
Thesis Dissertation

KAUTH: A STRONG SINGLE-SIGN ON SERVICE
BASED ON PKI.

Panayiotis Charalambous

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2018

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

KAuth: A Strong Single-Sign On Service based on PKI.

Panayiotis Charalambous

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2018

Acknowledgments

First and foremost, I have to thank my research supervisor, Dr. Elias Athanasopoulos.

Without his assistance and dedicated involvement in every step throughout the process,

this thesis project would never have been accomplished. I would like to thank you very

much for your support and understanding over this past year.

Getting through my thesis project required more than academic support, and I have

many friends to thank for their support. You made all those endless nights in labs, supris-

ingly a very pleasant time.

Most importantly, none of this could have happened without my family. To my par-

ents and my sister - there is not a single moment that you weren’t by my side providing

absolutely everything you could. This project stands as a testament to your unconditional

love and encouragement.

Summary

Passwords are the dominant form of human-to-machine authentication despite all the

problems that are commonly associated with them. For users, remembering a simple

secret is much more convenient than other forms of authentication that involve complex

protocols. In this thesis project, we attempt to deploy PKI for human authentication. We

use a publicly available infrastructure, namely Keybase, for managing public-key pairs

across devices. In addition, Keybase offers us several features for identifying users in

social networks and a login-to-Keybase process which is password-less, meaning that au-

thentication takes place using digital signatures produced by an Elliptic Curve (EC) cryp-

tosystem. By using Keybase, we minimize the required cryptographic keys to the absolute

minimum: one. We transform Keybase to a Single-sign On (SSO) service which can vet

users for using other services, exactly as it happens now with very popular, but entirely

password-based, services. We implement two authentication schemes based on Keybase,

KAuth and KAuth+, and we evaluate them using a state-of-the-art methodology.

Results of this thesis project

The results of this thesis project will be published in the proceedings of the SECRYPT

conference that will be held in Porto, Portugal in 26-28 July 2018

Contents

Page

1 Introduction 1

2 Background 4
2.1 Public key cryptography . 4

2.2 Keybase . 5

2.3 OAuth . 6

3 Architecture 7
3.1 Traditional Approach: Facebook Connect 7

3.2 KAuth . 7

3.2.1 OAuth Server . 8

3.2.2 Keybase Login System . 8

4 Implementation 12
4.1 Heroku . 13

4.2 Client Website . 13

4.3 OAuth2 server . 15

4.4 KAuth Login procedure . 16

4.5 KAuth+ Login procedure / Wizard . 17

4.6 Technologies and tools used . 19

4.6.1 Javascript . 19

4.6.2 Cascading Style Sheet (CSS) . 19

4.6.3 HyperText Markup Language (HTML) 19

4.6.4 Sublime Text . 19

4.7 Database Implementation . 21

5 Evaluation 24
5.1 Usability Evaluation . 25

5.1.1 KAuth: Usability Evaluation . 25

5.1.2 KAuth+: Usability Evaluation 26

5.2 Deployability Evaluation . 27

5.2.1 KAuth: Deployability Evaluation 27

5.2.2 KAuth+ Deployability Evaluation 28

5.3 Security Evaluation . 29

5.3.1 KAuth: Security Evaluation . 29

5.3.2 KAuth+: Security Evaluation 30

6 Discussion and Future Work 31
6.1 Attacks on Keybase . 31

6.2 Incorporating KAuth with the official Keybase 32

6.3 Extended Usability Studies . 32

7 Related Work 33
7.1 Passwords . 33

7.2 Single sign-on services . 34

8 Conclusion 35

Bibliography 36

Chapter 1

Introduction

Human-to-machine authentication is still based on text-based passwords, despite the many

different proposals for better authentication systems and the clearly negative stance of IT

vendors against passwords [37, 44]. For web browsing especially, users rely on pass-

words for using the continuously growing Internet services, while experts are still de-

bating on the right password policies [39]. This has significant implications, since pass-

words are reused [16], are leaked due to services’ vulnerabilities [1, 10, 18, 26, 33] not

user mistakes [21, 24], are phished [12, 13], and the overall user experience is severely

degraded [27, 40]. We stress here that, as far as phishing is concerned, the attack is get-

ting more serious [17] overcoming even several forms of enhanced authentication, such

as two-factor authentication (2FA), which is commonly believed to secure passwords. As

far as database leaks are concerned, according to Facebook they happen on a weekly ba-

sis [32]. It is more than clear, that the community needs to actively seek a radical change

in the way humans authenticate to services.

Cryptology has built several tools for building strong authentication. Unfortunately,

such techniques have been used so far for machine-to-machine authentication [14] or ad

hoc for password hardening [15,25,38], where a cryptographic service is used to add lay-

ers of encryption thus making password cracking more difficult. Although cryptography

has progressed, the techniques provided are marginally applied to human authentication,

since they are still deemed as user-unfriendly and cryptographic systems, for instance

based on a public-key infrastructure (PKI), are not deployed.

So far, altough PKI can offer strong authentication, for human-to-machine authenti-

cation PKI is still considered unfriendly due to the following major problems:

P1 Key maintenance. Cryptographic keys have to be present during authentication,

while users frequently use several devices to access services. Moving cryptographic

keys from device to device, especially upon buying a new one, is considered a

tough process even though passwords can be memorized, or easily recovered using

1

password reminders.

P2 Key revocation. Compared to changing a password by following an e-mail link,

finding the services that are associated with a particular (leaked) cryptographic key

and revoking the key is challenging.

In this thesis project, we attempt to deploy PKI for human authentication by attacking

both aforementioned problems, P1 and P2. In particular, for solving P1 we use a pub-

licly available infrastructure, namely Keybase [22], for managing public-key pairs across

devices. In addition, Keybase offers us several features for identifying users in social net-

works and a login-to-Keybase process which is password-less, meaning that authentica-

tion takes place using digital signatures produced by an Elliptic Curve (EC) cryptosystem.

Furthermore, for solving P2, we minimize the required cryptographic keys to the absolute

minimum: one. We transform Keybase to a Single-sign On (SSO) [36] service which

can vet users for using other services, exactly as is happening now with very popular, but

entirely password-based, services [19, 30, 41]. Our proposed system, KAuth, uses PKI to

authenticate users, without suffering from P1, and once a user is authenticated, they can

proceed and enjoy a third-party service. In the case of private key leakage, a user can

simply revoke their key which is known only to our system, without being affected by P2.

Why Keybase? We build KAuth on Keybase for two major reasons. First, Keybase

offers several options for cryptographic operations. We, also, assume that in the future

Keybase can incorporate additional cryptographic ciphers. Second, Keybase offers most

of the features through a user-friendly environment, such a web browser. For instance,

when a user needs to authenticate with Keybase, a passphrase is used to derive a crypto-

graphic key that will carry out an EdDSA signing process. The whole process is imple-

mented in the web browser and greatly resembles a typical password-base authentication

routine, but it is not.

Is Keybase secure? Keybase is a relatively new platform and it is likely to suffer from

vulnerabilities that are not exploited, yet. For instance, Keybase uses Elliptic Curves for

user authentication, which are much more under-researched than RSA. In this project,

we use Keybase mostly as a reference implementation and we argue that cryptographic

primitives can be offered in a user-friendly way, while realizing a much more stronger

authentication to users.

In fact, our vision is that authentication should be provided with options and users

should be able to be selective. Nowadays, many authentication proposals are never im-

plemented because they are deemed non friendly. Our philosophy is that users do not fall

all under the same catergory and many may be willing to sacrifice convenience for more

security. Having said that, we view our prototype more as complementary to other SSO

implementations and not as a competitor. For instance, currently deployed SSO services

2

can be inspired from Keybase and our work, and integrate (optional) cryptographic-based

authentication schemes in addition to their typical password-based authentication.

