
 

 

 

ABSTRACT 

 

The term automated implementation of distributed algorithms refers to the process 

during which an algorithm written in Input/Output Automata (IOA) and/or Timed IOA is 

automatically translated to executable code. The Tempo toolkit provides a connection with the 

IOA compiler and using particular plug-ins makes the above feasible. In that way, simple 

algorithms such as LCR Leader Election or even more complex such as Lamport's Paxos 

algorithm for the consensus problem can be translated very easily from TIOA to Java 

executable code using the toolkit, with the generated code preserving and keeping the 

correctness of the specification. The mediator between IOA compiler and Tempo is the 

Eclipse environment, which under the certain configuration and setup, is used for the desired 

translation.   

 

So far, the generated code by the toolkit was able to run on several workstations that 

were communicating via the Message Passing Interface. Even though MPI is very powerful, it 

has certain limitations and restrictions such as that is suitable for WANs, nor it supports 

dynamic ad hoc connections. Hence, there was an urgency of finding a mechanism to 

overcome those limitations and enhance the toolkit with more capabilities.  

 

In this Thesis we enhance the Tempo toolkit to support Java TCP connections 

between the communicating nodes. For this purpose, we created several classes imitating the 

behavior of the .Net package of Java. For certain reasons, which will be mentioned later, 

classes such as Socket and ServerSocket could not be used directly and hence we ended up 

creating our own classes.  
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To provide evidence of the correctness of our implementation we firstly tested the 

model using a very simple algorithm that uses two communicating nodes. The first machine, 

A, was a Sender and the other one, B, was the Receiver, managing successfully to send a 

message from A to B and print that in B. Then, we tested our implementation with the well 

known Paxos algorithm. The algorithm was translated and run correctly suggesting that our 

implementation does what it should; this is a strong indication that Tempo has been 

successfully enhanced to support Java/TCP Sockets. 
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Chapter 1 

 

Introduction 

 

  

1.1 Motivation 

 

Nowadays, the need for direct communication from a point to another is more urgent than 

ever before. As time goes by newer and more complex systems are constantly implemented, 

aiming towards the same goal, the distribution of information around the world. The field of 

distributed systems is nowadays more dominating than ever before with distributed systems 

being all around us. A distributed system is a collection of independent computers that appear 

to the users of the system as a single coherent system. [1]. People are continuously interacting 

with such systems in their daily routine without even noticing. Such systems may include 

online airline reservation systems, telephone networks and of course, the world wide web. 
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For a system to be distributed, it means that one or more distributed algorithms are 

concurrently running on different machines of the system. Because of their nature, their scale 

and complexity, both distributed systems and distributed algorithms are difficult to 

comprehend. Several formal methods, have been implemented by researchers in an attempt to 

understand, analyze and implement such algorithms. Those methods include process algebras 

[2] and Input/Output automata [3]. 

Even if one would rigorously specify and verify distributed systems and algorithms, still it 

would need to write code and implement them from scratch. This process could jeopardize the 

correctness of the implementation. The IOA compiler [4], is a concrete tool supporting 

algorithm design, development, testing, and formal verification using automated tools. 

Through the compiler, programmers are allowed to specify an algorithm in an IOA form, 

ensuring that way that all its characteristics will be preserved and then by using the toolkit this 

algorithm is automatically translated into Java executable code.    

 The compiler has been used widely for modeling and automatically implementing  many 

distributed algorithms during the past years. [5, 6, 7] All these implementations share one 

common characteristic: they use the Message Passing Interface as a communication protocol, 

as this was the only communicating mechanism supported by the toolkit. 

Tempo is a formal language for modeling distributed systems as collections of interacting 

state machines called Timed Input/Output automata [8]. It was created by VeroModo [9] 

providing modeling and machine-checked proofs for distributed algorithms. Moreover, it 

provides a connection with the IOA compiler and hence timing is also taken into 

consideration when modeling distributed algorithms.  

Even though MPI [10] is really important in parallel computing, it has however some 

limitations, concerning dynamicity and scalability. All participating nodes should be defined 

in advance and no new node can join at a later stage. Moreover, MPI can only be implemented 
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in LANs. Therefore, we should use a different approach aiming to overcome the above 

limitations; one approach is to use of Java TCP Sockets [11]. 

  

1.2 Contribution 

 

In this Thesis an enhancement of the Tempo Compiler is presented that supports Java 

TCP Sockets [11]. What makes this very important is that in this way we offer a considerable 

extension to the toolkit thus eliminating and overcoming many of the MPI's limitations. 

An automated implementation of an algorithm using Java TCP Sockets supports dynamic 

creation and tearing down of communication links between participating network nodes [12]. 

Moreover, Java Sockets provide the ability for a global execution of the algorithm. All the 

above suggest that our enhancement advances significantly the usability and importance of the 

Tempo Compiler. 

 

1.3 Document Structure 

 

The rest of this document is organized as follows. In Chapter 2, essential concepts and 

ideas are presented to ease comprehension. Moreover, previous work is presented. Chapter 3 

is making a much deeper reference to the Tempo Compiler that has been used for the 

implementation, starting from some basic information, and ending with how the integration of 

Java TCP Sockets into it was achieved. Chapter 4 makes a reference in two implementation 

examples that suggest that our implementation is correct. We conclude in Chapter 5.  



 

 4   

 

 

 

 

Chapter 2 

 

Background and Related Work 

 

 

 

We begin by first describing the Input/Output Automata framework. All presented 

algorithms are specified within this framework.  Then, we present an extension of the model, 

the Timed IOA, which as its name suggests imports time into the model. The IOA Compiler, 

presented next, it is embedded in the Tempo toolkit is the mechanism which makes possible 

the automated implementation of complex algorithms. Later on, we present the MPI and Java 

TCP Sockets communication mediums.  Finally, we briefly compare the IOA and Process 

algebra frameworks, and we overview the Paxos algorithm, which is one of the algorithms we 

implemented. 

 

 



5 

 

 

 

2.1 Input/Output Automata 

 

The appearance of Input / Output Automata, or simply IOA, dates back to 1988 and it was 

introduced by Nancy A. Lynch and Mark R. Tuttle [13]. This model, which may be 

considered as an improvement of Communicating Sequential Processes (CSP) [14] it was 

partially based on Dijkstra’s “guarded commands” and was intended to be used in modelling 

concurrent and distributed discrete event systems which in those days was a newly appearing 

field in Computer Science. Such systems can be used in modeling network resource allocation 

algorithms, communication algorithms, database systems, as well as in shared atomic objects 

and dataflow architectures. More specifically, the model performs better when it is used in 

systems whose components operate asynchronously. Systems with the characteristics 

described above, continuously receive input from and react to their environment. 

 

For a system to be modeled using IOA, all its consisting components have to somehow be 

transformed as a separate I/O automaton using a unique language which as it has already be 

mentioned above, is very similar to the Dijkstra’s “guarded commands”.  What has to be 

specified first defining an IOA is a suitable name and a list of optional input parameters. For 

example if we were defining an automaton taking two natural numbers as input parameters, 

the declaration would look as follows: 

 automaton A(i, j: Nat) 

 After defining the name and parameters of the automaton, it is necessary to list the set of 

its actions which are classified either as input, output, or internal and can be thought as a 

connection between the automaton and the external environment.  

 

This set of actions is called action Signature, or S, and is a partition of the actions set, 

act(S), which is divided into in(S), out(S), and int(S) for each one of the classifications 

mentioned above. Input actions are those actions which are generated by the external 

environment and are transmitted to the automaton, with this transmission being instantaneous. 
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On the other hand, internal and output actions are generated autonomously by the 

automaton and the result is transmitted to the environment. Another distinction between 

internal and the rest of actions is that no restrictions can be established on them whereas 

output and internal actions can be blocked or restricted using several preconditions. That way 

the automaton has the ability to handle both "bad" and "good" input exhibiting the appropriate 

behavior each time. Hence its correct behavior depends on the nature and type of the input. 

The union of input and output actions forms the set of external actions, ext(S), containing 

those actions which are visible to the external environment. When having a system in IOA 

with no input actions we refer to it as a "closed" system. 

 

What has to be specified next to fully describe an automaton A, is a set of state variables, 

Av, which can be thought like system variables that are visible only to the automaton. 

Moreover, we need a set of states As which is a subset of all possible assigns to the state 

variables of the automaton, a nonempty set containing the start states, start (A), a transition 

relation specifying what will happen when a particular event is fired, step (A), and an 

equivalence relation, part (A), which it is used to identify the primitive components of the 

system being modeled by the automaton [4]. A step is defined as a tuple of three components 

(s', π, s) where an action π is enabled in state s' and the fire of that action leads to a new state 

s. Transitions are usually accompanied with preconditions defining under which conditions 

the transition can be enabled. If no preconditions exist means that the transition will always be 

enabled. Finally, is important to mention that input actions are always enabled.  

 

For better comprehension of the above, consider an example where there are two nodes 

(A, B) that are communicating through a common channel C, and A wants to send a message 

to B. The signature and one of the transitions of this model can be expressed in IOA as below: 
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signature 

 input send(m: Message, j,j:Nat)   

 output recv(m: Message, j,i:Nat)   

 transitions 

  input send(m, i, j)  

 

An execution is a finite or infinite sequence of alternating actions (input, internal, output) 

and states and it represents a computation of the system. The set containing all automaton’s 

executions is denoted by execs(A). In particular, an execution is of the form S0, π1, S1, π2, … 

(where S is a state and π is an action) and leads to what we call a fair execution. More 

precisely, for an IOA to solve a problem P, the set of its fair, behaviors, that is the set of 

executions that lead to a solution of the problem, should be a subset of P. Since the automaton 

cannot block the input actions, this subset cannot be empty. As we mentioned earlier, an 

execution is composed both from actions and states. If we ignore the states and focus only to 

the actions we then have an automaton's schedule where the set containing all schedules is 

denoted as scheds(A). More precisely, β is a schedule of an automaton A if β is the schedule 

of an execution of A [13]. A schedule might look as follow: 

 schedule 

    states 

     %Definition of all required states 

  

    do 

        %Action's executions 

  fire output A; 

  fire input  B; 

          od 

 

The term fire means that an action can be executed and hence the automaton will proceed 

after the execution to a new state. Another powerful operation supported by the model is the 

composition. Different IOA can be used to compose other IOA enhancing that way the 

behavior and capabilities of the model since simple automata can result to more complex 

ones. One of the key ideas of the composition is that if an action π appears as output action in 
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one automaton, then that action has to be input action in all the rest. The result of the output 

action is transmitted to all other automata which they have that action as input and behave 

accordingly. In that way we establish synchronization between the automata or in other words 

we define a way of communication between them. Two automata A, B, can only form a 

composition if their internal and external actions are unique. That means: 

int(A) ∩ acts(B) = 0,          int(B) ∩ acts(A) = 0,          out(A) ∩ out(B) = 0.  

