
Thesis Dissertation

KBCRACKER: CRACKING KEYBASE-STYLE
CREDENTIALS

Maria Stylianou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2019



UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

KBCracker: Cracking Keybase-style Credentials

Maria Stylianou

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2019



Acknowledgments

I would like to take the opportunity to express my appreciation to my thesis advisor Dr.

Elias Athanasopoulos, for his priceless advice and guidance during this project. His con-

tinuous help was critical for overcoming all the challenges and difficulties I have faced

from the start of this thesis until the end. My sincere thanks for giving his guidance

throughout the research of this thesis.

i



Summary

We have created a cracking tool, KBCracker, for Keybase’s stored credentials. The Key-

base’s server does not hold the users’ passwords in clear text or in encrypted form as most

services do. The server authenticates users without having actually their passwords being

revealed to it. Specifically, Keybase’s server has the users’ EdDSA public key and used

it in order to authenticate them. The idea behind our tool is to compute the public key

of leaked credentials (username,salt) using a set of common passwords. We use the Key-

base’s API and documentation for the creation of the public key, named k-id. Moreover,

our tool is based on the Dictionary attack method.

In particular, Keybase uses Elliptic Curve Cryptography (ECC) in order to have a suc-

cessful user authentication, as the login process is password-less. Keybase login system

seems like a text-based authentication process but it is not. Keybase’s users need to give

their credentials (username & passphrase) as usual, but an encryption key is derived from

their passphrase. The key that is derived is the user’s private key. Moreover, using this

private key, a public key (k-id) is generated. Those keys constitute a pair and cooperate

in order to create a signature in terms of ECC. All these necessary steps are done at the

client’s side, as a result the server authenticates users without any knowledge of how their

passwords look like.

ii



Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Elliptic Curve Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Trapdoor Functions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Point Addition, Point Doubling and Point Multiplication . . . . . 9

2.2.4 Key Exchange in Elliptic Curve Cryptography . . . . . . . . . . 11

2.2.5 Elliptic Curve Digital Signature Algorithm . . . . . . . . . . . . 12

2.2.6 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Keybase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Text-based Password Authentication 16
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Keybase Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Implementation 20
4.1 John the Ripper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 KBCracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Tool’s Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Keybase k-id Computation . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Necessary Modules . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



5 Evaluation 28
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Related Work 32
6.1 PAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 modssl-hmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 KAuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Conclusion 34

Bibliography 35

Appendix A A-1

Appendix B B-1

Appendix C C-1

Appendix D D-1

Appendix E E-1

iv



List of Figures

2.1 This figure shows the high idea of a communication that is based on PKC. 4

2.2 This figure shows the high idea of a the key generation based on RNG or

PRNG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 This figure shows the high idea of how Digital Signatures work in the

digital word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 This figure shows the high idea of how trapdoor functions work. . . . . . 8

2.5 This figure shows the trapdoor functions of the RSA and ECC cryptosys-

tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 This figure shows how Point Addition and Point Doubling work. . . . . . 10

2.7 This figure shows how to calculate 3P = 2P+P = P+P+P using Point

Multiplication operation in terms of Elliptic Curves. . . . . . . . . . . . . 10

2.8 This figure shows how to calculate 4P = 3P+P = P+P+P+P in Point

Multiplication operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.9 The Keybase interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 This figure shows the high idea behind the ordinary secure Password Stor-

age and Authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 This figure shows the high idea behind the Keybase process of Authenti-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 This figure shows the help menu that is presented, when the user choose

to run the program with the option -h/–help. . . . . . . . . . . . . . . . . 23

5.1 This graph displays the memory usage of the script that runs both bcrypt

and scrypt functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



List of Tables

4.1 This table shows a small result of John the Ripper’s rules. The actual

result has 54 permutations of the word blah. . . . . . . . . . . . . . . . . 21

4.2 This table presents the short options, long options, the required parame-

ters and the necessity of each argument. . . . . . . . . . . . . . . . . . . 22

4.3 This table shows where we can find the necessary parameters for the im-

plementation of Keybase’s k-id creation. . . . . . . . . . . . . . . . . . . 26

4.4 This table shows where we can use the parameters in Keybase’s k-id cre-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 This table shows the necessary modules and the functions of each module

that are used in python script for the k-id creation. . . . . . . . . . . . . . 27

5.1 This table shows the average processing time of each part of the keybase’s

protocol in millisecond and the percentage of time that the scrypt function

consumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 This table shows the average processing time that password hashing schemes

needs for 3545 passwords. . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



Chapter 1

Introduction

Contents
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Advances in cryptography have given rise to new applications, especially to the ones

that utilize the network for exchanging securely information. Nonetheless, a core and

vital process of communication, such as user authentication, has still received little ben-

efit. Despite the fact that several protocols [6, 7, 11, 26] leverage modern cryptographic

concepts for strengthening user authentication, in practice they are hardly used.

Today, the most established form of user authentication is based on text-based pass-

words. Services utilize cryptographic hash functions [4, 24] for storing the passwords in

the form of a digest, and not in plain. This can delay an attacker that has leaked the pass-

word database [18] from figuring out the actual passwords, nevertheless, this very-well

established scheme is associated with further problems. Key among them is the fact that

the service knows the user password and needs to receive it in plain every time the user

authenticates.

In short, this means that the user needs to trust the service not only for their in-between

interaction, but also for their shared credentials. Since password re-use is common [13],

users need to trust that services are not going to use the received credentials to impersonate

their clients to other services.

1



1.1 Contributions

This thesis project makes the following contributions.

• We discuss and explore a first instance of user authentication based on public-key

cryptography, which is used in production code and is offered by Keybase.

• We build a tool for cracking stored credentials based on public-key cryptography,

and we compare it with similar tools that crack leaked cryptographic digests of

passwords.

1.2 Organization

The rest of the thesis is organized in chapters as follows. In Chapter 2, we discuss the

background of knowledge that is needed, in order to understand the necessity of authen-

tication and security, including in detail how Public Key Cryptography, Elliptic Curve

Cryptography and Keybase work. In Chapter 3, we discuss the Text-based Authentication

and we stress the problem that service’s servers know the user’s password, and we em-

phasize the Keybase authentication. What is more, in Chapter 4, we explain in detail how

our tool is implemented, and in Chapter 5, we evaluate the Keybase’s login protocol and

authentication methods in terms of security and performance. Finally, we discuss about

Related work in Chapter 6 and we give some conclusions in Chapter 7.

2



Chapter 2

Background

Contents
2.1 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Elliptic Curve Cryptography . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Trapdoor Functions . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Point Addition, Point Doubling and Point Multiplication . . . . 9

2.2.4 Key Exchange in Elliptic Curve Cryptography . . . . . . . . . 11

2.2.5 Elliptic Curve Digital Signature Algorithm . . . . . . . . . . . 12

2.2.6 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Keybase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Public Key Cryptography

Before Public Key Cryptography (PKC) all crypto systems were using symmetric algo-

rithms for cryptographic operations [25]. In symmetric cryptography a symmetric key

is used both for encryption and decryption. This special secret key is necessary to be

exchanged between the communication parties via secure channels. The requirement of

a secure channel was not very strong and shortly became unmanageable. Furthermore,

the need for all communicators to have access to the special secret key is an essential

disadvantage of the symmetric cryptography. Alternatively, PKC is an asymmetric en-

cryption scheme that uses a pair of two keys, a public key and a private key. PKC scheme

3



was an innovation for cryptography as it was the first system that provided security in

transformation of data without a shared special key but with key exchange.

Both the public key and the private key have their roles in the PKC scheme. The

public key is used for encryption and the private key is used for decryption. Both keys are

extremely big (1024-bits) due to that the public key is stored on digital certificates (DCs)

and the private key can be stored in the hardware, the software, or even in the operating

system. The reason that the keys are not stored together but they are stored in this way is

that the public is widely known and the private key is known only by its owner. A PKC

example is RSA algorithm. RSA’s security is based on the difficulty of factoring. RSA

uses very large prime numbers (p, q) for the generation of the public and the private key.

It is impractical and computationally hard for an attacker to calculate and compromise the

private or the public key without knowing p and q.

Encryption Algorithm

BobAlice

Bob's Private KeyAlice's Private Key

Bob's Public KeyAlice's Public Key

Alice gives her Public 
Key to Bob  

Bob wants to send this message  
to Alice by using PKC 

Encrypted message with Alice's
Public Key

Decryption Algorithm

Original Message 
 
 

Figure 2.1: This figure shows the high idea of a communication that is based on PKC.

The main idea of a PKC scheme is that the transmitter has the public key of the re-

ceiver and uses it for the message’s encryption. Therefore, the receiver gets the encrypted

message and uses their own private key to decrypt it and get the original clear text mes-

sage. The high idea relies on the fact that encryption is easy because anyone has the

public key of the others but the decryption is hard. This is because no one can decrypt

4



the message, except of the owner of the public key that was used, who is also the owner

of the private key that can decrypt the encrypted message. As a result, the one that the

message is destined to is the only recipient that can decrypt it and get the original form of

it, and no one else can get the clear text.

2.1.1 Key Generation

In Public Key Cryptography (PKC) the most expensive and important thing is the gen-

eration of the public and the private key. Although these two keys have a mathematical

relationship, they are not identical twins. Therefore, it is not possible to compute the

private key when the public key is known. Because of this, public keys can be shared

without any risk but it is important that the private keys are kept secret and they are only

known by the owner.

