
ABSTRACT

We consider Internet-based master-worker computations, where a master processor assigns,

across the Internet, a computational task to a set of untrusted worker processors and collects their

responses. Examples of such computations are the “@home” projects such as SETI. Building

on prior work we consider a framework where altruistic, malicious and rational workers co-exist.

Altruistic workers always return the correct result of the task, malicious workers always return an

incorrect result, and rational workers act based on their self-interest.

The master must obtain the correct task result while maximizing its benefit. Adding on that

work, we consider the possibility that the communication between the master and the workers is

not reliable, and that workers could be unavailable; assumptions that are very realistic for Internet-

based master-worker computations. Within this framework we design and analyze two algorithmic

mechanisms to provide appropriate incentives to rational workers to act correctly, despite the ma-

licious’ workers actions and the unreliability of the network. Only when necessary, the incentives

are used to force the rational players to a certain equilibrium (which forces the workers to be

truthful) that overcomes the attempt of the malicious workers to deceive the master. Finally, the

mechanisms are analyzed in two realistic Internet-based master-worker settings, a SETI-like one

and a contractor-based one, such as Amazon’s Mechanical Turk. This analysis identifies trade-offs

between reliability and cost, under different system parameters.
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Chapter 1

Introduction

1.1 Motivation and Prior Work

As an alternative to expensive supercomputing parallel machines, the Internet has recently be-

come feasible as a computational platform for processing complex computational jobs. Several

Internet-oriented systems and protocols have been designed to operate on top of this global com-

putation infrastructure; examples include Grid systems [21,68], the “@home” projects [6], such as

SETI [44], Amazon’s Mechanical Turk [5], and peer-to-peer computing–P2PC [28,71]. Although

the potential is great, the use of Internet-based computing is limited by the untrustworthy nature

of the platform’s components [6, 31, 36]. Let us take SETI as an example. In SETI, searching

for extraterrestrial intelligence demands the analysis of gigabytes of raw data. Using expensive

supercomputing parallel machines would not be efficient, thus data is distributed for processing

to millions of voluntary machines around the world. At a conceptual level, in SETI there is a

machine, call it the master, that sends jobs across the Internet to these computers, call them the

workers. These workers execute and report back the result of the task computation. However,

these workers are not trustworthy and hence might report incorrect results. In SETI, the master

1
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attempts to minimize the impact of these bogus results by assigning the same task to several work-

ers and comparing their outcomes (that is, redundant task allocation is employed [6]) but there are

also other methods [17, 42, 70].

The same group at U.C. Berkeley Spaces Sciences Laboratory that developed the original

SETI@home has also developed BOINC (Berkeley Open Infrastructure for Network Comput-

ing) [6]. BOINC is an open source middleware system for volunteer computing. The goal is to pro-

vide researchers with enormous processing power from participating personal computers around

the world. Among other projects supported by the BOINC platform are the Folding@home, the

Einstein@home and the AIDS@home. With BOINC an application can submit to the system a

task to be executed. Instances of the task are going to be sent to several workers (redundant task

allocation is applied) and a validation process is going to decide upon the correct answer. The

system is configured as to which validation process to follow and how many instances of a task to

create. Usually systems like BOINC are referred to as desktop grids or computational grids in the

bibliography.

Another popular master-worker Internet-based application is Amazon’s Mechanical Turk [5].

Here the master and the workers can be in fact humans that contribute time for solving problems

in exchange to economic rewards. A person who wishes to have a problem (task) solved can act

as a master processor and hire worker processors (other persons) through the Mechanical Turk

platform and have its task computed.

The problem of having untrustworthy workers has been studied under two different views:

from a “classical” distributed computing view [25,43,63] and from a game-theoretic view [26,71].

Under the first view, the workers are classified as either malicious (Byzantine) or altruistic, based

on a predefined behavior. The malicious workers have a “bad” behavior which results in reporting

an incorrect result to the master. This behavior is, for example, due to a hardware or a software
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error or due to an ill-state of the worker such as being a wrongdoer intentionally. Altruistic workers

exhibit a “good” behavior, that is, they compute and return the correct task result. From the

perspective of the master, the altruistic workers are the “correct” ones. Under this view, “classical”

distributed computing models are defined (e.g., a fixed bound on the probability of a worker being

malicious is assumed) and typical malicious-tolerant voting protocols are designed.

Under the game-theoretic view, workers act on their own self-interest and they do not have

an a priori established behavior, that is, they are assumed to be rational [2, 31, 64]. In other

words, the workers decide on whether they will be honest and report the correct task result, or

cheat and report a bogus result, depending on which strategy increases their benefit or utility.

Under this view, Algorithmic Mechanisms [2, 14, 58] are employed, where games are designed to

provide the necessary incentives so that processors’ interests are best served by acting “correctly.”

In particular, the master provides some reward (resp. penalty) should a worker be honest (resp.

cheat). The design objective is for the master to force a desired unique Nash equilibrium (NE) [57],

i.e., a strategy choice by each worker such that none of them has an incentive to change it. That

Nash equilibrium is the one in which the master achieves a desired probability of obtaining the

correct task result. (It is known that Nash Equilibria do not always lead to optimal solutions for

rational players, but as argued in [59, Chapter 1], it is a “safe” way for the players to obtain high

utility satisfaction, and more importantly, a Nash Equilibrium is stable, that is, once proposed, the

players do not want to individually deviate.)

The work proposed by Fernández et al. [27] considers the co-existence of all three types of

workers, since in a massive computation platform such as the Internet this co-existence is very

probable. An Internet-based master-worker framework was considered where a master processor

assigns, over the Internet, a computational task to a set of untrusted worker processors and col-

lects their responses, a reliable network was considered. Under this framework, a game-theoretic
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mechanism was designed that provided necessary incentives to the rational workers to compute

and report the correct task result despite the malicious workers actions. The objective of the

mechanism was to maximize the probability of the master of obtaining the correct task result

while minimizing its cost (or alternatively, increasing its benefit). The utility of the mechanism

was demonstrated by applying it to two paradigmatic applications: a volunteer computing system

(such as SETI) and a contractor-based system (such as Amazons mechanical turk).

This work extends the master-worker framework of [27] by additionally considering the pos-

sibility that the communication between the master and the workers is not reliable, an assumption

that is reasonable when considering Internet-based master-worker computations. This communi-

cation uncertainty can either be due to communication-related failures or due to workers being

slow in processing messages (or even crashing while doing so). For instance, Heien at al. [36]

have found that in BOINC only around 5% of the workers are available more than 80% of the

time, and that half of the workers are available less than 40% of the time. This fact, combined

with the length of the computation [41], justifies the interest of considering in the Internet-based

master-worker framework the possibility of workers not replying. In order to introduce this pos-

sibility in our model, we assume that there is some positive probability that the master does not

receive a reply from a given worker. Since it is now possible for a worker’s reply not to reach

the master, we additionally extend the framework of [27] by allowing workers to abstain from the

computation. In [27] workers did not have the choice of abstaining. Imagine the situation where a

rational worker decides to compute and truthfully return the task result but its reply is not received

by the master. As we explain later (Chapter 3), in this case the master provides no reward to the

worker, while the worker has incurred the cost of performing the task. Hence, it is only natural to

provide to the workers the choice of not replying (especially when the reliability of the network

is low). This issue makes the task of the master even more challenging, as it needs to provide
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the necessary incentives to encourage rational workers to reply and do so truthfully, even in the

presence of low network reliability. This unreliability of the network and workers abstaining, in-

quires often a large time to run tasks, something that justifies the use of single-round mechanisms

(single-round mechanism was also used in [27]).

1.2 Contributions

In this work, building on the work in [27], we identify, with provable analytical guarantees,

the tradeoffs between the master obtaining the correct task result, the cost of doing so, and the

reliability of the underlying communication network. In particular:

• We extend the framework of [27] by considering network unreliability, modeled by a para-

metric probability. Furthermore, we extend the strategic space of rational workers, and

besides the choice of being honest or cheaters, workers can also choose to abstain from

the computation. Also a new parameter is added to the set of realistic payoff parameters

considered in [27] (Chapter 3). The reward model used in [27], where the master rewards

the majority and punishes the minority is no longer used is this work (the reward models

are presented in Chapter 3) due to the unreliability of the network; when no reply from the

worker is received no assumptions can be made as to why.

• We develop and analyze two algorithms (a time-based algorithm and a reply-based one) that

provide the necessary incentives for the rational workers to truthfully compute and return

the task result, despite the malicious workers’ actions and the network unreliability (Chap-

ter 4). The algorithms are parametrized in terms of a probability of auditing pA (defined in

Chapter 3) as in [27] and d, a parametric probability modeling networks unreliability. Each

of the algorithms implement an instance of the Bayesian game [35]. Under a general type
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probability distribution, we analyze the master’s utility and probability of success (proba-

bility of obtaining the correct task result) and identify the conditions under which the game

has Nash Equilibria.

Following the same analysis pattern as in [27], under specific type probability distributions,

a protocol in which the master chooses the values of pA to guarantee a parametrized bound

on the probability of success under the network’s unreliability is also designed (Chapter 4).

Once this is achieved, the master also attempts to maximize its utility. This protocol to-

gether with each of the above-mentioned algorithms comprise a mechanism. Note that the

mechanisms designed (and their analyses) are general in that reward models can either be

fixed exogenously or be chosen by the master. It is also shown that our mechanisms are

the only feasible approaches for the master to achieve a given bound on the probability of

success.

• Following [27], under the constraint of the bounded probability of success, it is shown

how to maximize the master utility in two real-world scenarios (Chapter 5), when having

an unreliable network and workers abstaining from the computation. The first scenario

abstracts a system of volunteering computing like SETI [44]. The second scenario abstracts

a contractor-based application where a company buys computational power from Internet

users and sells it to computation-hungry consumers, such as Amazon’s Mechanical Turk.

Finally, to provide a better insight on the usability of our mechanisms, and to illustrate the

trade-offs between reliability and cost, we have characterized the utility of the master for the

above-mentioned scenarios via plots by choosing system parameters as derived by empirical

evaluations of master-worker Internet-based systems in [20] and [23].
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1.3 Document Organization

Summarizing, in Chapter 2 a literature review of previous works and how they relate with

each other and our work is presented. In Chapter 3 the model and definitions are presented.

A collection of realistic payoff parameters and reward models are identified and the considered

Internet-based master-worker computation problem is formulated as a Bayesian game as in [27].

Chapter 4 presents the algorithms and protocol followed by the master, comprising the mechanism

that provides rational worker with the appropriate incentives for the master to achieve its goal.

Chapter 5 shows how the mechanism is applied to two realistic scenarios and presents plots derived

from those scenarios characterizing the utility of the master. Finally in Chapter 6 we discuss the

presented work and what are possible future directions.



Chapter 2

Literature Review

This work uses a game-theoretic approach combined with a classical distributed computing

approach to achieve a reliable master-worker computation in the presence of communication fail-

ures. In this section we provide a literature review of prior existing work to better indicate the

contribution of our work.

