computes 

adaptive learning rates for each parameter and uses momentum as well. In contrast, the 

SGD keeps a maintained learning rate for all the weight updates and does not change 

during training. 

From the AdaGrad, Adam takes the feature of maintaining a per-parameter learning rate, 

that improves the performance with sparse gradients (e.g., computer vision problems). 

Similarly, RMSprop maintains per-parameter learning rates, which are also adapted based 

on the average of recent magnitudes of the gradient for the weight. This means that it 

controls how quickly the gradient is changing, and therefore the algorithm does well on 

online and noisy problems. 

Adam, instead of adapting the parameter learning rates based on the average first moment 

(mean) as in RMSprop, makes use of the average of the second moments of the gradients 

(uncentered variance) as well. More specifically, Adam calculates an exponential moving 

average of the gradient and squared gradient. The parameters beta1 (β1) and beta2 (β2) 

control the decay rates of these moving averages. The initial values of the two betas are 

usually to be close to 1 (beta1 = 0.9, beta2 = 0.999), which results in a bias of moment 

estimates towards zero. 

Momentum was already explained in Section 2.4.3, so now we are going to see what the 

adaptive learning rate is. The adjustment to the learning rate in the training phase by 

reducing the learning rate to a pre-defined schedule is called the adaptive learning rate. 

This means that unlike in SGD where the learning rate is defined initially and remains 

stable throughout the training process, in Adam the learning rate changes during training. 

Figure 2.39 is the Adam optimizer algorithm pseudocode as defined in Kingma and Ba’s 

(2014) study.  
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Figure 2.39. Adam algorithm for stochastic optimization (Kingma and Ba, 2014) 

Kingma and Ba (2014) have shown in their paper that Adam performs better than 

AdaGrad, RMSProp, SGDNesterov, and AdaDelta, other frequently used optimizers, for 

the MNIST dataset. Also, they have shown that Adam with and without Dropout, 

outperforms AdaGrad and SGDNesterov in the CIFAR-10 dataset by using CNNs (Figure 

2.40). This shows that the Adap optimizer is potentially more efficient than the other 

aforementioned optimizers in the deep Convolutional neural networks and large datasets. 

Therefore, in this thesis, the Adam optimizer is going to be used for performance 

comparison with the HFO optimizer (Section 2.4.7).    

 

Figure 2.40. Convolutional neural networks training loss with CIFAR-10 dataset. 

Left: Training costs for the first three epochs. Right: Training costs over 45 epochs. (Kingma and Ba, 2014) 
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2.4.5 Newton’s Method 

To encounter the problem of the Gradient Descent which is slow in multi-dimensional 

error surfaces, we can use the second derivative of a function. The most basic method of 

a second-order method for minimization is Newton’s Method.  

2.4.5.1 One Dimension 

For some function 𝑓:ℝ → ℝ, we want to find the zero of its derivatives, as we know that 

𝑓′(𝑥) = 0 at the minimum of 𝑓(𝑥). We can approximate then 𝑓 with a second-order 

Taylor expansion about some point 𝑥𝑜: 

𝑓(𝑥𝑜 + 𝑥) ≈ 𝑓(𝑥𝑜) + 𝑓′(𝑥𝑜)𝑥 +  𝑓′′(𝑥𝑜)
𝑥2

2
. 

Then, we would like to choose a 𝑥, so that the 𝑓(𝑥𝑜 + 𝑥) is a minimum. To do that, we 

take the derivative of this expansion with respect to 𝑥 and we set it to zero having the 

following equations:  

𝑑

𝑑𝑥
((𝑥𝑜 + 𝑥) ≈ 𝑓(𝑥𝑜) + 𝑓′(𝑥𝑜)𝑥 +  𝑓′′(𝑥𝑜)

𝑥2

2
) =  𝑓′(𝑥𝑜) +  𝑓′′(𝑥𝑜)𝑥 = 0 ⟹ 𝑥 = 

𝑓′(𝑥𝑜)

𝑓′′(𝑥𝑜)
 

Consider 𝑓 a quadratic function, the aforementioned equation would the absolute 

minimum. As we would like 𝑓 to be any non-linear function, to get the minimum we need 

to repeat this process, starting from a guess 𝑥𝑜, and then get closer and closer with the 

update rule: 

𝑥𝑛+1 = 𝑥𝑛 − 
𝑓′(𝑥𝑜)

𝑓′′(𝑥𝑜)
 =  𝑥𝑛 − (𝑓′′(𝑥𝑛))−1𝑓′(𝑥𝑛). 

2.4.5.2 Multiple Dimensions 

The algorithm above works only for a single dimension, so, in the case that our function 

is 𝑓:ℝ𝑛 → ℝ, we can do the same derivation but replace the derivatives and the second 

derivatives with Gradients (Section 2.2.6) and Hessians (matrix of second derivatives) 

(Section 2.2.7) respectively: 

𝑓′(𝑥)  →  ∇𝑓(𝑥)  

𝑓′′(𝑥) → 𝐻(𝑓)(𝑥). 

Thus, the new update rule, which commonly referred to as Newton’s method is: 
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𝑥𝑛+1 = 𝑥𝑛 − (𝐻(𝑓)(𝑥𝑛))−1∇𝑓(𝑥𝑛). 

2.4.5.3 Problems with Newton’s Method 

As Newton’s Method is a second-order algorithm we may assume that theoretically 

performs better than the simpler Gradient Descent (Section 2.4.2). If the function is 

quadratic and its second-order expansion is a good approximation, we can assume that a 

single step advances towards the global minimum instead of just a minimum. This allows 

it to make big steps in high-curvature scenarios and small steps in low-curvature scenarios 

(where 𝑓′′(𝑥𝑛) is small). Where in Gradient Descent the direction we move is towards the 

negative of the gradient (−∇𝑓(𝑥𝑛)).  

The huge drawback of Newton’s Method is that it needs to calculate the Hessian matrix 

𝐻 (Section 2.2.7). In a neural network, backpropagation can be used to compute the 

Gradient (Section 2.2.6) but not the Hessian. This means that we need a completely 

different algorithm which makes the whole procedure more complicated. Moreover, for 

𝑛 dimensions, since the Hessian is an 𝑛 ×  𝑛, requires 𝑂(𝑛2) storage space and 

computation to find it.  

The Hessian-Free Optimization (HFO) addresses both those issues. We use the insights 

from Newton’s method but come up with a better way to minimize the quadratic function. 

Given our function 𝑓, we approximate it with a second-order Taylor expansion: 

  𝑓(𝑥 + 𝛥𝑥) ≈ 𝑓(𝑥) + ∇𝑓(𝑥)𝑇𝛥𝑥 + 𝛥𝑥𝑇𝐻(𝑓)𝛥𝑥. 

To find the best 𝛥𝑥, we find the minimum of this approximation by moving to 𝑥 + 𝛥𝑥 

and we iterate until we have convergence. To find the minimum of this quadratic function, 

we will use an iterative method called Conjugate Gradient (CG).  

2.4.6 Conjugate Gradient (CG) 

Gradient Descent (GD), first evaluates the negative gradient of the cost function 𝑑 =

−∇𝑓(𝑥𝑖), then performs a line search in the direction of 𝑑 with a step size 𝑎 (learning 

rate) and updates the parameters using 𝑥𝑖+1 = 𝑥𝑖 + 𝑎∇𝑓(𝑥𝑖). The Conjugate Gradient 

(CG) is one of many speed-up methods to the basic GC algorithm. CG is a method for 

minimizing a quadratic function, in which any new direction that is being selected for 

navigating towards the minimum, has to be conjugated to all previous directions, in order 
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not to cancel out previous work. An advantage of CG is that it guarantees convergence in 

𝑛 steps, where 𝑛 are the parameters of the quadratic function we are trying to minimize. 

As illustrated in Figure 2.41, the GD’s updates are orthogonal, whereas CG finds a much 

better direction towards the minimum.   

 

Figure 2.41. Gradient Descent (Blue Line) and Conjugate Gradient (Green Line) converge into a minimum. Note that 

the first steps are the same, but the following updates of the conjugate gradient are much better. (Kuusela et al. 2009) 

2.4.6.1 Mathematics behind CG  

Suppose we have  𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛, 𝑏, 𝑐 ∈ ℝ𝑛 and the quadratic function: 

𝑓(𝑥) =  
1

2
𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐. 

We can write any quadratic function in this form, as this generates all the coefficients 

𝑥𝑖𝑥𝑗, linear and constant terms. We assume that 𝐴 = 𝐴𝑇, since A is symmetric and from 

the gradient of 𝑓we obtain: 

∇𝑓(𝑥) = 𝐴𝑥 + 𝑏. 

Now, in any given location, −∇𝑓 gives us the direction of the steepest descent. In GD at 

this point, you use a learning rate α to move in a direction. In CD we do not have a fixed 

step size α, instead, we perform a line search to find the best α. By computing α is 

equivalent to minimizing the function: 

𝑔(𝑎) = 𝑓(𝑥0 + 𝛼𝑑0).  

Since 𝑔(𝑎) is a quadratic function in α, it has a unique global minimum or maximum. We 

assume that it has a minimum (we can assure that by using the Gauss-Newton Matrix 
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(Section 2.4.9.2)) since we are not at a saddle point or the minimum of 𝑓. For 𝑔′(𝑎) = 0 

we get the minimum, that is when: 

𝑔′(𝑎) = (𝑑𝑖
𝑇𝐴𝑑𝑖)𝑎 + 𝑑𝑖

𝑇(𝐴𝑥𝑖 + 𝑏) = 0 ⟹ 𝑎 =  −
𝑑𝑖

𝑇(𝐴𝑥𝑖 + 𝑏)

𝑑𝑖
𝑇𝐴𝑑𝑖

 

These steps give us our second point of the iterative algorithm: 

𝑥1 = 𝑥0 − 𝛼∇𝑓(𝑥0). 

At this point, with GD we would iterate this procedure, computing the gradient at each 

next point moving in that direction. However, there is a problem; by moving 𝑎0 

indirection 𝑑0 (to find the minimum in the direction 𝑑0) and then moving 𝑎1 indirection 

𝑑1, a chance exists of ruining our work from the previous iteration, and no longer be at a 

minimum in the direction 𝑑0. Thus, the directions need to be conjugated to one another, 

to rectify this. To achieve this, we need a scalar value 𝛽, that helps find the next direction 

𝑑1 which is going to be conjugate to the first direction 𝑑0.  

For some semi-definite matrix, 𝐴, we define two vectors 𝑥 and 𝑦, if 𝑥𝑇𝐴𝑦 = 0. Since we 

have already moved in the  𝑑0 = −∇𝑓(𝑥0) direction, we must find a 𝑑1 conjugate to 𝑑0. 

To do this, by starting with the gradient 𝑥1, we compute: 

𝑑1 = −∇𝑓(𝑥1) + 𝛽0𝑑0. 

From the definition of conjugacy, since 𝑑0 and 𝑑1 must be conjugate, we know that 

𝑑1
𝑇𝐴𝑑0 = 0, thus, we can derive 𝛽0: 

𝛽0 = 
∇𝑓(𝑥1)

𝑇𝐴𝑑0

𝑑0
𝑇𝐴𝑑0

. 

2.4.6.2 CG Algorithm 

Let 𝑓 a quadratic function 𝑓(𝑥) =  
1

2
𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐 which we wish to minimize.  

1. Initialize randomly the weights 𝑥0 and compute 𝑑0 = −∇𝑓(𝑥0). 

2. Find the best step size α to minimize the function 𝑓(𝑥𝑖 + 𝛼𝑑𝑖) by using the 

equation  𝑎 =  −
𝑑𝑖

𝑇(𝐴𝑥𝑖+𝑏)

𝑑𝑖
𝑇𝐴𝑑𝑖

. 

3. Update the current guess:  𝑥𝑖+1 = 𝑥𝑖 − 𝑎𝑑𝑖 



60 

 

4. Update the direction: 𝑑𝑖+1 = −∇𝑓(𝑥𝑖+1) + 𝛽𝑖𝑑𝑖 where 𝛽𝑖 = 
∇𝑓(𝑥𝑖+1)𝑇𝐴𝑑𝑖

𝑑𝑖
𝑇𝐴𝑑𝑖

  

5. Repeat from step 2 until we have looked in 𝑛 directions, where 𝑛 is the dimension 

of 𝑥. 

2.4.7 Hessian-Free Optimization (HFO) 

2.4.7.1 Introduction to HFO 

The background of the methodology of this thesis is based on Martens (2010) and Martens 

and Sutskever (2012), about using deep learning with the Hessian-Free Optimization 

(HFO) algorithm. Martens (2010), used the HFO algorithm to train deep auto-encoders. 

As he described, on backpropagation-based algorithms, Gradient Descent (GD) (Section 

2.4.2) is being used to learn the weights of a network with multiple layers of non-linear 

hidden units. The problem with GD is that it does not seem to generalize well in networks 

with many hidden layers, such as deep neural networks, as it progresses extremely slow, 

resulting in poor performance on the training set (under-fitting). Besides, GD is unsuitable 

for optimizing objectives that exhibit pathological curvature. Thus, second-order 

optimization methods, such as HFO, have proven to be more effective on such objectives 

as they model the local curvature and correct it.  

Figure 2.42 demonstrates pathological curvature, where the objective function has the 

form of a long narrow valley. The red arrow indicates the direction that needs to be 

followed to have some progress. In Figure 2.42, on the left, the black arrows indicate the 

steps the Gradient Descent takes, while on the right are the steps of Newton’s method. 

 

Figure 2.42. Pathological curvature in a long narrow valley. Steps of Gradient Descent (Left Black Arrows), steps of 

Newton's method (Right Black Arrows), and the direction towards the minimum (Red Arrow). (Martens, 2010) 
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2.4.7.2 HFO Algorithm (Martens, 2010) 

Let 𝑓 be any function 𝑓:ℝ𝑛 → ℝ we are trying to minimize.  

1. Initialize randomly the weights 𝑥0 from a normal distribution with zero mean and 

a relatively small standard deviation. 

2. Compute the gradient ∇𝑓(𝑥𝑛) and Hessian 𝐻(𝑓)(𝑥𝑛) for the current 𝑥𝑛 and 

consider the following Taylor expansion of 𝑓: 

 𝑓(𝑥 + 𝛥𝑥) ≈ 𝑓(𝑥) + ∇𝑓(𝑥)𝑇𝛥𝑥 + 𝛥𝑥𝑇𝐻(𝑓)𝛥𝑥. 

3. Compute 𝑥𝑛+1 using the Conjugate Gradient (CG) algorithm for the quadratic 

functions on the Taylor expansion.  

4. Repeat from step 2 until 𝑥𝑛 converges. (we do not have to necessarily repeat this 

process for 𝑛 for the CG to terminate since in practice the CG makes large 

improvements in the first few iterations) 

In the HFO algorithm, it seems that we have to compute the Hessian matrix, which would 

be a huge disadvantage since it would require 𝑂(𝑛2) storage space, while 𝑛 is the number 

of network parameters. In reality, to compute the 𝑥𝑛+1 the vector we do not need the 

Hessian  𝐻, as we can simply use the CG (Section 2.4.6). Since on our algorithm, we have 

to compute 𝐻𝑣 for some vector 𝑣 = 𝑥𝑛, we can just approximate the (𝐻𝑥𝑛)𝑖 using the 

following equation for some small ε: 

𝐻𝑥𝑛 ≈
∇f(e + 𝜀𝑥𝑛) − ∇𝑓(𝑒)

𝜀
 

More details on how to do so, we can find in Section 2.4.8.   

2.4.8 Hessian-Vector Product (𝑯𝒗) (Pearlmutter, 1994) 

In the Hessian-Free Optimization, as previously mentioned we need to compute the 

Hessian (matrix of second derivatives) times some vector. Unfortunately, computing the 

Hessian is incredibly computationally intense, and we cannot use finite differences since 

it can be numerically unstable. This is our motivation for finding a better way to compute 

the Hessian-Vector product 𝐻𝑣 (Pearlmutter, 1994). 

Since a forward and backward propagation algorithm for computing the Gradient is 

required, we can use those two algorithms to derive a Hessian-Vector product algorithm, 

which this method is being known as the 𝑅{∙} method. 
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2.4.8.1 The 𝑹{∙} Method 

Let’s assume the Hessian of the error function is defined as 𝐻. We know that the Hessian-

Vector product is a directional derivative: 

𝐻𝑣 =  lim
𝜀→0

∇𝐸(𝑥 + 𝜀𝑣) − ∇𝐸(𝑥)

𝜀
=  

𝜕

𝜕𝜀
∇𝐸(𝑥 + 𝜀𝑣)|

𝜀 = 0
 

We can define now an operator 𝑅𝑣 which converts the gradient computation into a 

Hessian-Vector product: 

𝑅𝑣{𝑓(𝑥)} =  
𝜕

𝜕𝜀
𝑓(𝑥 + 𝜀𝑣)|

𝜀 = 0
 

Therefore, after a trivial substitution: 

𝐻𝑣 = 𝑅𝑣{∇𝐸(𝑥)} 

We need now to compute the Hessian-Vector product. To do so we will use a forward 

and backward propagation algorithm with the 𝑅{∙} method.  

2.4.8.2 Hessian-Vector product forward propagation algorithm 

Forward propagation algorithm for the Hessian-Vector product using the 𝑅𝑣{∙} operator.  

1. Initialize 𝑅𝑣{𝑥𝑖
0}. These are constants (input layer); therefore, they will be zero.  

2. Compute for the current layer 𝑅𝑣{𝑦𝑖
𝑙} = 𝜎′(𝑥𝑖

𝑙)𝑅𝑣{𝑥𝑖
𝑙} 

3. Compute for the next layer 𝑅𝑥{𝑥𝑖
𝑙} =  ∑ (𝑤𝑗𝑖

𝑙−1𝑅𝑣{𝑦𝑗
𝑙−1} + 𝑣𝑗𝑖

𝑙−1𝑦𝑗
𝑙−1)𝑗  

4. Repeat steps 2 and 3 until the output layer is reached.  

2.4.8.3 Hessian-Vector product backward propagation algorithm 

Backward propagation algorithm for the Hessian-Vector product using the 𝑅𝑣{∙} operator.  

1. Initialize at the output layer 𝑅𝑣 {
𝜕𝐸

𝜕𝑦𝑖
𝐿} = 𝑒′

𝑖(𝑦𝑖
𝐿)𝑅𝑣{𝑦𝑖

𝐿} 

2. Compute for the current layer 𝑅𝑣 {
𝜕𝐸

𝜕𝑥𝑖
𝑙} = 𝜎′(𝑥𝑗

𝑙)𝑅𝑣{𝑥𝑗
𝑙}

𝜕𝐸

𝜕𝑦𝑗
𝑙 + 𝜎′(𝑥𝑗

𝑙)𝑅𝑣 {
𝜕𝐸

𝜕𝑦𝑖
𝑙} 

3. Compute for the previous layer 𝑅𝑣 {
𝜕𝐸

𝜕𝑦𝑖
𝑙} =  ∑(𝑣𝑖𝑗

𝑙 𝜕𝐸

𝜕𝑥𝑗
𝑙+1 + 𝑤𝑖𝑗

𝑙 𝑅𝑣 {
𝜕𝐸

𝜕𝑥𝑗
𝑙+1}) 

4. Repeat steps 2 and 3 until the input layer is reached 
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5. Compute the components of the Hessian-Vector product using 𝑅𝑣 {
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑙 } =

 𝑅𝑣{𝑦𝑖
𝑙}

𝜕𝐸

𝜕𝑥𝑗
𝑙+1 + 𝑦𝑗

𝑙𝑅𝑣 {
𝜕𝐸

𝜕𝑥𝑗
𝑙+1} 

2.4.8.4 Conclusion 

Using Pearlmutter’s (1994) method, we were able to develop an adjoint algorithm pair 

that in a forward and backward pass, computes the Hessian-Vector product 𝛨𝑣 for any 

vector 𝑣, without ever computing the Hessian itself.  

2.4.9 Hessian-Free Optimization with the Gauss-Newton Matrix (Martens, 2010) 

2.4.9.1 Problems with the Hessian 

The Hessian-Free Optimization (HFO) uses the quadratic Conjugate Gradient (CG) 

algorithm at every iteration of the Newton-style method (Newton-CG method). The 

problem with the Hessian Newton-CG is that we have assumed that the quadratic 

minimization objective  𝑓(𝑥) =  
1

2
𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐 has a minimum. This happens only 

if 𝑓(𝑥) is bounded from below. For this to be true, the matrix 𝐴 has to not have any 

negative eigenvalues. Thus, we have to enforce 𝐴 to be positive semi-definite, by having 

all its eigenvalues greater or equal to zero.  

2.4.9.2 Gauss-Newton Matrix 

To solve the problem of the Hessian Newton-CG method, we approximate the Hessian 

using the Gauss-Newton matrix. The Gauss-Newton matrix is a good approximation of 

the Hessian since its quadratic optimization objectives have the same minimum, and it is 

provably positive semi-definite. This means that the algorithm will always decrease the 

objective, and cannot take steps uphill, away from the minimum, while the Hessian could. 

Let 𝐸(𝑥) be the error function we are trying to minimize using its Gradient (∇E)𝑖, with: 

𝐻𝑖𝑗 = 
𝜕

𝜕𝑥𝑗
(∇E)𝑖 

being an element of the Hessian. We can write 𝐸(𝑥) as the composition of two functions: 

𝐸(𝑥) = 𝜎(𝑓(𝑥)). The function 𝑓(𝑥) computes the pre-nonlinearity output of neural 

network’s final layer (e.g., the entire output layer) and the function 𝜎(𝑥) computes the 



64 

 

non-linearity itself and the error at the final layer (e.g., SoftMax layer, 𝑆(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑘𝑛
𝑘=0

). 

Thus: 

𝐻𝑖𝑗 = 
𝜕

𝜕𝑥𝑗

𝜕𝜎(𝑓(𝑥))

𝜕𝑥𝑖
 

and by applying the chain rule, the product rule, and once again the chain rule, we get the 

final expanded expression for an element of the Hessian which is: 

𝐻𝑖𝑗 = ∑ ∑
𝜕𝜎2

𝜕𝑓𝑙(𝑥)𝑓𝑘(𝑥)
(𝑓(𝑥))

𝜕𝑓𝑙(𝑥)

𝜕𝑥𝑗

𝜕𝑓𝑘(𝑥)

𝜕𝑥𝑖

𝑛

𝑙=0

𝑛

𝑘=0

+ ∑
𝜕𝜎

𝜕𝑓𝑘(𝑥)
(𝑓(𝑥))

𝜕𝑓𝑘(𝑥)2

𝜕𝑥𝑗𝜕𝑥𝑖

𝑛

𝑘=0

 

First derivatives are zero at the minimum of 𝜎(𝑥), so, the summations are negligible.  

Thus, near the minimum the Hessian can be approximated as: 

𝐻𝑖𝑗 ≈ ∑ ∑
𝜕𝜎2

𝜕𝑓𝑙(𝑥)𝑓𝑘(𝑥)
(𝑓(𝑥))

𝜕𝑓𝑙(𝑥)

𝜕𝑥𝑗

𝜕𝑓𝑘(𝑥)

𝜕𝑥𝑖
= 𝐺𝑖𝑗

𝑛

𝑙=0

𝑛

𝑘=0

 

which is being called the Gauss-Newton matrix, denoted as G. By changing the order of 

the summation in this way: 

𝐺𝑖𝑗 = ∑
𝜕𝑓𝑙(𝑥)

𝜕𝑥𝑗

𝑛

𝑙=0

∑
𝜕𝑓𝑘(𝑥)

𝜕𝑥𝑖

𝜕𝜎2

𝜕𝑓𝑙(𝑥)𝑓𝑘(𝑥)
(𝑓(𝑥))

𝑛

𝑘=0

 

the equation can be rewritten as a matrix product, with the first-order derivatives coming 

from the Jacobian 𝐽𝑓 and the second derivatives coming from the Hessian, where 𝐻𝜎 is 

the Hessian of 𝜎: 

𝐺 = 𝐽𝑓
𝑇𝐻𝜎𝐽𝑓 

(In the traditional Gauss-Newton matrix in place of 𝐻𝜎 there is a two (2) because the 

nonlinearity is simply squaring with the Hessian being twice the identity matrix) 

2.4.9.3 Compute the Gauss-Newton Matrix-Vector Product 

When we compute 𝐺 the Gauss-Newton matrix, we usually need to compute the Gauss-

Newton matrix multiplied by some vector, 𝐺𝑣 = 𝐽𝑇𝐻𝜎𝐽𝑣, so first, we compute the vector 

𝐽𝑣 and then the vector 𝐽𝑇𝑣′, where 𝑣′ = 𝐻𝜎𝐽𝑣. 
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2.4.9.4 Forward Pass 

As mentioned before, to compute the Gauss-Newton Matrix-Vector product, 𝐺𝑣 =

 𝐽𝑇𝐻𝜎𝐽𝑣 we will compute first the vector 𝐽𝑣. Recall the operator 𝑅𝑣{∙} as we have defined 

it previously (Section 2.4.8.1): 

𝑅𝑥{𝑓(𝑥)} =  
𝜕

𝜕𝜀
𝑓(𝑥 + 𝜀𝑣)|

𝜀 = 0
= lim

𝜀→0

𝑓(𝑥 + 𝜀𝑣) −  𝑓(𝑥)

𝜀
 

We can apply this operator to a vector-valued function 𝑓:ℝ𝑛 → ℝ𝑚. The resulting 

function is the same as if he had applied to each component separately the 𝑅𝑣{∙}. 

Therefore, the 𝑖th component can be written as the directional derivative of 𝑓𝑖 in the 

direction 𝑣: 

𝑅𝑥{𝑓(𝑥)}𝑖 = lim
𝜀→0

𝑓(𝑥 + 𝜀𝑣)𝑖 − 𝑓(𝑥)𝑖

𝜀
 

Since it is just a directional derivative, we can rewrite it as: 

𝑅𝑣{𝑓(𝑥)}𝑖 = ∇𝑓(𝑥)𝑖 ∙ 𝑣 =  ∑
𝜕𝑓𝑖
𝜕𝑥𝑗

𝑣𝑗

𝑛

𝑗=1

 

Mind that this is just the 𝑖th element. By writing it in the sum form it looks exactly like a 

single row of the Jacobian. Considering Jacobian, the matrix where each row consists of 

the derivatives of one component with respect to all the variables. Therefore, we can 

merge all the components by simply multiplying the Jacobian by a vector, where 𝐽 is the 

Jacobian of 𝑓(𝑥) evaluated by 𝑥: 

𝐽𝑣 =  𝑅𝑣{𝑓(𝑥)} 

Thus, we can compute 𝐽𝑣 for any vector 𝑣 by performing a forward pass of the Hessian-

Vector product algorithm. 

2.4.9.5 Multiplication by Hessian 𝑯𝝈 

Using the forward pass algorithm of the 𝑅𝑣{∙} operator, we get the 𝐽𝑣, so now the next 

step should be to compute the 𝐽𝑇𝑣′, which is needed for computing the Gauss-Newton 

matrix. Before doing that though we need to compute 𝑣′ = 𝐻𝜎𝐽𝑣. Fortunately, we have 

an algorithm already for multiplication by the Hessian, the backward pass algorithms of 

the 𝑅𝑣{∙} operator (Section 2.4.8.3).  
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While we are running the backpropagation algorithm of the  𝑅𝑣{∙} operator, if we stop it 

at the right time, we will have 𝛨𝜎𝐽𝑣.  

2.4.9.6 Backward Pass 

Since we have computed 𝑣′ = 𝐻𝜎𝐽𝑣, from the previous step, we need to compute 𝐽𝑇𝑣′ 

now. The backpropagation computes the gradient of the error function, where the 𝑖th 

component of the gradient is: 

(∇𝐸)𝑖 = 
𝜕𝐸

𝜕𝑥𝑖
 

By using the chain rule, and all the outputs of the last layer, where 𝑓𝑘 is the 𝑘th output unit 

value, the Gradient is: 

(∇𝐸)𝑖 = ∑
𝜕𝐸

𝜕𝑓𝑘

𝜕𝑓𝑘
𝜕𝑥𝑖

𝑛

𝑘=0

  

If our error function, is a simple Sum of Squared Errors (SSE), then the dependence on 

every 𝑓𝑘 in the output will be linear:  

𝐸 = ∑𝑓𝑘
2 ⟹ (∇𝐸)𝑖 = 2 ∑ 𝑓𝑘

𝜕𝑓𝑘
𝜕𝑥𝑖

𝑛

𝑘=0

= 2𝑓(𝑥) ∙
𝜕𝑓(𝑥)

𝜕𝑥𝑖
 

As we can see, we can rewrite the 𝑖th component of the gradient as the dot product of the 

function with its own derivative with respect to 𝑥𝑖. This is the same as the multiplication 

by the transpose of the Jacobian. 

(𝐽𝑇𝑓(𝑥))𝑖 =  

(

 
 
 
 
 

 

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓2
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥2

⋯

𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

⋮ ⋱ ⋮
𝜕𝑓1
𝜕𝑥𝑚

𝜕𝑓2
𝜕𝑥𝑚

⋯
𝜕𝑓𝑛
𝜕𝑥𝑚]

 
 
 
 
 
 
 

 [

𝑓1
𝑓2
⋮
𝑓𝑛

]

)

 
 
 
 
 

𝑖

= ∑ 𝑓𝑘
𝜕𝑓𝑘
𝜕𝑥𝑖

𝑛

𝑘=0

 

Thus, the backpropagation for the SSE error function computes a multiple by the 

transpose of the Jacobian: 

∇𝐸 = 2𝐽𝑇𝑓(𝑥) 
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Therefore, if we give backpropagation any vector 𝑣 at the output units, it simply 

multiplies by 𝐽𝑇 . Consequently, by performing the standard neural network 

backpropagation, we can compute 𝐽𝑇𝑣 for any vector 𝑣, while using the components of 𝑣 

as last’s layer “errors”. To complete the Gauss-Newton matric computation, we need to 

backpropagate 𝐻𝜎𝐽𝑣 through until the input layer, using the normal neural network 

backpropagation algorithm.  

2.4.9.7 Conclusion  

Conjugate Gradient goes towards the extremum of the function, which means we have to 

have a positive semi-definite matrix. In the scenario where the matrix is not positive semi-

definite, it means that the Hessian-Free Optimization algorithm will fail to decrease the 

objective, as well as taking steps uphill away from the minimum.  

Since the Hessian is not guaranteed to be positive semidefinite, this assumption turns to 

be problematic. Therefore, we derived the Gauss-Newton matrix and approximation to 

the Hessian. The fact that quadratic optimization objectives using the Gauss-Newton 

matrix instead of the Hessian have the same minimum, and that is provably positive 

semidefinite, makes the Gauss-Newton matrix a good approximation.  

Instead of computing the Gauss-Newton matrix 𝐺, we can compute 𝐺𝑣, for any vector 𝑣 

by just running the forward propagation of the 𝑅𝑣{∙} operator, to get the vector 𝑎 = 𝐽𝑣 

and one step of the backward propagation of 𝑅𝑣{∙} to multiply it by 𝐻𝜎 . To finish 

computing 𝐺𝑣, we run a normal neural network backpropagation.  

As Martens (2010) observed in his paper, this modification is consistently superior to 

using the Hessian alone, since it fixes the issue that the Hessian is not positive semi-

definite, as well as being significantly faster than computing the full Hessian-Vector 

product. 
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3.1 Cross-validation 

3.1.1 Introduction to Cross-validation 

Using the same data for training and testing in machine learning is a methodological 

mistake. This would imply a perfect score during training but would fail to predict 

anything useful on yet-unseen data. To encounter this issue, which is so-called overfitting, 

we hold out part of the dataset as a test set (values & labels).  

We can easily split the data randomly into training and test sets by using Python’s library 

scikit-learn. The Code Snippet 3.1, splits the dataset (X, y) into training (X_train, y_train) 

and test (X_test, y_test) sets, with 30% (test_size = 0.3) of the data being randomly 

assigned to the test set. 

from sklearn.model_selection import train_test_split 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) 

 

Code Snippet 3.1. Scikit-learn’s train_test_split method for splitting dataset randomly to training and test set. 

We could train a model using just the training and test sets that have been produced 

previously. However, there is a risk of overfitting in the test set while modifying the 

hyperparameters for the estimators to perform optimally. This way, the knowledge about 

the test set leaks into the model and the generalization performance decreases. 

Consequently, the validation set comes to the rescue. The validation set is used during the 

training process, usually at the end of each epoch to validate the performance of the 
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network and decide whether it generalizes well or overfits. After a successful training 

process, the test set is being used for the final evaluation.   

Having millions of data, splitting them into three sets (training, test, and validation sets) 

would not be an issue. Unfortunately, we have limited labeled data for training, especially 

in our case, where we need medical MRI scans of patients. Therefore, splitting them this 

way drastically reduces the number of samples for the learning process and may 

consequently cause overfitting since the generalization error would be high.  

To avoid this problem, we can use the Cross-validation (CV) procedure. In CV, we still 

hold out a test set, but the validation set is no longer needed. This is possible because of 

a method called k-fold CV, where the training set is being split into k smaller sets, usually 

having the same size (Figure 3.1). The k-fold CV learning method goes as follows: 

1. The model is trained using the k – 1 of the folds of the data. 

2. The model is validated on the remaining fold to compute the accuracy, sensitivity, 

specificity, etc. 

3. We repeat the same process k times until all the folds have been used as a 

validation set, with each time having a new model. 

4. The average of the k metrics, for each loop, is the general performance measure. 

 

Figure 3.1. Example of 5-fold Cross-Validation split 
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This approach is computationally expensive since for each set of hyperparameters you 

have to train the network k times. On the other hand, we do not waste data, which is a 

major advantage, especially in this thesis where the number of available samples was 

extremely small and we could not obtain easily more data.  

3.1.2 KFold 

With the KFold splitting method (Code Snippet 3.2), all the samples as being divided into 

k groups (folds), of equal sizes if it is possible. In the case of k = n, where n is the size of 

the dataset, then this is equivalent to the Leave One Out Strategy. The k-1 folds are used 

for the training, and the fold left out is used for the validation.  

from sklearn.model_selection import KFold 

 

kf = KFold(n_splits=2)     # 2-Fold 

 

for train, valid in kf.split(X): 

     print("%s %s" % (train, valid)) 

 

Code Snippet 3.2. Scikit-learn, KFold Cross-validation method for splitting the dataset into k-folds. 

The main issue of the KFold is that it is not affected by classes or groups. These issues 

can be solved by using StratifiedKFold (Section 3.1.3) and GroupKFold (Section 3.1.4) 

respectively, or StartifiedGroupKFold for both of them. In Figure 3.2 there is a 

visualization of a KFold, more specifically a 4-fold based on an unbalanced dataset with 

3 different classes and a total size of 100 samples. We can see that each testing set does 

not contain an equal ratio of samples of each class when splitting with the standard KFold.  

 

Figure 3.2. Visualization of KFold.100 samples, 3 unbalanced classes, 4-folds, 10 groups 
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3.1.3 StratifiedKFold 

We are going to examine a case that shows why KFold (Section 3.1.2) needs to take into 

consideration the classes and therefore there is a need for StratifiedKFold. First of all, the 

classes represent the labels of our data (e.g., AD, NC). So, a 3-fold CV split with the 

KFold method and initial dataset of 50 MRI scans, with 45 NCs and 5 ADs could be: 

1. Train: [AD: 28, NC: 5]   |||   Valid: [AD: 17, NC: 0] 

2. Train: [AD: 28, NC: 5]   |||   Valid: [AD: 17, NC: 0] 

3. Train: [AD: 34, NC: 0]   |||   Valid: [AD: 11, NC: 4] 

This will cause problems such as learning better one of the two classes, and false 

validation accuracy due to the fact that the validation sets are not balanced. Thankfully, 

scikit-learn provides the method StratifiedKFold to solve this issue.  

The way StratifiedKFold works is by returning stratified folds, where each set contains 

the approximately same percentage of samples of each target class, given as input a 

dataset. So, in the 3-fold CV on the previous dataset with 50 samples from two unbalanced 

classes, we can see that the StratifiedKFold preserves the class ratio to each set to 

approximately 
1

10
: 

1. Train: [AD: 30, NC: 3]   |||   Valid: [AD: 15, NC: 2] 

2. Train: [AD: 30, NC: 3]   |||   Valid: [AD: 15, NC: 2] 

3. Train: [AD: 30, NC: 4]   |||   Valid: [AD: 15, NC: 1] 

Code Snippet 3.3 is an example of StratifiedKFold in comparison with KFold where the 

initial dataset is defined as (X, Y): 

from sklearn.model_selection import StratifiedKFold, KFold 

import numpy as np 

 

################################# StratifiedKFold ############################## 

 

skf = StratifiedKFold(n_splits=3)     # 3-Fold 

 

for train, valid in skf.split(X, y): 

   print('train {} valid {}'.format(np.bincount(y[train]), np.bincount(y[valid]))) 

 

######### Output ########## 

 

# train [30  3] valid [15  2] 

# train [30  3] valid [15  2] 

# train [30  4] valid [15  1] 

 

###################################### KFold #################################### 
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kf = KFold(n_splits=3)                # 3-Fold 

 

for train, valid in kf.split(X, y): 

    print('train {} valid {}'.format(np.bincount(y[train]), np.bincount(y[valid]))) 

 

######### Output ########## 

 

# train [28  5] valid [17] 

# train [28  5] valid [17] 

# train [34] valid [11  5] 

 

Code Snippet 3.3. Scikit-learn, StratifiedKFold Cross-validation method for splitting the dataset into stratified k-

folds. StratifiedKFold preserves the class ratio to each set vs. the KFold which does not. 

In Figure 3.3 there is a visualization of a StratifiedKFold, 4-fold follows based on an 

unbalanced dataset with 3 different classes and a total size of 100 samples. We can see 

that each fold contains approximately the same ratio of samples of each class. Anyhow, 

this method stills ignores the groups.  

 

Figure 3.3. Visualization of StratifiedKFold. 100 samples, 3 unbalanced classes, 4-folds, 10 groups. 

3.1.4 GroupKFold 

StratifiedKFold (Section 3.1.3) solves KFolds’ problem (Section 3.1.2) of not taking into 

consideration the classes, but it still does not take into consideration the groups. That is 

why we need GroupKFold. The need for groups in this thesis comes in datasets with either 

“Multiple Scans per Patient” or “Multiple Slices per Scan”. All the MRI scans of different 

periods of the same patient, define a group and the group ID is the patient’s ID. 

As scikit-learn’s documentation mentions, GroupKFold is used in medical applications 

to avoid data leakage. Data leakage occurs when in a dataset we have multiple MRIs of 

the same patient from different periods, and those MRIs are not all of them in a single set 

(training or validation). The patient’s ID in such a case will be the group identifier which 
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is going to ensure that a group never gets split, therefore the same patient does not appear 

in more than one set. Consequently, the test should contain only unseen groups, to ensure 

that the model will generalize. The GroupKFold method in Code Snippet 3.4 from the 

scikit-learn library ensures that samples of the same group are only in a single fold. 

from sklearn.model_selection import GroupKFold 

 

X = [0.1, 0.2, 2.2, 2.4, 2.3, 4.55, 5.8, 8.8, 9, 10] 

y = ["a", "b", "b", "b", "c", "c", "c", "d", "d", "d"] 

groups = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3] 

 

gkf = GroupKFold(n_splits=3) 

for train, valid in gkf.split(X, y, groups=groups): 

    print("%s %s" % (train, valid)) 

 

######### Output ########## 

 

# [0 1 2 3 4 5] [6 7 8 9] 

# [0 1 2 6 7 8 9] [3 4 5] 

# [3 4 5 6 7 8 9] [0 1 2] 

 

Code Snippet 3.4. Scikit-learn, GroupKFold Cross-validation method for splitting the dataset into k-folds, by using 

group constraints to avoid data leakage. 

The issue of GroupKFold is that it takes into consideration the groups, but ignores the 

classes; the same issue that the KFold had. As we can see from the splitting example in 

Figure 3.4 by using the GroupKFold, all the samples of a group are part of a single fold, 

therefore part of either the validation or the training set. On the other hand, the unbalanced 

classes cause the splitting to have the same issues with the KFold method, where the class 

ratio diverges between the same sets of different folds. For example, fold-0 (Figure 3.4 

first line, red sections), contains samples of both the yellow and brown classes, but no 

samples from the light blue class.   

 

Figure 3.4. Visualization of GroupKFold.100 samples, 3 unbalanced classes, 4-folds, 10 groups 
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3.1.5 StratifiedGroupKFold 

As described in a comment in scikit-learn’s GitHub repository (https://github.com/scikit-

learn/scikit-learn/issues/13621#issuecomment-557802602) by Michael Rebsamen, the 

need for StratifiedGroupKFold is a very common use-case in medicine and biology since 

frequently we have repeated measures of the same patient, which implies to same groups.  

Michael gave the same example which our thesis focuses on, where we want to classify 

a disease such as Alzheimer’s disease versus normal cognitive patients through MRI 

images. In such a case, the datasets could be imbalanced since we have a total of 1000 

subjects, with 200 of them being diagnosed with AD.  

Similar to the ADNI database, most subjects have more than a single scan available. 

Having samples of the same patient in different sets could cause data leakage which is a 

major issue. Therefore, the optimal scenario could be to use ‘stratify’ to solve the issue 

of the imbalanced set, and group constraint for a subject not to appear in more than one 

set at the same time.  

By using Michael’s implementation of StratifiedGroupKFold which was inspired by 

Kaggle-kernel (https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-

validation) (Code Snippet D.1), we were able to address both those issues in this thesis. 

The Code Snippet 3.5 is an example of applying the custom StratifiedGroupKFold which 

was proposed by Michael Rebsamen. 

from model_selection.stratified_group_k_fold import StratifiedGroupKFold 

 

sgkf = StratifiedGroupKFold(n_splits=10)                   # 10-folds 

 

group = [. . .]             # A vector of Patient IDs for the corresponding samples 

 

for train_index, valid_index in sgkf.split(X, y, groups=groups): 

    print("%s %s" % (train, valid)) 

 

Code Snippet 3.5. StratifiedGroupKFold code example based on Michael Rebsarmen’s implementation 

Figure 3.5 visualizes a StratifiedKFold (Section 3.1.3) from the scikit-learn library, on 

100 samples for 20 folds and 2 unbalanced target classes. The issue is that the groups are 

not taken into consideration and data leakage occurs.  

 

https://github.com/scikit-learn/scikit-learn/issues/13621#issuecomment-557802602
https://github.com/scikit-learn/scikit-learn/issues/13621#issuecomment-557802602
https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation
https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation


75 

 

 

Figure 3.5. Visualization of StratifiedKFold. 100 samples, 2 unbalanced classes, 20-folds. 

Figure 3.6 visualizes a StratifiedGroupKFold in the same dataset as in Figure 3.5, where 

solves the StartifiedKFold’s issue. Each group is either on the training or validation set. 

Additionally, the training and validation sets have similar class ratios.   

 

Figure 3.6. Visualization of StratifiedKFold. 100 samples, 2 unbalanced classes, 20-folds. 

To conclude, in this thesis, StratifiedGroupKFold is used for splitting into either 5 or 10-

folds each dataset which contains multiple scans from different periods of the same 

patient (“Multiple Scans per Patient” or/and “Multiple Slices per Scan”), and 

StratifiedKFold for the datasets that contain a single scan from each patient (“Single Scan 

per Patient” and not “Multiple Slices per Scan”).  
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3.2 Datasets 

3.2.1 Main Sources of Data 

To develop the model for the classification of AD/NC, structural MRI scans from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database have been used, as well 

as features extracted from those data. Specifically, the 3 main sources of data to create 

the datasets for this thesis are (1) T1-weighted MRI scans, (2) Hippocampus Features 

(Achilleos et al. 2020), and (3) 3D Hippocampus (Achilleos et al. 2020). From these 3 

main sets, 9 distinct datasets were created for approximately more than 80 experiments 

of this thesis.  

ADNI’s goal is to unite researches with study data for Alzheimer’s disease (AD). It 

includes MRIs, PET scans, genetics, cognitive tests, CSF, and blood biomarkers as a 

prediction for AD. ADNI includes samples of AD, MCI, and NC patients. Since all 3 

main sets are based on ADNI’s database, the same patients could appear in all 9 datasets 

that had been used in our experiments. We did not explicitly split the patient's scans in 

the same manner for all 9 datasets in this thesis in order for all the folds of different 

datasets to contain the scans of the same patients. This could potentially eliminate the 

factor that each dataset may contain different ratios of outliers and consequently could 

help to compare even more accurately the performance between the different methods 

and implementations.  

For the creation of the main T1-weighted MRI scans dataset, the raw data were obtained 

from the ADNI database. The images were acquired by using the MPRAGE protocol on 

either 3-T or 1.5-T scanners from Siemens Medical Solutions, General Electric 

Healthcare, or Philips Medical Systems at the centers' participation in the ADNI project 

(Clifford et al. 2008) 

After the data acquisition, some preprocessing was applied to create the T1-weighted 

MRI scans dataset, which is going to be used in sub-datasets of this thesis (Sections 3.2.3, 

3.2.4, 3.2.4, and 3.2.7). The downloaded MRI scans were already corrected for gradient 

inhomogeneity, bias field, and intensity non-uniformity; were scaled to have voxel 

dimensions of 1x1x1 mm, and had undergone the FreeSurfer cross-sectional processing. 

These MRI scans contained the skull-stripped brain together with the brainstem. The MRI 

volumes had a size of 256 × 256 × 256 voxels with many “blank” voxels, i.e., having 
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values of 0. To reduce the size of the dataset, all blank voxels surrounding the rectangular 

cuboid bordering the “brain and brainstem” voxels were cropped, using custom-written 

code in MATLAB. The resulting MRI volumes had sizes in the x, y, and z axes ranging 

from 125 to 174 voxels, 145 to 200 voxels, and 121 to 174 voxels, respectively. 

In Figure 3.7, on the left, we can see an MRI scan of an NC patient without any 

preprocessing. The skull, skin, and other parts of the patient’s head are visible. On the 

left, after preprocessing, the extra non-meaningful for us parts have been removed, 

keeping only the brain. This potentially helps the model to learn the important features 

which are located on the brain of the patient to classify them as AD or NC.  

 

Figure 3.7. 2D Coronal slices of NC patients’ MRI. Left: Without preprocessing. Right: With preprocessing 

Achilleos et al. (2020) created the two datasets, Hippocampus Features and the 3D 

Hippocampus sets, from brain MRI images, part of the ADNI-1 Complete 2- and 3-year 

datasets. All subjects were on 1.5-T MRI units from Siemens Medical Solutions and 

General Electric Healthcare. From those datasets, they were able to isolate the 3D 

structure of the Hippocampus and the Entorhinal Cortex. Additionally, from the same set, 

10 features from the Hippocampus had been manually extracted for each patient’s scan, 

which we are going to use in this thesis for direct comparison between them. This dataset 

during this study is going to be referred to as the “Hippocampus Features”.  

Due to lack of time and resources, experiments were performed only on the 3D structure 

of the Left Hippocampus. The Right Hippocampus and the Entorhinal Cortex are not 

going to be used for now from Achilleos et al. (2020). The Left Hippocampus is estimated 
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to receive the most damage during Alzheimer’s disease (Achilleos et al. 2020), thus, we 

decided to focus only on those images. 

3.2.2 Hippocampus Features [AD, NC] 

3.2.2.1 General Information of Hippocampus Features 

The Hippocampus Features dataset was provided by Achilleos et al. (2020). For each 

MRI scan of the Hippocampus Features dataset, the 10 most promising hippocampal 

features were extracted: (1) Volume, (2) SumAverage, (3) Entropy, (4) ClusterShade, (5) 

ClusterProminence, (6) SumEntropy, (7) Variance, (8) SumVariance, (9) Contrast and 

(10) Angular Second Moment. Therefore, each pair in the dataset had 10 floating-point 

values (features) and the label (AD or NC).    

3.2.2.2 Multiple Scans per Patient (HF_M) 

In the dataset, Hippocampus Features - Multiple MRI Scans per Patient (HF_M), multiple 

scans of different periods of the same patient have been used for the feature extraction, 

from the baseline till 72 months. Each patient was between 55 and 90 years old. In total, 

237 samples were included in the study, with two distinct groups NC = 153 (73 males 

and 80 females) and AD = 84 (40 males and 44 females). Outliers were not removed, 

however, subjects with missing values were dropped. Consequently, the final dataset 

consisted of NC = 144 and AD = 69, thus a total of 213 samples. The dataset is 

unbalanced, therefore, 30% equal distribution test set (NC = 22, AD = 22) was used and 

an unbalanced training set (NC = 122, AD = 47). Due to the relatively small number of 

records, no validation set was used, thus, the test set will play the role both of the 

validation and test set (Table 3.1). 

 AD NC MCI Total 

All Samples 69 144 - 213 

Training Set 47 122 - 169 (80%) 

Test Set 22 22 - 44 (20%) 

Validation Set - - - - 

Table 3.1. Dataset: Hippocampus Features, Multiple Scans per Patient (HF_M) (Achilleos et al. 2020) 

Based on this dataset, 10 random training and test sets were created. The original paper 

(Achilleos et al. 2020), does not clarify whether 10-fold Cross-validation was used and if 
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data leakage was taken into consideration due to multiple scans of the same subject. Data 

leakage occurs when some scans of the same patient are in the training set while others 

are in the test set. To avoid data leakage, all scans of the same patient should be in a single 

set; GroupKFold (Section 3.1.4) can be used to resolve this issue.    

3.2.3 2D Brain Slices [AD, NC] (slice-level MRI) 

3.2.3.1 Preprocessing of 2D Brain Slices 

Each T1-weighted MRI from ADNI has different dimensions since it was cropped as 

close to the brain as possible. Therefore, padding needs to be added to all three dimensions 

of each scan for all of them to have the same dimensions which are 174 × 190 × 174. 

For the 2D Brain Slices datasets, we isolate the middle coronal slice of each 3D MRI scan 

before adding the padding (Code Snippet 3.6). 

# Isolate the middle slice of the y-axis from a 3D MRI image 

 

. . . 

index_middle = round(len(image_3D[0, :, 0]) / 2) 

image_2D = image_3D[:, index_middle, :, 0] 

. . . 

 

Code Snippet 3.6. Isolate the middle slice in the y-axis of a 3D MRI image for the 2D Brain Slices dataset. 

By observing coronal slices in different positions of different patients, we concluded that 

in most of the middle slices the hippocampus is visible. The hippocampal structure plays 

an important role in memory issues that are strongly associated with AD since it is one of 

the first structures in the brain that is affected (Achilleos et al. 2020). The anatomical 

neural changes in terms of hippocampal volume and shape can be measured by using the 

MRI scan. Therefore, the hippocampus must be visible in the 2D slices.  

So, for example, from the figures Figure 3.8 and Figure 3.9, which present different 

coronal slices of the same patient, the slice in the middle would are the ones we have used 

in our dataset. More specifically, in Figure 3.8, the slice 86 out of 171 slices in the y-axis 

of that NC patient is the one that was used as part of the 2D Brain Slices dataset. In Figure 

3.9, the slice in the middle for that AD patient is the slice 94 out of 187 slices.  
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Figure 3.8. Different Coronal slices of the same NC patient’s 3D MRI scan. 

The slice “86/171 Slice” is the one used in the 2D Brain Slices dataset. 

 

Figure 3.9. Different Coronal slices of the same AD patient’s 3D MRI scan. 

The slice “94 / 187 Slice” is the one used in the 2D Brain Slices dataset. 
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The brain stem is the white part that is connected with the spinal cord in Figure 3.10.  

 

Figure 3.10. Anatomy of the brain. 

It is worth mentioning that the slice in the middle of the patient in Figure 3.8 does not 

contain the brain stem. On the other hand, the brain stem of the slice in the middle slice 

of the patient in Figure 3.9, is visible. Ideally, the slices of all patients in the dataset, 

should not contain the brain stem. Since some brain slices have visible the brain stem and 

the cerebellum while others do not, this could occur some problems during training. In 

such a case, slice 104 in Figure 3.9 should be the one to be used in our dataset.  

Unfortunately, we did not have enough computing power to isolate automatically the 

slices without the brain stem or/and the cerebellum. The other way could be to select them 

manually, which still is very time-consuming. Thus, the usage of the middle slice was the 

easiest solution to get training performance results as fast as possible. In future work, the 

selection of the slices and the alignment of the brains could be examined to see whether 

it affects the performance of the training process or not.   

After isolating the middle slices, we can apply the padding easily by using the NumPy 

library of Python. All 2D Coronal slices are 0s padded to have the same dimensions, 

174 × 174 pixels (Code Snippet 3.7). 

import numpy as np 

 

def add_padding(i): 

    max_shape = (174, 174) 

 

    # Resize the MRI scans to specific shape by adding padding with 0s 

    i_w_pad = np.zeros(max_shape) 

    i_w_pad[:i.shape[0], :i.shape[1]] = i 
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    return i_w_pad 

 

# Apply padding of 0s in the image 

 

. . . 

image_w_pad = add_padding(image) 

. . . 

 

Code Snippet 3.7. Add padding of 0s to the 2D image for the dimensions to be 174 x 174. 

Figure 3.11 shows a 2D Brain Slice of an NC patient after the padding of 0s being applied. 

Also, Figure 3.12 shows the 2D Brain Slice of an AD patient in the dataset of 2D Brain 

Slices with the black padding of 0s already applied.  

 

Figure 3.11. 2D Slice of a 3D Brain MRI scan of an NC patient. 

image_2D = image_3D[:, round(length(image_3D[0, :, 0,), :] 

 

Figure 3.12. 2D Slice of a 3D Brain MRI scan of an AD patient. 

image_2D = image_3D[:, round(length(image_3D[0, :, 0])), :] 
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The values of the pixels of a grayscale image are usually between 0 and 255. The MRI 

scanner produces images that their pixel values are not in the range of 0 to 255, but are 

much larger, and this does not benefit the training process. In Wang et al.’s (2020) 

algorithm, the one we are using for our experiments, automatically normalizes grayscale 

images from the range 0 to 255, to the range 0 to 1. Therefore, each pixel needs to be 

normalized between 0 and 255. The Code Snippet 3.8 performs the normalization of each 

image to the range 0 to 255. 

# Normalize images between 0 and 255 

 

. . . 

image = (image / np.max(image)) * 255 

. . . 

 

Code Snippet 3.8. Normalize the value of each pixel between 0 and 255 

Since each image’s dimensions of this dataset are 174 × 174, this means that each 

sample is 30,276 floating points. The target class of each sample is either 1 for AD or 2 

for NC.   

3.2.3.2 Single Scan per Patient – Single Slice per Scan (B_2D_S) 

For the 2D Brain Slices, Single Scan per Patient – Single Slice per Scan (B_2D_S) 

dataset, 10-fold CV was used. More specifically, StratifiedKFold (Section 3.1.3) was used 

to ensure that each fold would have AD = 19 and NC = 19, therefore, both the training 

and validation sets will always be balanced. There is no need for StratifiedGroupKFold 

to be used since the dataset contains only a single scan per patient and from each scan, 

only a single slice was used; consequently, there is no risk for data leakage.  

The B_2D_S dataset contains 199 AD samples and 199 NC samples, with a total of 398 

subjects. Before performing the StratifiedKFold, 9 samples were isolated from each target 

class to be part of the test set. This, later on, was proven a mistake since a really small 

test set of 18 subjects (4.5%), fails to accurately measure the performance metrics during 

the testing face (Beleites et. al. 2013). This could also be caused because the selected 18 

subjects were not a meaningful representation of the rest training set. Since outliers had 

not been removed from the initial set, a large proportion of them might end up in the test 

set as well.   

The rest 380 samples (AD = 190 & NC = 190) were used for the 10-fold CV splitting, 

which resulted in 10 balanced folds with each one of them having 38 samples (AD = 19, 
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NC = 19). Later on, the 10-fold option was proven not to be the best one based on our 

results. Mostly, this was an issue because 10 executions per experiment had to be run 

which was very power demanding and time-consuming. Additionally, since the dataset is 

relatively small, a 5-fold could be used to increase the size of the validation set as well 

(Table 3.2).   

 AD NC MCI Total 

All Samples 199 (50%) 199 (50%) - 398 

Training Set 171 171 - 342 (85%) 

Test Set 9 9 - 18 (4.5%) 

Validation Set 19 19 - 38 (9.5%) 

Table 3.2. Dataset: 2D Brain Slices [AD, NC],  

Single Scan per Patient - Single Slice per Scan (B_2D_S) (10-fold CV) 

In total, 398 subjects are in the B_2D_S dataset with 48.7% being Females and 51.3% 

being Males. The percentages between genders are pretty close, so no major performance 

issue should be observed. If the percentage of one of the genders was significantly larger 

than the other one, then this could potentially cause an issue since usually, the female 

brains are significantly smaller than the male ones (Table 3.3).  

 Females Males Total Patients 

Gender 194 (48.7%) 204 (51.3%) 398 

Table 3.3. Gender Percentages: 2D Brain Slices [AD, NC], Single Scan per Patient – Single Slice per Scan (B_2D_S) 

Code Snippet C.1 prepares the data needed for the B_2D_S dataset, by storing the AD 

and NC patients into two ‘.mat’ files. Then, by using the Code Snippet D.7, we perform 

the 10-fold splitting with the StratifiedKFold.  

3.2.3.3 Single Scan per Patient – 5 Slices per Scan (B_2D_5S) 

For the 2D Brain Slices, Single Scan per Patient – 5 Slices per Scan (B_2D_5S) dataset, 

5-fold CV was used, instead of a 10-fold CV that was used in the B_2D_S. The reason 

was to increase the size of the validation set, while reducing the number of executions per 

experiment, from 10 down to 5, which saves computational power and time.    

The B_2D_5S dataset contains 1990 samples in total, 5 times more than the B_2D_S. The 

patients in the B_2D_5S dataset are the same as the ones in B_2D_S. Unlike the B_2D_S 

dataset, the B_2D_5S contains 5 images of the same scan as 5 distinct samples. Therefore, 
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StratifiedKFold (Section 3.1.3) could not be used since data leakage could occur when 

two slices of the same patient end up in the training and validation set respectively. So, 

StratifiedGroupKFold (Section 3.1.5) was used for creating the 5-fold splitting.  

To create the dataset, 5 slices of each 3D Brain MRI scan have to be isolated. To 

understand which slices were used for the B_2D_5S we need to find the index of the 

middle slice first. The index of the middle slice can be found using: 

𝑖𝑚𝑖𝑑𝑑𝑙𝑒 =  𝑟𝑜𝑢𝑛𝑑(𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑚𝑎𝑔𝑒_3𝐷[0, ∶, 0, ) 

Therefore, the middle slice is: 

𝑖𝑚𝑎𝑔𝑒_2𝐷 =  𝑖𝑚𝑎𝑔𝑒_3𝐷[: , 𝑖𝑛𝑑𝑒𝑥𝑚𝑖𝑑𝑑𝑙𝑒 , ∶] 

Hence, the 5 slices were extracted from a single 3D Brain MRI scan of a patient from the 

following indices: 

[𝑖𝑚𝑖𝑑𝑑𝑙𝑒 − 4, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 − 2, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 , 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 + 2, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 + 4]. 

That being so, the dataset is 5 times larger than B_2D_S with AD = 995 and NC = 995, 

instead of 199 samples each. Consequently, the test set is 5 times larger too with AD = 

45 and NC = 45. Nevertheless, the test set is still 4.5% of the whole B_2D_5S set. 

Considering that the same patients represent the test sets of both B_2D_5S and the 

B_2D_S sets if outliers had caused any issues in the B_2D_S, are expected to cause the 

same issued to the B_2D_5S as well. Since 5-fold was used, the validation set now is 

significantly larger with AD = 190 and NC = 190, which in total represents 19% of the 

initial dataset instead of 9.5% which was in the B_2D_S dataset. The remaining 4 folds 

construct the training set (76%) with AD = 760 and NC = 760 (Table 3.4). 

 AD NC MCI Total 

All Samples 995 (50%) 995 (50%) - 1990 

Training Set 760 760 - 1520 (76%) 

Test Set 45 45 - 90 (4.5%) 

Validation Set 190 190 - 380 (19%) 

Table 3.4. Dataset: 2D Brain Slices [AD, NC], Single Scan per Patient – 5 Slices per Scan (B_2D_5S) (5-fold CV) 

In total, 398 subjects/patients are in the B_2D_5S, the same as the B_2D_S set with 

48.7% being Females and 51.3% being Males (Table 3.5).  
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 Females Males Total Patients 

Gender 194 (48.7%) 204 (51.3%) 398 

Table 3.5. Gender Percentages: 2D Brain Slices [AD, NC], Single Scan per Patient – 5 Slices per Scan (B_2D_5S) 

Code Snippet C.2 prepares the data needed for the B_2D_5S dataset, by storing the AD 

and NC patients into two ‘.mat’ files. Then, by using the Code Snippet D.2, we perform 

the 5-fold splitting with the StratifiedGroupKFold (Code Snippet D.1).  

3.2.3.4 Multiple Scans per Patient – Single Slice per Scan (B_2D_M) 

The 2D Brain Slices, Multiple Scans per Patient - Single Slice per Scan (B_2D_M) dataset 

has in total 1204 samples. For each subject, one or more MRI scans were used from 

different periods. For example, a patient could have a baseline, 6-, and 12-month scans.  

All the patients which were used in the dataset did not change class during their different 

scans. That is, each patient’s scans label was the one that the patient ended up having on 

its last scan. For example, if a patient was diagnosed as AD after 18 months, but the first 

3 scans (baseline, 6-, and 12-months) had been diagnosed as NC, all patient's scans would 

be labeled as AD.  

This was done in purpose to detect whether a patient which seems to be NC today, may 

convert to AD after 1 or 2 years to provide early treatment early. Additionally, from each 

sample scan, only the slice in the middle was used, which we had isolated the same way 

as we did in the B_2D_S dataset (Section 3.2.3.2).  

Owing to the fact that more than one samples of the same patient exist in the B_2D_M 

dataset, the StratifiedGroupKFold (Section 3.1.5) had to be used in order to avoid data 

leakage. This dataset was one of the first created during this thesis alongside the B_2D_S 

dataset. Therefore, it follows similar inaccuracies such as the small test set and the 10-

fold CV split instead of a 5-fold one. 

The B_2D_M dataset consists of 1204 samples in total with each class being perfectly 

balanced with AD = 602, and NC = 602. For the test set, 44 samples have been isolated 

where AD = 22 and NC = 22. Afterward, a 10-fold CV was performed, with each fold 

having 116 samples (AD = 58, NC = 58). The rest 9 folds were used for training with AD 

= 522 and NC = 522. Therefore, the validation set percentage is 9.6% while the training 

set is 86.7% (Table 3.6).  
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 AD NC MCI Total 

All Samples 602 (50%) 602 (50%) - 1204 

Training Set 522 522 - 1044 (86.7%) 

Test Set 22 22 - 44 (3.6%) 

Validation Set 58 58 - 116 (9.6%) 

Table 3.6. Dataset: 2D Brain Slices [AD, NC],   

Multiple Scans per Patient – Single Slice per Scan (B_2D_M) (10-fold CV) 

Since the same patients were used, the gender percentages are the same as the 2D_B_S 

and 2D_B_5S datasets, with 48.3% being Females and 51.7% being Males (Table 3.7).  

 Females Males Total Patients 

Gender 582 (48.3%) 622 (51.7%) 1204 

Table 3.7. Gender Percentages: 2D Brain Slices [AD, NC],  

Multiple Scans per Patient – Single Slice per Scan (B_2D_M) 

Code Snippet C.3 prepares the data needed for the B_2D_M dataset, by storing the AD 

and NC patients into two ‘.mat’ files. Then, by using the Code Snippet D.8, we perform 

the 10-fold splitting with the StratifiedGroupKFold (Code Snippet D.1).  

3.2.3.5 Multiple Scans per Patient – 7 Slices per Scan (B_2D_7M) 

The dataset 2D Brain Slices, Multiple Scans per Patient – 7 Slices per Scan (B_2D_7M), 

uses the same samples as the B_2D_M but differentiates itself by using a 5-fold CV 

splitting method instead of a 10-fold. Additionally, just like the B_2D_5S dataset which 

uses 5 adjacent slices of the same 3D MRI scan near the middle, this uses 7 slices per 

scan. This approach supposedly would improve the performance of the network since the 

dataset’s size increases by a factor of 7, from 1204 samples (B_2D_M) to 8428 samples. 

This dataset was proven later not to provide any performance benefits, and not only that, 

it increased significantly the training time as well.  

This technique was expected to solve the problem of misaligned brains, where the middle 

brain slice is not representative of the class. Unfortunately, increasing the size of the 

dataset by a factor of 7, caused the training process to be as slow as training 3D Shrunk 

Brains (Section 3.2.5). Anyhow, the benefit of this 2D dataset over the 3D ones is that 

even if it takes a similar training time, could run without an issue in Arcadia, while 3D 

datasets could not, due to lack of dedicated GPUs. 
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For the same reason as B_2D_M (Section 3.2.3.4), StratifiedGroupKFold (Section 3.1.5) 

should be used for the 5-fold CV splitting. First, 308 samples (AD = 154, NC = 154) were 

isolated as test set. The validation set (single fold), has 1624 samples (AD = 812, NC = 

812) and the training set has 6496 samples (AD = 3248, NC = 3248) (Table 3.8).  

 AD NC MCI Total 

All Samples 4214 (50%) 4214 (50%) - 8428 

Training Set 3248 3248 - 6496 (77%) 

Test Set 154 154 - 308 (3.6%) 

Validation Set 812 812 - 1624 (19%) 

Table 3.8. Dataset: 2D Brain Slices [AD, NC],  

Multiple Scans per Patient – 7 Slices per Scan (B_2D_7M) (5-fold CV) 

It is worth mentioning that, the size of the test set may seem large but still is just 3.6% of 

the initial dataset’s size. Therefore, similar poor performance during testing is expected 

since usually when a slice of a patient is misclassified, the rest 6 slices would be 

misclassified as well.  

The B_2D_7M has the same patients as the B_2D_M set, therefore, the gender 

percentages are the same, with 48.3% Females, and 51.7% Males (Table 3.9).   

 Females Males Total Patients 

Gender 582 (48.3%) 622 (51.7%) 1204 

Table 3.9. Gender Percentages: 2D Brain Slices [AD, NC], 

Multiple Scans per Patient – 7 Slices per Scan (B_2D_7M) 

Code Snippet C.4 prepares the data needed for the B_2D_7M dataset, by storing the AD 

and NC patients into two ‘.mat’ files. Then, by using the Code Snippet D.3, we perform 

the 5-fold splitting with the StratifiedGroupKFold (Code Snippet D.1).  

3.2.4 2D Brain Slices [AD, MCI, NC] (slice-level MRI) 

3.2.4.1 Multiple Scans per Patient – Single Slice per Scan (B_2D_M [AD, MCI, NC]) 

The 2D Brain Slices, Multiple Scans per Patient – Single lice per Scans [AD, MCI, NC] 

(B_2D_M [AD, MCI, NC]) dataset is the same as the B_2D_M (Section 3.2.3.4) dataset 

plus 602 MCI samples. The purpose of this dataset was to investigate how much the extra 

class affects the performance of the classification. The issues that the B_2D_M dataset 
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had remained the same to this dataset as well since to be able to perform a direct 

comparison, the 10-fold CV was maintained, as well as the small test set.   

For the test set, 66 samples were isolated (AD = 22, MCI = 22, NC = 22). Then, 

StratifiedGroupKFold (Section 3.1.5) with 10-folds was used with each fold having 174 

samples (AD = 58, MCI = 58, NC = 58). Subsequently, 1566 samples remained as the 

training set (AD = 522, MCI = 522, NC = 522) (Table 3.10).  

 AD NC MCI Total 

All Samples 602 (33%) 602 (33%) 602 (33%) 1806 

Training Set 522 522 522 1566 (86.7%) 

Test Set 22 22 22 66 (3.6%) 

Validation Set 58 58 58 174 (9.6%) 

Table 3.10. Dataset: 2D Brain Slices [AD, NC],  

Multiple Scans per Patient – Single Slice per Scan (B_2D_M [AD, MCI, NC]) (10-fold CV) 

The gender percentages in the B_2D_M [AC, MCI, NC] dataset differ from the B_2D_M 

dataset. Instead of being 48.3% Females and 51.7% Males, now 42.2% are Females and 

57.8% are Males. That being so, the MCI patients added are more males than females 

which causes the set to be slightly unbalanced in terms of gender (Table 3.11).  

 Females Males Total Patients 

Gender 762 (42.2%) 1044 (57.8%) 1806 

Table 3.11. Gender Percentages: 2D Brain Slices [AD, NC],  

Multiple Scans per Patient – Single Slice per Scan (B_2D_M [AD, MCI, NC]) 

For this dataset, the labeling has changed though. Instead of the labels being AD = 1 and 

NC = 2, now the labels are AD = 1, MCI = 2, and NC = 3. This does not affect in any 

way the training process or the performance of the model. Code Snippet C.8 prepares the 

data needed for the B_2D_M [AD, MCI, NC] dataset, by storing the AD, MCI, and NC 

patients into three ‘.mat’ files. Then, by using the Code Snippet D.9, we perform the 10-

fold splitting with the StratifiedGroupKFold (Code Snippet D.1).  

3.2.5 3D Shrunk Brains [AD, NC] (subject-level MRI) 

3.2.5.1 Preprocessing of 3D Shrunk Brains 

3D Shrunk Brains dataset are the shrunk versions of the T1-weighted MRI scans of the 

brains from ADNI. The 3D MRI scans before shrinking are the same ones used for the 
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2D Brain Slices (Section 3.2.3 & 3.2.4) and 3D Cropped Brains (Section 3.2.7) datasets. 

To shrink the images, the average (numpy.mean) of each 4 × 4 × 4 block was 

calculated. This decreased the size of the new image to 
1

64
 of its original size. Code Snippet 

3.9 shows the shrinking process used in this thesis for a 3D MRI scan.  

import skimage.measure 

import numpy as np 

 

# Shrink MRI image by taking the mean of each 4x4x4 block 

 

. . .  

shrunk_image = skimage.measure.block_reduce(image, (4, 4, 4), np.mean) 

. . .  

 

Code Snippet 3.9. Shrunk each 3D image to 1/16 of its original size. 

The mean of a 4 x 4 x 4 block of the original 3D image. 

The shrinking was inevitable since the original image size of each sample was: 

𝑥 × 𝑦 × 𝑧 = 174 × 190 × 174 =  5,752,440 𝑝𝑖𝑥𝑒𝑙𝑠 

Since each pixel is a floating point (32-bits) then the total size of a single scan would be: 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 = 5,752,440 × 32 = 184,078,080 𝑏𝑖𝑡𝑠 = 23 𝑀𝐵 

Therefore, with a total of 398 samples, if only a single scan per patient was included, then 

the total size of the dataset would be: 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑆𝑖𝑧𝑒 = 23 × 398 = ~9.2 𝐺𝐵 

For multiple MRI scans per patient, the total size is 1204 samples, thus the size of the 

complete dataset would be: 

𝐹𝑢𝑙𝑙 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑆𝑖𝑧𝑒 = 23 × 1204 = ~27.7 𝐺𝐵 

Keep in mind that a network for such large 3D images would have millions of parameters. 

Consequently, the memory available on our machines (RAM) was not enough to store all 

these network’s weights and the samples themselves. Therefore, the CPU would be 

performing a lot of context switching between the RAM and the Hard Disk which would 

make the learning process extremely slow.  

To overcome those issues, we decided to trade details of the images for a smaller overall 

size. The new images, after compression, were:  

𝑥′ × 𝑦′ × 𝑧′ =  44 × 48 × 44 =  92,928 𝑝𝑖𝑥𝑙𝑒𝑠 
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This implies to: 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 = 92,928 × 32 = 2,973,696 𝑏𝑖𝑡𝑠 = 0.37 𝑀𝐵 

and the total of 398 samples is: 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑆𝑖𝑧𝑒 =  0.37 × 398 = ~0.15 𝐺𝐵 

Significantly smaller than the 9.2 GB without compression. To be more specific, the 

compressed dataset is 
1

64
 times smaller than the uncompressed one: 

𝑆𝑖𝑧𝑒𝑠 𝑅𝑎𝑡𝑖𝑜 =  
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 =

92,928

5,752,440
= ~

1

64
= ~1.6% 

In Figures 3.13 and 3.14, two slices of a 3D scan are presented. On the left of both figures 

is a slice from the original 3D image without any compression being applied. On the right 

of both figures, is the slice resulted after compressing the whole image by replacing each 

4 × 4 × 4 block with the mean of its pixels values.  

More specifically, Figure 3.13 compares the slices of an NC patient. We lose a lot of 

resolution and the details, and this affects especially tiny areas such as the hippocampal 

structure, which plays a major role in the learning process. Figure 3.14 compares the 

slices of an AD patient. We can observe that in this case, the shrunk slice looks brighter 

than the original one. Because each pixel is the mean of the surrounding 64 pixels, the 

value of a pixel may vary a lot. This does not benefit our learning procedure since many 

important details are lost as well.  

 

Figure 3.13. 3D Shrunk NC Brain's same slice uncompressed and compressed to 1/64 of the total size. 

Left: Slice [:, 120, :] uncompressed. Right: Slice [:, 30, :] compressed using the mean of each 4 x 4 x 4 block. 
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Figure 3.14. 3D Shrunk AD Brain's same slice uncompressed and compressed to 1/64 of the total size.  

Left: Slice [:, 120, :] uncompressed. Right: Slice [: , 30, :] compressed using the mean of each 4 x 4 x 4 block. 

Later on, during the experiments, this method performs very poorly since the model most 

of the time fails to learn anything at all. The MRI scanner needs to be as detailed as 

possible down to the level of the millimeter. By performing such aggressive compression 

to the images due to lack of resources we have destroyed the data. That being so, in the 

future, experiments with the original size of 3D scans should be performed. 

3.2.5.2 Single Scan per Patient (B_3D_S) 

The 3D Shrunk Brains, Single Scan per Patient (B_3D_S) dataset, uses a 5-fold CV for 

splitting. Since the samples are much larger than the B_2D_S dataset, each execution 

takes exceptionally much more time to be completed and much more resources. 

Additionally, due to the small size of the dataset, a 5-fold CV has to be used instead of a 

10-fold CV. More specifically, the StratifiedKFold (Section 3.1.3) was used for the 5-

fold CV, as there was no need for using StratifiedGroupKFold because only a single scan 

per patient exists in the dataset, and as a result, there was no risk of data leakage by not 

taking into consideration the groups.  

The B_3D_S dataset, similarly to the B_2D_S, contains the same 199 AD samples and 

199 NC samples, with a total of 398 subjects. Before performing the StratifiedKFold, 19 

samples were isolated from each target class as the test set (AD = 19, NC = 19). Thus, the 

test set’s percentage is now 10%, significantly larger than the ones in the 2D datasets’ test 

set (3.6% and 4.5%). This choice has been made after observing from the 2D experiments 

that the test accuracy was notably worse because the test set’s size was not sufficient 
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(Beleites et. al. 2013). The rest 360 samples (AD = 180 & NC = 180) were used for the 

5-fold CV splitting, which resulted in 5 balanced folds, with each one having 72 samples. 

This generates five training sets with 288 samples each (AD = 144, NC = 144), and five 

validation sets with 72 samples each (AD = 36, NC = 36). The percentage of the validation 

set based on the total size of the B_3D_S set is 18% which is much larger than the one in 

the 2D datasets (Table 3.12).  

 AD NC MCI Total 

All Samples 199 (50%) 199 (50%) - 398 

Training Set 144 144 - 288 (72%) 

Test Set 19   19 - 38 (10%) 

Validation Set 36 36 - 72 (18%) 

Table 3.12. Dataset:3D Shrunk Brains, Single Scan per Patient (B_3D_S) (5-fold CV) 

In total, 398 subjects are in the B_3D_S dataset (same as the B_2D_S) with 48.7% being 

Females and 51.3% being Males (Table 3.13).  

 Females Males Total Patients 

Gender 194 (48.7%) 204 (51.3%) 398 

Table 3.13. Gender Percentages: 3D Shrunk Brains, Single Scan per Patient (B_3D_S) 

Code Snippet C.5 prepares the data needed for the B_3D_S dataset, by storing the AD 

and NC patients into two ‘.mat’ files. Then, by using the Code Snippet D.4, we perform 

the 5-fold splitting with the StratifiedKFold.  

3.2.6 3D Left Hippocampus [AD, NC]  

3.2.6.1 Introduction to 3D Left Hippocampus 

The 3D Left Hippocampus [AD, NC] dataset was created by Achilleos et al. (2020) in 

which from the 3D MRI brain images, the hippocampal structure was isolated. Due to a 

lack of computational resources, from the left and right hippocampal structures, only the 

left was used for classifying whether the patient was AD or NC.  

The hippocampus, especially the left one, takes the most damage during Alzheimer’s 

disease (Achilleos et al. 2020). So, it was expected that with this dataset which is more 

focused on the source of the problem, the results would be much better than using the 
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whole brain of the patient. Explicitly, the hippocampus of an AD subject is notably 

smaller in terms of volume in comparison with an NC patient. 

To create the dataset, the 3D images were padded with 0s to change the shape of all 

images into 37 × 32 × 50. In total 296 unique patients’ left hippocampus were used, 148 

ADs and 148 NCs.  

3.2.6.2 Single Scan per Patient (LH_3D_S) 

The 3D Left Hippocampus, Single Scan per Patient (LH_3D_S) consists of 296 samples. 

The dataset is balanced with 148 ADs and 148 NCs. 5-fold CV was used since the dataset 

is relatively small. More specifically, StatrifiedKFold (Section 3.1.3) was applied since 

the dataset contains only a single scan per patient, thus, no danger of data leakage exists.  

The validation set is the17% of the original set with 52 samples (AD = 26, NC = 26), 

while the training set has 208 samples (AD = 148, NC = 148). Finally, the test set, which 

is much larger than the 2D datasets while being 12% of the original set, has 36 samples 

(AD = 18, NC = 18) (Table 3.14).  

 AD NC MCI Total 

All Samples 148 (50%) 148 (50%) - 296 

Training Set 104 104 - 208 (70%) 

Test Set 18   18 - 36 (12%) 

Validation Set 26 26 - 52 (17%) 

Table 3.14. Dataset:3D Left Hippocampus, Single Scan per Patient (LH_3D_S) (5-fold CV) 

In this dataset, no gender information was available for the patients, so we were unable 

to identify whether the dataset is balanced or unbalanced in terms of gender.  

Code Snippet C.7 prepares the data needed for the LH_3D_S dataset, by storing the AD 

and NC patients into two ‘.mat’ files. Then, by using the Code Snippet D.6, we perform 

the 5-fold splitting with the StratifiedKFold.  

3.2.7 3D Cropped Brains [AD, NC] 

3.2.7.1 Preprocessing of 3D Cropped Brains 

The T1-weighted MRI scans from ADNI had been used to create the 3D Cropped Brains. 

Without adding any padding on the original images, they were cropped in a specific 
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matter to include the left hippocampus of the patient. No compression was used; therefore, 

the results are expected to be better than the 3D Shrunk Brains (Section 3.2.5) dataset. 

The 3D MRI scans before copping are the same ones used for the 2D Brain Slices (Section 

3.2.3 & 3.2.4) and 3D Shrunk Brains (Section 3.2.5) datasets. 

To crop the images the pixels 0 to 70 from the x-axis, the pixels 20 to 80 from the y-axis, 

and the pixels 30 to 90 from the z-axis have been isolated (Figure 3.15 Left). The result 

is a new 3D image with dimensions 70 × 60 × 60, that mostly includes the left 

hippocampus of a patient (Figure 3.16 Right).  

 

Figure 3.15. Isolating the left hippocampus of a patient. Left: 3D Brain (Original). Right: 3D Cropped Brain.  

3.2.7.2 Single Scan per Patient (CB_3D_S) 

The 3D Cropped Brains, Single Scan per Patient (CB_3D_S) dataset uses the same 

samples as the B_3D_S (Section 3.2.5.2) and B_2D_S (Section 3.2.3.2) datasets. Because 

only a single scan per patient exists in the dataset for the 5-fold CV, same as with the 

B_3D_S set, StratifiedKFold (Section 3.1.3) was used.  

 AD NC MCI Total 

All Samples 199 (50%) 199 (50%) - 398 

Training Set 144 144 - 288 (72%) 

Test Set 19   19 - 38 (10%) 

Validation Set 36 36 - 72 (18%) 

Table 3.15. Dataset:3D Cropped Brains, Single Scan per Patient (CB_3D_S) (5-fold CV) 
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The number of samples per set is the same as the B_2D_S set. The validation set has 72 

samples (AD = 36, NC = 36), the training set 288 samples (AD = 144, NC = 144) and the 

test set 38 samples (AD = 19, NC = 19). All of them are balanced with an equal number 

of ADs and NCs (Table 3.15). 

The gender percentages are the same on both B_3D_S and B_2D_S sets since both of 

them use the same patients. The Females are 48.7% and the Males are 51.3%, so, no issue 

should occur because the dataset is slightly imbalanced in terms of gender (Table 3.16).  

 Females Males Total Patients 

Gender 194 (48.7%) 204 (51.3%) 398 

Table 3.16. Gender Percentages: 3D Cropped Brains, Single Scan per Patient (CB_3D_S) 

Code Snippet C.6 prepares the data needed for the CB_3D_S dataset, by storing the AD 

and NC patients into two ‘.mat’ files. Then, by using the Code Snippet D.5, we perform 

the 5-fold splitting with the StratifiedKFold.  

3.3 Classification Metrics 

3.3.1 Confusion Matrix 

3.3.1.1 TP, TN, FP, FN 

The labeling on the aforementioned datasets (Section 3.2) goes as follows:  

• For experiments with AD and NC samples, AD = 1 and NC = 2.  

• For experiments with AD, MCI and NC samples, AD = 1, MCI = 2, NC = 3. 

Usually, the AD is labeled as 2 and NC as 1, but in my case, I found out that the labeling 

was important a bit too late, after running half of the experiments. Thus, we can make this 

convention for this thesis in order not to get confused. For the experiments with AD and 

NC only, the True Positives (TP) represent how many patients who are NC have been 

correctly predicted as NC. Consequently, the True Negatives (TN) represent how many 

patients who are AD have been correctly predicted as AD.  False Positives (FP) represent 

the number of predictions where the patient was AD but was misclassified as NC, and 

False Negatives (FN) the times where the patient was NC and was misclassified as AD.  
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The Condition Positive (P) is the sum of TP and FN (P = TP + FN), which are the real 

positive cases in the data, and the Condition Negative (N) is the sum of TN and FP (N = 

TN + FP), the real negative cases in the data. In our case, P is the number of NC samples 

and the N is the number of AD samples. 

The AD/NC problem demands that the model achieves small FN and large TN values to 

be considered a success. Therefore, the Specificity should be high which helps detect 

when a patient might have AD so we will guide them to further examination. Normally, 

Sensitivity is the metric that matters the most, but due to the “mistake” on the labeling for 

AD being 1 instead of 2, the Specificity will be more interesting for us.  

3.3.1.2 𝟐 × 𝟐 Confusion Matrix 

The confusion matrix or error matrix allows us to visualize the performance of an 

algorithm. Its dimensions are depended on the number of target classes. For example, for 

the AD/NC experiments, the dimensions of the confusion matrix will be 2 × 2, while for 

the AD/MCI/NC experiments the dimensions will be 3 × 3. The rows represent the 

instances of the real/predicted classes, while each column represents an instance of a 

target/actual class. In general, the confusion matrix tells us whether and how the algorithm 

confuses the classes between them. In our case, for the AD/NC problem, the confusion 

matrix will have a similar form to the one in Figure 3.16.   

 

Figure 3.16. Examples of a confusion matrix for the two target classes AD and NC. 

Since AD = 1 and NC = 2, the TP would be the cases when the target was NC and the 

predicted/real value was NC as well. On that account, the TN would be the cases in which 

the target class and the real value were ADs. Oppositely, FP represents the cases where 
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the target was AD but the prediction was NC; and FN is the cases where the target was 

NC and the prediction value was AD. Thus, in the aforementioned example, the TP = 2 

the TN = 3, FP = 1 and FN = 2. From those counters, different metrics can be calculated 

such as Accuracy, Specificity, Sensitivity, Positive Predictive Value, and Negative 

Predictive Value that are extremely useful for Machine Learning. 

The Code Snippet 3.10 shows how we can use the confusion_matrix function of the scikit-

learn library to generate the confusion matrix, given as input two arrays with the target 

and real values.  

from sklearn.metrics import confusion_matrix 

 

target = [0,0,0,0,1,1,1,1]   # Target classes that the algorithm needs to identify 

real = [1,0,0,0,1,0,1,1]     # Predicted classes based on algorithm’s decisions 

 

conf_matrix = confusion_matrix(target, real) 

 

tn = conf_matrix[0][0]   # True Negatives 

fp = conf_matrix[0][1]   # False Positives 

fn = conf_matrix[1][0]   # False Negatives 

tp = conf_matrix[1][1]   # True Positives 

 

Code Snippet 3.10. Create the Confusion Matrix with scikit-learn 

This method produces a confusion matrix which is a 2 × 2 matrix with 4 values, in the 

cases that the input arrays have only 2 predictive values. The four values, TP, TN, FP, 

FN, can be found in the output matrix of that method in the following cells: 

1. TN = conf_matrix[0][0]  

2. FP = conf_matrix[0][1]  

3. FN = conf_matrix[1][0]  

4. TP = conf_matrix[1][1]  

3.3.1.3 𝟑 × 𝟑 Confusion Matrix 

For the AD/MCI/NC problem the algorithm has to learn three target classes, thus, a 

confusion matrix of dimensions 3 × 3 will be created, just like the one in Figure 3.17. In 

our experiments, we need most of the large numbers (darker blue color) to be in the 

diagonal of the confusion matrix. This provides us with the information that the algorithm 

correctly identifies the samples to their target class. 
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Figure 3.17. Examples of a confusion matrix for the three target classes AD, MCI, and NC. 

For the example in Figure 3.17, we can see that the algorithm confuses NCs with ADs 

since 2 ADs were predicted as NCs (cell in the top right corner). Also, there is no 

confusion for an MCI to be classified as NC since zero MCI samples were predicted as 

NC (cell in the middle top). These kinds of conclusions, the confusion matrix helps us to 

come up with. Since 3 target classes exist, each class will have its own TP, TN, FP, and 

FN values. These will help us calculate the Sensitivity, Specificity, Accuracy, Positive 

Predictive Value, and Negative Predictive Value of each class. For the values, TP, TN, 

FP, and FN to be calculated the method demonstrated in Figure 3.18 is going to be used 

in an 𝑁 × 𝑁 confusion matrix.  

 

Figure 3.18. Finding TP, TN FP, and FN of the Ck class in an 𝑁 × 𝑁 confusion matrix. 
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Now that we have calculated the TP, TN, FP, and FN values for each one of the N classes, 

we can calculate other metrics the same way as in a problem with 2 target classes (Section 

3.3.1.2).  

3.3.2 Precision / Positive Predictive Value (PPV) 

Precision or so-called Positive Predictive Value (PPV) on the AD/NC problem tells us 

the rate that the algorithm identifies correctly the NC patients, over the total of NC 

predictions. More specifically, the PPV is the proportion of correctly classified NCs, 

divided by the total predictions of NCs, and can be calculated from the equation: 

𝑃𝑃𝑉 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The ideal value of PPV is 1, and the worst possible value would be 0. If PPV = 1 implies 

that from all NC predictions, all of them were for real NCs. 

3.3.3 Negative Predictive Value (NPV) 

Negative Predictive Value (NPV), on the AD/NC problem, represents the rate that the 

algorithm correctly identifies the AD patients, over the total of AD predictions. Therefore, 

NPV is the proportion of correctly classified ADs, divided by the total of AD predictions, 

and can be calculated from the following equation: 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

Similar to PPV, the ideal value of NPV is 1, which implies that from all AD predictions, 

all of them were for real ADs.  

3.3.4 Sensitivity / Recall / True Positive Rate (TPR) 

The Sensitivity measure, as well as the Specificity, are statistical measures of the 

performance of a binary classification problem (e.g., AD/NC problem), that are widely 

used in medicine.  

Frequently, Sensitivity measures how many sick people are correctly identified as sick. 

However, in this thesis, due to the labeling of the classes where AD = 1 and NC = 2, 

Sensitivity plays the role of Specificity and Specificity the role of Sensitivity. Therefore, 

Sensitivity represents how many selected elements are truly negative, which means, how 
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many healthy people are correctly identified as healthy (NC). So, the Sensitivity is the 

proportion of correctly predicted NCs, over the total number of NCs.   

𝑇𝑃𝑅 =  
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The ideal value of Sensitivity is 1, and the worst value is 0. For Sensitivity being equal to 

1, this implies that all the NC patients are correctly classified as NCs.  

3.3.5 Specificity / True Negative Rate (TNR) 

Usually, Specificity measures how many healthy people are correctly identified as being 

healthy. Keep in mind that in our case, due to the labeling AD = 1 and NC = 2, Specificity 

identifies how many AD patients are correctly identified as ADs, instead of how many 

NC patients are correctly identified as NCs. Consequently, Specificity in this thesis will 

refer to how many people who have for real the disease, are correctly identified as having 

the disease. Therefore, is not the proportion of negatives that are correctly identified, but 

how many relevant items are selected.  

The Specificity or so-called True Negative Rate (TNR) represents how accurately our 

model can predict the ADs when the subject is an AD and does not misclassify them as 

NC. In the AD/NC problem, Specificity is the most important parameter because it tells 

us whether a patient might be an AD, therefore we can perform a further investigation on 

the patient through other techniques such as interviews, questionnaires, etc. On the other 

hand, if the Specificity is low, then most ADs would be misclassified as NCs. This is an 

issue because the doctor may set them free without further examination which could be 

proven catastrophic for the patient.  

𝑇𝑁𝑅 =  
𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The ideal value of Specificity is 1, and the worst possible value would be 0. If Specificity 

is equal to 1, it means in this thesis that all AD patients are correctly classified as ADs.  

3.3.6 Accuracy (ACC) 

Accuracy (ACC) is the performance measure that is frequently used in binary 

classification and corresponds to the proportion of correctly identified AD and NC 

samples (correct predictions) over the total size of cases examined.  
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𝐴𝐶𝐶 = 
𝑇𝑃 +  𝑇𝑁

𝑃 +  𝑁
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

The best possible value for ACC is 1, which means that all NCs and ACs are classified 

correctly. In the experiments of this thesis (Chapter 5), three accuracies will be examined; 

training, validation, and test accuracies.  

3.3.7 Loss Functions 

3.3.7.1 Mean Squared Error (MSE) Loss 

The Mean Squared Error (MSE) (Section 2.3.4) loss is the one that frequently being used 

for regression problems (Section 2.3.1). MSE is the average of the squared differences 

between the predicted and actual values. The value of the MSE loss is always positive, 

regardless of the sign of the predicted and actual values.  

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)

2.

𝑛

𝑖=1

 

The squaring means that larger mistakes will punish the model more than smaller 

mistakes. The ideal value for MSE loss is 0. By default, the NewtonCG implementations 

(Wang et al. 2020) were using MSE loss as the loss function. Only one experiment was 

performed with Cross-entropy loss (Section 3.3.7.2) since MSE loss was performing 

better.   

3.3.7.2 Cross-entropy Loss 

Cross-entropy loss (Section 2.3.5) measures the performance of a classification problem 

(Section 2.3.2) in which the output is a probability value between 0 and 1. Cross-entropy 

loss decreases as the predicted probability converges to the actual label. In a binary 

classification problem where 𝑡 is the target value 𝑝 is the predicted value, the Cross-

entropy loss can be calculated as: 

𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −(𝑡 log(𝑝) + (1 − 𝑡) log(1 − 𝑝)) 
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Chapter 4 

Implementation 
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4.1 A new approach for Automating Dementia Diagnosis 

To approach the automation of Alzheimer’s disease diagnosis, we will start from the 

AD/MCI problem, and then examine whether the techniques generalize well in the 

AD/MCI/NC problem as well. More specifically, the “AD/MCI/NC problem” is a 

classification problem since you have to classify whether a patient is a member of one of 

these three classes (AD, MCI, or NC); while the “AD/NC problem” is the classification 

between two classes (AD, NC). Since this thesis approaches the problems with Machine 

Learning models, an ANN (Section 2.3.8) can be used to perform the classification 

(Section 2.3.2). Based on the format of the dataset, we need to select between an MLP 

(Section 2.3.11) and CNN (Section 2.3.12).  

Supervised learning (Section 2.3.6) is going to be applied to all the experiments of this 

thesis since the target class is known in our datasets. The Hippocampus Features dataset 

(Section 3.2.2) will use an MLP to perform the classification since the features (10 

floating points) that describe the patient’s health condition, are already extracted 

manually by Achilleos et al. (2020). On the other hand, the rest of the datasets (Section 

3.2.3 – 3.2.7) that consist of MRI images, the features have to be extracted, so a CNN 

needs to be used. This thesis, experiments with both MLPs and CNNs, and compares their 

performance metrics (accuracy, loss, sensitivity, specificity, etc.). 

Mainly, this thesis aims not only to compare the performance of network configurations 

between MLP and CNN for the AD/NC problem, but also, test the performance of 

deferent optimizers, such as SGD (Section 2.4.3), Adam (Section 2.4.4), and 
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HFO/NewtonCG (Section 2.4.7), for each one of these models. Additionally, 9 different 

datasets are being used in more than 80 experiments with distinct hyperparameters on 

each one of them. The 9 different datasets were created based on the ADNI dataset 

(Section 3.2). Table 4.1 defines the naming of those datasets. The naming of the 

experiments will be based on the dataset’s name.  

Dataset Name Description 

HF_M Hippocampus Features (Achilleos et al. 2020) from Multiple scans per patient (AD, NC) 

B_2D_S One (1) 2D slice per Brain scan, from a Single scan per patient (AD, NC) 

B_2D_5S Five (5) 2D slices per Brain scan, from a Single scan per patient (AD, NC) 

B_2D_M One (1) 2D slice per Brain scan, from Multiple scans per patient (AD, NC) 

B_2D_7M Seven (7) 2D slices per Brain scan, from Multiple scans per patient (AD, NC) 

LH_3D_S One (1) 3D Left Hippocampus (Achilleos et al. 2020) isolated from a Single scan per patient (AD, NC) 

B_3D_S One (1) 3D shrunk Brain, from a Single scan per patient (AD, NC) 

CB_3D_S One (1) 3D area Cropped from the Brain, from a Single scan per patient (AD, NC) 

B_2D_M 

[AD, MCI, NC] 
One (1) 2D slice per Brain scan, from Multiple scans per patient (AD, MCI, NC) 

Table 4.1. Names of the datasets used in this thesis. 

By saying “Multiple scans per patient”, we mean that one or more T1-weighted MRI 

scans of the same patient exist in the dataset. For example, for the same patient, we might 

have their baseline, 6-, 12-, and 18-months scans. On the other hand, “Single scan per 

patient” means that we are using only the first T1-weighted MRI scan of each patient.  

“One (1) 2D slice …” (Section 3.2.3.1) refers to the middle slice of a 3D Brain MRI scan 

of a patient. The index of the middle slice can be found using: 

𝑖𝑚𝑖𝑑𝑑𝑙𝑒 =  𝑟𝑜𝑢𝑛𝑑(𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑚𝑎𝑔𝑒_3𝐷[0, ∶, 0, ) 

Therefore, the middle slice is: 

𝑖𝑚𝑎𝑔𝑒_2𝐷 =  𝑖𝑚𝑎𝑔𝑒_3𝐷[: , 𝑖𝑛𝑑𝑒𝑥𝑚𝑖𝑑𝑑𝑙𝑒 , ∶] 

Respectively, “Five (5) 2D slices …” (Section 3.2.3.1) refers to the 5 slices near the 

middle of a 3D Brain MRI scan of a patient with the following indices: 

[𝑖𝑚𝑖𝑑𝑑𝑙𝑒 − 4, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 − 2, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 , 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 + 2, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 + 4]. 

Similarly, the “Seven (7) 2D slices …” (Section 3.2.3.1) are the 7 slices with the indices: 
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[𝑖𝑚𝑖𝑑𝑑𝑙𝑒 − 6, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 − 4, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 − 2, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 , 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 + 2, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 + 4, 𝑖𝑚𝑖𝑑𝑑𝑙𝑒 + 6]. 

Each 2D slice is (174 × 174) pixels, which is relatively large for the experiments to be 

executed in my personal computer (2-core CPU, 8GB RAM, no external GPU). So, in the 

beginning, I was trying to use Google Collab to run my experiments. Unfortunately, 

Google Collab offers similar hardware capabilities to a personal computer (2-core CPU, 

12GB RAM, not always guaranteed access to external GPU), and additionally limits the 

execution time to 24 hours, and 90 minutes idle time. Consequently, running experiments 

in Google Collab that take 6 – 10 hours wasn’t feasible.  

As an alternative solution we had decided to use the Arcadia server of the University of 

Cyprus, for the experiments, which offers a 32-core CPU, 128GB RAM, but no external 

GPU). Therefore, the Arcadia server was a great choice for the 2D implementations. 

Nevertheless, Arcadia could not handle the 3D experimenters, where their images had 

dimensions, (60 × 60 × 70), (32 × 37 × 50), and (44 × 48 × 44).  

In comparison with The Cyprus Institute server which took approximately 4 seconds per 

epoch, Arcadia needed 4000 seconds or even more for the same task. The Cyprus 

Institute’s servers support dedicated GPUs which are essential for training CNNs, 

especially for 3D CNNs. I have used my personal computer only for the experiments for 

the Hippocampus Features (Section 3.2.2) which were used in simple MLP networks with 

no need for much RAM or any high requirements of CPU and GPU power.  

