ABSTRACT

Utilization of the emerging grid and cloud infrastructuexjuires services which allow the
user to identify the machine instances suitable for hem&oft needs. Identifying the software
packages installed on cloud machine instances is the fiilstinm block of such services. In
the current study a software package identification systedeveloped. Data about the filesys-
tem and the packages installed is collected from variousdcimachine instances. Relations
amongst software elements are analyzed and used to foemal8emantic Software Graph, a
graph representation of the filesystem data and the softparkage data which utilizes the se-
mantic graph technology. Relations amongst the softwamaehts are analyzed to determine if
they related software elements of the same software pack@gaeph reduction algorithms are
utilized to reduce the size fo the Semantic Software Grapll,different graph clustering algo-
rithms are used on the resulting graph to group files togethelosely related groups. External
evaluation measures are used to compare the resultingerdust the expected software pack-
ages. The process is applied and evaluated on additiondlimescinstances to prove its gen-
eral applicability. The evaluation results are encourgqgnd may be improved in future work.
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Chapter 1

Introduction

We live in the age of information. The industry, the scieatfommunity, governments and
ordinary people incessantly produce, store and procesmens amounts of data, to extract infor-
mation and produce new knowledge which is thereafter tigied and shared all over the world.
This need for processing, storing and distributing infaiorahas been the driving power for the
ongoing development of computer science and communictgiimologies. The invention of the
Internet and the World Wide Web has made a large quantityfoftimation publicly available and
accessible everywhere on earth. For a long period of tineelrternet provided only the means
of distributing information. The processing power and ag@ were not resources that could be
offered as services to those that needed them. Hence, amyoeaed of high performance comput-
ing and extensive storage had no other choice but to investad gmount of money for building,
deploying and maintaining their own computing and dataaersntAnd although this was a fair
expense for businesses, scientists in need for computingrmpeere in no luck. The need for com-
puting resources freely available to scientists, was amldm that started to come true with the
creation of Computing Grids specifically developed by gowggnts and educational institutions

for the scientific community. Science nowadays deals withel@uantities of raw data that need to



be stored and processed in order to extract new scientifiwliedige. Also there is a large number
of computation intensive problems studied by scientisth s protein folding and prime number
search. Computer Grids were developed in order to providmtists with adequate storage and
processing power required to research new domains of stteBait what exactly is a Computer

Grid? A computer grid is:

a large-scale geographically distributed hardware antivaoé infrastructure com-

posed of heterogeneous networked resources owned and $lyareultiple adminis-

trative organizations which are coordinated to providedparent, dependable, per-

vasive and consistent computing support to a wide rangepiicagions. [5].
Many Grid infrastructures were developed for the purposestioned above. Examples of such
grids include theDuchGrid and theEGEE [24]. The advantage was that eventually scientists
had access to dependable computing services needed forabearch, without the overhead of
owning and managing their own computing and data. The dilifaof such infrastructures
created new paths in scientific research since research mputationally demanding fields is
now feasible.

An additional development in the field has been the emergeh€doud Computing The
term Cloud Computing refers to the delivery of applicationgr the Internet as services. It also
refers to the hardware and software back-end used to privide services [2]. Cloud Computing
makes the dream for computing as a utility true since it adléov the development and deployment
of applications without the need for building and operatinbardware infrastructure [2]. Users
are usually charged for the usage of the service, thus signtfy minimizing the cost of hosting
their applications. An additional benefit is the on demarmlescp of the application with the
introduction of additional services if required.

Although the creation of Grids and the emergence of Cloud @dimg were important de-

velopments that madéomputing as Ultilitya reality, a lot of issues are yet to be addressed. In

the case of Grids, since the users do not have the authorithdanstallation and the operation



of the Grid, they are not in place to control what softwarengalled on each computing node of
the computer Grid. Since processing power is of no use witth@uright software, the user has to
manually search for the appropriate group of nodes that theveequired software installed. This
increases the complexity of grid usage. Equally in the cA€daud Computing some cloud ser-
vice providers, such as Amazon EC, allow the user to selent &t number of different machine
instance images to deploy on the cloud. The selection of eifegpeachine instance image de-
pends on the computing needs of the user. Therefore, bolie icatse of Grids as well as the case
of Cloud Computing, there is a need for the user to be able teyméne if the required software
is installed on the grid node or the cloud machine instan@gario be used. The current research
aims to identify the software installed on the the machirfesterest which could be used for the
creation of a search service to retrieve machine instanitbsive required software configuration.
The motivation for the current study is presented in seclidnand the contribution of the

current study to the scientific research is analyzed in@edti2.

1.1 Motivation

The need for the user to know the software installed on theesythey are going to use has
been the initial motivation for the current study. To be alolesearch for the software the user
requires information about the software installed on earhputing system: for example, a grid
node on a cloud machine instance, must be collected. Saftwatalled on a computing system
is not comprised of autonomous files unrelated to each o®ethe contrary, software is consti-
tuted by related, interconnected and inter-dependent filekh cooperate to perform a specific
computing operation. These related files are grouped tegéthcollections of files, known as
software packages. Since individual files are in most cagegsable and therefore not important

for the user, since the complete collection of the files isdedeo perform a specific computing



task, what they are expected to search for is specific saftpackages. Therefore, the informa-
tion about the software installed on a specific computingesysis actually the determination of
which software packages are installed on each computirtgrayand the provision to the user of
a service to determine if the requested software packagdaasstalled on the system of interest.
The idea of software package has been utilized both in therigden of software, and for
its distribution and installation. In all computing syst&enany complete software program is
distributed in the form of a package, which contains all tbmponents required for the proper
operation of the software. Many modern operating systeriside software management tools
which facilitate the installation and removal of softwar@ckages. An example of such tool is
the Advanced Package Toalpt which provides a simple way to retrieve and install packages
in the form of. deb archives, from multiple sources [6]. Such software managgrtool suites
provide ways to retrieve the names and the contents of theva@f packages installed on the
current system. These tools are not a suitable source ahiafilon about the software installed

on computing systems since:

There is a multitude of software management systems, haece in not a single homoge-

neous way to query this software systems for the softwarkgugs installed.

¢ In some computing systems there is no software managemsmensyresent.

Proprietary software, custom made software and the saftused by the scientific commu-

nity, is manually installed and hence it is not managed binwsoe management systems.

In some cases special user privileges are required to quesoftware management systems

for software information, which may not be provided by thetsyn administrator.



¢ In order to query the software management systems for theaef needed, the user should
still make the tedious job of searching node by node to findehwodes that have the re-
quired software package installed. Collecting this infation as a service will remove this

burden for the user.

e To query the software management system for the existenseftvfare needed, the user
should know in advance the exact and usually cryptic namaefsbftware package that

matches the software they need.

In order to address the preceding issues a software seangébesshould be provided. This
service should be able to collect the information about dfisvare installed without the utilization
of software managements systems. Also the service shooldderthe user the ability to search
for a software not with the name of the specific software pgekbaut with keywords that describe
the software as well as its utility and other charactesstkinally the software must be presented
to the user in an understandable and comprehensible way.

By bypassing the software management systems during thectioh of information about
the software installed on each computing system, infownasibout software packages is lost.
Therefore, an alternative way to retrieve software packagesquired. This alternative way must
utilize meta-data about the computing system’s file-syssémncture, and using information re-
trieval techniques identify groups of inter-related safter components that together comprise a
software package. This process of reconstructing softpac&ages from the unstructured nature
of the file-system tree of each computing system is the pnoltités study attempts to solve.

Therefore the problem to be solved by the current study is:

Identify the software packages installed on a computingegsysising only meta-data
about the files present on the computing system file-treetateu



Identifying software package structures is a non-trivaaktsince it is up to the decision of the
software package creator to decide on the structure of fiease package. Thankfully common
practices are followed by creators and distributors ofvearfe packages, thus, similar structure
characteristics can be found in a number of software packa@ill this practices are neither
obligatory, nor known and documented. As a result, thesetipess must be extracted in the form
of structure rules, through the examination of the strctfralready known software packages.

Additionally, information may be extracted about the higtof the software components
(when they were created or when some other operation wadppi them). Common history,
such as creation at exactly the same point in time, are usefutces of information especially
when no other means are available to interrelate softwargooents to each other.

In the current study, in order to create a system that sutdlgssientifies software packages
using only file system information, information about knopackages is used during the imple-
mentation and evaluation of the system to identify commouctire, and formulate the proper
set of rules and procedures that will be used to identifwgie packages in the absence of soft-
ware package information. Thus, the implementation of tiekpge identification system is based
on information from a system of known package constitutiafter the rules are formulated the
system can be applied on systems of unknown package stuotigentify the software packages.

Defining rules and procedures for the software packageiftbation process from a limited
number of machine instances created specifically for theqaas of the current study would
greatly harm both the performance and the applicabilityhefprocess. Therefore real machine
instances found on thémazon Elastic Computing Cloud (EC&k used as sources of the infor-
mation both for the analysis phase, where the rules and guoee are specified, and the testing

phase where the software package identification processlisaged.



1.2 Contribution

As stated in section (1.1) the current study attempts totifyesoftware package structure
using only meta-data about the files present on the compsiistem file-tree structure. The
solution of this problem contributes in several ways to caotapscience and more specifically to

information retrieval research. This contributions are:

e It is the first study on the structure of software packagesgchvhattempts to retrieve the
structure from file-tree meta-data. Work on structure ifieation has been done in other

fields such as source code file grouping and software compachestering.

e It uses and analyzes known software packages to discoveatrtieture rules used in their
construction. Most of the other work relies on developerragfirules to identify the struc-

ture.

e Itis possible to perform external evaluation of a produceftsare package identification
solution since sample result structures are available fiteenknown package corpus. In
related work the evaluation of the results is subject to tbesion of the result evaluator,
and it is based not on the successful identification of exguestructures, but on the quality

of the clustering results.

¢ It breaks up software packages to its constituting partsexaghines its internal structure
in contrast to work done on software packages as entitiespftware package repositories

and the connections between them.

e It utilizes semantic graphs for the representation of blethgraph used during experimenta-
tion as well as the graph used during package identificalitiese graphs encode not only

the relations between the packages and the files, but alsnghring to these relations.



e |t utilizes graph clustering algorithms for the identificat of software packages. The qual-
ity of the solution depends on the clustering algorithm axigr@al evaluation measures
may be used to evaluate the solution since at least partallkalge exists for the expected

clusters. Therefore the corpus of the current study may e as an evaluation test set for

graph clustering algorithms.



Chapter 2

Background and Related Work

In the current chapter a review of the scientific work reldtethe current study is attempted.

Then, the major concepts and terms used throughout thentsitgly are defined in section 2.2.

2.1 Related Work

The current study lies in the middle of two different reséafields regarding software re-
sources. On the one side is software resources retrievéhichvease Information Retrieval tech-
niques are utilized to provide search facilities for theiestl of software components. On the
other side is the software resources clustering, whichmgite to organize software components
to logical groups. Work on both approaches is presenteckicdinrent section.

The task of retrieving software resources has been appeddop many different ways de-
pending both on the resources in interest, as well as th@agiprof retrieving information about
them.

A major field of software resources retrieval has been seanchretrieval of source code.
Various systems have been developed to facilitate sourde cetrieval both from proprietary

repositories [18] as well as from online open source reposk [3] [26], [20]. Since source code
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is not unstructured text, but contains information aboet structure as well as other metadata,
source code search systems attempt to extract more informatiout the source code to improve
their utility to programmers. Such a system is Sourceremfrastructure that collects, analyses,
and searches open source code both for textual informasievel as structural and metadata in-
formation that may improve the performance of source codechd3]. PARSEWeb on the other
hand allows the programmer to search for code samples biiipgcSource and Destination ob-
ject types, and the system returns suggestion of frequas#igl Method-Invocation Sequences that
can make the transformation from the Source type to the Dagin type [26]. Finally in [20] the
system utilizes semantic data such as keywords, class tioohetgnatures, test cases, contracts,
and security constraints to specify the user’s specifinatend then checks a transformed set of
candidate solution to filter out the solutions not matchimggpecifications.

Another field of software resource retrieval has been théevetl of software components.
Pre-compiled libraries and software components can benpsed and reused by software devel-
opers in their projects. Although such components lack ¢ixeual nature of source code, many
informations can be extracted from the components data.xAmple of such a system is Agora
[22] which combines introspection with Web search enginakarthe publication and retrieval of
software components in the software marketplace lessycostiother approach is to utilize the
popularity of certain software components, to improverthanking in search results. Such and
approach has been proposed by [23] and uses the compositiph gf Grid applications to rank
software components based on how often this componentef@remced in composition graphs,
in @ manner similar to Pagerank [15]. This idea mature to GER Grid component search ser-
vice, which uses technology of Web search engines to disamfawvare components on the Grid

[19].
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Finally a field of software resource retrieval is the retaiesf which software resources are
installed on specific computer systems. The major work donthis field, which has been the
initiative for the current study, is the Minersoft softwagearch engine which provides full-text
search services to locate software resources installearge-kcale Grid infrastructures [10], [17],
[16]. Minersoft uses a number of utilities and analysers dovést data about the software re-
sources located on remote systems. The results of haryestinencoded in the Software Graph
[10]. Then through a process of content enrichment, assmesaare discovered through structural
dependencies, which enrich interesting software resewnith text from associated files in order
to create a searchable inverted index of software reso{tZgsThis work has a lot of similarities
with the current study and has actually been the startingtoi the current study.

Another faced of the current study is that of clusteringtezglacomponents to logical groups.
Since software packages are essentially groups of relafeslase resources, work regarding the
clustering of software components is related to the cunremk.

