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ABSTRACT 

 

As we all know, the field of Machine learning has a huge growth the recent years. Deep 

Neural Networks is an approach in Machine Learning. A Neural Network can be built with 

layers of neurons and it consists data that the network learns, allowing it to make predictions. 

Face recognition is now an application of our everyday lives based on deep convolutional 

networks. Many implementations have been made, so that face recognition and face 

verification is integrated in many systems such as the facial recognition used 

on smartphones and in other forms of technology, such as robotics. What about pet facial 

recognition? Our research is based on FaceNet implementation using deep convolutional neural 

networks so we can detect, verify and identify individual pet faces in digital images. Analysing 

the problem of human recognition, we extract important techniques to apply them in pet 

verification and identification. Processing numerous images of pets, specifically dog pictures, 

we construct a data set of dog images sourced from internet pet adoption profiles. We use a 

pretrained model that can detect a dog’s face and pre-process the images so that dogs will be 

aligned properly for the training. Afterwards, using triplet loss to generate 64-dimensional 

embeddings, we can use multiple methodologies to verify and identify almost pet. We relied 

on previous researches to understand the concept of building a neural network and tries to 

enhance the ability of the network to recognise different dogs. In order to succeed, we need to 

take into consideration various algorithms to study how good results, our approach can 

accomplish. Many combinations and extensions of the algorithms have been made. Finally, we 

have designed a simple and modern website to represent our results. It is important to say that 

Flask has been used to show some of the results we get, not only with data from training but 

also data that the algorithm has not seen before. We have been able to establish a connection 

between our web application and run machine learning algorithms that use TensorFlow running 

in the background of Flask. 
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 Introduction 
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1.1  Motivation 
 

Pets hold a very special place in our hearts and every owner fears the day their beloved 

furry friend go missing. Usually an owner that lost his dog, will do anything is possible that 

could help find it. The most frequent way to search for a lost dog is usually looking though 

social media. Many Facebook pages have been made for this reason. The purpose of these 

pages is to allow people interact and communicate with others to help him find his lost dog. 

Commonly when someone loses his dog, he will post a picture of it and write details about the 

location or any other important information like the collar it last wore, or any special 

characteristics it may has. The dog may have a unique colour, or very characteristic features 

that anyone could recognize such a dog by seeing him somewhere. If the owner is lucky 

enough, people who have seen his dog going around their neighborhood will come in contact 

with him. In some other cases people who see a dog walking down the street and have not seen 

him any other day around, will consider that the dog is lost. They may take the dog in their 

house, or they will just notice and continue their day. People who are willing to help, post the 

dog, found in their way, in these pages we were talking about previously and wait for someone 

to inform them if this dog was reported as lost from their owner or they know who their owner 

is. Another solution for finding the owner of a lost dog is checking if they have a microchip. 

They go to their nearest vet clinic and ask the vet doctor to check if the dog has an owner. But 

what happens if the dog does not have a microchip? Or maybe in some other cases, people will 

not think that checking the microchip would help returning the lost dog to its home. The least 

scenario that could play nowadays, is to print posters with photos of the dog with a contact 

number and some other information. The posters are usually tucked to electric poles around 

the area or they are even given to local shops so that people passing by would see the posters.  

In all these scenarios, we have seen that images are really important to the human eye 

because it is the only way to remember and recognize things. People are trying to remember if 
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they have seen those lost dogs and try to compare with any other dog they have seen around 

and thought it was a lost one. It would be much more easier for the pet owners to build an 

application that will automize the process of matching a lost with a found dog. Our society is 

more technologically advanced than ever, so why don’t we take advantage of it? Computer 

Vision and Artificial Intelligence combined are here to aanalyze and understand images. These 

applications manage to  find a meaning behind any patterns and can benefit us to build the 

system we vision: make the procedure of searching for a lost pet, or reporting a found one, 

waiting for his owner to look up for him, an automatic process. 

We want a system that will be able take an image of a dog and it will be able to track 

amongst hundreds or thousands of images in a database, the most similar dogs. The process we 

are going trough, uses advanced-level algorithms to conduct deep analysis of the data for our 

recognition problem. This analysis further facilitates decision-making. Image recognition 

enables a machine to identify and then categorize any elements detected in an image. The image 

acts as input to this technique, which in turn offers labels as the output. Based on this output, 

the model is trained to automatically find patterns by looking into the classes from a predefined 

list. An Artificial Intelligence system that processes the visual info, that we going to give it, 

depends on computer vision. Image recognition includes processes like object detection and 

visual search. We are going to discuss the prime steps of our system of image recognition that 

is the collection and organization of the data. This data is then utilized to prepare predictive 

models, which further offers precise outputs. We are also going to represent a real time 

application of this process. We have already seen in action machine learning techniques in 

many applications such as Human Face Recognition [1] and proved us that we can build an 

adequate system. These achievements provide many services and facilities in authentication 

systems. The human face recognition model is based on finding embeddings for each image 

using a deep convolutional network. The network is trained such that the images of same person 

will have small distances and faces of dissimilar people will have large distances. Having the 

produced embeddings, the model can verify faces calculating the thresholding the distance 

between the embeddings. By studying the neural network designed in the facial recognition 

model, we adapt the approach to dog identification. A method for dog face identification and 

recognition was developed in [2] that could help us solve our problem using animal biometrics. 

 

1.2 Contributions 
 

The ultimate goal of this study is to not only analyse how dog face identification[system 

works but to find ways to improve its results and make a visual representation of an active 

system, that will be able to help pet owners that have lost their dog. Starting off with the very 

beginning of the research made in [29] we will observe that the dataset is small compared to 



  14

other big systems of machine learning. We find a way to collect more data and add it to our 

dataset. Its important to pre-process those images so they could work in our solution. Dog 

detection system is being studied and applied to our images. We need to find the landmarks of 

the dogs to make changes to the images. Continuingly, we dive into the training of the system 

which is the most important process. It is a crucial matter to absorb any knowledge that refers 

to computer vision being used for artificial intelligence methods. Thus, we study the general 

idea of deep convolutional neural networks and investigate in depth the functions thar are used 

to build this architecture[2]. We examine the layers added to the network to be able to extract 

features. Images that the network if being fed with, are several images of dogs and we need to 

obtain as many characteristics and patterns of theirs. Triplet loss is being firstly introduced in 

[1] and we experience an another triplet loss sampling : hard triplet loss. This method is also 

being used in [2] but it needs to being performed in our new data. Moving on to the evaluation 

procedure, we make observations about the Network and the losses of it and decide which 

models we will be using. Putting to the test many algorithms such as the agglomerative 

clustering, the pair verification method using embeddings and a hybrid solution of the previous 

two, we decided the algorithm that will be able to show us results in an actual problem solving.  

The implementation of this project[2,3] was developed as a research of recognition appliance 

to dogs. Until now, it wasn’t been developed as an actual application. Our aim is to build a 

simple and modern web application that can represent the automate procedure of finding your 

lost friend. In order to do that, we find ways to run machine learning algorithms and the trained 

system into the background of the website. Our last purpose is to set the start for new 

researchers to find ways to improve more and more this system and build a final visualisation 

of the project. Our contribution to dog identification problem using machine learning must be 

effective on the web demonstration for the people that are going to extend and use this platform. 
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Chapter 2 

 Literature and Related Work 
 

 

Contents 

2.1 Introduction .............................................................................................................................. 15 
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2.3  Deep Learning on Animal Biometrics .................................................................................... 16 
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2.5 DogFaceNet : Dog Identification ............................................................................................. 18 

 
 

 

2.1 Introduction 
 

In the fields of deep learning and machine learning, studies for face identification 

were mainly performed on the human face. The newly proposed model and 

loss function were evaluated with the human face dataset. Also, statistics in [5,6],showed that 

the number of companion animals has increased dramatically, and so the number of abandoned 

or lost animals. To solve this problem, studies were conducted in which the deep learning 

models for human biometrics were applied to animals [7]. In this section, we will mention the 

previous studies on human face identification and some other previous studies on animal 

biometrics [8]. 

 

2.2 FaceNet: A Unified Embedding for Face Recognition and Clustering  
 

Deep learning and machine learning models can be trained for human face recognition 

using large-scale datasets of human faces, leading to high-performance computing resources 

that have improved. Metric learning has been widely used to train deep learning models for 

face identification [10]. FaceNet is a general-purpose system that can be used for face 

verification to see is it the same person , recognition to check who is this person and clustering 

that we are looking for similar people. The method adopted by FaceNet[1] is to map the image 

to Euclidean space through convolutional neural network learning. The spatial distance is 

directly related to the image similarity: different images of the same person have a small 

distance in space, and images of different people have a larger distance in space. As long as 

the mapping is determined, the related face recognition task becomes very simple. FaceNet 



  16

achieved 99.63%, and 95.12% accuracy levels for the LFW and YouTube Faces DB datasets, 

respectively. The inspiration of triplet loss is that the traditional loss function tends to map face 

images with one type of feature to the same space.[11] Triplet loss attempts to separate an 

individual's face image from other face images. We will talk about Triplet loss in more details 

later, in our implementation. 

 

 
2.3  Deep Learning on Animal Biometrics 
 

In machine learning, many researches on animal biometrics have been made, 

specifically  on cattle [12–15], horses [16], pigs [17] and endangered animals [18,19]. In the 

Individual Cattle Identification study, they were extracting biometrics using muzzle points 

[20,22]. In the case of the other animals identification researches like horses, pigs and 

endangered animals, studies on biometrics-based face recognition have been conducted. [23–

26]. However, dogs have mainly been studied for breed classification [20-23].  In [31], animal 

Figure 1: Model structure of [1]. 