The NewtonCG implementation that was provided by Wang et al. (2020) was in Python 

3 and MATLAB, so we had to choose one of them. We decided to use Python 3 for all 

the implementations in this thesis since it is one of the most frequently used programming 

languages for Machine Learning. The reason is that Python 3 provides many libraries for 

data handling, and especially a vast variety of libraries dedicated to Machine Learning, 

where some of them are TensorFlow, Keras, scikit-learn, Scipy.io, Pandas, and NumPy.  

All the source code for the MLP implementations can be found in Appendix A, while all 

the CNN implementations in Appendix B. Appendix C contains the source code for 

creating the datasets, while Appendix D the code for the 5- and 10-fold splitting. Finally, 

Appendixes E.1, E.3 – E.5 provide details on how to run the CNN implementations 

(Section 4.3) in the Arcadia server, while Appendix E.2 provides information on how to 

run the MLP implementations (Section 4.2). 
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4.2 MLP Implementations 

For the Hippocampus Features (HF_M) dataset (Section 3.2.2), MLP networks (Section 

2.3.11) were used for our experiments. Experiments in MLPs have utilized all three 

optimizers, SGD (Section 4.2.1.1), Adam (Section 4.2.1.2), and HFO (Section 4.2.1.3). 

The source code for these optimizers can be found in Appendix A. For the creation of the 

figures in Section 4.2, with the different network configurations, the tool 

(http://alexlenail.me/NN-SVG/AlexNet.html) was used. 

4.2.1 Optimizers 

4.2.1.1 SGD 

For the MLP implementations with the SGD (Section 2.4.3) optimizer, Python’s library 

scikit-learn was used. More specifically the sklearn.neural_network.MLPClassifier 

module (Pedregosa et al. 2011), a Multi-Layer Perceptron classifier. The library provides 

several activation functions such as the identity, logistic, tanh, and ReLU; and some 

solvers such as L-BFGS (quasi-Newton methods optimizer), SGD, and Adam. 

Additionally, the library supports the L2 penalty, a regularization term parameter defined 

as alpha (α) (Section 2.3.13.7).  

The SGD optimizer explicitly supports different learning rate schedules for weight 

updates. The different options are constant, inverse scaling, and adaptive. By default, our 

experiments were set to constant, which means that the learning rate will be initially set 

to a value and remain constant throughout the whole training process. Furthermore, the 

SGD optimizer supports momentum for the gradient descent update, which is a value 

between 0 and 1 and helps the algorithm avoid local minimums. The momentum was set 

to 0.8 for the experiments with the SGD of this thesis. The source code of the MLP with 

SGD implementation can be found in Code Snippet A.2. 

4.2.1.2 Adam 

The Adam (Section 2.4.4) implementation with the MLP is the same as the SGD one 

since it uses the same modules from the scikit-learn library. The difference in the 

MLPClassifier object is the solver which is set to ‘adam’ instead of ‘sgd’. Also, the 

momentum is removed, since the Adam optimizer does not support it. The source code 

of the MLP with Adam's implementation can be found in Code Snippet A.1. 

http://alexlenail.me/NN-SVG/AlexNet.html
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The Adam optimizer supports also a unique hyperparameter; the epsilon (ε), which is 

responsible for numerical stability and is set by default to the value 1e-8. Mostly ε helps 

to avoid division by zero while updating the weights when the gradient is almost zero. In 

the experiments (Section 5.2.4), we are not going to modify the initial value of ε.  

4.2.1.3 HFO 

For the MLP implementation with the HFO optimizer (Section 2.4.9), the Python library 

“hessianfree 0.4.0” (https://pypi.org/project/hessianfree/) was used. This library contains 

all the standard features of Hessian-Free Optimization based on Martens (2010), and 

Martens and Sutskever (2012). Thus, the implementation includes Gauss-Newton 

approximation (Section 2.4.9), early termination, CG backtracking, Tikhonov damping, 

structural damping, etc.  

The code works for feedforward networks and provides standard nonlinearities such as 

logistic, tanh, ReLU, and softmax, while it supports also custom nonlinearities. For the 

loss functions, it supports MSE (Section 2.3.4), Cross-entropy (Section 2.3.5), sparsity 

constraints, etc. The library provides the ability to change the number of layers and 

neurons per layer as well. The source code of the MLP with HFO implementation of MLP 

with HFO can be found in Code Snippet A.3 & A.4. 

A variable which we modify in the MLP with HFO implementations during the 

experiments is the ‘CGiter’, which is the Conjugate Gradient iterations until it converges 

(Section 2.4.6). Usually, this number does not need to be large since, in the first few CG 

iterations, the model advances a lot.  

4.2.2 MLP Network Architectures 

The MLP networks (Adam, SGD, HFO) have been used with the Hippocampus Features 

with Multiple scans per patient (HF_M) dataset (Section 3.2.2.2). Based on 10 floating-

point values, the features of the hippocampus, the network needs to identify whether the 

patient is either AD or NC. In this dataset, the AD target class is 1, while NC is 0.  

For the following network architectures (Section 4.2.2.1 – 4.2.2.4), a single output neuron 

was used. If the network outputs 0 then it predicts NC, otherwise, if it outputs 1 then it 

predicts AD. All MLP network architectures have 10 input neurons which correspond to 

the 10 hippocampal features.  

https://pypi.org/project/hessianfree/
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4.2.2.1 [10, 8, 8, 1] MLP 

 

Figure 4.1. [10, 8, 8, 1] MLP Network Architecture 

The [10, 8, 8, 1] architecture has 4 layers, the input layer, and 3 layers of neurons. It has 

10 inputs, two hidden layers follow up with 8 neurons each, and an output (Figure 4.1). 

The total number of network weights is: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = (10 × 8) + (8 × 8) + (8 × 1) = 152 

If we ignore the input layer, the total of neurons in the rest layers is: 

𝑝𝑟𝑒𝑐𝑒𝑝𝑡𝑟𝑜𝑛𝑠 = 8 + 8 + 1 = 17 

Since each perceptron has a bias then: 

𝑏𝑖𝑎𝑠𝑒𝑠 = 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛𝑠 = 8 + 8 + 1 = 17 

Therefore, in total the network’s learnable parameters are: 

𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠𝑒𝑠 = 152 + 17 = 169  

4.2.2.2 [10, 20, 20, 1] MLP 

 

Figure 4.2. [10, 20, 20, 1] MLP Network Architecture 
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The [10, 20, 20, 1] architecture has 4 layers as well, an input layer and 3 layers with 

neurons. Similar to other MLP networks of this thesis the input layer has 10 inputs, while 

two hidden layers follow up with 20 neurons each, and an output (Figure 4.2). The 

network’s weights in total are: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = (10 × 20) + (20 × 20) + (20 × 1) = 620 

By ignoring the input layer, the rest of the neurons of the network are in total: 

𝑝𝑟𝑒𝑐𝑒𝑝𝑡𝑟𝑜𝑛𝑠 = 20 + 20 + 1 = 41 

Since each perceptron has a bias then: 

𝑏𝑖𝑎𝑠𝑒𝑠 = 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛𝑠 = 20 + 20 + 1 = 41 

Therefore, in total the network’s learnable parameters are: 

𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠𝑒𝑠 = 620 + 41 = 661  

This architecture has almost 4 times more learnable parameters than the network 

architecture [10, 8, 8, 1] (Section 4.2.2.1).  

4.2.2.3 [10, 30, 1] MLP 

 

Figure 4.3. [10, 30, 1] MLP Network Architecture 
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The [10, 30, 1] architecture has 3 layers, an input layer, and 2 layers with neurons. It has 

10 inputs, a single hidden layer with 30 neurons, and an output (Figure 4.3). The 

network’s weights in total are: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = (10 × 30) + (30 × 1) = 330 

By ignoring the input layer, the rest of the neurons of the network are in total: 

𝑝𝑟𝑒𝑐𝑒𝑝𝑡𝑟𝑜𝑛𝑠 = 30 + 1 = 31 

Since each perceptron has a bias then: 

𝑏𝑖𝑎𝑠𝑒𝑠 = 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛𝑠 = 30 + 1 = 31 

Therefore, in total the network’s learnable parameters are: 

𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠𝑒𝑠 = 330 + 31 = 361  

Consequently, this architecture has approximately 2 times more learnable parameters than 

the [10. 8. 8. 1] network architecture.  

4.2.2.4 [10, 100, 1] MLP 

The [10, 100, 1] architecture has 3 layers, an input layer, and 2 layers with neurons. It has 

10 inputs, a single hidden layer with 100 neurons, and an output (Figure 4.4). The 

network’s weights in total are: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = (10 × 100) + (100 × 1) = 1100 

By ignoring the input layer, the rest of the neurons of the network are in total: 

𝑝𝑟𝑒𝑐𝑒𝑝𝑡𝑟𝑜𝑛𝑠 = 100 + 1 = 101 

Since each perceptron has a bias then: 

𝑏𝑖𝑎𝑠𝑒𝑠 = 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛𝑠 = 100 + 1 = 101 

Therefore, in total the network’s learnable parameters are: 

𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠𝑒𝑠 = 1100 + 101 = 1201  

Consequently, the [10, 100, 1] architecture has approximately 8 times more learnable 

parameters than the [10, 8, 8, 1] network architecture.  
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Figure 4.4. [10, 100, 1] MLP Network Architecture 
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4.3 CNN Implementations 

The implementations for all CNN architectures are based on the paper by Wang et al. 

(2020). A few changes had to be made to support 3D CNNs since initially, the algorithm 

supported only 2D CNNs. The implementations are based on the TensorFlow 2 library, 

more specifically, the tensorflow.compat.v1 module was used.   

This implementation came by default with 6 different network configurations 

CNN_4layers, CNN_7layers, VGG11, VGG13, VGG16, and VGG19. In this thesis, only 

the CNN_4layers, CNN_7layers, and VGG19 from the original configurations were used. 

Keep in mind that a CNN_4layers network configuration refers to a network with three 

Convolutional Layers and a single dense layer. The naming of the different network 

configurations was kept the same as Wang et al. (2020) originally had defined them. 

 Nevertheless, additionally, CNN_3layers and CNN_5layers were created for 

experiments and additional features were added in some of the CNN architecture; such as 

L1 and L2 Regularization (Section 2.3.13.7), Dropout (Section 2.3.13.9), Spatial Dropout 

(Section 2.3.13.10), a second layer in the FFNN, Batch Normalization (Section 

2.3.13.11), etc.; and different activation functions like Sigmoid (Section 2.2.12), ReLU 

(Section 2.2.13), and SoftMax (Section 2.2.14).  

For all the experiments, the stride for Max-Pooling is set to None, which means is the 

same as the pool_size. For example, for Max-Pooling 2D, with pool_size = (2, 2) the 

stride would be (2, 2) as well, while for Max-Pooling 3D with pool_size = (2, 2, 2) the 

stride would be (2, 2, 2). 

All the Convolutional Layers apply padding (padding=’SAME’) (Section 2.3.12.7) after 

the Convolution which implies that the size of the output features maps is the same as the 

input feature maps. This means that after applying the filters, a perimeter of 0s is added. 

On the other hand, if no padding was applied, then the size of the output feature maps of 

an input image with dimensions 32 × 32 with filters 3 × 3, would be 30 × 30 instead of 

32 × 32.  

The CNN implementations of this thesis have two output neurons for the AD/NC 

problem, and three for the [AD, MCI, NC] problem. Because. the target classes from AD 

= 0 and NC = 1 have been converted to categorical, a binary class matrix, AD = [1, 0] and 
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NC = [0, 1], that is why the 2 outputs neurons are needed. Simillarly, for the [AD, MCI, 

NC] problem the classes from AD = 0, MCI = 1, and NC = 2, have been converted to AD 

= [1, 0, 0], MCI = [0, 1, 0] and NC = [0, 0, 1]. 

4.3.1 Wang et al.’s (2020) CNN  

4.3.1.1 Implementation 

The CNN implementations for this thesis are based on Wang et al.’s (2020) 

implementation. More specifically, in their study, they provide a MATLAB 

implementation, but later on, they published a Python version of the same code on their 

GitHub repository (https://github.com/cjlin1/simpleNN). This thesis modified that 

Python implementation to make the models suitable for our case. For example, the initial 

code supported only 2D datasets for 2D CNNs, so, modifications had to be made to 

support 3D CNNs (Section 4.3.4), and our 3D datasets (Section 3.2.5 – 3.2.7). 

The modified code used for the CNNs can be found in Appendix B. To be more precise, 

train.py (Code Snippet B.1) represents the main; it reads the user’s arguments, creates the 

TensorFlow session, and contains also the SGD/Adam trainer. The newton_cg.py (Code 

Snippet B.2) is the NewtonCG trainer, the heart of the HFO implementation for the CNN 

model.  The utilities.py (Code Snippet B.3), contains some utility functions that the rest 

of the files needs, and is responsible for collecting and saving the statistics. The predict.py 

(Code Snippet B.4) executes a forward pass of the network. The net.py (Code Snippet 

B.5 – B.18) are different network configurations for 2D and 3D CNNs, that were used 

during this thesis. More details about those implementations can be found in Sections 

4.3.2 & 4.3.4. Also, the vgg.py (Code Snippet B.19) contains the implementation for the 

VGG networks, inspired by Simonyan and Zisserman (2014).  

4.3.1.2 Hyperparameters 

In Wang et al.’s (2020) implementation, several command-line arguments could be 

passed by the user, which modifies the hyperparameters of the network. The way these 

arguments are passed can be found in Appendix E.6.  

4.3.1.2.1 Optimizers 

Three optimizers were available in Wang et al.’s (2020) implementation that could be 

defined in the hyperparameter “optim”; the SGD (Section 2.4.3), Adam (Section 2.4.4), 

https://github.com/cjlin1/simpleNN
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and NewtonCG (HFO) (Section 2.4.7). The NewtonCG implementation is based on 

Martens (2010) and Martens and Sutskever (2012). For the experiments on CNN 

networks, only Adam and NewtonCG were used.  

4.3.1.2.2 Epochs – Newton’s Iterations 

The hyperparameter ‘iter_max’ is the epochs, which represent the maximal number of 

Newton iterations for the NewtonCG optimizer. For the Adam and SGD optimizers, the 

epochs can be set through the ‘epoch_max’ argument.  

4.3.1.2.3 Loss Function 

The two different loss functions that the algorithm supports, which can be defined as the 

“loss” hyperparameter, are the MSE (Section 2.3.4) and Cross-entropy (Section 2.3.5). 

Most experiments of this thesis use MSE loss and only a single experiment the Cross-

entropy loss since its performance was not desirable. 

4.3.1.2.4 Batch Size “bsize” 

Wang et al.’s (2020) implementation support batch splitting, where it splits the data into 

batches of size ‘bsize’ so that each segment can fit into memory. The batch size is a 

hyperparameter that defines how many training samples are utilized in one iteration. An 

epoch therefore can have multiple iterations based on the batch size. For batch size equal 

to one, the learning algorithm is called Stochastic Gradient Descent (SGD). 

When the batch size is equal to the size of the training set, the algorithm is called Batch 

Gradient Descent. On the other hand, when the batch size is greater than one but smaller 

than the size of the training set is called Mini-Batch Gradient Descent. In the following 

experiments (Section 5.3 – 5.11), Mini-Batch Gradient Descent was used.  

4.3.1.2.5 Weight Decay “C” 

For regularization in the loss function, the regularization term C (Section 2.3.13.8), or so-

called weight decay will be used. Different values of weight decay will be tested such as 

C = {0.01, 0.1, 1, 10}. 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦 =
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝐶 × 𝑛𝑢𝑚_𝑜𝑓_𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Weight decay plays a crucial role in the bias-variance tradeoff. More specifically, as we 

can see in Figure 4.5, having high bias causes underfitting, while having high variance 

causes overfitting.  
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To solve the problem of high variance, we can reduce the number of parameters, to 

prevent our model from getting too complex since it will remove some non-linearities. 

The problem is that we need those non-linearities to solve more complex problems. That 

is why we need weight decay to penalize complexity during weight updates where we 

subtract constant times the weight from the original weight.  

 

Figure 4.5. Bias-Variance Tradeoff. 1st: High Bias – Underfitting. 2nd: Appropriate. 3rd: Hiag Variance – Overfitting 

Ιt has to be mentioned that Wang et al. (2020) in their study have implemented the code 

for the NewtonCG algorithm in MATLAB. In their source code for Python, which was 

released afterward in their GitHub repository (https://github.com/cjlin1/simpleNN), say 

that they are not sure if the implementation of the weight decay (C) was done correctly; 

since it was done in such a way that the Python and MATLAB codes are the same. I 

suggest in future experiments the code for MATLAB be used to check whether the 

implementation in Python affects the performance due to some error.  

4.3.1.2.6 Adam’s Hyperparameters 

Unique to the Adam optimizer; the parameter learning rate can be defined by using the 

‘lr’ argument. By default, the following hyperparameters are initialized as beta1 = 0.9, 

beta2 = 0.999, and epsilon (ε) = 1e-8.  The beta1 and beta2 correspond to the decay rate 

for the 1st- and 2nd-moment estimates respectively (Kingma and Ba, 2014). The ε is a 

small constant for numerical stability which is referred to as the ‘epsilon hat’ in the 

Kingma and Ba (2014) paper. 

4.3.1.2.7 NewtonCG’s Hyperparameters 

The following hyperparameters are unique to the NewtonCG optimizer. The ‘GNsize’ is 

the number of samples for estimating the Gauss-Newton matrix. Based on Wang et al. 

(2020), the larger the GNsize is, the more time the training process takes but the better 

the performance of the algorithm was as well on their problem (CIFAR-10 dataset).  

https://github.com/cjlin1/simpleNN
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The Levenberg-Marquardt (LM) algorithm, adaptively varies the parameter updates 

between the gradient descent update and the Gauss-Newton update. Based on Gavin 

(2019), the small parameters of the damping parameter ‘lambda’ (λ), result in a Gauss-

Newton update, and large values of λ result in a gradient descent update. The lambda is 

initially set to a large value, lambda = 1 so that the first updates are small steps in the 

steepest-descent direction. More details about the usage of the reasons behind using the 

LM method can be found in Wang et al. (2020). 

Additionally, other than the lambda, our implementation uses two arguments for the LM 

method, the ‘drop’, and ‘boost’. The drop and boost constants, reduce or increase the 

lambda variable respectively based on the result of the approximation. If an iteration 

happens to result in a worse approximation, the λ is increased (boost), otherwise the 

solution improves and moves towards a local minimum, so the λ is decreased (drop). The 

default values for the two hyperparameters are boost = 
3

2
 and drop = 

2

3
. 

An additional hyperparameter of the NewtonCG optimizer is ‘xi’ (ξ) which is the 

tolerance in the relative stopping condition for CG. Its default value is set to xi = 0.1. 

Another hyperparameter that can be set for the NewtonCG method is the ‘eta’ (η) which 

is the parameter for line search stopping condition. The η is a predefined constant between 

0 and 1, which is initially set to the value η = 0.0001.  

The last hyperparameter which can be modified through the passing arguments is 

‘CGmax’ which is basically the maximal number of CG iterations and is initially set to 

the value CGmax = 250. It is the same argument as ‘CGiter’ in Section 4.2.1.3 of the 

MLP with HFO implementations. 

4.3.2 2D CNN Network Architectures 

4.3.2.1 Types of 2D CNNs 

Five different architecture were used for the experiments of 2D datasets, of this thesis; 

the 3-, 4-, 5-, 7-, and 19-layer network configurations. All models of 2D CNN receive as 

input a single 2D slice image of a preprocessed T1-weighted MRI brain scan (Section 

3.2.3.1) with dimensions 174 × 174.  

More experiments in the thesis were performed with 2D CNN network configurations 

since they require much less processing power and less execution time to complete their 
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training than the 3D CNNs (Section 4.3.4). The source code for these network 

architectures can be found in Appendix B. By changing the net.py (Appendix B5) or 

vgg.py (Appendix B6) file we were able to modify the network architecture that the 

algorithm would be trained on.  

For the creation of the figures with the different network configurations in Section 4.3.2, 

the tool (http://alexlenail.me/NN-SVG/AlexNet.html) was used in combination with 

Photoshop CC. 

4.3.2.2 3-layer 2D CNN 

Two main network configurations were used for 2D CNNs with 3 layers; the 

2D_CNN_3L_1 (Shallow & Wide Network) (Section 4.3.2.2.1), and the 2D_CNN_3L_2 

(Shallow & Narrow Network) (Section 4.3.2.2.2). I refer to both of them as shallow 

networks since they only have 3 layers, while in other experiments mostly are 4 layers. 

Both network configurations have 2 Convolutional Layers and a single dense layer. All 

the 3-layer CNN implementations use 3 × 3 filters on each Convolutional Layer. The 

input of the dense layer, is the output of the last Convolutional Layer, flatten. Both 

networks apply 2 × 2 Max-Pooling with stride = 2, and for activation they use ReLU.  

Table 4.2 compares two 3-layer networks with the most frequently used network 

configuration in this thesis, the 2D_CNN_4L_1 (Section 4.3.2.3.1). The 𝑓𝑖 is the number 

of feature maps in the ith Convolutional Layer. The 2D_CNN_3L_1 (Shallow & Wide 

Network) has f1 = 64, and f2 = 128, hence is a “wide” network, while the 2D_CNN_3L_3 

(Shallow & Wide Network), has f1 = 16, and f2 = 32, hence is a “narrow” network. The 

purpose of these shallow network configurations was to examine whether a shallower 

network could help to resolve the issue of overfitting where the 4-layer CNN causes.  

Network Architecture Feature Maps 

 f1 f2 f3 

2D_CNN_4L_1 
(Baseline) 

32 32 64 

2D_CNN_3L_1 
(Shallow & Wide Network) 

64 128 - 

2D_CNN_3L_2 
(Shallow & Narrow Network) 

16 32 - 

Table 4.2. The number of feature maps fi in the ith Convolutional Layer. 

4-layer 2D CNN (Baseline) vs. 3-layer 2D CNNs 

http://alexlenail.me/NN-SVG/AlexNet.html
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4.3.2.2.1 2D_CNN_3L_1 

The 2D_CNN_3L_1 or so-called “Shallow & Wide” network configuration (Figure 4.6) 

in the first Convolutional Layer has f1 = 64 filters, while the second Convolutional Layer 

has f2 = 128 filters. In total 2,191,368 bytes (~2MB) of variables are needed for this 

network configuration. The purpose of this network was to test whether a wide network 

will help the model to detect more useful features from the 2D slice MRI scans and 

therefore improve its performance during the classification of paints in the AD/NC 

problem. 

 

Figure 4.6. Network Configuration: 2D_CNN_3L_1. Shallow & Wide network. 2 Convolutional Layers and a single 

dense layer. Feature Maps: f1 = 64, f2 = 128  

4.3.2.2.2 2D_CNN_3L_2 

The 2D_CNN_3L_2 or so-called “Shallow & Narrow” network configuration (Figure 

4.7) in the first Convolutional Layer has f1 = 16 filters, while the second Convolutional 

Layer has f2 = 32 filters. In total 492,552 bytes (~0.5MB) of variables are needed for this 

network configuration. The purpose of this network was to test whether fewer neurons, 

therefore fewer feature detectors, could help the model overcome its overfitting issues 

and increase its generalization ability.  
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Figure 4.7. Network Configuration: 2D_CNN_3L_2. Shallow & Narrow network. 2 Convolutional Layers and a 

single dense layer. Feature Maps: f1= 16, f2 = 32 

4.3.2.3 4-layer 2D CNN 

Six main 4-layer 2D CNN network configurations were used in this thesis, with the names 

2D_CNN_4L_ {1 – 6}. All six of them have 3 Convolutional Layers and a single dense 

layer. Most of the 2D experiments in this thesis were conducted with 4-layer CNNs. 

4.3.2.3.1 2D_CNN_4L_1 (Baseline) 

The 2D_CNN_4L_1 network configuration has f1 = 32 filters in the first Convolutional 

Layer (Conv1), the second Convolutional Layer (Conv2) has also f2 = 32 filters, while 

the last Convolutional Layer (Conv3) has f3 = 64 filters. 2D Max-Pooling with pool_size 

= (2, 2) was applied to each Convolutional Layer as well. In total 338,056 bytes (~0.3MB) 

of variables are needed for this network configuration. For the specific network filters of 

size, 3 × 3 were used. 

Most experiments in this thesis use the 2D_CNN_4L_1 (Figure 4.8) network 

configuration, including the experiment B_2D_M_N10 (Appendix H.2.10) which had 

one of the best validation accuracies for the AD/NC problem, equal to 80%. In the 

experiment B_2D_M_N18 (Appendix H.2.17), a similar network configuration to the 

2D_CNN_4L_1 was used with an additional component, the batch normalization layer 
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between the Conv3 layer and the Flatten layer. The batch normalization increases the total 

size of the network’s variables to 338,568 bytes. 

 

Figure 4.8. Network Configuration: 2D_CNN_4L_1. 3 Convolutional Layers and a single dense layer. 

Feature Maps: f1= 32, f2 = 32, f3 = 64, and filter size = [3, 3] 

4.3.2.3.2 2D_CNN_4L_2 

 

Figure 4.9. Network Configuration: 2D_CNN_4L_2. 3 Convolutional Layers and a single dense layer. 

Feature Maps: f1= 32, f2 = 32, f3 = 64, and filter size = [5, 5] 

The 2D_CNN_4L_2 (Figure 4.9) network configuration has the same number of layers 

and number of feature maps as the 2D_CNN_4L_1 (Section 4.3.2.3.1). The only 

difference is the size of filters for each Convolutional Layer which are 5 × 5 instead of 
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3 × 3. The size of the total variables is affected as well which increases now to 536,712 

bytes (~0.5MB), while for the 2D_CNN_4L_1 was ~0.3MB. This network is the one used 

in experiment B_2D_M_N19 (Appendix H.2.18), which yielded the highest validation 

accuracy equal to 81% for the AD/NC problem between all the CNN models. 

4.3.2.3.3 2D_CNN_4L_3 

The 2D_CNN_4L_3 (Figure 4.10) network configuration has the same number of layers 

and number of feature maps as the 2D_CNN_4L_1 (Section 4.3.2.3.1) as well. Again, the 

only difference is the size of filters for each Convolutional Layer which are 7 × 7 instead 

of 3 × 3. The size of the total variables is affected as well which increases now to 834,696 

bytes (~0.8MB), while for the 2D_CNN_4L_1 was ~0.3MB. 

 

Figure 4.10. Network Configuration: 2D_CNN_4L_3. 3 Convolutional Layers and a single dense layer. 

Feature Maps: f1= 32, f2 = 32, f3 = 64, and filter size = [7, 7] 

4.3.2.3.4 2D_CNN_4L_4 

The difference between the 2D_CNN_4L_4 (Figure 4.11) network configuration and the 

2D_CNN_4L_1 (Section 4.3.2.3.1), is the absence of the Max-Pooling. This implies a 

significant increase in the size of the total variables, from ~0.3MB for the 2D_CNN_4L_1 

to 15,613,576 bytes (~15MB), which is approximately 50 times more variables. 
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Figure 4.11. Network Configuration: 2D_CNN_4L_4. No Max-Pooling, 3 Convolutional Layers and a single dense 

layer. Feature Maps: f1= 32, f2 = 32, f3 = 64, and filter size = [3, 3] 

4.3.2.3.5 2D_CNN_4L_5 

 

Figure 4.12. Network Configuration: 2D_CNN_4L_5. 3 Convolutional Layers and a single dense layer. 

Feature Maps: f1= 8, f2 = 16, f3 = 32, and filter size = [3, 3] 

The 2D_CNN_4L_5 (Figure 4.12) network configuration, is a narrow version of a 4-layer 

CNN. This model was created to examine whether a narrow network could help to 

encounter overfitting, which the 2D_CNN_4L_1 (Section 4.3.2.3.2) suffered from; even 

after applying Dropout (Section 2.3.13.9), L1 & L2 Regularization (Section 2.3.13.7), 
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and other regularization techniques (Section 2.3.13). The network consists of a single 

dense layer at the end and three Convolutional Layers with a number of feature maps 𝑓𝑖 

in the ith layer equal to f1 = 8, f2 = 16, and f3 = 32. This implies significantly less space 

needed for the variables of this network; from ~0.3MB in the 2D_CNN_4L_1 

implementation to 136,456 bytes (~0.1MB).  

4.3.2.3.6 2D_CNN_4L_6 

The 2D_CNN_4L_6 (Figure 4.13) network configuration is a wider version of a 4-layer 

CNN. This model was created to examine whether a wider network could help improve 

accuracy, by potentially encountering underfitting, since more filters would be available, 

and therefore more feature maps would be created. The filters for the three Convolutional 

Layers are f1 = 8, f2 = 16, and f3 = 32. In the end, a single dense layer is added. This 

implies some increase in the total number of variables for the network; from ~0.3MB in 

the 2D_CNN_4L_1 (Section 4.3.2.3.2) implementation to 822,280 bytes (~0.8MB).  

 

Figure 4.13. Network Configuration: 2D_CNN_4L_6. 3 Convolutional Layers and a single dense layer. 

Feature Maps: f1= 32, f2 = 64, f3 = 128, and filter size = [3, 3] 

4.3.2.4 5-layer 2D CNN 

4.3.2.4.1 2D_CNN_5L_1 

The 2D_CNN_5L_1 (Figure 4.14) network configuration is a deeper version of a 4-layer 

CNN but in terms of the fully connected layers, not the Convolutional ones. More 

specifically, the 3 Convolutional Layers are the same as the 2D_CNN_4L_1 (Section 
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4.3.2.3.1) model and the only difference is that instead of one, two fully connected layers 

exist. The filter size is 3 × 3, the same as in 2D_CNN_4L_1. 

After the flattening, instead of going directly to the two perceptrons of the output layer, a 

layer in between exists with 256 perceptrons. The idea was to examine whether from 

28,224 inputs going directly to 2 output neurons was too much. Now, an in-between layer 

exists so from the 28,224 inputs we are going to a hidden layer with 256 neurons and 

finally to the 2 output neurons.  

We know that a single layer of perceptron (Section 2.3.11.2) cannot solve non-linearly 

separable problems (Section 2.2.10). Consequently, I assumed that the output of the 

Convolutional Layers might not be linearly separable, so a hidden layer may be needed 

to improve the model’s performance. This could mean that trying to perform 

classification with hyperplanes (1-layer FFNN) for the AD/NC problem maybe was not 

enough, therefore convex regions (2-layer FFNN) should be used. The increase of the 

number of hidden layers, results in a drastic increase to the total number of variables as 

well, from ~0.3MB in the 2D_CNN_4L_1 to 29,016,712 bytes (~29MB).  

 

Figure 4.14. Network Configuration: 2D_CNN_5L_1. 3 Convolutional Layers and 2 dense layers. 

Number of neurons: FC1 = 256, FC2 = 2. Feature Maps: f1= 32, f2 = 32, f3 = 64, and filter size = [3, 3] 

4.3.2.5 7-layer 2D CNN 

4.3.2.5.1 2D_CNN_7L_1 

The 2D_CNN_7L_1 (Figure 4.15) which is a 7-layer network configuration was meant 

to examine whether a deeper and narrower than the 2D_CNN_4L_1 (Section 4.3.2.3.1), 

could help to reduce its overfitting issues.  
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Figure 4.15. Network Configuration: 2D_CNN_7L_1. 6 Convolutional Layers and a single dense layer. 

Feature Maps: f1= 16, f2 = 16, f3 = 16, f4 = 32, f5 = 32, f6 = 64, and filter size = [3, 3] 

The network has 6 Convolutional Layers and a single fully connected layer. The filter 

size for all Convolutional Layers is 3 × 3. Not all Convolutional Layers have Max-

Pooling though, only the even index layers (Conv2, Conv4, Conv6) apply Max-Pooling 

with pool_size = (2, 2) and stride = (2, 2). The filters for each Convolutional Layer are: 

f1 = 16, f2 = 16, f3 = 16, f4 = 32, f5 = 32, f6 = 64.  

The total size of variables is 834,696 bytes (~0.8MB), larger than the 2D_CNN_4L_1 

network which is ~0.3MB. This happens because 3 extra Convolutional Layers exist and 

not all of them apply Max-Pooling.   

4.3.2.6 19-layer 2D CNN 

4.3.2.6.1 Problems with VGG19 

19-layer CNN (VGG19) network configuration is meant to examine whether a much 

deeper and narrower network topology could affect, and potentially improve the 

performance of the experiments. Wide networks are very good at memorization but not 

so good at generalization, therefore overfitting may occur. Subsequently, deeper networks 

can be used to capture the natural “hierarchy” that is present everywhere in nature. The 

reason behind the boost in performance from a deeper network is that a more complex, 

non-linear function can be learned.  For example, the first layers could capture simple 

features of the image such as lines and curves, while higher layer complex features such 

as the whole hippocampal structure. Supposedly, more Convolutional Layers should help 

the model’s performance to increase Despite that, too deep CNNs are very 

computationally expensive to be trained (Krizhevsky et al. 2012; Bengio et al. 2013; 
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Simonyan and Zisserman, 2014; Eldan and Shamir, 2016). Later on, during the 

experimentation, this assumption will be proven wrong in our experiments since the 

performance did not improve with a deeper network configuration for the AD/NC 

problem.  

4.3.2.6.2 2D_VGG19_1 

 

Figure 4.16. Network Configuration: VGG19 2D CNN. 16 Convolutional Layers and 3 dense layers. 

{M = Max-Pooling (2, 2), D = Dropout, N is the # of feature maps. FC1 = FC2 = 4096, FC3 = 2; filter size = [3, 3]} 

Configuration = [16, 16, M, D, 32, 32, M, D, 32, 32, 32, 32, M, D, 64, 64, 64, 64, M, D, 64, 64, 64, 64, M, D, FC1, FC2, FC3] 

The 2D_VGG19_1 (Figure 4.16) network architecture has in total 19 layers, 16 

Convolutional Layers, and 3 fully connected layers. This network is a slight modification 

of Simonyan and Zisserman’s (2014) VGG19 network, or so-called in their study the “D 

ConvNet Configuration”. FC1 and FC2 are two fully connected layers with 4096 

perceptrons each. FC3 is a fully connected layer with the two output units, same as other 

network configurations output layer. With the letter ‘M’ representing a Max-Pooling layer 

with pool_size = (2, 2) and stride = (2,2); the ‘D’ representing a dropout layer with rate = 

0.3 which is the fraction of input units to be dropped; and N the integer value representing 

a Convolutional Layer with N filters of filter size 3 × 3, then the following sequence 

represents the 2D_VGG19_1 (Figure 4.16) network configuration: 

[16, 16, M, D, 32, 32, M, D, 32, 32, 32, 32, M, D, 64, 64, 64, 64, M, D, 64, 64, 64, 64, M, D, FC1, FC2, FC3] 

This very deep network, increases drastically the number of total variables for the network 

configuration, from ~0.3MB for the 2D_CNN_4L_1 (Section 4.3.2.3.1) network to 
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94,710,216 bytes (~94MB). The 2D_VGG19_1 network configuration has approximately 

300 times more variables than the 2D_CNN_4L_1.  

4.3.3 2D CNN Networks Correctness  

4.3.3.1 MNIST Dataset 

I have used the MNIST handwritten digit database from (https://www.kaggle.com/c/digit-

recognizer/overview) to test whether the 2D CNN implementation, both for the Adam 

and NewtonCG optimizers, performs as expected. The MNIST ("Modified National 

Institute of Standards and Technology"), is the “Hello World”     s   of Com      V s o . 

It was released in 1999 by LeCun Y. and Corina C., and it has been used as a benchmarking 

for classification algorithms. 

For checking the correctness of my network, I have used 42000 samples, a subset of the 

dataset. The samples are grayscale images of 28 × 28 pixels, of the ten different digits, 0 

to 9 (examples of samples in Figure 4.17). Therefore, each sample in total consists of 784 

pixels, with each pixel being a value between 0 and 255, inclusive.  

 

Figure 4.17. Labeled samples of digits, of the MNIST Dataset. Each sample's dimensions are 28 x 28 pixels, with 

each pixel having a value between 0 and 255, inclusive. 

To split the 42000 samples into 3, relatively balanced sets, the training, validation, and 

testing sets, the scikit-learn library’s method “sklearn.model_selection.train_test_split” 

in Python 3 have been used (e.g. Code Snippet 3.1). After splitting the MNIST dataset, 

the proportions of each class for each set can be seen in Table 4.3. 

Set # of Samples 0 1 2 3 4 5 6 7 8 9 

Total 42000 9.8% 11.2% 9.9% 10.4% 9.7% 9.0% 9.8% 10.5% 9.7% 10.0% 

Train 30996 (~74%) 9.9% 11.0% 10.0% 10.3% 9,6% 9.1% 9.8% 10.4% 9,8% 10.0% 

Valid 6804 (~16%) 9.6% 11.4% 10.0% 10.3%   10.2%    9.0%     10.0%    10.4%    9.2%     9.9%   

Test 4200 (10%) 9.5% 11.6% 9.6% 10.6% 9.4% 8.9% 9.8% 11.1% 9.7% 9.8% 

Table 4.3. Training, validation, and test sets splitting of the MNIST dataset. 

https://www.kaggle.com/c/digit-recognizer/overview
https://www.kaggle.com/c/digit-recognizer/overview
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Code Snippet F.1 (digit-recognizer-2D.py), is the source code that was used for the 

creation of the ‘.mat’ files with the training, validation, and testing sets, to be provided as 

input in the CNN implementation.  

4.3.3.2 Adam – Digits Recognition 2D (MNIST) 

The Adam (Section 2.4.4) optimizer with the 2D_CNN_4L_1 (Section 4.3.2.4.1), the 2D 

4-layer CNN (3 Convolutional Layers & 1 Fully Connected Layer), performs very well 

with 0.99 training, validation, and testing accuracies (Table 4.4). The training process 

was set to 100 epochs, and the testing accuracy was calculated from a single pass of 100 

epochs’ best model. The validation and training accuracies are the ones in the best model 

during training as well. The best model is not the one at the last iteration but the model 

with the highest validation accuracy during training which is being automatically saved.  

Optimizer – Dataset Model of the Best Validation Accuracy 

 Training Validation Testing 

Adam – MNIST (Digits Recognition 2D) 0.99 0.99 0.99 

Table 4.4. Training, validation, and testing accuracies of the model with the best validation accuracy with Adam and 

MNIST dataset. 

In Figure 4.18, we can see the training and validation accuracies, while in Figure 4.19 the 

training and validation losses for 100 epochs, of the model with the MNIST dataset and 

the Adam optimizer. 

 

Figure 4.18. Test Network: "Digits Recognition 2D" (MNIST) with Adam - Accuracy 
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Figure 4.19. Test Network: "Digits Recognition 2D" (MNIST) with Adam - Loss 

4.3.3.3 NewtonCG – Digits Recognition 2D (MNIST) 

The 2D_CNN_4L_1 (Section 4.3.2.3.1), the same 4-layer CNN network that is being 

mentioned in Section 4.3.3.2, performs great with the NewtonCG optimizer (Section 

2.4.9) as well with training, validation, and testing equal to 0.99 (Table 4.5). Those 

accuracies are calculated the same way as the ones in the Adam optimizer experiment 

(Section 4.3.3.2). Based on those two tests, with the Adam and NewtonCG optimizer, it 

can be safely assumed that the 2D CNN implementation is correct, therefore it can be 

used for the AD/NC problem as well with the 2D slice-level MRI scans.    

Optimizer – Dataset Model of the Best Validation Accuracy 

 Training Validation Testing 

NewtonCG – MNIST (Digits Recognition 2D) 0.99 0.99 0.99 

Table 4.5. Training, validation, and testing accuracies of the model with the best validation accuracy with the 

NewtonCG optimizer and the MNIST dataset. 

In Figure 4.20, we can see the training and validation accuracies, while in Figure 4.21 the 

training and validation losses for 100 epochs, of the model with the MNIST dataset and 

the NewtonCG optimizer. 
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Figure 4.20. Test Network: "Digits Recognition 2D" (MNIST) with NewtonCG - Accuracy 

 

Figure 4.21. Test Network: "Digits Recognition 2D" (MNIST) with NewtonCG - Loss 

4.3.4 3D CNN Network Architectures 

4.3.4.1 Types of 3D CNNs 

The initial set of T1-weighted MRI scans are 3D images (Section 3.2.5 – 3.27), therefore 

by using those in 3D CNNs we can assume that the results would be better than just 
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of 3D CNN implementations were created which could take as input the 3D Shrunk 

Brains (Section 3.2.5), the 3D Left Hippocampus (Section 3.2.6), or the 3D Cropped 

Brains (Section 3.2.7) datasets.  

More specifically, a 4-layer CNN network configuration was used for the 3D Shrunk 

Brains; two implementations, 4- and 5-layer CNNs for the 3D Cropped Brains; and three 

distinct 4-layer CNNs for the 3D Left Hippocampus. For all the following network 

configurations (Section 4.3.4.2 & 4.3.4.3), Dropout or Regularization can be added which 

does not affect the total number of variables for the network.  

An issue in the Wang et al. (2020) implementation of the NewtonCG with Python 3 is 

that it does not utilize correctly many CPU cores for efficient parallelization in 3D CNNs. 

This makes the training process unable to run in a reasonable amount of time for large 

data and complex 3D CNN network architectures. Therefore, only 4-layer architectures 

and a single 5-layer network configuration were used. Also, all the 3D CNNs run in The 

Cyprus Institute servers which provide dedicated GPUs which are a must for 3D CNNs. 

Arcadia server which supported only integrated GPUs was unable to handle 3D CNNs. 

For the creation of the figures with the different network configurations in Section 4.3.4, 

the tool (http://alexlenail.me/NN-SVG/AlexNet.html) was used in combination with 

Photoshop CC. 

4.3.4.2 4-layer 3D CNN 

All 4-layer 3D CNNs, similarly to the 2D ones (Section 4.3.2.3), have 3 Convolutional 

Layers, and a single fully connected layer that has two output neurons and takes as input 

the flatten output of the Conv3 (last convolutional layer). The output neurons return [1, 

0] for AD prediction and [0, 1] for NC. 

4.3.4.2.1 Shrunk Brains – 3D_CNN_4L_1 

For the 3D Shrunk Brains (Section 3.2.5) dataset the 3D_CNN_4L_1 (Figure 4.22) 

configuration was used that had f1 = 32, f2 = 32, and f3 = 64, and the filter sizes were 

3 × 3 × 3.  All Convolutional Layers applied a 3D Max-Pooling with pool_size = (2, 2, 

2) and stride = (2, 2, 2). The activation function was set to be ReLU.  

The input affects the number of parameters since the filters; size changes. For example, 

the input dataset (3D Shrunk Brains) consists of 3D images of dimensions 44 × 48 × 44, 

http://alexlenail.me/NN-SVG/AlexNet.html
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therefore the size of the feature maps in the Conv1, Conv2, and Conv3 are 22 × 24 × 22, 

11 × 12 × 11, and 5 × 6 × 5 respectively (Figure 4.22). Each axis of the initial input 

image is divided by 2 in each layer due to the Max-Pooling and pool_size.   

 

Figure 4.22. Network Configuration: 3D_CNN_4L_1. Input: 3D Shrunk Brains. 3 Convolutional Layers and a 

single dense layer. Feature Maps: f1= 32, f2 = 32, f3 = 64; filter size = [3, 3, 3] 

Subsequently, the total number of variables for the 3D_CNN_4L_1 network 

configuration, with input the 3D Shrunk Images is 412,552 bytes (~0.4MB). 

Consequently, if the original 3D Brains scan was given as input without being shrunk 

with its initial dimensions 174 × 190 × 174, the size of the feature maps would be much 

larger and the total number of variables as well.  

4.3.4.2.2 Cropped Brains – 3D_CNN_4L_1 

The 3D Cropped Brains (Section 3.2.7) dataset used the 3D_CNN_4L_1 network 

configuration (Figure 4.23) as well. Therefore, the three Convolutional Layers have a 

number of feature maps f1 = 32, f2 = 32, f3 = 64 with filter size = 3 × 3 × 3. All 

Convolutional Layers apply 3D Max-Pooling with pool_size = (2, 2, 2) and stride = (2, 

2, 2), and they all use ReLU as the activation function.  

The input affects the number of parameters since the filter’s size changes. The input 3D 

Shrunk Brains with dimensions 44 × 48 × 44 had a total size of variables equal to 

~0.4MB (Section 4.3.4.2.1). Having as input the 3D Cropped Brains, where the 

dimensions of the images are 60 × 60 × 70, the feature maps in Conv1, Conv2, and 

Conv3 will become 30 × 30 × 35, 15 × 15 × 17, and 7 × 7 × 8 respectively. 

Subsequently, the total size of space needed for the variables of the 3D_CNN_4L_1 
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network configuration with input the 3D Cropped Brains is 536,456 bytes (~0.5MB), 

relatively more than the 3D Shrunk Brains (~0.4MB) by ~20%.  

 

Figure 4.23. Network Configuration: 3D_CNN_4L_1. Input: 3D Cropped Brains. 3 Convolutional Layers and a 

single dense layer. Feature Maps: f1= 32, f2 = 32, f3 = 64; filter size = [3, 3, 3] 

4.3.4.2.3 Left Hippocampus – 3D_CNN_4L_1 

For the 3D Left Hippocampus (Section 3.2.6), the same 3D_CNN_4L_1 network 

configuration (Figure 4.24) was used, as for the 3D Shrunk Brains (Section 4.3.4.2.1) and 

the 3D Cropped Brains (Section 4.3.4.2.2). The filters on each Convolutional Layer are 

f1 = 32, f2 = 32, and f3 = 64, and the filter sizes are 3 × 3 × 3. Still, each Convolutional 

Layer applied a 3D Max-Pooling with pool_size = (2, 2, 2) and stride = (2, 2, 2). 

 

Figure 4.24. Network Configuration: 3D_CNN_4L_1. Input: 3D Left Hippocampus. 3 Convolutional Layers and a 

single dense layer. Feature Maps: f1= 32, f2 = 32, f3 = 64; filter size = [3, 3, 3] 
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The input affects the number of parameters since the filter’s size changes. For example, 

the input for the 3D Shrunk Brains dataset was 3D images of dimensions 44 × 48 × 44, 

and the total size of variables was ~0.4MB. Having as input the 3D Left Hippocampus, 

where the dimensions of the images are 32 × 37 × 50, the size of the feature maps in the 

Conv1, Conv2, and Conv3 will become 18 × 25 × 16, 9 × 12 × 8, and 4 × 6 × 4 

respectively (Figure 4.24). Subsequently, the total space needed for variables of the 

3D_CNN_4L_1 network configuration with input the 3D Left Hippocampus is 384,904 

bytes (~0.3MB), slightly less than the 3D Shrunk Brains.  

4.3.4.2.4 Left Hippocampus – 3D_CNN_4L_2 

For the 3D Left Hippocampus (Section 3.2.6), another network configuration was used, 

the 3D_CNN_4L_2 (Figure 4.25). The filters on each Convolutional Layer are the same 

as in the 3D_CNN_4L_1 (Section 4.3.4.2.3), f1 = 32, f2 = 32, and f3 = 64, and the filter 

sizes are all 3 × 3 × 3. Contrariwise to the 3D_CNN_4L_1, no 3D Max-Pooling was 

applied to any of the three Convolutional Layers.  

 

Figure 4.25. Network Configuration: 3D_CNN_4L_1. Input: 3D Left Hippocampus. 3 Convolutional Layers and a 

single dense layer. Feature Maps: f1= 32, f2 = 32, f3 = 64; filter size = [3, 3, 3]; No Max-Pooling 

This network architecture aims to test whether the Max-Pooling “destroys” the data, and 

this makes the network unable to extract the correct features from the hippocampal 

structures. One of the main trade-offs is the massive increase in the network’s parameters 

which implies an increase in training time as well. The absence of Max-Pooling 

drastically affects the total space need for the variables of the network. While for the 

3D_CNN_4L_1 the size was ~0.3MB, now the size is 30,646,152 bytes (~30MB), 

approximately 100 times more space is needed for the network’s parameters. 
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4.3.4.2.5 Left Hippocampus – 3D_CNN_4L_3 

The 3D Left Hippocampus (Section 3.2.6), was used in another network configuration, 

the 3D_CNN_4L_3 (Figure 4.26), the filters are still the same as in the 3D_CNN_4L_1 

(Section 4.3.4.2.3), f1 = 32, f2 = 32, and f3 = 64, and the filter sizes are all 3 × 3 × 3. 

This network does not apply Max-Pooling to all Convolutional Layers; only the Conv2 

has 3D Max-Pooling with pool_size = (2, 2, 2) and stride = (2, 2, 2).  

This network architecture is meant to combine the pros of both words, the fewer space 

requirements of the 3D_CNN_4L_1 implementation (Section 4.3.4.2.3), and the better 

performance of the 3D_CNN_4L_2 (Section 4.3.4.2.4), which did not destroy the data 

due to heavy Max-Pooling. Consequently, the total space needed for the variables of this 

network is 4,022,152 (~4MB), approximately 10 times more than the 3D_CNN_4L_1 

(~0.3MB), and roughly 10 times less than the 3D_CNN_4L_2 (~30MB).   

 

 

Figure 4.26. Network Configuration: 3D_CNN_4L_1. Input: 3D Left Hippocampus. 3 Convolutional Layers and a 

single dense layer. Feature Maps: f1= 32, f2 = 32, f3 = 64; filter size = [3, 3, 3]; 1 Layer Max-Pooling 

4.3.4.3 5-layer 3D CNN 

4.3.4.3.1 Cropped Brains – 3D_CNN_5L_1 

The 3D_CNN_5L_1 network configuration (Figure 4.27) with the 3D Cropped Brains 

dataset (Section 3.2.7), is the same as the 3D_CNN_4L_1 configuration (Section 

4.3.4.2.2) with the only difference being the extra Convolutional Layer. The Conv4 layer 

that is being added still applies Max-Pooling, uses ReLU as an activation function, and 

has 64 filters with filter size = 3 × 3 × 3 as well.  
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The total space needed for the parameters of the 3D_CNN_5L_1 network configuration 

increase to 796808 bytes (~0.8MB), almost double the ones in the 3D_CNN_4L_1 which 

needs ~0.4MB. 

 

Figure 4.27. Network Configuration: 3D_CNN_5L_1. Input: 3D Cropped Brains. 4 Convolutional Layers and a 

single dense layer. Feature Maps: f1= 32, f2 = 32, f3 = 64, f4 = 64; filter size = [3, 3, 3] 

4.3.5 3D CNN Networks Correctness  

4.3.5.1 3D MNIST Dataset 

I have used the 3D MNIST dataset from (https://www.kaggle.com/daavoo/3d-mnist), to 

test the 3D CNN Implementation (Section 4.3.4). The dataset was already split into two 

sets, the training and validation set with 10000 and 2000 samples respectively. Since 3D 

CNN networks recently started to be used, it was harder to find a 3D dataset for 

benchmarking. This dataset consists of 3D colorful representations of the digits (Figure 

4.28 & 4.29) of the 2D grayscale MNIST dataset, the same that was used in Section 4.3.3 

to check the correctness of the 2D CNN.  

 

Figure 4.28. Digits '0', '3' and '5' of the 3D MNIST Dataset. 

https://www.kaggle.com/daavoo/3d-mnist
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The dataset consists of 12000 3D colored sample images with each image’s dimensions 

being 16 × 16 × 16. Consequently, the total size of each sample is 4096 voxels. In 

contradiction with the MNIST which consists of grayscale 2D images, the 3D MNIST 

contains 3D-colored images, so each sample has 3 color channels (RGB).  

 

Figure 4.29. Grayscale 2D digit '3' of the MNIST Dataset (Left). 

Colored 3D digits of the 3D MNIST Dataset (Right). 

Figure 4.30 shows a digit ‘5’ of the 3D MNIST dataset. The dimensions of the image are 

16 × 16 × 16, and each voxel is represented by 3 values; Red, Green, and Blue (RGB) 

values since the image is colored. Code Snippet F.2 (digit-recognizer-3D.py), is the 

source code that was used for the creation of the ‘.mat’ files with the training, validation, 

and testing sets, to be provided as input in the CNN implementation. 

 

Figure 4.30. Digit 5 in the 3D MNIST Dataset 

(https://www.kaggle.com/shivamb/3d-Convolutions-understanding-use-case) 

4.3.5.2 Adam – Digits Recognition 3D (3D MNIST) 

The CNN has to classify the 3D-colored digits into ten classes. For the 3D CNN 

implementation, no test set exists, since it was not required to check the model. Since the 

data were already split into training and validation sets, I have used those for training my 
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model. The training accuracy and the validation accuracy of the best model were 0.66 and 

0.63 respectively.  

Optimizer – Dataset Model of the Best Validation Accuracy 

 Training Validation Testing 

Adam – 3DMNIST (Digits Recognition 3D) 0.66 0.63 - 

Table 4.6. Training, validation, and testing accuracies of the model with the best validation accuracy 

with CNN/Adam and 3D MNIST dataset. 

Those accuracies may seem terrible in comparison with the original 2D MNIST Dataset, 

which they were 0.99 (Table 4.4), but this is not our main objective. Anyhow, those 

accuracies are not too far from others people's accuracies for the same problem and 

dataset (e.g., https://medium.com/shashwats-blog/3d-mnist-b922a3d07334) which was 

approximately 0.75 for the validation set. It is worth mentioning that the aforementioned 

experiment that yields 75% accuracy, uses a more complex 7-Layer Network (4 

Convolutional Layers & 3 Dense Layers) than ours which is a 4-Layer Network (3 

Convolutional Layers & 1 Dense Layer). Anyhow, by observing the plot of the training 

and validation accuracies (Figure 4.31), we can see that the network keeps learning 

throughout the whole training process.  

 

Figure 4.31. Test Network: "Digits Recognition 3D" (MNIST) with Adam – Accuracy 
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Figure 4.32. Test Network: "Digits Recognition 3D" (MNIST) with Adam – Loss 

If we had more time, we could use a different dataset, to make sure that the data causes 

the error and not something else. Additionally, I could not perform many experiments 

with 3D CNNs, since I had to execute them in The Cyprus Institute’s server, where our 

resources were limited. It is worth mentioning that based on the Figure 4.32 of the losses 

the model does not overfit, which was one of my main concerns since many of our 

experiments suffer from overfitting. 

I suggest in future work to test the aforementioned 7-layer CNN network configuration 

with the Adam optimizer (https://medium.com/shashwats-blog/3d-mnist-b922a3d07334) 

that achieves an accuracy of 0.75 for the 3D MNIST Dataset. This could be an even better 

indication that the 3D implementation of the CNN was done correctly. Currently, some 

doubts exist because for the 3D Left Hippocampus (Section 3.2.6) dataset we were 

expecting much better results than the ones we got (Section 5.8). The network 

configuration could be the source of the problem in that case and not the specific dataset.  

4.3.5.3 NewtonCG – Digits Recognition 3D (3D MNIST) 

NewtonCG has a similar performance with the Adam optimizer for the 3D CNN as well 

as it did with the 2D CNN. It is worth mentioning that I was more skeptical about the 3D 

CNN implementations since I have implemented them by using TensorFlow / Keras. For 

the 2D CNN implementation, I have borrowed it from Wang et al. (2020). 
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Optimizer - Dataset Best Validation Accuracy 

 Training Validation Testing 

NewtonCG – 3D MNIST (Digits Recognition 3D) 0.68 0.61 - 

Table 4.7. Training, validation, and testing accuracies of the model with the best validation accuracy 

with CNN/NewtonCG and 3D MNIST dataset. 

If we compare the Adam method (Section 4.3.5.2) with the NewtonCG method, Adam’s 

initial validation accuracy at epoch 0 was approximately 0.4, while for the NewtonCG 

method the initial validation accuracy was 0.1. The reason might be the random 

initialization of the network’s weights. Unfortunately, I run the experiment once and I 

could not repeat it to understand the reason behind it, since I had to save resources in The 

Cyprus Institute’s servers for running the 3D MRI scans experiments. In the Arcadia 

server, I could only run 2D CNN experiments since no dedicated GPUs are available that 

are a must for 3D CNNs.  

 

Figure 4.33. Test Network: "Digits Recognition 3D" (MNIST) with NewtonCG – Accuracy 

In Figure 4.33, we can see that both the training and validation accuracies increase rapidly 

without showing any issues of overfitting. The training and validation losses (Figure 4.34) 

ensure that the model does not overfit since both losses keep reducing throughout the 

whole training process. We can also see that in the NewtonCG method, even if the initial 

weights were not ideal in comparison with Adam’s case (Section 4.3.5.2), the algorithm 

still progresses fast and achieves similar accuracies.  
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Figure 4.34. Test Network: "Digits Recognition 3D" (MNIST) with NewtonCG - Loss 
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Chapter 5 

Experiments, Results, and Discussion 

 

5.1 Introduction to Experiments, Results, and Discussion .............................................. 142 

5.2 Hippocampus Features [AD, NC] ............................................................................. 144 

5.3 2D Brain Slices [AD, NC] ........................................................................................ 170 

5.4 2D Brain Slices [AD, NC]: Multiple Scans per Patient (174 × 174) ........................ 180 

5.5 2D Brain Slices [AD, NC]: Single Scan per Patient (174 × 174) ............................. 219 

5.6 2D Brain Slices [AD, NC]: Single Scan per Patient, 5 Slices/Scan (174 × 174) ...... 225 

5.7 2D Brain Slices [AD, NC]: Multiple Scans per Patient, 7 Slices/Scan (174 × 174) 230 

5.8 3D Left Hippocampus [AD, NC]: Single Scan per Patient (37 × 32 × 50) .............. 237 

5.9 3D Shrunk Brains [AD, NC]: Single Scan per Patient (44 × 48 × 44) .................... 246 

5.10 3D Cropped Brains [AD, NC]: Single Scan per Patient (70 × 60 × 60) .................. 252 

5.11 2D Brain Slices [AD, MCI, NC]: Multiple Scans per Patient (174 × 174) ... 260 

 

5.1 Introduction to Experiments, Results, and Discussion 

Many experiments have been performed during this thesis, to examine the performance 

of the different datasets (Section 3.2); but mainly, we are going to focus on the 80 most 

important ones. The detailed hyperparameters and network configurations for each 

experiment can be found in Appendix P in Table P.1. Also, in Table P.2, the performance 

metrics of all the experiments are available. That many experiments were necessary to be 

performed since many hyperparameters contribute to the end result.  

The three distinct main data sources, Hippocampus Features, T1-weighted MRIs, and 3D 

Left Hippocampus have been used to create the 9 different datasets for our experiments 

(Section 3.2). For each one of them, the readjusting process of the hyperparameters was 

necessary. Subsequently, many different network topologies have been used based on the 
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findings during the training process, and those topologies are mostly already defined in 

Chapter 4.   

5.1.1 Test Set Issues 

For the following experiments the test accuracy, test sensitivity, and test specificity will 

only be mentioned in the introduction of the subsections but not to be considered as valid 

metrics to judge the networks’ performance. The reason is that the performance metrics 

for the test set do not behave as expected, as they should be close to the metrics of the 

validation set. 

Two main reasons may hold why the test metrics are not as expected. The first one is that 

the test set is extremely small. The second one, which is less likely to be happening, is 

that a different preprocessing is applied during the training phase than the testing phase. 

The reason why this could possibly be happening is that, during training when the best 

model is saved, the preprocessing pipeline might not be saved as well. This is less likely 

to be happening because when the networks were checked (Section 4.3.5), the testing 

accuracy was close to the validation accuracy.  

5.1.2 Experiments’ Names 

The naming of the experiments is based on the dataset and the optimizer used. The first 

part of the name represents the dataset, the second part the optimizer, and the third part is 

just a counter between the experiments of the same dataset and the same optimizer. 

Possible names for the datasets are the ones mentioned in Table 4.1. The second part of 

the name could be 4 possible values, “A” for Adam, “S” for SGD, “N” for NewtonCG 

(HFO implementation for CNNs (Section 4.3.1)), and “H” for HFO (HFO implementation 

for MLPs (Section 4.2.1.3)).  

Thus, the name of the first (1) experiment performed with the dataset which contains a 

single 2D Brain slice of each scan, from Multiple scans of the same patient, from different 

periods, (B_2D_M); and also uses the Adam (A) optimizer, would be “B_2D_M_A1”. If 

the same dataset is used with the NewtonCG (N) optimizer, and it was the third 

experiment performed during this thesis for the specific dataset and optimizer, the name 

of the experiment would be “B_2D_M_N3”. The naming will help us later to distinguish 

the experiments easily.  
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5.2 Hippocampus Features [AD, NC]  

For the Hippocampus Features -Multiple scans per patient (HF_M) dataset (Section 

3.2.2), 27 experiments have been performed (Appendix G). Their performance metrics 

are grouped based on their optimizer (Adam, SGD, HFO) in Table 5.1. The column “Avg. 

Standard Deviation of Accuracy”, represents the average of the standard deviations of the 

accuracies for the 10-folds. The column “Avg. epoch of best Valid Acc. per fold” is the 

average epoch that the early stopping was performed, therefore is the average epoch of 

the best validation accuracies per fold. The column “Best Validation Accuracy” is the 

best validation accuracy of the 10-folds. 

Hippocampus Features – Multiple Scans per Patient [AD, NC] 
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Adam 

HF_M_A1 0.83 0.04 0.72 0.87 0.85 0.04 0.76 0.94 25 0.91 

HF_M_A2 0.82 0.04 0.60 0.91 0.82 0.03 0.67 0.97 22 0.86 

HF_M_A3 0.80 0.09 0.69 0.85 0.82 0.05 0.71 0.92 126 0.86 

HF_M_A4 0.78 0.06 0.75 0.80 0.82 0.05 0.76 0.88 271 0.91 

HF_M_A5 0.82 0.04 0.74 0.85 0.86 0.05 0.78 0.93 12 0.93 

HF_M_A6 0.83 0.03 0.76 0.86 0.86 0.05 0.79 0.94 107 0.91 

HF_M_A7 0.88 0.05 0.83 0.90 0.89 0.05 0.80 0.97 156 0.93 

HF_M_A8 0.89 0.05 0.90 0.88 0.90 0.04 0.85 0.95 191 0.96 

HF_M_A9 0.90 0.04 0.93 0.88 0.89 0.05 0.82 0.96 192 0.93 

HF_M_A10 0.88 0.07 0.93 0.86 0.89 0.05 0.87 0.91 180 0.93 

HF_M_A11 0.88 0.07 0.87 0.89 0.90 0.05 0.83 0.96 155 0.93 

HF_M_A12 0.89 0.05 0.85 0.91 0.88 0.05 0.81 0.95 241 0.93 

HF_M_A13 0.90 0.06 0.91 0.90 0.89 0.04 0.83 0.96 200 0.96 

SGD 

HF_M_S1 0.83 0.05 0.64 0.90 0.82 0.05 0.69 0.95 14 0.89 

HF_M_S2 0.83 0.06 0.62 0.92 0.82 0.06 0.65 0.98 146 0.89 

HF_M_S3 0.74 0.11 0.66 0.78 0.79 0.04 0.69 0.88 163 0.84 

HF_M_S4 0.74 0.09 0.62 0.78 0.74 0.05 0.63 0.85 339 0.82 

HF_M_S5 0.94 0.03 0.92 0.95 0.88 0.04 0.82 0.95 272 0.93 

HFO 
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HF_M_H1 0.91 0.04 0.80 0.95 0.86 0.05 0.75 0.98 34 0.91 

HF_M_H2 0.93 0.04 0.82 0.97 0.87 0.05 0.76 0.98 23 0.93 

HF_M_H3 0.87 0.07 0.77 0.91 0.86 0.05 0.75 0.97 12 0.91 

HF_M_H4 0.92 0.09 0.83 0.95 0.86 0.05 0.75 0.96 28 0.91 

HF_M_H5 0.93 0.06 0.83 0.97 0.86 0.05 0.75 0.97 26 0.91 

HF_M_H6 0.90 0.10 0.84 0.92 0.86 0.05 0.77 0.94 16 0.91 

HF_M_H7 0.93 0.04 0.82 0.97 0.86 0.05 0.75 0.97 24 0.91 

HF_M_H8 0.92 0.05 0.80 0.96 0.86 0.04 0.74 0.98 24 0.89 

HF_M_H9 0.94 0.04 0.85 0.97 0.86 0.05 0.74 0.98 31 0.91 

Table 5.1. Hippocampus Features - Multiples Scans per Patient [AD, NC] (HF_M) dataset (Section 3.2.2). 

Average training and validation results for the 10-folds. 

The hyperparameters and the network configurations of the experiments mentioned in 

Table 5.1 can be seen in Table 5.2. The Learning Rate is the initial value of the learning 

rate that was set in both the SGD (Section 2.4.3) and Adam (Section 2.4.4) optimizers. 

The “CG iterations” is a parameter defined only for the HFO algorithm, which is the 

Conjugate Gradient (CG) iterations until the CG algorithm converges (Section 2.4.6). The 

alpha (α) is the regularization term for the L2 penalty (Section 2.3.13.7). 

Hippocampus Features – Multiple Scans per Patient [AD, NC] 
Network Configuration - Hyperparameters 
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Adam 

HF_M_A1 Adam 0.3 - 7 500 [10, 8, 8, 1] 

HF_M_A2 Adam 0.03 - 7 500 [10, 8, 8, 1] 

HF_M_A3 Adam 0.003 - 7 500 [10, 8, 8, 1] 

HF_M_A4 Adam 0.0003 - 7 500 [10, 8, 8, 1] 

HF_M_A5 Adam 0.3 - 5 500 [10, 8, 8, 1] 

HF_M_A6 Adam 0.3 - 3 500 [10, 8, 8, 1] 

HF_M_A7 Adam 0.3 - 1 500 [10, 8, 8, 1] 

HF_M_A8 Adam 0.3 - 0.1 500 [10, 8, 8, 1] 

HF_M_A9 Adam 0.3 - 0.01 500 [10, 8, 8, 1] 

HF_M_A10 Adam 0.3 - 0.001 500 [10, 8, 8, 1] 

HF_M_A11 Adam 0.3 - 0.1 500 [10, 30, 1] 

HF_M_A12 Adam 0.3 - 0.1 500 [10, 100, 1] 

HF_M_A13 Adam 0.3 - 0.1 500 [10, 20, 20, 1] 
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SGD 

HF_M_S1 SGD 0.3 - 7 500 [10, 8, 8, 1] 

HF_M_S2 SGD 0.03 - 7 500 [10, 8, 8, 1] 

HF_M_S3 SGD 0.003 - 7 500 [10, 8, 8, 1] 

HF_M_S4 SGD 0.0003 - 7 500 [10, 8, 8, 1] 

HF_M_S5 SGD 0.3 - 0.1 500 [10, 8, 8, 1] 

HFO 

HF_M_H1 HFO - 1 - 100 [10, 30, 1] 

HF_M_H2 HFO - 2 - 100 [10, 30, 1] 

HF_M_H3 HFO - 4 - 100 [10, 30, 1] 

HF_M_H4 HFO - 8 - 100 [10, 30, 1] 

HF_M_H5 HFO - 16 - 100 [10, 30, 1] 

HF_M_H6 HFO - 32 - 100 [10, 30, 1] 

HF_M_H7 HFO - 2 - 100 [10, 20, 20, 1] 

HF_M_H8 HFO - 2 - 100 [10, 100, 1] 

HF_M_H9 HFO - 2 - 100 [10, 8, 8, 1] 

Table 5.2. Hippocampus Features - Multiples Scans per Patient [AD, NC] (HF_M) dataset (Section 3.2.2). 

Different Network Configurations and Hyperparameters. 

The alpha (α) was the only regularization technique used to combat overfitting by 

constraining the size of the weights. Larger values for α may fix high variance 

(overfitting) because it encourages smaller weights and results in a decision boundary 

plot that appears with lesser curvatures. Decreasing the alpha, on the other hand, may fix 

high bias (underfitting) by encouraging larger weights, which potentially results in a more 

complicated decision boundary (Pedregosa et al. 2011).  

 

Figure 5.1. Effect of alpha (a) in the MLP classifier (Adam, SGD) 
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5.2.1 Comparison with Achilleos et al. (2020) 

The Hippocampus Features (HF_M) dataset (Section 3.2.2), which was created by 

Achilleos et al. (2020) is going to be used in this thesis as well for direct comparison with 

them. Achilleos et al. (2020) used the HF_M dataset as input to their three classifiers, 

Decision Trees, Random Forests, and Argumentation Rules (more details can be found in 

their paper). In this thesis, we provided the same training and test sets, with the same 10-

fold split as inputs into three distinct implementations; MLPs with Adam, with SGD, and 

with HFO. Achilleos et al.’s (2020) and our results are presented in Table 5.3.  

Hippocampus Features (AD/NC) 
Comparison with Achilleos et al. (2020) 

 Classifier 

Accuracy Sensitivity Specificity 

Average on 10 runs 

A
ch

ill
eo

s 
et

 a
l.

 

(2
0

2
0

) 

Decision Trees 77% 66% 88% 

Random Forests 74% 56% 91% 

Argumentation Rules 91% 87% 95% 

O
u

rs
 

MLP with SGD 
(HF_M_S5) 

88% 82% 95% 

MLP with Adam 
(HF_M_A11) 

90% 85% 95% 

MLP with HFO 
(HF_M_H2) 

87% 76% 98% 

Table 5.3. Classification Results for the AD/NC Problem. Our models vs. Achilleos et al. (2020) 

In the HF_M, the NC was labeled as 0 and the ADs as 1, therefore unlike the rest of the 

datasets (Section 3.2.3 – 3.2.7), the Sensitivity is the metric that matters the most, which 

is the proportion of correctly predicted ADs, over the total number of ADs. The test set 

is balanced since it has 22 AD and 22 NC samples. On the other hand, the training set is 

unbalanced, with 47 ADs and 122 NCs. This is an issue since the Specificity in all six 

experiments is higher than the sensitivity. This means that the model has a bias towards 

the NC samples. Consequently, this decreases and the overall validation accuracy as well.   

Based on Achilleos et al.’s (2020) results, their classifier with the Argumentation Rules 

has the highest average validation accuracy and the highest average sensitivity, in 

comparison with the rest of the experiments, equal to 91% and 87% respectively. The 

average specificity for 10-folds of the Augmentation Rules is equal to 95% (Figure 5.1). 
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From our experiments, the MLP with Adam performs better than the SGD and the HFO 

optimizers, in terms of accuracy and sensitivity which are the two most important metrics 

for us (Figure 5.1). The HFO was expected to perform better but because the problem 

was “simple” since it takes as input only 10 features, this could not benefit from its full 

potential. HFO performs better than Adam in more complex problems (more inputs) 

where multiple layers of non-linear hidden units are required (Martens (2010); Martens 

and Sutskever (2012)). 

It is worth mentioning that for all three optimizers of the MLP networks that we used, we 

tried to be as vanilla as possible, for as direct comparison as possible between the different 

classifiers. This means that not even Dropout was applied which was a key parameter 

because in all three optimizers overfitting had been observed. More specifically, for the 

HFO optimizer which is extremely aggressive, on average after 22 epochs we observed 

overfitting, while for the Adam on average after 155 epochs and for the SGD on average 

after 272 epochs. The signs of overfitting are even more clear when observing the loss 

plots of each optimizer, where the training loss decreases the whole training process, 

while the validation loss starts increasing at some point (SGD: Figures G.103 & G.106; 

Adam: Figures G.61 & G.64; HFO: Figures G.115 & G.118). The addition of Dropout is 

expected to improve the results significantly. Another reason, why the addition of 

Dropout was not tested was that the current implementation of MLP with HFO which was 

used did not support it and due to lack of time, we did not try a different one.  

5.2.2 MLP with Adam 

5.2.2.1 Introduction to MLP with Adam 

For the Hippocampus Features – Multiple scans per patient [AD, NC] dataset (HF_M) 

with the Adam optimizer 13 experiments were performed to test different learning rates, 

values of α (alpha), and different architectures. The implementations of these experiments 

can be found in Appendix A.1. All experiments were performed for 500 epochs 

(Appendix G.1). The different values of learning rates used are {0.3, 0.03, 0.003, 0.0003}; 

the different values of α are {0.001, 0.01, 0.1, 1, 3, 5, 7}; and the different networks are 

{[10, 8, 8, 1], [10, 20, 20, 1], [10, 30, 1], [10, 100, 1]} (Section 4.2.2). 

In general, the Adam optimizer is the best choice for this dataset, between SGD and HFO 

in terms of the performance metrics of our experiments, the validation accuracy, 
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sensitivity, and specificity. The network architecture does not seem to affect a lot the 

results. The smaller the α though, the better the accuracy and the sensitivity. This means 

that the α fixes the high variance in our case since underfitting is observed for large alphas. 

The learning rate is not very clear how it affects the performance other than decreasing 

the average epoch where the best model was found to have larger learning rates (0.3, 

0.03). We can say that the learning rate of 0.3 provides a nice balance between great 

accuracy, sensitivity, specificity, and average epochs of the best model (Table 5.4).  

Hippocampus Features – Multiple Scans per Patient [AD, NC] 
Optimizer: Adam 
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HF_M_A1 0.3 7 [10, 8, 8, 1] 0.83 0.04 0.72 0.87 0.85 0.04 0.76 0.94 25 0.91 

HF_M_A2 0.03 7 [10, 8, 8, 1] 0.82 0.04 0.60 0.91 0.82 0.03 0.67 0.97 22 0.86 

HF_M_A3 0.003 7 [10, 8, 8, 1] 0.80 0.09 0.69 0.85 0.82 0.05 0.71 0.92 126 0.86 

HF_M_A4 0.0003 7 [10, 8, 8, 1] 0.78 0.06 0.75 0.80 0.82 0.05 0.76 0.88 271 0.91 

HF_M_A5 0.3 5 [10, 8, 8, 1] 0.82 0.04 0.74 0.85 0.86 0.05 0.78 0.93 12 0.93 

HF_M_A6 0.3 3 [10, 8, 8, 1] 0.83 0.03Net 0.76 0.86 0.86 0.05 0.79 0.94 107 0.91 

HF_M_A7 0.3 1 [10, 8, 8, 1] 0.88 0.05 0.83 0.90 0.89 0.05 0.80 0.97 156 0.93 

HF_M_A8 0.3 0.1 [10, 8, 8, 1] 0.89 0.05 0.90 0.88 0.90 0.04 0.85 0.95 191 0.96 

HF_M_A9 0.3 0.01 [10, 8, 8, 1] 0.90 0.04 0.93 0.88 0.89 0.05 0.82 0.96 192 0.93 

HF_M_A10 0.3 0.001 [10, 8, 8, 1] 0.88 0.07 0.93 0.86 0.89 0.05 0.87 0.91 180 0.93 

HF_M_A11 0.3 0.1 [10, 30, 1] 0.88 0.07 0.87 0.89 0.90 0.05 0.83 0.96 155 0.93 

HF_M_A12 0.3 0.1 [10, 100, 1] 0.89 0.05 0.85 0.91 0.88 0.05 0.81 0.95 241 0.93 

HF_M_A13 0.3 0.1 [10, 20, 20, 1] 0.90 0.06 0.91 0.90 0.89 0.04 0.83 0.96 200 0.96 

Table 5.4. Hippocampus Features with Multiple Scans per Patient [AD, NC] with the Adam optimizer. 

Experiments with different network configurations, learning rates, and values of α. 

5.2.2.2 Experiments HF_M_A {1 – 4}: 

α = 7, lr = {0.3, 0.03, 0.003, 0.0003}, net  = [10, 8, 8, 1] 

The experiments HF_M_A {1 – 4} with the HF_M dataset (Section 3.2.2) and the MLP 

implementation with the Adam optimizer, are meant to compare the four different values 

of learning rates {0.3, 0.03, 0.003, 0.0003}. All four experiments use the [10, 8, 8, 1] 

network architecture (Section 4.2.2.1) with α = 7. Based on their training/validation 
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accuracies and losses, in general, the experiments with the learning rates 0.3 (HF_M_A1) 

and 0.03 (HF_M_A2), behave very similarly, with the 0.3 being a bit noisier.  

Detailed results for each experiment can be found in Appendix G. More specifically, for 

the experiments HF_M_A {1 – 4}, their training/validation accuracies and losses of each 

fold can be seen in Appendixes G.1.1 – G.1.4. There, are also available the confusion 

matrices for the training, validation, and test sets of these experiments.  

The average training accuracies for the 10-folds of the experiments HF_M_A {1 – 4}, 

can be seen in Figures 5.2. We observe that the training accuracy of the experiment with 

the 0.0003 learning rate (HF_M_A4), even after 500 epochs, did not reach the accuracy 

of the rest of the experiments (red, Figure 5.2). The 0.003 (HF_M_A3) reaches the same 

accuracy as the 0.3 and 0.03 after 100 epochs approximately (green, Figure 5.2). 

 

Figure 5.2. Average training accuracies of the 10-folds of the experiments HF_M_A {1 – 4}. 

Comparing different Learning Rates with the Adam optimizer. 

The average training losses for the 10-folds of the experiments HF_M_A {1 – 4}, can be 

seen in Figures 5.3. The training loss of the experiment with the 0.0003 learning rate 

(HF_M_A4), was unable to reach the same loss value, as the other three learning rates 

even after 500 epochs (Figure 5.3), therefore, it progresses very slowly.  
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Figure 5.3. Average training losses of the 10-folds of the experiments HF_M_A {1 – 4}. 

Comparing different Learning Rates with the Adam optimizer. 

The average validation accuracies and losses for the 10-folds of the experiments 

HF_M_A {1 – 4}, can be seen in Figures 5.4 & 5.5. Similar behaviors to the training 

accuracies are observed for the validation accuracies as well for the corresponding 

learning rates. 

 

Figure 5.4. Average validation accuracies of the 10-folds of the experiments HF_M_A {1 – 4}. 

Comparing different Learning Rates with the Adam optimizer. 
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Figure 5.5. Average validation losses of the 10-folds of the experiments HF_M_A {1 – 4}. 

Comparing different Learning Rates with the Adam optimizer. 

The validation loss for the experiment with 0.003 (HF_M_A3) learning rate, manages to 

catch up with the 0.3 (HF_M_A1) and 0.03 (HF_M_A2) after approximately 150 epochs 

and the 0.0003 (HF_M_A4) after 250 epochs (Figure 5.5). For all four experiments, from 

the loss’s plots (Figure 5.3 & 5.5), we do not observe any signs of overfitting, since the 

validation losses keep decreasing while the training losses decrease too.  

The conclusion from the experiments HF_M_A {1 - 4} is that the learning rates 0.3 and 

0.03 are the best choices for our Hippocampus Features dataset since both the training 

and validation accuracies increase fast and the loss reduction is very steep. This helps us 

to converge in fewer epochs which is a major benefit for the training process of an 

algorithm. Consequently, the 0.3 learning rate is going to be used for the rest of the 

experiments with the Adam optimizer since based on the average validation accuracy, 

specificity, and sensitivity had better results than the 0.03 (Table 5.4).   

5.2.2.3 Experiments HF_M_A {1, 5 – 10}: 

α = {7, 5, 3, 1, 0.1, 0.01, 0.001}, lr = 0.3, net = [10, 8, 8, 1] 

The experiments HF_M_A {1, 5 – 10} had been performed to compare the effect of the 

L2 Regularization term or so-called alpha (α) (Section 2.3.13.7), on our experiments. The 
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key finding is that α plays a major role in the performance as it controls whether the 

network will overfit or underfit. The different values of α that are going to be testes are 

{7, 5, 3, 1, 0.1, 0.01, 0.001}. All 7 experiments HF_M_A {1, 5 – 10}, will have the same 

learning rate, equal to 0.3, and the same network configuration [10, 8, 8, 1] (Section 

4.2.2.1). 

Detailed results for each experiment can be found in Appendix G. More specifically, for 

the experiments HF_M_A {1, 5 – 10}, their training/validation accuracies and losses of 

each fold can be seen in Appendixes G.1.1, G.1.5 – G.1.10. There, are also available the 

confusion matrices for the training, validation, and test sets of these experiments.  

In Figure 5.6, which shows the average training accuracies for the experiments HF_M_A 

{1, 5 – 10}, we can easily detect two groups; the alphas 0.001, 0.01, 0.1, 1, and the alphas 

3, 5, 7. The experiments of the second group, with alphas greater than 1, manage to reach 

a smaller training accuracy in comparison with the first group. More specifically the 

training accuracies of the experiments with alphas 3, 5, and 7, remain in a “straight” line 

after approximately 30 epochs while the first group continues to increase.  

 

Figure 5.6. Average training accuracies of the 10-folds of the experiments HF_M_A {1, 5 – 10}. 

Comparing different values of alpha (α) with the Adam optimizer. 

Similar behavior as in the training accuracies can be observed in the training losses of 
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experiments with alphas 0.001, 0.01, 0.1, and 1, remain stable after the 30th epoch, while 

the training losses of the experiments with alphas 3, 5, and 7, continue to decline. 

 

Figure 5.7. Average training losses of the 10-folds of the experiments HF_M_A {1, 5 – 10}. 

Comparing different values of alpha (α) with the Adam optimizer. 

 

Figure 5.8. Average validation accuracies of the 10-folds of the experiments HF_M_A {1, 5 – 10}. 

Comparing different values of alpha (α) with the Adam optimizer. 
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Based on the validation accuracies plot (Figure 5.8), we can see that the experiments with 

alphas 3, 5, and 7 are ‘stable’ through the epochs, while the rest of the experiments suffer 

from overfitting. The reason is that larger values of alpha help to reduce overfitting but 

may cause underfitting (Pedregosa et al. 2011). The overfitting for the experiments with 

alphas 0.001, 0.01, 0.1, and 1 can be observed in the validation losses plot more clearly 

(Figure 5.9). The smaller the alpha is, the more steeply the validation loss increases. Since 

for all 7 experiments, the training loss decreases, therefore, severe overfitting can be 

detected in the experiments with alphas 3, 5, and 7 (HF_M_A {6, 5, 1}), and some 

overfitting in the experiment with alpha equal to 1 (HF_M_A7).   

 

Figure 5.9. Average validation losses of the 10-folds of the experiments HF_M_A {1, 5 – 10}. 

Comparing different values of alpha (α) with the Adam optimizer. 

Consequently, alphas help to reduce underfitting but may also cause overfitting. To 

improve our performance more, other regularization techniques against overfitting can be 

used such as Dropout in combination with small alphas. 

5.2.2.4 Experiments HF_M_A {8, 11 – 13}: 

α = 0.1, lr = 0.3, net = {[10, 8, 8, 1], [10, 30, 1], [10, 100, 1], [10, 20, 20, 1]} 

The experiments HF_M_A {8, 11 – 13} are meant to compare how the different network 

configurations [10, 8, 8, 1] (Section 4.2.2.1), [10, 20, 20, 1] (Section 4.2.2.2), [10, 30, 1] 

(Section 4.2.2.3),  [10, 100, 1] (Section 4.2.2.4), affect the performance of the model with 
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the HF_M dataset (Section 3.2.2), the MLP implementation (Section 2.3.11), and the 

Adam optimizer (Section 2.4.4). All four experiments have a learning rate equal to 0.3, 

and an alpha equal to 0.1. Those two values have been selected based on the performance 

of the experiments in Sections 5.2.2.2 & 5.2.2.3. 

Detailed results for each experiment can be found in Appendix G. More specifically, for 

the experiments HF_M_A {8, 11 – 13}, their training/validation accuracies and losses of 

each fold can be seen in Appendixes G.1.8, G.1.11 – G.1.13. There, are also available the 

confusion matrices for the training, validation, and test sets of these experiments.  

The training accuracies plot of the experiments HF_M_A {8, 11 – 13} can be seen in 

Figure 5.10. We can identify two groups in Figure 5.10; the first group consists of the 

experiments with the single hidden layer topologies [10, 30, 1] (orange) and [10, 100, 1] 

(green), and the second the experiments with the two hidden layers topologies [10, 8, 8, 

1] (purple) and [10, 20, 20, 1] (red). The training accuracies of the experiments of the 

same group behave very similarly. The training accuracies of the experiments in the first 

group increase throughout the whole training process. Contrariwise, for the two hidden 

layers topologies (second group), the training accuracies face a slow start and decrease as 

the training process progresses.  

 

Figure 5.10. Average training accuracies of the 10-folds of the experiments HF_M_A {8, 11 – 13}. 

Comparing different network configurations with the Adam optimizer. 
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In Figure 5.11 we can see the training losses of the aforementioned experiments. We 

observe again the two groups in the losses plot as well. In the experiments with the two 

hidden layers (HF_M_ A {8, 13}), the training losses increase over time, while for the 

experiments (HF_M_ A {11, 12}) they remain relatively stable near zero. 

 

Figure 5.11. Average training losses of the 10-folds of the experiments HF_M_A {8, 11 – 13}. 

Comparing different network configurations with the Adam optimizer. 

 

Figure 5.12. Average validation accuracies of the 10-folds of the experiments HF_M_A {8, 11 – 13}. 

Comparing different network configurations with the Adam optimizer. 
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The validation accuracies plot of the experiments (Figure 5.12) shows us that very rapidly 

in all four implementations the highest accuracy is reached in approximately 50 epochs. 

Especially in the single hidden layer implementations (green & orange), after 

approximately 40 epochs they reach their highest average validation accuracy. Then, in 

all four experiments, the validation accuracy fluctuates in a range approximately between 

0.75 and 0.8 with a slight decrease over time. This could potentially mean that the model 

overfits.  

 

Figure 5.13. Average validation losses of the 10-folds of the experiments HF_M_A {8, 11 – 13}. 

Comparing different network configurations with the Adam optimizer. 

From the validation losses plot (Figure 5.13), we can validate our assumption for 
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loss after 20 epochs approximately, and afterward it started increasing. Only the 

experiments HF_M_A12 with the [10, 100, 1] topology seems not to be overfitting as 

much.  

In conclusion, the topology [10, 30, 1] seems to be the best choice among these four 

network configurations, since it provides low complexity (Section 4.2.2.3), does not 

fluctuate a lot (Figures 5.10 – 5.13), and achieves the highest validation accuracy and 

sensitivity between these experiments (Table 5.4).  
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5.2.3 MLP with SGD 

5.2.3.1 Introduction to MLP with SGD 

For the Hippocampus Features – Multiple scans per patient [AD, NC] dataset (HF_M)  

(Section 3.2.2), the 5 experiments HF_M_S {1 – 5} have been performed with the MLP 

classifier and the SDG optimizer. The implementations for these experiments can be 

found in Appendix A.2. The detailed training/validation accuracies and losses for each 

fold of these experiments can be found in Appendix G.2. The training, validation, and 

testing confusion matrices are also available in Appendix G.2. 

All HF_M_S experiments run for 500 epochs with the network configuration [10, 8, 8, 1] 

(Section 4.2.2.1). Similar to the Adam optimizer (Section 5.2.2), larger learning rates 

perform better (Table 5.5). Based on our observations of the Adam optimizer (Section 

5.2.2.3), the alphas equal to 0.1 and 7 were chosen, for the SGD optimizer, to be tested. 

Between the two alphas 0.1 and 7, the 0.1 (HF_M_S5) performs better, as expected based 

on Adam’s results.  

Hippocampus Features – Multiple Scans per Patient [AD, NC] 
Optimizer: SGD 
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HF_M_S1 0.3 7 [10, 8, 8, 1] 0.83 0.05 0.64 0.90 0.82 0.05 0.69 0.95 14 0.89 

HF_M_S2 0.03 7 [10, 8, 8, 1] 0.83 0.06 0.62 0.92 0.82 0.06 0.65 0.98 146 0.89 

HF_M_S3 0.003 7 [10, 8, 8, 1] 0.74 0.11 0.66 0.78 0.79 0.04 0.69 0.88 163 0.84 

HF_M_S4 0.0003 7 [10, 8, 8, 1] 0.74 0.09 0.62 0.78 0.74 0.05 0.63 0.85 339 0.82 

HF_M_S5 0.3 0.1 [10, 8, 8, 1] 0.94 0.03 0.92 0.95 0.88 0.04 0.82 0.95 272 0.93 

Table 5.5. Hippocampus Features with Multiple Scans per Patient [AD, NC] with the SGD optimizer. 

Experiments with different learning rates, and values of α. Same network configuration [10, 8, 8, 1] 

The experiment HF_M_S5 has the best performance among the five experiments (Table 

5.5.). More specifically, HF_M_S5’s validation accuracy is 0.88, the sensitivity is 0.82, 

and specificity 0.95. In direct comparison with the Adam optimizer, the SGD optimizer 

is much slower. The experiment’s HF_M_S5 (best model MLP & SGD) average epoch 

of the best validation accuracies is 272 (Table 5.5), while for the experiment HF_M_A11 

(best model MLP & Adam) is 155 (Table 5.4). Overall, the performance of Adam in terms 
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of average validation accuracy, sensitivity, and specificity for the 10-folds for 500 epochs 

is better than SGD for the specific dataset (HF_M). 

5.2.3.2 Experiments HF_M_S {1 – 5}: 

α = {7, 0.1}, lr = {0.3, 0.03, 0.003, 0.0003}, net = [10, 8, 8, 1] 

The experiments HF_M_S {1 – 5} are meant to compare the effects of the different 

learning rates and alphas to the performance of the model with the MLP classifier (Section 

2.3.11) and the HF_M dataset (Section 3.2.2). All implementations are going to use the 

network configuration [10, 8, 8, 1] as described in Section 4.2.2.1. The experiments 

HF_M_S {1 – 4} apply the learning rates {0.3, 0.003, 0.003, 0.0003} respectively, with 

alpha = 7. The experiment HF_M_S5’s hyperparameters are learning rate = 0.3 and alpha 

= 0.1. 

Detailed results for each experiment can be found in Appendix G. More specifically, for 

the experiments HF_M_S {1 – 5}, their training/validation accuracies and losses of each 

fold can be seen in Appendixes G.2.1 – G.2.5. There, are also available the confusion 

matrices for the training, validation, and test sets of these experiments.  

 

Figure 5.14. Average training accuracies of the 10-folds of the experiments HF_M_S {1 – 5}. 

Comparing different Learning Rates with the SGD optimizer. 

We can see in Figure 5.14 that for α = 7, the larger the learning rate the better the training 

accuracy (HF_M_S {1 – 4}). The learning rate = 0.3 and the α = 0.1 in the experiment 
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HF_M_S5 helps to resolve the underfitting issues, since the training accuracy keeps 

increasing after the 30th epoch, with some minor fluctuations (Figure 5.14). As we can 

from the training losses plot (Figure 5.15), the experiment HF_M_S5 with a learning rate 

= 0.3 and α = 0.1, achieves the minimum training loss and a desirable reduction over time. 

On the other hand, for α = 7, the training loss does not decrease after a certain point.   

 

Figure 5.15. Average training losses of the 10-folds of the experiments HF_M_S {1 – 5}. 

Comparing different Learning Rates with the SGD optimizer. 

 

Figure 5.16. Average validation accuracies of the 10-folds of the experiments HF_M_S {1 – 5}. 

Comparing different Learning Rates with the SGD optimizer. 
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The average validation accuracies for the 10-folds of each experiment can be seen in 

Figure 5.16. The experiments HF_M_S {3, 4} with alpha = 7 and learning rates 0.003 

and 0.0003 respectively, progress very slowly with the SGD optimizer. In Figure 5.16 we 

can also see that the experiment HF_M_S2 with the learning rate equal to 0.03, after 

approximately 100 epochs on average reaches its maximum value and sticks on that for 

the rest of the epochs. The experiment HF_M_S1 with the learning rate = 0.3 and α = 7 

(purple, Figure 5.16), reaches its maximum value around the 30th epoch, and then it 

decreases slightly where it gets stuck for the rest of the epochs. The experiment HF_M_S5 

on the other hand, with the learning rate = 0.3 and α = 0.1 (black, Figure 5.16) reaches its 

maximum value at approximately the 50th epoch and then remains relatively stable in a 

straight line while it fluctuates significantly more than the HF_M_S1. 

 

Figure 5.17. Average validation loss of the 10-folds of the experiments HF_M_S {1 – 5}. 

Comparing different Learning Rates with the SGD optimizer. 
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already mentioned in Adam’s experiments (Section 5.2.2), where a similar overfitting 

problem occurred, adding another regularization technique such as Dropout (Section 

2.3.13), is definitely needed.  

5.2.4 MLP with HFO 

5.2.4.1 Introduction to MLP with HFO 

For the Hippocampus Features – Multiple scans per patient [AD, NC] dataset (HF_M) 

(Section 3.2.2), the 9 experiments HF_M_H {1 – 9} have been performed with the MLP 

classifier and the HFO optimizer. The implementations for the model used for these 

experiments can be found in Appendix A.3. The detailed training/validation accuracies 

and losses for each fold of these experiments can be found in Appendix G.3. The training, 

validation, and testing confusion matrices are also available in Appendix G.3. 

Unlike the SGD (Section 5.2.3) and Adam (Section 5.2.2), the HFO algorithm does not 

have a learning rate or alpha hyperparameters. The hyperparameters that will be modified 

in the following experiments are the Conjugate Gradient (CG) iterations of the HFO 

algorithm (Section 2.4.7) and the network topology. The different network topologies are 

the same as the ones used for the Adam optimizer (Section 5.2.2.4). All HFO experiments 

are executed for 100 epochs while the SGD and Adam experiments were performed for 

500 epochs.  

In Adam’s experiments, two groups of experiments, with similar behavior between the 

members of a group, were observed (Section 5.2.2). Contrariwise, in the HFO optimizer, 

which is very aggressive, all the following experiments behave very similarly.  The MLP 

with HFO experiments performed worse than the SGD and the Adam for the AD/NC 

problem with the HF_M dataset since very rapidly they start overfitting. The reason could 

be the input itself, which is not appropriate for such an algorithm which is good for 

optimizing objectives that exhibit pathological curvature (Section 2.4.7.1) (Martens 

2010).  

The following 9 experiments HF_M_H {1 – 9} have very similar results in terms of 

accuracies, sensitivity, specificity, and the average epoch where the best validation 

accuracy was found. Most of the validation accuracies are 0.86, the average sensitivities 

are between 0.74 and 0.77, and the average specificities between 0.94 and 0.98 (Table 
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5.6). The experiment HF_M_H2 performs slightly better since it achieves a validation 

accuracy of 87%. From Table 5.6, we can see that the Specificity for the experiments is 

much larger than their Sensitivity. This means that the models are biased toward the NC 

patient since they correctly identify the NC patients as NC most of the time. This is an 

issue for us, since, for the AD/NC problem, the Sensitivity needs to be high, to correctly 

identify the AD patients as ADs. The reason this happens is the unbalanced training sets 

(Section 3.2.2) of the HF_M dataset. 

Hippocampus Features – Multiple Scans per Patient [AD, NC] 
Optimizer: HFO 
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HF_M_H1 1 [10, 30, 1] 0.91 0.04 0.80 0.95 0.86 0.05 0.75 0.98 34 0.91 

HF_M_H2 2 [10, 30, 1] 0.93 0.04 0.82 0.97 0.87 0.05 0.76 0.98 23 0.93 

HF_M_H3 4 [10, 30, 1] 0.87 0.07 0.77 0.91 0.86 0.05 0.75 0.97 12 0.91 

HF_M_H4 8 [10, 30, 1] 0.92 0.09 0.83 0.95 0.86 0.05 0.75 0.96 28 0.91 

HF_M_H5 16 [10, 30, 1] 0.93 0.06 0.83 0.97 0.86 0.05 0.75 0.97 26 0.91 

HF_M_H6 32 [10, 30, 1] 0.90 0.10 0.84 0.92 0.86 0.05 0.77 0.94 16 0.91 

HF_M_H7 2 [10, 20, 20, 1] 0.93 0.04 0.82 0.97 0.86 0.05 0.75 0.97 24 0.91 

HF_M_H8 2 [10, 100, 1] 0.92 0.05 0.80 0.96 0.86 0.04 0.74 0.98 24 0.89 

HF_M_H9 2 [10, 8, 8, 1] 0.94 0.04 0.85 0.97 0.86 0.05 0.74 0.98 31 0.91 

Table 5.6. Hippocampus Features with Multiple Scans per Patient [AD, NC] with the HFO optimizer. 

Experiments with different CG iterations and network configurations. 

5.2.4.2 Experiments HF_M_H {1 – 6}: 

CGiter = {1, 2, 4, 8, 16, 32}, net = [10, 30, 1] 

The experiments HF_M_H {1 – 6} were meant to compare the effect of different 

Conjugate Gradient (CG) iterations in the HFO algorithm (Section 2.4.7.2). More 

specifically the experiments HF_M_H {1 – 6} with the values of ‘CGiter’ 1, 2, 4, 8, 16, 

and 32 respectively will be compared. All six implementations, use the same network 

configurations [10, 30, 1] (Section 4.2.2.3).  

Detailed results for each experiment can be found in Appendix G. More specifically, for 

the experiments HF_M_H {1 – 6}, their training/validation accuracies and losses of each 



165 

 

fold can be seen in Appendixes G.3.1 – G.3.6. There, are also available the confusion 

matrices for the training, validation, and test sets of these experiments.  

 

Figure 5.18. Average training accuracies of the 10-folds of the experiments HF_M_H {1 – 6}. 

Comparing different numbers of CG iterations with the HFO optimizer. 

 

Figure 5.19. Average training losses of the 10-folds of the experiments HF_M_H {1 – 6}. 

Comparing different numbers of CG iterations with the HFO optimizer. 
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(yellow) and CGiters = 2 (black) respectively, their training accuracies increase more 

stable than the rest of the CGiters (4, 8, 16, 32). For the experiments HF_M_H {3 – 6} 
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we observe that two bumps are visible, at the 10th and 20th epochs approximately. Keep 

in mind that those are the averages of the 10-folds; the training accuracy of each fold can 

be seen in the figures of Appendixes G.3.1 – G.3.6. In Figure 5.19, we can see the average 

training losses of the 10-folds, of the experiments HF_M_H {1 – 6}. We observe that the 

experiments HF_M_H {1 & 2} decline smoothly, while the experiments HF_M_H {3 – 

6} create two valleys while they decline, at the 10th and 20th epochs.  