2.1 Traditional Distributed Computing Approach

The work of Sarmenta [63] address the problem of protecting volunteer systems like SETI@

home from malicious workers, called saboteurs. Traditional techniques like checksums and cryp-

tographic techniques will not prevent the actions of malicious workers because the errors created

are intentional. This work assumes that workers are malicious with probability f , and that a ma-

licious worker returns a wrong answer with probability s. This work considered a collection of

tasks. The objective is to bound the expected number of wrong results accepted by the master, and

the amount of work performed. Several mechanisms to achieve this objective are compared, the

traditional voting technique taking the majority for each task and also they develop a new tech-

nique called spot-checking. With spot-checking workers are given tasks whose result is known to

8
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identify the workers that are not truthful. This mechanism can be combined with blacklisting or

credibility techniques.

In the work of Kondo et al. [41] the error detection mechanisms presented in the work of

Sarmenta are evaluated with real data gathered from the XtreamLab project that uses the BOINC

infrastructure. Through this work the errors generated in desktop grid applications are character-

ized. They conclude that a large fraction of errors is coming from a very small portion of workers.

Also they show that little correlation between simultaneous malicious workers exist. Additionally,

there is a large variability of the set of malicious workers over time, with the exception of a few

frequent offenders. Also care has to be taken if blacklisting or credibility is used. They derive

the conclusion that a large number of task and time are required to achieve low error rates with

spot-checking and that, in general, to achieve low error rates it is better to use majority something

used in our model as well.

In the work of Fernández et al. [25] an Internet-based master-worker computing that considers

the presence of malicious workers is presented. An asynchronous distributed system is considered

where the master processor sends tasks to a collection of n workers and a worker may deliberately

return an incorrect result in an effort to harm the master. The authors model with an explicit

parameter d the probability that the master will receive the reply from a worker on time. The

master in an attempt to receive the correct result sends the same task to several workers and

decides upon the correct result based on the received replies. In order to analyze a worst case

scenario the assumption that malicious workers reply and return the same incorrect reply is made

(full collusion). For each task assigned to a worker the master is charged with one work unit. The

goal of the master is to accept the correct task result with high probability of success 1− ε, where

ε � 1 and with the smallest possible amount of work. A probabilistic bound on the number

of malicious workers is considered, with a probability p < 1/2 of any worker processor being
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faulty. Lower bounds on the minimum amount of (expected) work required are given, so that any

algorithm accepts the correct reply with probability of success 1− ε.

A single round protocol is used, the master decides upon the correct reply by the end of the

round. Two algorithms for the master using different decision strategy are developed, a majority

based and a threshold based algorithm. The majority based algorithm send the task to a subset

of the workers and after time T decides upon the correct result taking the majority of received

replies. The threshold based algorithm is an early termination algorithm. If the master receives

a certain number of replies with the same value it makes a decision, otherwise it decides on the

majority of received responses by time T (like the majority based algorithm). The authors show

that both algorithms obtain the same probability of success 1− ε and derive similar upper bounds

on the (expected) work required in doing so. Also under certain conditions they show that these

upper bounds are asymptotically optimal with respect to the lower bounds. So the authors have

managed to show that it is possible, with provable analytical guarantees, to execute tasks reliably

with high probability and low cost in the presence of malicious worker processors and unreliable

communication.

The work proposed by Fernández et al. [25] takes into account the conclusions derived by

the work of Kondo et al., that in general achieving low errors it is better to use majority. Also

considers the unreliability of the network and unavailability of the workers something that is not

considered in the work of Sarmenta. Our work is inspired by the way the unreliability of the

network is introduced and uses the same parametric probability d for modeling the unreliability

of the network. Although in our work we explicitly consider this probability d to be the product

of two separate probabilities that model the unreliability of communication between master and

worker. Our work takes a game theoretic approach considering the presence of rational workers

that do not have a predefined behavior and we model the unavailability of the worker as a strategic
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choice given to the rational workers. In our work the performance measure is not minimizing the

number of workers to whom the master assigns the task, but maximizing the utility of the master.

Due to the very different objectives and mechanisms deployed in [25] the results of this work with

those of traditional distributed computing, cannot be compared even if no rational workers are

assumed.

The work of Konwar et al. [43] studies an extension of the problem considered in the work of

Fernández et al. [25] in which there are n workers and n tasks to be performed. But a synchronous

system is assumed in which the result of a task assigned to a non-faulty worker is always received

by the master. This makes their computation model somewhat stronger in comparison with [25]

where a more realistic model of unreliable communication is assumed. But having a synchronous

system allows them to obtain efficient algorithms even if the failure parameter p (faulty workers)

is unknown.

In the work of Kuhn et al. [46] a classical distributed approach is taken considering the workers

on a computational grid to either be altruistic or malicious in the sense that they intensionally cheat

for their own benefit. They develop a distributed checking mechanism that detects wrong results,

excludes malicious workers and thus prevents malicious workers from obtaining rewards. The

authors have incorporated their distributed checking mechanism in the BOINC server software.

The goal of their mechanism is to give rewards only to altruist and not flood the system with

wrong results, also all malicious workers is assumed that form a single coalition.

While this line of work has a partially similar goal of the master receiving the correct result

and considers the same a desktop grid framework the approach that we take differs completely.

We have a central auditing mechanism and we are not concerned with cheater receiving a reward,

as long as the master receives the correct result while maximizing its utility. We take a game

theoretic approach and assume also that the network is unreliable something that this work does
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not consider. Also in the work of Kuhn et al. [46] an upper bound of 20% of malicious worker has

to be assumed for the checking mechanism to verify the correctness of a result. This bound on the

malicious workers is smaller than the one assumed in [25]. In our work such limitation does not

apply due to the auditing technique we use.

2.2 Algorithmic Game Theoretic Approach

As we already mentioned in Section 1.1, this is not the first work to consider master-worker

computations in a game-theoretic model; this approach has been studied before [26, 27, 71]. The

work by Yurkewych et al. [71] considers computational grids where clients are financially com-

pensated for their work. The authors assume that they deal with rational workers, that are seeking

only to maximize their expected profit; that is, are not the workers malicious. Workers follow a

cheating strategy only if that increases their expected profit compared to an honest strategy, they

are not considered risk-seeking. Because workers can not be trusted the authors use redundant task

allocation, send the same task to several workers and collect their replies. Also they assume that

workers can form colluding team returning the same incorrect result. Since workers are rational in

the game theoretic sense, the master can audit there replies, giving reason to the workers to follow

a truth telling strategy. This work considers the presence of a reliable communication, in our work

we take a realistic approach considering an unreliable network and also the presence of malicious

and altruistic workers. These assumptions demand that our mechanism can cope by giving the

appropriate incentives that will force the good behavior of the rational workers.

In their work [71], the authors develop a game which they call the Internet Auditing Game.

The master chooses a set of workers, announces the probability by which it will audit and send the

task to the workers. If the master audits then it rewards honest workers and penalizes cheaters. If it

does not audit and there is a more than half of the workers that gave an identical reply (consensus),
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it rewards the members of the majority and penalizes the rest. If there is no consensus the master

chooses again randomly a set of workers and re-initiates the same process with the same task. That

is, not always a single-round protocol is followed, while our work follows a single round protocol.

As pointed out experimentally in the work of Kondo et al. [41] task may take more than one day

of CPU time to complete. This make the model of Yurkewych et al. vulnerable to long execution

time.

The master in [71] has a fixed budget for computing a task, that includes the auditing cost

and the rewards to the workers cost. The goal of the server is to guarantee that it will get the

correct reply and within its budget. Bounds for the audit probability are computed to guarantee

that workers have incentives to be honest in three scenarios: redundant allocation with and without

collusion, and single-worker allocation. They authors conclude, that single-worker allocation is

a cost-effective mechanism specially in presence of collusion. In our work we do not restrict the

budget of the master and we are able to show useful tradeoffs between reliability and cost.

A later work by Fernández et al. [26] also considers Internet-based master-worker computa-

tions from a game-theoretic point of view. These computations are modeled as games where each

worker is assumed to be rational and can choose to cheat, fabricate a reply and return it to the mas-

ter, or be honest compute and return the correct result. A general single-round protocol is followed

where the master assigns the task to n workers. Each worker processor cheats with a probability

and the master verifies the answer with some probability. If the master verifies it rewards and pun-

ishes workers appropriately. If the master does not verify then it rewards the workers according

to one of three reward models: (a) a reward majority modelRm, where the majority of workers is

rewarded, (b) a reward all model Ra where the master rewards all workers and (c) a reward none

modelR∅ where the master does not reward at all.
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Cost-sensitive mechanisms that provide the necessary incentives for the workers to truthfully

compute and return the correct result are designed. The objective is to maximize the probability

that the master will obtain the correct task result while minimizing its cost. For this purpose the

authors consider a set of realistic payoff parameters that can model the environment considered in

a game-theoretic sense. Four different games are considered: (a) a game between the master and

a single worker (1 : 1 game), (b) a game between the master and a workers played n times, each

with a different worker (1 : 1n game), (c) a game with a master and n workers (1 : n game) and

finally, (d) a game with n worker and the master participating indirectly (0 : n game). Combined

with the three reward models the authors have considered twelve games. The authors analyze the

conditions under which, with general payoff parameters, unique NE is reach for each of the twelve

games. Thus the analysis leads to mechanisms where the master can choose the game conditions

that guarantee a unique NE that best fits its goal. Finally they have identified and proposed specific

mechanism for two realistic scenarios, a volunteer computing scenario (e.g. SETI) and a company

that buy computational cycles from Internet computers and sells them to customers in the form of

a task-computation service.

The authors consider a weak form of collusion, we assume the same in our work, where the all

cheaters return the same incorrect result. This assumption is not made in the work of Yurkewych

et al. where a general form of colluding workers is assumed, this is also the reason why their

protocol may become a multiple-rounds protocol. Also they make the assumption that if a worker

does not perform the task, then it is almost impossible to guess the correct answer. In our work

no such assumption is made, since we use auditing the master computes the task by its self. This

work [26] uses a verification technique, since it considers that verifying is more efficient than

computing the task (i.e. auditing). The master by verifying does not necessarily obtain the correct

result, for example when all workers cheat. A survey contacted on this problem [15] for the
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model considered in the work of Fernández et al. [26] compared the verification technique used

with an auditing technique. The advantage of auditing is that the master will receive the benefit

from getting the correct answer even if all workers cheated, on the other hand auditing can be

costly for the master. In [15] a thorough study was contacted comparing the two method for

different auditing/verification costs over the different games considered. The general result was

that auditing had a better master utility except in the 0:n game.

Compared with the work of Yurkewych et al., the work of Fernández et al. [26] studies more

algorithms and games, considers richer payoffs, probabilistic cheating and shows a reacher trade-

offs between reliability and cost. But as we mentioned above the use of verification instead of

auditing makes it weaker. Also a weaker form of collusion is assumed but the results reached are

similar with the one of Yurkewych et al.; under certain conditions non redundant task allocation is

best.

In their work Fernández et al. [26] did not considered the presence of non-intensional errors

produced by hardware or software problems. In a later published work Fernández et al. [27] con-

sider the presence not only of rational but also of malicious and altruistic workers in an Internet-

based master-worker computation. Malicious workers have a predefined ‘‘bad’’ behavior that is

due to hardware or software errors or a deliberate malicious behavior. Altruistic workers always

compute and return the correct result, that is they exhibit a ‘‘good’’ behavior. Rational workers are

defined in the same way as in their previous work, they do not have a priori established behavior.

