
ABSTRACT

Utilization of the emerging grid and cloud infrastructure requires services which allow the

user to identify the machine instances suitable for her software needs. Identifying the software

packages installed on cloud machine instances is the first building block of such services. In

the current study a software package identification system is developed. Data about the filesys-

tem and the packages installed is collected from various cloud machine instances. Relations

amongst software elements are analyzed and used to formulate a Semantic Software Graph, a

graph representation of the filesystem data and the softwarepackage data which utilizes the se-

mantic graph technology. Relations amongst the software elements are analyzed to determine if

they related software elements of the same software package. Graph reduction algorithms are

utilized to reduce the size fo the Semantic Software Graph, and different graph clustering algo-

rithms are used on the resulting graph to group files togetherto closely related groups. External

evaluation measures are used to compare the resulting clusters to the expected software pack-

ages. The process is applied and evaluated on additional machines instances to prove its gen-

eral applicability. The evaluation results are encouraging and may be improved in future work.

Neophytos Theodorou – University of Cyprus, 2011
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Chapter 1

Introduction

We live in the age of information. The industry, the scientific community, governments and

ordinary people incessantly produce, store and process enormous amounts of data, to extract infor-

mation and produce new knowledge which is thereafter distributed and shared all over the world.

This need for processing, storing and distributing information has been the driving power for the

ongoing development of computer science and communicationtechnologies. The invention of the

Internet and the World Wide Web has made a large quantity of information publicly available and

accessible everywhere on earth. For a long period of time, the Internet provided only the means

of distributing information. The processing power and storage were not resources that could be

offered as services to those that needed them. Hence, anyonein need of high performance comput-

ing and extensive storage had no other choice but to invest a great amount of money for building,

deploying and maintaining their own computing and data centers. And although this was a fair

expense for businesses, scientists in need for computing power were in no luck. The need for com-

puting resources freely available to scientists, was an olddream that started to come true with the

creation of Computing Grids specifically developed by governments and educational institutions

for the scientific community. Science nowadays deals with large quantities of raw data that need to
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be stored and processed in order to extract new scientific knowledge. Also there is a large number

of computation intensive problems studied by scientists such as protein folding and prime number

search. Computer Grids were developed in order to provide scientists with adequate storage and

processing power required to research new domains of interest. But what exactly is a Computer

Grid? A computer grid is:

a large-scale geographically distributed hardware and software infrastructure com-
posed of heterogeneous networked resources owned and shared by multiple adminis-
trative organizations which are coordinated to provide transparent, dependable, per-
vasive and consistent computing support to a wide range of applications. [5].

Many Grid infrastructures were developed for the purposes mentioned above. Examples of such

grids include theDuchGrid and theEGEE [24]. The advantage was that eventually scientists

had access to dependable computing services needed for their research, without the overhead of

owning and managing their own computing and data. The availability of such infrastructures

created new paths in scientific research since research on computationally demanding fields is

now feasible.

An additional development in the field has been the emergenceof Cloud Computing. The

term Cloud Computing refers to the delivery of applicationsover the Internet as services. It also

refers to the hardware and software back-end used to providethose services [2]. Cloud Computing

makes the dream for computing as a utility true since it allows for the development and deployment

of applications without the need for building and operatinga hardware infrastructure [2]. Users

are usually charged for the usage of the service, thus significantly minimizing the cost of hosting

their applications. An additional benefit is the on demand scale up of the application with the

introduction of additional services if required.

Although the creation of Grids and the emergence of Cloud Computing were important de-

velopments that madeComputing as Utilitya reality, a lot of issues are yet to be addressed. In

the case of Grids, since the users do not have the authority for the installation and the operation
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of the Grid, they are not in place to control what software is installed on each computing node of

the computer Grid. Since processing power is of no use without the right software, the user has to

manually search for the appropriate group of nodes that havethe required software installed. This

increases the complexity of grid usage. Equally in the case of Cloud Computing some cloud ser-

vice providers, such as Amazon EC, allow the user to select from a number of different machine

instance images to deploy on the cloud. The selection of a specific machine instance image de-

pends on the computing needs of the user. Therefore, both in the case of Grids as well as the case

of Cloud Computing, there is a need for the user to be able to determine if the required software

is installed on the grid node or the cloud machine instance image to be used. The current research

aims to identify the software installed on the the machines of interest which could be used for the

creation of a search service to retrieve machine instances with the required software configuration.

The motivation for the current study is presented in section1.1 and the contribution of the

current study to the scientific research is analyzed in section 1.2.

1.1 Motivation

The need for the user to know the software installed on the system they are going to use has

been the initial motivation for the current study. To be ableto search for the software the user

requires information about the software installed on each computing system: for example, a grid

node on a cloud machine instance, must be collected. Software installed on a computing system

is not comprised of autonomous files unrelated to each other.On the contrary, software is consti-

tuted by related, interconnected and inter-dependent files, which cooperate to perform a specific

computing operation. These related files are grouped together in collections of files, known as

software packages. Since individual files are in most cases not usable and therefore not important

for the user, since the complete collection of the files is needed to perform a specific computing
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task, what they are expected to search for is specific software packages. Therefore, the informa-

tion about the software installed on a specific computing system, is actually the determination of

which software packages are installed on each computing system and the provision to the user of

a service to determine if the requested software packages are installed on the system of interest.

The idea of software package has been utilized both in the description of software, and for

its distribution and installation. In all computing systems, any complete software program is

distributed in the form of a package, which contains all the components required for the proper

operation of the software. Many modern operating systems include software management tools

which facilitate the installation and removal of software packages. An example of such tool is

the Advanced Package Toolapt which provides a simple way to retrieve and install packages

in the form of.deb archives, from multiple sources [6]. Such software management tool suites

provide ways to retrieve the names and the contents of the software packages installed on the

current system. These tools are not a suitable source of information about the software installed

on computing systems since:

• There is a multitude of software management systems, hence there in not a single homoge-

neous way to query this software systems for the software packages installed.

• In some computing systems there is no software management system present.

• Proprietary software, custom made software and the software used by the scientific commu-

nity, is manually installed and hence it is not managed by software management systems.

• In some cases special user privileges are required to query the software management systems

for software information, which may not be provided by the system administrator.
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• In order to query the software management systems for the software needed, the user should

still make the tedious job of searching node by node to find those nodes that have the re-

quired software package installed. Collecting this information as a service will remove this

burden for the user.

• To query the software management system for the existence ofsoftware needed, the user

should know in advance the exact and usually cryptic name of the software package that

matches the software they need.

In order to address the preceding issues a software search service should be provided. This

service should be able to collect the information about the software installed without the utilization

of software managements systems. Also the service should provide the user the ability to search

for a software not with the name of the specific software package, but with keywords that describe

the software as well as its utility and other characteristics. Finally the software must be presented

to the user in an understandable and comprehensible way.

By bypassing the software management systems during the collection of information about

the software installed on each computing system, information about software packages is lost.

Therefore, an alternative way to retrieve software packages is required. This alternative way must

utilize meta-data about the computing system’s file-systemstructure, and using information re-

trieval techniques identify groups of inter-related software components that together comprise a

software package. This process of reconstructing softwarepackages from the unstructured nature

of the file-system tree of each computing system is the problem this study attempts to solve.

Therefore the problem to be solved by the current study is:

Identify the software packages installed on a computing system using only meta-data
about the files present on the computing system file-tree structure.
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Identifying software package structures is a non-trivial task since it is up to the decision of the

software package creator to decide on the structure of the software package. Thankfully common

practices are followed by creators and distributors of software packages, thus, similar structure

characteristics can be found in a number of software packages. Still this practices are neither

obligatory, nor known and documented. As a result, these practices must be extracted in the form

of structure rules, through the examination of the structure of already known software packages.

Additionally, information may be extracted about the history of the software components

(when they were created or when some other operation was applied on them). Common history,

such as creation at exactly the same point in time, are usefulsources of information especially

when no other means are available to interrelate software components to each other.

In the current study, in order to create a system that successfully identifies software packages

using only file system information, information about knownpackages is used during the imple-

mentation and evaluation of the system to identify common structure, and formulate the proper

set of rules and procedures that will be used to identify software packages in the absence of soft-

ware package information. Thus, the implementation of the package identification system is based

on information from a system of known package constitution.After the rules are formulated the

system can be applied on systems of unknown package structure to identify the software packages.

Defining rules and procedures for the software package identification process from a limited

number of machine instances created specifically for the purposes of the current study would

greatly harm both the performance and the applicability of the process. Therefore real machine

instances found on theAmazon Elastic Computing Cloud (EC2)are used as sources of the infor-

mation both for the analysis phase, where the rules and procedures are specified, and the testing

phase where the software package identification process is evaluated.
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1.2 Contribution

As stated in section (1.1) the current study attempts to identify software package structure

using only meta-data about the files present on the computingsystem file-tree structure. The

solution of this problem contributes in several ways to computer science and more specifically to

information retrieval research. This contributions are:

• It is the first study on the structure of software packages, which attempts to retrieve the

structure from file-tree meta-data. Work on structure identification has been done in other

fields such as source code file grouping and software component clustering.

• It uses and analyzes known software packages to discover thestructure rules used in their

construction. Most of the other work relies on developer defined rules to identify the struc-

ture.

• It is possible to perform external evaluation of a produced software package identification

solution since sample result structures are available fromthe known package corpus. In

related work the evaluation of the results is subject to the decision of the result evaluator,

and it is based not on the successful identification of expected structures, but on the quality

of the clustering results.

• It breaks up software packages to its constituting parts andexamines its internal structure

in contrast to work done on software packages as entities, onsoftware package repositories

and the connections between them.

• It utilizes semantic graphs for the representation of both the graph used during experimenta-

tion as well as the graph used during package identification.These graphs encode not only

the relations between the packages and the files, but also themeaning to these relations.
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• It utilizes graph clustering algorithms for the identification of software packages. The qual-

ity of the solution depends on the clustering algorithm and external evaluation measures

may be used to evaluate the solution since at least partial knowledge exists for the expected

clusters. Therefore the corpus of the current study may be used as an evaluation test set for

graph clustering algorithms.



Chapter 2

Background and Related Work

In the current chapter a review of the scientific work relatedto the current study is attempted.

Then, the major concepts and terms used throughout the current study are defined in section 2.2.

2.1 Related Work

The current study lies in the middle of two different research fields regarding software re-

sources. On the one side is software resources retrieval in which case Information Retrieval tech-

niques are utilized to provide search facilities for the retrieval of software components. On the

other side is the software resources clustering, which attempts to organize software components

to logical groups. Work on both approaches is presented in the current section.

The task of retrieving software resources has been approached by many different ways de-

pending both on the resources in interest, as well as the approach of retrieving information about

them.

A major field of software resources retrieval has been searchand retrieval of source code.

Various systems have been developed to facilitate source code retrieval both from proprietary

repositories [18] as well as from online open source repositories [3] [26], [20]. Since source code

9
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is not unstructured text, but contains information about the structure as well as other metadata,

source code search systems attempt to extract more information about the source code to improve

their utility to programmers. Such a system is Sourcerer, aninfrastructure that collects, analyses,

and searches open source code both for textual information as well as structural and metadata in-

formation that may improve the performance of source code search [3]. PARSEWeb on the other

hand allows the programmer to search for code samples by specifying Source and Destination ob-

ject types, and the system returns suggestion of frequentlyused Method-Invocation Sequences that

can make the transformation from the Source type to the Destination type [26]. Finally in [20] the

system utilizes semantic data such as keywords, class or method signatures, test cases, contracts,

and security constraints to specify the user’s specifications and then checks a transformed set of

candidate solution to filter out the solutions not matching the specifications.

Another field of software resource retrieval has been the retrieval of software components.

Pre-compiled libraries and software components can be purchased and reused by software devel-

opers in their projects. Although such components lack the textual nature of source code, many

informations can be extracted from the components data. An example of such a system is Agora

[22] which combines introspection with Web search engines make the publication and retrieval of

software components in the software marketplace less costly. Another approach is to utilize the

popularity of certain software components, to improve their ranking in search results. Such and

approach has been proposed by [23] and uses the composition graph of Grid applications to rank

software components based on how often this components are referenced in composition graphs,

in a manner similar to Pagerank [15]. This idea mature to GRIDLE a Grid component search ser-

vice, which uses technology of Web search engines to discover software components on the Grid

[19].
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Finally a field of software resource retrieval is the retrieval of which software resources are

installed on specific computer systems. The major work done on this field, which has been the

initiative for the current study, is the Minersoft softwaresearch engine which provides full-text

search services to locate software resources installed on large-scale Grid infrastructures [10], [17],

[16]. Minersoft uses a number of utilities and analysers to harvest data about the software re-

sources located on remote systems. The results of harvesting are encoded in the Software Graph

[10]. Then through a process of content enrichment, associations are discovered through structural

dependencies, which enrich interesting software resources with text from associated files in order

to create a searchable inverted index of software resources[17]. This work has a lot of similarities

with the current study and has actually been the starting point for the current study.

Another faced of the current study is that of clustering related components to logical groups.

Since software packages are essentially groups of related software resources, work regarding the

clustering of software components is related to the currentwork.