 

Figure 5.20. Average validation accuracies of the 10-folds of the experiments HF_M_H {1 – 6}. 

Comparing different numbers of CG iterations with the HFO optimizer. 

 

Figure 5.21. Average validation losses of the 10-folds of the experiments HF_M_H {1 – 6}. 

Comparing different numbers of CG iterations with the HFO optimizer. 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

V
al

id
 A

cc
u

ra
cy

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Average Valid Accuracy
HFO, Net Architecture = [10, 30, 1], Different CGiter

CGiter_1_avg_valid_acc CGiter_2_avg_valid_acc CGiter_4_avg_valid_acc
CGiter_8_avg_valid_acc CGiter_16_avg_valid_acc CGiter_32_avg_valid_acc

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40 50 60 70 80 90 100

V
al

id
 L

o
ss

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Average Valid Loss
HFO, Net Architecture = [10, 30, 1], Different CGiter

CGiter_1_avg_valid_loss CGiter_2_avg_valid_loss CGiter_4_avg_valid_loss
CGiter_8_avg_valid_loss CGiter_16_avg_valid_loss CGiter_32_avg_valid_loss



167 

 

Based on the average validation accuracies plot of the 10-folds for the experiments 

HF_M_H {1 – 6}, we can see that in all cases, a hill can be observed at the 15th epoch 

approximately (Figure 5.20). Afterward, the experiments with ‘CGiter’ 4, 8, 16, 32 face 

a steep decline, while the experiments with ‘CGiter’ 1 and 2 decline more slowly. This 

tells us that, whatever the value of the ‘CGiter’ is, soon or later, our model overfits.  

In Figure 5.21, we observe that initially the average validation loss, of all 6 experiments 

declines, when a valley at around the 15th epoch starts to form. The experiments HF_M_H 

{3 – 6} soon after they rise again, while for the experiments HF_M_H {1 & 2} it takes 

more time. Since the training losses of all experiments decrease throughout the whole 

training process (Figure 5.19), we can safely assume that all the models overfit at some 

point based on their validation losses in Figure 5.12. 

5.2.4.3 Experiments HF_M_H {2, 7 – 9}: 

CGiter = 2, net = {[10, 30, 1], [10, 20, 20, 1], [10, 100, 1], [10, 8, 8, 1]} 

The experiments HF_M_H {2, 7 – 9} aim to compare the performance of different 

network configurations. More specifically, the network configurations for the 

experiments HF_M_H {2, 7 – 9} are [10, 30, 1], [10, 20, 20, 1], [10, 100, 1], and [10, 8, 

8, 1] respectively (Section 4.2.2). Those are the same network configurations used also 

in the experiments of the MLP classifier with the Adam optimizer and the HF_M dataset 

(Section 5.2.2). The Conjugate Gradient (CG) iterations for all four experiments will be 

set to 2 since is the experiment HF_M_H2 had the highest validation accuracy between 

the experiments HF_M_H {1 – 6} (Table 5.6). 

Detailed results for each experiment can be found in Appendix G. More specifically, for 

the experiments HF_M_H {2, 7 – 9}, their training/validation accuracies and losses of 

each fold are in Appendixes G.3.2, G.3.7 – G.3.9 respectively. There, are also available 

the confusion matrices for the training, validation, and test sets of these experiments.  

In Figures 5.22 – 5.25 of the training and validation accuracy and loss, the results do not 

seem to vary a lot between the different network configurations. They look like are the 

same experiments of the same configuration and hyperparameters with just different 

initial weights than being completely different network architectures.  In Figure 5.23 of 

the average validation accuracies of the 10-folds, of the HF_M_H {2, 7 – 9}, we can see 
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that the accuracies of all four experiments increase rapidly, when after the 20th epoch 

approximately starts to decline. This is an indication of overfitting.   

 

Figure 5.22. Average training accuracies of the 10-folds of the experiments HF_M_H {2, 7 – 9}. 

Comparing different network configurations with the HFO optimizer. 

 

Figure 5.23. Average validation accuracies of the 10-folds of the experiments HF_M_H {2, 7 – 9}. 

Comparing different network configurations with the HFO optimizer. 
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happens, because the training accuracies decrease throughout the whole training process, 

while the validation accuracies, after the 20th epoch start increasing.  

 

Figure 5.24. Average training losses of the 10-folds of the experiments HF_M_H {2, 7 – 9}. 

Comparing different network configurations with the HFO optimizer. 

 

Figure 5.25. Average validation losses of the 10-folds of the experiments HF_M_H {2, 7 – 9}. 

Comparing different network configurations with the HFO optimizer. 

The experiments HF_M_H {2, 7 – 9} have shown us that a more complex network 

configuration does not necessarily improve the performance or causes more overfitting 
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since all four network configurations in our case overfit similarly. Maybe if an even 

simpler network configuration is used, for example [10, 4, 1], could help to fix the issue 

with overfitting. We should keep in mind that the MLP classifier with HFO, is a vanilla 

implementation as Martens (2010) and Martens and Sutskever (2012) proposed. 

Therefore, no regularization techniques, such as Dropout, L1, or L2 Regularization was 

applied to encounter overfitting (Section 2.3.13). If some kind of regularization is applied, 

we are expecting a better performance than the ones with SGD or Adam in fewer epochs.  

5.3 2D Brain Slices [AD, NC] 

In Sections 5.4 – 5.7, 39 experiments will be compared based on the 2D Brain Slices [AD, 

NC] datasets (Section 3.2.3). More specifically, the four datasets that are going to be 

tested are the Single Scan per Patient – Single Slice per Scan (B_2D_S) (Section 3.2.3.2), 

Single Scan per Patient – 5 Slices per Scan (B_2D_5S) (Section 3.2.3.3), Multiple Scans 

per Patient – Single Slice per Scan (B_2D_M) (Section 3.2.3.4), and Multiple Scans per 

Patient – 7 Slices per Scan (B_2D_7M) (Section 3.2.3.5). The experiments are going to 

be performed by using the modified CNN implementations of Wang et al. (2020), as 

described in Section 4.3.1. The optimizers that are going to be used are Adam and the 

NewtonCG which is the HFO implementation for the CNN network with the Gauss-

Newton matrix from Wang et al. (2020) (Section 2.4.9) 

The activation function used for all the experiments in Sections 5.4 – 5.7, is ReLU 

(Section 2.2.13). The Sigmoid/Logistic function (Section 2.2.12) was also being used but 

its results were catastrophic since the model underfit as the validation accuracy was 

approximately 50%. In future work, different activation functions can be used, for 

potentially better performance, such as Leaky ReLU.  

In most of the experiments, Mean Squared Error (MSE) loss function was used (Section 

2.3.4). Only experiment B_2D_M_N16 used the Cross-entropy as a loss function but its 

performance was slightly worse than the MSE (Section 5.4.2.7).  

Different size of filters has been used, such as 3 × 3, 5 × 5, and 7 × 7. The filter size 

5 × 5 performed better in the 2D experiments (Section 5.4.2.11), while for the 3D ones, 

the 3 × 3 × 3 was a better choice. Also, for the experiments with the 2D datasets was 

better to apply Max-Pooling to all Convolutional Layers (Section 5.4.2.6), while in the 
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experiments with the 3D datasets is better not to apply Max-Pooling at all (Section 

5.8.1.2).  

Overfitting was a common issue in most of the experiments, especially the ones with the 

NewtonCG optimizer. Different hyperparameters are being modified to reduce overfitting 

which is going to be discussed in each section later on. Some of the techniques against 

overfitting that have been applied are the L1 & L2 Regularization, Dropout, and Spatial 

Dropout, but none of these helped to decrease significantly the issue. The reduction of 

Gauss-Newton matrix size (GNsize) seems to be helping against overfitting, but it reduces 

the validation accuracy as well.  

Since many network configurations such as deep, shallow, narrow, and wide (Section 

4.3.2) had been used to reduce overfitting and improve the model’s performance, with no 

much effect; the issue could be the small size of the datasets (Sections 3.2.3). The small 

datasets, resulting in a small training set which does not help the model to generalize. 

Therefore, if data augmentation is applied, and the size of the datasets is increased to 

approximately 10,000 – 20,000 samples, this could significantly help to improve the 

performance of the models.  

It is worth mentioning that from the 2D slice-level MRI datasets, the B_2D_M (Section 

3.2.3.4) achieves the best validation accuracies among the B_2D_S (Section 3.2.3.2), 

B_2D_5S (Section 3.2.3.3), and B_2D_7M (Section 3.2.3.5) datasets. This does not mean 

that we reject the rest of the datasets. Nevertheless, the dataset B_2D_7M reduces 

significantly the standard deviation between the accuracies of the different folds. This 

makes the experiment B_2D_7M_N1 (best of B_2D_7M dataset) more reliable since the 

minimum best validation accuracy between the 10-folds is 73% while the maximum is 

78%. So, the possible validation accuracies are in the 5% range. On the other hand, for 

the experiment B_2D_M_N19 (best of B_2D_M dataset) the minimum best validation 

accuracy of the 10-folds is 71%, while the maximum is 90%. Thus, the possible validation 

accuracies are in a much larger 19% range. To understand how severe this issue is, we 

can observe the plots of their validation accuracies for each fold. The deviation between 

the validation accuracies of the experiments B_2D_M_N19 (Figure H.185), is much 

larger at any given point, in comparison with the experiment’s B_2D_7M_N1 (Figure 

J.15). In future experiments, the use of the B_2D_7M dataset, after applying data 

augmentation, is highly suggested. 
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2D Brain Slices – Single / Multiple Scans per Patient – Single / 5 / 7 Slices per Scan [AD, NC] 
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Multiple Scans per Patient – Single Slice per Scan 

Adam 

B_2D_M_A1 0.53 0.07 0.59 0.47 0.56 0.07 0.66 0.65 0.61 0.50 0.51 0.05 0.58 0.44 13 0.74 

B_2D_M_A2 0.87 0.06 0.87 0.86 0.79 0.07 0.80 0.79 0.78 0.80 0.60 0.06 0.63 0.58 246 0.90 

B_2D_M_A3 0.91 0.07 0.90 0.92 0.79 0.08 0.78 0.81 0.82 0.77 0.64 0.05 0.75 0.53 154 0.91 

NewtonCG 

B_2D_M_N1 0.88 0.04 0.89 0.87 0.78 0.08 0.77 0.79 0.80 0.75 0.61 0.03 0.71 0.52 48 0.90 

B_2D_M_N2 0.87 0.04 0.87 0.87 0.76 0.08 0.75 0.77 0.77 0.74 0.62 0.06 0.72 0.51 38 0.90 

B_2D_M_N3 0.91 0.04 0.90 0.91 0.77 0.07 0.78 0.78 0.78 0.77 0.62 0.03 0.69 0.55 51 0.86 

B_2D_M_N4 0.89 0.05 0.91 0.87 0.75 0.10 0.75 0.78 0.79 0.72 0.63 0.04 0.72 0.53 48 0.90 

B_2D_M_N5 0.89 0.04 0.90 0.88 0.75 0.08 0.75 0.76 0.77 0.74 0.61 0.04 0.69 0.52 47 0.87 

B_2D_M_N6 0.88 0.05 0.88 0.88 0.76 0.09 0.77 0.76 0.75 0.78 0.60 0.04 0.69 0.51 38 0.90 

B_2D_M_N7 0.90 0.05 0.91 0.90 0.76 0.08 0.76 0.77 0.77 0.74 0.62 0.05 0.71 0.53 56 0.86 

B_2D_M_N8 0.90 0.09 0.90 0.91 0.78 0.09 0.79 0.79 0.79 0.77 0.60 0.04 0.69 0.52 9 0.91 

B_2D_M_N9 0.93 0.05 0.94 0.92 0.76 0.08 0.76 0.78 0.78 0.74 0.62 0.05 0.71 0.53 14 0.89 

B_2D_M_N10 0.84 0.07 0.84 0.83 0.80 0.05 0.82 0.80 0.79 0.82 0.61 0.06 0.67 0.54 20 0.91 

B_2D_M_N11 0.89 0.06 0.87 0.91 0.78 0.07 0.82 0.76 0.74 0.82 0.60 0.06 0.64 0.55 12 0.89 

B_2D_M_N12 0.90 0.04 0.89 0.90 0.78 0.07 0.78 0.78 0.77 0.78 0.64 0.05 0.75 0.52 10 0.90 

B_2D_M_N13 0.84 0.06 0.86 0.82 0.78 0.08 0.78 0.80 0.79 0.77 0.60 0.04 0.67 0.53 13 0.89 

B_2D_M_N14 0.91 0.12 0.89 0.93 0.71 0.10 0.69 0.75 0.76 0.66 0.62 0.06 0.67 0.56 37 0.85 

B_2D_M_N15 0.77 0.04 0.78 0.76 0.79 0.08 0.79 0.80 0.79 0.78 0.63 0.07 0.66 0.62 12 0.91 

B_2D_M_N16 0.79 0.03 0.80 0.79 0.77 0.08 0.77 0.77 0.78 0.78 0.64 0.05 0.67 0.63 9 0.90 

B_2D_M_N17 0.85 0.04 0.85 0.86 0.78 0.08 0.80 0.77 0.78 0.80 0.61 0.03 0.63 0.61 23 0.90 

B_2D_M_N18 0.82 0.05 0.84 0.79 0.79 0.08 0.79 0.80 0.80 0.78 - - - - 17 0.91 

B_2D_M_N19 0.82 0.04 0.83 0.80 0.81 0.06 0.81 0.81 0.80 0.81 0.63 0.03 0.73 0.52 17 0.90 

B_2D_M_N20 0.83 0.10 0.81 0.84 0.79 0.06 0.80 0.78 0.76 0.81 0.62 0.04 0.70 0.54 23 0.86 

B_2D_M_N21 0.84 0.04 0.83 0.87 0.79 0.08 0.84 0.73 0.76 0.82 0.60 0.05 0.62 0.59 14 0.91 

B_2D_M_N22 0.85 0.03 0.87 0.84 0.78 0.08 0.75 0.81 0.81 0.78 0.63 0.04 0.67 0.61 17 0.89 

B_2D_M_N23 0.79 0.09 0.81 0.79 0.78 0.09 0.78 0.78 0.79 0.79 0.60 0.07 0.62 0.58 19 0.91 

B_2D_M_N24 0.81 0.04 0.84 0.79 0.76 0.07 0.70 0.82 0.80 0.74 0.62 0.06 0.65 0.61 13 0.86 

B_2D_M_N25 0.78 0.04 0.81 0.77 0.75 0.08 0.71 0.79 0.78 0.73 0.63 0.05 0.65 0.62 12 0.88 
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B_2D_M_N26 0.79 0.06 0.80 0.80 0.77 0.07 0.76 0.77 0.78 0.77 0.61 0.05 0.64 0.60 12 0.85 

B_2D_M_N27 0.80 0.07 0.80 0.81 0.75 0.06 0.77 0.73 0.75 0.77 0.59 0.06 0.60 0.59 17 0.83 

B_2D_M_N28 0.93 0.06 0.93 0.93 0.77 0.09 0.77 0.77 0.78 0.76 0.60 0.05 0.69 0.50 115 0.90 

Multiple Scans per Patient – 7 Slices per Scan 

Adam 

B_2D_7M_A1 0.92 0.06 0.93 0.91 0.75 0.02 0.74 0.75 0.76 0.74 0.64 0.03 0.67 0.60 49 0.78 

NewtonCG 

B_2D_7M_N1 0.94 0.04 0.94 0.94 0.76 0.02 0.75 0.77 0.77 0.75 0.64 0.02 0.69 0.58 32 0.78 

B_2D_7M_N2 0.94 0.04 0.95 0.93 0.73 0.01 0.73 0.74 0.74 0.72 0.66 0.04 0.68 0.64 34 0.75 

B_2D_7M_N3 0.96 0.02 0.97 0.96 0.73 0.02 0.72 0.74 0.75 0.71 0.66 0.02 0.69 0.63 40 0.76 

Single Scan per Patient - Single Slice per Scan 

NewtonCG 

B_2D_S_N1 0.85 0.12 0.86 0.84 0.75 0.07 0.75 0.77 0.77 0.74 0.68 0.12 0.68 0.68 22 0.87 

B_2D_S_N2 0.90 0.10 0.89 0.90 0.73 0.06 0.75 0.74 0.74 0.73 0.72 0.09 0.72 0.71 41 0.84 

B_2D_S_N3 0.85 0.09 0.85 0.86 0.77 0.05 0.79 0.76 0.75 0.78 0.70 0.14 0.62 0.78 23 0.84 

Single Scan per Patient - 5 Slices per Scan 

NewtonCG 

B_2D_5S_N1 0.92 0.04 0.90 0.95 0.75 0.03 0.77 0.74 0.73 0.77 0.69 0.05 0.65 0.74 31 0.78 

Table 5.7. 2D Brain Slices – Single / Multiple Scans per Patient – Single / 5 / 7 Slices per Scan [AD, NC]. 

Different experiments training, validation, and testing performance metrics. 

5.3.1 Best CNN Model for the AD/NC problem (B_2D_M_N19) 

The experiment B_2D_M_N19 had the best performance results (best average validation 

accuracy) among all the experiments with CNNs for the AD/NC problem. Its average 

validation accuracy, PPV, NPV, sensitivity, and specificity for 10-folds, are 81%, 81%, 

81%, 80%, 81% respectively. The maximum validation accuracy for the 10-folds is 90%, 

and the standard deviation for the validation accuracy is 6%. The average epoch of the 

best validation accuracy for the 10-folds is 17. This means that after 17 epochs on average, 

the best model of each fold occurred with the highest validation accuracy (Table 5.7).  

The experiment B_2D_M_N19 uses the NewtonCG optimizer (Section 2.4.9), as 

implemented by Wang et al. (2020), with the 2D_CNN_4L_2 network topology, which 

has 3 Convolutional Layers, a single dense layer, filters of size 5 × 5, and the filters per 

Convolutional Layer are f1 = 32, f2 = 32, f3 = 64, with fi being the filters in the ith 

Convolutional Layer (Section 4.3.2.3.2). Dropout is also being applied with probabilities 

d1 = 0.3, d2 = 0.5 and d3 = 0.5 with di being the dropout probabilities in the ith 

Convolutional Layer (Section 2.3.13.9). The regularization term or so-called weight 
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decay (C) was set to 0.01, and the size of the Gauss-Newton matrix (GNsize) equal to 50 

(Section 4.3.1). The experiment was executed for 100 epochs with the MSE loss function.  

 

Figure 5.26. Average training and validation accuracies of the 10-folds, of the experiment B_2D_M_N19. 

 

Figure 5.27. Average training and validation losses of the 10-folds, of the experiment B_2D_M_N19. 

In the average accuracies plot of the 10-folds, of the B_2D_M_N19 experiment (Figure 

5.26), we can see that both the training and validation accuracies fluctuate a lot the first 

30 epochs approximately; while later on the training accuracy increases rapidly as the 

validation accuracy decreases smoothly; which indicates overfitting. From the average 
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losses plot of the 10-folds, of the B_2D_M_N19 experiment (Figure 5.27), we can see 

that after the 30th epoch, overfitting can be observed since the validation loss increases 

slightly, while the training loss continues to decrease.  

5.3.1.1 Training 

In the accuracy and loss plots for each fold (Figure 5.28 & 5.29), all 10-folds fluctuate a 

lot at the beginning, but later on, they converged and behave very similarly. 

 

Figure 5.28. Training accuracy of each fold, of the B_2D_M_N19 experiment. 

 

Figure 5.29. Training loss of each fold, of the B_2D_M_N19 experiment. 
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The training confusion matrix in Figure 5.30, shows the average TP, TN, FP, and FN of 

the 10-folds for the training set. From the 522 ADs in the training set, 103 samples on 

average were misclassified as NCs (False Positive) during training.  

 

Figure 5.30. Training confusion matrix of the experiment B_2D_M_N19. 

5.3.1.2 Validation 

 

Figure 5.31. Validation accuracy of each fold, of the B_2D_M_N19 experiment. 
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others do not; for example, the 5th fold (lightest gray, Figure 5.31) fluctuates between 0.8 

and 0.9, while the 4th fold (darkest gray, Figure 5.31) fluctuates between 0.5 and 0.6.  

This issue is not unique to this experiment only but is present in all the experiments of 

the same B_2D_M dataset. Both the B_2D_S (Section 3.2.3.2), and B_2D_M (Section 

3.2.3.4) datasets suffer from this high deviation between folds because their datasets are 

relatively small. The B_2D_5S (Section 3.2.3.3), and B_2D_7M (Section 3.2.3.5) 

datasets, which are 5 and 7 times larger respectively from the B_2D_S and B_2D_7M 

datasets, resolve this issue.   

 

Figure 5.32. Validation loss of each fold, of the B_2D_M_N19 experiment. 

The average epoch of the best validation accuracy between folds for the B_2D_M_N19 

experiment is 19 (Table 5.7). This indicates that the model does not improves over time 

since the rest of the accuracies are worse or equal to the best accuracy in around the 19th 

epoch. This is not a good sign, since our model overfits, as validation loss increased is 

observed (Figure 5.32). To potentially fix this issue, we need to increase the size of our 

dataset by applying data augmentation (Section 2.3.13.4 & 2.3.13.5).   

From the validation accuracy confusion matrix (Figure 5.33), we can see that on average 

11 samples out of 58 ADs are misclassified as NCs (False Positive).   
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Figure 5.33. Validation confusion matrix of the experiment B_2D_M_N19. 

5.3.1.3 Testing 

The testing confusion matrix (Figure 5.34) shows that on average 11 out of 22 ADs are 

misclassified as NCs (False Positive). This means that on average the 50% of the patients 

were classified as healthy while they were not. This is a very poor performance for a 

model since the prediction is just random. The reason why the testing performs so poorly 

is that the test set is very small (Beleites et. al. 2013). In future experiments, it is highly 

suggested for the tested to be much larger for more accurate performance metrics.  

 

Figure 5.34. Testing confusion matrix of the experiment B_2D_M_N19. 
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5.3.1.4 Confusion Matrix Concentration 

Figures 5.35 & 5.36 show the training and validation confusion matrices of concentration 

respectively, of the B_2D_M_N19 experiment. The figures show the average percentages 

of TP, TN, FP, and FN for the 10-folds at any given epoch of the training and validation 

respectively. We can see from the training concentration (Figure 5.35) that large 

fluctuations exist in the first 30 epochs; then, the TP and TN increase smoothly while FP 

and FN decrease, which is very desirable.  

 

Figure 5.35. Average training confusion matrix of concentration of the experiment B_2D_M_N19. 
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concentration (Figure 5.35), a lot of fluctuations can be observed in the first 30 epochs. 
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training progresses, which is not desirable.  

Our main objective is for the TP and TN of the validation concentration (Figure 5.36) to 
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feasible, then the TN should be as large as possible and the FN as small as possible. This 

would mean that at least the ADs are classified correctly as ADs and not misclassified as 

NCs.  

 

Figure 5.36. Average training confusion matrix of concentration of the experiment B_2D_M_N19. 

5.4 2D Brain Slices [AD, NC]: Multiple Scans per Patient (174 × 174) 

5.4.1 CNN 4 Layers with Adam 
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probabilities d1 = 0.3, d2 = 0.5, and d3 = 0.5 have also been applied to all experiments. 

No Spatial Dropout (Section 2.3.13.10), L1, or L2 Regularizations (Section 2.3.13.7) 

have been applied. The source code for the specific network that was used for these 

experiments, can be found in Appendix B.5.2, in the Code Snippet B.6. 

Detailed results for each experiment can be found in Appendix H. More specifically, for 

the experiments B_2D_M_A {1 – 3}, their training/validation accuracies and losses of 

each fold are in Appendixes H.1.1 – H.1.3. There, are also available the confusion 

matrices for the training, validation, and test sets of these experiments.  

In Table 5.8, we can see that the experiments B_2D_M_A {2, 3} with the learning rates 

(lr) 0.01 and 0.001 both had an average validation accuracy for the 10-fold CV equal to 

79%. In terms of the Specificity metric, i.e., how many ADs were correctly identified as 

ADs in the CNN experiments (Section 5.3 – 5.11), for the experiment B_2D_M_A2 (lr = 

0.01) is 80% while for the experiment B_2D_M_A3 (lr = 0.001) is 77% (Table 5.8). 

Therefore, the model of the experiment B_2D_M_A2 would be slightly more preferable 

than the model of B_2D_M_A3. 

B_2D_M with Adam – Different Learning Rates 
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B_2D_M_A1 Adam 0.01 500 0.1 

d1 = 0.3 
d2, d3 = 0.5 

f1, f2 = 32 
f3 = 64 

0.53 0.59 0.47 0.56 0.66 0.65 0.61 0.50 

B_2D_M_A2 Adam 0.01 500 0.01 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
0.87 0.87 0.86 0.79 0.80 0.79 0.78 0.80 

B_2D_M_A3 Adam 0.01 500 0.001 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
0.91 0.90 0.92 0.79 0.78 0.81 0.82 0.77 

Table 5.8. 2D Brain Slices – Multiple Scans per Patient – Single Slice per Scan [AD, NC] dataset (B_2D_M). 

Optimizer: Adam. Testing different learning rates. 

5.4.1.1.1 Experiment B_2D_M_A1 

The B_2D_M_A1 experiment with the largest learning rate = 0.1 between the 

experiments B_2D_M_A {1 – 3}, does not perform very well. The learning rate for the 

CNN topology used and the specific dataset (B_2D_M) is too large, therefore the model 

is underfitting.  

The training and validation accuracies for all 500 epochs are close to 50% (Table 5.8) 

which means that the network does not learn anything, since the AD/NC problem has 
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only two potential outputs (Figure 5.37). The training and validation losses as we can 

observe in Figure 5.38 do not decrease. The large learning rate prevents the error 

functions from minimizing themselves. So, smaller learning rates will be examined in the 

experiments B_2D_M_A {2 & 3} in Sections 5.4.1.1.2 & 5.4.1.1.3 respectively.  

 

Figure 5.37. Average training and validation accuracies of the 10-folds, of the experiment B_2D_M_A1. 

 

Figure 5.38. Average training and validation losses of the 10-folds, of the experiment B_2D_M_A1. 
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equal to 0.01. Indeed, that helped a lot in solving the issue of underfitting, and the 

validation accuracy, sensitivity, and specificity reached an acceptable level, with the 

accuracy being 79%, sensitivity 78%, and specificity 80% (Table 5.8). Those 

performance metrics are very close to the best model as well, the B_2D_M_N19 (Section 

5.3.1) for the AD/NC problem in CNNs with the NewtonCG optimizer. B_2D_M_N19’s 

validation accuracy is 81%, the sensitivity 80%, and the specificity 81% (Table 5.7).  

The main disadvantage of this experiment is that the Adam optimizer is much slower than 

the NewtonCG. The NewtonCG achieves similar performance in just 17 epochs on 

average (average epoch of the best validation accuracy per fold), while for the Adam after 

246 epochs (Table 5.7). 

In Figure 5.39, we can see the average training and validation accuracies of the 10-folds, 

of the B_2D_M_A2 experiment. They both grow fast at first, but soon they get stuck; the 

training accuracy near 85%, and the validation accuracy near 70%. If we observe the 

training accuracies plot for each one of the folds individually (Figure H.12), we can see 

that the performance between folds varies a lot; some folds perform well at the beginning, 

and after 100 epochs approximately they crash back to 50%. This shows us that the 

learning rate is still large, and in some cases the model is underfitting.  

 

Figure 5.39. Average training and validation accuracies of the 10-folds, of the experiment B_2D_M_A2. 
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validation loss gets stuck in a value near 0.4, while the training loss continues to decrease. 

This indicates that the model is underfitting, since during the learning process most 

probably gets stuck in a local minimum. To fix this issue, we should decrease the learning 

rate even more; we are going to examine this in experiment B_2D_M_A3 (Section 

5.4.1.1.3).  

 

Figure 5.40. Average training and validation losses of the 10-folds, of the experiment B_2D_M_A2. 

5.4.1.1.3 Experiment B_2D_M_A3 

The experiment B_2D_M_A3 was meant to examine whether an even smaller learning 

rate than the B_2D_M_A2 (Section 5.4.1.1.2) experiment could help to avoid local 

minimums and encounter the underfitting that this experiment was phasing. Therefore, a 

learning rate = 0.001 was used.  

In Figure 5.41, with the average training and validation accuracies of the 10-folds, of the 

B_2D_M_A3 experiment, we observe that the training accuracy grows fast, towards 

100%, while the validation accuracy remains stuck at approximately 70%. By observing 

Figure 5.42, we can assume that the underfitting issues, of the experiments B_2D_M_A 

{1 & 2}, have been resolved, but now we are facing some overfitting issues. This happens 

because the average training loss decreases very rapidly, while the average validation loss 

starts to increase slightly after the 30th epoch approximately. This problem may occur due 

to the small dataset B_2D_M (Section 3.2.3.4). To validate this, we can see Figure H.24, 

with the validation accuracies of each fold; where the accuracies between folds differ a 
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lot, since some of them fluctuate at approximately 80% (5th fold), while others at 55% 

(4th fold).  

 

Figure 5.41. Average training and validation accuracies of the 10-folds, of the experiment B_2D_M_A3. 

 

Figure 5.42. Average training and validation losses of the 10-folds, of the experiment B_2D_M_A3. 

It is worth mentioning that usually in most of the CNN experiments with the B_2D_M 

datasets, the 4th fold performs poorly, while the 5th fold performs very well. This could 

indicate that the 4th fold contains many outliers, while the 5th fold contains many great 

samples. Due to the small size of each fold (116 samples), this affects a lot the 

performance metrics of the experiments.   
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5.4.2 CNN 4 Layers with NewtonCG 

5.4.2.1 Experiments B_2D_M_N {1 – 4}: C = {0.01, 0.1, 1, 10}, GNsize = 5 

Based on Wang et al. (2020), the regularization parameter C, or so-called weight decay 

(Section 2.3.13.8), alongside the Gauss-Newton matrix (GN) size (Section 2.4.9.2), seems 

to affect a lot the performance of the NewtonCG optimizer on their CNN 

implementations. Initially, the effects of C are going to be examined. Therefore, the four 

experiments B_2D_M_N {1 – 4} have been performed, with different values of C equal 

0.01, 0.1, 1, and 10 respectively. The rest of the hyperparameters remain the same in all 

four experiments. The ‘GNsize’ = 5, the network configuration that was used is 

2D_CNN_4L_1 (Section 4.3.2.3.1), without Dropout or any other regularization 

techniques. The source code for the specific network that was used for these experiments, 

can be found in Appendix B.5.1, in the Code Snippet B.5. 

The weight decay (C) helps to control the underfitting and overfitting of the network. A 

large value of C causes overfitting while a small value could cause underfitting. The 

regularization term C is not the same as the L2 regularization (Section 2.3.11.7), at least 

in the case of the Adam and NewtonCG optimizers.  

Detailed results for each experiment can be found in Appendix H. More specifically, for 

the experiments B_2D_M_N {1 – 4}, their training/validation accuracies and losses of 

each fold can be seen in Appendixes H.2.1 – H.2.4. There, are also available the confusion 

matrices for the training, validation, and test sets of these experiments.  

In Figure 5.43, of the average training and validation accuracies of the 10-folds, of the 

experiments B_2D_M_N {1 – 4}, no much variance can be observed between different 

values of C. Keep in mind that those are average accuracies of a 10-fold Cross-validation. 

Later on, we are going to examine the behavior of each fold individually. In general, from 

Figure 5.43, we can say that the experiment B_2D_M_N3 with C = 1 (green), seems to 

be a slightly better choice than the rest of them since overall has a better average 

validation accuracy on each epoch. In Figure 5.44, with the average training and 

validation losses of the 10-folds, of the experiments B_2D_M_N {1 – 4}, we do not 

observe any signs of overfitting, hence i.e., the validation loss does not increase as the 

training loss decreases.  
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Figure 5.43. B_2D_M_N {1 – 4} experiments’ average training and validation accuracies of the 10-folds. 

Comparing different values of C {0.01, 0.1, 1, 10}. 

 

Figure 5.44. B_2D_M_N {1 – 4} experiments’ average training and validation losses of the 10-folds. 

Comparing different values of C {0.01, 0.1, 1, 10}. 
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validation accuracies per epoch, is 78%, the highest among these four experiments. On 

the other hand, the experiment B_2D_M_N3 with C = 1, has the highest specificity, i.e. 

how many ADs are correctly identified as ADs, equal to 77%, which is the most important 

performance metric for us in the case of the AD/NC problem. 

Experiments B_2D_M_N {1 – 4} Performance Metrics 
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B_2D_M_N1 0.01 0.88 0.04 0.89 0.87 0.78 0.08 0.77 0.79 0.80 0.75 0.61 0.03 0.71 0.52 48 0.90 

B_2D_M_N2 0.1 0.87 0.04 0.87 0.87 0.76 0.08 0.75 0.77 0.77 0.74 0.62 0.06 0.72 0.51 38 0.90 

B_2D_M_N3 1 0.91 0.04 0.90 0.91 0.77 0.07 0.78 0.78 0.78 0.77 0.62 0.03 0.69 0.55 51 0.86 

B_2D_M_N4 10 0.89 0.05 0.91 0.87 0.75 0.10 0.75 0.78 0.79 0.72 0.63 0.04 0.72 0.53 48 0.90 

Table 5.9. Experiments B_2D_M_N {1 - 4} performance metrics. 

However, even though Table 5.9 showed that the experiment B_2D_M_N1 with C = 0.01 

had the best average validation accuracy among the four experiments, if we examine the 

individual accuracies per fold, new conclusions may come up. The shades of gray in 

Figure 5.34, show the validation accuracies of each fold and with red color the average 

validation accuracy of all folds (the one in Figure 5.43), for the experiment B_2D_M_N1.  

 

Figure 5.45. Experiment B_2D_M_N1 with C = 0.01. Validation accuracy per fold. 
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The experiment B_2D_M_N2 with C = 0.1, based on the validation accuracies per fold 

in Figure 5.46, seems to perform better than the experiment B_2D_M_N1 with C = 0.01 

in Figure 5.45. The reason is that the validation accuracies range between 0.6 and 0.9 for 

the experiment with C = 0.1, while for the experiment with C = 0.01 range between 0.55 

and 0.85, in their last epoch. Anyhow, i.e., the large variation between the folds is caused 

due to the small size of the B_2D_M dataset.  

 

Figure 5.46. Experiment B_2D_M_N2 with C = 0.1. Validation accuracy per fold. 

 

Figure 5.47. Experiment B_2D_M_N3 with C = 1. Validation accuracy per fold. 
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Figure 5.48 shows the validation accuracies per fold of the B_2D_M_N4 experiment. The 

variation between folds is similar to the B_2D_M_N1 experiment. The experiment 

B_2D_M_N3 with C = 1, based on the validation accuracies per fold in Figure 5.45, 

seems to be the best one among all four experiments. The reason is that the validation 

accuracies of the 10-folds range between 0.65 and 0.86 for the experiment with C = 1 in 

the last epoch. while for the experiment with C = 0.01 ranges between 0.55 and 0.85, in 

their last epoch. This is a 0.2 range between the maximum and the minimum validation 

accuracy at the 100th epoch, while the B_2D_M_N1 experiment was approximately 0.3.  

 

Figure 5.48. Experiment B_2D_M_N4 with C = 10. Validation accuracy per fold. 

In general, the C = 1 seems to be the best choice, but if we compare the average accuracy 
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C = 1, how the different hyperparameters and network configurations affect their 

performance (Table 5.10).  

Detailed results for each experiment can be found in Appendix H. More specifically, for 

the experiments B_2D_M_N {3, 5 – 9}, their training/validation accuracies and losses of 

each fold can be seen in Appendixes H.2.3, H.2.5 – H.2.9. There, are also available the 

confusion matrices for the training, validation, and test sets of these experiments.  

In Table 5.10 the hyperparameters (L2 Regularization, Dropout, GNsize), network 

architecture, and the different performance metrics of the experiments B_2D_M_N {3, 5 

– 9}, are available. All experiments were executed for 100 epochs, with the MSE loss 

function (Section 2.3.4), using the same dataset (B_2D_M). The two network topologies 

that are going to be used are the 2D_CNN_4L_1 (Section 4.3.2.3.1) and 2D_CNN_5L_1 

(Section 4.3.2.4.1).  

The source code for the 2D_CNN_4L_1 network, that was used for the experiments 

B_2D_M_N {3, 6, 8}, is available in Appendix B.5.1, in the Code Snippet B.5. A sample 

section of the source code for the 2D_CNN_4L_1 network with Dropout, which was used 

for the experiments B_2D_M_N {7, 9}, is available in Appendix B.5.2, in the Code 

Snippet B.6. In Appendix B.5.3, in the Code Snippet B.7, is available the source code of 

the network 2D_CNN_5L_1, which was used for the experiment B_2D_M_N5. 

Experiments B_2D_M_N {3, 5 – 9} – Different Configurations with C = 1 
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C_1 B_2D_M_N3 1 5 - - 2D_CNN_4L_1 0.91 0.90 0.91 0.77 0.78 0.77 0.62 0.69 0.55 51 0.86 

C_1_FFNN2 B_2D_M_N5 1 5 - - 2D_CNN_5L_1 0.89 0.90 0.88 0.75 0.77 0.74 0.61 0.69 0.52 47 0.87 

C_1_Reg B_2D_M_N6 1 5 - 0.01 2D_CNN_4L_1 0.88 0.88 0.88 0.76 0.75 0.78 0.60 0.69 0.51 38 0.90 

C_1_Drop B_2D_M_N7 1 5 0.3 - 2D_CNN_4L_1 0.90 0.91 0.90 0.76 0.77 0.74 0.62 0.71 0.53 56 0.86 

C_1_GN50 B_2D_M_N8 1 50 - - 2D_CNN_4L_1 0.90 0.90 0.91 0.78 0.79 0.77 0.60 0.69 0.52 9 0.91 

C_1_GN50_Drop B_2D_M_N9 1 50 
d1 = 0.3 

d2, d3 = 0.5 
- 2D_CNN_4L_1 0.93 0.94 0.92 0.76 0.78 0.74 0.62 0.71 0.53 14 0.89 

Table 5.10. Experiments B_2D_M_N {3, 5 – 9} – Different Configurations with C = 1 
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Based on the results of Table 5.10, it seems that the addition of L2 Regularization 

(B_2D_M_N6), or Dropout (B_2D_M_N7), or the 2-layer FFNN (B_2D_M_N5) instead 

of a single layer, does not improve the performance of the B_2D_M_N3 experiment. In 

general, it seems that the experiments B_2D_M_N {5 – 7} have worse performance than 

the baseline experiment B_2D_M_N3, without extra modifications.  

A difference in terms of average validation accuracies makes the GNsize (Table 5.10). 

The experiments B_2D_M_N {3, 5 – 7} all have GNsize = 5, and they behave very 

similarly. On the other hand, the experiments B_2D_M_N {8, 9} have GNsize = 50. As 

we saw in Wang et al. (2020) the size of the subsampled Gauss-Newton matrix for 

approximating the Hessian Matrix (GNsize), is one of the key hyperparameters that 

affects the performance of the model when using the NewtonCG optimizer. In their 

experiments, the GNsize was tested to be the 1%, 5%, and 10% of the training set, with 

the GNsize = 10% scoring best.  

 

Figure 5.49. Average training and validation accuracies of the experiments B_2D_M_N {3, 5 – 7} with C = 1. 

Examining different hyperparameters and network configurations. 
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For the experiments B_2D_M_N {3, 5 – 7}, the GNsizes 5, and 50 have been tested, 

which represent the ~0.5%, and ~5% respectively of our training set of 1044 samples 

(B_2D_M). While in the experiments with GNsize = 5, the average validation accuracies 

increase smoothly throughout the whole training process, for GNsize = 50 we observe a 

steep increase in the first 10 epochs, and then a slight decrease, where they remain 

relatively stable for the rest of the epochs (Figure 5.49).  

 

Figure 5.50. Average training and validation losses of the experiments B_2D_M_N {3, 5 – 7} with C = 1. 

Examining different hyperparameters and network configurations. 
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B_2D_M_N9 experiment. Contrariwise, the average epoch of the best validation 

accuracy per fold for the rest of the experiments with GNsize = 5, was between 38 and 
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The average training accuracies of the GNsize = 50 experiments, manage to hit 100% 

after 20 epochs while for GNsize = 5, after 100 epochs is still around 95%. Keep in mind 

that in Table 5.10 the training accuracies that are being shown are the ones where the best 

model was saved, so when the best validation accuracy was recorded, not the maximum 

training accuracy. The fact that the training accuracies of the NewtonCG with GNsize = 

50 converge that fast, could potentially mean that the models suffer from overfitting. This 

can be validated by observing Figure 5.50 with the average training and validation losses 

of the 10-folds, of the experiments B_2D_M_N {3, 5 – 7}.  

As we can see in Figure 5.50, the average validation losses of the experiments with 

GNsize = 50 (light red & gray), after the 10th epoch approximately, start to increase. In 

the meantime, their training losses decrease rapidly (dark red & black). The rest of the 

experiments do not seem to have any overfitting issues. Therefore, the GNsize plays a 

major role in overfitting the NewtonCG algorithm. Additionally, even dropout does not 

help to fight against overfitting when the GNsize is large (B_2D_M_N9); this indicates 

how aggressive the NewtonCG optimizer is. This issue can potentially be resolved when 

a larger dataset is used. Another option could be the development of more advanced 

regularization techniques to encounter overfitting that would be specialized for second-

order optimizers.  

5.4.2.3 Experiments B_2D_M_N {3, 28}: C = 1, Epochs = {100, 500} 

The experiment B_2D_M_N28 has been performed to compare how the epochs in the 

NewtonCG algorithm, affect the performance. I observed that the average validation 

accuracy of the experiment B_2D_M_N3 (Figure 5.47), was increasing steadily over 

time. Therefore, its hyperparameters and network configuration were used in the 

B_2D_M_N28 experiment, for 500 epochs instead of 100.  

As we can see in Figure 5.51, with the average training and validation accuracies of the 

experiments B_2D_M_N {3, 28}, the results are a bit strange, since for the first 100 

epochs it seems that the validation accuracy of the experiment B_2D_M_N28 does not 

increases the same way as for the B_2D_M_N3 experiment. After the 100th epoch it starts 

increasing, but the final average validation accuracy, after 500 epochs is less than the one 

of the B_2D_M_N3 experiment after 100 epochs.  
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The average validation accuracy of the best models on each fold is 77% for both 

experiments (Table 5.7). The main difference between them is that for the experiment 

B_2D_M_N3 the best accuracy of each fold was on average in the 51st epoch, while for 

the B_2D_M_N28, was in the 115th epoch. A better validation accuracy overall was 

expected from the experiment with the 500 epochs. I assume that the initialization of the 

weights was very bad for the B_2D_M_N28, but I cannot tell for sure since I did not 

repeat the experiment to identify whether this was the case. 

 

Figure 5.51. Average training and validation accuracies of the experiments B_2D_M_N {3, 28}. Compare epochs. 

 

Figure 5.52. Average training and validation accuracies of the experiments B_2D_M_N {3, 28}. Compare epochs. 
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In Figure 5.52 we can see the average training and validation losses of the two 

experiments. The experiment B_2D_M_N28 seems to overfit since its validation loss 

increases slightly as its training loss decreases. 

5.4.2.4 Experiments B_2D_M_N {1, 13, 12}: C = 0.01, GNsize = {5, 50, 200} 

The experiments B_2D_M_N {1, 8, 12} compare the effect of different sizes of the 

subsampled Gauss-Newton matrix for approximating the Hessian Matrix (GNsize) 

(Section 2.4.9). More specifically, in the experiments B_2D_M_N {1, 8, 12} with 

GNsizes of 5, 50, and 200 respectively, are going to be compared. All three experiments 

have the same hyperparameters, no Dropout, no Regularization, and the same weight 

decay equal to C = 0.01. The network architecture that is going to be used in all three 

experiments is the 2D_CNN_4L_1 (Section 4.3.2.3.1), and the source code for the 

network of the experiments can be found in Appendix B.5.1, at Code Snippet B.5. 

The GNsizes 5, 50, and 200, correspond to the ~0.5%, ~5%, and ~20% respectively of 

B_2D_M’s training set (Section 3.2.3.4). Based on Table 5.11 with the performance 

metrics of the three experiments, the average validation accuracy for the 10-folds is 78% 

in all three configurations. The average validation specificity is a bit better in the 

experiment with GNsize = 200 (78%), while for the experiments with GNsize = 50 and 

GNsize = 5, are 77% and 75% respectively. Nevertheless, those differences are minor, 

since the experiments with larger specificity, have smaller sensitivity.   

Experiments B_2D_M_N {1, 13, 12} – Different GNsize = {5, 50, 200} 
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B_2D_M_N1 0.01 5 2D_CNN_4L_1 0.88 0.89 0.87 0.78 0.77 0.79 0.80 0.75 0.61 0.71 0.52 48 0.90 

B_2D_M_N12 0.01 200 2D_CNN_4L_1 0.90 0.89 0.90 0.78 0.78 0.78 0.77 0.78 0.64 0.75 0.52 10 0.90 

B_2D_M_N13 0.01 50 2D_CNN_4L_1 0.84 0.86 0.82 0.78 0.78 0.80 0.79 0.77 0.60 0.67 0.53 13 0.89 

Table 5.11. Performance metrics of the experiments B_2D_M_N {1, 13, 12}. 

Comparing different GNsize = {5, 50, 200} 

The main difference between the three methods is the average epoch of the best validation 

accuracy per fold, which is smaller as the GNsize gets larger. This potentially means that 

the larger the GNsize, the earliest the network converges. For GNsize = 5 is 48, for 
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GNsize = 50 is 13, while for GNsize = 200 is 10 (Table 5.11). It is worth mentioning 

though that the GNsize affects the execution time since for larger GNsizes it takes more 

time to complete an epoch (Wang et al. 2020).  

In general, the performance metrics in the Table 5.11 look very similar. Contrariwise, the 

plots of the average accuracies (Figure 5.53) and losses (Figure 5.54) are completely 

different between the experiments.  

In Figure 5.53, the average training and validation accuracies of the 10-folds, of the 

experiments B_2D_M_N {1, 13, 12} are visible. The average validation accuracy, of the 

experiment B_2D_M_N1 with GNsize = 5 (purple), increases smoothly over time. On the 

other hand, the average validation accuracies of the experiment B_2D_M_N {12, 13} 

with GNsize = 200 and GNsize = 50 respectively, initially fluctuate a lot, and after the 

30th epoch approximately remain stable for the rest of the epochs. This could indicate that 

for large GNsize fewer epochs are needed since the algorithm progresses fast at the 

beginning.  

 

Figure 5.53. Average training and validation accuracies of the experiments B_2D_M_N {1, 13, 12}. 

Comparing different GNsize = {5, 50, 200} 

In both experiments with GNsize = 50 (B_2D_M_N13) and GNsize = 200 

(B_2D_M_N12), a spike in the average training accuracy is observed, around their 5th 

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Average Train & Validation Accuracy
NewtonCG, C = 0.01, GNsize = {5, 50, 200}

C_0.01_GN5_avg_train_acc C_0.01_GN50_avg_train_acc C_0.01_GN200_avg_train_acc

C_0.01_GN5_avg_valid_acc C_0.01_GN50_avg_valid_acc C_0.01_GN200_avg_valid_acc



198 

 

and 10th epoch respectively (Figure 5.53). Then a steep decline occurs in the next 5 epochs 

of both experiments, before starting to increase again towards 100%. No such behavior is 

observed with the experiment B_2D_M_N1 of GNsize = 5. 

In Figure 5.54, the average training and validation losses of the 10-folds for the three 

experiments are available. We can say that the experiments with GNsize = 50 and GNsize 

= 200 suffer from overfitting. Their training losses continue to decline while the 

validation losses face a slight increase over time. This is an issue for the experiments with 

CNN and the NewtonCG optimizer in this thesis since the large GNsizes are required to 

improve the network’s performance (Wang et al. 2020), but at the same time, they cause 

overfitting as well.  

 

Figure 5.54. Average training and validation accuracies of the experiments B_2D_M_N {1, 13, 12}. 

Comparing different GNsize = {5, 50, 200} 
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The experiments B_2D_M_N {1, 10 – 13, 16 – 18} used the 2D_CNN_4L_1 (Section 

4.3.2.3.1); the experiment B_2D_M_N14 the 2D_CNN_4L_4 network configuration 

(Section 4.3.2.3.4); the experiment B_2D_M_N15 the 2D_CNN_7L_1 network (Section 

4.3.2.5.1); and the experiments B_2D_M_N {19, 20} the 2D_CNN_4L_2 (Section 

4.3.2.3.2), and 2D_CNN_4L_3 (Section 4.3.2.3.3) networks respectively.  

The source code of B_2D_M_N {1, 12 – 13}’s network can be found in Appendix B.5.1, 

at Code Snippet B.5. For the experiments B_2D_M_N {10 – 11, 14 – 16, 19 – 20} which 

apply Dropout, a sample source code of the network is in Appendix B.5.2, at Code Snippet 

B.6. For the experiments B_2D_M_N {19, 20}, the number of the filters in the source 

code has to be changed from ‘3’, to ‘5’ and ‘7’ respectively. A sample section of the 

source code for B_2D_M_N18’s network, which uses Batch Normalization, is available 

in Appendix B.5.9, at Code Snippet B.13. Finally, in Appendix B.5.4, at Code Snippet 

B.8 is the source code for the network of the experiment B_2D_M_N17 which applies 

L1 & L2 Regularization.  

Experiments B_2D_M_N {1, 10 - 20} – Different Configurations 
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B_2D_M_N1 5 - Yes - - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 0.88 0.89 0.87 0.78 0.77 0.79 0.80 0.75 0.61 0.71 0.52 48 0.90 

B_2D_M_N10 50 
d1 = 0.3 

d2, d3 = 0.5 
Yes - - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 0.84 0.84 0.83 0.80 0.82 0.80 0.79 0.82 0.61 0.67 0.54 20 0.91 

B_2D_M_N11 200 
d1 = 0.3 

d2, d3 = 0.5 
Yes - - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 0.89 0.87 0.91 0.78 0.82 0.76 0.74 0.82 0.60 0.64 0.55 12 0.89 

B_2D_M_N12 200 - Yes - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 0.90 0.89 0.90 0.78 0.78 0.78 0.77 0.78 0.64 0.75 0.52 10 0.90 

B_2D_M_N13 50 - Yes - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 0.84 0.86 0.82 0.78 0.78 0.80 0.79 0.77 0.60 0.67 0.53 13 0.89 

B_2D_M_N14 50 
d1 = 0.3 

d2, d3 = 0.5 
- - - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_4 0.91 0.89 0.93 0.71 0.69 0.75 0.76 0.66 0.62 0.67 0.56 37 0.85 

B_2D_M_N15 50 
d1 - 3 = 0.3 
d4 - 6 = 0.5 

Yes - - - 
f1 - 3 = 16 

f4, 5 = 32, f6 = 64 
3 x 3 MSE 2D_CNN_7L_1 0.77 0.78 0.76 0.79 0.79 0.80 0.79 0.78 0.63 0.66 0.62 12 0.91 

B_2D_M_N16 50 
d1 = 0.3 

d2, d3 = 0.5 
Yes - - - 

f1, f2 = 32 
f3 = 64 

3 x 3 
Cross 

Entropy 
2D_CNN_4L_1 0.79 0.80 0.79 0.77 0.77 0.77 0.78 0.78 0.64 0.67 0.63 9 0.90 

B_2D_M_N17 50 
d1 = 0.3 

d2, d3 = 0.5 
Yes - 10-5 10-4 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 0.85 0.85 0.86 0.78 0.80 0.77 0.78 0.80 0.61 0.63 0.61 23 0.90 

B_2D_M_N18 50 
d1 = 0.3 

d2, d3 = 0.5 
Yes Yes - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 0.82 0.84 0.79 0.79 0.79 0.80 0.80 0.78 - - - 17 0.91 

B_2D_M_N19 50 
d1 = 0.3 

d2, d3 = 0.5 
Yes - - - 

f1, f2 = 32 
f3 = 64 

5 x 5 MSE 2D_CNN_4L_2 0.82 0.83 0.80 0.81 0.81 0.81 0.80 0.81 0.63 0.73 0.52 17 0.90 

B_2D_M_N20 50 
d1 = 0.3 

d2, d3 = 0.5 
Yes - - - 

f1, f2 = 32 
f3 = 64 

7 x 7 MSE 2D_CNN_4L_3 0.83 0.81 0.84 0.79 0.80 0.78 0.76 0.81 0.62 0.70 0.54 23 0.86 

Table 5.12. Performance metrics of the experiments B_2D_M_N {1, 10 - 20}. 

Comparing different configurations. 
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Based on Table 5.12 we can see that in most of the experiments, the validation accuracy 

is between 77% and 81%, except the experiment B_2D_M_N14 where the validation 

accuracy is 71%. That model most probably overfits since the network configuration is 

too complex while no Max-Pooling is used and that reduced its generalization ability. In 

most configurations, overfitting was observed, but it can be mostly be caused because the 

B_2D_M dataset is relatively small. Data augmentation, could increase the size of the 

dataset and potentially help reduce overfitting. Among these experiments in Table 5.12, 

are the two experiments with the best results in this thesis for the AD/NC problem in 

CNNs; the B_2D_M_N10 and B_2D_M_N19, with average validation accuracies of 80% 

and 81% respectively.  

 

Figure 5.55. Average training accuracies of the experiments B_2D_M_N {1, 10 - 20}. 

Comparing different configurations. 

Figure 5.55 shows the average training accuracies of these experiments. We can 

distinguish groups of experiments that behave similarly. A pair of experiments that have 

similarities are the experiments B_2D_M_N19 (pink) and B_2D_M_N20 (gray). Both of 

them examine how the size of the filters affects the performance, with the experiment 

B_2D_M_N19 having a filter size = 5 × 5 and the experiment B_2D_M_N20 a filter size 

= 7 × 7. Another group of experiments, that we can spot easily, consists of the 

experiments B_2D_M_N {11, 12} with GNsize = 200.  
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The experiment B_2D_M_N14 without Max-Pooling (black) (B_2D_M_N14) has the 

worst validation accuracy among all the experiments B_2D_M_N {1, 10 – 20}. The 

reason is that Max-Pooling helps the algorithm to detect features in different locations of 

the image (Section 2.3.13.5). If no Max-Pooling is applied, then the algorithm will fail to 

generalize and will overfit. That is why the training accuracy of that experiment goes fast 

towards 100%. The second worst experiment is the 7-layer one (B_2D_M_N15). In 

general, the more Convolutional Layers you have, the better the performance should be 

based on the literature (Krizhevsky et al. 2012). For the AD/NC problem with CNNs and 

the B_2D_M dataset, it seems that this is not the case.  

 

Figure 5.56. Average validation accuracies of the experiments B_2D_M_N {1, 10 - 20}. 

Comparing different configurations. 

In Figure 5.56 of the average validation accuracies, we can see that the average accuracy 

of the baseline experiment (purple) (B_2D_M_N1) seems to perform better than the rest 

of the experiment since it increases over time, while the others decline. In Figures 5.57 & 

5.58 we can see the average training and validation losses respectively, of the 10-folds, 

of the experiments B_2D_M_N {1, 10 – 20}. Most of the experiments, seem to have 

overfitting issues since their validation loss increases slightly over time while their 

training loss continues to decrease. 
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Figure 5.57. Average training losses of the experiments B_2D_M_N {1, 10 - 20}. 

Comparing different configurations. 

 

Figure 5.58. Average training losses of the experiments B_2D_M_N {1, 10 - 20}. 

Comparing different configurations. 
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5.4.2.6 Experiments B_2D_M_N {10, 14}: C = 0.01, GNsize = 50, 

With/Without Max-Pooling 

The experiment B_2D_M_N14 was meant to compare whether the absence of Max-

Pooling (Section 2.3.12.5) affects somehow the performance of the model. In this 

experiment, Max-Pooling was applied to none of the three Convolutional Layers. We are 

going to compare this experiment with the B_2D_M_N10 which has the same 

hyperparameters, and also applies Max-Pooling with pool_size = (2, 2) and stride (2, 2) 

to all three Convolutional Layers. The experiment B_2D_M_N14 is going to use the 

2D_CNN_4L_4 (Section 4.3.2.3.4) network configuration, while the B_2D_M_N10 the 

2D_CNN_4L_1 (Section 4.3.2.3.1). 

In Figure 5.59, the average training accuracy of the experiment without Max-Pooling in 

any Convolutional Layer (blue) goes fast towards 100%, while at the same time it has the 

worse validation accuracy among all the experiments with C = 0.01 (Section 5.4.2.5). 

This could mean that the model potentially overfits, which does not surprise us since the 

algorithm does not apply Max-Pooling which helps to recognize similar features in an 

image that are slightly relocated (Section 2.3.12.5). Additionally, since no Max-Pooling 

is applied the feature maps have the same size as the original input image of 174 × 174 

pixels since padding (Section 2.3.12.7) is applied. Therefore, the network’s complexity 

increases as well as the execution time.  
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Figure 5.59. Average training and validation accuracies of the experiments B_2D_M_N {10, 14}. 

With or Without Max-Pooling. 

In Figure 5.59, we can see that the average validation accuracy of the experiment 

B_2D_M_N14 without the Max-Pooling, remains stable after the 20th epoch; while in the 

experiment B_2D_M_N10 with Max-Pooling, it decreases as the training progresses. If 

we compare the values of the average validation accuracies from Table 5.12, we can see 

that the experiment B_2D_M_N14 without Max-Pooling has an average validation 

accuracy of 71% while for the experiment B_2D_M_N10 with Max-Pooling is 80%.   

In the Figure 5.60, of the average training and validation losses of the 10-folds, of the two 

experiments, we can see that indeed that the validation loss of the experiment without 

Max-Pooling (red) is larger than the validation loss of the experiment with Max-Pooling 

(yellow). The training loss of the experiment without Max-Pooling (blue) is very close to 

zero while the training loss of the experiment with Max-Pooling (green) is close to 0.1 at 

the last epoch. Both experiments suffer from overfitting since their training loss decreases 

while their validation loss increases slightly over time.   
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Figure 5.60. Average training and validation losses of the experiments B_2D_M_N {10, 14}. 

With or Without Max-Pooling. 

Detailed results for each fold of the experiment B_2D_M_N14 can be found in Appendix 

H. More specifically, its training/validation accuracies and losses of each fold are 

available in Appendix H.2.14. There, are also available the confusion matrices for the 

training, validation, and test sets of the experiment.  

5.4.2.7 Experiments B_2D_M_N {10, 16}:C = 0.01, GNsize = 50, 

Loss Function = Mean Squared Error (MSE) or Cross-entropy 

The experiments B_2D_M_N10 and B_2D_M_N16 use the same network configurations 

and hyperparameters, except that the first one uses MSE loss (Section 2.3.4) and the other 

Cross-entropy (Section 2.3.5) as their loss functions. Both experiments use the 

2D_CNN_4L_1 network configuration (Section 4.3.2.3.1). The GNsize was set to 50, and 

the C = 0.01 for the two experiments. Cross Entropy based on the literature, should be 

used for classification while MSE loss for regression. The reason is that MSE loss does 

not punish misclassifications enough. In our case, the AD/NC problem is a classification 

problem but the experiment with Cross-entropy (B_2D_M_N16) performs worse with 

77% validation accuracy, while the MSE loss (B_2D_M_N10) has a validation accuracy 

of 80% (Table 5.7).   
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In Figure 5.61, the average training and validation accuracies of the 10-folds for the two 

experiments are visible. We can see with red color the average validation accuracy of the 

experiment B_2D_M_N16 with the Cross-entropy loss, that it increases over time, while 

with yellow color for the B_2D_M_N10 with the MSE loss is decreases.  

 

Figure 5.61. Average training and validation accuracies of the experiments B_2D_M_N {10, 16}. 

MSE or Cross-entropy loss. 

In Figure 5.62, we can see the average training and validation losses of the 10-folds, of 

the two experiments. The validation accuracy of the experiment with the Cross-entropy 

loss (red) is worse than the experiments with the MSE loss (yellow). Also, it seems that 

the experiment B_2D_M_N16 overfits more than B_2D_M_N10, since its validation 

accuracy increases more rapidly over time, while its training accuracy decreases.  
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Figure 5.62. Average training and validation losses of the experiments B_2D_M_N {10, 16}. 

MSE or Cross-entropy loss. 

5.4.2.8 Experiments B_2D_M_N {10, 17}: C = 0.01, GNsize = 50, 

With/Without L1 & L2 Regularization 

The experiment B_2D_M_N17 applies L1 & L2 Regularization (Section 2.3.13.7), as an 

attempt to reduce the overfitting issues of the B_2D_M_N10 experiment. The 

training/validation accuracies and losses per fold, of the two experiments B_2D_M_N 

{10, 17}, are available in Appendix H.2.10 and Appendix H.2.16 respectively, with their 

confusion matrices as well.  

The values for the regularization in experiment B_2D_M_N17 that have been applied, 

are L1 = 0.00001 and L2 = 0.0001, the most common values that are frequently used in 

CNNs. The L1 & L2 Regularizations were applied to all three Convolutional Layers. The 

basic structure of the network configuration used in both experiments is 2D_CNN_4L_1 

(Section 4.3.2.3.1). Detailed source code for the modifications made in the network 

configuration of the B_2D_M_N17 experiment, can be found in Appendix B.5.4, at Code 

Snippet B.8. Both experiments have GNsize = 50, C = 0.01, and apply Dropout (Section 

2.3.13.9) to all three Convolutional Layers.  
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Figure 5.63. Average training and validation accuracies of the experiments B_2D_M_N {10, 17}. 

With or Without L1 & L2 Regularization. 

 

Figure 5.64. Average training and validation losses of the experiments B_2D_M_N {10, 17}. 

With or Without L1 & L2 Regularization. 

Figure 5.63 shows the average training and validation accuracies of the 10-folds, for the 

two experiments that we are comparing. Overall, their behavior is the same; except that, 

the validation accuracy of the experiment B_2D_M_N10 without regularization (yellow) 
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seems to slightly decrease over time after the 30th epoch, while the validation accuracy of 

the experiment B_2D_M_N17 with regularization is more stable. Additionally, in Figure 

5.64, the average training/validation losses of the two experiments are available. The 

experiment B_2D_M_N17 with regularization is slightly better since its validation loss 

increases less than the validation loss of the experiment B_2D_M_N10 without.  

We can say that the regularization helped somehow to reduce the overfitting problem, but 

not to solve it, since the average validation accuracy of the experiment B_2D_M_N17 

was 78% while for the B_2D_M_N10 was 80% (Table 5.7).  Maybe the values for L1 

and L2 that were used were very small, that is why no much variation was observed 

between the two experiments. In future experiments, larger values of L1 and L2 may need 

to be checked whether can encounter overfitting.  

5.4.2.9 Experiments B_2D_M_N {10, 18}: C = 0.01, GNsize = 50, 

With/Without Batch Normalization 

The experiment B_2D_M_N18 was meant to examine whether Batch Normalization 

affects the performance of the model. Batch normalization though was applied between 

the last Convolutional Layer and the dense layer which it was turned out, not to be the 

best practice. Based on the literature (Ioffe and Szegedy, 2015) Batch Normalization 

should be applied before each Convolutional Layer. Batch normalization has the potential 

to improve the performance of the model. The network used for the experiment was the 

2D_CNN_4L_1 (Section 4.3.2.3.1), and the source code for the network’s 

implementation with Batch Normalization is available in Appendix B.5.6, at Code 

Snippet B.13. We are going to compare the results of the experiment B_2D_M_N18 with 

the baseline B_2D_M_N10 since except for the Batch Normalization, the rest of the 

hyperparameters are the same.  

As we can see in Figure 5.65, batch normalization significantly decreased the training 

accuracy, while the validation accuracy remains relatively the same between the two 

experiments. This is a good sign because the difference between the validation accuracy 

and the training accuracy is less. Therefore, if batch normalization is applied optimally in 

feature work, it could increase substantially the performance of the network. 
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Figure 5.65. Average training and validation accuracies of the experiments B_2D_M_N {10, 18}. 

With or Without Batch Normalization. 

 

Figure 5.66. Average training and validation losses of the experiments B_2D_M_N {10, 18}. 

With or Without Batch Normalization. 

The average validation accuracy, of the experiment B_2D_M_N18, with the batch 

normalization, is 79%; while for the experiment B_2D_M_N10, without batch 

normalization is 80% (Table 5.7). In Figure H.177 of Appendix H.2.17, of the 
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B_2D_M_N18 experiment’s validation accuracies per fold; each fold behaves differently. 

Therefore, the Batch Normalization did not resolve the issues of variation between folds 

that the B_2D_M_N10 experiment also had. 

Figure 5.66, shows the average training and validation losses for the two experiments. 

Their validation losses are very similar, but the training loss of the B_2D_M_N18 

experiment is significantly larger than the one in the B_2D_M_N10. 

5.4.2.10 Experiments B_2D_M_N {10, 19, 20}: C = 0.01, GNsize = 50, 

Filters/Kernels Size = {3 × 3, 5 × 5, 7 × 7} 

The experiments B_2D_M_N {10, 19, 20} compare the effect of different filter/kernel 

sizes. The filer size for all three Convolutional Layers of the experiments B_2D_M_N 

{10, 19, 20} are 3 × 3, 5 × 5, and 7 × 7 respectively. All three implementations have the 

same hyperparameters, C = 0.01, GNsize = 50, and apply Dropout. The three network 

configurations of the experiments are 2D_CNN_4L_1 (Section 4.3.2.3.1), 

2D_CNN_4L_2 (Section 4.3.2.3.2), and 2D_CNN_4L_3 (Section 4.3.2.3.3) for the 

experiments B_2D_M_N {10, 19, 20} respectively.  

In Figure 5.67, the average training and validation accuracy per fold of the three 

experiments are available. The training accuracy of the experiment with filter size = 3 × 3 

is slightly less than the one in the other two experiments. Additionally, the validation loss 

of the experiment with filter size = 7 × 7 is slightly less than the other two experiments.  

The major difference between the different configurations is in the average of the best 

accuracies. The experiment with filer size = 3 × 3 (B_2D_M_N10) has a validation 

accuracy equal to 80%; for filter size = 5 × 5 (B_2D_M_N19) the validation accuracy is 

equal to 81%, while for filter size = 7 × 7 (B_2D_M_N20) the validation accuracy is 

79% (Table 5.7). This makes the filter size = 5 × 5 the best choice for the specific network 

architecture with NewtonCG and the specific dataset (B_2D_M).  

In Figure 5.68, with the average training and validation losses of the experiments, we can 

see that all three of them suffer from overfitting, since their validation loss increases 

slightly after the 30th epoch approximately, while their training loss continues to decrease. 
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Figure 5.67. Average training and validation accuracies of the experiments B_2D_M_N {10, 19, 20}. 

Different filter sizes {3 × 3, 5 × 5, 7 × 7}. 

 

Figure 5.68. Average training and validation losses of the experiments B_2D_M_N {10, 19, 20}. 

Different filter sizes {3 × 3, 5 × 5, 7 × 7}. 
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5.4.2.11 Experiments B_2D_M_N {10, 21}: C = 0.01, Dropout vs. Spatial Dropout 

For CNN architectures the Spatial Dropout (Section 2.3.13.10) is preferred over the 

standard Dropout (Section 2.3.13.9). Their difference is that the standard Dropout drops 

individual neurons/elements while the Spatial Dropout, drops entire feature maps. To 

compare the differences between Dropout and Spatial Dropout in practice, the 

experiments B_2D_M_N10 (Dropout) and B_2D_M_N21 (Spatial Dropout) have been 

performed. The rest of the networks’ hyperparameters remain the same, as well as the 

network configurations. The Spatial Dropout was set to sd1 = sd2 = sd3 = 50%, where 

sdi is the probability of a feature map to be dropped in the ith Convolutional Layer. The 

standard Dropout used d1 = 30%, d2 = d3 = 50%, where di is the drop probability of an 

element in the ith Convolutional Layer.  

The network configuration that implements the Spatial Dropout can be found in Appendix 

B.5.6, at Code Snippet B.10; while for the standard Dropout, in Appendix B.5.2, at Code 

Snippet B.6. Both experiments use the network 2D_CNN_4L_1 (Section 4.3.2.3.1).  

 

Figure 5.69. Average training and validation accuracies of the experiments B_2D_M_N {10, 21}. 

Dropout or Spatial Dropout. 

In Figures 5.69 & 5.70, we observe that the average training and validation accuracies 

and losses of the two experiments are very similar. We notice that after the 30th epoch the 

validation accuracy of the experiment with Dropout (yellow) shows a slight decline (30th 
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epoch: 72%; 100th epoch: 68%), while the experiment with the Spatial Dropout (red) 

remains stable in a certain average validation accuracy (30th – 100th epoch: ~71%). 

The average validation accuracy of the best accuracies per fold for the Spatial Dropout 

and Dropout experiments are 79% and 80% respectively. The specificity, i.e., ADs 

correctly classified as ADs, is the same in both experiments, equal to 82% (Table 5.7). 

 

Figure 5.70. Average training and validation losses of the experiments B_2D_M_N {10, 21}. 

Dropout or Spatial Dropout. 

5.4.2.12 Experiments B_2D_M_N {21 – 27}: C = 0.01, Spatial Dropout 

All the experiments B_2D_M_N {21 – 27} have the same hyperparameters, C = 0.01, 

GNsize = 50, epochs = 100, and they apply Spatial Dropout to all three Convolutional 

Layers, with a probability of drop equal to 50%. The filter sizes used are all 3 × 3, and 

the loss function is MSE loss for all the experiments. The experiments B_2D_M_N {22, 

25 – 27} that apply standard Dropout as well, their probabilities of dropping an element 

per Convolutional Layer are d1 = 30%, d2 = d3 = 50%. In Table 5.13, the performance 

metrics of each experiment, and their hyperparameters with their network configurations 

are available. 

In Appendixes, H.2.20 – H.2.26, the training/validation accuracy and loss per fold, as 

well as the training, validation, and testing confusion matrices of the experiments 

B_2D_M_N {21 – 27} respectively, can be found.  
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Experiments B_2D_M_N {21 – 27}: C = 0.01, GNsize = 50, Spatial Dropout, Different Configurations 
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 B_2D_M_N21 Yes - - - - 2D_CNN_4L_1 0.84 0.83 0.87 0.79 0.84 0.73 0.76 0.82 0.60 0.62 0.59 14 0.91 

 B_2D_M_N22 Yes - Yes - - 2D_CNN_4L_1 0.85 0.87 0.84 0.78 0.75 0.81 0.81 0.78 0.63 0.67 0.61 17 0.89 

 B_2D_M_N23 Yes - - 0.00001 0.0001 2D_CNN_4L_1 0.79 0.81 0.79 0.78 0.78 0.78 0.79 0.79 0.60 0.62 0.58 19 0.91 

 B_2D_M_N24 Yes Yes - - - 2D_CNN_4L_1 0.81 0.84 0.79 0.76 0.70 0.82 0.80 0.74 0.62 0.65 0.61 13 0.86 

 B_2D_M_N25 Yes Yes Yes - - 2D_CNN_4L_1 0.78 0.81 0.77 0.75 0.71 0.79 0.78 0.73 0.63 0.65 0.62 12 0.88 

 B_2D_M_N26 Yes Yes Yes 0.00001 0.0001 2D_CNN_4L_1 0.79 0.80 0.80 0.77 0.76 0.77 0.78 0.77 0.61 0.64 0.60 12 0.85 

 B_2D_M_N27 Yes Yes Yes 0.00001 0.0001 2D_CNN_5L_1 0.80 0.80 0.81 0.75 0.77 0.73 0.75 0.77 0.59 0.60 0.59 17 0.83 

Table 5.13. Performance metrics of the experiments B_2D_M_N {21 – 27}. 

Different configurations with Spatial Dropout. 

In Figures 5.71 – 5.74, we can easily distinguish two groups of experiments. The first 

group (red, blue, green) contains the experiments B_2D_M_N {21 – 23}, and the second 

group (purple, black, orange, yellow) contains the experiments B_2D_M_N {24 – 27}. 

The first group does not apply SoftMax (Section 2.2.14) on the output layer while the 

second group does. The differences between experiments in the same group are minor. 

The validation accuracies of members of the same group are similar as well since the first 

group’s accuracies are between 78% and 79%, while for the second group are between 

75% and 77% (Table 5.13). Since the first group in general performs better than the 

second one, we can assume that SoftMax does not improve the performance of our model.  

Based on Table 5.13, from the first group, the experiment B_2D_M_N21 has the best 

results, the largest average validation accuracy equal to 79%, and the best specificity 

equal to 82%. The experiment B_2D_M_N21 does not apply any standard Dropout, L1, 

or L2 Regularizations neither has a more complex 5-layer architecture. In Figures 5.71 & 

5.72, we can see the average training and validation accuracies respectively, for the 

experiments B_2D_M_N {21 – 27}. The first group has in general greater average 

training accuracies than the second one (Figure 5.71). Based on the validation accuracies 
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(Figure 5.72), the experiment B_2D_M_N27 (yellow) with the two dense layers, has the 

worst performance between the members of the second group. 

 

Figure 5.71. Average training accuracies of the experiments B_2D_M_N {21 - 27}. 

 

Figure 5.72. Average validation accuracies of the experiments B_2D_M_N {21 - 27}. 

A slight increase in the validation losses (Figure 5.74) is observed for all seven 
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experiments B_2D_M_N {21 – 23} without SoftMax, and the experiment B_2D_M_N27 

with the two dense layers, suffer a bit more from overfitting, since their training loss 

decreases (Figure 5.73), while their validation loss increases slightly more than the rest 

of the experiments.  

 

Figure 5.73. Average training losses of the experiments B_2D_M_N {21 - 27}. 

 

Figure 5.74. Average validation losses of the experiments B_2D_M_N {21 - 27}. 
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5.4.3 CNN 7 Layers with NewtonCG 

5.4.3.1 Experiments B_2D_M_N {10, 15}: C = 0.01, GNsize = 50, Dropout, 

4 Layers vs. 7 Layers 

The experiment B_2D_M_N15 was held to compare the performance of a deeper 7-layer 

CNN network the 2D_CNN_7L_1 (Section 4.3.2.5.1), over the 4-layer 2D_CNN_4L_1 

(Section 4.3.2.3.1), of the experiment B_2D_M_N10 (Appendix H.2.10). Based on 

Krizhevsky et al. (2012), the deeper the Convolutional Neural Network, the better its 

performance would be. Therefore, the network of the B_2D_M_N15 experiment, has 7 

layers, 6 Convolutional Layers, and a single dense layer, while the B_2D_M_N10 

experiment, has 4 layers, 3 Convolutional Layers, and a single dense layer. The rest of 

the hyperparameters are completely the same. The source code for the two network 

implementations is available in Appendix B.5.2, at Code Snippet B.6. 

Both networks apply Dropout as well. For di being the probability of dropping a neuron 

in the ith Convolutional Layer, the values for the experiment B_2D_M_N15 are d1 = d2 

= d3 = 30%, and d4 = d5 = d6 = 50%, while in the B_2D_M_N10 experiment are d1 = 

d2 = 30%, and d3 = 50%. The number of filter maps fi of the ith Convolutional Layer are 

f1 = f2 = f3 = 16, f4 = f5 = 32, and f6 = 64, for the B_2D_M_N15, and f1 = f2 = 32, f3 = 

64, for the B_2D_M_N10. 

 

Figure 5.75. Average training and validation accuracies of the experiments B_2D_M_N {10, 15}. 

4-layer or 7-layer CNN. 
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The extra Convolutional Layers were expected to increase the validation accuracy, but in 

our case, they did not. Thus, the 7-layer CNN performs worse than the 4-layer CNN in 

the AD/NC problem, with the B_2D_M dataset. The average validation accuracy for the 

4-layer experiment is 80% while for the 7-layer is 79% (Table 5.7). In Figure 5.75, we 

observe that both the average training and validation accuracies of the 7-layer experiment 

are significantly less than the corresponding ones in the 4-layer experiment. 

Consequently, the extra complexity increases only the execution time. Based on Figure 

5.76, equally the 7-layer experiment (B_2D_M_N15) and the 4-layer experiment 

(B_2D_M_N10) suffer from overfitting.   

 

Figure 5.76. Average training and validation losses of the experiments B_2D_M_N {10, 15}. 

4-layer or 7-layer CNN. 
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CNNs and NewtonCG optimizer.  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

Lo
ss

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Average Train & Valid Loss
NewtonCG, C = 0.01, GNsize = 50, Dropout, Network Architecture = 4 Layers vs. 7 Layers

7 Layers_avg_valid_loss 4 Layers_avg_valid_loss

7 Layers_avg_train_loss 4 Layers_avg_train_loss



220 

 

Additionally, in these experiments, we are going to investigate how the 2D_CNN_4L_5, 

a narrow network (Section 4.3.2.3.5) of the 2D_CNN_4L_6, a wide network (Section 

4.3.2.3.6), affects the model’s performance in comparison with the baseline network, 

2D_CNN_4L_1 (Section 4.3.2.3.1). Usually, very wide and shallow networks are not 

being used, since they tend to be very good at memorization, but not so good at 

generalization. Usually, deeper CNNs are preferred, since in a large spectrum of problems 

with image recognition, had been proven to perform better, than shallower network 

configurations (Kaiming et al. 2015). 

5.5.1 CNN 4 Layer with NewtonCG 

5.5.1.1 Experiments B_2D_S_N1 & B_2D_M_N7: C = 1, GNsize = 5, Dropout, 

Multiple Scans per Patient vs. Single Scan per Patient 

The experiments B_2D_S_N1 and B_2D_M_N7 have the same network configuration 

2D_CNN_4L_1 (Section 4.3.2.3.1) with Dropout (Section 2.3.13.9) applied on each 

Convolutional Layer with a 30% probability of drop. The weight decay, C was set equal 

to 1, and the GNsize equal to 5. The loss function for both experiments is MSE loss and 

the optimizer NewtonCG. The only difference between the two experiments is the dataset 

that had been used. The B_2D_S_N1 uses the 2D Brain Slices [AD, NC], Single Scan per 

Patient – Single Slice per Scan (B_2D_S) dataset (Section 3.2.3.2), while the 

B_2D_M_N7 uses the 2D Brain Slices [AD, NC], Multiple Scans per Patient – Single 

Slice per Scan (B_2D_M) dataset (Section 3.2.3.2).  

Experiments B_2D_S_N1 & B_2D_M_N7 
Multiple Scans per Patient vs. Single Scan per Patient 
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B_2D_M_N7 0.90 0.91 0.90 0.76 0.76 0.77 0.77 0.74 0.62 0.71 0.53 56 0.86 

B_2D_S_N1 0.85 0.86 0.84 0.75 0.75 0.77 0.77 0.74 0.68 0.68 0.68 22 0.87 

Table 5.14. Performance metrics of the experiments B_2D_S_N1 & B_2D_M_N7. 

Multiple Scans per Patient vs. Single Scan per Patient 
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Based on Table 5.14, with the performance metrics of the two experiments, the validation 

performance metrics (accuracy, PPV, NPV, sensitivity, specificity) of the two datasets 

are very similar. The main difference in terms of performance is in the metrics of the 

training set. The B_2D_M_N7 experiment has a training accuracy equal to 90% while the 

B_2D_S_N1 is 85%.  

 

Figure 5.77. Average training and validation accuracies of the experiments B_2D_M_N7 & B_2D_S_N1. 

Multiple Scans per Patient vs. Single Scan per Patient. 

 

Figure 5.78. Average training and validation losses of the experiments B_2D_M_N7 & B_2D_S_N1. 

Multiple Scans per Patient vs. Single Scan per Patient. 
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From the plot of average accuracies plot (Figure 5.77), we observe that the training 

accuracy of the B_2D_S_N1 (blue) increases more rapidly than the training accuracy of 

the B_2D_M_N7 (green). The validation accuracy of the B_2D_S_N1 (red) after 20 

epochs remains almost stable till the end of the training process. On the other hand, the 

validation accuracy of the B_2D_M_N7 experiment (yellow) after the 20th epoch 

continued to increase slightly, from 70% to 74% approximately in the 100th epoch.  

In Figure 5.78, with the average training and validation loss of the two experiments, we 

can see that experiment B_2D_S_N1 shows signs of overfitting since its validation loss 

increases a bit after the 20th epoch, while the training loss continued to decrease rapidly 

towards 0. Therefore, our initial assumption in Section 5.5, that the dataset B_2D_S could 

reduce the overfitting issues, most probably was wrong. Not only that, it increases the 

overfitting issues since the dataset is even smaller than the B_2D_M dataset. 

5.5.1.2 Experiments B_2D_S_N {1 – 3}: C = 1, GNsize = 5, Dropout, 

Different number of Feature Maps 

With the B_2D_S dataset (Section 3.2.3.2), the three experiments B_2D_S_N {1 – 3} 

have been performed, to examine whether a narrower or wider network configuration 

could help to reduce overfitting in the network that was usually used for most of the 

experiments (2D_CNN_4L_1).  

Experiments B_2D_S_N {1 – 3}: C = 1, GNsize = 5, Dropout, Different Feature Maps 
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B_2D_S_N1 0.3 - 
f1, f2 = 32 

f3 = 64 
2D_CNN_4L_1 0.85 0.86 0.84 0.75 0.75 0.77 0.77 0.74 0.68 0.68 0.68 22 0.87 

B_2D_S_N2 0.5 0.01 
f1 = 8, f2 = 16 

f3 = 32 
2D_CNN_4L_5 0.90 0.89 0.90 0.73 0.75 0.74 0.74 0.73 0.72 0.72 0.71 41 0.84 

B_2D_S_N3 0.5 - 
f1 = 32, f2 = 64 

f3 = 128 
2D_CNN_4L_6 0.85 0.85 0.86 0.77 0.79 0.76 0.75 0.78 0.70 0.62 0.78 23 0.84 

Table 5.15. Performance metrics & hyperparameters of the experiments B_2D_S_N {1 – 3}. Different Feature Maps. 

The B_2D_S_N2 experiment uses a narrower network, the 2D_CNN_4L_5 (Section 

4.3.2.3.5) than the one in the 2D_CNN_4L_1 that was used in the experiment 

B_2D_S_N1 (Section 4.3.2.3.1). The B_2D_S_N3 on the other hand, uses the 

2D_CNN_4L_6, a wider network configuration (Section 4.3.2.3.6) than the 
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2D_CNN_4L_1. The terms narrow and wide will determine the number of feature maps 

in each Convolutional Layer. The basic source code, that the three network configurations 

2D_CNN_4L_ {1, 5, 6} use is the same, and can be found in Appendix B.5.1, in the Code 

Snippet B.5. In that source code, the filter sizes have to change accordingly based on the 

values of Table 5.16.  

Experiment Feature Maps 

 f1 f2 f3 

B_2D_S_N1 
(Baseline) 

32 32 64 

B_2D_S_N2 
(Narrow Network) 

8 16 32 

B_2D_S_N3 
(Wide Network) 

32 64 128 

Table 5.16. Experiments B_2D_S_N {1 - 3} – Feature Maps fi in the ith Convolutional Layer 

Figure 5.79, shows the average training and validation accuracies of the 10-folds, of the 

three experiments. The average validation accuracy of experiment B_2D_S_N2 with the 

narrow network (purple) is much worse than the rest of the experiments. This most 

probably indicates that not enough filters exist in the network to understand the data and 

create the appropriate feature maps needed for the AD/NC classification. The wider 

network of the experiment B_2D_S_N3 on the other hand does not seem to affect that 

much the performance of the model, since its validation accuracy (yellow) is very similar 

to B_2D_S_N1’s (red). Consequently, there is no need for the extra complexity, which 

increases dramatically the training time, since it does not provide any significant 

improvement. In terms of average validation accuracies, the accuracy of the experiment 

with the B_2D_S_N3 wider network is 77%, much better than the 75% of the baseline 

experiment B_2D_S_N1 (Table 5.15).  

The average training and validation losses per fold, for the three experiments, are 

available in Figure 5.80. The average validation loss per epoch of the experiment 

B_2D_S_N2 with the narrow network (purple) is worse than the other two. All three 

network configurations, overfit slightly since, their validation loss increases over time, 

while their training loss decreases rapidly. I was expecting some overfitting from the 

wider network since it can memorize more easily the training dataset and then find it 

difficult to generalize. Contrariwise, the wider network has the best average validation 

accuracy among the three experiments, equal to 77% (Table 5.15). Since all three 
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experiments overfit, the issue is not the network, but the dataset itself. The B_2D_S 

dataset is too small since only a single slice of a single scan per patient was used and no 

data augmentation was applied (Section 2.3.13.5). 

 

Figure 5.79. Average training and validation accuracies of the experiments B_2D_S_N {1 – 3}. 

Narrow, Baseline, or Wide network. 

 

Figure 5.80. Average training and validation losses of the experiments B_2D_S_N {1 – 3} 

Narrow, Baseline, or Wide network. 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy

Epochs

Brains 2D [AD, NC] Single Scan per Patient: 10-fold Average Train & Valid Accuracy
NewtonCG, C = 1, GNsize = 5, Dropout, Different # of Feature maps 

Narrow (f1 = 8, f2 = 16, f3 = 32)_avg_valid_acc Narrow (f1 = 8, f2 = 16, f3 = 32)_avg_train_acc

Baseline (f1 = 32, f2 = 32, f3 = 64)_avg_valid_acc Baseline (f1 = 32, f2 = 32, f3 = 64)_avg_train_acc

Wide (1 = 32, f2 = 64, f3 = 128)_avg_valid_acc Wide (f1 = 32, f2 = 64, f3 = 128)_avg_train_acc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 100

Lo
ss

Epochs

Brains 2D [AD, NC] Single Scan per Patient: 10-fold Average Train & Valid Loss
NewtonCG, C = 1, GNsize = 5, Dropout, Different # of Feature Maps 

Narrow (f1 = 8, f2 = 16, f3 = 32)_avg_valid_loss Narrow (f1 = 8, f2 = 16, f3 = 32)_avg_train_loss

Baseline (f1 = 32, f2 = 32, f3 = 64)_avg_valid_loss Baseline (f1 = 32, f2 = 32, f3 = 64)_avg_train_loss

Wide (1 = 32, f2 = 64, f3 = 128)_avg_valid_loss Wide (f1 = 32, f2 = 64, f3 = 128)_avg_train_loss



225 

 

5.6 2D Brain Slices [AD, NC]: 

Single Scan per Patient, 5 Slices per Scan (174 × 174) 

In Section 5.6, we are going to examine the performance of a single experiment that uses 

the 2D Brain Slices [AD, NC], Single Scan per Patient – 5 Slices per Scan (B_2D_5S) 

dataset (Section 3.2.3.3). The purpose of this experiment was to test whether the dataset 

B_2D_5S, which contains multiple slices of the same MRI scan, could help the training 

model to generalize better and encounter overfitting. More specifically, in Section 5.6.2, 

we are going to compare the performance of different datasets with the same network 

configuration and hyperparameters, to validate our assumptions. 

The 3D T1-weighted MRI scans of the patients were not aligned perfectly, therefore, the 

ith slice of the jth patient, that we use in the B_2D_S (Section 3.2.3.2) and B_2D_M 

(Section 3.2.3.4) datasets, might be slightly off than the ith slice of the (j + 1)th patient. 

Therefore, using 5 different slices of the same patient in the B_2D_5S dataset could 

potentially help to encounter the problem of translations between slices of different 

patients. Consequently, it increases 5 times the size of the B_2D_S dataset, which could 

whether these assumptions were valid. 

5.6.1 CNN 4 Layers with NewtonCG 

5.6.1.1 Experiments B_2D_5S_N1 & B_2D_M_N10 & B_2D_7M_N1: 

C = 0.01, GNsize = 50, Dropout 

We are going to compare the performance of three different datasets; the B_2D_5S, 

B_2D_M, and B_2D_7M, in the same network configuration and hyperparameters. The 

three experiments that are going to be compared are the B_2D_5S_N1 (Appendix K.1.1), 

B_2D_M_N10 (Appendix H.2.10), and B_2D_7M_N1 (Appendix J.2.1).  

All three experiments use the NewtonCG optimizer in CNNs (Section 4.3.1) with the 

2D_CNN_4L_1 network configuration (Section 4.3.2.3.1). The weight decay was set to 

C = 0.01 (Section 2.3.13.8) and the sizes of the subsampled Gauss-Newton matrix for 

approximating the Hessian Matrix to GNsize = 50 (Section 2.4.9.2). Also, Dropout 

(Section 2.3.13.9) was applied to all three Convolutional Layers equal to d1 = 30%, d2 = 

d3 = 50%, with di being the probability of a drop in the ith Convolutional Layer. 
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Experiments B_2D_5S_N1, B_2D_M_N10, and B_2D_7M_N1 
C = 0.01, GNsize = 50, Dropout - Different Datasets 
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B_2D_M_N10 0.84 0.84 0.83 0.80 0.82 0.80 0.79 0.82 0.61 0.67 0.54 20 0.91 

B_2D_7M_N1 0.94 0.94 0.94 0.76 0.75 0.77 0.77 0.75 0.64 0.69 0.58 32 0.78 

B_2D_5S_N1 0.92 0.90 0.95 0.75 0.77 0.74 0.73 0.77 0.69 0.65 0.74 31 0.78 

Table 5.17. Performance metrics of the experiments B_2D_5S_N1, B_2D_M_N10, and B_2D_7M_N1 

Different Datasets: B_2D_5S vs. B_2D_M vs. B_2D_7M. 

The training set of the B_2D_5S dataset has 1520 samples (Section 3.2.3.3), while the 

B_2D_M has 1044 (Section 3.2.3.4). A 50% increase in the size of the dataset was 

expected to improve the validation accuracy as well, but in our case, it did not; since, for 

the B_2D_5S_N1 experiment, the average validation accuracy is 74%, while for the 

B_2D_M_N10 is 80% (Table 5.17). The training set of the B_2D_7M dataset has 6496 

samples (Section 3.2.3.5), approximately 600% larger than the B_2D_M. The average 

validation accuracy of the B_2D_7M_N1 experiment is equal to 76%. 

The datasets B_2D_5S, and B_2D_7M have larger training accuracies though; 92% for 

the B_2D_5S_N1 experiment, and 94% for the B_2D_7M_N1, while it is 84% for the 

B_2D_M_N10. This indicates that most probably the model suffers from overfitting since 

the training accuracy increases while the validation accuracy was decreased.  

In Figure 5.81, the average training and validation accuracies of the three experiments are 

available. We can see that both the training accuracy (orange) and the validation accuracy 

(purple) of the experiment B_2D_7M_N1 are smoother than the other two experiments. 

All three experiments, after the 50th epoch approximately, start to decline.  

Figure 5.82 shows the average training and validation losses of the folds, of the three 

experiments. The experiment B_2D_7M_N1 overfits less than the other two, since the 

validation losses of the experiments B_2D_M_N10 (yellow), and B_2D_5S_N1 (red), 

after the 30th epoch approximately start to increase, while their training loss continues to 

decrease. The average training (green) and validation losses (yellow) of the experiment 

B_2D_M_N10 fluctuate much more than the rest of the experiments.  
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Figure 5.81. Average training and validation accuracies of the experiments 

B_2D_5S_N1, B_2D_7M_N1, and B_2D_M_N10. 

 

Figure 5.82. Average training and validation losses of the experiments 

B_2D_5S_N1, B_2D_7M_N1, and B_2D_M_N10. 

If we compare the validation accuracies of each fold individually for the three 

experiments, we can see that they differ a lot (Figure 5.83 – 5.85). In Figure 5.83 of the 
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experiment B_2D_7M_N1, we can see that the validation accuracies of all 5-folds are 

between 0.70 and 0.76 in the 100th epoch. The accuracies of the 1st and 3rd fold decrease 

slightly overtime after the 40th epoch approximately, while the accuracies of the 2nd, 4th, 

and 5th fold keep increasing. The standard deviation between the best validation 

accuracies per fold of the B_2D_7M_N1 experiment is 2%; which is one of the smallest 

standard deviations among all the experiments with 2D Brain Slices (Table 5.7).  

 

Figure 5.83. Validation accuracy per fold of the experiment B_2D_7M_N1. 

The validation accuracies of each one of the 5-folds in the B_2D_5S_N1 experiment 

(Figure 5.84) are more spread than the ones in the B_2D_7M_N1 experiment (Figure 

5.83). We observe larger fluctuations, especially the first 50 epochs of the experiment 

B_2D_5S_N1. The standard deviation between the best validation accuracies per fold is 

3% for the B_2D_5S_N1 experiment (Table 5.7).  

The validation accuracies per fold on the B_2D_M_N10 experiment (Figure 5.85), are 

much worse than the other experiments since they rise and fall very aggressively. The 

standard deviation of the best validation accuracies per fold is 5%, larger than the 

B_2D_5S_N1 (3%) and B_2D_7M_N1 (2%) (Table 5.7). In Figure 5.85, we can see that 

the validation accuracies at the last epoch, are between 0.5 and 0.85; an undesirable range 

for validation accuracies since it makes our model non-reliable because 0.5 means it does 

not learn anything, while 0.85 means it performs great. 
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Figure 5.84. Validation accuracy per fold of the experiment B_2D_5S_N1. 

 

Figure 5.85. Validation accuracy per fold of the experiment B_2D_M_N10.  

The network configuration, and the hyperparameters, have a crucial role in the model’s 

performance, but the dataset is even more important. Based on the aforementioned 

observations, a dataset to be reliable should contain much more training samples than the 

B_2D_5S and B_2D_M datasets. The dataset B_2D_7M may not have the best 

performance, but the variation between folds is significantly less. I believe that if data 
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augmentation (Section 2.3.13.5) is applied in the B_2D_7M dataset, then a dataset much 

more reliable will be created for the AD/NC problem.  

It is worth mentioning that the datasets B_2D_7M and B_2D_5S use a 5-fold CV while 

the dataset B_2D_M a 10-fold. It is not clear whether this is the issue behind the 

performance decrease for the two datasets or something else (Table 5.17).  

5.6.2 VGG19 with NewtonCG 

In theory, a deeper CNN is expected to outperform a shallow one, in terms of validation 

accuracy (Krizhevsky et al. 2012). For the 2D Brain Slices [AD, NC], Single Scan per 

Patient – 5 Slices per Scan (B_2D_5S) dataset (Section 3.2.3.3), this is not the case. The 

4-layer 2D_CNN_4L_1 (Section 4.3.2.3.1) network (3 Convolutional Layers + 1 fully 

connected layer) of the experiment the B_2D_5S_N1 (Appendix K.1.1), outperforms the 

19-layer 2D_VGG19_1 (Section 4.3.2.6.2) network (16 Convolutional Layers + 3 fully 

connected layers). The poor performance of the 2D_VGG19_1 network cannot be 

explained by overfitting, since both the average training and validation accuracies were 

equally terrible, approximately 50% after the first 2 – 3 epochs.  

A possible explanation of this behavior, as Kaiming et al. 2015 said, is that when a neural 

network is too deep for a given problem, it tends to try to recreate the identity function. 

The first portion of the network has found a set of weights, capable of optimizing the 

objective, so, the latter portion of the deep neural network essentially adds noise. 

Therefore, the latter portion of the network attempts to create an identity function from a 

nonlinear set of activations, which is terrible in our case. As an analogy, it is like trying 

to approximate a line with polynomials of a degree greater than 1; as a result, you will get 

a wavy mess (Kaiming et al. 2015). 

5.7 2D Brain Slices [AD, NC]: 

Multiple Scans per Patient, 7 Slices per Scan (174 × 174) 

The 2D Brain Slices [AD, NC], Multiple Scans per Patient – 7 Slices per Scan 

(B_2D_7M) dataset (Section 3.2.3.5), increases 7 times the size of the B_2D_M dataset 

(Section 3.2.3.4). The experiments in Section 5.7.1 & 5.7.2, are going to examine how 

the increase of the dataset’s size, affects both the Adam and the NewtonCG optimizers.  
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Experiments with the B_2D_7M dataset 
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Dataset: B_2D_M 

B_2D_M_A3 Adam 0.01 - 0.001 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
2D_CNN_4L_1 0.91 0.90 0.92 0.79 0.08 0.78 0.81 0.82 0.77 0.64 0.75 0.53 154 0.91 

B_2D_M_N10 NewtonCG 0.01 50 - 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
2D_CNN_4L_1 0.84 0.84 0.83 0.80 0.05 0.82 0.80 0.79 0.82 0.61 0.67 0.54 20 0.91 

Dataset: B_2D_7M 

B_2D_7M_A1 Adam 0.01 - 0.001 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
2D_CNN_4L_1 0.92 0.93 0.91 0.75 0.02 0.74 0.75 0.76 0.74 0.64 0.67 0.60 49 0.78 

B_2D_7M_N1 NewtonCG 0.01 50 - 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
2D_CNN_4L_1 0.94 0.94 0.94 0.76 0.02 0.75 0.77 0.77 0.75 0.64 0.69 0.58 32 0.78 

B_2D_7M_N2 NewtonCG 0.01 50 - 
d1 = 0.3 
d2 = 0.5 

f1 = 64, 
f2 = 128 

2D_CNN_3L_1 0.94 0.95 0.93 0.73 0.01 0.73 0.74 0.74 0.72 0.66 0.68 0.64 34 0.75 

B_2D_7M_N3 NewtonCG 0.01 50 - 
d1 = 0.3 
d2 = 0.5 

f1 = 16 
f2 = 32 

2D_CNN_3L_2 0.96 0.97 0.96 0.73 0.02 0.72 0.74 0.75 0.71 0.66 0.69 0.63 40 0.76 

Table 5.18. Performance metrics and hyperparameters of the experiments with the B_2D_7M dataset. 