Contributions. This thesis project contributes the following.

1. We design and implement KAuth and KAuth+, two systems which provide strong

PKI human-to-machine authentication.

2. We evaluate KAuth and KAuth+ with an established framework [5] and show our

systems can defend users against several password-related attacks, such as phishing

and password leakage, without severely affecting the user’s experience. In fact, the

user is hardly aware that PKI is in place when using KAuth.

Organization. The rest of the thesis is organized as follows. In Section 2 we

discuss the basic components which our system uses, such as the OAuth2 protocol

(for the SSO part) and Keybase. In Section 3 we discuss the architecture of KAuth

and KAuth+ and we provide the technical details in Section 4. We discuss our

future steps in Section 6 and we evaluate KAuth in Section 5 using a state-of-the-

art methodology [5]. Related work is discussed in Section 7 and we conclude in

Section 8.

3

Chapter 2

Background

Contents
2.1 Public key cryptography . 4

2.2 Keybase . 5

2.3 OAuth . 6

2.1 Public key cryptography

Public key cryptography is an encryption technique that ensures that two sides that want

to communicate will not have a 3rd person listening to the conversation, tampering with

it or impersonating one of the two parties. This is all possible by using pairs of keys.

Each side has their private key which is kept for themselves and a public key that they

share with whoever they want to communicate with. To communicate with each other,

the senders must encrypt their message using the recipient’s public key. Each recipient

can decrypt the message using his private key. Typically asymmetric ciphers are suitable

for encrypting and decrypting short messages; for longer messages a symmetric cipher

can be involved.

Public key cryptography is implemented by a variety of internet standards such as

TLS, PGP, GPG, SSL and HTTP. Public key encryption also offers proof as to who wrote

a message. If someone wants to send a message that will ensure the recipient that they

are the one who wrote it, they can encrypt the message –in practice, the message’s cryp-

tographic digest– with their private key. Then the recipient can decrypt the message using

the sender’s public key, to verify the signature. One issue that public key cryptography

poses is key distribution. Searching for keys but also making sure that the key you have

found belongs to the person it says can be a hard task. Sharing your public key on your

social media or appending it on all your emails might sound a solution but it can be dan-

4

Figure 2.1: Users can do crypto operations such as encryption/decryption and sign/verify

using Keybase’s website, their client, or their command line tool. The first method re-

quires that the user has their private key encrypted and uploaded on Keybase’s servers. If

you want to keep your private key fully protected, you have to use the command line tool

or the local client.

gerous should one (or all) of your accounts get compromised and the public key replaced

with a different one.

2.2 Keybase

Keybase’s idea is that all your social media networks combined, present your public iden-

tity. Therefore, Keybase lets you tie your Keybase account to any other social media

account. In addition it enables you to distribute your public key in a way that can be

verified that the user making a statement, is the one that holds the Keybase account, the

social media accounts and an exact public key. All of this happens automatically using the

Keybase client offering centralized management with decentralized trust. Keybase also

solves the problem with PGP keys which must be distributed amongst all your devices,

using per-device keys. These keys that never leave the device, verify each other.

Keybase now offers an encrypted end-to-end chat system and an encrypted file-system.

As seen on figure 2.1, users can do crypto operations such as encryption/decryption and

sign/verify using Keybase’s website, their client, or their command line tool. The first

method requires that the user has their private key encrypted and uploaded on Keybase’s

servers. If you want to keep your private key fully protected, you have to use the com-

mand line tool or the local client. In addition, Keybase also let’s you use your keys on

GPG or any other PGP program.

5

2.3 OAuth

OAuth is an authorization framework that assigns the authentication of the user to the

service that the user has signed up, authorizing 3rd party applications to access the user’s

data. There are several authorization flows for web/desktop applications and mobile de-

vices, but we will only be discussing the Authorization code grant.

There are 4 roles in the OAuth framework: The resource owner is the user who au-

thorizes an application to access an account. There is the Resource server that holds the

user’s credentials, the Authorization server that verifies the user and the Client which is

the 3rd party application that wants to access the user’s account. The Client receives a

Client ID and Client Secret from the service’s API (Resource/Authorization server) that

he uses to communicate. [31] When a user wants to access the client’s services, the user

gets a code from the Resource server that passes to the client. Then the client exchanges

the code for an access token. This token is then used to make API calls to the resource

center, retrieving any useful information which is needed about the user.

6

Chapter 3

Architecture

Contents
3.1 Traditional Approach: Facebook Connect 7

3.2 KAuth . 7

3.2.1 OAuth Server . 8

3.2.2 Keybase Login System . 8

3.1 Traditional Approach: Facebook Connect

One of the most popular and widely adopted mechanisms that is really close to our ap-

proach is Facebook Connect [30]. Identical to KAuth, where if a user wants to access a

third-party website using Facebook Connect, they follow the exact same procedure, in-

cluding a request for token, authorization and username/password validation. Due to the

massive community on Facebook, many developers integrate their websites with Face-

book Connect. This has led to many different implementations, each one of them offering

different functionalities. What stays the same for all implementations is how Facebook

validates user credentials, however this is where KAuth tries to make a difference.

3.2 KAuth

Our system has a simple architecture as there are two big parts that end up working to-

gether. On the one side, the OAuth server handles the token requests, waits for the Key-

base login procedure to be completed, and then serves as a resource server, providing an

interface to the API of Keybase.

7

Figure 3.1: When a user wants to login at a third party website and they choose to do so

using KAuth or KAuth+, this is the flow that they have to follow. On one side, the OAuth

server handles the token requests, waits for the Keybase login procedure to be completed,

and then serves as a resource server, providing an interface to the API of Keybase.

3.2.1 OAuth Server

The OAuth server is split into 3 controllers. The token controller, authorizer controller

and resource controller. The token controller is responsible to generate an authorization

code for the client website. This authorization code is sent to the authorizer controller by

the Client website, with the Client ID and Client Secret, and is exchanged for an access

token. This access token is then passed to the resource controller, in order to make API

calls to Keybase and access the user’s data.

This architecture is defined by the library we used to apply the OAuth protocol [7].

3.2.2 Keybase Login System

The Keybase Login System operates in two modes. The basic version where the user

has to enter a username and a passphrase, and the + version where they have to enter

username, passphrase and also sign a message using their PGP private key.

8

Figure 3.2: Example of the getSalt API call by Keybase official API page.

KAuth Login System This login system procedure starts by requesting a salt using the

user’s username. This is done through the official Keybase API and an example of that

call can be shown in Figure 3.2. Then, the passphrase and the salt (unhexed) are entered

as parameters in the scrypt function which generates a 256 byte stream. The last 32 bytes

of this stream, are handled as a private key. This private key is used to sign a JSON

blob (as shown in Figure 3.3). An EdDSA signature is generated and then packaged

into a Keybase-style signature [9]. The result is sent to the Keybase server as the pdpka5

parameter. An example of a Keybase-style signature is shown in Figure 3.5

KAuth+ Login System The KAuth+ login system differs from the Basic one as it ex-

ecutes an additional action. It follows all steps of the basic login system, but also uses

the user’s private key to sign a message. This is done by requiring the user to download

and run a script that will generate the signed message and then upload the signed mes-

sage. This signed message is generated using the user’s private PGP key in their device

to sign the message. If the message is verified to be produced by the same person that is

requesting the login, access is granted.