Great research has been performed in clustering the soodeeaf specific software systems
[11] [12] [14]. The purpose was to provide tools to the depels maintaining unknown legacy
software to retrieve the actual structure of the system amdlifarize their serfs with the software
structure. In [11] semantic clustering is attempted infation retrieval techniques are used to
to derive topics from the vocabulary usage at the source ag and uses Latent Semantic
Indexing to locates linguistic topics in a set of sourcefaets and cluster them according to their
similarity. In [12] an automatic technique to create a hiei&al view of the system structure
based on the components and their relations at source caglédgropose. This idea matures to
the Bunch software clustering tool [14] that uses a seridli€limbing clustering algorithms to

analyse the structure of a software system.
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2.2 Definitions

Before describing the creation of the package identificasigstem, the exact meaning of the
terms used in the current study shall be defined. The defisittme dealing with the meaning of
the specific concepts in the current study and not with theningahis terms may have in other

studies and contexts.

2.2.1 Software Package

The first concept to be defined is the concepgaffware package

Definition 1. A software packagé’ is a collection of software componens; , as, . .. ,a;},a; €

C that are distributed and installed as a single group.

Although this definition may appear simplistic it has cartadvantages over alternative defi-
nitions. A different definition is that software packagesildde the way users conceive software
packages, that is a collection of software components,nedjto perform a specific computation
task. Although such a definition may be more user-friendligas two major disadvantages. First
of all it groups the software package with all the dependenitimay have to a super-package. As
a result it introduces overlaps between software packdupaing certain dependencies. The sec-
ond disadvantage is the difficulty of evaluating the resoltthe software package identification,
since it requires human reviewers and evaluators. The tefirior the software packages used in

the current system is considered better than the other tigfinibecause:

e It minimizes overlaps between packages since dependeamekandled as packages on

their own. This makes handling and identifying softwarekaaes easier.
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¢ It makes the evaluation of software package identificatiasiez, since a huge number of
software packages matching this definition is availablee @¥aluation is also more reliable

since sufficient amount of external evaluation data is atséel

¢ It makes it possible to deal with secondary packages sudbrasiés and source code col-

lections, which would have been lost as members of supergask

2.2.2 Software Components

The definition of software packages makes use of anotheeporbat of software component.

Definition 2. A software component is any file that is a distributed and installed as part of a

software packagé’.

From the definition of theoftware componeroncept the following definitions are derived:

Definition 3. A software componeni is considered to bemember ofthe software packag€ if
and only ifa € C which implies thatz is created during the installation of the software package

C

Definition 4. A software component; and a software componeaj are considered to be mem-

bers of the same packagegif a; € C anda; € C.

These definitions make the process of the software packagsifidation clearer since the
identification of a software package can be achieved by sa@déy identifying a group of the
software resources that are members of the software packagee the identification process is
not based on the known structure of the software packagerbfieesystem meta-data, software

component relations are used to group software componagehier.
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2.2.3 Software Semantic Graph (SSG)

During the procedure of analysis and implementation of3bffware Package Identification
Systenrseveral forms of graphs are used.gfaph G = (V, E) consists of two set¥ (G) and
E(G). The members of/ (G) are calledverticesor nodesand the members of(G) edgesos
links. Each of theedgesconnects twovertices[1]. Two verticesconnected by an edge are said
to beadjacent. The number of vertices of the graghis its order written as|G| and is usually
represented with the letter. The number of edges of a graph is written|j&8|| and is usually
represented with the letter. A graph is calleccompleteif every pair of vertices are adjacent to

each other. When a graph is complete the number of edge<eis bix

nx(n—1)

ey =

(2.2.1)

H is a subgraph o7 if V(H) c V(G)) andE(H) C V(G). A graph with a direction
property assigned to its edges is calldicected Equally a graph where multiple edges may
connect the same pair of vertices is calfedltigraph When an edge is associated with a numeric
value (weight) the graph is callegeighted

A semantic graph is a network bkterogeneous nodégertices) andinks (edges). In con-
trast with the common mathematical definition of a graph, agtin graphs have different types
of nodes and different types of links [4]. The links of Sen@@raphs are directed and multi-
ple edges connecting the same pair of vertices are allowat;enSemantic Graphs are directed
multigraphs. Each of the nodes in the Semantic graph hgse@and one or morattributes Each
of the nodes may have multiple types. Links may also havestjgje The set of relations that can
exist in a semantic graph is described by an auxiliary gratled schema [25].

The Software Semantic Graph (SSiS)a semantic graph describing the data collected from

a machine instance regarding the software installed onytsters. Severahodes typegxist in



15

the SSG such afi | e nodesdi r ect ory andpackage nodes. Each of the nodes may have
severalattributessuch amane, pat h, i node etc. Several links may exist amongst the nodes
of the SSG such asenber O relating a file node to a package node archal dOf relating a
file or a folder node to its parent node in the filesystem trdee dompleteschemdaor Semantic

Software Graphs is described in appen®ix



Chapter 3

Harvesting

For the creation of &oftware Package ldentification System (SRKamples of real machine
instances are required. The process of harvesting cofiEtgstem data and meta-data as well as
data about the software package installed in the machingslly the data harvested will be used
for the analysis of the software package structure and thmeuiation of a process for software
package identification. After the creation of the SPIS thweédmsting process will be used to collect
the input of the SPIS.

The effectiveness and the applicability of the SPIS depéwmdsily on the quality and the
diversity of the information collected. Therefore the detélected must have the following char-

acteristics:

e Several forms of data and metadata must be collected almfitatystem and the packages
installed on the machine instances under study. This ntigltipof data sources will provide
additional information for the SPIS to successfully idgnthe software packages resident

in each of the machine instances.

e To avoid over-fitting on particular system configurationsyltiple machine instances with

different system configuration are required. Such systenst bre based on differehinux

16
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distributions and have a different collection of softwaexkages installed. The aim is to

derive generic rules applicable to any Linux-based machine

Harvesting different systems can be challenging and tinmswming, especially if it is re-
quired to create each system configuration separately by Headitionally building custom sys-
tems for harvesting data may render SPIS not applicableefar world scenarios of software
packages identification, because such system configusati@y not be similar to real systems.
Finally since the current thesis focuses on Cloud Computirig required to make the software
identification system applicable to Cloud Computing Infnastures.

It was decided to utiliz2Amazons Elastic Compute Cloud (ECHC2 uses visualization to
allow the user to create machine instances, renting in thig @omputing power[28]. Such a
service is what is needed to create the machine instancegaeédor the harvesting process.
Creating the machines requires no more than instantiagveyalAmazon Machine Images(AMIs)
An AMI contains the root image with everything necessaryttstsa machine instance. Several
AMIs are publicly available, providing substantial diviéysof system configurations to harvest.
Finally the Amazon EC2 is a mature Cloud Computing Infradtice that provides a variety of
tools and is well documented and supported.

The preparatory processes for the harvesting are desdrilsttion 3.1. The details of the
harvesting process are presented in section 3.2 and tlemsgterformed after the completion of

the harvesting can be found in 3.3.

3.1 Harvesting preparation

Before harvesting\mazon Machine Image(AMInstances, a lot of preparatory work must be
done. AMIs must be selected and instantiated, informathmutathe instances must be collected

and the files required for the harvesting process must bedptbto each of the instances.
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The selection of the AMIs to be harvested is performed rarigam the list of all the AMIs
available. To achieve maximum system diversity, it is deditb select from the list of community
provided AMIs, where multiple custom made images exist furcific applications. Also since
the scope of this thesis is limited to Linux based machinésdew based machines are filtered
out of the list of the selected AMls.

The instantiation process is performed by selecting AMbsrfithe selected AMIs list. This
limit is set by Amazon which allows only 20 running images pser. Additional AMIs can be
harvested after the harvesting process is performed orutihent selection of AMIs.

After the instantiation of the AMlIs, four pieces of importamformation are collected for each

of the running AMI instances. Table 1 describes the inforomatollected:

Information Description
AMI ID This unique identifier specifies AMI used to instantiate therent
machine instance.
Instance ID This unique identifier specifies machine instance. It is usedrmi-
nate the instance after the harvesting process completion.
Public DNS This address is used to access the machine instance fromhinmac

outside the Amazon EC2.

Default Username Each machine uses different username based on the deaifithres

AMI provider. Therefore the username used for each machingt m

be determined before harvesting can be performed.
Table 1: Amazon Machine Instance Information

Some machines require initial configuration using intévactnenus. Since the process of
harvesting AMIs is an automated one, when such a systemasté it is considered invalid and
is terminated.

The final preparation before the harvesting AMI Instancéisdsuploading of the files required
for the harvesting process. To make this process as simplesatble, it was decided to implement
the harvester as a single flar vest . py which is the only thing uploaded to each of the running

AMI Instances.
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metadata Description

mode Protections bits of the file. Signify which has read write amdcute
permissions.

ino The inode number of the file. Uniquely identifies the inodactire
associated with the file. Unique for each file on the system.

uid A number that uniquely identifies the owner of the file. Fileithw
the same uid belong to the same user.

gid A number that uniquely identifies the group owner of the file.

size The size of the file in bytes.

atime The time of the most recent access to the file in seconds froix Un
epoch.

mtime The time of the most recent content modification in seconds fr
Unix epoch.

ctime The time of the most recent metadata change in seconds fraxn (Un
Epoch

Table 2: File Metadata Harvested

3.2 Harvesting Amazon EC2 Instances

The harvesting process is performed executinditirevest . py script on each of the running
machine instances. Since harvesting on each of the madkiireependent from harvesting on
other machine instances, harvesting is executed condlyr@mall the machine instances, using
a multithreaded local script to start and monitor the eXxeoubf the harvester on each of the
machines.

The harvester itself comprises several sub-harvesterh, @dlecting a different kind of data.
The Filesystem harvester collects data and metadata dimtites and the directories found on
the machines file system, It also collects information altbetsymbolic links of the system and
their target. The metadata harvested for files and direxstasi described in table 2.

The ManPage harvester collects associations between @otedifiles (executables, libraries,

etc) and their corresponding manpage documentation fileslacations of the manpage files are
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determined by themanpat h command and the folders of the executable files by&RATH
environment variable.

Software Package harvesters query the local software gadakenagement system for the
software packages installed on the current system as wtieasmember software components.
Two harvesters are used, one for Debian packages, whichthesdpkg command, and one for
RPM packages, which uses themcommand. The execution of these harvesters depends on the
availability of the respective command on the target maestance.

With the exception of théMime Typesub-harvester which depends on fFikesystemsub-
harvester completion to execute, all the other sub-hagweshay execute independently. There-
fore each of the harvesters is executed as a separate tlreatiieve the maximum efficiency
of the harvesting process. TihWime Typesub-harvester is executed after the completion of the

Filesystenmsub-harvester thread.

3.3 Harvesting Result Fetching and Cleanup

After the completion of the execution of the harvesters dthalmachine instances,the results
of the harvesting process are downloaded from each of thaimes To recognise which result
comes from which machine, all the result files originatingnira specific machine are stored in
a directory named after the AMI ID of the image used to instd@tthe machine. For maximum
transfer efficiency all the result files are in compressetiaedormat. The result set is constituted
of multiple files, each containing a specific kind if data. Amalete description of the data files
produced by the harvesting process can be found in appendix A

The completion of the results downloading renders the nmachistances useless. For that

reason all running machine instances are terminated.
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The downloaded result files still have erroneous data; cpresdly, some of the result files
are processed to filter out these erroneous records. Swaimfiltis performed for symbolic links
to remove cases where the symbolic link could not be resawel] on file and directory data, to

remove cases where it was not possible to get the metaddia spécific filesystem resource.

3.4 Dataset

Two datasets are harvested. One for the development phiseS®bftware Package Identifica-
tion Phase and one for the evaluation phase. 8 machine aestamne selected for the development
phase and 20 machine instances for the evaluation phasenfheestriction for the selection of
the machine instances was that theyldareix based, sinceinux based systems is the target of the
current study. Also. although the majority of the machingtances found on th&mazon EC2
are Ubuntubased, special care was given to select machine instansed ba othetLinux dis-
tributions such a€entO$ Fedora and Amazon Linux. A complete list of the Amazon Maehi
Instances used in both in the development and the evaluptiase along with the description
string can be found in Appendix B.

The size of the dataset harvested is significantly large.sbftevare resources harvested from
each of the machine instances used during the developmaseé e presented in table 3. From
the results it is evident that the datasets differ signifigain respect to their size and especially
the number of packages found in each of the systems under. sMlitiough some packages are
expected to be found in most systems it is evident that dubedifferences in the expected
utilization of each machine instances, a significant nunobepftware packages are not found on
all the machine instances under study. Similar results@rad in the case of the datasets of the

machine instances used during the evaluation phase.
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AMI ID Files | Directories | Packages
am - 02f 8cd76 | 48644 8618 384
am - 033d0977 | 47083 6203 364
am - 026f 5e76 | 51847 7077 415
am -02714476 | 85444 15320 384
am - 02b98876 | 117 705 13747 421
am - 03c2f 677 | 42114 5686 356
am - 01f bce75 | 47179 8504 429
am - 03310577 | 37080 4679 320

Table 3: Size of Datasets - Software Resources

AMI ID Symbolic Links | Man Pages
am - 02f 8cd76 4943 977
am - 033d0977 2502 603
am - 026f 5e76 4344 1015
am - 02714476 5500 3139
am - 02b98876 4331 1291
am - 03c2f 677 1580 601
am - 01f bce75 5938 1088
am - 03310577 1497 590

Table 4: Size of Datasets - Relations

Another important source of information harvested andudet! in the dataset is a series of
relations amongst software resources extracted from &lesy information. This data includes
symbolic link associations and executable to manpage iasems. Table 4 shows the number of

relations found in the machine instances used during theldgment phase.