Great research has been performed in clustering the source code of specific software systems

[11] [12] [14]. The purpose was to provide tools to the developers maintaining unknown legacy

software to retrieve the actual structure of the system and familiarize their serfs with the software

structure. In [11] semantic clustering is attempted information retrieval techniques are used to

to derive topics from the vocabulary usage at the source codelevel and uses Latent Semantic

Indexing to locates linguistic topics in a set of source artifacts and cluster them according to their

similarity. In [12] an automatic technique to create a hierarchical view of the system structure

based on the components and their relations at source code level is propose. This idea matures to

the Bunch software clustering tool [14] that uses a series ifhill-climbing clustering algorithms to

analyse the structure of a software system.
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2.2 Definitions

Before describing the creation of the package identification system, the exact meaning of the

terms used in the current study shall be defined. The definitions are dealing with the meaning of

the specific concepts in the current study and not with the meaning this terms may have in other

studies and contexts.

2.2.1 Software Package

The first concept to be defined is the concept ofsoftware package.

Definition 1. A software packageC is a collection of software components{a1, a2, . . . , ai}, aj ∈

C that are distributed and installed as a single group.

Although this definition may appear simplistic it has certain advantages over alternative defi-

nitions. A different definition is that software packages could be the way users conceive software

packages, that is a collection of software components, required to perform a specific computation

task. Although such a definition may be more user-friendly, it has two major disadvantages. First

of all it groups the software package with all the dependencies it may have to a super-package. As

a result it introduces overlaps between software packages sharing certain dependencies. The sec-

ond disadvantage is the difficulty of evaluating the resultsof the software package identification,

since it requires human reviewers and evaluators. The definition for the software packages used in

the current system is considered better than the other definitions because:

• It minimizes overlaps between packages since dependenciesare handled as packages on

their own. This makes handling and identifying software packages easier.
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• It makes the evaluation of software package identification easier, since a huge number of

software packages matching this definition is available. The evaluation is also more reliable

since sufficient amount of external evaluation data is available.

• It makes it possible to deal with secondary packages such as libraries and source code col-

lections, which would have been lost as members of super packages.

2.2.2 Software Components

The definition of software packages makes use of another concept, that of software component.

Definition 2. A software componenta is any file that is a distributed and installed as part of a

software packageC.

From the definition of thesoftware componentconcept the following definitions are derived:

Definition 3. A software componenta is considered to bemember ofthe software packageC if

and only ifa ∈ C which implies thata is created during the installation of the software package

C

Definition 4. A software componentai and a software componentaj are considered to be mem-

bers of the same packageC if ai ∈ C andaj ∈ C.

These definitions make the process of the software package identification clearer since the

identification of a software package can be achieved by successfully identifying a group of the

software resources that are members of the software package. Since the identification process is

not based on the known structure of the software package but on file-system meta-data, software

component relations are used to group software components together.
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2.2.3 Software Semantic Graph (SSG)

During the procedure of analysis and implementation of theSoftware Package Identification

Systemseveral forms of graphs are used. AgraphG = (V,E) consists of two setsV (G) and

E(G). The members ofV (G) are calledverticesor nodesand the members ofE(G) edgesos

links. Each of theedgesconnects twovertices[1]. Two verticesconnected by an edge are said

to beadjacent. The number of vertices of the graphG is its order written as|G| and is usually

represented with the lettern. The number of edges of a graph is written as||G|| and is usually

represented with the letterm. A graph is calledcompleteif every pair of vertices are adjacent to

each other. When a graph is complete the number of edges is given by:

||G|| =
n× (n− 1)

2
(2.2.1)

H is a subgraph ofG if V (H) ⊂ V (G)) andE(H) ⊂ V (G). A graph with a direction

property assigned to its edges is calleddirected. Equally a graph where multiple edges may

connect the same pair of vertices is calledmultigraph. When an edge is associated with a numeric

value (weight) the graph is calledweighted.

A semantic graph is a network ofheterogeneous nodes(vertices) andlinks (edges). In con-

trast with the common mathematical definition of a graph, semantic graphs have different types

of nodes and different types of links [4]. The links of Semantic Graphs are directed and multi-

ple edges connecting the same pair of vertices are allowed; hence Semantic Graphs are directed

multigraphs. Each of the nodes in the Semantic graph has atypeand one or moreattributes. Each

of the nodes may have multiple types. Links may also have types [4]. The set of relations that can

exist in a semantic graph is described by an auxiliary graph called schema [25].

The Software Semantic Graph (SSG)is a semantic graph describing the data collected from

a machine instance regarding the software installed on the system. Severalnodes typesexist in



15

the SSG such asfile nodes,directory andpackage nodes. Each of the nodes may have

severalattributessuch asname, path, inode etc. Several links may exist amongst the nodes

of the SSG such asmemberOf relating a file node to a package node and achildOf relating a

file or a folder node to its parent node in the filesystem tree. The completeschemafor Semantic

Software Graphs is described in appendix??.



Chapter 3

Harvesting

For the creation of aSoftware Package Identification System (SPIS)examples of real machine

instances are required. The process of harvesting collectsfilesystem data and meta-data as well as

data about the software package installed in the machines. Initially the data harvested will be used

for the analysis of the software package structure and the formulation of a process for software

package identification. After the creation of the SPIS the harvesting process will be used to collect

the input of the SPIS.

The effectiveness and the applicability of the SPIS dependsheavily on the quality and the

diversity of the information collected. Therefore the datacollected must have the following char-

acteristics:

• Several forms of data and metadata must be collected about the filesystem and the packages

installed on the machine instances under study. This multiplicity of data sources will provide

additional information for the SPIS to successfully identify the software packages resident

in each of the machine instances.

• To avoid over-fitting on particular system configurations, multiple machine instances with

different system configuration are required. Such systems must be based on differentLinux

16
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distributions and have a different collection of software packages installed. The aim is to

derive generic rules applicable to any Linux-based machine.

Harvesting different systems can be challenging and time consuming, especially if it is re-

quired to create each system configuration separately by hand. Additionally building custom sys-

tems for harvesting data may render SPIS not applicable for real world scenarios of software

packages identification, because such system configurations may not be similar to real systems.

Finally since the current thesis focuses on Cloud Computing, it is required to make the software

identification system applicable to Cloud Computing Infrastructures.

It was decided to utilizeAmazons Elastic Compute Cloud (EC2). EC2 uses visualization to

allow the user to create machine instances, renting in this way computing power[28]. Such a

service is what is needed to create the machine instances required for the harvesting process.

Creating the machines requires no more than instantiating severalAmazon Machine Images(AMIs).

An AMI contains the root image with everything necessary to start a machine instance. Several

AMIs are publicly available, providing substantial diversity of system configurations to harvest.

Finally the Amazon EC2 is a mature Cloud Computing Infrastructure that provides a variety of

tools and is well documented and supported.

The preparatory processes for the harvesting are describedin section 3.1. The details of the

harvesting process are presented in section 3.2 and the actions performed after the completion of

the harvesting can be found in 3.3.

3.1 Harvesting preparation

Before harvestingAmazon Machine Image(AMI)Instances, a lot of preparatory work must be

done. AMIs must be selected and instantiated, information about the instances must be collected

and the files required for the harvesting process must be uploaded to each of the instances.
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The selection of the AMIs to be harvested is performed randomly on the list of all the AMIs

available. To achieve maximum system diversity, it is decided to select from the list of community

provided AMIs, where multiple custom made images exist for specific applications. Also since

the scope of this thesis is limited to Linux based machines, window based machines are filtered

out of the list of the selected AMIs.

The instantiation process is performed by selecting AMIs from the selected AMIs list. This

limit is set by Amazon which allows only 20 running images peruser. Additional AMIs can be

harvested after the harvesting process is performed on the current selection of AMIs.

After the instantiation of the AMIs, four pieces of important information are collected for each

of the running AMI instances. Table 1 describes the information collected:

Information Description
AMI ID This unique identifier specifies AMI used to instantiate the current

machine instance.
Instance ID This unique identifier specifies machine instance. It is usedto termi-

nate the instance after the harvesting process completion.
Public DNS This address is used to access the machine instance from a machine

outside the Amazon EC2.
Default Username Each machine uses different username based on the decisionsof the

AMI provider. Therefore the username used for each machine must
be determined before harvesting can be performed.

Table 1: Amazon Machine Instance Information

Some machines require initial configuration using interactive menus. Since the process of

harvesting AMIs is an automated one, when such a system is detected, it is considered invalid and

is terminated.

The final preparation before the harvesting AMI Instances isthe uploading of the files required

for the harvesting process. To make this process as simple aspossible, it was decided to implement

the harvester as a single fileharvest.pywhich is the only thing uploaded to each of the running

AMI Instances.
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metadata Description
mode Protections bits of the file. Signify which has read write andexecute

permissions.
ino The inode number of the file. Uniquely identifies the inode structure

associated with the file. Unique for each file on the system.
uid A number that uniquely identifies the owner of the file. Files with

the same uid belong to the same user.
gid A number that uniquely identifies the group owner of the file.

size The size of the file in bytes.

atime The time of the most recent access to the file in seconds from Unix
epoch.

mtime The time of the most recent content modification in seconds from
Unix epoch.

ctime The time of the most recent metadata change in seconds from Unix
Epoch

Table 2: File Metadata Harvested

3.2 Harvesting Amazon EC2 Instances

The harvesting process is performed executing theharvest.py script on each of the running

machine instances. Since harvesting on each of the machinesis independent from harvesting on

other machine instances, harvesting is executed concurrently on all the machine instances, using

a multithreaded local script to start and monitor the execution of the harvester on each of the

machines.

The harvester itself comprises several sub-harvesters, each collecting a different kind of data.

The Filesystem harvester collects data and metadata about the files and the directories found on

the machines file system, It also collects information aboutthe symbolic links of the system and

their target. The metadata harvested for files and directories is described in table 2.

The ManPage harvester collects associations between documented files (executables, libraries,

etc) and their corresponding manpage documentation files. The locations of the manpage files are
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determined by themanpath command and the folders of the executable files by the$PATH

environment variable.

Software Package harvesters query the local software package management system for the

software packages installed on the current system as well astheir member software components.

Two harvesters are used, one for Debian packages, which usesthedpkg command, and one for

RPM packages, which uses therpm command. The execution of these harvesters depends on the

availability of the respective command on the target machine instance.

With the exception of theMime Typesub-harvester which depends on theFilesystemsub-

harvester completion to execute, all the other sub-harvesters may execute independently. There-

fore each of the harvesters is executed as a separate thread to achieve the maximum efficiency

of the harvesting process. TheMime Typesub-harvester is executed after the completion of the

Filesystemsub-harvester thread.

3.3 Harvesting Result Fetching and Cleanup

After the completion of the execution of the harvesters on all the machine instances,the results

of the harvesting process are downloaded from each of the machines. To recognise which result

comes from which machine, all the result files originating from a specific machine are stored in

a directory named after the AMI ID of the image used to instantiate the machine. For maximum

transfer efficiency all the result files are in compressed archive format. The result set is constituted

of multiple files, each containing a specific kind if data. A complete description of the data files

produced by the harvesting process can be found in appendix A.

The completion of the results downloading renders the machine instances useless. For that

reason all running machine instances are terminated.
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The downloaded result files still have erroneous data; consequently, some of the result files

are processed to filter out these erroneous records. Such filtering is performed for symbolic links

to remove cases where the symbolic link could not be resolvedand, on file and directory data, to

remove cases where it was not possible to get the metadata of the specific filesystem resource.

3.4 Dataset

Two datasets are harvested. One for the development phase ofthe Software Package Identifica-

tion Phase and one for the evaluation phase. 8 machine instances are selected for the development

phase and 20 machine instances for the evaluation phase. Theonly restriction for the selection of

the machine instances was that they areLinuxbased, sinceLinuxbased systems is the target of the

current study. Also. although the majority of the machine instances found on theAmazon EC2

areUbuntubased, special care was given to select machine instances based on otherLinux dis-

tributions such asCentOS, Fedora and Amazon Linux. A complete list of the Amazon Machine

Instances used in both in the development and the evaluationphase along with the description

string can be found in Appendix B.

The size of the dataset harvested is significantly large. Thesoftware resources harvested from

each of the machine instances used during the development phase are presented in table 3. From

the results it is evident that the datasets differ significantly in respect to their size and especially

the number of packages found in each of the systems under study. Although some packages are

expected to be found in most systems it is evident that due to the differences in the expected

utilization of each machine instances, a significant numberof software packages are not found on

all the machine instances under study. Similar results are found in the case of the datasets of the

machine instances used during the evaluation phase.
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AMI ID Files Directories Packages
ami-02f8cd76 48 644 8 618 384
ami-033d0977 47 083 6 203 364
ami-026f5e76 51 847 7 077 415
ami-02714476 85 444 15 320 384
ami-02b98876 117 705 13 747 421
ami-03c2f677 42 114 5 686 356
ami-01fbce75 47 179 8 504 429
ami-03310577 37 080 4 679 320

Table 3: Size of Datasets - Software Resources

AMI ID Symbolic Links Man Pages
ami-02f8cd76 4 943 977
ami-033d0977 2 502 603
ami-026f5e76 4 344 1 015
ami-02714476 5 500 3 139
ami-02b98876 4 331 1 291
ami-03c2f677 1 580 601
ami-01fbce75 5 938 1 088
ami-03310577 1 497 590

Table 4: Size of Datasets - Relations

Another important source of information harvested and included in the dataset is a series of

relations amongst software resources extracted from filesystem information. This data includes

symbolic link associations and executable to manpage associations. Table 4 shows the number of

relations found in the machine instances used during the development phase.