9

Figure 3.3: The client should sign a JSON blob of this form.

Figure 3.4: To validate a login, KAuth requests a salt using the user’s username. The

entered passphrase and the salt (unhexed) are entered as parameters in the scrypt function.

Part of the result of scrypt is handled as a private key. This private key is used to sign

a JSON blob (as shown in Figure 3.3). An EdDSA signature is generated and then

packaged into a Keybase-style signature. The result is sent to the Keybase server as the

pdpka5 parameter. The KAuth+ login system differs from the basic one as it executes an

additional action. It follows all steps of the basic login system, and then requires the user

to run a script on their system that will generate a signed message. This signed message

is uploaded and verified by Keybase. If all steps succeed, the user is then logged in to

Keybase.

10

Figure 3.5: The structure of a Keybase-style signature as presented by the official Keybase

docs file.

11

Chapter 4

Implementation

Contents
4.1 Heroku . 13

4.2 Client Website . 13

4.3 OAuth2 server . 15

4.4 KAuth Login procedure . 16

4.5 KAuth+ Login procedure / Wizard 17

4.6 Technologies and tools used . 19

4.6.1 Javascript . 19

4.6.2 Cascading Style Sheet (CSS) 19

4.6.3 HyperText Markup Language (HTML) 19

4.6.4 Sublime Text . 19

4.7 Database Implementation . 21

For the implementation of our system we have created a client website that requests

access to users’ data from Keybase, an OAuth2 server offering the Authorization Code

flow and a simple website that works as an interface for the user to connect to Keybase.

The only difference between the two versions of our scheme, is the login procedure where

in one case only the user’s Keybase username and passphrase are required, while in the

other version, the username/passphrase as well as a private key are required. Both Client

side and Server side (OAuth and Keybase) of the system are hosted on the Heroku Plat-

form.

12

4.1 Heroku

Heroku is the cloud platform that was used to deploy our project. Heroku lets you deploy

and run applications supporting many modern languages and frameworks. Heroku apps

run on dynos used to run web. There are web dynos that execute web processes, worker

dynos that handle background jobs and one-off dynos that are temporary dynos. Heroku’s

free plan offers 1 web dyno and 1 worker dyno for each app which satisfied our needs.

We created two apps, one for the client website and the other one for Keybase which

was consisted of the OAuth server, and the login functionality. Apps in heroku choose a

buildpack which basically directs Heroku how to handle the deployed code. For the client

website we used the PHP buildpack and for the Keybase server app we used both PHP

and NodeJS buildpacks. Our code was deplyed by using Git. Heroku enables their users

to deploy their code using Git by associating a Git repository during the app creation.

4.2 Client Website

First we created our client website which went by the name of pchara20-client in Heroku.

We registered the web application on the OAuth server as a client, in order to set which

data the client website would ask permission for (referred to as scope). The client web-

site received a Client ID and Client Secret that is required for all OAuth communication

between the client website and the OAuth server. This was simply done with a mySQL

call to our database.

The client website was written in PHP and had two main pages. The main welcoming

page and the login page. The login page as shown in Figure 4.1 offered the user the option

to login using a username and password or to "Login with Keybase". Choosing to login

with Keybase, the user was redirected to the Authorize controller of the OAuth server.

This controller redirected the user to our login page of Keybase Website. Depending

on the user’s account, they were redirected to the KAuth+ wizard if they had KAuth+

enabled. After user validation, they were asked for access permission the data that was

defined in the scope as shown in Figure 4.9. If the user authorized the client website to

access their data, the OAuth server sent an Authorization Code back to the client website

in a GET request. Then the client website exchanged the Authorization code as well the

Client ID and Client secret for an access token using POST.

Optionally they could have requested a refresh token so that this procedure did not

need to be repeated every time. This token would be used each time the client website

wanted to use any of the user’s Keybase data.

13

Figure 4.1: The login page offers the user the option to login using a username and pass-

word or to "Login with Keybase". Choosing to login with Keybase, the user is redirected

to the Authorize controller of the OAuth server. This controller redirects the user to the

login page of Keybase Website.

14

Figure 4.2: The user’s passphrase and the salt (unhexed) retrieved are entered as param-

eters in the scrypt function which generates a 256 byte passphrase stream. The last 32

bytes of this stream, are handled as a private key. This private key is used to sign a JSON

blob whose structure is defined by Keybase.

4.3 OAuth2 server

For the implementation of the OAuth2 protocol, we used Brent Shaffer’s open source

OAuth2 PHP library [7]. This library offers all OAuth grant types although we used

the Authorization code grant. The library supports many database schemas. We used

PostgreSQL since this is the one that fit our needs best with Heroku.

Figure 4.3: Every time a user was redirected to our Keybase login page they were pre-

sented with a form requiring a username and passphrase as shown in Figure 4.3. When

they submitted the form, the nodeJS script was called and replicated the official Keybase

login procedure as described on their API call.

15

GET request:

keybase.io/username/pgp_keys.asc
Request user's public

PGP key
Call signature

verification function
Extract signer

information and time
of signing

Accept loginDecline login

If (true)

if (false)

Validate signature
with user request

Figure 4.4: For the KAuth+ procedure, we use the uploaded file to verify the users signa-

ture. We make a GET request to Keybase’s API to get their public keys and then using a

PGP Javascript library, we verify the user’s identity or reject the login request.

4.4 KAuth Login procedure

Regarding the login procedure of Keybase, we used an open source nodeJS module pro-

vided by Keybase [29]. This module handled everything during login for our basic ver-

sion. Every time a user was redirected to our Keybase login page they were presented

with a form requiring a username and passphrase as shown in Figure 4.3. When they

submitted the form, the nodeJS script was called and replicated the official Keybase login

procedure as described on their API [9]. Recall that even though the login procedure

regarding the username and passphrase, looked like a text based authentication scheme,

it was actually much more complicated. As soon as the user entered their username and

passphrase and the script was called, a two round login protocol (as called by Keybase)

was started.

The first round consisted of a GET request to the Keybase API requesting the user’s

salt which was sent along with a csrf token and a login session token. For the second

round, the salt retrieved was used to generate a passphrase Stream using the scrypt func-

tion which worked as a Key derivation function. The user’s passphrase was also used in

this function. Scrypt returned a 256 byte output. The last 32 bytes of the output were in-

terpreted as an EdDsa key. This key was used to sign a JSON blob of a certain form given

in Keybase’s API. Then the EdDSA signature was packaged as a Keybase-style signature

also mentioned in the Keybase API. This was posted to the server as a pdpka5 parame-

ter (pdpka stands for Passphrase-Derived Public Key Authentication) and completed the

login request. If the server replied with a session cookie, this meant that the login was

successful.

16

Figure 4.5: For our KAuth+ version, after getting through the basic login procedure, the

user was redirected to a wizard-like interface with 3 simple steps. The first step required

the user to download and execute a script written in Bash. This script uses Keybase’s

command line utility (that is required for this to operate) to sign a message. The script

automatically generated a file named Signature.sig.

4.5 KAuth+ Login procedure / Wizard

For our KAuth+ version, after getting through the basic login procedure, the user was

redirected to a wizard-like interface with 3 simple steps.

The first step required the user to download and execute a script written in Bash. This

script uses Keybase’s command line utility (that is required for this to operate) to sign a

message. The script automatically generated a file named Signature.sig. An example of

the output of the signing script is shown in Figure 4.10. The first step of the wizard is

shown in Figure 4.5.