Figure 2: Overview of Triplet Loss in Human Faces [34] 
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biometrics were divided  in categories like is the muzzle point, iris pattern, retinal vascular, 

and face images. In the field of face identification, many existing studies have been made on 

the human face such us FaceNet. However, when low-level of normality datasets, such as dog 

faces, are applied in n the human face identification models [1], we face the problem of  rapid 

overfitting. A few studies have been made in this regard [24,2,25,26], to solve this problem 

and finally construct a network for dog face identification . In [26], the authors collected Flickr 

dog dataset of 42 dog faces consisting only husky and pug images. They used SVM to classify 

the features of those photos, using a CNN. Additionally, they attempted breed classification. 

Breed Classification was trained on a pre-trained GoogleNet [28].   

 

 
 

 

 
2.4 Building a dog search engine with FaceNet [29] 
 

Two of the most remarkable academic studies that worked on the Dog Identification 

and Recognition problem[2,29], approached the topic, by training Facenet on DogFaceNet 

dataset using a custom data loader that implements hard triplet mining. Each implementation 

Figure 4: Dog Breed Identification [28] 

Figure 3: Beads and ridges features of the muzzle point image 
pattern of cattle from the database. [12‐15] 

Figure 5: Animal Biometrics (Beads and ridges)  
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works with a different open-source software. The first study[29], built a dog search engine with 

FaceNet. It uses PyTorch, a machine learning library based on the Torch library. Their output 

results are base on KNN. The code is much more simple than the other implementation. 

 

 

2.5 DogFaceNet : Dog Identification [2] 
 

The authors of the other implementation[2], used TensorFlow. This time, they have 

made this for academic reasons and haven’t created a search engine with a simple workflow or 

a website to test some results. They have only tried out three algorithms for verification, 

identification and recognition on testing data. The tested data was organized in folders of 

different dogs and each folder had the same dog in a different place, lighting, pose etc. 

Figure 6: FaceNet Implementation on DogFaceNet ‐ Some Results of his work[29] 
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The two contributions in our problem helped us analyze the most important configuration used 

in FaceNet, which is the Triplet Loss. We used many functions from the training of the above 

studies and we used TensorFlow as it was more understandable for us. In our scenario, we not 

only want to evaluate our network but to visualize actual results and create a website for lost 

dogs. We will be discussing the general idea of Convolutional Neural Networks and we will 

figure out the architecture we will create in our Network. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Architecture definition: The architecture takes as input a dog face image of size (224~ 224~ 3) and outputs a 
32‐ dimensional embedding vector for the input image. The repeated block is sequentially repeated 5 times. Descriptions 
of ConvBlock and ResBlock are shown on the right side of the figure. [2] 
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Data Acquisition 
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3.1  Data Collection 
 

Machine learning needs two things to work and that is lots of data and models. When 

acquiring the data, we have to be sure to have enough features, aspect of data that can help for 

a prediction, populated to train correctly our learning model. In general, the more data we have 

the better! We had to collect as many pictures of different dogs as possible and for each dog 

we needed to get some more pictures individually.  Most of the dog face dataset is collected in 

[2]. The dataset comes from the dog face dataset and it has 1393 classes of dogs, 8363 images 

and there are at least 2 images per dog. Every image is a .JPG of size 224x224x3. For this 

project the dataset was split into a training set and testing set. The training classes are 

automatically selected by the code but there could be difference in the selection depending on 

the OS  we are using (we used Ubuntu). 

 

 

Figure 8: An example of the dog face dataset 



  21

In order to prevent overfitting, we had to increase the size of the dataset. So, we have 

decided to acquire more data by visiting as many dog profiles we can on social media and gain 

the best possible images for each dog. We were very careful selecting all those images. It’s 

important to chose images where the same dog is in some cases very similar and there are minor 

changes in their movement. In other cases we need to pick dog images where the same dog 

lays in a different position, it smiles, it yawns, it sits etc. Many of them did not make it to the 

dataset collection. We will discuss this part on the next subchapter where we processed 

differently the images we collected manually. 

 

 

 

 

 

Figure 9: Selecting Dog Images through Pet Profiles on Social Media. 

Figure 10: Visiting Pet Profiles through 
Social Media 
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3.2 Image Pre-processing 
 

As we said, we went through many Pet Profiles to collect images for our dataset. Due 

to the reason that our Network is trained for dog faces, we need to detect dog heads and process 

the images to emphasize on them. We will also need to obtain the position of the dog’s eyes 

and nose so in the following image processing we will align the dog in a decent position in the 

photo. 

 

3.2.1  Dog Points Detection 
 

To begin with, we will analyse the procedure to detect dog’s heads, nose and eyes. In 

this program we will use .dat files that contain pre-trained models created in [30]. In those 

trained models dlib is used. It uses this deep learning tool to detect dogs and it saves this file 

into  dogHeadDetector.dat. It also uses dlib shape predictor to identify the positions of the dog’s 

eyes, nose, and top of the head. For every new photo we have collected, we will pass it though 

the head and landmarks detector. We save the positions of the left eye, right eye and nose into 

a .csv file to start processing the image. 

Figure 11: Dog’s Landmark Detection 

 

 

 

DogPoints.csv 

Figure 12: Some saved landmarks in excel file 
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In case our detector didn’t catch any dog in the image it will return an empty array. 

Some images may be too difficult for our program to detect the dog. In some cases it may 

delays way to much to find the landmarks if the dog lays in a weird position and in some other 

cases it doesn’t seem to find precisely the eyes or the nose as it appears in the following figures 

. Eventually we decided for those images to manually mark dog’s landmarks.  

 

 

OpenCV is one of the most popular computer vision libraries. It will help us to control 

and manage different types of mouse events and give us the flexibility to manage them. We 

need to define define the events for the mouse click, and let the user mark only 3 points. The 

user needs to mark in order the landmarks. First he needs to mark left eye then right eye and 

finally the  dog’s nose. After this event we will move on to repeat the whole process for all of 

our pictures. Finishing this, the three labels are either manually added on the images or our 

detector have found them: the left and right eye and noise. 

 

 

Figure 13: Example image 
that detector can not Detect 
Dog’s Face. 

Figure 12: Example image 
that detector delays way too 
much to find Dog’s Face 

Figure 13: Example Image that 
detector finds wrong landmarks

Figure 14: Manual Marking of Nose and Eyes 
with OpenCV 
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3.2.2 Stage 2 : Pre-processing 
 

Coming to the pre-processing phase, we will take the csv file that we have created 

before to modify our images. Firstly, we will read all the filenames of the data with their 

landmarks we have collected.  

 

 

 

After, the program will load the photos and mark the eyes and nose based on their positions in 

the csv file [Figure 15]. 

 

Dog faces are then aligned using the position of the eyes. Face alignment creates 

regularities in images and facilitates dog face parts automatic detection. Based on [2]’s 

alignment, the right and left eye of the dog is placed in position (0.7/2.4x New height, 0.7/2.4 

x New Width. With this metrics, the new aligned images appear to be a good calibration for 

the picture. The pictures are finally re-sized to (new height, new width, depth) = (104 x 104 x 

3) pixels. The above Figure [16] represents the example of the dog we gave before to align it 

properly . 

Figure 15: Dog Image Example with its landmarks 

Figure 16: Dog Face Alignment 
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4.1  Overview 
 

Firstly, we will talk about the general idea of our network and afterwards we will 

analyze the process of building our model. Our network has as input dog images that will be 

processed before entering the training process. The input will go though a convolutional neural 

Figure 17: Passing inputs images into convolutional neural networks. Our output 
is the predicted vectors placed in an Embedding Space 
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network composed of numerous layers.  It is extremely crucial to see how our neural network 

architecture will be built. Eventually our final output, provides us information on the 

correlations of the images, according to the embedding space created by the network. 

 

We can think Embedding Space as a multi-dimensional graph that we can position elements 

such as photos that contain many characteristics. The elements that have significant similarities 

are close in this space we call to clarify their components. Our network outputs numerous data 

for each picture and deep learning leverage various ranking losses to learn an object embedding 

— an embedding where objects from the same class are closer than objects from different 

classes. 

 

4.2 History 
 

4.2.1 Neural Networks 
 

Neural Network is an expressive machine learning architecture. It is a series of 

algorithms that endeavors to recognize underlying relationships in a set of data through a 

process that mimics the way the human brain operates. In this sense, neural networks refer to 

systems of neurons. Basically, the building block of a neural Network is a neuron, specifically 

a functional unit that takes a signal input that goes into a node and it does some kind of a 

mathematical operation to give us an output.  

 

 

 

 

Figure 18: Images mapping though DCNN to embedding space 

Figure 21: a neuron 

 

Figure 21: Artificial Neural 
Network 

Figure 21: Deep Neural Network 
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The several computations that a node is structured of, includes input from the data with a set 

of coefficients, or weights, that either amplify or dampen our input. In this way we are assigning 

a significance to inputs with regard to the task the algorithm is trying to learn. In our case we 

are are dealing with biometrics of dogs.  

 

4.2.2 Deep Convolutional Neural Networks 
 

We take this unit and start to stack it either in series or in parallel or both so we can do 

a more complicated function. Building up this complexity we have built what we called an 

Artificial Neural Network. Each layer is doing some kind of a sequential processing. Stacking 

several layers that each one of them is doing some kind of a sequential processing is what we 

call a Deep Neural Network. We will add many hidden layers to our network. They will allow 

us to complex data thanks to their nodes/neurons. They are “hidden” because the true values 

of their nodes are unknown in the training dataset. In fact, we only know the input and output. 

Because of how many hidden layers our network has, is called  a deep neural network. The 

most significant and final type of hidden layer in our network, is the fully-connected layer 

where each neuron will be connected to all the others in two adjacent layers. It is not connected 

to the ones in the same layer. The convolutional layers is another type of hidden layers that is 

very prominent when dealing with dog images. We will use this layer multiple times to extract 

dog characteristics. Therefore, the first few layers of the network may detect simple features 

like lines, circles, edges. In each layer, the network is able to combine these findings and 

continually learn more complex concepts as we go deeper and deeper into the layers of the 

Neural Network. 

Each connection between two nodes has an associated weight, which is just a number. 