Chapter 4

Semantic Software Graph Construction

In this chapter the construction of theSemantic Software Graphs (SSG)from the information

gathered by the harvesting process is described. A different SSG is constructed for each of the

AMIs harvested. Depending on the data added to the graph, different properties and resources are

added to the semantic software graph.

The Semantic Software Graph is described in section 4.1. Thedecisions made before the

creation of the semantic software graphs are presented in section 4.2. The details of how each of

the harvesting output files is loaded to the SSG is described in section 4.3.

4.1 The Semantic Software Graph

TheSemantic Software Graph (SSG)is the representation method selected to represent, store

and manipulate the data collected from the harvesting phaseregarding the filesystem metadata

collected as well as the associations amongst the software elements. Additionally the SSG is

specifically designed to allow the addition of additional information and associations amongst

the software resources, that arise during the analysis phase. In essence the SSG functions as an

23
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expressive, and consistent workplace for the development,the application and the evaluation of

the Software Package Identification Process.

Figure 1: Filesystem resource associations in the SSG

One major advantage of the SSG over other representation schemes is that since semantic

graphs are multigraphs, all the various types of associations amongst the software resources may

be represented in the same representation medium, without loss of the information defined by the

association type. Each software resource, whether a file, a directory or a software package, is
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added in the SSG as a resource along with a number of properties which are described in later

sections. Additionally several associations are set amongst individual software resources, creating

a complex graph of closely interconnected nodes. This associations not only recreate the complete

file system tree structure, but also add all the association amongst software resources derived

through other sources of information such as symbolic links, man page associations, time groups

and name similarity. Figure 1 shows a branch of the SSG where most of the relations amongst

software resources are represented. Although this branch includes only 3 files and 6 directories

the complexity of the resulting graph is already evident.

The details of the meaning of each of the relations shown in figure 1 can be found in the

following sections.

4.2 Graph Representation and Storage

Is was decided that theSemantic Software Graph (SSG)should be stored as anRDF model.

RDF provides all the characteristics needed to correctly and efficiently store the SSG. These char-

acteristics are:

• RDF allows the definition of custom relation types, and the existence of multiple types of

such relations in the same graph.

• RDF is an established standard, therefore it is possible to use the SSG with other software

which conforms to the RDF standard.

• RDF is a graph representation system widely used in the WEB 2.0 industry. Therefore a lot

of well supported tools exist to store and manipulate RDF semantic graphs.

TheJena Semantic Web Frameworkwas decided to be used for the storage and manipulation

of the SSGs. Jena is a collection of tools and Java APIs, that allow the creation, storage and



26

manipulation of semantic graphs in many representations including RDF. Although Jena allows

the usage of database back-end for the storage of semantic graphs, it was decided not to use it, since

the size of an SSG makes the creation and manipulation of thisgraph on a database forbidding.

An alternative storage method was decided, which used Jena’s TDB technology. TDB stores

the semantic graph in files on the local file system. TDB is specifically optimized for semantic

graphs, in contrast to databases. Hence, both the creation and the manipulation of semantic graphs

is extremely efficient.

The RDF standard is designed for web resources, so it lacks properties and resources specifi-

cally needed for the representation of an SSG. To overcome these limitations, a custom namespace

with the prefixssg was created, which includes all the properties and resources needed for the

correct representation of a Semantic Software Graph. The contents of this namespace are pre-

sented in appendix??.

Finally each SSG nodes, either directory and file or package,must be uniquely identified. To

achieve this uniqueness special URIs are used. The URIs utilize the AMI ID to uniquely identify

the machine instance the SSG was built for. The following URItemplates are used:

• ec2://[ami-id]:[resource-absolute-path] for directories and files.

• ec2://[ami-id]/[package-name] for software packages.

4.3 Loading harvested Data to the Semantic Software Graph

After the creation of an empty TDB model to store theSemantic Software Graph (SSG)of the

Amazon Machine Images (AMI)harvested, the harvesting data must be loaded to the SSG. The

harvesting data is composed of several files, each containing different information. Appendix A

lists the harvesting data files and describes their content.
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Each file requires different handling and adds different nodes, attributes and links to the SSG.

The loading procedure for each of the harvesting data files isdescribed in the following sections.

4.3.1 Directory and File Data Loading

The processing of theDirectory data and theFile data is related since almost the same at-

tributes and relations are added to the SSG. TheDirectory is loaded first to reconstruct the hier-

archical structure of the filesystem directory tree. For each directory found in the filesystem an

ssg:directorynode is created. Then theFile data is loaded. For every file in the filesystem an

ssg:file is created. The completion of the loading of both data files reconstructs the complete

filesystem tree structure of the AMI harvested, with each of the node having important metadata

attributes. The properties added for both directory and fileresources are summarized in table 5

Attribute Value Value Type
ssg:name File system name xsd:string
ssg:localPath Absolute file system path xsd:string
ssg:mode Permissions of the resource xsd:integer
ssg:inode Inode number xsd:long
ssg:uid User ID xsd:integer
ssg:gid Group ID xsd:integer
ssg:size Size in bytes xsd:long
ssg:atime Most recent access time xsd:long
ssg:mtime Most recent content modification timexsd:long
ssg:ctime Most recent metadata change time xsd:long

Table 5: Attributes assigned to each file or directory node

Additionally links are added amongst the nodes to representthe filesystem relations amongst

them. These links includessg:childOf which relates file nodes and directory nodes to their

parent directory node in the filesystem tree, and its inversessg:parentOf which relates a

directory node to the nodes of its contents.
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4.3.2 Symbolic Link Data Loading

The data in theSymbolic Linkdata file is used to associate the symbolic links with their targets.

For each record in theSymbolic Linkdata file, the file node representing the symbolic link is

assigned thessg:link type. Finally anssg:linksTo link relates the link node to the target

file node.

4.3.3 Man-page Data Loading

The data in theMan-pagedata file is used to associate documented files with their documen-

tation. For each record in theMan-pagethe manpage file node is assigned thessg:man type.

Additionally, anssg:documentedBy link relates the documented file node to its documenta-

tion and anssg:documents link relates each manpage node to the file node it documents.

4.3.4 Package Data Loading

The contents of thePackagesdata files, regardless of the source of information, associate the

packages with their file members. For each record in the Packages data file a new node of type

ssg:pack is created. Additionally anssg:memberOf link associates each file node to the

package it is member of and anssg:hasAsMember link associates each package node to each

of its files.

4.4 Semantic Software Graph Post-processing

After loading data in theSemantic Software Graphs (SSG), additional processing is required to

be performed in order to prepare the SSGs for the analysis andthe software package identification

process. This processing operation falls into two categories:
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• Graph enhancement and analysis, where based on the characteristics of the graph, addi-

tional attributes and types are assigned to its nodes. This operation enhances the graph.

Although these attributes and types can be calculated on thefly, pre-calculating them will

make their future utilization simpler and more efficient.

• Graph cleanup and pruning, where unwanted nodes and their attributes and links are re-

moved from the SSG to reduce its size and get rid of the noise produced by them.

4.4.1 Graph Enhancement

In this stage of graph processing, additional links, types and attributes are computed and are

incorporated in the SSG. These enhancements, though computable from the SSG, can simplify

and improve the efficiency in later stages of the Software Package Identification process.

4.4.1.1 Addition Of the Executable Type

Some file nodes in the SSG play a particular role inside software files. Such files are the

executable files which are in essence commands provided by the software package, which the

user may execute. Most of the time software packages are build around the executable files. To

determine whether a file node is executable or not, the files mode attribute is used. Each mode

binary number has three flag bits signifying that the file is executable. To determine whether any

of this flag bits is set for the specific file node or not, bitwiseoperations are used. If the file node

is executable the node is assigned thessg:exec type.

4.4.1.2 Directory file and sub-directory counts

Two attributes of directories that may be useful during the specification of the rules is the file

count and the sub-directory count of each of the directoriesin SSG. These attributes are applied
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only to directories containing files or sub-directories. Absence of these attributes signifies absence

of files and sub-directories in the directory under study. For each directory for which the file count

is greater than 0 anssg:fileCount attribute is added to it and for every directory for which

the sub-directory count is greater than 0 anssg:subDirectoryCountproperty is added to it.

4.4.1.3 Directory Package Count and Directory Purity Properties

Since in the case of software package managers, software packages are installed with files in

multiple places, it is not a rare case to have software components from more than one software

packages reside in the same directory. If a directory contains software components from a sin-

gle software package, it is consideredpure. If the folder contains software components from

different software packages, the folder is labeled asimpure. Identification of which directories

are pure and which are impure is of great importance for the formation of the rules for software

package identification. A successful procedure for the categorization of directories to pure and

impure on an unstructured system, will substantially simplify the software package identification

process since a pure directory could be considered as a single entity with the properties of all of

its contents. Software components in impure directories may require additional rules, to success-

fully divide their components to the appropriate software packages. Before labeling directories as

pure and impure each directory is assigned anssg:containsMembersOf link to each of the

packages that has members in the directory. This property isreally useful for the categorization of

directories, as well as the subsequent stages of rule formation. If the number of packages having

members in the directory equals to 1 the directory node is assigned thessg:pureDirectory

property whereas if the number of packages is greater than 1 the directory node is assigned the

ssg:impureDirectory type.
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4.4.2 Graph cleanup and pruning

In this section the cleanup and pruning processes applied onthe SSGs are described. Cleanup

and pruning equates to removal of resources and statements from the semantic graphs. Therefore

there is some loss of information. The decision to apply eachfiltering or filetree pruning operation

is justified. Also for each process, a summary of the results is presented, to illustrate the impact

of the cleanup and pruning on the semantic graph.

4.4.2.1 Software Package Overlap Cleanup

The usage of a Software Package Management system does not guarantee membership of

the software components to a single Software Package. Thereexists a possibility to have soft-

ware components that are members of two or more software packages at the same time. Such a

case may create complications during the software identification process, therefore, it is advisable

to check for the existence of such software package overlapsand appropriately deal with them.

Looking for package overlaps in the package manager semantic graph, resulted in a small num-

ber of software components, belonging to more than one software packages. The mean average

number of overlaps detected on each machine is 46.8. Since the number of overlapping software

components in negligible compared to the size of the semantic graph, it was decided to follow the

simplest solution, and remove this software resources completely from the semantic graph. It is

believed that this removal will not have a significant impacton the rest of the software package

identification process.

4.4.2.2 Non Software Directory and File Removal

It is evident that not all of the directories and files found ona machine instance are software

components. Files can be created from both the system duringits operation as well as the systems
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user for personal data storage. Since these files and directories are irrelevant to the software pack-

age identification process, it is decided that it should be removed completely from the Semantic

Software Graph. This removal will be useful not only during the analysis of the software package

structure but also during software package identification process. As a consequence, it is required

that the removal is performed with rules that do not require knowledge of the software packages

installed on the system under study.

The first set of rules deals with root level directories. It iscommon practice for Linux dis-

tributions to have specific names and usages for root level directories, although this may vary

from distribution to distribution. Although information exists about the exact role of each of the

root level directories, it was decided to utilize the knowledge about the structure of the software

packages to verify which of these directories contain software components and which don’t. The

selection of a root directory for removal implies that the whole filesystem tree branch under that

directory will be removed. Therefore all the files residing on that filesystem tree branch must be

taken into account.

The following steps were performed on each of the machine instances under study.

1. The root level directories were retrieved.

2. For each of the root level directories, the file system branch of that directory was examined

and the total number of files and the number of software components were determined.

3. Using the two numbers from the previous step the ratio of the software components found

in the specific filesystem tree branch is determined.

After the collection of the root folders and the respective software component files ratios for

each of the machine instances, multiple information about the properties of the same root directory

are available. The decision of whether to filter out the specific root directory depends on its general
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behaviour. Therefore the mean average ratio is computed foreach of the root directories found.

Machines on which the root directory under study has not beenfound are not taken into account.

Root directories that have a mean average software component ratio below a certain threshold

are added to the list of directories to be filtered out. This ratio threshold was decided to be set to

0.1 to minimize the impact of the filtering on the software package structure. Table 6 summarizes

the root directories found and the respective average ratios as well as which of them are filtered or

not.

Directory Mean Ratio Filtered
/tmp 0.00 YES
/.gem 0.00 YES
/boot 0.64 NO
/proc 0.00 YES
/home 0.00 YES
/selinux 0.00 YES
/var 0.14 NO
/lib64 1.00 NO
/mnt 0.00 YES
/opt 0.39 NO
/usr 0.84 NO
/dev 0.00 YES
/sys 0.00 YES
/etc 0.61 NO
/lib 0.92 NO
/sbin 1.01 NO
/root 0.00 YES
/bin 0.99 NO

Table 6: Root Directory Software Component Ratio

It must be noted that in most root directory cases there is a substantial number of files that do

not belong to the known software packages. This may be the result of two things.

