
 1

DOG RECOGNITION AND IDENTIFICATION

USING MACHINE LEARNING

Eleni Aristidou

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree

of Bachelor of Science at the

University of Cyprus

University of Cyprus

Computer Science Department

JUNE 2021

 2

UNIVERSITY OF CYRUS

COMPUTER SCIENCE DEPARTMENT

APPROVAL PAGE

Bachelor of Science Thesis

DOG RECOGNITION AND IDENTIFICATION

USING MACHINE LEARNING

Presented by Eleni Aristidou

Research Supervisor

Andreas Aristidou

University of Cyprus

June, 2021

 3

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to Dr. Andreas Arisitdou, post-doc researcher

associated with the Department of Computer Science at the University of Cyprus, for being my

mentor and helping me in every stage of my thesis. I am extremely thankful and indebted to

him for sharing his expertise and giving me the chance to further develop my skills in the field

of machine learning. His excitement over his work pushed me to become a better researcher,

to always accumulating as many information I can and to find ways to overcome any obstacles

I face.

I am also grateful to Tassos Yiannakides, the assistant of my mentor at the Computer

Science Department of University of Cyprus, for providing me with all the necessary

knowledge needed to begin learning about the technologies that were necessary for the

implementation of the tools in my study. He was always on duty to help me and to clear out

any information I wanted to analyze. He also helped me to built a proper environment to work

on and use all the computing units I needed to train my network. Without his help I would not

be able to understand so well the network.

I would also like to thank Ioustina Harasim, an undergraduate student who is working

on the same topic of research as me. She is going to optimize my research and create a full

representation of the results by creating a mobile application. She involved in almost every

process of this study and helped me gather more images for my dataset. Furthermore she was

always delighted to help me if I was facing any difficulties. With their help, we were able to

solve our problem that was to recognize dogs so pet owners can find their lost dogs.

Finally, I would like to thank my friends and family for always supporting me and

encouraging me during my final year at the University of Cyprus.

Eleni Aristidou – University of Cyprus, 2021

 4

ABSTRACT

As we all know, the field of Machine learning has a huge growth the recent years. Deep

Neural Networks is an approach in Machine Learning. A Neural Network can be built with

layers of neurons and it consists data that the network learns, allowing it to make predictions.

Face recognition is now an application of our everyday lives based on deep convolutional

networks. Many implementations have been made, so that face recognition and face

verification is integrated in many systems such as the facial recognition used

on smartphones and in other forms of technology, such as robotics. What about pet facial

recognition? Our research is based on FaceNet implementation using deep convolutional neural

networks so we can detect, verify and identify individual pet faces in digital images. Analysing

the problem of human recognition, we extract important techniques to apply them in pet

verification and identification. Processing numerous images of pets, specifically dog pictures,

we construct a data set of dog images sourced from internet pet adoption profiles. We use a

pretrained model that can detect a dog’s face and pre-process the images so that dogs will be

aligned properly for the training. Afterwards, using triplet loss to generate 64-dimensional

embeddings, we can use multiple methodologies to verify and identify almost pet. We relied

on previous researches to understand the concept of building a neural network and tries to

enhance the ability of the network to recognise different dogs. In order to succeed, we need to

take into consideration various algorithms to study how good results, our approach can

accomplish. Many combinations and extensions of the algorithms have been made. Finally, we

have designed a simple and modern website to represent our results. It is important to say that

Flask has been used to show some of the results we get, not only with data from training but

also data that the algorithm has not seen before. We have been able to establish a connection

between our web application and run machine learning algorithms that use TensorFlow running

in the background of Flask.

 5

Table of contents

Table of contents .. 5

List of Figures ... 8

List of abbreviations and acronyms ... 11

Chapter 1: Introduction .. 12

1.1 Motivation .. 12

1.2 Contributions.. 13

Chapter 2: Literature and Related Work .. 15

2.1 Introduction .. 15

2.2 FaceNet: A Unified Embedding for Face Recognition and Clustering 15

2.3 Deep Learning on Animal Biometrics ... 16

2.4 Building a dog search engine with FaceNet ... 17

2.5 DogFaceNet : Dog Identification .. 18

Chapter 3: Data Acquisition ... 20

3.1 Data Collection .. 20

3.2 Image Preprocessing .. 22

3.2.1 Dog Points Detection ... 22

3.2.2 Stage 2 : Preprocessing ... 24

Chapter 4: Methodology.. 25

4.1 Overview .. 26

4.2 History ... 27

4.2.1 Neural Networks ... 27

4.2.2 Deep Convolutional Neural Networks .. 28

4.3 Network Architecture .. 29

4.4 Open Source Software for Machine Learning .. 29

4.5 Model Definition.. 30

4.5.1 The process of Model Definition .. 30

4.5.2 The Layers of our Network .. 31

4.5.2.1 Convolutional Layers and Activation Function ... 31

 6

4.5.2 .2 Pooling Layers .. 33

4.5.3 Adding more layers to our network .. 34

4.5.3.1 Applying many Convolutional Networks .. 34

4.5.3.2 Global Average Pooling ... 36

4.5.3.3 Flatten Layer .. 36

4.5.3.4 Dropout Layer .. 36

4.5.3.5 Dense Layer ... 37

4.5.4 Batches .. 38

4.5.4.1 Define the Batches ... 38

4.5.4.2 Batches Normalization ... 39

4.6 Training .. 40

4.6.1 Organization of the Data ... 40

4.6.1.1 Splitting the Dataset ... 40

4.6.1.2 Npy files: ... 41

4.6.2 Optimizer Algorithm ... 41

4.6.2.1 Overview .. 41

4.6.2.2 Learning Rate ... 42

4.6.2.3 SGD – Adam Optimizer to minimize the error .. 42

4.6.3.1 Triplet Loss .. 43

4.6.3.2 The margin ... 45

4.6.3.3 Metrics Triplet and Accuracy: Pairwise Ranking Loss 46

4.6.4 Triplet Sampling ... 47

4.6.4.1 The problem of Overfitting .. 47

4.6.4.2 Hard Triplet Mining Strategy: Hard sampling ... 48

4.6.5 Adaptive Hard Image Generator ... 49

4.7 Testing ... 50

4.7.2 Introduction ... 50

4.7.3 Useful Functions .. 50

4.7.3.1 Finding the Best Threshold ... 50

4.7.3.2 Create Embeddings .. 51

4.7.3.3 Find Distance ... 51

4.7.4 Algorithms .. 52

4.7.4.1 Brute Force Nearest Images ... 52

4.7.4.2 Agglomerative Clustering .. 52

4.7.4.3 Hybrid Solution: Cluster the Nearest Images .. 54

 7

Chapter 5: Evaluation ... 56

5.1 Overview ... 56

5.2 Results ... 57

Chapter 6: Web Application ... 60

6.1 Motivation ... 60

6.2 Used Technologies .. 60

6.3 Methodology ... 61

6.3.1 Basic Start for a Flask Application ... 61

6.3.2 Website Setup ... 62

6.3.3 Background Algorithm ... 62

6.4 Web Demonstration and Results .. 62

Chapter 7: Conclusions, Limitations & Future Work ... 66

6.1 General Conclusions .. 68

6.2 Limitations .. 69

6.3 Future work .. 70

Bibliography ... 71

Appendix A ... 74

Triplet Loss ... 74

Appendix B ... 75

1. Find Nearest Embedding Vectors ... 75

2. Cluster the nearest embeddings .. 76

 8

List of Figures

Chapter 1: Introduction .. 12

Chapter 2: Literature and Related Work .. 15

Figure 1: Model structure of [1]. ... 16

Figure 2: Overview of Triplet Loss in Human FacesFigure 3: Model structure of [1]. 16

Figure 4: Dog Breed Identification ... 17

Figure 5: Animal Biometrics (Beads and ridges) .. 17

Figure 6: FaceNet Implementation on DogFaceNet ‐ Some Results of his work 18

Figure 7: Architecture definition .. 19

Chapter 3: Data Acquisition ... 20

Figure 8: An example of the dog face dataset ... 20

Figure 9: Selecting Dog Images through Pet Profiles on Social Media. 21

Figure 10: Visiting Pet Profiles through Social Media .. 21

Figure 11: Dog’s Landmark Detection .. 22

Figure 12: Some saved landmarks in excel file .. 22

Figure 13: Example image that detector can not Detect Dog’s Face. 23

Figure 14: Manual Marking of Nose and Eyes with OpenCV ... 23

Figure 15: Dog Image Example with its landmarks .. 24

Figure 16: Dog Face Alignment .. 24

Chapter 4: Methodology.. 25

Figure 17: Passing inputs images into convolutional neural networks 26

Figure 18: Images mapping though DCNN to embedding space ... 27

Figure 21: Artificial Neural Network .. 27

Figure 21: a neuron .. 27

Figure 21: Deep Neural Network ... 27

Figure 22: : Visualization of the Network .. 29

Figure 23 : Each input image will pass it through a series of layers. 30

Figure 24: Relu Function .. 31

Figure 25:Extraction of features .. 32

Figure 26: Keras Conv2D .. 32

Figure 27: Some of the convolved images using many different kernels. 32

Figure 28:: Example of a Conv2D layer .. 33

Figure 29: Application of Max Pooling with stride=2 .. 33

 9

Figure 30: Adding various convolutional layers example .. 34

Figure 31: Example of kernel and its output result ... 34

Figure 32: Example 2 of kernel and its output result. ... 35

Figure 33: Shapes that the filters on the left detected from the images 35

Figure 34: Application of Global Average Pooling with stride = 2 .. 36

Figure 35: Flatten Layer ... 36

Figure 36: Dropout Neural Net Model ... 36

Figure 37: A simple Neural Network with only 1 hidden layer that is fully connected. 37

Figure 38: A more complex Neural Network with only 3 hidden layers that are fully

connected. ... 37

Figure 39: The architecture of our Network. ... 38

Figure 40: Batch Normalization Process .. 39

Figure 41: For each dimension it is calculated the mean and standard deviation 40

Figure 42: Batch Normalization ... 40

Figure 43: Mean and Variance ... 42

Figure 44: Backward propagation and forward propagation .. 43

Figure 45: Example of a triplet ranking loss setup. .. 44

Figure 46: Minimization of the distance between the positive and anchor. Maximization of

the distance between negative and the anchor. ... 44

Figure 47: Example of Triplet Loss learning process .. 45

Figure 48: Triplet loss example 2 ... 45

Figure 49: Final Triplet Loss Formula ... 45

Figure 50: Triplet Loss learning process ... 46

Figure 51: Loss for Negative and Positive Pairs. ... 46

Figure 52: Triplet Loss example for our dog network ... 47

Figure 53: Pairwise Ranking Loss ... 47

Figure 54: Hard Triplet: Hard Positive and Hard Negative .. 48

Figure 55: Loss Value to adjust ratio of the hard dataset .. 48

Figure 56: Hard Triplet Selection: Hard Positive and Hard Negative. 49

Figure 57: Euclidean Distance .. 51

Figure 58: Results of Clustering ... 53

Figure 59: Four dogs with their characteristics. Our Network will be able to extract some of

them like patterns, eyes, fur texture etc. .. 54

Figure 60: Clustering Nearest Embeddings .. 54

 10

Figure 61: Elbow Method for Optimal k .. 55

Figure 62: Clustered Images and Centroids of each cluster .. 55

Chapter 5: Evaluation ... 56

Figure 63: SGD algorithm to minimize the Loss and upgrade the Weights. 56

Figure 64: Batch Loss ... 57

Figure 65: Batch Triple Accuracy .. 58

Figure 66: Learning Rate based on Loss ... 58

Figure 67: Training and Validation Lost for 100 epochs .. 59

Figure 68: Training and Validation Accuracy for 100 epochs .. 59

Chapter 6: Web Application ... 60

Figure 69: Communication of Flask with the Web page and ML Algorithms 61

Figure 70: Home Page .. 63

Figure 71: Library Page .. 64

Figure 72: Search a Dog Page ... 65

Figure 73: Calculating Results .. 65

Figure 74: Example Result 1 ... 66

Figure 75: Example Result 2 ... 66

Figure 76: Example Result 3 ... 67

Figure 77: Example Result 4 ... 67

Chapter 7: Conclusions, Limitations & Future Work ... 66

 11

List of abbreviations and acronyms

SVM – Support Vector Machine

DCNN – Deep Convolutional Networks

NN – Neural Networks, CNN – convolutional Neural Networks

ReLU Rectified Linear Unit

t-SNE - t-Distributed Stochastic Neighbor Embedding

KNN – K Nearest Neighbours

ML – Machine Learning

 12

Chapter 1

 Introduction

Contents

1.1 Motivation .. 12

1.2 Contributions .. 13

1.1 Motivation

Pets hold a very special place in our hearts and every owner fears the day their beloved

furry friend go missing. Usually an owner that lost his dog, will do anything is possible that

could help find it. The most frequent way to search for a lost dog is usually looking though

social media. Many Facebook pages have been made for this reason. The purpose of these

pages is to allow people interact and communicate with others to help him find his lost dog.