Each weight represents the strength of the connection between the two nodes. Every time the 

network receives an input at a given node in the input layer, this input is passed to the next 

node via a connection, and the input will be multiplied by the weight assigned to that 

connection. These input-weight products are summed : Σ . This sum Σ is then passed through 

a node’s so-called activation function, which performs some type of transformation on the 

given sum. For example, an activation function may transform the sum to be a number between 

zero and one. This function is used to determine whether and to what extent that signal should 

progress further through the network to affect the ultimate outcome, say, an act of 

classification. If the signals passes through, the neuron has been “activated.” The actual 

transformation will vary depending on which activation function is used. The role of the 

activation function is to buffer the data before it is fed to the next layer. Here’s a diagram of 

what one node might look like. 



  29

 

There is a massive variety of Neural Network Architectures we can design. There are 

different types of nodes and computations that can be performed. There is also a different 

topology of whether or not information is getting compressed in a bottleneck or expanded. 

CNN is used in image recognition likewise in our case. What CNN does, is that it has these 

convolutional layers that basically take a mask and slide it across the image doing local 

computations in local patches. We are able to pull out edges or features and we can run that 

through a convolutional  layer and keep doing this process though another convolutional layer, 

stacking all those layers. Anywhere there is a translation invariant we can use it. For computer 

vision, this means that regardless of where an object is moved in an image (translation), it 

doesn’t change what that object is (invariance). A dog picture may represent the dog in a 

different position in the image (top, bottom, top right, etc.) CNN can start to reveal these 

translations that exist in images.  

 

4.3 Network Architecture  
 

We are going to study the triplet-based network architecture proposed for the ranking 

loss function[35].  The triplet loss based network architecture has been introduced by the 

FaceNet [1] paper for for face recognition. They describe a new approach to train face 

embeddings using online triplet mining. Usually in supervised learning we have a fixed number 

of classes and train the network using the SoftMax cross entropy loss. Having two unknown 

faces we wouldn’t be able to compare them without the triplet loss contribution. 

Triplet loss in this case is a way to learn good embeddings for each face. In the embedding 

space, faces from the same person should be close together and form well separated clusters. 

 

4.4 Open Source Software for Machine Learning 
 

Designing an architecture is becoming easier because of the explosion of open source 

software of the giants of the Industrial Investment technology companies such as Google and 

Facebook. There are many incredibly powerful environments like TensorFlow, Keras and 

Figure 22: : Visualization of the Network[37] 
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PyTorch where we can design NN architecture and train our data to build an expressive model. 

In this research we study the architecture of a model that uses the open source software of 

TensorFlow and Keras, that will be able to help us in this procedure.  

 

4.5  Model Definition  
 

4.5.1 The process of Model Definition  
 

As we mentioned earlier, in neural networks, convolutional neural network is one of 

the main categories to do images recognition and classifications. Objects detections, 

recognition faces etc., are some of the areas where CNNs are widely used. CNN image 

classifications takes an input image, process it and classify it under certain categories (E.g.:  

Dog, Cat, etc.). A DCNN uses a three-dimensional neural network to process the Red, Green, 

and Blue elements of the image at the same time. Computers basically see an input image as 

array of pixels and it depends on the image resolution. Based on the image resolution, it will 

see h x w x d( h = Height, w = Width, d = Dimension ). E.g., An image of 6 x 6 x 3 array of 

matrix of RGB (3 refers to RGB values).  This considerably reduces the number of artificial 

neurons required to process an image, compared to traditional feed forward neural 

networks. The architecture of a convolutional network typically consists of four types of layers: 

convolution, pooling, activation, and fully connected. 

 

 
Figure 23 : Each input image will pass it through a series of convolution layers with filters (Kernals), Pooling, fully connected 
layers (FC) and apply Softmax function to classify an object with probabilistic values between 0 and 1. The above figure is a 
complete flow of CNN to process an input image and classifies the objects based on values. [38] 

 
 

Now that we have gone though the idea of the convolutional neural network, we can 

continue to build our CNN. To build the CNN, we'll use a Keras Sequential model.  The 

network takes an image x of size (104 ~ 104 ~ 3) as input and outputs an embedding vector 

f(x) of size 32. On the first layer, we specify this input shape, which is the shape of our data. 

Our images are 104 pixels high and 104 pixels wide and have 3 color channels: RGB. This 

gives us an input_shape of (104, 104, 3).  
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4.5.2  The Layers of our Network 
 

4.5.2.1 Convolutional Layers and Activation Function 
 

Convolution is the first layer to extract features from an input image. Convolution 

preserves the relationship between pixels by learning image features using small squares of 

input data. It is a mathematical operation that takes two inputs such as image matrix and a filter 

or kernel. Based on that, the first layer in the model is a 2-dimensional convolutional layer. 

This layer will have 16 output filters each with a kernel size of 7x7. We enable zero-padding by 

specifying padding = 'same'. The activation function we are using is of the most widely used 

activation functions today called Relu . Relu, which is short for rectified linear unit, transforms 

the input to the maximum of either 0 or the input itself. 

 

 

 

 

 

 

In simple words, if the input is less than or equal to 0, relu will output 0. If the input is 

greater than 0, relu will then just output the given input. The idea behind why we are using this 

activation function is based on the more positive the neuron is, the more activated it is. We 

specify an activation function in a Keras Sequential model. To achieve this, first we import our 

classes and then specify an activation function in the constructor of the layer.  On-account-of 

our input images, that are greater than 128×128, we need choose to use a kernel size greater 

than 3 to help : (1) learn larger spatial filters and (2) to help reduce volume size. So firstly, we 

need to use 7×7 kernel to learn larger features and then quickly reduce spatial dimensions and 

start working with 3×3 kernels.  

Mandatory Conv2D parameter is the numbers of filters that convolutional layers will 

learn from. 32 is the number of output filters in the convolution. After this filter has convolved 

the entire input, we'll be left with a new representation of our input, which is now stored in the 

output channel. This output channel is called a “feature map”. Each convolutional layer holds 

a stack of feature maps that build on one another. At the end of the case, the model puts all of 

these features together. By finishing defining the layers of our network, we can see that each 

convolutional layer of our network has a set of feature maps that can recognize increasingly 

complex patterns/shapes in a hierarchal manner like below. The CNN uses pattern recognition 

of numbers to figure out the most important features of the dog image. As it stacks these 

patterns on top of each other with more layers, it can build very complex feature maps. 

Figure 24: Relu Function 
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With CNNs, we look at groups of pixels next to one another which allows the model to 

learn local patterns like shapes, lines, etc. For example if the CNN saw lots of white pixels 

around a black circle, it would recognize this pattern as an eye. To get CNNs to accomplish 

translation variance, we rely on the services of its’ feature learning algorithm. 

Figure 25:Extraction of features 

Figure 26: Keras Conv2D: The filter slides over the input and performs its output on the new layer [39]. 

Figure 27: Some of the convolved images using many different kernels: emboss, sharpen, edge , blur etc. 
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Moreover, we define the stride , which determines how many pixels we want our filter 

to move as it slides across the image. Stride is the number of pixels shifts over the input 

matrix. In our case,  we move the filters to 2 pixels at a time. The below figure shows 

convolution would work with a stride of 2. 

 

 

 

 

 

4.5.2 .2 Pooling Layers 
 

Stepping in the next layer, we need to add Max Pooling to reduce the spatial dimensions 

of the output volume. By adding this to layer, we reduce the dimensionality of the images by 

reducing the number of pixels in the output from the previous convolutional layer. Further do, 

it removes small values by taking the maximum value from a square set of pixels.) As far as 

choosing the appropriate value for no. of filters, it is always recommended to use powers of 2 

as the values. For each block, or “pool”, the operation simply involves computing 

the 𝑚𝑎𝑥 value, like is showing in the following figure. Doing so for each pool, we get a nicely 

down sampled outcome, greatly benefiting the spatial hierarchy we need: 

 

 

Figure 28:: Example of a Conv2D layer [38] 

Figure 29: Application of Max Pooling with stride=2 [38] 
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4.5.3 Adding more layers to our network 
 

4.5.3.1 Applying many Convolutional Networks 
 

Moving forward we start to repeat this process by applying many convolutional layers 

with different filter sizes each time.   

 

We use filters that can detect edges. In the output channels, the brightest pixels can be 

interpreted as what the filter has detected. Using the filter in [Figure 31], we can detects top 

horizontal edges [Figure 32] of the dog, and that's indicated by the brightest pixels (white). 

 

Figure 30: Adding various convolutional layers example 

Figure 31: Example of kernel and its output result 
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The second filter in figure [32] detects left vertical edges, again being displayed with 

the brightest pixels. The third detects bottom horizontal edges, and the fourth detects right 

vertical edges. 

 

These filters, as we mentioned before, are really basic and just detect edges. These are 

filters we may see towards the start of a convolutional neural network. More complex filters 

would be located deeper in the network and would gradually be able to detect more 

sophisticated patterns like the ones shown here: 

 

 
 
The amazing thing is that the pattern detectors are derived automatically by the network. The 

filter values start out with random values, and the values change as the network learns during 

training. The pattern detecting capability of the filters emerges automatically. 

 

 

 

Figure 32: Example 2 of kernel and its output 
result. 

Figure 33: We can see the shapes that the filters on the left detected from the images on the right. We can see circles, 
curves and corners. As we go further into our layers, the filters are able to detect much more complex patterns like dog 
faces etc. 
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4.5.3.2 Global Average Pooling 
 

Moreover, we add the Global Average Pooling that downsamples the input along its 

spatial dimensions (height and width) by taking the average value over an input window that 

is our previous layer, for each channel of the input. The window is shifted by strides along each 

dimension. 

 

 

 

4.5.3.3 Flatten Layer 
 

Continuing to the final layers, we perform a Flatten Layer to convert the data into 1D 

arrays to create a single feature vector.  