Table 5.18, shows the performance metrics of the best experiments (largest average 

validation accuracies) with the B_2D_M dataset, for both the Adam and NewtonCG 

optimizers; and all the experiments with the B_2D_7M dataset. As we can see, all the 

experiments with the B_2D_7M dataset, both for the Adam and NewtonCG optimizer, 

have better training accuracy but worse validation accuracy than the experiments with the 

B_2D_M dataset (Table 5.18). Additionally, the experiments with the B_2D_7M dataset, 

have the smallest average standard deviation between the best validation accuracies per 

fold, among all the different 2D Brain Slices [AD, NC] experiments (Table 5.7).  

5.7.1 CNN 4 Layers with Adam 

5.7.1.1 Experiments B_2D_7M_A1, B_2D_M_A3: C = 0.01, lr = 0.001, Dropout 

The experiments B_2D_7M_A1 (Appendix J.1.1) and B_2D_M_A3 (Appendix H.1.3), 

are meant to compare how the performance of the B_2D_7M dataset (Section 3.2.3.5) 

differs from the B_2D_M dataset (Section 3.2.3.4), given the Adam optimizer (Section 

2.4.4). The network configuration 2D_CNN_4L_1 (Section 4.3.2.3.1) is the same for both 

experiments, as well as the C = 0.01 and learning rate = 0.001. 
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Figure 5.86. Validation accuracy per fold of the experiment B_2D_M_A3. 

 

Figure 5.87. Validation accuracy per fold of the experiment B_2D_7M_A1. 

In Figure 5.86, the validation accuracies per fold of the experiment B_2D_M_A3 

fluctuates a lot. Also, the validation accuracies during training range between 0.5 and 0.9. 
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On the other hand, in Figure 5.87, the validation accuracies perf fold of the experiment 

B_2D_7M_A1, range between 0.65 and 0.75 approximately. This certainly is a crucial 

advantage of the B_2D_7M dataset, over the B_2D_M. For example, in the case of the 

B_2D_M dataset (Figure 5.86), the average validation accuracy of the 4th fold was 57%; 

while for the 5th fold was 83%. Consequently, our model with the B_2D_M dataset is 

unreliable, since sometimes it does not learn anything, while other times is a great learner. 

 

Figure 5.88. Average training and validation accuracies of Adam’s experiments B_2D_M_A3 & B_2D_7M_A1. 

1 slice vs. 7 slices per scan.  

 

Figure 5.89. Average training and validation losses of Adam’s experiments B_2D_M_A3 & B_2D_7M_A1. 

1 slice vs. 7 slices per scan. 
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In Figure 5.88, we can see the average training and validation accuracies per fold for the 

two experiments. The validation accuracy of the experiment B_2D_7M_A1 (yellow), 

reaches fast its highest value and then decreases slightly over time. For the B_2D_M_A3 

(red), it takes more epochs to reach its maximum value, but then it has similar behavior 

to the other experiment. The average validation accuracy of the experiment with the 

B_2D_M dataset, has more fluctuations, while for the B_2D_7M is smoother. This can 

be validated also by Table 5.18, since the average standard deviation of the best validation 

accuracies per fold, for the experiments B_2D_M_A3, is 8%, while for the experiment 

B_2D_7M_A1 is 2%. 

In Figure 5.89, with the average training and validation losses per fold of the two 

experiments, we observe that the B_2D_M_A3 (red) overfits a bit less than the 

B_2D_7M_A1 (yellow). The average validation loss of the B_2D_M_A3 (red) increases 

less than the other experiment’s (yellow) over time. Overfitting exists in both experiments 

since their average training loss continues to decrease, while their validation loss starts 

increasing at some point.  

5.7.2 CNN 3 & 4 Layers with NewtonCG 

5.7.2.1 Experiments B_2D_7M_N {1 – 3}: C = 0.01, GNsize = 50, Dropout 

The experiment B_2D_7M_N1 did not perform great, as we saw in Section 5.7.1.1, with 

its average validation accuracy equal to 76% (Table 5.18); therefore, the experiments 

B_2D_7M {2 – 3} were held to examine whether a shallower network configuration 

could improve the performance. Since some overfitting was observed in the 

B_2D_7M_N1, because the training accuracy was high while the validation accuracy was 

low, a simpler network architecture could potentially decrease this issue.  

The B_2D_7M_N1 experiment used the 4-layer network architecture 2D_CNN_4L_1 

(Section 4.3.2.3.1), with 3 Convolutional Layers and a single dense layer. The number of 

feature maps fi in the ith Convolutional Layer are f1 = f2 = 32, and f3 = 64. The 

experiments B_2D_7M_N {2 – 3} on the other hand, use two 3-layer architectures (2 

Convolutional Layers + 1 dense layer). The 2D_CNN_3L_1 network (Section 4.3.2.2.1) 

that was used in the experiment B_2D_7M_N has f1 = 64 and f2 = 128 filters, and its 

source code is available in Appendix B.5.10 at Code Snippet B.14; while the 

2D_CNN_3L_2 network (Section 4.3.2.2.2) for the experiment B_2D_7M_N3, which 
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has f1 = 16 and f2 = 32 filters, is available in Appendix B.5.11 at Code Snippet B.15 

(Table 5.19). 

Experiment Feature Maps 

 f1 f2 f3 

B_2D_7M_N1 
(Baseline) 

32 32 64 

B_2D_7M_N2 
(Shallow & Wide Network) 

64 128 - 

B_2D_7M_N3 
(Shallow & Narrow Network) 

16 32 - 

Table 5.19. Experiments B_2D_7M_N {1 – 3} – Feature Maps fi in the ith Convolutional Layer 

Based on Table 5.20, with the performance metrics of the three experiments of the 

B_2D_7M dataset, the experiment with the 4-layer CNN (B_2D_7M_N1), has a better 

validation accuracy than the 3-layer CNNs (B_2D_7M_N {2 – 3}). More specifically, 

the average validation accuracy of the B_2D_7M_N1 experiment is 76% while for the 

experiments B_2D_7M_N {2 – 3} is on both of them 73%. The training accuracies are 

very similar for all three experiments between 94% and 96%. This indicates that 

potentially all three models overfit since their training accuracies are high, but their 

validation accuracies not. This indicates that maybe even the 4-layer CNN, is too simple 

for our AD/MC problem with the larger B_2D_7M dataset. Maybe a 5-layer or even 

deeper network configuration should be used to examine whether the poor performance 

is caused by the simplicity of the network.  

Experiments B_2D_7M_N {1 – 3}: C = 0.01, GNsize = 50 
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B_2D_7M_N1 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
2D_CNN_4L_1 0.94 0.94 0.94 0.76 0.75 0.77 0.77 0.75 0.64 0.69 0.58 32 0.78 

B_2D_7M_N2 
d1 = 0.3 
d2 = 0.5 

f1 = 64, 
f2 = 128 

2D_CNN_3L_1 0.94 0.95 0.93 0.73 0.73 0.74 0.74 0.72 0.66 0.68 0.64 34 0.75 

B_2D_7M_N3 
d1 = 0.3 
d2 = 0.5 

f1 = 16 
f2 = 32 

2D_CNN_3L_2 0.96 0.97 0.96 0.73 0.72 0.74 0.75 0.71 0.66 0.69 0.63 40 0.76 

Table 5.20. Performance metrics and hyperparameters of the experiments B_2D_7M_N {1 – 3} 
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In Figure 5.90 with the average training and validation accuracies of the 5-folds, for the 

three experiments, we can see that the average validation accuracy of the experiment 

B_2D_7M_N1 (purple), in general, is greater than the rest (yellow, red); while the 

training accuracies of all three experiments behave very similarly.  

 

Figure 5.90. Average training and validation accuracies of the experiments B_2D_7M_N {1 – 3}. 

 

Figure 5.91. Average training and validation losses of the experiments B_2D_7M_N {1 – 3}. 
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The average validation loss of the experiment B_2D_7M_N1 (purple) is less than the 

ones in the experiments B_2D_7M_N {2 – 3}, which means it performs better. We can 

see that the purple line increases over time while the training loss continuously decreases, 

and that indicates overfitting (Figure 5.91).  

5.8 3D Left Hippocampus [AD, NC]: 

Single Scan per Patient (37 × 32 × 50) 

The experiments with the 3D Left Hippocampus (LH_3D) dataset (Section 3.2.6) were 

expected to perform better than any other experiment with different datasets (Section 

3.2.3 – 3.2.5, 3.2.7) in CNNs. The reason is that the hippocampus, especially the left one 

faces the most damage in an AD patient, therefore the difference between an NC patient 

is very significant (Leandrou et al. 2018; Leandrou et al. 2020).  

The best experiment with the Adam optimizer (LH_3D_S_A4) has an average validation 

accuracy equal to 77%, while the best experiment with the NewtonCG optimizer 

(LH_3D_S_N2) is 73% (Table 5.21). In comparison with the 2D Brain Slices datasets 

(B_2D), where the average validation accuracy of the best model is 81% (Section 5.3.1), 

the results of the LH_3D are mediocre.   

3D Left Hippocampus – Single Scan per Patient [AD, NC] 
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Adam 

LH_3D_S_A1 0.001 0.01 - 500 Yes Yes 0.66 0.78 0.54 0.72 0.69 0.79 0.81 0.62 0.65 0.84 0.46 37 0.75 

LH_3D_S_A2 0.0001 0.01 - 500 Yes Yes 0.73 0.83 0.63 0.76 0.73 0.84 0.84 0.68 0.69 0.87 0.51 117 0.81 

LH_3D_S_A3 0.00001 0.01 - 500 Yes Yes 0.73 0.69 0.76 0.72 0.74 0.70 0.68 0.75 0.62 0.68 0.56 208 0.75 

LH_3D_S_A4 0.0001 0.01 - 500 Yes - 1.00 1.00 1.00 0.77 0.73 0.84 0.86 0.67 0.67 0.73 0.60 209 0.83 

NewtonCG 

LH_3D_S_N1 - 0.01 500 100 - Yes 0.73 0.79 0.68 0.70 0.70 0.76 0.77 0.64 0.67 0.80 0.53 4 0.73 

LH_3D_S_N2 - 0.01 50 100 Yes - 0.86 0.87 0.84 0.73 0.72 0.76 0.78 0.68 0.69 0.74 0.63 21 0.83 

Table 5.21. Performance metrics of the experiments with 3D Left Hippocampus – Single Scan per Patient [AD, NC]. 
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The experiments with the NewtonCG optimizer perform worse than the ones with the 

Adam optimizer, which was something unexpected (Table 5.21). Therefore, to identify 

the reason behind this, not only the weight decay (C) and GNsize were modified during 

the experiments with the LH_3D dataset, but also the eta (η), xi (ξ), CGmax, boost, and 

drop (Section 4.3.1). The only hyperparameter that was not modified in the NewtonCG 

method, is the initial value of lambda (λ) since it updates itself based on the results of the 

approximation in the Gauss-Newton update (Wand et al. 2020).   

The modification of these hyperparameters did not help to improve the performance of 

the model. For example, reducing the CGmax iterations from 250 to 25, helped to run the 

experiment in Arcadia, since each epoch took less time, but the validation accuracy after 

2 – 3 epochs was stuck to 50%. Reducing the value of eta from 0.0001 to 0.00001 showed 

some improvement but only an incomplete fold was executed to identify its benefits. 

Additionally, reducing the GNsize to 5 from 50, showed some potential, but again no 

complete 5-fold experiment was executed. The reason was that every 3D experiment was 

incapable to be run in the Arcadia server and therefore had to be executed in The Cyprus 

Institute, where we had the issue of lack of resources.  

Since the performance was not changing that much by modifying the network’s 

hyperparameters, the network configuration was the next thing that should change. More 

specifically, four configurations are being compared to check the effect of Max-Pooling 

on the 3D Left Hippocampus dataset. The assumption was that the Max-Pooling may be 

destroying meaningful information in the data. Consequently, the four network 

configurations are the network 3D_CNN_4L_2 without Max-Pooling (Section 4.3.4.2.4), 

the network 3D_CNN_4L_3 with Max-Pooling in the 2nd Convolutional Layer only 

(Section 4.3.4.2.5), and the network 3D_CNN_4L_1 with Max-Pooling to all three 

Convolutional Layers (Section 4.3.4.2.3). The source code for the three networks 

3D_CNN_4L_ {1 – 3} can be found respectively in Appendix B.5.2, B.5.12, and B.5.13; 

at Code Snippets B.6, B.16, and B.17. 

As we can see in Figure 5.92, the network 3D_CNN_4L_1 with Max-Pooling to all three 

layers (blue) got stuck in a validation accuracy equal to 0.635, with no signs of 

improvement. The network 3D_CNN_4L_3 with Max-Pooling in the 2nd layer (yellow), 

had a great start, but after 40 epochs started overfitting as its validation accuracy started 

decreasing. The network 3D_CNN_4L_2 without Max-Pooling (gray), kept improving 
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during the whole training process. Therefore, the network 3D_CNN_4L_2 without Max-

Pooling at any Convolutional Layer performed better than the rest of them. 

 

Figure 5.92. Validation accuracies of the 1st fold of the 3D Left Hippocampus dataset. 

Comparing the effect of Max-Pooling. 

The experiment LH_3D_S_A4 with the Adam optimizer, as well as the experiment 

LH_3D_S_N2 with the NewtonCG, unlike the rest of the experiment, do not apply Max-

Pooling to any Convolutional Layer and they are the two experiments with the highest 

validation accuracies in their group of experiments of the same optimizer (Table 5.21). 

The absence of Max-Pooling, clearly affects the training accuracy as well, which is much 

higher than the experiments with Max-Pooling.   

5.8.1 CNN 4 Layer with Adam 

5.8.1.1 Experiments LH_3D_S_A {1 – 3}: C = 0.01, lr = {0.001, 0.0001, 0.00001}, Dropout 

The experiments LH_3D_S_A {1 – 3} compare the effect of the learning rate on the 

network’s performance with the LH_3D dataset (Section 3.2.6). All the experiments were 

held for 500 epochs, with C = 0.01 (Section 2.3.13.8) and the Adam optimizer (Section 

2.4.4). Also, the Dropout d1 = d2 = 32, d3 = 64 was applied, on each Convolutional Layer, 

with di being the dropout probability in the ith layer. Additionally, the 3D_CNN_4L_1 

network configuration was used in all three experiments (Section 4.3.4.2.3). The source 

code for the network configuration is available in Appendix B, in Code Snippet B.6. 
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Detailed plots with the training and validation accuracies and losses per fold, for the 

experiments LH_3D_S_A {1 – 3}, can be found in Appendix L.1.1 – L.1.3, respectively.  

Figure 5.22 shows the performance metrics of the experiments LH_3D_S_A {1 – 3}. The 

experiment LH_3D_S_A2 with a learning rate = 0.0001 has the best average validation 

accuracy equal to 76% while for the others’ is 72%. The sensitivity is much better in the 

experiment LH_3D_S_A2 with learning rate = 0.0001 (84%) than the experiment’s 

LH_3D_S_A3 with learning rate = 0.00001 (68%). The specificity, on the other hand, is 

better for the LH_3D_S_A3 experiment since it is equal to 75%, while for the 

LH_3D_S_A2 experiment is 68%. The specificity is the metric that matters the most for 

us since is the value that indicates how many ADs were correctly identified as ADs.  

3D Left Hippocampus – Adam, Different Learning Rates 
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LH_3D_S_A1 0.001 

d1 = 0.3 
d2, d3 = 0.5 

0.66 0.78 0.54 0.72 0.69 0.79 0.81 0.62 0.65 0.84 0.46 37 0.75 

LH_3D_S_A2 0.0001 0.73 0.83 0.63 0.76 0.73 0.84 0.84 0.68 0.69 0.87 0.51 117 0.81 

LH_3D_S_A3 0.00001 0.73 0.69 0.76 0.72 0.74 0.70 0.68 0.75 0.62 0.68 0.56 208 0.75 

Table 5.22. Performance metrics of the experiments with 3D Left Hippocampus & Adam. Different Learning Rates. 

In Figure 5.93, the average training and validation accuracies of the 5-folds per 

experiment are available. We can see the average training (dark green) and validation 

(light green) accuracies of the experiment LH_3D_S_A1, where the learning rate is equal 

to 0.001. The value of the learning rate was too small; therefore, the model is underfitting. 

That is why both accuracies kept decreasing until both of them reached the value of 50%; 

consequently, the network was unable to learn.  

From the average training (dark red) and validation (light red) accuracies of the 

LH_3D_S_A2 experiment, with the larger learning rate = 0.0001, we can see that the 

underfitting problem is fixed. The average training accuracy (dark red) in the first 50 

epochs rises and then begins to fall. The average validation accuracy (light red) of the 

experiment LH_3D_S_A2 on the other hand increases the first 30 epochs approximately 

and then remains stable with minor fluctuations for the rest of the training process. 
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Contrariwise, the accuracies of the experiment LH_3D_S_A3 with the learning rate = 

0.00001, both kept increasing smoothly during the 500 epochs training process (Figure 

5.93).   

 

Figure 5.93. Average training and validation accuracies of the experiments LH_3D_S_A {1 – 3}. 

 

Figure 5.94. Average training and validation losses of the experiments LH_3D_S_A {1 – 3}. 
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From Figure 5.94, with the average training and validation losses per fold, of the 

experiments, we can see that the average training loss of the experiment LH_3D_S_A3, 

decreases very slowly. The experiment LH_3D_S_A3 though does not show any signs of 

overfitting, since, for the first 500 epochs, it is the only experiment that both its validation 

loss and training loss decrease the whole training process.  

5.8.1.2 Experiments LH_3D_S_A {2, 4}: C = 0.01, lr = 0.0001, Dropout, 

With/Without Max-Pooling 

The experiment LH_3D_S_A4, with the Adam optimizer, compares the effect of no Max-

Pooling applied at any Convolutional Layer with the experiment LH_3D_S_A2 that 

applies Max-Pooling to all three Convolutional Layers. The experiment LH_3D_S_A4 

uses the 3D_CNN_4L_2 network (Section 4.3.4.2.4), and the experiment LH_3D_S_A2 

the 3D_CNN_4L_1 network (Section 4.3.4.2.3).  

Based on Table 5.23, with the performance metrics of the two experiments, the average 

validation accuracy is a bit better in the LH_3D_S_A4 experiment, where it is equal to 

77%, while in the LH_3D_S_A2 experiment is equal to 76%. Another difference between 

the two experiments is that for the LH_3D_S_A2, the average epoch of the best validation 

accuracy per fold is 117 while for the LH_3D_S_A4 is 209.  

Experiments LH_3D_S_A {2, 4}: Adam - With/Without Max-Pooling 
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LH_3D_S_A2 

0.01 0.0001 
d1 = 0.3 

d2, d3 = 0.5 

3D_CNN_4L_1 0.73 0.83 0.63 0.76 0.73 0.84 0.84 0.68 0.69 0.87 0.51 117 0.81 

LH_3D_S_A4 3D_CNN_4L_2 1.00 1.00 1.00 0.77 0.73 0.84 0.86 0.67 0.67 0.73 0.60 209 0.83 

Table 5.23. Performance metrics and hyperparameters of the experiments LH_3D_S_A {2, 4}. 

Adam - With/Without Max-Pooling 

In Figure 5.95, we can see the average training and validation accuracies per fold, for the 

two experiments. The validation accuracy of the experiment LH_3D_S_A4 without Max-

Pooling (light blue), increases more than the validation accuracy of the experiment 

LH_3D_S_A with Max-Pooling (light red) the first 150 epochs approximately, but then 

it faced a slight decrease over time. By observing Figure 5.96, with the average training 
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and validation losses per fold, for the two experiments, we can see that this happens 

because the validation loss of the model without Max-Pooling started increasing rapidly 

after the 100th epoch approximately, while its training loss kept decreasing, which means 

that the model overfits.  

 

Figure 5.95. Average training and validation accuracies of the experiments LH_3D_S_A {2, 4}. 

 

Figure 5.96. Average training and validation losses of the experiments LH_3D_S_A {2, 4}. 
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Overfitting was expected in the experiment LH_3D_S_A4 since the purpose of Max-

Pooling is to help with the translation of the features in a given image (Section 2.3.12.5). 

The absence of Max-Pooling may cause generalization issues, which is what happened in 

our case as well. That is why the average training accuracy went fast to 100%, after the 

first 20 epochs in the LH_3D_S_A4 experiment. 

5.8.2 CNN 4 Layer with NewtonCG 

5.8.2.1 Experiments LH_3D_S_N {1, 2}: C = 0.01, GNsize = {50, 500}, 

With/Without Dropout, With/Without Max-Pooling 

The experiments LH_3D_S_N {1, 2} compare the effect of Max-Pooling in the 

NewtonCG algorithm with the LH_3D dataset (Section 3.2.6). A key difference between 

the experiments with the Adam (Section 5.8.1) and the NewtonCG optimizer, is that the 

experiments with the NewtonCG were unable to train the model; for example, the 

experiment LH_3D_S_N1 (dark/light red, Figure 5.97). Different values of eta (η), xi (ξ), 

boost, drop, and CG max iterations were tried with no significant improvements (Section 

4.3.1). The absence of Max-Pooling (LH_3D_S_N2) helped a lot against the underfitting. 

Detailed training/validation accuracies/losses per fold for the experiments LH_3D_S_N 

{1, 2}and their confusion matrices for the training, validation, and testing, can be found 

in Appendixes L.2.1, L.2.2. The source codes for the network configurations 

3D_CNN_4L_ {1, 2} are available respectively in Appendixes B.5.1 and B.5.12, at Code 

Snippets B.5 and B.16.  

The experiment LH_3D_S_N2 uses the 3D_CNN_4L_2 network (Section 4.3.4.2.4), and 

the experiment LH_3D_S_N1 the 3D_CNN_4L_1 network (Section 4.3.4.2.3). The 

experiment LH_3D_S_N1 does not apply Dropout, it has a GNsize = 500, and C = 0.01. 

The experiment LH_3D_S_N2 has a GNsize = 50, C = 0.01, and applies Dropout to all 

three Convolutional Layers equal to d1 = d2 = 32, d3 = 64, with di being the drop 

probability in the ith Convolutional Layer.  

Table 5.24, shows the performance metrics of the two experiments. Since each fold of the 

LH_2D_S_N1 experiment fails to learn and terminates itself on average in the 32nd epoch 

out of the 100 epochs; its average validation accuracy is 70%. The average validation 

accuracy for the 5-folds of the LH_3D_S_N2 experiment is 73%. 
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Experiments LH_3D_S_N {1, 2}: NewtonCG - With/Without Max-Pooling 
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LH_3D_S_N1 0.01 500 3D_CNN_4L_1 0.73 0.79 0.68 0.70 0.70 0.76 0.77 0.64 0.67 0.80 0.53 4 0.73 

LH_3D_S_N2 0.01 50 3D_CNN_4L_2 0.86 0.87 0.84 0.73 0.72 0.76 0.78 0.68 0.69 0.74 0.63 21 0.83 

Table 5.24. Performance metrics of the experiments LH_3D_S_N {1, 2}. 

NewtonCG - With/Without Max-Pooling 

In Figure 5.97, the average training and validation accuracies of the two experiments are 

available. After 20 epochs, the average training accuracy (dark blue) of the experiment 

LH_3D_S_N2 grows fast and reaches 100%, while in the meantime, the average 

validation accuracy (light blue) starts decreasing. Both the average training (dark red) and 

validation (light red) accuracies of the experiment LH_3D_S_N1, do not increase, since 

each one of the 5-folds, terminated itself before the 32nd epoch. In Figure 5.98, the average 

training and validation losses of the two experiments are available. We can see that the 

experiment LH_3D_S_N2 without Max-Pooling overfits, as the validation loss increases 

after the 15th epoch approximately, while its average training loss decreases.    

 

Figure 5.97. Average training and validation accuracies of the experiments LH_3D_S_N {1, 2}. 
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Figure 5.98. Average training and validation losses of the experiments LH_3D_S_N {1, 2}. 

5.9 3D Shrunk Brains [AD, NC]: 

Single Scan per Patient (44 × 48 × 44) 

The 3D Shrunk Brains, Single Scan per Patient (B_3D_S) dataset (Section 3.2.5.2) 

contains scaled-down 3D T1-weighted MRI scans from AD and NC patients, the same 

that was used in the 2D Brain Slices datasets (Section 3.2.3). The unscaled versions of 

the 3D images were too large to be used for the training of our models, based on the 

available computational power.  

The main assumption was that the whole 3D image of the brain should perform better 

than a 2D slice of it. Based on the results of the experiments that have been performed, 

our assumption was not validated, especially for the case of the NewtonCG optimizer. 

Since the downscaling destroys much information of the image, we decided to try a 

different dataset, the 3D Cropped Brains (Section 3.2.7), which did not downscale the 3D 

image. In future work, the 3D Shrunk Brains dataset can be used in a CNN without Max-

Pooling, since, such a configuration showed significant improvement with the 3D Left 

Hippocampus dataset (Section 5.8.1.2). The main issue is that more computational 

resources and execution time is going to be needed.  
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The experiments with the 2D datasets (Section 5.4 – 5.7) were executed with batch size 

= 256 since the input data were smaller in size and could fit in the RAM. For the 3D 

experiments (Section 5.8 – 5.10), as well as for the 3D Shrunk Brains datasets the batch 

size was set to 32 since each 3D image takes much more memory to be stored.  

The 3D Shrunk Brains dataset performed better with the Adam optimizer, with a 75% 

average validation accuracy for the 5-folds, instead of 64% with the NewtonCG optimizer 

(Table 5.25).  

3D Shrunk Brains – Single Scan per Patient [AD, NC] 
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Adam 

B_3D_S_A1 0.83 0.05 0.80 0.86 0.75 0.03 0.81 0.73 0.69 0.82 0.70 0.02 0.67 0.73 131 0.81 

NewtonCG 

B_3D_S_N1 0.72 0.12 0.80 0.64 0.64 0.04 0.62 0.73 0.79 0.50 0.64 0.07 0.80 0.47 6 0.68 

Table 5.25. Performance metrics of the experiments with 3D Shrunk Brains – Single Scan per Patient [AD, NC] 

5.9.1 CNN 4 Layers with Adam 

5.9.1.1 Experiment B_3D_S_A1: C = 0.01, lr = 0.0001, Dropout 

For the experiment B_3D_S_A1, the 3D Shrunk Brains [AD, NC], with a Single Scan 

per Patient (B_3D_S) dataset was used with the Adam optimizer. The network 

configuration that was used was the 3D_CNN_4L_1 (Section 4.3.4.2.1). The training 

process took 500 epochs, the learning rate was set to 0.0001 (the best of the 3D Left 

Hippocampus experiments in Section 5.8.1.1), and the C equal to 0.01. Standard Dropout 

(Section 2.3.13.9) d1 = d2 = 32, and d3 = 64, was applied to all three Convolutional 

Layers, with di being the drop probability in the ith layer. 

Figure 5.99, shows the average training and validation accuracies of the 5-folds, for the 

B_3D_S_A1 experiment. Both the average training and validation accuracies behave very 

similarly to the ones in the 3D Left Hippocampus dataset with the Adam dataset and 

learning rate = 0.0001 (Figure L.10 in Appendix L.1.2). The training accuracy increases 

fast in the first 50 epochs and then decreases slightly where it remains relatively stable on 
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an average value of 83% for the rest of the training process. The average validation 

accuracy increases smoothly but fluctuates a lot between 65% and 70%. At epoch 250 

approximately, both the training and the validation losses begin to decline. In Figure 

5.100 of the average training and validation losses, we do not observe any significant 

signs of overfitting.  

 

Figure 5.99. Average training and validation accuracy of the experiment B_3D_S_A1. 

 

Figure 5.100. Average training and validation accuracy of the experiment B_3D_S_A1. 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

A
cc

u
ra

cy

Epochs

Shrunk Brains 3D [AD, NC] Single Scan per Patient: 5-fold Average Train & Valid Accuracy
Adam, C = 0.01, Learning Rate = 0.0001, Dropout

avg_valid_acc avg_train_acc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450

Lo
ss

Epochs

Shrunk Brains 3D [AD, NC] Single Scan per Patient: 5-fold Average Train & Valid Loss
Adam, C = 0.01, Learning Rate = 0.0001, Dropout

avg_train_loss avg_valid_loss



249 

 

5.9.2 CNN 4 Layers with NewtonCG 

5.9.2.1 Experiment B_3D_S_N1: C = 0.01, GNsize = 200, Dropout 

Unlike the experiment B_3D_S_A1 with the Adam optimizer and the 3D Shrunk Brains 

dataset (Section 5.9.1.1), the experiment B_3D_S_N1 with the NewtonCG optimizer 

underfits, since it fails to learn and 3 out of 5-folds terminate themselves during the 

middle of the training process. 

5.9.2.1.1 Accuracy 

 

Figure 5.101. Average training and validation accuracy of the experiment B_3D_S_N1. 

Figure 5.101, shows the average training and validation accuracies of the 5-folds, for the 

experiment B_3D_S_N1. Their shape is not representative of the model’s performance. 

The average accuracies show a promising outcome, with a lot of potential for learning but 

in reality, the average validation accuracy is equal to 64% (Table 5.25). We have to 

observe the training and validation accuracy of each fold separately to understand that the 

network suffers from underfitting.   

As we can see in Figures 5.102 & 5.103, with the training and validation accuracies 

respectively of each fold, the 2nd, 4th, and 5th folds terminate themselves before the 60th 

epoch. The NewtonCG implementation from Wang et al. (2002) does this automatically 

if for 15 continuous epochs no change is observed in the validation accuracy.  

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy

Epochs

Shrunk Brains 3D [AD, NC] Single Scan per Patient: 5-fold Average Train & Valid Accuracy
NewtonCG, C = 0.01, GNsize = 200, Dropout

avg_valid_acc avg_train_acc



250 

 

 

Figure 5.102. Training accuracy per fold of the experiment B_3D_S_N1. 

 

Figure 5.103. Validation accuracy per fold of the experiment B_3D_S_N1. 
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training process; it remains stable approximately at a value close to 0.5. The conclusion 

is that our model is underfitting, and most probably the main reason behind this is the 

dataset, which is incapable of teaching our network to detect AD and NC patients.  

 

Figure 5.104. Average training and validation loss of the experiment B_3D_S_N1. 

 

Figure 5.105. Training loss per fold of the experiment B_3D_S_N1. 
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Figure 5.106. Validation loss per fold of the experiment B_3D_S_N1. 
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best experiments of the CB_3D_S dataset, Adam’s average validation accuracy is 73%, 

while for the NewtonCG is 71%. 

3D Cropped Brains – Single Scan per Patient [AD, NC] 
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Adam 

CB_3D_S_A1 0.98 0.03 1.00 0.96 0.73 0.02 0.72 0.75 0.77 0.69 0.65 0.06 0.71 0.60 71 0.76 

NewtonCG 

CB_3D_S_N1 0.76 0.08 0.77 0.75 0.71 0.04 0.72 0.73 0.72 0.71 0.67 0.04 0.68 0.65 13 0.76 

CB_3D_S_N2 0.68 0.02 0.65 0.71 0.69 0.06 0.70 0.68 0.64 0.73 0.69 0.04 0.72 0.67 9 0.74 

Table 5.26. Performance metrics of the experiments with 3D Cropped Brains – Single Scan per Patient [AD, NC]. 

The reason could be that in Adam, we can control the learning rate, for example, reduce 

it if the model is underfitting. The NewtonCG has multiple hyperparameters, that play an 

essential role in underfitting and how aggressive is the algorithm. Some of them are the 

eta (η), xi (ξ), boost, drop, and CG max iterations (Section 4.3.1). To find the ideal 

combination of them, many experiments are needed to be performed, but since our 

resources were limited it was impossible to do that.  

5.10.1 CNN 4 Layers with Adam 

5.10.1.1 Experiment CB_3D_S_A1: C = 0.01, lr = 0.0001, Dropout 

The experiment CB_3D_S_A1 (Appendix N.1.1) uses the CB_3D_S dataset (Section 

3.2.7.2) with the Adam optimizer. The experiment uses the 3D_CNN_4L_1 network 

configuration (Section 4.3.4.2.2). Also, the learning rate = 0.0001 and C = 0.01. The 

experiment applies to all three Convolutional Layers the standard Dropout (Section 

2.3.13.9) with d1 = d2 = 32, and d3 = 64, where di, is the drop probability in the ith layer.  

Figure 5.107, shows the average training and validation accuracies of the 5-folds, for the 

CB_3D_S_A1 experiment. In the first 50 epochs, the average training and validation 

accuracies increase. Afterward, the average training accuracy (blue) goes towards 100%, 

while the validation accuracy (red) starts declining. This resulted in an average training 
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accuracy of 98% and an average validation accuracy of 73% for this experiment (Table 

5.26).  

 

Figure 5.107. Average training and validation accuracy of the experiment CB_3D_S_A1. 

 

Figure 5.108. Average training and validation loss of the experiment CB_3D_S_A1. 
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training loss continues to decrease; therefore, the model overfits and fails to generalize. 

Additionally, the average epoch of the best validation accuracy per fold is 71 out of the 

500 epochs. This verifies us that the model overfits very early during the training process.  

5.10.2 CNN 4 Layers with NewtonCG 

5.10.2.1 Experiment CB_3D_S_N1: C = 0.01, GNsize = 50, Dropout 

The experiment CB_3D_S_N1 (Appendix N.2.1) uses the CB_3D_S dataset (Section 

3.2.7.2) with the NewtonCG optimizer. The hyperparameters are the same as in the 

experiment B_2D_M_N10 (Appendix H.2.10) that used the B_2D_M dataset (Section 

3.2.3.4), and achieved average validation accuracy equal to 80% (Table 5.7). 

Contrariwise, this experiment achieves a validation accuracy equal to 71% (Table 5.26). 

The CB_3D_S_N1 has GNsize = 50, C = 0.01, and applies Dropout (Section 2.3.13.9) to 

all three Convolutional Layers with d1 = d2 = 32, and d3 = 64, where di, is the drop 

probability in the ith layer.  

In Figure 5.109, we can see the average training and validation accuracies of the 50folds, 

for the experiment CB_3D_S_N1. After the first 10 epochs, the validation accuracy 

declines while the training accuracy goes rapidly towards 100%. In Figure 5.110, the 

average training and validation losses are available. The figure verifies us that the model 

overfits very early during the training process, just after the 10 first epochs.  

 

Figure 5.109. Average training and validation accuracy of the experiment CB_3D_S_N1. 
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Figure 5.110. Average training and validation loss of the experiment CB_3D_S_N1. 

A possible solution to the overfitting problem could be to remove the Max-Pooling from 

each Convolutional Layer since the 3D Left Hippocampus experiment showed some 

improvement (Section 5.8.1.2), but this would be much more computationally expensive 

than it is now. 

5.10.3 CNN 5 Layers with NewtonCG 

5.10.3.1 Experiment CB_3D_S_N2: C = 0.01, GNsize = 50, Dropout 

The experiment CB_3D_S_N2 uses the 5-layer CNN network 3D_CNN_5L_1 (Section 

4.3.4.3.1), instead of the 4-layer CNN network 3D_CNN_4L_1 (Section 4.3.4.2.2) which 

the CB_3D_S_N1 experiment was using. The source code for the 3D_CNN_5L_1 

network is available in Appendix 5.8.14, at Code Snippet B.18. The reason was to check 

whether the CB_3D_S_N1 is underfitting or overfitting. If it was underfitting, a deeper 

network architecture should potentially show some improvement. Unfortunately, the 

performance was worse, since the average validation accuracy is 69% while for the 

CB_3D_S_N1 experiment was 71% (Table 5.26).  

Consequently, we can assume that the model 3D_CNN_4L_1 did not underfit but overfit, 

therefore other regularization techniques for overfitting should be used to solve the 

problem (Section 2.3.13). Since we are using already Cross-validation and Early 

Stopping, we could train with more data, use Regularization, remove Max-Pooling, etc.  
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We can see in Figure 5.111 that the experiment CB_3D_S_N2 performs significantly 

worse than the CB_3D_S_N1. The reason is that this experiment does not even manage 

to finish the training for 100 epochs. The performance, and more specifically the average 

validation accuracy remains completely stable for 15 epochs, which causes the training 

process to terminate automatically based on Wang et al.’s (2020) algorithm with the 

NewtonCG and CNNs for Python.  

 

Figure 5.111. Average training and validation accuracy of the experiment CB_3D_S_N2. 

 

Figure 5.112. Training accuracy per fold of the experiment CB_3D_S_N2. 
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Figure 5.113. Validation accuracy per fold of the experiment CB_3D_S_N2. 
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Figure 5.114. Average training and validation loss of the experiment CB_3D_S_N2. 
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in both the training and validation loss for the rest of the training process. Figures 5.115 

& 5.116 show the training and validation loss respectively, of each fold, for the 

experiment CB_3D_S_N2. The behavior of all experiments is very similar as we can see 

in these figures.  

 

Figure 5.115. Training loss per fold of the experiment CB_3D_S_N2. 

 

Figure 5.116. Validation loss per fold of the experiment CB_3D_S_N2. 
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5.11 2D Brain Slices [AD, MCI, NC]: 

Multiple Scans per Patient (174 × 174) 

The 2D Brain Slices [AD, MCI, NC], Multiple Scans per Patient – Single Slice per Scan, 

or so-called B_2D_M [AD, MCI, NC] dataset (Section 3.2.4.1) is the same as the 

B_2D_M dataset (Section 3.2.3.4) with MCI patients also added. The same 10-fold Cross-

validation splitting was used as in the B_2D_M dataset, for direct comparison with the 

B_2D_M experiments (Section 5.4). the source code for splitting the dataset is available 

in Appendix D.3.3, at Code Snippet D.9.  

In general, the performance of this model is mediocre, with the Adam optimizer scoring 

up to 54% average validation accuracy, while the NewtonCG up to 55% (Table 5.27). 

The main conclusion is that the 2D slices used in the dataset of the T1-weighted MRI 

scans, do not provide enough information, to distinguish easily an MCI from an NC or an 

AD patient.   

2D Brain Slices – Multiple Scans per Patient [AD, MCI, NC] 

      Training Validation Testing  
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B_2D_M_A1 
[AD, MCI, NC] 

Adam 0.01 - 500 0.001 0.83 0.89 0.87 0.89 0.54 0.58 0.71 0.68 0.71 0.35 0.63 0.51 0.56 26 

B_2D_M_A2 
[AD, MCI, NC] 

Adam 0.01 - 500 0.0001 0.87 0.92 0.91 0.91 0.53 0.62 0.72 0.66 0.69 0.32 0.61 0.47 0.55 45 

B_2D_M_N1 
[AD, MCI, NC] 

NewtonCG 0.01 50 100 - 0.78 0.88 0.83 0.85 0.55 0.60 0.71 0.67 0.71 0.33 0.59 0.49 0.58 23 

Table 5.27. Performance metrics and hyperparameters of the experiments with the  

2D Brain Slices – Multiple Scans per Patient [AD, MCI, NC] dataset. 

5.11.1 CNN 4 Layers with Adam 

5.11.1.1 Experiments B_2D_M_A {1, 2} [AD, MCI, NC]: C = 0.01, Dropout, 

lr = {0.001, 0.0001} 

The experiments B_2D_M_A {1, 2} [AD, MCI, NC], compare the performance of the 

learning rates 0.001, and 0.0001, with the Adam optimizer in the AD/MCI/NC problem, 

by using the B_2D_M [AD, MCI, NC] dataset. The dataset contains an equal number of 

AD, MCI, and NC patients, and the training, validation, and test sets are all balanced. The 

network used for the experiments is the 2D_CNN_4L_1 (Section 4.3.2.3.1) with Dropout, 
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d1 = d2 = 32, and d3 = 64, where di is the drop probability in the ith Convolutional Layer. 

The source code for the network is available in Appendix B.5.2, at Code Snippet B.6. 

The experiment B_2D_M_A1 [AD, MCI, NC] with the learning rate = 0.001 and the 

average validation accuracy of 54%, performs slightly better than the experiment 

B_2D_M_A2 [AD, MCI, NC] with the learning rate = 0.0001 and the average validation 

accuracy of 53% (Table 5.28).  

Experiments B_2D_M_A {1, 2} [AD, MCI, NC] 
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B_2D_M_A1 
[AD, MCI, NC] 

Adam 0.01 - 500 0.001 0.83 0.89 0.87 0.89 0.54 0.58 0.71 0.68 0.71 0.35 0.63 0.51 0.56 26 

B_2D_M_A2 
[AD, MCI, NC] 

Adam 0.01 - 500 0.0001 0.87 0.92 0.91 0.91 0.53 0.62 0.72 0.66 0.69 0.32 0.61 0.47 0.55 45 

Table 5.28. Performance metrics and hyperparameters of the experiments B_2D_M_A {1, 2} [AD, MCI, NC]. 

Since the B_2D_M [AD, MCI, NC] dataset is balanced, if classifying all inputs to a single 

class, then the validation accuracy of that model with this dataset would be 33%. 

Contrariwise, for the experiments with the B_2D_M dataset (Section 5.4), the validation 

accuracy in such a case would be 50%, since the dataset contains only two classes. 

 

Figure 5.117. Average training and validation accuracy of the experiments B_2D_M_A {1, 2} [AD, MCI, NC]. 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

A
cc

u
ra

cy

Epochs

Brains 2D [AD, MCI, NC] Multiple Scans per Patient: 10-fold Average Train & Valid Accuracy
Adam, C = 0.01, Different Learning Rates

LR_0.001_avg_valid_acc LR_0.0001_avg_valid_acc

LR_0.001_avg_train_acc LR_0.0001_avg_train_acc



262 

 

Figure 5.117, shows the average training and validation accuracies of the 10-folds, of the 

experiments B_2D_M_A {1, 2} [AD, MCI, NC]. The average validation accuracy of the 

B_2D_M_A1 [AD, MCI, NC] with a learning rate = 0.001 (light red), overall seems to 

be slightly worse than the experiment’s B_2D_M_A2 [AD, MCI, NC] (light blue). 

 

Figure 5.118. Validation accuracy per fold of the experiment B_2D_M_A1 [AD, MCI, NC]. 

 

Figure 5.119. Validation accuracy per fold of the experiment B_2D_M_A2 [AD, MCI, NC]. 
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In Figure 5.118 & 5.119, we can see the validation accuracies per fold, of the experiments 

B_2D_M_A {1, 2} [AD, MCI, NC] respectively. In both experiments, the 1st fold seems 

to perform worse than the rest of them, since it approaches accuracies near 33%. This 

potentially indicates that the 1st fold may contain many outliers.  

Figure 5.120, shows the average training and validation losses per experiment. Both 

models overfit, since their validation loss increase while their training loss decrease; with 

the experiment B_2D_M_A1 [AD, MCI, NC] with the learning rate = 0.001 (red) 

overfitting more than the experiment B_2D_M_A2 [AD, MCI, NC] with the learning, 

rate = 0.0001 (blue). 

 

Figure 5.120. Average training and validation loss of the experiments B_2D_M_A {1, 2} [AD, MCI, NC]. 
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Figure 5.121. Validation loss per fold of the experiment B_2D_M_A1 [AD, MCI, NC]. 

 

Figure 5.122. Validation loss per fold of the experiment B_2D_M_A2 [AD, MCI, NC]. 
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Dropout (Section 2.3.13.9), d1 = d2 = 32, and d3 = 64, where di is the drop probability in 

the ith Convolutional Layer. Basically, the experiment uses the same network 

configuration and the same hyperparameters (C = 0.01; GNsize = 50) of the experiment 

B_2D_M_N10 (Appendix H.2.10). The source code for the network is available in 

Appendix B.5.2, at Code Snippet B.6. 

In Table 5.29, we can see that the total average validation accuracy of the 10-folds for the 

experiment B_2D_M_N1 [AD, MCI, NC] with the NewtonCG optimizer is 55%, while 

in the best Adam experiment, the B_2D_M_A1 [AD, MCI, NC], is 54%. Also, the 

average validation accuracies for each target class separately, the AD, MCI, and NC are 

71%, 67%, and 71% respectively, very similar to the ones of the best Adam experiment 

(B_2D_M_A1 [AD, MCI, NC]) which are 71%, 68%, and 71% (Table 5.29). 

Experiments: B_2D_M_A1 [AD, MCI, NC] vs. B_2D_M_N1 [AD, MCI, NC] 
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B_2D_M_A1 
[AD, MCI, NC] 

Adam 0.01 - 500 0.001 0.83 0.89 0.87 0.89 0.54 0.58 0.71 0.68 0.71 0.35 0.63 0.51 0.56 26 

B_2D_M_N1 
[AD, MCI, NC] 

NewtonCG 0.01 50 100 - 0.78 0.88 0.83 0.85 0.55 0.60 0.71 0.67 0.71 0.33 0.59 0.49 0.58 23 

Table 5.29. Performance metrics and hyperparameters of the experiments 

B_2D_M_A1 [AD, MCI, NC] and B_2D_M_N1 [AD, MCI, NC]. 

Figure 5.123, shows the average training and validation accuracies of the experiment 

B_2D_M_A1 [AD, MCI, NC]. Also, it shows the average training and validation 

accuracies per target class, AD, MCI, and NC. Based on Figure 5.123, we understand that 

the model struggles to generalize, since at the beginning the average validation accuracy 

is 40%, and after 100 epochs is close to 46%. On the other hand, the training accuracy 

keeps rising where it reaches a value near 100% after 100 epochs.  

In Figure 5.13, we can see three extra lines for validation and training accuracies which 

correspond to the accuracies per target class; AD, MCI, and NC. They are larger than the 

average accuracies of all three classes together because they have been calculated by 

using the following equation where 𝑡 corresponds to each target class {AD, MCI, NC}:  

    𝐴𝐶𝐶𝑡  =  
𝑇𝑃𝑡  +  𝑇𝑁𝑡 

𝑇𝑃𝑡  +  𝐹𝑃𝑡  + 𝐹𝑁𝑡  +  𝑇𝑁𝑡
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The 𝑇𝑃𝑡 represents how many samples of the 𝑡 class were correctly identified as 𝑡, and 

the 𝑇𝑁𝑡 represents how many non 𝑡 samples were correctly identified to their class. Those 

values can be found in a 3 × 3 confusion matrix by using the method in Figure 3.18. In 

Figure 5.124, with the average training and validation losses for the experiment, we can 

see that the model is overfitting since after 30 epochs the average validation loss (light 

red) rises while the average training loss (dark red) declines.  

 

Figure 5.123. Training and validation accuracy per target class of the experiments B_2D_M_A1 [AD, MCI, NC]. 

 

Figure 5.124. Average training and validation loss of the experiments B_2D_M_A1 [AD, MCI, NC]. 
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Chapter 6 

Conclusion and Future Work 

 

6.1 Conclusion ................................................................................................................ 267 

6.2 Future Work .............................................................................................................. 270 

 

6.1 Conclusion 

In general, 5 main types of data were used in more than 80 experiments for the AD/NC 

and AD/MCI/NC problems. Those types of data are 2D slices of T1-weighted MRI scans 

(“B_2D”; Section 3.2.3), 3D shrunk subject level T1-weighted MRI scans (“B_3D_S”; 

Section 3.2.5), 3D images of the patients left hippocampus isolated (“LH_3D_S”; Section 

3.2.6), 3D cropped images of the original T1-weighted MRI scans in the area where the 

left hippocampus is (“CB_3D_S”; Section 3.2.7), and a dataset with the features of the 

hippocampus as extracted in the Achilleos et al. (2020) paper (“HF_M”; Section 3.2.2).   

From the 2D slice-level experiments, 4 distinct datasets for the AD/NC problem have 

been created. The datasets differ based on the number of scans used per patient, and the 

number of slices used per T1-weighted MRI scan. More specifically, the 4 datasets are 

Single Scan per Patient – Single Slice per Scan (“B_2D_S”; Section 3.2.3.2), Single Scan 

per Patient – 5 Slices per Scan (“B_2D_5S”; Section 3.2.3.3), Multiple Scans per Patient 

– Single Slice per Scan (“B_2D_M”; Section 3.2.3.4), and Multiple Scans per Patient – 7 

Slices per Scan (“B_2D_7M”; Section 3.2.3.5).  

For the AD/MCI/NC problem, the dataset 2D Brain Slices, Multiple Scans per Patient – 

Single Slice per Scan (B_2D_M) was used that included also an equal number of MCI 

patients as ADs and NCs (B_2D_M [AD, MCI, NC]). Therefore, in this thesis, 9 unique 

datasets have been used for the experiments, alongside the 5-fold Cross-validation or 10-

fold Cross-validation (Section 3.1) to measure the performance of NewtonCG (HFO) 

against Adam or SGD. 
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Best NewtonCG (HFO), Adam, SGD experiments per Dataset 
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Multi-Layer Perceptron (MLP) 

H
F_

M
 

HF_M_S5 SGD - - 500 0.3 0.1 - - - - [10, 8, 8, 1] 0.94 0.92 0.95 0.88 0.82 0.95 272 0.93 

HF_M_A11 Adam - - 500 0.3 0.1 - - - - [10, 30, 1] 0.88 0.87 0.89 0.90 0.83 0.96 155 0.93 

HF_M_H2 HFO - - 100 - - 2 - - - [10, 30, 1] 0.93 0.82 0.97 0.87 0.76 0.98 23 0.93 

Convolutional Neural Networks (CNN) 

B
_2

D
_M

 

- SGD - - - - - - - - - - - - - - - - - - 

B_2D_M_A2 Adam 0.01 - 500 0.01 
  

- 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 2D_CNN_4L_1 0.87 0.87 0.86 0.79 0.78 0.80 246 0.90 

B_2D_M_N19 NewtonCG 0.01 50 100 - - 250 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
5 x 5 2D_CNN_4L_2 0.82 0.83 0.80 0.81 0.80 0.81 17 0.90 

B
_2

D
_7

M
 - SGD - - - - - - - - - - - - - - - - - - 

B_2D_7M_A1 Adam 0.01 - 500 0.001 - - 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 2D_CNN_4L_1 0.92 0.93 0.91 0.75 0.76 0.74 49 0.78 

B_2D_7M_N1 NewtonCG 0.01 50 100 - - 250 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 2D_CNN_4L_1 0.94 0.94 0.94 0.76 0.77 0.75 32 0.78 

B
_2

D
_S

 

- SGD - - - - - - - - - - - - - - - - - - 

- Adam - - - - - - - - - - - - - - - - - - 

B_2D_S_N3 NewtonCG 1 5 100 - - 250 0.5 
f1 = 32, f2 = 64 

f3 = 128 
3 x 3 2D_CNN_4L_6 0.85 0.85 0.86 0.77 0.75 0.78 23 0.84 

M
_2

D
_5

S 

- SGD - - - - - - - - - - - - - - - - - - 

- Adam - - - - - - - - - - - - - - - - - - 

B_2D_5S_N1 NewtonCG 0.01 50 100 - - 250 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 2D_CNN_4L_1 0.92 0.90 0.95 0.75 0.73 0.77 31 0.78 

LH
_3

D
_S

 - SGD - - - - - - - - - - - - - - - - - - 

LH_3D_S_A4 Adam 0.01 - 500 0.0001 - - 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 x 3 3D_CNN_4L_2 1.00 1.00 1.00 0.77 0.86 0.67 209 0.83 

LH_3D_S_N2 NewtonCG 0.01 50 100 - - 250 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 x 3 3D_CNN_4L_2 0.86 0.87 0.84 0.73 0.78 0.68 21 0.83 

B
_3

D
_S

 

- SGD - - - - - - - - - - - - - - - - - - 

B_3D_S_A1 Adam 0.01 - 500 0.0001 - - 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 x 3 3D_CNN_4L_1 0.83 0.80 0.86 0.75 0.69 0.82 131 0.81 

B_3D_S_N1 NewtonCG 0.01 200 100 - - 250 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 x 3 3D_CNN_4L_1 0.72 0.80 0.64 0.64 0.79 0.50 6 0.68 

C
B

_3
D

_S
 - SGD - - - - - - - - - - - - - - - - - - 

CB_3D_S_A1 Adam 0.01 - 500 0.0001 - - 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 x 3 3D_CNN_4L_1 0.98 1.00 0.96 0.73 0.77 0.69 71 0.76 

CB_3D_S_N1 NewtonCG 0.01 50 100 - - 250 
d1 = 0.3 

d2, d3 = 0.5 
f1, f2 = 32 

f3 = 64 
3 x 3 x 3 3D_CNN_4L_1 0.76 0.77 0.75 0.71 0.72 0.71 13 0.76 

Table 6.1. Best NewtonCG (HFO), Adam, SGD experiments per Dataset 

The best validation accuracies for each optimizer and each one of the 8 datasets for the 

AD/NC problem can be seen in Table 6.1. Based on the performance metrics, and more 

specifically, the average validation accuracy, the best combination of dataset and 

optimizer, is the HF_M dataset with the Adam optimizer; which yields an average 
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validation accuracy equal to 90% (HF_M_A11). The highest average validation accuracy 

in the rest of the experiments with CNNs is equal to 81% and it comes from the 

combination of the dataset B_2D_M with the NewtonCG optimizer (B_2D_M_N19). 

The sensitivity of the experiment HF_M_A11, which for the HH_M dataset is the ratio 

of the correctly identified ADs from the total number of ADs, is 83%. For the rest of the 

experiments in CNNs, the specificity is the ratio of the correctly identified ADs from the 

total number of ADs, and the highest comes from the B_2D_M_N19 experiment as well, 

which is equal to 81%. Therefore, the Hippocampus Features (HF_M) with MLP (Adam), 

manage to correctly identify 83% of ADs, while the 2D slice-level MRI scans of the 

brains (B_2D_M) with CNN (NewtonCG), manage to correctly identify the 81% of ADs. 

Based on Achilleos et al. (2020), their best model which uses Argumentation Rules with 

the Hippocampus Features dataset (HF_M), the percentage of correctly identified ADs is 

87%. Thus, if we take into consideration, that the procedure of obtaining the 2D slices of 

the MRI scans is much simpler than collecting the hippocampal features, our performance 

metrics are respectable.  

Generally, most experiments suffer from overfitting, especially the experiments with the 

NewtonCG optimizer. This can be easily observed in the average loss plots of the 

experiments, where the average validation loss at some point starts increasing while the 

average training loss keeps decreasing. Data augmentation can be used, increase the size 

of the dataset, and therefore help the models to generalize better. 

The NewtonCG optimizer is very aggressive and in most of the experiments, only the 

hyperparameters C and GNsize were modified. Other hyperparameters such as the eta (η), 

xi (ξ), lambda (λ), boost, drop, and CG maximum iterations could help to encounter the 

problem of overfitting (Section 4.3.1). Unfortunately, due to the tight schedule and lack 

of resources, it was not feasible to test all these hyperparameters and their effects for all 

the experiments. It seems that eta (η) plays an important role in how aggressive the 

NewtonCG optimizer is, based on some observations in experiments with the 3D Left 

Hippocampus dataset. These experiments were incomplete, and therefore, have not been 

included in this thesis; so, further experimentation is needed to tell for sure.  

Many network configurations were examined such as narrow, wide, shallow, and deep 

CNNs (Section 4.3), with a different number of Convolutional Layers and dense layers 
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as well. Additionally, experiments with or without the application of Dropout, Spatial 

Dropout, L1 & L2 Regularization, Batch Normalization were held (Table P.1 & P.2, 

Appendix P). The absence of Max-Pooling showed significant improvement against the 

overfitting issue in the 3D Left Hippocampus dataset (Section 5.8.1.2 & 5.8.2.1) but not 

in the 2D ones (Section 5.4.2.6). Batch Normalization (Section 5.4.2.9) could potentially 

help against overfitting is if it is applied after each Convolutional Layer and not just in 

the last Convolutional Layer.   

In terms of filter sizes, 5 × 5 works the best for 2D slice-level MRI scans (Section 

5.4.2.10). For the 3D subject-level datasets, we cannot say for sure whether the filter size 

5 × 5 × 5 is a better choice, since all the experiments that have been performed, used 

filter sizes of 3 × 3 × 3.  

In general, based on my experience, no 10-folds should be used because the datasets are 

relatively small, so 5-fold is a better choice for future experiments. Moreover, the test set 

should not be excluded before the split of the data into folds. The validation set is enough 

for representing both the validation and test set. This way, more data could be used for 

training and since the test sets were too small (~4%), their results were not representative 

of the models’ actual performance (Section 3.2).  

The NewtonCG method, as expected, converges faster than Adam. The average epoch of 

the best validation accuracy per model is approximately 20 for the NewtonCG optimizer 

while it is 200 for the Adam (Table 5.7). This means that in order to achieve similar 

average validation accuracies between models with the NewtonCG and the Adam 

optimizer, Adam needs 10 times more epochs approximately than the NewtonCG.  

6.2 Future Work 

The main focus in future work should be on how to improve the performance of the 3D 

experiments. This implies that more computational resources are needed than those we 

had during this thesis, to be able to execute them since, for the 3D CNNs, dedicated GPUs 

are needed. Arcadia server which provides only multiple CPU cores is unable to execute 

them. It is highly suggested to use the MATLAB implementation instead of the one in 

Python for the CNNs with the NewtonCG optimizer since the authors (Wang et al. 2020) 
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mention in their Python comments, that are not sure whether the regularization was 

implemented correctly. 

First, the size of the current datasets needs to increase, and 5-fold instead of 10-fold 

should be used. Data augmentation needs to be applied in the images, such as rotation, 

flipping, transition, shearing, scaling, change of image’s brightness, and addition of noise 

(Section 2.3.13.5). This way, the size of the dataset will increase to 20,000 – 70,000. 

Then, I suggest, without extracting a test set as we did in this thesis, a 5-fold Cross-

validation with StratifiedGroupKFold should be applied as described in Section 3.1.5, in 

order to avoid data leakage.  

In this thesis, from the experiments in CNNs, the B_2D_M_N19 with the B_2D_M 

dataset had the highest average validation accuracy (81%), but I believe that the 

B_2D_7M, with data augmentation, could be a better dataset for the AD/NC problem. 

The B_2D_7M dataset has the smallest standard deviation (1% – 2%) between the best 

validation accuracies of each fold (Table 5.7). Additionally, based on the results of 

Section 5.7.2.1, a 5-layer CNN, or even deeper network configuration should be used 

with a larger dataset such as the B_2D_7M.  

Based on my observations (Section 5.4.2.10), for the 2D slice MRI scans datasets, 5 × 5, 

filter size should be used, since it performs better than 3 × 3, or 7 × 7. For the 3D subject-

level MRI scans datasets, experiments with only 3 × 3 × 3 filter size were held, so further 

examination is needed for different sizes. In terms of network configurations, for the 3D 

experiments, is highly recommended to remove the Max-Pooling from all Convolutional 

Layers (Section 5.8.1.2; Section 5.8.2.1; Table 5.92). The absence of Max-Pooling 

improved the validation accuracy usually or even fixed underfitting issues with some 

experiments in 3D CNNs. Keep in mind that the removal of Max-Pooling caused 

overfitting in the 3D Left Hippocampus experiments (Section 5.8.1.2; Section 5.8.2.1), 

where the average training accuracy went fast towards 100%, while the average validation 

accuracy was still 77%.  

For the 3D experiments, smaller eta (η) could potentially reduce the aggressiveness of the 

NewtonCG optimizer. Also, a smaller GNsize seems to reduce overfitting, while Wang 

et al. (2020) showed that larger GNsize are better.  
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Different network topologies should be tried, for example, the wider 4-layer CNN 

network 2D_CNN_4L_6 (Section 4.3.2.3.6) in the B_2D_S_N3 experiment (Section 

5.5.1.2) seemed to be performing better than the baseline 4-layer CNN network 

2D_CNN_4L_1 (Section 4.3.2.3.1). The number of feature maps fi, of the ith 

Convolutional Layer of the 2D_CNN_4L_6 network, were f1 = 32, f2 = 64, and f3 = 128, 

while for the 2D_CNN_4L_1 network, the filters were f1 = f2 = 32, and f3 = 64.  

Another experiment that could be performed in the future, is a multi-input Keras model. 

More specifically, two or even three inputs can be provided to a network with a single 

output. For example, input A could take numeric values, such as the hippocampal features 

extracted by Achilleos et al. (2020), in an MLP; the input B could be fMRI images in a 

CNN, and the input C the T1-weighted MRI scans in another CNN. All the inputs have 

to be referring to the same patient which is something feasible since the ADNI dataset 

provides all this information. An example of such implementation with multiple inputs 

can be found here or in Keras API: (https://www.pyimagesearch.com/2019/02/04/keras-

multiple-inputs-and-mixed-data/). A multi-input implementation has been proven by 

Venugopalan et al. (2021), a better approach than a single input, both for the AD/NC and 

the AD/MCI/NC problem.  

 

Figure 6.1. Multi-level network. Three 3D CNN for the sagittal, coronal, and horizontal slices. (Aderghal et al. 2017) 

An additional experiment of a multi-input Keras model could be to use three CNNs, one 

for each perspective of the same brain scan, the Sagittal, Coronal, and Horizontal slices 

(Figure 2.4). This could be a convenient alternative instead of using the whole 3D T1-

weighted MRI scan, to save computational power and reduce the execution times while 

providing different perspectives of the patient’s brain. This method was tried by Aderghal 

et al. (2017), and its results were very promising with validation accuracy equal to 91.4% 

https://www.pyimagesearch.com/2019/02/04/keras-multiple-inputs-and-mixed-data/
https://www.pyimagesearch.com/2019/02/04/keras-multiple-inputs-and-mixed-data/


273 

 

for the AD/NC problem (Figure 6.1). Since in this thesis only T1-weighted MRIs were 

used, in the future T2-weighted MRIs could be used as well. 

A piece of advice for future work is that batch normalization (Section 2.3.13.11) should 

be applied before each Convolutional Layer. Batch normalization has the potential to 

improve the performance of the model. In this thesis, batch normalization was only 

applied after the last Convolutional Layer which it was turned out not to be the best 

practice (Ioffe and Szegedy, 2015). 

Different activation functions, other than ReLU could be applied, such as Leaky ReLU. 

Sigmoid is not suggested as an activation function, since the models with CNNs did not 

perform as well as with ReLU in the experiments of this thesis.  

To fight against overfitting, the plots of the Receiver Operating Characteristic curve 

(ROC) and the Area Under the ROC Curve (AUC) may help. ROC compares the True 

Positive Rate (TPR) with the False Positive Rate (FPR). The curve of the model which is 

the closest to the left top corner has the highest sensitivity, and it is the best model for 

binary classification. AUC is the probability that a classifier will rank a randomly chosen 

positive instance higher than a randomly chosen negative instance. Usually, ROC and 

AUC matrices are being used in medical studies for the evaluation of the different 

techniques (Choi and Jin, 2018; Achilleos et al. 2020). 

In this thesis, most datasets were focused on the AD/NC problem. In a real-world 

scenario, a patient could have many different types of dementia and not just AD. For 

example, a patient could have Parkinson's, Vascular Dementia, MCI, and other different 

syndromes. Therefore, the CNN models should be trained to detect multiple diseases for 

the model to be applicable for public use. 

In addition, transfer learning is suggested for future work since for this medical problem 

a limited number of labeled data exists, thus a CNN cannot easily be trained. This should 

not be an issue for the Gradient Descent implementations (e.g., SGD, Adam), since 

available pre-trained models for both 2D and 3D CNNs exist (Hosseini-Asl et al. 2018). 

For the CNN with HFO implementations, no pre-trained models were found, but in future 

work, a pre-trained model could be created. For example, you can initially train the 

Convolutional Layers with the CIFAR-10 dataset and then train furthermore the model 

with the MRI scans, to train the FFNN as well.  
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The next step would be to use MRI scans that are registered to standard brain space 

(spatial normalization) to get the input to the model. Spatial normalization is a geometrics 

transformation that aligns a brain scan to a standard brain image. This will solve the issues 

that we faced in which the different structures of the brain corresponded to different 

coordinates in each 3D scan and in some 2D scans the spinal cord and the cerebellum 

were visible, while in others were not. From these spatially normalized scans, different 

data can be extracted and used as input: 3D MRI of the whole brain, 3D MRI of the 

isolated hippocampus and/or entorhinal cortex, and 2D MRI slices which contain the 

hippocampus. It is expected that using the hippocampus and entorhinal cortex as the input 

to the model will give better results because it has already been found that the features of 

these structures are affected by MCI and AD (Leandrou et al. 2020; Achilleos et al. 2020). 

Also, the datasets with multiple scans per patient in this thesis could contain 1 to 11 scans 

per patient. It would be more appropriate to create and compare datasets that contain only 

the baseline scan, or the baseline and 6-month scans, etc. This approach has been used in 

several studies (Suk and Shen, 2013; Suk et al. 2015; Choi and Jin, 2018; Achilleos et al. 

2020). 

Finally, we need to consider that no collaboration with a medical expert took place during 

this thesis. Therefore, some decisions that have been made during the creation of the 

datasets, that have been proven later not to be optimal, could be avoided. The state-of-

the-art algorithms, such as the HFO with the CNNs are available, thus, a collaboration 

with a medical expert is essential for using state-of-the-art techniques of the medical field 

as well.  
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Appendix A 

MLP Implementations 

A.1 MLP with Adam 

The following is the MLP implementation used for the experiments with the Adam 

optimizer. It executes 10 times each one of the 10-folds and the performance metrics is 

the average of the best execution of the 10 repetitions of each fold. Modifying the ‘reps’ 

variable changes the number of repetitions per fold. The following code tests the 

performance of different learning rates [0.3, 0.03, 0.003, 0.0003]. 

from sklearn.metrics import accuracy_score, log_loss 
from sklearn.preprocessing import StandardScaler 
from sklearn.neural_network import MLPClassifier 
from utilities import stats_output 
from datetime import datetime 
import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
import time 
import joblib 
import os 
import sys 
 
# np.set_printoptions(threshold=sys.maxsize) 
all_best_train_accuracies = [0]*10 
all_best_test_accuracies = [0]*10 
best_train_accuracies = [] 
best_test_accuracies = [] 
best_experiments = [1]*10 
 
# 10-fold cross-validation (10 training & test sets) 
folds = 10 
 
reps = 10 
 

def read_excel(file): 
    url = "./data/mri_features/" 
    excel_data = pd.read_excel(url + file) 
    # Read titles 
    titles = excel_data.columns.ravel() 
 
    # Read training set 
    X = [] 
    i = 0 
    for i in range(len(excel_data)):  # Each row 
        X.append(excel_data.iloc[i].to_numpy()[2:-1]) 
 
    # Read test set 
    y = np.array(excel_data[titles[-1]].tolist()) 
    i = 0 
    for i in range(0, len(y)): 
        if (y[i] == "NC"): 
            y[i] = 0 
        elif (y[i] == "AD"): 
            y[i] = 1 
 
    return X, y 
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def normalize(X_train, X_test): 
    # Scale values between -1 and 1 
    scaler = StandardScaler() 
    # Don't cheat - fit only on training data 
    scaler.fit(X_train) 
 
    X_train = scaler.transform(X_train) 
 
    # apply same transformation to test data 
    X_test = scaler.transform(X_test) 
    return X_train, X_test 
 

def run_model(folder, index, train_file, test_file, lr): 
    X_train, y_train = read_excel(train_file) 
    X_test, y_test = read_excel(test_file) 
 
    X_train, X_test = normalize(X_train, X_test) 
 
    # For overfitting 
    alpha = 7 
 
    # Epochs 
    N_EPOCHS = 500 
    N_BATCH = 512 
    N_TRAIN_SAMPLES = X_train.shape[0] 
    N_CLASSES = np.unique(y_train) 
 
    # ‘lbfgs’ is an optimizer in the family of quasi-Newton methods. 
    # ‘sgd’ refers to stochastic gradient descent. 
    # ‘adam’ refers to a stochastic gradient-
based optimizer proposed by Kingma, Diederik, and Jimmy Ba 
    solver = 'adam' 
 
    # momentum = 0.9 only used for SGD 
 
    # ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x 
    # ‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)). 
    # ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x). 
    # ‘relu’, the rectified linear unit function, returns f(x) = max(0, x) 
    activation = 'relu' 
 
    # Classification predicts label, regression predicts quantity 
    mlp = MLPClassifier(activation=activation, 
                        # early_stopping=True, 
                        # momentum=0.9, 
                        hidden_layer_sizes=[8, 8], 
                        solver=solver, alpha=alpha, 
                        max_iter=N_EPOCHS, 
                        learning_rate_init=lr) 
 
    scores_train = [] 
    scores_test = [] 
 
    loss_train = [] 
    loss_test = [] 
 
    # Print to a format friendly for excel 
    metrics_train_file = open( 
        folder + "metrics_train_file_" + str(index) + ".txt", 'w') 
    metrics_valid_file = open( 
        folder + "metrics_valid_file_" + str(index) + ".txt", 'w') 
 
    print("f{0}_train_epoch\tf{0}_train_tn\tf{0}_train_fp\tf{0}_train_fn\tf{0}_train_tp\tf{0}_
train_acc\tf{0}_train_ppv\tf{0}_train_npv\tf{0}_train_sensitivity\tf{0}_train_specificity\tf{0
}_train_b_acc\tf{0}_train_loss\tf{0}_train_epoch_time\tf{0}_train_lr".format(index), 
          file=metrics_train_file) 
    print("f{0}_valid_epoch\tf{0}_valid_tn\tf{0}_valid_fp\tf{0}_valid_fn\tf{0}_valid_tp\tf{0}_
valid_acc\tf{0}_valid_ppv\tf{0}_valid_npv\tf{0}_valid_sensitivity\tf{0}_valid_specificity\tf{0
}_valid_b_acc\tf{0}_valid_loss\tf{0}_valid_epoch_time\tf{0}_valid_lr".format(index), 
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          file=metrics_valid_file) 
 
    # Force to write immediately to file 
    metrics_train_file.flush() 
    metrics_valid_file.flush() 
 
    # Save the accuracies 
    # with open(folder + 'accuracies_' + str(index) + '.txt', 'w') as f1: 
    #     print('epoch:\ttrain_acc:\ttest_acc:', file=f1) 
 
    #     # Force to write immediately to file 
    #     f1.flush() 
 
    max_train_acc = 0 
    max_test_acc = 0 
    epoch = 0 
    while epoch < N_EPOCHS: 
 
        epoch_start = time.time() 
 
        # SHUFFLING 
        random_perm = np.random.permutation(X_train.shape[0]) 
        mini_batch_index = 0 
        while True: 
            # MINI-BATCH 
            indices = random_perm[mini_batch_index:mini_batch_index + N_BATCH] 
            mlp.partial_fit(X_train[indices], 
                            y_train[indices], classes=N_CLASSES) 
            mini_batch_index += N_BATCH 
 
            if mini_batch_index >= N_TRAIN_SAMPLES: 
                break 
 
        # exclude data loading time for fair comparison 
        epoch_end = time.time() 
 
        # SCORE TRAIN 
        scores_train.append(mlp.score(X_train, y_train)) 
 
        # SCORE TEST 
        scores_test.append(mlp.score(X_test, y_test)) 
 
        # print(epoch, '\t', scores_train[-1], 
        #         '\t', scores_test[-1], file=f1) 
 
        # # Force to write immediately to file 
        # f1.flush() 
 
        if max_test_acc < scores_test[-1]: 
            max_train_acc = scores_train[-1] 
            max_test_acc = scores_test[-1] 
            # Save the model 
            model_filename = folder + \ 
                'finalized_model' + str(index) + '.sav' 
            if os.path.exists(model_filename): 
                os.remove(model_filename) 
            joblib.dump(mlp, model_filename) 
 
        # Training Statistics 
        train_real = mlp.predict(X_train) 
        train_predict_proba = mlp.predict_proba(X_train) 
        loss_train.append(log_loss(y_train, train_predict_proba)) 
        # train_acc = accuracy_score(y_train, train_real) 
        stats_train_output, stats_train_file_output = stats_output( 
            "Training", epoch, y_train, train_real) 
 
        # Print train metrics in a text file friendly for Excel 
        stats_train_file_output += "{:.3f}\t{:.3f}\t{:.5f}".format( 
            loss_train[-1], 
            epoch_end-epoch_start, lr) 
        print(stats_train_file_output, file=metrics_train_file) 
 
        # Force to write immediately to file 
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        metrics_train_file.flush() 
 
        # Test Statistics 
        test_real = mlp.predict(X_test) 
        test_predict_proba = mlp.predict_proba(X_test) 
        loss_test.append(log_loss(y_test, test_predict_proba)) 
        # test_acc = accuracy_score(y_test, test_real) 
        stats_test_output, stats_test_file_output = stats_output( 
            "Validation", epoch, y_test, test_real) 
 
        # Print test metrics in a text file friendly for Excel 
        stats_test_file_output += "{:.3f}\t{:.3f}\t{:.5f}".format( 
            loss_test[-1], 
            epoch_end-epoch_start, lr) 
        print(stats_test_file_output,  file=metrics_valid_file) 
 
        # Force to write immediately to file 
        metrics_valid_file.flush() 
 
        epoch += 1 
 
    best_train_accuracies.append(max_train_acc) 
    best_test_accuracies.append(max_test_acc) 
 
    # Save to file accuracies 
    # rep_acc_file = open(folder + 'run_accuracies.txt', 'a') 
 
    # if (index == 1): 
    #     print('Fold\tTrain Acc\tValid Acc\t') 
 
    print(str(index), ':\t', max_train_acc, '\t', max_test_acc) 
    # print(str(index), ':\t', 
    #       max_train_acc, '\t', max_test_acc, file=rep_acc_file) 
 
    # Force to write immediately to file 
    # rep_acc_file.flush() 
 
    # # load the model from disk 
    # loaded_model = joblib.load('finalized_model.sav') 
    # result = loaded_model.score(X_test, Y_test) 
    # print(result) 
 
    # plt.clf() 
    # plt.plot(scores_train, color='green', alpha=0.8, label='Train') 
    # plt.plot(scores_test, color='magenta', alpha=0.8, label='Valid') 
    # plt.title("Accuracy over epochs", fontsize=14) 
    # plt.xlabel('Epochs') 
    # plt.legend(loc='upper left') 
    # plt.savefig(folder + 'accuracy_plot_' + str(index) + '.png') 
 
    # plt.clf() 
    # plt.plot(loss_train, color='green', alpha=0.8, label='Train') 
    # plt.plot(loss_test, color='magenta', alpha=0.8, label='Valid') 
    # plt.title("Loss over epochs", fontsize=14) 
    # plt.xlabel('Epochs') 
    # plt.legend(loc='upper left') 
    # plt.savefig(folder + 'loss_plot_' + str(index) + '.png') 
    return mlp.get_params() 
 

def read_file(folder): 
    modes = ["train", "valid"] 
    for m in range(2): 
        all_lines = [""] * 501 
        for fold in range(1, 11): 
            file_path = folder + "Experiment_" + \ 
                str(fold) + "_" + str(best_experiments[fold - 1]) + "/" + "metrics_" + \ 
                str(modes[m]) + "_file_" + str(fold) + ".txt" 
            print(file_path) 
            file = open(file_path, 'r') 
            lines = file.readlines() 
            count = 0 
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            for line in lines: 
                line_str = line.strip() 
                if (count == 0): 
                    first_line = line.strip().split("\t") 
                    line_str = "\t".join(first_line) 
                all_lines[count] = all_lines[count] + line_str 
 
                if(fold != 10): 
                    all_lines[count] = all_lines[count] + "\t\t" 
                count += 1 
 
        file_w = open(folder + modes[m] + "_file.txt", 'w') 
        for line in all_lines: 
            print(line, file=file_w) 
 

def main(): 
    lrs = [0.3, 0.03, 0.003, 0.0003] 
    for lr in lrs: 
        print("\n\nLearning Rate: " + str(lr)) 
        global all_best_train_accuracies 
        global all_best_test_accuracies 
        global best_train_accuracies 
        global best_test_accuracies 
        global best_experiments 
 
        all_best_train_accuracies = [0]*10 
        all_best_test_accuracies = [0]*10 
        best_train_accuracies = [] 
        best_test_accuracies = [] 
        best_experiments = [1]*10 
 
        start_time = datetime.now().strftime("%d-%m-%Y_%H-%M-%S") 
        main_folder = "./Experiments/MLP_Adam/Experiments_LR" + \ 
            str(lr).replace(".", "") + "_" + start_time + "/" 
        os.makedirs(main_folder) 
 
        for r in range(1, reps + 1): 
            print("\n\nRepetition " + str(r) + "\n") 
 
            for f in range(1, folds + 1): 
                sub_folder = main_folder + "Experiment_" + \ 
                    str(f) + "_" + str(r) + "/" 
                os.makedirs(sub_folder) 
 
                parameters = run_model(sub_folder, f, 'TrainSet'+str(f) + '.xlsx', 
                                       'testset' + str(f) + '.xlsx', lr) 
 
                if r == 1 and f == 1: 
                    info_file = open( 
                        main_folder + "network_info_parameters.txt", 'w') 
                    print(parameters, file=info_file) 
                    info_file.flush() 
 
            # Find the best trianing and test accuracy based on the maximum test accuracy 
            # Print in concole 
            print(best_train_accuracies) 
            print(best_test_accuracies) 
            print("\n") 
            print("Average of Best Train Accuracies: ", 
                  sum(best_train_accuracies)/folds) 
            print("Average of Best Valid Accuracies: ", 
                  sum(best_test_accuracies)/folds) 
 
            for b in range(0, len(best_test_accuracies)): 
                if best_test_accuracies[b] > all_best_test_accuracies[b]: 
                    all_best_test_accuracies[b] = float( 
                        best_test_accuracies[b]) 
                    all_best_train_accuracies[b] = float( 
                        best_train_accuracies[b]) 
                    best_experiments[b] = r 
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            best_train_accuracies.clear() 
            best_test_accuracies.clear() 
 
        print("\nBest Experiments per Fold:") 
        print(best_experiments) 
 
        print("\nBest Accuracies per Fold:") 
        print("Train\tValid") 
        for i in range(len(all_best_train_accuracies)): 
            print(str(all_best_train_accuracies[i]) + 
                  "\t" + str(all_best_test_accuracies[i])) 
        print("\n\nCollecting Data:") 
        read_file(main_folder) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet A.1. MLP network with Adam optimizer. 

A.2 MLP with SGD 

The following code which is being used for MLP experiments with the SGD optimizer is 

very similar to the Adam one. It repeats 10 times each one of the 10-folds and takes the 

best ones per fold to calculate the average performance metrics.  

from sklearn.metrics import accuracy_score, log_loss 
from sklearn.preprocessing import StandardScaler 
from sklearn.neural_network import MLPClassifier 
from utilities import stats_output 
from datetime import datetime 
import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
import time 
import joblib 
import os 
import sys 
 
# np.set_printoptions(threshold=sys.maxsize) 
all_best_train_accuracies = [0]*10 
all_best_test_accuracies = [0]*10 
best_train_accuracies = [] 
best_test_accuracies = [] 
best_experiments = [1]*10 
 
# 10-fold cross-validation (10 training & test sets) 
folds = 10 
 
reps = 10 
 

def read_excel(file): 
    url = "./data/mri_features/" 
    excel_data = pd.read_excel(url + file) 
    # Read titles 
    titles = excel_data.columns.ravel() 
 
    # Read training set 
    X = [] 
    i = 0 
    for i in range(len(excel_data)):  # Each row 
        X.append(excel_data.iloc[i].to_numpy()[2:-1]) 
 
    # Read test set 
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    y = np.array(excel_data[titles[-1]].tolist()) 
    i = 0 
    for i in range(0, len(y)): 
        if (y[i] == "NC"): 
            y[i] = 0 
        elif (y[i] == "AD"): 
            y[i] = 1 
 
    return X, y 
 

def normalize(X_train, X_test): 
    # Scale values between -1 and 1 
    scaler = StandardScaler() 
    # Don't cheat - fit only on training data 
    scaler.fit(X_train) 
 
    X_train = scaler.transform(X_train) 
 
    # # apply same transformation to test data 
    X_test = scaler.transform(X_test) 
    return X_train, X_test 
 

def run_model(folder, index, train_file, test_file, lr): 
    X_train, y_train = read_excel(train_file) 
    X_test, y_test = read_excel(test_file) 
 
    X_train, X_test = normalize(X_train, X_test) 
 
    # For overfitting 
    alpha = 7 
 
    # Epochs 
    N_EPOCHS = 500 
    N_BATCH = 512 
    N_TRAIN_SAMPLES = X_train.shape[0] 
    N_CLASSES = np.unique(y_train) 
 
    # ‘lbfgs’ is an optimizer in the family of quasi-Newton methods. 
    # ‘sgd’ refers to stochastic gradient descent. 
    # ‘adam’ refers to a stochastic gradient-
based optimizer proposed by Kingma, Diederik, and Jimmy Ba 
    solver = 'sgd' 
 
    # momentum = 0.9 only used for SGD 
 
    # ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x 
    # ‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)). 
    # ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x). 
    # ‘relu’, the rectified linear unit function, returns f(x) = max(0, x) 
    activation = 'relu' 
 
    # Classification predicts label, regression predicts quantity 
    mlp = MLPClassifier(activation=activation, 
                        # early_stopping=True, 
                        momentum=0.8, 
                        hidden_layer_sizes=[8, 8], 
                        solver=solver, alpha=alpha, 
                        max_iter=N_EPOCHS, 
                        learning_rate_init=lr) 
 
    scores_train = [] 
    scores_test = [] 
 
    loss_train = [] 
    loss_test = [] 
 
    # Print to a format friendly for excel 
    metrics_train_file = open( 
        folder + "metrics_train_file_" + str(index) + ".txt", 'w') 
    metrics_valid_file = open( 
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        folder + "metrics_valid_file_" + str(index) + ".txt", 'w') 
 
    print("f{0}_train_epoch\tf{0}_train_tn\tf{0}_train_fp\tf{0}_train_fn\tf{0}_train_tp\tf{0}_
train_acc\tf{0}_train_ppv\tf{0}_train_npv\tf{0}_train_sensitivity\tf{0}_train_specificity\tf{0
}_train_b_acc\tf{0}_train_loss\tf{0}_train_epoch_time\tf{0}_train_lr".format(index), 
          file=metrics_train_file) 
    print("f{0}_valid_epoch\tf{0}_valid_tn\tf{0}_valid_fp\tf{0}_valid_fn\tf{0}_valid_tp\tf{0}_
valid_acc\tf{0}_valid_ppv\tf{0}_valid_npv\tf{0}_valid_sensitivity\tf{0}_valid_specificity\tf{0
}_valid_b_acc\tf{0}_valid_loss\tf{0}_valid_epoch_time\tf{0}_valid_lr".format(index), 
          file=metrics_valid_file) 
 
    # Force to write immediately to file 
    metrics_train_file.flush() 
    metrics_valid_file.flush() 
 
    # Save the accuracies 
    # with open(folder + 'accuracies_' + str(index) + '.txt', 'w') as f1: 
    #     print('epoch:\ttrain_acc:\ttest_acc:', file=f1) 
 
    #     # Force to write immediately to file 
    #     f1.flush() 
 
    max_train_acc = 0 
    max_test_acc = 0 
    epoch = 0 
    while epoch < N_EPOCHS: 
 
        epoch_start = time.time() 
 
        # SHUFFLING 
        random_perm = np.random.permutation(X_train.shape[0]) 
        mini_batch_index = 0 
        while True: 
            # MINI-BATCH 
            indices = random_perm[mini_batch_index:mini_batch_index + N_BATCH] 
            mlp.partial_fit(X_train[indices], 
                            y_train[indices], classes=N_CLASSES) 
            mini_batch_index += N_BATCH 
 
            if mini_batch_index >= N_TRAIN_SAMPLES: 
                break 
 
        # exclude data loading time for fair comparison 
        epoch_end = time.time() 
 
        # SCORE TRAIN 
        scores_train.append(mlp.score(X_train, y_train)) 
 
        # SCORE TEST 
        scores_test.append(mlp.score(X_test, y_test)) 
 
        # print(epoch, '\t', scores_train[-1], 
        #         '\t', scores_test[-1], file=f1) 
 
        # # Force to write immediately to file 
        # f1.flush() 
 
        if max_test_acc < scores_test[-1]: 
            max_train_acc = scores_train[-1] 
            max_test_acc = scores_test[-1] 
            # Save the model 
            model_filename = folder + \ 
                'finalized_model' + str(index) + '.sav' 
            if os.path.exists(model_filename): 
                os.remove(model_filename) 
            joblib.dump(mlp, model_filename) 
 
        # Training Statistics 
        train_real = mlp.predict(X_train) 
        train_predict_proba = mlp.predict_proba(X_train) 
        loss_train.append(log_loss(y_train, train_predict_proba)) 
        # train_acc = accuracy_score(y_train, train_real) 
        stats_train_output, stats_train_file_output = stats_output( 
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            "Training", epoch, y_train, train_real) 
 
        # Print train metrics in a text file friendly for Excel 
        stats_train_file_output += "{:.3f}\t{:.3f}\t{:.5f}".format( 
            loss_train[-1], 
            epoch_end-epoch_start, lr) 
        print(stats_train_file_output, file=metrics_train_file) 
 
        # Force to write immediately to file 
        metrics_train_file.flush() 
 
        # Test Statistics 
        test_real = mlp.predict(X_test) 
        test_predict_proba = mlp.predict_proba(X_test) 
        loss_test.append(log_loss(y_test, test_predict_proba)) 
        # test_acc = accuracy_score(y_test, test_real) 
        stats_test_output, stats_test_file_output = stats_output( 
            "Validation", epoch, y_test, test_real) 
 
        # Print test metrics in a text file friendly for Excel 
        stats_test_file_output += "{:.3f}\t{:.3f}\t{:.5f}".format( 
            loss_test[-1], 
            epoch_end-epoch_start, lr) 
        print(stats_test_file_output,  file=metrics_valid_file) 
 
        # Force to write immediately to file 
        metrics_valid_file.flush() 
 
        epoch += 1 
 
    best_train_accuracies.append(max_train_acc) 
    best_test_accuracies.append(max_test_acc) 
 
    # Save to file accuracies 
    # rep_acc_file = open(folder + 'run_accuracies.txt', 'a') 
 
    # if (index == 1): 
    #     print('Fold\tTrain Acc\tValid Acc\t') 
 
    print(str(index), ':\t', max_train_acc, '\t', max_test_acc) 
    # print(str(index), ':\t', 
    #       max_train_acc, '\t', max_test_acc, file=rep_acc_file) 
 
    # Force to write immediately to file 
    # rep_acc_file.flush() 
 
    # # load the model from disk 
    # loaded_model = joblib.load('finalized_model.sav') 
    # result = loaded_model.score(X_test, Y_test) 
    # print(result) 
 
    # plt.clf() 
    # plt.plot(scores_train, color='green', alpha=0.8, label='Train') 
    # plt.plot(scores_test, color='magenta', alpha=0.8, label='Valid') 
    # plt.title("Accuracy over epochs", fontsize=14) 
    # plt.xlabel('Epochs') 
    # plt.legend(loc='upper left') 
    # plt.savefig(folder + 'accuracy_plot_' + str(index) + '.png') 
 
    # plt.clf() 
    # plt.plot(loss_train, color='green', alpha=0.8, label='Train') 
    # plt.plot(loss_test, color='magenta', alpha=0.8, label='Valid') 
    # plt.title("Loss over epochs", fontsize=14) 
    # plt.xlabel('Epochs') 
    # plt.legend(loc='upper left') 
    # plt.savefig(folder + 'loss_plot_' + str(index) + '.png') 
    return mlp.get_params() 
 

def read_file(folder): 
    modes = ["train", "valid"] 
    for m in range(2): 
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        all_lines = [""] * 501 
        for fold in range(1, 11): 
            file_path = folder + "Experiment_" + \ 
                str(fold) + "_" + str(best_experiments[fold - 1]) + "/" + "metrics_" + \ 
                str(modes[m]) + "_file_" + str(fold) + ".txt" 
            print(file_path) 
            file = open(file_path, 'r') 
            lines = file.readlines() 
            count = 0 
            for line in lines: 
                line_str = line.strip() 
                if (count == 0): 
                    first_line = line.strip().split("\t") 
                    line_str = "\t".join(first_line) 
                all_lines[count] = all_lines[count] + line_str 
 
                if(fold != 10): 
                    all_lines[count] = all_lines[count] + "\t\t" 
                count += 1 
 
        file_w = open(folder + modes[m] + "_file.txt", 'w') 
        for line in all_lines: 
            print(line, file=file_w) 
 

def main(): 
    lrs = [0.3, 0.03, 0.003, 0.0003] 
    for lr in lrs: 
        print("\n\nLearning Rate: " + str(lr)) 
        global all_best_train_accuracies 
        global all_best_test_accuracies 
        global best_train_accuracies 
        global best_test_accuracies 
        global best_experiments 
 
        all_best_train_accuracies = [0]*10 
        all_best_test_accuracies = [0]*10 
        best_train_accuracies = [] 
        best_test_accuracies = [] 
        best_experiments = [1]*10 
 
        start_time = datetime.now().strftime("%d-%m-%Y_%H-%M-%S") 
        main_folder = "./Experiments/MLP_SGD/Experiments_LR" + \ 
            str(lr).replace(".", "") + "_" + start_time + "/" 
        os.makedirs(main_folder) 
 
        for r in range(1, reps + 1): 
            print("\n\nRepetition " + str(r) + "\n") 
 
            for f in range(1, folds + 1): 
                sub_folder = main_folder + "Experiment_" + \ 
                    str(f) + "_" + str(r) + "/" 
                os.makedirs(sub_folder) 
 
                parameters = run_model(sub_folder, f, 'TrainSet'+str(f) + '.xlsx', 
                                       'testset' + str(f) + '.xlsx', lr) 
 
                if r == 1 and f == 1: 
                    info_file = open( 
                        main_folder + "network_info_parameters.txt", 'w') 
                    print(parameters, file=info_file) 
                    info_file.flush() 
 
            # Find the best trianing and test accuracy based on the maximum test accuracy 
            # Print in concole 
            print(best_train_accuracies) 
            print(best_test_accuracies) 
            print("\n") 
            print("Average of Best Train Accuracies: ", 
                  sum(best_train_accuracies)/folds) 
            print("Average of Best Valid Accuracies: ", 
                  sum(best_test_accuracies)/folds) 
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            for b in range(0, len(best_test_accuracies)): 
                if best_test_accuracies[b] > all_best_test_accuracies[b]: 
                    all_best_test_accuracies[b] = float( 
                        best_test_accuracies[b]) 
                    all_best_train_accuracies[b] = float( 
                        best_train_accuracies[b]) 
                    best_experiments[b] = r 
 
            best_train_accuracies.clear() 
            best_test_accuracies.clear() 
 
        print("\nBest Experiments per Fold:") 
        print(best_experiments) 
 
        print("\nBest Accuracies per Fold:") 
        print("Train\tValid") 
        for i in range(len(all_best_train_accuracies)): 
            print(str(all_best_train_accuracies[i]) + 
                  "\t" + str(all_best_test_accuracies[i])) 
        print("\n\nCollecting Data:") 
        read_file(main_folder) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 

 

Code Snippet A.2. MLP network with SGD optimizer. 

A.3 MLP with HFO 

The files main.py and FFNet.py are being used for the experiments with MLP and the 

HFO optimizer. The code repeats 10 times the execution of each one of the 10-folds and 

takes the best one for each fold to compute the average performance metrics of the model. 

The code runs experiments for the following distinct values of CG iterations = [1, 2, 4, 8, 

16, 32]. 

A.3.1 main.py 

from __future__ import print_function 
from sklearn.preprocessing import StandardScaler 
 
import ast 
from cProfile import Profile 
import pickle 
import pstats 
import os 
import sys 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from datetime import datetime 
 
import hessianfree as hf 
import time 
from FFNet.FFNet import FFNet 
 
# np.set_printoptions(threshold=sys.maxsize) 
all_best_train_accuracies = [0]*10 
all_best_test_accuracies = [0]*10 
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best_train_accuracies = [] 
best_test_accuracies = [] 
best_experiments = [1]*10 
 
# 10-fold cross-validation (10 training & test sets) 
folds = 10 
 
# Repetitions per cross-validation 
reps = 10 
 

def read_excel(file): 
    url = "./data/mri_features/" 
    excel_data = pd.read_excel(url + file) 
    # Read titles 
    titles = excel_data.columns.ravel() 
 
    # Read training set 
    X = [] 
    i = 0 
    for i in range(len(excel_data)):  # Each row 
        X.append(excel_data.iloc[i].to_numpy()[2:-1]) 
 
    # Read test set 
    t = np.array(excel_data[titles[-1]].tolist()) 
    y = [] 
    i = 0 
    for i in range(0, len(t)): 
        if (t[i] == "NC"): 
            y.append([0]) 
        elif (t[i] == "AD"): 
            y.append([1]) 
 
    return X, y 
 

def normalize(X_train, X_test): 
    # Scale values between -1 and 1 
    scaler = StandardScaler() 
    # Don't cheat - fit only on training data 
    scaler.fit(X_train) 
 
    X_train = scaler.transform(X_train) 
 
    # # apply same transformation to test data 
    X_test = scaler.transform(X_test) 
    return X_train, X_test 
 

def get_accuracy(ff, X, y): 
    outputs = ff.forward(X)[-1] 
    correct = 0 
    for i in range(len(outputs)): 
        # print("-" * 2) 
        # print("input", X[i]) 
        # print("target", y[i]) 
        # print("output", outputs[i]) 
        if (outputs[i] < 0.5): 
            n_output = 0 
        else: 
            n_output = 1 
        # print('n_output', 0) 
        if (n_output == y[i]): 
            correct += 1 
    acc = correct / len(outputs) 
    return acc 
 

def run_model(folder, fold, train_file, test_file, N_EPOCHS, CGiter, hidden_layers_net, use_hf
=True): 
    """Run a basic xor training test. 
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    :param bool use_hf: if True run example using Hessian-Free Optimization, 
        otherwise use stochastic gradient descent 
    """ 
    X_train, y_train = read_excel(train_file) 
    X_test, y_test = read_excel(test_file) 
 
    inputs_dim = len(X_train[0]) 
 
    X_train, X_test = normalize(X_train, X_test) 
 
    X_train = np.asarray(X_train, dtype=np.float32) 
    y_train = np.asarray(y_train, dtype=np.float32) 
 
    X_test = np.asarray(X_test, dtype=np.float32) 
    y_test = np.asarray(y_test, dtype=np.float32) 
 
    net = [inputs_dim] + hidden_layers_net + [1] 
    # print("Inputs Dimensions: " + str(inputs_dim)) 
    # print("Network architecture: ", str(net)) 
 
    if use_hf: 
 
        # Use the hessian free optimizer 
        # Create feed forward net with 12 inputs, 5 hidden nodes and 2 output 
        ff = FFNet(net, debug=False) 
        max_train_acc, max_test_acc = ff.run_epochs(X_train, y_train, folder, fold, 
                                                    optimizer=hf.opt.HessianFree( 
                                                        CG_iter=CGiter), 
                                                    test=(X_test, y_test), 
                                                    test_err=hf.loss_funcs.SquaredError(), 
                                                    print_period=200, 
                                                    max_epochs=N_EPOCHS, plotting=False, 
                                                    file_output=folder + "model_" + str(fold)) 
    else: 
        # using gradient descent (for comparison) 
        ff = FFNet([inputs_dim, 10, 1], debug=False) 
        ff.run_epochs(X_train, y_train, folder, fold, optimizer=hf.opt.SGD(l_rate=1), 
                      max_epochs=1000, print_period=100, test=(X_test, y_test), test_err=hf.lo
ss_funcs.SquaredError(), 
                      file_output=folder + "model_" + str(fold), plotting=False) 
 
    best_train_accuracies.append(max_train_acc) 
    best_test_accuracies.append(max_test_acc) 
 
    # Save to file accuracies 
    rep_acc_file = open(folder + 'run_accuracies.txt', 'a') 
 
    if (fold == 1): 
        print('Fold\tTrain Acc\tValid Acc\t') 
 
    print(str(fold), ':\t', max_train_acc, '\t', max_test_acc) 
    print(str(fold), ':\t', 
          max_train_acc, '\t', max_test_acc, file=rep_acc_file) 
 
    # Force to write immediately to file 
    rep_acc_file.flush() 
 
    # ff.run_epochs(X_train, y_train, 
    #               optimizer=hf.opt.HessianFree(CG_iter=250, 
    #                                            init_damping=45), 
    #               minibatch_size=7500, max_epochs=125, 
    #               plotting=True) 
    # print("classification error", 
    #       hf.loss_funcs.ClassificationError().batch_loss(y_test, X_test)) 
 

def display_plots(filename): 
    # View Plots 
    hf.dataplotter.run(filename) 
 

def read_file(folder): 
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    modes = ["train", "valid"] 
    for m in range(2): 
        all_lines = [""] * 101 
        for fold in range(1, 11): 
            file_path = folder + "Experiment_" + \ 
                str(fold) + "_" + str(best_experiments[fold - 1]) + "/" + "metrics_" + \ 
                str(modes[m]) + "_file_" + str(fold) + ".txt" 
            print(file_path) 
            file = open(file_path, 'r') 
            lines = file.readlines() 
            count = 0 
            for line in lines: 
                line_str = line.strip() 
                if (count == 0): 
                    first_line = line.strip().split("\t") 
                    line_str = "\t".join(first_line) 
                all_lines[count] = all_lines[count] + line_str 
 
                if (count == 0): 
                    all_lines[count] = all_lines[count] + "\t\t" 
                elif(fold != 10): 
                    all_lines[count] = all_lines[count] + "\t\t\t" 
                count += 1 
 
        file_w = open(folder + modes[m] + "_file.txt", 'w') 
        for line in all_lines: 
            print(line, file=file_w) 
 

def main(): 
 
    # modes = ['HFO', 'SGD'] 
 
    CGiters = [1, 2, 4, 8, 16, 32] 
    N_EPOCHS = 100 
    mode = 'HFO' 
    hidden_layers_net = [30] 
 
    for CGiter in CGiters: 
        global all_best_train_accuracies 
        global all_best_test_accuracies 
        global best_train_accuracies 
        global best_test_accuracies 
        global best_experiments 
 
        all_best_train_accuracies = [0]*10 
        all_best_test_accuracies = [0]*10 
        best_train_accuracies = [] 
        best_test_accuracies = [] 
        best_experiments = [1]*10 
 
        start_time = datetime.now().strftime("%d-%m-%Y_%H-%M-%S") 
        main_folder = "./Experiments/MLP_" + mode + \ 
            "/Experiments_CGiter" + str(CGiter) + "_" + start_time + "/" 
        os.makedirs(main_folder) 
 
        info_file = open( 
            main_folder + "network_info_parameters_CG" + str(CGiter) + ".txt", 'w') 
        print(str(hidden_layers_net) + ", epochs: " + str(N_EPOCHS) + 
              ", CG iter: " + str(CGiter) + ", mode: " + mode, file=info_file) 
        # Force to write immediately to file 
        info_file.flush() 
 
        if (mode == 'HFO'): 
            use_hf = True 
        else: 
            use_hf = False 
 
        for r in range(1, reps + 1): 
            print("\n\nRepetition " + str(r) + "\n") 
 
            for f in range(1, folds + 1): 
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                sub_folder = main_folder + "Experiment_" + \ 
                    str(f) + "_" + str(r) + "/" 
                os.makedirs(sub_folder) 
 
                run_model(sub_folder, f, 'TrainSet'+str(f) + '.xlsx', 
                          'testset' + str(f) + '.xlsx', N_EPOCHS,  CGiter, hidden_layers_net, 
use_hf=use_hf) 
 
            print(best_train_accuracies) 
            print(best_test_accuracies) 
            print("\n") 
            print("Average of Best Train Accuracies: ", 
                  sum(best_train_accuracies)/folds) 
            print("Average of Best Valid Accuracies: ", 
                  sum(best_test_accuracies)/folds) 
 
            for b in range(0, len(best_test_accuracies)): 
                if best_test_accuracies[b] > all_best_test_accuracies[b]: 
                    all_best_test_accuracies[b] = float( 
                        best_test_accuracies[b]) 
                    all_best_train_accuracies[b] = float( 
                        best_train_accuracies[b]) 
                    best_experiments[b] = r 
 
            best_train_accuracies.clear() 
            best_test_accuracies.clear() 
 
        print("\nBest Experiments per Fold:") 
        print(best_experiments) 
 
        print("\nBest Accuracies per Fold:") 
        print("Train\tValid") 
        for i in range(len(all_best_train_accuracies)): 
            print(str(all_best_train_accuracies[i]) + 
                  "\t" + str(all_best_test_accuracies[i])) 
        print("\n\nCollecting Data:") 
        read_file(main_folder) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet A.3. The main of the MLP network with HFO optimizer. 