Commonly when someone loses his dog, he will post a picture of it and write details about the

location or any other important information like the collar it last wore, or any special

characteristics it may has. The dog may have a unique colour, or very characteristic features

that anyone could recognize such a dog by seeing him somewhere. If the owner is lucky

enough, people who have seen his dog going around their neighborhood will come in contact

with him. In some other cases people who see a dog walking down the street and have not seen

him any other day around, will consider that the dog is lost. They may take the dog in their

house, or they will just notice and continue their day. People who are willing to help, post the

dog, found in their way, in these pages we were talking about previously and wait for someone

to inform them if this dog was reported as lost from their owner or they know who their owner

is. Another solution for finding the owner of a lost dog is checking if they have a microchip.

They go to their nearest vet clinic and ask the vet doctor to check if the dog has an owner. But

what happens if the dog does not have a microchip? Or maybe in some other cases, people will

not think that checking the microchip would help returning the lost dog to its home. The least

scenario that could play nowadays, is to print posters with photos of the dog with a contact

number and some other information. The posters are usually tucked to electric poles around

the area or they are even given to local shops so that people passing by would see the posters.

In all these scenarios, we have seen that images are really important to the human eye

because it is the only way to remember and recognize things. People are trying to remember if

 13

they have seen those lost dogs and try to compare with any other dog they have seen around

and thought it was a lost one. It would be much more easier for the pet owners to build an

application that will automize the process of matching a lost with a found dog. Our society is

more technologically advanced than ever, so why don’t we take advantage of it? Computer

Vision and Artificial Intelligence combined are here to aanalyze and understand images. These

applications manage to find a meaning behind any patterns and can benefit us to build the

system we vision: make the procedure of searching for a lost pet, or reporting a found one,

waiting for his owner to look up for him, an automatic process.

We want a system that will be able take an image of a dog and it will be able to track

amongst hundreds or thousands of images in a database, the most similar dogs. The process we

are going trough, uses advanced-level algorithms to conduct deep analysis of the data for our

recognition problem. This analysis further facilitates decision-making. Image recognition

enables a machine to identify and then categorize any elements detected in an image. The image

acts as input to this technique, which in turn offers labels as the output. Based on this output,

the model is trained to automatically find patterns by looking into the classes from a predefined

list. An Artificial Intelligence system that processes the visual info, that we going to give it,

depends on computer vision. Image recognition includes processes like object detection and

visual search. We are going to discuss the prime steps of our system of image recognition that

is the collection and organization of the data. This data is then utilized to prepare predictive

models, which further offers precise outputs. We are also going to represent a real time

application of this process. We have already seen in action machine learning techniques in

many applications such as Human Face Recognition [1] and proved us that we can build an

adequate system. These achievements provide many services and facilities in authentication

systems. The human face recognition model is based on finding embeddings for each image

using a deep convolutional network. The network is trained such that the images of same person

will have small distances and faces of dissimilar people will have large distances. Having the

produced embeddings, the model can verify faces calculating the thresholding the distance

between the embeddings. By studying the neural network designed in the facial recognition

model, we adapt the approach to dog identification. A method for dog face identification and

recognition was developed in [2] that could help us solve our problem using animal biometrics.

1.2 Contributions

The ultimate goal of this study is to not only analyse how dog face identification[system

works but to find ways to improve its results and make a visual representation of an active

system, that will be able to help pet owners that have lost their dog. Starting off with the very

beginning of the research made in [29] we will observe that the dataset is small compared to

 14

other big systems of machine learning. We find a way to collect more data and add it to our

dataset. Its important to pre-process those images so they could work in our solution. Dog

detection system is being studied and applied to our images. We need to find the landmarks of

the dogs to make changes to the images. Continuingly, we dive into the training of the system

which is the most important process. It is a crucial matter to absorb any knowledge that refers

to computer vision being used for artificial intelligence methods. Thus, we study the general

idea of deep convolutional neural networks and investigate in depth the functions thar are used

to build this architecture[2]. We examine the layers added to the network to be able to extract

features. Images that the network if being fed with, are several images of dogs and we need to

obtain as many characteristics and patterns of theirs. Triplet loss is being firstly introduced in

[1] and we experience an another triplet loss sampling : hard triplet loss. This method is also

being used in [2] but it needs to being performed in our new data. Moving on to the evaluation

procedure, we make observations about the Network and the losses of it and decide which

models we will be using. Putting to the test many algorithms such as the agglomerative

clustering, the pair verification method using embeddings and a hybrid solution of the previous

two, we decided the algorithm that will be able to show us results in an actual problem solving.

The implementation of this project[2,3] was developed as a research of recognition appliance

to dogs. Until now, it wasn’t been developed as an actual application. Our aim is to build a

simple and modern web application that can represent the automate procedure of finding your

lost friend. In order to do that, we find ways to run machine learning algorithms and the trained

system into the background of the website. Our last purpose is to set the start for new

researchers to find ways to improve more and more this system and build a final visualisation

of the project. Our contribution to dog identification problem using machine learning must be

effective on the web demonstration for the people that are going to extend and use this platform.

 15

Chapter 2

 Literature and Related Work

Contents

2.1 Introduction .. 15

2.2 FaceNet: A Unified Embedding for Face Recognition and Clustering 15

2.3 Deep Learning on Animal Biometrics .. 16

2.4 Building a dog search engine with FaceNet .. 17

2.5 DogFaceNet : Dog Identification ... 18

2.1 Introduction

In the fields of deep learning and machine learning, studies for face identification

were mainly performed on the human face. The newly proposed model and

loss function were evaluated with the human face dataset. Also, statistics in [5,6],showed that

the number of companion animals has increased dramatically, and so the number of abandoned

or lost animals. To solve this problem, studies were conducted in which the deep learning

models for human biometrics were applied to animals [7]. In this section, we will mention the

previous studies on human face identification and some other previous studies on animal

biometrics [8].

2.2 FaceNet: A Unified Embedding for Face Recognition and Clustering

Deep learning and machine learning models can be trained for human face recognition

using large-scale datasets of human faces, leading to high-performance computing resources

that have improved. Metric learning has been widely used to train deep learning models for

face identification [10]. FaceNet is a general-purpose system that can be used for face

verification to see is it the same person , recognition to check who is this person and clustering

that we are looking for similar people. The method adopted by FaceNet[1] is to map the image

to Euclidean space through convolutional neural network learning. The spatial distance is

directly related to the image similarity: different images of the same person have a small

distance in space, and images of different people have a larger distance in space. As long as

the mapping is determined, the related face recognition task becomes very simple. FaceNet

 16

achieved 99.63%, and 95.12% accuracy levels for the LFW and YouTube Faces DB datasets,

respectively. The inspiration of triplet loss is that the traditional loss function tends to map face

images with one type of feature to the same space.[11] Triplet loss attempts to separate an

individual's face image from other face images. We will talk about Triplet loss in more details

later, in our implementation.

2.3 Deep Learning on Animal Biometrics

In machine learning, many researches on animal biometrics have been made,

specifically on cattle [12–15], horses [16], pigs [17] and endangered animals [18,19]. In the

Individual Cattle Identification study, they were extracting biometrics using muzzle points

[20,22]. In the case of the other animals identification researches like horses, pigs and

endangered animals, studies on biometrics-based face recognition have been conducted. [23–

26]. However, dogs have mainly been studied for breed classification [20-23]. In [31], animal

Figure 1: Model structure of [1].

Figure 2: Overview of Triplet Loss in Human Faces [34]

 17

biometrics were divided in categories like is the muzzle point, iris pattern, retinal vascular,

and face images. In the field of face identification, many existing studies have been made on

the human face such us FaceNet. However, when low-level of normality datasets, such as dog

faces, are applied in n the human face identification models [1], we face the problem of rapid

overfitting. A few studies have been made in this regard [24,2,25,26], to solve this problem

and finally construct a network for dog face identification . In [26], the authors collected Flickr

dog dataset of 42 dog faces consisting only husky and pug images. They used SVM to classify

the features of those photos, using a CNN. Additionally, they attempted breed classification.

Breed Classification was trained on a pre-trained GoogleNet [28].

2.4 Building a dog search engine with FaceNet [29]

Two of the most remarkable academic studies that worked on the Dog Identification

and Recognition problem[2,29], approached the topic, by training Facenet on DogFaceNet

dataset using a custom data loader that implements hard triplet mining. Each implementation

Figure 4: Dog Breed Identification [28]

Figure 3: Beads and ridges features of the muzzle point image
pattern of cattle from the database. [12‐15]

Figure 5: Animal Biometrics (Beads and ridges)

 18

works with a different open-source software. The first study[29], built a dog search engine with

FaceNet. It uses PyTorch, a machine learning library based on the Torch library. Their output

results are base on KNN. The code is much more simple than the other implementation.

2.5 DogFaceNet : Dog Identification [2]

The authors of the other implementation[2], used TensorFlow. This time, they have

made this for academic reasons and haven’t created a search engine with a simple workflow or

a website to test some results. They have only tried out three algorithms for verification,

identification and recognition on testing data. The tested data was organized in folders of

different dogs and each folder had the same dog in a different place, lighting, pose etc.

Figure 6: FaceNet Implementation on DogFaceNet ‐ Some Results of his work[29]

 19

The two contributions in our problem helped us analyze the most important configuration used

in FaceNet, which is the Triplet Loss. We used many functions from the training of the above

studies and we used TensorFlow as it was more understandable for us. In our scenario, we not

only want to evaluate our network but to visualize actual results and create a website for lost

dogs. We will be discussing the general idea of Convolutional Neural Networks and we will

figure out the architecture we will create in our Network.

Figure 7: Architecture definition: The architecture takes as input a dog face image of size (224~ 224~ 3) and outputs a
32‐ dimensional embedding vector for the input image. The repeated block is sequentially repeated 5 times. Descriptions
of ConvBlock and ResBlock are shown on the right side of the figure. [2]

 20

Chapter 3

Data Acquisition

Contents

3.1 Data Collection .. 20

3.2 Image Preprocessing .. 22

3.2.1 Dog Points Detection ... 22

3.2.2 Stage 2 : Preprocessing ... 24

3.1 Data Collection

Machine learning needs two things to work and that is lots of data and models. When

acquiring the data, we have to be sure to have enough features, aspect of data that can help for

a prediction, populated to train correctly our learning model. In general, the more data we have

the better! We had to collect as many pictures of different dogs as possible and for each dog

we needed to get some more pictures individually. Most of the dog face dataset is collected in

[2]. The dataset comes from the dog face dataset and it has 1393 classes of dogs, 8363 images

and there are at least 2 images per dog. Every image is a .JPG of size 224x224x3. For this

project the dataset was split into a training set and testing set. The training classes are

automatically selected by the code but there could be difference in the selection depending on

the OS we are using (we used Ubuntu).

Figure 8: An example of the dog face dataset

 21

In order to prevent overfitting, we had to increase the size of the dataset. So, we have

decided to acquire more data by visiting as many dog profiles we can on social media and gain

the best possible images for each dog. We were very careful selecting all those images. It’s

important to chose images where the same dog is in some cases very similar and there are minor

changes in their movement. In other cases we need to pick dog images where the same dog

lays in a different position, it smiles, it yawns, it sits etc. Many of them did not make it to the

dataset collection. We will discuss this part on the next subchapter where we processed

differently the images we collected manually.