In step 2 of the wizard which is shown in Figure 4.6, the user is asked to upload

the file generated by the script. When running the signing script, the user can see what

is executed to create the signature. An example is shown in Figure 4.11. Then, a GET

request is sent to Keybase’s API retrieving the user’s public key. Then, using Keybase’s

PGP implementation for Javascript [28] we verify the uploaded file’s signature with the

public key.

The verification is successful if the signature was produced by the person trying to

login from the first login procedure (with username and passphrase) and if the signature

was produced earlier than 1 minute before the login attempt. If this was successful, an

informative message was displayed to the user and a button that would complete this

wizard, logging the user on Keybase. An example of a succesful message signing and

login is shown in Figure 4.8. If not, the user is required to repeat the process (or the

wrong steps) after being prompted by an error message shown in Figure 4.7. The next

17

Figure 4.6: In step 2 of the wizard, the user is asked to upload the file generated by the

script. Then, a GET request is sent to Keybase’s API retrieving the user’s public key.

Then, using Keybase’s PGP implementation for Javascript [28] we verify the uploaded

file’s signature with the public key. The verification is successful is the signature was

produced by the person trying to login from the first login procedure (with username

and passphrase) and if the signature was produced earlier than 1 minute before the login

attempt

step of the validation has to do with permissions given to the client website as shown in

Figure 4.9.

18

Figure 4.7: If any of the steps of the wizard process are not executed correctly, the appro-

priate error message is displayed on the screen

4.6 Technologies and tools used

4.6.1 Javascript

JavaScript is a dynamic programming language, which can be embedded in HTML pages,

enabling interactive web pages and thus is an essential part in the development of web

applications. The vast majority of web applications use it and all major web browsers have

a dedicated JavaScript engine to execute it. Our whole system depends on the execution of

JavaScript functions not only to provide a nicer user interface but also for implementing

key functionalities in the visualization of our gaze plots.

4.6.2 Cascading Style Sheet (CSS)

Cascading Style Sheet is a style sheet language used for describing the presentation of

a document written in in a markup language. It is commonly used for styling the user

interfaces in HTML. CSS adjusts different styles and methods in the same page and can

display or resize the screen depending on the device. In our system CSS complements the

JavaScript.

4.6.3 HyperText Markup Language (HTML)

HyperText Markup Language (HTML) is the basic markup language used to create the

user interfaces of a web application. It provides a means to design composition documents

by structural semantics.

4.6.4 Sublime Text

Sublime Text is the main editor used to write our code. It is a proprietary cross-platform

source code editor. It natively supports many programming languages and markup lan-

19

Figure 4.8: The verification is successful is the signature was produced by the person

trying to login from the first login procedure (with username and passphrase) and if the

signature was produced earlier than 1 minute before the login attempt. If this was success-

ful, an informative message was displayed to the user and a button that would complete

this wizard, logging the user on Keybase.

guages, and functions can be added easily with the use of plugins.

20

Figure 4.9: After the step of the validation, the user is informed of the scope of the client

website, meaning the data that they will access through Keybase’s API.

4.7 Database Implementation

For our OAuth2 server we used the schema that was defined by the OAuth2 PHP server

library we used. The oauth_clients table is used to keep track of the clients that use the

KAuth feature. The oauth_access_tokens table is used to store all access tokens generated

for users. Oauth_authorization_codes is used to store the generate authorization codes

that are generated and used for the exchange of the access token. Oauth_refresh_tokens

table is required to eable the refreshing of the tokens so the OAuth server doesn’t have to

generate new access tokens for users after a short period of time. The oauth_scopes table

is used to define the different scopes offered to the client applications. An EER diagram

of the database used in the OAuth2 server can be seen at Figure 4.12

21

Figure 4.10: An example of the signature generated after signing a message.

Figure 4.11: The script used to sign a message for the user and prove their identity.

22

Figure 4.12: The database schema used for the OAuth2 server was instructed by the

library we used.

23

Chapter 5

Evaluation

Contents
5.1 Usability Evaluation . 25

5.1.1 KAuth: Usability Evaluation 25

5.1.2 KAuth+: Usability Evaluation 26

5.2 Deployability Evaluation . 27

5.2.1 KAuth: Deployability Evaluation 27

5.2.2 KAuth+ Deployability Evaluation 28

5.3 Security Evaluation . 29

5.3.1 KAuth: Security Evaluation 29

5.3.2 KAuth+: Security Evaluation 30

In evaluating KAuth we note that it looks like a typical username/password scheme but

what happens on the client before contacting the server is what makes it different. The

passphrase never leaves the user’s device and all validation happens using Public Key

Infrastructure with Elliptic Curves. We discuss the evaluation of the 2 systems (KAuth

and KAuth+) separately as they show some differences.

The evaluation is based on the Usability-Deployability-Security evaluation framework

that was used to rate other authentication schemes [5]. This framework uses 25 proper-

ties split into 3 catergories, Usability, Deployability and Security. These properties are

framed as benefits, and systems that satisfiy a property are rated as "offering the bene-

fit". The framework is primarily created for evaluation of other schemes compared to

web passwords. That is why each property is rated as "better than passwords", "worse

than passwords" or provides "no change". Benefits that can’t be applied on a scheme are

considered as "offered" instead of "not-applicable", since nothing can go wrong.

24

Table 5.1: Comparative evaluation of KAuth and KAuth+ and other similar password-

replacement schemes regarding usability.

•=Offers the benefit; ◦=almost offers the benefit; no circle=does not offer the benefit

↑=better than passwords; ↓=worse than passwords; no arrow= no change

Usability

Category Scheme R
ef

er
en

ce

M
em

or
y-

w
is

e
E

ff
or

tle
ss

Sc
al

ab
le

-f
or

-U
se

rs

N
ot

hi
ng

-t
o-

C
ar

ry

Ph
ys

ic
al

ly
-E

ff
or

tle
ss

E
as

y-
to

-L
ea

rn

E
ffi

ci
en

t-
to

-U
se

In
fr

eq
ue

nt
-E

rr
or

s

E
as

y-
R

ec
ov

er
-F

ro
m

-L
os

s

Web passwords • • • ◦ •
KAuth ◦ • • ◦ ◦ • • ◦

↑ ↑ ↑ ↑ ↑ ↑ ↓
KAuth+ ◦ • ◦ ◦ •

↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓
Federated OpenID ◦ • • ◦ ◦ • • •

↑ ↑ ↑ ↓ ↑
Facebook Connect ◦ • • ◦ • • • •

↑ ↑ ↑ ↑

5.1 Usability Evaluation

5.1.1 KAuth: Usability Evaluation

The scheme is quasi-memorywise-effortless as users only have to remember their Key-

base passphrase. It is scalable-for-users since OAth2 gives you the option to have access

and refresh tokens stored, in order to skip the authorization process the next time you want

to log in. Also, using the scheme for an arbitrary number of accounts, does not affect the

scheme nor increase the burden on the user. It also satisfies the Nothing-to-Carry benefit

since they do not have to carry any devices with them in order to use the scheme. We rate

KAuth Quasi-Physically-Effortless as the user only needs to type the passphrase on Key-

base’s login page once per session. It is quasi-Easy-to-Learn since the user must choose to

login with Keybase and enter their Keybase credentials. We suggest that Keybase focuses

on providing a user-friendly interface that will satisfy our requirements for rating the sys-

tem as "Easy to learn and use". A bad interface at the third party client could harden the

process for a user. We rate our system Efficient-to-Use and infrequent-Errors in that it is

25

presented as a simple password authentication to the user or can occur semi-automatically

if the user has been logged in with cached login cookies in Keybase (The user still needs

to grant the application access to their information if it is the first time). Our system is

quasi-Easy-Recovery-from-loss. If someone loses their passphrase they can recover their

account if they have Keybase installed and logged in on any device. If they are not logged

in Keybase in any device, they can still recover their account using a reset link though

they will lose all their keys and data.