 

Finally, abstraction mapping at different levels is also allowed in the model and that aids 

in correctness proofs of algorithms. That is, if we have a problem A that solves a particular 

problem P, and B is an image of A, then B also solves B. Additionally, the model is non-

deterministic, which results in having many different executions of an algorithm, since many 

actions may be enabled at any given time. 

 

 

2.2 Timed Input/Output Automata 

 

 
IOA model is used to express distributed algorithms but it lacks in terms of timing issues. 

Timed Input/Output Automata [3], or just TIOA is an extension of the IOA model and it is 

addressed to systems which their correctness and performance is highly correlated with timing 

events such as real-time operating systems.  

 

Such systems usually exhibit very complex behaviors and it is therefore needed to have a 

framework that is able to model them adequately. A system in TIOA is expressed in a similar 

way as in IOA meaning that it is translated to a nondeterministic state machine with possibly 

infinite-states. Like IOA, TIOA is expressed by firstly defining a set of state variables that are 

only visible within the automaton and not to the external environment. The values of those 

variables affect the state of the automaton at any time and therefore the set containing all 

possible states can be thought as a subset of all possible valuation of state variables. 
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Moreover, another set contains all starting states which is a subset of all states. Actions in 

TIOA are divided into external and internal (or hidden) where external action contains the 

union of input and output and internal those actions that are visible only within the automaton.  

 

A fundamental difference between IOA and TIOA is that the state of the latter  does not 

only depend on discrete transitions but on trajectories as well, which are either continuous or 

discontinuous functions enclosed in a left-closed time interval and describe how the values of 

state variables are changing and affected within specific intervals of time. Based on that, 

TIOA supports both static and dynamic variable types. The static type simply describes the set 

of values that the variable may take on. The dynamic type, on the other hand, describes the 

acceptable ways in which a variable may evolve [3] and they are usually used for constraining 

the values that the variable may take during trajectories.  

 

More specifically, a variable might have a specific static data type and a dynamic type 

which will be equal to a set of values of a specific function. Figure 1 illustrates how a simple 

communication channel could be modeled in the form of a Timed I/O Automaton. In this 

example, a sender appends a message m into the channel by firing the input send(m) action 

and the receiver gets the message from the channel by using the output action receive(m). In 

this example we do not take into consideration other factors such as state variables, 

trajectories or whatever else is needed for a TIOA to be fully defined. 

 

 

Figure 1: A communication channel modeled as a Timed I/O Automaton [7] 

Since TIOA can be used for model checking we need a mechanism that will allow us to 

check whether specific properties are satisfied by the algorithm that is expressed using TIOA. 
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This mechanism offered by TIOA is called invariant, and it is a property which is true in 

every reachable state, starting from an initial one. Further details about the idea of invariant as 

well as an example will be provided in section 2.3.  

 

Going back to trajectories, and in order to define such a function, we need to combine 

together algebraic and differential equations as well as stopping conditions. First of all, for 

each trajectory we are going to use, we need to specify a name. Secondly, we have the option 

to specify a list of formal parameters and impose restrictions on their possible values by 

making use of the where clause. Moreover, we can specify, if needed, functions definitions, 

stopping conditions, evolve conditions and invariants which are used to check whether 

specific properties are satisfied by an algorithm, such as mutual exclusion.  

 

If a trajectory T satisfies the stopping conditions of the automaton A, then we can say that 

T belongs to set of trajectories of A. A trajectory begins with the evolve clause and terminates 

with the stop when clause. That way, the automaton is not allowed to continue its execution 

after a specific value of time. It is also very important to mention that when several TIOAs are 

composed, then the trajectory of any of them may be interrupted by a discrete function of one 

of the other composed automata. 

 

Since the main difference between IOA and TIOA is the presence of trajectories, what 

needs to be added in the definition of a system in the form of a timed input/output automaton 

is a set T which will be a subset of all trajectories, T ⊆  trajs(Q). 

 

The following Figure represents how an Alarm could be defined using the TIOA model.  
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Figure 2: TIOA description of Alarm Component [3] 

 

This automaton has three input actions and one output. Both the two input actions are 

parameterized with two natural numbers that are used to display the time and set an alarm 

time respectively. The let statement is used to define a predicate legalTime used to constraint 

the values of these action parameters. Moreover, the automaton has three state variables of 

type natural with initial value 0, and boolean initialized as false, used for representing the 

time, whether the automaton is turned on or off, and whether the alarm should be ringing. The 

values of these state variables can only change by the occurrence of a discrete transition.  

 

There are no preconditions for the input actions, meaning that they are always enabled and 

ready to be fired. The effect of the first input action, setAlarm, is to set the alarmTime to the 

time which the alarm should ring. showTime effect is to set the ringNow to true, if the alarm is 
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on and should ring. Finally, toggleAlarm results in turning on, or off the alarm depending on 

its current state. Finally, the ring action can only occur if the alarm is enabled and the 

ringNow state variable is true. 

 

Even though the above example is a simple one, TIOA can be used to express algorithms 

with any level of complexity. This is because its language supports many statements including 

assignments of the form :=, conditional like if x<y then, and for loops. Furthermore, the 

model is fitted with a large number of primitive types like Bool, Nat, Int, Real, 

AugmentedReal, Char, String and many others. In addition, other data types can be defined by 

the user by creating what we call a vocabulary. 

  

 

2.3 Tempo toolkit 

 
Tempo [8] is an implementation of Timed Input/Output Automata created by 

VeroModo Inc [9] providing computer aid for describing and checking properties of 

distributed algorithms using several tools such like PVS and UPPAAL. What makes Tempo 

very powerful and fully compatible with TIOA is that they use almost the same language and 

syntax. Hence any algorithm defined in TIOA can be very easily analyzed and validated using 

the tools that come along with Tempo.  

 

What is needed when analyzing an algorithm is first to have a way of checking that it 

is syntactically and semantically written correctly and that is why Tempo uses a checker. 

Secondly, we need to know if the algorithm runs correctly and gives the results it was 

supposed to. For that purpose, Tempo recommends its simulator.  

 

As in TIOA, Tempo uses vocabularies in order to declare data types that are going to 

be used by the algorithm and can be imported later in the main automata by using the imports 



13 

 

 

 

clause. States, Actions and Transitions are specified exactly like in TIOA. Moreover, 

invariants in Tempo are checked by either PVS, UPPAAL, or by running simulations of the 

algorithm and observing its execution behavior. An invariant checking that no more than one 

process will be in its critical section at any time, is defined as shown in the following figure. 

 

Figure 3: Invariant [8] 

 

In the previous sections we explained that an execution of a TIOA is an alternating 

sequence of actions and states. Furthermore, it is worth mentioning that Tempo supports 

Simulations, meaning that by the use of a schedule and a loop, an automaton may run several 

times with different parameter values.  

 

For all the above, Tempo is enriched with a very user friendly interface which is 

implemented on the Eclipse Rich Client Platform [15] and can be used for easier TIOA 

writing and checking but also for step-by-step debugging with the usage of breakpoints. 

     

2.4 Message Passing Interface 

 
One of the most important aspects when running parallel algorithms is the way in which 

communication between the participating processes is established. We want a mechanism that 

will be reliable, efficient and robust ensuring that almost all messages will be delivered within 

a reasonable time period and without the occurrence of drops of connections.  

 

The Message Passing Interface (MPI) [10] provide us with several predefined methods 

that allows process communications via message exchange, in the sense that one processor 
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sends a message and another processor receives it. MPI dates back to 1993 and has nowadays 

more than 40 different organizations participating in its forum, including IBM. Even though it 

includes several of ready-made functions, MPI is considered to be a specification rather that a 

library. There are many reasons why MPI has become a standard [10] and some of them are 

listed below.  

 

First of all, MPI is supported by almost all platforms and that makes it a kind of a 

standard. Moreover, it allows portability of code since a program written with MPI standard in 

a specific platform can be very easily migrated to a completely different platform. 

Furthermore, performance and functionality are the other two factors that aid in the wide use 

of the interface. MPI is enriched with more than 115 routines available for use without the 

need for any modification. In the following paragraphs we give be a brief description of how a 

program could be written using MPI for process communication. 

 

What a programmer has to do first for writing an MPI compatible program, is to 

download the MPJ library that is freely available from the internet and import it to the header 

declarations of the source code. After that, the MPI.Init(args) statement has to fired and that 

initializes the MPI environment. This method is called in the program once and from that 

point and on, the programmer starts writing parallel code. Finally, MPI.Finalize() identifies 

that the MPI environment terminates and therefore no other MPI routines can be called or 

parallel code can be written.   

 

A communication in MPI might be either point-to-point or collective, including 

broadcasting, all-to-all, and other. Point-to-point communication refers to the case where a 

communication is between only two processes with one sending a message and the other 

receiving it. A message in MPI may be either of specific data type supported by the interface, 

like float, integer and double, or it may be an object. At any case, the communication could be 

Blocking or Non-blocking. What distinguishes these two is that in the first case, when process 
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sends or receives a message, using Send() or Recv(), the methods do not terminate until the 

message has physically been sent or received. On the other hand, non-blocking uses Isend() or 

Irecv() and these terminate immediately. If there is a need to wait, other methods can be used, 

such as Test() or Wait().  

 

Operations like knowing the current number of participating processes or getting the 

unique identifier, or "task ID" of any communicating parties at each time, can be done by 

simply using the MPI.COMM_WORLD.Size() and MPI.COMM_WORLD.Rank() respectively.   

As already mentioned, many other methods exist and can be found on the net. The following 

figure illustrates how the well known "Hello World" program can be written in MPI.  

 

 

Figure 4: Hello World Program using MPI [16] 

2.5 Java TCP Sockets 

 

As time goes by, new technologies and methods arise. Therefore, even though MPI is 

adequate for process communications for all the reasons mentioned in the previous sections, it 

nevertheless has some limitations when we are talking about distributed and parallel 
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computing. A major limitation of MPI is that it is suitable for use in a local area network 

(LAN) rather than in a WAN. Furthermore, in MPI the number of participating nodes should 

be defined in advanced and hence an additional node cannot be added later on.  

