
 

 

ABSTRACT 

Multiple Sclerosis is an inflammatory demyelinating disorder of the Central Nervous System. 

It is an autoimmune disease that its causes are still not clarified. The demyelization of the 

neural axons leads to the physical and cognitive disability of the patient. It is important to 

model the pathophysiology of Multiple Sclerosis in order to obtain an insight of the problem.  

 

Formal methods help in this direction by providing concepts and disciplines that are 

applicable to biological systems, too. Such formal methods are Process Algebra, Petri Nets, 

Automata and Binary Decision Diagrams. In our case study we chose to use Stochastic Petri 

Nets, considering it to be a consistent, robust and dynamic formalism that can cope with the 

complexity and diversity of this disease.  

 

Taking as aetiology the recruitment of lymphocytes at inflammatory brain vessels, we 

modelled the procedure based on data on mice affected by experimental autoimmune 

encephalomyelitis. The latter is the analogous of Multiple Sclerosis in human beings. We 

estimated the probability of adhesion and the number of bound molecules as measures to 

evaluate the acuteness of Multiple Sclerosis. The results were pretty high and actually should 

be as we are talking about mice suffering from this disease. The use of interferon beta (IFN-β-

1b), a medication that reduces the concentration of chemokine, showed some significant 

reduction in the probability of adhesion and in the number of bound molecules. We ran the 

simulation for 3-month, 6-month and 12-month therapy. A reduction in adhesion probability 

of 2.9% is observed by the 12-month therapy compared to the baseline execution. This is quite 

optimistic for patients suffering from Multiple Sclerosis. Interferon beta is the predominant 

medication provided to the Multiple Sclerosis patients.   

 

Stochastic Petri Nets formalism is quite easy to learn and use and it is recommended to 

biologists to use it for their biological simulations. Along with the use of Mobius tool, 

Stochastic Petri Nets can give powerful perspective to researchers that are interested in non-

deterministic phenomena. Biological Systems are such phenomena and should be treated so.   
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Chapter 1 

Introduction 

1.1 Motivation 

The combination of Computer Science and Biology has formed a new domain called 

“Systems Biology”. Systems Biology actually combines Biology, Chemistry, Physics, 

Mathematics, Electrical Engineering and Computer Science. Disciplines from all these 

fields contribute to this new domain. Computer Science contributes formalisms and 

simulators to look into the behaviour of biological systems. Different formalisms that 

were up until now used in modelling software engineering can now model biological 

systems, too. Formalisms like Process Algebra [1], Petri Nets [2], Automata [3] can help 

in qualitative or quantitative investigation of systems in Biology. The latter can be either 

gene regulatory networks, signal transduction networks or metabolic networks. Genes or 

proteins can be entities in these formalisms that interact, exchange messages or change 

state. The several simulators that use these formalisms can give in silico experiments that 

in some cases are more useful than in vivo or in vitro experiments. There are cases, like 

multiple sclerosis that in vivo experiments are extremely difficult to process and therefore 

in silico experiments are mandatory.  

 

Biology has now become “executable cell biology” [4] with two types of biological 

models, the computational and the mathematical. The computational model, given certain 

data, can mimic biological phenomena, execute and give results that are quite accurate 

and precise. The mathematical model is handling biological systems as equations with 

elements interacting and giving products. ODE’s (Ordinary Differential Equations) is a 

mathematical model that is widely used. It is though a deterministic model to handle 

natural phenomena. Real life is non-deterministic though. The occurrence of an event is 

most of the times probabilistic in real life. Two molecules will not certainly interact 

based on the fact that there is a certain amount of mass present (law of mass). We should 
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better look for the probability of natural phenomena happening. That is where 

stochasticity is incorporated. Stochastic pi-calculus and Stochastic Petri Nets have a lot to 

offer in this field.  

 

Our endeavour was to make a good inside view of how biological systems can be 

modelled with computerized rules and concepts. Literature showed that there are a lot of 

formal methods that do this: starting from Process algebra, Automata, Binary Decision 

Diagrams and ending with Petri Nets. We centred our interest on Process algebra and 

Petri Nets, which are two powerful ways to model concurrent systems. The aim of this 

study was to understand Systems Biology as systems, including their robustness, design 

and manipulation. We studied the structure and dynamics of these systems by modelling, 

simulating and executing the system.  

 

Our case study of examining Multiple Sclerosis using Stochastic Petri Nets showed that 

this formalism can give good predictions of the possibility to get multiple sclerosis under 

certain conditions. These conditions were the concentrations of the involved molecules 

and the rates that characterize their transitions. The recruitment of lymphocytes under 

inflammation of brain vessels is one of the most common aetiologies of multiple 

sclerosis. It is considered an autoimmune disease that still has not been cured. Our further 

step was to examine the effect of interferon beta, IFN-β-1b, on our model and how much 

is the probability of adhesion reduced due to this change. Interferon beta is a medication 

given in the cases of multiple sclerosis. The results are quite optimistic on the number of 

bound molecules but also on the probability of adhesion. Both showed significant 

reduction.  

 

Computational Systems Biology tries to establish methods and techniques that enable us 

to understand such systems as systems, including their robustness, design and 

manipulation. It means to understand: the structures and the dynamics of systems, 

methods to control, design and modify systems to cope with desired properties. The 

modelling contributes in a major way to reach these aims by introducing methods for 

understanding, simulating and predicting the behaviour of the systems [5]. 
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1.2 Thesis Structure 
 

In the next chapters we will describe the Biological Systems in Chapter 2, the Formal 

Methods in chapter 3, the Petri Nets in Chapter 4, the Case Study in Chapter 5 and finally 

the Conclusions and future work in Chapter 6.
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Chapter 2 

Biological Systems 

The achievement in recent years to explore the inside of cell and living organisms has led 

to the study of Biology not only as chemical reactions but as a system where biological 

entities can have a state, being able to transit to another state. This kind of study has 

given rise to a new field called “Systems Biology”. The experiments nowadays are not 

only in vivo or in vitro, but also in silico. Systems Biology can help in the modelling of a 

biological system and examine its behaviour under certain conditions. The in silico 

prediction of such a behaviour can evolve useful knowledge for the therapy of diseases 

and the usage of certain pharmaceutical treatment. 

 

The procedure by which a natural system is converted into a digital system is shown in 

Figure 1. The measurement and observation of a natural system gives us a biological 

phenomenon. This leads to a hypothesis as how the natural system works [6]. Induction 

and modelling give us the chance to prove whether this hypothesis is true. The formal 

system will give us some results that can be analyzed and explain the natural system. The 

formal system is usually a simulation, the results of which may vary from the 

experimental ones. This means that the modelling of the system is wrong and changes 

should be applied. If the results of the simulation are equivalent to the experimental, then 

the model is correct. Model checking is usually applied to biological systems to examine  

the correctness of modelling. 
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Figure 1: Schematic view of Systems Biology [6] 

 

     

2.1 Gene Regulatory Networks 
 

Gene Regulatory Networks are one of the most common biological systems that are 

examined. Considering the fact that each gene expresses one protein, protein can affect 

the transcription of another gene and so the expression of another protein. The same 

concept can be applied to another gene, forming in this way a network where each gene 

can be affected positively or negatively one or more other genes. Such network can be 

modelled with a graph where a node is the gene and the arcs (activative or inhibitory) 

denote the positive or negative act on the other gene (Fig. 2). The activative action of in 

the network is denoted X Y , whereas the inhibitive action, like this X   Y. X and Y are 

consecutive genes. 
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. 

 
 
Figure 2: A transcription network that represents about 20% of the transcription interactions in 

the bacterium E. coli. Nodes are genes (or groups of genes coded on the same mRNA called 

operons) [7]. 

 

2.2 Signal Transduction Networks 

Signal transduction is the process by which a cell corresponds to a change in the outer 

environment. Molecules that are attached to the receptors of the surface result the 

production of proteins in the inner of the cell. This is a chain reaction, by which protein 

activates the production of another protein or chemical substance. This leads to the 

formation of a network - signal transduction networks – that are interesting to model. The 

whole procedure is vital to the survival of the cell and Systems Biology is interested in 
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this field. Changes in the environment might lead to change of the shape of the cell. Other 

changes might be changes in temperature or pH. 

 

 

2.3 Biological Systems vs. Computer Systems 
 

Biological systems have a lot in common and some differences with the computer 

systems. Biological Systems have, most of the times, larger number of processes with 

identical behaviour than computer systems. Such processes in biological systems could 

be thousands of proteins of the same type [8]. However, both systems have common 

properties like the concurrency. Biological Systems have a lot of processes running 

concurrently. Proteins bind on the promoter of DNA to promote or inhibit the translation 

of DNA. This can happen by various proteins at the same time. The stochasticity of this 

to happen is another property that is frequent in biological systems. Stochasticity can be 

observed in Computer Systems, too. The communication among computer systems is 

very common. Nowadays computer networks are capable of sending messages and 

exchanging information. Biological systems can do so, too. The exchange of molecules 

during biochemical reactions and the involvement of enzymes in a chemical reaction is a  

way of communication that can be modelled and examined.



    

8 

Chapter 3 

Formal Methods 

 

In this section we give a description of the formal methods that have been proposed in the 

literature for modelling Biological Systems. We present Binary Decision Diagrams, 

Cellular Automata, Petri Nets and Process Algebra, and we compare their relative 

capabilities. 

 

3.1 BDD’s – MDD’s 
 
Binary decision diagrams (BDDs) are another way of representing Boolean functions. 

Their simple form is the binary decision trees (Fig. 3) where the non-terminal nodes 

represent variables x, y, z… and the leaves are labelled with 0’s and 1’s. The non-

terminal nodes have one dashed line and one solid one coming out of them. If the 

variable’s value is 0 the tree follows the dashed line, if the variable’s value is 1 the tree 

follows the solid line. Reaching the leaves, the label of the leaf is the value of the 

function [9].  

 

 
 

Figure 3: An example of a binary decision tree [9]
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For example (Fig.3) the function f(0, 1) has a value of 0, as x=0 and the x node takes the 

dashed line. Then y =1 and takes the solid line. 

 

 

Multi-valued decision diagrams (MDD’s) (Fig.4) are a generalization of the BDD’s 

where decision nodes have many children, as many as the number of the possible values 

of the final leaves; which denotes the value of the function [10]. 

 

 

 
 
Figure 4: Example of a simple logical regulatory graph with its MDD representation: (a) The 

regulatory graph, the table defining the function KC together with its decision tree representation. 

(b) The reduced MDDs (considering the two different ordering of xA and xB) representing KC, 

with xA and xB as decision variables and the values of KC labelling the leaves [10]. 

 

BDD’s can be used in modelling gene regulatory networks presenting the genes in the 

form of 0’s and 1’s. The 0 represents inactive gene whereas 1 represents active gene. The 

purpose of such formalism is to find stable states of the network. This means states at 
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which there is a stable expression of genes. Regulatory models can be also presented with 

MDD’s where nodes take multi-values. Stable states in this case can give concentrations 

of the genes in a range of values (e.g.0-2). BDD’s and MDD’s may be good in qualitative 

analysis of a network but are not that good for quantitative analysis. In cases where one is 

looking for the actual concentration of a node, BDD’s and MDD’s are not appropriate 

for.  