Like OpenID and Facebook Connect, KAuth offers all Usability benefits at a satisfy-

ing level.

5.1.2 KAuth+: Usability Evaluation

The system is quasi-memory-wise effortless due to the passphrase aswell. It is scalable-

for-users since it follows the OAuth2 protocol just like KAuth. It does not offer the

"Nothing to carry" benefit as the user must have a device that will include their private

signing keys and also have Keybase installed to performed the signing operation. So

far, Keybase’s app does not offer command line utilities therefore it does not satisfy the

benefit. Also, the procedure of signing the message, sets the scheme as not "Physically

effortless", and quasi-Easy-to-Learn as the user has to carefully follow the steps to com-

plete the signing process. We rate it as quasi-efficient-to-use as the authentication time

exceeds the normal, acceptable time most schemes use. Also, it is rated as offering the

infrequent-errors benefit as the procedure of signing a message to log in can’t fail if the

user executed the authenticating task correctly. Regarding recovery from loss, we rate our

system as not offering the benefit since users will have to reset their account and lose all

data in case they forget their credentials and lose their keys.

26

Table 5.2: Comparative evaluation of KAuth and KAuth+ and other similar password-

replacement schemes regarding deployability.

•=Offers the benefit; ◦=almost offers the benefit; no circle=does not offer the benefit

↑=better than passwords; ↓=worse than passwords; no arrow= no change

Deployability

Category Scheme R
ef

er
en

ce

A
cc

es
si

bl
e

N
eg

lig
ib

le
-C

os
t-

pe
r-

U
se

r

Se
rv

er
-C

om
pa

tib
le

B
ro

w
se

r-
C

om
pa

tib
le

M
at

ur
e

N
on

-P
ro

pr
ie

ta
ry

Web passwords • • • • • •
KAuth • • • •

↑ ↓ ↓
KAuth+ • • •

↓ ↑ ↓ ↓ ↓
Federated OpenID • • • • •

↓
Facebook Connect • • • •

↓ ↓

5.2 Deployability Evaluation

5.2.1 KAuth: Deployability Evaluation

Regarding deployability evaluation KAuth is rated as accessible as anyone who can use

passwords, can use KAuth. It is negligible-per-user-cost since the procedure that gen-

erates the pdpka5 parameter is executed locally, an increase in the number of users will

not affect the scheme’s performance. It not server-compatible since Keybase must offer

OAuth2 services (Client registration/interaction). It is browser-compatible since a user

can use KAuth on any device without having to install any plugins or other software. We

rate the system as not mature, since no implementation of such authorization has been de-

ployed in large scale before and also Keybase is still in an early stage and not yet widely

adopted. Finally, it is non-proprietary as Keybase and OAuth2 are open-source and free

to use.

27

5.2.2 KAuth+ Deployability Evaluation

From a Deployability standpoint, KAuth+ offers half of the benefits. It is accessible since

a person who can use passwords, can follow the signing wizard. We rate KAuth+ as

offering the negligible-cost-per-user and non-proprietary benefits as Keybase and OAth

are open-source and free to use. The scheme is not server-compatible as Keybase has to

alter their authentication process to support the signing of the message. Also, it is not

browser-compatible since the user has to install the Keybase client or command-line tool

in order to handle their keys. We rate the system as not mature as Keybase is a relatively

new platform that might suffer from vulnerabilities.

28

Table 5.3: Comparative evaluation of KAuth and KAuth+ and other similar password-

replacement schemes regarding security.

•=Offers the benefit; ◦=almost offers the benefit; no circle=does not offer the benefit

↑=better than passwords; ↓=worse than passwords; no arrow= no change

Security

Category Scheme R
ef

er
en

ce

R
es

ili
en

t-
to

-P
hy

si
ca

l-
O

bs
er

va
tio

n

R
es

ili
en

t-
to

-T
ar

ge
te

d-
Im

pe
rs

on
at

io
n

R
es

ili
en

t-
to

-T
hr

ot
tle

d-
G

ue
ss

in
g

R
es

ili
en

t-
to

-U
nt

hr
ot

tle
d-

G
ue

ss
in

g

R
es

ili
en

t-
to

-I
nt

er
na

l-
O

bs
er

va
tio

n

R
es

ili
en

t-
to

-L
ea

ks
-f

ro
m

-O
th

er
-V

er
ifi

er
s

R
es

ili
en

t-
to

-P
hi

sh
in

g

R
es

ili
en

t-
to

-T
he

ft

N
o-

Tr
us

te
d-

T
hi

rd
-P

ar
ty

R
eq

ui
ri

ng
-E

xp
lic

it-
C

on
se

nt

U
nl

in
ka

bl
e

Web passwords ◦ • • • • •
KAuth ◦ • • • • • • •

↓ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↓
KAuth+ • • • • • • • •

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓
Federated OpenID ◦ ◦ ◦ ◦ • • •

↑ ↑ ↑ ↑ ↓ ↓
Facebook Connect ◦ ◦ ◦ ◦ • •

↑ ↑ ↑ ↑ ↓ ↓ ↓

5.3 Security Evaluation

5.3.1 KAuth: Security Evaluation

Our scheme is quasi-resilient-to-physical-observation as an attacker can target the infre-

quently typed passphrase. If the user is logged in using Keybase’s client, the scheme

becomes stronger regarding resistance to physical observation. It is resilient-to-targeted-

impersonation as someone impersonating a user cannot get access to their account us-

ing personal information. Due to Keybase’s strong authorization method, the scheme is

Resilient-to-throttled-guessing and Resilient-to-unthrottled-guessing. It is not Resilient-

to-theft as a loss of a user’s username and passphrase grants access to their account. In

addition, KAuth is no-trusted-third-party, requiring-explicit-consent but not unlinkable.

29

The scheme is not resilient-to-internal-observation as malware on the user’s device can

log their key presses and capture the input of the passphrase. It is resilient-to-leaks-from-

other-verifiers but not resilient-to-phishing as it involves redirection to Keybase’s login

page.

5.3.2 KAuth+: Security Evaluation

The system is resilient-to-physical-observation. Even if an attacker observes the input

of the passphrase maybe through "shoulder surfing", they still do not have access to

the private key which is required for the authentication. It is also resilient-to-targeted-

impersonation since knowledge for personal details, cannot grant any advantage in ex-

ploiting the system. In addition, the scheme offers the Resilient-to-throttled and unthrot-

tled guessing benefits.It is resilient to theft since the private key can be lost but this does

not grant access the the user’s account since they also need the passphrase validation. It

is not resilient-to-internal-observation as there is malware that can intercept the input of

the passphrase as well as the (even encrypted) private key from the user’s device. Also,

it offers the leaks-from-other-verifiers benefit as well as the no-trusted-third-party and

requiring-explicit-consent benefits. It is not offering the resilient-to-phishing and unlink-

able benefits.

When it comes to security It is evident that KAuth+ offers stronger security with a

marginal reduction of usability compared to KAuth. It might also offer stronger security

than other password-replacing schemes. Its password-less nature defeats a lot of attacks

and might make it a good alternative to authentication methods.

30

Chapter 6

Discussion and Future Work

Contents
6.1 Attacks on Keybase . 31

6.2 Incorporating KAuth with the official Keybase 32

6.3 Extended Usability Studies . 32

In this section we discuss the directions we consider for further exploring as part of

our future work.