Chapter 4

Semantic Software Graph Construction

In this chapter the construction of temantic Software Graphs (SS&m the information
gathered by the harvesting process is described. A diffeé3&& is constructed for each of the
AMIs harvested. Depending on the data added to the graghreatlit properties and resources are
added to the semantic software graph.

The Semantic Software Graph is described in section 4.1. dBe&sions made before the
creation of the semantic software graphs are presentedtioset.2. The details of how each of

the harvesting output files is loaded to the SSG is describeddtion 4.3.

4.1 The Semantic Software Graph

The Semantic Software Graph (SSiBthe representation method selected to represent, store
and manipulate the data collected from the harvesting pregserding the filesystem metadata
collected as well as the associations amongst the softWwaneeats. Additionally the SSG is
specifically designed to allow the addition of additiondloimation and associations amongst

the software resources, that arise during the analysisepHasessence the SSG functions as an

23
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expressive, and consistent workplace for the developntieatapplication and the evaluation of

the Software Package ldentification Process.
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Figure 1: Filesystem resource associations in the SSG

One major advantage of the SSG over other representati@msshis that since semantic
graphs are multigraphs, all the various types of assoastinongst the software resources may
be represented in the same representation medium, withesibf the information defined by the

association type. Each software resource, whether a filireatdry or a software package, is



25

added in the SSG as a resource along with a number of prapertiech are described in later
sections. Additionally several associations are set astandividual software resources, creating
a complex graph of closely interconnected nodes. This &dsmts not only recreate the complete
file system tree structure, but also add all the associatinongst software resources derived
through other sources of information such as symbolic |inkan page associations, time groups
and name similarity. Figure 1 shows a branch of the SSG whest of the relations amongst
software resources are represented. Although this brarudidies only 3 files and 6 directories
the complexity of the resulting graph is already evident.

The details of the meaning of each of the relations shown urdid can be found in the

following sections.

4.2 Graph Representation and Storage

Is was decided that th8emantic Software Graph (SS§)ould be stored as &DF model.
RDF provides all the characteristics needed to correctiiyedficiently store the SSG. These char-

acteristics are:

o RDF allows the definition of custom relation types, and thistexce of multiple types of

such relations in the same graph.

¢ RDF is an established standard, therefore it is possiblseéadhe SSG with other software

which conforms to the RDF standard.

e RDF is a graph representation system widely used in the WBBaustry. Therefore a lot

of well supported tools exist to store and manipulate RDFss#in graphs.

TheJena Semantic Web Framewawdas decided to be used for the storage and manipulation

of the SSGs. Jena is a collection of tools and Java APIs, tlat éhe creation, storage and
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manipulation of semantic graphs in many representatiotisding RDF. Although Jena allows
the usage of database back-end for the storage of semaaytasyit was decided not to use it, since
the size of an SSG makes the creation and manipulation ofthjgh on a database forbidding.
An alternative storage method was decided, which used sl@zB technology. TDB stores
the semantic graph in files on the local file system. TDB is ifigally optimized for semantic
graphs, in contrast to databases. Hence, both the creatibth@ manipulation of semantic graphs
is extremely efficient.

The RDF standard is designed for web resources, so it ladgsepies and resources specifi-
cally needed for the representation of an SSG. To overcoese timitations, a custom namespace
with the prefixssg was created, which includes all the properties and ressureeded for the
correct representation of a Semantic Software Graph. Theeots of this namespace are pre-
sented in appendiR?.

Finally each SSG nodes, either directory and file or packawgest be uniquely identified. To
achieve this uniqueness special URIs are used. The URilzeutile AMI ID to uniquely identify

the machine instance the SSG was built for. The following téRiplates are used:

e ec2://[am -id]:[resource-absol ut e- pat h] for directories and files.

e ec2://[am -id]/[package- nane] for software packages.

4.3 Loading harvested Data to the Semantic Software Graph

After the creation of an empty TDB model to store Bemantic Software Graph (SS@)the
Amazon Machine Images (AMtarvested, the harvesting data must be loaded to the SSG. The
harvesting data is composed of several files, each congadifferent information. Appendix A

lists the harvesting data files and describes their content.
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Each file requires different handling and adds differentasoattributes and links to the SSG.

The loading procedure for each of the harvesting data fildessribed in the following sections.

4.3.1 Directory and File Data Loading

The processing of thBirectory data and thd-ile data is related since almost the same at-
tributes and relations are added to the SSG. Dhectory is loaded first to reconstruct the hier-
archical structure of the filesystem directory tree. Fothedicectory found in the filesystem an
ssg: di r ect or y node is created. Then tikée data is loaded. For every file in the filesystem an
ssg: fil eis created. The completion of the loading of both data filesmstructs the complete
filesystem tree structure of the AMI harvested, with eacthefriode having important metadata

attributes. The properties added for both directory anddieurces are summarized in table 5

Attribute Value Value Type
$sg: name File system name xsd: string
ssg: | ocal Pat h | Absolute file system path xsd: string
ssg: node Permissions of the resource xsd: i nt eger
ssg: i node Inode number xsd: | ong
ssg: ui d User ID xsd: i nt eger
ssg:.gid Group ID xsd: i nt eger
ssg: si ze Size in bytes xsd: | ong
ssg: atine Most recent access time xsd: | ong
ssg: ntine Most recent content modification timexsd: | ong
ssg: ctine Most recent metadata change time | xsd: | ong

Table 5: Attributes assigned to each file or directory node

Additionally links are added amongst the nodes to reprebentilesystem relations amongst
them. These links includesg: chi | dOF which relates file nodes and directory nodes to their
parent directory node in the filesystem tree, and its inversg: par ent O which relates a

directory node to the nodes of its contents.
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4.3.2 Symbolic Link Data Loading

The data in th&ymbolic Linldata file is used to associate the symbolic links with thegets.
For each record in th8&ymbolic Linkdata file, the file node representing the symbolic link is
assigned thesg: | i nk type. Finally anssg: | i nksTo link relates the link node to the target

file node.

4.3.3 Man-page Data Loading

The data in theMan-pagedata file is used to associate documented files with theirrdeou
tation. For each record in thdan-pagethe manpage file node is assigned #sg: man type.
Additionally, anssg: docunent edBy link relates the documented file node to its documenta-

tion and arssg: documnent s link relates each manpage node to the file node it documents.

4.3.4 Package Data Loading

The contents of th€ackagesiata files, regardless of the source of information, astottie
packages with their file members. For each record in the gaskdata file a new node of type
ssg: pack is created. Additionally assg: menber O link associates each file node to the
package it is member of and asg: hasAsMenber link associates each package node to each

of its files.

4.4 Semantic Software Graph Post-processing

After loading data in th&emantic Software Graphs (SS&Jditional processing is required to
be performed in order to prepare the SSGs for the analysithergbftware package identification

process. This processing operation falls into two categori
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e Graph enhancement and analyswhere based on the characteristics of the graph, addi-
tional attributes and types are assigned to its nodes. Tggsaton enhances the graph.
Although these attributes and types can be calculated ofithegre-calculating them wiill

make their future utilization simpler and more efficient.

e Graph cleanup and pruningivhere unwanted nodes and their attributes and links are re-

moved from the SSG to reduce its size and get rid of the noisgused by them.

4.4.1 Graph Enhancement

In this stage of graph processing, additional links, types a&tributes are computed and are
incorporated in the SSG. These enhancements, though cabhpidtom the SSG, can simplify

and improve the efficiency in later stages of the Softward&ge |dentification process.

4.4.1.1 Addition Of the Executable Type

Some file nodes in the SSG play a particular role inside sofffites. Such files are the
executable files which are in essence commands providedebgattware package, which the
user may execute. Most of the time software packages arg adlind the executable files. To
determine whether a file node is executable or not, the filedenattribute is used. Each mode
binary number has three flag bits signifying that the file iscexable. To determine whether any
of this flag bits is set for the specific file node or not, bitwigeerations are used. If the file node

is executable the node is assigneddisg: exec type.

4.4.1.2 Directory file and sub-directory counts

Two attributes of directories that may be useful during thectfication of the rules is the file

count and the sub-directory count of each of the directdrie€8SG. These attributes are applied
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only to directories containing files or sub-directories.sAbce of these attributes signifies absence
of files and sub-directories in the directory under study.dazh directory for which the file count
is greater than 0 agsg: fi | eCount attribute is added to it and for every directory for which

the sub-directory count is greater than Osaag: subDi r ect or yCount property is added to it.

4.4.1.3 Directory Package Count and Directory Purity Propeties

Since in the case of software package managers, softwakagegare installed with files in
multiple places, it is not a rare case to have software commisnfrom more than one software
packages reside in the same directory. If a directory costadftware components from a sin-
gle software package, it is considerpdr e. If the folder contains software components from
different software packages, the folder is labeled mpur e. Identification of which directories
are pure and which are impure is of great importance for thedtion of the rules for software
package identification. A successful procedure for thegoaieation of directories to pure and
impure on an unstructured system, will substantially sifpphe software package identification
process since a pure directory could be considered as & @ntjty with the properties of all of
its contents. Software components in impure directorieg raquire additional rules, to success-
fully divide their components to the appropriate softwaaekages. Before labeling directories as
pure and impure each directory is assignegag: cont ai nsMenber sO link to each of the
packages that has members in the directory. This propertally useful for the categorization of
directories, as well as the subsequent stages of rule fammadf the number of packages having
members in the directory equals to 1 the directory node igasd thessg: pur eDi rect ory
property whereas if the number of packages is greater thae tlitectory node is assigned the

ssg: i mpur eDi rect ory type.
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4.4.2 Graph cleanup and pruning

In this section the cleanup and pruning processes appli¢leoBSGs are described. Cleanup
and pruning equates to removal of resources and statemeniglie semantic graphs. Therefore
there is some loss of information. The decision to apply ddtehing or filetree pruning operation
is justified. Also for each process, a summary of the resslfgesented, to illustrate the impact

of the cleanup and pruning on the semantic graph.

4.4.2.1 Software Package Overlap Cleanup

The usage of a Software Package Management system doesarahtpge membership of
the software components to a single Software Package. HBx&ts a possibility to have soft-
ware components that are members of two or more softwareagaskat the same time. Such a
case may create complications during the software idedtiific process, therefore, it is advisable
to check for the existence of such software package ovedagsappropriately deal with them.
Looking for package overlaps in the package manager setnguaiph, resulted in a small num-
ber of software components, belonging to more than one adcftwackages. The mean average
number of overlaps detected on each machine is 46.8. Sieaautihber of overlapping software
components in negligible compared to the size of the semgraiph, it was decided to follow the
simplest solution, and remove this software resources islp from the semantic graph. It is
believed that this removal will not have a significant impawtthe rest of the software package

identification process.

4.4.2.2 Non Software Directory and File Removal

It is evident that not all of the directories and files foundeomachine instance are software

components. Files can be created from both the system dtsingeration as well as the systems
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user for personal data storage. Since these files and diesctoe irrelevant to the software pack-

age identification process, it is decided that it should Ineoreed completely from the Semantic

Software Graph. This removal will be useful not only durihg tinalysis of the software package
structure but also during software package identificatimtgss. As a consequence, it is required
that the removal is performed with rules that do not requitewdedge of the software packages
installed on the system under study.

The first set of rules deals with root level directories. It@nmon practice for Linux dis-
tributions to have specific names and usages for root levettiries, although this may vary
from distribution to distribution. Although informatiorxists about the exact role of each of the
root level directories, it was decided to utilize the knasge about the structure of the software
packages to verify which of these directories contain saftacomponents and which don’t. The
selection of a root directory for removal implies that theolehfilesystem tree branch under that
directory will be removed. Therefore all the files residingtbat filesystem tree branch must be
taken into account.

The following steps were performed on each of the machirtariegs under study.

1. The root level directories were retrieved.

2. For each of the root level directories, the file system tinaof that directory was examined

and the total number of files and the number of software commisnvere determined.

3. Using the two numbers from the previous step the ratio efstiftware components found

in the specific filesystem tree branch is determined.

After the collection of the root folders and the respectigéivgare component files ratios for
each of the machine instances, multiple information aldmeiptoperties of the same root directory

are available. The decision of whether to filter out the dfie@ot directory depends on its general
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behaviour. Therefore the mean average ratio is computeéafcin of the root directories found.
Machines on which the root directory under study has not be@md are not taken into account.
Root directories that have a mean average software compratienbelow a certain threshold
are added to the list of directories to be filtered out. Thi®rdareshold was decided to be set to
0.1 to minimize the impact of the filtering on the softwarekzge structure. Table 6 summarizes

the root directories found and the respective averagesraavell as which of them are filtered or

not.

Directory | Mean Ratio | Filtered
/[t 0.00| YES
/. gem 0.00| YES
/ boot 0.64 NO
/ proc 0.00| YES
/ hone 0.00| YES
/ sel i nux 0.00| YES
[ var 0.14 NO
[1ib64 1.00 NO
/ mt 0.00| YES
/ opt 0.39 NO
[ usr 0.84 NO
/ dev 0.00| YES
/ sys 0.00| YES
[etc 0.61 NO
/[1ib 0.92 NO
/sbin 1.01 NO
/ root 0.00| YES
/bin 0.99 NO

Table 6: Root Directory Software Component Ratio

It must be noted that in most root directory cases there ibstantial number of files that do

not belong to the known software packages. This may be thut iifgwo things.

e There is a substantial number of files generated after thallstion, which seems doubtful

for directories that traditionally host software compatsen
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e Thereis a substantial number of software packages indtadimg means other than the soft-
ware package manager. This observation increases thesitgdes the software package

identification system, which will identify the structuredaexistence of this software.