A.3.2 FFNet.py 

"""Implementation of feedforward network, including Gauss-Newton approximation 
for use in Hessian-Free Optimization. 
 
.. codeauthor:: Daniel Rasmussen <daniel.rasmussen@appliedbrainresearch.com> 
 
Based on 
Martens, J. (2010). Deep learning via Hessian-Free Optimization. In Proceedings 
of the 27th International Conference on Machine Learning. 
""" 
 
from __future__ import print_function 
import matplotlib.pyplot as plt 
import time 
 
from collections import defaultdict, OrderedDict 
import pickle 
import warnings 
 
import numpy as np 
 
import hessianfree as hf 
 
from utilities import stats_output 



A-16 

 

from sklearn.metrics import confusion_matrix 
 

class FFNet(object): 
    """Implementation of feed-forward network (including gradient/curvature 
    computation). 
 
    :param list shape: the number of neurons in each layer 
    :param layers: nonlinearity to use in the network (or a list giving a 
        nonlinearity for each layer) 
    :type layers: :class:`~.nonlinearities.Nonlinearity` or `list` 
    :param dict conns: dictionary of the form `{layer_x:[layer_y, layer_z], 
        ...}` specifying the connections between layers (default is to 
        connect in series) 
    :param loss_type: loss function (or list of loss functions) used to 
        evaluate network 
    :type loss_type: :class:`~.loss_funcs.LossFunction` or `list` 
    :param dict W_init_params: parameters passed to :meth:`.init_weights` 
        (see parameter descriptions in that function) 
    :param bool use_GPU: run curvature computation on GPU (requires 
        PyCUDA and scikit-cuda) 
    :param load_weights: load initial weights from given array or filename 
    :type load_weights: `str` or :class:`~numpy:numpy.ndarray` 
    :param bool debug: activates expensive features to help with debugging 
    :param rng: used to generate any random numbers for this network (use 
        this to control the seed) 
    :type rng: :class:`~numpy:numpy.random.RandomState` 
    :param dtype: floating point precision used throughout the network 
    :type dtype: :class:`~numpy:numpy.dtype` 
    """ 
 
    def __init__(self, shape, layers=hf.nl.Logistic(), conns=None, 
                 loss_type=hf.loss_funcs.SquaredError(), W_init_params=None, 
                 use_GPU=False, load_weights=None, debug=False, rng=None, 
                 dtype=np.float32): 
 
        self.debug = debug 
        self.shape = shape 
        self.n_layers = len(shape) 
        self.dtype = np.float64 if debug else dtype 
        self.mask = None 
        self._optimizer = None 
        self.rng = np.random.RandomState() if rng is None else rng 
 
        # note: this isn't used internally, it is just here so that an 
        # external process with a handle to this object can tell what epoch 
        # it is on 
        self.epoch = None 
 
        self.inputs = None 
        self.targets = None 
        self.activations = None 
        self.d_activations = None 
        self.scores_train = [] 
        self.scores_test = [] 
        self.loss_train = [] 
        self.loss_test = [] 
        self.test_errs = [] 
        # initialize layer nonlinearities 
        if not isinstance(layers, (list, tuple)): 
            if isinstance(layers, hf.nl.Nonlinearity) and layers.stateful: 
                warnings.warn("Multiple layers sharing stateful nonlinearity, " 
                              "consider creating a separate instance for each " 
                              "layer.") 
            layers = [layers for _ in range(self.n_layers)] 
            layers[0] = hf.nl.Linear() 
 
        if len(layers) != len(shape): 
            raise ValueError("Number of nonlinearities (%d) does not match " 
                             "number of layers (%d)" % 
                             (len(layers), len(shape))) 
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        self.layers = [] 
        for t in layers: 
            if isinstance(t, str): 
                # look up the nonlinearity with the given name 
                t = getattr(hf.nl, t)() 
            if not isinstance(t, hf.nl.Nonlinearity): 
                raise TypeError("Layer type (%s) must be an instance of " 
                                "nonlinearities.Nonlinearity" % t) 
            self.layers += [t] 
 
        # initialize loss function 
        self.init_loss(loss_type) 
 
        # initialize connections 
        if conns is None: 
            # set up the feedforward series connections 
            conns = {} 
            for pre, post in zip(np.arange(self.n_layers - 1), 
                                 np.arange(1, self.n_layers)): 
                conns[pre] = [post] 
 
        self.conns = OrderedDict(sorted(conns.items(), key=lambda x: x[0])) 
        # note: conns is an ordered dict sorted by layer so that we can 
        # reliably loop over the items (in compute_offsets and init_weights) 
 
        # maintain a list of backwards connections as well (for efficient 
        # lookup in the other direction) 
        self.back_conns = defaultdict(list) 
        for pre in conns: 
            for post in conns[pre]: 
                self.back_conns[post] += [pre] 
 
                if pre >= post: 
                    raise ValueError("Can only connect from lower to higher " 
                                     "layers (%s >= %s)" % (pre, post)) 
 
        # add empty connection for first/last layer (just helps smooth the code 
        # elsewhere) 
        self.conns[self.n_layers - 1] = [] 
        self.back_conns[0] = [] 
 
        # compute indices for the different connection weight matrices in the 
        # overall parameter vector 
        self.compute_offsets() 
 
        # initialize connection weights 
        if load_weights is None: 
            if W_init_params is None: 
                W_init_params = {} 
            self.W = self.init_weights( 
                [(self.shape[pre], self.shape[post]) 
                 for pre in self.conns for post in self.conns[pre]], 
                **W_init_params) 
        else: 
            if isinstance(load_weights, np.ndarray): 
                self.W = load_weights 
            else: 
                # load weights from file 
                self.W = np.load(load_weights) 
 
            if len(self.W) != np.max(list(self.offsets.values())): 
                raise IndexError( 
                    "Length of loaded weights (%s) does not match expected " 
                    "length (%s)" % (len(self.W), 
                                     np.max(list(self.offsets.values())))) 
 
            if self.W.dtype != self.dtype: 
                raise TypeError("Loaded weights dtype (%s) doesn't match " 
                                "self.dtype (%s)" % (self.W.dtype, self.dtype)) 
 
        # initialize GPU 
        if use_GPU: 
            try: 
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                import pycuda 
                import skcuda 
            except Exception as e: 
                print(e) 
                raise ImportError("PyCuda/scikit-cuda not installed. " 
                                  "Set use_GPU=False.") 
 
            hf.gpu.init_kernels() 
 
        self.use_GPU = use_GPU 
 
    def get_binary_target(self, arr): 
        output = [] 
        for i in range(len(arr)): 
            # print("-" * 2) 
            # print("input", X[i]) 
            # print("target", y[i]) 
            # print("output", outputs[i]) 
            if (arr[i] < 0.5): 
                output.append(0) 
            else: 
                output.append(1) 
        return output 
 
    def get_acc(self, target, real): 
 
        conf_matrix = confusion_matrix(target, real) 
 
        tn = conf_matrix[0][0] 
        fp = conf_matrix[0][1] 
        fn = conf_matrix[1][0] 
        tp = conf_matrix[1][1] 
        total = len(target) 
 
        # print(classification_report(target, real)) 
 
        acc = "{:.3f}".format((tp + tn) / total) 
        return acc 
 
    def stats(self, epoch, epoch_time, X_train, y_train,  X_test, y_test,   metrics_train_file
, metrics_valid_file): 
        # Training Statistics 
        train_real = self.get_binary_target(self.forward(X_train)[-1]) 
        train_loss = self.error(self.W, X_train, y_train) 
 
        self.loss_train.append(train_loss) 
        self.scores_train.append(self.get_acc(y_train, train_real)) 
 
        stats_train_output, stats_train_file_output = stats_output( 
            "Training", epoch, y_train, train_real) 
 
        # Print train metrics in a text file friendly for Excel 
        stats_train_file_output += "{:.3f}\t{:.3f}".format( 
            train_loss, epoch_time) 
        print(stats_train_file_output, file=metrics_train_file) 
        metrics_train_file.flush() 
 
        # Test Statistics 
        test_real = self.get_binary_target(self.forward(X_test)[-1]) 
        test_loss = self.error(self.W, X_test, y_test) 
 
        self.loss_test.append(test_loss) 
        self.scores_test.append(self.get_acc(y_test, test_real)) 
 
        stats_test_output, stats_test_file_output = stats_output( 
            "Testing", epoch, y_test, test_real) 
 
        # Print test metrics in a text file friendly for Excel 
        stats_test_file_output += "{:.3f}\t{:.3f}".format( 
            test_loss, epoch_time) 
        print(stats_test_file_output, file=metrics_valid_file) 
        metrics_valid_file.flush() 
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    def run_epochs(self, inputs, targets, folder, index, optimizer, 
                   max_epochs=100, minibatch_size=None, test=None, 
                   test_err=None, target_err=1e-6, plotting=False, 
                   file_output=None, print_period=10): 
        """Apply the given optimizer with a sequence of (mini)batches. 
 
        :param inputs: input vectors (or a :class:`~.nonlinearities.Plant` that 
            will generate the input vectors dynamically) 
        :type inputs: :class:`~numpy:numpy.ndarray` or 
            :class:`~.nonlinearities.Plant` 
        :param targets: target vectors corresponding to each input vector (or 
            None if a plant is being used) 
        :type targets: :class:`~numpy:numpy.ndarray` 
        :param optimizer: computes the weight update each epoch (see 
            optimizers.py) 
        :param int max_epochs: the maximum number of epochs to run 
        :param int minibatch_size: the size of the minibatch to use in each epoch 
            (or None to use full batches) 
        :param tuple test: tuple of (inputs,targets) to use as the test data 
            (if None then the same inputs and targets as training will be used) 
        :param test_err: a custom error function to be applied to 
            the test data (e.g., classification error) 
        :type test_err: :class:`~.loss_funcs.LossFunction` 
        :param float target_err: run will terminate if this test error is 
            reached 
        :param str file_output: output files from the run will use this as a 
            prefix (if None then don't output files) 
        :param bool plotting: if True then data from the run will be output to 
            a file, which can be displayed via dataplotter.py 
        :param int print_period: print out information about the run every `x` 
            epochs 
        """ 
 
        self.scores_train.clear() 
        self.scores_test.clear() 
        self.loss_train.clear() 
        self.loss_test.clear() 
        self.test_errs.clear() 
 
        self.best_W = None 
        self.best_error = None 
        prefix = "HF" if file_output is None else file_output 
        minibatch_size = minibatch_size or inputs.shape[0] 
        plots = defaultdict(list) 
        self.optimizer = optimizer 
 
        # Print to a format friendly for excel 
        metrics_train_file = open( 
            folder + "metrics_train_file_" + str(index) + ".txt", 'w') 
        metrics_valid_file = open( 
            folder + "metrics_valid_file_" + str(index) + ".txt", 'w') 
 
        print("f{0}_train_epoch\tf{0}_train_tn\tf{0}_train_fp\tf{0}_train_fn\tf{0}_train_tp\tf
{0}_train_acc\tf{0}_train_ppv\tf{0}_train_npv\tf{0}_train_sensitivity\tf{0}_train_specificity\
tf{0}_train_b_acc\tf{0}_train_loss\tf{0}_train_epoch_time\tf{0}_train_lr".format(index), 
              file=metrics_train_file) 
        print("f{0}_valid_epoch\tf{0}_valid_tn\tf{0}_valid_fp\tf{0}_valid_fn\tf{0}_valid_tp\tf
{0}_valid_acc\tf{0}_valid_ppv\tf{0}_valid_npv\tf{0}_valid_sensitivity\tf{0}_valid_specificity\
tf{0}_valid_b_acc\tf{0}_valid_loss\tf{0}_valid_epoch_time\tf{0}_valid_lr".format(index), 
              file=metrics_valid_file) 
 
        # Force to write immediately to file 
        metrics_train_file.flush() 
        metrics_valid_file.flush() 
 
        max_train_acc = 0 
        max_test_acc = 0 
 
        for i in range(max_epochs): 
 
            self.epoch = i 
            # printing = print_period is not None and (i % print_period == 0 or 
            #                                          self.debug) 
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            printing = False 
            if printing: 
                print("=" * 40) 
                print("epoch", i) 
 
            epoch_start = time.time() 
            # run minibatches 
            indices = self.rng.permutation(inputs.shape[0]) 
 
            for start in range(0, inputs.shape[0], minibatch_size): 
                # generate minibatch and cache activations 
                self.cache_minibatch( 
                    inputs, targets, indices[start:start + minibatch_size]) 
 
                # validity checks 
                if self.inputs.shape[-1] != self.shape[0]: 
                    raise ValueError( 
                        "Input dimension (%d) does not match number of input " 
                        "nodes (%d)" % (self.inputs.shape[-1], self.shape[0])) 
                if self.targets.shape[-1] != self.shape[-1]: 
                    raise ValueError( 
                        "Target dimension (%d) does not match number of " 
                        "output nodes (%d)" % (self.targets.shape[-1], 
                                               self.shape[-1])) 
 
                assert self.activations[-1].dtype == self.dtype 
 
                # compute update 
                update = optimizer.compute_update(printing) 
 
                assert update.dtype == self.dtype 
 
                # apply mask 
                if self.mask is not None: 
                    update[self.mask] = 0 
 
                # update weights 
                self.W += update 
 
                # invalidate cached activations (shouldn't be necessary, 
                # but doesn't hurt) 
                self.activations = None 
                self.d_activations = None 
                self.GPU_activations = None 
 
            epoch_end = time.time() 
            # compute test error 
            if test is None: 
                test_in, test_t = inputs, targets 
            else: 
                test_in, test_t = test[0], test[1] 
 
            if test_err is None: 
                err = self.error(self.W, test_in, test_t) 
            else: 
                output = self.forward(test_in, self.W) 
                err = test_err.batch_loss(output, test_t) 
            self.test_errs += [err] 
 
            epoch_time = epoch_end - epoch_start 
 
            self.stats(i, epoch_time, inputs, targets, 
                       test[0], test[1], metrics_train_file, metrics_valid_file) 
 
            if printing: 
                print("test error", self.test_errs[-1]) 
 
            # save the weights with the best error 
            if self.best_W is None or self.test_errs[-1] < self.best_error: 
                self.best_W = self.W.copy() 
                self.best_error = self.test_errs[-1] 
 
            # dump plot data 
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            if plotting: 
                plots["update norm"] += [np.linalg.norm(update)] 
                plots["W norm"] += [np.linalg.norm(self.W)] 
                plots["test error (log)"] += [self.test_errs[-1]] 
 
                if hasattr(optimizer, "plots"): 
                    plots.update(optimizer.plots) 
 
                with open("%s_plots.pkl" % prefix, "wb") as f: 
                    pickle.dump(plots, f) 
 
            # dump weights 
            if file_output is not None: 
                np.save("%s_weights.npy" % prefix, self.W) 
 
            # check for termination 
            # if self.test_errs[-1] < target_err: 
            #     if print_period is not None: 
            #         print("target error reached") 
            #     break 
 
            # Overfitting 
            # if test is not None and i > 10 and self.test_errs[-10] < self.test_errs[-1]: 
            #     print("overfitting detected in epoch: " + str(i)) 
 
            # if test is not None and i > 10 and self.test_errs[-10] < self.test_errs[-1]: 
            #     if print_period is not None: 
            #         print("overfitting detected, terminating") 
            #     break 
 
            if max_test_acc < float(self.scores_test[-1]): 
                max_train_acc = float(self.scores_train[-1]) 
                max_test_acc = float(self.scores_test[-1]) 
 
        return max_train_acc, max_test_acc 
 
        # Create accuracy and loss plots 
        # plt.clf() 
        # plt.plot(self.scores_train, color='green', 
        #          alpha=0.8, label='Train') 
        # plt.plot(self.scores_test, color='magenta', 
        #          alpha=0.8, label='Test') 
        # plt.title("Accuracy over epochs", fontsize=14) 
        # plt.xlabel('Epochs') 
        # plt.legend(loc='upper left') 
        # plt.savefig(folder + 'accuracy_plot_' + str(index) + '.png') 
 
        # plt.clf() 
        # plt.plot(self.loss_train, color='green', alpha=0.8, label='Train') 
        # plt.plot(self.loss_test, color='magenta', alpha=0.8, label='Test') 
        # plt.title("Loss over epochs", fontsize=14) 
        # plt.xlabel('Epochs') 
        # plt.legend(loc='upper left') 
        # plt.savefig(folder + 'loss_plot_' + str(index) + '.png') 
 
    def forward(self, inputs, params=None, deriv=False): 
        """Compute layer activations for given input and parameters. 
 
        :param inputs: input vectors (passed to first layer) 
        :type inputs: :class:`~numpy:numpy.ndarray` 
        :param params: parameter vector (weights) for the network (defaults to 
            ``self.W``) 
        :type params: :class:`~numpy:numpy.ndarray` 
        :param bool deriv: if True then also compute the derivative of the 
            activations 
        """ 
 
        params = self.W if params is None else params 
 
        if isinstance(inputs, hf.nl.Plant): 
            inputs.reset() 
 
        activations = [None for _ in range(self.n_layers)] 
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        if deriv: 
            d_activations = [None for _ in range(self.n_layers)] 
 
        for i in range(self.n_layers): 
            if i == 0: 
                if isinstance(inputs, hf.nl.Plant): 
                    inputs = inputs(None) 
                else: 
                    inputs = inputs 
            else: 
                inputs = np.zeros((inputs.shape[0], self.shape[i]), 
                                  dtype=self.dtype) 
                for pre in self.back_conns[i]: 
                    W, b = self.get_weights(params, (pre, i)) 
                    inputs += np.dot(activations[pre], W) 
                    inputs += b 
                    # note: we're applying a bias on each connection to a 
                    # neuron (rather than one for each neuron). just because 
                    # it's easier than tracking how many connections there are 
                    # for each layer (but we could do it if it becomes 
                    # important). 
            activations[i] = self.layers[i].activation(inputs) 
 
            if deriv: 
                d_activations[i] = self.layers[i].d_activation(inputs, 
                                                               activations[i]) 
 
        for i, a in enumerate(activations): 
            if not np.all(np.isfinite(a)): 
                raise OverflowError("Non-finite nonlinearity activation " 
                                    "value (layer %d) \n %s" % 
                                    (i, a[not np.isfinite(a)])) 
        if deriv: 
            return activations, d_activations 
 
        return activations 
 
    def error(self, W=None, inputs=None, targets=None): 
        """Compute network error. 
 
        :param W: network parameters (defaults to ``self.W``) 
        :type W: :class:`~numpy:numpy.ndarray` 
        :param inputs: input vectors (defaults to the cached (mini)batch for 
            current epoch) 
        :type inputs: :class:`~numpy:numpy.ndarray` 
        :param targets: target vectors (defaults to the cached (mini)batch for 
            current epoch) 
        :type targets: :class:`~numpy:numpy.ndarray` 
        """ 
 
        W = self.W if W is None else W 
        inputs = self.inputs if inputs is None else inputs 
 
        # get outputs 
        if (W is self.W and inputs is self.inputs and 
                self.activations is not None): 
            # use cached activations 
            activations = self.activations 
        else: 
            # compute activations 
            activations = self.forward(inputs, W) 
 
        # get targets 
        if isinstance(inputs, hf.nl.Plant): 
            # get targets from plant 
            targets = inputs.get_vecs()[1] 
        else: 
            targets = self.targets if targets is None else targets 
 
        # note: np.nan can be used in the target to specify places 
        # where the target is not defined. those get translated to 
        # zero error in the loss function. 
 



A-23 

 

        error = self.loss.batch_loss(activations, targets) 
 
        return error 
 
    def cache_minibatch(self, inputs, targets, minibatch=None): 
        """Pick a subset of inputs and targets to use in minibatch, and cache 
        the activations for that minibatch.""" 
 
        if minibatch is None: 
            minibatch = np.arange(inputs.shape[0]) 
 
        if not isinstance(inputs, hf.nl.Plant): 
            # inputs/targets are vectors 
            self.inputs = inputs[minibatch] 
            self.targets = targets[minibatch] 
 
            # cache activations 
            self.activations, self.d_activations = self.forward(self.inputs, 
                                                                self.W, 
                                                                deriv=True) 
        else: 
            # input is a dynamic plant 
            if targets is not None: 
                raise ValueError("Cannot specify targets when using dynamic " 
                                 "plant to generate inputs (plant should " 
                                 "generate targets itself)") 
 
            # run plant to generate batch 
            inputs.shape[0] = len(minibatch) 
            self.activations, self.d_activations = self.forward(inputs, self.W, 
                                                                deriv=True) 
            self.inputs, self.targets = inputs.get_vecs() 
 
        # cast to self.dtype 
        if self.inputs.dtype != self.dtype: 
            warnings.warn("Input dtype (%s) not equal to self.dtype (%s)" % 
                          (self.inputs.dtype, self.dtype)) 
        self.inputs = np.asarray(self.inputs, dtype=self.dtype) 
        self.targets = np.asarray(self.targets, dtype=self.dtype) 
        self.activations = [np.asarray(a, dtype=self.dtype) 
                            for a in self.activations] 
        self.d_activations = [np.asarray(a, dtype=self.dtype) 
                              for a in self.d_activations] 
        self.d2_loss = self.loss.d2_loss(self.activations, self.targets) 
 
        # allocate temporary space for intermediate values, to save on 
        # memory allocations 
        self.tmp_space = [np.zeros(a.shape, self.dtype) 
                          for a in self.activations] 
 
        if self.use_GPU: 
            # TODO: we could just allocate these on the first timestep and 
            # then do a copy rather than an allocation after that, if this 
            # ever became a significant part of the computation time 
            self.load_GPU_data() 
 
    def load_GPU_data(self): 
        """Load data for the current epoch onto GPU.""" 
 
        from pycuda import gpuarray 
 
        # clear out old data (this would happen eventually on its own, but by 
        # doing it first we make sure there is room on the GPU before 
        # creating new arrays) 
        if hasattr(self, "GPU_W"): 
            del self.GPU_W 
            del self.GPU_activations 
            del self.GPU_d_activations 
            del self.GPU_d2_loss 
            del self.GPU_tmp_space 
 
        self.GPU_W = gpuarray.to_gpu(self.W) 
        self.GPU_activations = [gpuarray.to_gpu(a) 



A-24 

 

                                for a in self.activations] 
        self.GPU_d_activations = [gpuarray.to_gpu(a) 
                                  for a in self.d_activations] 
        self.GPU_d2_loss = [gpuarray.to_gpu(a) if a is not None else None 
                            for a in self.d2_loss] 
        self.GPU_tmp_space = [gpuarray.empty(a.shape, self.dtype) 
                              for a in self.activations] 
 
    @staticmethod 
    def J_dot(J, vec, transpose_J=False, out=None): 
        """Compute the product of a Jacobian and some vector.""" 
 
        # In many cases the Jacobian is a diagonal matrix, so it is more 
        # efficient to just represent it with the diagonal vector.  This 
        # function just lets those two be used interchangeably. 
 
        if J.ndim == 2: 
            # note: the first dimension is the batch, so ndim==2 means 
            # this is a vector representation 
            if out is None: 
                # passing out=None fails for some reason 
                return np.multiply(J, vec) 
            else: 
                return np.multiply(J, vec, out=out) 
        else: 
            if transpose_J: 
                J = np.transpose(J, (0, 2, 1)) 
 
            if out is None: 
                # passing out=None fails for some reason 
                return np.einsum("ijk,ik->ij", J, vec) 
 
            if out is vec: 
                tmp_vec = vec.copy() 
            else: 
                tmp_vec = vec 
 
            return np.einsum("ijk,ik->ij", J, tmp_vec, out=out) 
 
    def calc_grad(self): 
        """Compute parameter gradient.""" 
 
        for l in self.layers: 
            if l.stateful: 
                raise TypeError("Cannot use neurons with internal state in " 
                                "a one-step feedforward network; use " 
                                "RNNet instead.") 
 
        grad = np.zeros_like(self.W) 
 
        # backpropagation 
        # note: this uses the cached activations, so the forward 
        # pass has already been run elsewhere 
 
        # compute output error for each layer 
        error = self.loss.d_loss(self.activations, self.targets) 
 
        error = [np.zeros_like(self.activations[i]) if e is None else e 
                 for i, e in enumerate(error)] 
 
        deltas = [np.zeros_like(a) for a in self.activations] 
 
        # backwards pass 
        for i in range(self.n_layers - 1, -1, -1): 
            for post in self.conns[i]: 
                error[i] += np.dot(deltas[post], 
                                   self.get_weights(self.W, (i, post))[0].T) 
 
                W_grad, b_grad = self.get_weights(grad, (i, post)) 
                np.dot(self.activations[i].T, deltas[post], out=W_grad) 
                np.sum(deltas[post], axis=0, out=b_grad) 
 
            self.J_dot(self.d_activations[i], error[i], transpose_J=True, 
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                       out=deltas[i]) 
 
        grad /= self.inputs.shape[0] 
 
        return grad 
 
    def check_grad(self, calc_grad): 
        """Check gradient via finite differences (for debugging).""" 
 
        eps = 1e-6 
        grad = np.zeros_like(calc_grad) 
        inc_W = np.zeros_like(self.W) 
        for i in range(len(self.W)): 
            inc_W[i] = eps 
 
            error_inc = self.error(self.W + inc_W, self.inputs, self.targets) 
            error_dec = self.error(self.W - inc_W, self.inputs, self.targets) 
            grad[i] = (error_inc - error_dec) / (2 * eps) 
 
            inc_W[i] = 0 
        try: 
            assert np.allclose(calc_grad, grad, rtol=1e-3) 
        except AssertionError: 
            print("calc_grad") 
            print(calc_grad) 
            print("finite grad") 
            print(grad) 
            print("calc_grad - finite grad") 
            print(calc_grad - grad) 
            print("calc_grad / finite grad") 
            print(calc_grad / grad) 
            input("Paused (press enter to continue)") 
 
    def calc_G(self, v, damping=0, out=None): 
        """Compute Gauss-Newton matrix-vector product.""" 
 
        if out is None: 
            Gv = np.zeros(self.W.size, dtype=self.dtype) 
        else: 
            Gv = out 
            Gv.fill(0) 
 
        # R forward pass 
        R_activations = [np.zeros_like(a) for a in self.activations] 
        for i in range(1, self.n_layers): 
            for pre in self.back_conns[i]: 
                vw, vb = self.get_weights(v, (pre, i)) 
                Ww, _ = self.get_weights(self.W, (pre, i)) 
 
                R_activations[i] += np.dot(self.activations[pre], vw, 
                                           out=self.tmp_space[i]) 
                R_activations[i] += vb 
                R_activations[i] += np.dot(R_activations[pre], Ww, 
                                           out=self.tmp_space[i]) 
 
            self.J_dot(self.d_activations[i], R_activations[i], 
                       out=R_activations[i]) 
 
        # backward pass 
        R_error = R_activations 
 
        for i in range(self.n_layers - 1, -1, -1): 
            if self.d2_loss[i] is not None: 
                # note: R_error[i] is already set to R_activations[i] 
                R_error[i] *= self.d2_loss[i] 
            else: 
                R_error[i].fill(0) 
 
            for post in self.conns[i]: 
                W, _ = self.get_weights(self.W, (i, post)) 
 
                R_error[i] += np.dot(R_error[post], W.T, 
                                     out=self.tmp_space[i]) 
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                W_g, b_g = self.get_weights(Gv, (i, post)) 
                np.dot(self.activations[i].T, R_error[post], out=W_g) 
                np.sum(R_error[post], axis=0, out=b_g) 
 
            self.J_dot(self.d_activations[i], R_error[i], 
                       out=R_error[i], transpose_J=True) 
 
        Gv /= len(self.inputs) 
 
        Gv += damping * v  # Tikhonov damping 
 
        return Gv 
 
    def GPU_calc_G(self, v, damping=0, out=None): 
        """Compute Gauss-Newton matrix-vector product on GPU.""" 
 
        from pycuda import gpuarray 
 
        if out is None or not isinstance(out, gpuarray.GPUArray): 
            Gv = gpuarray.zeros(self.W.shape, self.dtype) 
        else: 
            Gv = out 
            Gv.fill(0) 
 
        if not isinstance(v, gpuarray.GPUArray): 
            GPU_v = gpuarray.to_gpu(v) 
        else: 
            GPU_v = v 
 
        # R forward pass 
        R_activations = self.GPU_tmp_space 
 
        for i in range(self.n_layers): 
            R_activations[i].fill(0) 
            for pre in self.back_conns[i]: 
                vw, vb = self.get_weights(GPU_v, (pre, i)) 
                Ww, _ = self.get_weights(self.GPU_W, (pre, i)) 
 
                hf.gpu.dot(self.GPU_activations[pre], vw, 
                           out=R_activations[i], increment=True) 
                hf.gpu.iadd(R_activations[i], vb) 
                hf.gpu.dot(R_activations[pre], Ww, 
                           out=R_activations[i], increment=True) 
 
            hf.gpu.J_dot(self.GPU_d_activations[i], R_activations[i], 
                         out=R_activations[i]) 
 
        # backward pass 
        R_error = R_activations 
 
        for i in range(self.n_layers - 1, -1, -1): 
            if self.GPU_d2_loss[i] is not None: 
                # note: R_error[i] is already set to R_activations[i] 
                R_error[i] *= self.GPU_d2_loss[i] 
            else: 
                R_error[i].fill(0) 
 
            for post in self.conns[i]: 
                W, _ = self.get_weights(self.GPU_W, (i, post)) 
                W_g, b_g = self.get_weights(Gv, (i, post)) 
 
                hf.gpu.dot(R_error[post], W, transpose_b=True, 
                           out=R_error[i], increment=True) 
 
                hf.gpu.dot(self.GPU_activations[i], R_error[post], 
                           transpose_a=True, out=W_g) 
 
                hf.gpu.sum_cols(R_error[post], out=b_g) 
 
            hf.gpu.J_dot(self.GPU_d_activations[i], R_error[i], out=R_error[i], 
                         transpose_J=True) 
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        # Tikhonov damping and batch mean 
        Gv._axpbyz(1.0 / len(self.inputs), GPU_v, damping, Gv) 
 
        if isinstance(v, gpuarray.GPUArray): 
            return Gv 
        else: 
            return Gv.get(out, pagelocked=True) 
 
    def check_J(self): 
        """Compute the Jacobian of the network via finite differences.""" 
 
        eps = 1e-6 
        N = self.W.size 
 
        # compute the Jacobian 
        J = [None for _ in self.layers] 
        inc_i = np.zeros_like(self.W) 
        for i in range(N): 
            inc_i[i] = eps 
 
            inc = self.forward(self.inputs, self.W + inc_i) 
            dec = self.forward(self.inputs, self.W - inc_i) 
 
            for l in range(self.n_layers): 
                J_i = (inc[l] - dec[l]) / (2 * eps) 
                if J[l] is None: 
                    J[l] = J_i[..., None] 
                else: 
                    J[l] = np.concatenate((J[l], J_i[..., None]), axis=-1) 
 
            inc_i[i] = 0 
 
        return J 
 
    def check_G(self, calc_G, v, damping=0): 
        """Check Gv calculation via finite differences (for debugging).""" 
 
        # compute Jacobian 
        J = self.check_J() 
 
        # second derivative of loss function 
        L = self.loss.d2_loss(self.activations, self.targets) 
        # TODO: check loss via finite differences 
 
        G = np.sum([np.einsum("aji,aj,ajk->ik", J[l], L[l], J[l]) 
                    for l in range(self.n_layers) if L[l] is not None], axis=0) 
 
        # divide by batch size 
        G /= self.inputs.shape[0] 
 
        Gv = np.dot(G, v) 
        Gv += damping * v 
 
        try: 
            assert np.allclose(calc_G, Gv, rtol=1e-3) 
        except AssertionError: 
            print("calc_G") 
            print(calc_G) 
            print("finite G") 
            print(Gv) 
            print("calc_G - finite G") 
            print(calc_G - Gv) 
            print("calc_G / finite G") 
            print(calc_G / Gv) 
            input("Paused (press enter to continue)") 
 
    def init_weights(self, shapes, coeff=1.0, biases=0.0, init_type="sparse"): 
        """Weight initialization, given shapes of weight matrices. 
 
        Note: coeff, biases, and init_type can be specified by the 
        `W_init_params` dict in :class:`.FFNet`.  Each can be 
        specified as a single value (for all matrices) or as a list giving a 
        value for each matrix. 
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        :param list shapes: list of (pre,post) shapes for each weight matrix 
        :param float coeff: scales the magnitude of the connection weights 
        :param float biases: bias values for the post of each matrix 
        :param str init_type: type of initialization to use (currently supports 
            'sparse', 'uniform', 'gaussian') 
        """ 
 
        # if given single parameters, expand for all matrices 
        if isinstance(coeff, (int, float)): 
            coeff = [coeff] * len(shapes) 
        if isinstance(biases, (int, float)): 
            biases = [biases] * len(shapes) 
        if isinstance(init_type, str): 
            init_type = [init_type] * len(shapes) 
 
        W = [np.zeros((pre + 1, post), dtype=self.dtype) 
             for pre, post in shapes] 
 
        for i, s in enumerate(shapes): 
            if init_type[i] == "sparse": 
                # sparse initialization (from martens) 
                num_conn = 15 
 
                for j in range(s[1]): 
                    # pick num_conn random pre neurons 
                    indices = self.rng.choice(np.arange(s[0]), 
                                              size=min(num_conn, s[0]), 
                                              replace=False) 
 
                    # connect to post 
                    W[i][indices, j] = self.rng.randn(indices.size) * coeff[i] 
            elif init_type[i] == "uniform": 
                W[i][:-1] = self.rng.uniform(-coeff[i] / np.sqrt(s[0]), 
                                             coeff[i] / np.sqrt(s[0]), 
                                             (s[0], s[1])) 
            elif init_type[i] == "gaussian": 
                W[i][:-1] = self.rng.randn(s[0], s[1]) * coeff[i] 
            else: 
                raise ValueError("Unknown weight initialization (%s)" 
                                 % init_type) 
 
            # set biases 
            W[i][-1, :] = biases[i] 
 
        W = np.concatenate([w.flatten() for w in W]) 
 
        return W 
 
    def compute_offsets(self): 
        """Precompute offsets for layers in the overall parameter vector.""" 
 
        self.offsets = {} 
        offset = 0 
        for pre in self.conns: 
            for post in self.conns[pre]: 
                n_params = (self.shape[pre] + 1) * self.shape[post] 
                self.offsets[(pre, post)] = ( 
                    offset, 
                    offset + n_params - self.shape[post], 
                    offset + n_params) 
                offset += n_params 
 
        return offset 
 
    def get_weights(self, params, conn): 
        """Get weight matrix for a connection from overall parameter vector.""" 
 
        if conn not in self.offsets: 
            return None 
 
        offset, W_end, b_end = self.offsets[conn] 
        W = params[offset:W_end] 
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        b = params[W_end:b_end] 
        return W.reshape((self.shape[conn[0]], self.shape[conn[1]])), b 
 
    def init_loss(self, loss_type): 
        """Set the loss type for this network to the given 
        :class:`~.loss_funcs.LossFunction` (or a list of functions can be 
        passed to create a :class:`~.loss_funcs.LossSet`).""" 
 
        if isinstance(loss_type, (list, tuple)): 
            tmp = loss_type 
        else: 
            tmp = [loss_type] 
 
        for t in tmp: 
            if not isinstance(t, hf.loss_funcs.LossFunction): 
                raise TypeError("loss_type (%s) must be an instance of " 
                                "LossFunction" % t) 
 
            # sanity checks 
            if (isinstance(t, hf.loss_funcs.CrossEntropy) and 
                    np.any(self.layers[-1].activation( 
                        np.linspace(-80, 80, 100)[None, :]) <= 0)): 
                # this won't catch everything, but hopefully a useful warning 
                raise ValueError("Must use positive activation function " 
                                 "with cross-entropy error") 
            if (isinstance(t, hf.loss_funcs.CrossEntropy) and 
                    not isinstance(self.layers[-1], hf.nl.Softmax)): 
                warnings.warn("Softmax should probably be used with " 
                              "cross-entropy error") 
 
        if isinstance(loss_type, (list, tuple)): 
            self.loss = hf.loss_funcs.LossSet(loss_type) 
        else: 
            self.loss = loss_type 
 
    def _run_epoch(self, inputs, targets, minibatch_size=None): 
        """A stripped down version of run_epochs that just does the update 
        without any overhead. 
 
        Can be used for optimizers where the cost to compute an update is 
        very cheap, in which case the overhead (e.g., computing test error, 
        saving weights, outputting data for plotting, etc.) becomes 
        non-negligible. 
        """ 
 
        minibatch_size = minibatch_size or inputs.shape[0] 
        indices = self.rng.permutation(inputs.shape[0]) 
        for start in range(0, inputs.shape[0], minibatch_size): 
            # generate minibatch and cache activations 
            self.cache_minibatch( 
                inputs, targets, indices[start:start + minibatch_size]) 
 
            # compute update 
            self.W += self.optimizer.compute_update(False) 
 
    @property 
    def optimizer(self): 
        return self._optimizer 
 
    @optimizer.setter 
    def optimizer(self, o): 
        self._optimizer = o 
        o.net = self 

 

Code Snippet A.4. The FFNet (HFO algorithm) of the MLP network with HFO optimizer. 

 



B-1 

 

Appendix B 

CNN Implementations 

The following files are required to execute the CNN implementations for the Adam, 

NewtonCG, and SGD optimizers.  

B.1 train.py  

This is the file is the main and is responsible for reading the user’s arguments to create 

the Session with the network’s parameters. Also, the implementation for the Adam and 

SGD optimizers is located here. 

from datetime import datetime 
from utilities import read_data, predict, ConfigClass, normalize_and_reshape, stats_output, st
ats_output3 
from newton_cg import newton_cg 
from net.net import CNN 
import argparse 
import math 
import time 
import pdb 
import numpy as np 
import tensorflow as tf 
import os 
from sklearn.metrics import confusion_matrix, classification_report 
import tf_slim as slim 
tf.compat.v1.disable_eager_execution() 
 
def parse_args(): 
    parser = argparse.ArgumentParser(description='Newton method on DNN') 
    parser.add_argument('--C', dest='C', 
                        help='regularization term, or so-called weight decay where' + 
                        'weight_decay = lr/(C*num_of_samples) in this implementation', 
                        default=0.01, type=float) 
 
    # Newton method arguments 
    parser.add_argument('--GNsize', dest='GNsize', 
                        help='number of samples for estimating Gauss-Newton matrix', 
                        default=4096, type=int) 
    parser.add_argument('--iter_max', dest='iter_max', 
                        help='the maximal number of Newton iterations', 
                        default=100, type=int) 
    parser.add_argument('--xi', dest='xi', 
                        help='the tolerance in the relative stopping condition for CG', 
                        default=0.1, type=float) 
    parser.add_argument('--drop', dest='drop', 
                        help='the drop constants for the LM method', 
                        default=2/3, type=float) 
    parser.add_argument('--boost', dest='boost', 
                        help='the boost constants for the LM method', 
                        default=3/2, type=float) 
    parser.add_argument('--eta', dest='eta', 
                                      help='parameter for the line search stopping condition', 
                                      default=0.0001, type=float) 
    parser.add_argument('--CGmax', dest='CGmax', 
                        help='the maximal number of CG iterations', 
                        default=250, type=int) 
    parser.add_argument('--lambda', dest='_lambda', 
                        help='the initial lambda for the LM method', 
                        default=1, type=float) 
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    # SGD arguments 
    parser.add_argument('--epoch_max', dest='epoch', 
                        help='number of training epoch', 
                        default=500, type=int) 
    parser.add_argument('--lr', dest='lr', 
                        help='learning rate', 
                        default=0.01, type=float) 
    parser.add_argument('--decay', dest='lr_decay', 
                        help='learning rate decay over each mini-batch update', 
                        default=0, type=float) 
    parser.add_argument('--momentum', dest='momentum', 
                        help='momentum of learning', 
                        default=0, type=float) 
 
    # Model training arguments 
    parser.add_argument('--bsize', dest='bsize', 
                        help='batch size to evaluate stochastic gradient, Gv, etc. Since the \ 
                      sampled data for computing Gauss-Newton matrix and etc.might not fit \ 
                      into memeory for one time, we will split the data into several \ 
                      segements and average over them.', 
                        default=1024, type=int) 
    parser.add_argument('--net', dest='net', 
                                      help='classifier type', 
                                      default='CNN_4layers', type=str) 
    parser.add_argument('--train_set', dest='train_set', 
                        help='provide the directory of .mat file for training', 
                        default='data/mnist-demo.mat', type=str) 
    parser.add_argument('--val_set', dest='val_set', 
                        help='provide the directory of .mat file for validation', 
                        default=None, type=str) 
    parser.add_argument('--model', dest='model_file', 
                        help='model saving address', 
                        default='./saved_model/model.ckpt', type=str) 
    parser.add_argument('--log', dest='log_file', 
                                      help='log saving directory', 
                                      default='./running_log/logger.log', type=str) 
    parser.add_argument('--screen_log_only', dest='screen_log_only', 
                        help='screen printing running log instead of storing it', 
                        action='store_true') 
    parser.add_argument('--optim', '-optim', 
                        help='which optimizer to use: SGD, Adam or NewtonCG', 
                        default='NewtonCG', type=str) 
    parser.add_argument('--loss', dest='loss', 
                        help='which loss function to use: MSELoss or CrossEntropy', 
                        default='MSELoss', type=str) 
    parser.add_argument('--dim', dest='dim', nargs='+', help='input dimension of data,' + 
                        'shape must be:  height width num_channels', 
                                      default=[32, 32, 3], type=int) 
    parser.add_argument('--seed', dest='seed', help='a nonnegative integer for \ 
                        reproducibility', type=int) 
    args = parser.parse_args() 
    return args 
 

args = parse_args() 
 

def init_model(param): 
    init_ops = [] 
    for p in param: 
        if 'kernel' in p.name: 
            weight = np.random.standard_normal( 
                p.shape) * np.sqrt(2.0 / ((np.prod(p.get_shape().as_list()[:-1])))) 
            opt = tf.compat.v1.assign(p, weight) 
        elif 'bias' in p.name: 
            zeros = np.zeros(p.shape) 
            opt = tf.compat.v1.assign(p, zeros) 
        init_ops.append(opt) 
    return tf.group(*init_ops) 
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def gradient_trainer(folder_dir, config, sess, network, full_batch, val_batch, saver, num_clas
ses, test_network): 
    x, y, loss, outputs,  = network 
 
    global_step = tf.Variable( 
        initial_value=0, trainable=False, name='global_step') 
    learning_rate = tf.compat.v1.placeholder( 
        tf.float32, shape=[], name='learning_rate') 
 
    # Probably not a good way to add regularization. 
    # Just to confirm the implementation is the same as MATLAB. 
    reg = 0.0 
    param = tf.compat.v1.trainable_variables() 
    for p in param: 
        reg = reg + tf.reduce_sum(input_tensor=tf.pow(p, 2)) 
    reg_const = 1/(2*config.C) 
    batch_size = tf.compat.v1.cast(tf.shape(x)[0], tf.float32) 
    loss_with_reg = reg_const*reg + loss/batch_size 
 
    if config.optim == 'SGD': 
        optimizer = tf.compat.v1.train.MomentumOptimizer( 
            learning_rate=learning_rate, 
            momentum=config.momentum).minimize( 
            loss_with_reg, 
            global_step=global_step) 
    elif config.optim == 'Adam': 
        optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate, 
                                                     beta1=0.9, 
                                                     beta2=0.999, 
                                                     epsilon=1e-08).minimize( 
            loss_with_reg, 
            global_step=global_step) 
 
    train_inputs, train_labels = full_batch 
    num_data = train_labels.shape[0] 
    num_iters = math.ceil(num_data/config.bsize) 
 
    print(config.args) 
    if not config.screen_log_only: 
        log_file = open(config.log_file, 'w') 
        print(config.args, file=log_file) 
        # Force to write immediately to file 
        log_file.flush() 
 
    sess.run(tf.compat.v1.global_variables_initializer()) 
 
    # Print to a format friendly for excel 
    metrics_train_file = open( 
        folder_dir + "running_log/metrics_train_file.txt", 'w') 
    metrics_valid_file = open( 
        folder_dir + "running_log/metrics_valid_file.txt", 'w') 
 
    if num_classes == 2: 
        print("epoch\ttn\tfp\tfn\ttp\tacc\tppv\tnpv\tsensitivity\tspecificity\tb_acc\tloss\tep
och_time\tlr", 
              file=metrics_train_file) 
        print("epoch\ttn\tfp\tfn\ttp\tacc\tppv\tnpv\tsensitivity\tspecificity\tb_acc\tloss\tep
och_time\tlr", 
              file=metrics_valid_file) 
    elif num_classes == 3: 
        print("epoch\ttn_0\tfp_0\tfn_0\ttp_0\tacc_0\tppv_0\tnpv_0\tsensitivity_0\tspecificity_
0\tb_acc_0\ttn_1\tfp_1\tfn_1\ttp_1\tacc_1\tppv_1\tnpv_1\tsensitivity_1\tspecificity_1\tb_acc_1
\ttn_2\tfp_2\tfn_2\ttp_2\tacc_2\tppv_2\tnpv_2\tsensitivity_2\tspecificity_2\tb_acc_2\tacc\tlos
s\tepoch_time\tlr", 
              file=metrics_train_file) 
        print("epoch\ttn_0\tfp_0\tfn_0\ttp_0\tacc_0\tppv_0\tnpv_0\tsensitivity_0\tspecificity_
0\tb_acc_0\ttn_1\tfp_1\tfn_1\ttp_1\tacc_1\tppv_1\tnpv_1\tsensitivity_1\tspecificity_1\tb_acc_1
\ttn_2\tfp_2\tfn_2\ttp_2\tacc_2\tppv_2\tnpv_2\tsensitivity_2\tspecificity_2\tb_acc_2\tacc\tlos
s\tepoch_time\tlr", 
              file=metrics_valid_file) 
    else: 
        print("epoch\tacc\tloss\tepoch_time\tlr", 
              file=metrics_train_file) 
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        print("epoch\tacc\tloss\tepoch_time\tlr", 
              file=metrics_valid_file) 
 
        # Force to write immediately to file 
    metrics_train_file.flush() 
    metrics_valid_file.flush() 
 
    print('-------------- initializing network by methods in He et al. (2015) --------------') 
    param = tf.compat.v1.trainable_variables() 
    sess.run(init_model(param)) 
 
    total_running_time = 0.0 
    best_acc = 0.0 
    lr = config.lr 
 
    for epoch in range(0, args.epoch): 
 
        loss_avg = 0.0 
        start = time.time() 
 
        for i in range(num_iters): 
 
            load_time = time.time() 
            # randomly select the batch 
            idx = np.random.choice(np.arange(0, num_data), 
                                   size=config.bsize, replace=False) 
 
            batch_input = train_inputs[idx] 
            batch_labels = train_labels[idx] 
            batch_input = np.ascontiguousarray(batch_input) 
            batch_labels = np.ascontiguousarray(batch_labels) 
            config.elapsed_time += time.time() - load_time 
 
            step, _, batch_loss = sess.run( 
                [global_step, optimizer, loss_with_reg], 
                feed_dict={x: batch_input, y: batch_labels, learning_rate: lr} 
            ) 
 
            # print initial loss 
            if epoch == 0 and i == 0: 
                output_str = 'initial f (reg + avg. loss of 1st batch): {:.3f}'.format( 
                    batch_loss) 
                print(output_str) 
                if not config.screen_log_only: 
                    print(output_str, file=log_file) 
                    # Force to write immediately to file 
                    log_file.flush() 
 
            loss_avg = loss_avg + batch_loss 
            # print log every 10% of the iterations 
            if i % math.ceil(num_iters/10) == 0: 
                end = time.time() 
                output_str = 'Epoch {}: {}/{} | loss {:.4f} | lr {:.6} | elapsed time {:.3f}'\ 
                    .format(epoch, i, num_iters, batch_loss, lr, end-start) 
                print(output_str) 
                if not config.screen_log_only: 
                    print(output_str, file=log_file) 
                    # Force to write immediately to file 
                    log_file.flush() 
 
            # adjust learning rate for SGD by inverse time decay 
            if args.optim != 'Adam': 
                lr = config.lr/(1 + args.lr_decay*step) 
 
        # exclude data loading time for fair comparison 
        epoch_end = time.time() - config.elapsed_time 
        total_running_time += epoch_end - start 
        config.elapsed_time = 0.0 
 
        if val_batch is None: 
            output_str = 'In epoch {} train loss: {:.3f} | epoch time {:.3f}'\ 
                .format(epoch, loss_avg/(i+1), epoch_end-start) 
        else: 
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            if test_network == None: 
                val_loss, val_acc, _ = predict( 
                    sess, 
                    network=(x, y, loss, outputs), 
                    test_batch=val_batch, 
                    bsize=config.bsize 
                ) 
            else: 
                # A separate test network part have been done... 
                val_loss, val_acc, _ = predict( 
                    sess, 
                    network=test_network, 
                    test_batch=val_batch, 
                    bsize=config.bsize 
                ) 
 
            output_str = 'In epoch {} train loss: {:.3f} | val loss: {:.3f} | val accuracy: {:
.3f}% | epoch time {:.3f}'\ 
                .format(epoch, loss_avg/(i+1), val_loss, val_acc*100, epoch_end-start) 
 
        # Find the best accuracy till now 
        if val_acc > best_acc: 
            best_acc = val_acc 
            checkpoint_path = config.model_file 
            save_path = saver.save(sess, checkpoint_path) 
            print('Saved best model in {}'.format(save_path)) 
 
        # Training Statistics 
        avg_train_loss, avg_train_acc, train_real = predict( 
            sess, network, full_batch, config.bsize) 
        train_target = np.argmax(full_batch[1], axis=1) 
 
        # Print train metrics in a text file friendly for Excel 
        if num_classes == 2: 
            stats_train_output, stats_train_file_output = stats_output( 
                "Training", epoch, train_target, train_real) 
            stats_train_file_output += "{:.3f}\t{:.3f}\t{:.5f}".format( 
                loss_avg/(i+1), epoch_end-start, lr) 
        elif num_classes == 3: 
            stats_train_output, stats_train_file_output = stats_output3( 
                "Training", epoch, train_target, train_real) 
            stats_train_file_output += "{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}".format( 
                avg_train_acc, loss_avg / (i + 1), epoch_end - start, lr) 
        else: 
            stats_train_file_output = "{}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}".format( 
                epoch, avg_train_acc, loss_avg / (i + 1), epoch_end - start, lr) 
            stats_train_output = stats_train_file_output 
 
        print(stats_train_file_output,  file=metrics_train_file) 
 
        # Force to write immediately to file 
        metrics_train_file.flush() 
 
        # Val;idation Statistics 
        avg_val_loss, avg_val_acc, val_real = predict( 
            sess, network, val_batch, config.bsize) 
        val_target = np.argmax(val_batch[1], axis=1) 
 
        # Print validation metrics in a text file friendly for Excel 
        if num_classes == 2: 
            stats_valid_output, stats_valid_file_output = stats_output( 
                "Validation", epoch, val_target, val_real) 
            stats_valid_file_output += "{:.3f}\t{:.3f}\t{:.5f}".format( 
                val_loss, epoch_end-start, lr) 
        elif num_classes == 3: 
            stats_valid_output, stats_valid_file_output = stats_output3( 
                "Validation", epoch, val_target, val_real) 
            stats_valid_file_output += "{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}".format( 
                avg_val_acc, val_loss, epoch_end - start, lr) 
        else: 
            stats_valid_file_output = "{}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}".format( 
                epoch, avg_val_acc, val_loss, epoch_end - start, lr) 
            stats_valid_output = stats_valid_file_output 
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        print(stats_valid_file_output,  file=metrics_valid_file) 
 
        # Force to write immediately to file 
        metrics_valid_file.flush() 
 
        # Print all statistics 
        print(output_str) 
        print(stats_train_output) 
        print(stats_valid_output) 
        if not config.screen_log_only: 
            print(output_str, file=log_file) 
            print(stats_train_output, file=log_file) 
            print(stats_valid_output, file=log_file) 
 
            # Force to write immediately to file 
            log_file.flush() 
 
    if val_batch is None: 
        checkpoint_path = config.model_file 
        save_path = saver.save(sess, checkpoint_path) 
        print('Model at the last iteration saved in {}\r\n'.format(save_path)) 
        output_str = 'total running time {:.3f}s'.format(total_running_time) 
    else: 
        output_str = 'Final acc: {:.3f}% | best acc {:.3f}% | total running time {:.3f}s'\ 
            .format(val_acc*100, best_acc*100, total_running_time) 
 
    print(output_str) 
    if not config.screen_log_only: 
        print(output_str, file=log_file) 
        log_file.flush() 
        log_file.close() 
 

def newton_trainer(folder_dir, config, sess, network, full_batch, val_batch, saver, num_classe
s, test_network): 
 
    _, _, loss, outputs = network 
    newton_solver = newton_cg(config, sess, outputs, loss) 
    sess.run(tf.compat.v1.global_variables_initializer()) 
 
    print('-------------- initializing network by methods in He et al. (2015) --------------') 
    param = tf.compat.v1.trainable_variables() 
 
    print("\n\n-------------- Model Architecture --------------\n") 
    slim.model_analyzer.analyze_vars(param, print_info=True) 
    print("\n\n\n") 
 
    sess.run(init_model(param)) 
    newton_solver.newton(folder_dir, full_batch, val_batch, 
                         saver, network, num_classes, test_network) 
 

def main(): 
    # Number of maximum cores to use in the server 
    cores_to_use = 4 
 
    full_batch, num_cls, label_enum = read_data( 
        filename=args.train_set, dim=args.dim) 
 
    if args.val_set is None: 
        print('No validation set is provided. Will output model at the last iteration.') 
        val_batch = None 
    else: 
        val_batch, _, _ = read_data( 
            filename=args.val_set, dim=args.dim, label_enum=label_enum) 
 
    num_data = full_batch[0].shape[0] 
 
    config = ConfigClass(args, num_data, num_cls) 
 
    if isinstance(config.seed, int): 
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        tf.compat.v1.random.set_random_seed(config.seed) 
        np.random.seed(config.seed) 
 
    if config.net in ('CNN_4layers', 'CNN_7layers', 'VGG11', 'VGG13', 'VGG16', 'VGG19'): 
        x, y, outputs = CNN(config.net, num_cls, config.dim) 
        test_network = None 
    else: 
        raise ValueError('Unrecognized training model') 
 
    if config.loss == 'MSELoss': 
        loss = tf.reduce_sum(input_tensor=tf.pow(outputs-y, 2)) 
    else: 
        loss = tf.reduce_sum( 
            input_tensor=tf.nn.softmax_cross_entropy_with_logits(logits=outputs, labels=y)) 
 
    network = (x, y, loss, outputs) 
 
    sess_config = tf.compat.v1.ConfigProto( 
        allow_soft_placement=True, intra_op_parallelism_threads=cores_to_use, inter_op_paralle
lism_threads=cores_to_use) 
    sess_config.gpu_options.allow_growth = True 
 
    with tf.compat.v1.Session(config=sess_config) as sess: 
 
        full_batch[0], mean_tr = normalize_and_reshape( 
            full_batch[0], dim=config.dim, mean_tr=None) 
        if val_batch is not None: 
            val_batch[0], _ = normalize_and_reshape( 
                val_batch[0], dim=config.dim, mean_tr=mean_tr) 
 
        param = tf.compat.v1.trainable_variables() 
 
        mean_param = tf.compat.v1.get_variable(name='mean_tr', initializer=mean_tr, trainable=
False, 
                                               validate_shape=True, use_resource=False) 
        label_enum_var = tf.compat.v1.get_variable(name='label_enum', initializer=label_enum, 
trainable=False, 
                                                   validate_shape=True, use_resource=False) 
        saver = tf.compat.v1.train.Saver(var_list=param+[mean_param]) 
 
        # Create directory for logging 
        date = datetime.now().strftime("%d-%m-%Y_%H-%M-%S") 
        dim_str = str(len(config.dim) - 1) + "D" 
        if config.optim in ('SGD', 'Adam'): 
            epochs_str = str(args.epoch) + "epoch_" 
        else: 
            epochs_str = str(args.iter_max) + "epoch_" 
        num_classes = max(np.argmax(full_batch[1], axis=1)) + 1 
        if (num_classes == 2): 
            cls = "_AD_NC_" 
        else: 
            cls = "_AD_MCI_NC_" 
 
        folder_dir = './Experiments/CNN_' + config.optim + "/" + dim_str + cls + \ 
            epochs_str + date + "/" 
 
        # Create model direcotry 
        saved_model_dir = folder_dir + 'saved_model/' 
        if not os.path.exists(saved_model_dir): 
            os.makedirs(saved_model_dir) 
 
        config.model_file = saved_model_dir + 'model.ckpt' 
        print(config.model_file) 
 
        # Create log direcotry 
        log_dir = folder_dir + 'running_log/' 
        if not os.path.exists(log_dir): 
            os.makedirs(log_dir) 
 
        config.log_file = log_dir + 'logger.log' 
        print(config.log_file) 
 
        # Copy net.py 
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        if config.net in ('CNN_4layers', 'CNN_7layers'): 
            os.popen('cp ./net/net.py ' + folder_dir + "net.py") 
        else: 
            os.popen('cp ./net/vgg.py ' + folder_dir + "vgg.py") 
 
        # Call optimizers 
        if config.optim in ('SGD', 'Adam'): 
            gradient_trainer(folder_dir, 
                             config, sess, network, full_batch, val_batch, saver, num_classes,
 test_network) 
        elif config.optim == 'NewtonCG': 
            newton_trainer(folder_dir, 
                           config, sess, network, full_batch, val_batch, saver, num_classes, t
est_network=test_network) 
 

if __name__ == '__main__': 
    main() 
 

Code Snippet B.1. Main for the CNN implementations. (train.py) 

B.2 newton_cg.py 

This is the implementation of the NewtonCG algorithm. 

import pdb 
import tensorflow as tf 
import time 
import numpy as np 
import os 
import math 
from utilities import predict, stats_output, stats_output3 
 

def Rop(f, weights, v): 
    """Implementation of R operator 
    Args: 
            f: any function of weights 
            weights: list of tensors. 
            v: vector for right multiplication 
    Returns: 
            Jv: Jaccobian vector product, length same as 
                    the number of output of f 
    """ 
    if type(f) == list: 
        u = [tf.zeros_like(ff) for ff in f] 
    else: 
        u = tf.zeros_like(f)  # dummy variable 
    g = tf.gradients(ys=f, xs=weights, grad_ys=u) 
    return tf.gradients(ys=g, xs=u, grad_ys=v) 
 

def Gauss_Newton_vec(outputs, loss, weights, v): 
    """Implements Gauss-Newton vector product. 
    Args: 
            loss: Loss function. 
            outputs: outputs of the last layer (pre-softmax). 
            weights: Weights, list of tensors. 
            v: vector to be multiplied with Gauss Newton matrix 
    Returns: 
            J'BJv: Guass-Newton vector product. 
    """ 
    # Validate the input 
    if type(weights) == list: 
        if len(v) != len(weights): 
            raise ValueError("weights and v must have the same length.") 
 
    grads_outputs = tf.gradients(ys=loss, xs=outputs) 
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    BJv = Rop(grads_outputs, weights, v) 
    JBJv = tf.gradients(ys=outputs, xs=weights, grad_ys=BJv) 
    return JBJv 
 

class newton_cg(object): 
    def __init__(self, config, sess, outputs, loss): 
        """ 
        initialize operations and vairables that will be used in newton 
        args: 
                sess: tensorflow session 
                outputs: output of the neural network (pre-softmax layer) 
                loss: function to calculate loss 
        """ 
        super(newton_cg, self).__init__() 
        self.sess = sess 
        self.config = config 
        self.outputs = outputs 
        self.loss = loss 
        self.param = tf.compat.v1.trainable_variables() 
 
        self.CGiter = 0 
        FLOAT = tf.float32 
        model_weight = self.vectorize(self.param) 
 
        # initial variable used in CG 
        zeros = tf.zeros(model_weight.get_shape(), dtype=FLOAT) 
        self.r = tf.Variable(zeros, dtype=FLOAT, trainable=False) 
        self.v = tf.Variable(zeros, dtype=FLOAT, trainable=False) 
        self.s = tf.Variable(zeros, dtype=FLOAT, trainable=False) 
        self.g = tf.Variable(zeros, dtype=FLOAT, trainable=False) 
        # initial Gv, f for method minibatch 
        self.Gv = tf.Variable(zeros, dtype=FLOAT, trainable=False) 
        self.f = tf.Variable(0., dtype=FLOAT, trainable=False) 
 
        # rTr, cgtol and beta to be used in CG 
        self.rTr = tf.Variable(0., dtype=FLOAT, trainable=False) 
        self.cgtol = tf.Variable(0., dtype=FLOAT, trainable=False) 
        self.beta = tf.Variable(0., dtype=FLOAT, trainable=False) 
 
        # placeholder alpha, old_alpha and lambda 
        self.alpha = tf.compat.v1.placeholder(FLOAT, shape=[]) 
        self.old_alpha = tf.compat.v1.placeholder(FLOAT, shape=[]) 
        self._lambda = tf.compat.v1.placeholder(FLOAT, shape=[]) 
 
        self.num_grad_segment = math.ceil( 
            self.config.num_data/self.config.bsize) 
        self.num_Gv_segment = math.ceil(self.config.GNsize/self.config.bsize) 
 
        cal_loss, cal_lossgrad, cal_lossGv, \ 
            add_reg_avg_loss, add_reg_avg_grad, add_reg_avg_Gv, \ 
            zero_loss, zero_grad, zero_Gv = self._ops_in_minibatch() 
 
        # initial operations that will be used in minibatch and newton 
        self.cal_loss = cal_loss 
        self.cal_lossgrad = cal_lossgrad 
        self.cal_lossGv = cal_lossGv 
        self.add_reg_avg_loss = add_reg_avg_loss 
        self.add_reg_avg_grad = add_reg_avg_grad 
        self.add_reg_avg_Gv = add_reg_avg_Gv 
        self.zero_loss = zero_loss 
        self.zero_grad = zero_grad 
        self.zero_Gv = zero_Gv 
 
        self.CG, self.update_v = self._CG() 
        self.init_cg_vars = self._init_cg_vars() 
        self.update_gs = tf.tensordot(self.s, self.g, axes=1) 
        self.update_sGs = 0.5 * \ 
            tf.tensordot(self.s, -self.g-self.r-self._lambda*self.s, axes=1) 
        self.update_model = self._update_model() 
        self.gnorm = self.calc_norm(self.g) 
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    def vectorize(self, tensors): 
        if isinstance(tensors, list) or isinstance(tensors, tuple): 
            vector = [tf.reshape(tensor, [-1]) for tensor in tensors] 
            return tf.concat(vector, 0) 
        else: 
            return tensors 
 
    def inverse_vectorize(self, vector, param): 
        if isinstance(vector, list): 
            return vector 
        else: 
            tensors = [] 
            offset = 0 
            num_total_param = np.sum( 
                [np.prod(p.shape.as_list()) for p in param]) 
            for p in param: 
                numel = np.prod(p.shape.as_list()) 
                tensors.append(tf.reshape( 
                    vector[offset: offset+numel], p.shape)) 
                offset += numel 
 
            assert offset == num_total_param 
            return tensors 
 
    def calc_norm(self, v): 
        # default: frobenius norm 
        if isinstance(v, list): 
            norm = 0. 
            for p in v: 
                norm = norm + tf.norm(tensor=p)**2 
            return norm**0.5 
        else: 
            return tf.norm(tensor=v) 
 
    def _ops_in_minibatch(self): 
        """ 
        Define operations that will be used in method minibatch 
 
        Vectorization is already a deep copy operation. 
        Before using newton method, loss needs to be summed over training samples 
        to make results consistent. 
        """ 
 
        def cal_loss(): 
            return tf.compat.v1.assign(self.f, self.f + self.loss) 
 
        def cal_lossgrad(): 
            update_f = tf.compat.v1.assign(self.f, self.f + self.loss) 
 
            grad = tf.gradients(ys=self.loss, xs=self.param) 
            grad = self.vectorize(grad) 
            update_grad = tf.compat.v1.assign(self.g, self.g + grad) 
 
            return tf.group(*[update_f, update_grad]) 
 
        def cal_lossGv(): 
            v = self.inverse_vectorize(self.v, self.param) 
            Gv = Gauss_Newton_vec(self.outputs, self.loss, self.param, v) 
            Gv = self.vectorize(Gv) 
            return tf.compat.v1.assign(self.Gv, self.Gv + Gv) 
 
        # add regularization term to loss, gradient and Gv and further average over batches 
        def add_reg_avg_loss(): 
            model_weight = self.vectorize(self.param) 
            reg = (self.calc_norm(model_weight))**2 
            reg = 1.0/(2*self.config.C) * reg 
            return tf.compat.v1.assign(self.f, reg + self.f/self.config.num_data) 
 
        def add_reg_avg_lossgrad(): 
            model_weight = self.vectorize(self.param) 
            reg_grad = model_weight/self.config.C 
            return tf.compat.v1.assign(self.g, reg_grad + self.g/self.config.num_data) 
 



B-11 

 

        def add_reg_avg_lossGv(): 
            return tf.compat.v1.assign(self.Gv, (self._lambda + 1/self.config.C)*self.v 
                                       + self.Gv/self.config.GNsize) 
 
        # zero out loss, grad and Gv 
        def zero_loss(): 
            return tf.compat.v1.assign(self.f, tf.zeros_like(self.f)) 
 
        def zero_grad(): 
            return tf.compat.v1.assign(self.g, tf.zeros_like(self.g)) 
 
        def zero_Gv(): 
            return tf.compat.v1.assign(self.Gv, tf.zeros_like(self.Gv)) 
 
        return (cal_loss(), cal_lossgrad(), cal_lossGv(), 
                add_reg_avg_loss(), add_reg_avg_lossgrad(), add_reg_avg_lossGv(), 
                zero_loss(), zero_grad(), zero_Gv()) 
 
    def minibatch(self, data_batch, place_holder_x, place_holder_y, mode): 
        """ 
        A function to evaluate either function value, global gradient or sub-sampled Gv 
        """ 
        if mode not in ('funonly', 'fungrad', 'Gv'): 
            raise ValueError('Unknown mode other than funonly & fungrad & Gv!') 
 
        inputs, labels = data_batch 
        num_data = labels.shape[0] 
        num_segment = math.ceil(num_data/self.config.bsize) 
        x, y = place_holder_x, place_holder_y 
 
        # before estimation starts, need to zero out f, grad and Gv according to the mode 
 
        if mode == 'funonly': 
            assert num_data == self.config.num_data 
            assert num_segment == self.num_grad_segment 
            self.sess.run(self.zero_loss) 
        elif mode == 'fungrad': 
            assert num_data == self.config.num_data 
            assert num_segment == self.num_grad_segment 
            self.sess.run([self.zero_loss, self.zero_grad]) 
        else: 
            assert num_data == self.config.GNsize 
            assert num_segment == self.num_Gv_segment 
            self.sess.run(self.zero_Gv) 
 
        for i in range(num_segment): 
 
            load_time = time.time() 
            idx = np.arange(i * self.config.bsize, 
                            min((i+1) * self.config.bsize, num_data)) 
            batch_input = inputs[idx] 
            batch_labels = labels[idx] 
            batch_input = np.ascontiguousarray(batch_input) 
            batch_labels = np.ascontiguousarray(batch_labels) 
            self.config.elapsed_time += time.time() - load_time 
 
            if mode == 'funonly': 
 
                self.sess.run(self.cal_loss, feed_dict={ 
                    x: batch_input, 
                    y: batch_labels, }) 
 
            elif mode == 'fungrad': 
 
                self.sess.run(self.cal_lossgrad, feed_dict={ 
                    x: batch_input, 
                    y: batch_labels, }) 
 
            else: 
 
                self.sess.run(self.cal_lossGv, feed_dict={ 
                    x: batch_input, 
                    y: batch_labels}) 
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        # average over batches 
        if mode == 'funonly': 
            self.sess.run(self.add_reg_avg_loss) 
        elif mode == 'fungrad': 
            self.sess.run([self.add_reg_avg_loss, self.add_reg_avg_grad]) 
        else: 
            self.sess.run(self.add_reg_avg_Gv, 
                          feed_dict={self._lambda: self.config._lambda}) 
 
    def _update_model(self): 
        update_model_ops = [] 
        x = self.inverse_vectorize(self.s, self.param) 
        for i, p in enumerate(self.param): 
            op = tf.compat.v1.assign(p, p + (self.alpha-self.old_alpha) * x[i]) 
            update_model_ops.append(op) 
        return tf.group(*update_model_ops) 
 
    def _init_cg_vars(self): 
        init_ops = [] 
 
        init_r = tf.compat.v1.assign(self.r, -self.g) 
        init_v = tf.compat.v1.assign(self.v, -self.g) 
        init_s = tf.compat.v1.assign(self.s, tf.zeros_like(self.g)) 
        gnorm = self.calc_norm(self.g) 
        init_rTr = tf.compat.v1.assign(self.rTr, gnorm**2) 
        init_cgtol = tf.compat.v1.assign(self.cgtol, self.config.xi*gnorm) 
 
        init_ops = [init_r, init_v, init_s, init_rTr, init_cgtol] 
 
        return tf.group(*init_ops) 
 
    def _CG(self): 
        """ 
        CG: 
                define operations that will be used in method newton 
 
        Same as the previous loss calculation, 
        Gv has been summed over batches when samples were fed into Neural Network. 
        """ 
 
        def CG_ops(): 
 
            vGv = tf.tensordot(self.v, self.Gv, axes=1) 
 
            alpha = self.rTr / vGv 
            with tf.control_dependencies([alpha]): 
                update_s = tf.compat.v1.assign( 
                    self.s, self.s + alpha * self.v, name='update_s_ops') 
                update_r = tf.compat.v1.assign( 
                    self.r, self.r - alpha * self.Gv, name='update_r_ops') 
 
                with tf.control_dependencies([update_s, update_r]): 
                    rnewTrnew = self.calc_norm(update_r)**2 
                    update_beta = tf.compat.v1.assign( 
                        self.beta, rnewTrnew / self.rTr) 
                    with tf.control_dependencies([update_beta]): 
                        update_rTr = tf.compat.v1.assign( 
                            self.rTr, rnewTrnew, name='update_rTr_ops') 
 
            return tf.group(*[update_s, update_beta, update_rTr]) 
 
        def update_v(): 
            return tf.compat.v1.assign(self.v, self.r + self.beta*self.v, name='update_v') 
 
        return (CG_ops(), update_v()) 
 
    def newton(self, folder_dir, full_batch, val_batch, saver, network, num_classes, test_netw
ork=None): 
        """ 
        Conduct newton steps for training 
        args: 
             full_batch & val_batch: provide training set and validation set. The function 
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                 will save the best model evaluted on validation set for future prediction.  
             network: a tuple contains (x, y, loss, outputs). 
             test_network: a tuple similar to argument network. If you use layers which behave 
             differently in test phase such as batchnorm, a separate test_network is needed. 
        return: 
                None 
        """ 
        # check whether data is valid 
        full_inputs, full_labels = full_batch 
        assert full_inputs.shape[0] == full_labels.shape[0] 
 
        if full_inputs.shape[0] != self.config.num_data: 
            raise ValueError('The number of full batch inputs does not agree with the config \                     
               argument. This is important because global loss is averaged over those inputs') 
 
        x, y, _, outputs = network 
 
        # Create summary direcotry 
        summary_dir = folder_dir + 'summary/' 
        if not os.path.exists(summary_dir): 
            os.makedirs(summary_dir) 
 
        summary_dir = summary_dir + 'train' 
 
        # Print to a format friendly for excel 
        metrics_train_file = open( 
            folder_dir + "running_log/metrics_train_file.txt", 'w') 
        metrics_valid_file = open( 
            folder_dir + "running_log/metrics_valid_file.txt", 'w') 
 
        if num_classes == 2: 
            print("epoch\ttn\tfp\tfn\ttp\tacc\tppv\tnpv\tsensitivity\tspecificity\tb_acc\tloss
\tepoch_time\tf\t|g|\talpha\tratio\tlambda\t#CG\tactred\tprered", 
                  file=metrics_train_file) 
            print("epoch\ttn\tfp\tfn\ttp\tacc\tppv\tnpv\tsensitivity\tspecificity\tb_acc\tloss
\tepoch_time\tf\t|g|\talpha\tratio\tlambda\t#CG\tactred\tprered", 
                  file=metrics_valid_file) 
        elif num_classes == 3: 
            print("epoch\ttn_0\tfp_0\tfn_0\ttp_0\tacc_0\tppv_0\tnpv_0\tsensitivity_0\tspecific
ity_0\tb_acc_0\ttn_1\tfp_1\tfn_1\ttp_1\tacc_1\tppv_1\tnpv_1\tsensitivity_1\tspecificity_1\tb_a
cc_1\ttn_2\tfp_2\tfn_2\ttp_2\tacc_2\tppv_2\tnpv_2\tsensitivity_2\tspecificity_2\tb_acc_2\tacc\
tloss\tepoch_time\tf\t|g|\talpha\tratio\tlambda\t#CG\tactred\tprered", 
                  file=metrics_train_file) 
            print("epoch\ttn_0\tfp_0\tfn_0\ttp_0\tacc_0\tppv_0\tnpv_0\tsensitivity_0\tspecific
ity_0\tb_acc_0\ttn_1\tfp_1\tfn_1\ttp_1\tacc_1\tppv_1\tnpv_1\tsensitivity_1\tspecificity_1\tb_a
cc_1\ttn_2\tfp_2\tfn_2\ttp_2\tacc_2\tppv_2\tnpv_2\tsensitivity_2\tspecificity_2\tb_acc_2\tacc\
tloss\tepoch_time\tf\t|g|\talpha\tratio\tlambda\t#CG\tactred\tprered", 
                  file=metrics_valid_file) 
        else: 
            print("epoch\tacc\tloss\tepoch_time\tf\t|g|\talpha\tratio\tlambda\t#CG\tactred\tpr
ered", 
                  file=metrics_train_file) 
            print("epoch\tacc\tloss\tepoch_time\tf\t|g|\talpha\tratio\tlambda\t#CG\tactred\tpr
ered", 
                  file=metrics_valid_file) 
 
        # Force to write immediately to file 
        metrics_train_file.flush() 
        metrics_valid_file.flush() 
 
        tf.compat.v1.summary.scalar('loss', self.f) 
        merged = tf.compat.v1.summary.merge_all() 
        train_writer = tf.compat.v1.summary.FileWriter( 
            summary_dir, self.sess.graph) 
 
        print(self.config.args) 
        if not self.config.screen_log_only: 
            log_file = open(self.config.log_file, 'w') 
            print(self.config.args, file=log_file) 
            # Force to write immediately to file 
            log_file.flush() 
 
        self.minibatch(full_batch, x, y, mode='fungrad') 
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        f = self.sess.run(self.f) 
        output_str = 'initial f: {:.3f}'.format(f) 
        print(output_str) 
        if not self.config.screen_log_only: 
            print(output_str, file=log_file) 
 
            # Force to write immediately to file 
            log_file.flush() 
 
        best_acc = 0.0 
 
        total_running_time = 0.0 
        self.config.elapsed_time = 0.0 
        total_CG = 0 
 
        for k in range(self.config.iter_max): 
 
            # randomly select the batch for Gv estimation 
            idx = np.random.choice(np.arange(0, full_labels.shape[0]), 
                                   size=self.config.GNsize, replace=False) 
 
            mini_inputs = full_inputs[idx] 
            mini_labels = full_labels[idx] 
 
            start = time.time() 
 
            self.sess.run(self.init_cg_vars) 
            cgtol = self.sess.run(self.cgtol) 
 
            avg_cg_time = 0.0 
            for CGiter in range(1, self.config.CGmax+1): 
 
                cg_time = time.time() 
                self.minibatch((mini_inputs, mini_labels), x, y, mode='Gv') 
                avg_cg_time += time.time() - cg_time 
 
                self.sess.run(self.CG) 
 
                rnewTrnew = self.sess.run(self.rTr) 
 
                if rnewTrnew**0.5 <= cgtol or CGiter == self.config.CGmax: 
                    break 
 
                self.sess.run(self.update_v) 
 
            print('Avg time per Gv iteration: {:.5f} s\r\n'.format( 
                avg_cg_time/CGiter)) 
 
            gs, sGs = self.sess.run([self.update_gs, self.update_sGs], feed_dict={ 
                self._lambda: self.config._lambda 
            }) 
 
            # line_search 
            f_old = f 
            alpha = 1 
            while True: 
 
                old_alpha = 0 if alpha == 1 else alpha/0.5 
 
                self.sess.run(self.update_model, feed_dict={ 
                    self.alpha: alpha, self.old_alpha: old_alpha 
                }) 
 
                prered = alpha*gs + (alpha**2)*sGs 
 
                self.minibatch(full_batch, x, y, mode='funonly') 
                f = self.sess.run(self.f) 
 
                actred = f - f_old 
 
                if actred <= self.config.eta*alpha*gs: 
                    break 
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                alpha *= 0.5 
 
            # update lambda 
            ratio = actred / prered 
            if ratio < 0.25: 
                self.config._lambda *= self.config.boost 
            elif ratio >= 0.75: 
                self.config._lambda *= self.config.drop 
 
            self.minibatch(full_batch, x, y, mode='fungrad') 
            f = self.sess.run(self.f) 
 
            gnorm = self.sess.run(self.gnorm) 
 
            summary = self.sess.run(merged) 
            train_writer.add_summary(summary, k) 
 
            # exclude data loading time for fair comparison 
            end = time.time() 
 
            end = end - self.config.elapsed_time 
            total_running_time += end-start 
 
            self.config.elapsed_time = 0.0 
 
            total_CG += CGiter 
 
            output_str = '{}-
iter f: {:.3f} |g|: {:.5f} alpha: {:.3e} ratio: {:.3f} lambda: {:.5f} #CG: {} actred: {:.5f} p
rered: {:.5f} time: {:.3f}'.\ 
                format(k, f, gnorm, alpha, actred/prered, 
                       self.config._lambda, CGiter, actred, prered, end - start) 
 
            # Training Statistics 
            avg_train_loss, avg_train_acc, train_real = predict( 
                self.sess, network, full_batch, self.config.bsize) 
            train_target = np.argmax(full_batch[1], axis=1) 
 
            # Print train metrics in a text file friendly for Excel 
            if num_classes == 2: 
                stats_train_output, stats_train_file_output = stats_output( 
                    "Training", k, train_target, train_real) 
                stats_train_file_output += "{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}\t{:.3e}\t{:.3f}\t{:
.5f}\t{}\t{:.5f}\t{:.5f}".format( 
                    avg_train_loss, end - start, f, gnorm, alpha, actred/prered, 
                    self.config._lambda, CGiter, actred, prered) 
            elif num_classes == 3: 
                stats_train_output, stats_train_file_output = stats_output3( 
                    "Training", k, train_target, train_real) 
                stats_train_file_output += "{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}\t{:.3e}\t{:
.3f}\t{:.5f}\t{}\t{:.5f}\t{:.5f}".format(avg_train_acc, avg_train_loss, end - start, f, gnorm,
 alpha, actred/prered, self.config._lambda, CGiter, actred, prered) 
            else: 
                stats_train_file_output = "{}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}\t{:.3e}\
t{:.3f}\t{:.5f}\t{}\t{:.5f}\t{:.5f}".format(k, avg_train_acc, avg_train_loss, end - start, f, 
gnorm, alpha, actred/prered, self.config._lambda, CGiter, actred, prered) 
                stats_train_output = stats_train_file_output 
 
            print(stats_train_file_output,  file=metrics_train_file) 
 
            # Force to write immediately to file 
            metrics_train_file.flush() 
 
            # Val;idation Statistics 
            avg_val_loss, avg_val_acc, val_real = predict( 
                self.sess, network, val_batch, self.config.bsize) 
            val_target = np.argmax(val_batch[1], axis=1) 
 
            # Print validation metrics in a text file friendly for Excel 
            if num_classes == 2: 
                stats_valid_output, stats_valid_file_output = stats_output( 
                    "Validation", k, val_target, val_real) 
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                stats_valid_file_output += "{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}\t{:.3e}\t{:.3f}\t{:
.5f}\t{}\t{:.5f}\t{:.5f}".format( 
                    avg_val_loss, end - start, f, gnorm, alpha, actred/prered, 
                    self.config._lambda, CGiter, actred, prered) 
            elif num_classes == 3: 
                stats_valid_output, stats_valid_file_output = stats_output3( 
                    "Validation", k, val_target, val_real) 
                stats_valid_file_output += "{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}\t{:.3e}\t{:
.3f}\t{:.5f}\t{}\t{:.5f}\t{:.5f}".format( 
                    avg_val_acc, avg_val_loss, end - start, f, gnorm, alpha, actred/prered, 
                    self.config._lambda, CGiter, actred, prered) 
            else: 
                stats_valid_file_output = "{}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.5f}\t{:.3e}\
t{:.3f}\t{:.5f}\t{}\t{:.5f}\t{:.5f}".format( 
                    k, avg_val_acc, avg_val_loss, end - start, f, gnorm, alpha, actred/prered, 
                    self.config._lambda, CGiter, actred, prered) 
                stats_valid_output = stats_valid_file_output 
 
            print(stats_valid_file_output, file=metrics_valid_file) 
 
            # Force to write immediately to file 
            metrics_valid_file.flush() 
 
            # Print all statistics 
            print(output_str) 
            print(stats_train_output) 
            print(stats_valid_output) 
            if not self.config.screen_log_only: 
                print(output_str, file=log_file) 
                print(stats_train_output, file=log_file) 
                print(stats_valid_output, file=log_file) 
 
                # Force to write immediately to file 
                log_file.flush() 
 
            if val_batch is not None: 
                # Evaluate the performance after every Newton Step 
                if test_network == None: 
                    val_loss, val_acc, _ = predict( 
                        self.sess, 
                        network=(x, y, self.loss, outputs), 
                        test_batch=val_batch, 
                        bsize=self.config.bsize, 
                    ) 
                else: 
                    # A separat test network part has not been done... 
                    val_loss, val_acc, _ = predict( 
                        self.sess, 
                        network=test_network, 
                        test_batch=val_batch, 
                        bsize=self.config.bsize 
                    ) 
 
                output_str = '\r\n {}-iter val_acc: {:.3f}% val_loss {:.3f}\r\n'.\ 
                    format(k, val_acc * 100, val_loss) 
 
                print(output_str) 
                if not self.config.screen_log_only: 
                    print(output_str, file=log_file) 
 
                    # Force to write immediately to file 
                    log_file.flush() 
 
                if val_acc > best_acc: 
                    best_acc = val_acc 
                    checkpoint_path = self.config.model_file 
                    save_path = saver.save(self.sess, checkpoint_path) 
                    print('Best model saved in {}\r\n'.format(save_path)) 
 
        if val_batch is None: 
            checkpoint_path = self.config.model_file 
            save_path = saver.save(self.sess, checkpoint_path) 
            print('Model at the last iteration saved in {}\r\n'.format(save_path)) 
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            output_str = 'total_#CG {} | total running time {:.3f}s'.format( 
                total_CG, total_running_time) 
        else: 
            output_str = 'Final acc: {:.3f}% | best acc {:.3f}% | total_#CG {} | total running
 time {:.3f}s'.\ 
                format(val_acc * 100, best_acc * 100, 
                       total_CG, total_running_time) 
 
        print(output_str) 
        if not self.config.screen_log_only: 
            print(output_str, file=log_file) 
            # Force to write immediately to file 
            log_file.flush() 
            log_file.close() 
 

Code Snippet B.2. Implementation of the NewtonCG for the CNNs. 

B.3 utilities.py 

This file contains useful utilities that are needed from other files. Also, it contains the 

stats_output method that is responsible for what statistics will be saved in the output file, 

such as TP, TN, FP, FN, accuracy, sensitivity, etc.  

import numpy as np 
import math 
import scipy.io as sio 
import os 
import math 
import pdb 
from sklearn.metrics import confusion_matrix, classification_report 
 

class ConfigClass(object): 
    def __init__(self, args, num_data, num_cls): 
        super(ConfigClass, self).__init__() 
        self.args = args 
        self.iter_max = args.iter_max 
 
        # Different notations of regularization term: 
        # In SGD, weight decay: 
        #   weight_decay <- lr/(C*num_of_training_samples) 
        # In Newton method: 
        #   C <- C * num_of_training_samples 
 
        self.seed = args.seed 
 
        if self.seed is None: 
            print('You choose not to specify a random seed.' + 
                  'A different result is produced after each run.') 
        elif isinstance(self.seed, int) and self.seed >= 0: 
            print('You specify random seed {}.'.format(self.seed)) 
        else: 
            raise ValueError('Only accept None type or nonnegative integers for' + 
                             ' random seed argument!') 
 
        self.train_set = args.train_set 
        self.val_set = args.val_set 
        self.num_cls = num_cls 
        self.dim = args.dim 
 
        self.num_data = num_data 
        self.GNsize = min(args.GNsize, self.num_data) 
        self.C = args.C * self.num_data 
        self.net = args.net 
 
        self.xi = 0.1 
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        self.CGmax = args.CGmax 
        self._lambda = args._lambda 
        self.drop = args.drop 
        self.boost = args.boost 
        self.eta = args.eta 
        self.lr = args.lr 
        self.lr_decay = args.lr_decay 
 
        self.bsize = args.bsize 
        if args.momentum < 0: 
            raise ValueError('Momentum needs to be larger than 0!') 
        self.momentum = args.momentum 
 
        self.loss = args.loss 
        if self.loss not in ('MSELoss', 'CrossEntropy'): 
            raise ValueError('Unrecognized loss type!') 
        self.optim = args.optim 
        if self.optim not in ('SGD', 'NewtonCG', 'Adam'): 
            raise ValueError('Only support SGD, Adam & NewtonCG optimizer!') 
 
        self.log_file = args.log_file 
        self.model_file = args.model_file 
        self.screen_log_only = args.screen_log_only 
 
        # if self.screen_log_only: 
        #     print('You choose not to store running log. Only store model to {}'.format( 
        #         self.log_file)) 
        # else: 
        #     print('Saving log to: {}'.format(self.log_file)) 
        #     dir_name, _ = os.path.split(self.log_file) 
        #     if not os.path.isdir(dir_name): 
        #         os.makedirs(dir_name, exist_ok=True) 
 
        # dir_name, _ = os.path.split(self.model_file) 
        # if not os.path.isdir(dir_name): 
        #     os.makedirs(dir_name, exist_ok=True) 
 
        self.elapsed_time = 0.0 
 

def read_data(filename, dim, label_enum=None): 
    """ 
    args: 
            filename: the path where .mat files are stored 
            label_enum (default None): the list that stores the original labels. 
                    If label_enum is None, the function will generate a new list which stores 
the 
                    original labels in a sequence, and map original labels to [0, 1, ... numbe
r_of_classes-1]. 
                    If label_enum is a list, the function will use it to convert 
                    original labels to [0, 1,..., number_of_classes-1]. 
    """ 
 
    mat_contents = sio.loadmat(filename) 
    images, labels = mat_contents['Z'], mat_contents['y'] 
 
    labels = labels.reshape(-1) 
 
    images = images.reshape(images.shape[0], -1) 
 
    if (len(dim) == 3): 
        _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim 
        zero_to_append = np.zeros((images.shape[0], 
                                   _IMAGE_CHANNELS*_IMAGE_HEIGHT*_IMAGE_WIDTH-
np.prod(images.shape[1:]))) 
    elif(len(dim) == 4): 
        _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_DEPTH, _IMAGE_CHANNELS = dim 
        zero_to_append = np.zeros((images.shape[0], 
                                   _IMAGE_CHANNELS*_IMAGE_HEIGHT*_IMAGE_WIDTH*_IMAGE_DEPTH-
np.prod(images.shape[1:]))) 
 
    images = np.append(images, zero_to_append, axis=1) 
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    # check data validity 
    if label_enum is None: 
        label_enum, labels = np.unique(labels, return_inverse=True) 
        num_cls = labels.max() + 1 
 
        if len(label_enum) != num_cls: 
            raise ValueError('The number of classes is not equal to the number of\ 
                            labels in dataset. Please verify them.') 
    else: 
        num_cls = len(label_enum) 
        forward_map = dict(zip(label_enum, np.arange(num_cls))) 
        labels = np.expand_dims(labels, axis=1) 
        labels = np.apply_along_axis( 
            lambda x: forward_map[x[0]], axis=1, arr=labels) 
 
    # convert groundtruth to one-hot encoding 
    labels = np.eye(num_cls)[labels] 
    labels = labels.astype('float32') 
 
    return [images, labels], num_cls, label_enum 
 

def normalize_and_reshape(images, dim, mean_tr=None): 
    if (len(dim) == 3): 
        _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim 
        images_shape = [images.shape[0], 
                        _IMAGE_CHANNELS, _IMAGE_HEIGHT, _IMAGE_WIDTH] 
    elif (len(dim) == 4): 
        _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_DEPTH, _IMAGE_CHANNELS = dim 
        images_shape = [images.shape[0], 
                        _IMAGE_CHANNELS, _IMAGE_HEIGHT, _IMAGE_WIDTH,  _IMAGE_DEPTH] 
 
    # images normalization and zero centering 
    images = images.reshape(images_shape[0], -1) 
 
    # images = images/255.0 
 
    if mean_tr is None: 
        print('No mean of data provided! Normalize images by their own mean.') 
        # if no mean_tr is provided, we calculate it according to the current data 
        mean_tr = images.mean(axis=0) 
    else: 
        print('Normalzie images according to the provided mean.') 
        if np.prod(mean_tr.shape) != np.prod(dim): 
            raise ValueError( 
               'Dimension of provided mean does not agree with the data! Please verify them!v) 
 
    images = images - mean_tr 
 
    images = images.reshape(images_shape) 
 
    if (len(dim) == 3): 
        # Tensorflow accepts data shape: B x H x W x C 
        images = np.transpose(images, (0, 2, 3, 1)) 
    elif (len(dim) == 4): 
        # Tensorflow accepts data shape: B x H x W x D x C 
        images = np.transpose(images, (0, 2, 3, 4, 1)) 
 
    return images, mean_tr 
 

def predict(sess, network, test_batch, bsize): 
    x, y, loss, outputs = network 
 
    test_inputs, test_labels = test_batch 
    batch_size = bsize 
 
    num_data = test_labels.shape[0] 
    num_batches = math.ceil(num_data/batch_size) 
 
    results = np.zeros(shape=num_data, dtype=np.int) 
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    infer_loss = 0.0 
 
    for i in range(num_batches): 
        batch_idx = np.arange(i*batch_size, min((i+1)*batch_size, num_data)) 
 
        batch_input = test_inputs[batch_idx] 
        batch_labels = test_labels[batch_idx] 
 
        net_outputs, _loss = sess.run( 
            [outputs, loss], feed_dict={x: batch_input, y: batch_labels} 
        ) 
 
        # net_outputs are float values, no softmax is being applies 
        # np.argmax returns the index of the max value 
        results[batch_idx] = np.argmax(net_outputs, axis=1) 
        # note that _loss was summed over batches 
        infer_loss = infer_loss + _loss 
 
    avg_acc = (np.argmax(test_labels, axis=1) == results).mean() 
    avg_loss = infer_loss/num_data 
 
    return avg_loss, avg_acc, results 
 

def stats_output(stats_type, epoch, target, real): 
 
    conf_matrix = confusion_matrix(target, real) 
 
    # Correct 
    tn = conf_matrix[0][0] 
    fp = conf_matrix[0][1] 
    fn = conf_matrix[1][0] 
    tp = conf_matrix[1][1] 
 
    # Incorrect! 
    # tp = conf_matrix[0][0] 
    # fp = conf_matrix[0][1] 
    # fn = conf_matrix[1][0] 
    # tn = conf_matrix[1][1] 
 
    total = len(target) 
 
    # print(classification_report(target, real)) 
 
    acc = "{:.3f}".format((tp + tn) / total) 
 
    # Positive Predictive Value - PPV (Precision 
    if (not ((tp + fp) == 0)): 
        ppv = "{:.3f}".format(tp / (tp + fp)) 
    else: 
        ppv = "nan" 
 
    # Negative Predictive Value - NPV 
    if(not ((tn + fn) == 0)): 
        npv = "{:.3f}".format(tn / (tn + fn)) 
    else: 
        npv = "nan" 
 
    # Sensitivity (True Positive Rate) 
    if(not ((tp + fn) == 0)): 
        sensitivity = "{:.3f}".format(tp/(tp + fn)) 
    else: 
        sensitivity = "nan" 
 
    # Specificity (True Negative Rate) 
    if(not ((tn + fp) == 0)): 
        specificity = "{:.3f}".format(tn / (tn + fp)) 
    else: 
        specificity = "nan" 
 
    # Balanced Accuracy 
    balanced_acc = "{:.3f}".format((tp / (tp + fn) + tn / (tn + fp)) / 2) 
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    output = '{}: epoch {} | tn {} | fp {} | fn {} | tp {} | acc {} | ppv {} | npv {} | sensit
ivity {} | specificity {} | b_acc {}'\ 
        .format(stats_type, epoch, tn, fp, fn, tp, acc, ppv, npv, sensitivity, specificity, ba
lanced_acc) 
 
    # Output metrics for file 
    output_file = "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t".format( 
        epoch, tn, fp, fn, tp, acc, ppv, npv, sensitivity, specificity, balanced_acc) 
    return output, output_file 
 

def stats_output3(stats_type, epoch, target, real): 
    # For multi-class classifiacation, you may use one against all approach. 
    # Suppose there are three classes: C1, C2, and C3 
 
    # To find these four terms of C2 or C3 you can replace C1 with C2 or C3. 
    # target_names = ['CN', 'MCI', 'AD'] 
    # labels = [0, 1, 2] 
    # # Recall  == Sensitivity 
    # # Precision == PPV 
    # print(classification_report(target, real, labels=labels, 
    #                             target_names=target_names, output_dict=True)) 
    conf_matrix = confusion_matrix(target, real) 
 
    FP = conf_matrix.sum(axis=0) - np.diag(conf_matrix) 
    FN = conf_matrix.sum(axis=1) - np.diag(conf_matrix) 
    TP = np.diag(conf_matrix) 
    TN = conf_matrix.sum() - (FP + FN + TP) 
 
    # Sensitivity, hit rate, recall, or true positive rate 
    TPR = TP/(TP+FN) 
    # Specificity or true negative rate 
    TNR = TN/(TN+FP) 
    # Precision or positive predictive value 
    PPV = TP/(TP+FP) 
    # Negative predictive value 
    NPV = TN/(TN+FN) 
    # Fall out or false positive rate 
    # FPR = FP/(FP+TN) 
    # # False negative rate 
    # FNR = FN/(TP+FN) 
    # # False discovery rate 
    # FDR = FP/(TP+FP) 
 
    # Overall accuracy 
    ACC = (TP + TN) / (TP + FP + FN + TN) 
 
    # Balanced Accuracy 
    BALANCED_ACC = (TP / (TP + FN) + TN / (TN + FP)) / 2 
 
    acc_0 = "{:.3f}".format(ACC[0]) 
    acc_1 = "{:.3f}".format(ACC[1]) 
    acc_2 = "{:.3f}".format(ACC[2]) 
 
    # Positive Predictive Value - PPV (Precision 
    if (not ((TP[0] + FP[0]) == 0)): 
        ppv_0 = "{:.3f}".format(PPV[0]) 
    else: 
        ppv_0 = "nan" 
 
    if (not ((TP[1] + FP[1]) == 0)): 
        ppv_1 = "{:.3f}".format(PPV[1]) 
    else: 
        ppv_1 = "nan" 
 
    if (not ((TP[2] + FP[2]) == 0)): 
        ppv_2 = "{:.3f}".format(PPV[2]) 
    else: 
        ppv_2 = "nan" 
 
    # Negative Predictive Value - NPV 
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    if(not ((TN[0] + FN[0]) == 0)): 
        npv_0 = "{:.3f}".format(NPV[0]) 
    else: 
        npv_0 = "nan" 
 
    if(not ((TN[1] + FN[1]) == 0)): 
        npv_1 = "{:.3f}".format(NPV[1]) 
    else: 
        npv_1 = "nan" 
 
    if(not ((TN[2] + FN[2]) == 0)): 
        npv_2 = "{:.3f}".format(NPV[2]) 
    else: 
        npv_2 = "nan" 
 
    # Sensitivity (True Positive Rate) 
    if(not ((TP[0] + FN[0]) == 0)): 
        sensitivity_0 = "{:.3f}".format(TPR[0]) 
    else: 
        sensitivity_0 = "nan" 
 
    if(not ((TP[1] + FN[1]) == 0)): 
        sensitivity_1 = "{:.3f}".format(TPR[1]) 
    else: 
        sensitivity_1 = "nan" 
 
    if(not ((TP[2] + FN[2]) == 0)): 
        sensitivity_2 = "{:.3f}".format(TPR[2]) 
    else: 
        sensitivity_2 = "nan" 
 
    # Specificity (True Negative Rate) 
    if(not ((TN[0] + FP[0]) == 0)): 
        specificity_0 = "{:.3f}".format(TNR[0]) 
    else: 
        specificity_0 = "nan" 
 
    if(not ((TN[1] + FP[1]) == 0)): 
        specificity_1 = "{:.3f}".format(TNR[1]) 
    else: 
        specificity_1 = "nan" 
 
    if (not ((TN[2] + FP[2]) == 0)): 
        specificity_2 = "{:.3f}".format(TNR[2]) 
    else: 
        specificity_2 = "nan" 
 
    b_acc_0 = "{:.3f}".format(BALANCED_ACC[0]) 
    b_acc_1 = "{:.3f}".format(BALANCED_ACC[1]) 
    b_acc_2 = "{:.3f}".format(BALANCED_ACC[2]) 
 
    output = '{}: epoch {} | tn_0 {} | fp_0 {} | fn_0 {} | tp_0 {} | acc_0 {} | ppv_0 {} | npv
_0 {} | sensitivity_0 {} | specificity_0 {} | b_acc_0 {} | tn_1 {} | fp_1 {} | fn_1 {} | tp_1 
{} | acc_1 {} | ppv_1 {} | npv_1 {} | sensitivity_1 {} | specificity_1 {} | b_acc_1 {} | tn_2 
{} | fp_2 {} | fn_2 {} | tp_2 {} | acc_2 {} | ppv_2 {} | npv_2 {} | sensitivity_2 {} | specifi
city_2 {} | b_acc_2 {}'\ 
        .format(stats_type, epoch, TN[0], FP[0], FN[0], TP[0], acc_0, ppv_0, npv_0, sensitivit
y_0, specificity_0, b_acc_0, TN[1], FP[1], FN[1], TP[1], acc_1, ppv_1, npv_1, sensitivity_1, s
pecificity_1, b_acc_1, TN[2], FP[2], FN[2], TP[2], acc_2, ppv_2, npv_2, sensitivity_2, specifi
city_2, b_acc_2) 
 
    # Output metrics for file 
    output_file = "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\
t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t".format( 
        epoch,  TN[0], FP[0], FN[0], TP[0], acc_0, ppv_0, npv_0, sensitivity_0, specificity_0,
 b_acc_0, TN[1], FP[1], FN[1], TP[1], acc_1, ppv_1, npv_1, sensitivity_1, specificity_1, b_acc
_1, TN[2], FP[2], FN[2], TP[2], acc_2, ppv_2, npv_2, sensitivity_2, specificity_2, b_acc_2) 
    return output, output_file 

 

Code Snippet B.3. Utility functions used in the CNN implementation. 
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B.4 predict.py 

The predict.py file runs a single forward pass the network. Is being used during training 

but it can also be used for the test set as well. 

import numpy as np 
import pdb 
import argparse 
from net.net import CNN 
from utilities import predict, read_data, normalize_and_reshape, stats_output, stats_output3 
import tensorflow as tf 
tf.compat.v1.disable_eager_execution() 
 

def parse_args(): 
    parser = argparse.ArgumentParser(description='prediction') 
    parser.add_argument('--test_set', dest='test_set', 
                        help='provide the directory of .mat file for testing', 
                        default='data/mnist-demo.t.mat', type=str) 
    parser.add_argument('--model', dest='model_file', 
                        help='provide file storing network parameters, i.e. ./dir/model.ckpt', 
                        default='./saved_model/model.ckpt', type=str) 
    parser.add_argument('--bsize', dest='bsize', 
                        help='batch size', 
                        default=1024, type=int) 
    parser.add_argument('--loss', dest='loss', 
                        help='which loss function to use: MSELoss or CrossEntropy', 
                        default='MSELoss', type=str) 
    parser.add_argument('--dim', dest='dim', nargs='+', help='input dimension of data,' + 
                        'shape must be:  height width num_channels', 
                                      default=[32, 32, 3], type=int) 
    args = parser.parse_args() 
    return args 
 

if __name__ == '__main__': 
    # Number of maximum cores to use in the server 
    cores_to_use = 16 
    args = parse_args() 
 
    sess_config = tf.compat.v1.ConfigProto( 
        allow_soft_placement=True, intra_op_parallelism_threads=cores_to_use, inter_op_paralle
lism_threads=cores_to_use) 
    sess_config.gpu_options.allow_growth = True 
 
    with tf.compat.v1.Session(config=sess_config) as sess: 
        graph_address = args.model_file + '.meta' 
        imported_graph = tf.compat.v1.train.import_meta_graph(graph_address) 
        imported_graph.restore(sess, args.model_file) 
        mean_param = [v for v in tf.compat.v1.global_variables() 
                      if 'mean_tr:0' in v.name][0] 
        label_enum_var = [ 
            v for v in tf.compat.v1.global_variables() if 'label_enum:0' in v.name][0] 
 
        sess.run(tf.compat.v1.variables_initializer( 
            [mean_param, label_enum_var])) 
        mean_tr = sess.run(mean_param) 
        label_enum = sess.run(label_enum_var) 
 
        test_batch, num_cls, _ = read_data( 
            args.test_set, dim=args.dim, label_enum=label_enum) 
        test_batch[0], _ = normalize_and_reshape( 
            test_batch[0], dim=args.dim, mean_tr=mean_tr) 
 
        x = tf.compat.v1.get_default_graph().get_tensor_by_name( 
            'main_params/input_of_net:0') 
        y = tf.compat.v1.get_default_graph().get_tensor_by_name('main_params/labels:0') 
        outputs = tf.compat.v1.get_default_graph().get_tensor_by_name('output_of_net:0') 
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        if args.loss == 'MSELoss': 
            loss = tf.reduce_sum(input_tensor=tf.pow(outputs-y, 2)) 
        else: 
            loss = tf.reduce_sum(input_tensor=tf.nn.softmax_cross_entropy_with_logits( 
                logits=outputs, labels=tf.stop_gradient(y))) 
 
        network = (x, y, loss, outputs) 
 
        avg_loss, avg_acc, results = predict( 
            sess, network, test_batch, args.bsize) 
 
        # convert results back to the original labels 
        inverse_map = dict(zip(np.arange(num_cls), label_enum)) 
        results = np.expand_dims(results, axis=1) 
        results = np.apply_along_axis( 
            lambda x: inverse_map[x[0]], axis=1, arr=results) 
 
        target = np.argmax(test_batch[1], axis=1) 
        real = results - 1  # Convert  from [1, 2, 2,] tp [0, 1, 1,] 
 
        # Print train metrics in a text file friendly for Excel 
        metrics_test_file = open( 
            args.model_file[:-23] + "/metrics_test_file.txt", 'w') 
 
        num_classes = max(np.argmax(test_batch[1], axis=1)) + 1 
        if num_classes == 2: 
            stats_test_output, stats_test_file_output = stats_output( 
                "Testing", 1, target, real) 
            print("epoch\tn\fp\fn\tp\acc\ppv\npv\sensitivity\specificity\b_acc\loss", 
                  file=metrics_test_file) 
            stats_test_file_output += "{:.3f}".format(avg_loss) 
 
        elif num_classes == 3: 
            stats_test_output, stats_test_file_output = stats_output3( 
                "Testing", 1, target, real) 
            print("epoch\ttn_0\tfp_0\tfn_0\ttp_0\tacc_0\tppv_0\tnpv_0\tsensitivity_0\tspecific
ity_0\tb_acc_0\ttn_1\tfp_1\tfn_1\ttp_1\tacc_1\tppv_1\tnpv_1\tsensitivity_1\tspecificity_1\tb_a
cc_1\ttn_2\tfp_2\tfn_2\ttp_2\tacc_2\tppv_2\tnpv_2\tsensitivity_2\tspecificity_2\tb_acc_2\tacc\
tloss", 
                  file=metrics_test_file) 
 
            stats_test_output += "\tacc: {:.3f}\tloss: {:.3f}".format( 
                avg_acc, avg_loss) 
            stats_test_file_output += "{:.3f}\t{:.3f}".format( 
                avg_acc, avg_loss) 
        else: 
            print("epoch\tacc\tloss", 
                  file=metrics_test_file) 
            stats_test_file_output = "1\t{:.3f}\t{:.3f}".format( 
                avg_acc, avg_loss) 
            stats_test_output = stats_test_file_output 
 
        print(stats_test_output) 
        print(stats_test_file_output, file=metrics_test_file) 
 
        # Force to write immediately to file 
        metrics_test_file.flush() 
 
        print('In test phase, average loss: {:.3f} | average accuracy: {:.3f}%'. 
              format(avg_loss, avg_acc*100)) 
 

Code Snippet B.4. Forward propagation in the CNN implementations 

B.5 net.py 

The algorithm to run requires a net.py file that defines the network configuration. This 

file should be modified between experiments. Some examples of different networks used 
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with Dropout, L1 & L2 Regularization, Spatial Dropout, batch Normalization, deep, 

shallow, narrow, and wide networks can be found in the following subsections.  