6.1 Attacks on Keybase

A significant part of our future work concerns deeper analysis of Keybase’s security. Key-

base is a new platform, and even though it seems that they offer strong protection from

certain attacks, there might be other attacks that could exploit their system. For instance,

using EdDSA [3] with a private key derived from a passphrase is a new paradigm, which

needs further evaluation. Attackers could crawl Keybase users and use their public keys

in order to brute-force their passphrase. With this in mind we envision research that ex-

plores if traditional cryptographic hashes of passwords are more secure than public keys

when private keys are derived from a passphrase.

In particular, we have stressed in many places of this project that passwords and

passphrases, although they look alike, they incorporate completely different mechan-

ics. Exploring how they compete with each other is something that we plan to inves-

tigate in the future; this includes performance results in cracking a password compared

to a passphrase, as well as applying existing password-hardening techniques to secure

passphrases [21].

31

6.2 Incorporating KAuth with the official Keybase

Integration of KAuth and the offical source of Keybase would require Keybase offering

an OAuth2 API for clients to register their applications. Also if Keybase would want

to enhance their login procedure with the signing of the message like KAuth+ proposes,

there are changes that need to be done to the existing authentication system.

Our plan is to work with Keybase and port our code to the actual product, offering an

additional service to the platform for SSO through PKI. Keybase is open source, therefore

our research prototype can be easily integrated with the existing software base of Keybase.

6.3 Extended Usability Studies

So far the evaluation of our system was based on the Usability-Deployability-Security

framework [5] and not on actual experiments involving real users. The evaluation method-

ology we used has been applied to several authentication systems and it is considered as

one of the state-of-the-art methodologies for evaluating authentication techniques. Nev-

ertheless, it is useful to validate the outcome of a theoretic evaluation with actual results

Therefore, in order to further analyze the usability aspect of our system and the poten-

tial integration with Keybase, we plan to conduct surveys involving actuals users in order

to ascertain a complete picture of how usable and user friendly our proposal is. Analyzing

how users understand and react to using PKI, will help us define any flaws our approach

has and amend the scheme in order to qualify as a feasible password-replacing scheme.

32

Chapter 7

Related Work

Contents
7.1 Passwords . 33

7.2 Single sign-on services . 34

Human-to-machine authentication is drawing the attention of the research community

as several on-line services are solely based on authenticating the user before offering any

functionality. We review here related work in passwords –the most popular technique for

authenticating humans to machines– and one promising direction for scaling passwords,

which is the reduction of many credentials to a single point of authentication, commonly

known as Single Sign-on (SSO).

7.1 Passwords

Text-based passwords allow a user to authenticate with a service by providing a string that

can be usually memorized. The service receives the password in plain text, cryptographi-

cally hashes it (usually the string is concatenated with a salt) and checks it with an already

computed digest stored in a database. Researchers have analyzed a corpus of 70 millions

of passwords and have concluded that they provide little entropy, in particular 10 bits of

security against an online, trawling attack, and only about 20 bits of security against an

optimal offline dictionary attack [4, 23, 42, 43]. Additionally to little entropy, researchers

have identified significant password reuse [11, 16], which raises the probability of an at-

tacker to crack a password hash. Towards stronger passwords, researchers have measured

the ability of humans to memorize longer secrets of about 56 bits [6,34]. KAuth does not

rely on passwords, but on passphrases. The user needs to memorize a strong secret, but

the secret is never transmitted. Instead, the secret is used to derive a cryptographic key

that is used for signing a message using EdDSA [3]. Moreover, KAuth can additionally

33

use a private PGP key, which is not derived from a user secret to sign a second message

for authenticating the user.

7.2 Single sign-on services

Single sign-on is an authentication service that enables users to use one set of creden-

tials to access many websites or applications. The user logs in to the main application

using their credentials (e.g. username/email and password) and then authorizes other ap-

plications to access their data. The wide adoption of SSO services have led to multiple

different implementations of it. Some of them include tickets such as the Kerberos-based

implementation [2] and others use mark-up languages such as SAML [20]. The large

interest in SSO services also led to doubts about its security benefits. Various research

papers have studied the security of social login mechanisms [8] and addressed quite a few

vulnerabilities that were fixed before the public announcement of these flaws [35]. Also,

there are tools like SSOScan [45] that scan websites with SSO integrations searching for

vulnerabilities using the Facebook Single sign-on APIs. SSOScan was run on a more

than 1600 websites that used Facebook SSO and the results showed that more than 20%

of them suffered from at least one of the five known major SSO vulnerabilities. KAuth

works in a similar way but offers a different login mechanism that strengthens the user’s

account security.

34

Chapter 8

Conclusion

In this thesis project we worked on a PKI based approach for user authentication. Using

Keybase, a platform that offers easy handling of keys and strong authentication mech-

anisms. We build a website that offers KAuth and KAuth+ authentication and a server

that uses the OAuth2 protocol along with Keybase’s login procedure. KAuth validates a

user using their Keybase username and passphrase and KAuth+ validates using the user’s

username, passphrase but also their PGP key too. The results show that our approaches

offer almost the same benefits regarding usability with OpenID and Facebook Connect.

It is also evident that all password-replacing schemes lack some deployability benefits

that web passwords offer. Security benefits are what our schemes target. KAuth and

especially KAuth+ achieve better scores than most similar approaches, and a significant

improvement on security compared to web passwords. Our scheme does not aim to be-

come a replacement of the existing methods but become an option for people who want

to use PKI for authentication. Because of noawadays situation with data breaches becom-

ing a major issue, security benefits should be considered higher than the others, and our

approach assists many of the challenges that existing implementations face.

35

Bibliography

[1] Ars Technica. Twitter detects and shuts down password data hack

in progress, 2013. http://arstechnica.com/security/2013/02/

twitter-detects-and-shuts-down-password- data-hack-in-progress/.

[2] S. M. Bellovin and M. Merritt. Limitations of the kerberos authentication system.

SIGCOMM Comput. Commun. Rev., 20(5):119–132, Oct. 1990.

[3] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-

security signatures. In CHES, 2011.

[4] J. Bonneau. The science of guessing: Analyzing an anonymized corpus of 70 million

passwords. In 2012 IEEE Symposium on Security and Privacy, pages 538–552, May

2012.

[5] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The quest to replace pass-

words: A framework for comparative evaluation of web authentication schemes. In

Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages

553–567, Washington, DC, USA, 2012. IEEE Computer Society.

[6] J. Bonneau and S. Schechter. Towards reliable storage of 56-bit secrets in human

memory. In 23rd USENIX Security Symposium (USENIX Security 14), pages 607–

623, San Diego, CA, 2014. USENIX Association.

[7] Brent Shaffer. OAuth2 Server Library for PHP, 2014. https://bshaffer.

github.io/oauth2-server-php-docs.

[8] Y. Cao, Y. Shoshitaishvili, K. Borgolte, C. Kruegel, G. Vigna, and Y. Chen. Pro-

tecting web-based single sign-on protocols against relying party impersonation at-

tacks through a dedicated bi-directional authenticated secure channel. In A. Stavrou,

H. Bos, and G. Portokalidis, editors, Research in Attacks, Intrusions and Defenses,

pages 276–298, Cham, 2014. Springer International Publishing.

[9] Chris Coyne, Max Krohn. Keybase Login, 2017. https://keybase.io/docs/

api/1.0/call/login.