 

3.2 Cellular automata (CA) 
 

Cellular automata (CA) are simple computer simulation tools that can be used to model 

both temporal and spatiotemporal processes using discrete time and/or spatial steps. 

Similar to Petri nets, CA models provide a relatively nonmathematical alternative to 

differential equations for spatiotemporal simulation. CAs normally consist of large 

numbers of near identical components with local interactions layered on a lattice or grid. 

The states or values of the components evolve synchronously in discrete time steps 

according to a set of rules. The value of a particular site is determined by the previous 

values or the states of the neighbouring sites. Cellular automata were invented in the late 

1940s by von Neumann and Ulam and have been used to model a wide range of physical 

processes, including heat flow, spin networks and reaction–diffusion processes. Cellular 

automata also have a long history in biological modelling. Indeed, one of the first 

computer applications in Biology was a CA simulation called Conway’s Game of Life. 

This simple model simulated the birth, death and interaction between cells randomly 

placed on a square lattice or grid [3].  

 

3.3 Petri Nets 
Petri Nets (PN’s) have been for long used in Software Engineering in modelling 

computer systems. Now this formalism can also be used in Biology. Their configuration 

is quite simple and can be applied easily. The process is denoted by a place, a circle, 

where tokens take place. Tokens can be considered as dots inside the circle. In the case of 

biological systems they can be the concentration of a molecule species. The number of 

tokens in one place is the marking of the place. The other element is transition that is 
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designed as rectangle. Transitions are responsible for the movement of tokens from the 

input places to the output places. Transitions are fired based on a Boolean predicate that 

has to be true. Once fired, the transition moves tokens from the input place to the output 

place. Arcs give the flow of the tokens and have a weight on that in the simple form of 

PN’s the marking of the place should be greater or equal to the weight to have a flow of 

tokens.   

 

Petri Nets can model systems in various ways. Their extensions can provide capabilities 

that make PN’s a powerful tool to model systems. Functional PN’s have the capability to 

place a formula in the place of the weight; a fact that makes PN’s more dynamic. While 

standard PN’s have discrete places and transitions, Hybrid PN’s have both discrete and 

continuous places and transitions. This extension makes PN’s applicable to systems that 

have continuous concentrations, i.e. concentrations of real numbers and not integers. We 

have also in this case the introduction of inhibitory and test arcs. The combination of the 

two, hybrid and functional, makes a new extension, the Hybrid Functional PN. Finally, 

we have Stochastic PN’s, where the transitions can have time delays and a probabilistic 

distribution. This takes into consideration the probability of an event to happen and the 

delay it takes. In the case of modelling, it is the probability of a transition to fire and the 

delay for the execution of the transaction. 

 

3.3.1 Example 

In Figure 5 we see a Petri Net in a simple form. p1, p2 and p3 are the places. m1, m2 and 

m3 are the markings. 1, 3, 2 on the arcs are the weights. t1 is the transition.  

     

 

 

 

 

 

 

Figure 5: A simple form of Petri Nets.[2] 
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3.3.2 Related work 

 

Literature has many examples of work done in modelling Biological Systems with Petri 

Nets. In this section we provide three works that model the glycolitic pathway, the 

apoptosis and the nutritional stress of E. Coli. 

 

3.3.2.1 Glycolitic Pathway 

 

H. Matsuno et al. [11] in their work have modelled the lac operon gene regulatory 

mechanism using Hybrid Functional Petri Nets (HFPN) (Fig.6). The glycolitic pathway 

was also modelled and their purpose was to show the changes of the expression of genes 

LacZ and LacY and their correspondent proteins as the concentration of lactose 

decreases. When lactose decreases, the mechanism of glycolitic pathway is activated with 

the rise of Lac Z and Lac Y. However the mutant lac Z- and lac Y- repress the expression 

to the two genes respectively and their expression in this case is minimized. 

 

In this case the use of Hybrid Functional Petri Nets is useful as there is a need to model 

both discrete and continuous places and transitions. There is also the use of inhibitory 

arcs and test arcs that are available in the Hybrid form. 
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Figure 6: HFPN modelling of the lac operon gene regulatory mechanism [11] 
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3.3.2.2 Apoptosis 
 
Apoptosis is the regulated cell suicide program [12] that is very important to the cell’s 

life cycle. Tissues regulate the number of cells in order to protect themselves from 

malicious cells or viruses. Several neurological diseases like Alzheimer’s or Parkinson’s 

disease are caused due to the disturbance of this life cycle. 

 

 

 

Figure 7: The KEGG representation of apoptosis. Crossbar arrowheads indicate inhibition. 

Branching arcs go to alternative as well as to concurrent successors. The fragment considered 

here is highlighted in grey [12]. 
 

 

The work of M. Heiner and I. Koch tried to model this behaviour. Figure 7 shows the 

KEGG representation of the procedure. KEGG is the Kyoto Encyclopaedia of Genes and 

Genomes, a series of databases developed the last 10 years involving genome sequences 

and chemical information. KEGG focuses on the coverage of yeast, mouse and human 

metabolic pathways [12]. Their modelling is done using Petri Nets. 
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Their work examines also the carbon metabolism in potato tuber also modelled in Petri 

Nets. The validation of the model is done with the METATOOL software package. They 

check the P-invariants and the T-invariants for suitable biological interpretations.  

 

3.3.2.3 Nutritional Stress of E. Coli 

 

A work done by Steggles L.J. et al. [13] is examining the nutritional stress response in E. 

coli. The system modelled is shown in Figure 8. They used the PEP tool for validating 

and analyzing the model. PEP is a tool supporting Petri Nets. The initiative for the 

activation of the system is the Signal. This denotes the case where there is presence or 

absence of carbon starvation. The level of Stable RNA (SRNA) is a sign of whether the 

system is in the exponential phase i.e. high level or in its stationary phase where the 

system works only for the maintenance of the principal functions 

 

Figure 8: Nutritional stress of E.coli [13]. 

 

The system can be expressed in truth tables for each of the entity involved. Using Petri 

Nets they initialize the system in its exponential phase by assigning the 1 value for Signal 

in all cases. After two periods of time the system switches to the stable state, where  

SRNA = 0. PEP tool helps in the model checking of the system as rules like: 
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                      GyrAB + TopA > 1,  GyrAB_Done = 1 

 

can be applied as constrains to the system. This is to show that GyrAB and TopA should 

be mutually exclusive and GyrAB_Done = 1 is to ensure that they consider only states 

reached after a complete pass of the two-phase commit protocol. PEP in this case is able 

to confirm that no state satisfying the above rule can be reached from reasonable initial 

state, so GyrAB and TopA must be mutually exclusive. In the same way CRP and Fis can 

also be shown as mutually exclusive. 

 

 

3.4 Process Algebra 
 

3.4.1 Definition 

Process algebra (process calculus) [1] is a diverse family of related approaches to 

formally modelling concurrent systems. It provides a tool for the high-level description of 

interactions, communications, and synchronizations between a collection of independent 

agents or processes. They also provide algebraic laws that allow process descriptions to 

be manipulated and analyzed, and permit formal reasoning about equivalences between 

processes (e.g., using bisimulation). Leading examples of process algebra 

include CSP, CCS, ACP, and LOTOS. More recent additions to the family include the π-

calculus, the ambient calculus, PEPA and the fusion calculus [1]. 

 

While the variety of existing process algebras is very large (including variants that 

incorporate stochastic behavior, timing information, and specializations for studying 

molecular interactions), there are several features that all process algebras have in 

common:  

 Representing interactions between independent processes as communication 

(message-passing), rather than as the modification of shared variables 

 Describing processes and systems using a small collection of primitives, and 

operators for combining those primitives 
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 Defining algebraic laws for the process operators, which allow process 

expressions to be manipulated using equational reasoning [1]. 

 
To define a process calculus, one starts with a set of names (or channels) whose purpose 

is to provide means of communication. In many implementations, channels have rich 

internal structure to improve efficiency, but this is abstracted away in most theoretic 

models. In addition to names, one needs a means to form new processes from old. The 

basic operators, always present in some form or other, allow:  

 parallel composition of processes 

 specification of which channels to use for sending and receiving data 

 sequentialization of interactions 

 hiding of interaction points 

 recursion or process replication [1]. 

 

3.4.2 Example 

 

The syntax of agents [14] may be summarized as follows: 

 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
 

 
Equation 1 shows that the process P is over.  

Equation 2 shows that the process P is converted to P1 or to P2. 
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Equation 3 shows an output of y via channel x. 

Equation 4 shows an input of y via channel x. 

Equation 5 shows a silent prefix. 

Equation 6 shows a parallel execution of P1 and P2. 

Equation 7 shows a restriction of process P to accept actions at port x. 

Equation 8 shows a match of names x and y. 

Equation 9 is a definition of an agent. 

 

3.4.3 Related work 

 

Van Bakel et al. [15] using the stochastic BioAmbients have modelled the endocytotic 

pathway of Fibroblast Growth Factor (FGF) as shown in Figure 9. Endocytosis is a 

common communication mechanism in eukaryote cells. It is a mechanism by which the 

cell membrane envaginates to form a membrane limited vesicle. Vesicles relocate in 

different compartments inside the cell. Eukaryotic cells continually engage endocytosis to 

supply the cell with nutrients. There are different causes to endocytosis, however, if 

initiated by external proteins binding to receptors located on the cell, we speak of 

receptor meditated endocytosis. The extra-cellular protein that initiates the endocytosis is 

called a ligand. The route taken by the vesicle in the receptor meditated endocytosis is 

well documented in the literature. The vesicle containing the complex ligand-receptor 

moves to the sorting endosome and then to the late endosome. At this point the fate of 

receptors varies: either they are degraded into the lysosome, or they reach the membrane 

via the recycling endosome. Receptors are inactive unbound, yet the binding with the 

ligand activates a chemical signal which in turn could be considered the cause of cell’s 

activity such as stimulation to divide, to migrate or to differentiate into a different cell 

type. Over-stimulation of such signal is deemed to be responsible for several diseases 

such as cancer [15]. The modelling of the procedure is shown in Table 1. 
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Figure 9: Endocytosis route [15]. 

Table 1: The implementation of FGF pathway in process algebra (BioAmbient) [15]. 
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3.4.4 Process-algebraic Variations  

There are variations of Process Algebra that have been built into tools. Examples are 

SPiM and BioSPI. 

 

3.4.4.1 SPiM  

 

The Stochastic Pi Machine (SPiM) is a programming language for designing and 

simulating computer models of biological processes. The language is based on pi-

calculus, and the simulation algorithm is based on standard kinetic theory of physical 

chemistry. The language features a simple graphical notation for modelling a range of 

biological systems, and can be used to model large systems incrementally, by directly 

composing simpler models of subsystems. The project is under the Microsoft research 

group.  

