
1

A NATURAL LANGUAGE-BASED METHODOLOGY TO FORMALIZE

AND AUTOMATE THE REQUIREMENTS ENGINEERING PROCESS

Georgiades Marinos Georgiou

University of Cyprus, 2011

Existing Requirements Engineering (RE) approaches often result in poorly defined

requirements due to the lack of appropriate methods for discovering and documenting

user needs. This dissertation describes Natural Language Syntax and Semantics

Requirements Engineering (NLSSRE), a compact and clear-cut methodology that intends

to formalize and automate a large part of the Requirements Engineering (RE) process,

including discovery, analysis, and specification of user requirements for the development

of information systems. The formalization is mainly achieved by utilizing elements of

natural language syntax and semantics, with the focus on keeping ambiguities low and

expressiveness high, while the automation is realized with the use of a dedicated CASE

tool to support NLSSRE. In particular, RE is converted to a series of predefined steps,

through which the analyst is guided in advance what specific types of data, functions,

business rules and conditions to use and search for, how to form and document them

using formalized sentential patterns, and what specific questions to ask the users in order

to correctly elicit their needs. Finally specific rules are utilized to build diagrammatic

notations and semi-formal specifications. Particular focus and elaboration is given on

how NLSSRE is adapted for formalizing and automating use case model development.

2

Preliminary empirical evaluation demonstrated the effectiveness and efficiency of the

proposed methodology.

Georgiades Marinos Georgiou - University of Cyprus, 2011

3

A NATURAL LANGUAGE-BASED METHODOLOGY TO FORMALIZE

AND AUTOMATE THE REQUIREMENTS ENGINEERING PROCESS

Georgiades Marinos Georgiou

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

August, 2011

4

® Copyright by

Georgiades Marinos Georgiou

All Rights Reserved

2011

5

APPROVAL PAGE

Doctor of Philosophy Dissertation

A NATURAL LANGUAGE-BASED METHODOLOGY TO FORMALIZE

AND AUTOMATE THE REQUIREMENTS ENGINEERING PROCESS

Presented by

Georgiades Marinos Georgiou

Research Supervisor ……………………………………………………………………

Committee Member ……………………………………………………………………

Committee Member ……………………………………………………………………

Committee Member ……………………………………………………………………

Committee Member ……………………………………………………………………

Committee Member ……………………………………………………………………

University of Cyprus

August, 2011

Research Supervisor’s Name

Committee Member’s Name

Committee Member’s Name

Committee Member’s Name

Committee Member’s Name

Andreas S. Andreou, supervisor 9/2001-8/2010, co-supervisor 9/2010-8/2011

Constantinos S. Pattichis, co-supervisor 9/2010-8/2011

Christos N. Schizas

Vasos Vassiliou

Nuria Castell

Committee Member’s Name

Nikos Karacapilidis

6

ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr Andreas Andreou for being advisor and

friend. Without his guidance and support, this dissertation would not have been

accomplished. No matter how busy he was, Andreas always found time to answer my

questions, and review my papers and dissertation. I am grateful to him for providing time,

ideas, funding, as well as encouragement and psychological support to make my Ph.D.

experience productive and invigorating.

I‘d also like to give special thanks to Dr Constantinos Pattichis for his courteous and

caring attitude, from the initial stages of my Ph.D. His academic support, funding and

personal boost are greatly appreciated.

Thirdly, I am very grateful to the remaining members of my dissertation committee,

Dr Christos Schizas, Dr Vasos Vassiliou, Dr Nikos Karacapilidis and Dr Nuria Castell. I

appreciate their time, interest, helpful comments and insightful questions.

My gratitude is also extended to Damon Ericsson who proof-read this dissertation and

provided stylistic and substantive corrections, and suggestions for improvement.

I thank Christiana Hadjikyriakou and Irene Kyriacou for their significant contributions

to the empirical evaluation of the proposed methodology. I am also thankful to Tasos

Klitou, Nicoletta Nicolaidou and Sofia Hadjidemetriou for their contribution to the

development of the CASE tool supporting the proposed methodology.

I want to express my gratitude to Savvoula Efstathiou who helped me with every

procedural study matter, such as completing required paperwork and deliver it to the right

place.

7

Lastly, but not least, I would like to thank my beloved parents for their love and

encouragement. For always being there when I needed them and supported me with

patience and faith.

8

1 INTRODUCTION ... 16

2 BACKGROUND AND RELATED WORK .. 24

2.1 DEFINITIONS .. 24

2.2 APPLICATION DOMAIN ... 26

2.3 REQUIREMENTS ... 28

2.4 REQUIREMENTS ENGINEERING PROCESS MODELS ... 31

2.5 THE KEYSTONE OF NLSSRE .. 36

2.6 REQUIREMENTS ELICITATION .. 38

2.7 REQUIREMENTS ANALYSIS .. 46

2.8 REQUIREMENTS SPECIFICATION ... 49

2.9 USE CASE DRIVEN ANALYSIS .. 53

2.10 REQUIREMENTS ENGINEERING CASE TOOLS -NALASS ... 56

2.11 SUMMARY AND PROPOSED METHODOLOGY .. 59

3 THE NLSSRE METHODOLOGY ... 60

3.1 ARCHITECTURE .. 60

3.2 INFORMATION OBJECT ... 62

3.3 METHODOLOGY STEPS ... 64

3.3.1 Collect the candidate Information Objects .. 66

3.3.2 Identify the Information Objects of the new IS .. 70

3.3.3 Develop FSRs for each Information Object ... 72

3.3.4 Define the attributes of each Information Object .. 96

3.3.5 Define business rules ... 101

3.3.6 Create SRS document and semiformal models (DFDs class & use-case diagrams) 106

3.4 REQUIREMENTS CHANGE ... 115

3.5 CHAPTER SUMMARY .. 119

4 ADAPTATION FOR FORMALIZING USE CASE DEVELOPMENT 120

9

4.1 STEP 1: IDENTIFY UC MODULES ... 121

4.2 STEP 2. DEFINE USE CASES OF EACH UC MODULE .. 122

4.3 STEP 3 IDENTIFY THE ACTORS OF EACH UC, ASSOCIATIONS AND COMPLEMENTARY USE CASES 129

4.4 STEP 4. STRUCTURE UC ELEMENTS AS FORMALIZED SENTENCES... 133

4.5 STEP 5. DEFINE UC SUBSYSTEMS ... 135

4.6 STEP 6. RELATE BUSINESS RULES WITH USE CASES AND ACTORS ... 138

4.7 STEP 7. FOR EACH USE CASE, WRITE THE USE CASE SPECIFICATION .. 141

4.8 CHAPTER SUMMARY .. 149

5 THE NALASS TOOL .. 150

6 EVALUATION OF NLSSRE ... 158

6.1 EXPERIMENT DESCRIPTION .. 158

6.2 EVALUATION CRITERIA AND ANALYSIS OF RESULTS .. 160

6.2.1 Quality of Specification ... 160

6.2.2 Effort .. 170

6.3 THREATS TO EXTERNAL VALIDITY ... 173

6.4 OTHER LIMITATIONS AND IMPLICATIONS ... 175

7 DISCUSSION ... 179

7.1 FORMALIZATION IN NLSSRE COMPARING TO OTHER RELATED APPROACHES, IN GENERAL........... 180

7.2 IN NLSSRE, ANALYSIS AND SPECIFICATION GUIDE DISCOVERY, SPECIFICALLY 181

7.3 GOAL-ORIENTED APPROACHES, USE CASE DRIVEN ANALYSIS AND NLSSRE 182

8 CONCLUSIONS .. 189

9 FUTURE WORK ... 193

REFERENCES .. 200

APPENDIX A REQUIREMENTS DISCOVERY QUESTIONNAIRE .. 213

APPENDIX B EXPERIMENTAL EVALUATION RESULTS ... 217

10

LIST OF FIGURES

FIGURE 2.1 FOUR LEVEL PYRAMID MODEL BASED ON THE DIFFERENT LEVELS OF HIERARCHY IN THE ORGANIZATION (SOURCE:

WIKIPEDIA, 2010) .. 27

FIGURE 2.2 KOTONYA AND SOMMERVILLE (1998) LINEAR REQUIREMENTS ENGINEERING PROCESS MODEL 32

FIGURE 2.3 MACAULAY (1996) LINEAR REQUIREMENTS ENGINEERING PROCESS MODEL .. 33

FIGURE 2.4 LOUCOPOULOS AND KARAKOSTAS (1995) ITERATIVE REQUIREMENTS ENGINEERING PROCESS MODEL 34

FIGURE 2.5 THE SPIRAL MODEL OF THE RE PROCESS ... 35

FIGURE 2.6 GENERAL OVERVIEW OF THE METHODOLOGY’S ARCHITECTURE. ... 38

FIGURE 2.7 HOW TO DEFINE FUNCTIONAL REQUIREMENTS IN THE IEEE SRS TEMPLATE (SOURCE: IEEE, 1998). 51

FIGURE 2.8 STRUCTURED ENGLISH (SOURCE: SOMMERVILLE, 2010). .. 52

FIGURE 3.1 ARCHITECTURE OF THE NLSSRE METHODOLOGY, IN TERMS OF STRUCTURE AND FORMALIZATION. 61

FIGURE 3.2 CAREN - A RECOMMENDED SET OF FUNCTIONS AND SUB-FUNCTIONS APPLIED ON AN IO, AND THE NOTIFICATIONS

PRODUCED. .. 73

FIGURE 3.3 A NUMBER OF PREDEFINED QUESTIONS (B) CREATED AUTOMATICALLY BY THE FSR PATTERNS (A), AND THE

RESULTING FSRS (D) CREATED AUTOMATICALLY BY THE ANSWERS TO THE QUESTIONS (C), FOR THE PRESCRIPTION IO.

SCREENSHOTS ARE TAKEN FROM OUR SOFTWARE TOOL THAT IMPLEMEN .. 88

FIGURE 3.4 1ST LEVEL DFD CREATED AUTOMATICALLY BY NALASS. .. 107

FIGURE 3.5 2ND LEVEL DFD CREATED AUTOMATICALLY BY NALASS. ... 108

FIGURE 3.6 3RD LEVEL DFD CREATED AUTOMATICALLY BY NALASS. ... 108

FIGURE 3.7 GENERAL FORM OF A CLASS DIAGRAM CREATED AUTOMATICALLY BY NALASS ... 112

FIGURE 3.8 CONFIGURATION OF NALASS’S DOCUMENTATION COMPONENT .. 113

FIGURE 4.1 THE USE CASE DIAGRAM OF THE APPOINTMENT MODULE, AS CREATED BY NALASS. 122

FIGURE 4.2 GENERALIZATION RELATIONSHIPS .. 126

FIGURE 4.3 PART OF THE USE CASE DIAGRAM OF THE PRESCRIPTION MODULE, WHICH IS CREATED AUTOMATICALLY BY NALASS.

 ... 128

11

FIGURE 4.4 UC SEND NOTIFICATION MAY BE SPECIALIZED ACCORDING TO THE TYPE OF USE CASE WHICH INVOKES IT (E.G., UC

CREATE IO INVOKES UC SEND CREATE NOTIFICATION) ... 129

FIGURE 4.5 COMPLEMENTARY USE CASES DERIVED FROM RELATIONSHIPS BETWEEN ACTORS (THIS IS THE OTHER PART OF THE

PRESCRIPTION MODULE DEPICTED IN FIGURE 4.3). .. 133

FIGURE 4.6 HOSPITAL RECEPTION SUBSYSTEM UCD DEVELOPED FROM 2 DIFFERENT MODULES: PATIENT AND APPOINTMENT.

 ... 136

FIGURE 4.7 DIFFERENT SUBSYSTEMS ARE LINKED TOGETHER TO CONSTRUCT THE ENTIRE SYSTEM’S UCD. 138

FIGURE 5.1 CONFIGURATION OF NALASS. ... 151

FIGURE 5.2 ADDING A NEW FSR CLASS .. 152

FIGURE 5.3 EDITING AN FSR CLASS ... 153

FIGURE 5.4 ADDING PARTICIPANTS FOR AN FSR CLASS. ... 153

FIGURE 5.5 EDITING PARTICIPANTS FOR AN FSR CLASS. ... 154

FIGURE 5.6 THE DATA FLOW TABLE. ... 155

FIGURE 5.7 ADDING INFORMATION OBJECTS. .. 155

FIGURE 5.8 AUTOMATIC CREATION OF FSRS AND QUESTIONS FOR EACH IO. ... 156

FIGURE 5.9 THE ANSWERS TO THE QUESTIONS FEED THE FSR PATTERNS. ... 156

12

LIST OF TABLES

TABLE 1.1 STANDISH FINDINGS BY YEAR UPDATED FOR 2008 16

TABLE 3.1 SUMMARY OF THE METHODOLOGY STEPS, ACTIVITIES, METHODS AND TECHNIQUES USED IN EACH STEP, THE EXPECTED

RESULTS OF EACH STEP, AND TOOL SUPPORT. 64

TABLE 3.2 DATA FLOW DESCRIBING EXCHANGE OF ITEMS BETWEEN USERS. THE TABLE SHOWS INDICATIVE DATA COLLECTED

DURING THE DEVELOPMENT OF THE HIS. 69

TABLE 3.3 A PORTION OF THE FIRST PART OF THE REQUIREMENTS DISCOVERY QUESTIONNAIRE ADDRESSED TO A

REPRESENTATIVE NUMBER OF USERS OF EACH ROLE OF THE IS. 69

TABLE 3.4 THE ATTRIBUTE CATEGORIES ARE LINKED TO EACH CATEGORY OF IO. 97

TABLE 3.5 PORTION OF THE NLSSRE SRS TEMPLATE ON THE LEFT AND ITS CORRESPONDING REALIZATION FOR THE HOSPITAL

INFORMATION SYSTEM CASE STUDY ON THE RIGHT. 114

TABLE 4.1 BASIC FLOW PATTERN FOR UC CREATE IO. 146

TABLE 4.2 BASIC FLOW PATTERN FOR UC ALTER IO. 146

TABLE 4.3 BASIC FLOW PATTERN FOR UC READ IO. 146

TABLE 4.4 USE CASE SPECIFICATION EXAMPLE FOR UC CREATE PRESCRIPTION. 148

TABLE 6.1 OBJECTIVE QUALITY METRICS USED TO DETERMINE THE EFFECTIVENESS OF THE METHODOLOGY. 161

13

ACRONYMS AND ABBREVIATIONS

CAD = Computer-Aided Design

CAREN = Create-Alter-Read-Erase-Notify

CASE = Computer-Aided Software Engineering

CIRCE = Cooperative Interactive Requirements-Centered Environment

COLOR-X = COnceptual Linguistically-based Object-oriented Representation language for Information

and Communication Systems (ICS, expressed as X)

DFD = Data Flow Diagram

DOORS = Dynamic Object-Oriented Requirements System

EPUC = Essentially Preceded Use Case

ER = Entity Relationship

FC = Functional Condition

FSR = Formalized Sentential Requirement

FSUC = Formalized Sentential Use Case

HIS = Hospital Information System

HTML = Hypertext Markup Language

ID = Identity

IEEE = Institute of Electrical and Electronics Engineers

IO = Information Object

IOi = Information Object instance

IR = Intended Recipient

IS = Information System

IT = Information Technology

LIS = Library Information System

NALASS = Natural Language Syntax and Semantics

NEHTA = National E-Health Transition Authority

14

NL = Natural Language

NL-SRS = Natural Language Software Requirements Specification

NLSSRE = Natural Language Syntax and Semantics Requirements Engineering

OO = Object Oriented

PC = Personal Computer

QuARS = Quality Analyzer of Requirements Specification

RA = Requirements Analysis

RD = Requirements Discovery

RE = Requirements Engineering

RS = Requirements Specification

RTF = Rich-Text Format

SDLC = System Development Life Cycle

SE1, SE2 = Software Engineer 1, Software Engineer 2

SRS = Software Requirements Specification

STORM = Software Tool for the Organization of Requirements Modeling

UC = Use Case

UCD = Use Case Diagram

UCS = Use Case Specification

UML = Unified Modeling Language

15

16

1 Introduction

Requirements Engineering (RE) is of vital importance for the development of information

systems (Sommerville, 2005). Several studies have shown that a large proportion of

errors detected in the implementation and later stages of the systems development life

cycle (SDLC) can be traced back to incomplete, ambiguous, incorrect or omitted

requirements defined during RE, early in the SDLC (The Standish Group, 2003, 2009;

Hall et al., 2002). A substantial percentage of software projects continue to fail, often

because requirements are ill-defined, ambiguous, incomplete with respect to the users’

needs, or are not managed correctly as the project unfolds. The Standish Group’s

periodically released "Chaos Report" indicates that the software crisis remains a

challenging issue. Table 1.1 illustrates the percentage of software projects that failed or

were over budget in different years between 1994 and 2008.

TABLE 1.1 STANDISH FINDINGS BY YEAR UPDATED FOR 2008

 1994 1996 1998 2000 2002 2004 2008

Succeeded 16% 27% 26% 28% 34% 29% 32%

Failed 31% 40% 28% 23% 15% 18% 24%

Challenged 53% 33% 46% 49% 51% 53% 44%

Further results indicate 52.7% of projects cost 189% of the original estimates. On the

basis of this research, the Standish Group estimates that American companies and

Government Agencies spend $55 billion annually for cancelled software projects. The

17

Standish group study, after having contacts with respondents, noted that the three most

commonly cited factors that caused projects to be late and not meet expectations were (i)

lack of user input, (ii) incomplete requirements and specification, and (iii) changing

requirements and specifications. Similarly, the three major reasons that a project will

succeed are user involvement, executive management support, and a clear statement of

requirements. Without them, the chance of failure increases dramatically. Van Vliet

(2008) demonstrates that requirements errors are likely to be the most common class of

errors, and requirements errors are likely to be the most expensive errors to fix if not

tracked early in the SDLC process. Requirements errors are likely to consume 25-40% of

the total project budget. Requirements errors account for 70 percent to 85 percent of the

rework costs on a software project. Wiegers (2006) states that if one finds a requirements

defect during the requirements phase and it costs one unit to fix (for example, three

engineering hours, $500), the cost of fixing that same defect will typically increase if it is

found later in the project’s life cycle. In fact, studies show that it can cost more than 100

times more to fix a requirements defect if it is not found until after the software is

released to the field.

It is also evident that the least understood parts of RE are the activities of requirements

discovery, analysis and specification. The problem observed is that there is an enormous

gap between the clients’ needs and the software engineers’ understanding of the clients’

needs (Goldin and Berry, 1997; Mich et al., 2004). Clients often speak with vague

sentences and/or cannot express their functional needs or, even worse, they do not know

what these needs really are. This problem is amplified further when the analyst does not

provide the right questions, as s/he essentially does not know precisely what to ask.

18

Additionally, the ambiguous and incomplete requirements gathered during requirements

discovery are insufficiently classified and organized during the analysis stage, due to lack

of current approaches to provide specific predefined types of functions and data. As a

result, the poorly-organized gathered requirements result to ill-defined and ambiguous

specifications, usually written in free natural language—which is also ambiguous,

inherently—and based on a generic requirements specification template.

An understandable and straightforward Requirements Engineering methodology is

therefore necessary for the successful development of an Information System (IS), a

methodology which will formalize and automate the critical stages of requirements

discovery (RD), analysis (RA), and specification (RS). Such a methodology is greatly

enhanced when it involves the use of natural language (NL), because NL makes the entire

RE process and its outcomes easy to understand for both users and analysts. Current

approaches in RE, both those based on NL and those not based on NL, fail to provide a

specific, easily understood formalization of the major parts of requirements discovery,

analysis and specification. The problem originates from the weakness of existing

approaches to formalize the RD process. On the one hand, some approaches use NL

parsing techniques to retrieve requirements from pre-existing requirements documents,

but this method is not reliable, because of ambiguities, redundancies and inconsistencies

present in such documents. On the other hand, other approaches avoid formalization and

use open-ended questions that lack specificity and formality (Gervasi and Zowghi, 2005).

In either case, often the result is a requirements document with ambiguities, redundancies

and inconsistencies. In the subsequent RA and RS stages, current approaches are also

weak in providing a specific and easily understood formalization of the elements of an IS,

19

so that the analyst will know specifically what data, functions, business rules, and

functional conditions to use and search for, as well as how to define them. Instead, they

use general guides and templates, such as the traditional IEEE SRS document template or

templates related to the more contemporary Use Case specification. The use of such

templates also results in requirements documents written in a free, informal version of

NL which promotes ambiguity and redundancy. The informality in such documents

hinders also the use of automated tools for system modeling, since informal NL is

inherently complex, vague and ambiguous.

The RE process varies considerably depending on its context type and the application

being developed. RE for information systems is significantly different from RE for

embedded control systems, or from RE for generic software services such as networking

and operating systems (Sommerville, 2005; Nuseibeh and Easterbrook, 2000). This

dissertation proposes the Natural Language Syntax and Semantics Requirements

Engineering (NLSSRE) Methodology, which intends to engineer the correct requirements

in a clear-cut, time-saving, understandable and reliable way. NLSSRE aims to formalize

and automate the discovery, analysis and specification of user requirements for the

development of Information Systems. In particular, the methodology strives towards

handling user requirements concerned with the operational aspect of an IS
1
 and building

these requirements with the use of the following IS elements: people (usually end-users,

1 According to Ellison and Moore [2002], an information system is any combination of information technology and people's activities

using that technology to support operations, management, and decision-making. The application domain of NLSSRE is mostly

concerned with the operational aspect of an IS (also known as transaction processing – dealing with day-to-day transactions of a

business). Examples of ISs encompassing the operational aspect to a large degree are a Hospital IS or a Library IS.

20

clients and trusted external users), processes related to the creation, modification,

transmission, storage and presentation of information along with the circumstances within

which these processes are performed, as well as data, constraints, and business rules. The

formalization of RE, as performed with NLSSRE, intends to make easier the

transformation of requirements into specification and design models, and finally into their

software implementation. Formalization can be achieved with the aid of NL elements

such as verbs, nouns, genitive case, adjectives and adverbials, and it will be automated

with the support of a dedicated CASE tool. Specifically, the methodology is expected to

achieve its aim by providing the analyst with several critical elements in advance of each

main task involved in RE (in other words, the following are the specific contributions of

this research):

- Specific questions and guidance for identifying requirements including business roles,

information objects, data attributes, business rules and functional conditions (Georgiades

and Andreou, 2010b, 2011a, 2011b; Georgiades et al., 2005)..

- Predefined types of functions, specific categories of data, and specific types and

methods to identify and define business rules and functional conditions (the

circumstances within which each function is performed) (Georgiades and Andreou, 2010b,

2011a, 2011b; Georgiades et al., 2005).

- Specific patterns for writing requirements as structured, semi-formal NL sentences

(Georgiades and Andreou, 2010b, 2011a, 2011b; Georgiades et al., 2005).

- Specific rules to transform the abovementioned identified requirements into

diagrammatic notations, including class diagrams, data flow diagrams and use-case

diagrams, as well as use-case and textual specifications, the latter following a certain

21

IEEE SRS template (IEEE, 1998) (Georgiades and Andreou, 2010a, 2010b, 2010c, 2011a, 2011b,

2011c; Georgiades et al., 2005).

- A CASE tool that automates the entire procedure (Georgiades and Andreou, 2011c, 2010c,

2010a).

Finally, another objective of the NLSSRE methodology is its adaptation for

formalizing use case model development (Georgiades and Andreou, 2011a), since use case

driven analysis is a popular, user-friendly approach which attempts to cover the three RE

activities (elicitation, analysis, specification). We will show how the entire NLSSRE

methodology can be adjusted for use case model development and how it concludes with

the construction of use case diagrams and use case specifications.

Our decision to adopt NL for RE is based on the following significant reasons: (i)

language, by its nature, is the most powerful medium of expression—through the analysis

of specific linguistic elements, we expect to facilitate the identification and formalization

of specific IS requirement elements, including functions, data, functional conditions and

business rules; (ii) linguistic terminology can facilitate a common terminology of

requirements and eliminate ambiguities and redundancies in specifying them; and (iii) it

is simpler and more reliable to construct requirements in some form of formal NL than in

any other language, because requirements are initially conceived and expressed in NL.

NLSSRE gives requirements an NL-like description which is also very understandable

and useful as a communication medium between the users, analysts and programmers of

the IS. NL-like description corresponds to the use of a structured, semi-formal NL for

describing requirements, and lies between formal languages that require high expertise,

and free NL that is inherently ambiguous. Semi-formal NL provides, on the one hand,

22

requirements precision and transformability to models, and, on the other hand,

understandability.

The remainder of this dissertation is structured as follows:

Chapter 2 explains the application domain of RE with particular reference to the

application domain of the proposed methodology. The main part of this chapter

elaborates on the main components and concepts of RE, which are necessary to be taken

into account for building a solid RE methodology. Existing RE approaches and

techniques, most of them with particular focus on the use of natural language, are also

discussed and compared to the NLSSRE methodology.

Chapter 3 presents NLSSRE, a novel methodology that is intended to formalize and

automate the major activities of RE, namely requirements discovery, analysis and

specification, with the aid of natural language. The chapter discusses in detail the

underpinning of the methodology, as well as each of its steps with some illustrative

examples, many of them taken from the software tool that provides automation support to

the methodology.

Chapter 4 describes the adaptation of the methodology for formalizing use case model

development. In particular, elements of the NLSSRE methodology are used to formalize

use case elements, such as use case types, actors and use case specification actions.

Chapter 5 describes NALASS, the dedicated software tool that automates the

NLSSRE methodology.

Chapter 6 describes an experimental evaluation of the methodology, through which we

compared the NLSSRE methodology to the classical Object Oriented (OO) RE approach,

by applying both of them in a real-life setting.

23

Chapter 7 discusses how the proposed methodology is different from other closely

related approaches and techniques, and how it achieves its aim and objectives.

Chapter 8 draws the conclusions of this research and summarizes its contributions,

while chapter 9 provides recommendations for future work.

24

2 Background and Related Work

In this chapter, an initial understanding of Requirements Engineering is developed

through a number of definitions, and the application domain of RE is discussed with

particular reference to the application domain of the proposed methodology. The main

part of the chapter elaborates on the main components and concepts of RE, which need to

be taken into account when building a solid RE methodology. Existing RE approaches

and techniques, most of them with particular focus on the use of natural language, are

also discussed and compared to the NLSSRE methodology.

2.1 Definitions

The current literature has several definitions of Requirements Engineering. The following

definitions are widely used and serve to develop an initial understanding of the

constituent parts of RE and their context.

Requirements engineering defined by Pohl (2010) as “the process of eliciting

individual stakeholder requirements and needs and developing them into detailed, agreed

requirements documented and specified in such a way that they can serve as the basis for

all other system development activities.”

A second definition is given by Thayer and Dorfman (1997) “Software requirements

engineering is the science and discipline concerned with establishing and documenting

software requirements.”

Loukopoulos and Kavakli (1995) defines RE as “the systematic process of developing

requirements through an iterative co-operative process of analyzing the problem,

25

documenting the resulting observations in a variety of representation formats, and

checking the accuracy of the understanding gained.”

One of the most commonly used definitions in the literature is given by Zave and

Jackson (1997):

“Requirements engineering is the branch of software engineering concerned with the real-

world goals for, functions of, and constraints on software systems. It is also concerned

with the relationship of these factors to precise specifications of software behaviour, and

to their evolution over time and across software families.”

All the definitions agree that Requirements Engineering is a process which produces

the software requirements for a system. This process involves the activities of elicitation,

analysis and specification, and results in a document including functional and non-

functional requirements. RE is a multidimensional discipline, because it is not only

related to technical issues and problems but also to managerial, organizational, economic

and social issues. Requirements Engineering, as part of software engineering, is a

systematic approach intended to support professional software development, rather than

individual programming. It includes techniques that support requirements elicitation,

analysis, and specification, none of which are normally relevant for personal software

development (Sommerville, 2010).

26

2.2 Application Domain

The way RE is implemented varies dramatically depending on the organization

developing the software, the type of software application, and the people involved in the

development process. According to Sommerville (2010), perhaps the most significant

factor in determining which software engineering methods and techniques are most

important is the type of application that is being developed.

There are many different types of applications including stand-alone applications (e.g.

office applications on a PC, CAD programs, photo manipulation software), embedded

control systems which use their software system to control and manage hardware systems

(e.g., software in a mobile phone), simulation systems intending to model physical

processes or situations, entertainment systems intended mostly for personal use and

entertainment of the user (e.g., games), data collection systems intended to collecting data

from the environment using sensors, and information systems; this last type is the focus

of our work.

According to Ellison and Moore (2002), an information system is any combination of

information technology and people's activities using that technology to support operations,

management, and decision-making. The application domain of NLSSRE is mostly

concerned with the operational aspect of an IS, also known as transaction processing (fig.

2.1). This is the most significant part—it is actually an information system by itself—of

the entire IS of an organization, because it deals with the day-to-day transactions of a

business. It involves significant interaction between employees with operational roles,

who use data and processes to produce, change and store information. The automation of

an existing manual system allows for faster processing, reduced clerical costs and

27

improved customer service. Examples of ISs encompassing the operational domain are a

Hospital IS or a Library IS, both of which could contain sub-systems such as a billing IS,

a salary payment IS, and others.

FIGURE 2.1 FOUR LEVEL PYRAMID MODEL BASED ON THE DIFFERENT LEVELS OF

HIERARCHY IN THE ORGANIZATION (SOURCE: WIKIPEDIA, 2010)

Regardless the type of the application and the people involved, there are a number of

generic activities common to all RE process models, which are: requirements elicitation,

requirements analysis, requirements specification, requirements validation and

requirements management. The proposed methodology focuses on the first three activities.

According to Westfall (2006), eliciting, analyzing, and writing good requirements are the

most difficult and important parts of software engineering. Of course, the RE models that

utilize these activities, the techniques applied during these activities, the types of

requirements handled by these activities, the people involved, and tools that automate the

28

application of the RE activities vary according to the type of application. This dissertation

proposes a methodology that is intended to formalize the requirements elicitation,

analysis and specification activities for the development of information systems, and the

aforementioned RE elements need to be taken into account for developing a solid RE

methodology.

2.3 Requirements

A number of problems that occur during the requirements engineering process result from

failing to make a clear distinction between the different levels and types of requirements

(Sommerville, 2005). By recognizing these different levels and types of requirements,

requirements engineers gain a better understanding of what information they need to

elicit, analyze, specify, and validate when they define their software requirements.

Sommerville focuses on two levels of requirements, the user-level and system-level

requirements, while Wiegers (2004) distinguishes an additional more abstract level,

which is the business level.

Wiegers (2004) states that business requirements define the business problems to be

solved or the business opportunities to be addressed by the software product. In general,

the business requirements define why the software product is being developed. Business

requirements are typically stated in terms of the objectives of the customer or

organization requesting the development of the software.

User-level requirements look at the functionality of the software product from the

user’s perspective. They define what the software has to do in order for the users to fulfill

29

their objectives. Multiple user level requirements may be needed in order to fulfill a

single business requirement. For example, the business requirement to allow recording

appointments might translate to multiple user requirements including:

- Customer makes a call

- Receptionist records date and time of the appointment

System requirements set out the system’s functions, data, constraints and non-

functional requirements with specificity and detail. The system requirements document

(sometimes called a functional specification) should be precise. It should define exactly

what is to be implemented. It may be part of the contract between the system buyer and

the software developers. Software system requirements are often classified as functional

requirements, nonfunctional requirements or domain requirements:

1. The system’s functional requirements that define the software functionality must be

built into the product to enable users to accomplish their tasks, thereby satisfying the

business requirements. Multiple functional level requirements may be needed to

fulfill a user requirement. For example, the user-level requirement that the users can

record time and date of the appointment might translate into multiple functional

software requirements, such as:

- “Receptionist selects to see appointment form on her computer screen

- System shows appointment form

- Receptionist enters customer’s ID

- System checks if customer is already in the database

- System returns relevant message

30

- If the customer does not exist in the database, Receptionist selects the New

Customer form, otherwise…”

2. Non-functional requirements. These are constraints on the services or functions offered

by the system. They include timing constraints, constraints on the development

process and standards. Non-functional requirements often apply to the system as a

whole. They do not usually just apply to individual system features or services.

3. Domain requirements. These are requirements that come from the application domain

of the system and that reflect characteristics and constraints of that domain. They may

be functional or non-functional requirements (Sommerville, 2010). Business rules are

a kind of domain requirement; they are the specific policies, standards, practices,

regulations and guidelines that define how the users do business (and are therefore

considered user-level requirements). The software product must adhere to these rules

in order to function appropriately within the user’s domain. Therefore business rules

need to be formalized too.

The focus of the NLSSRE methodology is on system-level requirements, that is, we

are interested in what the system will do to fulfill the users’ requirements. As we will see

in the next chapter, the formalization concept is more easily applicable to the system-

level functions, because they are applied on electronic information. The formalization

concept is not directly applicable to the user-level functions, due to the complexity and

ambiguity of terminology as well as the complexity in size, which exists in the business

environment. In particular, the methodology builds and formalizes the system

requirements with the use of the following Information System elements: people (usually

end-users, clients and trusted external users), processes related to the creation,

31

modification, transmission, storage and presentation of information along with the

circumstances within which these processes are performed, as well as data, constraints

and business rules.

2.4 Requirements Engineering Process Models

A model is an abstract representation of how the activities of the RE process are put

together. Macaulay (1996) finds that “no model is suitable for all situations” and

recognizes that many issues related to the personnel and even the structure of the

organization need to be considered. Additionally, the size and scope of the project both

affect which model is best suited. Four widely-known RE process models with different

structures and used in information system development are: linear, linear with iterations

between activities, iterative and cyclical.

A linear and incremental model is often used to describe the RE process, with RE

activities (e.g., elicitation, analysis) following linear transitions. As an addition to this

common linear process, Kotonya and Sommerville (1998) propose a “conceptual linear

RE process model, which indicates iterations between activities” (Figure 2.2). They show

that the RE process steps overlap and are often performed iteratively. Such a model is

nearer to the way our methodology could be applied.

32

FIGURE 2.2 KOTONYA AND SOMMERVILLE (1998) LINEAR REQUIREMENTS ENGINEERING

PROCESS MODEL

Macaulay (1996) provides a purely linear RE process model (Figure 2.3). It does not

indicate the overlapping or iterations of activities, suggested by the Kotonya and

Sommerville (1998) model. The RE activities are categorized under different headings,

however the linear progression resulting in documentation is common to both models.

Macaulay (1996) acknowledges that the RE process is situation dependent and discusses

seven different customer-supplier relationships and their corresponding RE processes.

33

FIGURE 2.3 MACAULAY (1996) LINEAR REQUIREMENTS ENGINEERING PROCESS MODEL

While much of the literature on the RE is based on linear models, non-linear models

have also been proposed. The model proposed by Loucopoulos and Karakostas (1995)

shows an iterative and cyclical RE process (Figure 2.4). This model shows how the

elicitation, validation and specification stages interact with both the user(s) and the IS

itself, with each aspect influencing the others through iterative developments. We see that

the stages and RE activities in Loucopoulos and Karakostas have similar properties to the

linear models, but because the order in which these activities occur is non-linear, what

happens in one stage can have a direct effect on the next stage as the cycle moves forward

or on a previous stage as the iterative cycle repeats.