B.5.1 4-layer 2D & 3D CNNs, Single Dense Layer 

from net.vgg import * 
import numpy as np 
from tensorflow.python.client import device_lib 
import pdb 
import math 
import tensorflow.compat.v1 as tf 
from keras.regularizers import l2 
tf.disable_v2_behavior() 
 

def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
    if (len(dim) == 3): 
        with tf.variable_scope('conv1', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv2D( 
                filters=32,  
                kernel_size=[3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(x_image) 
            pool = tf.keras.layers.MaxPool2D( 
                pool_size=[2, 2], strides=None, padding='valid')(conv) 
 
        with tf.variable_scope('conv2', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv2D( 
                filters=32, 
                kernel_size=[3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(pool) 
            pool = tf.keras.layers.MaxPool2D( 
                pool_size=[2, 2], strides=None, padding='valid')(conv) 
 
        with tf.variable_scope('conv3', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv2D( 
                filters=64, 
                kernel_size=[3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(pool) 
            pool = tf.keras.layers.MaxPool2D( 
                pool_size=[2, 2], strides=None, padding='valid')(conv) 
 
        with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
            dim = np.prod(pool.shape[1:]) 
            flat = tf.reshape(pool, [-1, dim]) 
            outputs = tf.keras.layers.Dense( 
                units=_NUM_CLASSES, name=scope.name)(flat) 
 
        return outputs 
 
    elif (len(dim) == 4): 
        with tf.variable_scope('conv1', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv3D( 
                filters=8, 
                kernel_size=[5, 5, 5], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(x_image) 
            pool = tf.keras.layers.MaxPooling3D( 
                pool_size=[3, 3, 3], strides=2, padding='valid')(conv) 
 
        with tf.variable_scope('conv2', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv3D( 
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                filters=16, 
                kernel_size=[3, 3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(pool) 
            pool = tf.keras.layers.MaxPooling3D( 
                pool_size=[2, 2, 2], strides=2, padding='valid')(conv) 
 
        with tf.variable_scope('conv3', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv3D( 
                filters=32, 
                kernel_size=[3, 3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(pool) 
            pool = tf.keras.layers.MaxPooling3D( 
                pool_size=[2, 2, 2], strides=2, padding='valid')(conv) 
 
        with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
            dim = np.prod(pool.shape[1:]) 
            flat = tf.reshape(pool, [-1, dim]) 
            outputs = tf.keras.layers.Dense( 
                units=_NUM_CLASSES, name=scope.name)(flat) 
 
        return outputs 
 
. . . 

def CNN(net, num_cls, dim): 
 
    _NUM_CLASSES = num_cls 
    if (len(dim) == 3): 
        _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim 
    elif (len(dim) == 4): 
        _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_DEPTH, _IMAGE_CHANNELS = dim 
 
    with tf.name_scope('main_params'): 
        if (len(dim) == 3): 
            x = tf.placeholder(tf.float32, shape=[ 
                None, _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS], name='input_of_net') 
        elif (len(dim) == 4): 
            x = tf.placeholder(tf.float32, shape=[ 
                None, _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_DEPTH, _IMAGE_CHANNELS], name='input
_of_net') 
        y = tf.placeholder(tf.float32, shape=[ 
                           None, _NUM_CLASSES], name='labels') 
        print(y) 
 
    # call CNN structure according to string net 
    outputs = globals()[net](x, _NUM_CLASSES, dim) 
    outputs = tf.identity(outputs, name='output_of_net') 
 
    return (x, y, outputs) 
 

Code Snippet B.5. 4-layer networks for the 2D & 3D CNN implementation with a single dense layer. 

B.5.2 4-layer / 7-layer 2D CNN & 4-layer 3D CNN, Dropout, Single Dense Layer 

from net.vgg import * 
import numpy as np 
from tensorflow.python.client import device_lib 
import pdb 
import math 
import tensorflow.compat.v1 as tf 
from keras.regularizers import l2 
tf.disable_v2_behavior() 
 

def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
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    if (len(dim) == 3): 
        with tf.variable_scope('conv1', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv2D( 
                filters=32, 
                kernel_size=[3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(x_image) 
            pool = tf.keras.layers.MaxPool2D( 
                pool_size=[2, 2], strides=None, padding='valid')(conv) 
            drop = tf.keras.layers.Dropout(0.3)(pool) 
 
        with tf.variable_scope('conv2', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv2D( 
                filters=32, 
                kernel_size=[3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(drop) 
            pool = tf.keras.layers.MaxPool2D( 
                pool_size=[2, 2], strides=None, padding='valid')(conv) 
            drop = tf.keras.layers.Dropout(0.5)(pool) 
 
        with tf.variable_scope('conv3', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv2D( 
                filters=64, 
                kernel_size=[3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(drop) 
            pool = tf.keras.layers.MaxPool2D( 
                pool_size=[2, 2], strides=None, padding='valid')(conv) 
            drop = tf.keras.layers.Dropout(0.5)(pool) 
             
        with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
            dim = np.prod(drop.shape[1:]) 
            flat = tf.reshape(drop, [-1, dim]) 
            outputs = tf.keras.layers.Dense( 
                units=_NUM_CLASSES, name=scope.name)(flat) 
 
        return outputs 
 
    elif (len(dim) == 4): 
        with tf.variable_scope('conv1', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv3D( 
                filters=32, 
                kernel_size=[3, 3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(x_image) 
            pool = tf.keras.layers.MaxPooling3D( 
                pool_size=[2, 2, 2], strides=2, padding='valid')(conv) 
            drop = tf.keras.layers.Dropout(0.3)(pool) 
 
        with tf.variable_scope('conv2', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv3D( 
                filters=32, 
                kernel_size=[3, 3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(drop) 
            pool = tf.keras.layers.MaxPooling3D( 
                pool_size=[2, 2, 2], strides=2, padding='valid')(conv) 
            drop = tf.keras.layers.Dropout(0.5)(pool) 
 
        with tf.variable_scope('conv3', reuse=reuse) as scope: 
            conv = tf.keras.layers.Conv3D( 
                filters=64, 
                kernel_size=[3, 3, 3], 
                padding='SAME', 
                activation=tf.nn.relu 
            )(drop) 
            pool = tf.keras.layers.MaxPooling3D( 
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                pool_size=[2, 2, 2], strides=2, padding='valid')(conv) 
            drop = tf.keras.layers.Dropout(0.5)(pool) 
 
        with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
            dim = np.prod(drop.shape[1:]) 
            flat = tf.reshape(drop, [-1, dim]) 
            outputs = tf.keras.layers.Dense( 
                units=_NUM_CLASSES, name=scope.name)(flat) 
 
        return outputs 
 

def CNN_7layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
     
    . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=16, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(x_image) 
        drop = tf.keras.layers.Dropout(0.3)(conv) 
        conv = tf.keras.layers.Conv2D( 
            filters=16, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.3)(pool) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=16, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        drop = tf.keras.layers.Dropout(0.3)(conv) 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        drop = tf.keras.layers.Dropout(0.5)(conv) 
        conv = tf.keras.layers.Conv2D( 
            filters=64, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
        # pool = tf.layers.dropout(pool, rate=0.25, name=scope.name) 
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    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(drop.shape[1:]) 
        flat = tf.reshape(drop, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
 
    return outputs 
 
    . . . 
 
 

def CNN(net, num_cls, dim): 
 
    _NUM_CLASSES = num_cls 
    if (len(dim) == 3): 
        _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim 
    elif (len(dim) == 4): 
        _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_DEPTH, _IMAGE_CHANNELS = dim 
 
    with tf.name_scope('main_params'): 
        if (len(dim) == 3): 
            x = tf.placeholder(tf.float32, shape=[ 
                None, _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS], name='input_of_net') 
        elif (len(dim) == 4): 
            x = tf.placeholder(tf.float32, shape=[ 
                None, _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_DEPTH, _IMAGE_CHANNELS], name='input
_of_net') 
        y = tf.placeholder(tf.float32, shape=[ 
                           None, _NUM_CLASSES], name='labels') 
        print(y) 
 
    # call CNN structure according to string net 
    outputs = globals()[net](x, _NUM_CLASSES, dim) 
    outputs = tf.identity(outputs, name='output_of_net') 
 
    return (x, y, outputs) 
 

Code Snippet B.6. Parts of 4-layer / 7-layer 2D CNN & 4-layer 3D CNN, with Dropout and a single dense layer. 

B.5.3 5-layer 2D CNN, Two Dense Layers 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
 
    . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(x_image) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(pool) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
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        conv = tf.keras.layers.Conv2D( 
            filters=64, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(pool) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
 
    with tf.variable_scope('fully_connected_layer_1', reuse=reuse) as scope: 
        dim = np.prod(pool.shape[1:]) 
        flat1 = tf.reshape(pool, [-1, dim]) 
        flat2 = tf.keras.layers.Dense( 
            units=256, name=scope.name)(flat1) 
 
    with tf.variable_scope('fully_connected_layer_2', reuse=reuse) as scope: 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat2) 
 
    return outputs 
 
. . . 
 

Code Snippet B.7. Parts of 4-layer 2D CNN with Dropout and two dense layers. 

B.5.4 4-layer 2D CNN, Dropout, L1 & L2 Regularization 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
 
    . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu, 
            kernel_regularizer=tf.keras.regularizers.l1_l2( 
                l1=1e-5, l2=1e-4), 
            bias_regularizer=tf.keras.regularizers.l2(1e-4), 
            activity_regularizer=tf.keras.regularizers.l2(1e-5) 
        )(x_image) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.3)(pool) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu, 
            kernel_regularizer=tf.keras.regularizers.l1_l2( 
                l1=1e-5, l2=1e-4), 
            bias_regularizer=tf.keras.regularizers.l2(1e-4), 
            activity_regularizer=tf.keras.regularizers.l2(1e-5) 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=64, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu, 
            kernel_regularizer=tf.keras.regularizers.l1_l2( 
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                l1=1e-5, l2=1e-4), 
            bias_regularizer=tf.keras.regularizers.l2(1e-4), 
            activity_regularizer=tf.keras.regularizers.l2(1e-5) 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(drop.shape[1:]) 
        flat = tf.reshape(drop, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name, 
            kernel_regularizer=tf.keras.regularizers.l1_l2( 
                l1=1e-5, l2=1e-4), 
            bias_regularizer=tf.keras.regularizers.l2(1e-4), 
            activity_regularizer=tf.keras.regularizers.l2(1e-5))(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.8. Parts of 4-layer 2D CNN with Dropout and L1 & L2 Regularization. 

B.5.5 4-layer 2D CNN, Dropout, Sigmoid 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
     
    . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.sigmoid 
        )(x_image) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.3)(pool) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.sigmoid 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=64, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.sigmoid 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(drop.shape[1:]) 
        flat = tf.reshape(drop, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
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    return outputs 
 
. . . 
 

Code Snippet B.9. Parts of 4-layer 2D CNN with Dropout and the Sigmoid activation function. 

B.5.6 4-layer 2D CNN, Spatial Dropout 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
     
    . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(x_image) 
        drop = tf.keras.layers.SpatialDropout2D(0.5)(conv) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(drop) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(pool) 
        drop = tf.keras.layers.SpatialDropout2D(0.5)(conv) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(drop) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=64, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(pool) 
        drop = tf.keras.layers.SpatialDropout2D(0.5)(conv) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(drop) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(pool.shape[1:]) 
        flat = tf.reshape(pool, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.10. Parts of 4-layer 2D CNN with Spatial Dropout. 

B.5.7 4-layer 2D CNN, Spatial Dropout, Dropout 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
     
    . . . 
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    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu, 
        )(x_image) 
        drop = tf.keras.layers.SpatialDropout2D(0.5)(conv) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(drop) 
        drop = tf.keras.layers.Dropout(0.3)(pool) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu, 
        )(drop) 
        drop = tf.keras.layers.SpatialDropout2D(0.5)(conv) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(drop) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=64, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu, 
        )(drop) 
        drop = tf.keras.layers.SpatialDropout2D(0.5)(conv) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(drop) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
         
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(drop.shape[1:]) 
        flat = tf.reshape(drop, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.11. Parts of 4-layer 2D CNN with Spatial Dropout and Dropout. 

B.5.8 4-layer 2D CNN, Spatial Dropout, SoftMax 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
 
    . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu, 
        )(x_image) 
        drop = tf.keras.layers.SpatialDropout2D(0.5)(conv) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(drop) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
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            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu, 
        )(pool) 
        drop = tf.keras.layers.SpatialDropout2D(0.5)(conv) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(drop) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=64, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu, 
        )(pool) 
        drop = tf.keras.layers.SpatialDropout2D(0.5)(conv) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(drop) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(pool.shape[1:]) 
        flat = tf.reshape(pool, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name, activation='softmax')(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.12. Parts of 4-layer 2D CNN with Spatial Dropout and SoftMax in the output layer. 

B.5.9 4-layer 2D CNN, Dropout, Batch Normalization 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
     
    . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(x_image) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.3)(pool) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=64, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
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            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
        bnorm = tf.keras.layers.BatchNormalization()(drop) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(bnorm.shape[1:]) 
        flat = tf.reshape(bnorm, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.13. Parts of 4-layer 2D CNN with Dropout and Batch Normalization 

B.5.10 3-layer 2D CNN, Shallow-Wide 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
 
     . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=64, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(x_image) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.3)(pool) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=128, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(drop.shape[1:]) 
        flat = tf.reshape(drop, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.14. 3-layer 2D CNN implementation. (Shallow-Wide) 

B.5.11 3-layer 2D CNN, Shallow-Narrow 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
 
     . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
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        conv = tf.keras.layers.Conv2D( 
            filters=16, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(x_image) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.3)(pool) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv2D( 
            filters=32, 
            kernel_size=[3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPool2D( 
            pool_size=[2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(drop.shape[1:]) 
        flat = tf.reshape(drop, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.15. 3-layer 2D CNN implementation. (Shallow-Narrow) 

B.5.12 4-layer 3D CNN, No Max-Pooling 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
     
     . . . 
 
     with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=32, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(x_image) 
        drop = tf.keras.layers.Dropout(0.3)(conv) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=32, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        drop = tf.keras.layers.Dropout(0.5)(conv) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=64, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        drop = tf.keras.layers.Dropout(0.5)(conv) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(drop.shape[1:]) 
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        flat = tf.reshape(drop, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.16. 4-layer 3D CNN implementation without Max-Pooling. 

B.5.13 4-layer 3D CNN, Single Layer Max-Pooling 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
     
    . . . 
 
    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=32, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(x_image) 
        drop = tf.keras.layers.Dropout(0.3)(conv) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=32, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPooling3D( 
            pool_size=[2, 2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=64, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        drop = tf.keras.layers.Dropout(0.5)(conv) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(drop.shape[1:]) 
        flat = tf.reshape(drop, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.17. 4-layer 3D CNN implementation with a single layer of Max-Pooling. 

B.5.14 5-layer 3D CNN, Dropout 

. . . 
 
def CNN_4layers(x_image, num_cls, dim, reuse=False): 
    _NUM_CLASSES = num_cls 
     
    . . . 
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    with tf.variable_scope('conv1', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=32, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(x_image) 
        pool = tf.keras.layers.MaxPooling3D( 
            pool_size=[2, 2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.3)(pool) 
 
    with tf.variable_scope('conv2', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=32, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPooling3D( 
            pool_size=[2, 2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('conv3', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=64, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPooling3D( 
            pool_size=[2, 2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('conv4', reuse=reuse) as scope: 
        conv = tf.keras.layers.Conv3D( 
            filters=64, 
            kernel_size=[3, 3, 3], 
            padding='SAME', 
            activation=tf.nn.relu 
        )(drop) 
        pool = tf.keras.layers.MaxPooling3D( 
            pool_size=[2, 2, 2], strides=None, padding='valid')(conv) 
        drop = tf.keras.layers.Dropout(0.5)(pool) 
 
    with tf.variable_scope('fully_connected', reuse=reuse) as scope: 
        dim = np.prod(drop.shape[1:]) 
        flat = tf.reshape(drop, [-1, dim]) 
        outputs = tf.keras.layers.Dense( 
            units=_NUM_CLASSES, name=scope.name)(flat) 
 
    return outputs 
 
. . . 
 

Code Snippet B.18. 5-layer 3D CNN implementation with Dropout 

B.6 vgg.py 

The vgg.py contains the VGG networks that are very deep, with 11, 13, 16, or 19 layers. 

You can specify which network architecture to use in the arguments passed during 

execution.  

""" 
Codes are modified from PyTorch and Tensorflow Versions of VGG:  
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py, and 
https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py 
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""" 
 
import numpy as np 
from tensorflow.keras.applications.vgg19 import VGG19 as vgg19 
from tensorflow.keras.applications.vgg16 import VGG16 as vgg16 
import pdb 
import tensorflow.compat.v1 as tf 
tf.disable_v2_behavior() 
 
__all__ = ['VGG11', 'VGG13', 'VGG16', 'VGG19'] 
 

def VGG(feature, num_cls, dim): 
 
    with tf.variable_scope('fully_connected') as scope: 
        dim = np.prod(feature.shape[1:]) 
        x = tf.reshape(feature, [-1, dim]) 
 
        x = tf.keras.layers.Dense( 
            units=4096, activation='relu', name=scope.name)(x) 
        x = tf.keras.layers.Dense( 
            units=4096, activation='relu', name=scope.name)(x) 
        x = tf.keras.layers.Dense(units=num_cls, name=scope.name)(x) 
 
    return x 
 

def make_layers(x, cfg, dim): 
    if (len(dim) == 3): 
        for v in cfg: 
            if v == 'M': 
                x = tf.keras.layers.MaxPool2D( 
                    pool_size=[2, 2], strides=2, padding='valid')(x) 
            elif v == 'D': 
                x = tf.keras.layers.Dropout(0.3)(x) 
            else: 
                x = tf.keras.layers.Conv2D( 
                    filters=v, 
                    kernel_size=[3, 3], 
                    padding='SAME', 
                    activation=tf.nn.relu 
                )(x) 
    elif (len(dim) == 4): 
        for v in cfg: 
            if v == 'M': 
                x = tf.keras.layers.MaxPool2D( 
                    pool_size=[2, 2, 2], strides=2, padding='valid')(x) 
            elif v == 'D': 
                x = tf.keras.layers.Dropout(0.3)(x) 
            else: 
                x = tf.keras.layers.Conv2D( 
                    filters=v, 
                    kernel_size=[3, 3, 3], 
                    padding='SAME', 
                    activation=tf.nn.relu 
                )(x) 
 
    return x 
 

cfg = { 
    # 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 
    'A': [8, 'M', 16, 'M', 16, 16, 'M', 32, 32, 'M', 32, 32, 'M'], 
    'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 
    'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, '
M'], 
    # 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 
    #     512, 512, 512, 512, 'M'], 
    'E': [16, 16, 'M', 'D', 32, 32, 'M', 'D', 32, 32, 32, 32, 'M', 'D', 64, 64, 64, 64, 'M', '
D', 
          64, 64, 64, 64, 'M', 'D'], 
} 
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def VGG11(x_images, num_cls, dim): 
    feature = make_layers(x_images, cfg['A'], dim) 
    return VGG(feature, num_cls, dim) 
 

def VGG13(x_images,  num_cls, dim): 
    feature = make_layers(x_images, cfg['B'], dim) 
    return VGG(feature, num_cls, dim) 
 

def VGG16(x_images,  num_cls, dim): 
    feature = make_layers(x_images, cfg['D'], dim) 
    return VGG(feature, num_cls, dim) 
 

def VGG19(x_images,  num_cls, dim): 
    feature = make_layers(x_images, cfg['E'], dim) 
    return VGG(feature, num_cls, dim) 
 

Code Snippet B.19. VGG networks implementation. 
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Appendix C 

Datasets Creation 

C.1 create_B_2D_S.py 

This create_B_2D_S.py reads the first excel with the patients’ IDs, target classes, and 

genders, matched the IDS with the content of the folder with the MRI scans to create the 

B_2D_S dataset. Only a single slice of a single MRI scan per patient is being added to 

the dataset. The dataset has an equal number of AD, and NC patients. 

import os 
import scipy.io 
import skimage.measure 
import numpy as np 
import pandas as pd 
import nibabel as nib 
import matplotlib.pyplot as plt 
from skimage.transform import resize 
import random 
 
max_shape = (174, 174) 
target_classes = ["AD", "CN"] 
nc_counter = 0 
ad_counter = 0 
random.seed(5) 
 

def data_info(path, data_Y_AD, data_Y_NC, data_Z, mri_dim): 
    # unique_Y, counts_Y = np.unique(data_Y, return_counts=True) 
    # dict_data_Y = dict(zip(unique_Y, counts_Y)) 
    # perc_Y = np.round(100.*(counts_Y/sum(counts_Y)), 1) 
    # dict_data_perc_Y = dict(zip(unique_Y, perc_Y)) 
 
    unique_Z, counts_Z = np.unique(data_Z, return_counts=True) 
    dict_data_Z = dict(zip(unique_Z, counts_Z)) 
    perc_Z = np.round(100.*(counts_Z/sum(counts_Z)), 1) 
    dict_data_perc_Z = dict(zip(unique_Z, perc_Z)) 
    total_samples = len(data_Y_AD) + len(data_Y_NC) 
 
    print("\nBalanced: ") 
    print("AD Samples: ", str(len(data_Y_AD))) 
    print("CN Samples: ", str(len(data_Y_NC))) 
    print("Count per Gender: ", dict_data_Z) 
    print("AD Percentage: {:.2f}%".format(100*len(data_Y_AD)/total_samples)) 
    print("CN Percentage: {:.2f}%".format(100*len(data_Y_NC)/total_samples)) 
    print("Gender Percentage.: ", dict_data_perc_Z) 
    print("Total Set Size: ", str(total_samples)) 
    print('Image Dimensions: ', mri_dim) 
    with open(path + 'data-info.txt', 'a') as info_file: 
        print("AD Samples: ", str(len(data_Y_AD)), file=info_file) 
        print("CN Samples: ", str(len(data_Y_NC)), file=info_file) 
        print("Count per Gender: ", dict_data_Z, file=info_file) 
        print("AD Percentage: {:.2f}%".format( 
            100*len(data_Y_AD)/total_samples),  file=info_file) 
        print("CN Percentage: {:.2f}%".format( 
            100*len(data_Y_NC)/total_samples), file=info_file) 
        print("Gender Percentage: ", dict_data_perc_Z, file=info_file) 
        print("Total Set Size: ", str(total_samples), file=info_file) 
        print('Image Dimensions: ', mri_dim, file=info_file) 
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def add_padding(i): 
    # Resize the MRI scans to specific shape by adding padding with 0s 
    i_w_pad = np.zeros(max_shape) 
    i_w_pad[:i.shape[0], :i.shape[1]] = i 
    return i_w_pad 
 

def plot_slices(image): 
    index_midle = round(len(image[0, :, 0, 0]) / 2) 
 
    img1 = add_padding(image[:, index_midle - 40, :, 0]) 
    img2 = add_padding(image[:, index_midle - 30, :, 0]) 
    img3 = add_padding(image[:, index_midle - 20, :, 0]) 
    img4 = add_padding(image[:, index_midle - 10, :, 0]) 
    img5 = add_padding(image[:, index_midle, :, 0]) 
    img6 = add_padding(image[:, index_midle + 10, :, 0]) 
    img7 = add_padding(image[:, index_midle + 20, :, 0]) 
    img8 = add_padding(image[:, index_midle + 30, :, 0]) 
    img9 = add_padding(image[:, index_midle + 40, :, 0]) 
 
    fig = plt.figure(figsize=[8, 8]) 
 
    ax1 = fig.add_subplot(331) 
    ax2 = fig.add_subplot(332) 
    ax3 = fig.add_subplot(333) 
    ax4 = fig.add_subplot(334) 
    ax5 = fig.add_subplot(335) 
    ax6 = fig.add_subplot(336) 
    ax7 = fig.add_subplot(337) 
    ax8 = fig.add_subplot(338) 
    ax9 = fig.add_subplot(339) 
 
    ax1.title.set_text(str(index_midle - 40) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax2.title.set_text(str(index_midle - 30) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax3.title.set_text(str(index_midle - 20) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax4.title.set_text(str(index_midle - 10) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax5.title.set_text(str(index_midle) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax6.title.set_text(str(index_midle + 10) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax7.title.set_text(str(index_midle + 20) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax8.title.set_text(str(index_midle + 30) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax9.title.set_text(str(index_midle + 40) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
 
    ax1.imshow(img1, cmap="gray") 
    ax2.imshow(img2, cmap="gray") 
    ax3.imshow(img3, cmap="gray") 
    ax4.imshow(img4, cmap="gray") 
    ax5.imshow(img5, cmap="gray") 
    ax6.imshow(img6, cmap="gray") 
    ax7.imshow(img7, cmap="gray") 
    ax8.imshow(img8, cmap="gray") 
    ax9.imshow(img9, cmap="gray") 
 
    ax1.axis("off") 
    ax2.axis("off") 
    ax3.axis("off") 
    ax4.axis("off") 
    ax5.axis("off") 
    ax6.axis("off") 
    ax7.axis("off") 
    ax8.axis("off") 
    ax9.axis("off") 
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    plt.show() 
 

def read_patient(c, patient_folder, patient_id, patient_class, patient_sex): 
    # data_list_X = [] 
    # data_list_Y = [] 
    data_list_Z = [] 
    data_list_X_AD = [] 
    data_list_Y_AD = [] 
    group_AD = [] 
    data_list_X_NC = [] 
    data_list_Y_NC = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    global ad_counter 
    b = 1 
    for file in os.listdir(patient_folder): 
 
        if ((patient_class == "CN") & (nc_counter == 199)): 
            break 
 
        if (patient_class == "CN"): 
            nc_counter += 1 
        elif (patient_class == "AD"): 
            ad_counter += 1 
 
        print("Reading Patient: ", c, "\tPatient ID: ", patient_id, "\tBrain Scan: ", b, 
              "\tNC counter: ", nc_counter, "\tAD counter: ", ad_counter) 
 
        # try: 
        image = nib.load(os.path.join( 
            patient_folder, file)).get_fdata() 
 
        # Display slices of brain 
        # plot_slices(image) 
 
        # Remove the last extra dimension 
        index_midle = round(len(image[0, :, 0, 0]) / 2) 
        image = image[:, index_midle, :, 0] 
 
        # x.append(i_shape[0]) 
        # y.append(i_shape[1]) 
        # z.append(i_shape[2]) 
 
        # # Add zeros pading to make all the images the same size 
        image = add_padding(image) 
 
        # Reduce size to 1/4 of each dimension 
        # image = skimage.measure.block_reduce( 
        #     image, (2, 2), np.mean) 
 
        # Display in Plot Single Slice 
        # plt.figure(figsize=[6, 6]) 
        # plt.subplot(111) 
        # plt.imshow(image, cmap="gray") 
        # plt.show() 
 
        # # Display in Plot Slices 
        # plt.figure(figsize=[12, 6]) 
        # plt.subplot(121) 
        # plt.imshow(image, cmap="gray") 
 
        # image_shrinked = skimage.measure.block_reduce( 
        #     image, (2, 2), np.mean) 
        # plt.subplot(122) 
        # plt.imshow(image_shrinked, cmap="gray") 
        # plt.show() 
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        # # Convert to float 
        image = image.astype('float32') 
 
        # # Normalize data 
        # # Normalize images between 0 and 255 
        image = (image / np.max(image)) * 255 
 
        # data_list_X.append(image.flatten()) 
        # data_list_Y.append( 
        #     [target_classes.index(patient_class) + 1])  # Add the index 
        data_list_Z.append([patient_sex]) 
 
        if (patient_class == "CN"): 
            data_list_X_NC.append(image.flatten()) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            group_NC.append(patient_id) 
 
        if (patient_class == "AD"): 
            data_list_X_AD.append(image.flatten()) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            group_AD.append(patient_id) 
 
        i_shape = image.shape 
 
        mri_dim = [i_shape[0], i_shape[1]] 
        # # To balance the data sets of the classes 
        # if((patient_class == "MCI") & (c >= 1)): 
        #     if(random.randint(1, 10) > 2): 
        #         break 
        #     else: 
        #         continue 
 
        b += 1 
        break 
        # except: 
        #     print("Corrupted: ", os.path.join(patient_folder, file)) 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, group_AD, group_NC 
    # return data_list_X, data_list_Y, data_list_Z,  x, y, z, data_list_X_AD, data_list_Y_AD, 
data_list_X_NC, data_list_Y_NC 
 

def load_excel(excel_path): 
    print(excel_path) 
    df = pd.read_csv(excel_path, error_bad_lines=False) 
    df.columns = [column.replace(" ", "_") for column in df.columns] 
    print("Total Samples: ", len(df)) 
    # df.query( 
    #     '(Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN") and (
Sex == "M" or Sex == "F")', inplace=True) 
    # df.query( 
    #     'Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN"', inpla
ce=True) 
    df.query( 
        '(Research_Group == "AD" or Research_Group == "CN") and (Sex == "M" or Sex == "F")', i
nplace=True) 
    df.query( 
        'Research_Group == "AD" or Research_Group == "CN"', inplace=True) 
    df = df[['Subject_ID', 'Research_Group', 'Sex']] 
    print("Total Samples (AD, CN): ", len(df)) 
    unique_patients = df.drop_duplicates( 
        ['Subject_ID', 'Research_Group'], keep='last') 
    df = pd.DataFrame(unique_patients) 
    excel_data = list(df.itertuples(index=False, name=None)) 
 
    print("Unique Patients: ", len(excel_data)) 
    return excel_data 
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def read_data(excel_path, input_path): 
    excel_data = load_excel(excel_path) 
    print("Reading Excel Finidhed") 
    # patients_X = [] 
    # patients_Y = [] 
    patients_Z = [] 
    patients_X_AD = [] 
    patients_Y_AD = [] 
    patients_X_NC = [] 
    patients_Y_NC = [] 
    group_AD = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    nc_counter = 0 
 
    global ad_counter 
    ad_counter = 0 
 
    c = 1 
    for patient in excel_data: 
        # try: 
        patient_id = patient[0] 
        patient_class = patient[1] 
        patient_sex = patient[2] 
 
        if ((patient_class == "CN") & (nc_counter == 199)): 
            print("Skip patient: ", patient_id) 
            continue 
 
        patient_folder = input_path + patient_id + "/" 
        # p_X, p_Y, p_Z, p_x, p_y, p_z, p_X_AD, p_Y_AD, p_X_NC, p_Y_NC = read_patient(patient_
folder, 
        #                                                                             patient_
id, patient_class, patient_sex) 
        p_X_AD, p_Y_AD, p_X_NC, p_Y_NC, p_Z, mri_dim, p_group_AD, p_group_NC = read_patient(c, 
                                                                                            pa
tient_folder,   patient_id, patient_class, patient_sex) 
 
        # patients_X = patients_X + p_X 
        # patients_Y = patients_Y + p_Y 
        patients_Z += p_Z 
        patients_X_AD += p_X_AD 
        patients_Y_AD += p_Y_AD 
        patients_X_NC += p_X_NC 
        patients_Y_NC += p_Y_NC 
        group_AD += p_group_AD 
        group_NC += p_group_NC 
 
        # x = x + p_x 
        # y = y + p_y 
        # z = z + p_z 
        # except: 
        #     print("Corrupted Patient: ", patient) 
        c += 1 
        # if (c == 10): 
        #     break 
 
    # Max Dimensions: 35 34 50 
    # print("Original Max Dimensions: ", max(x), max(y), max(z)) 
 
    # data_list_X = np.array(patients_X) 
    # data_list_Y = np.array(patients_Y) 
    data_list_Z = np.array(patients_Z) 
    data_list_X_AD = np.array(patients_X_AD) 
    data_list_Y_AD = np.array(patients_Y_AD) 
    data_list_X_NC = np.array(patients_X_NC) 
    data_list_Y_NC = np.array(patients_Y_NC) 
    data_list_group_AD = np.array(group_AD) 
    data_list_group_NC = np.array(group_NC) 
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    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, data_list_group_AD, data_list_group_NC 
    # return data_list_X, data_list_Y, data_list_Z, data_list_X_AD, data_list_Y_AD, data_list_
X_NC, data_list_Y_NC 
 

def main(): 
    print("Start Reading ...") 
    excel_path = "../../raw_data/brains/ADNI_brain.csv" 
    input_path = "../../raw_data/brains/ADNI_brain/" 
    # matrix_X, matrix_Y, matrix_Z, matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC = read_
data( 
    #     excel_path, input_path) 
    matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC, matrix_Z, mri_dim, group_AD, group_NC 
= read_data( 
        excel_path, input_path) 
 
    print("... Reading Finished") 
 
    # Normalize data 
    # Normalize images between 0 and 255 
    # matrix_X = (matrix_X / matrix_X.max())*255 
    matrix_X_AD = (matrix_X_AD / matrix_X_AD.max())*255 
    matrix_X_NC = (matrix_X_NC / matrix_X_NC.max())*255 
 
    # Convert to float 
    # matrix_X = matrix_X.astype('float32') 
    matrix_X_AD = matrix_X_AD.astype('float32') 
    matrix_X_NC = matrix_X_NC.astype('float32') 
 
    output_path = "../../data_no_fold/brains-2D-AD-NC-single/" 
    os.makedirs(output_path) 
 
    # Save into .mat file 
    # mdic = {"Z": matrix_X, "y": matrix_Y} 
    # scipy.io.savemat(output_path + 'brains.mat', mdic) 
    mdic = {"Z": matrix_X_AD, "y": matrix_Y_AD, "group": group_AD} 
    scipy.io.savemat(output_path + 'brains_AD.mat', mdic) 
    mdic = {"Z": matrix_X_NC, "y": matrix_Y_NC, "group": group_NC} 
    scipy.io.savemat(output_path + 'brains_NC.mat', mdic) 
 
    data_info(output_path, matrix_Y_AD, matrix_Y_NC, matrix_Z, mri_dim) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet C.1. Creation of the B_2D_S dataset and convert it to two .mat files, one with the AD and the other 

with the NC patients, without splitting it into a training, validation, or test set. 

C.2 create_B_2D_5S.py 

This create_B_2D_5S.py reads the first excel with the patients’ IDs, target classes, and 

genders, matched the IDS with the content of the folder with the MRI scans to create the 

B_2D_5S dataset. Five slices of a single MRI scan per patient are being added to the 

dataset. The dataset has an equal number of AD, and NC patients. 

import os 
import scipy.io 
import skimage.measure 
import numpy as np 
import pandas as pd 
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import nibabel as nib 
import matplotlib.pyplot as plt 
from skimage.transform import resize 
import random 
 
max_shape = (174, 174) 
target_classes = ["AD", "CN"] 
nc_counter = 0 
ad_counter = 0 
random.seed(5) 
 

def data_info(path, data_Y_AD, data_Y_NC, data_Z, mri_dim): 
    # unique_Y, counts_Y = np.unique(data_Y, return_counts=True) 
    # dict_data_Y = dict(zip(unique_Y, counts_Y)) 
    # perc_Y = np.round(100.*(counts_Y/sum(counts_Y)), 1) 
    # dict_data_perc_Y = dict(zip(unique_Y, perc_Y)) 
 
    unique_Z, counts_Z = np.unique(data_Z, return_counts=True) 
    dict_data_Z = dict(zip(unique_Z, counts_Z)) 
    perc_Z = np.round(100.*(counts_Z/sum(counts_Z)), 1) 
    dict_data_perc_Z = dict(zip(unique_Z, perc_Z)) 
    total_samples = len(data_Y_AD) + len(data_Y_NC) 
 
    print("\nBalanced: ") 
    print("AD Samples: ", str(len(data_Y_AD))) 
    print("CN Samples: ", str(len(data_Y_NC))) 
    print("Count per Gender: ", dict_data_Z) 
    print("AD Percentage: {:.2f}%".format(100*len(data_Y_AD)/total_samples)) 
    print("CN Percentage: {:.2f}%".format(100*len(data_Y_NC)/total_samples)) 
    print("Gender Percentage.: ", dict_data_perc_Z) 
    print("Total Set Size: ", str(total_samples)) 
    print('Image Dimensions: ', mri_dim) 
    with open(path + 'data-info.txt', 'a') as info_file: 
        print("AD Samples: ", str(len(data_Y_AD)), file=info_file) 
        print("CN Samples: ", str(len(data_Y_NC)), file=info_file) 
        print("Count per Gender: ", dict_data_Z, file=info_file) 
        print("AD Percentage: {:.2f}%".format( 
            100*len(data_Y_AD)/total_samples),  file=info_file) 
        print("CN Percentage: {:.2f}%".format( 
            100*len(data_Y_NC)/total_samples), file=info_file) 
        print("Gender Percentage: ", dict_data_perc_Z, file=info_file) 
        print("Total Set Size: ", str(total_samples), file=info_file) 
        print('Image Dimensions: ', mri_dim, file=info_file) 
 

def add_padding(i): 
    # Resize the MRI scans to specific shape by adding padding with 0s 
    i_w_pad = np.zeros(max_shape) 
    i_w_pad[:i.shape[0], :i.shape[1]] = i 
    return i_w_pad 
 

def plot_slices(image): 
    index_midle = round(len(image[0, :, 0, 0]) / 2) 
 
    img1 = add_padding(image[:, index_midle - 40, :, 0]) 
    img2 = add_padding(image[:, index_midle - 30, :, 0]) 
    img3 = add_padding(image[:, index_midle - 20, :, 0]) 
    img4 = add_padding(image[:, index_midle - 10, :, 0]) 
    img5 = add_padding(image[:, index_midle, :, 0]) 
    img6 = add_padding(image[:, index_midle + 10, :, 0]) 
    img7 = add_padding(image[:, index_midle + 20, :, 0]) 
    img8 = add_padding(image[:, index_midle + 30, :, 0]) 
    img9 = add_padding(image[:, index_midle + 40, :, 0]) 
 
    fig = plt.figure(figsize=[8, 8]) 
 
    ax1 = fig.add_subplot(331) 
    ax2 = fig.add_subplot(332) 
    ax3 = fig.add_subplot(333) 
    ax4 = fig.add_subplot(334) 
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    ax5 = fig.add_subplot(335) 
    ax6 = fig.add_subplot(336) 
    ax7 = fig.add_subplot(337) 
    ax8 = fig.add_subplot(338) 
    ax9 = fig.add_subplot(339) 
 
    ax1.title.set_text(str(index_midle - 40) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax2.title.set_text(str(index_midle - 30) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax3.title.set_text(str(index_midle - 20) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax4.title.set_text(str(index_midle - 10) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax5.title.set_text(str(index_midle) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax6.title.set_text(str(index_midle + 10) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax7.title.set_text(str(index_midle + 20) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax8.title.set_text(str(index_midle + 30) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
    ax9.title.set_text(str(index_midle + 40) + " / " + 
                       str(len(image[0, :, 0, 0])) + ' Slice') 
 
    ax1.imshow(img1, cmap="gray") 
    ax2.imshow(img2, cmap="gray") 
    ax3.imshow(img3, cmap="gray") 
    ax4.imshow(img4, cmap="gray") 
    ax5.imshow(img5, cmap="gray") 
    ax6.imshow(img6, cmap="gray") 
    ax7.imshow(img7, cmap="gray") 
    ax8.imshow(img8, cmap="gray") 
    ax9.imshow(img9, cmap="gray") 
 
    ax1.axis("off") 
    ax2.axis("off") 
    ax3.axis("off") 
    ax4.axis("off") 
    ax5.axis("off") 
    ax6.axis("off") 
    ax7.axis("off") 
    ax8.axis("off") 
    ax9.axis("off") 
 
    plt.show() 
 

def read_patient(c, patient_folder, patient_id, patient_class, patient_sex): 
    # data_list_X = [] 
    # data_list_Y = [] 
    data_list_Z = [] 
    data_list_X_AD = [] 
    data_list_Y_AD = [] 
    group_AD = [] 
    data_list_X_NC = [] 
    data_list_Y_NC = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    global ad_counter 
    b = 1 
    for file in os.listdir(patient_folder): 
 
        if ((patient_class == "CN") & (nc_counter == 199)): 
            break 
 
        if (patient_class == "CN"): 
            nc_counter += 1 
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        elif (patient_class == "AD"): 
            ad_counter += 1 
 
        print("Reading Patient: ", c, "\tPatient ID: ", patient_id, "\tBrain Scan: ", b, 
              "\tNC counter: ", nc_counter, "\tAD counter: ", ad_counter) 
 
        # try: 
        image = nib.load(os.path.join( 
            patient_folder, file)).get_fdata() 
 
        # Display slices of brain 
        # plot_slices(image) 
 
        # Remove the last extra dimension 
        index_midle = round(len(image[0, :, 0, 0]) / 2) 
        image1 = image[:, index_midle, :, 0] 
        image2 = image[:, index_midle - 2, :, 0] 
        image3 = image[:, index_midle - 4, :, 0] 
        image4 = image[:, index_midle + 2, :, 0] 
        image5 = image[:, index_midle + 4, :, 0] 
 
        # x.append(i_shape[0]) 
        # y.append(i_shape[1]) 
        # z.append(i_shape[2]) 
 
        # # Add zeros pading to make all the images the same size 
        image1 = add_padding(image1) 
        image2 = add_padding(image2) 
        image3 = add_padding(image3) 
        image4 = add_padding(image4) 
        image5 = add_padding(image5) 
 
        # Reduce size to 1/4 of each dimension 
        # image = skimage.measure.block_reduce( 
        #     image, (2, 2), np.mean) 
 
        # Display in Plot Single Slice 
        # plt.figure(figsize=[6, 6]) 
        # plt.subplot(111) 
        # plt.imshow(image, cmap="gray") 
        # plt.show() 
 
        # # Display in Plot Slices 
        # plt.figure(figsize=[12, 6]) 
        # plt.subplot(121) 
        # plt.imshow(image, cmap="gray") 
 
        # image_shrinked = skimage.measure.block_reduce( 
        #     image, (2, 2), np.mean) 
        # plt.subplot(122) 
        # plt.imshow(image_shrinked, cmap="gray") 
        # plt.show() 
 
        # # Convert to float 
        image1 = image1.astype('float32') 
        image2 = image2.astype('float32') 
        image3 = image3.astype('float32') 
        image4 = image4.astype('float32') 
        image5 = image5.astype('float32') 
 
        # # Normalize data 
        # # Normalize images between 0 and 255 
        image1 = (image1 / np.max(image1)) * 255 
        image2 = (image2 / np.max(image2)) * 255 
        image3 = (image3 / np.max(image3)) * 255 
        image4 = (image4 / np.max(image4)) * 255 
        image5 = (image5 / np.max(image5)) * 255 
 
        # data_list_X.append(image.flatten()) 
        # data_list_Y.append( 
        #     [target_classes.index(patient_class) + 1])  # Add the index 
        data_list_Z.append([patient_sex]) 
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        if (patient_class == "CN"): 
 
            data_list_X_NC.append(image1.flatten()) 
            data_list_X_NC.append(image2.flatten()) 
            data_list_X_NC.append(image3.flatten()) 
            data_list_X_NC.append(image4.flatten()) 
            data_list_X_NC.append(image5.flatten()) 
 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
 
        if (patient_class == "AD"): 
            data_list_X_AD.append(image1.flatten()) 
            data_list_X_AD.append(image2.flatten()) 
            data_list_X_AD.append(image3.flatten()) 
            data_list_X_AD.append(image4.flatten()) 
            data_list_X_AD.append(image5.flatten()) 
 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
 
        i_shape = image1.shape 
 
        mri_dim = [i_shape[0], i_shape[1]] 
        # # To balance the data sets of the classes 
        # if((patient_class == "MCI") & (c >= 1)): 
        #     if(random.randint(1, 10) > 2): 
        #         break 
        #     else: 
        #         continue 
 
        b += 1 
        break 
        # except: 
        #     print("Corrupted: ", os.path.join(patient_folder, file)) 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, group_AD, group_NC 
    # return data_list_X, data_list_Y, data_list_Z,  x, y, z, data_list_X_AD, data_list_Y_AD, 
data_list_X_NC, data_list_Y_NC 
 

def load_excel(excel_path): 
    print(excel_path) 
    df = pd.read_csv(excel_path, error_bad_lines=False) 
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    df.columns = [column.replace(" ", "_") for column in df.columns] 
    print("Total Samples: ", len(df)) 
    # df.query( 
    #     '(Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN") and (
Sex == "M" or Sex == "F")', inplace=True) 
    # df.query( 
    #     'Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN"', inpla
ce=True) 
    df.query( 
        '(Research_Group == "AD" or Research_Group == "CN") and (Sex == "M" or Sex == "F")', i
nplace=True) 
    df.query( 
        'Research_Group == "AD" or Research_Group == "CN"', inplace=True) 
    df = df[['Subject_ID', 'Research_Group', 'Sex']] 
    print("Total Samples (AD, CN): ", len(df)) 
    unique_patients = df.drop_duplicates( 
        ['Subject_ID', 'Research_Group'], keep='last') 
    df = pd.DataFrame(unique_patients) 
    excel_data = list(df.itertuples(index=False, name=None)) 
 
    print("Unique Patients: ", len(excel_data)) 
    return excel_data 
 

def read_data(excel_path, input_path): 
    excel_data = load_excel(excel_path) 
    print("Reading Excel Finidhed") 
    # patients_X = [] 
    # patients_Y = [] 
    patients_Z = [] 
    patients_X_AD = [] 
    patients_Y_AD = [] 
    patients_X_NC = [] 
    patients_Y_NC = [] 
    group_AD = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    nc_counter = 0 
 
    global ad_counter 
    ad_counter = 0 
 
    c = 1 
    for patient in excel_data: 
        # try: 
        patient_id = patient[0] 
        patient_class = patient[1] 
        patient_sex = patient[2] 
 
        if ((patient_class == "CN") & (nc_counter == 199)): 
            print("Skip patient: ", patient_id) 
            continue 
 
        patient_folder = input_path + patient_id + "/" 
        # p_X, p_Y, p_Z, p_x, p_y, p_z, p_X_AD, p_Y_AD, p_X_NC, p_Y_NC = read_patient(patient_
folder, 
        #                                                                             patient_
id, patient_class, patient_sex) 
        p_X_AD, p_Y_AD, p_X_NC, p_Y_NC, p_Z, mri_dim, p_group_AD, p_group_NC = read_patient(c, 
                                                                                            pa
tient_folder,   patient_id, patient_class, patient_sex) 
 
        # patients_X = patients_X + p_X 
        # patients_Y = patients_Y + p_Y 
        patients_Z += p_Z 
        patients_X_AD += p_X_AD 
        patients_Y_AD += p_Y_AD 
        patients_X_NC += p_X_NC 
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        patients_Y_NC += p_Y_NC 
        group_AD += p_group_AD 
        group_NC += p_group_NC 
 
        # x = x + p_x 
        # y = y + p_y 
        # z = z + p_z 
        # except: 
        #     print("Corrupted Patient: ", patient) 
        c += 1 
        # if (c == 10): 
        #     break 
 
    # Max Dimensions: 35 34 50 
    # print("Original Max Dimensions: ", max(x), max(y), max(z)) 
 
    # data_list_X = np.array(patients_X) 
    # data_list_Y = np.array(patients_Y) 
    data_list_Z = np.array(patients_Z) 
    data_list_X_AD = np.array(patients_X_AD) 
    data_list_Y_AD = np.array(patients_Y_AD) 
    data_list_X_NC = np.array(patients_X_NC) 
    data_list_Y_NC = np.array(patients_Y_NC) 
    data_list_group_AD = np.array(group_AD) 
    data_list_group_NC = np.array(group_NC) 
 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, data_list_group_AD, data_list_group_NC 
    # return data_list_X, data_list_Y, data_list_Z, data_list_X_AD, data_list_Y_AD, data_list_
X_NC, data_list_Y_NC 
 

def main(): 
    print("Start Reading ...") 
    excel_path = "../../raw_data/brains/ADNI_brain.csv" 
    input_path = "../../raw_data/brains/ADNI_brain/" 
    # matrix_X, matrix_Y, matrix_Z, matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC = read_
data( 
    #     excel_path, input_path) 
    matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC, matrix_Z, mri_dim, group_AD, group_NC 
= read_data( 
        excel_path, input_path) 
 
    print("... Reading Finished") 
 
    # Normalize data 
    # Normalize images between 0 and 255 
    # matrix_X = (matrix_X / matrix_X.max())*255 
    matrix_X_AD = (matrix_X_AD / matrix_X_AD.max())*255 
    matrix_X_NC = (matrix_X_NC / matrix_X_NC.max())*255 
 
    # Convert to float 
    # matrix_X = matrix_X.astype('float32') 
    matrix_X_AD = matrix_X_AD.astype('float32') 
    matrix_X_NC = matrix_X_NC.astype('float32') 
 
    output_path = "../../data_no_fold/brains-2D-AD-NC-single-5-slices/" 
    os.makedirs(output_path) 
 
    # Save into .mat file 
    # mdic = {"Z": matrix_X, "y": matrix_Y} 
    # scipy.io.savemat(output_path + 'brains.mat', mdic) 
    mdic = {"Z": matrix_X_AD, "y": matrix_Y_AD, "group": group_AD} 
    scipy.io.savemat(output_path + 'brains_AD.mat', mdic) 
    mdic = {"Z": matrix_X_NC, "y": matrix_Y_NC, "group": group_NC} 
    scipy.io.savemat(output_path + 'brains_NC.mat', mdic) 
 
    data_info(output_path, matrix_Y_AD, matrix_Y_NC, matrix_Z, mri_dim) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
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    main() 
 

Code Snippet C.2. Creation of the B_2D_5S dataset and convert it to two .mat files, one with the AD and the other 

with the NC patients, without splitting it into a training, validation, or test set. 

C.3 create_B_2D_M.py 

This create_B_2D_M.py reads the first excel with the patients’ IDs, target classes, and 

genders, matched the IDS with the content of the folder with the MRI scans to create the 

B_2D_M dataset. Only a single slice per scan, of multiple MRI scans per patient, are 

being added to the dataset. The dataset has an equal number of AD, and NC patients. 

import os 
import scipy.io 
import skimage.measure 
import numpy as np 
import pandas as pd 
import nibabel as nib 
import matplotlib.pyplot as plt 
from skimage.transform import resize 
import random 
 
max_shape = (174, 174) 
target_classes = ["AD", "CN"] 
nc_counter = 0 
ad_counter = 0 
random.seed(5) 
 

def data_info(path, data_Y_AD, data_Y_NC, data_Z, mri_dim): 
    # unique_Y, counts_Y = np.unique(data_Y, return_counts=True) 
    # dict_data_Y = dict(zip(unique_Y, counts_Y)) 
    # perc_Y = np.round(100.*(counts_Y/sum(counts_Y)), 1) 
    # dict_data_perc_Y = dict(zip(unique_Y, perc_Y)) 
 
    unique_Z, counts_Z = np.unique(data_Z, return_counts=True) 
    dict_data_Z = dict(zip(unique_Z, counts_Z)) 
    perc_Z = np.round(100.*(counts_Z/sum(counts_Z)), 1) 
    dict_data_perc_Z = dict(zip(unique_Z, perc_Z)) 
    total_samples = len(data_Y_AD) + len(data_Y_NC) 
 
    print("\nBalanced: ") 
    print("AD Samples: ", str(len(data_Y_AD))) 
    print("CN Samples: ", str(len(data_Y_NC))) 
    print("Count per Gender: ", dict_data_Z) 
    print("AD Percentage: {:.2f}%".format(100*len(data_Y_AD)/total_samples)) 
    print("CN Percentage: {:.2f}%".format(100*len(data_Y_NC)/total_samples)) 
    print("Gender Percentage.: ", dict_data_perc_Z) 
    print("Total Set Size: ", str(total_samples)) 
    print('Image Dimensions: ', mri_dim) 
    with open(path + 'data-info.txt', 'a') as info_file: 
        print("AD Samples: ", str(len(data_Y_AD)), file=info_file) 
        print("CN Samples: ", str(len(data_Y_NC)), file=info_file) 
        print("Count per Gender: ", dict_data_Z, file=info_file) 
        print("AD Percentage: {:.2f}%".format( 
            100*len(data_Y_AD)/total_samples),  file=info_file) 
        print("CN Percentage: {:.2f}%".format( 
            100*len(data_Y_NC)/total_samples), file=info_file) 
        print("Gender Percentage: ", dict_data_perc_Z, file=info_file) 
        print("Total Set Size: ", str(total_samples), file=info_file) 
        print('Image Dimensions: ', mri_dim, file=info_file) 
 

def add_padding(i): 
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    # Resize the MRI scans to specific shape by adding padding with 0s 
    i_w_pad = np.zeros(max_shape) 
    i_w_pad[:i.shape[0], :i.shape[1]] = i 
    return i_w_pad 
 

def read_patient(c, patient_folder, patient_id, patient_class, patient_sex): 
    # data_list_X = [] 
    # data_list_Y = [] 
    data_list_Z = [] 
    data_list_X_AD = [] 
    data_list_Y_AD = [] 
    group_AD = [] 
    data_list_X_NC = [] 
    data_list_Y_NC = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    global ad_counter 
    b = 1 
    for file in os.listdir(patient_folder): 
        if ((patient_class == "CN") & (nc_counter >= 602)): 
            break 
 
        if ((patient_class == "CN") & (b == 4)): 
            break 
 
        if (patient_class == "CN"): 
            nc_counter += 1 
        elif (patient_class == "AD"): 
            ad_counter += 1 
 
        print("Reading Patient: ", c, "\tPatient ID: ", patient_id, "\tBrain Scan: ", b, 
              "\tNC counter: ", nc_counter, "\tAD counter: ", ad_counter) 
 
        # try: 
        image = nib.load(os.path.join( 
            patient_folder, file)).get_fdata() 
 
        # Remove the last extra dimension 
        index_midle = round(len(image[0, :, 0, 0]) / 2) 
        image = image[:, index_midle, :, 0] 
 
        # x.append(i_shape[0]) 
        # y.append(i_shape[1]) 
        # z.append(i_shape[2]) 
 
        # # Add zeros pading to make all the images the same size 
        image = add_padding(image) 
 
        # Reduce size to 1/4 of each dimension 
        # image = skimage.measure.block_reduce( 
        #     image, (2, 2), np.mean) 
 
        # # Display in Plot Slices 
        # plt.figure(figsize=[12, 6]) 
        # plt.subplot(121) 
        # plt.imshow(image, cmap="gray") 
 
        # image_shrinked = skimage.measure.block_reduce( 
        #     image, (2, 2), np.mean) 
        # plt.subplot(122) 
        # plt.imshow(image_shrinked, cmap="gray") 
        # plt.show() 
 
        # # Convert to float 
        image = image.astype('float32') 
 
        # # Normalize data 
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        # # Normalize images between 0 and 255 
        image = (image / np.max(image)) * 255 
 
        # data_list_X.append(image.flatten()) 
        # data_list_Y.append( 
        #     [target_classes.index(patient_class) + 1])  # Add the index 
        data_list_Z.append([patient_sex]) 
 
        if (patient_class == "CN"): 
            data_list_X_NC.append(image.flatten()) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            group_NC.append(patient_id) 
 
        if (patient_class == "AD"): 
            data_list_X_AD.append(image.flatten()) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            group_AD.append(patient_id) 
 
        i_shape = image.shape 
 
        mri_dim = [i_shape[0], i_shape[1]] 
        # # To balance the data sets of the classes 
        # if((patient_class == "MCI") & (c >= 1)): 
        #     if(random.randint(1, 10) > 2): 
        #         break 
        #     else: 
        #         continue 
 
        b += 1 
        # except: 
        #     print("Corrupted: ", os.path.join(patient_folder, file)) 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, group_AD, group_NC 
    # return data_list_X, data_list_Y, data_list_Z,  x, y, z, data_list_X_AD, data_list_Y_AD, 
data_list_X_NC, data_list_Y_NC 
 

def load_excel(excel_path): 
    print(excel_path) 
    df = pd.read_csv(excel_path, error_bad_lines=False) 
    df.columns = [column.replace(" ", "_") for column in df.columns] 
    print("Total Samples: ", len(df)) 
    # df.query( 
    #     '(Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN") and (
Sex == "M" or Sex == "F")', inplace=True) 
    # df.query( 
    #     'Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN"', inpla
ce=True) 
    df.query( 
        '(Research_Group == "AD" or Research_Group == "CN") and (Sex == "M" or Sex == "F")', i
nplace=True) 
    df.query( 
        'Research_Group == "AD" or Research_Group == "CN"', inplace=True) 
    df = df[['Subject_ID', 'Research_Group', 'Sex']] 
    print("Total Samples (AD, CN): ", len(df)) 
    unique_patients = df.drop_duplicates( 
        ['Subject_ID', 'Research_Group'], keep='last') 
    df = pd.DataFrame(unique_patients) 
    excel_data = list(df.itertuples(index=False, name=None)) 
 
    print("Unique Patients: ", len(excel_data)) 
    return excel_data 
 

def read_data(excel_path, input_path): 
    excel_data = load_excel(excel_path) 
    print("Reading Excel Finidhed") 
    # patients_X = [] 
    # patients_Y = [] 
    patients_Z = [] 
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    patients_X_AD = [] 
    patients_Y_AD = [] 
    patients_X_NC = [] 
    patients_Y_NC = [] 
    group_AD = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    nc_counter = 0 
 
    global ad_counter 
    ad_counter = 0 
 
    c = 1 
    for patient in excel_data: 
        # try: 
        patient_id = patient[0] 
        patient_class = patient[1] 
        patient_sex = patient[2] 
 
        if ((patient_class == "CN") & (nc_counter >= 602)): 
            print("Skip patient: ", patient_id) 
            continue 
 
        patient_folder = input_path + patient_id + "/" 
        # p_X, p_Y, p_Z, p_x, p_y, p_z, p_X_AD, p_Y_AD, p_X_NC, p_Y_NC = read_patient(patient_
folder, 
        #                                                                             patient_
id, patient_class, patient_sex) 
        p_X_AD, p_Y_AD, p_X_NC, p_Y_NC, p_Z, mri_dim, p_group_AD, p_group_NC = read_patient(c, 
                                                                                            pa
tient_folder,   patient_id, patient_class, patient_sex) 
 
        # patients_X = patients_X + p_X 
        # patients_Y = patients_Y + p_Y 
        patients_Z += p_Z 
        patients_X_AD += p_X_AD 
        patients_Y_AD += p_Y_AD 
        patients_X_NC += p_X_NC 
        patients_Y_NC += p_Y_NC 
        group_AD += p_group_AD 
        group_NC += p_group_NC 
 
        # x = x + p_x 
        # y = y + p_y 
        # z = z + p_z 
        # except: 
        #     print("Corrupted Patient: ", patient) 
        c += 1 
        # if (c == 10): 
        #     break 
 
    # Max Dimensions: 35 34 50 
    # print("Original Max Dimensions: ", max(x), max(y), max(z)) 
 
    # data_list_X = np.array(patients_X) 
    # data_list_Y = np.array(patients_Y) 
    data_list_Z = np.array(patients_Z) 
    data_list_X_AD = np.array(patients_X_AD) 
    data_list_Y_AD = np.array(patients_Y_AD) 
    data_list_X_NC = np.array(patients_X_NC) 
    data_list_Y_NC = np.array(patients_Y_NC) 
    data_list_group_AD = np.array(group_AD) 
    data_list_group_NC = np.array(group_NC) 
 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, data_list_group_AD, data_list_group_NC 
    # return data_list_X, data_list_Y, data_list_Z, data_list_X_AD, data_list_Y_AD, data_list_
X_NC, data_list_Y_NC 
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def main(): 
    print("Start Reading ...") 
    excel_path = "../../raw_data/brains/ADNI_brain.csv" 
    input_path = "../../raw_data/brains/ADNI_brain/" 
    # matrix_X, matrix_Y, matrix_Z, matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC = read_
data( 
    #     excel_path, input_path) 
    matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC, matrix_Z, mri_dim, group_AD, group_NC 
= read_data( 
        excel_path, input_path) 
 
    print("... Reading Finished") 
 
    # Normalize data 
    # Normalize images between 0 and 255 
    # matrix_X = (matrix_X / matrix_X.max())*255 
    matrix_X_AD = (matrix_X_AD / matrix_X_AD.max())*255 
    matrix_X_NC = (matrix_X_NC / matrix_X_NC.max())*255 
 
    # Convert to float 
    # matrix_X = matrix_X.astype('float32') 
    matrix_X_AD = matrix_X_AD.astype('float32') 
    matrix_X_NC = matrix_X_NC.astype('float32') 
 
    output_path = "../../data_no_fold/brains-2D-AD-NC-multiple/" 
    os.makedirs(output_path) 
 
    # Save into .mat file 
    # mdic = {"Z": matrix_X, "y": matrix_Y} 
    # scipy.io.savemat(output_path + 'brains.mat', mdic) 
    mdic = {"Z": matrix_X_AD, "y": matrix_Y_AD, "group": group_AD} 
    scipy.io.savemat(output_path + 'brains_AD.mat', mdic) 
    mdic = {"Z": matrix_X_NC, "y": matrix_Y_NC, "group": group_NC} 
    scipy.io.savemat(output_path + 'brains_NC.mat', mdic) 
 
    data_info(output_path, matrix_Y_AD, matrix_Y_NC, matrix_Z, mri_dim) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet C.3. Creation of the B_2D_M dataset and convert it to two .mat files, one with the AD and the other 

with the NC patients, without splitting it to a training, validation, or test set. 

C.4 create_B_2D_7M.py 

This create_B_2D_7M.py reads the first excel with the patients’ IDs, target classes, and 

genders, matched the IDS with the content of the folder with the MRI scans to create the 

B_2D_7M dataset. Seven slices per scan, of multiple MRI scans per patient, are being 

added to the dataset. The dataset has an equal number of AD, and NC patients. 

import os 
import scipy.io 
import skimage.measure 
import numpy as np 
import pandas as pd 
import nibabel as nib 
import matplotlib.pyplot as plt 
from skimage.transform import resize 
import random 
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max_shape = (174, 174) 
target_classes = ["AD", "CN"] 
nc_counter = 0 
ad_counter = 0 
random.seed(5) 
# target_classes = ["AD", "MCI", "NC"] 
 

def data_info(path, data_Y_AD, data_Y_NC, data_Z, mri_dim): 
    # unique_Y, counts_Y = np.unique(data_Y, return_counts=True) 
    # dict_data_Y = dict(zip(unique_Y, counts_Y)) 
    # perc_Y = np.round(100.*(counts_Y/sum(counts_Y)), 1) 
    # dict_data_perc_Y = dict(zip(unique_Y, perc_Y)) 
 
    unique_Z, counts_Z = np.unique(data_Z, return_counts=True) 
    dict_data_Z = dict(zip(unique_Z, counts_Z)) 
    perc_Z = np.round(100.*(counts_Z/sum(counts_Z)), 1) 
    dict_data_perc_Z = dict(zip(unique_Z, perc_Z)) 
    total_samples = len(data_Y_AD) + len(data_Y_NC) 
 
    print("\nBalanced: ") 
    print("AD Samples: ", str(len(data_Y_AD))) 
    print("CN Samples: ", str(len(data_Y_NC))) 
    print("Count per Gender: ", dict_data_Z) 
    print("AD Percentage: {:.2f}%".format(100*len(data_Y_AD)/total_samples)) 
    print("CN Percentage: {:.2f}%".format(100*len(data_Y_NC)/total_samples)) 
    print("Gender Percentage.: ", dict_data_perc_Z) 
    print("Total Set Size: ", str(total_samples)) 
    print('Image Dimensions: ', mri_dim) 
    with open(path + 'data-info.txt', 'a') as info_file: 
        print("AD Samples: ", str(len(data_Y_AD)), file=info_file) 
        print("CN Samples: ", str(len(data_Y_NC)), file=info_file) 
        print("Count per Gender: ", dict_data_Z, file=info_file) 
        print("AD Percentage: {:.2f}%".format( 
            100*len(data_Y_AD)/total_samples),  file=info_file) 
        print("CN Percentage: {:.2f}%".format( 
            100*len(data_Y_NC)/total_samples), file=info_file) 
        print("Gender Percentage: ", dict_data_perc_Z, file=info_file) 
        print("Total Set Size: ", str(total_samples), file=info_file) 
        print('Image Dimensions: ', mri_dim, file=info_file) 
 

def add_padding(i): 
    # Resize the MRI scans to specific shape by adding padding with 0s 
    i_w_pad = np.zeros(max_shape) 
    i_w_pad[:i.shape[0], :i.shape[1]] = i 
    return i_w_pad 
 

def read_patient(c, patient_folder, patient_id, patient_class, patient_sex): 
    # data_list_X = [] 
    # data_list_Y = [] 
    data_list_Z = [] 
    data_list_X_AD = [] 
    data_list_Y_AD = [] 
    group_AD = [] 
    data_list_X_NC = [] 
    data_list_Y_NC = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    global ad_counter 
    b = 1 
    for file in os.listdir(patient_folder): 
        if ((patient_class == "CN") & (nc_counter >= 602)): 
            break 
 
        if ((patient_class == "CN") & (b == 4)): 
            break 
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        if (patient_class == "CN"): 
            nc_counter += 1 
        elif (patient_class == "AD"): 
            ad_counter += 1 
 
        print("Reading Patient: ", c, "\tPatient ID: ", patient_id, "\tBrain Scan: ", b, 
              "\tNC counter: ", nc_counter, "\tAD counter: ", ad_counter) 
 
        # try: 
        image = nib.load(os.path.join( 
            patient_folder, file)).get_fdata() 
 
        # Remove the last extra dimension 
        index_midle = round(len(image[0, :, 0, 0]) / 2) 
        image1 = image[:, index_midle, :, 0] 
        image2 = image[:, index_midle - 2, :, 0] 
        image3 = image[:, index_midle - 4, :, 0] 
        image4 = image[:, index_midle - 6, :, 0] 
        image5 = image[:, index_midle + 2, :, 0] 
        image6 = image[:, index_midle + 4, :, 0] 
        image7 = image[:, index_midle + 6, :, 0] 
 
        # x.append(i_shape[0]) 
        # y.append(i_shape[1]) 
        # z.append(i_shape[2]) 
 
        # # Add zeros pading to make all the images the same size 
        image1 = add_padding(image1) 
        image2 = add_padding(image2) 
        image3 = add_padding(image3) 
        image4 = add_padding(image4) 
        image5 = add_padding(image5) 
        image6 = add_padding(image6) 
        image7 = add_padding(image7) 
 
        # Reduce size to 1/4 of each dimension 
        # image = skimage.measure.block_reduce( 
        #     image, (2, 2), np.mean) 
 
        # # Display in Plot Slices 
        # plt.figure(figsize=[12, 6]) 
        # plt.subplot(121) 
        # plt.imshow(image, cmap="gray") 
 
        # image_shrinked = skimage.measure.block_reduce( 
        #     image, (2, 2), np.mean) 
        # plt.subplot(122) 
        # plt.imshow(image_shrinked, cmap="gray") 
        # plt.show() 
 
        # # Convert to float 
        image1 = image1.astype('float32') 
        image2 = image2.astype('float32') 
        image3 = image3.astype('float32') 
        image4 = image4.astype('float32') 
        image5 = image5.astype('float32') 
        image6 = image6.astype('float32') 
        image7 = image7.astype('float32') 
 
        # # Normalize data 
        # # Normalize images between 0 and 255 
        image1 = (image1 / np.max(image1)) * 255 
        image2 = (image2 / np.max(image2)) * 255 
        image3 = (image3 / np.max(image3)) * 255 
        image4 = (image4 / np.max(image4)) * 255 
        image5 = (image5 / np.max(image5)) * 255 
        image6 = (image6 / np.max(image6)) * 255 
        image7 = (image7 / np.max(image7)) * 255 
 
        # data_list_X.append(image.flatten()) 
        # data_list_Y.append( 
        #     [target_classes.index(patient_class) + 1])  # Add the index 
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        data_list_Z.append([patient_sex]) 
 
        if (patient_class == "CN"): 
            data_list_X_NC.append(image1.flatten()) 
            data_list_X_NC.append(image2.flatten()) 
            data_list_X_NC.append(image3.flatten()) 
            data_list_X_NC.append(image4.flatten()) 
            data_list_X_NC.append(image5.flatten()) 
            data_list_X_NC.append(image6.flatten()) 
            data_list_X_NC.append(image7.flatten()) 
 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
            group_NC.append(patient_id) 
 
        if (patient_class == "AD"): 
            data_list_X_AD.append(image1.flatten()) 
            data_list_X_AD.append(image2.flatten()) 
            data_list_X_AD.append(image3.flatten()) 
            data_list_X_AD.append(image4.flatten()) 
            data_list_X_AD.append(image5.flatten()) 
            data_list_X_AD.append(image6.flatten()) 
            data_list_X_AD.append(image7.flatten()) 
 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
            group_AD.append(patient_id) 
 
        i_shape = image1.shape 
 
        mri_dim = [i_shape[0], i_shape[1]] 
        # # To balance the data sets of the classes 
        # if((patient_class == "MCI") & (c >= 1)): 
        #     if(random.randint(1, 10) > 2): 
        #         break 
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        #     else: 
        #         continue 
 
        b += 1 
        # except: 
        #     print("Corrupted: ", os.path.join(patient_folder, file)) 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, group_AD, group_NC 
    # return data_list_X, data_list_Y, data_list_Z,  x, y, z, data_list_X_AD, data_list_Y_AD, 
data_list_X_NC, data_list_Y_NC 
 

def load_excel(excel_path): 
    print(excel_path) 
    df = pd.read_csv(excel_path, error_bad_lines=False) 
    df.columns = [column.replace(" ", "_") for column in df.columns] 
    print("Total Samples: ", len(df)) 
    # df.query( 
    #     '(Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN") and (
Sex == "M" or Sex == "F")', inplace=True) 
    # df.query( 
    #     'Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN"', inpla
ce=True) 
    df.query( 
        '(Research_Group == "AD" or Research_Group == "CN") and (Sex == "M" or Sex == "F")', i
nplace=True) 
    df.query( 
        'Research_Group == "AD" or Research_Group == "CN"', inplace=True) 
    df = df[['Subject_ID', 'Research_Group', 'Sex']] 
    print("Total Samples (AD, CN): ", len(df)) 
    unique_patients = df.drop_duplicates( 
        ['Subject_ID', 'Research_Group'], keep='last') 
    df = pd.DataFrame(unique_patients) 
    excel_data = list(df.itertuples(index=False, name=None)) 
 
    print("Unique Patients: ", len(excel_data)) 
    return excel_data 
 

def read_data(excel_path, input_path): 
    excel_data = load_excel(excel_path) 
    print("Reading Excel Finidhed") 
    # patients_X = [] 
    # patients_Y = [] 
    patients_Z = [] 
    patients_X_AD = [] 
    patients_Y_AD = [] 
    patients_X_NC = [] 
    patients_Y_NC = [] 
    group_AD = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    nc_counter = 0 
 
    global ad_counter 
    ad_counter = 0 
 
    c = 1 
    for patient in excel_data: 
        # try: 
        patient_id = patient[0] 
        patient_class = patient[1] 
        patient_sex = patient[2] 
 
        if ((patient_class == "CN") & (nc_counter >= 602)): 
            print("Skip patient: ", patient_id) 
            continue 
 



C-22 

 

        patient_folder = input_path + patient_id + "/" 
        # p_X, p_Y, p_Z, p_x, p_y, p_z, p_X_AD, p_Y_AD, p_X_NC, p_Y_NC = read_patient(patient_
folder, 
        #                                                                             patient_
id, patient_class, patient_sex) 
        p_X_AD, p_Y_AD, p_X_NC, p_Y_NC, p_Z, mri_dim, p_group_AD, p_group_NC = read_patient(c, 
                                                                                            pa
tient_folder,   patient_id, patient_class, patient_sex) 
 
        # patients_X = patients_X + p_X 
        # patients_Y = patients_Y + p_Y 
        patients_Z += p_Z 
        patients_X_AD += p_X_AD 
        patients_Y_AD += p_Y_AD 
        patients_X_NC += p_X_NC 
        patients_Y_NC += p_Y_NC 
        group_AD += p_group_AD 
        group_NC += p_group_NC 
 
        # x = x + p_x 
        # y = y + p_y 
        # z = z + p_z 
        # except: 
        #     print("Corrupted Patient: ", patient) 
        c += 1 
        # if (c == 10): 
        #     break 
 
    # Max Dimensions: 35 34 50 
    # print("Original Max Dimensions: ", max(x), max(y), max(z)) 
 
    # data_list_X = np.array(patients_X) 
    # data_list_Y = np.array(patients_Y) 
    data_list_Z = np.array(patients_Z) 
    data_list_X_AD = np.array(patients_X_AD) 
    data_list_Y_AD = np.array(patients_Y_AD) 
    data_list_X_NC = np.array(patients_X_NC) 
    data_list_Y_NC = np.array(patients_Y_NC) 
    data_list_group_AD = np.array(group_AD) 
    data_list_group_NC = np.array(group_NC) 
 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, data_list_group_AD, data_list_group_NC 
    # return data_list_X, data_list_Y, data_list_Z, data_list_X_AD, data_list_Y_AD, data_list_
X_NC, data_list_Y_NC 
 

def main(): 
    print("Start Reading ...") 
    excel_path = "../../raw_data/brains/ADNI_brain.csv" 
    input_path = "../../raw_data/brains/ADNI_brain/" 
    # matrix_X, matrix_Y, matrix_Z, matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC = read_
data( 
    #     excel_path, input_path) 
    matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC, matrix_Z, mri_dim, group_AD, group_NC 
= read_data( 
        excel_path, input_path) 
 
    print("... Reading Finished") 
 
    # Normalize data 
    # Normalize images between 0 and 255 
    # matrix_X = (matrix_X / matrix_X.max())*255 
    matrix_X_AD = (matrix_X_AD / matrix_X_AD.max())*255 
    matrix_X_NC = (matrix_X_NC / matrix_X_NC.max())*255 
 
    # Convert to float 
    # matrix_X = matrix_X.astype('float32') 
    matrix_X_AD = matrix_X_AD.astype('float32') 
    matrix_X_NC = matrix_X_NC.astype('float32') 
 
    output_path = "../../data_no_fold/7-slices-brains-2D-AD-NC-multiple/" 
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    os.makedirs(output_path) 
 
    # Save into .mat file 
    # mdic = {"Z": matrix_X, "y": matrix_Y} 
    # scipy.io.savemat(output_path + 'brains.mat', mdic) 
    mdic = {"Z": matrix_X_AD, "y": matrix_Y_AD, "group": group_AD} 
    scipy.io.savemat(output_path + 'brains_AD.mat', mdic) 
    mdic = {"Z": matrix_X_NC, "y": matrix_Y_NC, "group": group_NC} 
    scipy.io.savemat(output_path + 'brains_NC.mat', mdic) 
 
    data_info(output_path, matrix_Y_AD, matrix_Y_NC, matrix_Z, mri_dim) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet C.4. Creation of the B_2D_7M dataset and convert it to two .mat files, one with the AD and the other 

with the NC patients, without splitting it into a training, validation, or test set. 

C.5 create_B_3D_S.py 

This create_B_3D_S.py reads the first excel with the patients’ IDs, target classes, and 

genders, matched the IDS with the content of the folder with the MRI scans to create the 

B_3D_S dataset. Only a single MRI scan per patient is being added to the dataset, which 

is being shrunk previously by taking the mean of each 4 × 4 × 4 block. The dataset has 

an equal number of AD, and NC patients. 

import os 
import scipy.io 
import skimage.measure 
import numpy as np 
import pandas as pd 
import nibabel as nib 
import matplotlib.pyplot as plt 
from skimage.transform import resize 
import random 
 
max_shape = (174, 190, 174) 
target_classes = ["AD", "CN"] 
nc_counter = 0 
ad_counter = 0 
random.seed(5) 
 

def data_info(path, data_Y_AD, data_Y_NC, data_Z, mri_dim): 
    # unique_Y, counts_Y = np.unique(data_Y, return_counts=True) 
    # dict_data_Y = dict(zip(unique_Y, counts_Y)) 
    # perc_Y = np.round(100.*(counts_Y/sum(counts_Y)), 1) 
    # dict_data_perc_Y = dict(zip(unique_Y, perc_Y)) 
 
    unique_Z, counts_Z = np.unique(data_Z, return_counts=True) 
    dict_data_Z = dict(zip(unique_Z, counts_Z)) 
    perc_Z = np.round(100.*(counts_Z/sum(counts_Z)), 1) 
    dict_data_perc_Z = dict(zip(unique_Z, perc_Z)) 
    total_samples = len(data_Y_AD) + len(data_Y_NC) 
 
    print("\nBalanced: ") 
    print("AD Samples: ", str(len(data_Y_AD))) 
    print("CN Samples: ", str(len(data_Y_NC))) 
    print("Count per Gender: ", dict_data_Z) 
    print("AD Percentage: {:.2f}%".format(100*len(data_Y_AD)/total_samples)) 
    print("CN Percentage: {:.2f}%".format(100*len(data_Y_NC)/total_samples)) 
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    print("Gender Percentage.: ", dict_data_perc_Z) 
    print("Total Set Size: ", str(total_samples)) 
    print('Image Dimensions: ', mri_dim) 
    with open(path + 'data-info.txt', 'a') as info_file: 
        print("AD Samples: ", str(len(data_Y_AD)), file=info_file) 
        print("CN Samples: ", str(len(data_Y_NC)), file=info_file) 
        print("Count per Gender: ", dict_data_Z, file=info_file) 
        print("AD Percentage: {:.2f}%".format( 
            100*len(data_Y_AD)/total_samples),  file=info_file) 
        print("CN Percentage: {:.2f}%".format( 
            100*len(data_Y_NC)/total_samples), file=info_file) 
        print("Gender Percentage: ", dict_data_perc_Z, file=info_file) 
        print("Total Set Size: ", str(total_samples), file=info_file) 
        print('Image Dimensions: ', mri_dim, file=info_file) 
 

def add_padding(i): 
    # Resize the MRI scans to specific shape by adding padding with 0s 
    i_w_pad = np.zeros(max_shape) 
    i_w_pad[:i.shape[0], :i.shape[1], :i.shape[2]] = i 
    return i_w_pad 
 

def read_patient(c, patient_folder, patient_id, patient_class, patient_sex): 
    # data_list_X = [] 
    # data_list_Y = [] 
    data_list_Z = [] 
    data_list_X_AD = [] 
    data_list_Y_AD = [] 
    group_AD = [] 
    data_list_X_NC = [] 
    data_list_Y_NC = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    global ad_counter 
    b = 1 
    for file in os.listdir(patient_folder): 
        if ((patient_class == "CN") & (nc_counter == 199)): 
            break 
 
        if (patient_class == "CN"): 
            nc_counter += 1 
        elif (patient_class == "AD"): 
            ad_counter += 1 
 
        print("Reading Patient: ", c, "\tPatient ID: ", patient_id, "\tBrain Scan: ", b, 
              "\tNC counter: ", nc_counter, "\tAD counter: ", ad_counter) 
 
        # try: 
        image = nib.load(os.path.join( 
            patient_folder, file)).get_fdata() 
 
        # Remove the last extra dimension 
        image = image[:, :, :, 0] 
 
        # x.append(i_shape[0]) 
        # y.append(i_shape[1]) 
        # z.append(i_shape[2]) 
 
        # # Add zeros pading to make all the images the same size 
        image = add_padding(image) 
 
        # Reduce size to 1/4 of each dimension 
        image = skimage.measure.block_reduce( 
            image, (4, 4, 4), np.mean) 
 
        # # Display in Plot Slices 
        # plt.figure(figsize=[12, 6]) 
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        # plt.subplot(121) 
        # image_slice = image[:, 120, :] 
        # plt.imshow(image_slice, cmap="gray") 
 
        # image_shrinked = skimage.measure.block_reduce( 
        #     image, (4, 4, 4), np.mean) 
        # plt.subplot(122) 
        # image_shrinked_slice = image_shrinked[:, 30, :] 
        # plt.imshow(image_shrinked_slice, cmap="gray") 
        # plt.show() 
 
        # # Convert to float 
        image = image.astype('float32') 
 
        # # Normalize data 
        # # Normalize images between 0 and 255 
        image = (image / np.max(image)) * 255 
 
        # data_list_X.append(image.flatten()) 
        # data_list_Y.append( 
        #     [target_classes.index(patient_class) + 1])  # Add the index 
        data_list_Z.append([patient_sex]) 
 
        if (patient_class == "CN"): 
            data_list_X_NC.append(image.flatten()) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            group_NC.append(patient_id) 
 
        if (patient_class == "AD"): 
            data_list_X_AD.append(image.flatten()) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            group_AD.append(patient_id) 
 
        i_shape = image.shape 
 
        mri_dim = [i_shape[0], i_shape[1], i_shape[2]] 
        # # To balance the data sets of the classes 
        # if((patient_class == "MCI") & (c >= 1)): 
        #     if(random.randint(1, 10) > 2): 
        #         break 
        #     else: 
        #         continue 
 
        b += 1 
        break 
        # except: 
        #     print("Corrupted: ", os.path.join(patient_folder, file)) 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, group_AD, group_NC 
    # return data_list_X, data_list_Y, data_list_Z,  x, y, z, data_list_X_AD, data_list_Y_AD, 
data_list_X_NC, data_list_Y_NC 
 

def load_excel(excel_path): 
    print(excel_path) 
    df = pd.read_csv(excel_path, error_bad_lines=False) 
    df.columns = [column.replace(" ", "_") for column in df.columns] 
    print("Total Samples: ", len(df)) 
    # df.query( 
    #     '(Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN") and (
Sex == "M" or Sex == "F")', inplace=True) 
    # df.query( 
    #     'Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN"', inpla
ce=True) 
    df.query( 
        '(Research_Group == "AD" or Research_Group == "CN") and (Sex == "M" or Sex == "F")', i
nplace=True) 
    df.query( 
        'Research_Group == "AD" or Research_Group == "CN"', inplace=True) 
    df = df[['Subject_ID', 'Research_Group', 'Sex']] 
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    print("Total Samples (AD, CN): ", len(df)) 
    unique_patients = df.drop_duplicates( 
        ['Subject_ID', 'Research_Group'], keep='last') 
    df = pd.DataFrame(unique_patients) 
    excel_data = list(df.itertuples(index=False, name=None)) 
 
    print("Unique Patients: ", len(excel_data)) 
    return excel_data 
 

def read_data(excel_path, input_path): 
    excel_data = load_excel(excel_path) 
    print("Reading Excel Finidhed") 
    # patients_X = [] 
    # patients_Y = [] 
    patients_Z = [] 
    patients_X_AD = [] 
    patients_Y_AD = [] 
    patients_X_NC = [] 
    patients_Y_NC = [] 
    group_AD = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    nc_counter = 0 
 
    global ad_counter 
    ad_counter = 0 
 
    c = 1 
    for patient in excel_data: 
        # try: 
        patient_id = patient[0] 
        patient_class = patient[1] 
        patient_sex = patient[2] 
 
        if ((patient_class == "CN") & (nc_counter == 199)): 
            print("Skip patient: ", patient_id) 
            continue 
 
        patient_folder = input_path + patient_id + "/" 
        # p_X, p_Y, p_Z, p_x, p_y, p_z, p_X_AD, p_Y_AD, p_X_NC, p_Y_NC = read_patient(patient_
folder, 
        #                                                                             patient_
id, patient_class, patient_sex) 
        p_X_AD, p_Y_AD, p_X_NC, p_Y_NC, p_Z, mri_dim, p_group_AD, p_group_NC = read_patient(c, 
                                                                                            pa
tient_folder,   patient_id, patient_class, patient_sex) 
 
        # patients_X = patients_X + p_X 
        # patients_Y = patients_Y + p_Y 
        patients_Z += p_Z 
        patients_X_AD += p_X_AD 
        patients_Y_AD += p_Y_AD 
        patients_X_NC += p_X_NC 
        patients_Y_NC += p_Y_NC 
        group_AD += p_group_AD 
        group_NC += p_group_NC 
 
        # x = x + p_x 
        # y = y + p_y 
        # z = z + p_z 
        # except: 
        #     print("Corrupted Patient: ", patient) 
        c += 1 
        # if (c == 10): 
        #     break 
 
    # Max Dimensions: 35 34 50 
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    # print("Original Max Dimensions: ", max(x), max(y), max(z)) 
 
    # data_list_X = np.array(patients_X) 
    # data_list_Y = np.array(patients_Y) 
    data_list_Z = np.array(patients_Z) 
    data_list_X_AD = np.array(patients_X_AD) 
    data_list_Y_AD = np.array(patients_Y_AD) 
    data_list_X_NC = np.array(patients_X_NC) 
    data_list_Y_NC = np.array(patients_Y_NC) 
    data_list_group_AD = np.array(group_AD) 
    data_list_group_NC = np.array(group_NC) 
 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, data_list_group_AD, data_list_group_NC 
    # return data_list_X, data_list_Y, data_list_Z, data_list_X_AD, data_list_Y_AD, data_list_
X_NC, data_list_Y_NC 
 

def main(): 
    print("Start Reading ...") 
    excel_path = "../../raw_data/shrunk_brains/ADNI_brain.csv" 
    input_path = "../../raw_data/shrunk_brains/ADNI_brain/" 
    # matrix_X, matrix_Y, matrix_Z, matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC = read_
data( 
    #     excel_path, input_path) 
    matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC, matrix_Z, mri_dim, group_AD, group_NC 
= read_data( 
        excel_path, input_path) 
 
    print("... Reading Finished") 
 
    # Normalize data 
    # Normalize images between 0 and 255 
    # matrix_X = (matrix_X / matrix_X.max())*255 
    matrix_X_AD = (matrix_X_AD / matrix_X_AD.max())*255 
    matrix_X_NC = (matrix_X_NC / matrix_X_NC.max())*255 
 
    # Convert to float 
    # matrix_X = matrix_X.astype('float32') 
    matrix_X_AD = matrix_X_AD.astype('float32') 
    matrix_X_NC = matrix_X_NC.astype('float32') 
 
    output_path = "../../data_no_fold/shrunk-brains-3D-AD-NC-single/" 
    os.makedirs(output_path) 
 
    # Save into .mat file 
    # mdic = {"Z": matrix_X, "y": matrix_Y} 
    # scipy.io.savemat(output_path + 'brains.mat', mdic) 
    mdic = {"Z": matrix_X_AD, "y": matrix_Y_AD, "group": group_AD} 
    scipy.io.savemat(output_path + 'brains_AD.mat', mdic) 
    mdic = {"Z": matrix_X_NC, "y": matrix_Y_NC, "group": group_NC} 
    scipy.io.savemat(output_path + 'brains_NC.mat', mdic) 
 
    data_info(output_path, matrix_Y_AD, matrix_Y_NC, matrix_Z, mri_dim) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet C.5. Creation of the B_3D_S dataset and convert it to two .mat files, one with the AD and the other 

with the NC patients, without splitting it into a training, validation, or test set. 