Chapter 5

Software Component Relation Analysis

The aim of software package identification system is to ifieaind essentially recreate the
structure of a software package. In the software packagetste, the software components of
the package share a common membership relation amongst t8eme the knowledge of the
software package structure is not present when the softdengification process takes place, the
relations amongst the software components must be redrattizing information from the file
system metadata.

The relations that may be recreated from the file system rattadise a number of issues
regarding both their validity and their completeness. Téations recreated using a specific form
of file system metadata may not always be valid relations gstosoftware components of the
same software package. Consequently, these relationaadidate relations amongst software
components of the same software package, with a degree tafntgrthat can be expressed as
a probability. Depending on the type of file system metadétazed to recreate the software
component relations, the probability that the related comepts are members of the same software
package varies; as a result, each type of metadata mustdespeal independently and a separate

probability must be assigned to each type of relation.
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An equally important complication of the recreation of s@fte component relations is their
completeness. It is not by any means guaranteed that soffigktions of a single type will be
available, to relate all the components of the software ggelamongst them. As a consequence,
multiple types of relations must be used to minimize thenkdd software components to the
minimum possible number.

A final complication of the relation recreation process ladd with the size of the semantic
software graph. Having a huge number of individual softw@mponents to relate, makes the
problem computational intensive, if not unfeasible; farttreason, ways must be found to group
software components to natural groups which will behave siagle software component in the
software package identification process.

In the following sections the possible relations that mayekieacted from file system meta-
data are examined, one in each section, and relation rutespacified for each of the relation
types. Additionally, it is examined how to group softwarenmaonents to natural groups, namely
directories, and in which cases this grouping is not applea

Before beginning the relation analysis process, an impbgasumption must be stated. As
found during the root directory filtering process in 4.4,2a2arge number of software compo-
nents, which are not members of the known software packdgesbeen found in most of the
systems under study. This software components are prolsafilyare packages installed using
ways other than the software package management systece tBaaim of the software package
identification system is to identify not only the softwareckages known through the software
package manager, but all the software packages on the knawhine instance as well, and since
no knowledge is available for the structure of this softwaaiekages to contribute to the creation
of the relation rules, it was decided to use only software mamments that are members of some

package for the study. Although this may seem to simplifygrablem, it actually allows for the



37

creation of rules that will eventually identify not only theown software packages, but also the
unknown software packages since they are expected to hailarsstructure to the known ones.

This assumption is used in all the analysis processes pagtbthroughout the rest of this chapter.

5.1 Symbolic Link Relations

The first form of filesystem metadata to be utilized for theraotion of relations amongst
software components, which are members of the same padkate, symbolic link association.
A symbolic link nodew; is a file on the file system which functions as an alias to amdite
v; which is known as the target of the symbolic link. Based onititgition of the structure of
software packages, since the symbolic link has no meanititputi the target, the symbolic link
must be created after the installation of the target, esdlgrivy the same process that created the
target, that is the installation of a specific software pgekailthough this may not always be the
case, the intuition is plausible, so its credibility mustdvaluated.

In essence what is to be evaluated is the rgtiof the links connecting a symbolic link and
its targetv; to connect members of the same software package. The caiopuththe ratiop; is
trivial and may be computed using two measures, thatwghich is the number of symbolic link
edges found in the semantic software graphsgnahich is the number of symbolic link edges for
which both the symbolic link node; and the target node; reside in the same software package.

From these two measures the ratio may be computed as:

,
p =L (5.1.1)
T

Table 7 presents the computation of the two measures assuhlkaatio for the symbolic link

and its target to belong to the same software package. Tios ek also presented in figure 2. It

is clear from the results that there is a high degree of cdytdihat in the case of symbolic link
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edges, both the symbolic link and its target are membersadime software package. An unfor-
tunate event is that although this form of relations signifith high degree of certainty, common
membership to the same software package, their numbenjisuall compared to the size of the

Semantic Software Graphs, therefore their contributiothéoSoftware Package Identification is

limited.
AMI ID ] T |2
am - 01f bce75 | 1463 | 1383 | 0.95
am - 026f 5e76 | 2599 | 2526 | 0.97
am - 02714476 | 1361 | 1292 | 0.95
am - 02b98876 | 2026 | 1909 | 0.94
1361| 1292| 0.95

am - 02f 8cd76
am - 03310577 | 580| 537| 0.93
am - 033d0977 | 1574 | 1493 | 0.95
am - 03c2f 677 | 645| 605| 0.94
Table 7: Symbolic Link Statistics
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Figure 2: Values of Symbolic Link Ratip
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The degree of certainty; that a symbolic link and its target are members of the sante/ad

package, is equal to the median of the ratio measyresthe SSGs under study.

5.2 Component to Man-page Relation

The links between documented software components with dogumentation files returned
by themman command line command in Linux can be of valuable importandde association of
software components belonging to the same package. Therefi@se links are to be evaluated
and used in th&oftware Package Identification Process (SPA&hough the intuition will make it
relevantly prominent that any software component is in #raespackage with its documentation,
we resist the temptation to take the easy path in this casprafer to analyze the nature of these
associations. Based on the known structure of the softwarkages of the SSG under study it is
possible to compute how precise these links are in conrgentides of the same software package
using the ratio measure.

The software package based ratig of the links connecting that a documented software

component; and its man-page documentatiopis given by:

P = 2 (5.2.1)

T'm
wherer,, is the number of man-page links found on the systemgritie number of these man-
page links which associate members of the same softwaragack
From the results in table 8 and in figure 3, it is clear that audzented software component
and its man-page documentation are members of the sameasafpdackage with a high degree of
certainty. The degree of certainty,, that the documented software components and its man-page
documentation are members of the same software packagetisteeequal to the median of the

ratiosp,,, of the SSGs under study.
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AMI'ID Tm Tp DPm
am - 03c2f677 | 663| 575 0.87
am - 02714476 | 1128 | 942 | 0.84
anm - 026f 5e76 | 1093 | 977 | 0.89
am - 02f 8cd76 | 1066| 942 | 0.88
am - 033d0977 | 665| 577 0.87
am - 01f bce75 | 1173 | 1092 | 0.93
am - 03310577 | 660| 568 | 0.86
ami - 02b98876 | 1435| 1294 | 0.90
rable 8: Software to Man-page Link Analysis

5.3 Inode Number Analysis and Relation Extraction

On Linux file systems each file has a single and unique inodemt¢ontains metadata about
the file and also points to the files data. Each inode in idedtifiy a unique inode number[13].
When a file is created the next available inode from a list ailaile inodes is used to store its
metadata[9]. It is evident, not obligatory though, thattf@o or more files created in sequence,
their inode numbers must also be in sequence. This is noyalihe case because the deletion of a
file returns its inode back to the list of unused inodes corafilig the order of inode assignment.

Still, it is possible for a series of files created in sequelnderm aninode sequencdn general:

Definition 5. A set of software component nodés, . .., v, } with inode numbergiy, ..., i,}

respectively form amode sequenc i1 —i; = 1,V1 < j < n.

This property of the inode number is of interest for the psscef software package identifi-
cation. Since the members of a software package are irgstatie after the other, it is expected
for the members of the software package to have form seqs@fiaeode numbers. Although this
heavily depends on the policies used to allocate new indgidesyorth examining these relations,
since, if they are true, will provide invaluable informatiabout the structure of the software pack-
age. The interest in the inode numbers is not in the numberagalves but in the difference of

the inodes on two or more files.
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Figure 3: Values of Man-page Link Ratig,

The analysis of the inode number performed can be dividelddridllowing steps.

1. Determine to what extend the members of a software padbageinode sequences.

2. Analyze inode sequences and decide how to utilize thésores in the software package

identification process.

Inode sequences in software packages
The first step in analyzing inode sequences is to verify thstence of inode sequences in

531
software packages. To achieve this task, sorted lists Wéhrtode of each of their members are

retrieved for each of the packages found on the system. 8egsi@re identified by looping over

the list looking for groups of successive inode numbers. ifbde sequences identified are stored

for future reference.
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Analysis of the inode sequences provided some interestisgts. Although the existence of
inode sequences in software packages was detected, it keabaha single sequence included all
the members of the software package. In some cases the tyabthe members of a software
package formed a single inode sequence with few exceptitigarg 4). In other cases the mem-
bers of the software package formed several smaller inagieesees (Figure 5). Finally, in some

cases no inode subsequences were found.

<mtr-0.71-3.1>

Inode Subsequence

164260 @ 165680 165681 165682 165683 165684

Figure 4: Inode subsequence of package0.71-3.1

It is evident that inodes are not sufficient to identify thengbete structure of a software
package, Still the associations amongst the componerite siime software package that may be
derived from the inode data may provide useful relationset@sed during the software package

identification process.

<sed-4.1.5-5.fc6>

Inode Subsequence 1 Inode Subsequence 2

167687 167688 167689 167690 @ @ 198452 426067

Figure 5: Inode subsequence of packagd-4.1.5-5.fc6
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5.3.2 Inodes sequence properties analysis

To analyse the properties of inode sequences identifiedcim efthe systems under study, it
is important to evaluate the probability of two software gaments to be in the same software
package if they are next to each other in an inode sequencechieve this two measures are
computed. The first measurg is the total number of software component pdiss, vj,) with
inode numbers;, i), respectively for whichi; — ix| = d. The second measur€ is the total
number of software component pais;, v;;) with inode numbers;, i, respectively for which
li; —ix| = d providedv; andv;, are members of the same software package. In other Wgrds
measures the number of inode related components that belahg same software package. The
ratio of the inode linkg, is given by:

P = (5.3.1)

<alsh

Table 9 presents the results of this analysis on the sengnagithis under study far = 1.

AMI ID Ty ry Py
am - 033d0977 | 25166 | 24507 | 0.97
am - 02b98876 | 57983| 53726| 0.93
am - 01f bce75 | 20259| 17 146| 0.85
am - 03c2f 677 | 22432| 21805| 0.97
am - 026f 5e76 | 19683| 16719| 0.85
am - 03310577 | 22245| 21660| 0.97
am - 02714476 | 16870| 13701 | 0.81
am - 02f 8cd76 | 16870| 13705| 0.81
Table 9: Number of inode sequence pairs for d=1

From the results of the table, it is evident that the relaiamongst software components with
inode numbers in sequence have a significant probabilityetsmbmbers of the same software
package. What is shown in figure 6 is that machine instanaedeaivided in two classes based

on their value ofn}l. Although the value seems relatedrgowith values below 21 000 having low
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ps and values over 21000 having highQ'), the number of cases examines is limited to make

Median of p; ) = 0.89

such conclusions. Analysis of this observation is left fadufe work.
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Figure 6: Inode sequence analysis for d=1

The number of links derived from a single valuedos limited, therefore additional values of

d are investigated and the relations generated are utilizétei SSIP.
Two software components with inode value distad@e members of the same package with

a degree of certainty equal wqi The value ofwg is defined as the median pg ratio measures

of all SSGs under study.

As it can be seen from figure 7 the degree of certainty decseslea/ly with the increase of
the distance. As a consequence, it is required to constrainalue of distance to be used in the

software package identification process.
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Figure 7: Degree of certainty, to Inode distance

5.4 Time Property Analysis

File system resource time metadata is an important sourggamation that can be used
to identify associations amongst software components efsdme package. Since a software
package is installed as a single entity at a specific poinnie,tit is apparent that the software
components of the same package have similar time metaddda. pAckages installed at differ-
ent points in time have sufficiently different time metadttadistinguish amongst them. Time
metadata regarding file system components such as files meudadies come in the form of three

timestamps.

Access time (atime) The last time the file was read

Modify time (mtime) The last time the file contents were changed

Change time (ctime) The last time the file permissions were changed
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Each of the timestamps described above can be modified selgaram each other, depending
on the actions of the system users. For example, a progragatéxe may only modify the access
time of the files read during the execution. Equally a sofengipdate may alter the modification
time of the files updated.

Although time metadata is a great source of information &ftweare component association,
the following scenarios may corrupt this metadata in suckiswhat the information becomes

misleading.

¢ When a software package is updated, the update process esadhié files that changed
from the previous version. This results in the fragmentatibthe members of the software
package to updated and not updated ones. Further fragioentpossible by subsequent

updates.

¢ When multiple software packages are installed on someragstm improve the installa-
tion process performance, concurrent installation isgoeréd for more than one software
package. Such an installation may result in associatingvacé components of different

software packages that happen to be installed in parallel.

To evaluate the quality of the time metadata informatioroeissions, different experiments are
performed. The first set of experiments investigate the tistance between software components
of the same package. This measure will signify whether tlisvace components of the same
package have similar time metadata or not. The second setpefiments evaluates whether
software components that were created at the same pointén(tith the accuracy of one second)
are members of the same package. Also the way these relatiengoing to be used in the
software package identification process is investigated,the weights of the assigned relations

are determined.
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5.4.1 Mean time distance of software components of the samagkage

The first experiment regarding time metadata deals withithe tistance amongst the com-
ponents of a software package. Time distaiicebetween to software componentsandv; is
defined as the difference of the timestampg,of ¢; of v; andv; respectively. For simplicity
reasons the timestamps, . .., ¢, of the software components, ..., v, which are members of
software packagé€' are placed in ascending order and the differefjce ¢, — ¢;Vi € [1,n) is
computed for members @f with successive timestamps.