 

3.4.4.2 BioSPI 

 

The BioSPI project is a variation of process algebra modelling biological processes and 

pathways using the pi-calculus and ambient calculus. Having extensions like stochastic 

pi-calculus, BioSPI can show the suitability of process algebra for modelling signal 

transduction networks, metabolic pathways and transcriptional regulation. The benefits of 

this tool are the formal representation of complex networks, the simulation and 

monitoring of their behaviour, the formal verification of their properties and the 

comparison of networks across organisms. 

 

BioSPI is also a computer application, based on Logix system, implementing Flat 

Concurrent Prolog (FCP). The latter provides mobility and synchronized communication, 

features that are vital in pi-calculus. BioSPI works on Linux operating system. 
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3.5 Evaluation 
 

Process algebra is an equational way of dealing with Biological Systems. Petri nets, on 

the other hand, is a formalism that gives visual representation of the system and can be 

more understandable by the people. Modelling biological complex systems in both Petri 

Nets and process algebra presents several advantages. Models can be compositionally 

built, offering the opportunity to compose parts of the model that are developed at 

different times by different people; models can be easily manipulated by simply changing 

some components and evaluating the impact of those changes over the behaviour of the 

whole model. In silico experiments can be repeated -i.e. several runs of the same model 

can be performed- with different parameters allowing a simple and effective sensitivity 

analysis [15]. 

 

3.6 Other work 
There are several other works done on the field of Systems Biology using tools like 

PRISM or Live Sequence Charts. We provide a brief overview of two works using these 

tools.  

 

3.6.1 PRISM Modelling MAPK Cascade Pathway  

 

 M. Kwiatkowska et al. in their work [16] have modelled the MAPK cascade pathway, 

(Fig. 10) which is the vital signal pathway in the growth, proliferation and survival of 

many cells. MAPKKK being the Mitogen-Activated Protein Kinase Kinase Kinase 

through several phosphorylations activates MAPK. Using the PRISM tool, they estimate 

the expected activated MAPK having 4 (N=4) initial quantities of MAPKKK, MAPKK 

and MAPK or having 8 (N=8) initial quantities of them.  
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Figure 10: MAPK cascade pathway [16]. 

 

In order to construct and analyze a model with PRISM, it must be specified in the PRISM 

language, a simple state-based language based on the Reactive Modules [17] formalism 

of Alur and Henzinger. The fundamental components of the PRISM language are 

modules and variables. A model is composed of a number of modules which can interact 

with each other. A module contains a number of local variables. The values of these 

variables at any given time constitute the state of the module. The global state of the 

whole model is determined by the local state of all modules. The behaviour of each 

module is described by a set of commands. A command takes the form:  

 

[] _1: _1 ... _ : _ ;guard prob update prob n update n    

 

The guard is a predicate over all the variables in the model (including those belonging to 

other modules). Each update describes a transition which the module can make if the 

guard is true. A transition is specified by giving the new values of the variables in the 

module, possibly as a function of other variables. Each update is also assigned a 

probability (or in some cases a rate) which will be assigned to the corresponding 

transition [17]. 
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3.6.2 Live Sequence Charts  

 

Live Sequence Charts (LSCs) [18] are an extension of the graphical specification 

language message sequence charts; notably, they allow a distinction between mandatory 

and possible behaviour. They have been used successfully by Harel and his co-workers to 

build visual models of reactive biological systems [19]. By using play-in part of the 

method the application is intuitively learning whereas by using play-out the application is 

executed. It is used in [18] to model C. elegans vulval development where P3.p, P4.p, 

P5.p, P6.p, P7.p and P8.p are six cells that participate in the formation of vulva. The GUI 

of the application is shown in Figure 11.   

 

 
Figure 11: The GUI of Live Sequence Charts [19]
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Chapter 4 

Petri Nets 

 

4.1 Introduction 
 

Petri Nets (PNs) [2] is a formalism that can help in modelling concurrent and 

synchronized systems. It is used in Software Engineering but has recently been widely 

applied in Systems Biology. Molecular biology systems and metabolic networks can be 

represented in Petri Nets in a natural and convenient way as well as their various 

extensions – like stochastic, coloured, hybrid and functional Petri Nets. 

 

Petri Nets are a discrete event simulation approach, a case that can help in modelling, 

analyzing and simulating biological processes. Introduced by Prof. Carl A. Petri in the 

early sixties, it was mathematical modelling tool to encompass system properties like 

concurrency, indeterminism, communication and synchronization. Petri Nets can easily 

be converted into matrices and metrical operations. In Petri Nets the main components 

are places and transitions. A place can be an entity that has tokens. Tokens are put into 

the places and represent an attribute of the entity. In the case of molecular biological 

systems tokens can be the concentration of the molecule, and the molecule is the entity. 

Places are connected via arcs with transitions and transitions are then connected to the 

output places. Transitions, under certain conditions (constrains), fire and cause the 

movement of tokens from the input places to the output places. As shown in Figure 11 

places are denoted as circles (p1, p2, p3), transitions as rectangles (t1), tokens are dots 

that are placed in the circles and arcs are the arrows with a positive integer to show their 

weight. In the figure they are represented by the variables m1, m2, and m3. All tokens in 

one place are usually of the same kind. They represent the same attribute. An arc always 

connects a place with a transition. There is no connection of place to place or transition to  

transition. Definition 1 giving the formal definition of Petri Nets.
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Definition 1: The Petri net N is defined by the n-tuple (P, T, Pre, Post, M) 

where: 

1 2{ , ,..., }uP p p p , a finite set of places where 0u  ; 

1 2{ , ,..., }vT t t t , a finite set of transitions where 0v  , P T  ; 

Pre = P T  , is the input incidence mapping (weights of the arcs going from places 

to transitions) and where N is the set of natural numbers; 

Post = P T  , is the output incidence mapping (weights of the arcs going from 

transitions to places); 

M P   , is the marking of the net which is a vector of u components 1 2( , ,..., )um m m , 

where mi is the number of tokens contained in the place pi. M0 is the initial marking [2]. 
 

 

 

 

 

 

 

 

 

 

Figure 12: Petri Net [2]. 

 

The state of the Petri Net is given by the marking M. The vector M(p) is giving the 

number of tokens in the place p. If the Pre conditions of the transition are met, the 

transition will fire. The Pre conditions are usually whether the place has the minimum 

number of tokens as defined by the weight on the arc. The firing of a transition results a 

change in marking. Tokens are absorbed from the input place and tokens are created in 

the output place of the same transition. The number of tokens created in the output place 

is defined by the Post relation.  

 



  
 26 

 

In Figure 12 there is an example of how the transition operates. Places p1 and p2 are 

input places and place p3 is an output place of the transition t1. The token contents of 

places p1, p2 and p3 are m1, m2 and m3 respectively. The weight constants 1 and 3 on 

the arcs going out of places p1 et p2 and the value 1.0 attached to transition t1 mean that 

t1 can fire if m1 ≥ 1 and m2 ≥ 3, and that the firing delay is 1.0 time unit (in the case of a 

timed net). When t1 is fired, one token is removed from p1, three tokens are removed 

from p2 and two tokens are added to p3 [2]. 

 

Some more definitions of the behaviour and structure of Petri Nets follow. 

 

Definition 2: Reachability. A marking M is reachable if it can be reached from the 

current marking Mi in a finite firing sequence. 

 

Definition 3: Boundedness. A place is bounded with bound k, if the token count does not 

exceed k for any reachable marking M of the net. A Petri net is k-bounded if each place is 

k-bounded. 

 

Definition 4: Liveness. A transition is potentially firable if there exists a sequence of 

transition firings leading to a marking in which the transition is enabled. A transition is 

live if it is potentially firable for all reachable markings. A transition is dead if it is not 

potentially firable at the marking M; so if the Petri net enters marking M, the dead 

transition cannot fire any more. 

 

Definition 5: S-invariant. If C is the incidence matrix corresponding to the result of Post 

— Pre, then S-invariants are the solutions to the equation Cy = 0. The non-zero entries in 

the vector y constitute the set of places whose total token count does not change with any 

firing sequence. It is a conservation rule. 

 

Definition 6: T-invariant. If C is the incidence matrix corresponding to the result of Post 

— Pre, then T-invariants are the solutions to the equation CT x = 0, x ≥ 0. The solution 
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vector x is the set of transitions that have to fire, from some marking M, to return the Petri 

net to the same marking M. It is a regenerative rule. [2] 

 

In the next sections we present the various extensions of Petri Nets: Functional, 

Stochastic, Coloured, Hybrid, Hybrid Functional and High-level. 

 

4.2 Functional Petri Nets 
 

Functional Petri Nets introduced a new way to represent the weight of an arc. One can, 

instead of an integer, put a formula consisting of the marking variables of the places 

involved in a transition and give a dynamic way the transition performs. In this way, the 

rate of a chemical reaction can be modified according to the concentrations of the 

molecules involved.  

 

Definition 7: The functional Petri net N is defined by the n-tuple (P, T, Pre, Post, V, M) 

where: 

(P, T, Pre, Post, M) is a Petri net as described in Definition 1; 

1 1{ ( ,..., ), Pre | : ... }a u uV g m m a Post g p p       , a set of functions assigned to arcs 

of the net using its marking 1 2( , ,..., )um m m as parameters [2]. 

 

4.3 Stochastic Petri Nets 
 

Stochastic PNs give new dimension to transition timing. Instead of the transitions being 

instantaneous, they may have a delay that is characterized by a probabilistic distribution. 

Therefore, the delay is a random variable and the delay mean time is obtained by a 

stochastic rate .The formal definition is given by Definition 8. 

 

Definition 8: The stochastic Petri net N is defined by the n-tuple (P, T, Pre, Post, F, λ, 

M) where: 

(P, T, Pre,Post, M) is a Petri net as described in Definition 1; 
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{ , | :[0, ) [0,1]}t tF F t T F    , a set of probability density functions for the net firing 

delays. Their average is 1 and they are independent of the marking; 

{ , | : }t tt T R       , a set of firing rates, which are function of the marking (a set 

of natural integers) and where each element is associated with a transition t. This rate, a 

positive real number from the set R+, is used to calculate the probability density function 

for the transition t [2]. 

In Stochastic models the molecule concentrations are discrete amounts and the reaction 

kinetic rates are random events following probabilistic laws. SPNs are very useful in 

modelling and simulating such systems and examine the behaviour through the 

simulation results.  

 

4.4 Coloured Petri Nets 
 

The need to model huge systems led to the use of coloured tokens. This made the models 

smaller, more manageable and readable. In this way one can examine different dynamic 

behaviours modelled by different token colours. 
 

Definition 9: The coloured Petri net N is defined by the n-tuple (P, T, Pre, Post, C, M) 

where: 

(P, T, Pre, Post, M) is a Petri net as described in Definition 1 and the tokens of M are 

identified by a colour; 

C = {C1, C2 . . .}, a set of colours. The incidence mappings Pre and Post are functions of 

the token colours [2]. 

 

4.5 Hybrid Petri Nets and Supplementary Extensions  
 

If we consider a token being continuous instead of discrete, then we obtain Hybrid Petri 

Nets (HPNs). HPNs allow both the continuous and discrete type of tokens. One can have 

in their model tokens of integer number and tokens of a non-negative real number called 
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marks. In the latter case, transitions must also be continuous with a variable called speed. 