 

It is therefore obvious that an alternative candidate for process communication should 

exist. In this thesis, we enhanced Tempo Toolkit to support Java TCP Sockets [11] making it 

more powerful since many of the MPI limitations can be eliminated.  In the following 

paragraphs the client-server model will be presented in order to provide a basic understanding.  

 

As it is implied by the name of the model, for two nodes to communicate, a Transport 

Control Protocol socket should be used ensuring that way the presence of a reliable point-to-

point connection-oriented communication channel. This model is also referred as Client-

Server since one node is acting like a serving machine and the other as a client making 

requests to the server. A socket, which is a combination of an IP address and a port bounded 

to that address, provides a bi-directional link between two entities enabling them to read from 

it and to write on it. The Java language provides the java.net package which makes the writing 

of a client-server application very simple and easy, and of course, in a platform-independent 

fashion.  

 

Since client and server behave differently, in the sense that the first one is the requester 

and the other the provider, when writing a client-server program we should separate into two 

different classes the communicating entities. What a server machine has to do first is to create 

a ServerSocket instance at a specific port. A ServerSocket is a class included in the java.net 

package and corresponds to a server machine. That instance will be the gateway through 

which a client could connect to.  

 

After creating a ServerSocket, the server invokes the accept() method which indicates its 

readiness and willingness to accept clients. Hence it stays at that state until a client establishes 
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a connection or until the ServerSocket's timeout period expires. On the other hand, a client 

trying to connect to a server should first of all create a Socket instance using the java.net 

Socket class and identifying the IP address (or host name) of the server and the port number 

that socket corresponds to. When the connection is established both machines continue their 

execution in parallel.  

 

If they want to exchange messages, both client and server should declare a 

BufferedReader and a PrintWriter for reading and writing to the socket respectively. This 

process of sending and receiving messages between server and client could last until one of 

them closes the connection by invoking the close() method. The following table depicts how a 

server and a client behave under normal circumstances. 

 

 Client Server 

1 Open a socket Opens a server socket, waiting for connections 

2 Open input, output stream to the socket Accept a connection and return a socket 

3 Read from and write to the stream Open input and output stream to the socket 

4 Close the streams Read from and write to the stream 

5 Close the socket Close the streams and the socket 

6  Either close the server socket or wait for a new 

connection 

Table 1. Java Client-Server behavior 

2.6 IOA Compiler 

 

The need for having automated implementation of Complex Distributed algorithms 

specified in the IOA Language, has led researchers in trying to creating an IOA Compiler 

capable of translating IOA specifications to executable code. Several attempts, including 

Goldman's Spectrum System [17], Goldman's Programmer's Playground [18], and Cheiner 
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and Shvartsman [19] experiments, and others, were done, before the creation of Josh’s IOA 

Compiler [4], with no significant success. The IOA Compiler manages to turn IOA imperative 

constructs into Java executable code with the resulting code to be able to run on workstations 

supporting Java. The first way of communication between all participating nodes running the 

generated code was, in those days, via MPI.  

 

What makes the IOA compiler really important and what magnifies its abilities is that the 

generated code preserves the properties of the algorithm which were proved formally to be 

correct during its definition as an automaton [4]. Hence, a programmer can write a 

specification in IOA language, and then use the compiler for validation and automated 

translation of it into Java executable code preserving all the correctness properties of the IOA 

[6] under the assumptions that no other factors such as the network behavior and programmer 

annotations may affect correctness.  

 

For an IOA program to be able for compilation it must firstly comply with several syntax 

and semantics constraints imposed by the compiler's nature. Therefore, a programmer writing 

an IOA for compilation should of first all combine the automaton with some other auxiliary 

automata and then provide additional annotations for resolving the nondeterminism [6]. 

Moreover, all IOA should be structured in a node-channel form reflecting the architecture of 

the target systems regarding the communication method. In that way, the generated code is 

consisted not only of the algorithm automata, which is an algorithm implementation at a node, 

but with the communication protocol as well. Moreover, in that way, we are not concerned 

about synchronization issues between processes running on different workstations.  

 

The first implementation of the IOA compiler was supporting only Message Passing 

Interface for process communication using Isend, test, Iprobe, and recv. Additionally, 

communication between nodes in the system was using, (and still does) asynchronous, 

reliable, one-way, FIFO channels [6]. Those channels are implemented by combining the 
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communication protocol that will be applied in the algorithm, and the mediator automata, 

SendMediator and ReceiveMediator, which are composed with the algorithm automata we 

have mentioned above. Figure 5 illustrates how a node (algorithm automaton) is able of 

communicating with another node. 

 

 

Figure 5: Auxiliary automata mediate between MPI and algorithm automata to yield a 

reliable FIFO channel [6] 

 

The translated node can be thought of as an autonomous Java program which can run on a 

host. Each data type specified in the IOA is transformed during translation into a Java class 

file where all automaton’s states are represented as system variables and transitions are 

transformed to Java methods. The interaction between other nodes and the mediators is done 

using Java procedure calls, firing the appropriated methods each time.  

 

Since the IOA language is nondeterministic, a mechanism is needed so the translation can 

comply with the imperative nature of the Java language. This means that there should be a 

mechanism defining the order with which all actions of the algorithm will be fired and 

executed. For this to be accomplished, the IOA compiler uses schedules (in the same sense we 

have already seen them) specifying which action will be executed at any time at each node. 

Additionally, the choose clause allows picking random values within a range and used as 

execution parameters contributing to explicit nondeterminism. An example of choosing a 

random number between 0 and 3 would look as below [6]: 

 num:= choose n:Int where 0 ≤ n /\ n < 3 
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At this point, it is important to mention that even though IOA are input enabled since 

input actions are always enabled, the generated code is not. Instead the input is passed to the 

program during the run-time and only when that is required to happen, so this has to be 

considered when writing automata for compilation. For avoiding a node trying to read data 

that do not actually exist, the compiler is proposing the usage of buffers where the messages 

are appended to and the node is checking whether the buffer is not empty before proceeding 

and read. Of course, as a part of the nondeterminism, the programmer should define the 

starting values of the automaton's states by using the initially clause. 

 

Finally, the IOA compiler was tested by implementing correctly several complex 

distributed algorithms such as the LCR Leader Election [20], the GHS algorithm [21], the 

Paxos algorithm [7] and many others.  

 

2.7 The Consensus Problem and the Paxos Algorithm 

 

The consensus problem [22] where a collection of processes must agree on a common 

value, is considered one of the most fundamental problems in distributed computing. In 

general, the problem of consensus refers to the case where n processes can propose a value, 

and at the end all of them should agree on the same value. Moreover, the resulting value 

cannot be different from those that were proposed by the processes. In other words, if set {S} 

contains all the values proposed by the processes, the resulting value should exist in S. 

Finally, all non-faulty processes should decide on a value. What has been described so far 

corresponds to the conditions of Agreement, Validity and Termination. The first two have to 

do with safety conditions and should always be present for a consensus correctly to exist 

where the latter is a liveness condition and it is necessary only for performance issues.  
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The Paxos Algorithm is one of the most popular algorithms for solving consensus 

problem. Paxos was presented by Lamport in 1990 and published in 1998 [23].  What makes 

Paxos really important is that it can tolerate process crashes, message losses and timing 

failures.  In addition, the algorithm assures direct communication between each process in the 

distributed system. 

 

The Paxos algorithm is divided into six different phases [7] which are outlined below.  

1. The leader starts a new ballot, that is a new voting, and informs others about it.  

2. A process that learns about the new ballot, abstains from any earlier ballot for 

which it has not voted for. In response, a process replies to the leader with the 

value of the ballot for which is last voted for.  

3. Once the leader receives responses from a majority of votes, it chooses a value 

for the ballot that is based on the received values and announces that value to 

the others.  

4. A process that learns about the new value may vote for the ballot, if it has not 

already abstained. If the process votes, then it informs the leader and others 

about its vote. 

5. The leader decides on the ballot’s value once it receives messages from a 

majority of votes with a vote for that value. In case that the leader has failed, a 

separate leader election service is used to elect a new one. Timeouts are used to 

determine which processes are operational, and among these, the one with the 

highest id is elected as the leader. After the election, the new leader starts a new 

ballot. 

6. Timeouts are also used for the leader to decide when it should start new ballots.  

 

Paxos was one of the first algorithms that had been used to verify the ability of the IOA 

compiler for automated implementation using MPI as a communication channel. We have also 

used Paxos for our automated implementation using Java TCP Sockets. However we are not 
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going into details about exactly how the Paxos algorithm was implemented since it is beyond 

the scope of this Thesis. All information however can be found in [7] and [24]. 

 

 

2.8 Other Formal Methods 

 
Input/Output automata is not the only formal method candidate for verification and 

analysis of distributed and parallel systems. Process Algebra [25], or just PA, provides us an 

alternative framework for modeling and analyzing such systems in a very concrete way. 

 

The Process algebra family contains a lot of variations like Temporal Process Algebra 

(TPA) [26], and others. One of the most basic and fundamental PAs however is CCSv [2, 27] 

which is a value-passing calculus including conditional agents [2, 27], while CCS refers to 

Calculus of Communicating Systems. In order to define CCSv we firstly need a set of 

constants, a set of functions, and a set of variables. In addition we have to define a set of 

channels L which allows process communication.  

 

As in IOA, PA actions are also divided as input, output and internal with α, ᾶ, and τ being 

their representations. Internal actions arise when an input and an output action are performed 

in parallel in the communication channel and hence synchronization occurs. We can therefore 

say that input and output actions on the same channel are complimentary actions [28]. What 

has to be defined lastly when dealing with CCSv is a set of processes C. For each process P 

included in the set of C, the syntax of CCSv is as below: 

 P ::= 0 | α.P | P1 + P2 | P1 || P2 | P\L | cond (e1 ► P1,…en ► Pn) | C<ṽ> [28]. 

Process 0 represents a process which is inactive. α.P means that process P can perform the 

action α and then behave as P. On the other hand P1+P2 represent the nondeterministic choice 

between these two processes whereas P1 || P2 represent the parallel execution of them. The 

conditional process says that process P has the option to choose between those actions 
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included in the set and behave accordingly. Finally, P\L indicates that some actions will be 

restricted only for use in channel L and hence those components do not have direct interaction 

with the external environment of P. The greatest precedence has the . operator, with the + 

operator coming next.  