C.6 create_CB_3D_S.py 

This create_CB_3D_S.py reads the first excel with the patients’ IDs, target classes, and 

genders, matched the IDS with the content of the folder with the MRI scans to create the 
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CB_3D_S dataset. Only a single MRI scan per patient is being added to the dataset, which 

is being cropped previously in the area of the left hippocampus. The dataset has an equal 

number of AD, and NC patients. 

import os 
import scipy.io 
import skimage.measure 
import numpy as np 
import pandas as pd 
import nibabel as nib 
import matplotlib.pyplot as plt 
from skimage.transform import resize 
import random 
 
max_shape = (174, 190, 174) 
target_classes = ["AD", "CN"] 
nc_counter = 0 
ad_counter = 0 
random.seed(5) 
# target_classes = ["AD", "MCI", "NC"] 
 

def data_info(path, data_Y_AD, data_Y_NC, data_Z, mri_dim): 
    # unique_Y, counts_Y = np.unique(data_Y, return_counts=True) 
    # dict_data_Y = dict(zip(unique_Y, counts_Y)) 
    # perc_Y = np.round(100.*(counts_Y/sum(counts_Y)), 1) 
    # dict_data_perc_Y = dict(zip(unique_Y, perc_Y)) 
 
    unique_Z, counts_Z = np.unique(data_Z, return_counts=True) 
    dict_data_Z = dict(zip(unique_Z, counts_Z)) 
    perc_Z = np.round(100.*(counts_Z/sum(counts_Z)), 1) 
    dict_data_perc_Z = dict(zip(unique_Z, perc_Z)) 
    total_samples = len(data_Y_AD) + len(data_Y_NC) 
 
    print("\nBalanced: ") 
    print("AD Samples: ", str(len(data_Y_AD))) 
    print("CN Samples: ", str(len(data_Y_NC))) 
    print("Count per Gender: ", dict_data_Z) 
    print("AD Percentage: {:.2f}%".format(100*len(data_Y_AD)/total_samples)) 
    print("CN Percentage: {:.2f}%".format(100*len(data_Y_NC)/total_samples)) 
    print("Gender Percentage.: ", dict_data_perc_Z) 
    print("Total Set Size: ", str(total_samples)) 
    print('Image Dimensions: ', mri_dim) 
    with open(path + 'data-info.txt', 'a') as info_file: 
        print("AD Samples: ", str(len(data_Y_AD)), file=info_file) 
        print("CN Samples: ", str(len(data_Y_NC)), file=info_file) 
        print("Count per Gender: ", dict_data_Z, file=info_file) 
        print("AD Percentage: {:.2f}%".format( 
            100*len(data_Y_AD)/total_samples),  file=info_file) 
        print("CN Percentage: {:.2f}%".format( 
            100*len(data_Y_NC)/total_samples), file=info_file) 
        print("Gender Percentage: ", dict_data_perc_Z, file=info_file) 
        print("Total Set Size: ", str(total_samples), file=info_file) 
        print('Image Dimensions: ', mri_dim, file=info_file) 
 

def add_padding(i): 
    # Resize the MRI scans to specific shape by adding padding with 0s 
    i_w_pad = np.zeros(max_shape) 
    i_w_pad[:i.shape[0], :i.shape[1], :i.shape[2]] = i 
    return i_w_pad 
 

def plot_slices_z(patient_id, mode, image): 
    index_midle = round(len(image[0, 0, :]) / 2) 
 
    img1 = image[:, :, index_midle - 20] 
    img2 = image[:, :, index_midle - 15] 
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    img3 = image[:, :, index_midle - 10] 
    img4 = image[:, :, index_midle - 5] 
    img5 = image[:, :, index_midle] 
    img6 = image[:, :, index_midle + 5] 
    img7 = image[:, :, index_midle + 10] 
    img8 = image[:, :, index_midle + 15] 
    img9 = image[:, :, index_midle + 20] 
 
    fig = plt.figure(figsize=[8, 8]) 
 
    ax1 = fig.add_subplot(331) 
    ax2 = fig.add_subplot(332) 
    ax3 = fig.add_subplot(333) 
    ax4 = fig.add_subplot(334) 
    ax5 = fig.add_subplot(335) 
    ax6 = fig.add_subplot(336) 
    ax7 = fig.add_subplot(337) 
    ax8 = fig.add_subplot(338) 
    ax9 = fig.add_subplot(339) 
 
    ax1.title.set_text(str(index_midle - 20) + " / " + 
                       str(len(image[0,  0, :])) + ' Slice') 
    ax2.title.set_text(str(index_midle - 15) + " / " + 
                       str(len(image[0,  0, :])) + ' Slice') 
    ax3.title.set_text(str(index_midle - 10) + " / " + 
                       str(len(image[0,  0, :])) + ' Slice') 
    ax4.title.set_text(str(index_midle - 5) + " / " + 
                       str(len(image[0, 0, :])) + ' Slice') 
    ax5.title.set_text(str(index_midle) + " / " + 
                       str(len(image[0, 0, :])) + ' Slice') 
    ax6.title.set_text(str(index_midle + 5) + " / " + 
                       str(len(image[0,  0, :])) + ' Slice') 
    ax7.title.set_text(str(index_midle + 10) + " / " + 
                       str(len(image[0,  0, :])) + ' Slice') 
    ax8.title.set_text(str(index_midle + 15) + " / " + 
                       str(len(image[0,  0, :])) + ' Slice') 
    ax9.title.set_text(str(index_midle + 20) + " / " + 
                       str(len(image[0, 0, :])) + ' Slice') 
 
    ax1.imshow(img1, cmap="gray") 
    ax2.imshow(img2, cmap="gray") 
    ax3.imshow(img3, cmap="gray") 
    ax4.imshow(img4, cmap="gray") 
    ax5.imshow(img5, cmap="gray") 
    ax6.imshow(img6, cmap="gray") 
    ax7.imshow(img7, cmap="gray") 
    ax8.imshow(img8, cmap="gray") 
    ax9.imshow(img9, cmap="gray") 
 
    ax1.axis("off") 
    ax2.axis("off") 
    ax3.axis("off") 
    ax4.axis("off") 
    ax5.axis("off") 
    ax6.axis("off") 
    ax7.axis("off") 
    ax8.axis("off") 
    ax9.axis("off") 
 
    fig_folder = "../3D_brains_cropped/" + patient_id + "/" 
    if not os.path.exists(fig_folder): 
        os.makedirs(fig_folder) 
    plt.savefig(fig_folder + "x_y_" + mode + ".png") 
    plt.show() 
 

def plot_slices_y(patient_id, mode, image): 
    index_midle = round(len(image[0, :, 0]) / 2) 
 
    img1 = image[:, index_midle - 20, :] 
    img2 = image[:, index_midle - 15, :] 
    img3 = image[:, index_midle - 10, :] 
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    img4 = image[:, index_midle - 5, :] 
    img5 = image[:, index_midle, :] 
    img6 = image[:, index_midle + 5, :] 
    img7 = image[:, index_midle + 10, :] 
    img8 = image[:, index_midle + 15, :] 
    img9 = image[:, index_midle + 20, :] 
 
    fig = plt.figure(figsize=[8, 8]) 
 
    ax1 = fig.add_subplot(331) 
    ax2 = fig.add_subplot(332) 
    ax3 = fig.add_subplot(333) 
    ax4 = fig.add_subplot(334) 
    ax5 = fig.add_subplot(335) 
    ax6 = fig.add_subplot(336) 
    ax7 = fig.add_subplot(337) 
    ax8 = fig.add_subplot(338) 
    ax9 = fig.add_subplot(339) 
 
    ax1.title.set_text(str(index_midle - 20) + " / " + 
                       str(len(image[0, : 0])) + ' Slice') 
    ax2.title.set_text(str(index_midle - 15) + " / " + 
                       str(len(image[0, :, 0])) + ' Slice') 
    ax3.title.set_text(str(index_midle - 10) + " / " + 
                       str(len(image[0, :, 0])) + ' Slice') 
    ax4.title.set_text(str(index_midle - 5) + " / " + 
                       str(len(image[0, :, 0])) + ' Slice') 
    ax5.title.set_text(str(index_midle) + " / " + 
                       str(len(image[0, :, 0])) + ' Slice') 
    ax6.title.set_text(str(index_midle + 5) + " / " + 
                       str(len(image[0, :, 0])) + ' Slice') 
    ax7.title.set_text(str(index_midle + 10) + " / " + 
                       str(len(image[0, :, 0])) + ' Slice') 
    ax8.title.set_text(str(index_midle + 15) + " / " + 
                       str(len(image[0, :, 0])) + ' Slice') 
    ax9.title.set_text(str(index_midle + 20) + " / " + 
                       str(len(image[0, :, 0])) + ' Slice') 
 
    ax1.imshow(img1, cmap="gray") 
    ax2.imshow(img2, cmap="gray") 
    ax3.imshow(img3, cmap="gray") 
    ax4.imshow(img4, cmap="gray") 
    ax5.imshow(img5, cmap="gray") 
    ax6.imshow(img6, cmap="gray") 
    ax7.imshow(img7, cmap="gray") 
    ax8.imshow(img8, cmap="gray") 
    ax9.imshow(img9, cmap="gray") 
 
    ax1.axis("off") 
    ax2.axis("off") 
    ax3.axis("off") 
    ax4.axis("off") 
    ax5.axis("off") 
    ax6.axis("off") 
    ax7.axis("off") 
    ax8.axis("off") 
    ax9.axis("off") 
 
    fig_folder = "../3D_brains_cropped/" + patient_id + "/" 
    if not os.path.exists(fig_folder): 
        os.makedirs(fig_folder) 
    plt.savefig(fig_folder + "x_z_" + mode + ".png") 
    plt.show() 
 

def plot_slices_x(patient_id, mode, image): 
    index_midle = round(len(image[:, 0, 0]) / 2) 
 
    img1 = image[index_midle - 20, :, :] 
    img2 = image[index_midle - 15, :, :] 
    img3 = image[index_midle - 10, :, :] 
    img4 = image[index_midle - 5, :, :] 



C-31 

 

    img5 = image[index_midle, :, :] 
    img6 = image[index_midle + 5, :, :] 
    img7 = image[index_midle + 10, :, :] 
    img8 = image[index_midle + 15, :, :] 
    img9 = image[index_midle + 20, :, :] 
 
    fig = plt.figure(figsize=[8, 8]) 
 
    ax1 = fig.add_subplot(331) 
    ax2 = fig.add_subplot(332) 
    ax3 = fig.add_subplot(333) 
    ax4 = fig.add_subplot(334) 
    ax5 = fig.add_subplot(335) 
    ax6 = fig.add_subplot(336) 
    ax7 = fig.add_subplot(337) 
    ax8 = fig.add_subplot(338) 
    ax9 = fig.add_subplot(339) 
 
    ax1.title.set_text(str(index_midle - 20) + " / " + 
                       str(len(image[:0,  0])) + ' Slice') 
    ax2.title.set_text(str(index_midle - 15) + " / " + 
                       str(len(image[:, 0,  0])) + ' Slice') 
    ax3.title.set_text(str(index_midle - 10) + " / " + 
                       str(len(image[:, 0, 0])) + ' Slice') 
    ax4.title.set_text(str(index_midle - 5) + " / " + 
                       str(len(image[:, 0, 0])) + ' Slice') 
    ax5.title.set_text(str(index_midle) + " / " + 
                       str(len(image[:, 0,  0])) + ' Slice') 
    ax6.title.set_text(str(index_midle + 5) + " / " + 
                       str(len(image[:, 0,  0])) + ' Slice') 
    ax7.title.set_text(str(index_midle + 10) + " / " + 
                       str(len(image[:, 0,  0])) + ' Slice') 
    ax8.title.set_text(str(index_midle + 15) + " / " + 
                       str(len(image[:, 0,  0])) + ' Slice') 
    ax9.title.set_text(str(index_midle + 20) + " / " + 
                       str(len(image[:, 0, 0])) + ' Slice') 
 
    ax1.imshow(img1, cmap="gray") 
    ax2.imshow(img2, cmap="gray") 
    ax3.imshow(img3, cmap="gray") 
    ax4.imshow(img4, cmap="gray") 
    ax5.imshow(img5, cmap="gray") 
    ax6.imshow(img6, cmap="gray") 
    ax7.imshow(img7, cmap="gray") 
    ax8.imshow(img8, cmap="gray") 
    ax9.imshow(img9, cmap="gray") 
 
    ax1.axis("off") 
    ax2.axis("off") 
    ax3.axis("off") 
    ax4.axis("off") 
    ax5.axis("off") 
    ax6.axis("off") 
    ax7.axis("off") 
    ax8.axis("off") 
    ax9.axis("off") 
 
    fig_folder = "../3D_brains_cropped/" + patient_id + "/" 
    if not os.path.exists(fig_folder): 
        os.makedirs(fig_folder) 
    plt.savefig(fig_folder + "y_z_" + mode + ".png") 
    plt.show() 
 

def read_patient(c, patient_folder, patient_id, patient_class, patient_sex): 
    # data_list_X = [] 
    # data_list_Y = [] 
    data_list_Z = [] 
    data_list_X_AD = [] 
    data_list_Y_AD = [] 
    group_AD = [] 
    data_list_X_NC = [] 
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    data_list_Y_NC = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    global ad_counter 
    b = 1 
    for file in os.listdir(patient_folder): 
        if ((patient_class == "CN") & (nc_counter == 199)): 
            break 
 
        if (patient_class == "CN"): 
            nc_counter += 1 
        elif (patient_class == "AD"): 
            ad_counter += 1 
 
        print("Reading Patient: ", c, "\tPatient ID: ", patient_id, "\tBrain Scan: ", b, 
              "\tNC counter: ", nc_counter, "\tAD counter: ", ad_counter) 
 
        # try: 
        image = nib.load(os.path.join( 
            patient_folder, file)).get_fdata() 
 
        # Remove the last extra dimension 
        image = image[:, :, :, 0] 
 
        # # Display in Plot Slices 
        # plt.figure(figsize=[12, 6]) 
        # plt.subplot(131) 
        # i1 = image[int(image.shape[0] / 2), :, :] 
        # plt.imshow(i1, cmap="gray") 
 
        # plt.subplot(132) 
        # i2 = image[:, int(image.shape[1] / 2), :] 
        # plt.imshow(i2, cmap="gray") 
 
        # plt.subplot(133) 
        # i3 = image[:, :, int(image.shape[2] / 2)] 
        # plt.imshow(i3, cmap="gray") 
        # plt.show() 
 
        # print(image.shape) 
        # plot_slices_x(patient_id, "original", image) 
        # plot_slices_y(patient_id, "original", image) 
        # plot_slices_z(patient_id, "original", image) 
        # image_cropped = image[:70, 50:125, 25:100] 
        image = image[:70, 20:80, 30:90] 
 
        # plot_slices_x(patient_id, "cropped", image_cropped) 
        # plot_slices_y(patient_id, "cropped", image_cropped) 
        # plot_slices_z(patient_id, "cropped", image_cropped) 
        #   :int(image.shape[2] / 2)] 
        # print(image_cropped.shape) 
 
        # x.append(i_shape[0]) 
        # y.append(i_shape[1]) 
        # z.append(i_shape[2]) 
 
        # # Add zeros pading to make all the images the same size 
        # image = add_padding(image) 
 
        # Reduce size to 1/4 of each dimension 
        # image = skimage.measure.block_reduce( 
        #     image, (4, 4, 4), np.mean) 
 
        # # Convert to float 
        image = image.astype('float32') 
 
        # # Normalize data 
        # # Normalize images between 0 and 255 
        image = (image / np.max(image)) * 255 
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        # data_list_X.append(image.flatten()) 
        # data_list_Y.append( 
        #     [target_classes.index(patient_class) + 1])  # Add the index 
        data_list_Z.append([patient_sex]) 
 
        if (patient_class == "CN"): 
            data_list_X_NC.append(image.flatten()) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            group_NC.append(patient_id) 
 
        if (patient_class == "AD"): 
            data_list_X_AD.append(image.flatten()) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            group_AD.append(patient_id) 
 
        i_shape = image.shape 
 
        mri_dim = [i_shape[0], i_shape[1], i_shape[2]] 
        # # To balance the data sets of the classes 
        # if((patient_class == "MCI") & (c >= 1)): 
        #     if(random.randint(1, 10) > 2): 
        #         break 
        #     else: 
        #         continue 
 
        b += 1 
        break 
        # except: 
        #     print("Corrupted: ", os.path.join(patient_folder, file)) 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, group_AD, group_NC 
    # return data_list_X, data_list_Y, data_list_Z,  x, y, z, data_list_X_AD, data_list_Y_AD, 
data_list_X_NC, data_list_Y_NC 
 

def load_excel(excel_path): 
    print(excel_path) 
    df = pd.read_csv(excel_path, error_bad_lines=False) 
    df.columns = [column.replace(" ", "_") for column in df.columns] 
    print("Total Samples: ", len(df)) 
    # df.query( 
    #     '(Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN") and (
Sex == "M" or Sex == "F")', inplace=True) 
    # df.query( 
    #     'Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN"', inpla
ce=True) 
    df.query( 
        '(Research_Group == "AD" or Research_Group == "CN") and (Sex == "M" or Sex == "F")', i
nplace=True) 
    df.query( 
        'Research_Group == "AD" or Research_Group == "CN"', inplace=True) 
    df = df[['Subject_ID', 'Research_Group', 'Sex']] 
    print("Total Samples (AD, CN): ", len(df)) 
    unique_patients = df.drop_duplicates( 
        ['Subject_ID', 'Research_Group'], keep='last') 
    df = pd.DataFrame(unique_patients) 
    excel_data = list(df.itertuples(index=False, name=None)) 
 
    print("Unique Patients: ", len(excel_data)) 
    return excel_data 
 

def read_data(excel_path, input_path): 
    excel_data = load_excel(excel_path) 
    print("Reading Excel Finidhed") 
    # patients_X = [] 
    # patients_Y = [] 
    patients_Z = [] 
    patients_X_AD = [] 
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    patients_Y_AD = [] 
    patients_X_NC = [] 
    patients_Y_NC = [] 
    group_AD = [] 
    group_NC = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    nc_counter = 0 
 
    global ad_counter 
    ad_counter = 0 
 
    c = 1 
    for patient in excel_data: 
        # try: 
        patient_id = patient[0] 
        patient_class = patient[1] 
        patient_sex = patient[2] 
 
        if ((patient_class == "CN") & (nc_counter == 199)): 
            print("Skip patient: ", patient_id) 
            continue 
 
        patient_folder = input_path + patient_id + "/" 
        # p_X, p_Y, p_Z, p_x, p_y, p_z, p_X_AD, p_Y_AD, p_X_NC, p_Y_NC = read_patient(patient_
folder, 
        #                                                                             patient_
id, patient_class, patient_sex) 
        p_X_AD, p_Y_AD, p_X_NC, p_Y_NC, p_Z, mri_dim, p_group_AD, p_group_NC = read_patient(c, 
                                                                                            pa
tient_folder,   patient_id, patient_class, patient_sex) 
 
        # patients_X = patients_X + p_X 
        # patients_Y = patients_Y + p_Y 
        patients_Z += p_Z 
        patients_X_AD += p_X_AD 
        patients_Y_AD += p_Y_AD 
        patients_X_NC += p_X_NC 
        patients_Y_NC += p_Y_NC 
        group_AD += p_group_AD 
        group_NC += p_group_NC 
 
        # x = x + p_x 
        # y = y + p_y 
        # z = z + p_z 
        # except: 
        #     print("Corrupted Patient: ", patient) 
        c += 1 
        # if (c == 10): 
        #     break 
 
    # Max Dimensions: 35 34 50 
    # print("Original Max Dimensions: ", max(x), max(y), max(z)) 
 
    # data_list_X = np.array(patients_X) 
    # data_list_Y = np.array(patients_Y) 
    data_list_Z = np.array(patients_Z) 
    data_list_X_AD = np.array(patients_X_AD) 
    data_list_Y_AD = np.array(patients_Y_AD) 
    data_list_X_NC = np.array(patients_X_NC) 
    data_list_Y_NC = np.array(patients_Y_NC) 
    data_list_group_AD = np.array(group_AD) 
    data_list_group_NC = np.array(group_NC) 
 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_Z, mri_di
m, data_list_group_AD, data_list_group_NC 
    # return data_list_X, data_list_Y, data_list_Z, data_list_X_AD, data_list_Y_AD, data_list_
X_NC, data_list_Y_NC 
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def main(): 
    print("Start Reading ...") 
    excel_path = "../../raw_data/shrinked_brains/ADNI_brain.csv" 
    input_path = "../../raw_data/shrinked_brains/ADNI_brain/" 
    # matrix_X, matrix_Y, matrix_Z, matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC = read_
data( 
    #     excel_path, input_path) 
    matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC, matrix_Z, mri_dim, group_AD, group_NC 
= read_data( 
        excel_path, input_path) 
 
    print("... Reading Finished") 
 
    # Normalize data 
    # Normalize images between 0 and 255 
    # matrix_X = (matrix_X / matrix_X.max())*255 
    matrix_X_AD = (matrix_X_AD / matrix_X_AD.max())*255 
    matrix_X_NC = (matrix_X_NC / matrix_X_NC.max())*255 
 
    # Convert to float 
    # matrix_X = matrix_X.astype('float32') 
    matrix_X_AD = matrix_X_AD.astype('float32') 
    matrix_X_NC = matrix_X_NC.astype('float32') 
 
    output_path = "../../data_no_fold/brains-3D-AD-NC-cropped-single/" 
    os.makedirs(output_path) 
 
    # Save into .mat file 
    # mdic = {"Z": matrix_X, "y": matrix_Y} 
    # scipy.io.savemat(output_path + 'brains.mat', mdic) 
    mdic = {"Z": matrix_X_AD, "y": matrix_Y_AD, "group": group_AD} 
    scipy.io.savemat(output_path + 'brains_AD.mat', mdic) 
    mdic = {"Z": matrix_X_NC, "y": matrix_Y_NC, "group": group_NC} 
    scipy.io.savemat(output_path + 'brains_NC.mat', mdic) 
 
    data_info(output_path, matrix_Y_AD, matrix_Y_NC, matrix_Z, mri_dim) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet C.6. Creation of the CB_3D_S dataset and convert it to two .mat files, one with the AD and the other 

with the NC patients, without splitting it into a training, validation, or test set. 

C.7 create_LH_3D_S.py 

This create_LH_3D_S.py reads the content of the folder with the Left Hippocampus of 

the patients to create the B_3D_S dataset. Only a single scan of the Left Hippocampus 

per patient is being added to the dataset. The dataset has an equal number of AD, and NC 

patients. 

import os 
import scipy.io 
import numpy as np 
import matplotlib.pyplot as plt 
from skimage.transform import resize 
from sklearn.model_selection import train_test_split 
 
max_shape = (37, 32, 50) 
target_classes = ["AD", "NC"] 
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def add_padding(i): 
    # Resize the MRI scans to specific shape by adding padding with 0s 
    i_w_pad = np.zeros(max_shape) 
    i_w_pad[:i.shape[0], :i.shape[1], :i.shape[2]] = i 
    return i_w_pad 
 

def read_files(input_path): 
    data_list_X_AD = [] 
    data_list_Y_AD = [] 
    group_AD = [] 
    data_list_X_NC = [] 
    data_list_Y_NC = [] 
    group_NC = [] 
    x = [] 
    y = [] 
    z = [] 
 
    nc_count = 0 
    ad_count = 0 
 
    for file in os.listdir(input_path): 
        file_parts = file.split("_")  # Remove "_" 
        patient_class = file_parts[-1][:-4]  # Get file's category 
 
        is_left = (file_parts[-3] == "left")  # Is the file left 
        is_hippo = (file_parts[-2] == "hippo")  # Is the file hippo or not 
 
        patient_id = file_parts[0] + "_" + file_parts[1] + \ 
            "_" + file_parts[2]  # Read patients id 
 
        if (is_hippo & is_left): 
 
            if ((nc_count >= 148) & (patient_class == "NC")): 
                continue 
 
            # Ignore MCIc 
            if ((patient_class == "MCIc") | (patient_class == "MCI")): 
                continue 
 
            print("Patient ID: ", patient_id, "\tNC counter: ", 
                  nc_count, "\tAD counter: ", ad_count) 
 
            mat = scipy.io.loadmat(input_path + file) 
            image = mat['data'].copy() 
            i_shape = image.shape 
 
            if ((i_shape[0] == 0) | (i_shape[1] == 0) | (i_shape[2] == 0)): 
                continue 
 
            x.append(i_shape[0]) 
            y.append(i_shape[1]) 
            z.append(i_shape[2]) 
 
            image_w_pad = add_padding(image) 
 
            if (patient_class == "NC"): 
                data_list_X_NC.append(image_w_pad.flatten()) 
                data_list_Y_NC.append( 
                    [target_classes.index(patient_class) + 1]) 
                group_NC.append(patient_id) 
                nc_count += 1 
 
            if (patient_class == "AD"): 
                data_list_X_AD.append(image_w_pad.flatten()) 
                data_list_Y_AD.append( 
                    [target_classes.index(patient_class) + 1]) 
                group_AD.append(patient_id) 
                ad_count += 1 
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            # image_slice = image_w_pad[:, 12, :] 
            # plt.imshow(image_slice, cmap="gray") 
            # plt.show() 
 
    # Max Dimensions: 35 34 50 
    print("Original Max Dimensions: ", max(x), max(y), max(z)) 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, group_AD, group_NC 
 

def main(): 
    print("Start Reading ...") 
 
    input_path = "../../raw_data/hippocampus_single/" 
    output_path = "../../data_no_fold/hippo-AD-NC-left-single/" 
 
    AD_X, AD_Y, NC_X, NC_Y, group_AD, group_NC = read_files(input_path) 
 
    matrix_X_AD = np.array(AD_X) 
    matrix_Y_AD = np.array(AD_Y) 
    matrix_X_NC = np.array(NC_X) 
    matrix_Y_NC = np.array(NC_Y) 
    data_list_group_AD = np.array(group_AD) 
    data_list_group_NC = np.array(group_NC) 
 
    print("... Reading Finished") 
 
    # Normalize data 
    # Normalize images between 0 and 255 
    matrix_X_AD = (matrix_X_AD / matrix_X_AD.max())*255 
    matrix_X_NC = (matrix_X_NC / matrix_X_NC.max())*255 
 
    # Convert to float 
    matrix_X_AD = matrix_X_AD.astype('float32') 
    matrix_X_NC = matrix_X_NC.astype('float32') 
 
    os.makedirs(output_path) 
 
    mri_dim = [max_shape[0], max_shape[1], max_shape[2]] 
 
    # path = "C:\\Users\\mario\\OneDrive - University of Cyprus\\Thesis\\3D_mat_files\\" 
    # Save into .mat file 
    mdic = {"Z": matrix_X_AD, "y": matrix_Y_AD, "group": group_AD} 
    scipy.io.savemat(output_path + 'hippo_AD.mat', mdic) 
    mdic = {"Z": matrix_X_NC, "y": matrix_Y_NC, "group": group_NC} 
    scipy.io.savemat(output_path + 'hippo_NC.mat', mdic) 
    # mdic = {"Z": test_X, "y": test_Y} 
    # scipy.io.savemat(path + 'hippo-test.mat', mdic) 
 
    print('Image dimensions: ', mri_dim) 
    print("Total Set Size: AD:", len(matrix_Y_AD), " NC:", len(matrix_Y_NC)) 
    with open(output_path + 'hippo-info.txt', 'a') as f: 
        print('Image dimensions: ', mri_dim, file=f) 
        print("Total Set Size: AD:", len(matrix_Y_AD), 
              " NC:", len(matrix_Y_NC), file=f) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet C.7. Creation of the LH_3D_S dataset and convert it to two .mat files, one with the AD and the other 

with the NC patients, without splitting it into a training, validation, or test set. 

C.8 create_B_2D_M_AD-MCI-NC.py 

This create_B_2D_M_AD-MCI-NC.py reads the first excel with the patients’ IDs, target 

classes, and genders, matched the IDS with the content of the folder with the MRI scans 
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to create the B_2D_M [AD, MCI, NC] dataset. Only a single slice per scan, of multiple 

MRI scans per patient, are being added to the dataset. The dataset has an equal number 

of AD, MCI, and NC patients. 

import os 
import scipy.io 
import skimage.measure 
import numpy as np 
import pandas as pd 
import nibabel as nib 
import matplotlib.pyplot as plt 
from skimage.transform import resize 
import random 
 
max_shape = (174, 174) 
target_classes = ["AD", "MCI", "CN"] 
nc_counter = 0 
ad_counter = 0 
mci_counter = 0 
random.seed(5) 
 

def data_info(path, data_Y_AD, data_Y_NC, data_Y_MCI, data_Z, mri_dim): 
    # unique_Y, counts_Y = np.unique(data_Y, return_counts=True) 
    # dict_data_Y = dict(zip(unique_Y, counts_Y)) 
    # perc_Y = np.round(100.*(counts_Y/sum(counts_Y)), 1) 
    # dict_data_perc_Y = dict(zip(unique_Y, perc_Y)) 
 
    unique_Z, counts_Z = np.unique(data_Z, return_counts=True) 
    dict_data_Z = dict(zip(unique_Z, counts_Z)) 
    perc_Z = np.round(100.*(counts_Z/sum(counts_Z)), 1) 
    dict_data_perc_Z = dict(zip(unique_Z, perc_Z)) 
    total_samples = len(data_Y_AD) + len(data_Y_NC) + len(data_Y_MCI) 
 
    print("\nBalanced: ") 
    print("AD Samples: ", str(len(data_Y_AD))) 
    print("CN Samples: ", str(len(data_Y_NC))) 
    print("MCI Samples: ", str(len(data_Y_MCI))) 
    print("Count per Gender: ", dict_data_Z) 
    print("AD Percentage: {:.2f}%".format(100*len(data_Y_AD)/total_samples)) 
    print("CN Percentage: {:.2f}%".format(100*len(data_Y_NC)/total_samples)) 
    print("MCI Percentage: {:.2f}%".format(100*len(data_Y_MCI)/total_samples)) 
    print("Gender Percentage.: ", dict_data_perc_Z) 
    print("Total Set Size: ", str(total_samples)) 
    print('Image Dimensions: ', mri_dim) 
    with open(path + 'data-info.txt', 'a') as info_file: 
        print("AD Samples: ", str(len(data_Y_AD)), file=info_file) 
        print("CN Samples: ", str(len(data_Y_NC)), file=info_file) 
        print("MCI Samples: ", str(len(data_Y_MCI)), file=info_file) 
        print("Count per Gender: ", dict_data_Z, file=info_file) 
        print("AD Percentage: {:.2f}%".format( 
            100*len(data_Y_AD)/total_samples),  file=info_file) 
        print("CN Percentage: {:.2f}%".format( 
            100*len(data_Y_NC)/total_samples), file=info_file) 
        print("MCI Percentage: {:.2f}%".format( 
            100*len(data_Y_MCI)/total_samples), file=info_file) 
        print("Gender Percentage: ", dict_data_perc_Z, file=info_file) 
        print("Total Set Size: ", str(total_samples), file=info_file) 
        print('Image Dimensions: ', mri_dim, file=info_file) 
 

def add_padding(i): 
    # Resize the MRI scans to specific shape by adding padding with 0s 
    i_w_pad = np.zeros(max_shape) 
    i_w_pad[:i.shape[0], :i.shape[1]] = i 
    return i_w_pad 
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def read_patient(c, patient_folder, patient_id, patient_class, patient_sex): 
    # data_list_X = [] 
    # data_list_Y = [] 
    data_list_Z = [] 
    data_list_X_AD = [] 
    data_list_Y_AD = [] 
    group_AD = [] 
    data_list_X_NC = [] 
    data_list_Y_NC = [] 
    group_NC = [] 
    data_list_X_MCI = [] 
    data_list_Y_MCI = [] 
    group_MCI = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    global ad_counter 
    global mci_counter 
    b = 1 
    for file in os.listdir(patient_folder): 
        # To balance the sets 
        if ((patient_class == "CN") & (nc_counter >= 602)): 
            break 
 
        if ((patient_class == "MCI") & (mci_counter >= 602)): 
            break 
 
        # To limit the samples from the same patient 
        if ((patient_class == "CN") & (b == 4)): 
            break 
 
        if ((patient_class == "MCI") & (b == 4)): 
            break 
 
        if (patient_class == "CN"): 
            nc_counter += 1 
        elif (patient_class == "AD"): 
            ad_counter += 1 
        elif (patient_class == "MCI"): 
            mci_counter += 1 
 
        print("Reading Patient: ", c, "\tPatient ID: ", patient_id, "\tPatient Class: ", patie
nt_class, "\tBrain Scan: ", b, 
              "\tNC counter: ", nc_counter, "\tAD counter: ", ad_counter, "\tMCI counter: ", m
ci_counter) 
 
        # try: 
        image = nib.load(os.path.join( 
            patient_folder, file)).get_fdata() 
 
        # Remove the last extra dimension 
        index_midle = round(len(image[0, :, 0, 0]) / 2) 
        image = image[:, index_midle, :, 0] 
 
        # x.append(i_shape[0]) 
        # y.append(i_shape[1]) 
        # z.append(i_shape[2]) 
 
        # # Add zeros pading to make all the images the same size 
        image = add_padding(image) 
 
        # Reduce size to 1/4 of each dimension 
        # image = skimage.measure.block_reduce( 
        #     image, (2, 2), np.mean) 
 
        # # Display in Plot Slices 
        # plt.figure(figsize=[12, 6]) 
        # plt.subplot(121) 
        # plt.imshow(image, cmap="gray") 
 
        # image_shrinked = skimage.measure.block_reduce( 
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        #     image, (2, 2), np.mean) 
        # plt.subplot(122) 
        # plt.imshow(image_shrinked, cmap="gray") 
        # plt.show() 
 
        # # Convert to float 
        image = image.astype('float32') 
 
        # # Normalize data 
        # # Normalize images between 0 and 255 
        image = (image / np.max(image)) * 255 
 
        # data_list_X.append(image.flatten()) 
        # data_list_Y.append( 
        #     [target_classes.index(patient_class) + 1])  # Add the index 
        data_list_Z.append([patient_sex]) 
 
        if (patient_class == "CN"): 
            data_list_X_NC.append(image.flatten()) 
            data_list_Y_NC.append( 
                [target_classes.index(patient_class) + 1]) 
            group_NC.append(patient_id) 
 
        if (patient_class == "AD"): 
            data_list_X_AD.append(image.flatten()) 
            data_list_Y_AD.append( 
                [target_classes.index(patient_class) + 1]) 
            group_AD.append(patient_id) 
 
        if (patient_class == "MCI"): 
            data_list_X_MCI.append(image.flatten()) 
            data_list_Y_MCI.append( 
                [target_classes.index(patient_class) + 1]) 
            group_MCI.append(patient_id) 
 
        i_shape = image.shape 
 
        mri_dim = [i_shape[0], i_shape[1]] 
        # # To balance the data sets of the classes 
        # if((patient_class == "MCI") & (c >= 1)): 
        #     if(random.randint(1, 10) > 2): 
        #         break 
        #     else: 
        #         continue 
 
        b += 1 
        # except: 
        #     print("Corrupted: ", os.path.join(patient_folder, file)) 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_X_MCI, da
ta_list_Y_MCI, data_list_Z, mri_dim, group_AD, group_NC, group_MCI 
    # return data_list_X, data_list_Y, data_list_Z,  x, y, z, data_list_X_AD, data_list_Y_AD, 
data_list_X_NC, data_list_Y_NC 
 

def load_excel(excel_path): 
    print(excel_path) 
    df = pd.read_csv(excel_path, error_bad_lines=False) 
    df.columns = [column.replace(" ", "_") for column in df.columns] 
    print("Total Samples: ", len(df)) 
    # df.query( 
    #     '(Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN") and (
Sex == "M" or Sex == "F")', inplace=True) 
    # df.query( 
    #     'Research_Group == "MCI" or Research_Group == "AD" or Research_Group == "CN"', inpla
ce=True) 
    df.query( 
        '(Research_Group == "AD" or Research_Group == "CN" or Research_Group == "MCI") and (Se
x == "M" or Sex == "F")', inplace=True) 
    df.query( 
        'Research_Group == "AD" or Research_Group == "CN" or Research_Group == "MCI"', inplace
=True) 
    df = df[['Subject_ID', 'Research_Group', 'Sex']] 
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    print("Total Samples (AD, CN, MCI): ", len(df)) 
    unique_patients = df.drop_duplicates( 
        ['Subject_ID', 'Research_Group'], keep='last') 
    df = pd.DataFrame(unique_patients) 
    excel_data = list(df.itertuples(index=False, name=None)) 
 
    print("Unique Patients: ", len(excel_data)) 
    return excel_data 
 

def read_data(excel_path, input_path): 
    excel_data = load_excel(excel_path) 
    print("Reading Excel Finidhed") 
    # patients_X = [] 
    # patients_Y = [] 
    patients_Z = [] 
    patients_X_AD = [] 
    patients_Y_AD = [] 
    patients_X_NC = [] 
    patients_Y_NC = [] 
    patients_X_MCI = [] 
    patients_Y_MCI = [] 
    group_AD = [] 
    group_NC = [] 
    group_MCI = [] 
    # x = [] 
    # y = [] 
    # z = [] 
 
    global nc_counter 
    nc_counter = 0 
 
    global ad_counter 
    ad_counter = 0 
 
    global mci_counter 
    mci_counter = 0 
 
    c = 1 
    for patient in excel_data: 
        # try: 
        patient_id = patient[0] 
        patient_class = patient[1] 
        patient_sex = patient[2] 
 
        if ((patient_class == "CN") & (nc_counter >= 602)): 
            print("Skip CN patient: ", patient_id) 
            continue 
 
        if ((patient_class == "MCI") & (mci_counter >= 602)): 
            print("Skip MCI patient: ", patient_id) 
            continue 
 
        patient_folder = input_path + patient_id + "/" 
        # p_X, p_Y, p_Z, p_x, p_y, p_z, p_X_AD, p_Y_AD, p_X_NC, p_Y_NC = read_patient(patient_
folder, 
        #                                                                             patient_
id, patient_class, patient_sex) 
        p_X_AD, p_Y_AD, p_X_NC, p_Y_NC, p_X_MCI, p_Y_MCI, p_Z, mri_dim, p_group_AD, p_group_NC
, p_group_MCI = read_patient(c, 
                                                                                              
                             patient_folder,   patient_id, patient_class, patient_sex) 
 
        # patients_X = patients_X + p_X 
        # patients_Y = patients_Y + p_Y 
        patients_Z += p_Z 
        patients_X_AD += p_X_AD 
        patients_Y_AD += p_Y_AD 
        patients_X_NC += p_X_NC 
        patients_Y_NC += p_Y_NC 
        patients_X_MCI += p_X_MCI 
        patients_Y_MCI += p_Y_MCI 
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        group_AD += p_group_AD 
        group_NC += p_group_NC 
        group_MCI += p_group_MCI 
 
        # x = x + p_x 
        # y = y + p_y 
        # z = z + p_z 
        # except: 
        #     print("Corrupted Patient: ", patient) 
        c += 1 
        # if (c == 10): 
        #     break 
 
    # Max Dimensions: 35 34 50 
    # print("Original Max Dimensions: ", max(x), max(y), max(z)) 
 
    # data_list_X = np.array(patients_X) 
    # data_list_Y = np.array(patients_Y) 
    data_list_Z = np.array(patients_Z) 
    data_list_X_AD = np.array(patients_X_AD) 
    data_list_Y_AD = np.array(patients_Y_AD) 
    data_list_X_NC = np.array(patients_X_NC) 
    data_list_Y_NC = np.array(patients_Y_NC) 
    data_list_X_MCI = np.array(patients_X_MCI) 
    data_list_Y_MCI = np.array(patients_Y_MCI) 
    data_list_group_AD = np.array(group_AD) 
    data_list_group_NC = np.array(group_NC) 
    data_list_group_MCI = np.array(group_MCI) 
 
    return data_list_X_AD, data_list_Y_AD, data_list_X_NC, data_list_Y_NC, data_list_X_MCI, da
ta_list_Y_MCI, data_list_Z, mri_dim, data_list_group_AD, data_list_group_NC, data_list_group_M
CI 
    # return data_list_X, data_list_Y, data_list_Z, data_list_X_AD, data_list_Y_AD, data_list_
X_NC, data_list_Y_NC 
 

def main(): 
    print("Start Reading ...") 
    excel_path = "../../raw_data/brains/ADNI_brain.csv" 
    input_path = "../../raw_data/brains/ADNI_brain/" 
    # matrix_X, matrix_Y, matrix_Z, matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC = read_
data( 
    #     excel_path, input_path) 
    matrix_X_AD, matrix_Y_AD, matrix_X_NC, matrix_Y_NC, matrix_X_MCI, matrix_Y_MCI, matrix_Z, 
mri_dim, group_AD, group_NC, group_MCI = read_data( 
        excel_path, input_path) 
 
    print("... Reading Finished") 
 
    # Normalize data 
    # Normalize images between 0 and 255 
    # matrix_X = (matrix_X / matrix_X.max())*255 
    matrix_X_AD = (matrix_X_AD / matrix_X_AD.max())*255 
    matrix_X_NC = (matrix_X_NC / matrix_X_NC.max())*255 
    matrix_X_MCI = (matrix_X_MCI / matrix_X_MCI.max())*255 
 
    # Convert to float 
    # matrix_X = matrix_X.astype('float32') 
    matrix_X_AD = matrix_X_AD.astype('float32') 
    matrix_X_NC = matrix_X_NC.astype('float32') 
    matrix_X_MCI = matrix_X_MCI.astype('float32') 
 
    output_path = "../../data_no_fold/brains-2D-AD-MCI-NC-multiple/" 
    os.makedirs(output_path) 
 
    # Save into .mat file 
    mdic = {"Z": matrix_X_AD, "y": matrix_Y_AD, "group": group_AD} 
    scipy.io.savemat(output_path + 'brains_AD.mat', mdic) 
    mdic = {"Z": matrix_X_NC, "y": matrix_Y_NC, "group": group_NC} 
    scipy.io.savemat(output_path + 'brains_NC.mat', mdic) 
    mdic = {"Z": matrix_X_MCI, "y": matrix_Y_MCI, "group": group_MCI} 
    scipy.io.savemat(output_path + 'brains_MCI.mat', mdic) 
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    data_info(output_path, matrix_Y_AD, matrix_Y_NC, 
              matrix_Y_MCI,  matrix_Z, mri_dim) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet C.8. Creation of the B_2D_m [AD, MCI, NC] dataset and convert it to three .mat files, one with the 

AD, one with the MCI, and the other with the NC patients, without splitting it into a training, validation, or test set. 
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Appendix D 

KFold Cross-validation 

D.1 stratified_group_k_fold.py 

The stratified_group_k_fold.py had the code for the StratifiedGroupKFold which is not 

available in the scikit-learn library. For the StratifiedKFold, and the GroupKFold, the 

implementations that are used are from the scikit-learn library.  

from collections import Counter, defaultdict 
 
import numpy as np 
 
from sklearn.model_selection._split import _BaseKFold, _RepeatedSplits 
from sklearn.utils.validation import check_random_state 
 
class StratifiedGroupKFold(_BaseKFold): 
    """Stratified K-Folds iterator variant with non-overlapping groups. 
 
    This cross-validation object is a variation of StratifiedKFold that returns 
    stratified folds with non-overlapping groups. The folds are made by 
    preserving the percentage of samples for each class. 
 
    The same group will not appear in two different folds (the number of 
    distinct groups have to be at least equal to the number of folds). 
 
    The difference between GroupKFold and StratifiedGroupKFold is that 
    the former attempts to create balanced folds such that the number of 
    distinct groups are approximately the same in each fold, whereas 
    StratifiedGroupKFold attempts to create folds that preserve the 
    percentage of samples for each class. 
 
    Read more in the :ref:`User Guide <cross_validation>`. 
 
    Parameters 
    ---------- 
    n_splits : int, default=5 
        Number of folds. Must be at least 2. 
 
    shuffle : bool, default=False 
        Whether to shuffle each class's samples before splitting into batches. 
        Note that the samples within each split will not be shuffled. 
 
    random_state : int or RandomState instance, default=None 
        When `shuffle` is True, `random_state` affects the ordering of the 
        indices, which controls the randomness of each fold for each class. 
        Otherwise, leave `random_state` as `None`. 
        Pass an int for reproducible output across multiple function calls. 
        See :term:`Glossary <random_state>`. 
 
    Examples 
    -------- 
    >>> import numpy as np 
    >>> from sklearn.model_selection import StratifiedGroupKFold 
    >>> X = np.ones((17, 2)) 
    >>> y = np.array([0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]) 
    >>> groups = np.array([1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8]) 
    >>> cv = StratifiedGroupKFold(n_splits=3) 
    >>> for train_idxs, test_idxs in cv.split(X, y, groups): 
    ...     print("TRAIN:", groups[train_idxs]) 
    ...     print("      ", y[train_idxs]) 
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    ...     print(" TEST:", groups[test_idxs]) 
    ...     print("      ", y[test_idxs]) 
    TRAIN: [2 2 4 5 5 5 5 6 6 7] 
           [1 1 1 0 0 0 0 0 0 0] 
     TEST: [1 1 3 3 3 8 8] 
           [0 0 1 1 1 0 0] 
    TRAIN: [1 1 3 3 3 4 5 5 5 5 8 8] 
           [0 0 1 1 1 1 0 0 0 0 0 0] 
     TEST: [2 2 6 6 7] 
           [1 1 0 0 0] 
    TRAIN: [1 1 2 2 3 3 3 6 6 7 8 8] 
           [0 0 1 1 1 1 1 0 0 0 0 0] 
     TEST: [4 5 5 5 5] 
           [1 0 0 0 0] 
 
    See also 
    -------- 
    StratifiedKFold: Takes class information into account to build folds which 
        retain class distributions (for binary or multiclass classification 
        tasks). 
 
    GroupKFold: K-fold iterator variant with non-overlapping groups. 
    """ 
 
    def __init__(self, n_splits=5, shuffle=False, random_state=None): 
        super().__init__(n_splits=n_splits, shuffle=shuffle, 
                         random_state=random_state) 
 
    # Implementation based on this kaggle kernel: 
    # https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation 
    def _iter_test_indices(self, X, y, groups): 
        y = np.reshape(y, len(y)) - 1 
        groups = np.reshape(groups, len(groups)) 
 
        print(X.shape) 
        print(y.shape) 
        print(groups.shape) 
 
        labels_num = np.max(y) + 1 
        y_counts_per_group = defaultdict(lambda: np.zeros(labels_num)) 
        y_distr = Counter() 
        for label, group in zip(y, groups): 
            y_counts_per_group[group][label] += 1 
            y_distr[label] += 1 
 
        y_counts_per_fold = defaultdict(lambda: np.zeros(labels_num)) 
        groups_per_fold = defaultdict(set) 
 
        groups_and_y_counts = list(y_counts_per_group.items()) 
        rng = check_random_state(self.random_state) 
        if self.shuffle: 
            rng.shuffle(groups_and_y_counts) 
 
        for group, y_counts in sorted(groups_and_y_counts, 
                                      key=lambda x: -np.std(x[1])): 
            best_fold = None 
            min_eval = None 
            for i in range(self.n_splits): 
                y_counts_per_fold[i] += y_counts 
                std_per_label = [] 
                for label in range(labels_num): 
                    std_per_label.append(np.std( 
                        [y_counts_per_fold[j][label] / y_distr[label] 
                         for j in range(self.n_splits)])) 
                y_counts_per_fold[i] -= y_counts 
                fold_eval = np.mean(std_per_label) 
                if min_eval is None or fold_eval < min_eval: 
                    min_eval = fold_eval 
                    best_fold = i 
            y_counts_per_fold[best_fold] += y_counts 
            groups_per_fold[best_fold].add(group) 
 
        for i in range(self.n_splits): 
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            test_indices = [idx for idx, group in enumerate(groups) 
                            if group in groups_per_fold[i]] 
            yield test_indices 
 

class RepeatedStratifiedGroupKFold(_RepeatedSplits): 
    """Repeated Stratified K-Fold cross validator. 
    Repeats Stratified K-Fold with non-overlapping groups n times with 
    different randomization in each repetition. 
 
    Read more in the :ref:`User Guide <cross_validation>`. 
 
    Parameters 
    ---------- 
    n_splits : int, default=5 
        Number of folds. Must be at least 2. 
 
    n_repeats : int, default=10 
        Number of times cross-validator needs to be repeated. 
 
    random_state : int or RandomState instance, default=None 
        Controls the generation of the random states for each repetition. 
        Pass an int for reproducible output across multiple function calls. 
        See :term:`Glossary <random_state>`. 
 
    Examples 
    -------- 
    >>> import numpy as np 
    >>> from sklearn.model_selection import RepeatedStratifiedGroupKFold 
    >>> X = np.ones((17, 2)) 
    >>> y = np.array([0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]) 
    >>> groups = np.array([1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8]) 
    >>> cv = RepeatedStratifiedGroupKFold(n_splits=2, n_repeats=2, 
    ...                                   random_state=36851234) 
    >>> for train_index, test_index in cv.split(X, y, groups): 
    ...     print("TRAIN:", groups[train_idxs]) 
    ...     print("      ", y[train_idxs]) 
    ...     print(" TEST:", groups[test_idxs]) 
    ...     print("      ", y[test_idxs]) 
    TRAIN: [2 2 4 5 5 5 5 8 8] 
           [1 1 1 0 0 0 0 0 0] 
     TEST: [1 1 3 3 3 6 6 7] 
           [0 0 1 1 1 0 0 0] 
    TRAIN: [1 1 3 3 3 6 6 7] 
           [0 0 1 1 1 0 0 0] 
     TEST: [2 2 4 5 5 5 5 8 8] 
           [1 1 1 0 0 0 0 0 0] 
    TRAIN: [3 3 3 4 7 8 8] 
           [1 1 1 1 0 0 0] 
     TEST: [1 1 2 2 5 5 5 5 6 6] 
           [0 0 1 1 0 0 0 0 0 0] 
    TRAIN: [1 1 2 2 5 5 5 5 6 6] 
           [0 0 1 1 0 0 0 0 0 0] 
     TEST: [3 3 3 4 7 8 8] 
           [1 1 1 1 0 0 0] 
 
    Notes 
    ----- 
    Randomized CV splitters may return different results for each call of 
    split. You can make the results identical by setting `random_state` 
    to an integer. 
 
    See also 
    -------- 
    RepeatedStratifiedKFold: Repeats Stratified K-Fold n times. 
    """ 
 
    def __init__(self, n_splits=5, n_repeats=10, random_state=None): 
        super().__init__(StratifiedGroupKFold, n_splits=n_splits, 
                         n_repeats=n_repeats, random_state=random_state) 
 

Code Snippet D.1. StratifiedGroupKFold implementation. 
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D.2 5-folds 

The following codes perform the 5-fold splits in the experiments B_2D_5S, B_2D_7M, 

B_3D_S, CB_3D_S, LH_3D_S. 

D.2.1 5_fold_B_2D_5S.py 

import random 
import scipy.io 
import numpy as np 
from model_selection.stratified_group_k_fold import StratifiedGroupKFold 
import os 
 

def shuffle_in_unison(a, b, c): 
    n_elem = a.shape[0] 
    indeces = np.random.choice(n_elem, size=n_elem, replace=False) 
    return a[indeces], b[indeces], c[indeces] 
 

def is_balanced(train_Y, valid_Y): 
    unique, counts = np.unique(train_Y, return_counts=True) 
    dict_train = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_train_perc = dict(zip(unique, perc)) 
 
    unique, counts = np.unique(valid_Y, return_counts=True) 
    dict_valid = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_valid_perc = dict(zip(unique, perc)) 
 
    print("\nBalanced Sets: ") 
    print("Train: ", dict_train) 
    print("Valid: ", dict_valid) 
    print("Train_Perc.: ", dict_train_perc) 
    print("Valid_Perc.: ", dict_valid_perc) 
 

def create_test_set(c, Z, y, g): 
    test_Z = [] 
    test_y = [] 
    test_g = [] 
 
    elements_to_remove = [] 
 
    i = 0 
    while (c != 0): 
        # Count how many patients are in the same class 
        count = 0 
        same = True 
        current = g[i] 
        while (same): 
            if (g[i + 1] != current): 
                same = False 
            current = g[i + 1] 
            count += 1 
            i += 1 
        # If patient has less or equal scans than the needed scans add them in the test set 
        if (count <= c): 
            # Add this elements in the test set 
            for j in range(i - count, i): 
                test_Z.append(Z[j]) 
                test_y.append(y[j]) 
                test_g.append(g[j]) 
                elements_to_remove.append(j) 
                c -= 1 
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    test_Z = np.array(test_Z) 
    test_y = np.array(test_y) 
    test_g = np.array(test_g) 
 
    # Remove these element from the global set 
    print(elements_to_remove) 
    Z = np.delete(Z, elements_to_remove, axis=0) 
    y = np.delete(y, elements_to_remove, axis=0) 
    g = np.delete(g, elements_to_remove, axis=0) 
    return test_Z, test_y, test_g, Z, y, g 
 

def split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, path): 
    # Subjects per category for testing 
    N = 45 
    print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
        AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
        NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
            AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
            NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
 
    # Create thhe test set 
    test_AD_Z, test_AD_y, test_AD_g, AD_Z, AD_y, AD_g = create_test_set( 
        N, AD_Z, AD_y, AD_g) 
    test_NC_Z, test_NC_y, test_NC_g,  NC_Z, NC_y, NC_g = create_test_set( 
        N, NC_Z, NC_y, NC_g) 
 
    print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g), 
          " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g.sha
pe) 
    print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g), 
          " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g.sha
pe) 
    print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
          " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape) 
    print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
          " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g)
, 
              " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g
.shape, file=f) 
        print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g)
, 
              " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g
.shape, file=f) 
        print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
              " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape, file=f) 
        print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
              " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape, file=f) 
 
    # Merge the test data 
    test_X = np.concatenate((test_AD_Z, test_NC_Z), axis=0) 
    test_y = np.concatenate((test_AD_y, test_NC_y), axis=0) 
    test_g = np.concatenate((test_AD_g, test_NC_g), axis=0) 
 
    # Save groups with class 
    file_w = open(path + "test_file_class_with_ids.txt", 'w') 
    for i in range(len(test_y)): 
        print(test_g[i], "\t", test_y[i][0], file=file_w) 
 
    # Save into .mat file 
    mdic = {"Z": test_X, "y": test_y} 
    scipy.io.savemat( 
        path + '5-slices-brains-2D-AD-NC-test.mat', mdic) 
 
    # Merge the two classes 
    X = np.concatenate((AD_Z, NC_Z), axis=0) 
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    y = np.concatenate((AD_y, NC_y), axis=0) 
    groups = np.concatenate((AD_g, NC_g), axis=0) 
 
    # Shuffle them in unison 
    X, y, groups = shuffle_in_unison(X, y, groups) 
 
    # Check if they are balanced 
 
    count = 1 
    k = 5 
    AD = 1 
    NC = 2 
 
    gkf = StratifiedGroupKFold(n_splits=k) 
 
    for train_index, valid_index in gkf.split(X, y, groups=groups): 
        # select rows 
        train_X, valid_X = X[train_index], X[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f: 
            print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f) 
 
        # Save into .mat file 
        mdic = {"Z": train_X, "y": train_y} 
        scipy.io.savemat(path + '5-slices-brains-2D-AD-NC-train' + 
                         str(count) + '.mat', mdic) 
        mdic = {"Z": valid_X, "y": valid_y} 
        scipy.io.savemat(path + '5-slices-brains-2D-AD-NC-valid' + 
                         str(count) + '.mat', mdic) 
        count += 1 
 
    count = 1 
    # To store the groups 
    for train_index, valid_index in gkf.split(X, y, groups=groups): 
        # select rows 
        train_g, valid_g = groups[train_index], groups[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f2: 
            print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f2) 
 
        # Save into .mat file 
        file_w1 = open(path + "train_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(train_y)): 
            print(train_g[i], "\t", train_y[i][0], file=file_w1) 
 
        file_w2 = open(path + "valid_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(valid_y)): 
            print(valid_g[i], "\t", valid_y[i][0], file=file_w2) 
 
        count += 1 
 
    print("Total samples: ", len(y)) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Total samples: ", len(y), file=f) 
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def main(): 
    input_path = "../../data_no_fold/brains-2D-AD-NC-single-5-slices/" 
 
    mat_AD = scipy.io.loadmat(input_path + "brains_AD.mat") 
    mat_NC = scipy.io.loadmat(input_path + "brains_NC.mat") 
    AD_Z = mat_AD['Z'] 
    AD_y = mat_AD['y'] 
    AD_g = mat_AD['group'] 
    NC_Z = mat_NC['Z'] 
    NC_y = mat_NC['y'] 
    NC_g = mat_NC['group'] 
 
    output_path = "../../data_with_5_fold/brains-2D-AD-NC-single-5-slices/" 
    os.makedirs(output_path) 
 
    split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, output_path) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet D.2. 5-fold Cross-validation with StratifiedGroupKFold (Appendix D.1) for the B_2D_5S dataset. 

D.2.2 5_fold_B_2D_7M.py 

import random 
import scipy.io 
import numpy as np 
from model_selection.stratified_group_k_fold import StratifiedGroupKFold 
import os 
 

def shuffle_in_unison(a, b, c): 
    n_elem = a.shape[0] 
    indeces = np.random.choice(n_elem, size=n_elem, replace=False) 
    return a[indeces], b[indeces], c[indeces] 
 

def is_balanced(train_Y, valid_Y): 
    unique, counts = np.unique(train_Y, return_counts=True) 
    dict_train = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_train_perc = dict(zip(unique, perc)) 
 
    unique, counts = np.unique(valid_Y, return_counts=True) 
    dict_valid = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_valid_perc = dict(zip(unique, perc)) 
 
    print("\nBalanced Sets: ") 
    print("Train: ", dict_train) 
    print("Valid: ", dict_valid) 
    print("Train_Perc.: ", dict_train_perc) 
    print("Valid_Perc.: ", dict_valid_perc) 
 
 

def create_test_set(c, Z, y, g): 
    test_Z = [] 
    test_y = [] 
    test_g = [] 
 
    elements_to_remove = [] 
 
    i = 0 
    while (c != 0): 
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        # Count how many patients are in the same class 
        count = 0 
        same = True 
        current = g[i] 
        while (same): 
            if (g[i + 1] != current): 
                same = False 
            current = g[i + 1] 
            count += 1 
            i += 1 
        # If patient has less or equal scans than the needed scans add them in the test set 
        if (count <= c): 
            # Add this elements in the test set 
            for j in range(i - count, i): 
                test_Z.append(Z[j]) 
                test_y.append(y[j]) 
                test_g.append(g[j]) 
                elements_to_remove.append(j) 
                c -= 1 
 
    test_Z = np.array(test_Z) 
    test_y = np.array(test_y) 
    test_g = np.array(test_g) 
 
    # Remove these element from the global set 
    print(elements_to_remove) 
    Z = np.delete(Z, elements_to_remove, axis=0) 
    y = np.delete(y, elements_to_remove, axis=0) 
    g = np.delete(g, elements_to_remove, axis=0) 
    return test_Z, test_y, test_g, Z, y, g 
 

def split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, path): 
    # Subjects per category for testing 
    N = 154 
    print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
        AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
        NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
            AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
            NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
 
    # Create thhe test set 
    test_AD_Z, test_AD_y, test_AD_g, AD_Z, AD_y, AD_g = create_test_set( 
        N, AD_Z, AD_y, AD_g) 
    test_NC_Z, test_NC_y, test_NC_g,  NC_Z, NC_y, NC_g = create_test_set( 
        N, NC_Z, NC_y, NC_g) 
 
    print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g), 
          " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g.sha
pe) 
    print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g), 
          " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g.sha
pe) 
    print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
          " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape) 
    print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
          " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g)
, 
              " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g
.shape, file=f) 
        print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g)
, 
              " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g
.shape, file=f) 
        print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
              " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape, file=f) 
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        print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
              " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape, file=f) 
 
    # Merge the test data 
    test_X = np.concatenate((test_AD_Z, test_NC_Z), axis=0) 
    test_y = np.concatenate((test_AD_y, test_NC_y), axis=0) 
    test_g = np.concatenate((test_AD_g, test_NC_g), axis=0) 
 
    # Save groups with class 
    file_w = open(path + "test_file_class_with_ids.txt", 'w') 
    for i in range(len(test_y)): 
        print(test_g[i], "\t", test_y[i][0], file=file_w) 
 
    # Save into .mat file 
    mdic = {"Z": test_X, "y": test_y} 
    scipy.io.savemat( 
        path + '7-slices-brains-2D-AD-NC-test.mat', mdic) 
 
    # Merge the two classes 
    X = np.concatenate((AD_Z, NC_Z), axis=0) 
    y = np.concatenate((AD_y, NC_y), axis=0) 
    groups = np.concatenate((AD_g, NC_g), axis=0) 
 
    # Shuffle them in unison 
    X, y, groups = shuffle_in_unison(X, y, groups) 
 
    # Check if they are balanced 
 
    count = 1 
    k = 5 
    AD = 1 
    NC = 2 
 
    gkf = StratifiedGroupKFold(n_splits=k) 
 
    for train_index, valid_index in gkf.split(X, y, groups=groups): 
        # select rows 
        train_X, valid_X = X[train_index], X[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f: 
            print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f) 
 
        # Save into .mat file 
        mdic = {"Z": train_X, "y": train_y} 
        scipy.io.savemat(path + '7-slices-brains-2D-AD-NC-train' + 
                         str(count) + '.mat', mdic) 
        mdic = {"Z": valid_X, "y": valid_y} 
        scipy.io.savemat(path + '7-slices-brains-2D-AD-NC-valid' + 
                         str(count) + '.mat', mdic) 
        count += 1 
 
    count = 1 
    # To store the groups 
    for train_index, valid_index in gkf.split(X, y, groups=groups): 
        # select rows 
        train_g, valid_g = groups[train_index], groups[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
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        with open(path + 'split-info.txt', 'a') as f2: 
            print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f2) 
 
        # Save into .mat file 
        file_w1 = open(path + "train_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(train_y)): 
            print(train_g[i], "\t", train_y[i][0], file=file_w1) 
 
        file_w2 = open(path + "valid_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(valid_y)): 
            print(valid_g[i], "\t", valid_y[i][0], file=file_w2) 
 
        count += 1 
 
    print("Total samples: ", len(y)) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Total samples: ", len(y), file=f) 
 

def main(): 
    input_path = "../../data_no_fold/7-slices-brains-2D-AD-NC-multiple/" 
 
    mat_AD = scipy.io.loadmat(input_path + "brains_AD.mat") 
    mat_NC = scipy.io.loadmat(input_path + "brains_NC.mat") 
    AD_Z = mat_AD['Z'] 
    AD_y = mat_AD['y'] 
    AD_g = mat_AD['group'] 
    NC_Z = mat_NC['Z'] 
    NC_y = mat_NC['y'] 
    NC_g = mat_NC['group'] 
 
    output_path = "../../data_with_5_fold/7-slices-brains-2D-AD-NC-multiple/" 
    os.makedirs(output_path) 
 
    split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, output_path) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet D.3. 5-fold Cross-validation with StratifiedGroupKFold (Appendix D.1) for the B_2D_7M dataset. 

D.2.3 5_fold_B_3D_S.py 

import random 
import scipy.io 
import numpy as np 
from sklearn.model_selection import StratifiedKFold 
import os 
 

def shuffle_in_unison(a, b, c): 
    n_elem = a.shape[0] 
    indeces = np.random.choice(n_elem, size=n_elem, replace=False) 
    return a[indeces], b[indeces], c[indeces] 
 

def is_balanced(train_Y, valid_Y): 
    unique, counts = np.unique(train_Y, return_counts=True) 
    dict_train = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_train_perc = dict(zip(unique, perc)) 
 
    unique, counts = np.unique(valid_Y, return_counts=True) 
    dict_valid = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
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    dict_valid_perc = dict(zip(unique, perc)) 
 
    print("\nBalanced Sets: ") 
    print("Train: ", dict_train) 
    print("Valid: ", dict_valid) 
    print("Train_Perc.: ", dict_train_perc) 
    print("Valid_Perc.: ", dict_valid_perc) 
 

def create_test_set(c, Z, y, g): 
    test_Z = [] 
    test_y = [] 
    test_g = [] 
 
    elements_to_remove = [] 
 
    i = 0 
    while (c != 0): 
        # Count how many patients are in the same class 
        count = 0 
        same = True 
        current = g[i] 
        while (same): 
            if (g[i + 1] != current): 
                same = False 
            current = g[i + 1] 
            count += 1 
            i += 1 
        # If patient has less or equal scans than the needed scans add them in the test set 
        if (count <= c): 
            # Add this elements in the test set 
            for j in range(i - count, i): 
                test_Z.append(Z[j]) 
                test_y.append(y[j]) 
                test_g.append(g[j]) 
                elements_to_remove.append(j) 
                c -= 1 
 
    test_Z = np.array(test_Z) 
    test_y = np.array(test_y) 
    test_g = np.array(test_g) 
 
    # Remove these element from the global set 
    print(elements_to_remove) 
    Z = np.delete(Z, elements_to_remove, axis=0) 
    y = np.delete(y, elements_to_remove, axis=0) 
    g = np.delete(g, elements_to_remove, axis=0) 
    return test_Z, test_y, test_g, Z, y, g 
 

def split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, path): 
    # Subjects per category for testing 
    N = 19 
    print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
        AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
        NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
            AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
            NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
 
    # Create thhe test set 
    test_AD_Z, test_AD_y, test_AD_g, AD_Z, AD_y, AD_g = create_test_set( 
        N, AD_Z, AD_y, AD_g) 
    test_NC_Z, test_NC_y, test_NC_g,  NC_Z, NC_y, NC_g = create_test_set( 
        N, NC_Z, NC_y, NC_g) 
 
    print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g), 
          " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g.sha
pe) 
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    print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g), 
          " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g.sha
pe) 
    print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
          " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape) 
    print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
          " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g)
, 
              " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g
.shape, file=f) 
        print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g)
, 
              " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g
.shape, file=f) 
        print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
              " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape, file=f) 
        print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
              " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape, file=f) 
 
    # Merge the test data 
    test_X = np.concatenate((test_AD_Z, test_NC_Z), axis=0) 
    test_y = np.concatenate((test_AD_y, test_NC_y), axis=0) 
    test_g = np.concatenate((test_AD_g, test_NC_g), axis=0) 
 
    # Save groups with class 
    file_w = open(path + "test_file_class_with_ids.txt", 'w') 
    for i in range(len(test_y)): 
        print(test_g[i], "\t", test_y[i][0], file=file_w) 
 
    # Save into .mat file 
    mdic = {"Z": test_X, "y": test_y} 
    scipy.io.savemat( 
        path + 'shrunk-brains-3D-AD-NC-test.mat', mdic) 
 
    # Merge the two classes 
    X = np.concatenate((AD_Z, NC_Z), axis=0) 
    y = np.concatenate((AD_y, NC_y), axis=0) 
    groups = np.concatenate((AD_g, NC_g), axis=0) 
 
    # Shuffle them in unison 
    X, y, groups = shuffle_in_unison(X, y, groups) 
 
    # Check if they are balanced 
 
    count = 1 
    k = 5 
    AD = 1 
    NC = 2 
 
    kfold = StratifiedKFold(n_splits=k, shuffle=True, random_state=1) 
 
    for train_index, valid_index in kfold.split(X, y, groups=groups): 
        # select rows 
        train_X, valid_X = X[train_index], X[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f: 
            print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f) 
 
        # Save into .mat file 
        mdic = {"Z": train_X, "y": train_y} 
        scipy.io.savemat(path + 'shrunk-brains-3D-AD-NC-train' + 
                         str(count) + '.mat', mdic) 
        mdic = {"Z": valid_X, "y": valid_y} 
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        scipy.io.savemat(path + 'shrunk-brains-3D-AD-NC-valid' + 
                         str(count) + '.mat', mdic) 
        count += 1 
 
    count = 1 
    # To store the groups 
    for train_index, valid_index in kfold.split(groups, y): 
        # select rows 
        train_g, valid_g = groups[train_index], groups[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f2: 
            print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f2) 
 
        # Save into .mat file 
        file_w1 = open(path + "train_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(train_y)): 
            print(train_g[i], "\t", train_y[i][0], file=file_w1) 
 
        file_w2 = open(path + "valid_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(valid_y)): 
            print(valid_g[i], "\t", valid_y[i][0], file=file_w2) 
 
        count += 1 
 
    print("Total samples: ", len(y)) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Total samples: ", len(y), file=f) 
 

def main(): 
    input_path = "../../data_no_fold/shrunk-brains-3D-AD-NC-single/" 
 
    mat_AD = scipy.io.loadmat(input_path + "brains_AD.mat") 
    mat_NC = scipy.io.loadmat(input_path + "brains_NC.mat") 
    AD_Z = mat_AD['Z'] 
    AD_y = mat_AD['y'] 
    AD_g = mat_AD['group'] 
    NC_Z = mat_NC['Z'] 
    NC_y = mat_NC['y'] 
    NC_g = mat_NC['group'] 
 
    output_path = "../../data_with_5_fold/shrunk-brains-3D-AD-NC-single/" 
    os.makedirs(output_path) 
 
    split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, output_path) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet D.4. 5-fold Cross-validation with StratifiedKFold for the B_3D_S dataset. 

D.2.4 5_fold_CB_3D_S.py 

import random 
import scipy.io 
import numpy as np 
from sklearn.model_selection import StratifiedKFold 
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import os 
 
def shuffle_in_unison(a, b, c): 
    n_elem = a.shape[0] 
    indeces = np.random.choice(n_elem, size=n_elem, replace=False) 
    return a[indeces], b[indeces], c[indeces] 
 
def is_balanced(train_Y, valid_Y): 
    unique, counts = np.unique(train_Y, return_counts=True) 
    dict_train = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_train_perc = dict(zip(unique, perc)) 
 
    unique, counts = np.unique(valid_Y, return_counts=True) 
    dict_valid = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_valid_perc = dict(zip(unique, perc)) 
 
    print("\nBalanced Sets: ") 
    print("Train: ", dict_train) 
    print("Valid: ", dict_valid) 
    print("Train_Perc.: ", dict_train_perc) 
    print("Valid_Perc.: ", dict_valid_perc) 
 

def create_test_set(c, Z, y, g): 
    test_Z = [] 
    test_y = [] 
    test_g = [] 
 
    elements_to_remove = [] 
 
    i = 0 
    while (c != 0): 
        # Count how many patients are in the same class 
        count = 0 
        same = True 
        current = g[i] 
        while (same): 
            if (g[i + 1] != current): 
                same = False 
            current = g[i + 1] 
            count += 1 
            i += 1 
        # If  patient has less or equal scans than the needed scans add them in the test set 
        if (count <= c): 
            # Add this elements in the test set 
            for j in range(i - count, i): 
                test_Z.append(Z[j]) 
                test_y.append(y[j]) 
                test_g.append(g[j]) 
                elements_to_remove.append(j) 
                c -= 1 
 
    test_Z = np.array(test_Z) 
    test_y = np.array(test_y) 
    test_g = np.array(test_g) 
 
    # Remove these element from the global set 
    print(elements_to_remove) 
    Z = np.delete(Z, elements_to_remove, axis=0) 
    y = np.delete(y, elements_to_remove, axis=0) 
    g = np.delete(g, elements_to_remove, axis=0) 
    return test_Z, test_y, test_g, Z, y, g 
 

def split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, path): 
    # Subjects per category for testing 
    N = 19 
    print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
        AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
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        NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
            AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
            NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
 
    # Create thhe test set 
    test_AD_Z, test_AD_y, test_AD_g, AD_Z, AD_y, AD_g = create_test_set( 
        N, AD_Z, AD_y, AD_g) 
    test_NC_Z, test_NC_y, test_NC_g,  NC_Z, NC_y, NC_g = create_test_set( 
        N, NC_Z, NC_y, NC_g) 
 
    print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g), 
          " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g.sha
pe) 
    print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g), 
          " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g.sha
pe) 
    print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
          " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape) 
    print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
          " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g)
, 
              " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g
.shape, file=f) 
        print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g)
, 
              " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g
.shape, file=f) 
        print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
              " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape, file=f) 
        print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
              " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape, file=f) 
 
    # Merge the test data 
    test_X = np.concatenate((test_AD_Z, test_NC_Z), axis=0) 
    test_y = np.concatenate((test_AD_y, test_NC_y), axis=0) 
    test_g = np.concatenate((test_AD_g, test_NC_g), axis=0) 
 
    # Save groups with class 
    file_w = open(path + "test_file_class_with_ids.txt", 'w') 
    for i in range(len(test_y)): 
        print(test_g[i], "\t", test_y[i][0], file=file_w) 
 
    # Save into .mat file 
    mdic = {"Z": test_X, "y": test_y} 
    scipy.io.savemat( 
        path + 'cropped-brains-3D-AD-NC-test.mat', mdic) 
 
    # Merge the two classes 
    X = np.concatenate((AD_Z, NC_Z), axis=0) 
    y = np.concatenate((AD_y, NC_y), axis=0) 
    groups = np.concatenate((AD_g, NC_g), axis=0) 
 
    # Shuffle them in unison 
    X, y, groups = shuffle_in_unison(X, y, groups) 
 
    # Check if they are balanced 
 
    count = 1 
    k = 5 
    AD = 1 
    NC = 2 
 
    kfold = StratifiedKFold(n_splits=k, shuffle=True, random_state=1) 
 
    for train_index, valid_index in kfold.split(X, y, groups=groups): 
        # select rows 
        train_X, valid_X = X[train_index], X[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
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        # summarize train and test composition 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f: 
            print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f) 
 
        # Save into .mat file 
        mdic = {"Z": train_X, "y": train_y} 
        scipy.io.savemat(path + 'cropped-brains-3D-AD-NC-train' + 
                         str(count) + '.mat', mdic) 
        mdic = {"Z": valid_X, "y": valid_y} 
        scipy.io.savemat(path + 'cropped-brains-3D-AD-NC-valid' + 
                         str(count) + '.mat', mdic) 
        count += 1 
 
    count = 1 
    # To store the groups 
    for train_index, valid_index in kfold.split(groups, y): 
        # select rows 
        train_g, valid_g = groups[train_index], groups[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f2: 
            print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f2) 
 
        # Save into .mat file 
        file_w1 = open(path + "train_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(train_y)): 
            print(train_g[i], "\t", train_y[i][0], file=file_w1) 
 
        file_w2 = open(path + "valid_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(valid_y)): 
            print(valid_g[i], "\t", valid_y[i][0], file=file_w2) 
 
        count += 1 
 
    print("Total samples: ", len(y)) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Total samples: ", len(y), file=f) 
 

def main(): 
    input_path = "../../data_no_fold/brains-3D-AD-NC-cropped-single/" 
 
    mat_AD = scipy.io.loadmat(input_path + "brains_AD.mat") 
    mat_NC = scipy.io.loadmat(input_path + "brains_NC.mat") 
    AD_Z = mat_AD['Z'] 
    AD_y = mat_AD['y'] 
    AD_g = mat_AD['group'] 
    NC_Z = mat_NC['Z'] 
    NC_y = mat_NC['y'] 
    NC_g = mat_NC['group'] 
 
    output_path = "../../data_with_5_fold/brains-3D-AD-NC-cropped-single/" 
    os.makedirs(output_path) 
 
    split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, output_path) 
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if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet D.5. 5-fold Cross-validation with StratifiedKFold for the CB_3D_S dataset. 

D.2.5 5_fold_LH_3D_S.py 

import random 
import scipy.io 
import numpy as np 
from sklearn.model_selection import StratifiedKFold 
import os 
 

def shuffle_in_unison(a, b, c): 
    n_elem = a.shape[0] 
    indeces = np.random.choice(n_elem, size=n_elem, replace=False) 
    return a[indeces], b[indeces], c[indeces] 
 

def is_balanced(train_Y, valid_Y): 
    unique, counts = np.unique(train_Y, return_counts=True) 
    dict_train = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_train_perc = dict(zip(unique, perc)) 
 
    unique, counts = np.unique(valid_Y, return_counts=True) 
    dict_valid = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_valid_perc = dict(zip(unique, perc)) 
 
    print("\nBalanced Sets: ") 
    print("Train: ", dict_train) 
    print("Valid: ", dict_valid) 
    print("Train_Perc.: ", dict_train_perc) 
    print("Valid_Perc.: ", dict_valid_perc) 
 

def split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, path): 
    # Subjects per category for testing 
    N = 18 
    print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
        AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
        NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
            AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
            NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
 
    # Get test elements 
    test_AD_Z = AD_Z[len(AD_Z)-N: len(AD_Z)] 
    test_AD_y = AD_y[len(AD_y)-N: len(AD_y)] 
    test_AD_g = AD_g[len(AD_g)-N: len(AD_g)] 
    test_NC_Z = NC_Z[len(NC_Z)-N: len(NC_Z)] 
    test_NC_y = NC_y[len(NC_y)-N: len(NC_y)] 
    test_NC_g = NC_g[len(NC_g)-N: len(NC_g)] 
 
    # Remove the test elements from the initial arrays 
    AD_Z = AD_Z[:len(AD_Z)-N] 
    AD_y = AD_y[:len(AD_y)-N] 
    AD_g = AD_g[:len(AD_g)-N] 
    NC_Z = NC_Z[:len(NC_Z)-N] 
    NC_y = NC_y[:len(NC_y)-N] 
    NC_g = NC_g[:len(NC_g)-N] 
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    print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g), 
          " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g.sha
pe) 
    print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g), 
          " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g.sha
pe) 
    print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
          " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape) 
    print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
          " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), " g:", len(test_AD_g)
, 
              " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, "shape g:", test_AD_g
.shape, file=f) 
        print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), " g:", len(test_NC_g)
, 
              " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, "shape g:", test_NC_g
.shape, file=f) 
        print("AD size for 5-fold: Z:", len(AD_Z), " y:", len(AD_y), " g:", len(AD_g), 
              " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, "shape g:", AD_g.shape, file=f) 
        print("NC size for 5-fold: Z:", len(NC_Z), " y:", len(NC_y), " g:", len(NC_g), 
              " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, "shape g:", NC_g.shape, file=f) 
 
    # Merge the test data 
    test_X = np.concatenate((test_AD_Z, test_NC_Z), axis=0) 
    test_y = np.concatenate((test_AD_y, test_NC_y), axis=0) 
    test_g = np.concatenate((test_AD_g, test_NC_g), axis=0) 
 
    # Save groups with class 
    file_w = open(path + "test_file_class_with_ids.txt", 'w') 
    for i in range(len(test_y)): 
        print(test_g[i], "\t", test_y[i][0], file=file_w) 
 
    # Save into .mat file 
    mdic = {"Z": test_X, "y": test_y} 
    scipy.io.savemat(path + 'hippo-3D-left-test.mat', mdic) 
 
    # Merge the two classes 
    X = np.concatenate((AD_Z, NC_Z), axis=0) 
    y = np.concatenate((AD_y, NC_y), axis=0) 
    groups = np.concatenate((AD_g, NC_g), axis=0) 
 
    # Shuffle them in unison 
    X, y, groups = shuffle_in_unison(X, y, groups) 
 
    # Check if they are balanced 
 
    count = 1 
    k = 5 
    AD = 1 
    NC = 2 
 
    kfold = StratifiedKFold(n_splits=k, shuffle=True, random_state=1) 
 
    for train_index, valid_index in kfold.split(X, y): 
        # select rows 
        train_X, valid_X = X[train_index], X[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f1: 
            print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f1) 
 
        # Save into .mat file 
        mdic = {"Z": train_X, "y": train_y} 



D-19 

 

        scipy.io.savemat(path + 'hippo-3D-left-train' + 
                         str(count) + '.mat', mdic) 
        mdic = {"Z": valid_X, "y": valid_y} 
        scipy.io.savemat(path + 'hippo-3D-left-valid' + 
                         str(count) + '.mat', mdic) 
        count += 1 
 
    count = 1 
    # To store the groups 
    for train_index, valid_index in kfold.split(groups, y): 
        # select rows 
        train_g, valid_g = groups[train_index], groups[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f2: 
            print('>Groups: Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f2) 
 
        # Save into .mat file 
        file_w1 = open(path + "train_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(train_y)): 
            print(train_g[i], "\t", train_y[i][0], file=file_w1) 
 
        file_w2 = open(path + "valid_file_class_with_ids" + 
                       str(count) + ".txt", 'w') 
        for i in range(len(valid_y)): 
            print(valid_g[i], "\t", valid_y[i][0], file=file_w2) 
 
        count += 1 
 
    print("Total samples: ", len(y)) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Total samples: ", len(y), file=f) 
 

def main(): 
    input_path = "../../data_no_fold/hippo-AD-NC-left-single/" 
 
    mat_AD = scipy.io.loadmat( 
        input_path + "hippo_AD.mat") 
    mat_NC = scipy.io.loadmat( 
        input_path + "hippo_NC.mat") 
    AD_Z = mat_AD['Z'] 
    AD_y = mat_AD['y'] 
    AD_g = mat_AD['group'] 
    NC_Z = mat_NC['Z'] 
    NC_y = mat_NC['y'] 
    NC_g = mat_NC['group'] 
 
    output_path = "../../data_with_5_fold/hippo-3D-left-single/" 
    os.makedirs(output_path) 
 
    split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g,  output_path) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet D.6. 5-fold Cross-validation with StratifiedKFold for the LH_3D_S dataset. 

D.3 10-folds 
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The following codes perform the 5-fold splits in the experiments B_2D_S, B_2D_M, 

B_2D_M [AD, MCI, NC]. 

D.3.1 10_fold_B_2D_S.py 

import random 
import scipy.io 
import numpy as np 
from sklearn.model_selection import StratifiedKFold 
import os 
 

def shuffle_in_unison(a, b): 
    rng_state = np.random.get_state() 
    np.random.shuffle(a) 
    np.random.set_state(rng_state) 
    np.random.shuffle(b) 
    return a, b 
 

def is_balanced(train_Y, valid_Y): 
    unique, counts = np.unique(train_Y, return_counts=True) 
    dict_train = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_train_perc = dict(zip(unique, perc)) 
 
    unique, counts = np.unique(valid_Y, return_counts=True) 
    dict_valid = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_valid_perc = dict(zip(unique, perc)) 
 
    print("\nBalanced Sets: ") 
    print("Train: ", dict_train) 
    print("Valid: ", dict_valid) 
    print("Train_Perc.: ", dict_train_perc) 
    print("Valid_Perc.: ", dict_valid_perc) 
 

def create_test_set(c, Z, y, g): 
    test_Z = [] 
    test_y = [] 
    test_g = [] 
 
    elements_to_remove = [] 
 
    i = 0 
    while (c != 0): 
        # Count how many patients are in the same class 
        count = 0 
        same = True 
        current = g[i] 
        while (same): 
            if (g[i + 1] != current): 
                same = False 
            current = g[i + 1] 
            count += 1 
            i += 1 
        # If patient has less or equal scans than the needed scans add them in the test set 
        if (count <= c): 
            # Add this elements in the test set 
            for j in range(i - count, i): 
                test_Z.append(Z[j]) 
                test_y.append(y[j]) 
                test_g.append(g[j]) 
                elements_to_remove.append(j) 
                c -= 1 
 
    test_Z = np.array(test_Z) 
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    test_y = np.array(test_y) 
    test_g = np.array(test_g) 
 
    # Remove these element from the global set 
    print(elements_to_remove) 
    Z = np.delete(Z, elements_to_remove, axis=0) 
    y = np.delete(y, elements_to_remove, axis=0) 
    g = np.delete(g, elements_to_remove, axis=0) 
    return test_Z, test_y, test_g, Z, y, g 
 

def split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, path): 
    # Subjects per category for testing 
    N = 9 
    print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
        AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
        NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
            AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
            NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
 
    # Create the test set 
    test_AD_Z = AD_Z[len(AD_Z)-N: len(AD_Z)] 
    test_AD_y = AD_y[len(AD_y)-N: len(AD_y)] 
    test_NC_Z = NC_Z[len(NC_Z)-N: len(NC_Z)] 
    test_NC_y = NC_y[len(NC_y) - N: len(NC_y)] 
 
    # Remove the test elements from the initial arrays 
    AD_Z = AD_Z[:len(AD_Z)-N] 
    AD_y = AD_y[:len(AD_y)-N] 
    NC_Z = NC_Z[:len(NC_Z)-N] 
    NC_y = NC_y[: len(NC_y) - N] 
 
    print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), 
          " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape) 
    print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), 
          " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape) 
    print("AD size for 10-fold: Z:", len(AD_Z), " y:", len(AD_y), 
          " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("NC size for 10-fold: Z:", len(NC_Z), " y:", len(NC_y), 
          " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), 
              " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, file=f) 
        print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), 
              " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, file=f) 
        print("AD size for 10-fold: Z:", len(AD_Z), " y:", len(AD_y), 
              " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("NC size for 10-fold: Z:", len(NC_Z), " y:", len(NC_y), 
              " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
 
    # Merge the test data 
    test_X = np.concatenate((test_AD_Z, test_NC_Z), axis=0) 
    test_y = np.concatenate((test_AD_y, test_NC_y), axis=0) 
 
    # Save into .mat file 
    mdic = {"Z": test_X, "y": test_y} 
    scipy.io.savemat( 
        path + 'single-brains-2D-AD-NC-test.mat', mdic) 
 
    # Merge the two classes 
    X = np.concatenate((AD_Z, NC_Z), axis=0) 
    y = np.concatenate((AD_y, NC_y), axis=0) 
 
    # Shuffle them in unison 
    X, y = shuffle_in_unison(X, y) 
 
    # Check if they are balanced 
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    count = 1 
    k = 10 
    AD = 1 
    NC = 2 
 
    kfold = StratifiedKFold(n_splits=k, shuffle=True, random_state=1) 
 
    for train_index, valid_index in kfold.split(X, y): 
        # select rows 
        train_X, valid_X = X[train_index], X[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f: 
            print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f) 
 
        # Save into .mat file 
        mdic = {"Z": train_X, "y": train_y} 
        scipy.io.savemat(path + 'single-brains-2D-AD-NC-train' + 
                         str(count) + '.mat', mdic) 
        mdic = {"Z": valid_X, "y": valid_y} 
        scipy.io.savemat(path + 'single-brains-2D-AD-NC-valid' + 
                         str(count) + '.mat', mdic) 
        count += 1 
 
    print("Total samples: ", len(y)) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Total samples: ", len(y), file=f) 
 

def main(): 
    input_path = "../../data_no_fold/brains-2D-AD-NC-single/" 
 
    mat_AD = scipy.io.loadmat(input_path + "brains_AD.mat") 
    mat_NC = scipy.io.loadmat(input_path + "brains_NC.mat") 
    AD_Z = mat_AD['Z'] 
    AD_y = mat_AD['y'] 
    AD_g = mat_AD['group'] 
    NC_Z = mat_NC['Z'] 
    NC_y = mat_NC['y'] 
    NC_g = mat_NC['group'] 
 
    output_path = "../../data_with_fold/brains-2D-AD-NC-single/" 
    os.makedirs(output_path) 
 
    split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, output_path) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet D.7. 10-fold Cross-validation with StratifiedKFold for the B_2D_S dataset. 

D.3.2 10_fold_B_2D_M.py 

import random 
import scipy.io 
import numpy as np 
from model_selection.stratified_group_k_fold import StratifiedGroupKFold 
import os 
 

def shuffle_in_unison(a, b, c): 
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    n_elem = a.shape[0] 
    indeces = np.random.choice(n_elem, size=n_elem, replace=False) 
    return a[indeces], b[indeces], c[indeces] 
 

def is_balanced(train_Y, valid_Y): 
    unique, counts = np.unique(train_Y, return_counts=True) 
    dict_train = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_train_perc = dict(zip(unique, perc)) 
 
    unique, counts = np.unique(valid_Y, return_counts=True) 
    dict_valid = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_valid_perc = dict(zip(unique, perc)) 
 
    print("\nBalanced Sets: ") 
    print("Train: ", dict_train) 
    print("Valid: ", dict_valid) 
    print("Train_Perc.: ", dict_train_perc) 
    print("Valid_Perc.: ", dict_valid_perc) 
 

def create_test_set(c, Z, y, g): 
    test_Z = [] 
    test_y = [] 
    test_g = [] 
 
    elements_to_remove = [] 
 
    i = 0 
    while (c != 0): 
        # Count how many patients are in the same class 
        count = 0 
        same = True 
        current = g[i] 
        while (same): 
            if (g[i + 1] != current): 
                same = False 
            current = g[i + 1] 
            count += 1 
            i += 1 
        # If patient has less or equal scans than the needed scans add them in the test set 
        if (count <= c): 
            # Add this elements in the test set 
            for j in range(i - count, i): 
                test_Z.append(Z[j]) 
                test_y.append(y[j]) 
                test_g.append(g[j]) 
                elements_to_remove.append(j) 
                c -= 1 
 
    test_Z = np.array(test_Z) 
    test_y = np.array(test_y) 
    test_g = np.array(test_g) 
 
    # Remove these element from the global set 
    print(elements_to_remove) 
    Z = np.delete(Z, elements_to_remove, axis=0) 
    y = np.delete(y, elements_to_remove, axis=0) 
    g = np.delete(g, elements_to_remove, axis=0) 
    return test_Z, test_y, test_g, Z, y, g 
 

def split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, path): 
    # Subjects per category for testing 
    # N = 18  # For balanced 
    N = 22  # For unbalanced 
    print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
        AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
        NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
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    with open(path + 'split-info.txt', 'a') as f: 
        print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
            AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
            NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
 
    # Create the test set 
    test_AD_Z, test_AD_y, test_AD_g, AD_Z, AD_y, AD_g = create_test_set( 
        N, AD_Z, AD_y, AD_g) 
    test_NC_Z, test_NC_y, test_NC_g,  NC_Z, NC_y, NC_g = create_test_set( 
        N, NC_Z, NC_y, NC_g) 
 
    print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), 
          " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape) 
    print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), 
          " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape) 
    print("AD size for 10-fold: Z:", len(AD_Z), " y:", len(AD_y), 
          " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("NC size for 10-fold: Z:", len(NC_Z), " y:", len(NC_y), 
          " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), 
              " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, file=f) 
        print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), 
              " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, file=f) 
        print("AD size for 10-fold: Z:", len(AD_Z), " y:", len(AD_y), 
              " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("NC size for 10-fold: Z:", len(NC_Z), " y:", len(NC_y), 
              " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
 
    # Merge the test data 
    test_X = np.concatenate((test_AD_Z, test_NC_Z), axis=0) 
    test_y = np.concatenate((test_AD_y, test_NC_y), axis=0) 
 
    # Save into .mat file 
    mdic = {"Z": test_X, "y": test_y} 
    scipy.io.savemat( 
        path + 'multiple-brains-2D-AD-NC-test.mat', mdic) 
 
    # Merge the two classes 
    X = np.concatenate((AD_Z, NC_Z), axis=0) 
    y = np.concatenate((AD_y, NC_y), axis=0) 
    groups = np.concatenate((AD_g, NC_g), axis=0) 
 
    # Shuffle them in unison 
    X, y, groups = shuffle_in_unison(X, y, groups) 
 
    # Check if they are balanced 
 
    count = 1 
    k = 10 
    AD = 1 
    NC = 2 
 
    gkf = StratifiedGroupKFold(n_splits=k) 
 
    for train_index, valid_index in gkf.split(X, y, groups=groups): 
        # select rows 
        train_X, valid_X = X[train_index], X[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
        train_AD, train_NC = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]) 
        test_AD, test_NC = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]) 
        print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
              (train_AD, train_NC, test_AD, test_NC)) 
        with open(path + 'split-info.txt', 'a') as f: 
            print('>Train: AD=%d, NC=%d, Validation: AD=%d, NC=%d' % 
                  (train_AD, train_NC, test_AD, test_NC), file=f) 
 
        # Save into .mat file 
        mdic = {"Z": train_X, "y": train_y} 



D-25 

 

        scipy.io.savemat(path + 'multiple-brains-2D-AD-NC-train' + 
                         str(count) + '.mat', mdic) 
        mdic = {"Z": valid_X, "y": valid_y} 
        scipy.io.savemat(path + 'multiple-brains-2D-AD-NC-valid' + 
                         str(count) + '.mat', mdic) 
        count += 1 
 
    print("Total samples: ", len(y)) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Total samples: ", len(y), file=f) 
 

def main(): 
    input_path = "../../data_no_fold/brains-2D-AD-NC-multiple/" 
 
    mat_AD = scipy.io.loadmat(input_path + "brains_AD.mat") 
    mat_NC = scipy.io.loadmat(input_path + "brains_NC.mat") 
    AD_Z = mat_AD['Z'] 
    AD_y = mat_AD['y'] 
    AD_g = mat_AD['group'] 
    NC_Z = mat_NC['Z'] 
    NC_y = mat_NC['y'] 
    NC_g = mat_NC['group'] 
 
    output_path = "../../data_with_fold/brains-2D-AD-NC-multiple/" 
    os.makedirs(output_path) 
 
    split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, output_path) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet D.8. 10-fold Cross-validation with StratifiedGroupKFold (Appendix D.1) for the B_2D_M dataset. 