The fist experiment algorithm utilized to compute the mearetdistancé\/ is performed for
all three of the timestamps types. To avoid misleading teslule to the various package sizes, the
mean is computed collectively for all the timestamp distmatbetween components of the same
package found on the Semantic Software Graph.

Sample results of the computation of the mean timestamprdistfor the various timestamp
types can be seen in table 10. The results signify reallyeléirge differences between members
of the same package. This is usually the result of softwackgme updates which leads to the
segmentation of the software package components to updatbdot updated components with
a significant gap amongst them. Careful investigation ofwsne packages signifies that this

scenario holds true in most cases.

AMI ID Modification Time | Change Time | Access Time
am - 03c2f 677 1277 466 4200 1221670
am - 02714476 1174919 0 335237
am - 026f 5e76 1135297 0 96 148
am - 02f 8cd76 1235669 0 263495
am - 033d0977 1181491 4018 1129721
am - 01f bce75 1224 469 1 285729
am - 03310577 1407 106 3888 1362631
am - 02b98876 1063430 5078 439500

Table 10: Mean Timestamp Distance In Packages
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The observations of the numbers in table 10 are misleadimge $hese large numbers do not
actually illustrate the real behaviour of timestamps irtvgafe packages. Table 11 presents the
number of occurrences of each time distance along with theexive percentage. From the re-
sults it is evident that the majority of the software compuref the same package have identical
timestamps and form groups of software components on whiaparation was performed con-
currently. As a result, most of the software package compisnare expected to be associated
through timestamps to other members of the same packageh widans that utilizing timestamp

data is both feasible and interesting.

Time Distance | Occurrences %
0 609795 93.79%
1 9359 | 1.44%
2 2105| 0.32%
3-9 4940 | 0.76%
10-99 5550 | 0.85%
100-999 2384 | 0.37%
1000-9999 1045| 0.16%
10000+ 15024| 2.31%

Table 11: Number of occurrences of each time distance

Another implication of these observations is that althotigdre are strong time related associ-
ations amongst the members of the same package, thesenglate most of the times segmented
and altered by system and user actions. As a result, timedatatés not a sufficient source of
information by itself to identify software packages as ctetgstructures. Additional sources of
information are required to join segmented clusters ofngf components to the software pack-
age structure. Still, further experiments are performeihke advantage of this important source

of information.
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5.4.2 Analysis of software components time metadata

Since the software component time metadata is not suffitdeidtentify the whole structure
of a software package, the possibility to use time metadatdasity to relate individual soft-
ware components is studied. After an investigation of theetimetadata, a significant number
of software component groups with exactly the same timgssawere detected. This implies
that a system of user action was performed on these softwanpanents concurrently. Software
components with the same timestamp form a time group.

Inside the SSG, time subgraphs are defined. Each time subigrapmposed of nodes sharing
an equal time related property. Members of different saftwsackages are allowed to be in the
same subgraph. Therefore, the subgraph is further divistedpiackage subgraphs. Each of the
nodes of the package subgraphs has the same time relategttpreyith the other nodes in the
subgraph and is member of the same software package.

The desired property of time subgraphs is for all the membétbe time subgraph to be
members of a single package subgraph. The worst case stcénéor the time subgraph to be
composed of several package subgraphs, each with a sirgdge no

Since the members of the same time subgraph will form a camgleph if they are con-
sidered as members of the same graph, the most appropriasurads to compute the ratio of
the edges created, that is which edges are true positiveb§i e total number of edges in the
subgraph. True positives are the edges (links) connectemlmers of the same software package.

Therefore the ratig, for a time subgrapfl; composed of package grap{§; ., C;} is given

by:

_ 2 =lICill

P = (5.4.1)
' | T3]

It must be noted that both time subgraphs and package sutsgaag complete graphs.
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AMI ID Madification | Change| Access
am - 01f bce75 0.92 0.42 0.42
am - 026f 5e76 0.94 0.19 0.20
am - 02714476 0.83 0.33 0.04
am - 02b98876 0.97 0.97 0.91
am - 02f 8cd76 0.83 0.44 0.04
am - 03310577 0.97 0.79 0.97
am - 033d0977 0.96 0.68 0.96
am - 03c2f 677 0.97 0.68 0.97

Table 12: Ratio measures for time groups

The overall ratip for the SSG graph is given by:

e it 25 11Cl
i T3]

(5.4.2)

As shown in table 12 and figure 8, time subgraphs based andiéy time stampave overall
high ratio. As for the other two time stamp typebange time stampased on the time subgraphs,
has relatively low ratio whereas tlagcess time stampased on the time subgraphs has, in some
cases, satisfactory values whereas, in some other casastithis very low. Consequently, a rule
is required to decide for the utilization of the subgrapha specific time stamp in the SPIP.

The ratio of a specific time subgraph can be decreased wheclltdies nodes from multiple
software packages. This may be the result of an operatiorramd®m set of nodes, such as read-
ing random files from the file system concurrently, or a corentroperation on multiple software
packages; intuition favours the latter case since it is rfikey. A concurrent operation on multi-
ple packages should have as a result, the formation of leirgersubgraphs. Although analysis of
the time subgraph sizes could be performed here, diverkfigickage sizes may significantly alter
the time subgraph sizes making the formation of a decisitendifficult. Therefore, the formation

of the decision rule is left to be performed after the reaucbf the graph in section 6.2.
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Figure 8: Ratio of time subgraphs
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5.5 Software Component Grouping and Folder Level Aggregatin

The size of the SSGs is substantially large. There are orageaabout 50 000 nodes found
on each SSG. Due to the size, the computations required $tecline software components will
require a lot of processing power and time, Therefore if amans of simplifying the SSG and
reducing the number of the components to be cluster willisagmtly improve the performance
of the software components clustering process. This regujrouping software components to
groups known to belong to a single software package. Thepgnollibehave as a representative
of its members and will maintain the relations its memberswih other components outside the
group.

The most natural grouping of software components is thate$fistem directories. Although
there are known examples of directories that contain mesrfb@m multiple software packages,
it is out of intuition than in general a directory containsmiers of a single software package.

To decide whether the contents of a directory shall be grbapenot, it must be determined
whether that directory is pure or impure. A directory sulptw@; = {v;1,...,v;,} is pure if
v, € CV1 < j < nwhereCj is a software package. A directory subgragh= {v; 1,...,vin}
is impure if there exist at least two nodes;,v; ;, such asv; ; € Cj,v; € Cp,C; # Ch.
Although the distinction between pure and impure direetis clear, there are many cases where
a directory is classified as impure due to an insignificant memof software components, where
the majority of the software components belong to a singtsvane package. To address this issue
the measure of ratipis used, wheré < p < 1. The computation of ratio requires the definition of
package subgraphs. The components of a directory subgtapie divided to software package

subgraphs{C; 1,...,Ci .} whereC; ; C F; andC; ; C C; for all packages in the semantic
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software graph. Then the ratig of the directory subgraph; is given by:

m
2. |Gl
j=1

W (5-5.1)

pi =

It must be noted that both directory subgraphs and packdugragohs are complete.

The ratio essentially measures is the ratio of the sum ofla¢éions amongst the component in
each of the directories software package group by the nuofbelations amongst the components
of the directory. The ratio of a pure directory is 1 whereasrtitio of a directory subgraph, each
component of which belongs to a different package subgraph ilt was decided to consider
a directory F; pure if its ratiop; > 0.95. Table 13 presents the number of directories in each

category for each of the semantic graphs under study.

Pure p; > 0.95 Impure
AMI ID N | % N[ % [ N] % |
am -03c2f 677 || 1320 | 92.96%]| 3 | 0.21%| 97| 6.83%
am - 02714476 || 2030 | 94.64% 0.19% || 111 | 5.17%
am - 026f 5e76 || 2029 | 93.33% 0.23% || 140 | 6.44%
am - 02f 8cd76 || 2030 | 94.64% 0.19% || 111 | 5.17%
am - 033d0977 || 1404 | 92.86% 0.20% || 105 | 6.94%
am - 01f bce75 || 2246 | 94.41% 0.17% || 129 | 5.42%
am - 03310577 || 1305 | 95.33% 0.22% | 61| 4.46%

am - 02b98876 || 5188 | 97.91% 0.08% || 107 | 2.02%
Table 13: Directory Purity Categorisation

hlwbhwphob~

The results of table 13 reveal some interesting charatitesrisegarding pure and impure di-
rectories. The initial intuition that most of the directsiin the SSG can be categorised as pure
is proved to be true. The impure directories are a small ritinofhis small number of impure
directories on the SSGs under study, though, introducegnéisant problem in identifying them.
Since the number of impure directories is very small conghéwehe number of pure directories,
machine learning categorisation techniques will have fecdlf time categorizing directories due

to the data bias.
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Always Impure || Impure if Exist || Sometimes Impure
Total [N]| % N| % N | %

| 173] 6] 3.47%| 126 | 72.83%] 41 | 23.70% |
Table 14: Impure directory analysis

Thankfully, the number of the directories is sufficiently allrto seek for simple solutions
regarding the categorization of directories in pure andurap Although systems differ amongst
them, there are some rules and common practices regardimnty#ctories and their contents. As a
consequence, having a list of commonly impure directorigigwovide a quick and substantially
sufficient way to categorise directories as pure or impure.

To build the general list of commonly impure directories st of the impure directories is
collected from each of the SSGs under study. Then, impueztdiries are divided in several
groups. The first group consists of directories that exisalbisSGs under study, and they are
always impure. The second category consists of directdngsdo not exist on all SSGs but in the
case they exist they are impure. The last category condislisegtories that are sometimes pure
and sometimes impure.

Although some of the directories are not always impure, deisided to consider all these di-
rectories as impure. This decision was made because if apeory is erroneously considered
as impure the relations amongst the components may beisbtblsing other sources of infor-
mation whereas if an impure directory is erroneously caiegd as pure, the relations established
amongst the directories contents will not be possible tolterdd out in future stages. Table 14
presents the number of distinct impure directories founthesystems under study as well as
the categorizations based on their existence and impurig}l the SSGs under study. Using the
information selected a list of impure directories is crdaded it is used to categorise directories

as pure and impure.
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The list of impure directories generated in the currentiseds used for the categorization of

directories to pure and impure before the first reductiorsplia section 6.1.

5.6 Pure Directories and their Sub-directories

After providing an efficient procedure to classify direétarto pure and impure, relations
are examined amongst pure directories. The easiest kindlatian is the relation of a pure
directory and its pure sub-directories. If a pure directsrgonsidered to belong to a specific
software package, not only the software components fouritcburt also any sub-directories and
their contents must belong to the same package. The ewluattithis hypothesis requires the
retrieval of all (pure directory, pure sub-directory) ctegpand the examination of whether both

the directory and the sub-directory in each of the couplésnigeto the same software package.

Same Package| Different Package
AMI ID Total N % N %

am - 03c2f677 | 807| 799| 99.01%| 8 0.99%
am - 02714476 | 857| 837 | 97.67%| 20 2.33%
am - 026f5e76 | 765| 744 | 97.25%| 21 2.75%
am - 02f 8cd76 | 857| 837 | 97.67%| 20 2.33%
am - 033d0977 | 829| 820 | 98.91%| 9 1.09%
am -01fbce75 | 949| 931 | 98.10%| 18 1.90%
am - 03310577 | 779| 771| 98.97%| 8 1.03%
am - 02b98876 | 4069 | 4069 | 100.00%| O 0.00%

Table 15: Directory - Sub-directory Relations

The results of performing this analysis on the SSGs undelystie presented in table 15.
From the result it is evident that the number of sub-diréetothat are not members of the same
software package as their parent directory is negligibleeré&fore it is possible to consider pure
directories and their pure sub-directories as a subgrapbrereach of its resources belong to the
same software package. This observation will be usefulfieisecond phase of SSG reduction in

section 6.1.



Chapter 6

Clustering

The Semantic Software Graph is composed by a number of @sytach denoting a software
component with multiple edges relating the components @stahem. In essence the identifica-
tion of software packages is a partitioning of the semantiply to several subgraphs of intercon-

nected software components. This partitioning has twoiregquents.

1. The software components that are in the same partitidtw@e package) must be closely

connected amongst each other.
2. There must be a small number of connection amongst comfooédifferent partitions.

The idea of partitioning the Semantic Software Graph to dvygartitions matches the idea of
graph clustering. What is required is to partition softwemenponents to clusters of closely con-
nected software components. Thankfully substantial reed@as been performed in the field and
various graph clustering algorithms are available toadili Utilizing the graph clustering algo-
rithms already available requires the reformation of thm&etic Software Graph to a form used
by those algorithms. In the current state SSG is a multigsipbe multiple edges of different

type are allowed amongst its vertices. Additionally eagbetpf edge has different importance,
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therefore the SSG is also a weighted graph, since differeights are assigned to each type of
edges based on their importance.

The graph clustering algorithms selected for the currardystio not work with multigraphs,
therefore multiple edges must be summarized to single eddressummarization scheme selected
for the SSG is to replace multiple connection amongst twonesE components with a new one
which has weight equal to the sum of the weights of the edgeaaged. This scheme was selected
since two components with multiple connections are coms@tleloser to each other than two
software components with connected with single connestigm equally important feature of the
SSGisit's size. SSG graphs are composed of a large numbertafes. Additionally the number
of some edge types, such as membership to the same puredjireéstquadratic to the number
of vertices, which substantially increases the size of ttagly to cluster. Therefore methods to
reduce the size of the SSG must be found. This reduction oE8@ is described in the next
section.