Figure 2.2: This figure shows the high idea of a the key generation based on RNG or

PRNG.

For the generation of this pair large integer are used, preferably primes are being used.

Moreover, these keys can be generated randomly using random number generators (RNG)

or pseudorandom number generators (PRNG). PRNG is an algorithm that produces data

that are not truly random. The result of a PRNG is determined by an input that is called

seed. Furthermore, the result of the PRNG can be reproduced if the state of the PRNG

is known. Otherwise, RNGs produce numbers that are truly random. Their production

seems like the rolling of a dice, a coin flipping and the shuffling of cards. For that reason

the production of RNG requires very expensive infrastructure, a lot of work and time.

5



2.1.2 Digital Signatures

Digital Signatures are used like physical signatures. The author of a document signs the

document at the end to show that it is written by him and no one else. A digital signature

has almost the same functionality and usage in the digital word. Basically, the author

of a document generates a digital signature and appends it to the document to determine

that the document is produced by him. Moreover, Digital Signatures offer authentication,

non-repudiation and integrity. These aspects are very important in the digital word, both

in communication and data transport.

Assuming the scenario that Bob wants to send a document to Alice and they choose

to make this transmission using Digital Signatures. Bob writes the document in clear text,

calculates the document’s digest using a Hash Algorithm (sha256) and then encrypts the

digest with his private key. As a result, only Bob’s public key can decrypt the encrypted

digest. The encrypted digest is the Digital Signature of the document. Bob appends on

the document the digital signature and he sends the sign document to Alice. However, the

document is not encrypted, so Alice can read it without any decryption process. However,

Alice wants to verify that the document is written by Bob and it has not been altered

during the transmission by an unauthorized entity. For the verification, Alice uses the

digital signature that is appended on the document. Alice has Bob’s public key, so she can

decrypt the digital signature using the same algorithm that Bob used but for decryption.

As a result, Alice gets the document’s digest. Finally, Alice calculates the document’s

hash value, without the digital signature, using the same hash algorithm that Bob used.

If the decrypted digest is equal to the calculated digest, it means that the document is the

right one and that it has not been modified during transmission.

In this scenario, Bob and Alice use Digital Signature instead of document encryption

to make sure that the message has not been altered during transmission. Even though

encryption can hide the contents of the document, it may be possible for an attacker to

change the encrypted document without Bob and Alice understanding it. Digital signa-

tures prevent this, for the reason that any change in the document after the sign of it

invalidates the signature. Since there is no efficient way to modify the document and its

signature and produce a new document with a valid signature. As a result, this scenario

shows how digital signature scheme provides the aspect of integrity.

Additionally, digital signatures provide the aspect of non-repudiation. By this prop-

erty, an entity, Bob, who has signed something, a document or a message, cannot at a later

time deny the fact that he has signed it.

Finally, Alice can use Bob’s digital certificate in order to verify that the public key

really belongs to Bob. Digital certificate includes Bob’s public key and his name and it

is is digitally signed by the trusted Certificate Authority (CA). With this, Alice can verify

6



that there is not a man-in-the-middle that introduced themselves as Bob.

Alice

Bob Document 
for Alice

Hash
Algorithm 

Text9587461

 Encrypt with
Asymmetric

Cryptography 
Algorithm 

 

Bob's Private Key

6ABCD12FFG

Digest

Digital Signature

6ABCD12FFG

Sign Document

 Decrypt with
Asymmetric

Cryptography 
Algorithm 

 

9587461 6ABCD12FFG

Bob's Public Key

Hash Algorithm  9587461 

Digest

Digest

Figure 2.3: This figure shows the high idea of how Digital Signatures work in the digital

word.

7



2.2 Elliptic Curve Cryptography

2.2.1 Overview

Elliptic Curves Cryptography (ECC) [16, 20] is based on the mathematical background

and algebraic structure of elliptic curves over finite fields. The security of ECC is based on

the inability to compute the multiplicand given and the product points. also, the important

benefit that ECC provides is the ability to use a smaller key but keep a strong level of

security. Using ECC is a way to create faster, smaller and efficient cryptographics keys.

2.2.2 Trapdoor Functions

All cryptosystems use a trapdoor function for their implementation and security. The

trapdoor function is a function that is easy to be computed on one way but it is very

hard, mathematically impractical, to compute its back direction. Trapdoor functions have

a similar principle with one-way functions. However, in trapdoor functions there is a

special key, which if its is known, it is possible and easy to reverse and calculate the back

direction. On the other hand a one-way function is not reversible, because there is no back

direction. In other words a trapdoor function, as the name indicates, make it is easy to fall

down in a trap but it is very hard to jump out of it, unless you have the special knowledge

of a key which is the staircase.

A Easy B

Extremely Difficult
BA

Figure 2.4: This figure shows the high idea of how trapdoor functions work.

For example, RSA cryptosystem uses a trapdoor function that is based on the concept

of Prime Factorization. Especially, in RSA it is easy to compute n if you know p and

q, n = p ∗ q. Nevertheless, the inverse calculation is mathematically hard. The special

knowledge for inverse calculation is p or q or both of them. It is extremely hard to

calculate p and q from factoring n since they are large prime numbers (1024 bits).

Similarly, ECC uses a trapdoor function, but this function is based on Point Multipli-

cation. The equation that is presented as the trapdoor function of the ECC is A = p∗B, in

which A is the end point that is produced by multiplying start point B by p. It is simple

and easy to calculate A, the one direction of the equation, but it is difficult to find the

n when both A and B are known. The special knowledge that is needed for the inverse

8



calculation is the n, n ∈ Z.

p,q

N = p * q

N

RSA

n , B
A = n * B

A

ECC

A, Bn

Figure 2.5: This figure shows the trapdoor functions of the RSA and ECC cryptosystems.

2.2.3 Point Addition, Point Doubling and Point Multiplication

EC cryptosystems is based on an elliptic curve equation. There are a lot equations, there-

fore each cryptosystem chooses one to use. However, the points that are valid for the

equation are points on the curve. Generally, cryptosystems that are based on ECC use the

form, y2 = x3 +ax+b .

Always, two points on an EC intersect another third point, except the points that are

vertical. For instance, if we get a point P and a point Q on an EC then a third point R, is

generated. Assuming that we have to add point P with point Q, then we reflect the third

point R to get the point R′. The reflected point R′ is the result of the addition of point P

and point Q. The process that has been described is named Point Addition.

On the other hand, it is possible to add a point with itself. This method in ECs is

named Point Doubling. In Point Doubling there is no second point so we can not generate

the third intersected point. Instead, we draw the tangent of point P and then we get its

intersect point to be R. Similarly with Point Addition, we reflect the R to get the point R′

which is the result of the Point Doubling, R′ = P+P = 2P.

As we can see in the figure 2.6, point R is vertical to point R′, so we can not apply

neither Point Addition or Point Doubling. Adding two vertical points is an undefined

procedure. If we try to add two vertical points there will never be a third intersected

point. Basically, the result of the addition of two vertical points is infinity, R+R′ = ∞ .

9



P 

Q 

R 

R' = P + Q

P 

R 

R' = P + P = 2P 

Figure 2.6: This figure shows how Point Addition and Point Doubling work.

Furthermore, Point Multiplication operation is based on how Point Addition and Point

Doubling work. In Point Multiplication, the operation of Point Addition is applied for k

times, where k is the factor of the multiplication. For instance, when we have to multiply

the point P three times, 3P = P+P+P = 2P+P, we have to perform sequentially Point

Doubling and Point Addition. The figure 2.7,below, shows the steps that are performed to

calculate 3P. First, the point that corresponds to 2P is calculated using Point Doubling,

2P = P+P. As point P is known,by using the tangent we can find the point 2P. For the

second step, since point 2P and point P are known, Point Addition operation can be used

to calculate the point that corresponds to 3P, 3P = 2P+P.

P 
3P

2P 

R 

P 

R 

R' = P + P = 2P 

Figure 2.7: This figure shows how to calculate 3P = 2P+P = P+P+P using Point

Multiplication operation in terms of Elliptic Curves.

10



Another example is the quadruple of the point P. The steps of Point Multiplication

in terms of ECs for this example are shown in figure 2.8. The Point Multiplication for

calculation 4P is a follow up of the previous example, in which the point that is calculated

corresponds to 3P. Since we have both points 3P and P, Point Addition operation can be

used to calculate 4P, 4P = 3P+P. Furthermore, 4P can be calculated by using the Point

Doubling operation, 4P = 2P+2P.

P 
3P

2P 

R 

P 

R 

R' = P + P = 2P 

P 
3P

R 

4P

Figure 2.8: This figure shows how to calculate 4P = 3P+P = P+P+P+P in Point

Multiplication operation.

To conclude, as its is explained and shown by the figures 2.7,2.8, there are a lot of

jumps in the graph for the performance of some basic operations.Although in the examples

above, small integer numbers were used, complicated steps are performed in order to

calculate the final result. ECC gets its strength from the impracticability to divide these

multiplications and find the specific point that has been multiplied in order to give the

result of the multiplication, which is possible in linear algebra. For example, if we have

point P and point 4P but we do not know that the number of multiplications of the latter

is 4, we have to calculate all the possible multiplications until we get the 4P. When the

numbers are small this seems easy, but the numbers that are used in ECC are considerably

large.