D.3.3 10_fold_B_2D_M_AD-MCI-NC.py 

import random 
import scipy.io 
import numpy as np 
from model_selection.stratified_group_k_fold import StratifiedGroupKFold 
import os 
 

def shuffle_in_unison(a, b, c): 
    n_elem = a.shape[0] 
    indeces = np.random.choice(n_elem, size=n_elem, replace=False) 
    return a[indeces], b[indeces], c[indeces] 
 

def is_balanced(train_Y, valid_Y): 
    unique, counts = np.unique(train_Y, return_counts=True) 
    dict_train = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_train_perc = dict(zip(unique, perc)) 
 
    unique, counts = np.unique(valid_Y, return_counts=True) 
    dict_valid = dict(zip(unique, counts)) 
    perc = np.round(100.*(counts/sum(counts)), 1) 
    dict_valid_perc = dict(zip(unique, perc)) 
 
    print("\nBalanced Sets: ") 
    print("Train: ", dict_train) 
    print("Valid: ", dict_valid) 
    print("Train_Perc.: ", dict_train_perc) 
    print("Valid_Perc.: ", dict_valid_perc) 
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def create_test_set(c, Z, y, g): 
    test_Z = [] 
    test_y = [] 
    test_g = [] 
 
    elements_to_remove = [] 
 
    i = 0 
    while (c != 0): 
        # Count how many patients are in the same class 
        count = 0 
        same = True 
        current = g[i] 
        while (same): 
            if (g[i + 1] != current): 
                same = False 
            current = g[i + 1] 
            count += 1 
            i += 1 
        # If patient has less or equal scans than the needed scans add them in the test set 
        if (count <= c): 
            # Add this elements in the test set 
            for j in range(i - count, i): 
                test_Z.append(Z[j]) 
                test_y.append(y[j]) 
                test_g.append(g[j]) 
                elements_to_remove.append(j) 
                c -= 1 
 
    test_Z = np.array(test_Z) 
    test_y = np.array(test_y) 
    test_g = np.array(test_g) 
 
    # Remove these element from the global set 
    print(elements_to_remove) 
    Z = np.delete(Z, elements_to_remove, axis=0) 
    y = np.delete(y, elements_to_remove, axis=0) 
    g = np.delete(g, elements_to_remove, axis=0) 
    return test_Z, test_y, test_g, Z, y, g 
 

def split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, MCI_Z, MCI_y, MCI_g, path): 
    # Subjects per category for testing 
    # N = 18  # For balanced 
    N = 22  # For unbalanced 
    print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
        AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
        NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape) 
    print("Initial Size MCI: Z:", len(MCI_Z), " y:", len( 
        MCI_y), " shape Z:", MCI_Z.shape, "shape y:", MCI_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("Initial Size AD: Z:", len(AD_Z), " y:", len( 
            AD_y), " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("Initial Size NC: Z:", len(NC_Z), " y:", len( 
            NC_y), " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
        print("Initial Size MCI: Z:", len(MCI_Z), " y:", len( 
            MCI_y), " shape Z:", MCI_Z.shape, "shape y:", MCI_y.shape, file=f) 
 
    # Create the test set 
    test_AD_Z, test_AD_y, test_AD_g, AD_Z, AD_y, AD_g = create_test_set( 
        N, AD_Z, AD_y, AD_g) 
    test_NC_Z, test_NC_y, test_NC_g,  NC_Z, NC_y, NC_g = create_test_set( 
        N, NC_Z, NC_y, NC_g) 
    test_MCI_Z, test_MCI_y, test_MCI_g,  MCI_Z, MCI_y, MCI_g = create_test_set( 
        N, MCI_Z, MCI_y, MCI_g) 
 
    print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), 
          " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape) 
    print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), 
          " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape) 
    print("MCI test size: Z:", len(test_MCI_Z), " y:", len(test_MCI_y), 
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          " shape Z:", test_MCI_Z.shape, "shape y:", test_MCI_y.shape) 
    print("AD size for 10-fold: Z:", len(AD_Z), " y:", len(AD_y), 
          " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("NC size for 10-fold: Z:", len(NC_Z), " y:", len(NC_y), 
          " shape Z:", AD_Z.shape, "shape y:", AD_y.shape) 
    print("MCI size for 10-fold: Z:", len(MCI_Z), " y:", len(MCI_y), 
          " shape Z:", MCI_Z.shape, "shape y:", MCI_y.shape) 
    with open(path + 'split-info.txt', 'a') as f: 
        print("AD test size: Z:", len(test_AD_Z), " y:", len(test_AD_y), 
              " shape Z:", test_AD_Z.shape, "shape y:", test_AD_y.shape, file=f) 
        print("NC test size: Z:", len(test_NC_Z), " y:", len(test_NC_y), 
              " shape Z:", test_NC_Z.shape, "shape y:", test_NC_y.shape, file=f) 
        print("MCI test size: Z:", len(test_MCI_Z), " y:", len(test_MCI_y), 
              " shape Z:", test_MCI_Z.shape, "shape y:", test_MCI_y.shape, file=f) 
        print("AD size for 10-fold: Z:", len(AD_Z), " y:", len(AD_y), 
              " shape Z:", AD_Z.shape, "shape y:", AD_y.shape, file=f) 
        print("NC size for 10-fold: Z:", len(NC_Z), " y:", len(NC_y), 
              " shape Z:", NC_Z.shape, "shape y:", NC_y.shape, file=f) 
        print("MCI size for 10-fold: Z:", len(MCI_Z), " y:", len(MCI_y), 
              " shape Z:", MCI_Z.shape, "shape y:", MCI_y.shape, file=f) 
 
    # Merge the test data 
    test_X = np.concatenate((test_AD_Z, test_NC_Z, test_MCI_Z), axis=0) 
    test_y = np.concatenate((test_AD_y, test_NC_y, test_MCI_y), axis=0) 
 
    # Save into .mat file 
    mdic = {"Z": test_X, "y": test_y} 
    scipy.io.savemat( 
        path + 'shrinked-brains-2D-AD-NC-test.mat', mdic) 
 
    # Merge the two classes 
    X = np.concatenate((AD_Z, NC_Z, MCI_Z), axis=0) 
    y = np.concatenate((AD_y, NC_y, MCI_y), axis=0) 
    groups = np.concatenate((AD_g, NC_g, MCI_g), axis=0) 
 
    # Shuffle them in unison 
    X, y, groups = shuffle_in_unison(X, y, groups) 
 
    # Check if they are balanced 
 
    count = 1 
    k = 10 
    AD = 1 
    MCI = 2 
    NC = 3 
 
    gkf = StratifiedGroupKFold(n_splits=k) 
 
    for train_index, valid_index in gkf.split(X, y, groups=groups): 
        # select rows 
        train_X, valid_X = X[train_index], X[valid_index] 
        train_y, valid_y = y[train_index], y[valid_index] 
        # summarize train and test composition 
        train_AD, train_NC, train_MCI = len(train_y[train_y == AD]), len( 
            train_y[train_y == NC]), len(train_y[train_y == MCI]) 
        test_AD, test_NC, test_MCI = len(valid_y[valid_y == AD]), len( 
            valid_y[valid_y == NC]), len(valid_y[valid_y == MCI]) 
        print('>Train: AD=%d, NC=%d, MCI=%d Validation: AD=%d, NC=%d, MCI=%d' % 
              (train_AD, train_NC, train_MCI, test_AD, test_NC, test_MCI)) 
        with open(path + 'split-info.txt', 'a') as f: 
            print('>Train: AD=%d, NC=%d, MCI=%d Validation: AD=%d, NC=%d, MCI=%d' % 
                  (train_AD, train_NC, train_MCI, test_AD, test_NC, test_MCI), file=f) 
 
        # Save into .mat file 
        mdic = {"Z": train_X, "y": train_y} 
        scipy.io.savemat(path + 'brains-2D-AD-MCI-NC-train' + 
                         str(count) + '.mat', mdic) 
        mdic = {"Z": valid_X, "y": valid_y} 
        scipy.io.savemat(path + 'brains-2D-AD-MCI-NC-valid' + 
                         str(count) + '.mat', mdic) 
        count += 1 
 
    print("Total samples: ", len(y)) 
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    with open(path + 'split-info.txt', 'a') as f: 
        print("Total samples: ", len(y), file=f) 
 

def main(): 
    input_path = "../../data_no_fold/brains-2D-AD-MCI-NC-multiple/" 
 
    mat_AD = scipy.io.loadmat(input_path + "brains_AD.mat") 
    mat_NC = scipy.io.loadmat(input_path + "brains_NC.mat") 
    mat_MCI = scipy.io.loadmat(input_path + "brains_MCI.mat") 
    AD_Z = mat_AD['Z'] 
    AD_y = mat_AD['y'] 
    AD_g = mat_AD['group'] 
    NC_Z = mat_NC['Z'] 
    NC_y = mat_NC['y'] 
    NC_g = mat_NC['group'] 
    MCI_Z = mat_MCI['Z'] 
    MCI_y = mat_MCI['y'] 
    MCI_g = mat_MCI['group'] 
 
    output_path = "../../data_with_fold/brains-2D-AD-MCI-NC-multiple/" 
    os.makedirs(output_path) 
 
    split_sets(AD_Z, AD_y, AD_g, NC_Z, NC_y, NC_g, 
               MCI_Z, MCI_y, MCI_g, output_path) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet D.9. 10-fold Cross-validation with StratifiedGroupKFold (Appendix D.1) 

for the B_2D_M [AD, MCI, NC] dataset. 
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Appendix E 

Run in Arcadia 

E.1 Create Virtual Environment 

E.1.1 Extract Required Libraries 

The following command extracts the required libraries for a Python project created in a 

virtual environment. If the project was not created in a virtual environment, all the 

libraries you have installed in your system will be included in the requiremenets.txt. 

pip freeze > requirements.txt  

The required libraries will be stored in the requirements.txt file having the following form.  

pandas==1.1.5 
nibabel==3.2.0 
numpy==1.16.4 
matplotlib==3.1.0 
tensorflow==2.0.1 
tensorflow-estimator==2.0.1 
scipy==1.1.0 
scikit-image==0.17.2 
scikit-learn==0.21.3 
Keras==2.3.1 
Keras-Applications==1.0.8 
Keras-Preprocessing==1.1.0 
opencv-python==4.1.2.30 
joblib==0.14.0 
hessianfree==0.4.0 

E.1.2 Create Virtual Environment and Install Libraries 

To create a virtual environment and install your libraries to run your Python code in 

Arcadia, you have to execute the following commands in a terminal: 

1. export https_proxy='http://proxy.cs.ucy.ac.cy:8008/' 

2. export http_proxy='http://proxy.cs.ucy.ac.cy:8008/' 

3. python -m venv <path/to/my-env-python/> --system-site-packages 

4. . <path/to/my-env-python/>/bin/activate 

5. pip3.6 install --user --upgrade pip 

6. pip3.6 install -r requirements.txt 

7. deactivate   

Then, every time you connect with Arcadia, before your run your Python code, you have 

to activate the venv with the command: 

. <path/to/my-env-python/>/bin/activate 
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E.2 Run MLP 

For the MLP implementations, no special arguments are required. To modify the 

hyperparameters such as the alpha (α), learning rate, network configuration, CG 

iterations, etc. you have to do it in the code.  

E.3 Run Adam with CNN 

The following code executes the training with the Adam optimzier, for a 3D input, with 

dimensions 70 × 60 × 60, a learning rate = 0.01, a regularization term (weight decay) C 

= 0.01, a batch size equal to 256, for 500 epochs. The training and validation set have to 

be given in a .mat file format. 

python train.py --optim Adam --lr 0.01 --C 0.01 --net CNN_4layers --bsize 256 --train_set <path 

to train set ‘.mat’> --val_set  <path to valid set ‘.mat’> --dim 70 60 60 1 --epoch_max 500 

To run your training in background and store the results in a file you can execute the 

following command: 

nohup python train.py --optim Adam --lr 0.01 --C 0.01 --net CNN_4layers --bsize 256 --train_set 

<path to train set ‘.mat’> --val_set <path to valid set ‘.mat’> --dim 70 60 60 1 --epoch_max 500 

&> <path to output folder ’.out’> & 

E.4 Run NewtonCG with CNN 

Very similarly you can execute a NewtonCG training. Keep in mind that now you have 

to define the arguments “iter_max” instead of “epoch_max”. 

python train.py --optim NewtonCG --GNsize 50 --C 0.01 --net CNN_4layers --bsize 32 --train_set 

<path to train set ‘.mat’> --val_set <path to valid set ‘.mat’> --dim 174 174 1 --iter_max 100 

E.5 Test/Predict CNN 

To predict, you can execute the following command by providing the test set in the same 

format as the training and validation sets and folder where the based model was saved 

during training. The algorithm saves the best model by default in the path 

“/saved_model/model.ckpt”. 

python predict.py --bsize 256 --test_set <path to test set ‘.mat’> --model <path to 

‘/saved_model/model.ckpt’> --dim 174 174 1 
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E.6 Arguments for CNN 

E.6.1 General 

--optim: the optimization method used for training CNN. (NewtonCG, SGD or Adam) 

Default: --optim NewtonCG 

--net: network configuration (CNN_4layers, CNN_7layers, VGG11, VGG13, VGG16, 

and VGG19) 

Default: --net CNN_4layers 

--train_set & --val_set: provide the address of .mat file for training or validation 

(optional). 

Default: --train_set data/mnist-demo.mat 

--model: save the model to a file 

Default: --model ./saved_model/model.ckpt 

--loss: which loss function to use: MSELoss or CrossEntropy 

Default: --loss MSELoss 

--bsize: Split data into segments of size bsize so that each segment can fit into memory 

for evaluating Gv, stochastic gradient, and global gradient. If you encounter Out of 

Memory (OOM) during training, you may decrease the --bsize parameter. 

Default: --bsize 1024 

--log: saving log to a file 

Default: --log ./running_log/logger.log 

--screen_log_only: if specified, log printed on-screen only but not to the log file 

Default: --screen_log_only 

--C: Regularization term = 1/(2C × num_data) × L2_norm(weight)^2 

Default: --C 0.01 

--dim: input dimension of data. The shape must be: height width num_channels 

Default: --dim 32 32 3 
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--seed: specify random seed to make results deterministic and reproducible. 

Default: --seed 0 

--epoch_max: the maximal number of SG epochs. 

Default: -epoch_max 500 

E.6.2 Newton Method 

--GNsize: number of samples used in the subsampled Gauss-Newton matrix. 

Default: --GNsize 4096 

--iter_max: the maximal number of Newton iterations. 

Default: --iter_max 100 

--xi: the tolerance in the relative stopping condition for the conjugate gradient (CG) 

method. 

Default: --xi 0.1 

--CGmax: the maximal number of CG iterations. 

Default: --CGmax 250 

--lambda: the initial lambda for the Levenberg-Marquardt (LM) method. 

Default: --lambda 1 

--drop/--boost: the drop and boost constants for the LM method. 

Default: --drop 2/3; --boost 3/2 

--eta: the parameter for the line search stopping condition. 

Default: --eta 0.0001 

E.6.3 SGD 

--decay: learning rate decay over each mini-batch update. 

Default: --decay 0 

--momentum: SGD + momentum 

Default: --momentum 0 
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Appendix F 

Check CNN Implementations 

F.1 digit-recognizer-2D.py 

Code for creating the sets to test the 2D CNN implementations with the MNIST dataset. 

import csv 
import numpy as np 
import os 
import scipy.io 
from sklearn.model_selection import train_test_split 
 

def shuffle_in_unison(a, b): 
    n_elem = a.shape[0] 
    indeces = np.random.choice(n_elem, size=n_elem, replace=False) 
    return a[indeces], b[indeces] 
 

def data_info(output_path, data_y, mode): 
 
    unique_y, counts_y = np.unique(data_y, return_counts=True) 
    dict_data_y = dict(zip(unique_y, counts_y)) 
    perc_y = np.round(100.*(counts_y/sum(counts_y)), 1) 
    dict_data_perc_y = dict(zip(unique_y, perc_y)) 
    total_samples = len(data_y) 
 
    print("Count per category " + mode + " : ", dict_data_y) 
    print("Percentage " + mode + " : ", dict_data_perc_y) 
    print("Total " + mode + " set size: ", str(total_samples)) 
    with open(output_path + 'data-info-' + mode + '.txt', 'w') as info_file: 
        print("Count per category " + mode + 
              " : ", dict_data_y, file=info_file) 
        print("Percentage " + mode + " : ", dict_data_perc_y, file=info_file) 
        print("Total " + mode + " set size: ", 
              str(total_samples), file=info_file) 
 

def read_data(path, output_path): 
 
    data_Z = [] 
    data_y = [] 
 
    with open(path, newline='') as f: 
        reader = csv.reader(f) 
        count = 0 
        for row in reader: 
            if count == 0: 
                count += 1 
                continue 
 
            Z = row[1:] 
            y = int(row[0]) 
 
            data_Z.append(Z) 
            data_y.append([y+1]) 
            count += 1 
 
        data_Z = np.array(data_Z) 
        data_y = np.array(data_y) 
 
        data_Z = data_Z.astype('float32') 
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        data_y = data_y.astype('float32') 
 
        print("Before Shuffle:") 
        print("Z: ", data_Z) 
        print("y: ", data_y) 
 
        data_Z, data_y = shuffle_in_unison(data_Z, data_y) 
 
        print("After Shuffle:") 
        print("Z: ", data_Z) 
        print("y: ", data_y) 
 
        Z_train, Z_valid, y_train, y_valid = train_test_split( 
            data_Z, data_y, test_size=0.25, random_state=0) 
 
        print("Z_train: ", Z_train) 
        print("y_train: ", y_train) 
        print("Z_valid: ", Z_valid) 
        print("y_valid: ", y_valid) 
 
    mdic = {"Z": Z_train, "y": y_train} 
    scipy.io.savemat(output_path + 'digits-2D-train.mat', mdic) 
    mdic = {"Z": Z_valid, "y": y_valid} 
    scipy.io.savemat(output_path + 'digits-2D-valid.mat', mdic) 
 
    data_info(output_path, data_y,  "total") 
    data_info(output_path, y_train,  "train") 
    data_info(output_path,  y_valid,  "valid") 
 

def main(): 
    path_train = "../../../testing_datasets/digit-recognizer-2D/train.csv" 
    path_test = "../../../testing_datasets/digit-recognizer-2D/test.csv" 
 
    output_path = "../../../testing_datasets/digit-recognizer-2D/mat_files/" 
    os.makedirs(output_path) 
 
    read_data(path_train, output_path) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet F.1. The code for testing the 2D CNN implementation with the MNIST dataset. 

F.2 digit-recognizer-3D.py 

Code for creating the sets to check the 3D CNN implementations with the 3D MNIST 

dataset. 

import h5py 
import numpy as np  # linear algebra 
import pandas as pd  # data processing, CSV file I/O (e.g. pd.read_csv) 
from matplotlib.pyplot import cm 
import os 
import scipy.io 
import sys 
 
np.set_printoptions(threshold=sys.maxsize) 
 

def main(): 
 
    path_train = "../../../testing_datasets/digit-recognizer-3D/full_dataset_vectors.h5" 
    # path_train = "../../../testing_datasets/digit-recognizer-3D/train_point_clouds.h5" 
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    # f = h5py.File(path_train, 'r') 
 
    # print(list(f.keys())) 
 
    # print(f['1']) 
 
    # print(list(f['1'].keys())) 
 
    # print(f['1']['img']) 
    # print(f['1']['normals']) 
    # print(f['1']['points']) 
 
    with h5py.File(path_train, 'r') as dataset: 
        x_train = dataset["X_train"][:] 
        x_test = dataset["X_test"][:] 
        y_train = dataset["y_train"][:] 
        y_test = dataset["y_test"][:] 
 
        print("x_train shape: ", x_train.shape) 
        print("y_train shape: ", y_train.shape) 
 
        print("x_test shape:  ", x_test.shape) 
        print("y_test shape:  ", y_test.shape) 
 
        # trasform to 3d 
        xtrain = np.ndarray((x_train.shape[0], 4096, 3)) 
        xtest = np.ndarray((x_test.shape[0], 4096, 3)) 
 
        print("x_train shape: ", x_train.shape) 
        print("x_test shape:  ", x_test.shape) 
 
        data_y_train = [] 
        data_y_test = [] 
 
        def add_rgb_dimention(array): 
            scaler_map = cm.ScalarMappable(cmap="Oranges") 
            array = scaler_map.to_rgba(array)[:, : -1] 
            return array 
 
        for i in range(x_train.shape[0]): 
            xtrain[i] = add_rgb_dimention(x_train[i]) 
            data_y_train.append([y_train[i]+1]) 
 
        for i in range(x_test.shape[0]): 
            xtest[i] = add_rgb_dimention(x_test[i]) 
            data_y_test.append([y_test[i]+1]) 
 
        output_path = "../../../testing_datasets/digit-recognizer-3D/mat_files/" 
        os.makedirs(output_path) 
 
        mdic = {"Z": xtrain, "y": data_y_train} 
        scipy.io.savemat(output_path + 'digits-2D-train.mat', mdic) 
        mdic = {"Z": xtest, "y": data_y_test} 
        scipy.io.savemat(output_path + 'digits-2D-valid.mat', mdic) 
 

if __name__ == "__main__": 
    # execute only if run as a script 
    main() 
 

Code Snippet F.2. The code for testing the 3D CNN implementation with the 3D MNIST dataset. 
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Appendix G 

Experiments Hippocampus Features [AD, NC] 

G.1 MLP with Adam 

G.1.1 Experiment HF_M_A1: α = 7, lr = 0.3, net = [10, 8, 8, 1] 

G.1.1.1 Training 

 

Figure G.1. Caption in the title. 

 

Figure G.2. Caption in the title. 
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Figure G.3. Caption in the title. 

G.1.1.2 Validation 

 

Figure G.4. Caption in the title. 
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Figure G.5. Caption in the title. 

 

Figure G.6. Caption in the title. 
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G.1.2 Experiment HF_M_A2: α = 7, lr = 0.03, net = [10, 8, 8, 1] 

G.1.2.1 Training 

 

Figure G.7. Caption in the title. 
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Figure G.8. Caption in the title. 

G.1.2.2 Validation 

 

Figure G.9. Caption in the title. 
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Figure G.10. Caption in the title. 

 

Figure G.11. Caption in the title. 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250 300 350 400 450 500

V
al

id
at

io
n

 L
o

ss

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Valid Loss
Adam, Learning Rate = 0.03, α = 7, Net Architecture = [10, 8, 8, 1]

f1_valid_loss f2_valid_loss f3_valid_loss f4_valid_loss

f5_valid_loss f6_valid_loss f7_valid_loss f9_valid_loss

f10_valid_loss f8_valid_loss avg_valid_loss



G-7 

 

G.1.3 Experiment HF_M_A3: α = 7, lr = 0.003, net = [10, 8, 8, 1] 

G.1.3.1 Training 

 

Figure G.12. Caption in the title. 

 

Figure G.13. Caption in the title. 
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Figure G.14. Caption in the title. 

G.1.3.2 Validation 

 

Figure G.15. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

V
al

id
at

io
n

 A
cc

u
ra

cy

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Valid Accuracy
Adam, Learning Rate = 0.003, α = 7, Net Architecture = [10, 8, 8, 1]

f1_valid_acc f2_valid_acc f3_valid_acc f4_valid_acc

f5_valid_acc f6_valid_acc f7_valid_acc f8_valid_acc

f9_valid_acc f10_valid_acc avg_valid_acc



G-9 

 

 

Figure G.16. Caption in the title. 

 

Figure G.17. Caption in the title. 
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G.1.4 Experiment HF_M_A4: α = 7, lr = 0.0003, net = [10, 8, 8, 1] 

G.1.4.1 Training 

 

Figure G.18. Caption in the title. 

 

Figure G.19. Caption in the title. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Tr
ai

n
in

g 
A

cc
u

ra
cy

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Train Accuracy
Adam, Learning Rate = 0.0003, α = 7, Net Architecture = [10, 8, 8, 1]

f1_train_acc f2_train_acc f3_train_acc f4_train_acc

f5_train_acc f6_train_acc f7_train_acc f8_train_acc

f9_train_acc f10_train_acc avg_valid_acc

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450 500

Tr
ai

n
in

g 
Lo

ss

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Train Loss
Adam, Learning Rate = 0.0003, α = 7, Net Architecture = [10, 8, 8, 1]

f1_train_loss f2_train_loss f3_train_loss f4_train_loss
f5_train_loss f6_train_loss f7_train_loss f9_train_loss
f10_train_loss f8_train_loss avg_valid_loss



G-11 

 

 

Figure G.20. Caption in the title. 

G.1.4.2 Validation 

 

Figure G.21. Caption in the title. 
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Figure G.22. Caption in the title. 

 

Figure G.23. Caption in the title. 
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G.1.5 Experiment HF_M_A5: α = 5, lr = 0.3, net = [10, 8, 8, 1] 

G.1.5.1 Training 

 

Figure G.24. Caption in the title. 

 

Figure G.25. Caption in the title. 
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Figure G.26. Caption in the title. 

G.1.5.2 Validation 

 

Figure G.27. Caption in the title. 
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Figure G.28. Caption in the title. 

 

Figure G.29. Caption in the title. 
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G.1.6 Experiment HF_M_A6: α = 3, lr = 0.3, net = [10, 8, 8, 1] 

G.1.6.1 Training 

 

Figure G.30. Caption in the title. 

 

Figure G.31. Caption in the title. 
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Figure G.32. Caption in the title. 

G.1.6.2 Validation 

 

Figure G.33. Caption in the title. 
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Figure G.34. Caption in the title. 

 

Figure G.35. Caption in the title. 
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G.1.7 Experiment HF_M_A7: α = 1, lr = 0.3, net = [10, 8, 8, 1] 

G.1.7.1 Training 

 

Figure G.36. Caption in the title. 

 

Figure G.37. Caption in the title. 
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Figure G.38. Caption in the title. 

G.1.7.2 Validation 

 

Figure G.39. Caption in the title. 
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Figure G.40. Caption in the title. 

 

Figure G.41. Caption in the title. 
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G.1.8 Experiment HF_M_A8: α = 0.1, lr = 0.3, net = [10, 8, 8, 1] 

G.1.8.1 Training 

 

Figure G.42. Caption in the title. 

 

Figure G.43. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Tr
ai

n
in

g 
A

cc
u

ra
cy

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Train Accuracy
Adam, Learning Rate = 0.3, α = 0.1, Net Architecture = [10, 8, 8, 1]

f1_train_acc f2_train_acc f3_train_acc f4_train_acc

f5_train_acc f6_train_acc f7_train_acc f8_train_acc

f9_train_acc f10_train_acc avg_valid_acc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Tr
ai

n
in

g 
Lo

ss

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Train Loss
Adam, Learning Rate = 0.3, α = 0.1, Net Architecture = [10, 8, 8, 1]

f1_train_loss f2_train_loss f3_train_loss f4_train_loss
f5_train_loss f6_train_loss f7_train_loss f9_train_loss
f10_train_loss f8_train_loss avg_valid_loss



G-23 

 

 

Figure G.44. Caption in the title. 

G.1.8.2 Validation 

 

Figure G.45. Caption in the title. 
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Figure G.46. Caption in the title. 

 

Figure G.47. Caption in the title. 
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G.1.9 Experiment HF_M_A9: α = 0.01, lr = 0.3, net = [10, 8, 8, 1] 

G.1.9.1 Training 

 

Figure G.48. Caption in the title. 

 

Figure G.49. Caption in the title. 
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Figure G.50. Caption in the title. 

G.1.9.2 Validation 

 

Figure G.51. Caption in the title. 
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Figure G.52. Caption in the title. 

 

Figure G.53. Caption in the title. 
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G.1.10 Experiment HF_M_A10: α = 0.001, lr = 0.3, net = [10, 8, 8, 1] 

G.1.10.1 Training 

 

Figure G.54. Caption in the title. 

 

Figure G.55. Caption in the title. 
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Figure G.56. Caption in the title. 

G.1.10.2 Validation 

 

Figure G.57. Caption in the title. 
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Figure G.58. Caption in the title. 

 

Figure G.59. Caption in the title. 
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G.1.11 Experiment HF_M_A11: α = 0.1, lr = 0.3, net = [10, 30, 1] 

G.1.11.1 Training 

 

Figure G.60. Caption in the title. 

 

Figure G.61. Caption in the title. 
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Figure G.62. Caption in the title. 

G.1.11.2 Validation 

 

Figure G.63. Caption in the title. 
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Figure G.64. Caption in the title. 

 

Figure G.65. Caption in the title. 
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G.1.12 Experiment HF_M_A12: α = 0.1, lr = 0.3, net = [10, 100, 1] 

G.1.12.1 Training 

 

Figure G.66. Caption in the title. 

 

Figure G.67. Caption in the title. 
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Figure G.68. Caption in the title. 

G.1.12.2 Validation 

 

Figure G.69. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

V
al

id
at

io
n

 A
cc

u
ra

cy

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Valid Accuracy
Adam, Learning Rate = 0.3, α = 0.1, Net Architecture = [10, 100, 1]

f1_valid_acc f2_valid_acc f3_valid_acc f4_valid_acc

f5_valid_acc f6_valid_acc f7_valid_acc f8_valid_acc

f9_valid_acc f10_valid_acc avg_valid_acc



G-36 

 

 

Figure G.70. Caption in the title. 

 

Figure G.71. Caption in the title. 
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G.1.13 Experiment HF_M_A13: α = 0.1, lr = 0.3, net = [10, 20, 20, 1] 

G.1.13.1 Training 

 

Figure G.72. Caption in the title. 

 

Figure G.73. Caption in the title. 
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Figure G.74. Caption in the title. 

G.1.13.2 Validation 

 

Figure G.75. Caption in the title. 
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Figure G.76. Caption in the title. 

 

Figure G.77. Caption in the title. 
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G.2 MLP with SGD 

G.2.1 Experiment HF_M_S1: α = 7, lr = 0.3, net = [10, 8, 8, 1] 

G.2.1.1 Training 

 

Figure G.78. Caption in the title. 

 

Figure G.79. Caption in the title. 
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Figure G.80. Caption in the title. 

G.2.1.2 Validation 

 

Figure G.81. Caption in the title. 
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Figure G.82. Caption in the title. 

 

Figure G.83. Caption in the title. 
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G.2.2 Experiment HF_M_S2: α = 7, lr = 0.03, net = [10, 8, 8, 1] 

G.2.2.1 Training 

 

Figure G.84. Caption in the title. 

 

Figure G.85. Caption in the title. 
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Figure G.86. Caption in the title. 

G.2.2.2 Validation 

 

Figure G.87. Caption in the title. 
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Figure G.88. Caption in the title. 

 

Figure G.89. Caption in the title. 
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G.2.3 Experiment HF_M_S3: α = 7, lr = 0.003, net = [10, 8, 8, 1] 

G.2.3.1 Training 

 

Figure G.90. Caption in the title. 

 

Figure G.91. Caption in the title. 
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Figure G.92. Caption in the title. 

G.2.3.2 Validation 

 

Figure G.93. Caption in the title. 
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Figure G.94. Caption in the title. 

 

Figure G.95. Caption in the title. 
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G.2.4 Experiment HF_M_S4: α = 7, lr = 0.0003, net = [10, 8, 8, 1] 

G.2.4.1 Training 

 

Figure G.96. Caption in the title. 

 

Figure G.97. Caption in the title. 
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Figure G.98. Caption in the title. 

G.2.4.2 Validation 

 

Figure G.99. Caption in the title. 
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Figure G.100. Caption in the title. 

 

Figure G.101. Caption in the title. 
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G.2.5 Experiment HF_M_S5: α = 0.1, lr = 0.3, net = [10, 8, 8, 1] 

G.2.5.1 Training 

 

Figure G.102. Caption in the title. 

 

Figure G.103. Caption in the title. 
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Figure G.104. Caption in the title. 

G.2.5.2 Validation 

 

Figure G.105. Caption in the title. 
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Figure G.106. Caption in the title. 

 

Figure G.107. Caption in the title. 
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G.3 MLP with HFO 

G.3.1 Experiment HF_M_H1: CGiter = 1, net = [10, 30, 1] 

G.3.1.1 Training 

 

Figure G.108. Caption in the title. 

 

Figure G.109. Caption in the title. 
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Figure G.110. Caption in the title. 

G.3.1.2 Validation 

 

Figure G.111. Caption in the title. 
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Figure G.112. Caption in the title. 

 

Figure G.113. Caption in the title. 
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G.3.2 Experiment HF_M_H2: CGiter = 2, net = [10, 30, 1] 

G.3.2.1 Training 

 

Figure G.114. Caption in the title. 

 

Figure G.115. Caption in the title. 
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Figure G.116. Caption in the title. 

G.3.2.2 Validation 

 

Figure G.117. Caption in the title. 
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Figure G.118. Caption in the title. 

 

Figure G.119. Caption in the title. 
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G.3.3 Experiment HF_M_H3: CGiter = 4, net = [10, 30, 1] 

G.3.3.1 Training 

 

Figure G.120. Caption in the title. 

 

Figure G.121. Caption in the title. 
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Figure G.122. Caption in the title. 

G.3.3.2 Validation 

 

Figure G.123. Caption in the title. 
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Figure G.124. Caption in the title. 

 

Figure G.125. Caption in the title. 
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G.3.4 Experiment HF_M_H4: CGiter = 8, net = [10, 30, 1] 

G.3.4.1 Training 

 

Figure G.126. Caption in the title. 

 

Figure G.127. Caption in the title. 
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Figure G.128. Caption in the title. 

G.3.4.2 Validation 

 

Figure G.129. Caption in the title. 
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Figure G.130. Caption in the title. 

 

Figure G.131. Caption in the title. 
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G.3.5 Experiment HF_M_H5: CGiter = 16, net = [10, 30, 1] 

G.3.5.1 Training 

 

Figure G.132. Caption in the title. 

 

Figure G.133. Caption in the title. 
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Figure G.134. Caption in the title. 

G.3.5.2 Validation 

 

Figure G.135. Caption in the title. 
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Figure G.136. Caption in the title. 

 

Figure G.137. Caption in the title. 
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G.3.6 Experiment HF_M_H6: CGiter = 32, net = [10, 30, 1] 

G.3.6.1 Training 

 

Figure G.138. Caption in the title. 

 

Figure G.139. Caption in the title. 
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Figure G.140. Caption in the title. 

G.3.6.2 Validation 

 

Figure G.141. Caption in the title. 
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Figure G.142. Caption in the title. 

 

Figure G.143. Caption in the title. 
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G.3.7 Experiment HF_M_H7: CGiter = 2, net = [10, 20, 20, 1] 

G.3.7.1 Training 

 

Figure G.144. Caption in the title. 

 

Figure G.145. Caption in the title. 
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Figure G.146. Caption in the title. 

G.3.7.2 Validation 

 

Figure G.147. Caption in the title. 
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Figure G.148. Caption in the title. 

 

Figure G.149. Caption in the title. 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

V
al

id
at

io
n

 L
o

ss

Epochs

Hippocampus Features [AD, NC] Multiple Scans per Patient: 10-fold Valid Loss
HFO, CGiter = 2, Net Architecture = [10, 20, 20, 1]

f1_valid_loss f2_valid_loss f3_valid_loss f4_valid_loss

f5_valid_loss f6_valid_loss f7_valid_loss f9_valid_loss

f10_valid_loss f8_valid_loss avg_valid_loss



G-76 

 

G.3.8 Experiment HF_M_H8: CGiter = 2, net = [10, 100, 1] 

G.3.8.1 Training 

 

Figure G.150. Caption in the title. 

 

Figure G.151. Caption in the title. 
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Figure G.152. Caption in the title. 

G.3.8.2 Validation 

 

Figure G.153. Caption in the title. 
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Figure G.154. Caption in the title. 

 

Figure G.155. Caption in the title. 
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G.3.9 Experiment HF_M_H9: CGiter = 2, net = [10, 8, 8, 1] 

G.3.9.1 Training 

 

Figure G.156. Caption in the title. 

 

Figure G.157. Caption in the title. 
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Figure G.158. Caption in the title. 

G.3.9.2 Validation 

 

Figure G.159. Caption in the title. 
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Figure G.160. Caption in the title. 

 

Figure G.161. Caption in the title. 
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Appendix H 

Experiments 2D Brain Slices [AD, NC]: 

Multiple Scans per Patient – Single Slice per 

Scan (174 × 174) 

H.1 CNN 4 Layers with Adam 

H.1.1 Experiment B_2D_M_A1: C = 0.01, lr = 0.1, Dropout 

H.1.1.1 General 

 

Figure H.1. Caption in the title. 
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Figure H.2. Caption in the title. 

H.1.1.2 Training 

 

Figure H.3. Caption in the title. 
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Figure H.4. Caption in the title. 

 

Figure H.5. Caption in the title. 
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H.1.1.3 Validation 

 

Figure H.6. Caption in the title. 

 

Figure H.7. Caption in the title. 
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Figure H.8. Caption in the title. 

H.1.1.4 Testing 

 

Figure H.9. Caption in the title. 
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H.1.2 Experiment B_2D_M_A2: C = 0.01, lr = 0.01, Dropout 

H.1.2.1 General 

 

Figure H.10. Caption in the title. 

 

Figure H.11. Caption in the title. 
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H.1.2.2 Training 

 

Figure H.12. Caption in the title. 

 

Figure H.13. Caption in the title. 
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Figure H.14. Caption in the title. 

H.1.2.3 Validation 

 

Figure H.15. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

V
al

id
at

io
n

 A
cc

u
ra

cy

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Valid Accuracy
Adam, C = 0.01, Learning Rate = 0.01, Dropout, No Regularization, Single Layer FFNN

f1_valid_acc f2_valid_acc f3_valid_acc f4_valid_acc

f5_valid_acc f6_valid_acc f7_valid_acc f8_valid_acc

f9_valid_acc f10_valid_acc avg_valid_acc



H-9 

 

 

Figure H.16. Caption in the title. 

 

Figure H.17. Caption in the title. 
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H.1.2.4 Testing 

 

Figure H.18. Caption in the title. 

H.1.3 Experiment B_2D_M_A3: C = 0.01, lr = 0.001, Dropout 

H.1.3.1 General 

 

Figure H.19. Caption in the title. 
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Figure H.20. Caption in the title. 

H.1.3.2 Training 

 

Figure H.21. Caption in the title. 
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Figure H.22. Caption in the title. 

 

Figure H.23. Caption in the title. 
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H.1.3.3 Validation 

 

Figure H.24. Caption in the title. 

 

Figure H.25. Caption in the title. 
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Figure H.26. Caption in the title. 

H.1.3.4 Testing 

 

Figure H.27. Caption in the title. 
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H.2 CNN 4 Layers with NewtonCG 

H.2.1 Experiment B_2D_M_N1: C = 0.01, GNsize = 5 

H.2.1.1 General  

 

Figure H.28. Caption in the title. 

 

Figure H.29. Caption in the title. 
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H.2.1.2 Training 

 

Figure H.30. Caption in the title. 

 

Figure H.31. Caption in the title. 
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Figure H.32. Caption in the title. 

H.2.1.3 Validation 

 

Figure H.33. Caption in the title. 
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Figure H.34. Caption in the title. 

 

Figure H.35. Caption in the title. 
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H.2.1.4 Testing 

 

Figure H.36. Caption in the title. 

H.2.2 Experiment B_2D_M_N2: C = 0.1, GNsize = 5 

H.2.2.1 General  

 

Figure H.37. Caption in the title. 
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Figure H.38. Caption in the title. 

H.2.2.2 Training 

 

Figure H.39. Caption in the title. 
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Figure H.40. Caption in the title. 

 

Figure H.41. Caption in the title. 
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H.2.2.3 Validation 

 

Figure H.42. Caption in the title. 

 

Figure H.43. Caption in the title. 
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Figure H.44. Caption in the title. 

H.2.2.4 Testing 

 

Figure H.45. Caption in the title. 
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H.2.3 Experiment B_2D_M_N3: C = 1, GNsize = 5 

H.2.3.1 General  

 

Figure H.46. Caption in the title. 

 

Figure H.47. Caption in the title. 
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H.2.3.2 Training 

 

Figure H.48. Caption in the title. 

 

Figure H.49. Caption in the title. 
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Figure H.50. Caption in the title. 

H.2.3.3 Validation 

 

Figure H.51. Caption in the title. 
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Figure H.52. Caption in the title. 

 

Figure H.53. Caption in the title. 
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H.2.3.4 Testing 

 

Figure H.54. Caption in the title. 

H.2.4 Experiment B_2D_M_N4: C = 10, GNsize = 5 

H.2.4.1 General  

 

Figure H.55. Caption in the title. 
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Figure H.56. Caption in the title. 

H.2.4.2 Training 

 

Figure H.57. Caption in the title. 
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Figure H.58. Caption in the title. 

 

Figure H.59. Caption in the title. 
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H.2.4.3 Validation 

 

Figure H.60. Caption in the title. 

 

Figure H.61. Caption in the title. 
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Figure H.62. Caption in the title. 

H.2.4.4 Testing 

 

Figure H.63. Caption in the title. 
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H.2.5 Experiment B_2D_M_N5: C = 1, GNsize = 5, Two Layers FFNN 

H.2.5.1 General  

 

Figure H.64. Caption in the title. 

 

Figure H.65. Caption in the title. 
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H.2.5.2 Training 

 

Figure H.66. Caption in the title. 

 

Figure H.67. Caption in the title. 
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Figure H.68. Caption in the title. 

H.2.5.3 Validation 

 

Figure H.69. Caption in the title. 
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Figure H.70. Caption in the title. 

 

Figure H.71. Caption in the title. 
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H.2.5.4 Testing 

 

Figure H.72. Caption in the title. 

H.2.6 Experiment B_2D_M_N6: C = 1, GNsize = 5, L2 Regularization 

H.2.6.1 General  

 

Figure H.73. Caption in the title. 
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Figure H.74. Caption in the title. 

H.2.6.2 Training 

 

Figure H.75. Caption in the title. 
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Figure H.76. Caption in the title. 

 

Figure H.77. Caption in the title. 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

Tr
ai

n
in

g 
Lo

ss

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Train Loss
NewtonCG, C = 1, GNsize = 5, No Dropout, L2 Regularization, Two Layers FFNN

f1_train_loss f2_train_loss f3_train_loss f4_train_loss

f5_train_loss f6_train_loss f7_train_loss f8_train_loss

f9_train_loss f10_train_loss avg_train_loss



H-40 

 

H.2.6.3 Validation 

 

Figure H.78. Caption in the title. 

 

Figure H.79. Caption in the title. 
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Figure H.80. Caption in the title. 

H.2.6.4 Testing 

 

Figure H.81. Caption in the title. 
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H.2.7 Experiment B_2D_M_N7: C = 1, GNsize = 5, Dropout 

H.2.7.1 General  

 

Figure H.82. Caption in the title. 

 

Figure H.83. Caption in the title. 
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H.2.7.2 Training 

 

Figure H.84. Caption in the title. 

 

Figure H.85. Caption in the title. 
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Figure H.86. Caption in the title. 

H.2.7.3 Validation 

 

Figure H.87. Caption in the title. 
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Figure H.88. Caption in the title. 

 

Figure H.89. Caption in the title. 
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H.2.7.4 Testing 

 

Figure H.90. Caption in the title. 

H.2.8 Experiment B_2D_M_N8: C = 1, GNsize = 50 

H.2.8.1 General  

 

Figure H.91. Caption in the title. 
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Figure H.92. Caption in the title. 

H.2.8.2 Training 

 

Figure H.93. Caption in the title. 
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Figure H.94. Caption in the title. 

 

Figure H.95. Caption in the title. 
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H.2.8.3 Validation 

 

Figure H.96. Caption in the title. 

 

Figure H.97. Caption in the title. 
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Figure H.98. Caption in the title. 

H.2.8.4 Testing 

 

Figure H.99. Caption in the title. 
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H.2.9 Experiment B_2D_M_N9: C = 1, GNsize = 50, Dropout 

H.2.9.1 General  

 

Figure H.100. Caption in the title. 

 

Figure H.101. Caption in the title. 
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H.2.9.2 Training 

 

Figure H.102. Caption in the title. 

 

Figure H.103. Caption in the title. 
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Figure H.104. Caption in the title. 

H.2.9.3 Validation 

 

Figure H.105. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

V
al

id
at

io
n

 A
cc

u
ra

cy

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Valid Accuracy
NewtonCG, C = 0.01, GNsize = 50, Dropout, No Regularization, Single Layer FFNN

f1_valid_acc f2_valid_acc f3_valid_acc f4_valid_acc

f5_valid_acc f6_valid_acc f7_valid_acc f8_valid_acc

f9_valid_acc f10_valid_acc avg_valid_acc



H-54 

 

 

Figure H.106. Caption in the title. 

 

Figure H.107. Caption in the title. 
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H.2.9.4 Testing 

 

Figure H.108. Caption in the title. 

H.2.10 Experiment B_2D_M_N10: C = 0.01, GNsize = 50, Dropout 

H.2.10.1 General  

 

Figure H.109. Caption in the title. 
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Figure H.110. Caption in the title. 

H.2.10.2 Training 

 

Figure H.111. Caption in the title. 
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Figure H.112. Caption in the title. 

 

Figure H.113. Caption in the title. 
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H.2.10.3 Validation 

 

Figure H.114. Caption in the title. 

 

Figure H.115. Caption in the title. 
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Figure H.116. Caption in the title. 

H.2.10.4 Testing 

 

Figure H.117. Caption in the title. 
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H.2.11 Experiment B_2D_M_N11: C = 0.01, GNsize = 200, Dropout 

H.2.11.1 General  

 

Figure H.118. Caption in the title. 

 

Figure H.119. Caption in the title. 
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H.2.11.2 Training 

 

Figure H.120. Caption in the title. 

 

Figure H.121. Caption in the title. 
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Figure H.122. Caption in the title. 

H.2.11.3 Validation 

 

Figure H.123. Caption in the title. 
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Figure H.124. Caption in the title. 

 

Figure H.125. Caption in the title. 
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H.2.11.4 Testing 

 

Figure H.126. Caption in the title. 

H.2.12 Experiment B_2D_M_N12: C = 0.01, GNsize = 200 

H.2.12.1 General  

 

Figure H.127. Caption in the title. 
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Figure H.128. Caption in the title. 

H.2.12.2 Training 

 

Figure H.129. Caption in the title. 
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Figure H.130. Caption in the title. 

 

Figure H.131. Caption in the title. 
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H.2.12.3 Validation 

 

Figure H.132. Caption in the title. 

 

Figure H.133. Caption in the title. 
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Figure H.134. Caption in the title. 

H.2.12.4 Testing 

 

Figure H.135. Caption in the title. 
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H.2.13 Experiment B_2D_M_N13: C = 0.01, GNsize = 50 

H.2.13.1 General  

 

Figure H.136. Caption in the title. 

 

Figure H.137. Caption in the title. 
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H.2.13.2 Training 

 

Figure H.138. Caption in the title. 

 

Figure H.139. Caption in the title. 
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Figure H.140. Caption in the title. 

H.2.13.3 Validation 

 

Figure H.141. Caption in the title. 
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Figure H.142. Caption in the title. 

 

Figure H.143. Caption in the title. 
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H.2.13.4 Testing 

 

Figure H.144. Caption in the title. 

H.2.14 Experiment B_2D_M_N14: C = 0.01, GNsize = 50, Dropout, No Max-Pooling 

H.2.14.1 General  

 

Figure H.145. Caption in the title. 
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Figure H.146. Caption in the title. 

H.2.14.2 Training 

 

Figure H.147. Caption in the title. 
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Figure H.148. Caption in the title. 

 

Figure H.149. Caption in the title. 
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H.2.14.3 Validation 

 

Figure H.150. Caption in the title. 

 

Figure H.151. Caption in the title. 
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Figure H.152. Caption in the title. 

H.2.14.4 Testing 

 

Figure H.153. Caption in the title. 
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H.2.15 Experiment B_2D_M_N16: C = 0.01, GNsize = 50, Dropout, Loss = Cross 

Entropy 

H.2.15.1 General  

 

Figure H.154. Caption in the title. 

 

Figure H.155. Caption in the title. 
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H.2.15.2 Training 

 

Figure H.156. Caption in the title. 

 

Figure H.157. Caption in the title. 
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Figure H.158. Caption in the title. 

H.2.15.3 Validation 

 

Figure H.159. Caption in the title. 
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Figure H.160. Caption in the title. 

 

Figure H.161. Caption in the title. 
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H.2.15.4 Testing 

 

Figure H.162. Caption in the title. 

H.2.16 Experiment B_2D_M_N17: C = 0.01, GNsize = 50, Dropout, L1 & L2 

Regularization 

H.2.16.1 General  

 

Figure H.163. Caption in the title. 
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Figure H.164. Caption in the title. 

H.2.16.2 Training 

 

Figure H.165. Caption in the title. 
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Figure H.166. Caption in the title. 

 

Figure H.167. Caption in the title. 
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H.2.16.3 Validation 

 

Figure H.168. Caption in the title. 

 

Figure H.169. Caption in the title. 
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Figure H.170. Caption in the title. 

H.2.16.4 Testing 

 

Figure H.171. Caption in the title. 
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H.2.17 Experiment B_2D_M_N18: C = 0.01, GNsize = 50, Dropout, Batch 

Normalization 

H.2.17.1 General  

 

Figure H.172. Caption in the title. 

 

Figure H.173. Caption in the title. 
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H.2.17.2 Training 

 

Figure H.174. Caption in the title. 

 

Figure H.175. Caption in the title. 
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Figure H.176. Caption in the title. 

H.2.17.3 Validation 

 

Figure H.177. Caption in the title. 
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Figure H.178. Caption in the title. 

 

Figure H.179. Caption in the title. 
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H.2.18 Experiment B_2D_M_N19: C = 0.01, GNsize = 50, Dropout, Filters/Kernels 

Size = 5 × 5 

H.2.18.1 General  

 

Figure H.180. Caption in the title. 

 

Figure H.181. Caption in the title. 
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H.2.18.2 Training 

 

Figure H.182. Caption in the title. 

 

Figure H.183. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Tr
ai

n
in

g 
A

cc
u

ra
cy

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Train Accuracy
NewtonCG, C = 0.01, GNsize = 50, Dropout, Filters Size = 5 x 5,

No Regularization, Single Layer FFNN

f1_train_acc f2_train_acc f3_train_acc f4_train_acc f5_train_acc f6_train_acc

f7_train_acc f8_train_acc f9_train_acc f10_train_acc avg_train_acc

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

Tr
ai

n
in

g 
Lo

ss

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Train Loss
NewtonCG, C = 0.01, GNsize = 50, Dropout, Filters Size = 5 x 5,

No Regularization, Single Layer FFNN

f1_train_loss f2_train_loss f3_train_loss f4_train_loss

f5_train_loss f6_train_loss f7_train_loss f8_train_loss

f9_train_loss f10_train_loss avg_train_loss



H-93 

 

 

Figure H.184. Caption in the title. 

H.2.18.3 Validation 

 

Figure H.185. Caption in the title. 
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Figure H.186. Caption in the title. 

 

Figure H.187. Caption in the title. 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

V
al

id
at

io
n

 L
o

ss

Epochs
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H.2.18.4 Testing 

 

Figure H.188. Caption in the title. 

H.2.19 Experiment B_2D_M_N20: C = 0.01, GNsize = 50, Dropout, Filters/Kernels 

Size = 7 × 7 

H.2.19.1 General  

 

Figure H.189. Caption in the title. 
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Figure H.190. Caption in the title. 

H.2.19.2 Training 

 

Figure H.191. Caption in the title. 
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Figure H.192. Caption in the title. 

 

Figure H.193. Caption in the title. 
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H.2.19.3 Validation 

 

Figure H.194. Caption in the title. 

 

Figure H.195. Caption in the title. 
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Figure H.196. Caption in the title. 

H.2.19.4 Testing 

 

Figure H.197. Caption in the title. 
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H.2.20 Experiment B_2D_M_N21: C = 0.01, GNsize = 50, Spatial Dropout 

H.2.20.1 General  

 

Figure H.198. Caption in the title. 

 

Figure H.199. Caption in the title. 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient:
10-fold Average Train & Valid Accuracy

NewtonCG, C = 0.01, GNsize = 50, Spatial Dropout

avg_valid_acc avg_train_acc

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Lo
ss

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient:
10-fold Average Train & Valid Loss

NewtonCG, C = 0.01, GNsize = 50, Spatial Dropout

avg_valid_loss avg_train_loss



H-101 

 

H.2.20.2 Training 

 

Figure H.200. Caption in the title. 

 

Figure H.201. Caption in the title. 
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Figure H.202. Caption in the title. 

H.2.20.3 Validation 

 

Figure H.203. Caption in the title. 
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Figure H.204. Caption in the title. 

 

Figure H.205. Caption in the title. 
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H.2.20.4 Testing 

 

Figure H.206. Caption in the title. 

H.2.21 Experiment B_2D_M_N22: C = 0.01, GNsize = 50, Spatial Dropout, Dropout 

H.2.21.1 General  

 

Figure H.207. Caption in the title. 
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Figure H.208. Caption in the title. 

H.2.21.2 Training 

 

Figure H.209. Caption in the title. 
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Figure H.210. Caption in the title. 

 

Figure H.211. Caption in the title. 
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H.2.21.3 Validation 

 

Figure H.212. Caption in the title. 

 

Figure H.213. Caption in the title. 
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Figure H.214. Caption in the title. 

H.2.21.4 Testing 

 

Figure H.215. Caption in the title. 
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H.2.22 Experiment B_2D_M_N23: C = 0.01, GNsize = 50, Spatial Dropout, L1 & L2 

Regularization 

H.2.22.1 General  

 

Figure H.216. Caption in the title. 

 

Figure H.217. Caption in the title. 
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H.2.22.2 Training 

 

Figure H.218. Caption in the title. 

 

Figure H.219. Caption in the title. 
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Figure H.220. Caption in the title. 

H.2.22.3 Validation 

 

Figure H.221. Caption in the title. 
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Figure H.222. Caption in the title. 

 

Figure H.223. Caption in the title. 
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H.2.22.4 Testing 

 

Figure H.224. Caption in the title. 

H.2.23 Experiment B_2D_M_N24: C = 0.01, GNsize = 50, Spatial Dropout, Last 

Layer’s Activation = SoftMax 

H.2.23.1 General  

 

Figure H.225. Caption in the title. 
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Figure H.226. Caption in the title. 

H.2.23.2 Training 

 

Figure H.227. Caption in the title. 
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Figure H.228. Caption in the title. 

 

Figure H.229. Caption in the title. 
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H.2.23.3 Validation 

 

Figure H.230. Caption in the title. 

 

Figure H.231. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Tr
ai

n
in

g 
A

cc
u

ra
cy

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Valid Accuracy
NewtonCG, C = 0.01, GNsize = 50, Spatial Dropout, Dropout

Last Layer’s Activation =  SoftMax

f1_valid_acc f2_valid_acc f3_valid_acc f4_valid_acc f5_valid_acc f6_valid_acc

f7_valid_acc f8_valid_acc f9_valid_acc f10_valid_acc avg_valid_acc

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

V
al

id
at

io
n

 L
o

ss

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Valid Loss
NewtonCG, C = 0.01, GNsize = 50, Spatial Dropout, Dropout

Last Layer’s Activation =  SoftMax

f1_valid_loss f2_valid_loss f3_valid_loss f4_valid_loss
f5_valid_loss f6_valid_loss f7_valid_loss f8_valid_loss
f9_valid_loss f10_valid_loss avg_valid_loss



H-117 

 

 

Figure H.232. Caption in the title. 

H.2.23.4 Testing 

 

Figure H.233. Caption in the title. 
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H.2.24 Experiment B_2D_M_N25: C = 0.01, GNsize = 50, Spatial Dropout, Dropout, 

Last Layer’s Activation = SoftMax 

H.2.24.1 General  

 

Figure H.234. Caption in the title. 

 

Figure H.235. Caption in the title. 
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H.2.24.2 Training 

 

Figure H.236. Caption in the title. 

 

Figure H.237. Caption in the title. 
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Figure H.238. Caption in the title. 

H.2.24.3 Validation 

 

Figure H.239. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Tr
ai

n
in

g 
A

cc
u

ra
cy

Epochs

Brains 2D [AD, NC] Multiple Scans per Patient: 10-fold Valid Accuracy
NewtonCG, C = 0.01, GNsize = 50, Spatial Dropout, Dropout,

No Regularization, 1 Layer FFNN (SoftMax)

f1_valid_acc f2_valid_acc f3_valid_acc f4_valid_acc f5_valid_acc f6_valid_acc

f7_valid_acc f8_valid_acc f9_valid_acc f10_valid_acc avg_valid_acc



H-121 

 

 

Figure H.240. Caption in the title. 

 

Figure H.241. Caption in the title. 
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H.2.24.4 Testing 

 

Figure H.242. Caption in the title. 

H.2.25 Experiment B_2D_M_N26: C = 0.01, GNsize = 50, Spatial Dropout, Dropout, 

L1 & L2 Regularization, Last Layer’s Activation = SoftMax 

H.2.25.1 General  

 

Figure H.243. Caption in the title. 
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Figure H.244. Caption in the title. 

H.2.25.2 Training 

 

Figure H.245. Caption in the title. 
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Figure H.246. Caption in the title. 

 

Figure H.247. Caption in the title. 
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H.2.25.3 Validation 

 

Figure H.248. Caption in the title. 

 

Figure H.249. Caption in the title. 
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Figure H.250. Caption in the title. 

H.2.25.4 Testing 

 

Figure H.251. Caption in the title. 
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H.2.26 Experiment B_2D_M_N27: C = 0.01, GNsize = 50, Spatial Dropout, Dropout, 

L1 & L2 Regularization, Two Layers FFNN, Last Layer’s Activation = 

SoftMax 

H.2.26.1 General  

 

Figure H.252. Caption in the title. 

 

Figure H.253. Caption in the title. 
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H.2.26.2 Training 

 

Figure H.254. Caption in the title. 

 

Figure H.255. Caption in the title. 
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Figure H.256. Caption in the title. 

H.2.26.3 Validation 

 

Figure H.257. Caption in the title. 
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Figure H.258. Caption in the title. 

 

Figure H.259. Caption in the title. 
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H.2.26.4 Testing 

 

Figure H.260. Caption in the title. 

H.2.27 Experiment B_2D_M_N28: C = 1, GNsize = 5, Maximum Epochs = 500 

H.2.27.1 General  

 

Figure H.261. Caption in the title. 
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Figure H.262. Caption in the title. 

H.2.27.2 Training 

 

Figure H.263. Caption in the title. 
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Figure H.264. Caption in the title. 

 

Figure H.265. Caption in the title. 
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H.2.27.3 Validation 

 

Figure H.266. Caption in the title. 

 

Figure H.267. Caption in the title. 
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Figure H.268. Caption in the title. 

H.2.27.4 Testing 

 

Figure H.269. Caption in the title. 
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H.3 CNN 7 Layers with NewtonCG 

H.3.1 Experiment B_2D_M_N15: C = 0.01, GNsize = 50, Dropout 

H.3.1.1 General  

 

Figure H.270. Caption in the title. 

 

Figure H.271. Caption in the title. 
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H.3.1.2 Training 

 

Figure H.272. Caption in the title. 

 

Figure H.273. Caption in the title. 
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Figure H.274. Caption in the title. 

H.3.1.3 Validation 

 

Figure H.275. Caption in the title. 
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Figure H.276. Caption in the title. 

 

Figure H.277. Caption in the title. 
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H.3.1.4 Testing 

 

Figure H.278. Caption in the title. 
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Appendix I 

Experiments 2D Brain Slices [AD, NC]: Single 

Scan per Patient – Single Slice per Scan (174 

× 174) 

I.1 CNN 4 Layer with NewtonCG 

I.1.1 Experiment B_2D_S_N1: C = 1, GNsize = 5, Dropout 

I.1.1.1 General  

 

Figure I.1. Caption in the title. 
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Figure I.2. Caption in the title. 

I.1.1.2 Training 

 

Figure I.3. Caption in the title. 
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Figure I.4. Caption in the title. 

 

Figure I.5. Caption in the title. 
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I.1.1.3 Validation 

 

Figure I.6. Caption in the title. 

 

Figure I.7. Caption in the title. 
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Figure I.8. Caption in the title. 

I.1.1.4 Testing 

 

Figure I.9. Caption in the title. 
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I.1.2 Experiment B_2D_S_N2: C = 1, GNsize = 5, Dropout, L2 Regularization, 

Simple CNN Architecture 

I.1.2.1 General  

 

Figure I.10. Caption in the title. 

 

Figure I.11. Caption in the title. 
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I.1.2.2 Training 

 

Figure I.12. Caption in the title. 

 

Figure I.13. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Tr
ai

n
in

g 
A

cc
u

ra
cy

Epochs

Brains 2D [AD, NC] Single Scan per Patient, Complex Network: 
10-fold Train Accuracy

NewtonCG, C = 1, GNsize = 5, Dropout, No Regularization, Single Layer FFNN

f1_train_acc f2_train_acc f3_train_acc f4_train_acc

f5_train_acc f6_train_acc f7_train_acc f8_train_acc

f9_train_acc f10_train_acc avg_train_acc

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

Tr
ai

n
in

g 
Lo

ss

Epochs

Brains 2D [AD, NC] Single Scan per Patient, Complex Network: 
10-fold Train Loss

NewtonCG, C = 1, GNsize = 5, Dropout, No Regularization, Single Layer FFNN

f1_train_loss f2_train_loss f3_train_loss f4_train_loss

f5_train_loss f6_train_loss f7_train_loss f8_train_loss

f9_train_loss f10_train_loss avg_train_loss



I-8 

 

 

Figure I.14. Caption in the title. 

I.1.2.3 Validation 

 

Figure I.15. Caption in the title. 
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Figure I.16. Caption in the title. 

 

Figure I.17. Caption in the title. 
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I.1.2.4 Testing 

 

Figure I.18. Caption in the title. 

I.1.3 Experiment B_2D_S_N3: C = 1, GNsize = 5, Dropout, Complex CNN 

Architecture 

I.1.3.1 General  

 

Figure I.19. Caption in the title. 
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Figure I.20. Caption in the title. 

I.1.3.2 Training 

 

Figure I.21. Caption in the title. 
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Figure I.22. Caption in the title. 

 

Figure I.23. Caption in the title. 
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I.1.3.3 Validation 

 

Figure I.24. Caption in the title. 

 

Figure I.25. Caption in the title. 
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Figure I.26. Caption in the title. 

I.1.3.4 Testing 

 

Figure I.27. Caption in the title. 
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Appendix J 

Experiments 2D Brain Slices [AD, NC]: 

Multiple Scans per Patient – 7 Slices per Scan 

(174 × 174) 

J.1 CNN 4 Layers with Adam 

J.1.1 Experiment B_2D_7M_A1: C = 0.01, lr = 0.01, Dropout 

J.1.1.1 General  

 

Figure J.1. Caption in the title. 
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Figure J.2. Caption in the title. 

J.1.1.2 Training 

 

Figure J.3. Caption in the title. 
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Figure J.4. Caption in the title. 

 

Figure J.5. Caption in the title. 
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J.1.1.3 Validation 

 

Figure J.6. Caption in the title. 

 

Figure J.7. Caption in the title. 
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Figure J.8. Caption in the title. 

J.1.1.4 Testing 

 

Figure J.9. Caption in the title. 
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J.2 CNN 4 Layers with NewtonCG 

J.2.1 Experiment B_2D_7M_N1: C = 0.01, GNsize = 50, Dropout 

J.2.1.1 General  

 

Figure J.10. Caption in the title. 

 

Figure J.11. Caption in the title. 
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J.2.1.2 Training 

 

Figure J.12. Caption in the title. 

 

Figure J.13. Caption in the title. 
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Figure J.14. Caption in the title. 

J.2.1.3 Validation 

 

Figure J.15. Caption in the title. 
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Figure J.16. Caption in the title. 

 

Figure J.17. Caption in the title. 
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J.2.1.4 Testing 

 

Figure J.18. Caption in the title. 
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J.3 CNN 3 Layers with NewtonCG 

J.3.1 Experiment B_2D_7M_N2: C = 0.01, GNsize = 50, Dropout, Shallow & Wide 

Network 

J.3.1.1 General  

 

Figure J.19. Caption in the title. 

 

Figure J.20. Caption in the title. 
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J.3.1.2 Training 

 

Figure J.21. Caption in the title. 

 

Figure J.22. Caption in the title. 
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Figure J.23. Caption in the title. 

J.3.1.3 Validation 

 

Figure J.24. Caption in the title. 
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Figure J.25. Caption in the title. 

 

Figure J.26. Caption in the title. 
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J.3.1.4 Testing 

 

Figure J.27. Caption in the title. 

J.3.2 Experiment B_2D_7M_N3: C = 0.01, GNsize = 50, Dropout, Shallow & 

Narrow Network 

J.3.2.1 General  

 

Figure J.28. Caption in the title. 
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Figure J.29. Caption in the title. 

J.3.2.2 Training 

 

Figure J.30. Caption in the title. 
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Figure J.31. Caption in the title. 

 

Figure J.32. Caption in the title. 
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J.3.2.3 Validation 

 

Figure J.33. Caption in the title. 

 

Figure J.34. Caption in the title. 
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Figure J.35. Caption in the title. 

J.3.2.4 Testing 

 

Figure J.36. Caption in the title. 
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Appendix K 

Experiments 2D Brain Slices [AD, NC]: Single 

Scan per Patient – 5 Slices per Scan (174 

× 174) 

K.1 CNN 4 Layers with NewtonCG 

K.1.1 Experiment B_2D_5S_N1: C = 1, GNsize = 50, Dropout 

K.1.1.1 General  

 

Figure K.1. Caption in the title. 
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Figure K.2. Caption in the title. 

K.1.1.2 Training 

 

Figure K.3. Caption in the title. 
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Figure K.4. Caption in the title. 

 

Figure K.5. Caption in the title. 

 

 

 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Tr
ai

n
in

g 
Lo

ss

Epochs

Brains 2D [AD, NC] Single Scan per Patient, 5 Slices per Scan: 5-fold Train Loss
NewtonCG, C = 0.01, GNsize = 50, Dropout, No Regularization, Single Layer FFNN

f1_train_loss f2_train_loss f3_train_loss f4_train_loss f5_train_loss avg_train_loss



K-4 

 

K.1.1.3 Validation 

 

Figure K.6. Caption in the title. 

 

Figure K.7. Caption in the title. 
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Figure K.8. Caption in the title. 

K.1.1.4 Testing 

 

Figure K.9. Caption in the title. 
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Appendix L 

Experiments 3D Left Hippocampus [AD, NC]: 

Single Scan per Patient (37 × 32 × 50) 

L.1 CNN 4 Layer with Adam 

L.1.1 Experiment LH_3D_S_A1: C = 0.01, lr = 0.001, Dropout 

L.1.1.1 General 

 

Figure L.1. Caption in the title. 
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Figure L.2. Caption in the title. 

L.1.1.2 Training 

 

Figure L.3. Caption in the title. 
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Figure L.4. Caption in the title. 

 

Figure L.5. Caption in the title. 
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L.1.1.3 Validation 

 

Figure L.6. Caption in the title. 

 

Figure L.7. Caption in the title. 
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Figure L.8. Caption in the title. 

L.1.1.4 Testing 

 

Figure L.9. Caption in the title. 
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L.1.2 Experiment LH_3D_S_A2: C = 0.01, lr = 0.0001, Dropout 

L.1.2.1 General 

 

Figure L.10. Caption in the title. 

 

Figure L.11. Caption in the title. 
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L.1.2.2 Training 

 

Figure L.12. Caption in the title. 

 

Figure L.13. Caption in the title. 
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Figure L.14. Caption in the title. 

L.1.2.3 Validation 

 

Figure L.15. Caption in the title. 
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Figure L.16. Caption in the title. 

 

Figure L.17. Caption in the title. 
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L.1.2.4 Testing 

 

Figure L.18. Caption in the title. 

L.1.3 Experiment LH_3D_S_A3: C = 0.01, lr = 0.00001, Dropout 

L.1.3.1 General 

 

Figure L.19. Caption in the title. 
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Figure L.20. Caption in the title. 

L.1.3.2 Training 

 

Figure L.21. Caption in the title. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450

Lo
ss

Epochs

Left Hippocampus 3D [AD, NC] Single Scan per Patient: 
5-fold Average Train & Valid Loss

Adam, C = 0.01, Learning Rate = 0.00001, Dropout, No Regularization, Single Layer FFNN 

avg_train_loss avg_valid_loss

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Tr
ai

n
in

g 
A

cc
u

ra
cy

Epochs

Left Hippocampus 3D [AD, NC] Single Scan per Patient: 5-fold Train Accuracy
Adam, C = 0.01, Learning Rate = 0.00001, Dropout, No Regularization, Single Layer FFNN

f1_train_acc f2_train_acc f3_train_acc f4_train_acc f5_train_acc avg_train_acc



L-12 

 

 

Figure L.22. Caption in the title. 

 

Figure L.23. Caption in the title. 
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L.1.3.3 Validation 

 

Figure L.24. Caption in the title. 

 

Figure L.25. Caption in the title. 
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Figure L.26. Caption in the title. 

L.1.3.4 Testing 

 

Figure L.27. Caption in the title. 
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L.1.4 Experiment LH_3D_S_A4: C = 0.01, lr = 0.0001, Dropout, No Max-Pooling 

L.1.4.1 General 

 

Figure L.28. Caption in the title. 

 

Figure L.29. Caption in the title. 
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L.1.4.2 Training 

 

Figure L.30. Caption in the title. 

 

Figure L.31. Caption in the title. 
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Figure L.32. Caption in the title. 

L.1.4.3 Validation 

 

Figure L.33. Caption in the title. 
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Left Hippocampus 3D [AD, NC] Multiple Scans per Patient: 5-fold Valid Accuracy
NewtonCG, C = 0.01, GNsize = 50, Dropout, No Max-Pooling,

No Regularization, Single Layer FFNN
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Figure L.34. Caption in the title. 

 

Figure L.35. Caption in the title. 
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Left Hippocampus 3D [AD, NC] Multiple Scans per Patient: 5-fold Valid Loss
NewtonCG, C = 0.01, GNsize = 50, Dropout, No Max-Pooling,

No Regularization, Single Layer FFNN
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L.1.4.4 Testing 

 

Figure L.36. Caption in the title. 
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L.2 CNN 4 Layer with NewtonCG 

L.2.1 Experiment LH_3D_S_N1: C = 0.01, GNsize = 500, Dropout 

L.2.1.1 General 

 

Figure L.37. Caption in the title. 

 

Figure L.38. Caption in the title. 
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L.2.1.2 Training 

 

Figure L.39. Caption in the title. 

 

Figure L.40. Caption in the title. 
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Figure L.41. Caption in the title. 

L.2.1.3 Validation 

 

Figure L.42. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

V
al

id
at

io
n

 A
cc

u
ra

cy

Epochs

Left Hippocampus 3D [AD, NC] Single Scan per Patient: 5-fold Valid Accuracy
NewtonCG, C = 0.01, GNsize = 500, Dropout, No Regularization, Single Layer FFNN
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Figure L.43. Caption in the title. 

 

Figure L.44. Caption in the title. 
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Left Hippocampus 3D [AD, NC] Single Scan per Patient: 5-fold Valid Loss
NewtonCG, C = 0.01, GNsize = 500, Dropout, No Regularization, Single Layer FFNN
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L.2.1.4 Testing 

 

Figure L.45. Caption in the title. 

L.2.2 Experiment LH_3D_S_N2: C = 0.01, GNsize = 50, Dropout, No Max-Pooling 

L.2.2.1 General 

 

Figure L.46. Caption in the title. 
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5-fold Average Train & Valid Accuracy

NewtonCG, C = 0.01, GNsize = 50, Dropout, No Max-Pooling,
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Figure L.47. Caption in the title. 

L.2.2.2 Training 

 

Figure L.48. Caption in the title. 
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No Regularization, Single Layer FFNN
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Figure L.49. Caption in the title. 

 

Figure L.50. Caption in the title. 
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Left Hippocampus 3D [AD, NC] Multiple Scans per Patient: 5-fold Train Loss
NewtonCG, C = 0.01, GNsize = 50, Dropout, No Max-Pooling,

No Regularization, Single Layer FFNN
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L.2.2.3 Validation 

 

Figure L.51. Caption in the title. 

 

Figure L.52. Caption in the title. 
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Left Hippocampus 3D [AD, NC] Multiple Scans per Patient: 5-fold Valid Accuracy
NewtonCG, C = 0.01, GNsize = 50, Dropout, No Max-Pooling,

No Regularization, Single Layer FFNN
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Left Hippocampus 3D [AD, NC] Multiple Scans per Patient: 5-fold Valid Loss
NewtonCG, C = 0.01, GNsize = 50, Dropout, No Max-Pooling,

No Regularization, Single Layer FFNN
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Figure L.53. Caption in the title. 

L.2.2.4 Testing 

 

Figure L.54. Caption in the title. 
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Appendix M 

3D Shrunk Brains [AD, NC] (44 × 48 × 44) 

M.1 CNN 4 Layers with Adam 

M.1.1 Experiment B_3D_S_A1: C = 0.01, lr = 0.0001, Dropout 

M.1.1.1 General 

 

Figure M.1. Caption in the title. 

 

Figure M.2. Caption in the title. 
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M.1.1.2 Training 

 

Figure M.3. Caption in the title. 

 

Figure M.4. Caption in the title. 
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Figure M.5. Caption in the title. 

M.1.1.3 Validation 

 

Figure M.6. Caption in the title. 
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Shrunk Brains 3D [AD, NC] Single Scan per Patient: 5-fold Valid Accuracy
Adam, C = 0.01, Learning Rate = 0.0001, Dropout, No Regularization, Single Layer FFNN
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Figure M.7. Caption in the title. 

 

Figure M.8. Caption in the title. 
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Shrunk Brains 3D [AD, NC] Single Scan per Patient: 5-fold Valid Loss
Adam, C = 0.01, Learning Rate = 0.0001, Dropout, No Regularization, Single Layer FFNN
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M.1.1.4 Testing 

 

Figure M.9. Caption in the title. 
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M.2 CNN 4 Layers with NewtonCG 

M.2.1 Experiment B_3D_S_N1: C = 0.01, GNsize = 200, Dropout 

M.2.1.1 General 

 

Figure M.10. Caption in the title. 

 

Figure M.11. Caption in the title. 
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M.2.1.2 Training 

 

Figure M.12. Caption in the title. 

 

Figure M.13. Caption in the title. 
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Shrunk Brains 3D [AD, NC] Single Scan per Patient: 5-fold Train Accuracy
NewtonCG, C = 0.01, GNsize = 200, Dropout, No Regularization, Single Layer FFNN
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Figure M.14. Caption in the title. 

M.2.1.3 Validation 

 

Figure M.15. Caption in the title. 
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Shrunk Brains 3D [AD, NC] Single Scan per Patient: 5-fold Valid Accuracy
NewtonCG, C = 0.01, GNsize = 200, Dropout, No Regularization, Single Layer FFNN
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Figure M.16. Caption in the title. 

 

Figure M.17. Caption in the title. 
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M.2.1.4 Testing 

 

Figure M.18. Caption in the title. 
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Appendix N 

3D Cropped Brains [AD, NC] (70 × 60 × 60) 

N.1 CNN 4 Layers with Adam 

N.1.1 Experiment CB_3D_S_A1: C = 0.01, lr = 0.0001, Dropout 

N.1.1.1 General 

 

Figure N.1. Caption in the title. 
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Figure N.2. Caption in the title. 

N.1.1.2 Training 

 

Figure N.3. Caption in the title. 
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Figure N.4. Caption in the title. 
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Adam, C = 0.01, Learning Rate = 0.0001, Dropout, No Regularization, Single Layer FFNN
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N.1.1.3 Validation 

 

Figure N.5. Caption in the title. 

 

Figure N.6. Caption in the title. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

V
al

id
at

io
n

 A
cc

u
ra

cy

Epochs
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Adam, C = 0.01, Learning Rate = 0.0001, Dropout, No Regularization, Single Layer FFNN
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Adam, C = 0.01, Learning Rate = 0.0001, Dropout, No Regularization, Single Layer FFNN

f1_valid_loss f2_valid_loss f3_valid_loss f4_valid_loss f5_valid_loss avg_valid_loss



N-5 

 

 

Figure N.7. Caption in the title. 

N.1.1.4 Testing 

 

Figure N.8. Caption in the title. 
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N.2 CNN 4 Layers with NewtonCG 

N.2.1 Experiment CB_3D_S_N1: C = 0.01, GNsize = 50, Dropout 

N.2.1.1 General 

 

Figure N.9. Caption in the title. 

 

Figure N.10. Caption in the title. 
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N.2.1.2 Training 

 

Figure N.11. Caption in the title. 

 

Figure N.12. Caption in the title. 
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Figure N.13. Caption in the title. 

N.2.1.3 Validation 

 

Figure N.14. Caption in the title. 
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Figure N.15. Caption in the title. 

 

Figure N.16. Caption in the title. 
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N.2.1.4 Testing 

 

Figure N.17. Caption in the title. 
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N.3 CNN 5 Layers with NewtonCG 

N.3.1 Experiment CB_3D_S_N2: C = 0.01, GNsize = 50, Dropout 

N.3.1.1 General 

 

Figure N.18. Caption in the title. 

 

Figure N.19. Caption in the title. 
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N.3.1.2 Training 

 

Figure N.20. Caption in the title. 

 

Figure N.21. Caption in the title. 
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Figure N.22. Caption in the title. 

N.3.1.3 Validation 

 

Figure N.23. Caption in the title. 
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Figure N.24. Caption in the title. 

 

Figure N.25. Caption in the title. 
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N.3.1.4 Testing 

 

Figure N.26. Caption in the title. 
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Appendix O 

2D Brain Slices [AD, MCI, NC]: Multiple 

Scans per Patient – Single Slice per Scan (174 

× 174) 

O.1 CNN 4 Layers with Adam 

O.1.1 Experiment B_2D_M_A1 [AD, MCI, NC]: C = 0.01, lr = 0.001, Dropout 

O.1.1.1 General 

 

Figure O.1. Caption in the title. 
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Figure O.2. Caption in the title. 

O.1.1.2 Training 

 

Figure O.3. Caption in the title. 
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Figure O.4. Caption in the title. 

 

Figure O.5. Caption in the title. 
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Figure O.6. Caption in the title. 

 

Figure O.7. Caption in the title. 
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Figure O.8. Caption in the title. 

 

Figure O.9. Caption in the title. 
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Figure O.10. Caption in the title. 

O.1.1.3 Validation 

 

Figure O.11. Caption in the title. 
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Figure O.12. Caption in the title. 

 

Figure O.13. Caption in the title. 
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Figure O.14. Caption in the title. 

 

Figure O.15. Caption in the title. 
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Figure O.16. Caption in the title. 

 

Figure O.17. Caption in the title. 
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Figure O.18. Caption in the title. 

O.1.1.4 Testing 

 

Figure O.19. Caption in the title. 
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Figure O.20. Caption in the title. 

 

Figure O.21. Caption in the title. 
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O.1.2 Experiment B_2D_M_A2 [AD, MCI, NC]: C = 0.01, lr = 0.0001, Dropout 

O.1.2.1 General 

 

Figure O.22. Caption in the title. 

 

Figure O.23. Caption in the title. 
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O.1.2.2 Training 

 

Figure O.24. Caption in the title. 

 

Figure O.25. Caption in the title. 
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Figure O.26. Caption in the title. 

 

Figure O.27. Caption in the title. 
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Figure O.28. Caption in the title. 

 

Figure O.29. Caption in the title. 
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Figure O.30. Caption in the title. 

 

Figure O.31. Caption in the title. 
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O.1.2.3 Validation 

 

Figure O.32. Caption in the title. 

 

Figure O.33. Caption in the title. 
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Figure O.34. Caption in the title. 

 

Figure O.35. Caption in the title. 
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Figure O.36. Caption in the title. 

 

Figure O.37. Caption in the title. 
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Figure O.38. Caption in the title. 

 

Figure O.39. Caption in the title. 
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O.1.2.4 Testing 

 

Figure O.40. Caption in the title. 

 

Figure O.41. Caption in the title. 
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Figure O.42. Caption in the title. 
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O.2 CNN 4 Layers with NewtonCG 

O.2.1 Experiment B_2D_M_N1 [AD, MCI, NC]: C = 0.01, GNsize = 50, Dropout 

O.2.1.1 General 

 

Figure O.43. Caption in the title. 

 

Figure O.44. Caption in the title. 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy

Epochs

Brains 2D [AD, MCI, NC] Multiple Scans per Patient: 10-fold, Train & Valid Accuracy
NewtonCG, C = 0.01, GNsize = 50, Dropout, No Regularization, Single Layer FFNN
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O.2.1.2 Training 

 

Figure O.45. Caption in the title. 

 

Figure O.46. Caption in the title. 
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Figure O.47. Caption in the title. 

 

Figure O.48. Caption in the title. 
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Figure O.49. Caption in the title. 

 

Figure O.50. Caption in the title. 
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Figure O.51. Caption in the title. 

 

Figure O.52. Caption in the title. 
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O.2.1.3 Validation 

 

Figure O.53. Caption in the title. 

 

Figure O.54. Caption in the title. 
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Figure O.55. Caption in the title. 

 

Figure O.56. Caption in the title. 
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Figure O.57. Caption in the title. 

 

Figure O.58. Caption in the title. 
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Figure O.59. Caption in the title. 

 

Figure O.60. Caption in the title. 
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O.2.1.4 Testing 

 

Figure O.61. Caption in the title. 

 

Figure O.62. Caption in the title. 
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Figure O.63. Caption in the title. 

 

  



P-1 

 

Appendix P 

Experiments’ Hyperparameters & 

Performance Metrics 

P.1 Experiments’ Hyperparameters 

Hyperparameters of the Experiments for the AD/NC and AD/MCI/NC problems 
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HF_M_A1 Adam - - - 7 - - 500 0.3 - - - - - - - [10, 8, 8, 1] 

HF_M_A2 Adam - - - 7 - - 500 0.03 - - - - - - - [10, 8, 8, 1] 

HF_M_A3 Adam - - - 7 - - 500 0.003 - - - - - - - [10, 8, 8, 1] 

HF_M_A4 Adam - - - 7 - - 500 0.0003 - - - - - - - [10, 8, 8, 1] 

HF_M_A5 Adam - - - 5 - - 500 0.3 - - - - - - - [10, 8, 8, 1] 

HF_M_A6 Adam - - - 3 - - 500 0.3 - - - - - - - [10, 8, 8, 1] 

HF_M_A7 Adam - - - 1 - - 500 0.3 - - - - - - - [10, 8, 8, 1] 

HF_M_A8 Adam - - - 0.1 - - 500 0.3 - - - - - - - [10, 8, 8, 1] 

HF_M_A9 Adam - - - 0.01 - - 500 0.3 - - - - - - - [10, 8, 8, 1] 

HF_M_A10 Adam - - - 0.001 - - 500 0.3 - - - - - - - [10, 8, 8, 1] 

HF_M_A11 Adam - - - 0.1 - - 500 0.3 - - - - - - - [10, 30, 1] 

HF_M_A12 Adam - - - 0.1 - - 500 0.3 - - - - - - - [10, 100, 1] 

HF_M_A13 Adam - - - 0.1 - - 500 0.3 - - - - - - - [10, 20, 20, 1] 

HF_M_S1 SGD - - - 7 - - 500 0.3 - - - - - - - [10, 8, 8, 1] 

HF_M_S2 SGD - - - 7 - - 500 0.03 - - - - - - - [10, 8, 8, 1] 

HF_M_S3 SGD - - - 7 - - 500 0.003 - - - - - - - [10, 8, 8, 1] 

HF_M_S4 SGD - - - 7 - - 500 0.0003 - - - - - - - [10, 8, 8, 1] 

HF_M_S5 SGD - - - 0.1 - - 500 0.3 - - - - - - - [10, 8, 8, 1] 

HF_M_H1 HFO - - 1 - - - 100 - - - - - - - - [10, 30, 1] 

HF_M_H2 HFO - - 2 - - - 100 - - - - - - - - [10, 30, 1] 

HF_M_H3 HFO - - 4 - - - 100 - - - - - - - - [10, 30, 1] 

HF_M_H4 HFO - - 8 - - - 100 - - - - - - - - [10, 30, 1] 

HF_M_H5 HFO - - 16 - - - 100 - - - - - - - - [10, 30, 1] 
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HF_M_H6 HFO - - 32 - - - 100 - - - - - - - - [10, 30, 1] 

HF_M_H7 HFO - - 2 - - - 100 - - - - - - - - [10, 20, 20, 1] 

HF_M_H8 HFO - - 2 - - - 100 - - - - - - - - [10, 100, 1] 

HF_M_H9 HFO - - 2 - - - 100 - - - - - - - - [10, 8, 8, 1] 

B_2D_M_A1 Adam T - - - 0.01 - 500 0.1 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_A2 Adam T - - - 0.01 - 500 0.01 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_A3 Adam T - - - 0.01 - 500 0.001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N1 NewtonCG T - 250 - 0.01 5 100 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N2 NewtonCG T - 250 - 0.1 5 100 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N3 NewtonCG T - 250 - 1 5 100 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N4 NewtonCG T - 250 - 10 5 100 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N5 NewtonCG T - 250 - 1 5 100 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_5L_1 

B_2D_M_N6 NewtonCG T - 250 - 1 5 100 - - - - 0.01 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N7 NewtonCG T - 250 - 1 5 100 - 0.3 - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N8 NewtonCG T - 250 - 1 50 100 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N9 NewtonCG T - 250 - 1 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N10 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N11 NewtonCG T - 250 - 0.01 200 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N12 NewtonCG T - 250 - 0.01 200 100 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N13 NewtonCG T - 250 - 0.01 50 100 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N14 NewtonCG - - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_4 

B_2D_M_N15 NewtonCG T - 250 - 0.01 50 100 - 
d1 - 3 = 0.3 
d4 - 6 = 0.5 

- - - 
f1 - 3 = 16 

f4, 5 = 32, f6 = 64 
3 x 3 MSE 2D_CNN_7L_1 

B_2D_M_N16 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 
Cross 

Entropy 
2D_CNN_4L_1 

B_2D_M_N17 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- 0.00001 0.0001 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N18 NewtonCG T T 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N19 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

5 x 5 MSE 2D_CNN_4L_2 

B_2D_M_N20 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

7 x 7 MSE 2D_CNN_4L_3 

B_2D_M_N21 NewtonCG T - 250 - 0.01 50 100 - - sd1 - 3 = 0.5 - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N22 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
sd1 - 3 = 0.5 - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N23 NewtonCG T - 250 - 0.01 50 100 - - sd1 - 3= 0.5 0.00001 0.0001 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N24 NewtonCG T - 250 - 0.01 50 100 - - sd1 – 3 = 0.5 - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N25 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
sd1 - 3 = 0.5 - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N26 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
sd1 - 3 = 0.5 0.00001 0.0001 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N27 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
sd1 - 3 = 0.5 0.00001 0.0001 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_5L_1 

B_2D_M_N28 NewtonCG T - 250 - 1 5 500 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_7M_A1 Adam T - 250 - 0.01 - 500 0.001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 
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B_2D_7M_N1 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_7M_N2 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 
d2 = 0.5 

- - - 
f1 = 64, 
f2 = 128 

3 x 3 MSE 2D_CNN_3L_1 

B_2D_7M_N3 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 
d2 = 0.5 

- - - 
f1 = 16 
f2 = 32 

3 x 3 MSE 2D_CNN_3L_2 

B_2D_S_N1 NewtonCG T - 250 - 1 5 100 - 0.3 - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 MSE 2D_CNN_4L_1 

B_2D_S_N2 NewtonCG T - 250 - 1 5 100 - 0.5 - - 0.01 
f1 = 8, f2 = 16 

f3 = 32 
3 x 3 MSE 2D_CNN_4L_5 

B_2D_S_N3 NewtonCG T - 250 - 1 5 100 - 0.5 - - - 
f1 = 32, f2 = 64 

f3 = 128 
3 x 3 MSE 2D_CNN_4L_6 

B_2D_5S_N1 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

LH_3D_S_A1 Adam T - 250 - 0.01 - 500 0.001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 x 3 MSE 3D_CNN_4L_1 

LH_3D_S_A2 Adam T - 250 - 0.01 - 500 0.0001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 x 3 MSE 3D_CNN_4L_1 

LH_3D_S_A3 Adam T - 250 - 0.01 - 500 0.00001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 x 3 MSE 3D_CNN_4L_1 

LH_3D_S_A4 Adam - - 250 - 0.01 - 500 0.0001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 x 3 MSE 3D_CNN_4L_2 

LH_3D_S_N1 NewtonCG T - 250 - 0.01 500 100 - - - - - 
f1, f2 = 32 

f3 = 64 
3 x 3 x 3 MSE 3D_CNN_4L_1 

LH_3D_S_N2 NewtonCG - - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 x 3 MSE 3D_CNN_4L_2 

B_3D_S_A1 Adam T - 250 - 0.01 - 500 0.0001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 x 3 MSE 3D_CNN_4L_1 

B_3D_S_N1 NewtonCG T - 250 - 0.01 200 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 x 3 MSE 3D_CNN_4L_1 

CB_3D_S_A1 Adam T - 250 - 0.01 - 500 0.0001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 x 3 MSE 3D_CNN_4L_1 

CB_3D_S_N1 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 x 3 MSE 3D_CNN_4L_1 

CB_3D_S_N2 NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2 - 4 = 0.5 
- - - 

f1, f2 = 32 
f3, f4 = 64 

3 x 3 x 3 MSE 3D_CNN_5L_1 

B_2D_M_A1 
(AD, MCI, NC) 

Adam T - 250 - 0.01 - 500 0.001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_A2 
(AD, MCI, NC) 

Adam T - 250 - 0.01 - 500 0.0001 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

B_2D_M_N1 
(AD, MCI, NC) 

NewtonCG T - 250 - 0.01 50 100 - 
d1 = 0.3 

d2, d3 = 0.5 
- - - 

f1, f2 = 32 
f3 = 64 

3 x 3 MSE 2D_CNN_4L_1 

Table P.1. Hyperparameters and Network Configurations for all the experiments in this thesis 

for the AD/NC and AD/MCI/NC problem. 
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P.2 Experiments’ Performance Metrics 

The Sensitivities in Table P.2 represent for all the experiments the proportion of correctly 

predicted ADs, over the total number of AD; and the Specificities, the proportion of 

correctly predicted NCs, over the total number of NC. 

Performance Metrics of the Experiments for the AD/NC and AD/MCI/NC problems 

  Training Validation Testing     
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HF_M_A1 0.83 0.04 0.72 0.87 0.85 0.04 0.76 0.94 - - - - 25 0.91 

HF_M_A2 0.82 0.04 0.60 0.91 0.82 0.03 0.67 0.97 - - - - 22 0.86 

HF_M_A3 0.80 0.09 0.69 0.85 0.82 0.05 0.71 0.92 - - - - 126 0.86 

HF_M_A4 0.78 0.06 0.75 0.80 0.82 0.05 0.76 0.88 - - - - 271 0.91 

HF_M_A5 0.82 0.04 0.74 0.85 0.86 0.05 0.78 0.93 - - - - 12 0.93 

HF_M_A6 0.83 0.03 0.76 0.86 0.86 0.05 0.79 0.94 - - - - 107 0.91 

HF_M_A7 0.88 0.05 0.83 0.90 0.89 0.05 0.80 0.97 - - - - 156 0.93 

HF_M_A8 0.89 0.05 0.90 0.88 0.90 0.04 0.85 0.95 - - - - 191 0.96 

HF_M_A9 0.90 0.04 0.93 0.88 0.89 0.05 0.82 0.96 - - - - 192 0.93 

HF_M_A10 0.88 0.07 0.93 0.86 0.89 0.05 0.87 0.91 - - - - 180 0.93 

HF_M_A11 0.88 0.07 0.87 0.89 0.90 0.05 0.83 0.96 - - - - 155 0.93 

HF_M_A12 0.89 0.05 0.85 0.91 0.88 0.05 0.81 0.95 - - - - 241 0.93 

HF_M_A13 0.90 0.06 0.91 0.90 0.89 0.04 0.83 0.96 - - - - 200 0.96 

HF_M_S1 0.83 0.05 0.64 0.90 0.82 0.05 0.69 0.95 - - - - 14 0.89 

HF_M_S2 0.83 0.06 0.62 0.92 0.82 0.06 0.65 0.98 - - - - 146 0.89 

HF_M_S3 0.74 0.11 0.66 0.78 0.79 0.04 0.69 0.88 - - - - 163 0.84 

HF_M_S4 0.74 0.09 0.62 0.78 0.74 0.05 0.63 0.85 - - - - 339 0.82 

HF_M_S5 0.94 0.03 0.92 0.95 0.88 0.04 0.82 0.95 - - - - 272 0.93 

HF_M_H1 0.91 0.04 0.80 0.95 0.86 0.05 0.75 0.98 - - - - 34 0.91 

HF_M_H2 0.93 0.04 0.82 0.97 0.87 0.05 0.76 0.98 - - - - 23 0.93 

HF_M_H3 0.87 0.07 0.77 0.91 0.86 0.05 0.75 0.97 - - - - 12 0.91 

HF_M_H4 0.92 0.09 0.83 0.95 0.86 0.05 0.75 0.96 - - - - 28 0.91 



P-5 

 

HF_M_H5 0.93 0.06 0.83 0.97 0.86 0.05 0.75 0.97 - - - - 26 0.91 

HF_M_H6 0.90 0.10 0.84 0.92 0.86 0.05 0.77 0.94 - - - - 16 0.91 

HF_M_H7 0.93 0.04 0.82 0.97 0.86 0.05 0.75 0.97 - - - - 24 0.91 

HF_M_H8 0.92 0.05 0.80 0.96 0.86 0.04 0.74 0.98 - - - - 24 0.89 

HF_M_H9 0.94 0.04 0.85 0.97 0.86 0.05 0.74 0.98 - - - - 31 0.91 

B_2D_M_A1 0.53 0.07 0.47 0.59 0.56 0.07 0.50 0.61 0.51 0.05 0.44 0.58 13 0.74 

B_2D_M_A2 0.87 0.06 0.86 0.87 0.79 0.07 0.80 0.78 0.60 0.06 0.58 0.63 246 0.90 

B_2D_M_A3 0.91 0.07 0.92 0.90 0.79 0.08 0.77 0.82 0.64 0.05 0.53 0.75 154 0.91 

B_2D_M_N1 0.88 0.04 0.87 0.89 0.78 0.08 0.75 0.80 0.61 0.03 0.52 0.71 48 0.90 

B_2D_M_N2 0.87 0.04 0.87 0.87 0.76 0.08 0.74 0.77 0.62 0.06 0.51 0.72 38 0.90 

B_2D_M_N3 0.91 0.04 0.91 0.90 0.77 0.07 0.77 0.78 0.62 0.03 0.55 0.69 51 0.86 

B_2D_M_N4 0.89 0.05 0.87 0.91 0.75 0.10 0.72 0.79 0.63 0.04 0.53 0.72 48 0.90 

B_2D_M_N5 0.89 0.04 0.88 0.90 0.75 0.08 0.74 0.77 0.61 0.04 0.52 0.69 47 0.87 

B_2D_M_N6 0.88 0.05 0.88 0.88 0.76 0.09 0.78 0.75 0.60 0.04 0.51 0.69 38 0.90 

B_2D_M_N7 0.90 0.05 0.90 0.91 0.76 0.08 0.74 0.77 0.62 0.05 0.53 0.71 56 0.86 

B_2D_M_N8 0.90 0.09 0.91 0.90 0.78 0.09 0.77 0.79 0.60 0.04 0.52 0.69 9 0.91 

B_2D_M_N9 0.93 0.05 0.92 0.94 0.76 0.08 0.74 0.78 0.62 0.05 0.53 0.71 14 0.89 

B_2D_M_N10 0.84 0.07 0.83 0.84 0.80 0.05 0.82 0.79 0.61 0.06 0.54 0.67 20 0.91 

B_2D_M_N11 0.89 0.06 0.91 0.87 0.78 0.07 0.82 0.74 0.60 0.06 0.55 0.64 12 0.89 

B_2D_M_N12 0.90 0.04 0.90 0.89 0.78 0.07 0.78 0.77 0.64 0.05 0.52 0.75 10 0.90 

B_2D_M_N13 0.84 0.06 0.82 0.86 0.78 0.08 0.77 0.79 0.60 0.04 0.53 0.67 13 0.89 

B_2D_M_N14 0.91 0.12 0.93 0.89 0.71 0.10 0.66 0.76 0.62 0.06 0.56 0.67 37 0.85 

B_2D_M_N15 0.77 0.04 0.76 0.78 0.79 0.08 0.78 0.79 0.63 0.07 0.62 0.66 12 0.91 

B_2D_M_N16 0.79 0.03 0.79 0.80 0.77 0.08 0.78 0.78 0.64 0.05 0.63 0.67 9 0.90 

B_2D_M_N17 0.85 0.04 0.86 0.85 0.78 0.08 0.80 0.78 0.61 0.03 0.61 0.63 23 0.90 

B_2D_M_N18 0.82 0.05 0.79 0.84 0.79 0.08 0.78 0.80 - - - - 17 0.91 

B_2D_M_N19 0.82 0.04 0.80 0.83 0.81 0.06 0.81 0.80 0.63 0.03 0.52 0.73 17 0.90 

B_2D_M_N20 0.83 0.10 0.84 0.81 0.79 0.06 0.81 0.76 0.62 0.04 0.54 0.70 23 0.86 

B_2D_M_N21 0.84 0.04 0.87 0.83 0.79 0.08 0.82 0.76 0.60 0.05 0.59 0.62 14 0.91 

B_2D_M_N22 0.85 0.03 0.84 0.87 0.78 0.08 0.78 0.81 0.63 0.04 0.61 0.67 17 0.89 

B_2D_M_N23 0.79 0.09 0.79 0.81 0.78 0.09 0.79 0.79 0.60 0.07 0.58 0.62 19 0.91 

B_2D_M_N24 0.81 0.04 0.79 0.84 0.76 0.07 0.74 0.80 0.62 0.06 0.61 0.65 13 0.86 

B_2D_M_N25 0.78 0.04 0.77 0.81 0.75 0.08 0.73 0.78 0.63 0.05 0.62 0.65 12 0.88 

B_2D_M_N26 0.79 0.06 0.80 0.80 0.77 0.07 0.77 0.78 0.61 0.05 0.60 0.64 12 0.85 

B_2D_M_N27 0.80 0.07 0.81 0.80 0.75 0.06 0.77 0.75 0.59 0.06 0.59 0.60 17 0.83 

B_2D_M_N28 0.93 0.06 0.93 0.93 0.77 0.09 0.76 0.78 0.60 0.05 0.50 0.69 115 0.90 



P-6 

 

B_2D_7M_A1 0.92 0.06 0.91 0.93 0.75 0.02 0.74 0.76 0.64 0.03 0.60 0.67 49 0.78 

B_2D_7M_N1 0.94 0.04 0.94 0.94 0.76 0.02 0.75 0.77 0.64 0.02 0.58 0.69 32 0.78 

B_2D_7M_N2 0.94 0.04 0.93 0.95 0.73 0.01 0.72 0.74 0.66 0.04 0.64 0.68 34 0.75 

B_2D_7M_N3 0.96 0.02 0.96 0.97 0.73 0.02 0.71 0.75 0.66 0.02 0.63 0.69 40 0.76 

B_2D_S_N1 0.85 0.12 0.84 0.86 0.75 0.07 0.74 0.77 0.68 0.12 0.68 0.68 22 0.87 

B_2D_S_N2 0.90 0.10 0.90 0.89 0.73 0.06 0.73 0.74 0.72 0.09 0.71 0.72 41 0.84 

B_2D_S_N3 0.85 0.09 0.86 0.85 0.77 0.05 0.78 0.75 0.70 0.14 0.78 0.62 23 0.84 

B_2D_5S_N1 0.92 0.04 0.95 0.90 0.75 0.03 0.77 0.73 0.69 0.05 0.74 0.65 31 0.78 

LH_3D_S_A1 0.66 0.04 0.54 0.78 0.72 0.03 0.62 0.81 0.65 0.04 0.46 0.84 37 0.75 

LH_3D_S_A2 0.73 0.04 0.63 0.83 0.76 0.04 0.68 0.84 0.69 0.03 0.51 0.87 117 0.81 

LH_3D_S_A3 0.73 0.09 0.76 0.69 0.72 0.03 0.75 0.68 0.62 0.07 0.56 0.68 208 0.75 

LH_3D_S_A4 1.00 0.00 1.00 1.00 0.77 0.04 0.67 0.86 0.67 0.04 0.60 0.73 209 0.83 

LH_3D_S_N1 0.73 0.11 0.68 0.79 0.70 0.03 0.64 0.77 0.67 0.09 0.53 0.80 4 0.73 

LH_3D_S_N2 0.86 0.11 0.84 0.87 0.73 0.06 0.68 0.78 0.69 0.05 0.63 0.74 21 0.83 

B_3D_S_A1 0.83 0.05 0.86 0.80 0.75 0.03 0.82 0.69 0.70 0.02 0.73 0.67 131 0.81 

B_3D_S_N1 0.72 0.12 0.64 0.80 0.64 0.04 0.50 0.79 0.64 0.07 0.47 0.80 6 0.68 

CB_3D_S_A1 0.98 0.03 0.96 1.00 0.73 0.02 0.69 0.77 0.65 0.06 0.60 0.71 71 0.76 

CB_3D_S_N1 0.76 0.08 0.75 0.77 0.71 0.04 0.71 0.72 0.67 0.04 0.65 0.68 13 0.76 

CB_3D_S_N2 0.68 0.02 0.71 0.65 0.69 0.06 0.73 0.64 0.69 0.04 0.67 0.72 9 0.74 

B_2D_M_A1 
(AD, MCI, NC) 

0.83 - - - 0.54 - - - 0.35 - - - 26 - 

B_2D_M_A2 
(AD, MCI, NC) 

0.87 - - - 0.53 - - - 0.32 - - - 45 - 

B_2D_M_N1 
(AD, MCI, NC) 

0.78 - - - 0.55 - - - 0.33 - - - 23 - 

Table P.2. Hyperparameters and Network Configurations for all the experiments in this thesis 

for the AD/NC and AD/MCI/NC problem. 

 

 

 

 

 



 

 

 

 

 

 

 

The End. 

 