The process of graph reduction is presented in section @llttenprocedures followed to
generate and summarize edge weights is presented in g2tidiext the tree graph clustering al-
gorithms utilized in the current study are analyzed in s&08.3 and finally the clustering procedur

is summarized in section 6.4

6.1 Graph Reduction

Before clustering SSG to identify software packages a padpey step is required as it is
evident from table 16 the number of vertices in the SSGs usitely is substantially large. Since
none of the known graph clustering algorithms has lineae ttmmplexity vertex cardinality of

this order will substantially increase the running timera tlustering algorithm.



AMI ID Vertex Cardinality
am - 02f 8cd76 28633
am - 033d0977 32573
am - 026f 5e76 26921
am - 02714476 67182
am - 02b98876 106 041
am - 03c2f 677 27780
am - 01f bce75 27 339
am - 03310577 23490

Table 16: Vertex Set Cardinality by AMI

Pure Time Group Edges
AMI ID Directory mtime ctime atime
am - 02f 8cd76 543262 4065386| 14962127 294636596
am - 033d0977 | 1710339| 8146018| 18529981 8327896
am - 026f 5e76 628329| 3737576| 24324528 18983037
am - 02714476 543262 17492909| 57825726| 1878262 256
am - 02b98876 | 2881845 205892 719 33596 800 27193160
am - 03c2f 677 | 1631758 5507510| 21724686 12460511
am - 01f bce75 581820| 2593304 5745157 5578172
am - 03310577 | 1617888 4541879| 17221921 4711612
Table 17: Edge Cardinality by Edge Type
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The situation becomes even more complex in the case of edggges amongst software

components can be divided into two categories, pair edgdsyeoup edges. Pair edges refer

to direct relations amongst two software components sudymabolic links or software to man

page page relations. The group edges refer to relationsliested amongst software components

through their common membership to some groups of verticasrgy a common property. Such

edges are membership to the same pure directory or mempéoghie same time group. Since all

the vertices in such a group are related to each other, théewaf edges is quadratic to the size

of each group. Table 17 presents the computed cardinalityafp edges by type. It is evident

that with edge cardinality of this order clustering SSG4 té extremely time consuming if not

infeasible.
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To address the SSG size issue, graph reduction methodsleesutT he first graph reduction
procedure concerns pure directories. Directories arewalajrouping of software components.
The procedure used to categorise directories to pure angréqmpovides a high degree of certainty
that the software components found inside the same diseatermembers of the same software
package. Therefore, with minimal loss of information it sspible to reduce SSGs by replacing
the vertices of all the software components found underaheegure directory by a representative
vertex which inherits all the properties of the verticesjinesents.

What is achieved with this reduction process is not only alemeaertex cardinality but also a
substantially smaller edge cardinality. Edges amongst lneesrof the same pure directory are re-
moved all together, and time group edges are reduced toe $iae@dges amongst the components
reduced to the same vertex are discarded.

An implication of the reduction procedure discussed befohandling happens with the edges
the reduced software components had with software comp®oetside their reduction group. In
the case of single edges replacing the reduced vertex wathetthuction vertex in all it's edges
will solve the problem. This is not true though in the case oiitiple edges of the same type.
This is usually the case for time group edges. Multiple edgayg exist connecting vertices in a
reduction group to a single vertex outside the group or tdipialvertices residing in a different
reduction group. Summing up the weights of this edges wilate a bias in favour of reduction
groups of substantial size. To remove this bias it was ddcidedivide the sum of weights by
a factor dependent on the size of the reduction groups. $amasvo reduction groupd/; and
V5 the maximum possible number of edges of the same type amttragsts when they are fully
connected and it is equal td;| x |V5|, it was decided to divide the sum of edge weights with
this product. This covers also the case of multiple edgessiogie vertex, since a single vertex

may be considered as a reduction group with the vertex asrtlyecomponent. Although this
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Initial Reduction Phase 1| Reduction Phase 2
AMI ID V] \4 % \4 %
am -01f bce75 | 132891| 8094 6.09% | 6948 5.23%
am - 026f 5e76 | 111946| 7785 6.95%| 6889 6.15%
am - 02714476 | 822624| 14153 1.72%| 6938 0.84%
anm - 02b98876 | 566 828| 19009 3.35% | 12933 2.28%
am - 02f 8cd76 | 128240| 7422 5.79% | 6313 4.92%
am - 03310577 | 64034| 8673 13.54%| 8223 12.84%
am - 033d0977 | 187726| 10818 5.76% | 9425 5.02%
am -03c2f 677 | 133292 8873 6.66% | 7472 5.61%
Table 18: Vertex Reduction Phases Results

restriction may appear demanding for reduction groupseex@ntal results shown that complete
connectivity is not rear, and even in cases where this isrnet the reduce weight of the edges is
compensated by weights of other edge types.

An additional phase of reduction may be achieved by utijzime relation of pure directories
and their pure sub-directories. Analysis of this relatiorséction 5.6 has proved that almost all
pure sub-directories are in the same software package iapthie parent directories. Therefore
the reductions of pure sub-directories may be combinedeto plure parent directories reductions
without significant loss of information. This phase of retifut is of recursive nature, therefore to
achieve maximal reduction the reduction starts from th@esiedirectories in the file system tree
and recursively elevating as long as pure parent direct@nie available. This procedure allows
for complete sub-trees belonging to a single software ppeka behave as a single entity.

The effect of the reduction process in the overall size ofS386 is drastic. The number of
vertices in each SSG is reduced by at least an order of sizeadrstable 18 with a reduction of
two orders of size in some cases. Such a dramatic reductaifisantly simplifies the process of
clustering for the identification of software packages. $ame reduction effect applies for edges
as well since edges now connect fewer vertices and vertitemal to reduction groups are no

longer used.
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6.2 Edge Retrieval and Weight Computation

After the reduction phase, the graph data to be used for tiséering process must be retrieved
from the semantic software graph. This process is requiregt she graph clustering algorithms
to be used accept formats of input other than semantic graplslitionally not all edges are
encoded in the SSGs since some of the edges derive from therfies of the vertices. Finally at
the current stage the SSGs are multigraphs, which mustaramsd to regular graphs before the
clustering algorithms are applied to them.

The edges to be retrieved can be divided in two categoriesetthat are already available
as edges in the SSG and those that are derivable from the S8Gseroperties. In the first
category fall the symbolic link relations and the softwasedbcumentation relation. Since this
edges are already existent in the SSG their retrieval imlriv

As for the second category this includes time group relatiand name similarity relations.
In the case of time subgraphs edges are added amongst soffarmponents sharing the same
value of a specific time property such as modification timenge time and access time. Not
all three of the time properties are used. The decision othdndo use a specific time property
depends on the average size of the time groups formed bastt @apecific time property. If
the created time groups have a large number of memberssthimbably the result of a system
wide operation,and therefore the information retrievednfthe specific time property are no more
useful for the identification of software packages sincévgfe components from more than one
software package are members of the same software packeistiGl analysis of the average
size and the properties of the resulting time groups sudhasan average time group size below

40 is a good sign that the time properties could be used indfieare identification process.
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Therefore all time properties that have an average growlsiyond 40 are considered useless

and are discarded.
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Figure 9: Ratio to Time Subgraph Mean Size for mtime

From the time properties that remain the time groups areddrriror each of the time groups
edges are added amongst their members. In the case thatriitgenseof the time group have been
reduced, the reduction is used in the edges. Multiple cdiorecare allowed from the reduction
to the other members of the time group. The edge connectieduetion with some other member
of the time group is weighted with the number of edges commgthe member of the time group
with members of the reduction group the reduction repraesdmytthe actual size of the reduction
group. In the case the other member of the time group is am m¢deaction, the number of edges
is divided by the product of the sizes of the two reductionugo This is done to avoid bias in

favour of large reduction groups.
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In the case of inode relations since distinct inodes are @medach of the software com-
ponents, only the proximity of inode numbers may be utiliz&@rtices with consecutive inode
number have a significant probability to be members of theessoftware package. This apply
not only in the case that inode numbers differ by 1 but alsbéncase inode number differ by 2, 3
.... Therefore edges are generated that connect vertithe 8SG with inode difference up to 8.
The implications of reduction used for the time groups alsglias in the case of inode numbers.
Therefore the same solution regarding the weight of thi®eds the one used for time groups is
used.

In the case of name similarity, the name of the directorigsesenting the reduction groups
and the names of vertices not reduced (members of impuretalires) are used to create groups
of vertices sharing the same name (after some processiragedBon a list of common directory
names that do not signify membership to the same softwarkagac(such avin, lib ...)
which has been generated by the analysis of the propertidisofroups, some of the groups
are considered irrelevant and are discarded. For the r@émgaimame groups edges are added
connecting each of the members of the groups with all ther otleenbers of the group. Since some
probability that names in the list of common directory names/ be shared by members of the
same software package exists, edges are added among tbaps gtso, but with a significantly
lower weight.

After the generation of all the edges a multigraph is creatieigh is needed to be transformed
to a regular undirected graph. To achieve that a processrofmsuizing multiple connections
is performed. Since not all edges are of equal importancéghtgeare used to determine the
contribution of each edge type to the final edge weight caimgenultiple graphs. The weights

are summarized in table 19
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Edge Type Weight
Same Time Group 0.8
INodes in Sequence 0.6
Symbolic Link 1.0
Man page 1.0
Name Similarity 1.0
Name Similarity Stop List 0.4

Table 19: Edge Summarizing Weights

The weight of an edge is determined by the sum of the produetch edge by the weight
factor specific for the edge type. Since it is possible to hae@hts greater than one, all the

weights are normalized by dividing them by the largest wejghduced.

6.3 Graph Clustering Algorithms

After the generation of the weighted undirected graph tleegss of graph clustering is in
order. Since different graph clustering algorithms existias decided to apply 3 graph clustering
algorithm in order to investigate the suitability of eachtloé algorithms used. Several methods
have been proposed for graph clustering. Therefore in daoladdress as much as possible of
the several methods, the three different clustering alyms selected utilize completely different
methods. The first algorithm utilizes a simplistic aggloatise hierarchical clustering based on
vertex distances. The second algorithm performs a gengralksing kernel k-means function. Fi-
nally the third algorithm clusters by flow simulation usingaMov chains and stochastic matrices.
In the case of the first two first algorithms the results of thustering process may be influenced

by some parameters selected therefore experimentatiafrmed altering those variables.

6.3.1 Agglomerative Hierarchical Graph Clustering

The first and most simplistic algorithm used for clusteringhie current study is an Agglom-

erative Hierarchical Graph Clustering. The algorithmizei$ vertex distances to determine which
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vertices to put together. At each iteration of the clustgrigorithm the pair of vertices with the
smallest distance forms a new cluster. The algorithm teateswhen all vertices have been group
to a single cluster, of when the remaining distances arerttbgaertain threshold.

Since the current representation of the weighted graphrgttein the previous sections con-
siders as closer to each others the vertices connected widdge of higher weight, to make
the graph suitable for the Agglomerative Clustering Algori the distance between two vertices
u;, uj is given byd; ; = 1 — w; ;. This implies that not connected vertices have a distande of

An important aspect of the algorithm is the determinatiorthef distance of the resulting
cluster after the grouping of two existing vertices. Selvarathods exist depending on the nature
of the data. For the current study the smallest distancesd s each of the remaining vertices.

The agglomerative clustering algorithm terminates whérvetices are group to a single
cluster. Since a single cluster is on now use in the case dfiad package identification, the al-
gorithm should be terminated in a previous iteration wheftipia clusters exist. This termination

may be based on:

1. The number of clusters.

2. The distance between the vertices remaining

Since in real software package identification the numberludters is not known beforehand,
the later termination criterion is selected. The distameeghold to terminate significantly influ-
ences the clustering process therefore the clusteringitdgois executed with different distance

thresholds and the effect it has on the quality of the resyitiustering is determined.
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6.3.2 Kernel k-means Graph Clustering (Graclus [8])

The second graph clustering algorithm used is a fast kdradd multilevel algorithm for
graph clustering. The algorithm (which detailed desaviptcan be found in [7]) is separated in
three phases, theoarsening Phasehelnitial Clustering Phaseand anteRefinement Phasé\t
the coarsening phase the initial graph is reportedly toansfd to smaller graphs, with each graph
having less vertices than the previous one. This is achibyewmbining nodes to supernodes. A
vertex is combined with the neighbour vertex closer to hifme €oarsening phase stops when the
graph has less thé&0Okvertices where k is the number of desired clusters. At thlrdlustering
phase the graph is initially clustered using spectral nagthét the refinement phase the graph is
transformed back to the graph before it in the coarseningsmh@he extension is performed by
assigning the nodes that formed the supernode to the chhsteupernode was member of. The
algorithm terminated when the refinement runs on the irgtiaph.

The results of the clustering are influenced significantiythsy number of desired clusters.
Although in the case of software packages, the number ofatbpiackages matches the number
of software packages expected to be found on the Machinanostunder study, and there is a
possibility to estimate this number based on statisticalyais of the relation of the nhumber of
software packages to the number of files found on the machstarice file system, the actual
number of desired clusters must be higher since it is passibhave software packages installed
on the machine under study that are not managed by the sefpgakage system under study.