36

http://arstechnica.com/security/2013/02/twitter-detects-and-shuts-down-password-
http://arstechnica.com/security/2013/02/twitter-detects-and-shuts-down-password-
data-hack-in-progress/
https://bshaffer.github.io/oauth2-server-php-docs
https://bshaffer.github.io/oauth2-server-php-docs
https://keybase.io/docs/api/1.0/call/login
https://keybase.io/docs/api/1.0/call/login

[10] T. N. Daily. Hacker Posts 6.4 Million LinkedIn Passwords, 2013. http://www.

technewsdaily.com/7839-linked-passwords-hack.html.

[11] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang. The tangled web of pass-

word reuse. In 21st Annual Network and Distributed System Security Symposium,

NDSS 2014, San Diego, California, USA, February 23-26, 2014, 2014.

[12] R. Dhamija, J. Tygar, and M. Hearst. Why phishing works. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. ACM, 2006.

[13] R. Dhamija and J. D. Tygar. The battle against phishing: Dynamic security skins. In

Proceedings of the 2005 Symposium on Usable Privacy and Security, SOUPS ’05,

pages 77–88, New York, NY, USA, 2005. ACM.

[14] T. Dierks. The transport layer security (tls) protocol version 1.2, 2008.

[15] A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia prf

service. In J. Jung and T. Holz, editors, USENIX Security Symposium, pages 547–

562. USENIX Association, 2015.

[16] D. Florencio and C. Herley. A large-scale study of web password habits. In Proceed-

ings of the 16th International Conference on World Wide Web, WWW ’07, pages

657–666, New York, NY, USA, 2007. ACM.

[17] N. Gelernter, S. Kalma, B. Magnezi, and H. Porcilan. The password reset mitm

attack. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,

USA, May 22-26, 2017, pages 251–267, 2017.

[18] Gizmodo. The Sony Hack Gets Even Worse as Thousands of Passwords Leak,

2014. https://gizmodo.com/sony-pictures-hack-keeps-getting-worse

-thousands-of-pa-1666761704.

[19] Google. Google+ Sign-in, 2018. https://developers.google.com/+/web/

signin/.

[20] informationweek.com. SAML: The Secret to Centralized Identity Management.

https://www.informationweek.com/software/information-management/

saml-the-secret-to-centralized-identity-management/d/d-id/

1028656.

[21] A. Juels and R. L. Rivest. Honeywords: Making password-cracking detectable. In

Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communi-

cations Security, CCS ’13, pages 145–160, New York, NY, USA, 2013. ACM.

37

http://www.technewsdaily.com/7839-linked-passwords-hack.html
http://www.technewsdaily.com/7839-linked-passwords-hack.html
https://gizmodo.com/sony-pictures-hack-keeps-getting-worse
-thousands-of-pa-1666761704
https://developers.google.com/+/web/signin/
https://developers.google.com/+/web/signin/
https://www.informationweek.com/software/information-management/saml-the-secret-to-centralized-identity-management/d/d-id/1028656
https://www.informationweek.com/software/information-management/saml-the-secret-to-centralized-identity-management/d/d-id/1028656
https://www.informationweek.com/software/information-management/saml-the-secret-to-centralized-identity-management/d/d-id/1028656

[22] Keybase. Keybase, 2018. https://keybase.io.

[23] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin, L. F. Cra-

nor, and S. Egelman. Of passwords and people: Measuring the effect of password-

composition policies. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’11, pages 2595–2604, New York, NY, USA, 2011.

ACM.

[24] G. Kontaxis, E. Athanasopoulos, G. Portokalidis, and A. D. Keromytis. Sauth: Pro-

tecting user accounts from password database leaks. In Proceedings of the 2013

ACM SIGSAC Conference on Computer & Communications Security, CCS ’13,

pages 187–198, New York, NY, USA, 2013. ACM.

[25] R. W. F. Lai, C. Egger, D. Schröder, and S. S. M. Chow. Phoenix: Rebirth of a

cryptographic password-hardening service. In 26th USENIX Security Symposium,

USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017., pages 899–

916, 2017.

[26] lwn.net. E-mail discussion at Debian about the wiki.debian.org security breach,

2013. https://lwn.net/Articles/531727/.

[27] D. Mail. Do YOU suffer from password rage? A third

of people have thrown a tantrum after forgetting login de-

tails., 2015. http://www.dailymail.co.uk/sciencetech/

article-3115754/Do-suffer-password-rage-people-thrown-

tantrum-forgetting-login-details.html.

[28] Max Krohn. Keybase’s implementation of PGP in JavaScript, 2014. https://

keybase.io/kbpgp.

[29] Max Krohn, Bill Thornton. Keybase Login NodeJS Module, 2016. https:

//keybase.io/docs/api/1.0/call/login.

[30] M. Miculan and C. Urban. Formal analysis of facebook connect single sign-on

authentication protocol. In Proceedings of the 37th International Conference on

Current Trends in Theory and Practice of Computer Science. Springer, 2011.

[31] Mitchell Anicas. An Introduction to OAuth 2, 2014. https://www.

digitalocean.com/community/tutorials/an-introduction-to-oauth-2.

[32] A. Muffet. Facebook: Password hashing and authentication, 2015. https:

//video.adm.ntnu.no/pres/54b660049af94, Video.

38

https://keybase.io
https://lwn.net/Articles/531727/
http://www.dailymail.co.uk/sciencetech/article-3115754/Do-suffer-password-rage-people-thrown-
http://www.dailymail.co.uk/sciencetech/article-3115754/Do-suffer-password-rage-people-thrown-
tantrum-forgetting-login-details.html
https://keybase.io/kbpgp
https://keybase.io/kbpgp
https://keybase.io/docs/api/1.0/call/login
https://keybase.io/docs/api/1.0/call/login
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://video.adm.ntnu.no/pres/54b660049af94
https://video.adm.ntnu.no/pres/54b660049af94

[33] Neowin.net. IEEE data breach: 100K passwords leak in plain text, 2012.

http://www.neowin.net/news/ieee-data-breach-100k-passwords-leak-

in-plain-text.

[34] L. N. Nguyen and S. Sigg. Personalized image-based user authentication using

wearable cameras. CoRR, abs/1612.06209, 2016.

[35] N. Owano. Math student detects OAuth, OpenID secu-

rity vulnerability, 2014. https://techxplore.com/news/

2014-05-math-student-oauth-openid-vulnerability.html.

[36] A. Pashalidis and C. J. Mitchell. A taxonomy of single sign-on systems. In R. Safavi-

Naini and J. Seberry, editors, Information Security and Privacy, pages 249–264,

Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[37] PayPal. PayPal Leads Industry Effort to Move Beyond Pass-

words, 2013. https://www.thepaypalblog.com/2013/02/

paypal-leads-industry-effort-to-move- beyond-passwords/.

[38] J. Schneider, N. Fleischhacker, D. Schröder, and M. Backes. Efficient cryptographic

password hardening services from partially oblivious commitments. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’16, pages 1192–1203, New York, NY, USA, 2016. ACM.

[39] B. Schneier. Frequent Password Changes Is a Bad Security Idea, 2016. https:

//www.schneier.com/blog/archives/2016/08/frequent_passwo.html.

[40] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek, L. Bauer,

N. Christin, and L. F. Cranor. Encountering stronger password requirements: User

attitudes and behaviors. In Proceedings of the Sixth Symposium on Usable Privacy

and Security, SOUPS ’10, pages 2:1–2:20, New York, NY, USA, 2010. ACM.

[41] Twitter. Sign in with Twitter, 2018. https://dev.twitter.com/docs/auth/

sign-twitter.

[42] E. von Zezschwitz, A. De Luca, B. Brunkow, and H. Hussmann. Swipin: Fast

and secure pin-entry on smartphones. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems, CHI ’15, pages 1403–1406,

New York, NY, USA, 2015. ACM.