2.2.4 Key Exchange in Elliptic Curve Cryptography

Elliptic Curves are based on the Discrete Logarithm (DL) [22] problem. In cryptosystems

that use EC, the DL problem helps in the key generation process. If we assume thet we

have an equation, that presents an EC named E, a point P on the EC E and another point

on E, T , the point T is the result of the performance of ECs Point Multiplication on point

P, T = dP = P+P+P...+P. In ECs cryptosystems, T is the public key and d is the

private key. The description above is named Elliptic Curved Discrete Logarithm Problem

(ECDLP), but the d is found from DL problem.

11



Key exchange using elliptic curves is named Elliptic Curve Diffie-Hellman key ex-

change (ECDH). In ECDH, it is necessary to determine the Domain Parameters. The

Domain Parameters are a prime number p, the elliptic curve E and a primitive element P

which is a point on the curve E. The difficulty in determining the Domain Parameters is

to find the elliptic curve that satisfies the cryptosystem’s security properties.

For instance, Alice and Bob want to exchanged their keys using ECC. Suppose, they

have decided the curve E and the primitive point P. Afterwards, Alice chooses her private

key, a. Similarly, Bob chooses his private key b. Both private keys are two large numbers

(256 bits). To compute their public keys both apply Point Multiplication on primitive

point P. Alice’s public key, A is computed by the form A = aP. Similarly, to compute

Bob’s public key, Point Multiplication is applied with factor his private key, B = bP. Both

public keys, are points on the elliptic curve E.

Alice and Bob exchange their public keys. Both, Alice and Bob calculate their joint

secret, W . For the calculation of the joint secret point, they performed Point Multiplication

using their own private keys and the public key that they received. The joint secret point W

that is computed is the same key. Alice calculates W = aB and Bob W = bA, where A= aP

and B = bP. So, Alice computes W = a(bP) and similarly Bob computes W = b(aP), so

both, Alice and Bob calculate the same joint secret point.

The details that are publicly known are the curve E, the prime p, the primitive point

P and both public keys of Alice and Bob, A and B. If an attacker wants to compromise

the ECDH protocol, he has to compute the joint secret that Alice and Bob compute, T =

aB = bA = abP. The attacker has to solve one of this logarithm problems : a = logp A or

b = logpB.

2.2.5 Elliptic Curve Digital Signature Algorithm

In this part we explain how Elliptic Curve Digital Signature Algorithm (ECDSA) [22]

works. Specifically, the way that the contracting keys are generated, the algorithm of the

generation of signature and the verification of signature are explained, in the scenario that

Bob wants to send a sign message or document to Alice.

Firstly, the generation of keys is explained. Key generation in ECDSA is done by

Bob, the transmitter. In key generation there are three steps. The first step is to find an

elliptic curve E. The selection of this curve should be with care, as each curve has its own

cryptography properties. For that reason it is an important step to select the appropriate

curve for the scheme. By choosing an elliptic curve the parameters of the curve p,a,b, a

point A and a q are selected, resulting in having E : y2 = x3 +ax +b mod q. The point A

is the generator point of a cyclic group of prime order q. The second step is to choose a

random number d, 0< d < q, which is the private key. The final step of the key generation

12



is to calculate the point B, B = dA. Consequently, Bob has two keys, a public key and a

private key. Afterwards, Bob sends to Alice the public key.

Private key: kpr = d

Public key: kpub = (p,a,b,q,A,B)

In the sign process, Bob has to compute the hash value of the document,hash(m), and

follows the above steps. The first step, is to choose a random key, k. This key is a integer

short live key with 0 < k < q. Second step, is the calculation of a point R , R = kA.

From this step, Bob has the first member of the signature’s pair "named" r, which is the

abscissa of the point R, r = xR. The last step, is the calculation of the second member of

the signature’s pair s, (hash(m)+dr)k−1 mod q. Finally, Bob sends to Alice the message

m and the pair (r,s). The signature, that was mentioned above, in ECDSA, made of a pair

of integers (r,s).

The verification of the signature is done by Alice. Alice gets the document, m with

the signature (r,s). For the verification Alice has to compute the values w,u1,u2 using the

parameters that are retrieved from Bob.

w = s−1 mod q

u1 = w ·hash(m) mod q

u2 = w · r mod q

Afterwards, Alice computes the point P using the values u1, u2 and the points A and B

from public key. The computation of P is the following: P = u1A+u2B. Then, Alice has

to check the validity of the signature, and if the x-coordinate of point P has same value

with the r mod q, then the signature is valid.

2.2.6 Security

In this part we refer to some advantages of ECC over RSA [5,14] and vice versa, in terms

of security. Also, we denote some attacks that these cryptosystems can suffer from.

RSA cryptosystem is the most known and widely used public key cryptosystem, es-

pecially, RSA is commonly used for digital signatures and key transport. On the contrary,

Elliptic curves cryptosystem is under-research and not so widespread in use. Elliptic

Curve Cryptography is used from new platforms and mainly from embedded platforms

(like Keybase). The usage of ECC is mainly for key exchange, digital signatures and

encryption. It is important to highlight that both cryptosystems base their security in

mathmatical background. ECC on Elliptic Curvers algebra and RSA on factoring large

prime numbers.

13



The attacks that RSA might suffer from is Protocol Attacks, Mathematical Attacks

and Side-Channel Attack. In ECC the crucial step is the selection of the curve, if curve is

chosen with attention and care the attacks that can affect ECC are ones using the generic

Discrete Logarithm algorithms.

We are not going to emphasize and explain a lot about how the attacks work but we

will be discussing characteristics of the performance of these cryptosystems and how

these affect their security and usage.

Lets start with a small review of the advantages of each system. Firstly, if RSA uses

small keys, the signature verification is faster than the ECC. However using small size

keys in RSA it is weakened. As a result, RSA seems to have a small advantage over

ECC in performance on the verification process but RSA needs to be using large keys.

What is more, ECC uses shorter operands than RSA (ECC uses 160-256 bits, RSA uses

1024-3072). That makes the ECC to generate briefer signatures and cipher-texts. The

importance of this advantage is that in ECC we can generate a key pair from anything.

We can have the same level of security with RSA by using ECC with a small "seed". For

instance, we can generate a strong key pair for crypto operations via characters, numbers

or special symbols in ECC, and the EC’s functions will transform them into a point on the

curve. In contrast, RSA only uses large prime numbers for key generation.

In conclusion, ECC seems to be the next generation of cryptosystems against RSA

cryptosystems. There are a lot of researches [3, 15] about the ECC and they promise to

public key cryptography a new branch of evolution and development.

2.3 Keybase

Keybase is a relatively new application launched in February 2014. Users can use Key-

base as command line tool, as website and as client. Keybase seems like other social

media systems, but it is not. Keybase is based on public-key cryptography. Furthermore,

Keybase offers the features of chat and storage. The interesting part of Keybase is not that

is a messaging platform but that is an application which offers an end-to-end encrypted

chat system and also, an end-to-end encrypted file-system.

Moreover, Keybase can be described as a system for users to use a public encryption

key (generate or upload) to verify their online identity with a high degree of certainty.

Specifically, users can verify their public key in Keybase through Twitter, Facebook,

GitHub, Reddit, or Hacker News. Keybase urges users to "connect" their Keybase ac-

count with as many platforms as possible. As a result, if an attacker wants to impersonate

someone else using a fake public key, they would come up against a wall. The idea be-

hind this system is to map the users’ social identities like a key directory. In this sense,

Keybase is a database of these proofs that verify the public identity.

14



Figure 2.9: The Keybase interface.

We studied keybase for the reason that it is a new and promising platform in terms of

security. Keybase uses techniques that are not very famous in usage. For example, key-

base uses ECC signatures for sign and verification. Besides the way that Keybase maps

users’ identity, it is interesting to note the protocol that Keybase uses for authenticating

users in login process. Keybase offers a user-friendly environment and the user has no

idea how the whole process for their authentication is implemented. When a user needs

to authenticate with Keybase, a passphrase is used to derive a cryptographic key that will

carry out an EdDSA signing and verification process . The authentication process is im-

plemented in the client’s side (web browser, application) and not on the server side. This

authentication process might resembles a typical password-base authentication process

but it is much more than that.

15



Chapter 3

Text-based Password Authentication

Contents
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Keybase Authentication . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Overview

It is widely known that, passwords should not be stored in clear text [1]. If an attacker

steals the database of passwords, then the attacker will know everything and this means

that they will not need any extra time or work to recognize the passwords. As a result,

the attacker can use this database as they like. For example, the attacker could connect

to a system to imitate someone else in order to offend him publicly. Similarly unsecured,

it is storing the passwords based on encryption by using a special key, which might be

available on the server. As a result, this key can be reached from the attacker and they can

use it to decrypt the encrypted database.

In order to create a security storage for users’ passwords, systems usually use one-

way encryption. One-way encryption uses a hashing algorithm, which always produces

the same result for a given password but not the same result for different passwords.

Moreover it is impossible to find the password that has generated the result when you

only have the result. Because of those statements, if an attacker has the database with

the usernames and their corresponding encrypted passwords, it is computationally hard to

compromise it and figure out the password. The process of how these systems authenticate

the users’ credentials is that when the users want to log in, they give their username and

their password. Then the server gets the clear text of password and makes all the necessary

procedures to encrypt it. Afterward, the server compares the stored encryption of the

16



User credentials
username/email
input password in plain (in_pass)

Server with users' credentials
Login System Alice

User credentials
username/email
in_pass (plain)

Calculate - Hash
Function

in_pass

H( in_pass)

H(in_pass) == Saved  ValueConfirm Login RequestLogged In

Figure 3.1: This figure shows the high idea behind the ordinary secure Password Storage

and Authentication.

password associated with the user’s login name with the calculated encrypted password.