  

As in the IOA model, PA also represents process in the model using the notion of 

transitions. A transition in CCS without considering internal actions is of the form 

meaning that process E is capable of performing action α and then behaving as process F. We 

therefore have the same notation as in IOA, (s, α, s'). On the other hand, if process E can 

perform action α but performing first some internal actions, we then denote that as . 

 

An attempt for comparing IOA and PA was presented in [29] by specifying and verifying 

the LCR algorithm [20] using both methods and evaluating the results concluding the 

following. First of all, both models are applicable for successfully model and verify the 

algorithm. Considering the correctness criterion of the algorithm (a common leader is elected) 

and the confluent behavior, the process-calculus seemed to be easier to apply.  At the end, the 

researchers ask a newcomer to the two formalisms to evaluate them regarding the language 

they use. The result was that IOA are easier to understand as compared to PA. 

 

The concurrency factory is an integrated toolset for specification, simulation, verification, 

and implementation of real-time concurrent systems such as communication protocol and 

process control systems [30]. Through a graphical user interface called VTView,  a user can 

design and simulate concurrent systems using process algebra. Moreover, the tool uses a 

language called VPL, which can be translated through a compiler into networks of finite-state 

processes. Checkers and verification routines are also available in the tool supporting between 

others strong and weak bisimulation checkers. Finally, a graphical compiler translates VPL 

specifications into C++ executable code.  
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This tool however has been designed for sequential algorithm and to the best of our 

knowledge there does not exist other framework than IOA to provide automated 

implementation of distributed systems and algorithms. Hence, that is a huge advantage for the 

IOA model without of course ignoring or neglecting the abilities of Process Algebra. 
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Chapter 3 

 

Enhancing Tempo with TCP/Java Sockets 

 

 

In this chapter we present the basic primitive data types supported by Tempo. Then an 

explanation is provided about how the TCP communication protocol was embedded to the 

compiler and what Java classes have to be created. Finally, a review is given summarizing all 

problems were faced during this integration and how we managed to overcome them.  
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3.1 Tempo Language 

 

In this section we present some of the primitive data types that are supported by Tempo 

and that are necessary for a programmer to know when writing a Tempo specification. Other 

user-defined data types are also supported by using "vocabularies" in the specification.  

 

3.1.1   Booleans 

 

This data type in Tempo can either be true or false. The following two tables list the 

notations and operators supported by this data type. 

Tempo Symbol Sample use Meaning 

 True The logical value true 

 False The logical value false 

~ ┐p Negation (not) 

/ \ p /\ q Conjunction (and) 

\ / P \/ q Disjunction (or) 

=> p => q Implication (implies) 

<=> p <=> q Logical equivalences (if and only if) 

Table 2: Boolean supported notations [31] 

 

Symbol Tempo Symbol Sample use Meaning 

=  x = y Equal to 

≠ ~= x ≠ y Not equal to 

∀ \A ∀n:Nat┐(n<0) For all 

∃ \E ∃i:Int(i<0) There exists 

Table 3: Boolean supported operators [31] 
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3.1.2   Natural Numbers 

 

This data type contains all the non-negative integers 0,1,2.. and supports the following 

notations. 

 

Symbol Tempo Symbol Sample use Meaning 

0,1,…  123 Natural Numbers 

succ  succ(x) Successor (succ(x) = x + 1) 

pred  pred(x) Predecessor (pred(succ(x)) = x) 

+  x+y+z Addition 

- - x-y Subtraction (undefined if x<y) 

*  x*(y**z) Multiplication, exponentiation 

**  x**y Exponentiation x^y 

min, max  min(x,y) Minimum, maximum 

div, mod  mod(x,y) Quotient, modulus 

<. ≤  x ≤ y Less than (or equal to) 

>, ≥  x ≥ y Greater than (or equal to) 

=, ≠  x = y Equal to, not equal to 

Table 4: Natural Number supported operators [31] 

 

3.1.3   Integers 

  

This data type contains all integer numbers  ranging from …,-2, -1, 0 to 1, 2, … .As it 

easy to understand, Natural numbers are a subset of Integers and therefore all notations shown 
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above for the Natural numbers are also applicable for Integers. Furthermore, Integers are 

equipped with the following operations. 

 

Symbol Tempo symbol Sample use Meaning 

- - -x Additive inverse (unary minus) 

abs  abs(x) Absolute value 

Table 5: Integer additional supported operators [31] 

 

3.1.4   Characters 

 

This data type consists of characters, letters, digits and all possible combinations between 

them. As above, we list all supported notations. 

 

Symbol Tempo Symbol Sample use Meaning 

'A',…,'Z'  'J' Uppercase letters 

'a',…,'z'  'j' Lowercase letters 

'0',…,'9'  '7' Digits 

<, ≤, >, ≥  'A' < 'Z' Alphabetic ordering 

Table 6: Characters supported operators [31] 

 

3.1.5   Extensions by nil 

 

All elements that are contained into the Null[E] data type are equipped with an additional 

element, nil, that supports the following notations. 
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Symbol Sample use Meaning 

nil nil The additional element nil 

embed embed(e) The element corresponding to e:E 

val val(n) The e such that n = embed(e); undefined if n = nil 

 

Table 7: Nil supported notations [31] 

 

3.2 Java TCP Sockets Integration 

 

Our work is based on [12] where an abstract channel specification and an algorithm 

implementing it using java sockets was introduced consisted of several automata. First of all, 

an automaton was specified modeling the behavior of a many-to-many asynchronous 

communication channel, called ABSCH.tioa. Then, an automaton called JVMCH, modeling 

the behavior of the Java interface to a communication channel using TCP was specified. 

Finally, two additional automata were used based on Tauber’s approach [4] for establishing a 

mediation between the sending application, communication channel, and the destination 

application. Figure 5 illustrates the approached briefly described above. 

 

 

Figure 6: Node automata [12] 
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For integrating Java TCP Sockets to the toolkit several changes had to done in the Tempo 

to Java project which can be found in the Tempo's SVN Repository [32]. This package, as it 

implied by its name, it is responsible for translating Timed I/O Automata into java executable 

code. 

  
The very first files that needed to be changed were BasicTranslator.java and 

CompositeTranslator.java which are responsible for translating primitive and composite 

automata respectively. These two classes implement the algorithm automata code which will 

contain all import declarations, main method and of course schedules. In the following 

paragraphs all changes that were done during the integration are presented step by step.  

 

Since we wanted to enhance Tempo to support both MPI and Java TCP Sockets we 

should define a mechanism for distinguishing which communication protocol will be used and 

generate the appropriate code at each case. In both cases however, we have to import the 

Datatypes package which contains all those Datatypes needed to establish either an MPI or 

Sockets communication. This import statement is specified as below: 

 _automaton.appendToStart(0, "import Datatypes.*;"+ EOL); 

meaning that import Datatypes.*; will be added in the head of the file and then will change a 

line, by using the EOL clause. 

 

The communication type is specified before running the plug-in to translate the code in 

the Argument tabs of Run Configuration and can be accessed during translation by using the 

_spec.getCommType() method. When using Java TCP Sockets we decided to allow the 

following declarations: TCP, JVM, UDP all producing the same code. Figure 6 depicts how 

we handle the case when the algorithm will use Java Sockets for communication type and 

import java.utilVector, java.net, and java.io packages. 
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Figure 7: Java TCP Sockets import statements 

 

Another distinction that has to be made when using either MPI or Java Sockets is the 

number of the input parameters that have to be passed to the main method of the algorithm. 

MPI needs three input parameters whereas Java Sockets needs seven. Firstly, we need to pass 

an IP address of the form xxx xxx xxx xxx (for example 192 168 10 4) which can be used 

both in the schedules and for creating sockets to that address. Next, we need to specify the 

port number to which the server socket will listen to and finally, a timeout period for the 

socket and the trajectory need to be defined.  

 

If the main method is fed with correct number of parameters, it will then create an array of 

java.lang.String that will hold in those parameters and use them later on for instantiating all 

other components (sendMediator, recvMediator, driver, and so on). Otherwise, an appropriate 

message will be thrown to the user. The reason why java.lang.String is used instead of simply 

String is because Tempo's string is not exactly the same as Java String data type and hence we 

had to create a separate java file and make this distinction possible. Figure 7, depicts how the 

generated code that will responsible for reading all program's input arguments and store them 

into an array, when using TCP communication will look like.  
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Figure 8: Java TCP Sockets Input parameters 

 

Finally, code was added for telling the compiler which data types classes should be 

created depending again on the type of the communication channel.  

if (_spec.getCommType().equals("TCP")) 

 VocabTranslator.createTCPClasses(_log, _outputDir, _spec); 

 

The next class that had to be modified after BasicTranslator.java and 

CompositeTranslator.java was the one just mentioned above, the VocabTranslator.java. This 

java class file provides the actual translation of all data types specified in TIOAs in the form 

of vocabularies and which are needed for the MPI or Java Socket model to work.  

 

First of all, we created an ArrayList adding all data types supported by the new model. 

Those are JVMError, JVMStream, JVMServerSocket, JVMSocket, and TCPNode. For each 

one of them, we had to create a separate Java class file which would contain all methods and 

fields supported by each one of them.  

 

The reason why we had to create our own data types and not just use ServerSocket, 

Socket and so on was because Tempo has certain assumptions about its supported data types 

and therefore we could not use directly those types. They are going to be referred to in the 
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following sections. In the following figure illustrates how the split between MPI’s and JVM’s 

data types was managed. 

 

 

Figure 9: Java TCP Sockets data types declaration 

 

When the IOA compiler is calling VocabTraslator.java firstly checks if the data type 

going to be translated is included into the ArrayLists specified above. If that does not happen, 

it then informs the user that has been found a data type for which a separate placeholder class 

should be created. Otherwise it proceeds to the translation.  

 

For this translation separate Java classes were created with each one corresponding to one 

of our custom data types, with all Java Classes being under the 

com.veromodo.tempo.java.structure.comm package. In the table that follows a mapping is 

provided showing which class file corresponds to which data type. 

Data type Class file responsible for the translation 

JVMServerSocket JVMServerSocketNode 

JVMSocket JVMSocketNode 

JVMError JVMErrorNode 

JVMStream JVMStreamNode 

TCPNodeVoc TCPNode 

 

Table 8. Data types translation mapping 
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In the following subsections a reference is given for each one of the classes we created for 

TCP data types explaining what each method that is contained in them is responsible to do.  