 
4.5.3.4 Dropout Layer 
 
Thereafter, we apply Dropout that consists in randomly setting a fraction rate of input units to 

0 at each update during training time, which helps prevent overfitting. The term “dropout” 

refers to dropping out units (hidden and visible) in a neural network. By dropping a unit out, 

we mean temporarily removing it from the network, along with all its incoming and outgoing 

connections, as shown in Figure 36. The choice of which units to drop is random. 

Figure 34:  Application of Global Average Pooling with stride = 2 

Figure 35: Flatten Layer 

Figure 36: Dropout Neural Net Model. On the Left side, we can see a Standard Neural Network with 2 hidden 
layers. On the Right size, is the thinned version of the network of our example, produced by applying dropout 
to the left side. Crossed units have been dropped. [36] 
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4.5.3.5 Dense Layer 
 

Eventually by adding dense layer, we create a fully connected layer. Each node in this 

layer is connected to the previous layer. A densely connected layer provides learning features 

from all the combinations of the features of the previous layer, whereas a convolutional layer 

relies on consistent features with a small repetitive field. This layer is used at the final stage of 

CNN to perform classification for our problem. Dense layer does the below operation on the 

input and returns the output. A densely connected layer provides learning features from all the 

combinations of the features of the previous layer, whereas a convolutional layer relies on 

consistent features with a small repetitive field. In the below figure we can clearly see that each 

Dense Layer receives input from all neurons of previous layers. 

 

We can also see another example in the following figure, that represents a more complex 

network with more hidden layers, as it happens in our network.  

Figure 37: A simple Neural Network with only 1 hidden layer that is fully connected. 

Figure 38: A more complex Neural Network with only 3 hidden layers that are fully connected. 
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Moving to the final step we need to group layers into an object with training and 

inference features. In our case, we are going to use "Functional API", where we start from an 

Input, and chain layer calls to specify the model's forward pass, and finally we create our model 

from inputs and outputs: Output data we will be the result of all these layer transformed though 

the final layer called Lambda. Lambda is used to transform the input data using an expression 

or function. In our scenario, Lambda comes with the expression lambda x: 

tf.nn.l2_normalize(x, axis=-1) that  is applied to as a final layer. Its input data will be 

normalized along dimension axis using an L2 norm. This layer will coerce its inputs into a 

distribution centered around 0 with standard deviation 1. It accomplishes this by precomputing 

the mean and variance of the data. 

 

 

4.5.4 Batches 
 

4.5.4.1 Define the Batches 
 

To move forward, is important to specify our batches. The batch size is a 

hyperparameter that defines the number of samples to work through before updating the 

internal model parameters. We can think of a batch as a for-loop iterating over one or more 

samples and making predictions.  When the batch size is more than one sample and less than 

the size of the training dataset, the learning algorithm is called mini-batch gradient descent like 

we do in our network. In our case, in every step of the training, we set our network to constantly 

take 30 images that have dimensions 224x224x3. The reason behind setting batch size to 30 is 

due to the loss that we will use in our training phase. We will refer to triplet loss in the following 

subchapter but is important to declare that we will be working with 3 images every time 

(anchor, positive and negative), so batch size is 30 so we can work with 10 triplets of images 

every time (10x3). So declaring that, the number of batches in each epoch equals to the training 

set size divided by the batch_size. Generally, the larger the batch size, the quicker our model 

will complete each epoch during training, due to the fact that our computational recourses will 

be able to process much more than one single sample at a time. The trade-off, however, is that 

even if our machine can handle very large batches, the quality of the model may degrade as we 

Figure 39: The architecture of our Network. 
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set our batch larger and may ultimately cause the model to be unable to generalize well on data 

it hasn't seen before.  

 
4.5.4.2 Batches Normalization 
 

Proceeding to the next step we use a technique called Batch Normalization. Keras also 

provides support for batch normalization via the BatchNormalization layer. We will need to 

mitigate the effect of unstable gradients within deep neural networks. BN introduces an 

additional layer to the neural network that performs operations on the inputs from the previous 

layer. Typically in machine learning, it is common to normalize input data before passing the 

data to the input layer. We need to normalize to ensure that our model can generalize 

appropriately. This is achieved by ensuring that the scale of the values is balanced, and also the 

range of the values are maintained and proportional despite the scale change in the values. 

The operation standardizes and normalizes the input values.  Batch normalization applies a 

transformation that maintains the mean output close to 0 and the output standard deviation 

close to 1. The Batch Normalization layer can be used to standardize inputs before or after (in 

our case), the activation function of the previous layer. 

 

From the above Figure [40] we can come to conclusion that the means of all dimensions are 

zero and the variances are all 1. Below there are two equations that define the calculations of 

standard deviation (σ) and mean (μ). They depend on the value of 𝑧௜ : 
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Figure 40: Batch Normalization Process 
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When applying batch norm to a layer, the first thing batch norm does is normalize the 

output from the activation function. Recall from our previous review on our activation 

functions Relu, that the output from a layer is passed to an activation function, which 

transforms the output in some way depending on the function itself, before being passed to the 

next layer as input. After normalizing the output from the activation function, batch norm 

multiplies this normalized output by some arbitrary parameter and then adds another arbitrary 

parameter to this resulting product. 

 

 

4.6 Training 
 
4.6.1 Organization of the Data 
 

4.6.1.1 Splitting the Dataset 
 

Moving on to the next phase to complete our network, we will explore the process of 

training. Before we dive in to the training phase, we need to split our dataset.  We are going to 

have an open-set dataset, specifically is a bunch of of unknown dog pictures that the network 

can only see for the first time during the testing stage. The open-set problem is a harder problem 

to solve and closer to a real life problem [2]. We now need to organize the directory structure 

Figure 41: For each dimension it is calculated: mean = mi and 
standard deviation = σi 

Figure 42: Batch Normalization 
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on disk to hold the data set. We'll manually do some parts of the organization, and 

programmatically do the rest. Our code splits train and test pictures that will be used in each 

procedure. Data.py[2] saves the filenames of testing and training datasets separately in an 

output folder. We may only run this code only once to save this kind of information onto 

archives in our network. Its important to split the datasets so we can actually test that our model 

can do its job. When we run data.py functions in our main code we can see the demarcation 

between the files we will be using. We have the filenames of testing and training apart and also 

the labels for them. 

 

4.6.1.2  Npy files: 
 

Anyone who has ever done any kind of data processing in Python has undoubtedly 

come across Numpy and Pandas. These are the giants of Data Science in Python and stand as 

the foundation for a lot of other packages, namely Numpy provides the fundamental objects 

used by the likes of Scikit-Learn and Tensorflow. So why are we referring about these packages 

and why Numpy in particular? It is well known that the “industry standard” with regard to data-

files is .csv files. Now while convenient, these files are highly un-optimized when compared 

to the alternatives, like the .npy files provides as courtesy of Numpy. Explaining why we use 

these type of files, we can point out why do we need these files in our program. In our packages 

we involve many pictures that will be used in training and testing. In filnames.py we obviously 

save the names of the directories and the photos specifically we are using in each case. For 

example directory named “Cookie” has a few photos of the same dog named Cookie. This dog 

will be used in training process and its filenames will be saved in filenames-train.npy. In labels 

we point out that the photos we are using for the same dog belong only to that specific dog. For 

example Cookie-Photo1 and Cookie-Photo2 belong to Cookie. In this way, we have splitted 

our dataset in training and testing and made it clear which files are used where. Our model, is 

a deep convolutional neural network. It is trained via a triplet loss function that encourages 

vectors for the same identity to become more similar (smaller distance), whereas vectors for 

different identities are expected to become less similar (larger distance). The focus on training 

a model to create embeddings directly (rather than extracting them from an intermediate layer 

of a model) was an important innovation in this work. 

 

4.6.2 Optimizer Algorithm 
 

4.6.2.1 Overview 
 

For every iteration, an epoch is executed. we showed how each connection between 

nodes has an arbitrary weight assigned to it. We will configure our model with  compile method 
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of Keras. One of the most important parameters configuring our model is the optimization 

algorithm in order to succeed that. During training, our weights will be iteratively updated and 

moved towards their optimal values.  

 

4.6.2.2 Learning Rate 
 

The learning rate is a parameter in our network, that controls how much to change the 

model in response to the estimated error each time the model weights are updated. Choosing 

the learning rate is challenging as a value too small may result in a long training process that 

could get stuck, whereas a value too large may result in learning a sub-optimal set of weights 

too fast or an unstable training process. Learning rate may be the most important parameter 

when configuring our neural network. Therefore it is vital to know how to investigate the 

effects of the learning rate on model performance and to build an intuition about the dynamics 

of the learning rate on model behavior. 

 

4.6.2.3 SGD – Adam Optimizer to minimize the error 
 

The most widely knowns optimizers are called stochastic gradient descent, or more 

simply, SGD. The objective of SGD is to minimize some given function that we call a loss 

function. So, SGD updates the model's weights in such a way as to make this loss function as 

close to its minimum value as possible. Specifically we have encompassed ‘Adam’ Optimizer, 

an SGD method that is based on adaptive estimation of first-order (mean) and second-order 

moments (variance). β1 and β2 are the decay rates, that control the relative contribution of past 

history versus the present gradient. 

 

Back-propagation is the essence of neural net training. It is the method of fine-tuning 

the weights of a neural net based on the error rate obtained in the previous epoch (i.e., iteration). 

Proper tuning of the weights allow us to reduce error rates and to make the model reliable by 

increasing its generalization.  It is a standard method of training artificial neural networks and 

it helps to calculate the gradient of a loss function with respects to all the weights in the 

network. 

 

 

Figure 43: Mean and Variance 
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4.6.3  Loss Function 

 

4.6.3.1 Triplet Loss 
 
 

Another significant parameter that will help our optimizer, to minimize the error and 

update the weights, is our loss function (Appendix A). A way to measure whether the algorithm 

is doing a good job, it is necessary to determine the distance between the algorithm’s current 

output and its expected output. The measurement is used as a feedback signal to adjust the way 

the algorithm works. The loss function is the function that computes the distance between the 

current output of the algorithm and the expected output. It’s a method to evaluate how our 

algorithm models the data. For our purposes we will primarily focus in Triplet Loss function. 