34

FIGURE 2.4 LOUCOPOULOS AND KARAKOSTAS (1995) ITERATIVE REQUIREMENTS

ENGINEERING PROCESS MODEL

The spiral model (fig. 2.5) proposed by Sommerville (2010) is another non-linear

model. Sommerville divides the RE process into three major categories of requirements

elicitation, requirements specification, and requirements validation. The model views the

process as a spiral, passing several times through each category starting from early stages

of business specification through user specifications and system requirements

specification.

35

FIGURE 2.5 THE SPIRAL MODEL OF THE RE PROCESS

The spiral model allows for varying levels of detail at each requirements stage, and

also shows how the spiral need not be traversed all the way to the end; the spiral can be

exited as soon as the required level of specification is completed. For example, if the

project needed only user requirements, then the later system requirements stages need not

be completed.

Some researchers consider the application of structured analysis methods such as

object-oriented analysis to the RE problem (Larman, 2002). An object-oriented approach

36

often involves graphical system models and use-case models which later serve as system

specifications. Clearly, the success of object-oriented methods has shown that such

methods are useful to RE, but such methods do not encompass all of RE. In particular,

human-centred nature of the elicitation phase makes it hard to apply the often stricter

structure of an object-oriented approach.

Unfortunately, in spite of several linear and non-linear models describing the RE

process, studies show that such models in the literature do not reflect the current state of

RE process in practice. For example, Nguyen and Swatmann (2000) found that the RE

process in their case study did not occur in a systematic, smooth and incremental way, but

was opportunistic, with sporadic simplification and restructuring of the requirements

model when it reached points of high complexity. Hofmann and Lehner (2001) examined

the 15 RE processes in industry and found that most participants saw RE as an ad hoc

process, with only some using an explicitly defined RE process or customizing a

company standard RE process.

2.5 The keystone of NLSSRE

We believe that one of the main reasons existing RE approaches and models are not

sufficient is that they focus on the way the RE process activities are interrelated and

organized only during their application. The difference between the existing approaches

and the proposed methodology does not lie on the way they are applied, but on the way

they are built. Specifically, in the existing approaches, we find no direct link at an

architectural level between the analysis and elicitation or between specification and

37

elicitation. The lack of a direct connection between elicitation and the later stages of RE

means the way elicitation is built is not actually related with the way analysis is built.

If a methodology were designed such that both elicitation and analysis were built on the

same language and framework then the elicitation data collected from the users would

feed easily into the analysis and specification activities, without any need for clarifying

ambiguities, redundancies and searching for missing requirements as occurs with current

approaches. Since the problem starts from the elicitation stage where analysts cannot

clearly discover user needs, a different approach is necessary that will provide this

underpinning link between analysis, specification and elicitation. The most widely used

approach for RE, which involves the use of NL, is the Use Case-driven Analysis

(UCDA), which is mainly used for object oriented analysis and design (Dias et al., 2008).

Goal-oriented requirements engineering (Saeki, 2010; Lamsweerde, 2001) is another

approach that conceives requirements as goals, and it can use NL to define them, as well

as questions to refine goals and sub-goals. The conceptual models of both approaches, as

well as relevant techniques used will be discussed in the following sections, as well as a

detailed discussion about use case-driven analysis which is also used for the comparative

evaluation of the proposed methodology.

Figure 2.6 illustrates the main concept of the methodology’s architecture, which starts

with the principle that if the analysts know, in advance, specifically what types of

functions, data, business rules and conditions (RA) they should search for and write down,

then they will be able to ask specific questions (RD) regarding that particular information

(during the application of NLSSRE, the answers to these questions will facilitate the

progress of the RA and RS processes). Additionally, the way requirements are written

38

(RS) is based on utilizing RA elements and specific formalized sentential patterns. Such

patterns also contribute to the process of developing the RD questions, as well as the

identification of the RA elements, as we will see in detail in chapter 3. We will also show

that the way the methodology is built together with the formalization provided for the IS

elements allows the methodology to be complete and self-verified.

FIGURE 2.6 GENERAL OVERVIEW OF THE METHODOLOGY’S ARCHITECTURE.

Below we describe the three major activities of the RE process – elicitation, analysis

and specification – and the most widely used methods and techniques with particular

focus on the use of natural language, as well as common problems. Finally we make a

comparative reference to how our approach intends to provide solutions.

2.6 Requirements Elicitation

Requirements elicitation is the stage where the software or systems engineer discovers

and collects the requirements. Elicitation is most commonly a human-centered activity

(i.e., gathering requirements information from users and other stakeholders). Typically,

39

elicitation is the first stage of developing a software system, where the development team

and customer begin building an understanding of the problem the software will be

designed to solve and also begin building a relationship for solving that problem together.

Elicitation is also known as "requirements capture," "requirements discovery," and

"requirements acquisition." (Pfleeger, 2001)

Studies have observed that that the majority of people involved in software

requirements elicitation prefer to use free, common natural language (NL), as the means

to discover requirements (Mich et al., 2004; Gervasi and Zowghi, 2005). Natural

language is more understandable to both users and analysts, on the one hand, and on the

other, it is easier to move from one type of natural language (informal – during elicitation)

to another (formal – during analysis and specification). In this section, we examine other

approaches used in RD, especially those which use natural language, either formalized or

free, as a comparison with our methodology.

The first step in Requirements Discovery involves identifying the requirements

sources which mainly are the stakeholders and secondly documentation and existing or

legacy systems. The stakeholders include people such as users, customers, suppliers and

decision-makers, and also include the environment where the system will be used (Zhang,

2007). Additionally, the roles of the people who participate in the requirements process

need to be taken into account. Step 1 of the NLSSRE methodology defines in detail the

people involved in the RE process for the development of information systems.

After identifying the stakeholders, the analyst can begin the elicitation (RD). The

principle difficulty of RD is that the human stakeholders find it difficult to accurately

express their requirements and in fact may have difficulty describing their own tasks.

40

People often forget to state obvious but nevertheless extremely important information, or

they may be simply unwilling to cooperate. The analyst must be sensitive to the human

aspect of the process. Because elicitation is not a passive activity, the analyst must

recognize that even when the stakeholders are cooperative and articulate, the analyst still

must work hard to capture the correct information. The principal techniques for obtaining

this RD information are listed below (Zhang, 2007):

- Interviews are the most commonly used method of eliciting requirements because

communication in free natural language is an easy way to express needs and ideas, and

ask and answer questions. Usually interviews use open-ended questions and are used to

elicit non-tacit requirements. Interview is handy and commonly used throughout the

requirements development process. In nearly every case, an interview can be used when

the stakeholder is a person. Unstructured interviews, mostly with the use of open-ended

questions, are conversational in nature where the interviewer enforces only limited

control over the direction of discussions. Because they do not follow a predetermined

agenda or list of questions, there is the risk that some topics may be completely neglected.

It is also a common problem with unstructured interviews to focus in too much detail on

some areas, and not enough in others (Zowghi and Coolin, 2005). Unstructured

interviews and open-ended questions are best applied for exploration when there is a

limited understanding of the domain, or as a start for more focused and detailed

structured interviews which are a tactic followed by our approach, with firstly the use of a

general description of each user’s everyday work (accompanied with some other

techniques described later) and subsequently with the use of specific questions the

answers of which are guided by the methodology’s predefined artifacts. Structured

41

interviews are conducted using a predetermined set of questions, mainly closed-ended in

nature, to gather specific information. The success of structured interviews and closed-

ended questions depends on knowing what are the right questions to ask, when should

they be asked, and who should answer them. This is a basic principle of our methodology.

Templates such as IEEE Std 830 Software Requirements Specification (IEEE, 1998) and

Volere Requirements Specification Template (Robertson, 2001) represent the most basic

method used by analysts to support the process of requirements elicitation. In addition to

them, Da Silva and Leite (2006) and Leite and Gilvaz (1996) developed an interview-

driven requirements elicitation support system, based on the idea of having a general

interview assistant. The system’s knowledge database is developed based on Business

System Planning, Critical Success Factors, and End Means Analysis. Twenty two kinds

of questions are automatically generated. These question sentences consist of a fixed part

and a variable part. The variable part is generated by incorporating answers already

obtained from other questions, and a chain of questions is established by generating the

variable part. In addition, a heuristic is triggered at the end of the interview, or for

specific questions during the interview, so that a question is presented. When a user

answers it, the accuracy of the answer, the relationship between two answers, and the

need for further questions are checked with the use of the aforementioned heuristic. The

objective of this work is to automate the interview-driven requirements elicitation process

and check the accuracy of requirements specification. PREview (Sommerville et al., 1997)

is another approach that refers to a model of viewpoints that is intended to be used to

organize system requirements derived from radically different sources. It uses the notion

of ‘concerns’, which are key business drivers of the requirements elicitation process, and

42

they may be used to elicit and validate system requirements. They are decomposed into

questions which must be answered by system stakeholders.

- Scenarios are narrative and specific descriptions of current and future processes

including actions and interactions between the users and the system. They are a valuable

means for providing context to the elicitation of user requirements. Scenarios allow the

software engineer to provide a framework for questions about user tasks by permitting

"what if" and "how is this done" (open-ended) questions to be asked. The most common

type of scenario is the use case scenario which is mainly used in object oriented analysis.

However scenarios focus on user requirements, not system requirements. A substantial

amount of work from both the research and practice communities has been dedicated to

developing structured and rigorous approaches to requirements elicitation using scenarios

including CREWS (CREWS) and Scenario Plus (Scenario Plus). Scenarios are

additionally very useful for understanding and validating requirements, as well as test

case development.

- Observation is a well-used method where the software engineer or engineers

learn about the user requirements by observing how the stakeholders use their current

software and how they interact with other stakeholders. On the one hand, observation can

reveal tasks and business processes that are too subtle (too obvious) or too complex for

the stakeholders to describe accurately, but on the other hand such direct observation

techniques are expensive, both in terms of the longer time it may take to observe

(compared to a direct interview) and in manpower cost. Tight system development

deadlines often preclude the lengthy observations needed for good results. Social analysis

and ethnography are examples of observational methods.

43

- Analytic Methods. Analytic methods provide ways to explore the existing

documentation or knowledge and acquire requirements from a series of deductions. A

variety of documentation may shed light on requirements of the desired product. It

includes problem analysis, organizational charts, standards, user manuals of existing

systems, survey report of competitive systems in market, and so on. By studying it,

engineers capture the information about the application domain, the workflow, the

product features, and map it to the requirements specification. Also, they identify and

reuse requirements from the specification of the legacy or similar products. It is always

worth probing and rummaging for reports and recorded information relevant to the

desired product.

The deduced information from experts’ knowledge and experience form another source

of requirements in analytic methods. Requirements can be dug up from domain experts’

knowledge. Repertory grid is a technique that provides ways to elicit attributes that are

not immediately and easily articulated by the expert. In general, analytic methods are not

vital to requirements elicitation, since requirements are captured indirectly from other

sources, rather than end users and customers. However, they form complementary

specifications to improve the efficiency and effectiveness of requirements elicitation,

especially when the information from legacy or related products is reusable. Analytic

methods provide effective support of requirements elicitation in application domains

where the domain related documentation and experts are available.

- Goals. A technique for finding out sub-goals and requirements is to keep asking

HOW questions about the goals already identified (Lamsweerde, 2000b). Formal goal

refinement patterns may also prove effective when goal specifications are formalized;

44

typically, they help finding out subgoals that were overlooked but are needed to establish

the parent goal. To find out more abstract, parent goals is recommended to keep asking

WHY questions about operational descriptions already available. More sophisticated

techniques have been devised to elicit goals from scenarios. Based on a bidirectional

coupling between type-level scenarios and goal verb templates, Rolland et al. propose

heuristic rules to find out alternative goals covering a scenario (corresponding to

alternative values for the verb parameters), missing companion goals, or subgoals of the

goal under consideration. The Requirements Elicitation Guide (REG – Fuentes et. al,

2005) is another method to analyze the key intentional and social features of an

information system and its context. Based on them, REG contains questions which

represent the information that activity theory (which has been developed in the fields of

sociology and psychology) considers important to elicit about activities. The answers to

REG questions are the requirements of the software system and they are provided by

customers and developers. For example, for the activity theory aspect Goals of the new

component and the question Is there any inconvenience for the organization or groups in

it about building the new component?, REG replaces the aspect with the more specific

goal Give Support to Customers. This method, like most of the goal oriented elicitation

methods, is mostly applicable to non-functional requirements, or agent-based systems, or

in deriving more general information from customers.

Natural language processing (NLP) techniques deal with requirements retrieval from

pre-existing requirements documents, by using either rule-based (Goldin and Berry 1997;

Rolland and Proix 1992; Li et al. 2005; Gervasi and Zowghi, 2005) or probabilistic

techniques (Rayson et al. 2000; Sawyer et al. 2002). In this category also fall a few

45

approaches (Tjong et al. 2006; Videira and da Silva 2005; Videira et al. 2006) which

suggest that users should write a paragraph describing their job tasks in free text on which

similar retrieval rules to elicit the requirements are applied.

In Goldin and Berry’s work (1997), an approach and a prototype tool are presented, for

suggesting requirement abstractions to the human elicitor. Their method compares

sentences using a sliding window approach on a character-by-character basis and extracts

matching fragments that are above a certain threshold in length. The approach tries to

handle arbitrary lengths, gaps and permutations and avoids some specific weaknesses in

confidence and precision when using only parsers or counting isolated words. Rayson et

al. present two experiments in probabilistic NLP using tools they have developed (part-

of-speech and semantic taggers integrated into an end user tool). The results suggest that

the tools are effective in helping to identify and analyze domain abstractions.

In summary, although existing methods and techniques provide a good guide on their

use in RD, still the major problem in RE is that there is difficulty in understanding user

needs. On one end of the spectrum there is the classical, most commonly used approach

based on open-ended questions which usually produce vague answers written in free,

informal natural language, with inconsistencies and redundancies, because neither the

analyst nor the user know exactly in advance what to ask or answer regarding specific

functions and data of the IS. On the other end we have requirements retrieval from pre-

existing requirements documents. However, the retrieval approach is not particularly

reliable, since requirements are often not written syntactically, grammatically and

semantically correctly from the beginning, and the rules applied to retrieve them cannot

work well to produce reliable and complete results; additionally, there is a good chance

46

that the original texts do not cover all the requirements of the IS under development and

also that they include ambiguities, redundancies and disorganized material.

In contrast, our approach differs from the aforementioned ones, since it guides the

analyst how to define specific sets of questions from predefined patterns of functions and

specific types of data, business rules and functional conditions. The answers to these

questions feed and complete the analysis and specification stages. Therefore, the way we

discover the requirements is clearly connected to the analysis and specification of

requirements. In the current literature—to the best of our knowledge—this link does not

exist, and therefore the resulting requirements documents produced from current

approaches need to be re-organized, re-validated and re-adjusted. Additionally, NLSSRE

uses documentation (expert) techniques, as complementary to interviews, mainly to

identify data attributes.

2.7 Requirements Analysis

Requirements Analysis (RA) is concerned with taking the unstructured collection of

requirements, and, based on different conceptual models and classifications, it groups

related requirements and organizes them into coherent clusters. RA also detects and

resolves conflicts between requirements.

Existing approaches classify requirements based on a number of dimensions such as

whether the requirement is functional or non-functional, or whether one requirement is

more essential than another by giving different levels of priority to requirements, etc.

Classifications are also influenced by the conceptual model used. The development of

47

conceptual models of a real-world problem is key to software requirements analysis.

They usually comprise the core of developing a methodology and aim to aid in

understanding and decompose the problem (a very common term used is the ‘separation

of concerns’), rather than to initiate design of the solution. Several kinds of models can be

developed. These include data and control flows, state models, event traces, user

interactions, object models, data models, and many others (Sommerville, 2010):

- Activity Oriented Meta-Models. Activity oriented meta-models allow modeling a

system as a set of activities related by data or by execution dependencies. These meta-

models are well suited to model systems where data are affected by a sequence of

transformations at a constant rate. Data flow diagrams (DFDs) and flowcharts are two

examples of activity oriented meta-models .

- Structure Oriented Meta-Models. Structure oriented meta-models allow the

description of system physical modules and their interconnections.

- Data Oriented Meta-Models. Data oriented meta-models allow modeling a system

as a collection of data related by some kind of attribute.

- Multiple-View Approach. Multiple view modeling, as defined by several authors

(Sommerville et al., 1997, Leite et al., 1996) can adopt orthogonal views: (1) the function

view is responsible for representing the processes of the system and UML’s activity

diagrams can be used to support this view; (2) the data view defines system information,

that can be supported by UML’s class diagrams; (3) the control view characterizes the

system dynamic behavior that can be described by UML’s state diagrams. Object

Oriented modeling is based on the multiple view concept, and Use Case Driven Analysis

48

(UCDA), which is discussed in 2.9) is the most widely used structured approach for

eliciting, analyzing and specifying the requirements for the development of the OO model.

- State Oriented Models. State oriented meta-models allow modeling a system as a

set of states and a set of transitions. The transitions between states evolve according to

some external stimulus. These meta-models are adequate to model systems in which

temporal behavior is the most important aspect to be captured. Finite state machines

(FSMs), finite state machines with data paths (FSMDs), StateCharts and Petri nets are

examples of state oriented meta-models.

- Goal-driven analysis for clarifying requirement. Requirements are often unclear

when first elicited from clients and stakeholders. The introduction of goals offers one

way of clarifying requirements (van Lamsweerde, 2000b). Analyzing requirements in

terms of goal decomposition and refinement can be seen as teasing out many levels of

requirements statements, each level addressing the demands of the next level. This

approach to the clarification of requirements is especially appropriate in the case of non-

functional requirements (such as flexibility, robustness, reusability, maintainability),

where initial requirements can be difficult to make precise. A goal-oriented approach

would allow the requirements to be refined and clarified through an incremental process.

Chung et al.’s Non-Functional Requirements framework (1999) is a goal- and process-

oriented approach for dealing with non-functional requirements.

Despite the different conceptual analysis models, analysts usually follow the easy,

general structure of an (IEEE) SRS template or a use case specification template, where

they try to organize the discovered requirements according to the general guides and

structure provided in such templates. Since such templates do not provide specific types

49

of functions and data, or any specific methods to form business rules, the RA process

lacks significant specificity. In other approaches, where the main focus is on the use of

NL formalism in IS, Videira and da Silva (2005), Videira et al. (2006) and Rolland and

Proix (1992) mention a few specific types of actions based on verbal types, but they do

not expand on them or match them adequately with IS elements. Also these authors do

not provide categorization of data and functional conditions and how they are connected

to functions.

Our approach differs from the aforementioned approaches by providing predefined

types of functions and specific categories of data and functional conditions to guide the

analyst to analyze adequately the functions, data and functional conditions of an IS. Our

approach also provides heuristics to help the analyst define the business rules derived

from different combinations among data in relation to particular functions. The functions

and data are also grouped and decomposed based on predefined patterns. The proposed

approach is facilitated by the use of NL semantics of verbs, genitive case, adjectives and

adverbials.

We will see in chapter 4 that NLSSRE conceptualizes requirements under the notion

of information object and, based on it, can develop a use-case model, and object model or

a process model.

2.8 Requirements Specification

Requirements Specification is the activity of translating the information organized during

the analysis activity into a document that defines a set of requirements. The software

requirements specification establishes the basis for agreement between customers and

50

contractors or suppliers on what the software product is to do. Two types of requirements

may be included in this document (or in two separate documents). User requirements are

abstract statements of the system requirements for the customer and end-user of the

system; system requirements are a more detailed description of the functionality to be

provided.

The user requirements document should be written in natural language because it must

be understood by people who are not technical experts. However, the system

requirements should be expressed in a more technical way, so as to be more precise.

Nevertheless, it is evident that natural language is often used to write system

requirements specifications as well as user requirements. Specifically, according to a

survey (Mich et al., 2004), 95% of the requirements documents found in industrial

practice are written in common (79%) or structured (16%) natural language. Similar

findings have been reported in an independent survey (Neill and Laplante, 2003),

showing that only 7% of the respondents used some kind of formal language to express

requirements. NL is also the only language that can be assumed to be common to all the

stakeholders. Its use encourages expression and experimentation, which are of paramount

importance in the early stages of the evolution of a specification. The traditional vehicle

of writing system requirements is the IEEE software requirements specification template

(fig. 2.7). The IEEE template is a generic template, with general guidelines to define

different types of requirements through the use of informal natural language. The use

case specification template is also another way of writing system requirements in free

natural language. However, as already mentioned, natural language is inherently

ambiguous and results in poorly defined requirements. Different formal methods, such as

51

structured English (fig. 2.8) or even formal mathematical specifications are much less

preferred and much less frequently used. Writing and analyzing a formal specification

requires high expertise (van Lamsweerde, 2000a). Often, such expertise is not readily

available, and this contributes to the limited use of formal methods in industrial context.

Moreover, even when an expert in formal methods is available, the stakeholders cannot

be expected to be or become experts themselves. Some translation between formal and

informal languages is thus needed, in order to transfer system requirements from a formal

version (e.g., structured English, use case specifications) to another (informal) for user

requirements. This translation itself introduces in the process a new source of potential

errors and delays that may actually make matters worse than they were in the first place.

FIGURE 2.7 HOW TO DEFINE FUNCTIONAL REQUIREMENTS IN THE IEEE SRS TEMPLATE

(SOURCE: IEEE, 1998).

52

FIGURE 2.8 STRUCTURED ENGLISH (SOURCE: SOMMERVILLE, 2010).

As a solution to this problem, the research community has worked on methods based on

semi-formal (or controlled) language requirements. We consider semi-formal natural

language as the most appropriate combination of formality and understandability. Some

approaches, such as Conger’s (1994), use a basic syntax (<Subject> <Verb> <Object>) to

specify requirements, while others use an additional syntactic element (<Subject> <Verb>

<Object> <Complement>), such as in Rolland and Proix (1992). Our methodology goes a

step further involving additional linguistic elements, such as the adverbial adjunct which

53

is related to functional conditions, or the genitive case and the adjective, which are used

to assist in the identification and specification of business rules and data; it also provides

different patterns for writing requirements, according to predefined types of functions

(Create, Alter, Read, Erase, Notify) and the functional roles involved. Furthermore, in

NLSSRE, contrary to other approaches, requirements can be grouped and specified under

one comprehensive function or data object. There are also approaches, such as the one

presented in Ben Achour (1998) that aim to reduce the level of imprecision in

requirements by using a limited number of sentence patterns to specify requirements for a

particular domain. Denger et al. (2002) have also identified natural language patterns

used to specify functional requirements of embedded systems, from which they

developed a metamodel for requirements statements.

2.9 Use case driven analysis

Use case driven analysis (UCDA) has gained a wide acceptance among the many

methods in requirements engineering (Dias et al., 2008), principally because the UC

model—resulting from UCDA—allows functional requirements to be represented in an

informal, easy-to-use style which appeals to technical as well as non-technical

stakeholders of the software under development (Pooley and Stevens, 1999). UCDA

helps cope with the complexity of the requirements analysis process. By identifying and

then independently analyzing different use cases, the analysts may focus on one narrow

aspect of the system usage at a time (Kim et al., 2004). Since the idea of UCDA is

straightforward and use case specifications are usually compact, textual documents

54

written in natural language (NL), the customers and the end users are expected to easily

understand and actively participate in requirements analysis.

Most of the existing approaches attempt to elicit various UC elements, such as UCs

and actors, from existing requirements documents or textual descriptions written in

informal NL. Then, using some rules or patterns and with the involvement of the analyst,

these approaches utilize the extracted elements to feed the UC specification templates and

form the UC diagram. NIBA (Natural Language Requirements Analysis in German)

(Fliedl et al., 2002) is a project that parses requirements documents in German, interprets

and transforms the output of the parser to conceptual pre-design schemas, validates the

schemas and finally generates a conceptual model in UML. Another approach introduced

by Dias et al. (2008) uses fragments to describe different types of interactions that could

form a use case. In this approach, the analyst must first identify the use cases and the

actors by using an initial pre-existing UC model of the IS, and then try to match a set of

interactions, guided by the given fragments, to each use case. Another approach

introduced by Liu et al. (2004) uses an NL parser on a document written in informal NL

including stakeholders’ requests, to identify use cases and actors and write UC elements

as specific NL statements. The analyst has to be involved in the identification process

because the parser cannot be considered reliable, due to the nature of the initial

requirements document. Then, based on specific NL use case schemas, the NL statements

feed a predefined use case specification template. Comparing to the proposed

methodology, all these approaches do not provide:

55

(i) a reliable outcome, since NL requirements documents are full of ambiguity,

vagueness as well as inconsistency, and therefore the identification of the UC

elements from such documents often results in a poorly defined UC model.

(ii) the capability for complete automation of the procedure from the stage of UC

elements identification to the creation of the UC model, since the analyst’s

involvement is required to identify or clarify the final set of UCs and Actors.

Therefore, the informality often present in the initial requirements documents

hinders the use of automated tools for system modeling, since informal NL is

inherently complex, vague, and ambiguous; and

(iii) a time-saving process for identifying the UC elements and developing the UC

model, again due to the difficulties resulting from the existing requirements

documents.

Other approaches that do not use pre-existing requirements documents but instead

apply a manual, labor-intensive task, with the use of open-question interviews which lack

specificity and formality, as already mentioned in previous sections, lead also to answers

and requirements documents with ambiguities and redundancies (Gervasi and D. Zowghi,

2005); these approaches rely on the analyst’s expertise to organize the requirements

correctly and match them to the various UC elements of a UC specification template.

In using UCDA for requirements specification, we see many drawbacks to describing

a use case using informal natural language, as recommended by Jacobson (2004) and

Booch et al. (2005). Although the use of natural language facilitates communication

between the analyst and the domain expert, natural language, used in its free, informal

style, increases the risks of ambiguity, inconsistency and incompleteness of the use case

56

description/specification. In order to avoid these typical problems with natural language,

it is important to use a structured analysis model or a formal technique for such a

description. In the relevant literature, some structured techniques for the description of

use cases have been proposed. In Eriksson et al.’s work (2004), a tabular representation is

used, and in Leite et al.’s (1997), a structured natural language is presented to describe

the use cases. These structured representations provide a generic formalization of the UC

specification template, hence not a clear formalism of the use case specification elements,

and especially the transaction flow actions. Ochodek and Nawrocki (2007) provide a

semi-formal NL representation of transaction flow actions, however this formalism is still

generic and does not cover completely all the possible transaction flow actions and the

use case elements (e.g., actors) involved in each action. Some formal techniques such as

grammars (Hsia et al., 1994) or statecharts (Glinz, 1995; Seybold et al, 2006)) have also

been introduced for the description of use cases. Although such formal representations

facilitate formal analysis, they are difficult for analysts and users to understand and use.

In our opinion, use cases must be described using a semi-formal form of NL, because

such a form may be (a) understandable by both users and analysts, (b) semantically rich

enough so that all pertinent description of the use case can be taken into account without

any ambiguity, and (c) implementable.

2.10 Requirements Engineering CASE Tools -NALASS

While it is hard to automate requirements written in free NL, due to NL’s inherent

complexity, vagueness and ambiguity, it is much easier and straightforward to automate

requirements written in formalized NL. Therefore, we have developed a CASE tool that

57

automates a large part of the RE process by implementing the steps of the NLSSRE

methodology. Current software tools, both in general and in the context of Natural

Language Requirements Engineering (NLRE), are mainly limited to document parsers

that can be used in various activities such as traceability, verification and prioritization of

requirements, or even automated extraction of requirements from NL requirements

documents. Abstfinder (Goldin and Berry, 1997) is based on the use of pattern matching

techniques to extract abstractions (stakeholders, roles, tasks, domain objects, etc.) The

frequency with which the abstractions occur within the text is taken as an indication of

the abstractions' relevance. Fabbrini et al. (2001) and Lami et al. (2005) propose an

automatic evaluation method called Quality Analyzer of Requirements Specification

(QuARS) to evaluate quality in software requirements specification. This work developed

a tool that parses sentential requirements written in Natural Language (NL) to detect

potential sources of errors. COLOR-X [Burg 1997; Moreno 2001] and Circe (Ambriola

and Gervasi 1997, 2006) parse a set of structured requirements in natural language to

generate specific models (ER, DFD, OO design, etc.) The common characteristic of these

and other related parsing tools is that they are mostly used and applied to pre-existing

documents with disorganized text, redundancies and ambiguities. As a result, the retrieval

approach is not particularly reliable, as explained earlier in this section. Other tools, such

as the one reported by Kassel and Malloy [2003], are not parsers and offer the user the

capability to enter the requirements from scratch, but they also lack specific types of

questions (for RD) linked to the identification of data, functions and business rules of an

IS. More generic tools such as Rational Rose (IBM Rational Rose) and MagicDraw

(MagicDraw) provide significant capabilities for drawing diagrams and even generate

58

code from software models but not adequate facilities for generating textual specifications

– hence, the analysts need to write their project’s SRS using regular text editors and

templates, such as Microsoft Word or LaTex, and the IEEE SRS template (1998),

respectively. There are also some tools that can produce Use Case descriptions and

scenarios, such as DOORS (DOORS) and STORM (Dascalu et al., 2007). These tools do

not generate sufficient plain or semi-formal natural language descriptions, and they are

only applicable to Use Case modeling. Their input also has to be processed first by the

analyst (the analyst has to create the use cases). In a similar way requirements

management tools like CaliberRM (Borland Software Corporation) and RequisitPro

(Rational Software Corporation) provide format based support for the elicitation of

requirements. Many analysts also utilize specific modeling tools to assist the process of

requirements elicitation. These typically have an easy to use graphical or tabular notation.

A number of tools have been developed to support specific requirements elicitation

approaches, however, so far the mainstream software engineering community has largely

not adopted these. Examples include Objectiver (Respect_IT) for goal based modeling and

ART-SCENE for scenario elicitation (Maiden, 2004).

In contrast, our NAtural LAnguage Syntax and Semantics (NALASS) tool implements

the NLSSRE methodology and provides specific predefined requirement patterns,

specific categories of data, functional conditions and business rules, from which a

specific set of questions is automatically derived. The answers to these questions feed the

analysis and specification stages. Additionally, NALASS may be conceived as a

complete toolset that can generate DFDs, Class Diagrams, Use Case specifications and

59

diagrams, as well as a well-structured NL-SRS document that covers the essential parts

outlined by the IEEE SRS template (IEEE 1998).

2.11 Summary and Proposed Methodology

In this chapter we examined requirements engineering and its critical importance as the

first step of the software process. We noted that the RE process varies considerably

depending on its context type and the application being developed. RE for information

systems is significantly different from RE for embedded control systems, or from RE for

generic software services such as networking and operating systems. We also examined a

number of RE process models which provided different perspectives on the application of

RE, and we elaborated on different techniques used for elicitation, analysis and

specification of requirements, most of which use natural language. We also showed how

the NLSSRE methodology compares to the various RE elements. It is observed that the

existing models and techniques do not provide a specific, easily understood formalization

of the major parts of the stages of requirements discovery, analysis and specification, and

these methodologies usually result in requirements documents with ambiguities,

redundancies and inconsistencies. In contrast, the proposed methodology intends to

engineer the correct requirements in a clear-cut, time-saving, understandable and reliable

way. The next chapter will show how NLSSRE formalizes and automates the discovery,

analysis and specification of user requirements for the development of Information

Systems.

60

3 The NLSSRE Methodology

The goal of NLSSRE is a clear-cut formalization and automation of the major activities

of RE, including requirements discovery, analysis and specification. NLSSRE is designed

so that the analyst is guided in advance, through a step-by-step approach, what specific

types of data, functions, business rules and conditions to use and search for, what

questions to ask, in what specific way to analyze the answers to the questions, and how to

write them in a specific formalized way. In this chapter we explain the constituent parts

of the methodology
2

, which are its architecture (underpinning background), its

application steps and techniques, a modeling language for representing requirements and

the software tool that automates the entire process. The latter is also presented separately

in chapter 5.

3.1 Architecture

The structure and the formalization of the methodology draw from two elements. First, as

illustrated earlier, if we know what kind of functions, data, functional conditions and

business rules we look for (RA process), as well as what syntax we will use to specify

them (RS), then we will be able to derive efficiently the relevant questions to ask (RD

process). The answers to the questions will subsequently feed the processes of RA and

RS. Second, the other element that facilitates formalization is the use of semantics and

2Chalmeta and Grangel [2008] define the constituent parts of a good methodology in a relevant domain.

61

syntax of NL. Figure 3.1 shows how the two aforementioned elements are used to

formalize and build the methodology
3
.

FIGURE 3.1 ARCHITECTURE OF THE NLSSRE METHODOLOGY, IN TERMS OF STRUCTURE

AND FORMALIZATION.

For requirements analysis, data analysis is facilitated by the use of semantic types of

the genitive case, other grammatical cases, nouns, adjectives and adverbials
4
; the types of

functions are determined with the use of semantic types of the verb of the linguistic

sentence; business roles are mainly linked to the use of semantic roles of subject and

3Additional elements which facilitate the RE process such as relevant principles, methods and techniques are incorporated into

NLSSRE as illustrated in Table 3.1.

4Adverbials are also used for the prioritization of requirements, which constitutes a non-functional requirement. Non-functional

requirements are not yet covered completely by the NLSSRE methodology.

62

indirect object of the sentence; analysis of functional conditions (also called functional

adjuncts), which refer to the circumstances within which a function is performed, is

facilitated by the use of adverbial adjuncts; and finally, business rules, which define or

constrain some aspects of the business by describing the behavior/reaction of people and

data through their relationships, are derived from relations (combinations) between

attributes of data entities (business roles and data objects). For requirements specification,

functions, data, functional conditions and business rules are written as formalized

sentences (hereafter denoted as Formalized Sentential Requirements or FSRs), according

to predefined patterns which are derived from the syntax of the linguistic sentence. FSR

patterns, business rules and types of attributes are used to derive questions (RD process),

the answers to which produce the complete FSRs (including also detailed FSRs which

incorporate the business rules). Finally, specific transformation rules are utilized to

process the complete FSRs and attributes to derive diagrammatic notations such as DFDs,

UML class and use case diagrams, as well as use case specifications and the SRS

document. All these are illustrated in detail in each step of the methodology in the next

sections.

Before proceeding to the description of the application steps, it is necessary to

introduce and describe the meaning of the Information Object (IO), which is a

fundamental element of NLSSRE.

3.2 Information Object

Our world consists of either tangible objects (those we can feel by using our five senses,

e.g., book, chocolate) or intangible objects (e.g., examination, order).

63

An Information Object (IO) is defined as a digital representation of a tangible or

intangible entity—described by a set of attributes—which the users need to manage

through Creating, Altering, Reading, and Erasing its instances, and be Notified (CAREN)

by the messages each instance (IOi
5
) can trigger.