Finally, the Java code is listed in Appendix A. 

 

3.2.1   JVMError 

 

The first custom data type that had to be created is the JVMError. This class consists of 

two constructors and two methods. The first constructor, JVMError() does not take any input 

parameters and it simply instantiates an object of type JVMError. On the other hand, 

JVMError(java.lang.String.m) takes one parameter and sets the message of the JVMError 

object to the one passed in as parameter. 

 

Finally, public java.lang.String value(), and public java.lang.String toString() just return 

the message that has been set to the object.  

 

We have created this class to handle cases when other functions, such as creating a new 

socket need to throw an exception. Because of the incompatibility issue of Tempo with 

exceptions, all methods return a new JVMError instead. 

 

3.2.2   JVMServerSocket 

 

This class extends the java.net ServerSocket class imitating its behaviors. 

JVMServerSocket class is used by a node that will behave as a server and for all the reasons 

explained earlier it was not feasible to use the ServerSocket class directly. 
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This class consists of one constructor and three methods. JVMServerSocket(int arg0, is 

only responsible to create and return a new JVMServerSocket object listening to the port 

passed in as a parameter.  

 

Null<JVMServerSocket> JVM_TCPServerSocketOpen(tuple_4<Nat, Nat, Nat, Nat> i, 

Nat port, Nat timeout) method, accepts three parameters and returns either a Null object or a 

new JVMServerSocket. The first parameter corresponds to the IP address of the node that will 

behave as a server. The second and third arguments correspond to the port that the server will 

listen to, the to the timeout period of the server socket. When this method is invoked, first of 

all we create a new JVMServerSocket bounded to a specific port. We then set the maximum 

period of time the object will exist before shutting down. If there are no errors during this 

process we return the JVMServerSocket object, otherwise we return an instance of a Null 

object. 

 

The next method contained in JMVServerSocket class is the Null<JVMSocket> 

JVM_TCPServerSocketAccept(JVMServerSocket sS) and is called immediately after the 

JVM_TCPServerSocketOpen. This method creates a new JVMSocket object which initially is 

null. It then invokes the JVMSocket accept() method waiting for an incoming request by a 

client. When that request arrives, the JVMSocket object is initialized and returned. 

 

Finally, Null<JVMError> JVM_TCPServerSocketClose(JVMServerSocket sS) is 

responsible for closing the JVMServerSocket passed in as a parameter and return either Null 

if the closing will successful, or a JVMError in any other case. 
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3.2.3   JVMSocket 

 

 
This data type is primarily related to the node acting as a client. It contains two 

constructors and six methods. Starting from the constructors, JVMSocket() returns an instance 

of an unconnected JVMSocket. On the other hand, JVMSocket(InetAddress addr, int port) 

creates a JVMSocket and connects it to the specified address and port.  

 

Null<JVMSocket> JVM_TCPSocketOpen(tuple_4<Nat, Nat, Nat, Nat> j, Nat port, Nat 

timeout) is the first address that a client-like node has to invoke. The first parameter is the IP 

address of the JVMServer that client will connect to. Port represents the port number that the 

JVMSocket will listen, and finally, timeout indicates the maximum period the object will 

exist. This method, creates an InetAddress by using the IP address extracted from tuple_4 and 

then calls JVMSocket(InetAddress addr, int port) to create the object. If there are problems 

during these steps, a JVMSocket object is returned otherwise we return a new Null object. If 

there is need any more for having the socket, Null<JVMError> 

JVM_TCPSocketClose(JVMSocket cS) can be invoked for closing the socket and return a Null 

or a JVMError object. 

 

We sometimes need to know if the JVMSocket object is bounded to a local address and if 

so, to also get the IP address of the machine that the socket is remotely connected to. For these 

reasons we use Null < tuple_4 <Nat, Nat ,Nat ,Nat >>  

JVM_TCPSocketGetLocalIP(Null<JVMSocket>socket) and Null < tuple_4   < Nat , Nat , Nat 

, Nat >> JVM_TCPSocketGetRemoteIP( Null<JVMSocket> socket ). Moreover, to check 

whether the JVMSocket is connected we created a boolean method, Bool 

JVM_TCPSocketIsConnected(Null<JVMSocket> cS). 

 
Finally, the most important interaction between a client and server machine, that is 

sending messages to each other, is done via the Null<JVMError> 
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JVM_write_TCPSocket(JVMSocket socket, Object msg) and Null<tuple_3<Object, 

tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>>>JVM_read_TCPSocket(Null<JVMSo

cket>cS) which invoke JVMStream.JVM_write_TCPStream(socket, msg) and 

JVMStream.JVM_read_TCPStream(cS) respectively. 

 

3.2.4   JVMStream 

 

 
This class file makes writing and reading from a JVMSocket feasible. It contains only two 

methods, one handling writing to a socket and another for reading from a socket. The first one 

is the Null<JVMError> JVM_write_TCPStream(JVMSocket cS, Object msg)  which takes as 

input the JVMSocket that is going to be used for writing and the actual message to be sent. 

First of all, we create an ObjectOutputStream which we assign to the JVMSocket. We then 

use writeObject and flush methods to send the message. If that is successful, we return Null, 

else we return a JVMError. 

 

On the other hand, Null < tuple_3 < Object , tuple_4 < Nat, Nat, Nat, Nat >, 

tuple_4<Nat,Nat,Nat,Nat>>> JVM_read_TCPStream(Null<JVMSocket> cS), creates as a first 

step a message object and then an ObjectInputStream assigned to the JVMSocket passed as a 

parameter. It then waits there until a message is arrived. As soon as this happens, it reads the 

message using the readObject and returns the message. Again, as in previous methods, a Null 

is returned in those cases something goes wrong. 

 

 

3.2.5   TCPNodeVoc 

 

 
This class file that consists of three methods allows us to perform operations on Node 

types. The first method, Bool GT(tuple_4<Nat,Nat,Nat,Nat> p0, tuple_4<Nat,Nat,Nat,Nat> 
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p1) returns true if the first Node, p0, is greater than the node p1. Bool 

EQ(tuple_4<Nat,Nat,Nat,Nat> p0, tuple_4<Nat,Nat,Nat,Nat> p1) returns true if the two 

nodes are equal, and finally, Bool LT(tuple_4<Nat,Nat,Nat,Nat> p0, 

tuple_4<Nat,Nat,Nat,Nat> p1) returns true if p0 is less than p1. 

 

 

3.3 Problems Faced and How They Were Solved 

 

 
 Enhancing the Tempo compiler to support Java TCP Sockets was not an easy task. We 

faced many difficulties and spent many hours trying to overcome these obstacles in order to 

accomplish our objectives successfully.  

 

First of all, we faced significant difficulties configuring the Eclipse environment and 

started modifying the code. Even though we followed the instructions as shown in [32] we 

faced problems in defining the run configuration, export the correct projects from the SVN 

repositories and others.  

 

Our first try was to configure the Eclipse in a Linux environment. We managed to create 

an SSH connection to the SVN repository and started checking out the code from it. While we 

were trying to become familiar with the Tempo compiler, the projects and classes it consists 

of, the Eclipse crashed and the whole workspace was no longer accessible. We uninstalled 

Eclipse and tried to reconfigure it again, but then for some reason we could not access the 

Subversion plug-in to check out the projects again. After working on it for about a week with 

no success, we decided to leave Ubuntu and migrate to a Windows 7 machine. 

  

After migrating to a Windows 7 machine and configuring the Eclipse we then tried to 

embed Java TCP Sockets into the code. The first approach included additional if-else 

statements when the MPI appeared specifying that way how the compiler should behave when 
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the communication type will be TCP. The communication type is specified in advance in the 

Arguments tab of run configuration as shown in the following figure 

. 

 

Figure 10: Specifying the communication type in Tempo 

 

We therefore had to replace only those files where the MPI was shown and that seemed to 

be easy. First of all, FunctionTranslator.java which is responsible for translating all methods 

defined in myvocabs.tioa was modified. We then proceeded and changed ExprTranslator.java 

which is responsible for checking whether a function is passed the correct number of 

parameters and if not then break.  Finally we changed BasicTranslator.java and 

CompositeTranslator.java which are responsible for translating primitive automata and 

composite automata respectively. Moreover, these classes are responsible for creating the 

main method and the import statements in the generated code. 

 

After making these changes and running the model we realized that even thought a code 

was generated there were errors in it regarding our custom data types. Tempo has certain 
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assumptions about the data types it supports and hence the idea of modifying 

FunctionTranslator.java and ExprTranslator.java directly to create our methods seemed to be 

problematic. In addition, another issue to be faced was that Tempo is also not compatible with 

" Exceptions".  

 

For the above problems to be solved, it was decided to abandon the first approach and 

therefore delete almost all changes we had done up to that point and follow a different 

methodology. The new approach is the one was explained in the previous section, that is 

creating a separate java file for each custom data type and use these files for the translation. 

 

After creating the methods and running the example we wrote, we had to test that 

everything was going according to the plan. We then realized that we were facing a problem 

when the receiving mediator was waiting to get a message from the sending mediator. The 

node was proceeding up to the line where it was waiting for input data but from that point and 

on it was like the socket connection was lost. After spending many hours in testing and trying 

to understand what was causing this issue, we realized that it had to do with the mechanism 

we used for Deep Copying the object since after the connection was dropped. The reason that 

was happening had to do with the object's serialization, since Sockets are not able to be 

serialized. Hence we had to modify this mechanism so it will return the object untouched and 

keep the connection. We faced many other minor problems, which are too technical to 

mention. 
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Chapter 4 

 

Proof-of-concept Implementation 

 

 

In this Chapter we present the two algorithms that have been used in order to demonstrate 

that our Tempo enhancement works. First, we describe a simple algorithm we implemented 

showing that a Socket connection and a message exchange can be established and then we 

explain how we managed to obtain an automated implementation of the Paxos algorithm. 
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4.1 A First Implementation of an Algorithm Using a TCP Channel  

 

The first algorithm to be automatically compiled having Java TCP Sockets as the 

communication channel was JVMChanTest, a basic algorithm that was created for testing and 

was based on [12].  In the following paragraphs we describe what this algorithm was intended 

to do and the approach we followed towards this.  