Figure 9: Selecting Dog Images through Pet Profiles on Social Media.

Figure 10: Visiting Pet Profiles through
Social Media

 22

3.2 Image Pre-processing

As we said, we went through many Pet Profiles to collect images for our dataset. Due

to the reason that our Network is trained for dog faces, we need to detect dog heads and process

the images to emphasize on them. We will also need to obtain the position of the dog’s eyes

and nose so in the following image processing we will align the dog in a decent position in the

photo.

3.2.1 Dog Points Detection

To begin with, we will analyse the procedure to detect dog’s heads, nose and eyes. In

this program we will use .dat files that contain pre-trained models created in [30]. In those

trained models dlib is used. It uses this deep learning tool to detect dogs and it saves this file

into dogHeadDetector.dat. It also uses dlib shape predictor to identify the positions of the dog’s

eyes, nose, and top of the head. For every new photo we have collected, we will pass it though

the head and landmarks detector. We save the positions of the left eye, right eye and nose into

a .csv file to start processing the image.

Figure 11: Dog’s Landmark Detection

DogPoints.csv

Figure 12: Some saved landmarks in excel file

 23

In case our detector didn’t catch any dog in the image it will return an empty array.

Some images may be too difficult for our program to detect the dog. In some cases it may

delays way to much to find the landmarks if the dog lays in a weird position and in some other

cases it doesn’t seem to find precisely the eyes or the nose as it appears in the following figures

. Eventually we decided for those images to manually mark dog’s landmarks.

OpenCV is one of the most popular computer vision libraries. It will help us to control

and manage different types of mouse events and give us the flexibility to manage them. We

need to define define the events for the mouse click, and let the user mark only 3 points. The

user needs to mark in order the landmarks. First he needs to mark left eye then right eye and

finally the dog’s nose. After this event we will move on to repeat the whole process for all of

our pictures. Finishing this, the three labels are either manually added on the images or our

detector have found them: the left and right eye and noise.

Figure 13: Example image
that detector can not Detect
Dog’s Face.

Figure 12: Example image
that detector delays way too
much to find Dog’s Face

Figure 13: Example Image that
detector finds wrong landmarks

Figure 14: Manual Marking of Nose and Eyes
with OpenCV

 24

3.2.2 Stage 2 : Pre-processing

Coming to the pre-processing phase, we will take the csv file that we have created

before to modify our images. Firstly, we will read all the filenames of the data with their

landmarks we have collected.

After, the program will load the photos and mark the eyes and nose based on their positions in

the csv file [Figure 15].

Dog faces are then aligned using the position of the eyes. Face alignment creates

regularities in images and facilitates dog face parts automatic detection. Based on [2]’s

alignment, the right and left eye of the dog is placed in position (0.7/2.4x New height, 0.7/2.4

x New Width. With this metrics, the new aligned images appear to be a good calibration for

the picture. The pictures are finally re-sized to (new height, new width, depth) = (104 x 104 x

3) pixels. The above Figure [16] represents the example of the dog we gave before to align it

properly .

Figure 15: Dog Image Example with its landmarks

Figure 16: Dog Face Alignment

 25

Chapter 4

 Methodology

Contents

4.1 Overview .. 26

4.2 History ... 27

4.2.1 Neural Networks ... 27

4.2.2 Deep Convolutional Neural Networks .. 28

4.3 Network Architecture .. 29

4.4 Open Source Software for Machine Learning .. 29

4.5 Model Definition.. 30

4.5.1 The process of Model Definition .. 30

4.5.2 The Layers of our Network .. 31

4.5.2.1 Convolutional Layers and Activation Function ... 31

4.5.2 .2 Pooling Layers .. 33

4.5.3 Adding more layers to our network .. 34

4.5.3.1 Applying many Convolutional Networks .. 34

4.5.3.2 Global Average Pooling ... 36

4.5.3.3 Flatten Layer .. 36

4.5.3.4 Dropout Layer .. 36

4.5.3.5 Dense Layer ... 37

4.5.4 Batches .. 38

4.5.4.1 Define the Batches ... 38

4.5.4.2 Batches Normalization ... 39

4.6 Training .. 40

4.6.1 Organization of the Data ... 40

4.6.1.1 Splitting the Dataset ... 40

4.6.1.2 Npy files: ... 41

4.6.2 Optimizer Algorithm ... 41

4.6.2.1 Overview .. 41

4.6.2.2 Learning Rate ... 42

4.6.2.3 SGD – Adam Optimizer to minimize the error .. 42

 26

4.6.3 Loss Function ... 43

4.6.3.1 Triplet Loss .. 43

4.6.3.2 The margin ... 45

4.6.3.3 Metrics Triplet and Accuracy: Pairwise Ranking Loss 46

4.6.4 Triplet Sampling ... 47

4.6.4.1 The problem of Overfitting .. 47

4.6.4.2 Hard Triplet Mining Strategy: Hard sampling ... 48

4.6.5 Adaptive Hard Image Generator ... 49

4.7 Testing ... 50

4.7.2 Introduction ... 50

4.7.3 Useful Functions .. 50

4.7.3.1 Finding the Best Threshold ... 50

4.7.3.2 Create Embeddings .. 51

4.7.3.3 Find Distance ... 51

4.7.4 Algorithms .. 52

4.7.4.1 Brute Force Nearest Images ... 52

4.7.4.2 Agglomerative Clustering .. 52

4.7.4.3 Hybrid Solution: Cluster the Nearest Images .. 54

4.1 Overview

Firstly, we will talk about the general idea of our network and afterwards we will

analyze the process of building our model. Our network has as input dog images that will be

processed before entering the training process. The input will go though a convolutional neural

Figure 17: Passing inputs images into convolutional neural networks. Our output
is the predicted vectors placed in an Embedding Space

 27

network composed of numerous layers. It is extremely crucial to see how our neural network

architecture will be built. Eventually our final output, provides us information on the

correlations of the images, according to the embedding space created by the network.

We can think Embedding Space as a multi-dimensional graph that we can position elements

such as photos that contain many characteristics. The elements that have significant similarities

are close in this space we call to clarify their components. Our network outputs numerous data

for each picture and deep learning leverage various ranking losses to learn an object embedding

— an embedding where objects from the same class are closer than objects from different

classes.

4.2 History

4.2.1 Neural Networks

Neural Network is an expressive machine learning architecture. It is a series of

algorithms that endeavors to recognize underlying relationships in a set of data through a

process that mimics the way the human brain operates. In this sense, neural networks refer to

systems of neurons. Basically, the building block of a neural Network is a neuron, specifically

a functional unit that takes a signal input that goes into a node and it does some kind of a

mathematical operation to give us an output.

Figure 18: Images mapping though DCNN to embedding space

Figure 21: a neuron

Figure 21: Artificial Neural
Network

Figure 21: Deep Neural Network

 28

The several computations that a node is structured of, includes input from the data with a set

of coefficients, or weights, that either amplify or dampen our input. In this way we are assigning

a significance to inputs with regard to the task the algorithm is trying to learn. In our case we

are are dealing with biometrics of dogs.

4.2.2 Deep Convolutional Neural Networks

We take this unit and start to stack it either in series or in parallel or both so we can do

a more complicated function. Building up this complexity we have built what we called an

Artificial Neural Network. Each layer is doing some kind of a sequential processing. Stacking

several layers that each one of them is doing some kind of a sequential processing is what we

call a Deep Neural Network. We will add many hidden layers to our network. They will allow

us to complex data thanks to their nodes/neurons. They are “hidden” because the true values

of their nodes are unknown in the training dataset. In fact, we only know the input and output.

Because of how many hidden layers our network has, is called a deep neural network. The

most significant and final type of hidden layer in our network, is the fully-connected layer

where each neuron will be connected to all the others in two adjacent layers. It is not connected

to the ones in the same layer. The convolutional layers is another type of hidden layers that is

very prominent when dealing with dog images. We will use this layer multiple times to extract

dog characteristics. Therefore, the first few layers of the network may detect simple features

like lines, circles, edges. In each layer, the network is able to combine these findings and

continually learn more complex concepts as we go deeper and deeper into the layers of the

Neural Network.

Each connection between two nodes has an associated weight, which is just a number.

Each weight represents the strength of the connection between the two nodes. Every time the

network receives an input at a given node in the input layer, this input is passed to the next

node via a connection, and the input will be multiplied by the weight assigned to that

connection. These input-weight products are summed : Σ . This sum Σ is then passed through

a node’s so-called activation function, which performs some type of transformation on the

given sum. For example, an activation function may transform the sum to be a number between

zero and one. This function is used to determine whether and to what extent that signal should

progress further through the network to affect the ultimate outcome, say, an act of

classification. If the signals passes through, the neuron has been “activated.” The actual

transformation will vary depending on which activation function is used. The role of the

activation function is to buffer the data before it is fed to the next layer. Here’s a diagram of

what one node might look like.

 29

There is a massive variety of Neural Network Architectures we can design. There are

different types of nodes and computations that can be performed. There is also a different

topology of whether or not information is getting compressed in a bottleneck or expanded.

CNN is used in image recognition likewise in our case. What CNN does, is that it has these

convolutional layers that basically take a mask and slide it across the image doing local

computations in local patches. We are able to pull out edges or features and we can run that

through a convolutional layer and keep doing this process though another convolutional layer,

stacking all those layers. Anywhere there is a translation invariant we can use it. For computer

vision, this means that regardless of where an object is moved in an image (translation), it

doesn’t change what that object is (invariance). A dog picture may represent the dog in a

different position in the image (top, bottom, top right, etc.) CNN can start to reveal these

translations that exist in images.

4.3 Network Architecture

We are going to study the triplet-based network architecture proposed for the ranking

loss function[35]. The triplet loss based network architecture has been introduced by the

FaceNet [1] paper for for face recognition. They describe a new approach to train face

embeddings using online triplet mining. Usually in supervised learning we have a fixed number

of classes and train the network using the SoftMax cross entropy loss. Having two unknown

faces we wouldn’t be able to compare them without the triplet loss contribution.

Triplet loss in this case is a way to learn good embeddings for each face. In the embedding

space, faces from the same person should be close together and form well separated clusters.

4.4 Open Source Software for Machine Learning

Designing an architecture is becoming easier because of the explosion of open source

software of the giants of the Industrial Investment technology companies such as Google and

Facebook. There are many incredibly powerful environments like TensorFlow, Keras and

Figure 22: : Visualization of the Network[37]

 30

PyTorch where we can design NN architecture and train our data to build an expressive model.

In this research we study the architecture of a model that uses the open source software of

TensorFlow and Keras, that will be able to help us in this procedure.

4.5 Model Definition

4.5.1 The process of Model Definition

As we mentioned earlier, in neural networks, convolutional neural network is one of

the main categories to do images recognition and classifications. Objects detections,

recognition faces etc., are some of the areas where CNNs are widely used. CNN image

classifications takes an input image, process it and classify it under certain categories (E.g.:

Dog, Cat, etc.). A DCNN uses a three-dimensional neural network to process the Red, Green,

and Blue elements of the image at the same time. Computers basically see an input image as

array of pixels and it depends on the image resolution. Based on the image resolution, it will

see h x w x d(h = Height, w = Width, d = Dimension). E.g., An image of 6 x 6 x 3 array of

matrix of RGB (3 refers to RGB values). This considerably reduces the number of artificial

neurons required to process an image, compared to traditional feed forward neural

networks. The architecture of a convolutional network typically consists of four types of layers:

convolution, pooling, activation, and fully connected.

Figure 23 : Each input image will pass it through a series of convolution layers with filters (Kernals), Pooling, fully connected
layers (FC) and apply Softmax function to classify an object with probabilistic values between 0 and 1. The above figure is a
complete flow of CNN to process an input image and classifies the objects based on values. [38]

Now that we have gone though the idea of the convolutional neural network, we can

continue to build our CNN. To build the CNN, we'll use a Keras Sequential model. The

network takes an image x of size (104 ~ 104 ~ 3) as input and outputs an embedding vector

f(x) of size 32. On the first layer, we specify this input shape, which is the shape of our data.