A match succeeds and the user is an authenticated user with access in the system. But if

the mismatch fails and user is not able to use the system with the log in rights.

3.2 Research Problem

Why does a server need to know our passwords? When a user sends a login request for

a system, then this request goes to the server. The server gets the password in plain text

and then it makes all the calculations to turn the password into a long string of letters

and numbers to keep it hidden. In addition, there are a lot of techniques that can make

it difficult for the attacker to compromise a leaked database. One technique is to use a

different and unique salt for each password, and even if the salts are stored on the same

servers, it will be very hard to find those salted hashes in the Rainbow Tables [2, 12, 19].

This technique increases greatly the processing time for the attacker to find the passwords.

However, the point that the server knows our passwords in salt technique still exists, so

our passwords are not truly secret. We emphasize, at this point, that the server knows our

passwords in order to stress that the attacker can be the service’s provider. Even though an

external attacker must have strong capabilities in order to compromise a server, a system

already has our passwords. With this, the system that we trusted can use our passwords

in order to match our digitally identity with other systems, and it might use our credit

accounts for illegal purchases. Therefore, we are looking for a technique that is keeping

17



the plain password truly secret. Thus only the owner of a password knows their password

and this will help to protect the users from having a different password for each service

that they use.

3.3 Keybase Authentication

As explained above in the sections 3.1 and 3.2, in many systems and applications the

password is sent to the server in plain text and then the server concludes the authenti-

cation process. Those approaches have a weak point that the server knows and stores

the passwords in its side. In this type of methods, an opportunity for an attacker to steal

and compromise the user’s passwords is present. Users’ credentials, and mainly users’

passwords, are very sensitive data for the system and especially valuable for the user.

Keybase has a different way to authenticate the users in the log in process which starts

from the sign up process. Keybase’s sign up method starts with the generation of the salt

which is used for stretching the user’s passphrase. This stretching creates a passphrase

stream of 256 bytes, which its slices create two parameters, a parameter pwh and an

EdDSA private key. Both parameters are required for the sign up but the first parameter

pwh is ignored at the server. However the EdDSA private key is important for the server

and for the log in procedure. With this private key, a public key is created forming a pair.

The public key is sent to the server as a k-id, with the Keybase’s key ID format [17]. Up

to this point, if a user wants to log into Keybase, then the below sequence of steps is going

to be the following.

First, the user gives their username or email and their passphrase. Then the Keybase’s

client sends to the server the username in order to retrieve the salt that was generated in

the sign up method. With the salt that is retrieved, the passphrase is going to be stretched

and the passphrase stream will be produced. The passphrase stream is sliced to the last

32 bytes, which are the EdDSA private key. The next step of calculation is to generate the

pair of the EdDSA private key, which is the public key that is stored to the server. To get

this public key, Keybase uses Elliptic Curves Cryptography (ECC) functions. The EdDSA

private key is the seed for the calculation of the public key. After those calculations, the

Keybase’s client has to prove its knowledge of the private key by making a signature that

the server can verify who they are. The signature is the result of signing a JSON blob.

The client sends the server the signature packaged as a Keybase-style signature. Then

the server has to verify the signature with the public key (k-id) that was stored in server

during the sign up process.

In short, keybase authentication method seems like a Zero-Knowledge Proof proto-

col (ZKP) [11]. A ZKP authentication protocol provides a different level security due

to the fact that the user has never sends their credentials to the server. Keybase’s user

18



Keybase's Server
Login System 

Alice
username / email 
passphrase username

salt , login session , csrf token

salt

reguest.getsalt(username)

passphraseStream =
scrypt(passphase,salt,N,r,p,dkLen)

Sign JSON Blob with the v5 as the 
EdDSA private key

Package the EdDSA signature as
a Keybase-style signature

v5  = passphraseStream [192:256]

EdDSA signature

EdDSA signature in Keybase-style

Session Cookie
Logged In

Figure 3.2: This figure shows the high idea behind the Keybase process of Authentication.

authentication is done without the user having to send their password to the server, while

the latter can still authenticate them. Moreover, Keybase uses Public Key Cryptography

for authenticating users. Specifically, Keybase uses ECC to generate the authentication

signatures.

19



Chapter 4

Implementation

Contents
4.1 John the Ripper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 KBCracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Tool’s Arguments . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Keybase k-id Computation . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Necessary Modules . . . . . . . . . . . . . . . . . . . . . . . . 27

In this part we explain the idea of a popular cracking tool John the Ripper, how we

built our tool and how the tool works. However, we explain how the Keybase’s login

protocol works until the k-id generation.

4.1 John the Ripper

John the Ripper (JtR) [21] is a powerful tool which is mainly used for cracking encrypted

passwords. JtR supports a lot of cryptographic algorithms in order to crack given pass-

words. Also, it offers to the users several extra features. The attacks that JtR can apply to

find the passwords are Brute Force, Dictionary and Rainbow Table attacks.

Brute Force attack is a method that is not efficient but it is effective. It is a slow process

but it is sure that at some time it will have the right result. JtR tries to guess the password

by generating words. It starts from a character and carries on until it finds the right word.

In other words, JtR, in brute force attack, combines characters (letters, number or special

characters like ’?!@#’) successively to find the password.

Dictionary attack in JtR tries to guess the passwords by using a file contained a list

of words (wordlist file) which is determined by the user. Usually the words that are

containing in the wordlist file are common passwords which are taken from a breach.

20



Rainbow tables include pre-computed hashes for a given algorithm. Specifically,

Rainbow Tables offer a quick experience for the user. Firstly, JtR looks for the pass-

word in the Rainbow Table and then it starts its rules. Even though rainbow tables seems

to be an efficient attack, they need a considerable processing power and memory. Also, if

the hashes are salted then the rainbow attack is infeasible.

Finally, JtR supports some smart rules which can extend wordlists.These rules make

efficient permutations and combinations on the given words, resulting in the expansion of

the wordlist. The table 4.1 presents a result from using these rules.

blah blahblah Blah4 blahhalb Blahs

Blah halb Blah6 blaH blahed

blahs 1blah Blah8 2blah blahing

blah1 BLAH Blah. 4blah Blahed

BlahBlah halB blahhalb Blah? Blah0

Table 4.1: This table shows a small result of John the Ripper’s rules. The actual result has

54 permutations of the word blah.

4.2 KBCracker

For the implementation of our tool, KBCracker, we have developed a python script that

computes the public key for a given username using a file of common passwords. The

python version that is required for this tool is 3.6. The tool does not have any graphi-

cal user interface (GUI). It can be run on terminal or any IDE that supports python (eg

Pycharm, Visual Studio Code etc).

Basic Operation: The tool reads a leaked Database, which contains the usernames

along with their k-ids. The purpose of the tool is to find which passphrase has created each

k-id. We assume that users’ salts have also been leaked along with the database. In case

that the salts cannot be leaked, in our implementation, we send a request to Keybase’s

API to retrieve each salt. Nevertheless, in the actual attack, salts will be fetched once.

The deployment of our tool is based on dictionary attack. Users can define a wordlist

that they believe it contains passphrases that are closer to the passphrases that they are

searching for. If users do not define a wordlist file, then, by default, the tool uses the

wordlist rockyou.txt 1which contains 14,341,564 unique common passwords. The tool

has been developed to read a file with records of usernames and k-ids. For each record in

this file, the tool tries to find the corresponding passphrase. When the tool finds the right

21



passphrase, it prints it to the console with its own username.

4.2.1 Tool’s Arguments

The concept arguments is very important thing in every program and it is essential for their

users. Our tool is running on terminal so it is necessary to have structure and organization

on arguments. However, it is crucial to explain the arguments by giving help messages,

when users pass incorrect arguments. For instance, the program has to terminate and show

to the console an error message to help its user.

We used the module argparse for Arguments’ Parsing in order to create a user-friendly

command-line interface. This happened for the reason that argaprse is a helpful and

simple module in use. The main purpose of this module is to parse the arguments out of

sys.argv. We define in the program what arguments it requires, and then argparse knows

how to parse them. Finally, argparse generates automatically help messages and issues

errors when the program’s users give invalid arguments.

The tool that we have developed has three options. These can be given as arguments

by the users when the tool is initiated, in order to define its parameters. Furthermore,

arguments in this program have short and long options. Short options are defined from

the user by using the symbol "-" and one letter of the alphabet. Otherwise, if the user

wants to use the long option of an argument they must use "–" and one word from the

English dictionary. In addition, some options do not need parameters or they need one

or more. Finally, there are options that are necessary for the tools’ execution and options

that are not. The table 4.2 presents the tool’s possible arguments, the requirement of

parameters and the necessity of each argument.

Short Option "-" Long Option "–" Parameters Necessity
1 h help No parameters Optional

2 w wordlist Only one File Optional

3 f file One or more file Necessary

Table 4.2: This table presents the short options, long options, the required parameters and

the necessity of each argument.

The first argument, -h–help, is an argument that displays a help menu with the avail-

able options with a short description, and then the program terminates it. This option does

not requires any parameter.

1This wordlist was created by compromised passwords from RockYou [8] company

22



Figure 4.1: This figure shows the help menu that is presented, when the user choose to

run the program with the option -h/–help.