They act based on their own self-interest, decide to be honest or cheat based on the strategy that

will increase their benefit. By considering all the three types of workers, a rich combination of

game-theoretic and classical distributed computing approaches to the design of mechanisms for

reliable Internet-based master-worker computing, is given.
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A probability distribution of workers among the worker types is considered. The authors as-

sume that the master and the workers do not know the type of other workers, only the probability

distribution. The rational workers will play a game looking for a NE, while malicious and altru-

istic workers have a predefined strategy to cheat or be honest, respectively. The master does not

participate in the game, rather it designs the game to be played. The game played is formalized as a

game with imperfect information (i.e. Bayesian game). A collection of realistic payoff parameters

and reward models are identified.

The goal of the master is to guarantee that it will obtain the correct task result with probability

at least 1−ε (where0 ≤ ε < 1), and having achieved this the master wants to maximize its benefit.

The mechanism designed gives weapons to the master to achieve its goal, it can compute the task

its self and reveal the cheaters (i.e. use audit) and reward/ punish the workers appropriately or

it will not audit and reward/punish according to a reward model, thus encouraging the rational

workers to be honest.

A general voting algorithm is run by the master to implement the game mentioned. The al-

gorithm is parametrized by the auditing probability pA. The master sends the task, its audit prob-

ability and a certificate to all workers. The assumption is made that the communication between

master and workers is reliable and that all workers reply to the master. Thus upon the master

receiving all answers from the workers, it audits the answers with a probability pA. If the mas-

ter does not audit it accepts the majority of answers and follows a chosen reward model. As in

their previous work and as in this work, the assumption is made that all cheater return the same

incorrect reply. If the master audits, it rewards the honest workers and penalized the cheaters. The

master can follow one of four reward models defined. A reward model that rewards the majority

and penalizes the minority (this model was not included in the authors previous work), a model
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that rewards only the majority, a model that rewards all workers or finally a reward model that

does not reward any worker.

In that work [27], and under a general type probability distribution, the authors analyze the

master’s utility and probability of error and identify the conditions under which the game has

NE. Also they identify an algorithmic mechanism through which the master chooses the values

of the auditing probability to guarantee its goal. The mechanism to choose pA is designed taking

into account two scenarios, a free rationals scenario and a guided rationals scenario, as they call

it. In the guided rationals scenario, the type distribution is such that the rational workers have to

be enforced to follow an honest strategy. In the free rational scenario, due to the type distribution

again, the behavior of the rational workers does not need to be enforced. The designed mechanism

is general in that reward models can either be fixed exogenously or be chosen by the master.

The authors show that this mechanism is the only feasible approach for the master to achieve a

given bound on the probability of error. As in their previous work, Fernández et al. apply their

mechanism to two realistic scenarios, a volunteer-like scenario and a contractor scenario. Under

the constrain of the bounded probability of error, they illustrate how to maximize the utility of the

master.

In that work [27] as well as in the previous ones [26, 71] a reliable network is assumed. Our

work compliments the work of Fernández et al. [27] by considering an unreliable network and also

allows rational workers to abstain the computation. As mentioned before making these realistic

assumptions makes the task of the master even more challenging, since the incentives provided

by the mechanism must aid towards rational workers replying and also replying truthfully despite

malicious workers and the unreliability of the network.
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2.3 Combinatorial Agencies

Distributed computation in presence of selfishness was studied within the scope of combinato-

rial agencies in Economics [7–9,19]. The basic model considered is a combinatorial variant of the

classical principal-agent problem [51]: A master (principal) must motivate a collection of workers

(agents) to exert costly effort on the master’s behalf, but the workers’ actions are hidden from the

master. Instead of focusing on each worker’s actions, the focus is on complex combinations of the

efforts of the workers that influence the outcome. In [7], where the problem was first introduced,

the goal was to study how the utility of the master is affected if the equilibria space is limited to

pure strategies. To that extent, the computation of a few Boolean functions is evaluated. In [9]

mixed strategies were considered: if the parameters of the problem yield multiple mixed equilib-

rium points, it is assumed that workers accept one suggested by the master. This is contrasted with

our work as we require the master to enforce a single equilibrium point (referred as strong imple-

mentation in [7]). The work in [19] investigates the effect of auditing by allowing the master to

audit some workers (by random sampling) and verify their work. In our work, the master decides

probabilistically whether to verify all workers or none by auditing.

In general, the spirit of the framework considered in combinatorial agency is similar to the

one we consider in the present work in the sense that there is a master wishing a specific outcome

and it must provide necessary incentives to rational workers so to reach that outcome (exerting

effort can be considered as the worker performing the task, and not, as the worker not perform-

ing the task and reporting a bogus result). However, there are several differences. First of all,

we consider the co-existence of selfish, malicious and altruistic workers under an unreliable net-

work (we are not aware of any work in combinatorial agency with such assumption). Even if we
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consider a special case of our framework where we have a type distribution with only rational/-

selfish workers and communication is reliable, there are still many differences. One difference is

that in our framework, the worker’s actions cannot really be viewed as hidden. The master re-

ceives a response by each worker and it is aware that either the worker has truthfully performed

the task or not. The outcome is affected by each worker’s action in the case that no verification

is performed (in a similar fashion as the majority boolean technology in Combinatorial agency)

but via verification the master can determine the exact strategy used by each worker and apply

a specific reward/punishment scheme. In the framework considered in combinatorial agency, the

master witnesses the outcome of the computation, but it has no knowledge of the possible actions

that the worker might take. For this purpose, the master needs to devise contracts for each worker

based on the observed outcome of the computation and not on each worker’s possible action (as in

our framework). Another important difference includes the fact that our scheme considers worker

punishment, as opposed to the schemes in combinatorial agency where workers cannot be fined

(limited liability constraint); this is possible in our framework as worker’s actions are contractible

(either it performs a task or not).

2.4 Other Related Work

The use of game theory in distributed systems is rapidly expanding in an effort to give solu-

tions to traditional distributed computing problems. Prior examples of game theory in distributed

computing include work on Internet routing [30, 45, 52, 61], resource/facility location and shar-

ing [29, 32], containment of viruses spreading [56], secret sharing [2, 34], P2P services [3, 48, 49]

and task computations [26, 71]. For more discussion on the connection between game theory and

distributed computing we refer the reader to the surveys by Halpern [33] and by Abraham, Alvisi

and Halpern [1], and the book by Nisan et al [59].
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Eliaz [22] seems to be the first to formally study the co-existence of Byzantine (malicious)

and rational players. He introduces the notion of k-fault-tolerant Nash Equilibrium as a state in

which no player benefits from unilaterally deviating despite up to k players acting maliciously.

He demonstrates this concept by designing simple mechanisms that implement the constrained

Walrasian function and a choice rule for the efficient allocation of an indivisible good (e.g., in

auctions). Abraham et al [2] extend Eliaz’s concept to accommodate colluding rational players.

In particular they design a secret sharing protocol and prove that it is (k, t)-robust, that is, it is

correct despite up to k colluding rational players and t Byzantine ones.

Another interesting work is the one by Karakostas and Viglas [40] that consider the presence

of selfish players and only one malicious player in a routing application setting. The malicious

player uses its flow through the network in an effort to cause the maximum possible damage. The

impact of such malicious behavior is evaluated in the article. In our work through designing a

mechanism that achieves reliability with a high probability the impact of malicious behavior can

be inferred and is also illustrated through plots.

Gairing [30] introduced and studied malicious Bayesian congestion games. These games ex-

tend congestion games [62] by allowing players to act in a malicious way. In particular, each player

can either be rational or, with a certain probability, be malicious (with the sole goal of disturbing

the other players). As in our work, players are not aware of each other’s type, and this uncertainty

is described by a probability distribution. Among other results, Gairing shows that, unlike con-

gestion games, these games do not in general possess a Nash Equilibrium in pure strategies. Also

he studies the impact of malicious types on the social cost (the overall performance of the system)

by measuring the so-called Price of Malice. This measure was first introduced by Moscibroda et

al [56] to measure the influence of malicious behavior for a virus inoculation game involving both

rational (selfish) and malicious nodes. Also in the work of Babaioff et al. [10] the Price of Malice
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is studied on congestion games and it is measured directly, by comparing the outcome of games

with only rational players to the outcome of games with both rational and malicious players.

In an article by Alon et al. [4] the notion of Bayesian ignorance is presented. Bayesian ig-

norance is quantified by comparing the social cost obtained by players that have local views in a

Bayesian game to the expected social cost of players with global views. The authors assume the

existence of both altruistic and rational players and present their derived results on a specific con-

gestion game. The main result reached is that having rational agents bear a local view is best for

the social cost. Relating to our model all workers and the master have the same view of the system,

having workers with different views is something that can not be applied to our framework.

Besides investigating the co-existence of malicious and rational workers, also the co-existence

of altruistic and rational workers has been studied. Meier et al. [53] study the virus inoculation

game on a social graph and describe the degree of friendship by a factor F. This factor describes

how must players care about their adjacent players in a social network, by F = 1 a player values

the welfare of it’s neighbor the same as it’s own. In our model altruistic players can be considered

as valuing only the welfare of the system. Also Hoefer and Skopalik [37] study congestion games

with altruists, assuming a level of altruism for each player, βi = 0 being a pure selfish and βi = 1

being a pure altruist. Again in our work in that sense we consider only pure altruists and pure

selfish players.

In the work of Kuznetsov and Schmid [47] the notion of a social range matrix and is effects on

the equilibria in a network game are presented. This social range matrix describes arbitrary social

relationships between players, how much a player cares about every other player. Malicious and

altruistic behaviors of a player towards the other players are modeled, combining the malicious

and altruistic behavior discussed above. In our line of work, workers have only social relationships

with the master and not with each other. Also we assume that a worker, based on the literature’s
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phraseology, can only be pure selfish, pure altruistic or malicious towards the master. Considering

different degrees of rationality or altruism will make our analysis loose it’s generality and also

having the percentage of different degrees of a behavior is not trivial.

Aiyer et al. [3] introduce the BAR model to reason about systems with Byzantine (malicious),

Altruistic, and Rational participants. They also introduce the notion of a protocol being BAR-

tolerant, that is, the protocol is resilient to both Byzantine faults and rational manipulation. (In

this respect, one might say that our algorithmic mechanisms designed in this work, dealing also

with the networks unreliability, is BAR-tolerant.) As an application, they designed a coopera-

tive backup service for P2P systems, based on a BAR-tolerant replicated state machine. Li et

al [49] also considered the BAR model to design a P2P live streaming application based on a

BAR-tolerant gossip protocol. Both works employ incentive-based game theoretic techniques (to

remove the selfish behavior), but the emphasis is on building a reasonably practical system (hence,

formal analysis is traded for practicality). Recently, Li et al [48] developed a P2P streaming ap-

plication, called FlightPath, that provides a highly reliable data stream to a dynamic set of peers.

FlightPath, as opposed to the abovementioned BAR-based works, is based on mechanisms for

approximate equilibria [13], rather than strict equilibria. In particular, ε-Nash equilibria are con-

sidered, in which rational players deviate if and only if they expect to benefit by more than a

factor of ε. As the authors claim, the less restrictive nature of these equilibria enables the design

of incentives to limit selfish behavior rigorously, while it provides sufficient flexibility to build

practical systems.