Determining the number of software packages expected tol&lfon a system is assumed
to be linearly related to the number of files found on the syst€he results os linear regression
of the number of software packages to the number of files faumthe SSGs under study can be

seen in figure 12.
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Figure 12: Number of Packages to Number of files relation

It is evident from the graph the dependency of the number ckaoges to the number of files
is not too strong. Additionally in most of the cases the nundfesoftware packages ranges from
300 to 400, therefore an average number of packages of 3bthwilost cases be very close to
the actual number of software packages residing in the maahider study. For experimentation
purposes the kernel k-means will be applied on the SSG daig geveral values of k ranging
from 300 to 500 in order to address additional packages, @otaged by the software package

management system.

6.3.3 Flow Simulation Graph Clustering (MLC [27])

The final graph clustering algorithm utilized is a flow sintida algorithm. The graph is
transformed into a Markov graph a graph where for all nodeswhights of the outgoing arcs

sum to one. The flow is expanded by the usual discrete Markoeess by computing powers
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of the associated stochastic matrix. Since the Markov podees not exhibit cluster structure
a new operate is defined for the Markov process called inflatidhich is responsible for both
strengthening and weakening the current whereas the arpamygerator is responsible to allow
flow to connect different regions of the graph. The expansiod inflation process form a new
algebraic process callddarkov Cluster Process (MCLPetails about the process may be found
in [27].

The cluster granularity can be affected by the inflation @allihis value ranges from 1.2 to
5.0. An inflation value of 5.0 will result in fine-grained ctagngs and a value of i.2 will tend to
result in very coarse grained clusterings. Since the ioflatialue suitable for software package
identification is not known beforehand, the algorithm shalkexecuted on each SSG several times

with varying inflation values.

6.4 Graph Clustering Process

The clustering process is comprised of 3 different phadesjrtput preparation phase, the
algorithm execution phase and the output processing phase.

In the first phase the weighted edge graph is encoded to a fauitable for the algorithm.
Since the implementation of the latter two graph clusteidtgprithms used is the one of the
algorithm author, different encoding is required for ea€lthe algorithms used. An important
implication is how the weights are encoded. In the case dfigrarchical algorithm and the MLC
algorithm floating point weights are supported. In the cdgb@kernel k-means algorithm only
integer weights are allowed, therefore the weights areiptiell by 100 and truncated to integer
numbers.

The second phase of the clustering process is the actualtexeof the clustering algorithms.

In the case of hierarchical clustering a complete clusgeisrperformed on the input graph once.
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Then flat clusters are formed from the hierarchical clustgtising different values of the distance
metric. The distance metric is varied from 0.2 to 0.9 in iméés of 0.05. A different set of clusters
is saved for each of the resulting flat cluster sets generated

In the case of the kernel k-means algorithm the applied omth& graph several times, each
time with a different number of expected clustérs The values ofk range from 300 to 600 in
intervals of 50. A different set of clusters is saved for eeglue ofk.

In the case of the flow simulation clustering algorithm thpuingraph is clustered multiple
times, varying each time the inflation value. The inflatiotuea used range from 1.2 to 5.0 in
intervals of 0.2.

At the third and final phase of the clustering process theuiutpm the graph clustering
algorithms is processed. The actual contents of each chusteletermined by replacing reductions
with the actual files reduced. What is created is an index@ftttual contents of each resulting
cluster which is going to be used for the evaluation of thetelting process.

In general the execution time of the clustering algorithrith the exception of the hierarchical

clustering is reasonably small.



Chapter 7

Evaluation

The evaluation of the clustering performed by the graphtehirsy algorithms discussed in
chapter 6 is important in order to assess the success offthas® package identification process.
Since, for the training as well as the testing data, the mgkanstalled on the systems as well
as their contents are known from the software package mar&gesystem, the evaluation of the
clusters shall be performed using external evaluation oreas The generality of the results of the
evaluation depends on the evaluation of the software packbmntification process, not only on
the machine instances used during the development of thkensybut also on data from additional
machine instances from the Amazon Elastic Computing Cloud.

The evaluation measures used to evaluate the clustersagetherre described in section 7.1.
The results of the evaluation of the 8 SSGs used in the custady are presented in section 7.2.
Finally generalization of the software package identiftcatprocess using Semantic Software

Graphs from additional Amazon Machine Instances (AMIsyespnted in section 7.3.

71
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7.1 Clustering Evaluation Measures

Evaluation of clusters generated by a graph clusteringrisifgo is important to assess how
successful the clustering algorithm was in creating theetqa cluster grouping. Since in the case
of the software package identification process, the exgadtssters as well as their exact contents
are known through the software package management sydtengvaluation of the clustering
shall measure the degree in which the clusters returneddbyafdahe graph clustering algorithms
utilized matches the expected clusters.

Evaluation of clusters using already available knowledgmiathe expected structure is called
externalsince information external to the actual clustering aldponiis used to evaluate the results.
Several external evaluation measures have been proposta: ¢urrent study three measures are
utilized for the evaluationPurity and Entropy proposed by Zhao and Karypis [29] and tde

measurg21].

7.1.1 Entropy and Purity

Entropymeasures how the various software packages are distritvitteid each cluster. Purity
measures the extend to which each cluster contains comisonfearimarily one software package

[29]. The entropy of a particular clustét. with sizen,. is given by

1 Lnt n
E(S,) = — — log —~ 7.1.1
(S) logqizlnr og - (7.1.1)

where q is the number of software packages in the datasetsgni the number of software
components of théh software package assigned to titie cluster. Equally, the entropy of the

entire clustering solution is given by

k
Ny

Entropy = E —E(S,) (7.1.2)
n
r=1



73

Similarly the purity of a cluster is the ratio of the numberafmponents of the primary

software package of the cluster by the size of the clusteisagigden by

P(S,) = imaxn (7.1.3)

Ny 1
and the overall purity of the clustering solution is the waég sum on the individual cluster
purities given by
n?“

Purity =) —LP(S)) (7.1.4)
r=1

The optimal value for entropy is 0 whereas the largest thiypilne better.

7.1.2 V-measure

V-measure is an entropy-based measure. It is defined as thwhia mean of distinct ho-
mogeneity and completeness scores similarly to how pmetiand recall are combined in the
F-measure [21].

The homogeneity criterion is satisfied when the clustersgigms members of a single class
(software package) to a single cluster, i.e. each clustetagts members from only a single

software package. Homogeneityis given by

1 if H(C,K)=0
h= (7.1.5)
H(C|K
1 Ig(é)) else
K| o]
ij
HCK) ==Y )" |D|1 W (7.1.6)
i=1 j=1 J 1 Mg
1 sIKT, K|
=1 1 i1 i (7.1.7)
Z C| C|

wheren;; is the number of members of natural cldssin clusterC;, K denotes all natural
classes(' denotes all clusters arjd| denotes the total number of software components in the

data set.
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The completeness criterion is satisfied when all the memifaassingle class are assigned to

a single cluster. Completenesss given by

1 if H(K,C) =
o= (7.1.8)
1— HI%‘(?) else
cl 1K
ij
HEC)==> )" D] log T (7.1.9)
j=1 i=1 ] 1 Mg
LIS < o <
H(K) = — J=174 J=17 7.1.1
(K) == =g lee = (7.1.10)

i=1

Finally the V-measurd’ is given by the harmonic mean on homogeneity and completenes

2x hxc
V="""" 7.1.11
h+c ( )

7.2 Evaluation Results

Evaluation of the graph clustering outcome is initiallyfpemed on the eight machine instance
information used in the analysis phase of the current sflidig evaluation is required to evaluate
the clustering algorithms in a controlled manner, deteenvitnich algorithm performs better and
specify values for the clustering algorithm variables eixed, which maximize the quality of the
software package identification.

Before evaluating the clustering solutions, the way filesbwlonging to any of the known
packages are handled shall be addressed. The policy useddsked in section 7.2.1. Then
evaluation of the clustering solutions of each of the clilstealgorithms used, as well as the
effect the respective clustering process variable has emtiality of the clustering result, are

presented for the hierarchical clustering in 7.2.2, forkbmel k-means algorithm in 7.2.3 and
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for the flow simulation algorithm in 7.2.4. Finally in seati@.2.5 the optimal results of the three
graph clustering algorithms are compared in order to deteriine strengths and the weaknesses

of each of the three algorithms.

7.2.1 Not Monitored Package Files

Although the existence of the software package managemstains in the machine instances
under study implies that all software components instatledhe system are somehow managed
by the software package system, this assumption has beesdprnoong by experimental results.
Examination of the files installed on the machine instanceeustudy has shown that the software
package management systems of this instances have no mdbedinstallation of a significant
portion of the files found in the instances filesystem. Thisepbation may be explained only if
software packages are installed on the instances undey bjucheans other than the software
package management system such as source code compiladi@ancaive extraction.

Since without knowledge of the actual structure of the kngwftware packages it is not pos-
sible to differentiate between files of known software paeeand files of unknown software
packages, all the files found on the system are used in theaseftpackage identification pro-
cess. This approach has the advantage of allowing the fidatibn of the un-managed software
packages in the machine instances under study, but it ateplmmates the evaluation of the clus-
tering solutions since there is no means to evaluate ctustartaining members of this software
packages.

To address the problem, and since the exact evaluation nesagre not possible to be re-
trieved, the measures are computed on two different vessidrihe cluster index. In the first
case all files that are not members of the known software gaskare considered to be members

of a super package labeled ather. The measures computed on this version are expected to be
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worse than the real case since tiber package will be heavily fragmented. The second version
of the cluster index consists only of clusters containingsfirom the known software packages.
Files from theother package are still found in these clusters. The measures/ali@puted are
expected to be close to the real values and are significanflyoved compared to the evaluation

measures on the first cluster index version.

7.2.2 Hierarchical Clustering Evaluation

All the SSG under study were clustered and evaluated usmgidrarchical clustering algo-
rithm. Since equivalent results were generated on all thehina instances under study, only the
plots of a single case are presented here. The rest of theerpbot be found in appendiX?.

Although at first glance at figure 13 the algorithm seems te gigh values of homogeneity
for small values ot, the graph is misleading. As it can be seen in figure 14 the euwitclusters
generated by the algorithm for small valuestadé significantly high, which leads to the naive
case where each of the components to be clustered is ass@itedwn cluster. The number of
clusters reaches the expected values over 0.7. For thasesvaft the homogeneity value has
already decreased significantly. Therefore the hieraatilastering algorithm in its current form
may not be considered a reliable algorithm to use for softwrackage identification since the
results produced are not of good quality.

In all the cases of hierarchical clustering there is a dramtibp of the value of homogeneity
for values over a specific value of t, usually in the range 6ft0.0.7. This dramatic change
signifies that at the specific value a large number of softewaneponents are erroneously clustered
together. It might be possible to improve the hierarchidastering algorithm by certain aspects
of the algorithm such as the method of calculating the dégtarewly formed clusters and the rest

of the software components as well as the distance metrit use
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Hierarchical clustering measures for ami-02f8cd76
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Figure 13: Evaluation Measures for Hierarchical Clustgion ami-02f8cd76

As far as entropy and purity are concerned, they both exhittiogous behaviour as ho-
mogeneity. After the predefined threshold the purity degsasignificantly whereas there is an
increase in entropy, which signifies the creation of clgstamtaining members of multiple soft-

ware packages.

7.2.3 Kernel k-Means Clustering Evaluation

The results of the k-means algorithm, which are for @ah&-02f8cd76machine instance, are
presented in figure 15, whereas the results for the rest ah#ehine instances under study can be
found in appendiX?. From the results it is evident that the algorithm has anaeperformance
in the software package identification process since, orageeit scores low both on homogeneity
and on completeness. It can be seen that there is a margipedviement of the results as the

number of clusters increases. Removal of the clusters iodmgamostly files that are not members
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Number of clusters returned by Hierarchical Clustering on ami-02f8cd76
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Figure 14: Number of Clusters Generated by Hierarchicastghing on ami-02f8cd76

of the known software packages improves the completendbg oésults under study, mainly due
to the removal of the fragmentedherspackage.

In the case of entropy and purity similar performance to thradasure is observed.

7.2.4 Flow Simulation Clustering Evaluation

Two plots are used to present the results of the flow simulatiostering. Figure 16 presents
the measures @mi-02f8cd76vhereas figure 17 presents the number of clusters in eadirchgs
result. In general the flow simulation algorithm gives reklyy good results compared to the
other two clustering algorithms. As shown in figure 17 the bamof clusters increases with
the increase of the value of inflation. This explains theeasing value of homogeneity in the
graph. Completeness in the case tiieerspackage is included is significantly low, mainly due
to the fact that that package is composed of several packagetherefore it appears fragmented.
Removing theotherspackage significantly improves completeness whereas thegeneity does
not actually change. This signifies good homogeneity botthénremoved and the remaining

clusters.



Kernel k-Means clustering measures for ami-02f8cd76
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Figure 15: Evaluation Measures for Kernel k-Means Clustedn ami-02f8cd76

Flow Simulation clustering measures for ami-02f8cd76
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Figure 16: Evaluation Measures for Flow Simulation Clustgion ami-02f8cd76

79



80

The values of purity and entropy signify good clusteringuhss at least regarding the com-
position of the clusters. Since there are no significantatiaris in the values of the evaluation,
the selection of the appropriate value of inflation for thelaation of the algorithm in software
package identification is based on the number of clusteedante An inflation value in the range
2.0 to 2.5 is considered the most suitable since the numbeusfers in the clustering solution

produced is close to the expected number of packages (inglmt managed packages).