The second argument, -w –wordlist [FILE], gives the option to the user to insert a file

as a parameter. If the user chooses this option, it means that the tool’s wordlist is the

given file. Otherwise, the tool’s wordlist is the rockyou.txt file. Furthermore, the user

must determine only one file as wordlist, if they use this option. Wordlist in the tool is

the dictionary that the program uses to find the right passphrase that generates the k-id.

Moreover, by passing a file as a wordlist, the user must follow some rules regarding file’s

format. The file must be a set of words that are separated by a newline.

A small example of wordlist file:
1 abc123
2 computer
3 t i g e r
4 password

The final option is the -f –file [FILE]. The parameter FILE is a requirement for this

option and user must define at least one file as parameter. The program reads from this

file (or files) a set of usernames and their corresponding k-ids. Those k-ids are going to

be cracked by the tool and tool will try to find which passphrases have generated them.

When the tool finds the right passphrase, it prints it on the console. Otherwise, in the

case where no passphrase in the wordlist matches with a k-id, the program does not print

anything. The tool prints only the passphrases that it founds.

FILE format: Each username has one k-id separated with a comma ’,’.

Each record of username and k-id is separated by a newline.

A small example of file:
1 username ,0120 bfedbfda2cb903d526461b5127299025f8c100490427cb306665b4f7a75a6a230a
2 username1 ,0120 cf564b2c954845f0c874de98c099fab6cd4db0962e24d5af6292be4a22b128530a
3 username2 ,01205153 ac36df78eb1b8d5863d0ae36e1dcb7028ca6e269a5cbb73c68cf6774036c0a

23



Execution Examples :
$ python3.6 keybase_tool.py -h

$ python3.6 keybase_tool.py –help

$ python3.6 keybase_tool.py -f file1.txt file2.txt

$ python3.6 keybase_tool.py –wordlist wordlist.txt -f file.txt

$ python3.6 keybase_tool.py -w words.txt -f file.txt

A complete example of how the tool works is presented in Appendix E.

4.2.2 Keybase k-id Computation

The Keybase’s login Protocol is divided into two rounds, with a two rounds protocol

Keybase obviates replay attacks. We implemented this protocol until the k-id’s creation.

For the implementation, we used Keybase’s API for retrieving necessary parameters,

we sent requests to the keybase’s server and we got the analogous responses. It is im-

portant to understand what the responses of the server mean, by studying Keybase’s doc-

umentation to learn how to manipulate the responses. In addition, all Keybase’s API

responses are in JSON format and include a status object and a csrf_token string. The

status object is a number that presents success or failure. If the status number is "0" that

means success. Other statuses mean error and they have extra parameters to describe the

error.

First Round of Protocol

Each keybase’s user has its own unique salt which is generated and stored at the server

side at the sign up process. To get this salt, the username or email of the user is required

to be sent to the server by a request. Thus, the server responses with the user’s unique salt

and a random challenge named login_session.

In our implementation, we assume that we have a leaked database with Keybase’s

users username and also salts. As a result, we do not need to check if the username exists.

Nonetheless, we used the Keybase’s API to retrieve the unique salt but in the actual attack

the salt for each user will be fetched once. Also we can use this request for the case that

the salt cannot be leaked along with usernames and k-ids.

Furthermore, if the user exists then we have a random challenge, login_session. The

random challenge will always be different for every request. Also, it expires after a certain

period of time. Moreover, it is not a truly random token but it is a token that is crypto-

graphically tied to client’s username with a timestamp. It is important for the keybase’s

server, as the login_session saves the server from keeping state.

24



Second Round of Protocol

In the second round of the protocol, the k-id is calculated. For every username and the salt

that is retrieved, we get a word to be the passphrase from the wordlist file and compute

the k-id that is produced. Until we find the passphrase that generates the username’s k-id

we try the words sequentially from the wordlist file.

The passphrase is going to be stretched and produced a Passphrase Stream (256 bytes).

For the passphrase stretching, the key derivation function scrypt (from scrypt module) is

used. The parameters for the scrypt function are the passphrase, the binary encoding of the

user’s salt, N = 215, r = 8, p = 1 and bu f len = 256. The parameter N is a CPU/memory

cost parameter which must be a power of two greater than 1, r and p must satisfy r ∗ p <

230; r is the block size and p is the parallelization factor. Lastly, bu f len is the length of the

derived key. The Passphrase Stream is sliced to the last 32 bytes, which are the EdDSA

private key. By using the Ed25519 elliptic curve functions we can generate the public

key. For the creation of the public key we need to pass the private key in Ed25519.keygen

as a parameter. The functions’s result is the user’s public key. Afterwards, we add 0120

as prefix and 0a as suffix in the public key and thus we have the k-id that follows the

Keybase’s standards.

We check the username’s k-id from the input file to see whether it is equal with the

calculated k-id. If it is equal then the program prints to the console the passphrase with

the corresponding username.

25



The tables below, 4.3-4.4, show in short where we can find each parameter and where

its usage exists in the protocol. The parameters for the scrypt function N,p,r and buflen

are standard so they are not presented on these tables.

Parameter Where
Username/email In the File that passed as parameter from the tool’s user.

Salt
In the response from getsalt call

or leaked along with usernames and k-ids.

Passphrase Stream The result of the key derivation function scrypt.

EdDSA private key The last 32 bytes of the Passphrase Stream.

EdDSA public key
Passed the Private Key in Ed25519.keygen as

seed to get the EdDSA public key.

k-id We add 0120 as a prefix and 0a as a suffix to EdDSA public key.

Table 4.3: This table shows where we can find the necessary parameters for the imple-

mentation of Keybase’s k-id creation.

Parameter Usage
Username/email Sent with a request to the server to retrieve the user’s salt.

Salt
We pass the unxhex salt as parameter in a Key

derivation function named scrypt.

Passphrase Stream Sliced to get the EdDSA private key.

EdDSA private key Is the seed for the calculation of the public key.

EdDSA public key
Is the k-id without the Keybase’s format that the

server stored in sign up process.

k-id Is the k-id with Keybase’s format that the server stored in sign up process.

Table 4.4: This table shows where we can use the parameters in Keybase’s k-id creation.

26



4.2.3 Necessary Modules

It is necessary to import the right modules for a successful implementation. In this section,

we present the modules that are required and imported in the program. Specifically, the

table 4.5 displays the modules that are necessary and the functions that are used from each

module for the main Keybase’s login protocol implementation. As a result, some standard

modules are not presented on the table. Furthermore, for the Ed25519 calculations we use

a class named curves, and from this class the module Ed25519 (Appendix C).

Modules Functions

binascii
binascii.hexlify(data)

binascii.unhexlify(hexstr)

Ed25519 Ed25519.keygen(seed)

scrypt scrypt.hash(passphrase,N,p,r,buflen)

requests requests.post(url, params={}, timeout=10)

Table 4.5: This table shows the necessary modules and the functions of each module that

are used in python script for the k-id creation.

27



Chapter 5

Evaluation

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Introduction

In this chapter, we evaluate the Keybase login protocol in terms of security and perfor-

mance. The protocol’s evaluation is based on the threat model, that the attacker has a

leaked database. This database contains the Keybase’s users credentials (usernames with

its k-ids).

5.2 Performance

For the performance evaluation we used a password file that contains 3545 simple pass-

words. Each password was passed as input into several popular schemes. We measured

the processing time for each scheme with the same simple password. In Keybase proto-

col, it is necessary to get the salt by sending a request to the server with the username

or email. In order to avoid creating a big overhead in the server side, we use a specific

username and we get the unique salt once. As a result, we passed the salt in the scrypt

function with out sending 3545 requests to the Keybase’s server.

Firstly, we timed each part of the Keybase’s protocol. As we expected the higher

percentage of the amount of time is consumed by the stretching part which is the function

scrypt. The table 5.1 shows the average processing time for each part of the protocol.

We timed the passphrase stretching and the ECC public key generation. As we can see

28



in the table below the time that is needed for the ECC public key generation is negligible

in relation to the passphrase’s stretching consumed time. Although, the key generation is

not a slow function, its usage provides a strong level of security as we explain in Section

2.2 .

Part Milliseconds
Scrypt 117.419

ECC Public Key Generation 10.320

Overall k-id generation 127.739

Scrypt Percentage: 91.91 %

Table 5.1: This table shows the average processing time of each part of the keybase’s

protocol in millisecond and the percentage of time that the scrypt function consumed.

Therefore, we developed another python script that simulated some famous password

hashing functions in order to contrast them with the Keybase’s passphrase stretching

(function scrypt). The table 5.2 shows the result of this measurement. Regarding the

schemes that were tested, bcrypt (12 rounds) scheme is the slowest. However, scrypt

causes an overhead that is on the same level as bcrypt. Moreover, the other schemes that

are tested are out of competition based on their times. Specifically, Keybase’s protocol

requires the most processing time compared to the other schemes except from the bcrypt

scheme.

Average (milliseconds) Standard Deviation
bcrypt (12 rounds) 272.820 70.412

Keybase 113.806 16.594

65,537 iterations

of SHA1
38.011 6.691

8,192 iterations

of MD5
4.701 0.885

SHA256 0.004 0.003

SHA512 0.001 0.001

Table 5.2: This table shows the average processing time that password hashing schemes

needs for 3545 passwords.

Furthermore, we contrast the memory consumption between scrypt function and bcrypt

function by monitor the memory usage for each function. For this measurement we used

the Memory Profiler which is a python module [23]. To activate this module we run the

script with the command mprof run <executable>. Thus, a file that contains the data

29



of simulation is generated. Finally, we run mprof plot which reads the latest file that is

generated from mprof run and generates a graph using these data.