Speed denotes the rate of quantity transformation from input places to output places.  

 

 

 

 

 

 

 

 

 

 

Figure 13: Graphical representations of the elements of Hybrid Petri nets [2]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Hybrid Petri Net [2]. 

 

Figure 13 shows the graphical representation of elements in Hybrid Petri Nets; 

introducing the continuous place with double circle, the continuous transition with blank 

rectangle, inhibitory arc and the test arc. The use of the latter arcs is explained in the next 

section.  In Figure 14 there is an example of how Hybrid Petri Nets work. Places p1, p2 

and p3 are continuous places having content m1, m2 and m3 respectively. The function    

m1 − m2/2 is assigned to the continuous transition t1 as its firing speed, t1 can be fired if 
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m1 > 0 and m2 > 0. The contents of p1 and p2 are consumed with the speed m1 −m2/2, and 

the content of p3 increases with the same speed when the transition t1 is fired [2]. 

 

Definition 10: The hybrid Petri Net N is defined by the n-tuple (P, T, Pre, Post, h, M) 

where: 

    (P, T, Pre, Post, M) is a Petri Net as described in Definition 1, where M is a 

combination of integers for the number of tokens in discrete places and of real numbers 

for the mark of continuous places; 

    : { , }h P T D C  , called a hybrid function, indicates for each place and transition, if 

it is discrete ( ( )ih p D  and ( ) )jh t D  or continuous ( )kh p C  and 1( ) )h t C ; 

 

A delay dt is assigned to all discrete transition and a speed ut is assigned to all continuous 

transitions [2]. 

 

 

4.6 Hybrid functional Petri net (HFPN) 
 

Combining the functions of Hybrid and Functional Petri Nets, a new formalism was born 

called Hybrid Functional Petri Nets (HFPN). With HFPNs not only one can use a formula 

on the arcs to notify the weight, but two more kinds of arcs were added. The inhibitory 

arc, first, that denotes the repression of one place to another. When using an inhibitory 

arc the place must have less or equal number of tokens to the weight on the arc, in order 

to enable the transition to fire. The second kind of arc is the test one. This arc is used in 

the case that the transition does not consume any tokens. It is appropriate for modelling 

chemical reactions where an enzyme is needed but not consumed by the reaction. 

 

4.7 High-Level Petri Nets  
 

High level PN consist of places, transitions and arcs. The difference from the other PN is 

that tokens take actual values from a data set. In the case of our Figure 15 the tokens in 

p1 can take values from the set {0..5}. Similarly p2{0..5} and p3{0..10}. Like in sets, 
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places can have multiple tokens with the same value. In p1 we can have two 3’s or three 

4’s. The marking of all places denotes the state of the Petri Net. In this case marking M is 

M(p1) = {1}, M(p2) ={2,3} and M(p3) = {}. 

 

The second difference from the other PN is the variables on the arc (a, b, c) that give the 

binding of tokens to the transitions. Transitions also have a Boolean expression called 

guard. The transition fires if guard evaluates to true or if the binding enables the 

transition, which means that the arc variable has the same value as the token in the place. 

In our example, the transition is enabled by the marking: 1a  , 3b  , 2c  .Tokens 1 

and 3 are moved from places p1 and p2 respectively and a new token (2) is created in p3. 

the new marking is M’(p1) = {}, M’(p2) = {2}, M’(p3) = {2}. A reachability graph can 

be formed based on the initial marking, giving all the reachable states a HLPN can reach. 

Model checking has several techniques in analyzing reachability properties. 

 

 

 

 

 

 

 

Figure 15: An example of a simple high-level Petri net [20]. 

 

Definition 10: A high-level Petri net, HLPN for short, is a triple ( S ,T , i ), where S  and 

T  are disjoint sets of places and transitions, and ι is an inscription function with domain  

( ) ( )S S T T S T     such that: 

– for every place s S , ( )i s Val , is the type of s , i.e., the set of possible values 

the place may carry; 

– for every transition t T , ( )i t  is the guard of t , i.e., a predicate from Pr; 

– for every arc ( , ) ( ) : (( , )) ( )fs t S T s t M Val Var    is a multi-set of variables 

or values analogously for arcs ( , ) ( )t s T S  . The inscriptions 



  
 32 

 

(( , ))i s t  and (( , ))i t s will generally be abbreviated as ( , )i s t and ( , )i t s , 

respectively. The arcs with empty inscriptions are omitted. [21] 
 

4.8 Evaluation  
 

4.8.1 Qualitative vs. Quantitative Analysis 

 
Depending on the aspect one takes on biological systems, Petri Nets can be used for 

qualitative or quantitative analysis. If one is more concerned for the dynamics of the 

system, the biochemical reactions that take place, the boundaries or liveness of the 

system then the Petri Net extension should help for the qualitative analysis of the system. 

On the other hand, if one wants to know the concentrations of the molecules involved or 

the reachable steady states of the system then the Petri Net extensions should help for the 

quantitative analysis of the biological system (Table 2). 

 

4.8.2 Hybrid vs. Stochastic Petri Nets 

 

The choice of whether to use a Hybrid or Stochastic Petri Net relies on the nature of the 

system. If the biological system consists of small amount of molecules, the better choice 

is stochastic - along with the case where your transitions act upon timed-distributions.  If, 

however, the system is composed of large amount of molecules then the answer is hybrid 

Petri Net - taking also into consideration that your places and transitions are continuous. 



    

 

 
Table 2: Summary of the capabilities and goals of each type of Petri Net 

 

Petri Net Extension Modelling Goal Pros Analysis Type Available Software Good for 

Coloured  Analysis of biological 
system properties 

Able to diminish 
model size, allow 
models to manage 
more information 
without being 
complex. 
Can represent in the 
same model, different 
dynamic behaviours 
modelled by different 
token colours. 

Qualitative Design/CPN Discriminating 
metabolites on the 
basis of their chain of 
reactions in a model 

Stochastic Simulation of 
biological systems 
with low 
concentrations 

Can take into 
consideration the 
delay of the reaction, 
which follows a 
probabilistic 
distribution  

Quantitative Mobius Model with small 
number of molecules 

Functional Simulations of 
biological reactions 

Can assign to an arc 
an equation using 
marking variables. 
Concentrations, 
represented by the 
number of tokens in 

  The network marking 
dynamically modifies 
the weight of the arc 
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the net, are variables 
for the functions that  
define the weight of 
the arc 

Hybrid  Simulation of 
biological systems 

Can represent discrete 
and continuous 
quantities  

Quantitative Genomic Object Net 
(renamed to Cell 
Illustrator)  

Model with high 
number of molecules 

High-Level Model multi-valued 
networks 

Tokens can have a 
value within a range 
of values, resulting a 
multi-value 
representation 

  Model the dynamics 
of a transcription 
networks with the 
different 
concentrations of the 
reactants 
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4.9 Available tools 
There are several tools available that model biological systems. Some of them are 

shown in Table 2. Cell Illustrator, Mobius and PEP tool are examples. In the next 

sections we give an overview of Mobius and a brief description of PEP tool. 

  

4.9.1 Mobius 

Mobius is the tool that we used in our case study. It is software developed by the 

University of Illinois and we express our sincere thanks to them for allowing us to use 

it. It is a Java-based, cygwin application that provides the ability to build your model 

in SAN (Stochastic Activity Network); a Stochastic Petri Net formalism. The tree 

structure of a project in Mobius is shown in Figure 16.  

 

. 
Figure 16: The tree structure of Mobius Project 
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The first component is the atomic formalism where the .san file (Figure 17) is built 

based of the following primitives (elements): 

- place, represented by a blue circle. 

- extended place, represented by an orange circle. 

- input gate, represented by a red triangle with its tip pointing to the left. 

- output gate, represented by a black triangle with its tip pointing 

   to the right. 

- instantaneous activity, represented by a thin vertical bar in blue colour 

- timed activity, represented by a thick vertical bar in blue colour 
 
 

 

 
Figure 17: The SAN formalism of Mobius 

 

Atomic formalisms can be joined to make composed formalisms with the 

Join/Replicate procedure. 

 

The next component in the project is the reward model (Figure 18). Here one can 

declare the reward performance variables (PV). These are variables that we are 
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interested in their values during the simulation. One can add a PV in the left hand side 

column and set the reward function in the rate reward tab, by which function one can 

specify what should the performance variable return. For example in the case of the 

variable PSGL_1_BOUND we are interested in the concentration of PSGL-

1_BOUND and the reward function returns the marking of this place. More over, one 

can specify in the Time tab the Type of time, whether the variable is tracked at an 

instant of time or at an interval of time or at time average interval or at steady state. 

Below this one defines the upper bound of time, the starting point of time and the 

pace by which the PV is tracked. 

 

 
Figure 18: The reward model in Mobius 

 

In the Simulation tab one can check the reward estimation; meaning whether one likes 

Mobius to estimate the mean of the PV, the variance, the interval or the distribution. 

On the right-hand side one can specify the confidence intervals of the PV. This means 
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that if the PV exceeds the confidence intervals then the user should be notified by the 

results. In the Excel files Mobius provides, an asterisk is shown if such thing happens.  

 
The third component of the tree is the study (Figure 19). Here one can specify the 

constants and variables that the simulation uses. Mobius provides the facility of 

defining a variable with different values ranging in incremental, functional, manual or 

random way. In our example Dv (vessel diameter) is defined as such variable that 

changes in incremental range. In the study one declares the type of the variable (float, 

integer) and defines the value of the variable. If one variable is taking different values, 

then Mobius creates one experiment for each value of this variable. In our case here 

41 experiments were created for each value of the vessel diameter.  

 

 
Figure 19: The study in Mobius 

 

The fourth and final component in the project tree is the solver (Figure 20) in the first 

tab of which one defines the simulation parameters. This means the current study that 

will be executed, the experiments that will be executed, the simulation type 

(terminating simulation or steady state), the name of the result files, the random 
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number generator (Lagged Fibonacci or Tausworthe), the random number seed, the 

maximum and minimum batches, the number of batches per data update, the number 

of batches per display update, the built type, and the format of result files that will be 

created.  

 

 
Figure 20:  The solver in Mobius 

 

One can place Mobius on a network where various developers can work on the same 

project. This can be done in the Network setup tab. The Run Simulation tab is where 
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the simulation is executed. By checking on the “Start Simulation” button Mobius 

starts compiling the project hierarchically first the SAN model, then the reward 

model, then the study and finally the solver. The whole model is converted by Mobius 

to C++ code, compiled and then runs the simulation. By the end of the simulation, the 

results can be found in the Results tab, or in the MobiusProject folder in C drive (e.g. 

C:\MobiusProject\fifth\Solver\Lympho_sim). In our example the result files will be in 

Excel format.  

 

In Figure 21 it shown how the various parts of Mobius project are connected, 

compiled, linked and run to give the results.  