• There is a substantial number of files generated after the installation, which seems doubtful

for directories that traditionally host software components.
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• There is a substantial number of software packages installed using means other than the soft-

ware package manager. This observation increases the necessity for the software package

identification system, which will identify the structure and existence of this software.



Chapter 5

Software Component Relation Analysis

The aim of software package identification system is to identify and essentially recreate the

structure of a software package. In the software package structure, the software components of

the package share a common membership relation amongst them. Since the knowledge of the

software package structure is not present when the softwareidentification process takes place, the

relations amongst the software components must be recreated utilizing information from the file

system metadata.

The relations that may be recreated from the file system metadata raise a number of issues

regarding both their validity and their completeness. The relations recreated using a specific form

of file system metadata may not always be valid relations amongst software components of the

same software package. Consequently, these relations are candidate relations amongst software

components of the same software package, with a degree of certainty that can be expressed as

a probability. Depending on the type of file system metadata utilized to recreate the software

component relations, the probability that the related components are members of the same software

package varies; as a result, each type of metadata must be processed independently and a separate

probability must be assigned to each type of relation.

35
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An equally important complication of the recreation of software component relations is their

completeness. It is not by any means guaranteed that sufficient relations of a single type will be

available, to relate all the components of the software package amongst them. As a consequence,

multiple types of relations must be used to minimize the unlinked software components to the

minimum possible number.

A final complication of the relation recreation process has to do with the size of the semantic

software graph. Having a huge number of individual softwarecomponents to relate, makes the

problem computational intensive, if not unfeasible; for that reason, ways must be found to group

software components to natural groups which will behave as asingle software component in the

software package identification process.

In the following sections the possible relations that may beextracted from file system meta-

data are examined, one in each section, and relation rules are specified for each of the relation

types. Additionally, it is examined how to group software components to natural groups, namely

directories, and in which cases this grouping is not applicable.

Before beginning the relation analysis process, an important assumption must be stated. As

found during the root directory filtering process in 4.4.2.2, a large number of software compo-

nents, which are not members of the known software packages,has been found in most of the

systems under study. This software components are probablysoftware packages installed using

ways other than the software package management system. Since the aim of the software package

identification system is to identify not only the software packages known through the software

package manager, but all the software packages on the known machine instance as well, and since

no knowledge is available for the structure of this softwarepackages to contribute to the creation

of the relation rules, it was decided to use only software components that are members of some

package for the study. Although this may seem to simplify theproblem, it actually allows for the
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creation of rules that will eventually identify not only theknown software packages, but also the

unknown software packages since they are expected to have similar structure to the known ones.

This assumption is used in all the analysis processes performed throughout the rest of this chapter.

5.1 Symbolic Link Relations

The first form of filesystem metadata to be utilized for the extraction of relations amongst

software components, which are members of the same package,is the symbolic link association.

A symbolic link nodevi is a file on the file system which functions as an alias to another file

vj which is known as the target of the symbolic link. Based on theintuition of the structure of

software packages, since the symbolic link has no meaning without the target, the symbolic link

must be created after the installation of the target, essentially by the same process that created the

target, that is the installation of a specific software package. Although this may not always be the

case, the intuition is plausible, so its credibility must beevaluated.

In essence what is to be evaluated is the ratiopl of the links connecting a symbolic linkvi and

its targetvj to connect members of the same software package. The computation of the ratiopl is

trivial and may be computed using two measures, that isrl which is the number of symbolic link

edges found in the semantic software graph andrp which is the number of symbolic link edges for

which both the symbolic link nodevi and the target nodevj reside in the same software package.

From these two measures the ratio may be computed as:

pl =
rp

rl
(5.1.1)

Table 7 presents the computation of the two measures as well as the ratio for the symbolic link

and its target to belong to the same software package. The ratios are also presented in figure 2. It

is clear from the results that there is a high degree of certainty that in the case of symbolic link



38

edges, both the symbolic link and its target are members of the same software package. An unfor-

tunate event is that although this form of relations signify, with high degree of certainty, common

membership to the same software package, their number is very small compared to the size of the

Semantic Software Graphs, therefore their contribution tothe Software Package Identification is

limited.

AMI ID rl rp pl
ami-01fbce75 1 463 1 383 0.95
ami-026f5e76 2 599 2 526 0.97
ami-02714476 1 361 1 292 0.95
ami-02b98876 2 026 1 909 0.94
ami-02f8cd76 1 361 1 292 0.95
ami-03310577 580 537 0.93
ami-033d0977 1 574 1 493 0.95
ami-03c2f677 645 605 0.94

Table 7: Symbolic Link Statistics
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The degree of certaintywl that a symbolic link and its target are members of the same software

package, is equal to the median of the ratio measurespl of the SSGs under study.

5.2 Component to Man-page Relation

The links between documented software components with their documentation files returned

by theman command line command in Linux can be of valuable importance in the association of

software components belonging to the same package. Therefore, these links are to be evaluated

and used in theSoftware Package Identification Process (SPIS). Although the intuition will make it

relevantly prominent that any software component is in the same package with its documentation,

we resist the temptation to take the easy path in this case andprefer to analyze the nature of these

associations. Based on the known structure of the software packages of the SSG under study it is

possible to compute how precise these links are in connecting nodes of the same software package

using the ratio measure.

The software package based ratiopm of the links connecting that a documented software

componentvi and its man-page documentationvj is given by:

pm =
rp

rm
(5.2.1)

whererm is the number of man-page links found on the system andrp the number of these man-

page links which associate members of the same software package.

From the results in table 8 and in figure 3, it is clear that a documented software component

and its man-page documentation are members of the same software package with a high degree of

certainty. The degree of certaintywm that the documented software components and its man-page

documentation are members of the same software package is set to be equal to the median of the

ratiospm of the SSGs under study.
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AMI ID rm rp pm
ami-03c2f677 663 575 0.87
ami-02714476 1 128 942 0.84
ami-026f5e76 1 093 977 0.89
ami-02f8cd76 1 066 942 0.88
ami-033d0977 665 577 0.87
ami-01fbce75 1 173 1 092 0.93
ami-03310577 660 568 0.86
ami-02b98876 1 435 1 294 0.90

Table 8: Software to Man-page Link Analysis

5.3 Inode Number Analysis and Relation Extraction

On Linux file systems each file has a single and unique inode which contains metadata about

the file and also points to the files data. Each inode in identified by a unique inode number[13].

When a file is created the next available inode from a list of available inodes is used to store its

metadata[9]. It is evident, not obligatory though, that fortwo or more files created in sequence,

their inode numbers must also be in sequence. This is not always the case because the deletion of a

file returns its inode back to the list of unused inodes complicating the order of inode assignment.

Still, it is possible for a series of files created in sequenceto form aninode sequence. In general:

Definition 5. A set of software component nodes{v1, . . . , vn} with inode numbers{i1, . . . , in}

respectively form aninode sequenceif ij+1 − ij = 1,∀1 ≤ j < n.

This property of the inode number is of interest for the process of software package identifi-

cation. Since the members of a software package are installed one after the other, it is expected

for the members of the software package to have form sequences of inode numbers. Although this

heavily depends on the policies used to allocate new inodes,it is worth examining these relations,

since, if they are true, will provide invaluable information about the structure of the software pack-

age. The interest in the inode numbers is not in the numbers themselves but in the difference of

the inodes on two or more files.
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Figure 3: Values of Man-page Link Ratiopm

The analysis of the inode number performed can be divided in the following steps.

1. Determine to what extend the members of a software packageform inode sequences.

2. Analyze inode sequences and decide how to utilize these relations in the software package

identification process.

5.3.1 Inode sequences in software packages

The first step in analyzing inode sequences is to verify the existence of inode sequences in

software packages. To achieve this task, sorted lists with the inode of each of their members are

retrieved for each of the packages found on the system. Sequences are identified by looping over

the list looking for groups of successive inode numbers. Theinode sequences identified are stored

for future reference.
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Analysis of the inode sequences provided some interesting results. Although the existence of

inode sequences in software packages was detected, it was rare that a single sequence included all

the members of the software package. In some cases the majority of the members of a software

package formed a single inode sequence with few exceptions (Figure 4). In other cases the mem-

bers of the software package formed several smaller inode sequences (Figure 5). Finally, in some

cases no inode subsequences were found.

134555 164260 165679 165680 165681 165682 165683 165684 202504

Inode Subsequence

<mtr-0.71-3.1>

Figure 4: Inode subsequence of packagemtr-0.71-3.1

It is evident that inodes are not sufficient to identify the complete structure of a software

package, Still the associations amongst the components of the same software package that may be

derived from the inode data may provide useful relations to be used during the software package

identification process.

166037 167687 167688 167689 167690 167691 167692 181071 181072

Inode Subsequence 1

<sed-4.1.5-5.fc6>

181073 198452 426067

Inode Subsequence 2

Figure 5: Inode subsequence of packagesed-4.1.5-5.fc6
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5.3.2 Inodes sequence properties analysis

To analyse the properties of inode sequences identified in each of the systems under study, it

is important to evaluate the probability of two software components to be in the same software

package if they are next to each other in an inode sequence. Toachieve this two measures are

computed. The first measurerdq is the total number of software component pairs(vj , vk) with

inode numbersij , ik respectively for which|ij − ik| = d. The second measurerdp is the total

number of software component pairs(vj , vk) with inode numbersij , ik respectively for which

|ij − ik| = d providedvj andvk are members of the same software package. In other wordsrdp

measures the number of inode related components that belongto the same software package. The

ratio of the inode linkspq is given by:

pdq =
rdp

rdq
(5.3.1)

Table 9 presents the results of this analysis on the semanticgraphs under study ford = 1.

AMI ID r1q r1p p1q
ami-033d0977 25 166 24 507 0.97
ami-02b98876 57 983 53 726 0.93
ami-01fbce75 20 259 17 146 0.85
ami-03c2f677 22 432 21 805 0.97
ami-026f5e76 19 683 16 719 0.85
ami-03310577 22 245 21 660 0.97
ami-02714476 16 870 13 701 0.81
ami-02f8cd76 16 870 13 705 0.81

Table 9: Number of inode sequence pairs for d=1

From the results of the table, it is evident that the relations amongst software components with

inode numbers in sequence have a significant probability to be members of the same software

package. What is shown in figure 6 is that machine instances can be divided in two classes based

on their value ofp1q. Although the value seems related tor1q with values below 21 000 having low
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p1q and values over 21 000 having highp(Q1), the number of cases examines is limited to make

such conclusions. Analysis of this observation is left for future work.
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Figure 6: Inode sequence analysis for d=1

The number of links derived from a single value ofd is limited, therefore additional values of

d are investigated and the relations generated are utilized in the SSIP.

Two software components with inode value distanced are members of the same package with

a degree of certainty equal towd
q . The value ofwd

q is defined as the median ofpdq ratio measures

of all SSGs under study.

As it can be seen from figure 7 the degree of certainty decreases slowly with the increase of

the distance. As a consequence, it is required to constrain the value of distance to be used in the

software package identification process.
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5.4 Time Property Analysis

File system resource time metadata is an important source ofinformation that can be used

to identify associations amongst software components of the same package. Since a software

package is installed as a single entity at a specific point in time, it is apparent that the software

components of the same package have similar time metadata. Also packages installed at differ-

ent points in time have sufficiently different time metadatato distinguish amongst them. Time

metadata regarding file system components such as files and directories come in the form of three

timestamps.

Access time (atime)The last time the file was read

Modify time (mtime) The last time the file contents were changed

Change time (ctime) The last time the file permissions were changed
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Each of the timestamps described above can be modified separately from each other, depending

on the actions of the system users. For example, a program execution may only modify the access

time of the files read during the execution. Equally a software update may alter the modification

time of the files updated.

Although time metadata is a great source of information for software component association,

the following scenarios may corrupt this metadata in such ways that the information becomes

misleading.

• When a software package is updated, the update process modifies the files that changed

from the previous version. This results in the fragmentation of the members of the software

package to updated and not updated ones. Further fragmentation is possible by subsequent

updates.

• When multiple software packages are installed on some systems, to improve the installa-

tion process performance, concurrent installation is performed for more than one software

package. Such an installation may result in associating software components of different

software packages that happen to be installed in parallel.

To evaluate the quality of the time metadata information associations, different experiments are

performed. The first set of experiments investigate the timedistance between software components

of the same package. This measure will signify whether the software components of the same

package have similar time metadata or not. The second set of experiments evaluates whether

software components that were created at the same point in time (with the accuracy of one second)

are members of the same package. Also the way these relationsare going to be used in the

software package identification process is investigated, and the weights of the assigned relations

are determined.
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5.4.1 Mean time distance of software components of the same package

The first experiment regarding time metadata deals with the time distance amongst the com-

ponents of a software package. Time distancedi,j between to software componentsvi andvj is

defined as the difference of the timestamps ofti - tj of vi andvj respectively. For simplicity

reasons the timestampst1, . . . , tn of the software componentsv1, . . . , vn which are members of

software packageC are placed in ascending order and the differencedi = ti+1 − ti∀i ∈ [1, n) is

computed for members ofC with successive timestamps.