We have developed a python script that runs sequentially the scrypt function and then

the bcrypt function. The graph 5.1 shows the memory that is needed in MiB and the

simulation time. The result of the script that simulates the two functions is shown in

figure 5.1.

As it seems, scrypt uses more memory than bcrypt. As a result a brute force attack at

scrypt needs a strong and expensive hardware and makes the attack even harder.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
time (in seconds)

0

10

20

30

40

50

m
em

or
y 

us
ed

 (i
n 

M
iB

)

/usr/bin/python3 bcrypt_scrypt.py

30 / 04 / 2019 - start at 21:07:59.922
scrypt_fun 0.124s
bcrypt_fun 0.319s

Figure 5.1: This graph displays the memory usage of the script that runs both bcrypt and

scrypt functions.

30



5.3 Security

Regarding the results that we get from the performance evaluation, we deduce that if

an attacker has the k-ids, it is computationally hard for the attacker to figures out the

passphrases. We have limited time, so it is important, in terms of security to use functions

that are designed on purpose for slowing down hashing operations in order to make the

attack harder.

What is more, we monitored memory consumption of the scrypt function in contrast

with the bcrypt function. We monitored the memory usage of these functions so as to eval-

uate the Keybase’s protocol. While the protocol needs a quite large amount of memory

that means that an attacker has to use an expensive and powerful hardware to compromise

a database of k-ids.

In conclusion, both the Keybase’s k-id creation and also the methods that Keybase uses

in order to authenticates its users, provide a strong level of security. We stress that, if the

attacker has the database, then they need strong capabilities of computational resources in

order to figure out the passphrases. However, we are not stressed about the case that users

give their passphrases or their personal computer with all connected accounts to another

person, having as a result their passphrases now not to be secret.

31



Chapter 6

Related Work

Contents
6.1 PAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 modssl-hmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 KAuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

The selection of a strong password is a headache for a user. Mainly, users prefer

to select a password that is easy to remember and use it for all the online services that

they use. Unfortunately, there are a lot of disadvantages selecting a simple and usual

password if the system has simple authentication. We study about Keybase login protocol

and authentication for the reason that it is not a simple protocol. Keybase protects the

users’ credentials by keeping them truly secret. In particular, Keybase does not rely on

passwords, but on passphrases. Users need to remember a strong secret, but server has

no knowledge how this secret looks.

In this part we are going to review some works that are related both for password

authentication and Keybase. Keybase is a form of Password Authenticated Key Exchange

(PAKE) and it is interesting to review how we can obtain strong level of security by using

Keybase and its methods.

6.1 PAKE

Password Authenticated Key Exchange (PAKE) [6, 7, 26]

A method or protocol is referenced as PAKE when the password authentication is based

on exchange without server knowing the password as it is. Keybase is a form of PAKE

protocol. Furthermore, Keybase server does not have access on the actual user’s password.

The only knowledge that the server has about the passphrase is the k-id which is created

in Keybase’s login protocol.

32



On the contrary with the classic protocols, PAKE systems have the crucial point on

the authentication process. Classic protocols let users to select a password and then the

system has the password even if it is encrypted or not. PAKE systems do not know the

password, so they have to solve the problem of authentication with alternative and efficient

ways.

Keybase uses ECC signatures for the authentication. Keybase’s users prove their iden-

tity with a not text-based authentication. Server has a key of the user’s passphrase and

user tries to verify that is the valid user by using ECC. These type of protocols are secure

against active attacks. Furthermore, these protocols keep passwords truly secret, protect-

ing users’ credentials.

6.2 modssl-hmac

modssl-hmac [10] is an approach of password hardening by using a private key and

HMAC. The propose of modssl-hmac is to protect passwords when they are leaked. It

does not provide security in terms of not leakage but if the passwords are leaked, it pro-

vides a level of security that is not able to be compromised. The private key is stored in

a module in Apache server, so if an attacker has access in the private key, then he can

do stronger attack than to find the users’ passwords. Keybase offers a different approach

about users’ password storage using ECC. Keybase stores the public key of the the ECC

computations. If the database was leaked the attack that Keybase suffers is the brute force

attack (dictionary). Brute force attack can compromised the k-id and figures out the actual

passphrase. The attacker has to recreate and check if the public key is the same. We can

use modssl-hmac and Keybase methods in some way, in future work, in order to increase

the level of password hardening.

6.3 KAuth

KAuth [9] is based on Keybase platform. KAuth uses Keybase as reference and just

accepts the features and security that Keybase offers. KAuth built a website that uses the

Keybase’s login protocol, username and passphrase that are needed for the KAuth authen-

tication are the same credentials that a user use for Keybase’s authentication. We were

inspired to continue the approach of KAuth by studying about Keybase authentication

and login protocol. KAuth references, as future work, a cracking tool for Keybase’s login

protocol. We work on Keybase’s login protocol and we create this cracking tool to see

how Keybase offers its security and to specify how Keybase creates the keys for user’s

authentication.

33



Chapter 7

Conclusion

In this thesis project, we studied about Keybase authentication, which relies on Elliptic

Curve Cryptography and passphrases. Keybase, by combining these methods, can au-

thenticate its users without any knowledge of their credentials. However, Keybase keeps

users credentials truly secret.

We created a tool that follows the Keybase’s API and documentation in order to create

the key (k-id) that Keybase uses for its users’ authentication. The purpose of our tool is

to figure out which passphrase has generated each k-id. The idea behind that is based on

the dictionary attack. Furthermore, using this tool, we evaluated Keybase’s protocol in

terms of performance and security. Finally, our tool relies on the leakage of the service’s

database with its user’s credentials, thus it cannot attack Keybase, since its database is not

leaked.

34



Bibliography

[1] Password Authentication and Password Cracking. https://www.wordfence.

com/learn/how-passwords-work-and-cracking-passwords/. Last accessed

in May 2019.

[2] Mary Cindy Ah Kioon, Zhao Shun Wang, and Shubra Deb Das. Security analysis of

md5 algorithm in password storage. In Applied Mechanics and Materials, volume

347, pages 2706–2711. Trans Tech Publ, 2013.

[3] Sheikh Iqbal Ahamed, Farzana Rahman, and Endadul Hoque. Erap: Ecc based

rfid authentication protocol. In 2008 12th IEEE International Workshop on Future

Trends of Distributed Computing Systems, pages 219–225. IEEE, 2008.

[4] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro.

Scrypt is maximally memory-hard. In Annual International Conference on the The-

ory and Applications of Cryptographic Techniques, pages 33–62. Springer, 2017.

[5] M Aydos, T Yanık, and CK Koc. High-speed implementation of an ecc-based

wireless authentication protocol on an arm microprocessor. IEE Proceedings-

Communications, 148(5):273–279, 2001.

[6] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange

secure against dictionary attacks. In International conference on the theory and

applications of cryptographic techniques, pages 139–155. Springer, 2000.

[7] Steven M Bellovin and Michael Merritt. Encrypted key exchange: Password-based

protocols secure against dictionary attacks. In Proceedings 1992 IEEE Computer

Society Symposium on Research in Security and Privacy, pages 72–84. IEEE, 1992.

[8] William J. Burns. Common Password List (rockyou.txt. https://www.kaggle.

com/wjburns/common-password-list-rockyoutxt. Last accessed in May

2019.

35

https://www.wordfence.com/learn/how-passwords-work-and-cracking-passwords/
https://www.wordfence.com/learn/how-passwords-work-and-cracking-passwords/
https://www.kaggle.com/wjburns/common-password-list-rockyoutxt
https://www.kaggle.com/wjburns/common-password-list-rockyoutxt


[9] Panayiotis Charalambous, Marios Karapetris, and Elias Athanasopoulos. Kauth:

A strong single sign-on service based on pki. In Proceedings of the International

Conference on Security and Cryptography (SECRYPT), 2018.

[10] Constantinos Diomedous and Elias Athanasopoulos. Practical Password Hardening

based on TLS. June 2019. In Proceedings of the 16th Conference on Detection

of Intrusions and Malware and Vulnerability Assessment (DIMVA). Gothenburg,

Sweden.

[11] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-

fication and signature problems. In Conference on the Theory and Application of

Cryptographic Techniques, pages 186–194. Springer, 1986.

[12] Praveen Gauravaram. Security analysis of salt|| password hashes. In 2012 Interna-

tional Conference on Advanced Computer Science Applications and Technologies

(ACSAT), pages 25–30. IEEE, 2012.

[13] Shirley Gaw and Edward W. Felten. Password management strategies for online ac-

counts. In Proceedings of the Symposium on Usable Privacy and Security, SOUPS,

2006.

[14] Kamlesh Gupta and Sanjay Silakari. Ecc over rsa for asymmetric encryption: A

review. International Journal of Computer Science Issues (IJCSI), 8(3):370, 2011.

[15] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang

Shantz. Comparing elliptic curve cryptography and rsa on 8-bit cpus. In Interna-

tional workshop on cryptographic hardware and embedded systems, pages 119–132.

Springer, 2004.

[16] Darrel Hankerson and Alfred Menezes. Elliptic curve cryptography. Springer, 2011.

[17] Keybase. Keybase key ids (kids). https://keybase.io/docs/api/1.0/kid.

Last accessed in May 2019.

[18] Georgios Kontaxis, Elias Athanasopoulos, Georgios Portokalidis, and Angelos D.

Keromytis. Sauth: Protecting user accounts from password database leaks. In Pro-

ceedings of the 2013 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’13, pages 187–198, New York, NY, USA, 2013. ACM.