Our images are 104 pixels high and 104 pixels wide and have 3 color channels: RGB. This

gives us an input_shape of (104, 104, 3).

 31

4.5.2 The Layers of our Network

4.5.2.1 Convolutional Layers and Activation Function

Convolution is the first layer to extract features from an input image. Convolution

preserves the relationship between pixels by learning image features using small squares of

input data. It is a mathematical operation that takes two inputs such as image matrix and a filter

or kernel. Based on that, the first layer in the model is a 2-dimensional convolutional layer.

This layer will have 16 output filters each with a kernel size of 7x7. We enable zero-padding by

specifying padding = 'same'. The activation function we are using is of the most widely used

activation functions today called Relu . Relu, which is short for rectified linear unit, transforms

the input to the maximum of either 0 or the input itself.

In simple words, if the input is less than or equal to 0, relu will output 0. If the input is

greater than 0, relu will then just output the given input. The idea behind why we are using this

activation function is based on the more positive the neuron is, the more activated it is. We

specify an activation function in a Keras Sequential model. To achieve this, first we import our

classes and then specify an activation function in the constructor of the layer. On-account-of

our input images, that are greater than 128×128, we need choose to use a kernel size greater

than 3 to help : (1) learn larger spatial filters and (2) to help reduce volume size. So firstly, we

need to use 7×7 kernel to learn larger features and then quickly reduce spatial dimensions and

start working with 3×3 kernels.

Mandatory Conv2D parameter is the numbers of filters that convolutional layers will

learn from. 32 is the number of output filters in the convolution. After this filter has convolved

the entire input, we'll be left with a new representation of our input, which is now stored in the

output channel. This output channel is called a “feature map”. Each convolutional layer holds

a stack of feature maps that build on one another. At the end of the case, the model puts all of

these features together. By finishing defining the layers of our network, we can see that each

convolutional layer of our network has a set of feature maps that can recognize increasingly

complex patterns/shapes in a hierarchal manner like below. The CNN uses pattern recognition

of numbers to figure out the most important features of the dog image. As it stacks these

patterns on top of each other with more layers, it can build very complex feature maps.

Figure 24: Relu Function

 32

With CNNs, we look at groups of pixels next to one another which allows the model to

learn local patterns like shapes, lines, etc. For example if the CNN saw lots of white pixels

around a black circle, it would recognize this pattern as an eye. To get CNNs to accomplish

translation variance, we rely on the services of its’ feature learning algorithm.

Figure 25:Extraction of features

Figure 26: Keras Conv2D: The filter slides over the input and performs its output on the new layer [39].

Figure 27: Some of the convolved images using many different kernels: emboss, sharpen, edge , blur etc.

 33

Moreover, we define the stride , which determines how many pixels we want our filter

to move as it slides across the image. Stride is the number of pixels shifts over the input

matrix. In our case, we move the filters to 2 pixels at a time. The below figure shows

convolution would work with a stride of 2.

4.5.2 .2 Pooling Layers

Stepping in the next layer, we need to add Max Pooling to reduce the spatial dimensions

of the output volume. By adding this to layer, we reduce the dimensionality of the images by

reducing the number of pixels in the output from the previous convolutional layer. Further do,

it removes small values by taking the maximum value from a square set of pixels.) As far as

choosing the appropriate value for no. of filters, it is always recommended to use powers of 2

as the values. For each block, or “pool”, the operation simply involves computing

the 𝑚𝑎𝑥 value, like is showing in the following figure. Doing so for each pool, we get a nicely

down sampled outcome, greatly benefiting the spatial hierarchy we need:

Figure 28:: Example of a Conv2D layer [38]

Figure 29: Application of Max Pooling with stride=2 [38]

 34

4.5.3 Adding more layers to our network

4.5.3.1 Applying many Convolutional Networks

Moving forward we start to repeat this process by applying many convolutional layers

with different filter sizes each time.

We use filters that can detect edges. In the output channels, the brightest pixels can be

interpreted as what the filter has detected. Using the filter in [Figure 31], we can detects top

horizontal edges [Figure 32] of the dog, and that's indicated by the brightest pixels (white).

Figure 30: Adding various convolutional layers example

Figure 31: Example of kernel and its output result

 35

The second filter in figure [32] detects left vertical edges, again being displayed with

the brightest pixels. The third detects bottom horizontal edges, and the fourth detects right

vertical edges.

These filters, as we mentioned before, are really basic and just detect edges. These are

filters we may see towards the start of a convolutional neural network. More complex filters

would be located deeper in the network and would gradually be able to detect more

sophisticated patterns like the ones shown here:

The amazing thing is that the pattern detectors are derived automatically by the network. The

filter values start out with random values, and the values change as the network learns during

training. The pattern detecting capability of the filters emerges automatically.

Figure 32: Example 2 of kernel and its output
result.

Figure 33: We can see the shapes that the filters on the left detected from the images on the right. We can see circles,
curves and corners. As we go further into our layers, the filters are able to detect much more complex patterns like dog
faces etc.

 36

4.5.3.2 Global Average Pooling

Moreover, we add the Global Average Pooling that downsamples the input along its

spatial dimensions (height and width) by taking the average value over an input window that

is our previous layer, for each channel of the input. The window is shifted by strides along each

dimension.

4.5.3.3 Flatten Layer

Continuing to the final layers, we perform a Flatten Layer to convert the data into 1D

arrays to create a single feature vector.

4.5.3.4 Dropout Layer

Thereafter, we apply Dropout that consists in randomly setting a fraction rate of input units to

0 at each update during training time, which helps prevent overfitting. The term “dropout”

refers to dropping out units (hidden and visible) in a neural network. By dropping a unit out,

we mean temporarily removing it from the network, along with all its incoming and outgoing

connections, as shown in Figure 36. The choice of which units to drop is random.

Figure 34: Application of Global Average Pooling with stride = 2

Figure 35: Flatten Layer

Figure 36: Dropout Neural Net Model. On the Left side, we can see a Standard Neural Network with 2 hidden
layers. On the Right size, is the thinned version of the network of our example, produced by applying dropout
to the left side. Crossed units have been dropped. [36]

 37

4.5.3.5 Dense Layer

Eventually by adding dense layer, we create a fully connected layer. Each node in this

layer is connected to the previous layer. A densely connected layer provides learning features

from all the combinations of the features of the previous layer, whereas a convolutional layer

relies on consistent features with a small repetitive field. This layer is used at the final stage of

CNN to perform classification for our problem. Dense layer does the below operation on the

input and returns the output. A densely connected layer provides learning features from all the

combinations of the features of the previous layer, whereas a convolutional layer relies on

consistent features with a small repetitive field. In the below figure we can clearly see that each

Dense Layer receives input from all neurons of previous layers.

We can also see another example in the following figure, that represents a more complex

network with more hidden layers, as it happens in our network.

Figure 37: A simple Neural Network with only 1 hidden layer that is fully connected.

Figure 38: A more complex Neural Network with only 3 hidden layers that are fully connected.

 38

Moving to the final step we need to group layers into an object with training and

inference features. In our case, we are going to use "Functional API", where we start from an

Input, and chain layer calls to specify the model's forward pass, and finally we create our model

from inputs and outputs: Output data we will be the result of all these layer transformed though

the final layer called Lambda. Lambda is used to transform the input data using an expression

or function. In our scenario, Lambda comes with the expression lambda x:

tf.nn.l2_normalize(x, axis=-1) that is applied to as a final layer. Its input data will be

normalized along dimension axis using an L2 norm. This layer will coerce its inputs into a

distribution centered around 0 with standard deviation 1. It accomplishes this by precomputing

the mean and variance of the data.

4.5.4 Batches

4.5.4.1 Define the Batches

To move forward, is important to specify our batches. The batch size is a

hyperparameter that defines the number of samples to work through before updating the

internal model parameters. We can think of a batch as a for-loop iterating over one or more

samples and making predictions. When the batch size is more than one sample and less than

the size of the training dataset, the learning algorithm is called mini-batch gradient descent like

we do in our network. In our case, in every step of the training, we set our network to constantly

take 30 images that have dimensions 224x224x3. The reason behind setting batch size to 30 is

due to the loss that we will use in our training phase. We will refer to triplet loss in the following

subchapter but is important to declare that we will be working with 3 images every time

(anchor, positive and negative), so batch size is 30 so we can work with 10 triplets of images

every time (10x3). So declaring that, the number of batches in each epoch equals to the training

set size divided by the batch_size. Generally, the larger the batch size, the quicker our model

will complete each epoch during training, due to the fact that our computational recourses will

be able to process much more than one single sample at a time. The trade-off, however, is that

even if our machine can handle very large batches, the quality of the model may degrade as we

Figure 39: The architecture of our Network.

 39

set our batch larger and may ultimately cause the model to be unable to generalize well on data

it hasn't seen before.

4.5.4.2 Batches Normalization

Proceeding to the next step we use a technique called Batch Normalization. Keras also

provides support for batch normalization via the BatchNormalization layer. We will need to

mitigate the effect of unstable gradients within deep neural networks. BN introduces an

additional layer to the neural network that performs operations on the inputs from the previous

layer. Typically in machine learning, it is common to normalize input data before passing the

data to the input layer. We need to normalize to ensure that our model can generalize

appropriately. This is achieved by ensuring that the scale of the values is balanced, and also the

range of the values are maintained and proportional despite the scale change in the values.

The operation standardizes and normalizes the input values. Batch normalization applies a

transformation that maintains the mean output close to 0 and the output standard deviation

close to 1. The Batch Normalization layer can be used to standardize inputs before or after (in

our case), the activation function of the previous layer.

From the above Figure [40] we can come to conclusion that the means of all dimensions are

zero and the variances are all 1. Below there are two equations that define the calculations of

standard deviation (σ) and mean (μ). They depend on the value of 𝑧௜ :

𝜎 ൌ ඩ
1
 𝑁

 ෍ሺ𝑧௜ െ 𝜇ሻଶ

ே

௜ୀଵ

𝜇 ൌ
1
 𝑁

 ෍ 𝑧௜

ே

௜ୀଵ

Figure 40: Batch Normalization Process

 40

When applying batch norm to a layer, the first thing batch norm does is normalize the

output from the activation function. Recall from our previous review on our activation

functions Relu, that the output from a layer is passed to an activation function, which

transforms the output in some way depending on the function itself, before being passed to the

next layer as input. After normalizing the output from the activation function, batch norm

multiplies this normalized output by some arbitrary parameter and then adds another arbitrary

parameter to this resulting product.

4.6 Training

4.6.1 Organization of the Data

4.6.1.1 Splitting the Dataset

Moving on to the next phase to complete our network, we will explore the process of

training. Before we dive in to the training phase, we need to split our dataset. We are going to

have an open-set dataset, specifically is a bunch of of unknown dog pictures that the network

can only see for the first time during the testing stage. The open-set problem is a harder problem

to solve and closer to a real life problem [2]. We now need to organize the directory structure

Figure 41: For each dimension it is calculated: mean = mi and
standard deviation = σi

Figure 42: Batch Normalization

 41

on disk to hold the data set. We'll manually do some parts of the organization, and

programmatically do the rest. Our code splits train and test pictures that will be used in each

procedure. Data.py[2] saves the filenames of testing and training datasets separately in an

output folder. We may only run this code only once to save this kind of information onto

archives in our network. Its important to split the datasets so we can actually test that our model

can do its job. When we run data.py functions in our main code we can see the demarcation

between the files we will be using. We have the filenames of testing and training apart and also

the labels for them.