Therefore each IO is composed of the CAREN functions and a set of attributes, which

are discussed in steps 3 and 4 of the methodology, respectively. NLSSRE also provides a

number of categories of information objects: business role (as animate entity, e.g.,

doctor), inanimate entity (e.g., car), procedure (e.g., translation), document (e.g., book),

event (e.g., appointment), site (e.g., country, hospital),and state (e.g., disease). These

categories guide the analyst how to identify and manage the IOs, as will be described in

steps 1 and 4 later on. Distinguishing IOs is a critical issue in requirements analysis and

has not been examined yet adequately in the literature
6
. By making this distinction, we

will be able to better organize the elements of the IS and their relationships. Additionally,

for the identification and analysis of the IO attributes, NLSSRE provides a number of

categories of attributes that must be linked to each category of IO, as will also be

discussed in step 4.

5 An IO is conceived and processed at an abstraction level, while an IOi is conceived and processed at a factual level. Instances of the

same IO differ only in the values of their attributes.

6 It is out of the scope of this dissertation to discuss the existing literature on identifying objects. The general conclusion is that the few

approaches [Bailin, 2002; Coad & Yourdon, 1990; Shlaer& Mellor, 1992,Song et al., 2005] dealing with this issue examine object

identification by relying on concepts and principles at the OO programming level and not at the requirements analysis level. A good

endeavor is provided by Iivari[1991], however, like the other approaches, it does not provide adequate guidelines for the identification

of objects during requirements analysis.

64

IOs and their correct identification are fundamental concepts in our methodology,

since, as already briefly illustrated and as we discuss later on, functions (CAREN),

attributes (data), functional conditions and business rules of the system are grouped and

formalized in relation to the IOs.

3.3 Methodology Steps

The NLSSRE methodology is divided into a series of steps. Table 3.1 below presents the

methodology application framework including the steps of the methodology, and the

activities, means and techniques, tool support and expected results of each step.

TABLE 3.1 SUMMARY OF THE METHODOLOGY STEPS, ACTIVITIES, METHODS AND

TECHNIQUES USED IN EACH STEP, THE EXPECTED RESULTS OF EACH STEP, AND TOOL

SUPPORT.

METHODOLOGY APPLICATION FRAMEWORK

STEP 1. COLLECT THE CANDIDATE INFORMATION OBJECTS

Activities

a. Identify roles and users

b. Collect information about items exchanged between users of each role

c. Categorize information/items according to the IO categories

Means and Techniques

 Summarized descriptions of

each user’s work

 Data flow questionnaire

 Data flow table

 Document sampling, brief

discussions

 IO Categories

Expected results

 List of candidate

Information Objects

NALASS Tool

support



STEP 2. IDENTIFY THE INFORMATION OBJECTS

Activities

For each Candidate Information Object:

a. Apply a set of given rules to determine if it is an Information Object

b. Categorize Information Objects according to the IO categories

Means and Techniques

 IO identification guide

 IO categories

 Questions

Expected results

 List of Information Objects

NALASS Tool

support



STEP 3. DEVELOP FSRs FOR EACH INFORMATION OBJECT

65

Activities

For each IO:

a. Apply CAREN functions and their sub-functions

b. Specify the IO, its CAREN functions, the involved functional roles and functional

condition types, in the form of formalized sentential requirement (FSR) patterns

c. Make questions, derived from FSRs, to find the business roles and values for functional

conditions

d. Specify complete FSRs, based on the answers received for each FSR pattern element

Means and Techniques

 CAREN guide

 FSR patterns

 FSR questions

Expected results

 4 complete FSRs for each

IO (incl. CAREN

functions, business roles,

functional conditions)

NALASS Tool

support



STEP 4. DEFINE ATTRIBUTES FOR EACH INFORMATION OBJECT

Activities

 Identify attributes for each IO, based on their category and the category of the IO

 Make specific questions to the user to confirm the attributes and derive new ones

Means and Techniques

 Categories of attributes

 Categories of IOs

 Questions

Expected results

 Attributes for each IO

NALASS Tool

support



STEP 5. DEFINE BUSINESS RULES AND DEVELOP DETAILED FSRs

Activities

For each FSR of an IO:

a. Make combinations with attributes of the involved business roles and of the IO

b. Make questions based on the abovementioned combinations

c. Specify business rules in the form of detailed FSRs

For each IO:

a. Make combinations between attributes of the IO per se

b. Make questions based on the abovementioned combinations

Means and Techniques

 Detailed FSR patterns

 Questions

Expected results

 A number of business rules

for each FSR of each IO

NALASS Tool

support
Under development

STEP 6. CREATE SRS DOCUMENT AND SEMIFORMAL MODELS (DFDs CLASS &

USE-CASE DIAGRAMS)

Description

Use specific transformation rules to transform the IOs, complete FSRs, complete detailed FSRs

and business rules, and attributes into an SRS document, Use Case model, Class diagrams, and

Data flow diagrams.

Means and Techniques

 SRS template

 Use Case (UC) Spec. template

 Transformation rules

Expected results

 SRS document

 UC diagrams

 UC specifications

 Class diagrams

 Data flow diagrams

NALASS Tool

support



66

3.3.1 Collect the candidate Information Objects

The main aim of the first step is to collect the candidate IOs through a short

(preferably in a single meeting) interaction with the users. The user group includes the

following types: (i) end-users who use the system in an operational sense and interact

directly with it; (ii) business users who are interested in the system’s functions and output,

as support for achieving their business objectives; (iii) managers who are responsible for

the strategic use of IT in their business unit and for the overall strategy of the

organization and the way information systems can both support and enable the strategy;

(iv) customers who are external users that use the system to buy/utilize products and

services, or search for information related to products; (v) information users who are

external users that use the system not to buy anything but mainly to be informed or

provide information about other system users or entities (a patient’s relative in a hospital

IS is an example of such a user) ; (vi) trusted external users who have a particular

relationship with the organization and may be given specific privileges in the system

(suppliers are examples of such users); and (vi) Shareholders who are external users that

have invested in the organization and have financial interest (Avison and Fitzgerald,

2003). In NLSSRE all users need to be involved in the requirements engineering process.

Specifically and in order of importance, end-users, customers, trusted external users and

information users are involved in functional requirements, data requirements, constraints

and business rules (steps 1–5), whereas business users, managers and shareholders are

mostly involved in the business rules and quality attributes such as non-functional

requirements, as well as in the approval of the SRS document (steps 5 and 6).

67

We have previously mentioned that IOs usually fall in the categories of business roles
7
,

physical entities, procedures and documents (also sites and states). In a manual or semi-

automated IS, information describing entities which fall in the abovementioned IO

categories—therefore such entities are candidate IOs—can be found in items exchanged

between system users, such as documents (e.g., forms, reports, orders), queries/feedback

(e.g., advice request), and physical items (e.g., book). Therefore, to collect the

information about the exchanged items, we introduce and propose the use of the Data

Flow Table (as shown in the Hospital Information System (HIS) example
8
 of Table 3.2—

for simplification the table shows only the candidate IOs, and the other related data has

been removed), each cell of which includes the data, denoted by noun phrases, describing

the items sent and received between any two users of the system. Each user has a

business role in the system, and the analysts should receive information from a sufficient

number of users of each business role. Therefore, we need to first identify the business

roles and then utilize them to create and fill the data flow table; the identification of

business roles is done by examining descriptions written down by the users about their

everyday work, duties and responsibilities. As shown in the table, business roles in the

leftmost column are the senders and business roles in the uppermost row are the receivers.

The analyst must facilitate the process of eliciting the information describing the

exchanged items, with the use of specific questions to the users, which contain verbs

denoting the different forms of the transmission, such as send to (could respond to

7 The role each user has in regard to the business context the user is involved.

8Through the dissertation, to support clearly our arguments, we provide examples taken from the application of our approach on a

sample case study: the development of a hospital information system.

68

transmitting electronic or paper information), give to (physical/material data

transmission), say to (vocal data transmission), and show to (visual data transmission).

Table 3.3 shows the first part of the questionnaire, which concerns the transmission of

documents (the other two parts concern the transmission of physical objects and queries –

see Appendix A). As previously mentioned the information describing the exchanged

items is denoted by noun phrases, because it concerns entities, either tangible or

intangible. However, there are a few cases where verbs can also lead to candidate IOs.

For example, the verb order derives the noun order which can finally become an

intangible IO that denotes a procedure. Similarly, the verb examine in the sentence “The

doctor examines the patient” can lead to the candidate IO Examination. Hence, in order

to receive the richest information possible, beyond the use of the summarized everyday

work descriptions and the data flow table, the analyst may also use complementary

techniques, such as small discussions targeting the creation of a broad view of the users’

work, as well as document sampling.

The list of candidate IOs for our indicative example of table 3.2 includes: the doctor,

pharmacist and patient, as business roles; the drug as an inanimate object; the

examination, treatment, diagnosis, and payment, as procedures; the patient record,

insurance, x-ray, invoice, receipt, and prescription, as documents; the appointment as an

event, and the blood as an animate entity.

69

TABLE 3.2 DATA FLOW DESCRIBING EXCHANGE OF ITEMS BETWEEN USERS. THE TABLE

SHOWS INDICATIVE DATA COLLECTED DURING THE DEVELOPMENT OF THE HIS.

 Doctor Pharmacist Patient

D1 D2 … P1 P2 … Pa1 Pa2 …

D
o

ct
o

r

D1 Knowledge

request,

Patient

 Drug stock

check request

Drug stock

check

request

 Prescription,

Diagnosis,

Treatment

Examination,

Filled

Insurance

Patient Record

D2 Knowledge

feedback,

Patient

 Drug stock

check request

 Examination,

Diagnosis,

Treatment

Examination,

X-ray,

Appointment

…

P
h

ar
m

ac
is

t

P1 Drug stock

check update

Drug stock

check update

 Knowledg

e request

 Invoice,

Receipt,

Drug

P2 Patient drug

report

 Drug

…

P
at

ie
n

t

Pa1 Personal and

medical info

Patient record

 Patient ID

card,

Prescription,

Payment

 Blood

Pa2 Insurance Patient Record,

Examination

…

TABLE 3.3 A PORTION OF THE FIRST PART OF THE REQUIREMENTS DISCOVERY

QUESTIONNAIRE ADDRESSED TO A REPRESENTATIVE NUMBER OF USERS OF EACH ROLE

OF THE IS.

Part I. Documents

1. What documents, in electronic or paper form (e.g., forms, receipts, reports),

which you create from scratch or change/complete after the recipient or

someone else created them, do you send/ give/ show to RolerUseru,r?
*

a. in person

b. through another person or service

c. electronically (e.g., e-mail, internet)

Auxiliary questions:

 Do you give / send / show any documents to RolerUseru,r?

 Do you write any documents for RolerUseru,r?

 Do you sign any documents for RolerUseru,r?

2. What documents, in electronic or paper form (e.g. forms, receipts, reports),
which you modify/ complete after the recipient or someone else created
them, and/or asked you to modify/ complete them, do you send/ give/ show

Sender

Receiver

70

to RolerUseru,r?
a. in person
b. through another person or service
c. electronically (e.g. e-mail, internet)

Auxiliary questions:
 Do you modify any documents for User1..n with Role1..m?

3. What data are or should be included about the document’s
a. Creator?
b. Author?
c. Purpose?
d. Recipient(s)?
e. Communication channel?
f. Form?
g. Other people (e.g. users) that should be notified about the creation or

modification of the document?
h. Procedure (s) mentioned in the document or related to the ones

mentioned in the document?

4. What feedback (vocal or written) do you receive from the recipient, after you

send the document to him / her?
a. Does s/he make any change and send it back to you?

5. What initiates the sending procedure?

a. A request (written or vocal) from the recipient?

b. A request (written or vocal) from another user?

i. What is the role of this user?

6. Can you provide a copy of each aforementioned document?

Note for the Requirements Engineer: The above set of questions should be addressed to the

same user but from the perspective (role) of him/her being a receiver.

* where p is the number of roles, and nroler
 where

nroler

is the

representative number of users of the Role r, excluding the user being asked.

3.3.2 Identify the Information Objects of the new IS

Within this step specific guiding rules are used to define the actual Information

Objects of the new IS, from the list of candidate IOs collected during step 1. The guiding

rules, such as the ones indicated below, are related to the definition of the IO, and so they

use the notions of CAREN functions and the IO categories, and they need to answer the

question “When do we need to create, alter and store this candidate IO?”

71

(1) When the tasks of Creation, Alteration (mainly), or Transfer of Possession
9
 of an

instance of this candidate IO cause the creation or change of instances of other IOs.

Some examples follow:

(a) The creation of a new Patient IO instance in the IS causes the creation of instances

of other IOs, such as a Prescription IOi (IO instance) and a Payment IOi. Therefore

Patient is an IO.

(b) For a Patient IOi, the alteration of the value of its attribute temperature causes the

creation of instances of other IOs, such as an Examination IOi, a Diagnosis IOi,

and a Prescription IOi. Therefore Patient is an IO.

(c) In a Bookstore IS, the action of transfer of possession of a book (it actually

corresponds to the sale of a book, and to the alteration of the attribute Status of a

Book IOi, from in stock to sold), from the Bookstore (sender) to the Client

(receiver), causes the creation of instances of other IOs, such as a Payment IOi, a

Delivery IOi, and a Book Order IOi from the supplier. Thus Book is an IO.

(2) When the Candidate IO has the role of Creator / Modifier / Sender or Receiver in a

task of Creation, Alteration or Transfer of Possession
10

, respectively, which (the task)

causes change (including creation) of the same IO or other IOs. Examples follow:

9Refers to objects that must keep their physical nature (beyond the computerized one) after the implementation of the new

computerized IS. Examples include a book and a car, and counter-examples include a prescription and a receipt. Transfer of

Possession is conceived electronically as an action of Alteration, since it changes the State of an IO (e.g., for Book: from In Stock to

Sold).

10In this case, each role has a responsibility according to the nature of the activity it is part of, e.g., the Creator has the responsibility of

the creation of an IO.

72

(a) For the Bookstore IS, a Supplier, in the role of the Sender, sells books to the

Bookstore Stock-keeper who is the Receiver. This transaction causes instances of

other IOs to be created such as a Supplier’s Payment IOi and one or more Book IOi

corresponding to new books acquired by the bookstore. Therefore Supplier and

Stock-keeper are IOs.

(b) For the Hospital IS, a Doctor, in the role of the Creator, creates a Prescription IOi.

This creation also triggers the activity of giving drugs to a patient, and so it causes

a change of a Drug IOi. Therefore Doctor is an IO.

A counter-example to the above occurs between the Bookstore IS and the Maker-

Company of the Pen. Since the latter does not supply (send) the pens to the

Bookstore directly (they are supplied through a particular Supplier), it does not have any

direct interaction with the IS, and so it is not considered an IO of that IS.

Documents which are collections of attributes of other IOs, such as a report or a

notification, which are created automatically by the system, are not considered to be IOs,

as a rule of thumb. However, there could be, for example, the rare case where a business

sells its reports. In this case the report falls under rule (1) example (c) and thus would be

considered an IO.

3.3.3 Develop FSRs for each Information Object

The previous step was concerned with the identification of the Information Objects. This

step involves the application of specific (CAREN) functions on every IO, as well as the

written specification of requirements in the form of formalized sentences (Formalized

Sentential Requirements—FSRs) composed of the IO, its CAREN functions, the involved

73

business roles and the functional conditions. NLSSRE provides specific FSR patterns,

from which our methodology guides the analyst to derive specific questions to find the

business roles and functional conditions; the answers to these questions help to form the

complete FSRs. Therefore, we note that writing the requirements as formalized sentences

not only helps to make expression of requirements more disciplined, understandable and

organized, but it also leads to the identification of entities—the business roles and

functional conditions—that are involved during the application of a CAREN function on

an IO. Furthermore, such formalization makes easier the transformation of requirements

into diagrammatic notations and specifications. Figure 3.2 below shows CAREN, the

proposed set of functions with their sub-functions, which are part of every IO
11

.

FIGURE 3.2 CAREN - A RECOMMENDED SET OF FUNCTIONS AND SUB-FUNCTIONS APPLIED

ON AN IO, AND THE NOTIFICATIONS PRODUCED.

Create, Alter, Read, and Erase are the main functions of the IO, while Notify is

applied (triggered) after the creation, alteration, reading or erasure of an IO instance. We

need to clarify that we use functions at the system level, which are the functions the

11The functions are derived from the study of semantic roles of NL verbs by relating them to electronic information and existing IS

literature.

Create IO

-Read

- Enter Data

-Compare

- Save

Alter IO

- Read

- Delete

- Enter Data

- Compare

- Save

Read IO

Erase IO

- Compare

- Remove

Notify

74

system provides to the users to fulfill their needs (what the system will do). In contrast,

we do not focus on programmer’s level requirements, that is, how system functions will

be designed and programmed. The programmer’s requirements will be defined at a later

stage of the software development cycle, based on the users’ requirements from the

perspective of the system (product). For example, a system-level user’s requirement is to

be able to alter or read/view some particular data. However, the way with which these

functions/tasks will be implemented, including retrieval and search methods/functions, is

outside the users’ requirements. We neither focus on abstract-level requirements, which

include the users’ perspective about the functionality of the system.

The formalization concept is more easily applicable to the system functions, because

they are applied on electronic information, while it is hardly applicable to the user level

functions, due to the complexity of the business environment, in both size and

terminology. For example, the function Enroll in Seminar, which may be implemented as

a system or a business function, is formalized and represented in our approach through

the system Information Objects Enrollment and Seminar. The IO Enrollment includes the

system functions Create, Alter, Cancel, Erase and Read Enrollment. The IO Seminar

includes the system functions Create, Alter, Cancel, Erase and Read Seminar.

Information about Seminar will be part of the IO Enrollment (e.g., seminar id is used

when creating or altering an enrollment) similarly also to provided information about the

student who participates in the enrollment. Student will be also a different IO.

What the analyst has to do within this step is to write, in the form of an FSR, each IO,

its CAREN function that corresponds to the class of that particular FSR, the business

roles (that replace the functional roles—explained later in this section—of the FSR

75

pattern) involved during the application of each CAREN function on the IO, and the

functional conditions that denote the circumstances within which a function is performed.

In particular, NLSSRE provides four FSR patterns which include all the aforementioned

elements, and each pattern corresponds to a CAREN function. The Notify function is

specified as a supplementary formalized sentence of each FSR. Figures 3.3 (a) and 3.3(d)

provide examples of FSRs, in their pattern and complete forms
12

 respectively, stemming

from a real case example. Before we expand on the FSR syntax and its constituent parts

by providing relevant definitions and description, we will first give a short description of

each FSR’s CAREN function which is the core of the FSR pattern.

Create is the most significant function, because during its execution the attributes of

an IOi take their initial values; these values are then processed by the other CAREN

functions. Create is decomposed to the sub-functions Read, Enter data values, Compare

and Save. Read is the sub-function that presents, through a particular layout, the

attributes—required and optional—of the IO which need to be initiated. After the entry of

the data values, the compare sub-function will check if each value to be assigned to each

IO attribute satisfies the relevant data constraints and possible business rules (discussed

in step 5) pertaining to that attribute; Save then stores the approved values (comparison

and saving also produce notifications regarding the success or failure of their action). For

example, for the creation of a Translation IOi, first the user will read (view) the attributes

that constitute this IOi (e.g., number of words, source language, target language, time of

delivery), then s/he will enter the values for these attributes, and then the system will

12A complete form of an FSR is when the constituent elements of the FSR take their values (e.g., Creator takes the value Doctor)

76

compare the values entered with relevant constraints and possible business rules. An

example may be: “For each entered value for the attribute number of words, the system

will compare it with the standards indicated by the data constraint ‘Number of words is a

positive integer’, and with the business rules ‘Comma is the thousands separator and

period is the decimal separator’, and ‘A translator can translate 2,000 words per day’. If

both the constraint and the business rules are satisfied (e.g., number of words = 5,230 and

time of delivery = 3 days), then the new Translation IOi will be saved, otherwise a

relevant warning will be given by the system.”

Alter: During the execution of this function, the existing values of the attributes of an

IOi are changed. A significant attribute that changes during alteration of an IOi is the

attribute State. When the IO corresponds to a procedure (e.g., examination) or event (e.g.,

appointment), the State value may change from Start to Ongoing/ Pending to Finished/

Completed or Cancelled, or even Expired or Archived; when the IO is an inanimate

physical object (e.g., book, drug) then State may change from InStock to Sold/Lent, and

when the IO is an animate object State usually takes values according to the IOs business

role (e.g., Student IOi State may be new, studying, graduated, suspended, or Patient IOi

State may be ill, under treatment, cured); and when the IO corresponds to a document

(usually in electronic form, e.g., prescription, voucher), State may take values such as

stored, archived, cancelled, edited/reviewed or retrieved. The change from one state to

another (e.g., from Pending to Complete), for a particular IO, often derives a new

alteration function, such as Cancel, Complete, etc. However, if the change of state does

not justify the existence of a new alteration function, it should be represented through

additional sub-functions under the CAREN functions Alter or Create.

77

When a change of state occurs, we should check what new pre-conditions, post-

conditions are created and what new end users are involved in the execution of the new

derived function or—in the case of representing the change of states as sub-functions—

the existing Alter and Create functions. Usually when the change of state of an IO results

in significantly different pre-conditions or post-conditions, or results in new sub-

functions than those provided by the Create or the basic
13

Alter function, we recommend

to represent this self-contained information (conditions, sub-functions) as a new function.

For example, cancelling an appointment, results in a different post-condition than the

post-condition resulting from the normal execution of the function Create Appointment,

which is to complete the appointment. In particular, by cancelling an appointment, the

State attribute of the IO Appointment will change to ‘cancelled’, and this cancellation

should create the post-condition “new empty schedule time slot”. Therefore, we should

consider Cancel Appointment as a new function. Similarly, completing a prescription

derives the precondition that “Drug is given to patient” comparing to the basic function

Alter Prescription which has the precondition “Prescription is created”. Completing a

prescription is also performed by a different end user (pharmacist) at a different place

(drug store) than the end user (doctor) that initiates the Create and Alter functions of the

prescription IO, at the hospital or clinic. Therefore, we should consider Complete

Prescription as a new function. We may also conceive Erase, described below, as a new

13 To distinguish the Alter CAREN function from its related functions derived as a result of change/alteration of state, we sometimes

call it “basic Alter function”. Additionally, for simplicity, we call the related functions (e.g., Cancel, Complete) “Alter-related”

functions. In some situations when we refer to the Alter function or Alteration function, we also mean the alter-related functions.

78

function, where new post-conditions might be “IOi is archived” or “IOi is removed

completely from the system’s databases”.

Read: The meaning of this function may be conceived in two ways: the first, which is

the one that concerns requirements analysis, is about what a user wants to read regarding

a particular IO per se or from its relations with other objects. It mainly concerns the

presentation (optical or acoustical) of notifications and forms regarding the IO per se (e.g.,

Appointment form), or the presentation of reports of the IO with related objects (e.g.,

report of a patient’s monthly appointments). The second concept for Read concerns the

way the data will be presented, including drawings, graphics, video, multimedia, etc.; the

first meaning of this concept falls in RE, but the detailed procedures of implementing

methods of presentation concerns the Design which is outside of the scope of RE.

In particular, there are different types of information to be read, and this information is

represented based on its type, as follows:

a. Information to be read only by end-users. Usually, information is confidential,

and the system users need authentication to read it. We distinguish two types of

information:

i. Forms: IO forms usually need to be read when an end-user creates a new

IOi or changes the state of an existing IOi. The reading procedure for the

alteration functions (Alter, Cancel, Complete, etc.) includes retrieving and

checking the existing information about an IOi, from the database, in

contrast to the reading procedure for the Create function, which only

concerns building a form of required and optional empty fields, and thus it

79

is much simpler in structure.

Read may also be executed independently, when the end user needs to

read information from an existing IOi form, e.g., a pharmacist wants to

read a prescription.

ii. Reports: reports of the IO per se (intra-reports) or of the IO in relation

with other entities (inter-reports). Examples of such reports may be about

appointments completed over a specific period (an intra-report, since it

involves only the IO Appointment—time is an attribute of the IO

Appointment), and appointments for a particular patient (an inter-report,

since it involves two IOs, Appointment and Patient). The function Read IO

intra-report is part of the IO, while the function Read IO inter-report may

still be part of the IO (e.g., Read Patient History, which is a report

involving information related to the IO Patient from various IOs, such as

Examination, Diagnosis, Prescription and Treatment, may be considered

part of the Patient IO) or of a more general Report IO, because inter-

reports may be used by different functions of different IOs.

Usually Read functions about reports, and especially the inter-report type,

are useful for the execution of functions of other IOs. This relationship

usually occurs when an end-user creates or alters an IOi, and so the end-

user may need to read information about instances of other IOs, related to

the IOi the end-user creates or alters. For example, when a doctor (end-

user) creates or alters a prescription (IOi), s/he may need to read

information about the patient related to the prescription. If the information

80

is large and involves other IOs, then it should be a different function, such

as Read Patient History, which it involves information about examination,

treatment, prescription, etc., for the patient. Patient history is a report and

not considered as a different IO. Reports are created automatically by the

system. Reports do not need to be stored.

b. Information which is usually not important enough to be processed by or stored in

the system. This information refers usually to notifications produced by functions

(e.g., Create Prescription sends notification to the patient that the prescription is

created) for the end-users (e.g., Doctor for the function Create Prescription) who

executed the specific, or for notifiee users (explained in detail later) who simply

need to be informed to maybe make an action outside the system (e.g., patient

goes to pharmacy after receiving notification that the prescription is created), or

for intended recipients (which are also explained later) that need to be notified in

order to make an action within the system, as a result of the execution of the

function that triggers the notification (e.g., pharmacist who needs to be notified

about Creation of a Prescription in order to provide the drug to the patient and

thus to complete the prescription).

Erase: Erasure of an IOi means that the IOi is permanently deleted. All of the

particular information in that IO instance regarding attributes and functions that exist in

the context of the IS is deleted. Erasure usually occurs when the end-user does not need

to keep an IOi in the system anymore. However, at system/database level, the erased IOi

may be stored at a separate place/database server.

81

Notify: At the user level, in a manual, paper-based IS, we encounter the transmission

function (from the linguistic verb of transfer of possession), where data is sent from one

entity to another. For example, the Doctor gives the Prescription to the Patient, and the

Patient gives the Prescription to the Pharmacist. In a computerized IS the transmission

of prescription is replaced by the Read function, since the IO (Prescription, in this case)

is already stored (after its creation or alteration) in the IS. Therefore, the Pharmacist can

Read the Prescription IOi by simply retrieving it from the database. However, in a

computerized IS, transmission exists at the messaging level, which we call Notification.

In particular, when an IOi is created or altered (or even read), then a notification should

be sent to the interested parties which are classified into two groups, as explained earlier:

the Intended Recipients (IR) who will have to take an action within the IS as a

consequence of the creation or alteration of the IOi (e.g., a Pharmacist is the IR of a

Prescription IOi, because, after its creation, s/he will utilize it to create a Drug IOi), and

other entities who just need to be informed about the creation or alteration of the IOi,

these are, Notifiees (e.g., patient in the Prescription IOi example) or the end-users who

created or altered the IOi.

After describing each CAREN function, we now proceed to illustrate how we will write

together, in the form of FSRs, each identified IO, its CAREN functions, the business roles and

functional conditions involved.

Definition 1. A formalized sentential requirement pattern

 〈 〉〈 〉〈 〉〈 〉 〈 〉〈 〉

82

is a structured, semi-formal way of writing a requirement of an IS, based on the basic

syntactic form for writing a sentence in natural language, that is, <Subject> <Verb>

<Object><Adverbial>. It contains a CAREN function F which acts on the Information

Object IO; the animate (or system) entity group Subject S that refers to either the doer(s)

or the experiencer(s) of the function, the animate (or system) entity group Receiver R who

refers to the entities need to be notified about the application of the involved function on

an instance of the IO, and the Functional Condition FC which is a clause that adds further

information about the function, and especially it normally establishes the circumstances

within which the function takes place. The syntax of the notification the execution of F, is

placed after the symbol “::” (a complete example of FSR is given at the end of this

section).

Definition 2. { }

is the CAREN function of the FSR, which creates, alters, reads or erases an instance of

the IO. NLSSRE uses four FSR classes; those are Creation, Alteration, Reading, and

Erasure, which correspond to the Create, Alter, Read, and Erase CAREN functions,

accordingly. Therefore, the FSR pattern of each class contains the corresponding CAREN

function. For example, the pattern of the Creation FSR class is written

 〈 〉〈 〉〈 〉〈 〉 〈 〉〈 〉.

As described previously, each CAREN function decomposes to a set of second level

functions, the most interesting of which is the Compare sub-function, which we present

in step 5 through the discussion on the development of business rules.

83

Definition 3. S(ubject) represents one or more business roles of the IS, which create,

alter, read or erase an instance of the IO in an FSR, depending on the FSR class they

participate. According to the FSR class, each business role of S corresponds to a different

functional role in the FSR pattern. A functional role is the role a business role plays with

respect to the CAREN function of the FSR. For example, in the simplified

 〈 〉〈 〉〈 〉

Assistant is the business role who plays the Creator of an instance of the Appointment

IO. Functional roles can help us derive questions to find the different business roles they

correspond to, and also to find relevant attributes. In particular:

For the Creation FSR pattern: ,

 , 1, 0, ...,,
1

n
Cr Cr Ac mi i i j

i
   



For the Alteration and Erasure FSR patterns: ,

 , 1, 0, ...,,
1

n
Al Al Ac mi i i j

i
 



For the Reading FSR pattern: ,

 , 1, 0, ...,,
1

n
Ex Ex Ac mi i i j

i
 



where:

i. Cr is the business role who plays the Creator functional role by creating an instance

of the IO in a Creation FSR. That means that the Creator is responsible for setting the

values of a number of particular attributes (required and optional) of the IOi. To identify

84

the creator business role in a Create FSR, we may ask the following questions (question

patterns and pattern instances follow
14

):

- Pattern: Who should create an <IO> ?

- Instance: Who should create a Prescription?

- Pattern: Who has the responsibility for the creation of a(n) <IO>?”

- Instance: Who has the responsibility for the creation of a Prescription?

Scr must include at least one creator (only rare cases would have more than one

creators), and it may or may not include one or more accompaniments for each creator [n

and m are positive integers denoting the numbers of creators and accompaniments,

respectively.]

ii. Al is the business role who plays the Alterer functional role by altering an instance

of the IO in an Alteration or Erasure FSR; in particular the Alterer replaces the old values

of the attributes of the IOi with new ones, or erases an IOi, or the alterer adds new values

to the optional fields of the IO which were left empty during the creation of an IOi (e.g.,

Doctor is the alterer in the FSRs Alter Prescription or Cancel Prescription, when the

doctor alters the value of the attribute dosage in the former FSR, and when the doctor

alters the value of prescription state from pending to cancelled, in the latter FSR). In

another example, the pharmacist is the alterer in the FSR Complete Prescription, since

the pharmacist alters the value of prescription state from pending to completed. To

14 instances are taken from the HIS case study

85

identify the alterer business role in an Alter FSR, we may ask questions based on the

following patterns:

- Pattern: When do you need to change an <IO>?

- Pattern: What changes do you need to make?

- Pattern: What states can this <IO> have? (different types of IOs have different

types of states, as mentioned in step 3)

- Pattern: Who changes an <IO> from the <state A> state to the <state B> state?

Sal must include at least one alterer, and it may or may not include one or more

accompaniments for each alterer [n is the positive integer number of alterers, and m is the

positive integer number of accompaniments].

iii. Ex is the business role who plays the Experiencer by receiving a sensory

impression from viewing or listening to structured or collected information (e.g., reports)

about the IO per se or about the IO and other related entities (e.g., Doctor or Pharmacist

are experiencers in an FSR Read Prescription.) To identify the experiencer business role

in a Read FSR, we may ask the following questions (instances are taken from the HIS

case study):

- Instance: Who needs to read the daily appointments report?

- Answer: Doctor (experiencer) and Secretary.

- Pattern: Who needs to read an <IO> after its creation?

- Instance: Who needs to read a prescription after its creation?

- Answer: Pharmacist.

86

An experiencer (as also a creator or an alterer) initiates the Read FSR. S/he usually

needs authorization to initiate the Read FSR (the Read function actually) because this

type of FSR mainly handles information within the system. On the other hand,

stakeholders who are only notified about the result of an FSR (e.g., when a prescription is

created, the patient should receive a notification), they only read a relevant notification,

without usually being asked for any authorization. Sex, in a Reading FSR, must include at

least one experiencer, and it may or may not include one or more accompaniments for

each experiencer [n and m are positive integers, denoting the numbers of experiencers

and accompaniments, respectively].

iv. Ac is the (animate or system) business role who plays the Accompaniment

functional role by participating in close association with the Creator, Alterer or

Experiencer, depending on the FSR class, to help them in the creation, alteration

(including both alter and alter-related FSRs) or reading of an instance of the IO (e.g.,

Patient provides to the Receptionist his/her personal and other information to create an

appointment for the FSR Create Appointment.) While Creator normally corresponds to

an internal business role, Accompaniment can by assigned to both internal and external

business roles. In the case of the internal business role, the Accompaniment is usually

involved in confirmation of the values ascribed to some attributes of an instance of the IO.

For example, when an assistant creates an appointment (Appointment IOi), s/he may ask

the doctor (internal business role who plays the accompaniment) to confirm that the

doctor agrees to the time set for that appointment. In the case of the external business role,

the Accompaniment (e.g., client, supplier, patient) usually provides input to some IO

87

attributes; that is, in the same example, the Patient will provide different data values such

as his/her ID and preferred time of appointment, for the Appointment IOi. The

collaboration between a creator, alterer or experiencer and an internal accompaniment

can derive new FSRs, called complementary FSRs which are normally initiated by the

internal accompaniment. For example, during the creation of a prescription, the doctor

may need to ask for the assistance of another doctor/counselor or of a medical database

system in order, for example, to choose between two drugs for the treatment of a patient.

In this case the counselor and the medical system are accompaniments that provide

feedback, and they are defined through the complementary FSR “Counselor, Medical

System provide feedback to Doctor in Create Prescription”. To identify the business role

of an accompaniment, we should ask questions related to its FSR class (Create, Alter, etc.)

and the functional roles creator, alterer and experiencer. For example, to identify the

accompaniment in a Create FSR, we may ask questions based on the following patterns:

- Who should assist the <Creator> to create an <IO>?

- How does the <Accompaniment> help the <Creator> during the creation of an

<IO>?

- Pattern: What data/attributes of the <IO> does the <Accompaniment> need to

check/confirm and in what way?

- Pattern: How does the <Accompaniment> help the <Creator> during the creation

of an <IO>?

88

Figures 3.3(b) and 3.3(c) are screenshots from the NALASS tool
15

 regarding the HIS

case, which show some indicative questions and answers to identify the business roles

and show how business roles are written. For example, the Creation FSR of the

Prescription IO involves S=Cr1,Ac1Doctor, Patient.