Monderer and Tennenholtz [55] assume a reliable party that can not modify game rules, for

example provide protocols, but wishes to influence the behavior of the players in a game. They

introduce the concept of k-implementation, as a way to influence the outcome of the game and

hence complement previous works in mechanism design. A k actual monetary payment is given
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to provide the desirable outcomes; if k is large enough any specific outcome is possible. A player

following a desired behavior will not necessarily take the monetary payment. k-implementation

is addressed in the concept of games with complete and incomplete informations and pure and

mixed strategies.

We provide a protocol that defines the different cases under which different payments/punish-

ments are given to the workers. In our work, payments also will not necessarily be given when

the worker follows a desired strategy. Our model’s primal goal though, is for the master to get

the correct reply thus rewarding less workers is a second order priority. Having a set of desirable

outcomes, instead of forcing a unique equilibrium, it is possible to minimize the decrease the mas-

ter’s cost. But having to deal with many equilibria and at the same time rigorously analyzing the

possibilities seems unmanageable.

A somewhat related work is [18] in which they face the problem of bootstrapping a P2P com-

puting system, in the presence of rational peers. The goal is to incentive peers to join the system,

for which they propose a scheme that mixes lottery psychology and multilevel marketing. In our

setting, the master could use their scheme to recruit workers. We assume in this work that enough

workers are willing to participate in the computation.



Chapter 3

Model and Definitions

In this section we present our model and the conventions that comes with it and give the

parameter definitions followed in the rest of this work.

3.1 Master-Workers Framework and Worker Types

This work extends the framework presented in [27] to include the unreliability of the network

and the rational workers strategic choice not to reply. We consider a distributed system consisting

of a master processor that assigns, over the Internet, a computational task to a set of n workers

to compute and return the task result. The master, based on the received replies, must decide on

the value it believes is the correct outcome of the task. The tasks considered in this work are

assumed to have a unique solution; although such limitation reduces the scope of application of

the presented mechanisms [67], there are plenty of computations where the correct solution is

unique: e.g., any mathematical function.

Each of the n workers has one of the following types, rational, malicious, or altruistic. The

type of any worker w is known only by w. That is, neither the master nor the other workers know

24
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the type of worker w. Furthermore, the number of workers of each type is unknown to every-

one. With respect to the worker types, the only knowledge available is a probability distribution

over those types. Specifically, it is known that each worker is independently of one of the three

types with probabilities pρ, pµ, pα, respectively, where pρ + pµ + pα = 1. The knowledge of the

distribution over types could be obtained, for example, statistically from existing master-worker

applications. If such information is inaccurate it is enough to overestimate pµand underestimate

pα (as we do in Section 4.3.1 from SETI-like systems [15,18]) to achieve correctness, although

at a bigger expense. Malicious and altruistic workers always cheat and are honest, respectively,

independently of how such a behavior impacts their utilities. In the context of this work, being

honest means truthfully compute and return the correct task result, and cheating means returning

some incorrect value. On the other hand, rational workers are assumed to be selfish in a game-

theoretic sense, that is, their aim is to maximize their benefit (utility) under the assumption that

other workers do the same. So, a rational worker decides to be honest, cheat or not reply to the

master (workers can abstain and choose not to reply) depending on which strategy maximizes its

utility. As a result, each rational worker cheats with probability pC , it is honest with probability

pH, and does not reply with probability pN , such that pC + pH + pN = 1. It is understood that if

a worker decides not to reply, then it does not perform the task.

The above implies that all rational workers share the same probability distribution over the

possible strategies (cheat, be honest, abstain), i.e., all rational workers are of the same type. Oth-

erwise, in order to model the individuality of the non-monetary part of each rational worker’s ben-

efit/penalty, the distribution over types could be generalized to different types of rational workers

instead of one. More precisely, define a probability distribution over each possible combination of

payoffs in R4, restricting signs appropriately, so that each rational worker draws independently its

strategic normal form from this distribution. However, the analysis presented here would be the
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same but using expected payoffs, the expectation taken over such distribution. Thus, for the sake

of clarity and without loss of generality, we assume that the strategic normal form is unique for all

players.

3.2 Network Unreliability

The communication network is considered to be unreliable, and workers could be unavailable,

which are very realistic assumptions for Internet-based master-worker computations, as suggested,

for example, by the work of Heien at al. [36]. We model this shortcoming by assuming that the

communication with each worker fails stochastically and independently of other workers.

Furthermore, we assume two settings, one where the probability of communication failure

depends on time (the more the master waits for replies the larger the probability of obtaining more

replies), and a second one where the probability of communication failure is fixed (hence, the

more workers the master hires the larger the number of replies). As we will see in Chapter 4, the

first setting leads to a time-based mechanism and the second one to a reply-based mechanism.

In our analysis, we let d1 be the probability of any worker being available and receiving the

task assignment message by the master, d2 be the probability of the master receiving the worker’s

response (has the worker chosen to reply), and d = d1 · d2 be the probability of a round trip,

that is, the probability that the master sends a task assigned and receives the reply from a given

worker; that is, d represents the network’s reliability. Hence, d2 is the probability value that the

master achieves by waiting T time (for the time-based mechanism) or hiring n workers (for the

reply-based mechanism). We also assume that there is some chance of a message being delivered

to its destination, i.e. d > 0.
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3.3 Master’s Objectives, Auditing, Payoffs and Reward Models

The objective of the master is twofold. First, the master has to guarantee that the decided value

is correct with probability at least 1− ε, for a known constant 0 ≤ ε < 1. Then, having achieved

this, the master wants to maximize its own benefit (utility). As, for example, in [63], [25], [26]

and [27], while it is assumed that workers make their decision individually and with no coordina-

tion, it is assumed that all the (malicious and rational) workers that cheat return the same incorrect

value. This yields a worst-case scenario (and hence analysis) for the master with respect to its

probability of obtaining the correct result; it subsumes models where cheaters do not necessarily

return the same answer. (In some sense, this can be seen as a cost-free, weak form of collusion.)

To achieve its objectives, the master employs, if necessary, auditing and reward/penalizing

schemes. The master might decide to audit the response of the workers (at a cost). In this work

(as in [27]), auditing means that the master computes the task by itself, and checks which workers

have been truthful or not. We denote by pA the probability of the master auditing the responses of

the workers.

Furthermore, the master can reward and punish workers, which can be used (possibly com-

bined with auditing) to encourage rational workers to be honest (altruistic workers need no en-

couragement, and malicious workers do not care about their utility). When the master audits, it

can accurately reward and punish workers. When the master does not audit, it decides on the ma-

jority of the received replies, and may apply different reward/penalizing schemes. In this work we

consider three reward models shown in Table 1. Each reward model is essentially different from

the others and can be used depending on the specifics of the application considered.

Auditing or not, the master neither rewards nor punishes a worker from whom it did not

receive its response. Due to the unreliability of the network, when the master does not receive a
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Rm the master rewards the majority only
Ra the master rewards all workers
R∅ the master does not reward any worker

Table 1: Reward models

reply from a worker it can not distinguish whether the worker decided to abstain, or there was a

communication failure in the round trip (it could be the case that the worker did not even receive

the task assignment message). Hence, it would be unfair to punish a worker for not getting its

response; imagine the case where the worker received the request, performed the task and replied

to the master, but this last message got lost! On the other hand, if it is indeed the case that a worker

received the task assignment message but decided to abstain, then it gets no reward. If the reward

is much bigger than the worker’s cost for computing the task, this alone can be a counter incentive

to such a strategy. In comparison with the model presented in [27], the model where the master

rewards the majority and punishes the minority is not used, for the reason mentioned above.

The payoff parameters considered in this work are detailed in Table 2. Note that the first letter

of the parameter’s name identifies whose parameter it is. M stands for master and W for worker.

Then, the second letter gives the type of parameter. P stands for punishment, C for cost, and B

for benefit.

WPC worker’s punishment for being caught cheating
WCT worker’s cost for computing the task
WBY worker’s benefit from master’s acceptance
MPW master’s punishment for accepting a wrong answer
MCY master’s cost for accepting the worker’s answer
MCA master’s cost for auditing worker’s answers
MCS master’s cost for not getting a “sufficient” number of replies
MBR master’s benefit from accepting the right answer

Table 2: Payoffs. All parameters are non-negative.

Observe that there are different parameters for the reward WBY to a worker and the cost MCY

of this reward to the master. This models the fact that the cost to the master might be different

from the benefit for a worker. In fact, in some applications they may be completely unrelated. For
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example, in scenarios such as SETI, workers carry out the computation for free. Nevertheless,

the master may still incur in some costs for processing the replies, posting a list of participants,

etc. Although workers are not penalized for not replying, our model allows the possibility for

the master to be penalized for not getting enough replies (parameter MCS) (the actual number of

“enough” replies is quantified in Section 3). This provides an incentive for the master to choose

(when it can) more workers to assign the task (especially if d is small) or to increase their incentives

for replying; if convenient, MCS could be set to zero. As usual in algorithmic mechanism design,

we include a punishment in addition to the incentive. This is an implementation of a “carrot

and stick” incentive-based mechanism when dealing with rational workers. Such mechanism is

possible when the workers actions are contractible and verifiable as in our model (unlike the case

of combinatorial agencies). Nevertheless, observe that, if needed, the punishment may be disabled

setting WPC = 0 (as some instances here). Among the parameters involved, we assume that the

master has the freedom of choosing WBY and WPC ; by tuning these parameters and choosing n,

the master can achieve the desired trade-offs between correctness and cost. All other parameters

can either be fixed because they are system parameters or may also be chosen by the master.

3.4 Game Theory Concepts and Problem Formulation

We study the problem under the assumption that the rational workers, or players, will play a

game looking for an equilibrium (recall that malicious and altruistic workers have a predefined

strategy to cheat or be honest, respectively). The master does not play the game, it only defines

the protocol and the parameters to be followed (i.e., it designs the game or mechanism). The

master and the workers do not know the type of other workers, only the probability distribution.

Hence, the game played is a so-called game with imperfect information or Bayesian game [35].
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The action space is the set of pure strategies {C,H,N}, and the belief of a player is the probability

distribution over types.

More formally, the Internet-based Master-Worker computation considered in this work is for-

mulated as the following Bayesian game

G(W, ε,D, A, pA, d1, d2,R, pfs),

where W is the set of n workers, 1 − ε ∈ [0, 1] is the desired success probability of the master

obtaining the correct task result,D is the type probability distribution (pρ, pµ, pα),A = {C,H,N}

is the workers’ actions space, pA is the probability of the master auditing the workers’ responses,

d1 and d2 are the probabilities characterizing the unreliability of the network (d = d1 · d2), R

is one of the reward models given in Table 1, and pfs are the payoffs as described in Table 2.

Each player knows in advance the distribution over types D, the total number of workers (n), the

probability characterizing the network’s unreliability (d1, d2) and its normal strategic form, which

is assumed to be unique.