The fist experiment algorithm utilized to compute the mean time distanceM is performed for

all three of the timestamps types. To avoid misleading results due to the various package sizes, the

mean is computed collectively for all the timestamp distancesd between components of the same

package found on the Semantic Software Graph.

Sample results of the computation of the mean timestamp distance for the various timestamp

types can be seen in table 10. The results signify really large time differences between members

of the same package. This is usually the result of software package updates which leads to the

segmentation of the software package components to updatedand not updated components with

a significant gap amongst them. Careful investigation of software packages signifies that this

scenario holds true in most cases.

AMI ID Modification Time Change Time Access Time
ami-03c2f677 1 277 466 4 200 1 221 670
ami-02714476 1 174 919 0 335 237
ami-026f5e76 1 135 297 0 96 148
ami-02f8cd76 1 235 669 0 263 495
ami-033d0977 1 181 491 4 018 1 129 721
ami-01fbce75 1 224 469 1 285 729
ami-03310577 1 407 106 3 888 1 362 631
ami-02b98876 1 063 430 5 078 439 500

Table 10: Mean Timestamp Distance In Packages
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The observations of the numbers in table 10 are misleading since these large numbers do not

actually illustrate the real behaviour of timestamps in software packages. Table 11 presents the

number of occurrences of each time distance along with the respective percentage. From the re-

sults it is evident that the majority of the software components of the same package have identical

timestamps and form groups of software components on which an operation was performed con-

currently. As a result, most of the software package components are expected to be associated

through timestamps to other members of the same package, which means that utilizing timestamp

data is both feasible and interesting.

Time Distance Occurrences %
0 609 795 93.79%
1 9 359 1.44%
2 2 105 0.32%

3-9 4 940 0.76%
10-99 5 550 0.85%

100-999 2 384 0.37%
1000-9999 1 045 0.16%

10000+ 15 024 2.31%
Table 11: Number of occurrences of each time distance

Another implication of these observations is that althoughthere are strong time related associ-

ations amongst the members of the same package, these relations are most of the times segmented

and altered by system and user actions. As a result, time metadata is not a sufficient source of

information by itself to identify software packages as complete structures. Additional sources of

information are required to join segmented clusters of software components to the software pack-

age structure. Still, further experiments are performed totake advantage of this important source

of information.
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5.4.2 Analysis of software components time metadata

Since the software component time metadata is not sufficientto identify the whole structure

of a software package, the possibility to use time metadata similarity to relate individual soft-

ware components is studied. After an investigation of the time metadata, a significant number

of software component groups with exactly the same timestamps were detected. This implies

that a system of user action was performed on these software components concurrently. Software

components with the same timestamp form a time group.

Inside the SSG, time subgraphs are defined. Each time subgraph is composed of nodes sharing

an equal time related property. Members of different software packages are allowed to be in the

same subgraph. Therefore, the subgraph is further divided into package subgraphs. Each of the

nodes of the package subgraphs has the same time related property with the other nodes in the

subgraph and is member of the same software package.

The desired property of time subgraphs is for all the membersof the time subgraph to be

members of a single package subgraph. The worst case scenario is for the time subgraph to be

composed of several package subgraphs, each with a single node.

Since the members of the same time subgraph will form a complete graph if they are con-

sidered as members of the same graph, the most appropriate measure is to compute the ratio of

the edges created, that is which edges are true positives(TP) by the total number of edges in the

subgraph. True positives are the edges (links) connecting members of the same software package.

Therefore the ratiopi for a time subgraphTi composed of package graphs{Ci,1, Ci,n} is given

by:

pi =

∑n
j=1 ||Ci,j ||

||Ti||
(5.4.1)

It must be noted that both time subgraphs and package subgraphs are complete graphs.
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AMI ID Modification Change Access
ami-01fbce75 0.92 0.42 0.42
ami-026f5e76 0.94 0.19 0.20
ami-02714476 0.83 0.33 0.04
ami-02b98876 0.97 0.97 0.91
ami-02f8cd76 0.83 0.44 0.04
ami-03310577 0.97 0.79 0.97
ami-033d0977 0.96 0.68 0.96
ami-03c2f677 0.97 0.68 0.97

Table 12: Ratio measures for time groups

The overall ratiop for the SSG graph is given by:

p =

∑m
i=1

∑ni

j=1 ||Ci,j ||
∑m

i=1 ||Ti||
(5.4.2)

As shown in table 12 and figure 8, time subgraphs based on themodify time stamphave overall

high ratio. As for the other two time stamp types,change time stamp, based on the time subgraphs,

has relatively low ratio whereas theaccess time stamp, based on the time subgraphs has, in some

cases, satisfactory values whereas, in some other cases, the ratio is very low. Consequently, a rule

is required to decide for the utilization of the subgraphs ofa specific time stamp in the SPIP.

The ratio of a specific time subgraph can be decreased when it includes nodes from multiple

software packages. This may be the result of an operation on arandom set of nodes, such as read-

ing random files from the file system concurrently, or a concurrent operation on multiple software

packages; intuition favours the latter case since it is morelikely. A concurrent operation on multi-

ple packages should have as a result, the formation of largertime subgraphs. Although analysis of

the time subgraph sizes could be performed here, diversity of package sizes may significantly alter

the time subgraph sizes making the formation of a decision rule difficult. Therefore, the formation

of the decision rule is left to be performed after the reduction of the graph in section 6.2.
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5.5 Software Component Grouping and Folder Level Aggregation

The size of the SSGs is substantially large. There are on average about 50 000 nodes found

on each SSG. Due to the size, the computations required to cluster the software components will

require a lot of processing power and time, Therefore if any means of simplifying the SSG and

reducing the number of the components to be cluster will significantly improve the performance

of the software components clustering process. This requires grouping software components to

groups known to belong to a single software package. The group will behave as a representative

of its members and will maintain the relations its members had with other components outside the

group.

The most natural grouping of software components is that of file system directories. Although

there are known examples of directories that contain members from multiple software packages,

it is out of intuition than in general a directory contains members of a single software package.

To decide whether the contents of a directory shall be grouped or not, it must be determined

whether that directory is pure or impure. A directory subgraph Fi = {vi,1, . . . , vi,n} is pure if

vi,j ∈ Cl∀1 ≤ j ≤ n whereCl is a software package. A directory subgraphFi = {vi,1, . . . , vi,n}

is impure if there exist at least two nodesvi,j , vi,k such asvi,j ∈ Cl, vi,k ∈ Cm, Cl 6= Cm.

Although the distinction between pure and impure directories is clear, there are many cases where

a directory is classified as impure due to an insignificant number of software components, where

the majority of the software components belong to a single software package. To address this issue

the measure of ratiop is used, where0 ≤ p ≤ 1. The computation of ratio requires the definition of

package subgraphs. The components of a directory subgraphfi are divided to software package

subgraphs{Ci,1, . . . , Ci,m} whereCi,j ⊆ Fi andCi,j ⊂ Cj for all packages in the semantic
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software graph. Then the ratiopi of the directory subgraphFi is given by:

pi =

m
∑

j=1
||Ci,j ||

||Fi||
(5.5.1)

It must be noted that both directory subgraphs and package subgraphs are complete.

The ratio essentially measures is the ratio of the sum of the relations amongst the component in

each of the directories software package group by the numberof relations amongst the components

of the directory. The ratio of a pure directory is 1 whereas the ratio of a directory subgraph, each

component of which belongs to a different package subgraph is 0. It was decided to consider

a directoryFi pure if its ratiopi ≥ 0.95. Table 13 presents the number of directories in each

category for each of the semantic graphs under study.

Pure pi ≥ 0.95 Impure
AMI ID N % N % N %

ami-03c2f677 1 320 92.96% 3 0.21% 97 6.83%
ami-02714476 2 030 94.64% 4 0.19% 111 5.17%
ami-026f5e76 2 029 93.33% 5 0.23% 140 6.44%
ami-02f8cd76 2 030 94.64% 4 0.19% 111 5.17%
ami-033d0977 1 404 92.86% 3 0.20% 105 6.94%
ami-01fbce75 2 246 94.41% 4 0.17% 129 5.42%
ami-03310577 1 305 95.33% 3 0.22% 61 4.46%
ami-02b98876 5 188 97.91% 4 0.08% 107 2.02%

Table 13: Directory Purity Categorisation

The results of table 13 reveal some interesting characteristics regarding pure and impure di-

rectories. The initial intuition that most of the directories in the SSG can be categorised as pure

is proved to be true. The impure directories are a small minority. This small number of impure

directories on the SSGs under study, though, introduces a significant problem in identifying them.

Since the number of impure directories is very small compared to the number of pure directories,

machine learning categorisation techniques will have a difficult time categorizing directories due

to the data bias.
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Always Impure Impure if Exist Sometimes Impure
Total N % N % N %

173 6 3.47% 126 72.83% 41 23.70%
Table 14: Impure directory analysis

Thankfully, the number of the directories is sufficiently small to seek for simple solutions

regarding the categorization of directories in pure and impure. Although systems differ amongst

them, there are some rules and common practices regarding the directories and their contents. As a

consequence, having a list of commonly impure directories will provide a quick and substantially

sufficient way to categorise directories as pure or impure.

To build the general list of commonly impure directories, a list of the impure directories is

collected from each of the SSGs under study. Then, impure directories are divided in several

groups. The first group consists of directories that exist onall SSGs under study, and they are

always impure. The second category consists of directoriesthat do not exist on all SSGs but in the

case they exist they are impure. The last category consists of directories that are sometimes pure

and sometimes impure.

Although some of the directories are not always impure, it isdecided to consider all these di-

rectories as impure. This decision was made because if a puredirectory is erroneously considered

as impure the relations amongst the components may be established using other sources of infor-

mation whereas if an impure directory is erroneously categorised as pure, the relations established

amongst the directories contents will not be possible to be filtered out in future stages. Table 14

presents the number of distinct impure directories found inthe systems under study as well as

the categorizations based on their existence and impurity in all the SSGs under study. Using the

information selected a list of impure directories is created and it is used to categorise directories

as pure and impure.
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The list of impure directories generated in the current section is used for the categorization of

directories to pure and impure before the first reduction phase in section 6.1.

5.6 Pure Directories and their Sub-directories

After providing an efficient procedure to classify directories to pure and impure, relations

are examined amongst pure directories. The easiest kind of relation is the relation of a pure

directory and its pure sub-directories. If a pure directoryis considered to belong to a specific

software package, not only the software components found init but also any sub-directories and

their contents must belong to the same package. The evaluation of this hypothesis requires the

retrieval of all (pure directory, pure sub-directory) couples and the examination of whether both

the directory and the sub-directory in each of the couples belong to the same software package.

Same Package Different Package
AMI ID Total N % N %

ami-03c2f677 807 799 99.01% 8 0.99%
ami-02714476 857 837 97.67% 20 2.33%
ami-026f5e76 765 744 97.25% 21 2.75%
ami-02f8cd76 857 837 97.67% 20 2.33%
ami-033d0977 829 820 98.91% 9 1.09%
ami-01fbce75 949 931 98.10% 18 1.90%
ami-03310577 779 771 98.97% 8 1.03%
ami-02b98876 4 069 4 069 100.00% 0 0.00%

Table 15: Directory - Sub-directory Relations

The results of performing this analysis on the SSGs under study are presented in table 15.

From the result it is evident that the number of sub-directories that are not members of the same

software package as their parent directory is negligible. Therefore it is possible to consider pure

directories and their pure sub-directories as a subgraph, where each of its resources belong to the

same software package. This observation will be useful for the second phase of SSG reduction in

section 6.1.



Chapter 6

Clustering

The Semantic Software Graph is composed by a number of vertices, each denoting a software

component with multiple edges relating the components amongst them. In essence the identifica-

tion of software packages is a partitioning of the semantic graph to several subgraphs of intercon-

nected software components. This partitioning has two requirements.

1. The software components that are in the same partition (software package) must be closely

connected amongst each other.

2. There must be a small number of connection amongst components of different partitions.

The idea of partitioning the Semantic Software Graph to several partitions matches the idea of

graph clustering. What is required is to partition softwarecomponents to clusters of closely con-

nected software components. Thankfully substantial research has been performed in the field and

various graph clustering algorithms are available to utilize. Utilizing the graph clustering algo-

rithms already available requires the reformation of the Semantic Software Graph to a form used

by those algorithms. In the current state SSG is a multigraphsince multiple edges of different

type are allowed amongst its vertices. Additionally each type of edge has different importance,

56
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therefore the SSG is also a weighted graph, since different weights are assigned to each type of

edges based on their importance.