 

For our algorithm implementation several automata have been used. At first we have used 

an automaton modeling the algorithm which we have named JVMChanTest.tioa. Schedule 

was included in this automaton specifying when and how the actions will be fired. An 

illustration of the schedule used is given in the Figure 11.  

 

Figure 11: Part of JVMChanTest.tioa's schedule 

  

This algorithm is based on the Client-Server model [11] and uses two different types of 

nodes, a Sending node and a Receiving node. In our case, the role of the client was acting the 

sending node whereas the server was the receiving node. For the purpose of this example we 
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are going to refer to them as i and j respectively. The aim was to create a socket connection 

between them, send a message from j to i and display that message in the i's side. 

 

Furthermore, a driver automaton, driver.tioa, was used to define how all TCP methods 

will used by the user. Two additional automata, RecvMed and SendMed used to represent the 

receiving and sending node. Finally, a vocabulary automaton, myvocabs.tioa, supporting all 

custom data types used and an automaton modeling all supported actions by the channel, 

TCPChan.tioa were also defined. Such custom data types include JVMSocket and 

JVMServerSocket. 

 

Both i and j run the same generated code, but what each one of them was allowed to do is 

distinguished in the schedule section depending on the IP address of each node, as partially 

shown in Figure 11. Moreover, the way we defined the schedule ensures that both automata 

will proceed in parallel.  

 

Starting from the receiving node, i, it firstly creates a JVMServerSocket object by calling 

the JVM_TCPServerSocketOpen( i, port, timeout ). The returned JVMServerSocket is 

bounded to the port passed in as a parameter and the maximum period of existence of the 

object is determined by the timeout argument. Moreover, along with the creating of 

JVMServerSocket, the accept status of the node changes to accepting.  

 

The next step i, performs is changing its accept status to waiting and then through 

Input_TCP_respAccept() that is declared in the RecvMed, invokes the 

JVM_TCPServerSocketAccept(SSocket.val()) passing as a parameter the JVMServerSocket 

object created in the previous step. This function call is used to create a JVMSocket object 

which initially is null and then waits for an incoming connection to arrive. 
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On the other side, j's, execution starts by invoking  

Input_TCP_senderOpen(tuple_4<Nat,Nat,Nat,Nat> s, tuple_4<Nat,Nat,Nat,Nat> r, Nat port) 

and then JVM_TCPSocketOpen with the same parameters as the first one. Those two methods 

return a JVMSocket object that is connected to the IP address corresponding to the tuple_4 of 

the receiving node, i. From that point and on both nodes proceed in parallel.  

 

When i accepts the connection request from j, it appends its JVMSocket to the receiving 

channel in order to can access it later on for reading and/or writing purposes. 

Input_TCP_respRRead and JVM_read_TCPSocket function calls lead the server in waiting 

for a message to arrive. Figure 12, shows a part of the automated translated Java code 

illustrating how all function calls are performed.  

 

 

Figure 12: Schedule's automated translated code 

 

The sender on the other hand, appends the message to be sent into a buffer and then calls 

JVM_write_TCPSocket. At this point it is important to say that all calls to the JVM classes are 

done through interaction of the algorithm mediator with the driver, RecvMed and SendMed. 
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When i gets the message send, it then appends it on its own receiving buffer and finally prints 

this message from the buffer and terminates. J also continues and terminates. The Trajectory 

condition used in this example has to do with the timeout period which is passed to the 

algorithm automaton as a parameter. 

 

All automata specified for this example are given in Appendix B.   

 

4.2 An Implementation of Paxos Algorithm using TCP Sockets 

 

 
The Paxos implementation is based on Roberto De Prisco’s Msc Thesis in 1997 [33]. 

Paxos is presented here in a modular basis, divided into several components with each one 

handling a different aspect of the problem. Most importantly, detector.tioa is responsible for 

detecting process failure and recoveries, whereas, bpleader.tioa models the process which is 

responsible for running the algorithm. bpagent.tioa models the "agent's" behavior and finally 

bpsuccess.tioa announces to all nodes a reached decision. In the following paragraphs a 

detailed description is provided about how the model works as presented by De Prisco. 

 

 To initiate a round, the leader sends a "Collect" message to all agents announcing 

that it wants to start a new round and at the same time asking for information 

about previous rounds in which agents may have been involved. 

 

 An agent that receives a message sent in step 1 from the leader of the round, 

responds with a "Last" message giving its own information about rounds 

previously conducted. With this, the agent makes a kind of commitment for this 

particular round that may prevent it from accepting (in step 4) the value proposed 

in some other round. If the agent is already committed for a round with a bigger 
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number then it informs the leader of its commitment with an "OldRound" 

message. 

 

 Once the leader has gathered information about previous rounds from a majority 

of agents, it decides, according to some rules, the value to propose for its round 

and sends to all agents a "Begin" message announcing the value and asking them 

to accept it. In order for the leader to be able to choose a value for the round it is 

necessary to provide initial values. If no initial value is provided the leader must 

wait for an initial value before proceeding with step 3. The sent procedure of 

processes from which the leader gathers information is called the info-quorum of 

the round. 

 

 An agent that receives a message from the leader of the round sent in step 3, 

responds with an "Accept" message by accepting the value proposed in the 

current round, unless it is committed for a later round and thus must reject the 

value proposed in the current round. In the latter case, the agent sends on 

"OldRound" message to the leader indicating the round for which it is committed. 

 

 If the leader gets "Accept" messages from a majority of agents, then the leader 

sends its own output value to the value proposed in the round. At this point the 

round is successful. The set of agents that accept the value proposed by the leader 

is called the accepting-quorum. 

 

A separate Schedule for the leader is used which it is currently somehow complicated 

even though a lot of effort has been made in making it as simpler as possible. Currently, the 

schedule lacks in catching all the dynamic behavior that Paxos is capable of and this is 

considered to be a future work. In contrast, the agent’s schedule is very simple and robust.  
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Other limitations based on how the schedule is currently implemented have to do with the 

absence of a reset procedure covering those cases where the leader fails. Anyhow, the 

schedule is functional enough to run correctly and produce results.  

 

In order to run Paxos, an IP address has to be provided that will correspond to the server 

node. Moreover, all IP addresses of the other nodes have to be specified in advanced and this 

also something that could be improved in the future for better dynamicity. As a first step, the 

leader election is based on the IP addresses where the node having the highest IP address 

becomes the initial leader.  

 

Before explaining how Paxos schedule has been implemented to support TCP 

communication, a brief review is presented about all other automata further to the 

TCPPaxos.tioa are needed for the algorithm to run.  

 

First of all, myvocabs.tioa contains all data types needed for the TCP Channel to run 

starting from the IPv4 type which is a tuple of four Nat numbers and simply represents an IP 

address. IPv6 is also available by the model for those cases where the deployment settings 

support it. As next, we defined the JVMError which as the previous algorithm we described is 

of the form of String.  

 

In Chapter 3, Section 3.2.5, we have mentioned that TCPNode allows us to perform 

additional operations on nodes such as the greater/less than and equality tests, and that is 

needed for our implementation since we want to have comparisons between the participating 

nodes. Moreover, it is essential know the current state of the Node, and that is determined by 

using the NodeMode type and defined as live, stopped, begin, last, accept, success, oldround, 

collect, gatherlast, wait, bgincast, gatheraccept, decided, rnddone and ack. 
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Round, Data, Message, and Mode types are also required for Paxos to run. Round is 

defined as a tuple of an Int and a Node, Data as a tuple of a NodeMode, two Round types and 

an Int. Message type is a tuple of Data, and two Node. Finally mode is an enumeration of 

done, working, leader and notleader. 

 

Finally, we need JVMSocket, JVMServerSocket having all operators we refer to earlier, 

and a Channel. The latter uses all previous mentioned data types, and is defined having a 

MessageTuple, a Status, and a Channel type in addition to an operator checking is the channel 

is empty or not. 

 

Next, an automaton for the modeling the interaction between the algorithm and the TCP 

Channel has been created, and that is TCP_ChanMed.tioa. This automaton enables the 

creation and management of JVMServerSockets and JVMSockets. tcpChannel state variable 

contains all the established connections and recvBuffer the messages extracted from the 

network. Finally, TCPSendMed.tioa and TCPRecvMed.tioa model the interaction of the 

algorithm automata with automaton modeling the TCP protocol. 

 

The first action that is fired when running the Paxos schedule is the TCP_Bind(myIP) 

which creates a new JVMServerSocket and changes the local status of each node from idle to 

connecting, indicating their willingness to accept connections. Moreover, the nodes initialize a 

local variable, localError, holding any possible errors. After that, TCP_respBind(error,local) 

is fired, changing the local status of the node from connecting to  accepting, if the localError 

state variable is equal to null. These two actions are fired in the schedule as below: 

  
       fire output R.TCP_bind(myIP); 

    fire output C.TCP_respBind(error,myIP); 
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We then handle separately the server and the client node by firing the corresponding 

actions. If the node’s IP address is the same as the one we defined for the server, the machine 

enters a loop and fires TCP_accept method,  

  fire output C.TCP_respAccept(error); 

 and that changes its status to waiting and forcing it to stay there until an incoming request 

will arrive.  

 

On the other hand, if the IP address of a running node is not the same as the one that will 

behave as a server, TCP_senderOpen(server, port) action is fired,  

  fire output S.TCP_senderOpen( server, port ); 

trying to create a connection the node has its IP address is the same as the one passed in as a 

parameter and that will listen to the port specified. 

 

After all participating nodes create a TCP connection, either as a JVMServer or 

JVMClient, they all run InformAlive(n :Node) that lays into detector.tioa [24] adding 

themselves into the alive and world nodes list. Then, the leader election algorithm runs as 

follows. For all nodes added into the world list in the previous step, internal Check(world[y]) 

and then SEND(ms) are fired keeping a track which nodes have sent their message, when that 

happened and updating the list containing messages to be sent.  

 TCP_write( ms, myIP, world[y]) comes next, 

  fire output   S.TCP_write( ms, myIP, world[y]); 

adding  the message to the channel and as a result  the TCP_ChanMed writes it into the 

JVMSocket by invoking  the JVM_write_TCPSocket(val(tcpChannel[n].socket), val(m)) 

method. At the next step, the receiving node extract any messages exist in the channel using 

TCP_read which initiates read on all open connections. TCP_respRead(m) reads a message 

from the first reading socket and the message is added to the receiver’s buffer where it can 

later on be extracted. Finally, the leader election process continues until a leader is elected and 
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announced. After the leader election, the algorithm proceeds as presented in [7] using TCP 

methods for writing. 