 

 
Figure 21: Mobius tool architecture [22]. 
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4.9.2 PEP tool 

 

The PEP tool (Programming Environment based on Petri Nets) is a comprehensive set 

of modelling, compilation, simulation and verification components, linked together 

within a Tcl/Tk-based graphical user interface. PEP's modelling components facilitate 

the design of parallel systems by parallel programs (B(PN)^2 and SDL), interacting 

finite automata, process algebra, or high-level/low-level Petri nets. PEP's compilers 

generate Petri nets from such models. Its simulators allow automatic or user-driven 

simulation of high-level / low-level nets and may trigger simulation of the 

corresponding programs and/or a 3D model. PEP's verification component contains 

various Petri net indigenous algorithms to check, e.g., reachability properties and  

deadlock-freeness, as well as verification algorithms. 
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Chapter 5 

Case Study 

 

5.1 Description 
The system tries to simulate the recruitment of lymphocytes during an inflammation 

in brain vessels. The procedure can be considered as a cause of multiple sclerosis in 

neural system. Multiple sclerosis (abbreviated MS, also known as disseminated 

sclerosis or encephalomyelitis disseminata) is a disease in which the fatty 

myelin sheaths around the axons of the brain and spinal cord are damaged, leading 

to demyelization and scarring as well as a broad spectrum of signs and symptoms. MS 

affects the ability of nerve cells in the brain and spinal cord to communicate with each 

other. Nerve cells communicate by sending electrical signals called action potentials 

down long fibers called axons, which are wrapped in an insulating substance called 

myelin. Almost any neurological symptom can appear with the disease, and often 

progresses to physical and cognitive disability. MS takes several forms, with new 

symptoms occurring either in discrete attacks (relapsing forms) or slowly 

accumulating over time (progressive forms). MS is an autoimmune disease that its 

pathophysiology is still under investigation [23].  

 

Our work is a simulation of the recruitment of lymphocytes during an inflammation of 

brain vessels. The system examines the four phases of the recruitment: tethering of the 

cell on the endothelium of the vessel, rolling of the cell on the endothelium, 

chemokine activation and firm adhesion of the cell by the vessel (Fig. 22). The latter 

causing the diapedesis of the cell to the parenchyma of the nervous system. There are 

certain molecules that play vital role to the adhesion of the cell. On the lymphocyte 

there are: PSGL-1, ALPHA4, CHEMOREC and LFA-1 integrins that form bonds 

with the corresponding molecules on the endothelium, ligands: P-SELECTIN, 

VCAM-1, CHEMOKINE and ICAM-1. The bond is a heterodimer complex that is 

like key to lock bondage. This bondage turns each molecule into a BOUND form, i.e. 

PSGL_1_BOUND, ALPHA4_BOUND, P_SELECTIN_BOUND. The first phase is 

the interaction of PSGL-1 and P-SELECTIN, helping in the tethering of the cell with 
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the endothelium. The second phase is the integrin activation by the interaction of 

CHEMOKINE and CHEMOREC. G-protein is produced during this phase and 

activates integrins and ligands of the next phases. The bondage of ALPHA4 and 

VCAM-1 is the third phase, contributing to the adhesion of the cell to the 

endothelium. The final phase is the interaction of LFA-1 and ICAM-1, which makes 

the firm adhesion of the cell and the final diapedesis. Diapedesis means that the cell 

crosses the Blood Brain Barrier (BBB) and intrudes parenchyma and nervous system. 

In such case, lymphocytes can make cause demyelization of the neural axons leading 

to miscommunication of the neural cells and muscular dysfunction. Anatomically this 

is shown in MRI’s as white lesion. 

 

 
Figure 22: The four-phase model of lymphocyte recruitment [24]. 

 



    

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
     Figure 23: The SAN formalism of the system using Mobius tool. 
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For our simulation we used the Mobius tool version 2.3 from the University of Illinois 

and we gratefully thank them for providing us the software. The system was modelled 

in SAN (Stochastic Activity Network) formalism. This is actually Stochastic Petri Net 

formalism that can be drawn in Mobius and the tool turns it into C++ code simulation.  

 

The setup data for our simulation are shown in Tables 3, 4. 
 

Table 3: Space parameters and densities [24] 

Space Parameters for Vessels and Lymphocytes 

Radius of vessel 25µm 

Length of vessel 100µm 

Volume of vessel 1,96x105µm3 

Radius of lymphocyte 5µm 

Densities 

Lymphocyte 

Molecules 

Endothelium 

Molecules 

Density in µm-2 Number of 

Molecules (x106) 

PSGL-1 P-SELECTIN 5600µm-2 88 

ALPHA4 VCAM-1 85µm-2 2 

CHEMOREC CHEMOKINE 15,000µm-2 236 

LFA-1 ICAM-1 5500µm-2 86 

 

The simulation data are based on mice experiments. The volume of the simulation and 

the radius of the vessels and the radius of the cells were taken from experimental data 

on mice. The mice were affected by experimental autoimmune encephalomyelitis 

which is the analogous disease to multiple sclerosis in human beings. The association 

of ligands and integrins is characterized by a rate of association and the corresponding 

disassociation by a rate of disassociation. The values of these rates are shown in Table 

4. 
Table 4: The values of Rates [24] 

RA = 8.500 RA_C = 0.051 RD0 = 0.051 

RD1 = 5.100 RD2 = 1.000 RD_C = 3.800 

 

RA = Rate of association of PSGL-1 and P-SELECTIN, rate of association of 

ALPHA4 and VCAM-1, rate of association of LFA-1 and ICAM-1. 
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RA_C = Rate of association of CHEMOKINE and CHEMOREC 

RD0 = Rate of disassociation of PSGL-1 and P-SELECTIN 

RD_C = Rate of disassociation of CHEMOKINE and CHEMOREC 

RD1 = Rate of disassociation of ALPHA4 and VCAM-1 

RD2 = Rate of disassociation of LFA-1 and ICAM-1 

 

The first phase of the recruitment of lymphocytes is the tethering of lymphocytes to 

the endothelium. To this purpose the molecules that contribute are PSGL-1 and P-

SELECTIN. As shown in Figure 23, PSGL_1 and PSELECTIN pass through the bind 

transition and are turned into PSGL_1_BOUND and PSELECTIN_BOUND 

respectively. Bind transition is a timed-activity denoted by a thick vertical line and is 

characterized by exponential distribution. The rate of the distribution is  

 

  RA * concentration of PSGL-1 * concentration of P-SELECTIN 

 

The concentration of PSGL-1 is 88x106 molecules and the concentration of P-

SELECTIN is also 88x106 (Table 3). During the bind transition the input places are 

decreased in tokens by one while the output places (PSGL-1_BOUND and 

PSELECTIN_BOUND) are increased by one. Input Gates generally are responsible 

for the changes that take place in the marking of input places when the transition fires. 

Input gates take two input fields; the predicate and the input function. Predicates are 

boolean equations that have to be true in order the transition to fire. Input function 

determines how the number of tokens in the input places is changed after the transition 

fires. In the case of bind transition the predicate in the input gate is that the marking of 

the input places should be greater than zero. The output gate is responsible for the 

flow of tokens after the transition is fired. It adds one token to each output place. 

Output gates take one field, the output function.  

 

Not all the cells however stay tethered on the endothelium. The heterodimer that is 

formed can break and give the molecules back their free state. PSGL_1_BOUND and 

PSELECTIN_BOUND go through the transition backbone that is also a timed-activity 

characterized by exponential distribution. Input gate checks that the markings of the 

input places are greater than zero and decreases the tokens by one. The rate of 

distribution is: 
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RD0 * concentration of PSGL-1_BOUND * concentration of P-SELECTIN_BOUND 

 

The Output_Gate_2 increases the marking of PSGL-1 and P-SELECTIN by one. 

PSGL-1 and P-SELECTIN play role in tethering but also in rolling of the cell. So as 

the cell rolls on the endothelium the leading part of the cell creates bonds while the 

trailing part of the cell breaks bonds. 

 

In the second phase we have the CHEMOKIN interacting with the CHEMOREC. 

CHEMOKIN is a chemotactic cytokine in the endothelium cells, while CHEMOREC 

are receptors that reside on the lymphocyte. The bondage between the two promotes 

the production of G-protein and the activation of integrins for the following phases. 

CHEMOKIN and CHEMOREC interact via lig transition and the products are: 

CHEMOREC_BOUND and CHEMOKIN_BOUND. CHEMOKIN_BOUND turned 

into: CHEMO_BREAKER, ALPHA4_ACTIVATOR and LFA_1_ACTIVATOR. lig 

transition is a timed activity with exponential distribution. All timed activities in the 

model are characterized by exponential distribution. The rate of the distribution in the 

chemokin activation is: 

 

RA_C * concentration of the CHEMOKIN * concentration of CHEMOREC 

 

Input_Gate_3 predicate makes sure that the concentrations of CHEMOKIN and 

CHEMOREC are greater than zero, while the input function reduces the tokens in 

CHEMOKIN place and CHEMOREC place by one. The Output_Gate_3 increases the 

marking of CHEMOREC_BOUND, CHEMO_BREAKER, ALPHA4_ACTIVATOR 

and LFA-1_ACTIVATOR by one. 

 

CHEMOREC_BOUND and CHEMO_BREAKER go through the chb transition. chb 

transition is a timed activity that checks that the concentration of 

CHEMOREC_BOUND and CHEMO_BREAKER are greater than zero through 

Input_Gate_4. Input_Gate_4 reduces the tokens in the input places by one, while 

Output_Gate_4 increases the tokens of the output places, CHEMOKIN and 

CHEMOREC, by one. The rate of the probabilistic distribution in the chb transition is: 
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RD_C * concentration of CHEMO_BREAKER * concentration of 

CHEMOREC_BOUND  
 

The ALPHA4_ACTIVATOR molecule that was produced in the previous phase, 

contributes in the third phase of the recruitment. ALPHA4_ACTIVATOR activates 

ALPHA4 through the alpha_act transition. Alpha_act transition is an instantaneous 

transition. This means that it has no time delay and no stochasticity. The transition 

fires instantaneously as soon as the predicate in Input_Gate_5 is satisfied. 

Instantaneous transitions are denoted by a thin vertical line. The rate is infinite (A). 

Input_Gate_5 predicate checks whether the concentrations of 

ALPHA4_ACTIVATOR and ALPHA4 are greater than zero and decreases the 

marking of the input places by one. Output_Gate_5 increases the marking of the 

output place ALPHA4_ACTIVE by one. This phase is responsible for the rolling of 

the cell and the adhesion of the cell by the endothelium.  ALPHA4_ACTIVE interacts 

with the VCAM-1 molecule that resides on the endothelium to form a heterodimer 

complex. The transition bind2 makes sure that the concentration of the two input 

places are greater than zero and once enabled reduces the marking of each place by 

one. bind2 transition is a timed activity  and the rate of the probabilistic distribution is: 

 

RA * concentration of ALPHA4_ACTIVE * concentration of VCAM-1 

 

Output_Gate_6 increases the marking of the output places, ALPHA_BOUND and 

VCAM-1_BOUND, by one token.  