The core of the mechanisms we develop is the computation of pA. Based on the type distribu-

tion, the master must choose a value of pA that would yield a Nash Equilibrium that best serves its

purposes. Recall from [60], that for any finite game, a mixed strategy profile σ is a mixed-strategy

Nash equilibrium (MSNE) if, and only if, for each player i,

Ui(si, σ−i) = Ui(s
′
i, σ−i), ∀si, s′i ∈ supp(σi),

Ui(si, σ−i) ≥ Ui(s′i, σ−i),

∀si, s′i : si ∈ supp(σi), s′i /∈ supp(σi),

where si is the strategy used by player i in the strategy profile s, σi is the probability distribution

over pure strategies used by player i in σ, σ−i is the probability distribution over pure strategies
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used by each player but i in σ, Ui(si, σ−i) is the expected utility of player i when using strategy si

with mixed strategy profile σ, and supp(σi) is the set of strategies in σ with positive probability.

The above definition applies to our setting as follows. First notice that there is no NE where

some players choose a pure strategy and others do not, because the game is symmetric for all

rational players. (Should many types of rational players be considered, then we would have to

consider such a NE.) Assume first that there is a NE with mixed-strategies (that is, a NE where

no strategy is chosen with probability 1). Then, the expected utility of a worker is the same for

each pure strategy that such worker can choose with positive probability, and it is not less than the

expected utility of a pure strategy with probability zero of being chosen (if there is any). On the

other hand, if only pure strategies are included in a NE (that is, there is only one strategy that can

be chosen), that means that the expected utility of a worker is not less than the expected utility on

the remaining pure strategies. Let us illustrate with an example. If pC = 1/2, pH = 1/2, pN = 0

is a NE, that means that the expected utility of a worker is the same if it cheats or is honest, and it

is not less than the utility if it does not reply. On the other hand, if pC = 0, pH = 1, pN = 0 is a

NE, then the expected utility of an honest worker is not less than the expected utility of cheating

or not replying.

Then, for the purposes of the game we consider, in order to find conditions for equilibria, we

want to study for each player i
∆UHC = πH ·wH − πC ·wC

∆UHN = πH ·wH − πN ·wN
(1)

The expression · π• · w• denotes the utility of the worker when choosing strategy •; we

present the components of the expression in detail in Section 4. If we show conditions such that

∆UHC = 0 and ∆UHN = 0 , then we have a MSNE 0 6= pC 6= 1. On the other hand, if we show

conditions that make ∆UHC ≥ 0 and ∆UHN ≥ 0 for each player i, we know that there is a pure
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W = {1, 2, . . . , n} set of n workers
M master processor
d1 probability of a worker being available and receiving

the task assignment message by the master
d2 probability of the master receiving the worker’s response (has the worker chosen to reply)
d d = d1 · d2, probability that the master receives a reply from a given worker
pρ probability of a worker to be of rational type
pµ probability of a worker to be of malicious type
pa probability of a worker to be of altruistic type
pA probability that the master audits (computes task and checks worker answers)
Psucc probability that the master obtains correct answer
ε known constant ε ∈ [0, 1], 1− ε desired bound on the probability of success

{C,H,N} action space of a worker
pC probability of a worker to cheat
pH probability of a worker to be honest
pN probability of a worker not replying
s strategy profile (a mapping from players to pure strategies)
si strategy used by player i in the strategy profile s
s−i strategy used by each player but i in the strategy profile s
σ mixed strategy profile (mapping from players to prob. distrib. over pure strat.)
σi probability distribution over pure strategies used by player i in σ
σ−i probability distribution over pure strategies used by each player but i in σ

Ui(si, σ−i) expected utility of player i with mixed strategy profile σ
supp(σi) set of strategies of player i with probability > 0 in σ
∆US1S2

difference on the expected utilities of a rational worker when choosing
strategy S1 over strategy S2

P
(n)
q (a, b)

∑b
i=a

(
n
i

)
qi(1− q)n−i

Table 3: Summary of Symbols

strategies NE where all players choose to be honest, i.e. pH = 1. (There is no NE where some

players choose a pure strategy and others do not because the game is symmetric for all rational

players. If a distribution over many types of rational players is defined, then we would have to

consider such a NE.)

The following notation will be used throughout.

P(n)
q (a, b) ,

b∑
i=a

(
n

i

)
qi(1− q)n−i

The notation used throughout this work is summarized in Table 3.



Chapter 4

Algorithmic Mechanisms

In this section we present the mechanisms we design and analyze them. In particular, we

show two different algorithms that the master runs in order to obtain the result of the task. Each

of these algorithms is essentially an instance of the game we defined in the previous section.

Before running one of the algorithms, the master must chose an appropriate value of pA; it does

so by running a protocol we also present in this section. This protocol, together with each of the

algorithms the master runs to obtain the tasks, comprises a mechanism.

4.1 Algorithms

As discussed in Section 3.2, we consider two different settings for modeling network unrelia-

bility, which yield two different algorithms.

Figure 1 presents the time-based algorithm. Based on how the probability of communication

failure depends on time, the master fixes a time T , it sends the specification of the task to be

computed to n workers, and waits for replies. Once time T is reached, the master gathers all

received replies, and chooses to audit the answers with probability pA. If the answers were not

33
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1 send(task, pA, certificate) to n workers
2 wait time T for replies
3 upon expire of time T do
4 audit the answers with probability pA
5 if the answers were not audited then
6 accept the majority
7 end if
8 apply the reward model

Figure 1: Master Algorithm for the Time-based Mechanism

audited, it accepts the result of the majority (ties are broken at random). Then, it applies the

corresponding reward model.

Figure 2 presents the reply-based algorithm. Here the master, by appropriately choosing n,

fixes k, an estimate of the minimum number of replies that wants to receive with high probability.

(We discuss in the next subsection how k is computed and what is the probability of not receiving at

least that many answers). The master sends the task specification to the nworkers and gets replies.

If at least k replies are received, then the master chooses to audit the answers with probability pA

and proceeds as the other protocol. In case that less than k replies are received, then the master

does nothing and it incurs penalty MCS .

1 send(task, pA, certificate) to n workers
2 if at least k replies are received then
3 audit the answers with probability pA
4 if the answers were not audited then
5 accept the majority
6 end if
7 apply the reward model
8 end if

Figure 2: Master Algorithm for the Reply-based Mechanism

Notice that both algorithms are one-shot, in the sense that they terminate after one round of

communication between the master and the workers. This enables fast termination and avoids

using complex cheater detection and worker reputation mechanisms. The benefit of one-round

protocols is also partially supported by the work of Kondo et al. [41] that have demonstrated
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experimentally that there are common tasks that may take much more than one day of CPU time

to complete.

Each of the above algorithms basically implements an instance of the game we presented in

Section 3.4. The master designs the game and the rational workers play looking for a Nash Equi-

librium (NE) in an effort to maximize their benefit. Therefore, based on the type distribution, the

master must choose the value of pA that would yield a unique NE that best serves its purposes.

The reason for uniqueness is to force all workers to the same strategy; this is similar to strong

implementation in Mechanism Design, cf., [7, 58]. (Multiple equilibria could be considered that

could perhaps favor the utility of the master. However, in this work, correctness is the priority

which, as shown later, our mechanisms guarantee.) As we show in the proof of Theorem 6, if

multiple NE were allowed, choosing deterministically to cheat would be also an equilibrium strat-

egy. Thus, for the purpose of a worst-case analysis with respect to the probability of correctness, it

would have to be assumed that rational players choose to cheat, yielding the presence of rationals

irrelevant. The reason to aim for a NE at all is that, although it is known that equilibria do not

always yield optimal solutions, it is a “safe” way for the rational players to obtain high utility

satisfaction [59, Chapter 1]. More importantly, a NE is stable, that is, once proposed, it is against

the interest of the players to individually deviate.

For computational reasons, along with the task specification and the chosen value of pA, and

the task to be computed, the master also sends a certificate to the workers. The certificate includes

the strategy that if the rational workers play will lead them to the unique NE, together with the

appropriate data (system parameters/payoff values and reward model) to demonstrate this fact.

More details for the use of the certificate are given in Section 4.4.

Recall that the main objective of the master is to achieve probability of accepting the correct

task result of at least 1 − ε. Once this is achieved, then it seeks to maximize its utility as well.
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1 if Pr[majority honest | all rationals honest] < 1− ε then /* Psucc is small, even if pH = 1 */
2 pC ← 1; pN ← 0; pA ← 1− ε

/∑n
i=k rici; /* cf. Lemma 2 */

3 elseif Pr[majority honest | all rationals cheat] ≥ 1− ε then /* Psucc is big, even if pC = 1 */
4 pC ← 1; pN ← 0; pA ← 0; /* cf. Lemma 3 */
5 elseif Pr[majority honest | all rationals honest] ≥ 1− ε and
6 /* pH = 1, even if pA = 0 */
7 ∆UHC(pH = 1, pA = 0) ≥ 0 and ∆UHN (pH = 1, pA = 0) ≥ 0 then
8 pC ← 0; pN ← 0; pA ← 0; /* cf. Lemma 3 */
9 else /* pC = 0 and pN = 0 enforced */

10 pC ← 0; pN ← 0; set pA as in Lemma 4; /* cf. Lemma 4 */
11 if UM (pA, pN , pC) < UM

(
pA = (1− ε)

/∑n
i=k ri, pN = 1, pC = 0

)
then

12 pN ← 1; pA ← (1− ε)
/∑n

i=k ri; /* cf. Lemma 1 */

Figure 3: Master protocol to choose pA. The expressions of k, ri, and ci are defined in Section 4.2

Based on the type distribution, it could be the case that the master may achieve this without relying

on actions of the rational workers (e.g., the vast majority of workers are altruistic). Such cases fall

into what we call the free rationals scenario. The cases in which the master needs to enforce the

behavior of rational workers (pH) fall into what we call the guided rationals scenario. In this

scenario, the master must choose pA so that the benefit of the rational workers is maximized when

pC = pN = 0; in other words, rational workers choose to be honest (pH = 1) and hence they

compute and truthfully return the correct task result. The protocol ran by the master for choosing

pA is presented in Figure 3. Together with each of the algorithms in Figures 1 and 2 comprise our

mechanisms. The analysis of the mechanisms and the lemmas referenced in Figure 3 are given in

the next subsection.

Note that both designed mechanisms are useful and can be used depending on the setting. For

example:

(a) As discussed in Section 3.2, the probability of the communication failure could depend on

time, or be fixed. The master could have knowledge (e.g., based on statistics) of only one of the

two settings. In such a case, it has no choice other than using the mechanism designed for that

setting.
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(b) It is not difficult to see that the time-based mechanism is more likely to use auditing than the

other one, on the other hand, the reply-based mechanism runs the risk of not receiving enough

replies. Hence, the time-based mechanism would be more preferable in case the cost of auditing is

low, and the reply-based mechanism in case the cost of auditing is high and the value of parameter

MCS is small.

Also observe that in the case of reliable communication (d = 1), all replies will be received

within a certain time frame. Thus the assumptions made by the two algorithms designed to provide

termination in the presence of an unreliable network, seize to exist. The master’s algorithms will

fall into an algorithm where upon receiving all replies the master will decide whether to audit or

not the received replies, in an abstract sense they become the same as the algorithm presented in the

work of Fernández et al. [27]. Since the master enforces rational workers to be honest (and hence

reply), altruistic and malicious always reply, and communication is reliable, the master can wait

until it receives messages from all workers and then proceed. Furthermore, as it can be observed

in the next section, the analysis of the two mechanisms in the case of reliable communication is

identical.