[19] Himanshu Kumar, Sudhanshu Kumar, Remya Joseph, Dhananjay Kumar, Sunil Ku-

mar Shrinarayan Singh, and Praveen Kumar. Rainbow table to crack password using

md5 hashing algorithm. In 2013 IEEE Conference on Information & Communica-

tion Technologies, pages 433–439. IEEE, 2013.

36

https://keybase.io/docs/api/1.0/kid


[20] Julio Lopez and Ricardo Dahab. An overview of elliptic curve cryptography. 2000.

[21] Openwall. John the Ripper password cracker. https://www.openwall.com/

john/. Last accessed in May 2019.

[22] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for students

and practitioners. Springer Science & Business Media, 2009.

[23] Fabian Pedregosa. Memory profiler. https://pypi.org/project/

memory-profiler/. Last accessed in May 2019.

[24] Niels Provos and David Mazieres. A future-adaptable password scheme. In USENIX

Annual Technical Conference, FREENIX Track, pages 81–91, 1999.

[25] Gustavus J Simmons. Symmetric and asymmetric encryption. ACM Computing

Surveys (CSUR), 11(4):305–330, 1979.

[26] Thomas Wu. The secure remote password protocol. In In Proceedings of the 1998

Internet Society Network and Distributed System Security Symposium, pages 97–

111, 1998.

37

https://www.openwall.com/john/
https://www.openwall.com/john/
https://pypi.org/project/memory-profiler/
https://pypi.org/project/memory-profiler/


Appendix A

In this part is presented the tool’s README file.

This program is a tool,named KBCracker, that tries to figure out the Keybase's

users passphrases.The tool follows the Keybase's login protocol, in order to

create a k-id. The user should specify the username and the k-id (in a file).

From the username, the tool retrieves the user's unique salt. The salt is

passed as an argument in the scrypt function. The scrypt's result is the

Ed25519 private key from which we can find the public key and then create

the k-id, based on Keybase's standard. Finally, the tool checks if the k-id is

equal to the input k-id and prints the passphrase in the console.

Commands to run the tool:

python3.6 keybase_tool.py -w <Wordlist> -f <File>

python3.6 keybase_tool.py -f <File>

** -w <Wordlist> is optional , by default the wordlist is the file: "rockyou.txt"

Explain the options that user can use in the tool:

-h, --help

Display the help menu, available options and exit.

-w, --worldlist [FILE]

The file that passed as the wordlist that the tool will use.

FILE format: Set of words separated by a newline.

ex. 1234

abcde

-f, --file [FILE]

Read from file a set of usernames and corresponding k-ids.

FILE format: Set of usernames and corresponding k-ids.

Each username has one k-id seperated with a comma ','.

Each record of userame and k-id is seperated by newline.

ex. aaa,111111

bbb,222222

A-1



Appendix B

In this part is presented the python code of the tool.

1 import b i n a s c i i
2 from c u r v e s import Ed25519
3 import s y s
4 import os
5 import s c r y p t
6 import csv
7 import r e q u e s t s
8 import a r g p a r s e
9

10 '''

11 This function is about to calculate the k-id that produces the

12 parameter password.

13 The calculation is based on keybase's login protocol and format.

14 @params password : The password which the k-id is going to be calculated

15 salt : Each user has its unique salt. The salt is necessary for the key derivation

16 function, scrypt.

17 @return k-id : In keybase's format.

18 '''

19 def f i n d p a s s p h r a s e ( p a s s p h r a s e , s a l t ) :
20
21 s = b i n a s c i i . u n h e x l i f y ( s a l t )
22
23 p a s s p h r a s e s t r e a m = s c r y p t . hash ( p a s s p h r a s e , s , N=2 ∗∗ 15 , r =8 , p =1 , b u f l e n =256)
24
25 v5 = p a s s p h r a s e s t r e a m [ 2 2 4 : 2 5 6 ]
26
27 p r i v a t e , pubkey = Ed25519 . keygen ( v5 )
28
29 p u b l i c _ k e y = b i n a s c i i . h e x l i f y ( pubkey )
30 pk = s t r ( p u b l i c _ k e y , " u t f −8" )
31 k i d = ’ 0120 ’ + pk + ’ 0 a ’
32
33 re turn k i d
34
35
36 '''

37 This function retrieves the salt for the username that is passed as parameter.

38 The salt is retrieved using the keybase's api. The server gets the username and

39 responses with the corresponding salt for this username.

40 @params username : Each username in keybase has a unique salt. Server gets the username

41 and response with the salt.

42 @return salt : returns the user's salt.

43 '''

44 def f i n d s a l t ( username ) :
45
46 s a l t _ u r l = ’ h t t p s : / / keybase . i o / _ / a p i / 1 . 0 / g e t s a l t . j s o n ’
47 s a l t _ r e s p = r e q u e s t s . p o s t ( s a l t _ u r l , params ={ ’ e m a i l _ o r _ u s e r n a m e ’ : username } , t i m e o u t

=10)
48 s a l t _ r e s p . r a i s e _ f o r _ s t a t u s ( )
49 s a l t _ j s o n = s a l t _ r e s p . j s o n ( )
50
51 s a l t = s a l t _ j s o n [ ’ s a l t ’ ]
52

B-1



53 re turn s a l t
54
55
56 '''

57 This function finds the passphrase that generates the k-id. This function use the file

58 wordlist, that it is passed as parameter, and for each word in this file generates

59 a k-id. If the k-id equals with the k-id that it is passed as parameter, prints

60 out the username and its passphrase. For the generation of the k-id this function

61 calls other functions, findsalt(username), findpassphrase(passphrase, salt).

62 Basically, this function works like an intermediary to complete the process of

63 the passphrase's search.

64 @params

65 username : The username is needed for salt's retrive.

66 kid : The searching k-id. This function uses words until to find the one

67 which generates this k-id.

68 wordlist : Each word is used for the generation of the k-id, until find the word

69 that matches with the searching k-id.

70 '''

71 def c r a c k ( username , kid , w o r d l i s t ) :
72
73 s a l t = f i n d s a l t ( username )
74
75 wi th open ( w o r d l i s t ) a s c s v _ f i l e :
76 c s v _ r e a d e r = csv . r e a d e r ( c s v _ f i l e , d e l i m i t e r = ’ , ’ )
77 f o r passw in c s v _ r e a d e r :
78 p a s s p h r a s e = passw [ 0 ]
79 r e s u l t = f i n d p a s s p h r a s e ( p a s s p h r a s e , s a l t )
80 i f r e s u l t == k i d :
81 p r i n t ( username , p a s s p h r a s e )
82 re turn 1
83
84
85 '''

86 This function reads the data from each file in order to figure out what

87 word generates each k-id.

88
89 @params

90 file :The file that contains the usernames with the correspondign k-ids.

91 wordlist :Is the file that contains words. Each word is used for the generation

92 of the k-id, until find the word that match with the searching k-id.

93 '''

94 def r e a d f r o m f i l e ( f i l e , w o r d l i s t ) :
95 t a b = [ 0 , 0 ]
96 i f not os . p a t h . i s f i l e ( f i l e ) :
97 p r i n t ( " F i l e " , f i l e , " n o t found . " )
98 re turn
99

100 wi th open ( f i l e ) a s c s v _ f i l e :
101 c s v _ r e a d e r = csv . r e a d e r ( c s v _ f i l e , d e l i m i t e r = ’ , ’ )
102 f o r r e c o r d in c s v _ r e a d e r :
103 username = r e c o r d [ 0 ]
104 k i d = r e c o r d [ 1 ]
105 c = c r a c k ( username , kid , w o r d l i s t )
106 t a b [ 0 ] = t a b [ 0 ] + 1
107
108 i f c == 1 :
109 t a b [ 1 ] = t a b [ 1 ] + 1

B-2



110
111 re turn t a b
112
113
114
115 def main ( a rgv ) :
116
117 w o r d l i s t = " rockyou . t x t "
118 p a r s e r = a r g p a r s e . Argumen tPa r se r ( d e s c r i p t i o n =" Th i s t o o l i s a b o u t c r a c k i n g Keybase ’ s

k−i d s . " )
119 group = p a r s e r . add_argument_group ( )
120 group . add_argument ( "−f " , "−− f i l e " , n a r g s = ’+ ’ , help =" t o o l r e a d s use rnames wi th t h e

c o r r e s p o n d i n g k−i d s from FILE " , r e q u i r e d =True )
121 p a r s e r . add_argument ( "−w" , "−−w o r d l i s t " , n a r g s =1 , help =" t o o l r e a d s words from

WORDLIST" )
122
123 a r g s = p a r s e r . p a r s e _ a r g s ( )
124 i f l e n ( a rgv ) == 0 :
125 p r i n t h e l p ( )
126 s y s . e x i t ( )
127
128 f o r f in a r g s . f i l e :
129 i f a r g s . w o r d l i s t :
130 t a b = r e a d f r o m f i l e ( f , a r g s . w o r d l i s t [ 0 ] )
131 e l s e :
132 t a b = r e a d f r o m f i l e ( f , w o r d l i s t )
133
134 p r i n t ( " Found : " , t a b [ 1 ] , " o u t o f " , t a b [ 0 ] , " p a s s p h r a s e s . " )
135
136
137 i f __name__ == " __main__ " :
138 main ( s y s . a rgv [ 1 : ] )

B-3



Appendix C

In this part is presented the python code of the Ed25519 class.