Generally, the objective of the model is to generate embeddings that will position same dogs 

in a  close distance to each other in the embedding space and on the other hand, to position 

different dogs in a larger distance. The triplet loss function will contribute in this idea. A triplet 

basically contains an anchor, a positive, and a negative image. The positive image is more 

similar to the  anchor image than the negative image (Figure 45 for an illustration). 

  
 

 

 

Figure 44: As shown in above diagram, backward propagation is exactly the opposite side of forward propagation.  You can 
view the forward propagation as “forecasting output based on inputs and the ANN”. Backward propagation is to feedback 
the error and adjust the ANN to make it more accurate. 
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According to the definition of triplets, it is a fact that the distance between the anchor 

sample  and the negative sample representations  𝑑ሺ𝑟௔, 𝑟௡ሻ is greater (and bigger than a margin) 

than the distance between the anchor and positive representations 𝑑൫𝑟௔, 𝑟௣൯. Below we can see, 

the formula of Triplet loss. We call Ti = (pi,p+i ,p−i ) a triplet , where pi,p+i ,p−i are the anchor 

image, positive image, and negative image, respectively. α is a margin that is enforced between 

positive and negative pairs. 
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Using triplet model selection, our network learns feature embedding by optimizing the relative 

distance between the samples from the same classes and dissimilar classes.  

 

 

Figure 46: Minimization of the distance between the positive and anchor. Maximization of 
the distance between negative and the anchor. 

Figure 45: Example of a triplet ranking loss setup to train a network for image face verification. In this setup, the weights of 
the CNNs are shared. We call it triple nets. 
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Now we will use the triplet loss function over a contrastive loss. This loss minimizes 

and maximizes the Euclidean distance between similar and different points, respectively. 

Similar and different points are grouped into positive and negative pairs. The next figure shows 

its formulation using a pair of points’ embeddings.  

 

Triplet loss pulls the anchor and positive together while pushing the anchor and negative away 

from each other. 

 

 
 
4.6.3.2 The margin 
 

Similar to the contrastive loss, the triplet loss leverage a margin m. Triplet loss is 

generally superior to the contrastive loss in retrieval applications like Face recognition, Person 

re-identification, and feature embedding. In our scenario we are dealing with dog face 

recognition which is very similar to the other applications that are using this loss.  In the 

following formula ‘α΄ is the parameter   representing   the   margin,   which   is   enforcement   

between positive and negative pairs. Intuitively, for each dog, triplet  loss  expects  a  margin  

of a between  all  the  combinations  of its positive and negative images of dogs. With N 

represent the set of all  possible  triplets,  the  loss  function  in  Metric  Layer  that  is  being 

minimized is shown in the Figure below. [Figure 50]. 

 

Figure 47: Example of Triplet Loss learning process 

Figure 48: Triplet loss example 2 

Figure 49: Final Triplet Loss Formula 
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4.6.3.3 Metrics Triplet and Accuracy: Pairwise Ranking Loss 
 

Metric values are displayed during fit() and logged to the History object returned 

by fit(). They are also returned by model.evaluate(). We will set as a metric, the triplet 

accuracy. As mentioned earlier, in this setup positive and negative pairs of training data points 

are used. The purpose is to learn representations with a small distance between the for positive 

pairs, and greater distance than some margin value ‘α’ for negative pairs. Pairwise Ranking 

Loss forces representations to have zero distance for positive pairs, and a distance greater than 

a margin for negative pairs. Being ra, rp and rn the samples representations and d a distance 

function, we can write that triplet accuracy will be: 

 

 
Figure 51: Loss for Negative and Positive Pairs. 

 
For negative pairs, the loss will be zero when the distance between the representations of the 

two pair elements is greater than the margin m. But when that distance is not bigger than m, 

the loss will be positive, and net parameters will be updated to produce more distant 

representation for those two elements. The loss value will be at most m, when the distance 

between ra and rn is zero. The function of the margin is that, when the representations 

produced for a negative pair are distant enough, no efforts are wasted on enlarging that distance, 

so further training can focus on more difficult pairs. 

 

  

 

Figure 50: Triplet Loss learning process 
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Figure 52: Triplet Loss example for our dog network 

 

If r0 and r1 are the pair elements representations, y is a binary flag equal to zero for a 

negative pair and to one for a positive pair and the distance d is the Euclidian distance, we can 

equivalently write: 

 
Figure 53: Pairwise Ranking Loss 

 

4.6.4 Triplet Sampling 

 

4.6.4.1 The problem of Overfitting 
 

Overfitting refers to a network that models the training data too well. This kind of 

models, happen when they learn the detail and noise in the training data to the extent that it 

negatively impacts the performance of the model on data it hasn’t seen before. To avoid 

overfitting, it is desirable to utilize a large variety of images. Because of the numerous images 

of dogs, the number of possible triplets increases cubically. It is computationally prohibitive 

and sub-optimal to use all the triplets. It is crucial to choose an effective triplet sampling 

strategy to select the most important triplets for rank learning.  
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4.6.4.2 Hard Triplet Mining Strategy: Hard sampling 
 

One of the optimizations to the training processes proposed in the paper is the triplet 

selection process, Hard Triplet Mining. In hard sampling, the farthest positive and closest 

negative only are utilized. For each anchor image, we select a positive image that has 

embedding farthest from anchor’s and we call it Hard Positive. Moreover, we select a negative 

image that has embedding closest to the anchor’s what’s so called a Hard Negative. In the next 

Figure, n3 is the closest negative for the anchor a. Thus, assuming p is the farthest positive, the 

loss will be computed using the triplet (a,p,n_3). In conclusion, the negative sample is closer 

to the anchor than the positive. The loss is positive and greater than m. 

Hard Triplets: d(ra,rn)<d(ra,rp) 

In our project, adaptive hard triplet was used as a triplet dataset configuration method 

to sufficiently train the increased number of dogs. Unlike the existing hard triplet configuration, 

the adaptive hard triplet configuration method adjusted the ratio of the hard dataset according 

to the loss value of the model. Its values can vary from zero to one.  Previously, we have stated 

that our batch size is going to be 30 (3x10 images for each category) due to the fact that we are 

dealing with triplets in triplet loss. Therefore, it is anticipated that the maximum number of  

hard triplets will be 1/3 of the batch size. The number of hard triplets increased as the loss 

decreased and reached 10 when the loss was zero. The value in this is rounded to an integer 

and used as the number of hard triplets. The same model was trained on both the base method 

and the proposed method for a performance evaluation and comparison. The alpha of the triplet 

loss was 0.3. The model’s compiler as we mentioned is Adam optimizer, and the learning rate 

is 10^-4 in the entire epoch. 

 

 

Figure 54: Hard Triplet: Hard Positive and 
Hard Negative 

Figure 55: Loss Value to adjust ratio of the hard dataset 
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In the making of this procedure we used global_define_hard_triplets method that gets 

all of the positive and negative images for our anchor image and calculates the distances 

between them. The algorithm decides which images are hard positives and hard negatives. 

Below, we can observe an example of the hard triplet selection. 

 

 

4.6.5 Adaptive Hard Image Generator 
 

Moving forward to the main process of training, we need to make as many iterations 

are our epochs. Number epochs is equal to the number of times the algorithm sees the entire 

data set. So, each time the algorithm has seen all samples in the dataset, one epoch has 

completed. We have set epochs to be 100. In this for loop we call 

from model the fit_generator method instead of fit, where we just had to give our training 

generator as one of the arguments. The steps per epoch we are sending, specifies the total 

number of steps taken from the generator as soon as one epoch is finished and next epoch has 

started. We decided to set steps per epoch to be 300 our generator can select online hard triplets, 

at each step, for training. It includes an adaptive control on the number of hard triplets included 

during the training. We have already analyzed the procedure of hard triplet sampling in the 

previous subchapter. The filenames of our dataset and their corresponding label are gong to be 

used to create our data generator. After that we have a for loop to loop over as many batches 

as defined by batch size and then we are loading the current batch of samples in batch_samples. 

To store the image sample and labels we are creating two empty list at the beginning f_triplet 

y_triplet. Now we loop over each sample in the current batch for each sample and it generates 

predictions for the input samples from a data generator. Our generator returns a History object. 

Figure 56: Hard Triplet Selection: Hard Positive and Hard 
Negative. 
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Its ̀ History.history` attribute is a record of training loss values and metrics values at successive 

epochs, as well as validation loss values and validation metrics values. Keras takes care of the 

rest. Note that our implementation enables the use of the multiprocessing argument 

of fit_generator, where the number of threads specified in workers are those that generate 

batches in parallel. We are saving this information for every epoch to h5 files named with the 

name of our network and their number of epoch. 

 

4.7 Testing 
 

4.7.2 Introduction 
 

After we have built a machine learning model and trained it on some data, in this section 

we will discuss how to test and evaluate our model. We will put on the test, algorithms that 

their main target is to classify different dogs and identify input dog images. Also, we will 

briefly analyze many measurements we have taken during the process that were either 

decreased significantly at the end of our training or they have elevated. In this way, we will be 

able evaluate our built network and make some observations.  Firstly, we will take a look at 

various mandatory functions that will help us try out our algorithms.  

 

4.7.3  Useful Functions 
 

4.7.3.1  Finding the Best Threshold 
 

A vital function in this implementation, is to find the best threshold and accuracy when 

it comes to stating similar images. We need to have in mind that increasing the threshold, we 

expect from our model to be very sure about its prediction which means we will be filtering 

out false positives. In this scenario we are targeting precision. This might be the case when our 

model is a part of a mission-critical pipeline where decision made based on positive output of 

model is costly (in terms of money, time, human resources, computational resources etc...) In 

our network, time is what makes us doubting a high threshold by virtue of the pet owners 

waiting for the results in the upcoming website.  