(note: Counselor doctor may be added as an internal accompaniment)

FIGURE 3.3 A NUMBER OF PREDEFINED QUESTIONS (B) CREATED AUTOMATICALLY BY THE

FSR PATTERNS (A), AND THE RESULTING FSRS (D) CREATED AUTOMATICALLY BY THE

ANSWERS TO THE QUESTIONS (C), FOR THE PRESCRIPTION IO. SCREENSHOTS ARE TAKEN

FROM OUR SOFTWARE TOOL THAT IMPLEMEN

Definition 4. IO is the Information Object, identified in a previous step, which is

involved in the four FSR patterns Creation, Alteration, Reading and Erasure. It contains

specific attributes according to its IO category. Some attributes are compulsory and

15 The FSR syntax as provided by the tool needs some final refinements

89

others are optional. Categories of IOs and attributes will be discussed in step 4. As an

example, the pattern for an IO categorized as physical object is:

 ,

1 ,1 ,0 ,0i n j m p u r w       

where:

n is the (positive integer) number of Physical attributes (compulsory), m is the

(positive integer) number of Peripheral attributes (compulsory – peripheral attributes

contain information about other entities related to the IO, such as the business roles

involved in the four different FSR patterns of the IO), u is the number (non-negative

integer) of Documentation attributes, w is the number (non-negative integer) of

Presentation attributes (if p=0  there are no documentation attributes; if r=0  there

are no presentation attributes).

The following is an example of a number of physical and peripheral attributes

contained in the Book IO, for a Library IS:

 , , , , ,BookIO Material Content Numberofpages Bookkeeper Supplier Student

Specific questions to derive particular attributes and their values are defined during the

fourth step of the methodology; hence a related discussion will follow in the next step.

Definition 5. (R)eceiver represents one or more animate or business entities who

receive a notification as a result of the creation, alteration, reading or erasure of an IO. R

may include two distinct subsets, the Intended Recipient (IR) subset and the Notifiee (No)

subset; the former includes the business roles who will take action within the IS after they

90

are notified about the creation, alteration (including erasure) of an instance of the IO. The

action to be taken needs to fulfill the purpose of the IO
16

 within the IS, and the fulfillment

is achieved by creating or altering instances of other related IOs. For example, in the

simplified

 〈 〉〈 〉〈 〉

Doctor is an IR of the Patient IO, because after the creation of a Patient IOi, the

doctor will fulfill the purpose of the patient within the hospital IS (the purpose of a

patient is to receive examination, diagnosis, etc.) by creating an Examination IOi, a

Prescription IOi, etc. Similarly, in the example of the FSR Create Prescription,

Pharmacist is an IR of the IO Prescription, because after the creation of a Prescription

IOi, the pharmacist will fulfill the purpose of the prescription (the purpose of a

prescription is to provide drugs to the patient) by altering a Drug IOi (the drug provided

to the patient must be removed electronically from the IS). Furthermore, the IR helps in

deriving new IOs (e.g., IO Drug) and new FSRs (e.g., Create Drug) in which the IR this

time plays the role of creator or alterer (e.g., Pharmacist who was an IR in the FSR

Create Prescription of the IO Prescription, is an alterer in the FSR Alter Drug of the IO

Drug). As we will show in later sections, the use of IR helps in linking use cases in a use

case model, classes in a Class diagram and processes in a DFD. To identify the IR

business roles, we can ask the users the following relevant questions, based on the

16The IR is drawn from the genitive case of purpose.

91

purpose of the IO, which is fulfilled by the business role who plays the IR (examples

below are taken from the HIS case study):

- What is the purpose of the Patient?

- Answer: To receive examinations, diagnoses, prescriptions, treatments.

- Who provides the examination?

- Answer: Doctor

Therefore, as aforementioned, Doctor is the IR in the FSR Create Patient, since s/he

fulfills the purpose of the patient (to receive examinations, etc.) through executing new

FSRs (e.g. FSR Create Examination).

In contrast to the IR subset, the notifiee subset includes the entities that only need to be

notified about the function applied on an instance of the IO (these entities will not use the

IOi or related information in any way that will cause any interaction within the system).

Notifiees may include the business roles of business users, managers, information users

(e.g., a relative of a patient in an HIS) and shareholders who generally do not have a

direct interaction with the system; these business roles are considered as other

Stakeholders (St). Notifiees also include the business roles of Creator (denoted by Cr),

Alterer (Al), or Experiencer (Ex), with their accompaniments, if any, as defined within

the Subject set of each relevant FSR pattern, who need to receive notification about the

creation, alteration or erasure of an instance of the IO they interact with. If any of the

Subject roles is also an IR, then this role will appear only as an IR. Additionally, the

notification (its content or layout) sent to each notifiee may be different, based on the

preferences of each notifiee. Furthermore, for the Alteration FSR, when the Alterer is a

92

different business role from that of the Creator, for the same instance of the IO, then the

Creator and the Alterer must be both notified about the alteration of that IOi. For the

Reading FSR, when an instance of the IO is read, usually the access/retrieval time must

be recorded and also the Creator must be notified. As an indicative example, we present

the pattern of Receivers in the Creation FSR:

 ,

0 , , , 0,k n Cr S Ac S p zi i j     

where:

n and z are non-negative integer numbers denoting the numbers of intended recipients

and stakeholders, respectively (If n=0  there are no intended recipients to be notified; if

z=0  there are no stakeholders to be notified).

And an example of the Receiver pattern’s realization for the

 〈 〉〈 〉〈 〉

 〈 〉〈 〉 :

 () { }

Based on the functional roles Intended Recipient and Notifiee, we can derive a number

of questions (in addition to the ones mentioned above), for each FSR class, to identify

intended recipients and notifiies of the IS. Below we present some sample questions

(each question has its own pattern, based on which it is instantiated; patterns are not

presented here for simplification) for the
 example illustrated above:

93

–Who will receive notification about the creation of a Prescription in the IS?

–Answer: Patient, Pharmacist, Doctor

–What is the action of the Patient after being notified about his/her prescription?

–Answer: To go to the pharmacy (That means Patient is just a Notifiee, since s/he does

not affect the operation of the system directly)

–What is the action of the Pharmacist after being notified about the creation of a

prescription?

–Answer: To provide the drug (in this way the Pharmacist needs to change the status

of the Prescription IO from Pending to Completed, therefore s/he is an IR)

Definition 6. Functional Condition FC is a notion derived from the linguistic notion of

the adverbial adjunct. In linguistics, an adjunct is an optional, or structurally dispensable,

part of a sentence that, when removed, will not affect the remainder of the sentence

[Lyons, 1968]. Similarly to the linguistic adverbial adjunct, a functional condition usually

establishes the circumstances in which each CAREN function takes place. It can be

denoted in the FSR with a single word (e.g., stylus), a phrase (e.g., with stylus, doctor’s

office), or a clause (e.g., after patient is examined).

Based on the semantic roles of the linguistic adverbial adjuncts, we utilize a number of

categories of functional conditions that establish the major circumstances in which each

CAREN function takes place. For each functional condition, the analyst needs to derive

specific questions, the answers to which will give information about the users’

requirements in regards to the circumstances they will operate the IS. The questions

mainly involve the Subject group of the FSR (business roles of creator, accompaniment,

etc.), who initiate or experience the action or experience, respectively, denoted by the

94

relevant functions. Therefore, the users with these particular business roles should be

among the recipients of the questions. New questions are also derived when the planned

circumstances are not satisfied (example a(f) below). We present below the most common

FC categories, together with sample questions for the simple form of the FSR

<Doctor><Create><Prescription>. Additionally we need to mention that the analyst

should try to receive concrete and not vague answers (e.g., ‘afternoon’ is vague, while

‘14:00-19:00’ is specific
17

). The FCs of each FSR are written as

 { } and

where n is the number of functional conditions, and:

(a) Temporal conditions establish when (time point; e.g., 8:00 – 14:00), for how long

(duration; e.g., 1 month) or how often (frequency; e.g., every day) an action (denoted by

the functions Create, Alter or Erase) or experience (denoted by the function Read) occurs.

Below we present indicative questions and answers:

tp: When can the doctor create the prescription? Answer: 8:00 – 14:00

d: How long does the Doctor need to create the Prescription (the whole procedure

of filling data, not the saving procedure)? Answer: 5 minutes

f: How often does a Doctor need to create prescriptions? Or, How many

prescriptions can a doctor create (per day)? Answer: Maximum 10 prescriptions / day;

What happens when this limit is reached?

17 Unless we use aliases (see paragraph about adjectives in step 4).

95

(b) Locative conditions establish the place (from) where an action (denoted by the

functions of Create, Alter or Erase) or experience (denoted by the function of Read)

occurs. An indicative example of question-answer could be:

p: Where should the Doctor create the prescription? Answer: Computer at his/her

office.

(c) Instrumental conditions establish the instrument of the action (denoted by the

functions Create, Alter or Erase) or experience (denoted by the function of Read). An

indicative example of question-answer follows:

i: How/what instrument does the doctor (use to) create a prescription? Answer:

keyboard/stylus

Putting them together, the functional conditions for the Create Prescription FSR are

syntactically realized as follows:

 8 : 00 –14 : 00,5 ,10 / , ,FC minutes prescriptions day DoctOfficeComputer keyboard Stylus 

Another use of the functional conditions is to determine the priority level of a

requirement. For example, the requirement “Assistant creates appointment with voice”

can be determined to have a lower priority than the requirement “Assistant creates

appointment with keyboard” (where with voice and with keyboard are instrumental

functional conditions) because the latter is easier and less costly to be implemented.

To summarize, the complete realization for writing the Creation FSR, based on the

partial examples given above is:

96

PatientDoctorPharmacistfiesSystemNoti

styluskeyboardComputerDoctOffice

dayonprescripti
escriptionCreatePatientDoctorFSR e

Cre

,

::
,

,/10min,5,00:1400:8
Pr,Pr






Or

 〈 〉〈 〉〈 〉〈 〉

ByFormByEmailByPhoneHelpescriptionGiveCounselor Pr

By the end of this step, for each identified IO, the four patterns of the FSRs, the

business roles and functional conditions of each FSR, the questions that derive the

business roles and the functional conditions, as well as the answers to the questions, need

to be derived. Figure 3.3 presents this procedure for the Prescription IO with the use of

the simple syntactic form of the FSR pattern since the complete syntax is not yet provided

by the tool. We observe that during this step the analyst might answer some of the

questions from the material already collected during step 1 of the methodology with the

use of the data flow questionnaires and the data flow table. The analyst may confirm the

answers with the client’s approval.

3.3.4 Define the attributes of each Information Object

NLSSRE provides specific attribute categories, each of which is linked to an IO

category, and defines each attribute category as compulsory, optional or not applicable. In

this way the analyst will know which categories of attributes to utilize for each identified

IO taking into account the category of the IO, and then search to find attributes for that

particular attribute category linked to the particular IO. Table 3.4 indicates how some of

97

the attribute categories, provided by NLSSRE, are linked to the IO categories physical

object (divided to business role and inanimate), procedure and document.

TABLE 3.4 THE ATTRIBUTE CATEGORIES ARE LINKED TO EACH CATEGORY OF IO.

 IO category

Physical Object Procedure

(e.g., examination,

translation)

Document

(e.g., essay,

book, e-book,

appointment)
Attribute

Category

 Animate Business Role

(e.g., patient, student)
Inanimate

(e.g., car)

Physical Animate C n/a n/a n/a

Inanimate n/a C n/a O

Purpose O O O O

Temporal n/a n/a C n/a

Possessional Inalienable O O O O

Alienable O O O O

Aliases O O O O

Compositional O O O O

Locative O O O O

FSR C C C C

Part-Whole O O O O

Procedural n/a n/a C n/a

Document O O O C

Documentation O O O O

Presentation O O O O

Comparative O O O O

O: Optional C: Compulsory n/a: Not Applicable

To construct the various attribute categories
18

 we take into account the nature of each

category of IO, the FSRs, and also linguistic notions that define relationships between

objects, as does the notion of genitive case (examines relationships between nouns), or

that provide additional information about an object, as does the adjective. We elaborate

on these two notions in the following paragraphs of this section.

For each attribute category, the analyst should try to identify the attributes of each IO,

based on specific features of both the attribute category and the IO category. The analyst

should use different methods. One method is to utilize the business documents collected

18 NLSSRE tries to cover a considerable number of attribute categories; however, the list provided could be expanded by the analyst.

98

during the first step of the methodology or the data flow table created during the same

step, as well as existing field knowledge, in order to create a list of possible attributes for

each IO. A subsequent task involves asking the users questions in order to cross-check

the attributes list and keep only the attributes that are related to the business context. A

second method involves asking additional questions clearly related to the attribute

category, in order to derive new attributes.

For example, to derive the physical attributes of the Patient IO, the analyst can create

a long list of animate physical attributes derived from the collected business documents,

the data flow table and scientific sources such as the Dictionary of the Physical Sciences

[e.g., Emiliani, 1987; Meyers, 2001]. Indicatively, the provided list could have the

attributes of tension, temperature, and mass. Not all attributes necessarily apply, therefore

the analyst should discuss with the user, in order to select the attributes relevant to the

business role patient in the Hospital IS. Indicatively, the final list could have the

attributes of temperature and mass only, which are relevant—based also on user’s

preference—to patient. Of course, NLSSRE, with the use of other categories of attributes,

can cross check some of the physical attributes and also derive some new ones. For

example, temperature is also a situational
19

 attribute further categorized as possessional

inalienable
20

, and from this temperature attribute and its corresponding categories (e.g.,

possessional, physical) and related IOs (e.g., Patient IO), the analyst should ask the user

questions such as “Describe: what conditions can affect the Patient’s mind?” or “What

19 Situational attributes comprise a broader attribute category, and they are related to characteristics of the business role.

20 Derived from the genitive case of temporary or abstract inalienable possession, in which the noun of possession indicates an

abstract possession which affects the body or mind (e.g., disease, fever, anger, cold)

99

affects the situation of the patient’s body?” and derive the proper attributes (e.g.,

temperature, from the received answer fever, and pressure). When we do not suspect the

answer in advance, or when we want to derive new information, we provide open

questions to the user such as the ones above.

Another situational attribute category is the one which indicates the purpose of the IO

entity; that is the purpose for which the entity is used. For example, for the Doctor IO, the

analyst could make questions such as “What responsibilities/duties/tasks does the doctor

have in the hospital/clinic?” Possible answers could be to examine, treat, prescribe, and

diagnose. Therefore information related to these responsibilities could be attributes of the

Doctor IO. For example, from the types and numbers of examinations a doctor provides,

the analyst can derive or verify the doctor’s specialties and the number of examinations

the doctor can perform daily. Specialty and Number of examinations daily should be

attributes of the Doctor IO. Additionally, searching for attributes can also lead to new IOs.

For example the aforementioned responsibilities can give rise to the procedural IOs

Examination, Treatment, Prescription, and Diagnosis. For these new IOs the Doctor IO

will be their Creator, and therefore some specific attributes of the Doctor IO will

constitute some of their peripheral attributes (e.g. Doctor ID and Doctor Name).

FSR attributes are a compulsory part of an IO, since they provide information about

other entities related to the IO under study; these entities are mainly business roles, but

they can also be other stakeholders or functional conditions, all of them constituent parts

of the FSR of the IO under study (e.g., information about the Doctor business role who

plays the Creator of the Prescription IO in the Create Prescription FSR, will be

100

attributes of the Prescription IO). Since all FSRs must have been specified, as per step 3,

the analyst should include attributes of all the related FSR entities in each IO.

Another example can be given with the use of the locative attributes category drawn

from the genitive case of spatial location. For each IO, the analyst should check for its

related locative attributes, such as the attributes Hospital and Clinic for the business role

IO Doctor. Hence, relevant questions should be provided to the relevant users (e.g.,

doctors and clinic manager), such as “Where should/could a doctor examine patients?”

(possible answer: Hospital), “Can a doctor examine patients outside the Hospital?”,

“Can a doctor from an external clinic examine a patient?”

Aliases are shorter names of attributes already defined, and they aim to make attributes

easier to be expressed and understood. They are denoted by adjectives. For example, the

entire attribute (including its value) time of work: 08:00-14:00, defined by the genitive

case of time, can be replaced by the attribute alias morning which is an adjective that

denotes time. In this way we can achieve easily understood expressions. For example,

when defining a business rule, instead of writing (in its simplified form) “Doctor of Time

of Work 08:00-14:00 Creates Prescription”, we could write “Morning Doctor Creates

Prescription”. Therefore we could provide simple questions to the IS user, such as “How

would you like to call the doctor who works from 08:00 to 14:00? Morning?”

Another category is that of comparative attributes used when we need to compare

entities of the same capacity (e.g., the same business role). They usually draw on relative

adjectives (e.g., previous, next, first, last), which is a category of unambiguous

101

adjectives
21

. For example, the adjectives first and second could derive the Rank attribute

for the IOs of Doctor and Nurse. For the Doctor IO, Rank could take the values

Consultant (from the adjective First) and Specialty Registrar (Second), while for the

Nurse IO, Rank could take the values Advanced Practice (First) and Registered (Second).

Therefore we could provide specific questions to the user, such as “What is the Rank of

each doctor?”

Beyond the identification of specific attributes, the adjective types can also be used to

derive subordinate or parent IOs. For example, the adjective type color can determine the

sub-IOs Blue Prescription and Red Prescription for the Prescription IO. Or the adjective

type rank can determine the sub-IOs Professor (First), Reader (Second), Senior Lecturer

and Lecturer for the Academic IO.

3.3.5 Define business rules

After the identification and definitions of IOs, their FSRs and their attributes, the

analyst should proceed to the identification and definitions of business rules. According

to Leffingwell [2011], a business rule defines or constrains an aspect of the business that

is intended to assert business structure or influence the behavior of the business. In

NLSSRE, business rules focus on business policies, an example of which could be a

university policy to expel any student who fails more than two courses in the same

semester, which results in the alteration of the Student IOi state or its complete erasure.

Another example is a Cypriot hospital policy that foreign patients (those who do not

21 Most of the adjective types are inherently or potentially ambiguous (ref) and should be avoided (e.g., big, small, happy, etc.) in

formalization.

102

speak Greek) must be (or are preferred to be) examined by English-speaking doctors; this

is a policy that affects the organization and structure of the hospital. The business rules

can be divided into two types:

(1) Inter-related business rules. These rules are created from combinations of two or

more attributes between different interrelated IOs of any category, but with more

emphasis given on business roles. In particular, the values of one or more attributes of

one or more IOs determine the values of one or more attributes of one or more related IOs.

The interrelated IOs can be identified easily through their co-involvement in the same

complete FSRs. For example, for the simplified form of the FSR below:

 〈 〉〈 〉〈 〉〈 〉

where:

 { },

 { }

Patient is an accompaniment in the creation of a Patient IOi, and doctor is the

intended recipient of patient, since the doctor will examine, diagnose and prescribe for

the patient; therefore Patient IO and Doctor IO are interrelated. The procedure of

deriving the business rules is facilitated with the use of relevant questions, such as:

Question: Does a patient’s language determine the language of a doctor assigned to the

patient? If yes, how?

Based on the users’ answers, we construct each interrelated business rule, in its

general form, general initialization form and personalized initialization form. For the

103

second form, each business rule can be applied to all instances of the participant
22

 which

determines the rule (Patient, in our example – see General rule 1 below). For the last type

of rule, the rule can be personalized for each participant separately. In this case, each

participant must be asked to choose between the options he or she is provided. For the

same example, the user agrees to the following business rule in the three forms described

above:

(i) General rule 1: A patient’s language determines the language of a doctor assigned to

the patient.

(ii) General initialization rule 1.1: If patient’s language is not Greek, then doctor’s

language is preferred to be English.

(iii) Personalized initialization rule 1.1: Each patient is asked to choose his/her doctor’s

language, from the available list.

And the rule is expanded according to the participant’s answer, such as in the example

below, for the patient’s choice of a French-speaking doctor:

(iii expanded) If there is a doctor whose language is French, then doctor’s language for

the doctor assigned to this patient is preferred to be French.

Furthermore, the flexibility of a business rule is determined with the use of grades

denoted by the expressions must, preferred to, and may. In particular, the three terms are

used as follows:

(a) Must: the rule is applied only when its ‘then’ statement is fulfilled (e.g., for the

business rule “If patient’s language is not Greek, then doctor’s language must be

22 Participant refers to each constituent part of the FSR, such as a business role, the IO and a stakeholder.

104

English”, if no doctor speaks English, then the foreign patient will not be assigned a

doctor).

(b) Preferred to: if the ‘then’ statement of the rule cannot be fulfilled, then the participant

of the ‘if’ statement should be asked if s/he accepts another option (e.g., if the doctor

does not speak English, and there is one or more doctors who can speak other

languages, then the foreign patient should be asked if s/he prefers a doctor who talks

another language, e.g., French).

(c) May: if the ‘then’ statement of the rule cannot be fulfilled, then the user (without

asking the participant of the ‘if’ statement, e.g. patient) can choose another option of

his/her own preference.

The realizations (initializations) of interrelated business rules can be written in a

formalized form, following an extended version of the FSR syntax, called detailed FSR.

Writing the business rules as detailed FSRs makes easier the transformation process

which is described in step six. The detailed FSR syntax uses adjectival and peripheral

attributes. Adjectivals are positioned on the left of each participant and denoted by the

Greek letter α (alpha), while peripherals, denoted by M, are positioned on the right and

distinguished from their participants by the Greek letter φ (phi) (φ denotes the genitive

case and corresponds to the word “of”). The detailed FSR pattern shown below is for

single entities (e.g., one Subject, one Receiver, chosen here for simplification) and can

take the form of more complex combinations of entities (participants):

 1 10 0 0 0 0 0
:: R

n m p q s t
a S F a IO M FC SystemNotifies a R FC   

where n, m denote the numbers of adjectival and peripheral attributes of S1,

respectively, p, q denote the numbers of adjectival and peripheral attributes of IO,

105

respectively, and s, t denote the numbers of adjectival and peripheral attributes of R1,

respectively.

Below we provide an indicative example of the realization of the general business rule

1.1, written as a detailed FSR:

 〈 〉

where foreign patient = patient who does not know Greek

(2) Intra-related business rules. These rules refer only to a particular IO, where the

value of one attribute of an instance of the IO determines the value of another attribute of

the same instance of the IO. An Example of intra-related business rules in the form of

questions, for the above FSR, is the following:

–How does the rank of a doctor affect his/her schedule?

–Possible answer: If Doctor = Consultant (First) then Doctor’s Work Time is no less

than 18 mornings/month.

–Possible answer: If Doctor = Specialty Registrar (Second) then Doctor’s Work Time

is no less than 24 mornings/month.

106

3.3.6 Create SRS document and semiformal models (DFDs class & use-case

diagrams)

This step involves the use of transformation rules on the FSRs and the IO attributes in

order to create the software requirements specifications. For the creation of the SRS

document, class diagrams and DFDs, we will focus specifically on the rules per se.

However, we will explain in greater detail, in the next chapter, use case modeling

adaptation, because use case modeling is considered as an approach that attempts to cover

apart from specification, which is the main concern of object and structure modeling, the

stages of elicitation and analysis, by also focusing on the use of natural language. We will

show how the entire NLSSRE methodology can be adjusted for use case model

development and how it concludes with the construction of use case diagrams and use

case specifications.

3.3.6.1 Adaptation for creating Data Flow Diagrams

Specific rules are used to transform the FSRs and attributes of each IO to DFDs. The

FSRs of creation, alteration, reading and erasure of each IO are grouped under one

comprehensive function named Manage <IO>. The Manage functions constitute the

functions of the 1
st
 level DFD (see Figure 3.4), while the Create, Alter, Read and Erase

functions of the FSRs under each Manage IO constitute the functions of the 2
nd

 level

DFD (see Figure 3.5). For the 3
rd

 level DFD, the second level functions are decomposed

to the CAREN sub-functions, according to Figure 3.2. For example, the 2
nd

 level function

Create Prescription is decomposed to Enter Data (incorporates the Read and Compare

sub-functions) and Save (see Figure 3.6). The use of the Intended Recipient is used as a

107

rule to link functions at the same level (e.g., link Manage Prescription and Manage

Drug). Another indicative rule is that the business roles of the FSRs correspond to DFD

actors and are represented by a circle. Furthermore, for the functions Create, Alter and

Erase, the business role(s) that appear on the left of the name of each function in the

corresponding FSR syntax provide data input to the function, hence an arrow from each

DFD Actor (business role) feeds the relevant function.

FIGURE 3.4 1ST LEVEL DFD CREATED AUTOMATICALLY BY NALASS.

108

FIGURE 3.5 2ND LEVEL DFD CREATED AUTOMATICALLY BY NALASS.

FIGURE 3.6 3RD LEVEL DFD CREATED AUTOMATICALLY BY NALASS.

109

The DFDs generated by NLSSRE and NALASS are based on the IOs, first, and,

secondly, on the CAREN functions. Therefore, we can name them Object-Related Data

Flow Diagrams which are defined as data flow diagrams whose functions are applied on

information objects (Information Objects). Thus, ORDFDs consist of the CAREN

functions.

Below we list the most basic rules of this transformation:

 The first level ORDFD will include all the Manage IO functions (figure 3.4).

Functions are represented by a rectangle.

 The second level ORDFD will include all the 2
nd

 level functions (Create, Alter,

Read, Erase) of each first level function (Manage IO) as shown in Fig. 3.5.

 For the third level DFD, the second level functions are decomposed to the

CAREN sub-functions, according to Figure 3.2.

 The functional roles Creator, Accompaniment, Alterer, Intended Recipient,

Experiencer and Notifiee correspond to actors (or business actors or business roles)

of a traditional DFD and are represented by a circle.

 For the functions Create, Alter and Erase, the business role (s)/ actors (s) that

appear on the left of the name of each function, in its syntax, provide data input to

the function, hence an arrow from each of these actors goes to the relevant

function (e.g. from Doctor to Create Prescription - Fig. 3.5).

 For the Read function, in the 2
nd

 level of decomposition, the business role of

Experiencer receives the IO in a special format/layout for reading (viewing,

listening, etc.). Hence an arrow from the Read function goes to the Experiencer

110

actor (business role) in the ORDFD as shown in Fig. 3.5 (Read Prescription –

Pharmacist).

 The Create, Alter and Erase functions trigger a data flow from the relevant

function to the relevant datastore, because the IO is changed and needs to be

(re)stored; hence an arrow goes from each function to the datastore (e.g. from

Create Prescription to Prescriptions).

 The Create, Alter and Erase functions trigger data flows from the relevant

datastore (which is created because of these functions) to the relevant function,

because the function needs to check the IO before altering it; hence an arrow goes

from the datastore to each function (e.g. from Prescriptions to Create

Prescription).

 The Read function triggers a data flow from the relevant datastore to the Read

function; hence an arrow goes from the datastore to the function (e.g from

Patients to Read Prescription).

 The entities that appear on the right of SystemNotifies in the syntax of the

Notification function receive an arrow (data flow) from the relevant function

which appears on the left of the Notification function (e.g. from Create

Prescription to Doctor, Nurse, Pharmacist, and Patient).

 The use of the Intended Recipient is used as a rule to link functions at the same

level, 1
st
 or 2

nd
. The Intended Recipient of an IO needs to Read that IO. Thus a

link from the relevant datastore of that IO to the Manage IO function of the new

IO in which the Intended Recipient is involved as its Creator or Alterer needs to

take place. E.g. the Pharmacist is the Intended Recipient of the Prescription as

111

shown in the syntax of Create Prescription (Fig. 3.3.3d), and the Pharmacist will

Read the Prescription in order to Manage Drug. Hence a link from Prescriptions

(datastore) to Manage Drug is created (Fig. 3.4).

3.3.6.2 Adaptation for creating Class Diagrams

Specific rules are used to transform the FSRs and attributes of each IO to class diagrams.

Each IO is transformed to a Class, and its CAREN functions become the methods of the

class. The attributes of each IO are those defined during the fourth step of the

methodology, and can be refined and codified within this step. As an example,

information about Doctor, which constitutes one or more attributes of the IO

Prescription, can be refined and codified to the specific attributes of Doctor ID, Doctor

Signature, Doctor Name, and Doctor Surname. Further rules regarding the relationships

between classes and cardinality are realized by NALASS, such as the rule which states

that an association relationship exists between the IO and each business role which also

constitutes an IO, in the same FSR. Additional rules state that there should be a one-to-

many association between Creator (e.g., Doctor in the Create Prescription FSR) and IO

(Prescription) (apart from rare cases where there could be more than one creators for the

same IO), a one-to-many association between the client business role (Patient –

otherwise called external accompaniment role) and the IO (Prescription), and there could

be a many-to-many association between Creator (Doctor) and internal Accompaniment

(Nurse or Counselor). Figure 3.7 shows the Prescription and Drug classes, with their

attributes (types) and relationship, as generated automatically by NALASS.

112

FIGURE 3.7 GENERAL FORM OF A CLASS DIAGRAM CREATED AUTOMATICALLY BY NALASS

3.3.6.3 Adaptation for creating the SRS document

This transformation process (fig. 3.8) receives as inputs the IOs, their attributes,

complete FSRs (including detailed ones related to business rules) and constraints, the

SRS template that determines the organization and formatting of the SRS document, and

the rules to convert the aforementioned inputs into a well-structured SRS document,

written in structured, less semi-formal NL, thus effectively hiding from the users the

semi-formal organization of requirements. The NALASS tool reads the template and

applies: (a) rules for the layout and formatting of the new SRS document, related to

additional language refinements of the text, fonts type and size, line spacing, etc.; (b)

substitution rules, by replacing the template variables included inside “< >” with the

113

appropriate values for the identified IOs, the FSRs participants, attributes, business rules

and functional conditions.

FIGURE 3.8 CONFIGURATION OF NALASS’S DOCUMENTATION COMPONENT

Table 3.5 shows a portion of the main focus of the NLSSRE SRS (some elements such

as business rules are not presented for simplification), which corresponds to Section 3

Specific Requirements of the IEEE SRS document template (IEEE, 1998), which is itself

the most substantial section in the SRS structure, accounting for about 70% of the

SRS template definition; the template can take different organizational types, such as

functional or object-oriented. All other items, such as the glossary of terms and the initial

snapshots of the software system’s user interface can be appended by the requirements

analyst in the document file generated by NALASS.

The way the template is built and processed does not need any further grammatical

and syntactical checks, since, for example, plural is covered by the use of “(s)” at the end

of the noun, the third person singular verb form is covered by the use of “(s)” at the end

of each verb, and for the genitive case, we use “of” instead of “’s” for simplification and

avoidance of mistakes. Future developments include the use of a grammar checker

Rules

Documentation

Component

SRS

Template

FSRs, IOs,

IOs attributes

Formatting Rules

Substitution Rules

SRS

Document
NLSSRE

elements

114

accompanied by a dictionary that will make such checks, thus substituting the

grammatical refinements currently performed on the text as dictated by the template.

NALASS can export the SRS document to either HTML or rich-text format (RTF).

This allows the requirements analyst to generate and show the specification outside

NALASS’s interface either in electronic or printable format.

TABLE 3.5 PORTION OF THE NLSSRE SRS TEMPLATE ON THE LEFT AND ITS

CORRESPONDING REALIZATION FOR THE HOSPITAL INFORMATION SYSTEM CASE STUDY

ON THE RIGHT.

Specific requirements Template (organized by object)

o Classes/Objects

 <IO 1>

 Attributes (direct or inherited)

o FSR Attributes

 Cr: <Cr 1> ID, <Cr 2> ID, …, <Cr n> ID

 Ac: <Ac 1> ID, <Ac 2> ID, …, <Ac n> ID

 No: <No 1> ID, <No 2> ID, …, <No n> ID

 <IR 1> ID, <IR 2> ID, …, <IR n> ID

 …………………………….

o Physical Attributes

……………………………

 Functions (direct or inherited)

o Create <IO 1>

 Description: <Cr 1> , …., <Cr n> create(s)

<IO 1> with the assistance of <Ac 1>, …,

<Ac n> .

 Details:

 If <At 1>: <InputValue> is True for

“<Constraint At 1>”, then record <At 1>:

<InputValue>. If False, then show message

“<At 1>: <InputValue> “ is not valid.

…

o Alter <IO 1> …

o Read <IO 1> …

o Erase <IO 1> …

 Messages (notifications received or sent)

o System notifies <No 1>, …, <No n>, <IR 1>,

…, <IR n> that <IO1> is created.

o …

 <IO 2>

 …

Specific requirements (organized by object)

o Classes/Objects

 <Prescription>

 Attributes (direct or inherited)

o FSR Attributes

 Cr: Doctor ID

 Ac: Counselor ID, Patient ID

 No: Doctor ID, Patient ID

 IR: Pharmacist ID

 Doctor Name

 ……………………………

o Physical Attributes

……………………………

 Functions (direct or inherited)

o Create Prescription

 Description: Doctor create(s)

Prescription with the assistance of

Counselor, Patient.

 Details:

 If Doctor Name: <InputValue> is

True for “Only alphabetic

characters are allowed”, then record

Doctor Name: <InputValue>. If

False, then show message “Doctor

Name: <InputValue> “ is not valid.

…

o Alter Prescription ...

o Read Prescription …

o Erase Prescription …

 Messages (notifications received or

sent)

o System notifies Doctor, Patient,

Pharmacist that Prescription is

created.

o …

 Drug

 …

115

3.4 Requirements Change

As the requirements definition is developed, the analyst normally develops a better

understanding of users’ needs. This feeds information back to the user, who may then

propose a change to the requirements. Furthermore, it may take several years to specify

and develop a large system. Over that time, the system's environment and the business

objectives change, and the requirements evolve to reflect this. From an evolution

perspective, requirements fall into two classes (Sommerville, 2008):

a. Enduring requirements: These are relatively stable requirements that derive from the

core activity of the organization and which relate directly to the domain of the system.

For example, in a hospital, there will always be requirements concerned with patients,

doctors, nurses and treatments.

b. Volatile requirements: These are requirements that are likely to change during the

system development process or after the system has been become operational. Volatile

requirements fall into four classes:

- Mutable requirements: Requirements that change because of changes to the

environment in which the organization is operating. For example, in hospital systems, the

funding of patient care may change and thus require different treatment information to be

collected. Or new government healthcare policies are introduced.

- Emergent requirements: Requirements that emerge as the customer's understanding of

the system develops during the system development. The design process may reveal new

emergent requirements. New requirements may emerge from new stakeholders who were

not originally consulted.

116

- Consequential requirements: Requirements that result from the introduction of the

computer system. Introducing the computer system may change the organizations

processes and open up new ways of working which generate new system requirements.

- Compatibility Requirements that depend on the particular systems or business processes

within an organization. As these change, the compatibility requirements on the

commissioned or delivered system may also have to evolve.

Therefore even if NLSSRE could settle all that and could get an accurate and stable set

of requirements, the latter may change. This is, of course, more likely to happen with

large projects where many stakeholders are involved—therefore more requirements need

to be elicited—and a longer time framework is required.

To solve the volatility of emergent requirements, which can be caused by stakeholders

who are not identified or omitted requirements by the analyst, NLSSRE provides a well-

structured elicitation process that attempts to identify the stakeholders and especially the

end users of the system, as well as the information objects. The data flow table, the

specific questionnaires, and later on the specific questions derived from the predefined

types of functions minimize the probabilities of specifying the wrong requirements.