4.6.1.2 Npy files:

Anyone who has ever done any kind of data processing in Python has undoubtedly

come across Numpy and Pandas. These are the giants of Data Science in Python and stand as

the foundation for a lot of other packages, namely Numpy provides the fundamental objects

used by the likes of Scikit-Learn and Tensorflow. So why are we referring about these packages

and why Numpy in particular? It is well known that the “industry standard” with regard to data-

files is .csv files. Now while convenient, these files are highly un-optimized when compared

to the alternatives, like the .npy files provides as courtesy of Numpy. Explaining why we use

these type of files, we can point out why do we need these files in our program. In our packages

we involve many pictures that will be used in training and testing. In filnames.py we obviously

save the names of the directories and the photos specifically we are using in each case. For

example directory named “Cookie” has a few photos of the same dog named Cookie. This dog

will be used in training process and its filenames will be saved in filenames-train.npy. In labels

we point out that the photos we are using for the same dog belong only to that specific dog. For

example Cookie-Photo1 and Cookie-Photo2 belong to Cookie. In this way, we have splitted

our dataset in training and testing and made it clear which files are used where. Our model, is

a deep convolutional neural network. It is trained via a triplet loss function that encourages

vectors for the same identity to become more similar (smaller distance), whereas vectors for

different identities are expected to become less similar (larger distance). The focus on training

a model to create embeddings directly (rather than extracting them from an intermediate layer

of a model) was an important innovation in this work.

4.6.2 Optimizer Algorithm

4.6.2.1 Overview

For every iteration, an epoch is executed. we showed how each connection between

nodes has an arbitrary weight assigned to it. We will configure our model with compile method

 42

of Keras. One of the most important parameters configuring our model is the optimization

algorithm in order to succeed that. During training, our weights will be iteratively updated and

moved towards their optimal values.

4.6.2.2 Learning Rate

The learning rate is a parameter in our network, that controls how much to change the

model in response to the estimated error each time the model weights are updated. Choosing

the learning rate is challenging as a value too small may result in a long training process that

could get stuck, whereas a value too large may result in learning a sub-optimal set of weights

too fast or an unstable training process. Learning rate may be the most important parameter

when configuring our neural network. Therefore it is vital to know how to investigate the

effects of the learning rate on model performance and to build an intuition about the dynamics

of the learning rate on model behavior.

4.6.2.3 SGD – Adam Optimizer to minimize the error

The most widely knowns optimizers are called stochastic gradient descent, or more

simply, SGD. The objective of SGD is to minimize some given function that we call a loss

function. So, SGD updates the model's weights in such a way as to make this loss function as

close to its minimum value as possible. Specifically we have encompassed ‘Adam’ Optimizer,

an SGD method that is based on adaptive estimation of first-order (mean) and second-order

moments (variance). β1 and β2 are the decay rates, that control the relative contribution of past

history versus the present gradient.

Back-propagation is the essence of neural net training. It is the method of fine-tuning

the weights of a neural net based on the error rate obtained in the previous epoch (i.e., iteration).

Proper tuning of the weights allow us to reduce error rates and to make the model reliable by

increasing its generalization. It is a standard method of training artificial neural networks and

it helps to calculate the gradient of a loss function with respects to all the weights in the

network.

Figure 43: Mean and Variance

 43

4.6.3 Loss Function

4.6.3.1 Triplet Loss

Another significant parameter that will help our optimizer, to minimize the error and

update the weights, is our loss function (Appendix A). A way to measure whether the algorithm

is doing a good job, it is necessary to determine the distance between the algorithm’s current

output and its expected output. The measurement is used as a feedback signal to adjust the way

the algorithm works. The loss function is the function that computes the distance between the

current output of the algorithm and the expected output. It’s a method to evaluate how our

algorithm models the data. For our purposes we will primarily focus in Triplet Loss function.

Generally, the objective of the model is to generate embeddings that will position same dogs

in a close distance to each other in the embedding space and on the other hand, to position

different dogs in a larger distance. The triplet loss function will contribute in this idea. A triplet

basically contains an anchor, a positive, and a negative image. The positive image is more

similar to the anchor image than the negative image (Figure 45 for an illustration).

Figure 44: As shown in above diagram, backward propagation is exactly the opposite side of forward propagation. You can
view the forward propagation as “forecasting output based on inputs and the ANN”. Backward propagation is to feedback
the error and adjust the ANN to make it more accurate.

 44

According to the definition of triplets, it is a fact that the distance between the anchor

sample and the negative sample representations 𝑑ሺ𝑟௔, 𝑟௡ሻ is greater (and bigger than a margin)

than the distance between the anchor and positive representations 𝑑൫𝑟௔, 𝑟௣൯. Below we can see,

the formula of Triplet loss. We call Ti = (pi,p+i ,p−i) a triplet , where pi,p+i ,p−i are the anchor

image, positive image, and negative image, respectively. α is a margin that is enforced between

positive and negative pairs.

ฮ 𝑓ሺ𝑥௜
௔ሻ െ 𝑓൫𝑥௜

௣൯ฮ
ଶ

ଶ
൅ 𝑎 ൏ ‖𝑓ሺ𝑥௜

௔ሻ െ 𝑓ሺ𝑥௜
௡ሻ ‖ଶ

ଶ , ∀ ቀ 𝑓ሺ𝑥௜
௔ሻ, 𝑓൫𝑥௜

௣൯, 𝑓ሺ𝑥௜
௡ሻቁ ∈ 𝑇

Using triplet model selection, our network learns feature embedding by optimizing the relative

distance between the samples from the same classes and dissimilar classes.

Figure 46: Minimization of the distance between the positive and anchor. Maximization of
the distance between negative and the anchor.

Figure 45: Example of a triplet ranking loss setup to train a network for image face verification. In this setup, the weights of
the CNNs are shared. We call it triple nets.

 45

Now we will use the triplet loss function over a contrastive loss. This loss minimizes

and maximizes the Euclidean distance between similar and different points, respectively.

Similar and different points are grouped into positive and negative pairs. The next figure shows

its formulation using a pair of points’ embeddings.

Triplet loss pulls the anchor and positive together while pushing the anchor and negative away

from each other.

4.6.3.2 The margin

Similar to the contrastive loss, the triplet loss leverage a margin m. Triplet loss is

generally superior to the contrastive loss in retrieval applications like Face recognition, Person

re-identification, and feature embedding. In our scenario we are dealing with dog face

recognition which is very similar to the other applications that are using this loss. In the

following formula ‘α΄ is the parameter representing the margin, which is enforcement

between positive and negative pairs. Intuitively, for each dog, triplet loss expects a margin

of a between all the combinations of its positive and negative images of dogs. With N

represent the set of all possible triplets, the loss function in Metric Layer that is being

minimized is shown in the Figure below. [Figure 50].

Figure 47: Example of Triplet Loss learning process

Figure 48: Triplet loss example 2

Figure 49: Final Triplet Loss Formula

 46

4.6.3.3 Metrics Triplet and Accuracy: Pairwise Ranking Loss

Metric values are displayed during fit() and logged to the History object returned

by fit(). They are also returned by model.evaluate(). We will set as a metric, the triplet

accuracy. As mentioned earlier, in this setup positive and negative pairs of training data points

are used. The purpose is to learn representations with a small distance between the for positive

pairs, and greater distance than some margin value ‘α’ for negative pairs. Pairwise Ranking

Loss forces representations to have zero distance for positive pairs, and a distance greater than

a margin for negative pairs. Being ra, rp and rn the samples representations and d a distance

function, we can write that triplet accuracy will be:

Figure 51: Loss for Negative and Positive Pairs.

For negative pairs, the loss will be zero when the distance between the representations of the

two pair elements is greater than the margin m. But when that distance is not bigger than m,

the loss will be positive, and net parameters will be updated to produce more distant

representation for those two elements. The loss value will be at most m, when the distance

between ra and rn is zero. The function of the margin is that, when the representations

produced for a negative pair are distant enough, no efforts are wasted on enlarging that distance,

so further training can focus on more difficult pairs.

Figure 50: Triplet Loss learning process

 47

Figure 52: Triplet Loss example for our dog network

If r0 and r1 are the pair elements representations, y is a binary flag equal to zero for a

negative pair and to one for a positive pair and the distance d is the Euclidian distance, we can

equivalently write:

Figure 53: Pairwise Ranking Loss

4.6.4 Triplet Sampling

4.6.4.1 The problem of Overfitting

Overfitting refers to a network that models the training data too well. This kind of

models, happen when they learn the detail and noise in the training data to the extent that it

negatively impacts the performance of the model on data it hasn’t seen before. To avoid

overfitting, it is desirable to utilize a large variety of images. Because of the numerous images

of dogs, the number of possible triplets increases cubically. It is computationally prohibitive

and sub-optimal to use all the triplets. It is crucial to choose an effective triplet sampling

strategy to select the most important triplets for rank learning.

 48

4.6.4.2 Hard Triplet Mining Strategy: Hard sampling

One of the optimizations to the training processes proposed in the paper is the triplet

selection process, Hard Triplet Mining. In hard sampling, the farthest positive and closest

negative only are utilized. For each anchor image, we select a positive image that has

embedding farthest from anchor’s and we call it Hard Positive. Moreover, we select a negative

image that has embedding closest to the anchor’s what’s so called a Hard Negative. In the next

Figure, n3 is the closest negative for the anchor a. Thus, assuming p is the farthest positive, the

loss will be computed using the triplet (a,p,n_3). In conclusion, the negative sample is closer

to the anchor than the positive. The loss is positive and greater than m.

Hard Triplets: d(ra,rn)<d(ra,rp)

In our project, adaptive hard triplet was used as a triplet dataset configuration method

to sufficiently train the increased number of dogs. Unlike the existing hard triplet configuration,

the adaptive hard triplet configuration method adjusted the ratio of the hard dataset according

to the loss value of the model. Its values can vary from zero to one. Previously, we have stated

that our batch size is going to be 30 (3x10 images for each category) due to the fact that we are

dealing with triplets in triplet loss. Therefore, it is anticipated that the maximum number of

hard triplets will be 1/3 of the batch size. The number of hard triplets increased as the loss

decreased and reached 10 when the loss was zero. The value in this is rounded to an integer

and used as the number of hard triplets. The same model was trained on both the base method

and the proposed method for a performance evaluation and comparison. The alpha of the triplet

loss was 0.3. The model’s compiler as we mentioned is Adam optimizer, and the learning rate

is 10^-4 in the entire epoch.

Figure 54: Hard Triplet: Hard Positive and
Hard Negative

Figure 55: Loss Value to adjust ratio of the hard dataset

 49

In the making of this procedure we used global_define_hard_triplets method that gets

all of the positive and negative images for our anchor image and calculates the distances

between them. The algorithm decides which images are hard positives and hard negatives.

Below, we can observe an example of the hard triplet selection.

4.6.5 Adaptive Hard Image Generator

Moving forward to the main process of training, we need to make as many iterations

are our epochs. Number epochs is equal to the number of times the algorithm sees the entire

data set. So, each time the algorithm has seen all samples in the dataset, one epoch has

completed. We have set epochs to be 100. In this for loop we call

from model the fit_generator method instead of fit, where we just had to give our training

generator as one of the arguments. The steps per epoch we are sending, specifies the total

number of steps taken from the generator as soon as one epoch is finished and next epoch has

started. We decided to set steps per epoch to be 300 our generator can select online hard triplets,

at each step, for training. It includes an adaptive control on the number of hard triplets included

during the training. We have already analyzed the procedure of hard triplet sampling in the

previous subchapter. The filenames of our dataset and their corresponding label are gong to be

used to create our data generator. After that we have a for loop to loop over as many batches

as defined by batch size and then we are loading the current batch of samples in batch_samples.

To store the image sample and labels we are creating two empty list at the beginning f_triplet

y_triplet. Now we loop over each sample in the current batch for each sample and it generates

predictions for the input samples from a data generator. Our generator returns a History object.

Figure 56: Hard Triplet Selection: Hard Positive and Hard
Negative.

 50

Its ̀ History.history` attribute is a record of training loss values and metrics values at successive

epochs, as well as validation loss values and validation metrics values. Keras takes care of the

rest. Note that our implementation enables the use of the multiprocessing argument

of fit_generator, where the number of threads specified in workers are those that generate

batches in parallel. We are saving this information for every epoch to h5 files named with the

name of our network and their number of epoch.

4.7 Testing

4.7.2 Introduction

After we have built a machine learning model and trained it on some data, in this section

we will discuss how to test and evaluate our model. We will put on the test, algorithms that

their main target is to classify different dogs and identify input dog images. Also, we will

briefly analyze many measurements we have taken during the process that were either

decreased significantly at the end of our training or they have elevated. In this way, we will be

able evaluate our built network and make some observations. Firstly, we will take a look at

various mandatory functions that will help us try out our algorithms.