Number of clusters returned by Flow Simulation Clustering on ami-02f8cd76
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Figure 17: Number of Clusters Generated by Flow Simulatitrst@ring on ami-02f8cd76

7.2.5 Graph Clustering Algorithm Comparison

Comparing the three graph clustering algorithms used #&ively straightforward. In the
case of the hierarchical clustering algorithm, the requitsluced are significantly lower than the
results of the two other algorithms. This is the result pbdpaf the simplistic implementation of
the algorithm. Experimentation with several implemewtadi of the algorithm may improve the
results significantly, but this is beyond the scope of theanirstudy. As for the second and third

algorithm, their results are satisfactory, with the flow giation algorithm yielding better results
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in most cases. Improvement of the two algorithms may be aetiihrough better processing of

the SSG. For the current study the results are considerédisnf.

7.3 Generalization of Evaluation

The evaluation of the software package identification pgsagould not have been complete
if only the machine instances used during the developmethieasystem had been used for evalu-
ation. As a result, 20 additional machine instances weredsted form théAmazon EC2These
machines are used to evaluate the process of software matlagification. All the procedures
utilized for the preparation of the SSG of the initial groupmachine instances are used for this
group also. The SSGs created include information both #fitbsystem and the software pack-
age installed for evaluation purposes.

The major interest in the evaluation of the software packdgastification process is the final
result, that is how well the clusters created by the graphteting algorithms correspond to real
software packages. For that reason, the measures usec: fevdtuation of the initial group of
machine instances is used for the sectesigroup also.

Due to the large number of instances, and in order to simiiéy evaluation process, the
hierarchical graph clustering algorithm was not appliedtmntest group instances. The kernel
k-means algorithm was applied using 500, 750 and 1008. aSimilarly, the flow simulation
algorithm was applied using 2.0, 2.2 and 2.5 as inflationa&lT he variable values were selected
based on intuition and on the observation from the evalnaifahe initial group.

Additionally the evaluation measures used in this phas®mlyethe homogeneitycomplete-
nessand their harmonic mean, thatigneasure The reason is that the combination of homogene-
ity and completeness presents a more clear picture for tlueenaf the clusters in the clustering

solution in contrast to entropy and purity which measurey aghé homogeneity of the solution
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[21]. Additionally otherspackage clusters are removed since the way they are defidadese
erroneously the completeness of the whole solution. Ingémaly the practices that proved to
be useful in section 7.2 are used in the current section.

Results of the Kernel k-means Clustering performed on tktaites of the test group are
presented in figure 18. To materialize the overall perforreanf the algorithm, the median of
of the computed V-measures was taken. The median was sklaate the mean value to reduce
the influence of possible outlier machine instances. In iggrtee results of the algorithm on
each machine are really close to the median value, whiclcates that the performance of the
algorithm does not change depending on the machine. Whatatss the performance of the
algorithm in general is the completeness. The low valuepfpeteness are an indication that
the graph clustering algorithm does not group all the coreptmof a software package together.
This deficiency may be addressed with the enrichment of taphgwith edges from additional
information.

In general the results seem to be improved marginally withititcrease of the number of
clusters. This is due to the improvement of homogeneity Whiciot compensated by the decrease
in completeness.

In the case of the flow simulation graph clustering algorithmresults are significantly better
compared to the kernel k-means algorithm. In this case hisoelatively low completeness is the
major problem to be addressed. What is interesting is thevstny of homogeneity to complete-
ness in relation to the V-measure Median. It can be obselhatdan increase of completeness
decreases homogeneity, which is possibly the result oheawas clustering.

In general, the flow simulation algorithm with an inflationwain the range 2-2.5 performs

very well in the process of software package identification.
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Kernel k-Means Results for nclusters = 500.0
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Figure 18: Results of Test Group with the Kernel k-means t€tirgg Algorithm
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Flow Simulation Results for inflation = 2.0
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Figure 19: Evaluation of Test Group with FLoat Simulatiom§lering Algorithm



Chapter 8

Conclusion

The aim of the current study was to develop a process of fgergi software packages on
utility computing machines in general and on Amazon EC2 Nfaenstances in particular. lden-
tifying software packages on Amazon EC2 Machine Instancag e considered at first glance
a useless process for most people. After all nowadays mesatipg systems provide a software
package management system, and therefore the softwarageschkistalled can be trivially de-
termined by queering this system. This is a misconceptiolthofigh it's true that a significant
portion of the software packages is managed by softwareagacknanagers, in the case of EC2
Machine Instances there is a significant number of softwaneponents that are not members of
any of the known packages, an indication that software ppekare installed on those systems
but not managed by the software package Management SystenteHa process to identify all
the software packages installed on this machine instarscaedded, without knowledge of the
software package management system information.

The process of identification of software packages ingtadle machine instances using only
file system meta-data has been a challenging task, since enafothe metadata sources was

sufficient to address the problem of the software packagetifamtion. Therefore the proper
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combination of multiple sources of information was the kesticcessfully identifying software
packages.

The utilization of metadata, such as the time stamps andhttdeinumber based on the intu-
ition that the members of the same package are created arifled@d a group, provided substan-
tial information to associate components of the same softwackage with each other. Addition-
ally the categorization of directories to pure and impure thre reduction process involving pure
directories simplified the software package identificapoocess significantly, reduced the graph
size to a manageable size and provided a good start for gasteghg results, since in essence
what was clustered was not individual software componeuntsaleady formed clusters which
were of verified quality.

Utilizing three different graph clustering algorithmsgchaf a completely different paradigm
gave the opportunity to find the algorithm most suitable far software package identification
process. Of the three algorithms the best results were peadoy the flow simulation graph clus-
tering algorithm (MCL) [27] whose results are sufficient the implementation of a complete
system for software package identification on Amazon EC2Hifecinstances. Second comes
the Kernel k-Means algorithm which, although it producetiszctory results, introduced a sig-
nificant problem since deciding on the correct number of etqaeclusters (software packages) is
a difficult task because of the diversity of the systems ugstigly and the presence on the machine
instances of software packages not managed by the softwakage identification system, and
therefore not possible to be assessed. The agglomeradgikardtiical clustering has been proved
unsuitable for the software package identification proagsugh a different implementation
could possibly produce better results. For all of the chirsgealgorithms used, fine-tuning of the
algorithm was attempted by varying the algorithms majoralde in order to determine the value

of the variable suitable for the field of software packageiifieation
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The evaluation of the clustering results was performed ¥ath different measures specifi-
cally suitable for graph clustering evaluation. The corabion of homogeneity and completeness
provided an insight into the problems of the clustering gthms used.

Finally the performance and the applicability of the softsvpackage identification process
was tested on a larger number of Machine Instances withtsethdt were more than satisfac-
tory. This test has proved the applicability of the softwaaekage identification process although

improvement of the process performance is heeded and fmssib

8.1 Future Work

The scope of the current study was constrained to prove tehplity of identifying software
packages using only file system metadata, and determiningsaljbe path of achieving this iden-
tification. For that reason, several restrictions were isagdooth on the selection of the tools to be
used, as well as the coverage of all cases. Although thesetiess do not reduce the importance
of these studies results, there is a significant room lefaéttitional research.

The first field where additional research may be conducted ithe file system meta-data
used. The current study was limited to a specific set of mata-types. Additional meta-data
types may be incorporated in the system to improve the pedoce of the process. Further-
more, information regarding the contents of the softwarapanents may be used along with the
filesystem metadata.

Moreover, in certain aspects of the graph preparation akvariables were set based on
heuristics and observations. Diversifying those varialdad evaluating their influence on the
results may enhance the performance of the software padtteification process. An example

of this variables are the weights used when combining edidifferent types.



88

The number of graph clustering algorithms used, thoughcseffi for the purposes of the
study, does not cover all the available graph clusteringralyms. Hence, there is the possibility
of a different graph clustering algorithm that may be moiitable for the current study; that being
so, there is an open field of experimentation with additigraph clustering algorithms.

Evaluation of the clustering solutions was made with a $jganiimber of evaluation measures,
but since other measures are also available, evaluatibragititional measures may be performed.
Also the measures used were connotative due to the existéeséernal information. Qualitative
evaluation such as user satisfaction, may be performedeorestults of the process.

Another aspect requiring further study is the nature of tféware packages installed that
are not managed by the software package management systemtieugh it was decided that
they should be partially ignored in the current study (by egimg certain clusters), using other
sources of information about software packages may allovthi® inclusion of these clusters in
the evaluation.

Finally, this study provides the tool but not essentiallyagplication of the software package
identification process. Utilizing the process for a macliiséance search engine, where the search
criterion is the existence of a specific software packagéemedturned instances, could be a good
application of the software package identification procéssbeling the resulting clusters could

be another issue deriving from this application.



Appendix A

Harvesting Data Files

File

Content Description

dirs.gz

Contains information about the directories of the AMIs fistem.
Each record contains the absolute path to the folder alotiy tive
folders metadata as described in table 2.

files.gz

Contains information about the regular files of the AMIs fiystem.
Each record contains the absolute path to the file along Wwittiles
metadata as described in table 2.

links. gz

Contains information about the symbolic links found. Eaok ton-
tains the absolute path of the link file and the absolute patheo
links target.

nm nmes. gz

Contains the mime types of the regular files found on the sys
Each record contains the absolute path of the file and it'sentyipe.

te

man. gz

Contains the program file to man-page associations foundeosyis-
tem. Each record contains the absolute path of the progrararfi

the absolute paths of all the man-pages matching the specific

gram file.

deb_packages. gz

Contains information about the Debian Packages instaligt@sys-
tem and their members. Each record contains the name of the
age and the absolute path of a member file. Multiple linest éois
each package, one for each of its member files.

pa

r pmpackages. gz

Contains information about the RPM Packages installed ersys-
tem and their members. Each record contains the name of the
age and the absolute path of a member file. Multiple linest éois
each package, one for each of its member files.

pa

Table 20: Harvesting Data Files
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Harvested Amazon Machine Instances
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ID Manifest Operating System

am - 02f 8cd76 | bi t nam - dokuwi ki - 2010- 11- 07- 0- | i nux- ubunt u- 10. 04- ebs Ubuntu

am - 033d0977 | radi ant-0.9.164.0. 2_.am - 75d4el101 Other Linux

anm - 026f 5e76 | xcept ance- ubunt u- 11. 04- 64bit-029-xlt-4.0.5-r6770 Ubuntu

am - 02714476 | bi tnam -tracks-1. 7-1-1i nux-ubunt u- 10. 04- ebs Ubuntu

am - 02b98876 | f oneAPI - generi c-32bit-freeswitch-vl Other Linux

am -03c2f 677 | A oudFormati on-j oom al.6.0.1. 0_.75d4el01- 64bi t Amazon Linux
am - 01f bce75 | szr-1 anp- ubunt ul004-i 386- ebs- 2 Ubuntu

am - 03310577 | hwapache-2. 2. 16 .32.0. 3_.am - 7f d4el10b Other Linux

Table 21:Amazon Machine Instancesed for Analysis
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ID Manifest Operating System
am - 146d5860 | szr - base- cent 0s55-i 386- ebs-5 Cent OS
am - 140f 3e60 | ubunt u- 8. 04- har dy- server-i 386 Ubuntu
am - 0e71447a | bi tnam -l appst ack-1. 2- 1-1i nux- ubunt u- 10. 04- ebs Ubuntu
am -07675173 | bi t nam -wordpress-3. 1. 2-0-11i nux-ubunt u- 10. 04- ebs Ubuntu
am - 0ce9d878 | bi t nam -drupal - 7. 2-0-11i nux- x64- ubunt u- 10. 04- ebs Ubuntu
am - 0d310579 | hwapache-2. 2. 16 64_0. 3_.am - 75d4e101 Other Linux
am - 14e5d460 | bi t nam - phpbb- 3. 0. 8-0-1 i nux- x64- ubunt u- 10. 04- ebs Ubuntu
am -13c2f 667 | Cl oudFormation-hwails2.3.2.1.0.75d4e101- 64bi t Amazon Linux
am -09dcf 67d | Ri ghtl nage_Ubunt u8. 04 x64_v5.5.9. 1. EBS Ubuntu
anm - 15edd961 | bi t nam - dj angost ack- 1. 2. 5-0-1i nux- ubunt u- 10. 04- ebs Ubuntu
am - 0f 3f 097b | bi t nam - noodl| e- 2. 0. 3- 0- | i nux- ubunt u- 10. 04- ebs Ubuntu
am - 0f c2f 67b | Cl oudFormati on-j oom al. 6. 0.1. 0_7f d4el0b- 32bi t Amazon Linux
am - 158f ba6l | bi t nam - phpbb- 3. 0. 8-0-1i nux- ubunt u- 10. 04- ebs Ubuntu
am - 0a71447e | bi tnam - ezpublish-4.1.3-1-1i nux-ubuntu-10. 04- ebs Ubuntu
am -0f01367b | ri ghti nage_debi an_6. 0. 1.and64_20110405. 1 _ebs Debian
am -17c2f 663 | Cl oudFormati on-hwails2.3.2.1. 0_7f d4el0b- 32bi t Amazon Linux
am - 0c390878 | secl udi t-cl oudyscri pt s- downl oad- snapshot - server Other Linux
am - 0991a67d | ensenbl e- natty-2011- 04- 26 Other Linux
am - 0aa7967e | ebs/ ubunt u-i mages- m | est one/ ubunt u- onei ri c- al pha2-i 386-server | Ubuntu
am - Ob5b6¢7f | anazon/ ami -vpc-nat - 1. 0. 0- bet a. x86_64- ebs Other Linux

Table 22:Amazon Machine Instancesed for Evaluation
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