However, for large systems, there might be the case that some key stakeholders are

missed or some requirements are not derived from the stakeholders, including, for

example, new IOs or, mainly, functional conditions and attributes (also non-functional

requirements, however NLSSRE does not focus on them). Therefore for large projects,

we recommend the application of short several NLSSREE cycles. The stakeholders and

requirements identified in each cycle will guide the analyst to identify new stakeholders

and new requirements in every next cycle. For example, during the first cycle, the analyst

117

will identify the major stakeholders and the most significant IOs, s/he will analyze them

to define the IOs CAREN functions and relations upto developing Use Case

Specifications and diagrams. The first cycle will result to the identification of new

stakeholders, especially end-users, and IOs, and the analyst will need to perform another

cycle to elicit requirements from the new stakeholders and analyze them accordingly.

To handle the volatility of mutable, consequential and compatibility requirements, that

is, to actually manage change after software development, the SRS document must be

easily modifiable. To make the requirements document more modifiable, related

requirements should be grouped together and a requirement should not appear in more

than one place in the document. The requirements document should also have a table of

contents and cross-references if necessary. As a rule of thumb, the lower the number of

redundant requirements in the SRS document the higher the level of modifiability. We

consider that the SRS produced by NLSSRE is well-structured, complete, correct and

modifiable, since one of the main advantages of NLSSRE, due to its formalized and

specific nature, is that it generates non-redundant requirements—and redundancy is a

major obstacle to modifiability (more about how NLSSRE handles modifiability is

described in Chapter 6). Of course, some additional traceability policies need to be

specified or enhanced. When changes are proposed, we have to trace the impact of these

changes on other requirements and the system design. Traceability is the property of a

requirements specification that reflects the ease of finding related requirements. There are

three types of traceability information that need to be considered:

 Source traceability information links the requirements to the stakeholders who

proposed the requirements and to the rationale for these requirements. When a

118

change is proposed, we use this information to find and consult the stakeholders

about the change. This information can be derived from NLSSRE through the

FSR specifications where the internal business roles (creator, alterer) are actively

involved in the requirements. Additional notes may be added to the specification

document.

 Requirements traceability information links dependent requirements within the

requirements document. We use this information to assess how many require-

ments are likely to be affected by a proposed change and the extent of conse-

quential requirements changes that may be necessary. Again, in NLSSRE, through

the use of FSRs, we can identify which business roles are involved in the different

FSRs; such FSRs are usually interconnected.

 Design traceability information links the requirements to the design modules

where these requirements are implemented. We use this information to assess the

impact of proposed requirements changes on the system design and imple-

mentation. In NLSSRE, class diagrams and data flow diagrams are linked to the

FSRs and the IOs, however additional traceability information could be provided,

especially with the enhancement of NALASS.

Furthermore, for small systems we could investigate the case of using traceability

matrices, and for large systems, as aforementioned, the enhancement of the dedicated

CASE tool for traceability.

119

3.5 Chapter Summary

This chapter presented NLSSRE and showed how it aims to formalize and automate the

major activities of RE, including requirements discovery, analysis and specification.

NLSSRE is designed so that the analyst is guided in advance, through a step-by-step

approach, what specific types of data, functions, business rules and conditions to use and

search for, what questions to ask, in what specific way to analyze the answers to the

questions, and how to write them in a specific formalized way. We explained the

constituent parts of the methodology, which are its architecture (underpinning

background), its application steps and techniques, a modeling language for representing

requirements as formalized sentences (FSRs) and the NALASS software tool that

automates the entire process.

120

4 Adaptation for formalizing use case development

The use case model is composed of use case diagrams and specifications. Specifically,

the UC model comprises actors, use cases and associations, which are depicted in a use

case diagram. Each use case, according to Cockburn (2000), represents a major piece of

functionality that is complete from beginning to end and is described with a UC

specification including: the basic flow of the use case, the alternative flows, involved

actors and stakeholders, conditions, and reference to other related use cases. Finally, the

business rules associated with the use case interactions must be specified or, at least,

referenced (Dias, 2008).

The formalization of the process of identifying the UC elements and the formalization of

the use case specification template with the main focus on its transactions flow sections

are the major steps covered by our methodology as part of a series of steps for the

development of the UC model, which will be described in the following paragraphs.

Formalization is mainly achieved with the use of predefined types of use cases—

corresponding to the CAREN functions—and actors—corresponding to business roles—,

formalized sentential patterns—corresponding to FSRs—, formalized types of transaction

flow actions, and specific guidelines and NL authoring rules. The latter also helps in

providing a clear and understandable semi-formal UC specification. The automation of

the UC model development is supported by NALASS which is also described through

indicative examples.

121

In particular, the steps of our adapted approach for the development of the use case model

are as follows:

1. Identify UC modules

2. Define use cases of each UC module

3. Identify the actors of each use case, associations, relationships and complementary

use cases

4. Structure identified UC elements as formalized sentences

5. Define UC subsystems

6. Relate business rules with use cases and actors

7. For each use case, write the use case specification (UCS)

4.1 Step 1: Identify UC modules

A use case module can be conceived as a small UC model—actually the smallest model

of the entire information system. A UC module is created for each information object (IO)

of the system and contains, in addition to relevant actors, specific types of use cases that

correspond to specific types of functions related to an IO.

Since each IO corresponds to a UC module, then for each identified IO, a UC module

needs to be defined. Each UC module will include specific use cases, actors, associations,

relationships, a use case diagram, and a UC specification for each use case. Additionally,

different UC modules may be grouped together and compose UC subsystems; and

subsystems are then grouped together to compose the entire IS UC model. All these

issues are described in the next paragraphs of this section. Figure 4.1 shows an example

122

of a use case diagram (UCD) corresponding to the Appointment UC module of the HIS

case example.

FIGURE 4.1 THE USE CASE DIAGRAM OF THE APPOINTMENT MODULE, AS CREATED BY

NALASS.

4.2 Step 2. Define use cases of each UC module

The principal aim of our approach is to formalize the identification of UC elements,

including use cases and actors. This step handles formalization of use cases. Use cases of

a UC module are derived from the CAREN functions. As mentioned in step 1, Create,

Alter, Read, and Erase are the main functions of the IO, while Notify is applied

(triggered) after the creation, alteration, reading or erasure of an IO instance. Accordingly

123

we have the use case types Create IO, Alter IO (including alter-related use case types

explained later), Read IO, and Erase IO.

As mentioned in step 3 of the NLSSRE methodology (section 3.3), our focus is on

system functions at the user’s level, that is, we are interested in what the system will do to

fulfill the users’ requirements. User-level system functions are represented by system use

cases. Specifically, a system use case is conceived at the system’s functionality level, and

describes the function or the service that the system provides for the actors. The system

use case specifies what the system will do in response to an actor’s actions. System use

case names should begin with a verb (e.g., create appointment, select payments, cancel

appointment) (Podeswa, 2005). We do not focus on programmer’s level requirements or

abstract-level requirements, the latter of which are generally represented by business use

cases. According to Podeswa (2005) and de Cesare (2003), business use cases focus on

the business processes that the business actors (people or systems external to the process)

use to achieve their goals (e.g. manual payment processing). Business use cases may

involve both manual and automated processes. Often business use cases are free of

technological terminology and treat the system as a “black box”.

For the use case approach, similarly to NLSSRE perspective, the formalization

concept of the is more easily applicable to the system use cases, because they are applied

on electronic information, while it is hardly applicable to the business level use cases, due

to the complexity of the business environment, in both size and terminology. For example,

the use case Enroll in Seminar, which may be implemented as a system or a business use

case, is formalized and represented in our approach through the system UC modules

Enrollment and Seminar, which are both IOs. The UC module Enrollment includes the

124

system use cases Create, Alter, Cancel, Erase and Read Enrollment. The UC module

Seminar includes the system use cases Create, Alter, Cancel, Erase and Read Seminar.

Information about Seminar will be part of the UCs specifications of the Enrollment

module (e.g., seminar id is used when creating or altering an enrollment) similarly also to

information about the student who participates in the enrollment. Student will be also a

different UC module, as it is a different IO.

Below, for each use case type, we describe adaptation and other issues such as

relationships between use cases and what actions can be derived for each basic use case.

UC Create IO: During its execution the attributes of an IOi take their initial values;

these values are then processed by other use cases. The sub-functions Read, Enter data

values, Compare and Save, of the Create CAREN function correspond to actions of the

Create UC specification. This will be elaborated in step 7 (constructing the UC

specifications) later on, where we will see how the sub-functions, data constraints and

business rules of the UC Create IO are used to form its transaction flow.

UC Alter IO: During the execution of this UC, the actor can change the existing

values of the attributes of an IOi. Similarly to the Alter CAREN function class, a

significant attribute that changes during alteration of an IOi is the attribute State. We will

follow the same examples used for earlier to show how the UC Alter IO is adjusted. The

change from one state to another (e.g., from Pending to Complete), for a particular IO,

often derives a new use case, such as Cancel IO, Complete IO, etc. However, if the

change of state does not justify the existence of a new use case, it should be represented

through additional actions in the transaction flow of the specifications of the use cases

Alter IO or Create IO. When a change of state occurs, we should check what new pre-

125

conditions, post-conditions and actors are involved in the execution of the new derived

use case or—in the case of representing the change of states as actions—the existing

Alter and Create use cases. Usually when the change of state of an IO results in

significantly different pre-conditions or post-conditions, or results in a new group of

actions than those provided by the Create UC or the basic
23

Alter UC, we recommend to

represent this self-contained information (pre-conditions, post-conditions, actions) as a

new use case. For example, cancelling an appointment, results in a different post-

condition than the post-condition resulting from the normal transaction flow of the UC

Create Appointment, which is to complete the appointment. In particular, by cancelling

an appointment, the State attribute of the IO Appointment will change to ‘cancelled’, and

this cancellation should create the post-condition “new empty schedule time slot”.

Therefore, we should consider Cancel Appointment as a new use case. Similarly,

completing a prescription derives the pre-condition “Drug is given to patient” comparing

to the basic UC Alter Prescription which has the precondition “Prescription is created”.

Completing a prescription is also performed by a different actor (pharmacist) at a

different place (drug store) than the actor (doctor) that initiates the Create and Alter use

cases of the prescription module, at the hospital or clinic. Therefore, we should consider

Complete Prescription as a new use case. We may also conceive Erase IO, described

below, as a new use case, where new post-conditions might be “IOi is archived” or “IOi

is removed completely from the system’s databases”. The State attribute may also result

23 To distinguish the Alter UC from its related use cases derived as a result of change/alteration of state, we sometimes call it “basic

Alter UC”. Additionally, for simplicity, we call the related use cases (e.g., Cancel IO, Complete IO) “Alter-related”use cases. In some

situations when we refer to the Alter UC, we also mean the alter-related use cases.

126

in generalization relationships
24

 between use cases, such as those depicted in the example

of figure 4.2 where the student, due to the nature of his/her role, can move to different

states during his/her studies.

FIGURE 4.2 GENERALIZATION RELATIONSHIPS

Read: Forms usually need to be read when an end-user primary actor
25

 creates a new IOi

or changes the state of an existing IOi. The reading process should be represented as an

“include”
26

 use case Read IO for the use cases Alter IO, Cancel IO, Complete IO, etc., as

depicted in figure 4.3 and table 4.2 action 2 (in step 7), because it is composed of several

actions, including retrieving and checking the existing information about an IOi, from the

database, in contrast to the reading procedure for the UC Create IO, which only concerns

building a form of required and optional empty fields, and thus represented as one or

more simple action(s) in the Create IO UC specification, as illustrated in table 4.1 action

24Generalization relationship: If two or more use cases are similar, we can extract similarities into the base use case. Derived use cases

can add behavior and modify behavior defined in the base use case (Zielczynski, 2007).

25 Primary and secondary actors, as well as actor functional roles, such as notifiee and intended recipient are defined and explained in

step 3.

26An include relationship between two use cases means that the sequence of behavior described in the included use case is included in

the sequence of the base (including) use case (Coleman, 1998). Include is used when the same behavior is duplicated in multiple use

cases. A base use case is dependent on the included use case(s); without it/them the base use case is incomplete. Additionally, the

included use case should be self-contained and cannot make any assumptions about which use case is including it.

127

2 (in step 7). This issue is discussed further in step 7, on constructing the UC

specifications.

Read IO may also be initiated directly by a primary actor, when the latter needs to read

information provided by an existing IOi form, e.g., by receptionist and doctor, as shown

in figure 4.1, or by doctor and pharmacist, as shown in figure 4.3.

For inter- and intra-Reports, as discussed in 3.3 (step 3), the use case Read IO intra-

report is part of the IO module, while the use case Read IO inter-report may be part of

the IO module (e.g., Read Patient History, which is a report involving information related

to the IO Patient from various IOs, such as Examination, Diagnosis, Prescription and

Treatment, may be considered part of the Patient module) or of a more general Report

module, because inter-reports may be used by (i.e., “included in”) different use cases of

different UC modules.

Usually Read use cases about reports, and especially the inter-report type, are useful

for the execution of use cases of other modules, and so they are represented as “include”

use cases. This relationship usually occurs when an actor creates or alters an IOi, and so

the actor may need to read information about instances of other IOs, related to the IOi the

actor creates or alters. For example, when a doctor (actor) creates or alters a prescription

(IOi), s/he may need to read information about the patient related to the prescription. If

the information is large and involves other IOs, then it should be a different UC, such as

Read Patient History (figure 4.3), which it involves information about examination,

treatment, prescription, etc., for the patient. Patient history is a report and not considered

as a different IO. Reports are created automatically by the system. Since they will not be

128

altered throughout time, but they are only to be read, we consider that their creation is

embedded in the Read UC. Reports do not need to be stored.

FIGURE 4.3 PART OF THE USE CASE DIAGRAM OF THE PRESCRIPTION MODULE, WHICH IS

CREATED AUTOMATICALLY BY NALASS.

Erase IO: Erasure of an IOi means that the IOi is permanently deleted. All of the

particular information in that IO instance regarding attributes and functions that exist in

the context of the IS is deleted. Erasure usually occurs when the user does not need to

keep an IOi in the system anymore. However, at system/database level, the erased IOi

may be stored at a separate place/database server.

129

Notify: The end of a Create, Alter, Alter-related and Erase use case specification

should include specific actions about sending a notification to the actors or stakeholders

interested in the creation or alteration of an IOi. If sending notifications involves different

actions for the different types of UCs (Create, Alter, etc.), then Send Notification may be

a separate UC with specialized UCs (fig. 4.4) included in and invoked by their including

UC.

FIGURE 4.4 UC SEND NOTIFICATION MAY BE SPECIALIZED ACCORDING TO THE TYPE OF

USE CASE WHICH INVOKES IT (E.G., UC CREATE IO INVOKES UC SEND CREATE

NOTIFICATION)

4.3 Step 3 Identify the actors of each UC, associations and

complementary use cases

For each basic use case identified in step 2, we need to identify the actors and other

stakeholders involved in its execution. Actors usually refer to (i) the system end-users

who use the system in an operational sense and interact directly with it; (ii) customers

who are external users that use the system to buy products and services, or search for

information relating to products; or (iii) trusted external users who have a particular

relationship with the organization and may be given specific privileges in the system

(suppliers are examples of such users). In contrast, other stakeholders refer to: (i)

130

business users who are interested in the system’s functions and output, as support for

achieving their business objectives; (ii) managers who are responsible for the strategic

use of IT in their business unit and for the overall strategy of the organization and the

way information systems can both support and enable the strategy; (iii) information users

who are external users that use the system not to buy anything but mainly to be informed

or provide information about other system users or entities (a patient’s relative in a

hospital IS is an example of such a user); and (vi) Shareholders who are external users

that have invested in the organization and have financial interest (Avison and G.

Fitzgerald, 2003). In NLSSRE, each user has a business role in the system, which is

involved in each CAREN function of a particular IO. Accordingly, in UCDA, each

actor—in the place of a business role—is involved in each use case of a particular UC

module.

According to Marsic (2009) and Sybase (2002), an actor can be a primary actor for a use

case if it triggers the actions performed by the use case; the primary actor is the one who

asks for an action to be performed by the use case. Primary actors are located on the left

of the use case in the UCD. On the contrary, an actor can be a secondary actor for a use

case if the actor assists the use case in completing the actions but does not trigger the

actions (i.e., a secondary actor is someone who participates in the use case but does not

initiate it.) An actor is also considered as secondary when the actor receives information

(e.g., results, reports, documents) produced by the execution of a use case. Secondary

actors are located on the right of the use case. In a UC subsystem, as will be illustrated

later, a secondary actor can also be a primary actor in another use case, in the same

diagram.

131

Similarly to NLSSRE, to identify the actors involved in each use case, we take into

account the type of the use case—Create, Alter, Alter-related, Read, Erase—and the

functional roles involved in each UC type. By making questions regarding the functional

roles, we can identify the actors. A Create use case involves the functional roles Creator,

Accompaniment, Intended Recipient, and Notifiee. An Alter UC, an Alter-related UC and

an Erase UC involve the functional roles Alterer, Accompaniment, Intended Recipient,

and Notifiee. A Read UC involves the functional roles Experiencer, Accompaniment,

Intended Recipient, and Notifiee. The Creator, Alterer and Experiencer are played by

primary actors, while Accompaniment and Intended Recipient are played by secondary

actors. The Notifiee concerns other stakeholders. Since primary actors initiate the use

cases, they are usually required to have authorization to do it. Therefore, a use case

Authorize <Actor> should be executed for each primary actor, and link the primary actor

to the use cases s/he can execute. The functional roles actors can play and their

identification process through questions are similar to what is performed by NLSSRE, so

we will not repeat them here. What is worth mentioning here is the identification of new

use cases and relationships from involvement of the accompaniment role.

In particular, the collaboration between a primary actor and an accompaniment can

derive both include and extend
27

 relationships, where extending or included use cases are

invoked by their base use cases and triggered by the accompaniments. These use cases

27The extending use case is dependent on the base use case; it literally extends the behavior described by the base use case. The base

use case should be a fully functional use case in its own right without the extending use case's additional functionality. The “extends”

relationship includes the condition that must be satisfied if the extension is to take place, and references to the extension points which

define the locations in the base (extended) use case where the extensions are to be made [34].

132

are called complementary. For example, as illustrated in figure 4.5—and earlier in section

3.3 (step 3)—during the creation of a prescription, the doctor may need to ask for the

assistance of another doctor/counselor or of a medical database system in order, for

example, to choose between two drugs for the treatment of a patient. In this case the

counselor and the medical system are accompaniments that provide feedback, and Give

Prescription Help extends the behavior of Create Prescription. Give Counselor Help and

Give Medical Database Help are specialized UCs of Give Prescription Help, and they

occur based on the decision of the doctor. If the doctor does not need any extra

knowledge to create the prescription, then the extending UC will not be executed, but the

extended (base) UC will be fully completed. In the case where the complementary use

cases are not considered to be large, complicated or worth reusing, then they can be

described in the transaction flow of the UC Create Prescription specification and so they

are not defined as separate use cases.

In summary, the entities that play the role of creator, accompaniment, alterer,

experiencer or intended recipient are identified as actors (primary or secondary). Every

other stakeholder plays the notifiee role. Actors should appear in the UC diagrams and be

mentioned in the UC specifications. Other stakeholders should not appear in the UC

diagrams but should be mentioned in the UC specifications. We have also indicated that

relationships between actors in one use case—such as that between creator and

accompaniment—may lead to the identification of new use cases.

133

FIGURE 4.5 COMPLEMENTARY USE CASES DERIVED FROM RELATIONSHIPS BETWEEN

ACTORS (THIS IS THE OTHER PART OF THE PRESCRIPTION MODULE DEPICTED IN FIGURE

4.3).

4.4 Step 4. Structure UC elements as formalized sentences

In the previous steps, the analyst identified and defined the UC modules, the use cases of

each module, actors, associations, “include” and “extend” relationships between use cases,

as well as generalization relationships. Additionally, during these three first steps, the

analyst uses the identified UC elements to develop the UCDs which s/he finally

completes after the application of steps 4-6. Step 4 involves writing the UC elements as

FSRs. As discussed in earlier sections, such formalization not only helps to make

expression of requirements more disciplined, understandable and organized, but it also

makes easier their conversion into the UC diagrams and specifications. Additionally,

formalization also helps to identify more easily new UC elements, such as

complementary UCs, as illustrated in step 3 with the use of the accompaniment, and

subsystems, as mentioned later in step 5. We prefer to name the FSRs for use case

134

modeling as FSUCs, just for terminology purposes, to show that we deal with use case

modeling. Therefore, a formalized sentential use case pattern FSUC is a structured, semi-

formal way of writing a use case of an IS, which corresponds to the FSR pattern provided

by NLSSRE. An FSUC is defined as follows:

IO
FFSUC =<A><F><IO><FC>::SendNotification<IR><No><FC>

where

UC function type F acts on the Information Object IO; the Actor group A refers to the

primary actor and its accompaniments (secondary actors) if any, IR refers to the intended

recipients, which are secondary actors, (No)tifiees are other stakeholders, and Functional

Condition FC is a clause that adds further information about the function, commonly by

establishing the circumstances within which the function takes place. The syntax of the

notification function, which is triggered after the execution of F, is placed after the

symbol “::”. Finally, the accompaniments’ involvement is elaborated through separate

complementary sentences.

Functional conditions may derive business rules that influence the actions of the UC

specifications (e.g., the FC time point may derive the business rule Doctor can create a

prescription from 8:00-14:00) or they may also derive “include”, “extend” or

“generalization” relationships (e.g., Counselor Gives E-mail Help and Counselor Gives

Form Help are specialized use cases of Counselor Gives Prescription Help).

Below we provide some indicative rules that illustrate how the FSUC can assist in

creating the UC diagrams:

135

1. The complementary sentences may be used as included or extending use cases,

accordingly, to their base use cases which are expressed by the main sentences

(e.g., the UC Create Prescription is extended by the UC Counselor Give

Prescription Help.)

2. As already mentioned, functional conditions may derive business rules that

influence the actions of the UC specifications, or they may also derive “include”,

“extend” or “generalization” relationships.

3. The verb and the indirect object of the FSUC make the name of the UC, such as

Create Prescription, and Give Prescription Help.

4. In a Create, Alter or Erase, or Read FSUC, the first actor in the Actor group is the

primary actor (Creator, Alterer, or Experiencer) and should be positioned on the

left of the use cases of the UCD.

5. The actors on the right of the first actor (primary), in the Actor group are

accompaniments (not notifiees, which should not appear at all) and are therefore

secondary actors and should be positioned on the right of the use cases of the

UCD.

4.5 Step 5. Define UC subsystems

UC modules of IOs created by the same actor may be possibly related and thus compose

a UC subsystem which facilitates better organization and understanding of the UC

elements and model. Such a subsystem supports related duties and responsibilities of

mainly the same actor. Usually, the different modules of a subsystem are linked with an

136

“extend” or an “include” relationship, but in some cases they may not be linked at all.

Figure 4.6 below shows a part of the subsystem Hospital Reception composed of the UC

modules Patient and Appointment
28

.

FIGURE 4.6 HOSPITAL RECEPTION SUBSYSTEM UCD DEVELOPED FROM 2 DIFFERENT

MODULES: PATIENT AND APPOINTMENT.

The Hospital Reception subsystem supports the duties of the hospital receptionist. The

receptionist is the IS primary actor in creating patient appointments and recording new

patients, which are two of her/his duties we indicatively present for the purpose of this

dissertation. The receptionist is also involved in the other use cases—apart from creating

appointments and patients, e.g., Cancel Appointment, Read Patient—of the UC modules

28 For simplification, we haven’t included the UCs Erase IO and other possible UCs, such as Cancel IO, Complete IO, and Archive IO.

Furthermore Send Notification is conceived as a small sequence of actions at the end of each UC specification, and therefore it is not

conceived as an “include” UC.

137

Appointment and Patient. Patient and Doctor are secondary actors; the former provides

his personal and other information to the receptionist, upon arrival and/or by phone, in

order to create or alter an appointment. The latter provides information to the receptionist,

such as confirming his/her availability for an appointment, so as to create or alter an

appointment. Additionally, the doctor, as a primary actor, is authorized to read the

appointment on his/her computer screen.

The grouping of different UC modules into a UC subsystem drives the analyst to

investigate if this grouping derives any extend, include, or generalization relationships.

For example, in the Hospital Reception subsystem, the UC Create Patient extends the

UC Create Appointment. This occurs when the receptionist is creating an appointment for

a new patient who will be registered for the first time in the system. When the patient is

already stored in the system, the extending use case will not be executed.

Different subsystems can be linked together. As mentioned in step 3, a good way to

link subsystems is through an actor who plays the role of an IR (secondary actor) in

module A of subsystem A and the role of a creator or alterer (primary actor) in module B

of subsystem B, which results from module A. In this case, subsystem A may be linked

with subsystem B. This is illustrated with the example of the Prescription module of the

subsystem Hospital Practice
29

 and the Drug module of the Pharmacy subsystem, in which

the Pharmacist plays the role of IR in the Prescription module (in UC Create

Prescription) and alterer in the Drug module (in UC Alter Drug). Another example

related to the Hospital Reception subsystem is the relationship of its Appointment module

29 Hospital Practice is composed of the modules Prescription, Examination, and Diagnosis, since doctor, as a primary actor, is the

creator of all three of them

138

with the Examination module of the Hospital Practice subsystem, where Doctor is an IR

in UC Create Appointment of the former module, and doctor is a creator in UC Create

Examination of the latter module. Therefore the Hospital Practice Subsystem is linked

with the Hospital Reception subsystem, as shown in figure 4.7 below.

FIGURE 4.7 DIFFERENT SUBSYSTEMS ARE LINKED TOGETHER TO CONSTRUCT THE ENTIRE

SYSTEM’S UCD.

4.6 Step 6. Relate business rules with use cases and actors

Business rules associated to the use case interactions must be specified or, at least,

referenced (Dias, 2008). Business rules are never "owned" by a use case, since a business

rule may be implemented by more than one use case. On the other hand, a business rule

can be incorporated in a use case. As illustrated later in step 7 on use case specifications,

some UC specification actions may need to comply with business rules. Failure to

comply may lead to the termination of a use case or to alternative flows. Business rules

can also determine new extend or generalization relationships. There are different types

139

of business rules, such as general policies of an organization about data compliance

standards (e.g., coding of clinical elements must comply with specific clinical data

standards) or business rules derived from the functional conditions, as mentioned

previously in step 4. Here we focus on two major types of business rules, as provided by

NLSSRE:

 (i) Inter-related business rules. These rules are created from combinations of two or

more attributes between different interrelated participants (actors and IO). In particular,

the values of one or more attributes of one or more participants determine the values of

one or more attributes of one or more related participants. The interrelated participants

can be identified easily through their co-involvement in the same use case, and of course,

in the same FSUC. For example, using the UC Create Admission:

FSUC=<Ward Clerk, Patient><Create><Admission><Doctor><Ward Clerk>

we should examine if there are any special relationships between the actors involved

during the execution of Create Admission. This examination takes place by checking

combinations of attributes of the actors and the IO. For example, if Admission.time

(where time is an attribute of the IO Admission) is more than one night, then Patient will

be allotted a bed, whereas if Admission.time is zero nights, then Patient will not be

allotted a bed (except only temporarily). In this case, two new specialized UCs (Create

Outpatient Admission, Create Inpatient Admission) may be created, or the relevant

business rule may be incorporated in the specification of UC Create Admission.

 (ii) Intra-related business rules. These rules refer only to a particular IO, where the

value of one attribute of an instance of the IO determines the value of another attribute of

140

the same instance of the IO. An example of intra-related business rules in the form of

questions, which may apply to the UCs Create Doctor and Create Schedule, are the

following:

–How does the rank of a doctor affect his/her schedule?

 Possible answer: If Doctor = Consultant (First) then Doctor’s Work Time is no less

than 18 mornings/month.

 else: If Doctor = Specialty Registrar (Second) then Doctor’s Work Time

is no less than 24 mornings/month.

Intra-related business rules are usually incorporated in the transaction flow of the UC

specification. For example, when the UC Create Schedule is executed, one of its actions

will be to check the doctor’s rank and based on it to determine the doctor’s schedule.

Intra-related business rules may also lead to the development of generalization

relationships between actors, like the Doctor.rank attribute, which, when taking different

values such as consultant or registrar, may lead to the specialized actors Doctor

Consultant and Doctor Specialty Registrar.

If a business rule applies to a single use case, it may be attached as a note in the use case

itself in both the use case diagram and its specification; if a business rule applies to

multiple use cases, it may be written only once as a global note linked to every relevant

use case in the UCD and UC specification (Alhir, 2002).

141

4.7 Step 7. For each use case, write the use case specification

Previous steps have illustrated how the UC elements are identified through formalization

of use case types and actor roles, and how the UC modules, subsystems and the entire UC

model is constructed, including UCDs. We have also presented screenshots and

description of our CASE tool. Within this step, our approach also intends to formalize

and automate the process of completing the UC specification template, and to provide

clear and precise specifications. To achieve these aims, our approach applies (i)

adaptation guidelines on the identified UC elements or/and on the formalized sentences,

and (ii) NL authoring guidelines.

The UC specification template contains entries such as use case name, identifier,

description (a couple of sentences or a paragraph describing the basic idea of the use

case), preconditions (list of the state(s) the system is into before the use case starts), basic

flow of actions (description of the “normal” processing path), alternate flow of actions or

exception conditions, post-conditions (list of the state(s) the system can enter when this

use case ends), actors (list of primary and secondary actors that participate in the use

case), stakeholders, included use cases (list of use cases that the template use case

includes), extending use cases (the use case(s) that extend the template use case), and any

business rules which concern the template use case.

The UC specification, similar to the construction of the UCD, may be developed

incrementally, through the application of the steps of the proposed approach. However,

complete UCDs and FSUCs are useful to facilitate the construction; therefore a

significant part of UC specifications is constructed after the completion of the previous

steps. Here we present the adaptation and authoring guidelines of our approach, and we

142

mainly focus on the most significant parts of the use case specification, which are the

basic flow and alternative flow/exception conditions of actions:

Guideline 1. The name of the use case consists of a verb followed by a noun phrase. Our

approach provides specific use cases with specific names, such as Create IO, Alter IO,

Read <IO report> (e.g., Create Prescription, Read Patient Record).

Guideline 2. Preconditions refer to the list of the state(s) the system is into before the use

case starts. A good way to identify preconditions is to check if the primary actor A of the

template use case is an intended recipient in another use case, described as essentially

preceding use case (EPUC). EPUC is normally about the creation or alteration of an IO-

EPUC which is used by actor A to execute the template UC. The state of IOEPUC, defined

after the execution of EPUC, determines this type of precondition. The syntax of this type

of precondition is as follows:

“<IOEPUC> is in <IOEPUC.state> state (from UC <EPUC>).”

For example, a precondition of the UC Create Prescription is “Examination is in

Complete state (from UC Create Examination).” as shown in Table 4.1.

Regarding the automation part of detecting the preconditions from the elements

identified in the previous steps, our CASE tool reads the FSUCs and matches the actors

that both play the role of IR in one use case and primary actor (usually by reading the IO-

EPUC) in another use case, and then it provides to the analyst the possible cases of

preconditions to select from.

143

Another type of precondition refers to the primary actor that initiates the use case, that

is, the creator, alterer or experiencer. Normally, the system must check that the primary

actor has the access rights/credentials to initiate the use case. For example, for the UC

Create Prescription, “Doctor is authenticated” is a pre-condition. The syntax of this

precondition type is as follows:

“<Actor> is authenticated (from UC <Actor> Creates Authentication)”

For example, a precondition of the UC Create Prescription is “Doctor is authenticated

(from UC Doctor Creates Authentication).” as shown in Table 4.4.

Guideline 3. A post-condition usually refers to the resulting state of the IO after the

execution of its use case. For example, for the UC Create Prescription, the result will be

the prescription in a Pending state, which should have the following syntax:

“<IO> is in <IO.state> state.”

For example, the post-condition of the UC Create Prescription is “Prescription is in

Pending state.” as shown in Table 4.4.

Guideline 4. Actors that participate in the use case include at least one primary and zero

or more secondary actors. From an FSUC, as shown in step 4, we can derive the primary

actor, which is a creator, alterer or experiencer, and the secondary actors which play the

roles of accompaniment or intended recipient. Each actor should be named with a

singular noun; if actors are specializations of a general actor or if they refer to a system,

they may be represented by a noun phrase, e.g., eye-doctor, medical system.

144

Guideline 5. According to Meyer et al. (2008), a typical use case is described as a

sequence of actions, and each action is expressed in natural language (if needed, one can

extend a given action with an alternative behavior). That makes use cases readable for

end-users. To maintain a high-degree of readability and understandability and to

minimize ambiguity, our approach intends to formalize the use case actions by providing

specific types of actions, written in a structured form of NL, as well as to automate their

specification. The formalization is achieved by utilizing the sub-functions of each

CAREN function, the attributes of each IO
30

, functional conditions, data constraints and

business rules. The automation is facilitated by our CASE tool.

In particular:

- The sub-functions Enter Data, Check, and Save are used as main actions in the

basic flow of the Create UC specification (e.g., table 4.1 actions 3, 4, and 6; table

4.4 actions 3–12.3).

- The sub-functions Delete, Enter Data, Check, and Save are used as main actions

in the basic flow of the Alter UC specification (also for any form of alteration,

such as cancel, complete, etc.) (e.g., table 4.2 actions 3–6 and 8).

- The sub-functions Delete, and Check are used as main actions in the basic flow of

the Erase UC specification.

- Read IO is a basic use case which is included in the use cases Alter IO, Erase IO,

and Alter-related UCs (cancel, complete, etc.), and it is invoked by the first action

in the basic flow of the above UCs (e.g., table 4.2 action 2).

30The NLSSRE methodology provides different types of IOs and attributes that help in the identification of the attributes of each IO.

145

- Read is decomposed to a sequence of actions in the UC Create IO. It has to do

with reading a form with empty fields (required, optional) to be filled (e.g., table

4.1 action 2).

- Send Notification is normally executed as the last action in the flow of the use

cases Create IO, Alter IO (also Cancel IO, Complete IO, etc.), and Erase IO. It

can be decomposed to small actions or defined as a separate use case (table 4.1

action 7; table 4.2 action 9; table 4.4 action 13).

- Select or Click are secondary actions.

Normally, request actions are executed by an actor (including any involved

accompaniments too), and respond actions are executed by the system. Usually an actor’s

action is followed by a system’s action. In tables 4.1–4.3 below, we present the sequence

of actions for the basic flows of the UCs Create IO, UCs Alter IO and Read IO, whereas

in Table 4.4 (actions 1-14, flow of events section) we can see the basic flow of the UC

Create Prescription. NALASS reads each IO, its attributes and its FSUCs and creates the

UC specifications flows based on the below patterns and by replacing the elements in

“<>” with their corresponding values.

146

TABLE 4.1 BASIC FLOW PATTERN FOR UC CREATE IO.

1. <Actor> selects create <IO>.
2. System displays new <IO> creation form, including required and optional fields.
3. <Actor(s)> enter(s) <IO><IO.attribute.value>.

 Repeated
4. System must check <IO><IO.attribute.value>.
5. <Actor> selects submit the new <IO>.

6. System saves the new <IO> in the database.
7. <System> notifies <Actor>, <Accompaniments>, <Intended Recipients> that <IO> is

created via UC <UC id>.