4.7.3 Useful Functions

4.7.3.1 Finding the Best Threshold

A vital function in this implementation, is to find the best threshold and accuracy when

it comes to stating similar images. We need to have in mind that increasing the threshold, we

expect from our model to be very sure about its prediction which means we will be filtering

out false positives. In this scenario we are targeting precision. This might be the case when our

model is a part of a mission-critical pipeline where decision made based on positive output of

model is costly (in terms of money, time, human resources, computational resources etc...) In

our network, time is what makes us doubting a high threshold by virtue of the pet owners

waiting for the results in the upcoming website.

On the flip size of having much more false positives , having a higher threshold we are

taking accountability for having many of the false negatives results. Following this logic, if we

decrease the threshold, our model will say that more examples are positives, which will allow

us to explore more examples that are potentially positive. On this scenario we are

targeting recall. This information is important when a false negative is disastrous e.g. in

medical cases (You would rather check whether low-probability patient has cancer rather than

ignoring him and find out later that he was indeed sick). We may allow to say that losing a pet

 51

is one of the most saddest and desperate moments for a pet owner. By saying that, it is better

to have a high threshold and show more possible results that may happen to be their lost dog,

but it needs to be tested several times to be sure about it.

Diving into the process of finding the best threshold an accuracy, we need to calculate

the distances between images from the same class and images from another class so we can

decide. Randomly, we select if we are going to work with 2 different dogs’ images or photos

of the same dog. We find again randomly two different photos either, we are looking in the

same class or in another. Continuing, we need to find the embedding vectors of the two images

in our model space and finally calculate their distance. In every iteration, we considerate a good

threshold when two images are the same and their distance is small, but also when two different

images have a larger distance than the distance they have with photos of the same class.

Accuracy is calculated by the minor average differences in the distances.

4.7.3.2 Create Embeddings

We need to locate our input images to the embedding space we have talked about

before. Using TensorFlow’s Keras model we can predict their vectors. It is a fact that our inputs

will be in a certain shape (224,224,3).

4.7.3.3 Find Distance

There are many ways to calculate the distance between two vectors. We decided to use

the common and well known Euclidean Distance that is defined below.

Having both the embedding vectors and our distance measure formula, we can calculate the

distance between two embeddings.

Figure 57: Euclidean Distance

 52

4.7.4 Algorithms

4.7.4.1 Brute Force Nearest Images

In this algorithm we have used all of the above explained methods. As our titled

algorithm explains itself, we will find the nearest images of a dog picture by comparing every

image in the set. With the library of sklearn we will read all of our images. We will read all of

the images that are contained in our database. Noting that we only work with jpeg images. For

every image passing though the testing of this algorithm we are calculating its embedding and

eventually its distance from the searched dog. If their distance is smaller than the average

threshold we have calculated before, it is considered to be a similar photo. In two arrays we

save the likely similar images with their distances from the photo we have selected in the start.

Because of the wide range of database images (our database can hold limitless lost dogs), we

decided to find the top 6 images that are most likely to be similar with our searched dog. In

order to find the top 6, we need to sort the likely similar photos array based on their distance

indices. In every iteration, we find the smaller distance in the distance array with the function

of python called min(). We this function we find not only the minimum distance but also we

can identify the indices of the smaller distance. Knowing the indices of the smaller distance we

know which photo is included in the top 6 similar images and we append it in our top_6 array.

Afterwards, we need to pop out the smaller distance and the photo with the smaller distance

and repeat this process for another 5 iterations.

4.7.4.2 Agglomerative Clustering

We will test our network with images from the testing set. First we will load our trained

model and then we will compute the Network's output for our test images. Specifically it will

predict our vectors in the embedding space. These vectors, are going to be placed into the

KMeans algorithm and KMeans will group those pictures! The output will be the labels for

each image! Thereafter we will plot our clusters to check how good they are distributed. It is a

quite simple process to check our model but it is not useful to identify the most similar images,

given that we need to know how many clusters we have. Basically Kmeans algorithm is used

to evaluate our network knowing the number of clusters we have. In our research, our purpose

is to find a way to not waste any algorithm just for evaluation.

We want to take advantage of every possible algorithm that can help us in the dog

recognition process and this is what we are going to do. Before moving on to the next algorithm,

let’s take a look to our clustered data. We tried to cluster the some dogs’ pictures that our

network hasn’t seen before, after embedding vector computation using the k-means clustering

algorithm. We can see that the results are satisfyingly good, regarding the complexity that there

 53

is behind our pictures. A picture dog may be taken with very different angles, lighting, position

and in another landscape. The figure below also shows one of the mistakes made by the

algorithm: two different clustered dogs. We can’t say that they are badly clustered because the

colour patterns that they appear in the dogs are very similar, excluding the fact that the first

dog is brown and white an the other one is black and white. Also, if we see closely, in the first

cluster on the third column we have a different dog that is very similar to the other one because

its colour its fully black too . We understood this by reading the labels. Some images, not even

human brain can stand them out.

Figure 58: Results of Clustering

 54

4.7.4.3 Hybrid Solution: Cluster the Nearest Images

This is an evolutionary method in our research, that can help us get both of the best

worlds. We need to do some changes on the way to combine these two methods that we have

mentioned earlier, to customize the algorithm’s way to our problem needs (Appendix B). As it

is expected, we will start off the process by finding the most likely similar dogs to the dog we

have searched for. As we have said in the verification method we will find the embeddings for

all the pictures based on their embedding vectors.

Figure 59: Four dogs with their characteristics. Our Network will be able to extract some of them like patterns, eyes, fur
texture etc. Based on their features, the images are going to be place in the embedding space.

This time we will not take the first 6 similar photos. We will increase our threshold by

the accuracy value we have calculated. In this way, we will have more possible false negatives.

On the one hand we want to minimize the range of images to look for (and apply clustering

later on), but on the other hand we want to make sure to have a wider range of photos that

didn’t make it through the threshold. Afterwards, we will find out the labels of our testing

images that will be our found dogs in our database. Now that we have eliminated many photos

from our database, we will cluster the left out images thar some of our possible results.

Zeus Rockie Linda Lucky

Brownish orange

colour

Light brown, spots of

black & white

Brown‐ a little white black

Medium size &

brownish eyes

big black eyes Small black eyes Medium size black

eyes

Medium size nose Medium size nose Very small nose Big nose

Figure 60: Clustering Nearest Embeddings

 55

As we have pointed out, in K-Means algo, we need to declare how many clusters we

want. For this implementation, we will estimate the optimal number of clusters every time we

try to cluster data. We make multiple iterations for many values of k starting with 1 cluster and

ending placing each data in a different cluster. For every value of k, our algorithm will compute

the SSE. SSE is defined as the sum of the squared distance between centroid and each member

of the cluster. Then we plot a K against SSE graph. We will observe that as K increases SSE

decreases as dissertation will be small. So the idea of this algorithm is to choose the value of

K at which the graph decrease abruptly. This sort of produces a “elbow effect” in the picture:

In the above picture we can see a elbow occurring around 2- 3 so that’s a good number to

choose.

Kmeans is then performed with the elbow K as the number of clusters, likewise we

mentioned earlier. We will only show as a result for our searched dog, the cluster that contains

our dog. We can see the following plot how our images positioned in the embedding space

applying clustering with K-Means.

Figure 61: Elbow Method for Optimal k

Figure 62: Clustered Images and Centroids of each cluster

 56

Chapter 5

 Evaluation

Contents

5.1 Overview ... 56

5.2 Results ... 57

5.1 Overview

This section describes a trained neural network’s evaluation results using a validation

set to measure its quality, considering dog images that were not taking part in the training. As

we discussed previously, it's important to use new data when evaluating our model to prevent

the likelihood of overfitting to the training set. However, sometimes it's useful to evaluate our

model as we're building it to find that best parameters of a model - but we can't use the test set

for this evaluation or else we'll end up selecting the parameters that perform best on the test

data but maybe not the parameters that generalize best. To evaluate the model while still

building and tuning the model, we use the subset of the data that are known as the validation

set. I'll also note that it's very important to shuffle the data before making these splits so that

each split has an accurate representation of the dataset. We carried out an experiment in which

we compare pairs of dogs for each class. If it picks two dogs that are the same, it is expected

that the Euclidean distance between them should be below a certain small threshold. In addition

to that, pairs of dogs that are different were also compared, yielding a distance above that

threshold.

Figure 63: SGD algorithm to minimize the Loss and upgrade the Weights.

 57

At the most basic level, a loss function quantifies how “good” or “bad” a given predictor

is at classifying the input data points in a dataset. It is a fact that, the smaller the loss, the better

a job the classifier is at modeling the relationship between the input data and the output targets.

That said, there is a point where we can overfit our model — by modeling the training data too

closely, our model loses the ability to generalize. It’s a balancing act and our choice of loss

function and model optimizer can dramatically impact the quality, accuracy, and

generalizability of our final model. We chose to work with Adam Optimizer and Triplet Loss.

5.2 Results

In order to evaluate our network we will see how our training and validation is adjusted

by the end of all epochs.The triplet loss model was trained using the existing triplet loss

learning method with 250 epochs. The second graph [Figure 65], illustrates the training results.

We can see the 2 metrics: Loss and accuracy. Training loss is the error on the training set of

data. Validation loss is the error after running the validation set of data through the trained

network. Neural network is defined as the percentage of triplets satisfying the triplet loss

margin condition in a randomly sampled batch of triplets. During an epoch, the loss function

is calculated across every data items and it is guaranteed to give the quantitative loss measure

at given epochs. We are plotting a curve across iterations to see how loss differs from the

beginning to the end of the training. An epoch is an arbitrarily often repeated run over the whole

dataset, which in turn is processed in parts, so called batches. After each train on batch, a loss

is calculated, the weights are updated and the next batch will are expecting to get better results.

These losses are indicators of the quality and learning state of our to NN. Note that we can log

our losses in two periods: After every Epoch or After every Iteration.

Figure 64: Batch Loss

 58

From the above graph [Figure 64], we can observe our Batch Loss. The x axis is the

total number of batches that were created and the y axis is batch loss. Luckily, our loss gets

smaller by the end of the iterations. On the other hand, we can see a lot of ups and downs. If

we look at the loss (red color) in a particular range of batches, we will see a very noisy estimate

of our dataset loss because the batches also stored all the samples our model had trouble with,

or all the samples that are trivial to succeed on. Normalized and averaged values are indicated

by the curve that hasn’t any abrupt changes. Continuing to the next graph [Figure 65], triplet

accuracy among the batches is demonstrated. Our accuracy improves during our training. Using

more triplets in the batch improved our accuracy. This graphs inherits the conclusions we have

made from the previous graph.

Generally, a network to be considered as a reliable one, loss must decrease by the end

of our training and accuracy to be increased. The following figure [66] indicates when are we

having a good learning rate based on our loss.

Our network succeeds to lower the loss over iterations and improve our accuracy as it

appears in the following figures. It is relatively leveled in the end. We can see that training loss

Figure 65: Batch Triple Accuracy

Figure 66: Learning Rate based on Loss

 59

is slightly larger that the validation. In our case, it is acceptable to consider our network a good

fit. Our validation set may consists of "easier" examples than the training set and this leads to

be smaller. We can not say it is underfitted because they are very close. To be sure about our

results we should try cross validating our model, but because our model takes too much time

to train will will just retrain it on a differently mixed train/val sets to see if the trend persists.

The answer is that our network is still a good fit.

The next image [Figure 68] is pretty much self-explanatory. The evolution of prediction

accuracy during the training process is shown in Figure 1 for 100 epochs. At some point our

graph started to converge so we didn’t need to visualize more the losses and accuracies. We

can observe that training accuracy and prediction accuracy increases over iterations. There are

small local ups and downs around the loss and accuracy curves because of the stochastic

gradient descent algorithm. Some ranges that the validation loss is a little larger that training is

that we have added a regularization technique , specifically a dropout layer (0.5) to avoid

overfitting.