 

All automata used for the TCP implementation of Paxos are presented in Appendix C. At 

this point it is important to say that all Automata used for the TCP Paxos implementation have 

been developed by Dr. Peter M. Musial based on the Java Sockets integration we managed to 

perform. 

 

4.3     Automated translation procedure 

 
For an algorithm to be automated translated to Java executable code, the following steps 

have to performed: 

1. The algorithm and the communication channels have to be expressed using the 

TIOA model.  

2. The algorithm automaton, which has to be in a nodechannel form, has to be 

verified using the IOA Checker 

3. A schedule has to be written for resolving the nondeterminism 

 

So far, the composition was performed prior to compilation leading to unreadable and 

unmanageable code. In the current way of transation, the composition is performed during the 

execution time using the "matchMaker" method that is found in each of the automaton 

components and the corresponding invocation in the schedule of the top automaton.  
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Chapter 5 

 

Conclusions and Future Work 

 

5.1 Conclusions 

 

Automated implementation of complex distributed algorithms specified in a formal 

language, such as IOA, is nowadays a very challenging and promising field. Distributed 

algorithms are emerging in a very fast rate and we can easily and without any doubts say that 

the future belongs to distributed computing and processing. Therefore, having such 

mechanisms not only for specifying and verifying complex distributed algorithms but also to 

automatically implement them is extremely useful.   

 

Before this work, the Tempo toolkit and IOA Compiler gave us the ability to 

automatically implement such algorithms using MPI. Even though that was good enough for 

many years, it has certain limitations which had to be addressed. Limitations including the 

fact that the generated code was only able to run in a LAN and not on the Internet, and the fact 

all participating nodes should be defined in advance, not allowing dynamic entrance of a new 

node.  
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In this Thesis we have enhanced the Tempo toolkit to support not only MPI but Java TCP 

Sockets as well. This is extremely useful, since not only do we allow dynamic creation and 

tearing down of communication links, but also the algorithms can now run on WANS, MAN, 

or even on the Internet. Furthermore, by using Sockets the automated implementation of 

dynamic distributed systems/algorithms can be extended into planetary-scale networks as was 

done for RAMBO in [34]. 

  

We have firstly checked our implementation using a very basic algorithm we created that 

was consisted of two machines, one acting as a sender and the other one as a receiver. Our aim 

was to send a message from the sender to the receiver, and display that message in the 

receiver's side. As soon as this was done, the integration was finally tested on something much 

more complex, on Paxos algorithm, which also ran correctly. To the best of our knowledge 

this is the first work that generates a verifiable implementation of Paxos using Java TCP 

Sockets in an automated way.  

  

 

5.2 Future work 

  

In this Thesis we mainly concentrated in enabling Tempo to support Java TCP Sockets as 

a way of communication between the participating nodes in an algorithm. The schedules we 

have used focus on establishing a connection and sending and receiving successfully a 

message from one node to the other. Therefore, further testing is needed to be done. For 

example, it would be nice to test fully the closing procedures of the sockets. Moreover, we 

plan to make the TCP Channel model better in terms of errors reporting, and, of course, test 

the model on more algorithms for different fundamental problems.  
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In addition, further improvement is needed for eliminating all limitations mentioned 

earlier about Paxos automated implementation. This includes the fact that all participating 

nodes should be known in advance and the absense of a resert procedure covering those cases 

where the leader fails. 

 

Furthermore, future work could include further enhancements to the Tempo compiler to 

include and support even more model interfaces, such as UDP, unicast, multicast, or both, 

database interfaces, quantified expressions and others. Finally, we should consider to create a 

GUI that will make the automated implementation process even more friendly.  
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APPENDIX A 

Java TCP Custom Classes 

 

A1. JVMError Class 

----------------------------------------------------------------------------------------------------------------- 
public class JVMError { 

  

 private java.lang.String _message = null; 

   

 public JVMError() { } 

 public JVMError(java.lang.String m) { this._message = m; } 

 public java.lang.String value() { return _message; } 

 public java.lang.String toString() { return _message; } 

     

} 

 

----------------------------------------------------------------------------------------------------------------- 

A2. JVMServerSocket Class 

----------------------------------------------------------------------------------------------------------------- 
import java.io.IOException; 

import java.net.ServerSocket; 

   

public class JVMServerSocket extends ServerSocket { 

   

 public JVMSocket accept() throws IOException { 

  JVMSocket s = new JVMSocket( ); 

  if (!isClosed() && isBound()) { 

   implAccept(s); 

   s.setSoTimeout(this.getSoTimeout()); 

  } 

  return s; 

 } 

   

 public JVMServerSocket(int arg0) throws IOException { 

  super(arg0); 

 }  

     

 public static Null<JVMServerSocket> 

JVM_TCPServerSocketOpen(tuple_4<Nat, Nat, Nat, Nat> i, Nat port, Nat 

timeout) { 

  JVMServerSocket server = null;  

  try{  

   server = new JVMServerSocket(port.value()); 

   server.setSoTimeout(timeout.value());   

  }    

  catch (IOException e) { } 
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  return new Null<JVMServerSocket>( server ); 

 }    

     

 public static Null<JVMError> 

JVM_TCPServerSocketClose(JVMServerSocket sS) { 

  JVMError error = null; 

  try{  

   sS.close();  

  } catch (IOException e) { error = new JVMError( 

e.getMessage() ); }    

  return new Null<JVMError>( error );  

 }  

   

 public static Null<JVMSocket> 

JVM_TCPServerSocketAccept(JVMServerSocket sS) { 

  JVMSocket client = new JVMSocket( ); 

  try { 

   client = sS.accept(); 

  } catch (IOException e) { } 

  return new Null<JVMSocket>( client ); 

 } 

} 

 

----------------------------------------------------------------------------------------------------------------- 

A3. JVMSocket Class 

----------------------------------------------------------------------------------------------------------------- 
import java.io.IOException; 

import java.net.InetAddress; 

import java.net.InetSocketAddress; 

import java.net.Socket; 

import java.net.SocketAddress; 

import java.net.UnknownHostException; 

   

public class JVMSocket extends Socket { 

   

 public JVMSocket() { super(); } 

  

 public JVMSocket(InetAddress addr, int port) throws IOException 

 { super(addr, port); } 

   

 public static Null<JVMSocket> JVM_TCPSocketOpen(tuple_4<Nat, 

    Nat, Nat, Nat> j, Nat port, Nat timeout){ 

  int ipPart1 = j.f0().intValue(); 

  int ipPart2 = j.f1().intValue(); 

  int ipPart3 = j.f2().intValue(); 

  int ipPart4 = j.f3().intValue(); 

  JVMSocket cS = new JVMSocket(); 

  try { 

   InetAddress addr = InetAddress.getByName( 

   Integer.toString(ipPart1) + '.' +    

   Integer.toString(ipPart2) + '.' +    

   Integer.toString(ipPart3) + '.' +    

   Integer.toString(ipPart4)); 

   cS = new JVMSocket(addr, port.intValue()); 

   if (!cS.isConnected()) { 

    SocketAddress sockaddr = new     

   InetSocketAddress(addr, port.intValue()); 

    cS.connect(sockaddr); 

   } else  

    cS.setSoTimeout(timeout.value()); 

  } 
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  catch (UnknownHostException e) {    

    System.out.println(e.getMessage()); } 

  catch (IOException e) {  

    System.out.println(e.getMessage()); } 

   return new Null<JVMSocket>( cS ); 

 } 

   

 public static Null<JVMError> JVM_TCPSocketClose(JVMSocket cS) { 

  JVMError error = null; 

  try { cS.close(); } 

   catch (IOException e) {  

    error = new JVMError( e.getMessage() );  } 

   return new Null<JVMError>( error ); 

 } 

   

 public static Null<tuple_4<Nat,Nat,Nat,Nat>>  

  JVM_TCPSocketGetLocalIP( Null<JVMSocket> socket ) { 

  if (socket == null || socket.val() == null)  

   return new Null<tuple_4<Nat,Nat,Nat,Nat>>( ); 

  byte[] localAddress =  

   socket.val().getLocalAddress().getAddress(); 

  return new Null<tuple_4<Nat,Nat,Nat,Nat>>(  

   new tuple_4<Nat,Nat,Nat,Nat>( 

   new Nat( localAddress[0] & 255 ), new Nat(  

       localAddress[1] & 255 ),  

   new Nat( localAddress[2] & 255 ), new Nat(  

       localAddress[3] & 255 ))); 

 } 

   

 public static Null<tuple_4<Nat,Nat,Nat,Nat>>  

  JVM_TCPSocketGetRemoteIP( Null<JVMSocket> socket ) { 

  if (socket == null || socket.val() == null)  

   return new Null<tuple_4<Nat,Nat,Nat,Nat>>( ); 

  byte[] localAddress =  

  socket.val().getRemoteSocketAddress() != null ?  

  socket.val().getInetAddress().getAddress() : new byte[0]; 

  if (localAddress.length == 0)  

   return new Null<tuple_4<Nat,Nat,Nat,Nat>>( ); 

  return new Null<tuple_4<Nat,Nat,Nat,Nat>>(  

   new tuple_4<Nat,Nat,Nat,Nat>( 

   new Nat( localAddress[0] & 255 ),  

   new Nat( localAddress[1] & 255 ), 

   new Nat( localAddress[2] & 255 ),  

   new Nat( localAddress[3] & 255 ))); 

 } 

   

 public static Null<tuple_3<Object, tuple_4<Nat, Nat, Nat, Nat>, 

tuple_4<Nat, Nat, Nat, Nat>>> JVM_read_TCPSocket(Null<JVMSocket> cS) 

{ 

  return JVMStream.JVM_read_TCPStream(cS); 

 } 

   

 public static Null<JVMError> JVM_write_TCPSocket(JVMSocket  

        socket, Object msg) { 

  return JVMStream.JVM_write_TCPStream(socket, msg); 

 } 

   

 public static Bool JVM_TCPSocketIsConnected(Null<JVMSocket> cS) 

 { 

  if (cS == null || cS.val() == null)  

   return new Bool( false ); 
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   return new Bool( cS.val().isConnected() ); 

 } 

}    

 
----------------------------------------------------------------------------------------------------------------- 