TABLE 4.2 BASIC FLOW PATTERN FOR UC ALTER IO.

1. <Actor> selects alter <IO>.
2. System displays existing <IO>via UC <UC id> “Read <IO>”.

3. <Actor> deletes <IO><IO.attribute.valuex>.
4. System must check <IO><IO.attribute.valuex>.
5. <Actor(s)> enter(s) <IO><IO.attribute.valuey>

 Repeated

6. System must check <IO><IO.attribute.valuey>
7. <Actor> selects submit the altered <IO>
8. System saves the altered <IO> in the database

9. <System> notifies <Actor>, <Accompaniments>, <Intended Recipients> that <IO> is

altered via UC <UC id>.

TABLE 4.3 BASIC FLOW PATTERN FOR UC READ IO.

1. System receives the <IO> identification from <Actor>.
2. System checks its data store for the <IO> based on the identifiers.

3. System converts the <IO> into the relevant format for viewing.

4. System displays <IO> mandatory and optional fields.

Alternative flows or exception conditions are easily defined by the use of data

constraints. For each IO attribute entry in the UCs Create IO or Alter IO, or for each IO

attribute deletion in the UCs Alter IO or Erase IO, an exception condition is applied with

reference to its possible triggering point in the basic flow, after a system check is applied.

The syntax of this kind of exception condition is as follows:

The system displays ‘Invalid <IO><IO.attribute>’ message, if <IO><IO.attribute> is

incorrect. <IO> cannot be saved.

147

Table 4.4 shows examples of implementing various exception conditions, regarding the

UC Create Prescription (actions 1.1-5.1, exception conditions section).

Guideline 6. Extension Points of a Use Case show exactly where in the basic flow an

extending use case is allowed to add functionality. Extension points can be derived easily

from the UCD. The extends relationship, as shown in figure 8, includes the condition that

must be satisfied if the extension is to take place, and references to the extension points

which define the locations in the base (extended) use case where the additions are to be

made. For example, as shown in figure 4.6, UC Create Appointment is extended by UC

Create Patient, under the condition “Patient does not exist in the system”, at the

extension point “Enter Patient ID”. Our CASE tool reads the extension point “Enter

Patient ID” of the UCD and matches it with the corresponding action of the extended UC

(UC Create Appointment, in this example). On the right of the corresponding action, a

relevant message is written, with the following syntax:

[Extension point: UC <UC id><UC name>]

Table 4.4 includes two extension points at actions 6.1 and 7.1 of the basic flow.

148

TABLE 4.4 USE CASE SPECIFICATION EXAMPLE FOR UC CREATE PRESCRIPTION.

Use Case Name Create Prescription
ID UC 4
Description The doctor fills out the form for a new prescription.
Preconditions 1. Examination is at Complete state (from UC Create Examination).

2. Doctor is authenticated (from UC Doctor Creates Authentication).
Actors Doctor (Primary), Patient, Pharmacist (Secondary)
Stakeholders Patient’s Relative
Post-Conditions Prescription is in Pending state
Flow of Events 1. Doctor selects create Prescription by clicking on ‘create prescription’

button.
2. System displays new prescription creation form, including required

and optional fields.

3. Doctor Patient enter(s) Patient ID.
3.1. The System checks Patient ID.

4. Doctor enter(s) Drug Name.
4.1. The System checks Drug Name. [Extension point: UC 22 Get

prescription help]
5. Doctor enter(s) Drug Dosage.

5.1 The System checks Drug Dosage. [Extension point: UC 22 Get

prescription help]
12. Doctor clicks on the Submit button.

12.1. The Doctor adds Doctor’s digital signature to the

Prescription (BRU.001)

12.2. The System adds a unique identifier to the Prescription.

(BRU.002)
12.3. The System saves the Prescription in the database.

13. The System notifies the Doctor, Pharmacist, and Patient that

Prescription is created via UC 15.
14. Use case ends.

Exception

condition
3.1. The System displays ‘Invalid Patient ID’ message, if patient ID is

incorrect. Prescription cannot be saved.
4.1. The System displays ‘Invalid Drug Name’ message, if Drug Name is

incorrect. Prescription cannot be saved.
5.1. The System displays ‘Invalid Drug Dosage’ message, if Drug Dosage

is incorrect. Prescription cannot be saved.
……………
12. The System does not take any action if Doctor clicks on the Cancel

button. Use case ends.

Includes UC 15: Send Notification
Extended by UC 22: Get Prescription Help
Extending other

UCs

Business rules BRU.001: The Doctor signature follows NEHTA specifications.
BRU.002: The Prescription identification number must comply with the

format specified by NEHTA.

149

4.8 Chapter Summary

This chapter presented how the NLSSRE methodology can be adapted to formalize and

automate the development of the use case model. The major steps of the adaptation

process involve formalization of the process of identifying the UC elements and

formalization of the use case specification template with the main focus on its

transactions flow sections. Formalization is mainly achieved with the use of predefined

types of use cases—corresponding to the CAREN functions—and actors—corresponding

to business roles—, formalized sentential patterns—corresponding to FSRs—, formalized

types of transaction flow actions, and specific guidelines and NL authoring rules. The

latter also helps in providing a clear and understandable semi-formal UC specification.

The automation of the UC model development is supported by NALASS which was also

described through indicative examples.

150

5 The NALASS Tool

To reduce the time required for the manual application of the NLSSRE methodology, and

also to provide a friendly graphical environment for the Information Systems (IS) analyst,

a software tool is required. Therefore, we created NALASS (Natural Language Syntax

and Semantics)
31

, a supporting software tool that automates all the stages of the NLSSRE

methodology, including requirements discovery, analysis and specification. For the

requirements discovery stage, specific sets of questions are automatically created based

on the specific predefined types of data attributes and patterns of formalized sentences

that are given in advance; for the requirements analysis stage, the requirements are

automatically organised and classified based on the same types of data attributes and

patterns; and for the specification stage, the tool can automatically generate Object

Related Data Flow Diagrams, Class Diagrams, Use case specifications and diagrams, and

the Software Requirements Specification (SRS) Document.

NALASS includes 7 architectural components as depicted in figure 5.1: (i) the FSRs

component that uses the predefined and other manually entered FSR patterns as well as the

identified IOs to generate, on one hand, the FSR patterns for each IO, and, on the other

hand, the complete FSRs fed with the received answers; (ii) the Attributes component that

uses predefined and other manually entered types of attributes and the identified IOs to

generate the attributes types for each IO, on one hand, and the complete attributes formed

by the received answers, on the other hand; (iii) the Questions component, which

31 The CASE tool and its manual can be obtained upon request to marinos@studyhood.com.

151

processes the elements of the FSRs patterns and attributes for each IO, to generate the

question sets (for each IO) to be submitted to the user; and

FIGURE 5.1 CONFIGURATION OF NALASS.

(iv), (v), (vi) and (vii) the Documentation, Use Case, Object Oriented and Functional

components that process the elements of the completed FSRs, the completed attributes and

specific rules to automatically generate the SRS document, Use Case specifications and

diagrams, Class diagrams, and DFDs, respectively. NALASS also allows the analyst to

enter users and roles of the IS, and it automatically builds a Data flow table, from which

the analyst will be able to identify the actual IOs.

During the description of the methodology, in chapters 3 and 4, we illustrated the

application of the above components. In particular, the application of the FSR component

was mainly illustrated in section 3.3.3, the Atributes component in section 3.3.4, the

Questions component in 3.3.3-3.3.5, the Documentation, the OO and Functional

components in 3.3.6, and the Use Case component in chapter 4. Therefore, in this chapter

SRS Rules

SRS Document

Component

SRS Template

FSR elements,

Attributes

SRS

Document

NLSSRE

elements

OO

Component

Use Case

Component

Functional

Component

FSRs

Component

Questions

Component

FSRs patterns ∀ IO

UC Rules

OO Rules

DFD Rules

Use Case

Descriptions,

Diagrams

Class

Diagrams

DFD

Diagrams

Attributes

Component

Complete FSRs

Predefined

attributes types

∀ IO

Questions

IOs,

 Answers

Complete

Attributes

IOs,

Answers

FSR patterns

Predefined

attributes

types

152

we will provide a summary of the above components through the presentation of the

major interface components of the tool, namely Administration, Plan and Execution. In

the Administration component, the analyst can create/add new types of IS elements, such

as FSR patterns and data attributes that may apply to any project, as reusable elements.

Figures 5.2 and 5.3 are screenshots of adding a new FSR class and editing an exisitng

one, respectively, while figures 5.4 and 5.5 show how we can add and edit participants

for each FSR class (e.g., each Create FSR class will have a Creator, and Accompaniment,

an Intended Recipient, etc.). The latter two figures show that the analyst can define a

number of parameters for the participants of each FSR class. For example, the parameter

shape denotes the notation of the participant in a diagram, while the parameter position

denotes the position of the participant in the FSR pattern, which will facilitate the correct

construction of an FSR and the application of rules to build the diagrammatic notations

and the SRS document.

FIGURE 5.2 ADDING A NEW FSR CLASS

153

FIGURE 5.3 EDITING AN FSR CLASS

FIGURE 5.4 ADDING PARTICIPANTS FOR AN FSR CLASS.

154

FIGURE 5.5 EDITING PARTICIPANTS FOR AN FSR CLASS.

With the use of the Plan interface component, the analyst builds the particular

elements of a particular project, including its IOs, FSR classes, attribute types, questions

for each IO, etc. For example, for identifying the IOs, the tool guides the analyst first to

enter users and roles, and then it generates the Data flow table (fig. 5.6), which the

analyst can use to note down the information exchanged between the system users.

155

FIGURE 5.6 THE DATA FLOW TABLE.

Subsequently, the analyst determines the actual IOs from a candidate list of IOs

derived from the information in the data flow table (among other techniques), and adds

them into the new project, as illustrated in figure 5.7.

FIGURE 5.7 ADDING INFORMATION OBJECTS.

156

The activities within the Plan interface component are completed with the addition of a

number of attributes for each IO as well as the automatic creation of FSRs for each IO

and the questions for the FSRs of each IO, as illustrated in figure 5.8.

FIGURE 5.8 AUTOMATIC CREATION OF FSRS AND QUESTIONS FOR EACH IO.

In the Execution section, the analyst is usually at the user’s environment submitting

questions to the users and noting down the answers. The answers to the questions feed the

FSR patterns as they are the values of the constituent elements (participants) of the FSR

patterns, as shown in figure 5.9 (e.g. Creator takes the value Doctor). The answers also

feed the attributes of each IO.

FIGURE 5.9 THE ANSWERS TO THE QUESTIONS FEED THE FSR PATTERNS.

Subsequently the FSRs and their constituent elements, as well as the IO attributes,

with the use of specific rules are transformed to DFDs, Class diagrams, Use case

specifications and diagrams, and the SRS document, as already described together with

157

the depiction of screenshots in earlier chapters. Here we provide only a small summary

of each component:

Functional Component: The functional component utilizes specific rules to transform

the FSRs and attributes of each IO to object-related DFDs. For example, the FSRs of

creation, alteration, reading and erasure of each IO are grouped under one comprehensive

function named Manage <IO>. Section 3.3.1 provides a detailed description of such

rules, together with examples of resulting diagrams.

Object Oriented Component: The OO component utilizes sspecific rules to transform

the FSRs and attributes of each IO to class diagrams. For example, each IO is

transformed to a Class, and its CAREN functions become the methods of the class.

Section 3.3.2 provides a detailed description of such rules, together with an example of a

resulting diagram.

Use Case Component: The Use Case component utilizes sspecific rules to transform

the FSRs (including also detailed FSRs which correspond to business rules) and attributes

of each IO to use cases, use case diagrams and specifications. For example, as a rule of

thumb, each FSR corresponds to a use case. Chapter 4 includes a detailed description of

such rules, together with examples of resulting diagrams.

The SRS Document Component: The SRS Document component utilizes sspecific

rules to transform the FSRs (including also detailed FSRs which correspond to business

rules) and attributes of each IO to construct the SRS document. Section 3.3.3 includes a

description of such rules, together with an example of a resulting SRS document.

158

6 Evaluation of NLSSRE

In order to prove the usefulness of the NLSSRE methodology, we performed an

experiment through which we compared it to the classical RE OO approach based on use-

case driven analysis, by applying both in a real setting
32

. Our evaluation, based on the

method proposed by Geisser et al. [2007] for evaluating RE methodologies, tested the

following for each approach (including its underlying tools):

• The effectiveness in terms of the achieved quality of the requirements specification

produced by the application of each approach. The specification produced by both

approaches followed the organization provided by the relevant template of the IEEE

Recommended Practice for Software Requirements Specifications (IEEE 1998) (shown

also in Table 3.5), and additionally integrated use case specifications and diagrams.

• The efficiency in terms of the output/effort ratio.

6.1 Experiment description

Two novice software engineers (for evaluation purposes we will call them SE1 and SE2)

were assigned to test the two methodologies. They were both graduate students of the

University of Cyprus who attended several courses in software development over a

32 Two preliminary evaluations of the methodology preceded the third final evaluation presented in this dissertation. The two previous

evaluations assisted in clarifying and establishing several concepts of the methodology, such as the overall application framework, the

definition of the IO, the IO guide, the identification of roles and the data flow table, the alter-related functions, and other issues. In

particular the two preceded evaluations concerned the application of the methodology in two real-life settings, for the RE task for the

development of a Banking IS and for a Dentistry IS. Both case studies were conducted by postgraduate students with extensive

knowledge in the field of software engineering. Relevant training was given to them to become familiar with the NLSSRE

methodology and the dedicated software tool provided at the time of the evaluation. All case studies are available upon request from

the corresponding author.

159

period of three years prior to the experiment. Additionally, a specific one-week training

and lecture were given to SE1 regarding the use of the NLSSRE methodology—including

its adaptation to use case modeling—and the NALASS tool, and a similar one-week

course was given to SE2 in the form of a knowledge refresher on the classical approach

and use case modeling
33

—SE2 was already familiar with the classical methods from

corresponding courses in his studies. We assigned SE1 and SE2 the requirements

engineering task for the development of a sub-system of the Library Information System

(LIS) of the University of Cyprus.

An existing, high-quality object-oriented SRS document, as defined by the IEEE

template mentioned above, was used and served as a benchmark for the quality

assessment of the specification developed by each student. The benchmark SRS was

created by the analysts of the fully functional (currently in daily operation) LIS. This

document was further refined during the LIS development, through a number of revisions,

and finally reflected the high performance of the existing LIS and the high satisfaction of

its users. We performed additional processing on the benchmark SRS to achieve a clearer

focus on atomic requirements involving functions, data, functional conditions and

business rules, with the aim of ensuring a high degree of comparability. Moreover, we

used the use-case diagrams and use-case descriptions/specifications as were created

originally by the LIS developers, for comparison with the ones derived from both

NLSRRE and the classical approach. SE1 used the NLSSRE methodology, with its use

case adjustment, and its corresponding CASE tool, while SE2 employed the classical RE

33Methodological guidelines by Cockburn were chosen, because, besides their wide acceptance, they provide detailed and

straightforward guidance for identifying the use case elements and constructing the use case specification.

160

method with the use of open-ended interviews, the IEEE SRS template, and Cockburn’s

use case methodological guidelines.

6.2 Evaluation criteria and analysis of results

The evaluation was based on: (a) a number of factors which determine the quality of each

produced specification, and, in turn, the effectiveness of each RE approach; and (b) the

measurement of the output/effort ratio, which determines the efficiency of each RE

approach.

6.2.1 Quality of Specification

We have formed a number of quality factors to evaluate the quality of each produced

specification document (final version), based on the quality frameworks of Moody (2003),

Moody and Shanks (1998), and Sharma (2009), as well as on the IEEE Recommended

Practice for SRS (1998). Each quality factor was objectively measured against quality

metrics. Table 6.1 shows the summarized results for the quality of each produced

specification, followed by discussion of the metrics and results.

To achieve a higher level of objectivity in the comparison, especially for measuring

completeness, the comparison metrics were applied on equivalent elements. We found

this equivalent-element comparison more meaningful when, for example, determining the

percentage of missing actors from all the comparable use cases of each approach rather

than the total number of missing actors from all the use cases of each approach and thus

161

TABLE 6.1 OBJECTIVE QUALITY METRICS USED TO DETERMINE THE EFFECTIVENESS OF

THE METHODOLOGY.

Quality Factors Metrics Specs from

NLSSRE

Specs from

Classical

Completeness
34

Percentage of missing Use Cases (UC) 5% (3/60 UC) 20% (12/60 UC)

Percentage of superfluous Use Cases 7% (4/57 UC) 17% (8/48 UC)

Percentage of missing Primary Actors (PA) 0% (0/68 PA) 10% (6/58 PA)

Percentage of missing Secondary Actors (SA) 2% (4/188 SA) 14% (22/158 SA)

Percentage of missing use-case specification actions (Ac) 2% (18/855 Ac) 32% (232/720 Ac)

Percentage of missing pre-conditions (Pre) 0% (0/66 Pre) 9% (5/55Pr)

Percentage of missing post-conditions (Pos) 6% (4/61Pos) 10% (5/51 Po)

Percentage of superfluous pre-conditions 0% (0/57UC) 6% (3/48UC)

Percentage of superfluous post-conditions 0% (0/57UC) 6% (3/48UC)

Percentage of superfluous Actors 0% (0/57UC) 8% (4/48UC)

Percentage of superfluous use-case specification actions 0% (0/855) 20% (90/720)

Number of missing associations and relationships 6 (for all 57 UC) 79 (for all 48 UC)

Percentage of superfluous associations and relationships 0% (for all 57 UC) 12 (for all 48 UC)

Percentage of missing Data Classes 0% (0/ 12) 17% (2/12)

Percentage of missing Class Functions 0% (0/56) 22% (10/46)

Percentage of missing Class Data attributes 4% (7/180) 13% (20/150)

Percentage of superfluous Classes 8% (1/12) 10% (1/10)

Percentage of superfluous Class Functions 5% (3/56) 15% (7/46)

 Percentage of missing business rules (BR) 14% (5/35 BR) 41% (12/29 BR)

Correctness
35

Number of textual requirements with no identifier 0 3

Number of spelling errors 2236 57

Grammatical errors 0 34

Percentage of use cases with no identifier 0% (0/57 UC) 5% (3/55 (UC)

Percentage of use cases and actors with no names 0% 1%

Percentage of incorrect associations and relationships 0% 3%

 Number of other violations to Use Case modeling standards 0 6

 Number of violations to SRS writing standards 0 6

 Percentage of redundant use cases 0% 12% (7/55 UCs)

34 This metric is applied to comparable use cases and classes between each approach and the benchmark SRS. The denominator of the

fraction in parenthesis refers to the number of elements existed in the benchmark for the comparable use cases or classes, accordinlgy.

For example, 68 is the number of primary actors existed in the benchmark use case model for the comparable use cases (57) between

the benchmark UC model and the NLSSRE UC model. Accordingly, for the classical approach this number is 58 (for 48 comparable

use cases).

35 For correctness we took into account non-missing plus redundant use cases and their elements provided by each approach, that is, 57

use cases from our approach and 55 use cases from the classical approach (7 use cases were defined twice). We did not take into count

superfluous use cases.

36With 14 appearances of the same mistake, not different mistakes.

162

Consistency

Percentage of redundant actions (per use case) 0% 10%

Occurrences using words from more than one language 0 2

Percentage of redundant business rules 0% 10% (3/29)

Number of requirements referring to elements which are not

present (e.g., use cases, UC diagrams, requirements, figures)

0 6

Percentage of redundant functions (functions, sub-functions) 0 23/52

Number of redundant data (classes, attributes, relationships) 0 26

Number of requirements using words from more than one

language

0 2

Number of missing use cases with regard to the relevant

textual IEEE specs document37

0 2

Number of missing use case associations with regard to

relevant textual IEEE specs document35
0 14

U
n

d
e
rs

ta
n

d
a
b

il
it

y

Unambiguity

Number of requirements written as optional sentences 0 12

Number of requirements written as subjective sentences 0 10

Number of requirements written as vague sentences 0 44

Number of requirements written as weak sentences 10 63

Number of requirements written as implicit sentences 0 25

Readability Number of non-atomic requirements 0 34

Complexity

Functional levels 2 1

Total Functions/ Total Data classes 4.5 (56/12) 3.4 (3438/10)

 Total Actions/ Total Use Cases 15 (855/57) 15 (720/48)

Modifiability Number of redundant requirements 0 13

Prioritization Number of requirements that were not prioritized 7 15

also including superfluous and redundant use cases. The comparison would not have been

that objective if we compared the actors identified by each approach to the actors of the

60 use cases of the of the benchmark SRS, which included a number of incomparable use

cases since some of them were not identified by the two approaches. Similarly, we are

interested in the average percentage of missing actions in each comparable use case rather

than the total number of missing actions in all use cases which also include superfluous

and redundant use cases. With the term comparable use case, we mean the use case of our

37 This metric concerns the comparison between the use cases defined in the UC model and the functions in the OO textual SRS that

should become use cases, of the same approach. Therefore, it indicates the consistency between the produced use case model with its

corresponding textual OO SRS.

38 This is the number of the original functions provided in the classically produced SRS, before they were processed by us to be

formed as atomic functions which are 46.

163

approach or the classical approach that has equivalent functionality with a use case of the

benchmark SRS. For example, the comparable use case Create Book in our approach was

Add Book Details in the classical approach and Record New Book in the benchmark use

case model. Superfluous or redundant use cases are not included in the set of comparable

use cases of each approach. The number of comparable use cases was 57 for NLSSRE

and 48 for the classical approach, compared to the 60 use cases proved by the benchmark

SRS. Similarly, the number of comparable data classes was 12 for NLSSRE and 10 for

the classical approach, compared to the 12 data classes proved by the benchmark SRS.

a. Completeness. Completeness refers to the extent to which the requirements

document contains all necessary requirements (Moody, 2003). In our evaluation, these

requirements include functions, data, use cases, actors, associations and relationships, use

case diagrams, use case specifications including actions (in both normal and exception

flows), pre-conditions, post-conditions, business rules and functional conditions. To assess

the completeness of each SRS document, we check for necessary information which is

missing or information which is superfluous. Completeness is mainly focused on the

content of the SRS document and not in the way it is written. In our experiment, we

observed that the requirements document of the classical approach included several

missing and superfluous functions, data classes, attributes, use cases, actors, use case

associations and relationships, UC specification actions, pre-conditions, post-conditions,

and business rules. One of the major problems that arose from the use of the Cockburn’s

UC specification template, for the classical approach, was the omission of system response

actions (e.g., a notification sent by the system to the librarian about a purchase of a new

book was omitted). Another problem was the grouping of atomic actions in one UC

164

specification transaction (e.g., Librarian fills authorization form instead of Librarian adds

username / Librarian adds password / etc.) which also led to omissions of system

response actions. All these problems mainly occurred due to the lack of formalized

methods for identifying and specifying the UC elements. In contrast, NLSSRE produced

significantly better results. Our approach missed many fewer use cases. Also significantly,

our approach tended to include all the elements inside each use case, including actions,

pre-conditions, post-conditions, actors, references to “included” and “extending” use cases

and business rules. These better results are due to the formalization provided by NLSSRE

for identifying the UC elements, with the use of predefined use case types, from—

CAREN functions—and actors—from business rules—and guidelines to identify related

associations and relationships, as well as due to the formalization of the UC specification

actions of the transactions flow, rules and guidelines for identifying functional conditions,

use case pre-conditions and post-conditions, and an understandable way of expressing the

content of textual OO and UC specifications. However, although the error rate was lower,

our approach was not 100% complete. The very small number of superfluous elements

(functions, use cases) resulted from the inclusion of one superfluous IO; in our approach,

the identification of IOs (and therefore, UC modules) is an activity performed manually

by the analyst, as the first step of NLSSRE, with the help of the provided relevant guide

which, although providing specific steps for the identification of IOs, could probably be

enriched further. There were also many fewer omitted data attributes and almost no

omitted business rules. Moreover, the use case specification actions missed by our

approach concerned notifications to four secondary actors the analyst failed to identify,

therefore this issue did not occur because of a weakness in the proposed method of

165

formalizing the actions of the UC specification transaction flows. Additionally, the

application of our approach omitted three lower priority use cases, related to the reading of

reports. Such types of functions, and thus, use case types, are not provided directly by our

approach—although we give specific guidance as illustrated in step 3 of NLSSRE and step

3 of the UC adaptation process —and it is up to the analyst to identify them. Furthermore,

the use of NALASS helped avoid missing the requirements elements. As the results show,

the analyst who applied the classical approach missed considerably more (as a percentage)

functions, preconditions and postconditions than the analyst who applied our approach.

The use of NALASS helped to minimize missing these elements because it automatically

provided the functions of each IO, guides and types to identify the IO attributes,

preconditions of each use case and also different options for each use case regarding the

new state (postcondition) of the IO, such as Pending, Completed, etc., so the analyst could

decide accordingly. The two missing post conditions occurred, because the identification

of postconditions is not yet a fully automated process.

b. Correctness. Correctness refers to the extent to which the model conforms to the

rules and conventions of the writing/modeling technique [Moody and Shanks, 1998], that

is, in our case, naming rules, definition rules, diagrammatic conventions, etc. for the

creation of an IEEE specification organized by object, use-case diagrams and use-case

descriptions. Since the NALASS tool automatically provides the CAREN functions (use

case types) and also uses specific transformation rules and a template for writing the OO

IEEE requirements, as well as specific conversion and authoring rules for writing and

drawing the use-case model, in the correct syntax and grammar, and due also to the tool

being powerful for automatically drawing good diagrammatic notations, very minor

166

problems appeared when using NLSSRE, most of which were spelling mistakes from the

analyst’s input. The spelling mistakes mainly occurred from the manual entry of elements

such as IOs, actors and IO attributes indicate that dictionary verification of the input data

is an important future step. When compared with the error rate of the NALASS-produced

document, many more errors were found in the classically-produced document, including

spelling and grammatical mistakes as well as requirements with no identifiers. The

language knowledge level of SE2 (as well as of SE1) was checked before the experiment

and proved to be good. Therefore most of the mistakes are considered to be due to the

analyst’s oversight.

c. Consistency. Consistency assessment involves finding contradictions/conflicts

between requirements, such as two or more requirements describing the same element

(function, object, etc. – e.g., two or more use cases describing the same functionality)

with different terms, or two requirements with the same identifier, or missing elements

from a use case diagram or use case specifications while they are defined in the textual

OO specification. In NLSSRE, contrary to the classical approach, for each IO identified

by the analyst, the NALASS tool provides clearly and automatically the CAREN

functions or use cases for each IO identified by the analyst, and it also guides the analyst

in identifying and defining additional alter-related functions or use cases (e.g., Cancel IO,

Complete IO), attributes, functional conditions and business rules. For instance, the SRS

document of the classical approach uses different wording/terminology for the same type

of IS elements; for example, for the creation function of each object class, different verbs

were used, such as ‘create’, ‘record’, ‘complete’, and others. The NALASS tool also

provides the specification template for each identified use case, with specific types of

167

actions as defined in step 7 of the use case adaptation process. In contrast, the use-case

model of the classical approach used different wording/terminology for the same type of

IS elements; for example, for the creation function of each data class and for the creation

use case of each UC module.

d. Unambiguity. Unambiguity is determined by checking that every requirement stated

in the SRS has only one interpretation. The assessment involves performing checks of

lexical ambiguity by considering optional clauses such as “possibly” and “if needed” and

subjective clauses such as “similar” and “better”, checks of syntactic ambiguity by

considering the correct use of the syntactic parts of a sentence, and checks of semantic

ambiguity. NLSSRE is completely unambiguous since it avoids any words or phrases that

fall in these categories. It also follows a strict syntactic order for the sentences written,

including the basic syntactic parts of the linguistic sentence. Its only weakness falls in the

definitions of business rules where terms such as ‘is preferred to’ and ‘may’ are used (e.g.,

“Every book is preferred to exist in four copies”). A possible solution to this would be to

use illustrative comments or additional business rules to clarify the clause (e.g., “Three

copies are also adequate, and every book must exist in at least two copies”).

e. Readability. Readability refers to the ease with which the requirements can be read

by users, adhering to the basic principle that the combination of good readability and

unambiguity in a document leads to good understandability. The presence of long

sentences (e.g., with conjunctions or disjunctions) makes the requirements document

more difficult to read. However, reducing sentence length does not always improve

understandability, since the addition of subordinate clauses often aids comprehension

[Entin and Klare, 1985; Davison and Kantor, 1982]. Therefore, to make the requirements

168

document more readable and understandable, this additional information could be added

in the form of comments and examples, wherever required. Additionally, NLSSRE does

not use disjunctions or conjunctions (apart from one instance of the clause “if…then”),

therefore its sentences are small enough to be easily readable (see example of Table 3.5,

second column).

f. Complexity. Complexity refers to the size of the different constructs and the way

they are decomposed and related. A low-complexity requirements document does not

necessarily mean more understandable requirements. The requirements must be

structured and decomposed at an achieved level where they will be both well-understood

and easily transferred to the design and implementation models. Since we followed the

IEEE template organized by object (Table 3.5), each data class consists of attributes,

single-level functions and messages. The inherited functions need to have a reference to

their super class. Similarly, inherited attributes should make reference to their super class.

In NLSSRE, functions follow the CAREN types Create, Alter, Read, and Erase, and each

one triggers a Notification function which is described in the Messages section;

additionally, the lower level functions of Read, Enter data, Compare, Save, Remove, and

Present, which comprise a CAREN function accordingly, are described under each

CAREN function of the data class (Table 3.5). Finally, under each function the relevant

conditions and business rules are written. However, the classical SRS document often

puts many of the sub-functions and business rules together under one function with an

overall description. This difference between the two methodologies is the reason that

NLSSRE scored higher in complexity. However, that does not mean that its text is less

understandable, but that it has a greater level of decomposition of data and functions.

169

Even its higher score, the NLSSRE specification’s complexity is near to that of the

specification created through the classical approach due to the fact that the number (size)

of functions specified in the SRS created through the classical approach included

functions which were redundant; therefore the classically created SRS included more

functions that it should.

g. Modifiability. The requirements document is modifiable if its structure and style are

such that any necessary change to the requirements can be made easily, completely and

consistently. To make the requirements document more modifiable, related requirements

should be grouped together and a requirement should not appear in more than one place

in the document. The requirements document should also have a table of contents and

cross-references if necessary. As a rule of thumb, the lower the number of redundant

requirements in the SRS document the higher the level of modifiability. In regard to the

application of NLSSRE, no serious redundant or ambiguous requirements were found,

due to the architecture of the methodology, which assists the analyst in distinctly

identifying and defining every requirement element. Therefore it creates an SRS

document with a high level of modifiability, in sharp contrast to the classical approach

that produced many redundant requirements and, therefore, a low level of modifiability.

h. Prioritization. An implementation priority should be assigned to each requirement,

to indicate that the most essential features should be implemented first and the lower

priority features should be implemented only if sufficient time and resources are available.

Prioritization may be specified between the different elements of the IS as defined by

NLSSRE or between the same elements. For example, the functions of every IO are of

higher implementation priority than functional conditions. Or, there is prioritization

170

between the types of functions of an IO, viz. from higher to lower priority, the order is as

follows: create, alter or erase, read (e.g. reports), notify. Or there may be prioritization

between the functional conditions of the same FSR, as in the example of the simplified-

form FSR “Librarian creates/records new book with stylus” which is determined to have

a lower implementation priority than the FSR “Librarian creates/records new book with

keyboard”, because the latter is easier and less costly to implement. The analyst can also

apply a weighting scheme to define numerical criteria for the parameters that determine

prioritization, such as value, cost, effort, risk (e.g., for the parameter value that represents

the importance of a requirement, we could have ‘1=high importance’, ‘2=medium

importance’, ‘3=low importance’). The prioritization feature is still not provided by our

CASE tool and is considered part of future work. In contrast, the classical approach

scored lower in prioritization, since it did not provide any specific criteria to prioritize

requirements.

6.2.2 Effort

To assess the efficiency of the methodology, we measured the time spent for the

requirements discovery, analysis and specifications phases.

In our experiment, for the requirements discovery stage, SE1 asked each user (six

users in total) in one round of interviews, 34 closed-ended questions, each one including

on average fewer than four sub-questions per question—Table 3.3 shows a part of the

questionnaire. Therefore, on average each user was asked approximately 120 questions,

and the average time required for each question-answer pair was 50 seconds, for a total of

roughly 100 minutes per user. These questions aimed to discover the information about

171

items exchanged between the different roles of the system in order to fill the data flow

table. In addition, the users wrote a paragraph about their everyday work. As described,

during this step the questions of the questionnaire were predefined and specific; they

were also created automatically by the tool, after SE1 entered the business roles as input

to the questionnaire. In contrast, SE2 made three visits to the users (due to a lack of

preparation in identifying all the roles and users of the system, SE2 initially identified

five users and only during the third visit identified the sixth user). The questions provided

to the users were more general than those used with NLSSRE and did not guide the user

to the answer since the majority of the questions were open-ended and not linked

specifically to the elements of the analysis stage. In particular, SE2 asked each user on

average 12 different open questions and 20 closed questions, most of them supplementary

to the open ones. On average, SE2 asked 32 questions per user and required 2.5 minutes

for each question-answer pair, for an average total of 80 minutes per user. SE2’s open-

ended interview approach sometimes was the reason for the users not understanding the

topic, therefore SE2 asked questions repetitively or received incorrect answers. The

repeating of questions was one of the reasons each question-answer pair took more time

compared to the NLSSRE approach. In another case, SE2 did not receive an answer to a

particular question and instead moved on to the next question.

In summary, in one visit with each of the six users interviewed through the NLSSRE

approach, the analyst SE1 received specific answers to 120 questions per user in 100

minutes per user, whereas with the classical approach, the analyst SE2 received answers

(many of them were vague) from six users, for about 32 questions per user and 80

minutes per user spread over three visits. The total time spent with the use of the classical

172

approach was 8 hours, while the time spent with the use of NLSSRE was 10 hours.

NLSSRE required more time, but the results taken were specific and accurate, contrary to

the vague, redundant and incomplete answers received during the application of the

classical approach.

We believe that RD with NLSSRE will become faster and more reliable if conducted

differently such that the analyst first receives the descriptions of each user’s work, and

based on the description identifies the roles and users of the IS in order to finalize/refine

the questions on the questionnaires. The refined questionnaires could then be sent to the

users, who could respond at their own pace without feeling pressure from the analyst’s

presence. In conducting the interviews at the user’s workplace, we noticed that both the

users and the analyst felt pressure to quickly ask and answer.

For the analysis and specification stages, the time spent with use of the classical

approach was 105 hours broken down into 45 hours for the analysis of requirements and

development of the SRS document, 50 hours for the development of the use case

diagrams and specifications, and 10 hours for final checks including prioritization of

requirements. The time spent on the analysis and specification stages using NLSSRE was

33 hours composed of three hours for IO identification, nine hours for definition of

attributes, 16 hours for definition of business rules, conditions and constraints, and five

hours for final checks including prioritization of requirements). This significant

difference occurs not just because of the formalization provided by NLSSRE but also

because of the use of the CASE tool that automates the entire procedure. Once the FSR

patterns and attributes were fed with the corresponding answers, the SRS document and

diagrammatic notations were created automatically. During this stage, SE1 visited the

173

users twice, once to confirm the answers to the questions and the second time to present

the entire SRS document to the customer for approval. SE2 visited the users twice,

principally to clarify with them different issues for the analysis and organization of

requirements, and a final time for the approval of the SRS document.