1 #A point on Edwards25519

2 c l a s s Edwards25519Poin t ( EdwardsPo in t ) :
3 #Create a new point on curve.

4 b a s e _ f i e l d = F i e l d (1 ,2∗∗255−19)
5 d=−b a s e _ f i e l d . make ( 1 2 1 6 6 5 ) / b a s e _ f i e l d . make ( 1 2 1 6 6 6 )
6 f0 = b a s e _ f i e l d . make ( 0 )
7 f1 = b a s e _ f i e l d . make ( 1 )
8 xb= b a s e _ f i e l d . make ( h e x i ( " 216936D3CD6E53FEC0A4E231FDD6DC5C692CC76" +\
9 " 09525A7B2C9562D608F25D51A " ) )

10 yb= b a s e _ f i e l d . make ( h e x i ( " 666666666666666666666666666666666666666 " + \
11 " 6666666666666666666666658 " ) )
12 #The standard base point.

13 @ s t a t i c m e t h o d
14 def s t d b a s e ( ) :
15 re turn Edwards25519Poin t ( Edwards25519Poin t . xb , \
16 Edwards25519Poin t . yb )
17 def _ _ i n i t _ _ ( s e l f , x , y ) :
18 #Check the point is actually on the curve.

19 i f y∗y−x∗x != s e l f . f 1 + s e l f . d∗x∗x∗y∗y :
20 r a i s e V a l u e E r r o r ( " I n v a l i d p o i n t " )
21 s e l f . i n i t p o i n t ( x , y )
22 s e l f . t =x∗y
23 #Decode a point representation.

24 def decode ( s e l f , s ) :
25 x , y= s e l f . decode_base ( s , 2 5 6 ) ;
26 re turn Edwards25519Poin t ( x , y ) i f x i s not None e l s e None
27 #Encode a point representation

28 def encode ( s e l f ) :
29 re turn s e l f . encode_base ( 2 5 6 )
30 #Construct neutral point on this curve.

31 def ze ro_e l em ( s e l f ) :
32 re turn Edwards25519Poin t ( s e l f . f0 , s e l f . f 1 )
33 #Solve for x^2.

34 def s o l v e _ x 2 ( s e l f , y ) :
35 re turn ( ( y∗y−s e l f . f1 ) / ( s e l f . d∗y∗y+ s e l f . f 1 ) )
36 #Point addition.

37 def __add__ ( s e l f , y ) :
38 #The formulas are from EFD.

39 tmp= s e l f . z e ro_e l em ( )
40 zcp= s e l f . z∗y . z
41 A=( s e l f . y−s e l f . x ) ∗ ( y . y−y . x )
42 B=( s e l f . y+ s e l f . x ) ∗ ( y . y+y . x )
43 C=( s e l f . d+ s e l f . d ) ∗ s e l f . t ∗y . t
44 D=zcp+zcp
45 E ,H=B−A, B+A
46 F ,G=D−C ,D+C
47 tmp . x , tmp . y , tmp . z , tmp . t =E∗F ,G∗H, F∗G, E∗H
48 re turn tmp
49 #Point doubling.

50 def do ub l e ( s e l f ) :
51 #The formulas are from EFD (with assumption a=-1 propagated).

52 tmp= s e l f . z e ro_e l em ( )
53 A= s e l f . x∗ s e l f . x

C-1



54 B= s e l f . y∗ s e l f . y
55 Ch= s e l f . z∗ s e l f . z
56 C=Ch+Ch
57 H=A+B
58 xys= s e l f . x+ s e l f . y
59 E=H−xys∗xys
60 G=A−B
61 F=C+G
62 tmp . x , tmp . y , tmp . z , tmp . t =E∗F ,G∗H, F∗G, E∗H
63 re turn tmp
64 #Order of basepoint.

65 def l ( s e l f ) :
66 re turn h e x i ( " 1000000000000000000000000000000014 d e f 9 d e a 2 f 7 9 c d " + \
67 " 65812631 a5c f5d3ed " )
68 #The logarithm of cofactor.

69 def c ( s e l f ) : re turn 3
70 #The highest set bit

71 def n ( s e l f ) : re turn 254
72 #The coding length

73 def b ( s e l f ) : re turn 256
74 #Validity check (for debugging)

75 def i s _ v a l i d _ p o i n t ( s e l f ) :
76 x , y , z , t = s e l f . x , s e l f . y , s e l f . z , s e l f . t
77 x2=x∗x
78 y2=y∗y
79 z2=z∗z
80 l h s =( y2−x2 ) ∗z2
81 r h s =z2∗z2+ s e l f . d∗x2∗y2
82 a s s e r t ( l h s == r h s )
83 a s s e r t ( t ∗z == x∗y )

C-2



Appendix D

In this part is presented the python function which generates the Ed25519 public key.

1 #Generate a key. If privkey is None, random one is generated.

2 #In any case, privkey, pubkey pair is returned.

3 def keygen ( s e l f , p r i v k e y ) :
4 #If no private key data given, generate random.

5 i f p r i v k e y i s None : p r i v k e y =os . urandom ( s e l f . b / / 8 )
6 #Expand key.

7 khash = s e l f .H( p r i v k e y , None , None )
8 a= f r o m _ l e ( s e l f . __clamp ( khash [ : s e l f . b / / 8 ] ) )
9 #Return the keypair (public key is A=Enc(aB).

10 re turn p r i v k e y , ( s e l f . B∗a ) . encode ( )

D-1



Appendix E

In this part is presented a complete example of how the tool works.

This is the input file.

1 username ,0120 bfedbfda2cb903d526461b5127299025f8c100490427cb306665b4f7a75a6a230a
2 username1 ,0120 cf564b2c954845f0c874de98c099fab6cd4db0962e24d5af6292be4a22b128530a
3 username2 ,01205153 ac36df78eb1b8d5863d0ae36e1dcb7028ca6e269a5cbb73c68cf6774036c0a
4 username3 ,0120047 f6d2498c8e16a1e1 f14e f609 f3629c8add90914a326c f47aec26a133ba6060a
5 username4 ,01209369 d1c5152026d92a9356386e7f2604f34142ad8393ba65efae40d77437b01b0a
6 username5 ,0120253 dd59a305bf8185aaadae9d9c37b fd693eb2 f60a6a f1 f30923286 f9c55d9690a
7 username6 ,0120790 fb fd36d03ae f4b13dca97bf804dc51bcd32252ccd14121c7c35f7d33d96da0a
8 username7 ,012055909 f0cb f f46118436c2bac80f7532761f5c17269e69518c1063020d6b748f00a
9 username8 ,012032610 e4832c59bc1d927317d53f08ccc0fec916bb55922f8 f70be2d1a52a409d0a

10 username9 ,0120 f 9 1 b 1 1 d 5 b 8 5 b f 5 3 3 8 2 c e 2 a c 5 8 f f 7 c 3 7 e 8 a f 7 f c 7 7 5 9 3 2 f 1 9 8 2 5 1 0 9 3 6 b c 1 9 4 3 d f d 0 a
11 username10 ,0120 b3dc08587168d9591951e5bdfa33115621cac74e60105401dd36a065f f fe725a0a
12 username11 ,0120 fb5eb5b7a6d72346b87aad96faee14b502d7368697875c6c63a99ef98aa147f80a
13 username12 ,01206 aaaa263c77bf22d72db7dca4f5a8e57a0384e696e323022bd28900f853b99d30a
14 username13 ,01203 a63c7714543391e4d0f71f08cf97a77301dd69025373040a556f28d5cc541e10a
15 username14 ,01200 f f30c95a7dfdaa95c21a2759cd2f5bc31d88dd72b13ae527c3979b049a2cee20a

This is the wordlist file.

1 123456
2 12345
3 password
4 g a n d a l f
5 magic
6 m e r l i n
7 newyork
8 s o c c e r
9 ra inbow

10 bigmac
11 1234567890
12 computer
13 t i g g e r
14 c o l o r a d o
15 qwer ty
16 money
17 carmen
18 mickey
19 s e c r e t
20 e l p a c o
21 g r e e n
22 helpme
23 l i n d a
24 h a r r y p o t t e r

E-1



The result.

1 $ python3 . 6 k e y b a s e _ t o o l . py −f i n p u t . t x t −w w o r d l i s t . t x t
2 username 123456
3 username1 12345
4 username2 password
5 username3 ra inbow
6 username4 bigmac
7 username5 1234567890
8 username6 compute r
9 username7 t i g g e r

10 username8 c o l o r a d o
11 username9 qwer ty
12 username10 money
13 username11 carmen
14 username12 mickey
15 username13 s e c r e t
16 username14 h a r r y p o t t e r
17 Found : 15 o u t o f 15 p a s s p h r a s e s .

E-2


	Introduction
	Contributions
	Organization

	Background
	Public Key Cryptography
	Key Generation
	Digital Signatures

	Elliptic Curve Cryptography
	Overview
	Trapdoor Functions
	Point Addition, Point Doubling and Point Multiplication
	Key Exchange in Elliptic Curve Cryptography
	Elliptic Curve Digital Signature Algorithm
	Security

	Keybase

	 Text-based Password Authentication
	Overview
	Research Problem
	Keybase Authentication

	Implementation
	John the Ripper
	KBCracker
	Tool's Arguments
	Keybase k-id Computation
	Necessary Modules


	Evaluation
	Introduction
	Performance
	Security

	Related Work
	PAKE
	modssl-hmac
	KAuth

	Conclusion
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