Figure 67: Training and Validation Lost for 100 epochs

Figure 68: Training and Validation Accuracy for 100
epochs

 60

Chapter 6

Web Application

Contents

6.1 Motivation ... 60

6.2 Used Technologies .. 60

6.3 Methodology ... 61

6.3.1 Basic Start for a Flask Application ... 61

6.3.2 Website Setup ... 62

6.3.3 Background Algorithm ... 62

6.4 Web Demonstration and Results .. 62

6.1 Motivation

The purpose of our dissertation, as we mentioned, is to help pet owners find their lost

pet. It's a real life problem that many people would find interesting. It would help enough

people to pin their hopes on such a system to meet their dog again. We have finally built a

reliable Network for dog identification using deep convolutional networks, but we want our

model to be available for the end-users so that they can make use of it. Model Deployment is

one of the last stages of any machine learning project. There are many different things we need

to take care of when putting our model into production. We want to show with real data, data

that the algorithm has never seen before, the methodology and the results of such a system.

Eventually, we designed a modern and at the same time a simple website that will run locally,

to show the system that will be developed in the final stage in the future. It is vital to show to

someone who has never worked with neural networks before the power of today’s abilities. A

website is a nice way to give a taste to people what our system is capable of. Later in this

section we will represent the design and the functionality of our website.

6.2 Used Technologies

Finding a way to represent real-time results, we have came across the Flask, which is a

web application framework written in Python. It has multiple modules that make it easier for a

web developer to write applications without having to worry about the details like protocol

 61

management, thread management, etc. It is way much simpler when it comes to use Flask to

run in the background Machine Learning Algorithms. Flask is giving us a variety of choices

so we can develop a descent web application. There are many useful tools and libraries that

allow us to build a web application.

6.3 Methodology

6.3.1 Basic Start for a Flask Application

When we run Flask, it will look in the current directory for anything labeled “app.py”

which is what our flask application is named. In a template folder we have the main html file

we are using to start off the website. When we have flask running, we are using a development

server which only runs on the localhost. When we go to localhost in our browser we will se

our index page corresponding to our first route. A note to keep in mind with Flask, is that when

we make any changes to the application, they are not reflected until we stop and restart the app

itself. We have used flask scripts to start a local development server. We have trained our

Network through Flask before running it to set in action our website. We have taken this path

because when it came to load our models later to apply algorithms, TensorFlow did not

recognize it otherwise. To make possible the procedure of training, we need to import the

filename of the code in the application file. When we import files that are not organized in

functions and a main, the program will automatically run all the code of the imported files. We

have normally set 250 epochs and 300 steps per epoch, the first time we will train the Network.

Moving on, we don’t want our application to run training again, so we set epoch to zero. Any

files or images are saved on the run, are being saved in a static folder. Writing an html file in

Flask is basically very similar to writing a file in normal scenarios. We need to make a few

changes so that our app and our website can communicate.

Figure 69: Communication of Flask with the Web page and ML Algorithms

 62

6.3.2 Website Setup

We continue on how our application is built. The user will load our website and the first

thing we will see is our main page. In the main page he can see our website’s logo and some

information about the system. Going to Search button, he will be able to upload a picture of his

lost dog. When the user uploads an image of his dog, Flask will save that photo as the searched

image in static folder. Every time he uploads a new photo, the searched image will change. We

do this so when we move on to run the algorithm, it will be able to find out the searched image.

We have a database of photos that are found dogs uploaded from random users. In order to test

and simulate the procedure we have fed our algorithm with photos that has not seen before.

The algorithm we chose as the final one, will compute the top similar images to our searched

dog. It will eventually give us the results below our searched dog.

6.3.3 Background Algorithm

After many tests and changes in our algorithms we have came to the conclusion that we

will use our hybrid method as the one to put into operation for our system. The hybrid method

consists the verification method firstly proposed in [1], with the difference that our algorithm

will be used only to exclude photos that are not possible to be anywhere near our image in the

embedding space. It will not be used to find out the top 5, but to remove photos and minimize

the range we will look for within reach images. We have explained on the previous chapter

how verification works with vector embeddings. Thenceforth, we will expand our method by

clustering the remained photos that have left after the verification. Kmeans is a classifier that

will cluster our data. If Kmeans decides that some photos are the same, they will be clustered.

We have already expounded how clustering partitions images in groups, given that we run

multiple times to find the best number of K = number of clusters.

6.4 Web Demonstration and Results

In the following images, we present the website for our findyourdog.com. In Figure 70,

we can see the home page. There is an indicating small library for the people who are entering

the site. They will see many dogs that some of them are lost and some other are found by

someone. After the carousel we can see some information about how we have started this

journey and what this page is about.

 63

In the next image [Figure 71], people can look up to the larger library of dogs. There is

a small spot where people can directly press for contribution. Websites gives the opportunity

to welcome subscribers of the site to get updates. By entering their email, it is possible for them

to upload a photo of a lost or a found dog.

Figure 70: Home Page

 64

Figure 71: Library Page

In the following images, there are two illustrations of how our search page is. In

 Figure 73, we can see the available options for Search tab. People can either chose to

upload a lost or a found dog. They can click their option in one of the checkboxes. They can

upload a photo from their computer. By pressing submit, the algorithm will start searching in

the found dogs database or in the lost dog database based on what they marked in the checkbox

[Figure 72]. In the next figure we can finally see the results. First we can notice the searched

dog and below of it are the results. In the next Figures [74-77] we can see some of our results.

 65

Figure 72: Search a Dog Page

Figure 73: Calculating Results

 66

Figure 75: Example Result 2

Figure 74: Example Result 1

 67

Figure 76: Example Result 3

Figure 77: Example Result 4

 68

Chapter 7

 Conclusions, Limitations & Future Work

Contents

6.1 General Conclusions .. 68

6.2 Limitations .. 69

6.3 Future work .. 70

6.1 General Conclusions

Animal identification is a very demanding challenge due to the fact that we have to

work with deep neural networks. Deep networks need to be studied in depth to build a model

that can make predictions. Many researches have been made mainly in Human Recognition

with a very high accuracy, but only few were invested for dog identification. Recognition task

in dog faces appears to be more complex than in human faces due to the lack of available data.

We have been able to download [2] dataset and add our very own data collected manually. It

was a necessity to pre-process the new data we have collected. We have applied a dog face

detector to detect and save the found landmarks. In a few cases our algorithm didn’t find the

face of the dog because of the difficulty of the image. To solve this problem, we used a library

that let us mark manually points in the picture. Many photos were rejected as they were

considered that they would not fit in our training. To continue, we loaded the landmarks for

each photo to align, crop and resize the images to have straight, clear and zoomed dog faces.

It is very clear that what makes each dog unique encompasses all of its characteristic such as

the the texture and length of their fur, the patterns of colours in their body, their height and

mass, their smile and look, and many many more variations in dog face pictures. With our

research we are now able to understand the process of training a network with so many layers

and neurons.

The deep ranking model we present, employs a triplet-based hinge loss ranking function

to characterize image similarity relationships. We also used an efficient online triplet sampling

method that enables us to learn deep ranking models from very large amount of training data.

Instead of choosing simple triplets we used hard triplet loss. Hard sampling seems to have

advantages when compared to simple triplet sampling. We try to put high the stakes, by giving

 69

the network images that are very similar but yet different. A major caveat of the triplet loss,

though, is that as the dataset gets larger, the more are the possible number of triplets. To make

matters worse, our model relatively quickly learns to correctly map most trivial triplets,

rendering a large fraction of all triplets uninformative. Thus mining hard triplets becomes

crucial for learning.

On the other hand, being shown only the hardest triplets would select outliers in the

data that may be presented as false negatives. Evaluation gave us the opportunity to observe

metrics of our network. Important metrics taken in the training process was the triplet loss and

the validation loss. Also we obtained the training accuracy and the validation accuracy. As we

saw in the graphs, our model loss decreases during a cycle and increases after hard augmented

triplets generation. We can see the convergence of the loss and the accuracy approximately

after 70 epochs. Το avoid overfitting we will use a trained model under 70 epochs. If we use a

later version model we will see that the validation loss will increase as the training loss will

decrease, something that will affect our program on new data. With this study coming to an

end, we saw how important is to find this real life problem a solution and construct a web

application to show the abilities of our network. Flask really helped us configuring out how to

run machine learning algorithms in the background of a website.

We can see from the results that the Network understands the similarities in the pattern

of shapes and colours of the dog. Our model succeeds this process, with the layers we have

added in our Network. Generally, our model is not perfect or at least with a high accuracy to

solve a real identification problem but has its becoming very handy to help dog owners finding

their lost pet.

6.2 Limitations

The system we have built has its limitations and constraints on practical and theoretical

level. To train the net, we need to do an extraction of dog’s features by adding many layers to

our architecture. Our network does not prosper in the same way when we try it with dog’s

whole body. There is a need of adding far more layers to extract this kind of features. Also, we

have a very limited amount of images in our dataset. We may have thousands of data and still

not be able to make our network to be at its peak. Our performance is being limited owing to

the low normality of dog faces and the lack of related data. By the same token, when we are

testing our program in the website implementation, the user will be able to upload a processed

image. For academic purposes, we prepared some images that are aligned and ready to be tested

through the program. In addition, the user will have to wait a few moments until the algorithm

find similar images. Even if there is no similar image in the database, the algorithm will output

a result because it is trying to find the nearest image to ours. We need to take a look at thresholds

 70

and criteria to adapt the system whether it will tell us that we have similar images. To finish

our general thoughts about the limitations in this study, we may allow to say that we faced

many difficulties with the versions of TensorFlow. It will be much more easier for future works

to upgrade the version of this model in the forthcoming releases.

6.3 Future work

Through this application for Dog Identification, we have achieved to test real data and

allow to users to check our network. In general, our model produces satisfactory results but

there is still room for some improvements. Taking into consideration the limitations we have,

we can set as a goal to pass by as many restrictions we can. Starting off with the data

acquisition, we could invest into a study for Social media Image Mining. Specifically, we can

obtain big data from user-generated content on social media sites and mobile apps in order to

extract dog images, based on tweets, hashtags, captions or even comments. Data that is publicly

available, can be used on big scale machine learning methodologies. Tools and many

techniques on Data Mining could help us reserve images of dogs, posted by their owners in

their social media profile. After the dataset collection we move on to pre-processing. Dog

detection can be our next field of study for improvement. In our model, we need to zoom on to

the dog’s head and align it straight. They were times, our detector either failed to find the right

position of eyes and nose or it failed to detect a dog at all. Continuing to the training process

we know that we need to extracted face characteristics. It will be appealing to study more layers

in the convolutional neural network to absorb as many factors as we can. In this way, may a

future extend of this application will be able to work with wider range of images that it won’t

need to feed the network only with dogs faces but their bodies too. Along with that, our model

computes the losses with hard triplet selection. An another approach would be semi-hard

triplets. These are defined as triplets where the negative is farther from the anchor than the

positive, but still produces a positive loss. Because hard triplet sampling will road us to an

early convergence we could put to the test semi-hard triplet loss that pairs every anchor with

every positive point. This sampling strategy is more robust to the model collapse but converges

slower than the hard-mining strategy. Finally, we can say that using Flask helped us represent

some of our results but it is a temporary solution. This implementation of the website only

covers a small portion of what we would create with an average web app. This does not touch

on things like cookies or validation or any other thing that we would nee for a public – facing

web app. Concluding to our study, going through a deep convolutional network is an extremely

fascinating process that makes us think how far technology has come that can reach and surpass

the human brain.

 71

Bibliography

[1] Schroff, F.; Kalenichenko, D.; Philbin, J. (June 2015). FaceNet: A unified embedding for
face recognition and clustering. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 815–823. arXiv:1503.03832. doi:10.1109/CVPR.2015.7298682.
ISBN 978-1-4673-6964-0. S2CID 206592766

[2] Mougeot, G.; Li, D.; Jia, S. A Deep Learning Approach for Dog Face Verification and
Recognition. In Proceedings of the Pacific Rim International Conference on Artificial
Intelligence, Cuvu, Fiji, 26–30 August 2019; pp. 418–430.