The graph clustering algorithms selected for the current study do not work with multigraphs,

therefore multiple edges must be summarized to single edges. The summarization scheme selected

for the SSG is to replace multiple connection amongst two software components with a new one

which has weight equal to the sum of the weights of the edges replaced. This scheme was selected

since two components with multiple connections are considered closer to each other than two

software components with connected with single connections. An equally important feature of the

SSG is it’s size. SSG graphs are composed of a large number of vertices. Additionally the number

of some edge types, such as membership to the same pure directory, is quadratic to the number

of vertices, which substantially increases the size of the graph to cluster. Therefore methods to

reduce the size of the SSG must be found. This reduction of theSSG is described in the next

section.

The process of graph reduction is presented in section 6.1 and the procedures followed to

generate and summarize edge weights is presented in section6.2. Next the tree graph clustering al-

gorithms utilized in the current study are analyzed in section 6.3 and finally the clustering procedur

is summarized in section 6.4

6.1 Graph Reduction

Before clustering SSG to identify software packages a preparatory step is required as it is

evident from table 16 the number of vertices in the SSGs understudy is substantially large. Since

none of the known graph clustering algorithms has linear time complexity vertex cardinality of

this order will substantially increase the running time of the clustering algorithm.
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AMI ID Vertex Cardinality
ami-02f8cd76 28 633
ami-033d0977 32 573
ami-026f5e76 26 921
ami-02714476 67 182
ami-02b98876 106 041
ami-03c2f677 27 780
ami-01fbce75 27 339
ami-03310577 23 490
Table 16: Vertex Set Cardinality by AMI

Pure Time Group Edges
AMI ID Directory mtime ctime atime

ami-02f8cd76 543 262 4 065 386 14 962 127 294 636 596
ami-033d0977 1 710 339 8 146 018 18 529 981 8 327 896
ami-026f5e76 628 329 3 737 576 24 324 528 18 983 037
ami-02714476 543 262 17 492 909 57 825 726 1 878 262 256
ami-02b98876 2 881 845 205 892 719 33 596 800 27 193 160
ami-03c2f677 1 631 758 5 507 510 21 724 686 12 460 511
ami-01fbce75 581 820 2 593 304 5 745 157 5 578 172
ami-03310577 1 617 888 4 541 879 17 221 921 4 711 612

Table 17: Edge Cardinality by Edge Type

The situation becomes even more complex in the case of edges.Edges amongst software

components can be divided into two categories, pair edges and group edges. Pair edges refer

to direct relations amongst two software components such assymbolic links or software to man

page page relations. The group edges refer to relations established amongst software components

through their common membership to some groups of vertices sharing a common property. Such

edges are membership to the same pure directory or membership to the same time group. Since all

the vertices in such a group are related to each other, the number of edges is quadratic to the size

of each group. Table 17 presents the computed cardinality ofgroup edges by type. It is evident

that with edge cardinality of this order clustering SSGs will be extremely time consuming if not

infeasible.
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To address the SSG size issue, graph reduction methods are utilized. The first graph reduction

procedure concerns pure directories. Directories are a natural grouping of software components.

The procedure used to categorise directories to pure and impure provides a high degree of certainty

that the software components found inside the same directory are members of the same software

package. Therefore, with minimal loss of information it is possible to reduce SSGs by replacing

the vertices of all the software components found under the same pure directory by a representative

vertex which inherits all the properties of the vertices it represents.

What is achieved with this reduction process is not only a smaller vertex cardinality but also a

substantially smaller edge cardinality. Edges amongst members of the same pure directory are re-

moved all together, and time group edges are reduced too since the edges amongst the components

reduced to the same vertex are discarded.

An implication of the reduction procedure discussed beforeis handling happens with the edges

the reduced software components had with software components outside their reduction group. In

the case of single edges replacing the reduced vertex with the reduction vertex in all it’s edges

will solve the problem. This is not true though in the case of multiple edges of the same type.

This is usually the case for time group edges. Multiple edgesmay exist connecting vertices in a

reduction group to a single vertex outside the group or to multiple vertices residing in a different

reduction group. Summing up the weights of this edges will create a bias in favour of reduction

groups of substantial size. To remove this bias it was decided to divide the sum of weights by

a factor dependent on the size of the reduction groups. Sincefor two reduction groupsV1 and

V2 the maximum possible number of edges of the same type amongstthen is when they are fully

connected and it is equal to|V1| × |V2|, it was decided to divide the sum of edge weights with

this product. This covers also the case of multiple edges to asingle vertex, since a single vertex

may be considered as a reduction group with the vertex as the only component. Although this
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Initial Reduction Phase 1 Reduction Phase 2
AMI ID |V | |V | % |V | %

ami-01fbce75 132 891 8 094 6.09% 6 948 5.23%
ami-026f5e76 111 946 7 785 6.95% 6 889 6.15%
ami-02714476 822 624 14 153 1.72% 6 938 0.84%
ami-02b98876 566 828 19 009 3.35% 12 933 2.28%
ami-02f8cd76 128 240 7 422 5.79% 6 313 4.92%
ami-03310577 64 034 8 673 13.54% 8 223 12.84%
ami-033d0977 187 726 10 818 5.76% 9 425 5.02%
ami-03c2f677 133 292 8 873 6.66% 7 472 5.61%

Table 18: Vertex Reduction Phases Results

restriction may appear demanding for reduction groups, experimental results shown that complete

connectivity is not rear, and even in cases where this is not true, the reduce weight of the edges is

compensated by weights of other edge types.

An additional phase of reduction may be achieved by utilizing the relation of pure directories

and their pure sub-directories. Analysis of this relation in section 5.6 has proved that almost all

pure sub-directories are in the same software package as their pure parent directories. Therefore

the reductions of pure sub-directories may be combined to their pure parent directories reductions

without significant loss of information. This phase of reduction is of recursive nature, therefore to

achieve maximal reduction the reduction starts from the deepest directories in the file system tree

and recursively elevating as long as pure parent directories are available. This procedure allows

for complete sub-trees belonging to a single software package to behave as a single entity.

The effect of the reduction process in the overall size of theSSG is drastic. The number of

vertices in each SSG is reduced by at least an order of size as seen in table 18 with a reduction of

two orders of size in some cases. Such a dramatic reduction significantly simplifies the process of

clustering for the identification of software packages. Thesame reduction effect applies for edges

as well since edges now connect fewer vertices and vertices internal to reduction groups are no

longer used.
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6.2 Edge Retrieval and Weight Computation

After the reduction phase, the graph data to be used for the clustering process must be retrieved

from the semantic software graph. This process is required since the graph clustering algorithms

to be used accept formats of input other than semantic graphs. Additionally not all edges are

encoded in the SSGs since some of the edges derive from the properties of the vertices. Finally at

the current stage the SSGs are multigraphs, which must transformed to regular graphs before the

clustering algorithms are applied to them.

The edges to be retrieved can be divided in two categories, those that are already available

as edges in the SSG and those that are derivable from the SSG vertices properties. In the first

category fall the symbolic link relations and the software to documentation relation. Since this

edges are already existent in the SSG their retrieval is trivial.

As for the second category this includes time group relations and name similarity relations.

In the case of time subgraphs edges are added amongst software components sharing the same

value of a specific time property such as modification time, change time and access time. Not

all three of the time properties are used. The decision of whether to use a specific time property

depends on the average size of the time groups formed based onthe specific time property. If

the created time groups have a large number of members, this is probably the result of a system

wide operation,and therefore the information retrieved from the specific time property are no more

useful for the identification of software packages since software components from more than one

software package are members of the same software package. Statistical analysis of the average

size and the properties of the resulting time groups suggestthat an average time group size below

40 is a good sign that the time properties could be used in the software identification process.
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Therefore all time properties that have an average group size beyond 40 are considered useless

and are discarded.
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Figure 9: Ratio to Time Subgraph Mean Size for mtime

From the time properties that remain the time groups are formed. For each of the time groups

edges are added amongst their members. In the case that the members of the time group have been

reduced, the reduction is used in the edges. Multiple connections are allowed from the reduction

to the other members of the time group. The edge connecting a reduction with some other member

of the time group is weighted with the number of edges connecting the member of the time group

with members of the reduction group the reduction represents, by the actual size of the reduction

group. In the case the other member of the time group is an other reduction, the number of edges

is divided by the product of the sizes of the two reduction groups. This is done to avoid bias in

favour of large reduction groups.
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Figure 10: Ratio to Time Subgraph Mean Size for ctime
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Figure 11: Ratio to Time Subgraph Mean Size for atime
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In the case of inode relations since distinct inodes are usedfor each of the software com-

ponents, only the proximity of inode numbers may be utilized. Vertices with consecutive inode

number have a significant probability to be members of the same software package. This apply

not only in the case that inode numbers differ by 1 but also in the case inode number differ by 2, 3

. . . . Therefore edges are generated that connect vertices ofthe SSG with inode difference up to 8.

The implications of reduction used for the time groups also applies in the case of inode numbers.

Therefore the same solution regarding the weight of this edges as the one used for time groups is

used.

In the case of name similarity, the name of the directories representing the reduction groups

and the names of vertices not reduced (members of impure directories) are used to create groups

of vertices sharing the same name (after some processing). Based on a list of common directory

names that do not signify membership to the same software package (such asbin, lib . . . )

which has been generated by the analysis of the properties ofthis groups, some of the groups

are considered irrelevant and are discarded. For the remaining name groups edges are added

connecting each of the members of the groups with all the other members of the group. Since some

probability that names in the list of common directory namesmay be shared by members of the

same software package exists, edges are added among those groups also, but with a significantly

lower weight.

After the generation of all the edges a multigraph is createdwhich is needed to be transformed

to a regular undirected graph. To achieve that a process of summarizing multiple connections

is performed. Since not all edges are of equal importance, weights are used to determine the

contribution of each edge type to the final edge weight connecting multiple graphs. The weights

are summarized in table 19
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Edge Type Weight
Same Time Group 0.8
INodes in Sequence 0.6
Symbolic Link 1.0
Man page 1.0
Name Similarity 1.0
Name Similarity Stop List 0.4
Table 19: Edge Summarizing Weights

The weight of an edge is determined by the sum of the product ofeach edge by the weight

factor specific for the edge type. Since it is possible to haveweights greater than one, all the

weights are normalized by dividing them by the largest weight produced.

6.3 Graph Clustering Algorithms

After the generation of the weighted undirected graph the process of graph clustering is in

order. Since different graph clustering algorithms exist,it was decided to apply 3 graph clustering

algorithm in order to investigate the suitability of each ofthe algorithms used. Several methods

have been proposed for graph clustering. Therefore in orderto address as much as possible of

the several methods, the three different clustering algorithms selected utilize completely different

methods. The first algorithm utilizes a simplistic agglomerative hierarchical clustering based on

vertex distances. The second algorithm performs a general cut using kernel k-means function. Fi-

nally the third algorithm clusters by flow simulation using Markov chains and stochastic matrices.

In the case of the first two first algorithms the results of the clustering process may be influenced

by some parameters selected therefore experimentation is performed altering those variables.

6.3.1 Agglomerative Hierarchical Graph Clustering

The first and most simplistic algorithm used for clustering in the current study is an Agglom-

erative Hierarchical Graph Clustering. The algorithm utilizes vertex distances to determine which
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vertices to put together. At each iteration of the clustering algorithm the pair of vertices with the

smallest distance forms a new cluster. The algorithm terminates when all vertices have been group

to a single cluster, of when the remaining distances are beyond a certain threshold.

Since the current representation of the weighted graph generated in the previous sections con-

siders as closer to each others the vertices connected with an edge of higher weight, to make

the graph suitable for the Agglomerative Clustering Algorithm the distance between two vertices

ui, uj is given bydi,j = 1− wi,j. This implies that not connected vertices have a distance of1.

An important aspect of the algorithm is the determination ofthe distance of the resulting

cluster after the grouping of two existing vertices. Several methods exist depending on the nature

of the data. For the current study the smallest distance is used for each of the remaining vertices.

The agglomerative clustering algorithm terminates when all vertices are group to a single

cluster. Since a single cluster is on now use in the case of software package identification, the al-

gorithm should be terminated in a previous iteration when multiple clusters exist. This termination

may be based on:

1. The number of clusters.

2. The distance between the vertices remaining

Since in real software package identification the number of clusters is not known beforehand,

the later termination criterion is selected. The distance threshold to terminate significantly influ-

ences the clustering process therefore the clustering algorithm is executed with different distance

thresholds and the effect it has on the quality of the resulting clustering is determined.
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6.3.2 Kernel k-means Graph Clustering (Graclus [8])

The second graph clustering algorithm used is a fast kernel-based multilevel algorithm for

graph clustering. The algorithm (which detailed description can be found in [7]) is separated in

three phases, theCoarsening Phase, the Initial Clustering Phaseand anteRefinement Phase. At

the coarsening phase the initial graph is reportedly transformed to smaller graphs, with each graph

having less vertices than the previous one. This is achievedby combining nodes to supernodes. A

vertex is combined with the neighbour vertex closer to him. The coarsening phase stops when the

graph has less than20kvertices where k is the number of desired clusters. At the initial clustering

phase the graph is initially clustered using spectral methods. At the refinement phase the graph is

transformed back to the graph before it in the coarsening phase. The extension is performed by

assigning the nodes that formed the supernode to the clusterthe supernode was member of. The

algorithm terminated when the refinement runs on the initialgraph.