 

ALPHA_BOUND and VCAM-1_BOUND return to their free states via the 

backbone2 transition. The breakage of their bond is possible as the cell rolls on the 

endothelium especially if the adhesion did not happened. backbone2 is a timed 

activity with probabilistic distribution. The rate of disassociation is RD1 and the rate 

of the exponential probabilistic distribution is: 

 

RD1 * concentration of ALPHA_BOUND * concentration of VCAM-1_BOUND 

 

The fourth and final phase of the recruitment is the firm adhesion of the cell on the 

endothelium and the diapedesis into the parenchyma. The molecules that contribute to 
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this are LFA-1 and ICAM-1. LFA-1_ACTIVATOR is responsible for the activation of 

LFA-1. LFA_ACTIVATOR and LFA-1 interact via the lfa_act transition. It is an 

instantaneous transition with an infinite rate (A). Input_Gate_8 predicate checks that 

the concentrations of the two input places are greater than zero and the input function 

reduces the marking of LFA_ACTIVATOR and LFA-1 by one. Output_Gate_8 

increases the marking of LFA-1_ACTIVE by one token.   

 

LFA-1_ACTIVE interacts with the ICAM-1 molecule to form a heterodimer. This is 

done via the bind3 transition. The input predicate function of Input_Gate_9 checks 

that the input places have concentrations greater than zero and the input function 

reduces the tokens of the input places by one. The rate of the exponential distribution 

of the timed-activity bind3 is: 

 

RA * concentration of LFA-1_ACTIVE * concentration of ICAM-1 

 

Output_Gate_9 increases the marking of the output places, LFA-1_BOUND and 

ICAM-1_BOUND, by one in the output function. Once the lymphocyte is firmly 

adhered, it stays adhered until the final diapedesis in the parenchyma. This is shown in 

Figure 22 with the transition backbone3 that does not return the bound molecules to 

their free states, but stay in the states LFA-1_BOUND and ICAM-1_BOUND. 

Input_Gate_10 decreases the marking of the input places LFA-1_BOUND and ICAM-

1_BOUND, but the Output_Gate_10 returns the tokens to the bound states and not to 

the free states. The rate of backbone3 is given by the equation: 

 

RD2 * concentration of LFA-1_BOUND * concentration of ICAM-1_BOUND 

 

The system of PSGL-1/PSELECTIN interaction works in parallel with the rest of the 

system, a fact that is a privilege of Stochastic Petri Nets and Mobius. This form of 

parallel procedures is really helpful in Systems Biology, which in most of the times 

are not sequential and are non-deterministic. In real life many things are done at the 

same time, out order and with a possibility of being done. Stochastic Petri Nets gives 

the facility to model biological systems with more real life aspect.  
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5.2 Results - Analysis 
 

Using the Mobius tool, version 2.3 we set up out simulation based on the data shown 

in Table 3. The simulation ran for 10 seconds in a vessel of radius 25µm, length 

100µm, and a volume of 1,96x105µm3. The radius of the lymphocyte is 5µm and the 

concentrations of the molecules are 88x106 for PSGL-1 and P-SELECTIN, 236x106 

for CHEMOKINE and CHEMOREC, 2x106 for ALPHA4 and VCAM-1, and 86x106 

for LFA-1 and ICAM-1. We tracked the performance reward variables we declared. 

Performance reward variables in Mobius are variables that we are interested in their 

values during the execution of the simulation. In our case we declared the following 

reward variables: 

 PSGL-1_BOUND 

 PSELECTIN_BOUND 

 CHEMO_BREAKER 

 CHEMOREC_BOUND 

 ALPHA4_BOUND 

 VCAM-1_BOUND 

 LFA-1_BOUND 

 ICAM-1_BOUND 

 Pr_adhesion 

 No_bound_molecules  

 

We are interested in the concentrations of the bound molecules of each species of 

molecules, in the probability of adhesion (Pr_adhesion) and finally in the total number 

of bound molecules (No_bound_molecules) which is all the bound molecules added 

up.  

 

The probability of adhesion [24] is calculated with the formula: 

 

1Pr( ) i i
l i

adhesion w N
N

        (11) 
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where /l endothelium contactN S S  is the total number of lymphocytes on the laminar flux in 

contact with the endothelium, given by the ratio between the endothelial surface 

(~15,700 µm2) and the cell contact area (~200µm2); Ni is the number of bound 

molecules for the ith molecular interaction; and ws are the weights of the linear model 

that quantify the statistical influence of the different molecular interactions in the cell 

adhesion mechanism. In our model, the weights can take values in the range between 

0 and 1. Because of the lack of experimental quantifications for the statistical 

influence of the different molecular interactions, we assume that wi = 1/8 = 0.125 for 

all the considered interactions of all the eight molecular species.  
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Figure 24: PSGL-1/P-SELECTIN interaction. Number of bound molecules (x106) PSLG-

1_BOUND/P-SELECTIN_BOUND during the first phase of the lymphocyte recruitment.  

 

In Figure 24 the y-axis represents the number of PSGL-1_BOUND/P-

SELECTIN_BOUND molecules in millions during the first phase of the lymphocyte 

recruitment. The x-axis is the simulation time for which the experiment is executed 

(10 sec). The results show that the PSGL-1/PSELECTIN interaction (Figure 24) has a 

steep rise at the beginning of the simulation reaching the 87.9x106 bound molecules. 

This is because there is a high rate of association and a low rate of disassociation. The 

steep rise is followed by a small fluctuation of the bound molecules that is caused by 
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the forming and breaking of the bonds between the cell and the endothelium. The 

values of PSGL-1_BOUND and P-SELECTIN_BOUND range from 84.3x106 to 

87.9x106. 
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Figure 25: CHEMOKINES/RECEPTORS interaction. Number of bound molecules (x106) 

CHEMOREC_BOUND during the second phase of the lymphocyte recruitment 

 

In Figure 25 the y-axis represents the number of CHEMOREC_BOUND molecules in 

millions during the second phase of the lymphocyte recruitment. The x-axis is the 

simulation time for which the experiment is executed (10 sec). The 

CHEMOKIN/RECEPTORS interaction starts with a big rise, followed by a fall and 

then a rise smaller than the first one. Then there is a steady straight line. The rate of 

disassociation of the CHEMOKIN/CHEMOREC interaction is higher than the rate of 

association, and that is why the number of bound molecules (around 215x106) is lower 

than the initial CHEMOKIN number of molecules (236x106). 
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Figure 26: ALPHA4/VCAM-1 interaction. Number of bound molecules (x106) 

ALPHA4_BOUND/VCAM-1_BOUND during the third phase of the lymphocyte recruitment  

 

In Figure 26 the y-axis represents the number of ALPHA4_BOUND/VCAM-

1_BOUND molecules in millions during the third phase of the lymphocyte 

recruitment. The x-axis is the simulation time for which the experiment is executed 

(10 sec). Fluctuation is noticed in the ALPHA4/VCAM-1 interaction (Figure 26), with 

bigger range than the one in the PSGL-1/P-SELECTIN interaction. The values of 

ALPHA4_BOUND and VCAM-1_BOUND range from 1.00x106 to 1,65x106 during 

the fluctuation. Even though APHLA4/VCAM-1 interaction plays bigger role in the 

adhesion of the cell, it is still involved in the rolling/tethering phase. The forming and 

breakage of the bonds results this fluctuation, which is more intense than the PSGL-

1/PSELECTIN interaction. 
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Figure 27: LFA-1/ICAM-1 interaction. Number of bound molecules (x106) LFA-

1_BOUND/ICAM-1_BOUND during the fourth phase of the lymphocyte recruitment  

 

In Figure 27 the y-axis represents the number of LFA-1_BOUND/ICAM-1_BOUND 

molecules in millions during the fourth phase of the lymphocyte recruitment. The x-

axis is the simulation time for which the experiment is executed (10 sec). The graph of 

the LFA-1/ICAM-1 (Figure 27) starts with big rise and then a steady behaviour. High 

levels of LFA-1_BOUND and ICAM-1_BOUND molecules denote that there is high 

propensity of firm adhesion of the cell. The steady behaviour is explained by the fact 

that once the cell is firmly adhered then it remains there until the final diapedesis. 
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Figure 28: The adhesion probability vs. contact time 

 

In Figure 28 the y-axis represents the adhesion probability. The x-axis is the 

simulation time for which the experiment is executed (10 sec). The adhesion 

probability starts with a pick, 0.433, and then slowly lowering to the value of 0.320. 

Some slight fluctuation is observed in the range 0.312-0.320. The mice under 

investigation are suffering form experimental autoimmune encephalomyelitis and the 

31-32% possibility of adhesion is pretty high.  
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Figure 29: Number of bound molecule vs. Time 

 

In Figure 29 y-axis represents the number of bound molecules, which means the total 

number of PSGL-1_BOUND, CHEMOREC_BOUND, ALPHA4_BOUND and LFA-

1_BOUND. The x-axis represents the simulation time for which the experiment is 

executed. After a pick of 272x106 bound molecules, the graph lowers to 200x106. A 

fluctuation follows the 1.0 second ranging between the values 196x106 and 202x106. 

 

5.3 Treatment under investigation 

 
In this section we will see our endeavour to apply the treatment of interferon beta 

(IFN-β-1b) in our model. The graphs shown are for 3-month therapy, 6-month therapy 

and 12-month therapy. 

 

Based on [25] we inserted into our model the fact that CHEMOKIN can be reduced 

during the treatment of a patient with interferon IFN-β-1b. In 3-month therapy with 

IFN-β-1b the levels of CHEMOKIN (CXCL10) is reduced from 236x106 to 168x106, 

in 6-month therapy to 163x106 molecules and in 12-month therapy to 137x106 

molecules.  The results are shown on the probability of adhesion and shown below. 
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Table 5: The concentrations of CHEMOKIN under therapy 

Time Intervals CHEMOKIN (CXCL10) 

Baseline 236x106 

3-month therapy 168x106 

6-month therapy 163x106 

12-month therapy 137x106 

 

5.3.1 3-month therapy 
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Figure 30: PSGL-1/P-SELECTIN interaction at 3-months therapy. Number of bound 

molecules (x106) PSGL-1_BOUND/P-SELECTIN_BOUND during the first phase of 

lymphocyte recruitment (PSGL-1/P-SELECTIN interaction) at 3 months therapy with 

interferon IFN-β-1b. 

 

In Figure 30 the y-axis represents the number of PSGL-1_BOUND/P-

SELECTIN_BOUND molecules in millions during the first phase of the lymphocyte 

recruitment at 3 months therapy. The x-axis is the simulation time for which the 

experiment is executed (10 sec). The PSGL-1/P-SELECTIN interaction in Figure 30 

shows a big rise at the beginning of the graph. The concentrations of PSGL-

1_BOUND and P-SELECTIN_BOUND reach high levels, 87.8x106 at the beginning 

and 88.0x106 later on. A fluctuation is observed in the next seconds at which values 
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range from 83.1x106 to 88.0x106. This is due to the fact that bonds are created and 

break during the tethering and rolling of the cell. The results of the 3 months therapy 

show a decrease in PSGL-1_BOUND and P-SELECTIN_BOUND as in the baseline 

simulation the values of these bound molecules ranged from 84.3x106 to 87.9x106. 