[43] C. Winkler, J. Gugenheimer, A. De Luca, G. Haas, P. Speidel, D. Dobbelstein, and

E. Rukzio. Glass unlock: Enhancing security of smartphone unlocking through

39

http://www.neowin.net/news/ieee-data-breach-100k-passwords-leak-
in-plain-text
https://techxplore.com/news/2014-05-math-student-oauth-openid-vulnerability.html
https://techxplore.com/news/2014-05-math-student-oauth-openid-vulnerability.html
https://www.thepaypalblog.com/2013/02/paypal-leads-industry-effort-to-move-
https://www.thepaypalblog.com/2013/02/paypal-leads-industry-effort-to-move-
beyond-passwords/
https://www.schneier.com/blog/archives/2016/08/frequent_passwo.html
https://www.schneier.com/blog/archives/2016/08/frequent_passwo.html
https://dev.twitter.com/docs/auth/sign-twitter
https://dev.twitter.com/docs/auth/sign-twitter

leveraging a private near-eye display. In Proceedings of the 33rd Annual ACM Con-

ference on Human Factors in Computing Systems, CHI ’15, pages 1407–1410, New

York, NY, USA, 2015. ACM.

[44] Wired.com. Google Declares War on the Password, 2013. http://www.wired.

com/wiredenterprise/2013/01/google-password/all/.

[45] Y. Zhou and D. Evans. Ssoscan: Automated testing of web applications for single

sign-on vulnerabilities. In 23rd USENIX Security Symposium (USENIX Security 14),

pages 495–510, San Diego, CA, 2014. USENIX Association.

40

http://www.wired.com/wiredenterprise/2013/01/google-password/all/
http://www.wired.com/wiredenterprise/2013/01/google-password/all/

List of Figures

2.1 Users can do crypto operations such as encryption/decryption and sign/ver-

ify using Keybase’s website, their client, or their command line tool. The

first method requires that the user has their private key encrypted and up-

loaded on Keybase’s servers. If you want to keep your private key fully

protected, you have to use the command line tool or the local client. . . . 5

3.1 When a user wants to login at a third party website and they choose to

do so using KAuth or KAuth+, this is the flow that they have to follow.

On one side, the OAuth server handles the token requests, waits for the

Keybase login procedure to be completed, and then serves as a resource

server, providing an interface to the API of Keybase. 8

3.2 Example of the getSalt API call by Keybase official API page. 9

3.3 The client should sign a JSON blob of this form. 10

3.4 To validate a login, KAuth requests a salt using the user’s username. The

entered passphrase and the salt (unhexed) are entered as parameters in the

scrypt function. Part of the result of scrypt is handled as a private key.

This private key is used to sign a JSON blob (as shown in Figure 3.3).

An EdDSA signature is generated and then packaged into a Keybase-style

signature. The result is sent to the Keybase server as the pdpka5 parame-

ter. The KAuth+ login system differs from the basic one as it executes an

additional action. It follows all steps of the basic login system, and then

requires the user to run a script on their system that will generate a signed

message. This signed message is uploaded and verified by Keybase. If all

steps succeed, the user is then logged in to Keybase. 10

3.5 The structure of a Keybase-style signature as presented by the official

Keybase docs file. 11

41

4.1 The login page offers the user the option to login using a username and

password or to "Login with Keybase". Choosing to login with Keybase,

the user is redirected to the Authorize controller of the OAuth server. This

controller redirects the user to the login page of Keybase Website. 14

4.2 The user’s passphrase and the salt (unhexed) retrieved are entered as pa-

rameters in the scrypt function which generates a 256 byte passphrase

stream. The last 32 bytes of this stream, are handled as a private key.

This private key is used to sign a JSON blob whose structure is defined

by Keybase. 15

4.3 Every time a user was redirected to our Keybase login page they were

presented with a form requiring a username and passphrase as shown in

Figure 4.3. When they submitted the form, the nodeJS script was called

and replicated the official Keybase login procedure as described on their

API call. 15

4.4 For the KAuth+ procedure, we use the uploaded file to verify the users

signature. We make a GET request to Keybase’s API to get their public

keys and then using a PGP Javascript library, we verify the user’s identity

or reject the login request. 16

4.5 For our KAuth+ version, after getting through the basic login procedure,

the user was redirected to a wizard-like interface with 3 simple steps. The

first step required the user to download and execute a script written in

Bash. This script uses Keybase’s command line utility (that is required

for this to operate) to sign a message. The script automatically generated

a file named Signature.sig. 17

4.6 In step 2 of the wizard, the user is asked to upload the file generated

by the script. Then, a GET request is sent to Keybase’s API retrieving

the user’s public key. Then, using Keybase’s PGP implementation for

Javascript [28] we verify the uploaded file’s signature with the public

key. The verification is successful is the signature was produced by the

person trying to login from the first login procedure (with username and

passphrase) and if the signature was produced earlier than 1 minute before

the login attempt . 18

4.7 If any of the steps of the wizard process are not executed correctly, the

appropriate error message is displayed on the screen 19

42

4.8 The verification is successful is the signature was produced by the per-

son trying to login from the first login procedure (with username and

passphrase) and if the signature was produced earlier than 1 minute before

the login attempt. If this was successful, an informative message was dis-

played to the user and a button that would complete this wizard, logging

the user on Keybase. 20

4.9 After the step of the validation, the user is informed of the scope of the

client website, meaning the data that they will access through Keybase’s

API. 21

4.10 An example of the signature generated after signing a message. 22

4.11 The script used to sign a message for the user and prove their identity. . . 22

4.12 The database schema used for the OAuth2 server was instructed by the

library we used. 23

43

List of Tables

5.1 Comparative evaluation of KAuth and KAuth+ and other similar password-

replacement schemes regarding usability.

•=Offers the benefit; ◦=almost offers the benefit; no circle=does not offer

the benefit ↑=better than passwords; ↓=worse than passwords; no arrow=

no change . 25

5.2 Comparative evaluation of KAuth and KAuth+ and other similar password-

replacement schemes regarding deployability.

•=Offers the benefit; ◦=almost offers the benefit; no circle=does not offer

the benefit ↑=better than passwords; ↓=worse than passwords; no arrow=

no change . 27

5.3 Comparative evaluation of KAuth and KAuth+ and other similar password-

replacement schemes regarding security.

•=Offers the benefit; ◦=almost offers the benefit; no circle=does not offer

the benefit ↑=better than passwords; ↓=worse than passwords; no arrow=

no change . 29

44

	Introduction
	Background
	Public key cryptography
	Keybase
	OAuth

	Architecture
	Traditional Approach: Facebook Connect
	KAuth
	OAuth Server
	Keybase Login System

	Implementation
	Heroku
	Client Website
	OAuth2 server
	KAuth Login procedure
	KAuth+ Login procedure / Wizard
	Technologies and tools used
	Javascript
	Cascading Style Sheet (CSS)
	HyperText Markup Language (HTML)
	Sublime Text

	Database Implementation

	Evaluation
	Usability Evaluation
	KAuth: Usability Evaluation
	KAuth+: Usability Evaluation

	Deployability Evaluation
	KAuth: Deployability Evaluation
	KAuth+ Deployability Evaluation

	Security Evaluation
	KAuth: Security Evaluation
	KAuth+: Security Evaluation

	Discussion and Future Work
	Attacks on Keybase
	Incorporating KAuth with the official Keybase
	Extended Usability Studies

	Related Work
	Passwords
	Single sign-on services

	Conclusion
	Bibliography