On the flip size of having much more false positives , having a higher threshold we are 

taking accountability for having many of the false negatives results. Following this logic, if we 

decrease the threshold, our model will say that more examples are positives, which will allow 

us to explore more examples that are potentially positive. On this scenario we are 

targeting recall. This information is important when a false negative is disastrous e.g. in 

medical cases (You would rather check whether low-probability patient has cancer rather than 

ignoring him and find out later that he was indeed sick). We may allow to say that losing a pet 
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is one of the most saddest and desperate moments for a pet owner. By saying that, it is better 

to have a high threshold and show more possible results that may happen to be their lost dog, 

but it needs to be tested several times to be sure about it.  

Diving into the process of finding the best threshold an accuracy, we need to calculate 

the distances between images from the same class and images from another class so we can 

decide. Randomly, we select if we are going to work with 2 different dogs’ images or photos 

of the same dog. We find again randomly two different photos either, we are looking in the 

same class or in another. Continuing, we need to find the embedding vectors of the two images 

in our model space and finally calculate their distance. In every iteration, we considerate a good 

threshold when two images are the same and their distance is small, but also when two different 

images have a larger distance than the distance they have with photos of the same class. 

Accuracy is calculated by the minor average differences in the distances. 

 

4.7.3.2 Create Embeddings 
 

We need to locate our input images to the embedding space we have talked about 

before. Using TensorFlow’s Keras model we can predict their vectors. It is a fact that our inputs 

will be in a certain shape (224,224,3).  

 
4.7.3.3 Find Distance 
 

There are many ways to calculate the distance between two vectors. We decided to use 

the common and well known Euclidean Distance that is defined below. 

 

 

 

Having both the embedding vectors and our distance measure formula, we can calculate the 

distance between two embeddings. 

 

 

 

 

Figure 57: Euclidean Distance 
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4.7.4 Algorithms 
 
4.7.4.1 Brute Force Nearest Images 
 

In this algorithm we have used all of the above explained methods. As our titled 

algorithm explains itself, we will find the nearest images of a dog picture by comparing every 

image in the set. With the library of sklearn we will read all of our images. We will read all of 

the images that are contained in our database. Noting that we only work with jpeg images. For 

every image passing though the testing of this algorithm we are calculating its embedding and 

eventually its distance from the searched dog. If their distance is smaller than the average 

threshold we have calculated before, it is considered to be a similar photo. In two arrays we 

save the likely similar images with their distances from the photo we have selected in the start. 

Because of the wide range of database images (our database can hold limitless lost dogs), we 

decided to find the top 6 images that are most likely to be similar with our searched dog. In 

order to find the top 6, we need to sort the likely similar photos array based on their distance 

indices. In every iteration, we find the smaller distance in the distance array with the function 

of python called min(). We this function we find not only the minimum distance but also we 

can identify the indices of the smaller distance. Knowing the indices of the smaller distance we 

know which photo is included in the top 6 similar images and we append it in our top_6 array. 

Afterwards, we need to pop out the smaller distance and the photo with the smaller distance 

and repeat this process for another 5 iterations. 

 

4.7.4.2 Agglomerative Clustering 
 

We will test our network with images from the testing set. First we will load our trained 

model and then we will compute the Network's output for our test images. Specifically it will 

predict our vectors in the embedding space. These vectors, are going to be placed into the 

KMeans algorithm and KMeans will group those pictures! The output will be the labels for 

each image! Thereafter we will plot our clusters to check how good they are distributed. It is a 

quite simple process to check our model but it is not useful to identify the most similar images, 

given that we need to know how many clusters we have. Basically Kmeans algorithm is used 

to evaluate our network knowing the number of clusters we have. In our research, our purpose 

is to find a way to not waste any algorithm just for evaluation.  

We want to take advantage of every possible algorithm that can help us in the dog 

recognition process and this is what we are going to do. Before moving on to the next algorithm, 

let’s take a look to our clustered data. We tried to cluster the some dogs’ pictures that our 

network hasn’t seen before, after embedding vector computation using the k-means clustering 

algorithm. We can see that the results are satisfyingly good, regarding the complexity that there 
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is behind our pictures. A picture dog may be taken with very different angles, lighting, position 

and in another landscape. The figure below also shows one of the mistakes made by the 

algorithm: two different clustered dogs. We can’t say that they are badly clustered because the 

colour patterns that they appear in the dogs are very similar, excluding the fact that the first 

dog is brown and white an the other one is black and white. Also, if we see closely, in the first 

cluster on the third column we have a different dog that is very similar to the other one because 

its colour its fully black too . We understood this by reading the labels. Some images, not even 

human brain can stand them out.  

 

 

 

 

 

Figure 58: Results of Clustering 



  54

4.7.4.3 Hybrid Solution: Cluster the Nearest Images 
 

This is an evolutionary method in our research, that can help us get both of the best 

worlds. We need to do some changes on the way to combine these two methods that we have 

mentioned earlier, to customize the algorithm’s way to our problem needs (Appendix B). As it 

is expected, we will start off the process by finding the most likely similar dogs to the dog we 

have searched for. As we have said in the verification method we will find the embeddings for 

all the pictures based on their embedding vectors. 

 

 
Figure 59: Four dogs with their characteristics. Our Network will be able to extract some of them like patterns, eyes, fur 
texture etc. Based on their features, the images are going to be place in the embedding space. 

 

This time we will not take the first 6 similar photos. We will increase our threshold by 

the accuracy value we have calculated. In this way, we will have more possible false negatives. 

On the one hand we want to minimize the range of images to look for (and apply clustering 

later on), but on the other hand we want to make sure to have a wider range of photos that 

didn’t make it through the threshold. Afterwards, we will find out the labels of our testing 

images that will be our found dogs in our database. Now that we have eliminated many photos 

from our database, we will cluster the left out images thar some of our possible results.  

Zeus  Rockie  Linda  Lucky 

Brownish  orange 

colour 

Light brown, spots of 

black & white 

Brown‐ a little white  black 

Medium  size  & 

brownish eyes 

big black eyes  Small black eyes  Medium  size  black 

eyes 

Medium size nose  Medium size nose  Very small nose  Big nose 

 

Figure 60: Clustering Nearest Embeddings 
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As we have pointed out, in K-Means algo, we need to declare how many clusters we 

want. For this implementation, we will estimate the optimal number of clusters every time we 

try to cluster data. We make multiple iterations for many values of k starting with 1 cluster and 

ending placing each data in a different cluster. For every value of k, our algorithm will compute 

the SSE. SSE is defined as the sum of the squared distance between centroid and each member 

of the cluster. Then we plot a K against SSE graph. We will observe that as K increases SSE 

decreases as dissertation will be small. So the idea of this algorithm is to choose the value of 

K  at which the graph decrease abruptly. This sort of produces a “elbow effect” in the picture:  

In the above picture we can see a elbow occurring around 2- 3 so that’s a good number to 

choose.  

Kmeans is then performed with the elbow K as the number of clusters, likewise we 

mentioned earlier. We will only show as a result for our searched dog, the cluster that contains 

our dog. We can see the following plot  how our images positioned in the embedding space 

applying clustering with K-Means. 

 

 

 

 

Figure 61: Elbow Method for Optimal k 

Figure 62: Clustered Images and Centroids of each cluster 
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Chapter 5 

 Evaluation 
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5.1 Overview 
 

This section describes a trained neural network’s evaluation results using a validation 

set to measure its quality, considering dog images that were not taking part in the training.  As 

we discussed previously, it's important to use new data when evaluating our model to prevent 

the likelihood of overfitting to the training set. However, sometimes it's useful to evaluate our 

model as we're building it to find that best parameters of a model - but we can't use the test set 

for this evaluation or else we'll end up selecting the parameters that perform best on the test 

data but maybe not the parameters that generalize best. To evaluate the model while still 

building and tuning the model, we use the subset of the data that are known as the validation 

set.  I'll also note that it's very important to shuffle the data before making these splits so that 

each split has an accurate representation of the dataset. We carried out an experiment in which 

we compare pairs of dogs for each class. If it picks two dogs that are the same, it is expected 

that the Euclidean distance between them should be below a certain small threshold. In addition 

to that, pairs of dogs that are different were also compared, yielding a distance above that 

threshold. 

Figure 63: SGD algorithm to minimize the Loss and upgrade the Weights. 
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At the most basic level, a loss function quantifies how “good” or “bad” a given predictor 

is at classifying the input data points in a dataset. It is a fact that, the smaller the loss, the better 

a job the classifier is at modeling the relationship between the input data and the output targets. 

That said, there is a point where we can overfit our model — by modeling the training data too 

closely, our model loses the ability to generalize. It’s a balancing act and our choice of loss 

function and model optimizer can dramatically impact the quality, accuracy, and 

generalizability of our final model. We chose to work with Adam Optimizer and Triplet Loss. 

 
5.2 Results 
 

In order to evaluate our network we will see how our training and validation is adjusted 

by the end of all epochs.The triplet loss model was trained using the existing triplet loss 

learning method with 250 epochs. The second graph [Figure 65], illustrates the training results. 

We can see the 2 metrics: Loss and accuracy. Training loss is the error on the training set of 

data. Validation loss is the error after running the validation set of data through the trained 

network. Neural network is defined as the percentage of triplets satisfying the triplet loss 

margin condition in a randomly sampled batch of triplets. During an epoch, the loss function 

is calculated across every data items and it is guaranteed to give the quantitative loss measure 

at given epochs. We are plotting a curve across iterations to see how loss differs from the 

beginning to the end of the training. An epoch is an arbitrarily often repeated run over the whole 

dataset, which in turn is processed in parts, so called batches. After each train on batch, a loss 

is calculated, the weights are updated and the next batch will are expecting to get better results. 

These losses are indicators of the quality and learning state of our to NN. Note that we can log 

our losses  in two periods: After every Epoch or After every Iteration. 