4.2 Equilibria Conditions and Analysis

We begin the analysis of our mechanisms by elucidating the following probabilities, expected

utilities, and equilibria conditions. For succinctness, the analysis of both mechanisms is presented

for a minimum number of replies k, where k = 1 for the time-based mechanism and k ≥ 1 for

the reply-based mechanism. For the latter, for a given worker type distribution, the choice of n

workers, and d, even if all rational workers choose not to reply, the master will receive at least

E = nd(pα + pµ) replies in expectation. Thus, using Chernoff bounds, it can be shown that the
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master will receive at least k = E −
√

2E ln(1/ζ) replies with probability at least 1 − ζ, for

0 < ζ < 1 and big enough n (e.g., ζ = 1/n).

4.2.1 Probabilities and expected utilities.

Given the description of the mechanisms and the system parameters, it is not difficult to com-

pute the following:

Pr(worker cheats|worker replies): q =
pµ+pρpC
1−pρpN

Pr(worker does not cheat|worker replies): q =
pα+pρpH
1−pρpN = 1− q

Pr(reply received from worker): r = d(1− pρpN )

Pr(reply not received from worker): r = 1− r

Then, r(q + q) + r = 1.

Pr(i out of n replies received): ri =

(
n

i

)
rirn−i

Pr(majority honest | i replies received):

hi =

bi/2c−1∑
j=0

(
i

j

)
qjqi−j + (1 + di/2e − bi/2c)1

2

(
i

bi/2c

)
qbi/2cqdi/2e.

Pr(majority cheats | i replies received):

ci =
i∑

j=di/2e+1

(
i

j

)
qjqi−j + (1 + di/2e − bi/2c)1

2

(
i

di/2e

)
qdi/2eqbi/2c.

Pr(master obtains correct answer):

Psucc =
n∑
i=k

ri (pA + (1− pA)hi) (2)

E(utility of master):

UM = −
k−1∑
i=0

ri ·MCS +
n∑
i=k

ri
(
pAαi + (1− pA)βi

)
(3)
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where,

αi = MBR −MCA − nd(pα + pρpH)MCY

βi = MBRhi −MPWci −MCYγi

and where, γi = 0 forR∅, γi = i forRa, and forRm is,

γi =

i∑
j=di/2e+1

(
i

j

)
j(qjqi−j + qjqi−j)

+ (1 + di/2e − bi/2c)1

2

(
i

di/2e

)
di/2e(qdi/2eqbi/2c + qdi/2eqbi/2c).

4.2.2 General Equilibria Conditions

Recall from Section 3.4 that Equation (1) states the conditions we want to study for each

player i. In particular, as discussed there, we want ∆UHC ≥ 0 and ∆UHN ≥ 0.

The components of the vectors denoted by w• in (1) correspond to the different payoffs re-

ceived by the given worker for each of the various events that may outcome from the game when

the worker has chosen strategy •, and the components of the vectors denoted by π• correspond to

the probabilities that those events occur. Their detail values are given in Tables 4, 5, and 6; Table 7

lists the used notation. These conditions are defined so that a pure NE where pH = 0 is precluded.

4.2.3 Analysis Based on the Worker-type Distribution

Appropriate strategies to carry out the computation with the desired probability of success

under the free rationals and guided rationals scenarios are considered in this section. It is important

to stress again that, in order to obtain a mechanism that is useful for any of those scenarios we do

not restrict ourselves to a particular instance of payoffs or reward models leaving those variables as

parameters. Thus, we focus our study here on how to choose pA to have the probability of success

bounded by 1 − ε for each of the reward models assuming that the payoffs have already been
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chosen by the master or are fixed exogenously. For settings where payoffs and reward models are

a choice of the master, its utility can be easily maximized choosing those parameters conveniently

in Equation 3, as demonstrated in Section 5.

Although known, the worker-type distribution is assumed to be arbitrary. Likewise, the partic-

ular value of ε is arbitrary given that it is an input of the problem. Finally, although the priority is

to obtain Psucc ≥ 1− ε, it is desirable to maximize the utility of the master under such restriction.

Therefore, as it can be seen in Figure 3, the protocol the master runs for choosing pA takes into

account both the free rationals and guided rationals scenarios as discussed in Section 4.1.

We now proceed to analyze the different cases, first considering the free rationals scenario and

then the guided rationals one.

Free Rationals:

Here we study the various cases where the behavior of rational workers does not need to be en-

forced. As mentioned before, the main goal is to carry out the computation obtaining the correct

output with probability at least 1 − ε. Provided that this goal is achieved, it is desirable to max-

imize the utility of the master. Hence if, for a given instance of the problem, the expected utility

of the master utilizing the mechanism presented is smaller than the utility of just setting pA big

enough to guarantee the desired probability of correctness, independently of the outcome of the

game, the latter is used. We establish this observation in the following lemma.

Lemma 1. In order to guarantee Psucc ≥ 1 − ε, it is enough to set pA = (1 − ε)
/∑n

i=k ri,

making pN = 1.

Proof. Conditioning Equation 2 to be ≥ 1 − ε, it is enough to make pA ≥
1− ε∑n
i=k ri

. Given that∑n
i=k ri is the probability that k or more replies are received, it is minimized when pN = 1.

Therefore, the claim follows.
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We consider now pessimistic worker-type distributions, i.e., distributions where pµ is so large

that, even if all rationals choose to be honest, the probability of obtaining the correct answer is

too small. Hence, the master has to audit with a probability big enough, perhaps bigger than

the minimum needed to ensure that all rationals are honest. Nevertheless, for such pA, rational

workers still might use some NE where pH < 1. Thus, the worst case for Psucc has to be assumed.

Formally,

Lemma 2. In order to guarantee Psucc ≥ 1−ε, it is enough to set pA = 1−ε
/∑n

i=k rici, making

pC = 1 and pN = 0.

Proof. Conditioning Equation 2 to be ≥ 1 − ε, pA ≥ 1 − ε
/ n∑
i=k

rici. Given that
∑n

i=k rici is

the probability that k or more replies are received and the majority of them cheat, it is maximized

when pC = 1 (hence, pN = 0). Therefore, the claim follows.

Now, we consider cases where no audit is needed to achieve the desired probability of cor-

rectness. I.e., we study conditions under the assumption that pA = 0. The first case occurs when

the type-distribution is such that, even if all rational workers cheat, the probability of having a

majority of correct answers is at least 1− ε. A second case happens when the particular instance

of the parameters of the game force a unique NE such that rationals are honest, even if they know

that the result will not be audited. We establish those cases in the following lemma.

Lemma 3. If any of the following holds:

•
∑n

i=k rihi ≥ 1− ε making pC = 1 and pN = 0; or

•
∑n

i=k rihi ≥ 1 − ε making pC = 0 and pN = 0 and there is a unique NE for pH = 1 and

pA = 0,

then, in order to guarantee Psucc ≥ 1− ε, it is enough to set pA = 0.
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Proof. Conditioning Equation 2 to be ≥ 1− ε under the assumption that pA = 0, it is enough

n∑
i=k

rihi ≥ 1− ε. (4)

To find the condition for the case where even if all rationals cheat the probability of success is big

enough, we replace pC = 1 and pN = 0 in Eq.(4). For the condition when the NE corresponds

to some pC < 1, we observe the following. Replacing in ∆UHC and ∆UHN for each reward

model the value pA = 0, it can be shown that ∆UHC(pC , pA = 0) is non-increasing in the interval

pC ∈ [0, 1] for all three reward models, and ∆UHN (pN , pA = 0) is non-increasing in the interval

pN ∈ [0, 1] for all three reward models as well. Thus, if ∆UHC(pC = 1, pA = 0) ≥ 0 and

∆UHN=1(pN = 1, pA = 0) ≥ 0, the rate of growth of ∆UHC and ∆UHN implies a single pure

NE at pH = 1. Then, replacing pC = 0 and pN = 0 in Eq.(4) the claim follows.

Guided Rationals:

We now study worker-type distributions such that the master can take advantage of a specific NE

to achieve the desired bound on the probability of success. Given that the scenario where all

players cheat was considered in the free rationals scenario, here it is enough to study ∆UHC and

∆UHN for each reward model, conditioning ∆UHC(pC = 1) ≥ 0 and ∆UHN (pN = 1) ≥ 0

to obtain appropriate values for pA. As proved in the following lemma, the specific value pA

assigned depends on the reward model, and it is set so that a unique pure NE is forced at pH = 1

(rendering the rationals truthful), and the correctness probability is achieved.

Lemma 4. If
∑n

i=k rihi < 1 − ε making pC = 1 and pN = 0, and
∑n

i=k rihi ≥ 1 − ε making

pC = 0 and pN = 0 then, in order to guarantee Psucc ≥ 1− ε, it is enough to set pA as follows.

ForR∅,

pA =
WCT

d2WBY
∑n−1

i=k−1 r
′
i

(5)
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ForRa,

pA =
WCT

d2(WBY + WPC)
∑n−1

i=k−1 r
′
i

(6)

d2WBY

n−1∑
i=k−1

r′i ≥WCT (7)

ForRm,

pA =
WCT /d2 −WBY

∑n−1
i=k−1 r

′
i(h
′
i − c′i)

(WBY + WPC)
∑n−1

i=k−1 r
′
i −WBY

∑n−1
i=k−1 r

′
i(h
′
i − c′i)

(8)

pA =
WCT /d2 −WBY

∑n−1
i=k−1 r

′
ih
′
i

WBY
∑n−1

i=k−1 r
′
i −WBY

∑n−1
i=k−1 r

′
ih
′
i

(9)

Where

r′i =
(
n−1
i

)
rirn−1−i,

h′i =
∑bi/2c

j=0

(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
di/2e

)
qdi/2eqbi/2c,

c′i =
∑i

j=di/2e
(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
bi/2c

)
qbi/2cqdi/2e,

for pC = 1 in conditions (6) and (8), and for pN = 1 in conditions (5), (7) and (9).

Proof. We compute the general conditions for each reward model from Equations (1). (Refer to

Tables 4, 5, and 6 for details.) Recall that, for succinctness, the analysis of both mechanisms

is presented for a number of replies k, where k = 1 for the time-based mechanism and k =

nd(pα + pµ)
(

1−
√

2 ln(1/ζ)
nd(pα+pµ)

)
for the reply-based mechanism.