SE1 and SE2 completed SRS documents of 47 and 43 pages, respectively.

In summary, the results of the application of the NLSSRE have proven to be faster and

more accurate while exhibiting fewer ambiguities. Moreover, the structured English text

resulting from NLSSRE was easier to comprehend and agree upon at the client site.

Therefore, this small-scale evaluation indicated that our methodology is efficient and

effective and intrinsically provides a very strong element of validation because the

NLSSRE-produced requirements are delivered in a Natural Language form which is

understandable to the client who gives the final approval to the requirements.

6.3 Threats to external validity

 Two main threats to external validity are relevant to our experiment, and are typical

when running controlled experiments within time constraints: i) Are the subjects

representative of software professionals? ii) Is the experiment material representative of

industrial practice?

Regarding the first issue, recall that the students had to apply two methodologies for

the development of an SRS document enriched with use case models. Such a task is

usually performed by requirements engineers during the requirements discovery, analysis

and specification phases of a typical software development lifecycle. Given the state of

practice in the software industry, whether for students or professional requirements

174

engineers, RE is likely to require training. The students of our experiment are graduate

students with extensive knowledge of software and computer engineering mostly in

theory and less in practice, since they were involved only with a few real projects in the

past. One of the students received training in using the NLSSRE methodology, and the

other student was given a refresher course in using the classical approach
39

 with which he

was already familiar. In our context, the main difference between students and

professional requirements engineers is that the latter have more experience, and therefore

we assume that they would apply the methodologies more effectively than students given

the same amount of training. Nevertheless, we consider valid the evidence that, given the

same level of training and experience of the analysts, our approach produced more

complete, correct and consistent results than the conventional approach. Additionally, the

evaluation shows that one week of training with our tool (and approach) is sufficient to

produce moderate- to high-quality results.

As for the second validity threat mentioned above, the application of the two

methodologies to larger scale systems seems likely to demonstrate at least a proportional

increase in the differences between the two methodologies. The involvement of more

users and business roles, information objects, use cases, relationships, use-case

specification actions, pre-conditions, post-conditions, business roles and conditions would

be more easily handled by a structured, formal and understandable methodology, such as

NLSSRE, than from the classical approach.

39Here only knowledge refreshing was performed, since the approach was taught in corresponding classes during his first degree.

175

6.4 Other limitations and implications

Sections 6.2.2 and 6.3 indicated a number of threats and limitations when applying the

methodology, regarding effort required, training, level of requirement engineer, and

applicability to larger contexts. Additionally, the application of the methodology

indicated implications in the order of applying two steps. As previously mentioned

requirements elicitation will become faster and more reliable if conducted differently

such that the analyst first receives the descriptions of each user’s work, and based on the

description identifies the roles and users of the IS in order to finalize/refine the questions

on the questionnaires. The refined questionnaires could then be sent to the users, who

could respond at their own pace without feeling pressure from the analyst’s presence. In

conducting the interviews at the user’s workplace, we noticed that both the users and the

analyst felt pressure to quickly ask and answer. Another possible limitation of

NLSSRE—and NALASS—is that it did not provide rich alternative expressions in asking

questions. Using synonyms or stating the questions in other words, for example, would

help the respondent think better of the answer. Use of alternative expressions would be

even more useful if provided automatically by NALASS. Another limitation comes from

the application domain of the methodology. We have mentioned that NLSSRE is mostly

appropriate for engineering the requirements for the development of the operational part

of an IS. That is why the methodology was empirically evaluated through its application

to relevant contexts, such as an LIS, a Dentistry IS and a Banking IS. Therefore, by

having applied the methodology in the aforementioned contexts, we did not demonstrate

that the use of NLSSRE may be feasible in other application domains, such as decision

support systems or executive information systems.

176

 Furthermore, NLSSRE has been evaluated through its application to real life projects

related mainly to the public sector. Given that NLSSRE is a newly proposed

methodology that could be fully evaluated only by applying it to the development of a

wide range of software systems, it would be interesting to conduct a short scale

application to other real-life projects, again under a controlled environment but maybe

this time with the contribution of industrial collaborators. In industrial projects,

techniques for requirement engineering are often seriously affected by restrictions in time

and budget, which in turn they affect employees’ attitude toward a new methodology.

People in the industry, comparing to public sector, are often more reluctant to new

methods. To apply efficiently the methodology in the industrial context, we may need to

pay additional attention to human and psychological factors. Therefore, we need ways to

‘sell’ the methodology and also to pass it easily to the users during its application. A

good presentation of the methodology’s capabilities could be given to the system’s

stakeholders to increase the acceptance levels of the methodology. On the other hand, a

good user training manual should be provided to the analysts to assist them in

understanding, passing to the client, and applying easily the methodology. The NLSSRE

activities which require significant users’ involvement are, mainly, requirements

elicitation, and, secondly, requirements prioritization and approval. For large projects,

where time and budget are likely to affect these activities, a more systematic gradation or

prioritization of requirements is necessary. Also, the elicitation of requirements could

follow a refinement process and be organized incrementally with respect to time and

budget such that customers’ expectations are satisfiable within any refinement step.

Therefore, strategies and methods are needed that highly adapt to almost arbitrary project

177

situations. In such a context the methodology needs to be more flexible and also easily

and quickly understandable to the users. Additionally, because industrial settings are

usually more dynamic and volatile, requirements change more easily. Especially, for

large projects, NLSSRE could follow a more agile-like development, that is for example,

delivering requirements incrementally, starting from the most significant ones, and once

they are implemented, moving to the next cycle of requirements.

Another factor that could establish confidence, in the industrial setting, that the

software system is 'fit for purpose' the verification and validation process. Software

validation or, more generally, verification and validation (V & V) is intended to show

that a system conforms to its specification and that the system meets the expectations of

the customer buying the system. This means that the system must be good enough for its

intended use. Inspections and testing are the most common techniques used for

verification and validation, with software testing to be the most reliable as well as the one

favored to strengthen the customer’s confidence about the capabilities of the new system.

The customer will feel more confident when a prototype or an executable version of the

program is available. An advantage of incremental development, where NLSSRE can be

applied in cycles, is that a testable version of the system is available at a fairly early stage

in the development process. Functionality can be tested as it is added to the system so we

don't have to have a complete implementation before testing begins.

Overall, therefore, the goal of software testing is to convince system developers and

customers that the software is good enough for operational use. Testing is a process

intended to build confidence in the software. Further to software testing, the formalized

nature of NLSSRE makes it self-verified, since requirements are specifically identified,

178

interrelated and written, without ambiguities and redundancies. Chapter 9, on future work,

expands on requirements testing.

179

7 Discussion

The aim of the proposed methodology is the formalization and automation of major

parts of Requirements Discovery, Analysis and Specification. In particular the

methodology worked towards its aim by implementing the following elements:

- Specific questions and guidance for discovering, analyzing and specifying requirements.

- Predefined types of functions, specific categories of data, and methods to identify and

define business rules and functional conditions (the circumstances within which each

function is performed)

- Specific patterns for writing requirements as structured, semi-formal NL sentences.

- Specific rules to transform the abovementioned identified requirements into

diagrammatic notations, including class diagrams, data flow diagrams and use-case

diagrams, as well as use-case and textual specifications, the latter following a certain

IEEE SRS template (IEEE, 1998).

- A CASE tool that automates the entire procedure

- Adaptation for formalizing use case model development

In sections 2.4 to 2.11 we gave a detailed description of related work in the above as

well as in more general areas and compared it with our methodology. In this chapter, we

pay special focus only on other research related closely to the concepts of our

methodology and we discuss how our methodology is different and achieves its aim and

objectives.

180

7.1 Formalization in NLSSRE comparing to other related approaches, in

general

Current approaches in RE, both those based on NL and those not based on NL, fail to

provide a specific, easily understood formalization of the major parts of requirements

discovery, analysis and specification. The problem originates from the weakness of

existing approaches to formalize the requirements discovery (RD) activity. On the one

hand, some approaches use NL parsing techniques to retrieve requirements from pre-

existing requirements documents, but this method is not reliable, because of ambiguities,

redundancies and inconsistencies present in such documents. On the other hand, other

approaches avoid formalization and use open-ended questions that lack specificity and

formality (Gervasi and Zowghi, 2005). In either case, often the result is a requirements

document with ambiguities, redundancies and inconsistencies. During analysis and

specification of requirements, current approaches are also weak in providing a specific

and easily understood formalization of the elements of an information system, so that the

analyst will know specifically what data, functions, business rules and functional

conditions to use and search for, as well as how to define them. Instead, they use general

guides and templates, such as the traditional IEEE SRS document template or templates

related to the more contemporary Use Case specification. The use of such templates also

results in requirements documents written in a free, informal version of NL which

promotes ambiguity and redundancy. The informality in such documents hinders also the

use of automated tools for system modeling, since informal NL is inherently complex,

vague and ambiguous.

181

7.2 In NLSSRE, Analysis and Specification guide Discovery, specifically

Additionally, the second main reason for frequent inadequacy of existing RE

approaches and models is that they mainly focus on how RE process activities are

interrelated and organized during their application/execution. The significant difference

between the existing approaches and the proposed methodology does not lie on the way

they are applied, but on the way they are built. Specifically, in the existing approaches,

we cannot find a direct, specific link at an architectural level between analysis and

elicitation or between specification and elicitation. The lack of a direct connection

between elicitation and the later stages of RE means that the way elicitation is built is not

actually related with the way analysis is built. The main concept of NLSSRE’s

architecture starts with the principle that if the analysts know, in advance, specifically

what types of functions, data, business rules and conditions (RA) they should search for

and write down, then they will be able to ask specific questions (RD) regarding that

particular information. Thus, for example, NLSSRE provides a specific number of system

functions, including create, alter, read, erase, notify, and alter-related functions, specific

types of business roles, including creator, accompaniment, intended recipient, and

specific types of functional conditions, altogether, on the one hand, written as a semi-

formalized NL sentential requirement, and, on the other hand, providing guidance to

develop specific questions, the answers of which will feed the FSRs and the attribute

values.

182

7.3 Goal-oriented approaches, Use Case Driven Analysis and NLSSRE

The most widely used structured approach for RE, which involves the use of NL, is

the Use Case-Driven Analysis (UCDA), which is mainly used for object oriented analysis

and design (Dias et al., 2008). UCDA was also used for the comparative evaluation of the

proposed methodology. Goal-driven requirements engineering is another approach that

conceives requirements as goals, and it can use NL and also questions to refine goals and

sub-goals. However, goals are defined at a more abstract level and existing methods do

not provide a formalization of the main functions of an information system, such as create,

alter, read, erase, notify, and other alter related functions, such as complete, archive,

reserve, etc. Although goal oriented approaches, such as KAOS (Dardenne et al., 1993;

Van Lamsweerde et al., 1991; Van Lamsweerde, 2001) separate RE concerns into goals,

agents, actions, objects and scenarios, they do not relate all these together under a semi-

formal NL sentence, in order for both the client and other analysts or programmer to

obtain a better understanding. Techniques provided by van Lamsweerde (2000b) for

finding out sub-goals and requirements refer to keep asking HOW questions about the

goals already identified. Formal goal refinement patterns may also prove effective when

goal specifications are formalized; typically, they help finding out subgoals that were

overlooked but are needed to establish the parent goal. Keep asking WHY questions

about operational descriptions already available is another technique for finding out more

abstract, parent goals is to. Analyzing requirements in terms of goal decomposition and

refinement can be seen as teasing out many levels of requirements statements, each level

addressing the demands of the next level. This approach to the clarification of

requirements is especially appropriate in the case of non-functional requirements (such as

183

flexibility, robustness, reusability, maintainability), where initial requirements can be

difficult to make precise. A goal-oriented approach would allow the requirements to be

refined and clarified through an incremental process. Chung’s NFR framework (1998) is

a goal- and process-oriented approach for dealing with non-functional requirements.

As already mentioned, UCDA has gained a wide acceptance among the many methods

in requirements engineering (Dias et al., 2008), principally because the UC model—

resulting from UCDA—allows functional requirements to be represented in an informal,

easy-to-use style which appeals to technical as well as non-technical stakeholders of the

software under development (Pooley and Stevens, 1999). UCDA helps cope with the

complexity of the requirements analysis process. By identifying and then independently

analyzing different use cases, the analysts may focus on one narrow aspect of the system

usage at a time (Kim et al., 2004) Since the idea of UCDA is straightforward and use case

specifications are usually compact, textual documents written in natural language (NL),

the customers and the end users are expected to easily understand and actively participate

in requirements analysis.

Although UCDA offers a more compact framework for analyzing requirements in

contrast to the classical generic approach, which is basically performed with the use of a

generic SRS template (e.g., IEEE SRS template (IEEE, 1998)), building the UC model

and especially writing use case textual specifications is still a difficult and time-

consuming activity. The major difficulties in producing high quality use case models

originate from the elicitation process; as Kim et al. (2004) state, the lack of support for a

systematic requirements elicitation process is probably one of the main drawbacks of

UCDA. This lack of elicitation guidance in UCDA sometimes results in an ad hoc set of

184

use cases without a consistent underlying rationale. Some existing approaches (Fliedl et

al., 2002; Dias et al., 2008) use NL parsing techniques to retrieve the UC elements from

pre-existing requirements documents—either written based on a predefined SRS template

(e.g., IEEE) or a UC template—but this method is not reliable, because of ambiguities,

redundancies and inconsistencies present in such documents. In other approaches (Liu et

al., 2004), the analyst tries manually, based on his/her own expertise and again from

existing informal textual requirements, to derive the use cases and their elements. Due to

the aforementioned problems in existing documents, the analyst must be an expert to

derive the UC elements correctly and completely and, irrespective of the analyst’s

experience, this procedure is extremely time-consuming. A third category of approaches

concerns the development of the UC model from scratch, by using the classical approach

of open-ended questions that lack specificity and formality (Gervasi and Zowghi, 2005)

and thus again result in a document with ill-defined requirements that need to be re-

organized and re-adjusted, in order for the analyst to derive efficiently the UC elements
40

.

Additionally, the informality in such documents is the principal hindrance to the use of

automated tools for UC modeling, since informal NL is inherently complex, vague and

ambiguous, and so UC elements are difficult to identify completely and correctly.

Therefore, there is a lack of approaches that automatically generate UC models. In

particular, these approaches do not provide:

40 Elicitation approaches, such as NL parsing techniques and open questions, are applied generally in RE to mainly derive textual

requirements. These approaches result also to ill-defined requirements, since they have the same weaknesses already mentioned.

185

(i) a reliable outcome, since NL requirements documents are full of ambiguity,

vagueness as well as inconsistency, and therefore the identification of the UC

elements from such documents often results in a poorly defined UC model.

(ii) the capability for complete automation of the procedure from the stage of UC

elements identification to the creation of the UC model, since the analyst’s

involvement is required to identify or clarify the final set of UCs and Actors.

Therefore, the informality often present in the initial requirements documents

hinders the use of automated tools for system modeling, since informal NL is

inherently complex, vague, and ambiguous; and

(iii) a time-saving process for identifying the UC elements and developing the UC

model, again due to the difficulties resulting from the existing requirements

documents.

In using UCDA with NL for requirements specification, although NL facilitates

communication between the analyst and the domain expert, its free, informal style,

increases the risks of ambiguity, inconsistency and incompleteness of the use case

description/specification. El-Attar and Miller (2006) state that these problems produce

low quality information systems (ISs). In order to avoid these typical problems with

natural language, it is important to use a more structured or formal technique for such a

description; here is where a more analytical conceptual model is involved. In the relevant

literature, some structured techniques for the description of use cases have been

proposed. . In the relevant literature, some structured techniques for the description of use

cases have been proposed. In Eriksson et al.’s work (2004), a tabular representation is

used, and in Leite et al.’s (1997), a structured natural language is presented to describe

186

the use cases. These structured representations provide a generic formalization of the UC

specification template, hence not a clear formalism of the use case specification elements,

and especially the transaction flow actions. Ochodek and Nawrocki (2007) provide a

semi-formal NL representation of transaction flow actions, however this formalism is still

generic and does not cover completely all the possible transaction flow actions and the

use case elements (e.g., actors) involved in each action. Some formal techniques such as

grammars (Hsia et al., 1994) or statecharts (Glinz, 1995; Seybold et al, 2006)) have also

been introduced for the description of use cases. Although such formal representations

facilitate formal analysis, they are difficult for analysts and users to understand and use.

In our opinion, use cases must be described using a semi-formal form of NL, because

such a form may be (a) understandable by both users and analysts, (b) semantically rich

enough so that all pertinent description of the use case can be taken into account without

any ambiguity, and (c) implementable.

In contrast, our approach differs from the aforementioned ones, since it guides the

analyst how to define specific sets of questions from predefined patterns of functions—

CAREN for Create, Alter, Read, Erase, Notify—and specific types of data, business rules

and functional conditions. The answers to these questions feed and complete the analysis

and specification stages. Therefore, the way we discover the requirements is clearly

connected to the analysis and specification of requirements. As previously mentioned, in

the current literature—to the best of our knowledge—this link does not exist, and

therefore the resulting requirements documents produced from current approaches need

to be re-organized, re-validated and re-adjusted. While other approaches elicit user

requirements, which are abstract and vague in nature, and use techniques to transfer them

187

into system requirements, our approach differs in that the elicitation activity is targeted

directly on the system requirements, in terms, mainly of the system functionality.

Therefore, during the analysis activity, there is no need to analyze any user requirements

and derive the system requirements. What the analyst needs to do is to organize

requirements under IOs. These requirements concern the system functions, which are

already predefined from the provided CAREN functions. It more detailed terms the semi-

formalized nature of the proposed methodology, comparing to the aforementioned

approaches, the formalization of the NLSSRE elements is facilitated with a thorough

mapping of a considerable NL elements. In particular, for requirements analysis, data

analysis is facilitated by the use of semantic types of the genitive case, other grammatical

cases, nouns, adjectives and adverbials; the types of functions are determined with the use

of semantic types of the verb of the linguistic sentence; business roles are mainly linked

to the use of semantic roles of subject and indirect object of the sentence; analysis of

functional conditions is facilitated by the use of adverbial adjuncts; and finally, business

rules, which define or constrain some aspects of the business by describing the

behavior/reaction of people and data through their relationships, are derived from

relations (combinations) between attributes of data entities (business roles and data

objects). For requirements specification, functions, data, functional conditions and

business rules are written as formalized sentences - FSRs), according to predefined

patterns which are derived from the syntax of the linguistic sentence. FSR patterns,

business rules and types of attributes are used to derive questions (RD process), the

answers to which produce the complete FSRs (including also detailed FSRs which

incorporate the business rules). Finally, specific transformation rules are utilized to

188

process the complete FSRs and attributes to derive diagrammatic notations such as DFDs,

UML class and use case diagrams, as well as use case specifications and the SRS

document.

Finally, in adapting NLSSRE to formalizing and automating the development of the

use case model, our methodology (i) formalizes the elicitation process of UCDA with the

use of predefined types of use cases and actors, FSRs, as well as guidelines to derive their

associations, relationships and business rules; (ii) formalizes the system’s functionality

and specification with the application of adaptation and authoring rules on the identified

UC elements and formalized sentences, in order to easily construct a semi-formal NL use

case specification. The basic and alternative flows sections of the UC specification are

also formalized with the use of specific types of actions performed with a specific

sequence; (iii) provides CASE-tool support and achieves time-saving and error-free

UCDA, with the use of NALASS that covers all the stages of the UC model development

and results to the construction of UC diagrams and specifications.

189

8 Conclusions

Requirements engineering (RE) is the first and most critical activity of the software

process as errors at this stage inevitably lead to later problems in the system design and

implementation (Sommerville, 2010). Several studies have shown that a substantial

percentage of software projects continue to fail, often because requirements are ill-

defined, ambiguous, or incomplete. It is also evident that the least understood parts of

requirements engineering are the activities of requirements discovery, analysis and

specification. Research also shows that the majority of people involved in software

requirements elicitation, analysis and specification prefer to use free, common natural

language (NL), as the means to discover and document requirements (Mich et al. 2004;

Gervasi and Zowghi 2005). Natural language is more understandable to both users and

analysts, on the one hand, and on the other, it is easier to move from one type of natural

language (informal – during elicitation) to another (formal – during analysis and

specification).

This dissertation presented NLSSRE, a compact and clear-cut methodology that is

intended to formalize and automate a large part of the Requirements Engineering (RE)

process, including discovery, analysis and specification of user requirements for the

development of information systems. NLSSRE is designed so that the analyst is guided in

advance, through a step-by-step approach, what specific types of data, functions, business

rules and functional conditions to use and search for, what questions to ask, in what

specific way to analyze the answers to the questions, and how to write them using

formalized sentential requirement patterns. The formalized requirements are then easily

transformed, with the use of specific rules, into diagrammatic notations, including class

190

diagrams, data flow diagrams and use-case diagrams, as well as use-case and textual

specifications, the latter following a certain SRS template. The formalization of NLSSRE

is achieved with the aid of NL elements such as verbs, nouns, genitive case, adjectives

and adverbials, while its automation is realized with the use of a dedicated CASE tool.

The proposed methodology also aims at being adjusted for formalizing the entire process

of use case model development, since existing use case driven analysis approaches often

result in poorly defined use case models.

Specifically, the first step of NLSSRE guides the analyst to identify specific discrete

data entities, called Information Objects (IO) which are defined as digital representations

of tangible or intangible entities, described by particular attributes, and which the users

need to Create, Alter, Read, Erase and be Notified (CAREN) by the messages they can

trigger.

The next step involves the application of specific functions on every IO, as well as the

written specification, in the form of formalized sentences (Formalized Sentential

Requirements – FSRs), of the IO, its functions, the involved business roles, and the

functional conditions. NLSSRE provides specific FSR patterns, based on which it guides

the user to derive specific questions to identify the business roles and possible values of

the functional conditions; the answers to these questions assist in forming the complete

FSRs. Writing the requirements as formalized sentences does not only help to make

expression of requirements more disciplined, understandable and organized, but also

leads to the identification of entities (business roles and functional conditions) that are

involved during the application of a (CAREN) function on an IO. Furthermore, such

191

formalization makes easier the transformation of requirements into diagrammatic

notations and specifications.

The subsequent step involves the identification of the IO attributes. NLSSRE

provides specific categories of attributes, each of which is linked to a category of IO, as

compulsory, optional or not applicable. In this way the analyst will know which category

of attributes to search for so as to link it with each identified IO taking into account its

category. For each category of attributes, the analyst works towards identifying the

attributes of each IO by using different methods, such as questions and use of other data

collected from the system users or domain experts.

After the identification and definitions of IOs, their FSRs and attributes, the analyst

proceeds to the identification and definition of business rules, as the next step. Business

rules are created from combinations of two or more attributes between different IOs of

any category, but with more emphasis given on the category of business roles. The

complete FSRs may lead the analyst to identify more easily the interrelated IOs, due to

their involvement in the execution of the same (CAREN) function. Then, through a

number of questions that actually constitute the business rules in their general form, the

analyst aims at investigating whether business rules may be derived by means of

combinations between attributes of the involved IOs.

The final step concerns the application of specific rules to transform the FSRs and

attributes of each IO to DFDs, Class Diagrams, Use Case Specifications and Diagrams,

and an IEEE SRS-like document.

To evaluate the effectiveness and efficiency of the methodology, we performed a

short-scale experimental study through which we compared the NLSSRE methodology to

192

the classical OO RE approach based on Use Case Driven Analysis (UCDA), by applying

both of them in a real-life setting. The results showed that the proposed methodology

performed much better than the classical approach in various objective quality metrics,

such as completeness, correctness, understandability, modifiability and prioritization.

Additionally, the evaluation showed that our approach and tool can easily be learnt and

applied in practice. The difference was also significant in regard to efficiency, where our

approach performed much faster than the classical one. Of course, there is always room

for improvement, such as the use of a dictionary to check user’s input for spelling or the

possibility of adding illustrative comments to requirements to make them more readable.

193

9 Future Work

It is our belief that this novel work has achieved significant steps toward providing

straightforward and automated support for eliciting, analyzing, and documenting NL

requirements. Future steps will involve:

(i) Enhancing the process of identifying user roles, as well as key stakeholders, during

the first step of the methodology. Our methodology proposed a new technique to

facilitate this process, that is, the use of the data flow table through which new roles can

be derived by studying the interactions between users (exchanging information, products,

or instructions), and a number of existing techniques, such as a brief description of each

user’s everyday work, and the study of existing documentation. Additional techniques

and methods in the literature could be used, such as StakeNet (Ling, 2010) which

identifies and prioritizes requirements using social networks, and it is more appropriate

for large-scale projects, with a big number of users and roles.

(ii) Enriching the guide for information objects identification, during the second step.

The current guide provided by NLSSRE utilizes specific rules that could assist the analyst

in identifying the actual information objects. Through the application of the existing

guide in real-life projects within different contexts, this guide could be enriched with

additional rules some of which could be standardized according to the application context

each time.

(iii) Extending the methodology and its CASE tool in order to support the

requirements design phase, with the creation of sequence, collaboration and state

diagrams. The construction of such diagrams may be facilitated with the application of

194

specific rules on the NLSSRE elements including, mainly, the information objects and

their functions and sub-functions, as well as the use case actions.

(iv) Investigating the potential of automatically producing Z specifications from FSRs.

Formal specifications, such as Z are based on mathematics. Even though formal

specifications are very precise and accurate and they have been considered to be more

effective in representing software specifications, they are not widely used in software

development (Shukur et l., 2002) due to the additional technical knowledge needed

(Mehandjiska and Palac, 2002). The major obstacle of the conversion of natural language

into formal specification is from the inborn characteristic of ambiguity of natural

language and the different level of the formalism between the two domains of natural

language and the formal specification. The use of an intermediate controlled language as

provided by NLSSRE, through the use of FSRs, limits ambiguity and can facilitate the

transformation process. To achieve this, specific transformation rules need to be applied

on the NLSSRE elements, with special focus on the FSRs.

(v) Generating the SRS document with additional requirement organizations, and

incorporating automatically into the SRS document, with the use of NALASS, elements

such as use case descriptions, scenarios and diagrams. Currently, the SRS document

automatically produced by NALASS organizes requirements similar to the IEEE SRS

template, following an OO organization. Future work may include producing a

functional-oriented structure by applying transformation rules on the NLSSRE elements

and especially on the FSRs. Additionally, new sections can be created in the SRS

document for placing use case descriptions and diagrams with the corresponding

195

references to the relevant IOs and FSRs. Similarly, DFDs and class diagrams can be

placed in the appropriate sections.

(vi) Testing NLSSRE on large scale projects. As mentioned in chapter 6, the

involvement of more users and business roles, information objects, use cases,

relationships, use-case specification actions, pre-conditions, post-conditions, business

roles and conditions would be more easily handled by a structured, formal and

understandable methodology, such as NLSSRE, than by a classical approach. One issue

that needs to be taken into consideration for large-scale projects is the involvement of

more than one analysts—as a way to achieve better project management—and how work

should be shared between the analysts in order to achieve good collaboration and reliable

results. Our recommendation is that they should work together to establish an agreed

group of stakeholders and system users, and, subsequently, the user roles of the system.

Based on the identified user roles or on some basic identified user roles, they should work

separately, each one for a different group of user roles, to identify the candidate

information objects. Then they should determine together the actual IOs, and they should

subsequently undertake, each analyst separately, the analysis activity for a different group

of IOs. During this task, they should try to include in each IO group the most interrelated

IOs; therefore, some rules should be defined to achieve good grouping and separation of

both IOs and stakeholders.

(vii) Enriching the guidelines for facilitating more precise and straightforward

identification of alter-related use cases including Cancel IO, Complete IO, etc. Currently,

specific guidelines are provided to identify alter-related use cases. These guidelines

concern the use of the attribute state, pre-conditions and post-conditions, as well as the IO

196

category. Future work may involve the investigation of using other attributes that could

lead to new alter-related use cases, or even if the attribute state may lead to new alter-

related use cases depending on new IO categories or sub-categories or on any standard

types of pre-conditions and post-conditions.

(viii) Additional strengthening of the NALASS tool could include the establishment of

a dictionary to check user’s input for spelling. Another future task could be the

application of specific rules to convert the semi-formal form of the SRS document into a

completely free NL form, thus effectively hiding from the users the semi-formal

organization of requirements. Furthermore, the development of a web version of the tool

could be a future task, since now the tool is only available in a desktop version.

(ix) Further concepts from natural language such as hyponymy and meronymy may be

used to identify IO attributes and relationships between IOs. Hyponymy, is one of the

most important structuring relations in the vocabulary of a language (Aronoff and Miller,

2002). This is the relation between apple and fruit, car and vehicle, slap and hit, and so

on. We say that apple is hyponym of fruit, and conversely, that fruit is a hyperonym of

apple. Hyponymy is used for the identification and construction of object classes and

their interrelations, as well as for the development of a lexicon to keep track of data.

Meronymy describes the part-whole relation. It attempts to take into account the degree

of differentiation of the parts with respect to the whole and also the role that these parts

play with respect to their whole. Meronymies determine the structure of an object (object

properties) and its relation to other objects. Meronimity assists the process of deriving

new objects. Different kinds of meronymies mean different structure of the objects and

their relations.

197

(x) In addition, the use of NLSSRE in other development approaches, like component-

based and agile process models could be investigated emphasizing on how the

methodology itself should be changed to accommodate the specific characteristics within

each of the aforementioned models and furthermore how these approaches may be

benefitted from the disciplined formalized concepts of NLSSRE. Some ideas are given in

this paragraph regarding the use of NLSSRE with the three abovementioned approaches.

While phased development does requirements engineering in an early phase that

precedes the majority of coding, agile development does requirements engineering

continuously throughout the project. Agile development, contrary to phased development,

usually does not embody the requirements in a written document (Kovitz, 2003).

Typically (though not necessarily), developers in an agile project promise very small

deliverables which they release to the customer once per “iteration”—one to three weeks,

on most projects (Kovitz, 2003). Beyond the current iteration, they don’t offer the

customer much certainty about precisely what functionality will be delivered on a given

date. NLSSRE, contrary to classical phased development, can create quickly, with the use

of the NALASS tool, the SRS document, and therefore the development process can start

quickly; this stands mostly for small projects. However, for large projects that include a

very big number of IOs (e.g. 200), users and roles, the NLSSRE can be used initially to

identify the most significant IOs, their relationships and attributes, and based on them to

construct the corresponding FSRs and business rules and a portion of the SRS document.

The developers then can develop the code based on this part of the SRS document, and

subsequently proceed with the identification of another portion of IOs, roles, etc. In this

case, NLSSRE provides agile development with more certainty about the functionality,

198

and every partial implementation developed by agile methods can facilitate NLSSRE for

the identification and establishment of the remaining IS elements.

Requirements engineering in the context of off-the-shelf component-based system

development is a difficult issue. Most actual approaches are not requirements-driven,

which does not allow to gain a great customer acceptance. Otherwise, they have

difficulties getting a natural matching between customer requirements and component

features, which does not facilitate the user involvement (Le and Rolland, 2001). The

description of requirements through NLSSRE may be processed and expanded to

combine customer's vision and product supplier's vision under a common representation.

Additionally, the NLSSRE artifacts, such as IO and CAREN functions of each IO, as well

as some specific attributes for each IO, may create combinations for the development of

general components or more specific components for particular contexts (e.g. for an HIS).

(xi) Finally, variations or specific steps of NLSSRE could be used in other Computer

Science domains, like verification & validation of specifications, testing (test case

production based on NL), etc. Especially, as per the latter suggestion, it is the task of the

requirements based test to demonstrate that the system does what it should do according

to the written agreement between the user organization and the developing organization.

Since NLSSRE provides a semi-formal way of writing requirements without ambiguities

and redundancies and with completeness in terms at a great extend in terms of objects and

functions, testing should focus more on functional conditions, business rules and data

attributes, which altogether may extend the already identified functionality. NLSSRE can

facilitate building test cases based on the provided types of the aforementioned elements

but also with the formalized types and structure of the use case transaction flows for

199

building use case scenarios, as a type of testing. In particular, both the procedures on how

to create scenarios and how to use scenarios in testing could be investigated. There could

also be additional support for modeling dependencies between scenarios (not only with

includes and extends relations). To derive tests from scenarios the dependencies between

scenarios have to be known, else crucial parts of the system will/may not be tested for.

Additionally, to enhance requirements verification, the semi-formal requirements

document produced by NLSSRE could be cross-checked with the use case model; that is

the SRS document could have links between the use cases and the functional

requirements. Each requirement (FSR) will have some kind of identifier. This identifier

will then be referred to by the use case. One use case may fulfill one or more functional

requirements. One attribute of the use case will be a list of the identifiers of the

requirements it fulfills. Since NLSSRE use case specification flows are described with

specific types of actions in a semi-formal NL, they can be easily related to the functional

requirements of the SRS document. This is useful for traceability purposes, both relating

use cases with requirements and the generated test cases with requirements. When

requirements change, it is possible to know which use cases might be impacted and, if it

is the case, update them. Test cases related to these use cases can also be updated or

regenerated (assuming an automatic approach).

200

References

Ahli, S. 2002. Guide to Applying the UML. Springer.

Ambriola. V, and Gervasi, V. 1997. Processing natural language requirements. In Proceedings of

the 12th international conference on Automated Software Engineering (Lake Tahoe, Ca,

November). IEEE Computer Society, 36-45.

Ambriola. V, and Gervasi, V. 2006. On the systematic analysis of natural language requirements

with Circe. Automated Software Engineering 13, 1, 107-167.

Aronoff, M. and Miller, J. (eds) 2002. The handbook of linguistics. Oxford: Blackwell.

Avison, D, and Fitzgerald, G. 2003. Information Systems Development: Methodologies,

Techniques and Tools. 3rd Ed. UK, McGraw-Hill Education.

Bailin, S. 2002. Object-Oriented Analysis. In Encyclopedia of Software Engineering, J.

Marciniak, Eds, 2
nd

 ed. New York: John Wiley and Sons.

Ben Achour, C. 1998. Guiding Scenario Authoring. In Proceedings of the 8th European-Japanese.

Booch, G., Rumbaugh, J. and Jacobsen, I. 2005. The Unified Modeling Language User Guide. 2
nd

ed. Reading, Mass.: Addison-Wesley, 2005.

Borland Software Corporation, "CaliberRM 2006 User Tutorial," Nov 2006,

http://info.borland.com/techpubs/caliber_rm/2006/EN/CaliberRM%20Tutorial.pdf.

Burg, M. 1997. Linguistic Instruments in Requirements Engineering. Amsterdam, IOS Press.

Chalmeta, R. and Grangel, R. 2008, Methodology for the implementation of knowledge

management systems. Journal of the American Society for Information Science and

Technology 59, 5, 742–755.

Chung, L., Nixon, A., Yu, E. and Mylopoulos, J. 1999. Non-Functional Requirements in Software

Engineering, Kluwer Publishing.