 

 

Figure 64: Batch Loss 
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From the above graph [Figure 64], we can observe our Batch Loss. The x axis is the 

total number of batches that were created and the y axis is batch loss. Luckily, our loss gets 

smaller by the end of the iterations. On the other hand, we can see a lot of ups and downs. If 

we look at the loss (red color)  in a particular range of batches, we will see a very noisy estimate 

of our dataset loss because the batches also stored all the samples our model had trouble with, 

or all the samples that are trivial to succeed on.  Normalized and averaged values are indicated 

by the curve that hasn’t any abrupt changes.  Continuing to the next graph [Figure 65],  triplet 

accuracy among the batches is demonstrated. Our accuracy improves during our training. Using 

more triplets in the batch improved our accuracy. This graphs inherits the conclusions we have 

made from the previous graph. 

 

 

Generally, a network to be considered as a reliable one, loss must decrease by the end 

of our training and accuracy to be increased. The following figure [66] indicates when are we 

having a good learning rate based on our loss. 

 

Our network succeeds to lower the loss over iterations and improve our accuracy as it 

appears in the following figures. It is relatively leveled in the end. We can see that training loss 

Figure 65: Batch Triple Accuracy 

Figure 66: Learning Rate based on Loss 
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is slightly larger that the validation. In our case, it is acceptable to consider our network a good 

fit. Our validation set may consists of "easier" examples than the training set and this leads to 

be smaller. We can not say it is underfitted because they are very close. To be sure about our 

results we should try cross validating our model, but because our model takes too much time 

to train will will just retrain it on a differently mixed train/val sets to see if the trend persists. 

The answer is that our network is still a good fit. 

The next image [Figure 68] is pretty much self-explanatory. The evolution of prediction 

accuracy during the training process is shown in Figure 1 for 100 epochs. At some point our 

graph started to converge so we didn’t need to visualize more the losses and accuracies. We 

can observe that training accuracy and prediction accuracy increases over iterations. There are 

small local ups and downs around the loss and accuracy curves because of the stochastic 

gradient descent algorithm. Some ranges that the validation loss is a little larger that training is 

that we have added a regularization technique , specifically a dropout layer (0.5) to avoid 

overfitting. 

 

 

 

 

Figure 67: Training and Validation Lost for 100 epochs 

Figure 68: Training and Validation Accuracy for 100 
epochs 
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6.1 Motivation 
 

The purpose of our dissertation, as we mentioned, is to help pet owners find their lost 

pet. It's a real life problem that many people would find interesting. It would help enough 

people to pin their hopes on such a system to meet their dog again. We have finally built a 

reliable Network for dog identification using deep convolutional networks, but we want our 

model to be available for the end-users so that they can make use of it. Model Deployment is 

one of the last stages of any machine learning project. There are many different things we need 

to take care of when putting our model into production. We want to show with real data, data 

that the algorithm has never seen before, the methodology and the results of such a system. 

Eventually, we designed a modern and at the same time a simple website that will run locally, 

to show the system that will be developed in the final stage in the future. It is vital to show to 

someone who has never worked with neural networks before the power of today’s abilities. A 

website is a nice way to give a taste to people what our system is capable of. Later in this 

section we will represent the design and the functionality of our website.  

 

6.2 Used Technologies 
 

Finding a way to represent real-time results, we have came across the Flask, which is a 

web application framework written in Python. It has multiple modules that make it easier for a 

web developer to write applications without having to worry about the details like protocol 



  61

management, thread management, etc. It is way much simpler when it comes to use Flask to 

run in the background Machine Learning  Algorithms. Flask is giving us a variety of choices 

so we can  develop a descent web application. There are many useful tools and libraries that 

allow us to build a web application. 

 

 

6.3 Methodology 
 

6.3.1 Basic Start for a Flask Application 
 
 

When we run Flask, it will look in the current directory for anything labeled “app.py” 

which is what our flask application is named. In a template folder we have the main html file 

we are using to start off the website. When we have flask running, we are using a development 

server which only runs on the localhost.  When we go to localhost in our browser we will se 

our index page corresponding to our first route. A note to keep in mind with Flask, is that when 

we make any changes to the application, they are not reflected until we stop and restart the app 

itself.  We have used flask scripts to start a local development server. We have trained our 

Network through Flask before running it to set in action our website. We have taken this path 

because when it came to load our models later to apply algorithms, TensorFlow did not 

recognize it otherwise. To make possible the procedure of training, we need to import the 

filename of the code in the application file. When we import files that are not organized in 

functions and a main, the program will automatically run all the code of the imported files. We 

have normally set 250 epochs and 300 steps per epoch, the first time we will train the Network.  

Moving on, we don’t want our application to run training again, so we set epoch to zero. Any 

files or images are saved on the run, are being saved in a static folder. Writing an html file in 

Flask is basically very similar to writing a file in normal scenarios. We need to make a few 

changes so that our app and our website can communicate.  

Figure 69: Communication of Flask with the Web page and ML Algorithms 
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6.3.2 Website Setup 
 

We continue on how our application is built. The user will load our website and the first 

thing we will see is our main page. In the main page he can see our website’s logo and some 

information about the system. Going to Search button, he will be able to upload a picture of his 

lost dog. When the user uploads an image of his dog, Flask will save that photo as the searched 

image in static folder. Every time he uploads a new photo, the searched image will change. We 

do this so when we move on to run the algorithm, it will be able to find out the searched image. 

We have a database of photos that are found dogs uploaded from random users. In order to test 

and simulate the procedure we have fed our algorithm with photos that has not seen before. 

The algorithm we chose as the final one, will compute the top similar images to our searched 

dog. It will eventually give us the results below our searched dog. 

 

6.3.3 Background Algorithm 
 

After many tests and changes in our algorithms we have came to the conclusion that we 

will use our hybrid method as the one to put into operation for our system. The hybrid method 

consists the verification method firstly proposed in [1], with the difference that our algorithm 

will be used only to exclude photos that are not possible to be anywhere near our image in the 

embedding space. It will not be used to find out the top 5, but to remove photos and minimize 

the range we will look for within reach images. We have explained on the previous chapter 

how verification works with vector embeddings. Thenceforth, we will expand our method by 

clustering the remained photos that have left after the verification. Kmeans is a classifier that 

will cluster our data. If Kmeans decides that some photos are the same, they will be clustered. 

We have already expounded how clustering partitions images in groups, given that we run 

multiple times to find the best number of K = number of clusters. 

 

6.4 Web Demonstration and Results 
 

In the following images, we present the website for our findyourdog.com. In Figure 70, 

we can see the home page. There is an indicating small library for the people who are entering 

the site. They will see many dogs that some of them are lost and some other are found by 

someone. After the carousel we can see some information about how we have started this  

journey and what this page is about. 
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In the next image [Figure 71], people can look up to the larger library of dogs. There is 

a small spot where people can directly press for contribution. Websites gives the opportunity 

to welcome subscribers of the site to get updates. By entering their email, it is possible for them 

to upload a photo of a lost or a found dog. 

Figure 70: Home Page 
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Figure 71: Library Page 

In the following images, there are two illustrations of how our search page is. In 

 Figure 73, we can see the available options for Search tab. People can either chose to 

upload a lost or a found dog. They can click their option in one of the checkboxes. They can 

upload a photo from their computer. By pressing submit, the algorithm will start searching in 

the found dogs database or in the lost dog database based on what they marked in the checkbox 

[Figure 72]. In the next figure we can finally see the results. First we can notice the searched 

dog and below of it are the results. In the next Figures [74-77] we can see some of our results. 
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Figure 72: Search a Dog Page 

Figure 73: Calculating Results 
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Figure 75: Example Result 2 

Figure 74: Example Result 1
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Figure 76: Example Result 3

Figure 77: Example Result 4 
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6.1 General Conclusions 
 

Animal identification is a very demanding challenge due to the fact that we have to 

work with deep neural networks. Deep networks need to be studied in depth to build a model 

that can make predictions. Many  researches have been made mainly in Human Recognition 

with a very high accuracy, but only few were invested for dog identification. Recognition task 

in dog faces appears to be more complex than in human faces due to the lack of available data. 

We have been able to download [2] dataset and add our very own data collected manually. It 

was a necessity to pre-process the new data we have collected. We have applied a dog face 

detector to detect and save the found landmarks. In a few cases our algorithm didn’t find the 

face of the dog because of the difficulty of the image. To solve this problem, we used a library 

that let us mark manually points in the picture. Many photos were rejected as they were 

considered that they would not fit in our training. To continue, we loaded the landmarks for 

each photo to align, crop and resize the images to have straight, clear and zoomed dog faces.   

It is very clear that what makes each dog unique encompasses  all of its characteristic such as 

the the texture and length of their fur, the patterns of colours in their body, their height and 

mass, their smile and look, and many many more variations in dog face pictures. With our 

research we are now able to understand the process of training a network with so many layers 

and neurons.  

The deep ranking model we present, employs a triplet-based hinge loss ranking function 

to characterize image similarity relationships. We also used an efficient online triplet sampling 

method that enables us to learn deep ranking models from very large amount of training data. 

Instead of choosing simple triplets we used hard triplet loss. Hard sampling seems to have 

advantages when compared to simple triplet sampling. We try to put high the stakes, by giving 
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the network images that are very similar but yet different. A major caveat of the triplet loss, 

though, is that as the dataset gets larger, the more are the possible number of triplets. To  make 

matters worse, our model relatively quickly learns to correctly map most trivial triplets, 

rendering a large fraction of all  triplets uninformative. Thus mining hard triplets becomes  

crucial for learning.  

On the other hand, being shown only the  hardest triplets would select outliers in the 

data that may be presented as false negatives. Evaluation gave us the opportunity to observe 

metrics of our network. Important metrics taken in the training process was the triplet loss and 

the validation loss. Also we obtained the training accuracy and the validation accuracy.  As we 

saw in the graphs, our model loss decreases during a cycle and increases after hard augmented 

triplets generation. We can see the convergence of the loss and the accuracy approximately 

after 70 epochs. Το avoid overfitting we will use a trained model under 70 epochs. If we use a 

later version model we will see that  the validation loss will increase as the training loss will 

decrease, something that will affect our program on new data. With this study coming to an 

end, we saw how important is to find this real life problem a solution and construct a web 

application to show the abilities of our network. Flask really helped us configuring out how to 

run machine learning algorithms in the background of a website.  