The results of the clustering are influenced significantly bythe number of desired clusters.

Although in the case of software packages, the number of desired packages matches the number

of software packages expected to be found on the Machine Instance under study, and there is a

possibility to estimate this number based on statistical analysis of the relation of the number of

software packages to the number of files found on the machine instance file system, the actual

number of desired clusters must be higher since it is possible to have software packages installed

on the machine under study that are not managed by the software package system under study.

Determining the number of software packages expected to be found on a system is assumed

to be linearly related to the number of files found on the system. The results os linear regression

of the number of software packages to the number of files foundon the SSGs under study can be

seen in figure 12.
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Figure 12: Number of Packages to Number of files relation

It is evident from the graph the dependency of the number of packages to the number of files

is not too strong. Additionally in most of the cases the number of software packages ranges from

300 to 400, therefore an average number of packages of 350 will in most cases be very close to

the actual number of software packages residing in the machine under study. For experimentation

purposes the kernel k-means will be applied on the SSG data using several values of k ranging

from 300 to 500 in order to address additional packages, not managed by the software package

management system.

6.3.3 Flow Simulation Graph Clustering (MLC [27])

The final graph clustering algorithm utilized is a flow simulation algorithm. The graph is

transformed into a Markov graph a graph where for all nodes the weights of the outgoing arcs

sum to one. The flow is expanded by the usual discrete Markov process by computing powers
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of the associated stochastic matrix. Since the Markov process does not exhibit cluster structure

a new operate is defined for the Markov process called inflation, which is responsible for both

strengthening and weakening the current whereas the expansion operator is responsible to allow

flow to connect different regions of the graph. The expansionand inflation process form a new

algebraic process calledMarkov Cluster Process (MCL). Details about the process may be found

in [27].

The cluster granularity can be affected by the inflation value. This value ranges from 1.2 to

5.0. An inflation value of 5.0 will result in fine-grained clusterings and a value of i.2 will tend to

result in very coarse grained clusterings. Since the inflation value suitable for software package

identification is not known beforehand, the algorithm shallbe executed on each SSG several times

with varying inflation values.

6.4 Graph Clustering Process

The clustering process is comprised of 3 different phases, the input preparation phase, the

algorithm execution phase and the output processing phase.

In the first phase the weighted edge graph is encoded to a format suitable for the algorithm.

Since the implementation of the latter two graph clusteringalgorithms used is the one of the

algorithm author, different encoding is required for each of the algorithms used. An important

implication is how the weights are encoded. In the case of thehierarchical algorithm and the MLC

algorithm floating point weights are supported. In the case of the kernel k-means algorithm only

integer weights are allowed, therefore the weights are multiplied by 100 and truncated to integer

numbers.

The second phase of the clustering process is the actual execution of the clustering algorithms.

In the case of hierarchical clustering a complete clustering is performed on the input graph once.
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Then flat clusters are formed from the hierarchical clustering using different values of the distance

metric. The distance metric is varied from 0.2 to 0.9 in intervals of 0.05. A different set of clusters

is saved for each of the resulting flat cluster sets generated.

In the case of the kernel k-means algorithm the applied on theinput graph several times, each

time with a different number of expected clustersk. The values ofk range from 300 to 600 in

intervals of 50. A different set of clusters is saved for eachvalue ofk.

In the case of the flow simulation clustering algorithm the input graph is clustered multiple

times, varying each time the inflation value. The inflation values used range from 1.2 to 5.0 in

intervals of 0.2.

At the third and final phase of the clustering process the output from the graph clustering

algorithms is processed. The actual contents of each cluster are determined by replacing reductions

with the actual files reduced. What is created is an index of the actual contents of each resulting

cluster which is going to be used for the evaluation of the clustering process.

In general the execution time of the clustering algorithms with the exception of the hierarchical

clustering is reasonably small.



Chapter 7

Evaluation

The evaluation of the clustering performed by the graph clustering algorithms discussed in

chapter 6 is important in order to assess the success of the software package identification process.

Since, for the training as well as the testing data, the packages installed on the systems as well

as their contents are known from the software package management system, the evaluation of the

clusters shall be performed using external evaluation measures. The generality of the results of the

evaluation depends on the evaluation of the software package identification process, not only on

the machine instances used during the development of the system, but also on data from additional

machine instances from the Amazon Elastic Computing Cloud.

The evaluation measures used to evaluate the clusters generated are described in section 7.1.

The results of the evaluation of the 8 SSGs used in the currentstudy are presented in section 7.2.

Finally generalization of the software package identification process using Semantic Software

Graphs from additional Amazon Machine Instances (AMIs) is presented in section 7.3.

71
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7.1 Clustering Evaluation Measures

Evaluation of clusters generated by a graph clustering algorithm is important to assess how

successful the clustering algorithm was in creating the expected cluster grouping. Since in the case

of the software package identification process, the expected clusters as well as their exact contents

are known through the software package management system, the evaluation of the clustering

shall measure the degree in which the clusters returned by each of the graph clustering algorithms

utilized matches the expected clusters.

Evaluation of clusters using already available knowledge about the expected structure is called

externalsince information external to the actual clustering algorithm is used to evaluate the results.

Several external evaluation measures have been proposed. In the current study three measures are

utilized for the evaluation,Purity and Entropy proposed by Zhao and Karypis [29] and theV-

measure[21].

7.1.1 Entropy and Purity

Entropymeasures how the various software packages are distributedwithin each cluster. Purity

measures the extend to which each cluster contains components of primarily one software package

[29]. The entropy of a particular clusterSr with sizenr is given by

E(Sr) = −
1

log q

q
∑

i=1

ni
r

nr

log
ni
r

nr

(7.1.1)

whereq is the number of software packages in the dataset andni
r is the number of software

components of theith software package assigned to therth cluster. Equally, the entropy of the

entire clustering solution is given by

Entropy =
k

∑

r=1

nr

n
E(Sr) (7.1.2)
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Similarly the purity of a cluster is the ratio of the number ofcomponents of the primary

software package of the cluster by the size of the cluster andis given by

P (Sr) =
1

nr

max
i

ni
r (7.1.3)

and the overall purity of the clustering solution is the weighted sum on the individual cluster

purities given by

Purity =

k
∑

r=1

nr

n
P (Sr) (7.1.4)

The optimal value for entropy is 0 whereas the largest the purity the better.

7.1.2 V-measure

V-measure is an entropy-based measure. It is defined as the harmonic mean of distinct ho-

mogeneity and completeness scores similarly to how precision and recall are combined in the

F-measure [21].

The homogeneity criterion is satisfied when the clustering assigns members of a single class

(software package) to a single cluster, i.e. each cluster contains members from only a single

software package. Homogeneityh is given by

h =















1 if H(C,K) = 0

1− H(C|K)
H(C) else

(7.1.5)

H(C|K) = −

|K|
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(7.1.6)

H(C) = −

|C|
∑

j=1

∑|K|
i=1 aij

|C|
log

∑|K|
i=1 aij

|C|
(7.1.7)

wherenij is the number of members of natural classKi in clusterCj , K denotes all natural

classes,C denotes all clusters and|D| denotes the total number of software components in the

data set.
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The completeness criterion is satisfied when all the membersof a single class are assigned to

a single cluster. Completenessc is given by

c =















1 if H(K,C) = 0

1− H(K|C)
H(K) else

(7.1.8)
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H(K) = −
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∑|C|
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|C|
log

∑|C|
j=1 nij

|C|
(7.1.10)

Finally the V-measureV is given by the harmonic mean on homogeneity and completeness.

V =
2× h× c

h+ c
(7.1.11)

7.2 Evaluation Results

Evaluation of the graph clustering outcome is initially performed on the eight machine instance

information used in the analysis phase of the current study.This evaluation is required to evaluate

the clustering algorithms in a controlled manner, determine which algorithm performs better and

specify values for the clustering algorithm variables examined, which maximize the quality of the

software package identification.

Before evaluating the clustering solutions, the way files not belonging to any of the known

packages are handled shall be addressed. The policy used is described in section 7.2.1. Then

evaluation of the clustering solutions of each of the clustering algorithms used, as well as the

effect the respective clustering process variable has on the quality of the clustering result, are

presented for the hierarchical clustering in 7.2.2, for thekernel k-means algorithm in 7.2.3 and
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for the flow simulation algorithm in 7.2.4. Finally in section 7.2.5 the optimal results of the three

graph clustering algorithms are compared in order to determine the strengths and the weaknesses

of each of the three algorithms.

7.2.1 Not Monitored Package Files

Although the existence of the software package management system in the machine instances

under study implies that all software components installedon the system are somehow managed

by the software package system, this assumption has been proved wrong by experimental results.

Examination of the files installed on the machine instances under study has shown that the software

package management systems of this instances have no recordof the installation of a significant

portion of the files found in the instances filesystem. This observation may be explained only if

software packages are installed on the instances under study by means other than the software

package management system such as source code compilation and archive extraction.

Since without knowledge of the actual structure of the knownsoftware packages it is not pos-

sible to differentiate between files of known software packages and files of unknown software

packages, all the files found on the system are used in the software package identification pro-

cess. This approach has the advantage of allowing the identification of the un-managed software

packages in the machine instances under study, but it also complicates the evaluation of the clus-

tering solutions since there is no means to evaluate clusters containing members of this software

packages.

To address the problem, and since the exact evaluation measures are not possible to be re-

trieved, the measures are computed on two different versions of the cluster index. In the first

case all files that are not members of the known software packages are considered to be members

of a super package labeled asother. The measures computed on this version are expected to be
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worse than the real case since theother package will be heavily fragmented. The second version

of the cluster index consists only of clusters containing files from the known software packages.

Files from theother package are still found in these clusters. The measure values computed are

expected to be close to the real values and are significantly improved compared to the evaluation

measures on the first cluster index version.

7.2.2 Hierarchical Clustering Evaluation

All the SSG under study were clustered and evaluated using the hierarchical clustering algo-

rithm. Since equivalent results were generated on all the machine instances under study, only the

plots of a single case are presented here. The rest of the plots may be found in appendix??.

Although at first glance at figure 13 the algorithm seems to give high values of homogeneity

for small values oft, the graph is misleading. As it can be seen in figure 14 the number of clusters

generated by the algorithm for small values oft is significantly high, which leads to the naive

case where each of the components to be clustered is assignedto its own cluster. The number of

clusters reaches the expected values over 0.7. For those values oft the homogeneity value has

already decreased significantly. Therefore the hierarchical clustering algorithm in its current form

may not be considered a reliable algorithm to use for software package identification since the

results produced are not of good quality.

In all the cases of hierarchical clustering there is a dramatic drop of the value of homogeneity

for values over a specific value of t, usually in the range of 0.6 to 0.7. This dramatic change

signifies that at the specific value a large number of softwarecomponents are erroneously clustered

together. It might be possible to improve the hierarchical clustering algorithm by certain aspects

of the algorithm such as the method of calculating the distance newly formed clusters and the rest

of the software components as well as the distance metric used.
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Figure 13: Evaluation Measures for Hierarchical Clustering on ami-02f8cd76

As far as entropy and purity are concerned, they both exhibitanalogous behaviour as ho-

mogeneity. After the predefined threshold the purity degrades significantly whereas there is an

increase in entropy, which signifies the creation of clusters containing members of multiple soft-

ware packages.

7.2.3 Kernel k-Means Clustering Evaluation

The results of the k-means algorithm, which are for theami-02f8cd76machine instance, are

presented in figure 15, whereas the results for the rest of themachine instances under study can be

found in appendix??. From the results it is evident that the algorithm has an average performance

in the software package identification process since, on average, it scores low both on homogeneity

and on completeness. It can be seen that there is a marginal improvement of the results as the

number of clusters increases. Removal of the clusters containing mostly files that are not members
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Figure 14: Number of Clusters Generated by Hierarchical Clustering on ami-02f8cd76

of the known software packages improves the completeness ofthe results under study, mainly due

to the removal of the fragmentedotherspackage.

In the case of entropy and purity similar performance to the V-measure is observed.

7.2.4 Flow Simulation Clustering Evaluation

Two plots are used to present the results of the flow simulation clustering. Figure 16 presents

the measures ofami-02f8cd76whereas figure 17 presents the number of clusters in each clustering

result. In general the flow simulation algorithm gives relatively good results compared to the

other two clustering algorithms. As shown in figure 17 the number of clusters increases with

the increase of the value of inflation. This explains the increasing value of homogeneity in the

graph. Completeness in the case theotherspackage is included is significantly low, mainly due

to the fact that that package is composed of several packagesand therefore it appears fragmented.