[3] https://arxiv.org/abs/1510.02781 , https://link.springer.com/article/10.1007/s11042-016-
3824-1

[4] Vlachynska, A., Doggie-smile, GitHub , URL: https://github.com/tureckova/Doggie-
smile/blob/master/Final_project_report.pdf

[5] The American Society for the Prevention of Cruelty to Animals® Statistics, URL:
https://www.aspca.org/animal-homelessness/shelter-intake-and-surrender/pet-statistics

[6] https://peeva.co/missing-pet-epidemic-facts-and-figures

[7] https://ieeexplore.ieee.org/document/8851971

[8] https://www.semanticscholar.org/paper/Dog-Identification-using-Soft-Biometrics-and-
Neural-Lai-Tu/b734354dfda02ebf55929e1ce74ed47cdbb8ccde

[9] Chechik, G.; Sharma, V.; Shalit, U.; Bengio, S. (2010). "Large Scale Online Learning of
Image Similarity Through Ranking" (PDF). Journal of Machine Learning Research. 11: 1109–
1135.

[10] Ailon, Nir; Hoffer, Elad (2014-12-20). "Deep metric learning using Triplet network".
arXiv:1412.6622. Bibcode:2014arXiv1412.6622H.

[11] https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-020-00510-w

[12] Awad, A.I. From classical methods to animal biometrics: A review on cattle identification
and tracking. Comput. Electron. Agric.
2016, 123, 423–435. [CrossRef]

[13] Kumar, S.; Singh, S.K.; Singh, R.S.; Singh, A.K.; Tiwari, S. Real-time recognition of
cattle using animal biometrics. J. Real-Time
Image Process. 2017, 13, 505–526. [CrossRef]
Appl. Sci. 2021, 11, 2074 22 of 22

[14] Kumar, S.; Pandey, A.; Satwik, K.S.R.; Kumar, S.; Singh, S.K.; Singh, A.K.; Mohan, A.
Deep learning framework for recognition ofcattle using muzzle point image pattern.
Measurement 2018, 116, 1–17. [CrossRef]

[15] Kumar, S.; Singh, S.K.; Abidi, A.I.; Datta, D.; Sangaiah, A.K. Group sparse
representation approach for recognition of cattle on
muzzle point images. Int. J. Parallel Program. 2018, 46, 812–837. [CrossRef]

 72

[16] 23. Jarraya, I.; Ouarda,W.; Alimi, A.M. A preliminary investigation on horses recognition
using facial texture features. In Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 2803–2808.

[17] Hansen, M.F.; Smith, M.L.; Smith, L.N.; Salter, M.G.; Baxter, E.M.; Farish, M.; Grieve,
B. Towards on-farm pig face recognition using convolutional neural networks. Comput. Ind.
2018, 98, 145–152. [CrossRef]

[18] Crouse, D.; Jacobs, R.L.; Richardson, Z.; Klum, S.; Jain, A.; Baden, A.L.; Tecot, S.R.
LemurFaceID: A face recognition system to facilitate individual identification of lemurs. BMC
Zool. 2017, 2, 2. [CrossRef]

[19] Deb, D.; Wiper, S.; Gong, S.; Shi, Y.; Tymoszek, C.; Fletcher, A.; Jain, A.K. Face
recognition: Primates in the wild. In Proceedings of the IEEE 9th International Conference on
Biometrics Theory, Applications and Systems (BTAS), Los Angeles, CA, USA, 22–25 October
2018; pp. 1–10.

[20]. Liu, J.; Kanazawa, A.; Jacobs, D.; Belhumeur, P. Dog breed classification using part
localization. In Proceedings of the European Conference on Computer Vision, Florence, Italy,
7–13 October 2012; pp. 172–185.

[21] Wang, X.; Ly, V.; Sorensen, S.; Kambhamettu, C. Dog breed classification via landmarks.
In Proceedings of the IEEE International Conference on Image Processing (ICIP), Paris,
France, 27–30 October 2014; pp. 5237–5241.

[22] Hsu, D. Using Convolutional Neural Networks to Classify Dog Breeds. CS231n:
Convolutional Neural Networks for Visual Recognition. 2015. Available online:
http://cs231n.stanford.edu/reports/2015/pdfs/fcdh_FinalReport.pdf (accessed on 26 February
2021).

[23] Ayanzadeh, A.; Vahidnia, S. Modified Deep Neural Networks for Dog Breeds
Identification. Preprints 2018. [CrossRef]

[24] Kumar, S.; Singh, S.K. Monitoring of pet animal in smart cities using animal biometrics.
Future Gener. Comput. Syst. 2018, 83, 553–563. [CrossRef]

[25] Moreira, T.P.; Perez, M.L.; de Oliveira Werneck, R.; Valle, E. Where is my puppy?
retrieving lost dogs by facial features. Multimed. Tools Appl. 2017, 76, 15325–15340.
[CrossRef]

[26] Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat:
Integrated recognition, localization and detection using convolutional networks. arXiv 2013,
arXiv:1312.6229.

[27] Szegedy, C.; Liu,W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke,
V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

[28] Szegedy, C.; Liu,W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke,
V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7 12 June 2015; pp. 1–9.

[29] URL: https://github.com/kvsnoufal/Pytorch-FaceNet-DogDataset

 73

[30] Computer Vision for Faces - Final Project, Doggie Smile,16th October 2017 by Alzbeta
Vlachynska,

[31 SIBI (Sistem Isyarat Bahasa Indonesia) translation using Convolutional Neural Network
(CNN), January 2020, IOP Conference Series Materials Science and Engineering 732:012082

[32] Understanding Deep Convolutional Neural Networks, URL:
https://www.run.ai/guides/deep-learning-for-computer-vision/deep-convolutional-neural-
networks/, https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-
network-cnn-deep-learning-99760835f148,

[33] Best Place to Learn Neural Network: Interactive Tensorflow Playground, Tinker with
Neural Network in Your Browser!by Korkrid Akepanidtaworn (Kyle) Korkrid
Akepanidtaworn (Kyle) Jan 15, 2019, URL: https://kyleake.medium.com/technical-demo-
visualize-neural-network-with-tensorflow-playground-9f6a1d8eb57a

[34] A comprehensive guide to facial recognition algorithms – part 2, ULR: :
https://www.baseapp.com/computer-vision/a-comprehensive-guide-to-facial-recognition-
algorithms-part-2/

[35] URL: https://gombru.github.io/2019/04/03/ranking_loss/

[36] URL: https://www.tech-quantum.com/implementing-drop-out-regularization-in-neural-
networks/

[37] URL: https://medium.com/@anuragrakesh11/activation-functions-6eb6914d18b6

[38 URL: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53

[39] URL: https://xzz201920.medium.com/conv1d-conv2d-and-conv3d-8a59182c4d6

 74

Appendix A

Triplet Loss

𝑥௜
௔– an anchor example. In our context, it is a photograph of a dog’s face.

𝑥௜
௣– a positive example that has the same identity as the anchor. It is a second picture of the

same dog as the picture from the anchor example.
𝑥௜

௡– a negative example that represents a different entity. This would be an image of a second
dog–a dog different than the dog represented by the anchor and positive examples.

for an embedding function 𝑓ሺ𝑥ሻ ∈ ℝௗ that embeds input data x into a d-dimensional vector,
we want to satisfy this equation:

ฮ 𝑓ሺ𝑥௜
௔ሻ െ 𝑓൫𝑥௜

௣൯ฮ
ଶ

ଶ
൅ 𝑎 ൑ ‖𝑓ሺ𝑥௜

௔ሻ െ 𝑓ሺ𝑥௜
௡ሻ ‖ଶ

ଶ , ∀ ቀ 𝑓ሺ𝑥௜
௔ሻ, 𝑓൫𝑥௜

௣൯, 𝑓ሺ𝑥௜
௡ሻቁ ∈ 𝑇

Where ‖𝑥‖ଶ

ଶ operator is the square Euclidean Norm and the [x]+ operator stands for max(0,x)

– relu function. Below you can see the code that satisfies the above:

This leads to the following loss function over the N possible triplets:

alpha = 0.3 #margin

def triplet(y_true, y_pred):
a = y_pred[0::3] #anchor
p = y_pred[1::3] #positive
n = y_pred[2::3] #negative

Euclidean Norm:
ap = K.sum(K.square(a ‐ p), ‐1)
an = K.sum(K.square(a ‐ n), ‐1)

return K.sum(tf.nn.relu(ap ‐ an + alpha)) #relu: max(x,0)

 75

Appendix B

Our hybrid Solution welcomes two techniques to find the best possible results. At first

we are going to compute Nearest Embeddings. A near embedding with our testing image is

defined as the position of the dog images in the embedding space is smaller than a threshold.

To find the appropriate threshold we calculate the distances between photos from the training

that we know they belong to the same class, and the distances between two random different

images. With this method we limit the possible outputs. Now we want the most similar photos

from the nearest embeddings. Thus, we apply the agglomerative clustering aka kmeans to

decide in which cluster we are going to place our test dog image. The following code is written

in much more simple structure to understand the whole procedure.

Load a trained Network

 model = tf.keras.models.load_model('{:s}/{:s}.{:d}.h5'.format(PATH_MODEL,
NET_NAME, EPOCH),custom_objects={'triplet': triplet, 'triplet_acc': triplet_acc})

1. Find Nearest Embedding Vectors

Find best threshold

best_t, best = findThresholdAccuracy(labels_test,filenames_test,model)

Load the dog the user has searched, the database of the found dogs and check the similarities

between them. Return the likely similar array with the dogs.

 test_dog = str(sys.argv[3])
 database_images = str(sys.argv[4])

likely_similar =checkSimilarity(database_images, test_dog)

CheckSimilarity(): {

For every dog in the database folder we are testing, make a pair with the test dog image

For test_image in database_images:

 pairs_test = [test_image] + [test_dog]

 # Find a prediction for their embeddings
 predict_test=model.predict_generator(predict_generator(pairs_test, 32),
steps=np.ceil(len(pairs_test)/32))

 # Separate the pairs
 emb1_test = predict_test[0::2]
 emb2_test = predict_test[1::2]

 # Computes the distance between pairs
 diff_test = np.square(emb1_test-emb2_test)
 dist_test = np.sum(diff_test, 1)

 76

if their distance is below the threshold or (+accuracy) , append to likely similar
 if((dist_test<=best_t) or (dist_test<=(best_t+best))):
 likely_similar.append(test_image)

 return likely_similar
} end of Check Similarity

for each photo that is in likely_similar array save it in a directory
Save_Nearest_Emdeddings(likely_similar):

for i in range(len(likely_similar))

 file = likely_similar[i]
 print("Similar: ",file)
 image_name = dirname +"/" +str(i)+".jpg"
 img = Image.open(r""+str(file))
 img.save(image_name, 'JPEG')
 img.close()

Save the filenames of the database dogs

filenames_verification=findLabels(PATH_MODEL, dirname)

2. Cluster the nearest embeddings

Cluster Data

 clusterData(filenames_verification, SIZE, model)

clusterData():

#We need to check that all images are in jpeg format. We read all of our database images with

sklearn library

h, w, c = SIZE
images_test = np.empty((len(filenames_test), h, w, c))
for i, f in enumerate(filenames_test):
 res = list(filter(f.endswith, suff_list)) != []
 if res:
 images_test[i] = skimage.io.imread(f)

Need to make a prediction about the embedding vectors of the database images

 predict = model.predict(images_test)

#Find the best number of clusters K:
#A list holds the SSE values for each k

sse = []
for k in range(1, length_file):
 kmeans = KMeans(n_clusters=k, **kmeans_kwargs).fit(predict)
 sse.append(kmeans.inertia_)

 77

kl = KneeLocator(range(1, length_file), sse, curve="convex", direction="decreasing")

#Find the best K
print("Perfect k elbow = ", kl.elbow)

Apply Kmeans to our data
kmeans = KMeans(n_clusters=kl.elbow, **kmeans_kwargs).fit(predict)

Find the cluster that contains our test dog image

final_cluster = None
if not os.path.isdir(save_results_path):
 os.makedirs(save_results_path)
for i in range(len(images_cluster)):
 length = len(images_cluster[i])
 if length > 0:
 print('cluster %d: %s' % (i, labels_cluster[i]))
 exists = test_dog in labels_cluster[i]
 if exists == True:
 final_cluster = labels_cluster[i]
 return final_cluster