We can see from the results that the Network understands the similarities in the pattern 

of shapes and colours of the dog. Our model succeeds this process, with the layers we have 

added in our Network. Generally, our model is not perfect or at least with a high accuracy to 

solve a real identification problem but has its becoming very handy to help dog owners finding 

their lost pet.  

 

6.2 Limitations 
 

The system we have built has its limitations and constraints on practical and theoretical 

level. To train the net, we need to do an extraction of dog’s features by adding many layers to 

our architecture. Our network does not prosper in the same way when we try it with dog’s 

whole body. There is a need of adding far more layers to extract this kind of features. Also, we 

have a very limited amount of images in our dataset. We may have thousands of data and still 

not be able to make our network to be at its peak. Our performance is being limited owing to 

the low normality of dog faces and the lack of related data. By the same token, when we are 

testing our program in the website implementation, the user will be able to upload a processed 

image. For academic purposes, we prepared some images that are aligned and ready to be tested 

through the program. In addition, the user will have to wait a few moments until the algorithm 

find similar images. Even if there is no similar image in the database, the algorithm will output 

a result because it is trying to find the nearest image to ours. We need to take a look at thresholds 
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and criteria to adapt the system whether it will tell us that we have similar images. To finish 

our general thoughts about the limitations in this study, we may allow to say that we faced 

many difficulties with the versions of TensorFlow. It will be much more easier for future works 

to upgrade the version of this model in the forthcoming releases. 

 
6.3 Future work 
 

Through this application for Dog Identification, we have achieved to test real data and 

allow to users to check our network. In general, our model produces satisfactory results but 

there is still room for some improvements. Taking into consideration the limitations we have, 

we can set as a goal to pass by as many restrictions we can. Starting off with the data 

acquisition, we could invest into a study for Social media Image Mining. Specifically, we can 

obtain big data from user-generated content on social media sites and mobile apps in order to 

extract dog images, based on tweets, hashtags, captions or even comments. Data that is publicly 

available, can be used on big scale machine learning methodologies. Tools and many 

techniques on Data Mining could help us reserve images of dogs, posted by their owners in 

their social media profile. After the dataset collection we move on to pre-processing. Dog 

detection can be our next field of study for improvement. In our model, we need to zoom on to 

the dog’s head and align it straight. They were times, our detector either failed to find the right 

position of eyes and nose or it failed to detect a dog at all. Continuing to the training process 

we know that we need to extracted face characteristics. It will be appealing to study more layers 

in the convolutional neural network to absorb as many factors as we can. In this way, may a 

future extend of this application will be able to work with wider range of images that it won’t 

need to feed the network only with dogs faces but their bodies too. Along with that, our model 

computes the losses with hard triplet selection. An another approach would be semi-hard 

triplets. These are defined as triplets where the negative is farther from the anchor than the 

positive, but still produces a positive loss. Because hard triplet sampling will road us to  an 

early convergence we could put to the test semi-hard triplet loss that pairs every anchor with 

every positive point. This sampling strategy is more robust to the model collapse but converges 

slower than the hard-mining strategy. Finally, we can say that using Flask helped us represent 

some of our results but it is a temporary solution. This implementation of the website only 

covers a small portion of what we would create with an average web app. This does not touch 

on things like cookies or validation or any other thing that we would nee for a public – facing 

web app. Concluding to our study, going through a deep convolutional network is an extremely 

fascinating process that makes us think how far technology has come that can reach and surpass 

the human brain. 
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Appendix A 
 

Triplet Loss 
 

𝑥௜
௔– an anchor example. In our context, it is a photograph of a dog’s face. 

𝑥௜
௣– a positive example that has the same identity as the anchor. It is a second picture of the 

same dog as the picture from the anchor example. 
𝑥௜

௡– a negative example that represents a different entity. This would be an image of a second 
dog–a dog different than the dog represented by the anchor and positive examples. 
 
 

for an embedding function 𝑓ሺ𝑥ሻ ∈ ℝௗ that embeds input data x into a d-dimensional vector, 
we want to satisfy this equation: 
  

ฮ 𝑓ሺ𝑥௜
௔ሻ െ  𝑓൫𝑥௜

௣൯ฮ
ଶ

ଶ
൅ 𝑎 ൑  ‖𝑓ሺ𝑥௜

௔ሻ െ  𝑓ሺ𝑥௜
௡ሻ ‖ଶ

ଶ    , ∀ ቀ 𝑓ሺ𝑥௜
௔ሻ, 𝑓൫𝑥௜

௣൯, 𝑓ሺ𝑥௜
௡ሻቁ ∈ 𝑇 

 
Where ‖𝑥‖ଶ

ଶ operator is the square Euclidean Norm and the [x]+ operator stands for max(0,x) 

– relu function. Below you can see the code that satisfies the above: 

 

 

 

 

 

 

 

 

 

 

 
 
 
This leads to the following loss function over the N possible triplets: 
 

 

 

 

 

alpha = 0.3 #margin 
 
def triplet(y_true, y_pred): 
a = y_pred[0::3] #anchor 
p = y_pred[1::3] #positive 
n = y_pred[2::3] #negative 
 
# Euclidean Norm: 
ap = K.sum(K.square(a ‐ p), ‐1) 
an = K.sum(K.square(a ‐ n), ‐1) 
 
return K.sum(tf.nn.relu(ap ‐ an + alpha)) #relu: max(x,0) 
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Appendix B 
 

Our hybrid Solution welcomes two techniques to find the best possible results. At first 

we are going to compute Nearest Embeddings. A near embedding with our testing image is 

defined as the position of the dog images in the embedding space is smaller than a threshold. 

To find the appropriate threshold we calculate the distances between photos from the training 

that we know they belong to the same class, and the distances between two random different 

images. With this method we limit the possible outputs. Now we want the most similar photos 

from the nearest embeddings. Thus, we apply the agglomerative clustering aka kmeans to 

decide in which cluster we are going to place our test dog image. The following code is written 

in much more simple structure to understand the whole procedure. 

 

# Load a trained Network 

 model = tf.keras.models.load_model( '{:s}/{:s}.{:d}.h5'.format(PATH_MODEL, 
NET_NAME, EPOCH),custom_objects={'triplet': triplet, 'triplet_acc': triplet_acc}) 
 

1. Find Nearest Embedding Vectors 
 
# Find best threshold 

best_t, best = findThresholdAccuracy(labels_test,filenames_test,model) 

 
# Load the dog the user has searched, the database of the found dogs and check the similarities 

# between them. Return the likely similar array with the dogs. 

   test_dog = str(sys.argv[3]) 
   database_images = str(sys.argv[4]) 

likely_similar =checkSimilarity(database_images, test_dog) 

CheckSimilarity(): { 

# For every dog  in the database folder we are testing, make a pair with the test dog image 

For test_image in database_images: 

        pairs_test =  [test_image] + [test_dog]  

 # Find a prediction for their embeddings 
         predict_test=model.predict_generator(predict_generator(pairs_test, 32), 
steps=np.ceil(len(pairs_test)/32)) 
             
 # Separate the pairs 
 emb1_test = predict_test[0::2] 
 emb2_test = predict_test[1::2] 
 
 # Computes the distance between pairs 
 diff_test = np.square(emb1_test-emb2_test) 
 dist_test = np.sum(diff_test, 1) 
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# if their distance is below the threshold or (+accuracy) , append to likely similar 
        if(  (dist_test<=best_t ) or  (dist_test<=(best_t+best))  ): 
            likely_similar.append(test_image) 

  
 return likely_similar 
} end of Check Similarity  
 
# for each photo that is in likely_similar array save it in a directory 
Save_Nearest_Emdeddings(likely_similar): 

for i in range(len(likely_similar)) 

        file = likely_similar[i] 
        print("Similar: ",file) 
        image_name = dirname +"/" +str(i)+".jpg" 
        img = Image.open(r""+str(file)) 
        img.save(image_name, 'JPEG') 
        img.close() 

 

# Save the filenames of the database dogs 

filenames_verification=findLabels(PATH_MODEL, dirname) 

  

2. Cluster the nearest embeddings 
 

# Cluster Data 

    clusterData(filenames_verification, SIZE, model) 

 

clusterData(): 

#We need to check that all images are in jpeg format. We read all of our database images with 

# sklearn library 

h, w, c = SIZE 
images_test = np.empty((len(filenames_test), h, w, c)) 
for i, f in enumerate(filenames_test): 
    res = list(filter(f.endswith, suff_list)) != [] 
    if res: 
        images_test[i] = skimage.io.imread(f) 
 

# Need to make a prediction about the embedding vectors of the database images 

 predict = model.predict(images_test) 
 

#Find the best number of clusters K: 
#A list holds the SSE values for each k 
 
sse = [] 
for k in range(1, length_file): 
    kmeans = KMeans(n_clusters=k, **kmeans_kwargs).fit(predict) 
    sse.append(kmeans.inertia_) 



  77

 
kl = KneeLocator(range(1, length_file), sse, curve="convex", direction="decreasing") 
 
#Find the best K 
print("Perfect k elbow = ", kl.elbow) 
 
# Apply Kmeans to our data 
kmeans = KMeans(n_clusters=kl.elbow, **kmeans_kwargs).fit(predict) 
 

# Find the cluster that contains our test dog image 

final_cluster = None 
if not os.path.isdir(save_results_path): 
    os.makedirs(save_results_path) 
for i in range(len(images_cluster)): 
    length = len(images_cluster[i]) 
    if length > 0: 
        print('cluster %d: %s' % (i, labels_cluster[i])) 
        exists = test_dog in labels_cluster[i] 
        if exists == True: 
            final_cluster = labels_cluster[i] 
      return final_cluster 
 

 

 

 

 

 

 

 

 

 