Conditions for reward modelR∅:

∆UHC = dpA(WBY + WPC)
n−1∑
i=k−1

r′i −WCT d1 ≥ 0

∆UHN = dpAWBY

n−1∑
i=k−1

r′i −WCT d1 ≥ 0

Thus, it is enough to use the latter condition only.
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Conditions for the reward modelRa:

∆UHC = dpA(WBY + WPC)
n−1∑
i=k−1

r′i −WCT d1 ≥ 0

∆UHN = dWBY

n−1∑
i=k−1

r′i −WCT d1 ≥ 0

Conditions for the reward modelRm:

∆UHC = dpA(WBY + WPC)
n−1∑
i=k−1

r′i − d1WCT + d(1− pA)WBY

n−1∑
i=k−1

r′i(h
′
i − c′i) ≥ 0

(10)

∆UHN = dpAWBY

n−1∑
i=k−1

r′i − d1WCT + d(1− pA)WBY

n−1∑
i=k−1

r′ih
′
i ≥ 0 (11)

Notice that
∑n−1

i=k−1 r
′
ih
′
i is the probability that at least k − 1 other workers reply, and the

majority of them is honest and
∑n−1

i=k−1 r
′
ic
′
i is the probability that at least k−1 other workers reply,

and the majority of them cheat. It can be seen that, when pN is fixed, the equilibria condition 10

for this model is non-increasing on pC ∈ [0, 1−pN ] as follows. Only
∑n−1

i=k−1 r
′
i(h
′
i− c′i) depends

on pC in this condition. When pC increases and pN is fixed, the probability that the majority of

repliers is honest decreases. On the other hand, the probability that the majority cheats increases

with pC , but given that it is negated the slope is negative. Likewise, it can be seen that, when

pC is fixed, the equilibria condition 11 for this model is non-increasing on pN ∈ [0, 1 − pC ] as

follows. Only
∑n−1

i=k−1 r
′
ih
′
i depends on pN in this condition. When pN increases and pC is fixed,

the probability that the majority of repliers is honest decreases. Therefore, replacing in the above

conditions for ∆UHC(pC = 1) ≥ 0 and ∆UHN (pN = 1) ≥ 0 the claim follows.

4.3 Correctness and Optimality

The following theorem proves the correctness of the mechanisms presented in Section 4.1. Its

proof is the simple aggregation of the results presented in Section 4.2.
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Theorem 5. For any given system parameters, the values of pA chosen after running the protocol

depicted in Figure 3 satisfy that Psucc ≥ 1− ε.

We now argue that only two approaches are feasible to bound the probability of accepting an

incorrect value. In this respect, the strategy enforced by the mechanisms we designed is optimal.

Theorem 6. In order to achieve Psucc ≥ 1− ε, the only feasible approaches are either to enforce

a NE where pH = 1 or to use a pA as shown in Lemma 2.

Proof. It can be seen as in Lemma 4 that ∆UHC is non-increasing for pC ∈ [0, 1−pN ] and ∆UHN

is non-increasing for pN ∈ [0, 1− pC ]. Then, the only NE that can be made unique corresponds to

pH = 1. Consider any other NE where pH < 1 (which is not unique). Then pC = 1 and pN = 1

are also both NE. In face of more than one equilibrium to choose from, different players might

choose different ones. Thus, for the purpose of a worst case analysis with respect to the probability

of correctness, it has to be assumed the worst case, i.e. pA has to be set as in Lemma 2.

4.4 Computational Issues

In Sections 4.1 and 4.2.3 we discussed a protocol for the master to choose appropriate values of

pA for different scenarios. A natural question is what is the computational cost of this protocol. In

addition to simple arithmetical calculations, there are two kinds of relevant computations required:

binomial probabilities and verification of conditions for Nash equilibria. Both computations are

n-th degree polynomial evaluations and can be carried out using any of the well-known numerical

tools [39] with polynomial asymptotic cost. These numerical methods yield only approximations,

but all these calculations are performed either to decide in which case the parameters fit in, or to

assign a value to pA, or to compare utilities. Given that these evaluations and assignments were
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obtained in the design as inequalities or restricted only to lower bounds, it is enough to choose the

appropriate side of the approximation in each case.

Regarding the computational resources that rational workers require to carry out these calcula-

tions, notice that the choice of pA in the mechanisms either yields a unique NE in pH = 1 or does

not take advantage of the behavior of rational workers (Theorem 6). Furthermore, pC = 1 was

assumed as a worst case (wrt probability of success). Notice from Tables 4–7 and the equilibrium

conditions (eq. (1)) that setting WPC = WBY = 0 for the cases where we do not use the behavior

of the rational workers, pC = 1 is a dominant strategy. (Recall that WBY and WPC can be chosen

by the master.) Thus, the mechanisms are enriched so that rational workers are enforced to use

always a unique NE, either pC = 0 or pC = 1. In order to make the computation feasible to the

workers, the master sends together with the task a certificate proving such equilibrium. The cer-

tificate includes the strategy that the workers must play to achieve the unique NE together with the

appropriate data to demonstrate this fact. These data include the system parameters/payoff values,

the reward model and the values of pA, which is enough to verify uniqueness (recall the analysis

in Section 4.2.3).
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Rm Ra R∅

wARC −WPC −WPC −WPC

wC wCRC WBY WBY 0

wHRC 0 WBY 0

wXRC 0 0 0

wARH WBY −WCT WBY −WCT WBY −WCT

wH −WPC −WCT −WCT WBY −WCT −WCT

wHRH WBY −WCT WBY −WCT −WCT

wXRH −WCT −WCT −WCT

wN wXXN 0 0 0

Table 4: Payoff vectors. Refer to Table 7 for notation.
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Table 5: Probability vectors for the time-based mechanism. Refer to Table 7 for notation.
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Table 6: Probability vectors for the reply-based mechanism. Refer to Table 7 for notation.

w••• payoff of event • ∧ • ∧ •
π••◦ probability of event • ∧ •, conditioned on the event ◦
`••j the worker has choosen strategy j ∈ {C,H,N}
`A•• the master audits
`C•• the master does not audit and the majority cheats
`H•• the master does not audit and the majority does not cheat
`•R• the communication is successful and the master receives enough replies
`•R• the communication fails or the master does not receive enough replies
X true (equivalent to “any value”)

Table 7: Notation for Tables 4, 5, and 6; ` ∈ {w, π}.



Chapter 5

Putting the Mechanisms into Action

In this section two realistic scenarios in which the master-worker model considered could be

naturally applicable are proposed. For these scenarios, we determine how to choose pA and n in

the case where the behavior of rational workers is enforced, i.e., under the conditions of Lemma 4.

Again, for succinctness, the analysis of both mechanisms is presented for a number of replies k.

5.1 SETI-like Scenario

The first scenario considered is a volunteering computing system such as SETI@home, where

users accept to donate part of their processors idle time to collaborate in the computation of large

tasks. In this case, we assume that workers incur in no cost to perform the task, but they obtain

a benefit by being recognized as having performed it (possibly in the form of prestige, e.g., by

being included on SETI’s top contributors list). Hence, we assume that WBY > WCT = 0. The

master incurs in a (possibly small) cost MCY when rewarding a worker (e.g., by advertising its

participation in the project). As assumed in the general model, in this model the master may audit

the values returned by the workers, at a cost MCA > 0. We also assume that the master obtains a

benefit MBR > MCY if it accepts the correct result of the task, and suffers a cost MPW > MCA
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if it accepts an incorrect value. Also it is assumed, as stressed before, that d > 0 (there is always

a chance that the master will receive a reply from the worker).

Plugging WCT = 0 in the lower bounds of Lemma 4 it can be seen that, for this scenario and

conditions, in order to achieve the desired Psucc, it is enough to set pA arbitrarily close to 0 for all

three models. So, we want to choose δ ≤ pA ≤ 1, with δ → 0, so that the utility of the master is

maximized. Using calculus, it can be seen that UM is monotonic in such range, but the growth of

such function depends on the specific instance of the master-payoff parameters. Thus, it is enough

to choose one of the extreme values of pA. Replacing in Equation 3, we get

UM ≈ −
k−1∑
i=0

riMCS +

n∑
i=k

ri max{αi, βi} (12)

where pN = 0 and αi, βi as in Equation (3). The approximation given in Equation (12)

provides a mechanism to choose pA and n so that UM is maximized for Psucc ≥ 1 − ε for any

given worker-type distribution, reward model, and set of payoff parameters in the SETI scenario.

5.2 Contractor Scenario

The second scenario considered is a company that buys computational power from Internet

users and sells it to computation-hungry costumers, such as Amazon’s Mechanical Turk [5]. In

this case the company pays the users an amount S = WBY = MCY for using their computing

capabilities, and charges the consumers another amount MBR > MCY for the provided service.

Since the users are not volunteers in this scenario, we assume that computing a task is not free for

them (i.e., WCT > 0), and that rational workers must have incentives to participate (i.e., U > 0).

As in the previous case, we assume that the master verifies and has a cost for accepting a wrong

value, such that MPW > MCA > 0. Also as before we assume that d > 0 and pN = 0.
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As mentioned before, using calculus it can be seen that UM is monotonic on pA but the growth

depends on the specific instance of master-payoff parameters. Thus, the maximum expected utility

can be obtained for one of the extreme values. Trivially, 1 is an upper bound for pA. For the lower

bound, pA must be appropriately bounded so that the utility of rational workers is positive and

Psucc ≥ 1− ε. For example, for theR∅ model, using Lemma 4 and conditioning U > 0, we get,

UM = −
k−1∑
i=0

riMCS +

n∑
i=k

ri max

{
αi, βi + (αi − βi)

WCT

d2WBY
∑n−1

i=k−1 r
′
i

}
(13)

As in the previous section, the approximation given in Equation (13), and similar equations for

the other reward models which are omitted for clarity, provide a mechanism to choose pA and n

so that UM is maximized for Psucc ≥ 1− ε for any given worker-type distribution, reward model,

and set of payoff parameters in the contractor scenario.

5.3 Graphical Characterization of Master’s Utility

In this section, in order to provide a better insight of the usability of our mechanisms, and to il-

lustrate interesting trade-offs between reliability and cost, we provide a graphical characterization

of the master’s utility. Specifically we present and analyze various scenarios for the time-based

and reply-based mechanisms, including the special case of reliable network (complementing the

work of Fernández et al. [27]), both in the SETI-like and the Contractor settings.

5.3.1 SETI-like Scenario

We begin by considering the timed-based mechanism, then the reply-based one, and then the

special case of reliable communication where the two mechanisms receive all replies (cf., Sec-

tion 4.1). Recall that the only knowledge available about the workers type is a probability distri-

bution. Such knowledge could be obtained statistically from existing master-worker applications
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such as [20, 23]. To err on the safe side, we overestimate pµ and underestimate pα with respect to

those statistics.

Timed-based Mechanism:

For this mechanism, we consider MCA = 1 as our normalizing parameter and we take MPW =

100, MCS = 10 and MBR = 4 as realistically large enough values (with respect to MCA = 1).

Using other values for these parameters will not change qualitatively the results. We choose

pµ ∈ [0, 0.5] as we believe this is a reasonable interval. As it can be seen from the empirical

evaluations of SETI-like systems reported in [20] and [23], pµ is less than 0.1. So we took a

larger range on pµ to examine its general impact on the utility of the master. We choose [0, 0.1]

as the range of MCY , to reflect the small cost incurred by the master for maintaining a workers

contribution list.

We consider three plot scenarios were we vary pµ and MCY as discussed above:

(a) We fix d = 0.9 and n = 75 and compute the master’s utility for all three reward models. The

results are depicted in Figure 4.

(b) We fix n = 75, we consider the Rm model and compute the master’s utility over d =

0.5, 0.9, 0.99. See Figure 5.

(c) We fix d = 0.9, we consider the Rm model and we compute the master’s utility over n =

15, 55, 75. The results are depicted in Figure 6.

In all plots we can notice a threshold where the behavior of the utility changes. The threshold

depicts the transition point in which the master changes its strategy from non-auditing to auditing.