201

Coad, P. and Yourdon, and E. 1990. Object-Oriented Analysis. Englewood Cliffs, NJ, Prentice-

Hall.

Cockburn, A. 2000. Writing Effective Use Cases. Reading, Massachusetts: AddisonWesley.

Conger, S. 1994. The New Software Engineering. Belmont, CA, Wadsworth Publishing Company.

Coleman, D. 1998. “A Use Case Template: Draft for discussion”, Fusion Newsletter, April 1998.

http://www.hpl.hp.com/fusion/md_newsletters.html

CREWS, http://sunsite.informatik.rwth-aachen.de/CREWS/, Accessed 21 January 2011.

Da Silva, L. and Leite, P. 2006. Generating Requirements Views: A Transformation-Driven

Approach. ECEASST 3.

Dardenne, A., van Lamsweerde and S. Fickas. 1993. Goal directed Requirements Acquisition,

Science of Computer Programming, Vol. 20, 1 993, 3-50.

Dascalu, S., Fritzinger, E., Cooper, K., and Debnath, N. 2007. A Software Tool for Requirements

Specification: on Using the STORM Environment to Create SRS Documents. In Proc. of the

Second International Conference on Software and Data Technologies (ICSOFT-2007), July

2007, pp. 319-326.

Davison, A. and Kantor, R. 1982. On the failure of readability formulas to define readable texts:

A case study from Adaptations. Reading Research Quarterly 17, 2, 187-209.

De Cesare, Lycett, S. and Paul, R. 2003. Actor Perception in Business Use Case Modeling,

Communications of the Ais, Vol 12, pp. 223-241.

Denger, C. 2002. High Quality Requirements Specifications for Embedded Systems through

Authoring Rules and Language Patterns, M.Sc. Thesis, Fachbereich Informatik, Universität

Kaiserslautern, Kaiserslautern, Germany 2002.

Dias, G., Schmitz, A., Campos, M. Correa, A., and Alencar, A. 2008. Elaboration of use case

specifications: an approach based on use case fragments. In ACM Symposium on Applied

Computing (SAC), Fortaleza, Ceara, Brazil, pp. 614-618.

202

DOORS. Telelogic’s DOORS. “Requirements management traceability solutions”. Available

online as of March 31, 2007 at http://www.telelogic.com/products/doorsers/index.cfm.

El-Attar, M. and Miller, J. 2006. Matching Antipatterns to Improve the Quality of Use Case

Models, in Proceeding of the 14
th
 IEEE International Requirements Engineering Conference

(RE'06)”, p.99-108.

Ellison, J. and Moore, P. 2002. Trustworthy Refinement Through Intrusion-Aware Design

(CMU/SEI-2003-TR-002). Technical Report. Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University.

<http://www.sei.cmu.edu/publications/documents/03.reports/03tr002.html>.

Emiliani, C. 1987. Dictionary of the Physical Sciences: Terms, Formulas, Data. New York,

Oxford: Oxford University Press.

Entin, E., and Klare, R. 1985. Relationships of measures of interest, prior knowledge, and

readability to comprehension of expository passages, In Advances in reading/language

research, B. Hutson, Eds. Greenwich, Conn, Jai Press Inc, 9-38.

Eriksson, M., Börstler, K., and Borg, K. 2004. Marrying Features and Use Cases for Product

Line Requirements Modeling of Embedded Systems, in Proceedings of the Fourth Conference

on Software Engineering Research and Practice (SERPS'04), Sweden, pp.73-82.

Fabbrini, F., Fusani, M., Gnesi, S., and Lami, G. 2001. An Automatic Quality Evaluation for

Natural Language Requirements. In Proceedings of the Seventh International Workshop on

Requirements Engineering: Foundation for Software Quality (Interlaken, Switzerland, June).

Essener Informatik Beiträge.

Fliedl, G., Kop, C., Mayerthaler, W., Mayr, H. and C. Winkler. 2002. The NIBA workflow: From

textual requirements specifications to UML-schemata, in ICSSEA '2002 - International

Conference ‘Software & Systems Engineering and their Applications’, Paris, France.

203

Fuentes, R., Gómez-Sanz, J. and Pavón, J. 2005. Requirements Elicitation for Agent-Based

Applications. In Proceedings of AOSE'2005. pp.40~53

Geisser, M., Hildenbrand, T., Rothlauf, F., and Atkinson, A. 2007. An Evaluation Method for

Requirements Engineering Approaches in Distributed Software Development Projects. In

Proceedings of the Second International Conference on Software Engineering Advances (Cap

Esterel, French Riviera, France, August). IEEE Computer Society Press, 39-39.

Georgiades, M., Andreou A., and Pattichis, C. 2005. A Requirements Engineering Methodology

Based On Natural Language Syntax and Semantics. In Proceedings of the 13th IEEE

International Conference on Requirements Engineering (RE'05) (Paris, France, August). IEEE

Computer Society, Washington, 73-74.

Georgiades, M. and Andreou A., 2010. Automatic generation of a Software Requirements

Specification (SRS) document. In Proceedings of the Intelligent Systems Design and

Applications Conference (Cairo, Egypt, November). IEEE, 1095-1100.

Georgiades, M. and Andreou, A. 2010. A Novel Methodology to Formalize the Requirements

Engineering Process with the Use of Natural Language. In Proceedings of the IADIS

Conference on Applied Computing (Timisoara, Romania, October). IADIS Digital Library,

11-18.

Georgiades, M., and Andreou, A. 2010. A Novel Software Tool for Supporting and Automating

the Requirements Engineering With the Use of Natural Language. In Proceedings of the

ICSCT International Conference on Software and Computing Technology (Kunming, China,

October). IEEE Press, 256-263.

Georgiades, M. and Andreou, A. 2011. Formalizing and Automating Use Case Model

Development, The Open Software Engineering Journal. Accepted.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Geisser:Michael.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hildenbrand:Tobias.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Atkinson:Colin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Georgiades:Marinos_G=.html

204

Georgiades, M. and Andreou, A. 2011. A Methodology to Formalize and Automate the

Requirements Engineering Process with the Use of Natural Language, Requirements

Engineering. Submitted.

Georgiades, M. and Andreou, A. 2011. A Novel Software Tool for Supporting and Automating

the Requirements Engineering Process With the Use of Natural Language, International

Journal of Computer Science and Technology. Accepted.

Gervasi, V and Zowghi, D. 2005. Reasoning about inconsistencies in natural language

requirements. ACM Transactions on Software Engineering and Methodology (TOSEM) 14,

277-330.

Glinz, M. 1995. An Integrated Formal Model of Scenarios Based on Statecharts, in Proceedings

of 5th European Software Engineering Conference, Sitges, Spain, Springer (Lecture Notes in

Computer Science 989), pp. 254-271, September.

Goldin, L. and Berry, D. 1997. Abstfinder: A prototype natural language text abstraction finder

for use in requirement elicitation. Automated Software Engineering 4, 4, 375–412.

Hall,T., Beecham, S., and Reainer,A. 2002. Requirements problems in twelve software companies:

An empirical analysis. IEEE Proceedings - Software 149, 5, 153–60.

Hofmann, H. F. and Lehner, F. 2001. Requirements Engineering as a Success Factor in Software

Projects, IEEE Software, Vol. 18, No. 4, pp.58-66.

Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y. and Chen, C. 1994. Formal approach to

Scenario Analysis, IEEE Software, vol. 11, number 2, March 1994.

IBM Rational Rose. Available online as of July 12, 2010 at http://www-

306.ibm.com/software/rational/

IEEE, 1998. IEEE Recommended Practice for Software Requirements Specifications, ANSI/IEEE

Standard 830-1998. Institute of Electrical and Electronics Engineering, New York, NY.

205

Iivari J. 1991. Object-oriented information systems analysis. A framework for object

identification. In Proceedings of the Twenty-Fourth Annual Hawaii International Conference

on Systems Sciences, B. Shriver Eds. IEEE Computer Society Press.

Jacobson, I. 2004. Use cases - Yesterday, today, and tomorrow, Software and System Modeling,

vol 3, number 3, pp. 210-220.

Kassel, N. and Malloy, B. 2003. An Approach to Automate Requirements Elicitation and

Specification. In Proceedings of the Seventh IASTED Int. Conf. on Software Engineering and

Applications (Marina Del Ray, CA, November). IASTED/ACTA Press, 544-549.

Kim, J., Sooyong, P. and Vijayan, S. 2004. A Linguistics-Based Approach for Use Case Driven

Analysis Using Goal and Scenario Authoring, in Proceedings of Applications of Natural

Language to Data Bases, pp. 159-170.

Kotonya, G. and Sommerville, I. 1998. Requirements Engineering: Processes and Techniques.

John Wiley & Sons.

Kovitz B. 2003. Hidden skills that support phased and agile requirements engineering.

Requirements Engineering 8(2):135–141.

Lami, G., Ferguson, R. Goldenson, D. Fusani, M. Fabbrini, F., and Gnesi, S. 2005. QuARS:

Automated Natural Language Analysis of Requirements and Specifications. In Proceedings of

Seventeenth Annual System & Software Technology Conference (Salt Lake City, Ut, April).

Larman, C. 2002, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and the Unified Process, Second Edition, Prentice-Hall.

Le, T. and Rolland, C. 2001. Functional matching in COTS-based development context,

INFORSID 2001, Genève, 29 may, 2001, pp. 87-110.

Leffingwell D. 2011. Agile Software Requirements: Lean Requirements Practices for Teams,

Programs, and the Enterprise. Addison-Wesley Professional.

206

Leite, J., Rossi, G., Balaguer, M., Kaplan, G., Hadad, G. and Oliveros, A. 1997. Enhancing a

Requirements Baseline with Scenarios, in Proceedings of Requirements Engineering,

Annapolis, USA.

Leite, P. and Gilvaz, A. 1996. Requirements Elicitation Driven by Interviews: The Use of

Viewpoints, Proceedings of 18th International Workshop on Software Specification and

Design (IWSSD-8), pp. 85-94.

Li, Y., Huang, D., Tsang, E, and Zhang, L. 2005. Weighted fuzzy interpolative reasoning method.

In Proceedings of the fourth international conference on machine learning and cybernetics

(Guangzhou, China, August). Lecture Notes in Computer Science, vol. 3930, Springer, 3104-

3108.

Ling, S., Quercia, D. and Finkelstein, A. (2010). StakeNet: using social networks to analyse the

stakeholders of large-scale software projects. In Proceedings of the 32nd IEEE International

Conference on Software Engineering. ICSE (1), pp. 295-304.

Liu, D., Kalaivani, S., Armin, E. and Behrouz, F. 2004. Natural Language Requirements Analysis

and Class Model Generation Using UCDA, Lecture Notes in Computer Science Volume

3029/2004, Innovations in Applied Artificial Intelligence: 17th International Conference on

Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,

IEA/AIE, Springer, pp. 295-304.

Loucopoulos, P. and Karakostas, V. 1995. System Requirements Engineering, McGraw Hill,

London.

Loucopoulos P. and Kavakli E. 1995. Enterprise Modeling and the Teleological Approach to

Requirements Engineering. International Journal of Intelligent and Cooperative Information

Systems, Vol. 4, No. 1 pp. 45-79.

Lyons, J. 1968. Introduction to Theoretical Linguistics. Cambridge U.P., London, Print.

207

Macaulay, L. 1996. Requirements for Requirements Engineering Techniques. IEEE Proceedings

of ICREMEYERS, R. 2001. Encyclopedia of Physical Science and Technology, 3rd ed.,

Academic Press.

MagicDraw. Available online as of July 12, 2010 at http://www.magicdraw.com

Maiden, N. 2004 Discovering Requirements with Scenarios. The ART-SCENE Solution, in

ERCIM News, vol. 58, July 2004.

Marsic, I. 2009. Software Engineering. Rutgers, The State University of New Jersey, [E-book]

Available: http://www.ece.rutgers.edu/~marsic/books/SE.

Mehandjiska D., and Palac, J., 2002. Towards Bridging Component Specification Technologies,

International Conference on Software Engineering, the 20th IASTED International Multi-

conference Applied Informatics (AI2002), Austria.

Meyer, B., J. Nawrocki, Walter, B. 2008. Balancing Agility and Formalism in Software

Engineering, in Second IFIP TC 2 Central and East European Conference on Software

Engineering Techniques, CEE-SET 2007, Poznan, Poland, October 2007, “Revised Selected

Papers”, in Proceedings of CEE-SET

Mich, L., Franch, M., and Inverardi,P. 2004. Market research for requirements analysis using

linguistic tools. Requirements Eng. J. 9,1, 40–56.

Moody D. 2003. Measuring the quality of data models: an empirical evaluation of the use of

quality metrics in practice. In Proceedings of the Eleventh European Conference on

Information Systems (Naples, Italy, June).

Moody, D. and Shanks, G. 1998. What Makes a Good Data Model? Evaluating the Quality of

Data Models. Australian Computer Journal, 97-110.

Moreno, A. and Reind P. van de Riet. 2001. Applications of Natural Language to Information

Systems. In Proceedings of the 6th International Workshop NLDB'01 (Madrid, Spain, June).

Lecture Notes in Informatics, vol. 3, GI.

208

Neill, C., and Laplante, P. 2003. Requirements Engineering: The State of the Practice, IEEE

Software, vol. 20, no. 6, pp. 40-45, Nov./Dec. 2003, doi:10.1109/MS.2003.1241365

Nguyen, L. and Swatmann, P. A. 2000. Managing the Requirements Engineering Process, School

of Management Information Systems, Deakin University, Geelong, Australia.

Nuseibeh, B. and Easterbrook, S. 2000. Requirements Engineering: A Roadmap. In Proceedings

of International Conference on Software Engineering (ICSE) - Future of SE Track (Limerick,

Ireland, June). ACM Press, 35-46.

Ochodek, M. and Nawrocki, J. 2007. “Automatic Transactions Identification in Use Cases”, in

Second IFIP TC 2 Central and East European Conference on Software Engineering

Techniques, CEE-SET 2007, Poznan, Poland, October 2007, pp. 55-68.

Pfleeger, S. 2001. Software Engineering: Theory and Practice, Second ed: Prentice-Hall, 2001,

Chap. 4.Pohl, K. 2010. Requirements Engineering - Fundamentals, Principles, and Techniques.

Springer

Podeswa, H. 2005. UML for the IT Business Analyst: A Practical Guide to Object-Oriented

Requirements Gathering. Course Technology PTR.

Pooley, R. and Stevens, P. 1999. Using UML - Software Engineering with Objects and

Components. Harlow: Addison Wesley Longman.

Rational Software Corporation, "Rational RequisitePro User's Guide," June 2003,

http://www.se.fhheilbronn.de/usefulstuff/Rational%20Rose%202003%20Documentation/reqp

ro_user.pdf.

Rayson, P., Emmet, L., Garside, R., and Sawyer, P. 2000. The REVERE Project: Experiments

with the Application of Probabilistic NLP to Systems Engineering. In Proceedings of the 5th

International Conference on Applications of Natural Language to Information Systems

(Versailles, France, June). Springer-Verlag, London, 288-300.

209

Respect_IT, “A KAOS Tutorial”, v1.0, Oct 2007, Available as of November 2009 at

http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

Robertson S. 2001. Requirements trawling: techniques for discovering requirements. Int. J. Hum.-

Comput. Stud. 55(4): 405-421 (2001)

Rolland, C. and Proix. C. 1992. A Natural Language Approach for Requirements Engineering. In

Advanced Information Systems Engineering, P. Loucopoulos Eds. Springer-Verlag, 257-277.

Rolland, C., Souveyet, C., Achour, B. 1998. “Guiding GoalModeling Using Scenarios”, IEEE

Trans. on Sofware. Engineering, Special Issue on Scenario Management, December 1998,

1055-1071.

Saeki, M. 2010. Semantic Requirements Engineering. In Intentional Perspectives on Information

Systems Engineering, Springer-Verlag Berlin Heidelberg.

Sawyer, P., Rayson, P., and Garside, R. 2002. REVERE: Support for Requirements Synthesis

from Documents. Information Systems Frontiers 4, 3, 343-353.

Scenario Plus, http://www.scenarioplus.org.uk/, Accessed 20 January 2011.

Seybold, C., Meier, S. and Glinz, M. 2006. “Scenario-driven modeling and validation of

requirements models”, in 5th ICSE International Workshop on Scenarios and State Machines:

Models, Algorithms and Tools, Shanghai, pp. 83-89, May.

Sharma, A. 2009. Requirements quality assessment for outsourcing. Master’s thesis. Eindhoven

University of Technology, Eindhoven, Netherlands.

Shlaer, S. and Mellor, S. 1992. Object lifecycles - modeling the world in states. Yourdon Press: I-

XIII, 1-251.

Shukur, Z., Zin, A., and Ban, A., 2002. M2Z: A Tool for Translating a Natural Language

Software Specification into Z. International Conference on Formal Methods and Software

Engineering, ICFEM 2002: 406-410.

210

Sommerville I., Sawyer P., Viller S. 1997. Viewpoints for requirements elicitation: A practical

approach. In: Proceedings of 3rd IEEE International Conference on Requirements Engineering.

CO, USA, pp.74-81

Sommerville, I. and Ransom, J. 2005. An empirical study of industrial requirements engineering

process assessment and improvement. ACM Trans. on Software Eng. and Methodology

(TOSEM) 14, 1, 1-33.

Sommerville, I. 2005. Integrated Requirements Engineering: A Tutorial. IEEE Software 22, 1,

16-23.

Sommerville, I. 2010. Software Engineering, 8
th
 ed, Addison Wesley

Song, I., Yano, K., Trujillo, J., and Luján-Mora, S. 2005. A Taxonomic Class Modeling

Methodology for Object-Oriented Analysis. Information Modeling Methods and

Methodologies, 216-24.

Sybase, 2002. PowerDesigner. Object Oriented User's Guide. Sybase.

Thayer, R. and Dorfman, M. 1997. Software Requirements Engineering, 2
nd

 ed. Los Alamitos,

CA: IEEE Computer Society Press.

The Standish Group. 2003. “What are your requirements?” Technical report, The Standish Group

International, Inc.

The Standish Group. 2009. “Chaos summary 2009”. Available as of December 2010 at

http://www.standishgroup.com.

Tjong, S. and Berry, M. 2008. Can Rules of Inferences Resolve Coordination Ambiguity in

Natural Language Requirements Specification? In Proceedings of the Eleventh Workshop em

Engenharia de Requisitos (Barcelona, Spain, September).

Tjong, S, Hallam, N., and Hartley, M. 2006. Improving the Quality of Natural Language

Requirements Specifications through Natural Language Requirements Patterns. In

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Song:Il=Yeol.html

211

Proceedings of the Sixth IEEE International Conference on Computer and Information

Technology (Seoul, Korea, September). IEEE Computer Society, 199-199.

Van Lamsweerde, A. 2000. Formal Specification: a Roadmap, In: The Future of Software

Engineering, ACM Press, 2000, pp.147-160, 112875.

Van Lamsweerde, A. 2000. Requirements Engineering in the Year 00: A Research Perspective.

Invited Keynote Paper, In Proc. ICSE’2000:22nd International Conference on Software

Engineering, ACM Press, 2000, pp. 5-19.

Van Lamsweerde, A. 2001. Goal-Oriented Requirements Engineering: A Guide Tour, In

Proceedings RE’01, 5th IEEE International Symposium on Requirements Engineering,

Toronto, August 2001, 249-263.

Van Lamsweerde, Dardenne, A., Delcourt, B. and Dubisy, F., The KAOS Project: Knowledge

Acquisition in Automated Specification of Software, In Proc. AAAl Spring Symp. Series,

Track: "Design of Composite Systems", Stanford University, March 1 99 1 , 59-62.

Van Vliet, H. 2008. Software Engineering: Principles and Practice, 3rd edition, John Wiley &

Sons

Videira, C. and da Silva, A. 2005. Patterns and metamodel for a natural-language-based

requirements specification language. In Proceedings of the Seventeenth Conference on

Advanced Information Systems Engineering, CAiSE Forum (Porto, Portugal, June). 189-194.

Videira, C., Ferreira, D., and da Silva, A. 2006. Using linguistic patterns for improving

requirements specification. In Proceedings of the First International Conference on Software

and Data Technologies Setubal, Portugal). INSTICC Press, 145-150.

Westfall, L. 2006. “Software Requirements Engineering: What, Why, Who, When, and How”.

The Westfall Team.

Wiegers, K. E. 2004. “In search of excellent requirements”. Process Impact Web site. Available

online as of January 22, 2010 at http://www.processimpact.com.

212

Wiegers, K. 2006. More About Software Requirements. Microsoft Press, 2006

Wikipedia, 2010, “Information Systems," Available online as of July 15, 2010 at

http://en.wikipedia.org/wiki/Information_systems.

Zave, P. and Jackson, M. 1997. Four Dark Corners of Requirements Engineering. ACM

Transactions on Software Engineering and Methodology, Vol. 6, No. 1, pp. 1-30.

Zhang, Z. 2007. Effective Requirements Development - A Comparison of Requirements

Elicitation Techniques. Software Quality Management XV: Software Quality in the

Knowledge Society, E. Berki, J. Nummenmaa, I. Sunley, M. Ross and G. Staples (Ed.) British

Computer Society, pp. 225-240

Zielczynski, P. 2007. Requirements Management Using IBM. Rational RequisitePro. IBM Press.

Zowghi, D and Coulin, 2005. Requirements Elicitation: A Survey of Techniques,Approaches, and

Tools. Book Chapter in “Engineering and Managing Software Requirements” Edited by

Aybuke Aurum and Claes Wohlin, Published by Springer.

213

Appendix A Requirements Discovery Questionnaire

Part I. Documents

1. What documents, in electronic or paper form (e.g. forms, receipts, reports), which you create from

scratch or change/complete after the recipient or someone else created them, do you send/ give/

show to User1..n with Role1..m?

a. in person

b. through another person or service

c. electronically (e.g. e-mail, internet)

Auxiliary questions:

 Do you give/ send/ show any documents to User1..n with Role1..m?

 Do you write any documents for User1..n with Role1..m?

 Do you sign any documents for User1..n with Role1..m?

2. What documents, in electronic or paper form (e.g. forms, receipts, reports), which you modify/

complete after the recipient or someone else created them, and/or asked you to modify/ complete

them, do you send/ give/ show to User1..n with Role1..m?

a. in person

b. through another person or service

c. electronically (e.g. e-mail, internet)

Auxiliary questions:

 Do you modify any documents for User1..n with Role1..m?

3. What data are or should be included about the document’s

a. Creator?

b. Author?

214

c. Purpose?

d. Recipient(s)?

e. Communication channel?

f. Form?

g. Other people (e.g. users) that should be notified about the creation or modification of the

document?

h. Procedure (s) mentioned in the document or related to the ones mentioned in the

document?

4. What feedback (vocal or written) do you receive from the recipient, after you send the document

to him/ her?

a. Does s/he makes any change and sends it back to you?

5. What initiates the sending procedure?

a. A request (written or vocal) from the recipient?

b. A request (written or vocal) from another user?

i. What is the role of this user?

6. Can you please provide a copy of each aforementioned document?

Note for the Requirements Engineer: The same set of questions should be provided to the same user but in

the role of the receiver.

215

Part II. Physical Items

1. What physical items do you send/ give to User1..n with Role1..m?

a. in person

b. through another person or service

c. by post

2. What data are or should be recorded in the system or provided to the recipient about this item’s

a. Purpose?

b. Recipient(s)?

c. Communication channel?

d. Other people (e.g. users) that should be notified about giving/ selling this item?

3. What documents (e.g. forms, orders, receipts, reports) are related to this transaction (sending) and

to this item in general?

a. Do you send any of these documents to any user or stakeholder?

4. What feedback (vocal or written) do you receive from the recipient, after you send/ give the item

to him/ her?

5. What initiates the sending procedure?

a. A request (written or vocal) from the recipient?

b. A request (written or vocal) from another user?

i. What is the role of this user?

6. Can you please provide a copy of each aforementioned document?

Note for the Requirements Engineer: The same set of questions should be provided to the same user but in the role of

the receiver.

216

Part III. Requests

1. What other requests or orders do you give to User1..n with Role1..m?

i. In hand

ii. Through another person

iii. By voice (e.g. via telephone, skype)

iv. Written

v. Electronically (e.g. e-mail, internet)

vi. Optically

2. Describe in detail the content of each request.

3. What response do you receive by the recipient?

i. In hand

ii. Through another person

iii. By voice (e.g. via telephone, skype,)

iv. Written

v. Electronically (e.g. e-mail, internet)

vi. Optically

4. What does trigger this request?

5. What decisions do you or the recipient take (if any), after your communication?

Note for the Requirements Engineer: The same set of questions should be provided to the same user but in the role of

the receiver.

217

Appendix B Experimental Evaluation Results

Below we provide an indicative example of the application of NLSSRE to the

development of a part of a Library Information System.

Step 1. Collect the Candidate Information Objects

a. Identify roles and users

To identify the business roles, we first received a description of each user’s work,

from a representative number of users (1 user for each role, due to the small size of

the project). To define this representative sample, we first discussed with a

coordinative role, such as the main librarian. Below is the list of the roles for the LIS

we handled:

Librarian, Member, Client, Supplier, Stock Keeper, Accountant

b. Collect information about items exchanged between users of each role

A data flow table was created to identify the information and items exchanged

between the roles involved in the system. Here is a portion of the table:

218

TABLE B.1 PORTION OF THE DATA FLOW TABLE FOR THE LIS CASE STUDY

 Librarian

Member

Client

Supplier
L

ib
ra

ri
an

 Book, journal, article,

notification for

subscription

application/renewal,

reservation, book

borrowed report, nook

delivery, lending form,

payment receipt

Payment receipt, lending

form

Order form

M
em

b
er

Book return, journal

return, article return, ID,

subscription, subscription

payment

application/renewal, book

request, article request,

journal request,

reservation

C
li

en
t

Payment per item,

lending form completed

S
u

p
p

li
er

Book, journal, article,

payment receipt

 From the above information, we derived the list of the candidate IOs. The list

includes the following:

Librarian, Book, Member, Client, Supplier, Journal, Article, Application, Book

Borrowed Report, Payment, Order form, Payment Receipt, Lending form.

Step 2. Identify the Information Objects

a. Apply rules to identify the actual IOs from the candidate ones

Three sample rules are as follows:

Sender

Receiver

219

- Lending of a book from the Librarian (Library) to a member or client, causes the

creation of instances of other IOs, such as a Payment IOi, a Delivery IOi, and a

Book Order IOi. It also causes the alteration of the attribute State/Status of a Book

IOi, from available to lent). Thus Book is an IO.

- The Supplier, in the role of the Sender, sells books to the Librarian who is the

Receiver. This transaction causes instances of other IOs to be created such as a

Supplier’s Payment IOi and one or more Book IOi corresponding to new books

acquired by the library. Therefore Supplier and Librarian are IOs.

- A Book Borrowed Report, which is a collection of attributes of other IOs (Book

and Member) and can be created automatically by the system, is not an IO.

 The result of this step was the list of the actual Information Objects:

Librarian, Book, Member, Client, Supplier, Journal, Article, Payment, Delivery,

Order, Subscription, Lending, Reservation, and Renewal.

b. Categorize IOs

Categorizing IOs helps us applying more effectively the subsequent steps, e.g.,

identifying attributes based on the IO category.

Librarian, Assistant, Accountant: Internal Business Roles

Book, Article, Receipt: Physical Object, Document

Member, Client, Supplier: External Business Roles

Reservation, Lending, Subscription,Renewal,Payment, Delivery, Order: Procedure

220

Step 3. Develop FSRs for each IO

a. Apply CAREN functions and their sub-functions on each IO

(for simplicity, sub-functions are omitted from the example)

The alteration CAREN function can lead to the identification of new functions or

IOs, as illustrated below. Such an IO is the LIS which should perform

automatically, in the functional role of Creator in the FSRs, the Lend and Reserve

functions which are alteration-like functions. These concepts are illustrated

clearly in the use case diagram of figure B1.

i. Librarian IO

Create, Alter, Alter::Replace, Read, Erase, Notify

Normal state: Works; Alteration States: Worked, Ill

ii. Book IO

Create, Alter, Alter::Archive, Alter::Reserve, Alter::Lend, Read, Erase,

Notify

Normal state: Available; Alteration states: Lent, Not Available

Lend and Reserve states lead to the creation of new IOs  IO Lending, IO

Reservation

iii. Member IO

Create, Alter, Read, Erase, Notify

Normal state: Subscribed; Alteration states: Unsubscribed, Suspended

Subscribed state leads to the creation of a new IO  IO Subscription

b. Specify the IO, its CAREN functions, the involved functional roles and functional

condition types, in the form of formalized sentential requirement (FSR) patterns

221

i. Book IO FSRs

<Cr, Acc> <Create> <Book> <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Al, Acc> <Alter> <Book> <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Al, Acc> <Archive> <Book> <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Al, Acc> <Reserve> <Book> <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Al, Acc> <Lend> <Book> <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Exp> <Read> <Book> <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Al, Acc> <Erase> <Book> <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

ii. Member IO FSRs

<Cr, Acc> <Create> <Member> <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Al, Acc> <Alter> <Member> <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Al, Acc> <Suspend> < Member > <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Al, Acc> <Unsubscribe> < Member > <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Exp> <Read> < Member > <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

<Al, Acc> <Erase> < Member > <T,I,P,A>:: SystemNotifies <IR> <R> <T,I,P,A>

c. Make questions, derived from FSRs, to find the business roles and values for

functional conditions

The answers should be given by the system users or by the information received

during the first step of the methodology. Using synonyms also helps the

respondent think better of the answer. Here we provide indicative questions for

the Create FSRs, regarding the IOs Book and Member.

i. Book IO Questions

- Who is responsible to record a new book in the system? (Librarian)

- Does/Should any human or computer system help the stock to record a

new book, e.g., by providing some relevant data, about the book, its

222

category, etc.? (Classification System)

- What instruments does/should the librarian use to record a new book?

(Keyboard, ISBN bar code scanner)

- Who is/should be notified about the creation/cataloguing of a new book?

(Librarian, as s/he is the creator; Member, as the intended recipient who

e.g., requested or reserved this book, and so s/he is expected to borrow it).

- How the Librarian and Member should be notified? (e-mail)

ii. Member IO Questions

- Who is responsible to record a new member in the system? (Librarian)

- Does/Should any human or computer system help the librarian record a

new member, e.g., by providing some relevant data, about the member?

(Member)

- What instruments does/should the librarian use to record a new member?

(Keyboard, ID Scanner)

- Who is/should be notified about the creation of a new member?

(Librarian, as s/he is the creator; Member, as the client).

d. Specify complete FSRs, based on the answers received for each FSR pattern

element

i. Book IO complete FSRs (only the Create FSR is presented)

<Librarian, Classification System> <Create> <Book> <Keyboard, ISBN bar code

scanner>:: SystemNotifies <Member> <Librarian> <e-mail>

ii. Member IO complete FSRs (only the Create FSR is presented)

<Librarian, Member> <Create> <Member> <Keyboard, ID scanner>:: SystemNotifies

< > <Member, Librarian> <e-mail>

223

Step 4. Define attributes for each IO

 This step involves identifying attributes for each IO, based on their category and the

category of the IO, and making specific questions to the user to confirm the

attributes and derive new ones. Here we provide a number of indicative attributes.

i. Attributes derived from the use of the FSR attribute category for:

i. Book IO (from the Create Book FSR only)

Librarian related attributes

Classification System related attributes

ISBN Bar Code related attributes

ii. Member IO (from the Create Member FSR only)

Librarian related attributes

Member ID

ii. Attributes derived from the use of the Comparative attribute category for:

i. Book IO

Rank by lending time: 1-day; 2-days; 3-days; 1-week; 1-month

ii. Librarian IO

Rank by years of work: 5-year; 15-year;

iii. Attributes derived from the use of the Animate attribute category for Librarian IO:

Name, Surname, Age, Address, Telephone No

iv. Attributes derived from the use of the Document attribute category for Book IO:

Number of pages, Title, Number of words

224

Step 5. Define Business Rules

a. Inter-related business rules (between 2 or more IOs)

i. Between Book and Member

Since Book and Member can be found in the same FSR, there is a big

possibility for an interrelated business rule to exist.

Rule1: If Member.ID causes Book.Condition=Bad, THEN

 Member.Balance is charged.

where Bad is defined accordingly, by the Library Organization.

Rule2: If Book.State!=Reserved AND Book.Availability!=0, THEN

 Member.ID can borrow book.

Rule3: If Book.State=Reserved AND Book.Availability=0, THEN

 Member.ID can apply to reserve book.(there are more cases for

 reservation-this is only one of them)

b. Intra-related business rules (between attributes of the same IO)

i. Between Book attributes

Rule1: If Book.Condition=Bad, THEN Book.Archived=Yes.

225

Step 6. Develop SRS and Diagrams

a. SRS Document. The SRS document follows an organization by object. Here we

provide a portion of the specification of the IO Book, based on the provided

predetermined template.

Specific requirements Template (organized by object)

o Classes/Objects

 <IO 1>

 Attributes (direct or inherited)

o FSR Attributes

 Cr: <Cr 1> ID, <Cr 2> ID, …, <Cr n> ID

 Ac: <Ac 1> ID, <Ac 2> ID, …, <Ac n> ID

 No: <No 1> ID, <No 2> ID, …, <No n> ID

 <IR 1> ID, <IR 2> ID, …, <IR n> ID

o Physical Attributes

…………………………

 Functions (direct or inherited)

o Create <IO 1>

 Description: <Cr 1> , …., <Cr n> create(s)

<IO 1> with the assistance of <Ac 1>, …,

<Ac n> .

 Details:

 If <At 1>: <InputValue> is True for

“<Constraint At 1>”, then record <At 1>:

<InputValue>. If False, then show message

“<At 1>: <InputValue> “ is not valid.

…

o Alter <IO 1> …

o Read <IO 1> …

o Erase <IO 1> …

 Messages (notifications received or sent)

o System notifies <No 1>, …, <No n>, <IR 1>,

…, <IR n> that <IO1> is created.

o …

 <IO 2>

 …

Specific requirements (organized by object)

o Classes/Objects

 <Book>

 Attributes (direct or inherited)

o FSR Attributes

 Cr: Librarian ID

 Ac: Classification System

 No: Librarian ID

 IR: Member ID

o Physical Attributes

 Condition

 Material

 Size

o Document Attributes

 ISBN

 Title

 Number of pages

 Number of words

 Functions (direct or inherited)

o Create Book

 Description: Librarian create(s)

Book with the assistance of

Classification System.

 Details:

 If Book.Title: <InputValue> is True

for “Only alphabetic characters are

allowed”, then record Book.Title:

<InputValue>. If False, then show

message “Book Title: <InputValue>

“ is not valid.

…

 Messages (notifications received or

sent)

o System notifies Librarian, Member,

that Book is created.

226

b. Use Case Model. Here we present the Use Case diagram for the Book IO. The

FSRs of the Book IO were used to facilitate the transformation.

FIGURE B.1. PORTION OF THE ENTIRE USE CASE DIAGRAM FOR THE LIS.