Removing theotherspackage significantly improves completeness whereas the homogeneity does

not actually change. This signifies good homogeneity both inthe removed and the remaining

clusters.
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Figure 15: Evaluation Measures for Kernel k-Means Clustering on ami-02f8cd76

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0
V-Measure with "others" package

Homogeneity
Completeness
V-Measure

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0
V-Measure without "others" package

Homogeneity
Completeness
V-Measure

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0
Entropy and Purity with "others" package

Entropy
Purity

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0
Entropy and Purity without "others" package

Entropy
Purity

Flow Simulation clustering measures for ami-02f8cd76

Figure 16: Evaluation Measures for Flow Simulation Clustering on ami-02f8cd76
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The values of purity and entropy signify good clustering results, at least regarding the com-

position of the clusters. Since there are no significant variations in the values of the evaluation,

the selection of the appropriate value of inflation for the application of the algorithm in software

package identification is based on the number of clusters created. An inflation value in the range

2.0 to 2.5 is considered the most suitable since the number ofclusters in the clustering solution

produced is close to the expected number of packages (including not managed packages).
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Figure 17: Number of Clusters Generated by Flow Simulation Clustering on ami-02f8cd76

7.2.5 Graph Clustering Algorithm Comparison

Comparing the three graph clustering algorithms used is relatively straightforward. In the

case of the hierarchical clustering algorithm, the resultsproduced are significantly lower than the

results of the two other algorithms. This is the result probably of the simplistic implementation of

the algorithm. Experimentation with several implementations of the algorithm may improve the

results significantly, but this is beyond the scope of the current study. As for the second and third

algorithm, their results are satisfactory, with the flow simulation algorithm yielding better results
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in most cases. Improvement of the two algorithms may be achieved through better processing of

the SSG. For the current study the results are considered sufficient.

7.3 Generalization of Evaluation

The evaluation of the software package identification process would not have been complete

if only the machine instances used during the development ofthe system had been used for evalu-

ation. As a result, 20 additional machine instances were harvested form theAmazon EC2. These

machines are used to evaluate the process of software package identification. All the procedures

utilized for the preparation of the SSG of the initial group of machine instances are used for this

group also. The SSGs created include information both for the filesystem and the software pack-

age installed for evaluation purposes.

The major interest in the evaluation of the software packageidentification process is the final

result, that is how well the clusters created by the graph clustering algorithms correspond to real

software packages. For that reason, the measures used for the evaluation of the initial group of

machine instances is used for the secondtestgroup also.

Due to the large number of instances, and in order to simplifythe evaluation process, the

hierarchical graph clustering algorithm was not applied onthe test group instances. The kernel

k-means algorithm was applied using 500, 750 and 1000 ask. Similarly, the flow simulation

algorithm was applied using 2.0, 2.2 and 2.5 as inflation values. The variable values were selected

based on intuition and on the observation from the evaluation of the initial group.

Additionally the evaluation measures used in this phase areonly thehomogeneity, complete-

nessand their harmonic mean, that isv-measure. The reason is that the combination of homogene-

ity and completeness presents a more clear picture for the nature of the clusters in the clustering

solution in contrast to entropy and purity which measure only the homogeneity of the solution
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[21]. Additionally otherspackage clusters are removed since the way they are defined reduces

erroneously the completeness of the whole solution. In general only the practices that proved to

be useful in section 7.2 are used in the current section.

Results of the Kernel k-means Clustering performed on the instances of the test group are

presented in figure 18. To materialize the overall performance of the algorithm, the median of

of the computed V-measures was taken. The median was selected over the mean value to reduce

the influence of possible outlier machine instances. In general the results of the algorithm on

each machine are really close to the median value, which indicates that the performance of the

algorithm does not change depending on the machine. What decreases the performance of the

algorithm in general is the completeness. The low values of completeness are an indication that

the graph clustering algorithm does not group all the components of a software package together.

This deficiency may be addressed with the enrichment of the graph with edges from additional

information.

In general the results seem to be improved marginally with the increase of the number of

clusters. This is due to the improvement of homogeneity which is not compensated by the decrease

in completeness.

In the case of the flow simulation graph clustering algorithmthe results are significantly better

compared to the kernel k-means algorithm. In this case also the relatively low completeness is the

major problem to be addressed. What is interesting is the symmetry of homogeneity to complete-

ness in relation to the V-measure Median. It can be observed that an increase of completeness

decreases homogeneity, which is possibly the result of erroneous clustering.

In general, the flow simulation algorithm with an inflation value in the range 2-2.5 performs

very well in the process of software package identification.
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Figure 18: Results of Test Group with the Kernel k-means Clustering Algorithm
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Figure 19: Evaluation of Test Group with FLoat Simulation Clustering Algorithm



Chapter 8

Conclusion

The aim of the current study was to develop a process of identifying software packages on

utility computing machines in general and on Amazon EC2 Machine Instances in particular. Iden-

tifying software packages on Amazon EC2 Machine Instances may be considered at first glance

a useless process for most people. After all nowadays most operating systems provide a software

package management system, and therefore the software packages installed can be trivially de-

termined by queering this system. This is a misconception. Although it’s true that a significant

portion of the software packages is managed by software package managers, in the case of EC2

Machine Instances there is a significant number of software components that are not members of

any of the known packages, an indication that software packages are installed on those systems

but not managed by the software package Management System. Hence, a process to identify all

the software packages installed on this machine instances is needed, without knowledge of the

software package management system information.

The process of identification of software packages installed on machine instances using only

file system meta-data has been a challenging task, since no one of the metadata sources was

sufficient to address the problem of the software package identification. Therefore the proper

85
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combination of multiple sources of information was the key to successfully identifying software

packages.

The utilization of metadata, such as the time stamps and the inode number based on the intu-

ition that the members of the same package are created and modified as a group, provided substan-

tial information to associate components of the same software package with each other. Addition-

ally the categorization of directories to pure and impure and the reduction process involving pure

directories simplified the software package identificationprocess significantly, reduced the graph

size to a manageable size and provided a good start for good clustering results, since in essence

what was clustered was not individual software components but already formed clusters which

were of verified quality.

Utilizing three different graph clustering algorithms, each of a completely different paradigm

gave the opportunity to find the algorithm most suitable for the software package identification

process. Of the three algorithms the best results were produced by the flow simulation graph clus-

tering algorithm (MCL) [27] whose results are sufficient forthe implementation of a complete

system for software package identification on Amazon EC2 Machine Instances. Second comes

the Kernel k-Means algorithm which, although it produced satisfactory results, introduced a sig-

nificant problem since deciding on the correct number of expected clusters (software packages) is

a difficult task because of the diversity of the systems understudy and the presence on the machine

instances of software packages not managed by the software package identification system, and

therefore not possible to be assessed. The agglomerative hierarchical clustering has been proved

unsuitable for the software package identification processalthough a different implementation

could possibly produce better results. For all of the clustering algorithms used, fine-tuning of the

algorithm was attempted by varying the algorithms major variable in order to determine the value

of the variable suitable for the field of software package identification
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The evaluation of the clustering results was performed withfour different measures specifi-

cally suitable for graph clustering evaluation. The combination of homogeneity and completeness

provided an insight into the problems of the clustering algorithms used.

Finally the performance and the applicability of the software package identification process

was tested on a larger number of Machine Instances with results that were more than satisfac-

tory. This test has proved the applicability of the softwarepackage identification process although

improvement of the process performance is needed and possible.

8.1 Future Work

The scope of the current study was constrained to prove the possibility of identifying software

packages using only file system metadata, and determining a possible path of achieving this iden-

tification. For that reason, several restrictions were imposed both on the selection of the tools to be

used, as well as the coverage of all cases. Although these restrictions do not reduce the importance

of these studies results, there is a significant room left foradditional research.

The first field where additional research may be conducted is on the file system meta-data

used. The current study was limited to a specific set of meta-data types. Additional meta-data

types may be incorporated in the system to improve the performance of the process. Further-

more, information regarding the contents of the software components may be used along with the

filesystem metadata.

Moreover, in certain aspects of the graph preparation several variables were set based on

heuristics and observations. Diversifying those variables and evaluating their influence on the

results may enhance the performance of the software packageidentification process. An example

of this variables are the weights used when combining edges of different types.
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The number of graph clustering algorithms used, though sufficient for the purposes of the

study, does not cover all the available graph clustering algorithms. Hence, there is the possibility

of a different graph clustering algorithm that may be more suitable for the current study; that being

so, there is an open field of experimentation with additionalgraph clustering algorithms.

Evaluation of the clustering solutions was made with a specific number of evaluation measures,

but since other measures are also available, evaluation with additional measures may be performed.

Also the measures used were connotative due to the existenceof external information. Qualitative

evaluation such as user satisfaction, may be performed on the results of the process.

Another aspect requiring further study is the nature of the software packages installed that

are not managed by the software package management system. Even though it was decided that

they should be partially ignored in the current study (by removing certain clusters), using other

sources of information about software packages may allow for the inclusion of these clusters in

the evaluation.

Finally, this study provides the tool but not essentially anapplication of the software package

identification process. Utilizing the process for a machineinstance search engine, where the search

criterion is the existence of a specific software package on the returned instances, could be a good

application of the software package identification process. Labeling the resulting clusters could

be another issue deriving from this application.



Appendix A

Harvesting Data Files

File Content Description
dirs.gz Contains information about the directories of the AMIs file system.

Each record contains the absolute path to the folder along with the
folders metadata as described in table 2.

files.gz Contains information about the regular files of the AMIs file system.
Each record contains the absolute path to the file along with the files
metadata as described in table 2.

links.gz Contains information about the symbolic links found. Each link con-
tains the absolute path of the link file and the absolute path of the
links target.

mimes.gz Contains the mime types of the regular files found on the system.
Each record contains the absolute path of the file and it’s mime type.

man.gz Contains the program file to man-page associations found on the sys-
tem. Each record contains the absolute path of the program file and
the absolute paths of all the man-pages matching the specificpro-
gram file.

deb packages.gz Contains information about the Debian Packages installed on the sys-
tem and their members. Each record contains the name of the pack-
age and the absolute path of a member file. Multiple lines exist for
each package, one for each of its member files.

rpm packages.gz Contains information about the RPM Packages installed on the sys-
tem and their members. Each record contains the name of the pack-
age and the absolute path of a member file. Multiple lines exist for
each package, one for each of its member files.

Table 20: Harvesting Data Files
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Harvested Amazon Machine Instances
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ID Manifest Operating System

ami-02f8cd76 bitnami-dokuwiki-2010-11-07-0-linux-ubuntu-10.04-ebs Ubuntu

ami-033d0977 radiant-0.9.1 64 0.2 ami-75d4e101 Other Linux

ami-026f5e76 xceptance-ubuntu-11.04-64bit-029-xlt-4.0.5-r6770 Ubuntu

ami-02714476 bitnami-tracks-1.7-1-linux-ubuntu-10.04-ebs Ubuntu

ami-02b98876 foneAPI-generic-32bit-freeswitch-v1 Other Linux

ami-03c2f677 CloudFormation-joomla 1.6.0 1.0 75d4e101-64bit Amazon Linux

ami-01fbce75 szr-lamp-ubuntu1004-i386-ebs-2 Ubuntu

ami-03310577 hwapache-2.2.16 32 0.3 ami-7fd4e10b Other Linux

Table 21:Amazon Machine Instancesused for Analysis
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ID Manifest Operating System

ami-146d5860 szr-base-centos55-i386-ebs-5 Cent OS

ami-140f3e60 ubuntu-8.04-hardy-server-i386 Ubuntu

ami-0e71447a bitnami-lappstack-1.2-1-linux-ubuntu-10.04-ebs Ubuntu

ami-07675173 bitnami-wordpress-3.1.2-0-linux-ubuntu-10.04-ebs Ubuntu

ami-0ce9d878 bitnami-drupal-7.2-0-linux-x64-ubuntu-10.04-ebs Ubuntu

ami-0d310579 hwapache-2.2.16 64 0.3 ami-75d4e101 Other Linux

ami-14e5d460 bitnami-phpbb-3.0.8-0-linux-x64-ubuntu-10.04-ebs Ubuntu

ami-13c2f667 CloudFormation-hwrails 2.3.2 1.0 75d4e101-64bit Amazon Linux

ami-09dcf67d RightImage Ubuntu 8.04 x64 v5.5.9.1 EBS Ubuntu

ami-15edd961 bitnami-djangostack-1.2.5-0-linux-ubuntu-10.04-ebs Ubuntu

ami-0f3f097b bitnami-moodle-2.0.3-0-linux-ubuntu-10.04-ebs Ubuntu

ami-0fc2f67b CloudFormation-joomla 1.6.0 1.0 7fd4e10b-32bit Amazon Linux

ami-158fba61 bitnami-phpbb-3.0.8-0-linux-ubuntu-10.04-ebs Ubuntu

ami-0a71447e bitnami-ezpublish-4.1.3-1-linux-ubuntu-10.04-ebs Ubuntu

ami-0f01367b rightimage debian 6.0.1 amd64 20110405.1 ebs Debian

ami-17c2f663 CloudFormation-hwrails 2.3.2 1.0 7fd4e10b-32bit Amazon Linux

ami-0c390878 secludit-cloudyscripts-download-snapshot-server Other Linux

ami-0991a67d ensemble-natty-2011-04-26 Other Linux

ami-0aa7967e ebs/ubuntu-images-milestone/ubuntu-oneiric-alpha2-i386-server Ubuntu

ami-0b5b6c7f amazon/ami-vpc-nat-1.0.0-beta.x86 64-ebs Other Linux

Table 22:Amazon Machine Instancesused for Evaluation
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