This shows the contribution of interferon IFN-β-1b to the treatment. 
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Figure 31: CHEMOKINE/RECEPTORS interaction at 3 months thepary. Number of bound 

molecules (x106) CHEMOREC_BOUND during the second phase of lymphocyte recruitment 

(CHEMOKINE/RECEPTORS interaction) at 3 months therapy with interferon IFN-β-1b. 

 

In Figure 31 the y-axis represents the number of CHEMOREC_BOUND molecules in 

millions during the second phase of the lymphocyte recruitment at 3 months therapy. 

The x-axis is the simulation time for which the experiment is executed (10 sec). The 

graph starts with a pick at 168x106 molecules followed by a low value of 127x106. 

The graph proceeds with a rise, leading to a relative steady values ranging from 

148x106 molecules to 151x106. We observe that the behaviour of 

CHEMOREC_BOUND is the same as the one in the baseline experiments, having 

though lower values as the initial value in this case is reduced to 168x106. 
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Figure 32: ALPHA4/VCAM-1 interaction at 3-month therapy. Number of bound molecules 

(x106) ALPHA4_BOUND/VCAM-1_BOUND during the third phase of lymphocyte 

recruitment (ALPHA4/VCAM-1 interaction) at 3 months therapy with interferon IFN-β-1b. 

 

In Figure 32 the y-axis represents the number of ALPHA4_BOUND/VCAM-

1_BOUND molecules in millions during the third phase of the lymphocyte 

recruitment at 3-month therapy. The x-axis is the simulation time for which the 

experiment is executed (10 sec). We observe that the concentration of 

ALPHA4_BOUND and VCAM-1_BOUND rises at the beginning of the graph, 

followed by a fluctuation ranging from 0.90x106 to 1.75x106. Comparing with Figure 

26, the baseline experiment, we observe that the ALPHA4_BOUND and VCAM-

1_BOUND molecules are in wider range of values than the baseline ones. Baseline 

results were between 1.00x106 and 1.65x106.   
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Figure 33: LFA-1/ICAM-1 interaction at 3 months therapy. Number of bound molecules 

(x106) LFA-1_BOUND/ICAM-1_BOUND during the first phase of lymphocyte recruitment 

(PSGL-1/P-SELECTIN interaction) at 3 months therapy with interferon IFN-β-1b. 

 
In Figure 33 the y-axis represents the number of LFA-1_BOUND/ICAM-1_BOUND 

molecules in millions during the fourth phase of the lymphocyte recruitment at 3 

months therapy. The x-axis is the simulation time for which the experiment is 

executed (10 sec).  We observe that after the steep increase, the number of bound 

molecules acquires a steady value of 86x106. This is the same steady value that is 

acquired by the baseline experiments. The firm adhesion of the cell in this phase 

makes the bondage of LFA-1 and ICAM-1 steady. There is no return to the free state 

and no breakage.  The application of the interferon beta therapy does not affect this 

part of the phase. The results are almost exactly the same as the baseline results. 
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Figure 34: Adhesion probability versus contact time at 3 months therapy 

 

In Figure 34 the y- axis represents the probability of adhesion and the x-axis the 

simulation time (10sec). The adhesion probability makes a big rise in the first half 

second of the simulation reaching the value of 0.343 and then lowers to the value of 

0.305. The value then fluctuates in the range of 0.301 and 0.307. There is a small 

decrease in the probability of adhesion compared to the baseline simulation. In the 

latter case the probability was fluctuating in the range 0.312-0.320. There is a 

contribution of interferon IFN-β-1b to the decrease in the probability of adhesion. 
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Figure 35: No of bound molecules vs. Time at 3 months therapy 

 

In Figure 35, y-axis represents the total number of bound molecules at 3 months 

therapy. This means the sum of PSGL-1_BOUND, CHEMOREC_BOUND, 

ALPHA4_BOUND, LFA-1_BOUND. The x-axis represents the simulation time for 

which the experiment is executed (10 seconds). After a steep rise to 215x106 

molecules the graph lowers to 192x106. After the first second the value is fluctuating 

between the values 188x106 to 193x106. Comparing these results with the baseline 

results we observe a decrease in bound molecules. The baseline results in Figure 29 

shows a fluctuation between the values 196x106 and 202x106. This is a contribution of 

the interferon beta that reduces the number of bound molecules by almost 1%.  
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5.3.2 6-month therapy 

 

 
Figure 36: PSGL-1/P-SELECTIN interaction at 6 months therapy. Number of bound 

molecules (x106) PSGL-1_BOUND/P-SELECTIN_BOUND during the first phase of 

lymphocyte recruitment (PSGL-1/P-SELECTIN interaction) at 6 months therapy with 

interferon IFN-β-1b. 

 

In Figure 36 the y-axis represents the number of PSGL-1_BOUND/P-

SELECTIN_BOUND molecules in millions during the first phase of the lymphocyte 

recruitment at 6 months therapy. The initial steep rise to 87.6x106 molecules is 

followed by a fluctuation ranging between 83.7x106 and 88.0x106.  The corresponding 

values in the baseline experiments are between 84.3x106 and 87.9x106 (fig. 24), where 

as the values of the 3 months therapy are between 83.1x106 and 88.0x106 (fig. 30). 

The results of the 3 months therapy are better than the ones in 6 months therapy. This 

is due to the fact that the difference of the CHEMOKINE concentrations in these two 

cases is very small, 168x106 for 3 months therapy and 163x106 for 6 months therapy, 

and our simulation obeys the exponential probabilistic distribution a factor that 

provides non-determinism.  Comparing 6-month therapy with the baseline we observe 

a decrease in the concentration of PSGL-1_BOUND and P-SELECTIN_BOUND 

molecules by 1%.  
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Figure 37: CHEMOKIN/RECEPTORS interaction at 6 months therapy. Number of bound 

molecules (x106) CHEMOREC_BOUND during the second phase of lymphocyte recruitment 

(CHEMOKINE/RECEPTORS interaction) at 6 months therapy with interferon IFN-β-1b. 

 
In Figure 37 the y-axis represents the number of CHEMOREC_BOUND molecules in 

millions during the second phase of the lymphocyte recruitment at 6 months therapy. 

CHEMOREC_BOUND begins in high concentration, 163x106, then lowers to 

115x106 and up again to 144x106. Fluctuation is observed after the 0.6 second of 

simulation with the values to range between 144x106 and 147x106. 
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Figure 38: ALPHA4/VCAM-1 interaction at 6 months therapy. Number of bound molecules 

(x106) ALPHA4_BOUND/VCAM-1_BOUND during the third phase of lymphocyte 

recruitment (ALPHA4/VCAM-1 interaction) at 6 months therapy with interferon IFN-β-1b. 

 

In Figure 38 the y-axis represents the number of ALPHA4_BOUND/VCAM-

1_BOUND molecules in millions during the third phase of the lymphocyte 

recruitment at 6 months therapy. There is a big rise at the beginning of the graph 

followed by a wide-range fluctuation. The values lay between the values of 0.85x106 

and 1.60x106. There is a small reduce in the values compared to the ones in the 

baseline experiments and the 3 months therapy. The baseline results were between 

1.00x106 and 1.65x106 and the 3 months therapy results were between 0.90x106 and 

1.75x106.  There is a reduction of 1% from the 3 months results and 0.85% reduction 

from the baseline results.  
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Figure 39: LFA-1/ICAM-1 interaction at 6 months therapy. Number of bound molecules 

(x106) LFA-1_BOUND/ICAM-1_BOUND during the first phase of lymphocyte recruitment 

(PSGL-1/P-SELECTIN interaction) at 6 months therapy with interferon IFN-β-1b. 

 
In Figure 39 the y-axis represents the number of LFA-1_BOUND/ICAM-1_BOUND 

molecules in millions during the third phase of the lymphocyte recruitment at 6 

months therapy. The value of bound molecules increased rapidly in the first 0.2 

seconds to 85.1x106 and in 0.4 seconds to 86.0x106. From 0.4 seconds on the value 

stays the same. This denotes that the cell has been adhered and is ready for diapedesis. 

The results in this graph are the same as the graphs in Figure 27 and Figure 33 for the 

baseline results and the 3 months therapy respectively.  
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Figure 40: Adhesion probability versus contact time at 6 months therapy 

 

In Figure 40 the y-axis represents the probability of adhesion and the x-axis represents 

the simulation time of the experiment at 6-month therapy. The graph shows an 

increase to 0.353 and then lowers to 0.308. There is a fluctuation from time 0.8 

seconds to 10.0 seconds ranging from 0.298 to 0.307. The corresponding results of the 

baseline results are 0.312 to 0.320 and the 3-month therapy results are 0.301 to 0.307. 

This shows a 0.95% decrease comparing with the baseline and 0.99% decrease 

comparing with the 3-month therapy. It is optimistic to see a small improvement in the 

probability of adhesion using IFN-β-1b.  
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Figure 41: No of bound molecules vs. Time at 6 months therapy 

 

In Figure 41 the y-axis represents the number of bound molecules and the x-axis 

represents the simulation time of the experiment at 6-month therapy. The graph shows 

an increase to 222x106 and then lowers to 194x106. The small fluctuation that follows 

is caused by the forming and breakage of the bonds between ligands and integrins. 

The fluctuation ranges between 187x106 to 194x106 bound molecules. The 

corresponding ranges in the baseline (fig. 29) and the 3 months therapy (Fig.35) are 

196x106 to 202x106 and 188x106 to 193x106, respectively. Comparing with the 

baseline we have 0.96% decrease. Comparing with the 3-month therapy there is not 

that much difference.  
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5.3.3 12-month therapy 
 

PSGL-1/P-SELECTINE interaction

0
10
20
30
40
50
60
70
80
90

100

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6

Time (sec)

N
o 

of
 b

ou
nd

 m
ol

ec
ul

es
 (x

10
6 )

12 months therapy

 
Figure 42: PSGL-1/P-SELECTIN interaction at 12 months therapy. Number of bound 

molecules (x106) PSGL-1_BOUND/P-SELECTIN_BOUND during the first phase of 

lymphocyte recruitment (PSGL-1/P-SELECTIN interaction) at 12-month therapy with 

interferon IFN-β-1b. 

 

In Figure 42 the y-axis represents the number of PSGL-1_BOUND/P-

SELECTIN_BOUND molecules in millions during the first phase of the lymphocyte 

recruitment at 12 months therapy. The steep increase of the bound molecules at the 

beginning of the simulation is followed by a fluctuation due to the forming and 

breakage of bonds between PSGL-1 and P-SELECTIN. Due to the high rate of 

association and the low rate of disassociation we have the big increase at first. The 

fluctuation later lies between the values of 83.3x106 and 87.9x106. This is lower than 

the baseline results and also lower than the 6-month therapy results. The 3-month 

therapy results are almost equivalent. The corresponding results of the baseline range 

from 84.3x106 to 87.9x106, the 3-month therapy range from 83.1x106 to 88.0x106 and 

the 6 month therapy results lay between 83.7x106 and 88.0x106. 
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Figure 43: CHEMOKINE/RECEPTORS interaction at 12 months therapy. Number of bound 

molecules (x106) CHEMOREC_BOUND during the second phase of lymphocyte recruitment 

(CHEMOKINE/RECEPTORS interaction) at 12 months therapy with interferon IFN-β-1b. 