In Figure 4 we can notice that for all the reward models, the master does not audit until pµ

gets around 0.35. This behavior is reasonable, since in the presence of more malicious workers

the master must audit to ensure correctness. Once auditing, the utility of the master becomes
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the same in all three reward model, since now the same reward/penalize scheme is deployed. As

expected, when the master does not audit, it gets its higher utility from R∅ and its lower utility

from Ra. The utility of the master for the Rm seems to balance nicely between the other two

reward models. This perhaps suggests that the Rm reward model is the most stable among the

three. A final observation is that as MCY gets bigger, for Rm and Ra models, the utility of the

master gets smaller; this is natural, since by increasing the payment to the workers the master is

decreasing is own benefit.

Figure 4: Time-based Mechanism in the SETI-like scenario: Master’s utility for the three plot
scenarios: The upper plane corresponds toR∅, the middle toRm, and the third toRa.

In Figure 5 we can notice that for smaller values of d we get a higher utility for the master.

This is due to fact that the master receives fewer replies, and hence it rewards a smaller number of

workers. As with the previous plot scenario, for any d, as MCY is increasing, UM is dropping. An

important observation is that for d = {0.9, 0.99} and for large values of MCY , the utility of the
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master is higher as it audits. This is because the cost of rewarding the workers increases so much,

that it is better for the master to audit.

Figure 5: Time-based Mechanism in the SETI-like scenario: Master’s utility for the three plot
scenarios: The upper plane corresponds to d = 0.5, the middle to d = 0.9, and the third to
d = 0.99.

In Figure 6 we notice that the utility of the master decreases as the number of workers in-

creases; this is again due to the reward it must provide to the workers. Observer that for n = 15,

the master chooses to change it’s strategy to auditing for a smaller value of pµ; this is due to the

fact that as the master gets fewer replies, the probability of having a majority of incorrect replies

gets bigger for smaller values of pµ.

Reply-based Mechanism:

We now provide a graphical characterization of the master’s utility for the reply-based mechanism.

Our aim is to observe how the minimum number of replies k will be affected by the number of
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Figure 6: Time-based Mechanism in the SETI-like scenario: Master’s utility for the three plot
scenarios: The upper plane corresponds to n = 15, the middle to n = 55, and the third to n = 75.

workers selected by the master n, and by the probability distribution of rational workers pρ. Fur-

thermore, we depict how k is affecting the utility of the master. As with the previous mechanism,

we set MCA = 1, MPW = 100, MCS = 10 and MBR = 4.

We consider two plot scenarios:

(a) We vary n from 65 to 95, pρ for 0 to 1, and we compute the appropriate k that the master

should choose for each n. The results are depicted in Figure 7(a).

(b) We use theRm, we fix pρ = 0.6, d = 0.9, MCY = 0.05, we vary k and we compute the utility

of the master. See Figure 7(b).

In Figure 7(a) we observe that as n increases, naturally, k increases as well. An interesting

observation is that as pρ increases, k decreases. This is explained as follows: k is computed based

on the number of malicious and altruistic workers that exist (since they always reply). Therefore,

as these become fewer, k is naturally reduced.
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(a)

(b)

Figure 7: Plots of the SETI-like Scenario for the Reply-based Mechanism

In Figure 7(b) we observe how the utility of the master is affected by k; as k increases, the

utility of the master decreases. This follows from the fact that as the master gets more replies, it

has to reward more workers.

Reliable Network:

We also provide the graphical characterization for the master’s utility for the case that a reliable

network exists (d = 1). From this simple case we can better study the trade-offs between reliability

and cost without the complications of an unreliable network and workers not replying. By setting
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d = 1 we have the analysis for the SETI-like scenario for a reliable network; for both time-based

and reply-based mechanisms the master receives all replies from the workers. Hence the two

mechanisms are essentially becoming the same mechanism. As before we set MCA = 1 and

MPW = 100. Notice that in the reliable network case MCS is not applicable and the probability

of having this value is zero. We plot for values pµ ∈ [0, 0.5] and MCY ∈ [0, 0.1]. Recall that by

plotting on the parameters the best strategy of the master is pA = 0 or pA = 1.

We consider three scenarios, applying the R∅ model and varying pµ and MCY as discussed

above. In particular:

(a) We fix n=5 and compute the utility of the master for MBR = {1, 4}; the results are depicted

in Figure 8(a).

(b) We fix n=15 and compute the utility of the master for MBR = {1, 4}; the results are shown in

Figure 8(b).

(c) We fix n=75 for both values of MBR mentioned earlier; in Figure 8(c) are depicted the corre-

sponding results.

All plots include a reference surface plane UM = 0. Here we have only presented the R∅

model because it is the simplest one. However, for the other reward models the plots depict more

or less the same behavior, with the difference that before the threshold point (where the master

does not audit) the utility of the master also depends on MCY (e.g. Figure 6).

A natural and expected observation in Figure 8, is the fact that the higher the value of MBR the

higher the utility of the master without this affecting the shape of the plot. In all plots we can notice

a threshold where the behavior of the utility changes. The threshold depicts the transition point in

which the master changes its strategy from non-auditing to auditing. For all three plots in Figure 8,

we generally observe a smaller utility when the master audits than when it does not. Recall that

we apply the R∅ model when the master follows a non-auditing strategy; thus the master rewards
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the honest workers only when it audits and this decreases its own utility proportionally to the value

of payment to the workers (MCY ). Another interesting observation about the plots in Figure 8 is

the sharp declining curve before the threshold (the master follows a non-auditing strategy). This

curve is due to the fact that as pµ increases the probability of the master getting an incorrect reply

increases, and thus the utility of the master decreases accepting an incorrect reply. Notice that this

declining curve is much sharper in Figure 8(c), since the larger the number of workers the more

acute the impact of a high pµ.

A significant difference between the number of chosen workers, is the threshold value of pµ

where the master changes its strategy to auditing. The larger the number of workers, the bigger

the transition value (pµ value) that the master starts to audit. This is due to the large reward it must

provide when it audits, combined with the fact that having more workers increases the probability

of getting the correct reply. We also notice that UM increases slightly after the threshold, as pµ

increases. Although this behavior is not expected, we believe it is due to the fact that the master

has resolved to auditing in order to guarantee getting the correct value, and thus the fewer honest

workers it has to reward, the greater its benefit.

5.3.2 Contractor Scenario

We now consider the contractor scenario (e.g., Amazon’s Mechanical Turk). Recall that in

this setting WCT > 0, and the workers are willing to participate only if their utility if positive

(they are not volunteers as in the SETI-like setting). For this scenario we focus on the special

case of reliable communication to illustrate how the cost for computing the task (WCT ) affects

the trade-offs between reliability and cost (which we could not study in the SETI-like setting).

Figure 9 illustrates the utility of the master for the R∅ model and for a fix value of S = 0.8;

we vary pµ ∈ [0, 0.5] and WCT ∈ [0, S]. In Figure 9(a) we fix n=7, in Figure 9(b) we fix n=15
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and in Figure 9(c) we fix n=75. For each of these plots we have two planes, one for each value

of MBR = {1, 4} and a reference surface plane UM = 0 (similarly to the plots for the reliable

communication case in the SETI-like setting).

Observe that a threshold point exists where the master changes its strategy from auditing with

some probability (that guaranties the utility of the rational workers is positive) to auditing. We

generally observe that (not surprisingly) for values of pµ and WCT close to zero we get the

highest utility.

In all plot in Figure 9 when the master audits with some probability (before the threshold

point) observe that as WCT increases, the utility of the master decreases for every pµ. This is a

classical example of the trade-off between reliability and cost. The larger WCT is, the higher the

probability of pA should be to guarantee correctness, thus the utility of the master decreases.

Another observation (especially in Figure 9(c)), is that before the threshold value, as pµ in-

creases, the utility of the master increases, and then decreases for every value of WCT (except

when close to WCT = 0 and WCT = S)! When pµ is increasing, the number of truthful workers

decreases thus the master has to reward less honest workers and so its utility increases; recall that

the master audits the answers with some probability. On the other hand, when the value of pµ

increases even more, the probability of having a majority of incorrect answers is very large. So it

is quite probable since the master audits with some probability to get an incorrect result; thus its

utility decreases.

Naturally when the master audits, for every value of WCT , as pµ increases so does the utility

of the master. The higher the pµ, fewer the honest workers, and thus the smaller the total payment

of the master to the workers. Notice again that having larger MBR does not affect the shape of the

plots; the utility of the master increases uniformly. For similar reasons as in the reliable network

SETI-like setting, the threshold value (pµ value) increases for larger number of workers. Finally,
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observe the big decrease in the master’s utility as the number of workers grows. This is due to the

large payments that the master has to give to large groups of workers to guarantee reliability.
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(a)

(b)

(c)

Figure 8: Plots of the SETI-like scenario for d = 1. The upper plane corresponds to MBR = 4
the lower plane to MBR = 1 and the red flat plane to UM = 0. (a) n = 5. (b) n = 15. (c) n = 75.
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(a)

(b)

(c)

Figure 9: Contractor Scenario plots for fixed S and d = 1. The upper plane corresponds to
MBR = 4 the lower plane to MBR = 1 and the red flat plane to UM = 0. (a) n = 7. (b) n = 15.
(c) n = 75.



Chapter 6

Discussion and Future Work

In this work we have expanded the classical distributed computing approach (voting) with the

game-theoretic one (cost-based incentives and payoffs) that is used in [27], by considering the

unreliability of the network and workers abstaining the computation. This has led to designing

and analyzing two mechanisms that enable a master process to reliably obtain a task result despite

the co-existence of malicious, altruistic and rational (able to abstain) workers, and the underlying

network’s unreliability. In the case of a reliable communication the two mechanisms basically are

becoming one and in fact we are led back to the mechanism proposed in [27]. Hence our the two

mechanisms are purely more general.

Several future directions emanate from this work. For example, in this work we have con-

sidered a cost-free, weak version of worker collusion (all rational cheaters and malicious workers

return the same incorrect task result). It would be interesting to study more involved collusions,

as the ones studied in [2] or [16].

In this work, we have considered a single-task one-shot protocol, in which the master decides

which task result to accept in one round of message exchange with the workers. It would be

interesting to consider several task waves over multiple rounds, that is, view the computation as an
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Evolutionary Game [38,69]. The master could use the knowledge gained in the previous rounds to

increase its utility and its probability of success in future rounds. The workers could benefit from

the constant interaction with the master and reinforce their strategy with the goal of increasing

their utility. This is an evolutionary process of learning that could be modeled with reinforcement

learning [12, 65]. Reinforcement learning could help us model how system entities interact with

their environment to decide upon a strategy, and use their experience to select or avoid actions

according to the observed consequences. Also with reinforcement learning the only information

that players need is the payoffs they receive. Issues such as worker aspiration level [11], the

benefit that the worker wishes to receive from the computation, could be taken into account.

Considering a repeated interaction with the same workers over the course of multiple task

assignments, could betray information about the workers behavior. Over the course of time the

master could gather information about the workers using a reputation mechanism. Using reputa-

tion as an additional mechanism to enforce the good behavior of workers we could consider several

implementation approaches. Choosing a number of workers from a pool according to their reputa-

tion, considering workers are aware that a reputation mechanism is used against them (something

that would change the equilibrium dynamics), etc.
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