 
In Figure 43 the y-axis represents the number of CHEMOREC_BOUND molecules in 

millions during the second phase of the lymphocyte recruitment at 12 months therapy.  

The concentration of CHEMOREC_BOUND starts with a high value of 137x106 then 

lowers to 104x106 and after that it rises to 122x106. This is followed by an almost 

steady value that ranges between 121x106 and 123x106. The behaviour of 

CHEMOREC_BOUND is almost the same as the one in the baseline and in the 3- 

month therapy. The CHEMOREC_BOUND does not stay in very high concentrations 

as the rate of association (RA_C) is lower than the rate of disassociation (RD_C). 
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Figure 44: ALPHA4/VCAM-1 interaction at 12 months therapy. Number of bound molecules 

(x106) ALPHA4_BOUND/VCAM-1_BOUND during the third phase of lymphocyte 

recruitment (ALPHA4/VCAM-1 interaction) at 12-month therapy with interferon IFN-β-1b.  

 

In Figure 44 the y-axis represents the number of ALPHA4_BOUND/VCAM-

1_BOUND molecules in millions during the third phase of the lymphocyte 

recruitment at 12 months therapy. We observe an initial rise to the 1.2x106 and then a 

wide-range fluctuation that has minimum value of 0.95x106 and a maximum of 

1.70x106. The wide-range fluctuation is due to the bondage of the two molecules and 

the possible breakage that follows. ALPHA4 integrin and VCAM ligand play role in 

the rolling phase but also in the adhesion of the cell. Possible adhesion is not firm so 

there might be a disassociation from the endothelium. This explains the big increases 

and decreases in the concentrations of ALPHA4_BOUND and VCAM-1_BOUND. 

The corresponding values of baseline range between 1.00x106 and 1.65x106. The 

results from the 3-month therapy range between 0.90x106 and 1.75x106 and the 6- 

month therapy results range from 0.85x106 and 1.60x106. The differences are not that 

huge to extract conclusions. There are times that 6 months therapy gives better results 

than the 12-month therapy, but that is not always the case.  
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Figure 45: LFA-1/ICAM-1 interaction at 12-month therapy. Number of bound molecules 

(x106) LFA-1_BOUND/ICAM-1_BOUND during the first phase of lymphocyte recruitment 

(PSGL-1/P-SELECTIN interaction) at 12-months therapy with interferon IFN-β-1b. 

 

In Figure 45 the y-axis represents the number of LFA-1_BOUND/ICAM-1_BOUND 

molecules in millions during the fourth phase of the lymphocyte recruitment at 12 

months therapy. The concentrations LFA_1_BOUND and ICAM-1_BOUND show a 

big increase at the beginning of the simulation reaching the value of 81.1x106. Slowly 

they increase to the top value of 86.0x106, where they stay until the termination of the 

simulation. The high values of LFA-1_BOUND and ICAM-1_BOUND mean that the 

possibility of firm adhesion is high. The corresponding graphs of the baseline 

simulation, the 3-month therapy and the 6-month therapy show a similar behaviour 

with the top values reaching 86.0x106. 

 



  73
  

 

Adhesion Probability vs. Time 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6

Time (sec)

A
dh

es
io

n 
Pr

ob
ab

ili
ty

12 months therapy

 
 

Figure 46: Adhesion probability versus contact time at 12 months therapy 

 

In Figure 46 the y-axis represents the adhesion probability and the x-axis represents 

the simulation time. The adhesion probability rises at the value of 0.324 initially and 

then rises to the value 0.327. Until the first second of the simulation the probability 

lowers to the value of 0.302. The big rise at the beginning of the simulation may be 

considered as the worm up of the system, and later the system is reaching a steady 

state. From 1.0 second and on the probability shows a small fluctuation in the range of 

0.292 and 0.302. Comparing this with the behaviour of adhesion probability in the 

baseline experiment, in the 3-month therapy and the 6-month therapy, we observe a 

decrease that is due to the treatment with interferon beta. The corresponding values of 

the baseline are between 0.312 and 0.320, the 3-month therapy results are between 

0.301 and 0.307 and the 6-month therapy results are between 0.298 and 0.307. There 

is 2-3% decrease from the baseline, 1% decrease from the 3-month therapy and 0.6% 

decrease from the 6-month therapy. 
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Figure 47: No of bound molecules vs. Time at 12 months therapy 

 

In Figure 46 the y-axis represents the total number of bound molecules in millions and 

the x-axis represents the simulation time. By total number of bound molecules we 

mean the sum of PSGL-1_BOUND, CHEMOREC_BOUND, ALPHA4_BOUND and 

LFA-1_BOUND. We observe a big increase of the bound molecules in 0.2 seconds at 

the value of 203x106, and after a small pick of 206x106 there is a downward tendency 

to 190x106. The values from second 1.0 till the end of the simulation are ranging from 

184x106 to 190x106. During the first second the system warms up, that is why we have 

the pick at the beginning of the graph. As in most of the graphs this is shown 

consistently and is followed by lower values that are more representative of the 

phenomenon. Comparing these values with the baseline results, the 3-month results 

and the 6-month results, we observe a decrease in the number of bound molecules as 

the therapy with interferon beta is in process. The corresponding results in the steady 

phase of the simulation are for the baseline 196x106 to 202x106, for the 3-month 

therapy 188x106 to 193x106 and for the 6-month therapy 187x106 to 194x106. There is 

a 6% decrease compared to the baseline, 2% decrease compared to the 3-months 

therapy and 1.6% decrease compared to the 6-month therapy.  
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Figure 48: Adhesion probability versus contact time for all times of therapy. 

 

Figure 48 is a visual representation of the comparison of adhesion probability in all 

cases of therapy and baseline. The y-axis represents the adhesion probability and the 

x-axis represents the simulation time in seconds. During the whole time of simulation 

the baseline (marked with the pink line and the square points) has greater adhesion 

probability than all the other cases. The 3-month therapy with interferon beta has 

optimistic results showing a decrease of the adhesion probability of 1.2% compared to 

the baseline. The 6 month therapy gives almost the same results as the 3-month 

therapy. In some cases the 3-month therapy gives better results. This is due to the fact 

that the difference of the concentration of CHEMOKIN in 3-months therapy and 6 

months therapy is very small (168x106 and 163x106 respectively) and the fact that 

probabilistic distribution is used in the model. The 12-month therapy gives in the best 

case 2.9% decrease in the probability of adhesion compared to the baseline results. 

Comparing the 12- month therapy to the 6-month and the 3-month therapy there is an 

improvement of 1,3%.   

 

Generally it is noticed that the reduction of CHEMOKIN by IFN-β-1b has a 

downward effect on the adhesion probability. This is an encouraging fact to the 

treatment of multiple sclerosis, giving hope and relief to the patients of the 

neurological disorder.  
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Figure 49: Number of bound molecules under the therapy with IFN-β-1b at various time 

intervals. 

 

The number of bound molecules (Figure 49) is also reduced by the therapy with 

interferon IFN-β-1b. From 202x106 the bound molecules can become 184x106 in the 

12 month therapy, an 8.91% reduction; a fact that is very optimistic for the cure of 

multiple sclerosis. We take into consideration the steady phase of the graph after the 

first second where there is a pick. Like in the probability of adhesion there is a 

reduction in the number of bound molecules during the 3-month therapy. Comparing 

the baseline with the 3-month therapy there is a decrease from 202x106 to 191x106  

bound molecules at the 4.8 second, a 5% reduction. The difference in the 3 months 

therapy with the 6 month therapy is small, not to say that 3 months therapy gives even 

better result most of the times. The 12 month therapy gives a reduction to 184x106, 

which is a 3.6% decrease from the 3 month and the 6 month therapy.
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Chapter 6 

Conclusions and future work 

 

The fact that in silico experiments can contribute to predictive and preventive 

medicine is a huge step forward to the treatment of diseases that can not be examined 

with in vitro or in vivo experiments. Multiple Sclerosis is such a case. The testing of 

drugs under certain conditions with computational simulations makes things easier to 

biologist and doctors. A drug can be tested under different input data and track its 

behaviour without any risk of living organism. One can estimate the indicated dose 

and dosage of a drug that gives the best results under given input.  

 

The fact that Mobius can give us a probabilistic distribution of a certain activity to 

happen indicates a more proper way to look things in simulations of real life 

experiments. The non-deterministic nature of Stochastic Petri Nets is a closer 

approach to real life phenomena. Laws, like the mass law, take for granted that some 

phenomenon will happen deterministically just because the mass of two substances 

reside in the same space at a certain time. That is not how nature actually works. 

There is a possibility of two substances to interact and the interaction has a time delay 

that is not always unnoticed. The mathematical ODE approach is a deterministic way 

to examine things. Process Algebra and pi-calculus is a mathematical approach that 

can add stochasticity. Stochastic pi-calculus combines non-determinism with 

mathematical equations. Stochastic Petri Nets give a visual presentation of the model 

that is more understandable to people and stochasticity that is vital to Systems 

Biology. 

 

The case study was curried out with set up data from mice suffering from autoimmune 

encephalomyelitis. By applying interferon beta there is a reduction in probability of 

adhesion by almost 3%. This is an optimistic result that gives hopes to people 

suffering from multiple sclerosis. The improvement is done along a 12 month interval 

of time but still is worth doing it. Interferon beta is not given to all patients as not all 

of them respond to this treatment. The cause of multiple sclerosis is not yet found. The
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 recruitment of lymphocytes is one of the causes but that is not always the case. Other 

possible causes are virus infection and psychological reasons. It is still bothering the 

researchers the fact that women are more infected than men in the ratio 2:1. Multiple 

Sclerosis affects especially young people in the age range 20-40. People emigrating 

for studies abroad show higher risk.  

 

The tool we used, Mobius is well-built, user friendly and easy to install and use. I 

would definitely recommend biologists to use it and run their simulations on it. 

Mobius has free academic licence and a good technical support. One can enrol the 

mailing list of the support group and be informed about other users’ problems or send 

questions on problems he encounters. Trying to install other tools like PEP tool or 

Cell Illustrator, several problems occurred that prevent me from using them. As far as 

stochastic Petri Nets is concerned, Mobius is best tool to deal with this formalism. 

 

Stochastic Petri Nets is a formalism that can handle quantitative analysis in a very 

good way. One can use big concentrations of elements without any problem. Extended 

places in Mobius can provide you with the ability to extend to big markings and still 

work in an efficient and powerful way.  

 

Such simulations are good insights of the autoimmune diseases that are still 

unexplored. Autoimmune diseases affect people at unsuspected time and do not give 

much hope for cure. Patients are usually under long-term medication giving some 

improvement but not total cure.  
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