A4. JVMStream Class 

----------------------------------------------------------------------------------------------------------------- 
import java.io.IOException; 

import java.io.ObjectInputStream; 

import java.io.ObjectOutputStream; 

import java.net.SocketTimeoutException; 

 

public class JVMStream { 

   

 public static 

 Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Na

 t,Nat>>> JVM_read_TCPStream(Null<JVMSocket> cS) { 

    

 tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat

 >> msg = null; 

  if (cS != null && cS.val() != null) try { 

   ObjectInputStream in = new     

   ObjectInputStream(cS.val().getInputStream()); 

   msg = 

(tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>>) 

   in.readObject(); 

  } 

  catch(SocketTimeoutException e) { return new 

Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>

>>( ); } 

  catch(ClassNotFoundException e) { return new 

Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>

>>( ); } 

  catch(IOException e){ return new 

Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>

>>( ); } 

  return new 

Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>

>>( msg ); 

 } 

   

 public static Null<JVMError> JVM_write_TCPStream(JVMSocket cS, 

         Object msg) { 

  JVMError error = null; 

  if (cS != null && msg != null) try { 

   ObjectOutputStream out = new     

   ObjectOutputStream(cS.getOutputStream()); 

   out.writeObject(msg); 

   out.flush(); 

  } catch (IOException e) {  

   error = new JVMError( e.getMessage() ); } 

  return new Null<JVMError>( error ); 

 } 

} 
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----------------------------------------------------------------------------------------------------------------- 

A5. TCPNodeVoc Class 

----------------------------------------------------------------------------------------------------------------- 
import Utils.TJMath; 

   

public class TCPNodeVoc { 

   

 public static Bool GT(tuple_4<Nat,Nat,Nat,Nat> p0,   

     tuple_4<Nat,Nat,Nat,Nat> p1) { 

  if ( TJMath.GT(p0.f0(), p1.f0()).value() )  

   return new Bool( true ); 

  if ( TJMath.EQ(p0.f0(), p1.f0()).value() && 

   TJMath.GT(p0.f1(), p1.f1()).value() )  

   return new Bool( true ); 

  if ( TJMath.EQ(p0.f0(), p1.f0()).value() && 

   TJMath.EQ(p0.f1(), p1.f1()).value() && 

   TJMath.GT(p0.f2(), p1.f2()).value() )  

   return new Bool( true ); 

  if ( TJMath.EQ(p0.f0(), p1.f0()).value() && 

   TJMath.EQ(p0.f1(), p1.f1()).value() && 

   TJMath.EQ(p0.f2(), p1.f2()).value() && 

   TJMath.GT(p0.f3(), p1.f3()).value() )  

   return new Bool( true ); 

  return new Bool( false ); 

 } 

  

 public static Bool EQ(tuple_4<Nat,Nat,Nat,Nat> p0,   

     tuple_4<Nat,Nat,Nat,Nat> p1) { 

  if ( TJMath.EQ(p0.f0(), p1.f0()).value() && 

   TJMath.EQ(p0.f1(), p1.f1()).value() && 

   TJMath.EQ(p0.f2(), p1.f2()).value() && 

   TJMath.EQ(p0.f3(), p1.f3()).value() ) 

  return new Bool( true ); 

  return new Bool( false ); 

 } 

  

 public static Bool LT(tuple_4<Nat,Nat,Nat,Nat> p0,  

     tuple_4<Nat,Nat,Nat,Nat> p1) { 

  if ( TJMath.LT(p0.f0(), p1.f0()).value() )  

   return new U( true ); 

  if ( TJMath.EQ(p0.f0(), p1.f0()).value() && 

   TJMath.LT(p0.f1(), p1.f1()).value() )  

   return new Bool( true ); 

  if ( TJMath.EQ(p0.f0(), p1.f0()).value() && 

   TJMath.EQ(p0.f1(), p1.f1()).value() && 

   TJMath.LT(p0.f2(), p1.f2()).value() )  

   return new Bool( true ); 

  if ( TJMath.EQ(p0.f0(), p1.f0()).value() && 

   TJMath.EQ(p0.f1(), p1.f1()).value() && 

   TJMath.EQ(p0.f2(), p1.f2()).value() && 

   TJMath.LT(p0.f3(), p1.f3()).value() )  

   return new Bool( true ); 

  return new Bool( false ); 

 } 

} 
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APPENDIX B 

JVMChanTest Algorithm 

 

B1. driver.tioa 

----------------------------------------------------------------------------------------------------------------- 
imports JVMSocket 

imports JVMServerSocket 

imports TCPObjectsVoc 

imports TCPNodeVoc 

imports ChannelVoc 

imports algorithm_voc 

 

automaton driver 

 

signature 

 

   % paired to the receive mediator 

   input RECEIVE(m:Null[Message]) 

   input respBind(i:Node) 

    

   % paired to the send mediator 

   output SEND(m:Message, r,s:Node) 

   output TCP_senderOpen(s,r:Node, port:Nat) 

   output TCP_senderClose(s,r:Node) 

    

   % paired to the receive mediator 

   output TCP_bind(i:Node) 

   output TCP_stopListening(j:Node) 

   output TCP_rClose(i,j:Node) 

    

states 

   noop:Bool := true; 

 

transitions 

 

   input RECEIVE(m) 

   eff 

      noop:=true; 

    

   input respBind(i) 

   eff 

      noop:=true; 

    

   output SEND(m,r,s) 

   pre 

      noop; 

   eff 

      noop:=true; 

    

   output TCP_senderOpen(s,r,port) 

   pre 

      noop; 

   eff 

      noop:=true; 

    

   output TCP_senderClose(s,r) 

   pre 

      noop; 
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   eff 

      noop:=true; 

    

   output TCP_bind(i) 

   pre 

      noop; 

   eff 

      noop:=true; 

    

   output TCP_stopListening(j) 

   pre 

      noop; 

   eff 

      noop:=true; 

    

   output TCP_rClose(i,j) 

   pre 

      noop; 

   eff 

      noop:=true; 

    

----------------------------------------------------------------------------------------------------------------- 

B2. JVMChanTest.tioa 

----------------------------------------------------------------------------------------------------------------- 
include "myvocabs.tioa" 

include "driver.tioa" 

include "SendMed.tioa" 

include "RecvMed.tioa" 

 

imports JVMSocket 

imports JVMServerSocket 

imports TCPObjectsVoc 

imports TCPNodeVoc 

imports ChannelVoc 

imports algorithm_voc 

 

automaton JVMChanTest(n1:Nat, n2:Nat, n3:Nat, n4:Nat, n5:Nat, n6:Nat) 

   components  

      S:SendMed(n5,n6); 

      R:RecvMed(n5,n6); 

      D:driver; 

   schedule 

   states 

      MIP :Node := [ n1, n2,n3,n4]; % IP from parameters 

      SIP :Node := [192,168,10, 4]; % server IP 

      CIP :Node := [192,168,10,11]; % client IP 

       

      port:Nat := n5; 

      timeout:Nat := n6;  

       

      msrv :Null[Message] := nil(); 

      mcli :Null[Message] := nil(); 

   do 

      % -- message format [message, sender, receiver] 

      mcli := embed(["HiFromClient", MIP, SIP]);  

      msrv := embed(["HiFromServer", CIP, MIP]);  

       

      %% server side 

      if (MIP = SIP) then 

      % -- bind  

       fire output D.TCP_bind(MIP); 
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       fire output R.TCP_respBind(MIP); 

        

       % -- listen and accept 

       fire output R.TCP_accept; 

       fire input  R.TCP_respAccept; 

        

       % -- read the network medium 

       fire output R.TCP_rRead; 

       fire input  R.TCP_respRRead; 

       fire output R.RECEIVE(mcli); 

        

       if (mcli ~= nil()) then 

          print val(mcli); 

       fi 

      fi 

       

      %% client side -- order in which i and j are used as  

      %% parameters is important. 

      if (MIP = CIP) then 

      % -- connect 

      fire output D.TCP_senderOpen(MIP,SIP, port); 

       

      % -- send a messages 

      fire output D.SEND(val(mcli),SIP,MIP); 

        fire output S.TCP_write(mcli,SIP,MIP); 

         

        % -- close 

        fire output D.TCP_senderClose(MIP,SIP); 

       

        follow S.v(SIP) duration timeout; 

      fi  

   od 

       

----------------------------------------------------------------------------------------------------------------- 

B3. myvocabs.tioa 

----------------------------------------------------------------------------------------------------------------- 
vocabulary TCPObjectsVoc 

   types 

      IPv4     : Tuple[one:Nat, two:Nat, three:Nat, four:Nat], 

      IPv6     : Tuple[one:Nat, two:Nat, three:Nat, four:Nat,  

       five:Nat, six:Nat], 

      JVMError : String 

end 

 

vocabulary TCPNodeVoc 

   imports TCPObjectsVoc 

   types 

      Node     : IPv4 

   operators 

      GT : Node, Node -> Bool, 

      EQ : Node, Node -> Bool, 

      LT : Node, Node -> Bool 

end 

 

%%% .:algorithm vocabs:. 

vocabulary algorithm_voc 

  imports TCPObjectsVoc 

  imports TCPNodeVoc 

  types Data     : String, 

    Message  : Tuple[data:Data, sender:Node, receiver:Node] 

end 
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vocabulary JVMSocket 

   imports TCPObjectsVoc, TCPNodeVoc 

   imports algorithm_voc 

   types JVMSocket 

   operators 

      JVM_TCPSocketOpen       : Node, Node, Nat -> Null[JVMSocket], 

      JVM_TCPSocketClose      : JVMSocket -> Null[JVMError], 

      JVM_TCPSocketGetLocalIP : Null[JVMSocket] -> Null[Node], 

      JVM_TCPSocketGetRemoteIP: Null[JVMSocket] -> Null[Node], 

      JVM_read_TCPSocket      : JVMSocket -> Null[Message], 

      JVM_write_TCPSocket     : JVMSocket, Message -> Null[JVMError] 

end 

 

vocabulary JVMServerSocket 

   imports TCPObjectsVoc, JVMSocket, TCPNodeVoc 

   types JVMServerSocket 

   operators 

      JVM_TCPServerSocketOpen  : Node, Nat, Nat ->    

       Null[JVMServerSocket], 

      JVM_TCPServerSocketClose : JVMServerSocket -> Null[JVMError], 

      JVM_TCPServerSocketAccept: JVMServerSocket -> Null[JVMSocket] 

end 

 

vocabulary ChannelVoc 

   imports JVMServerSocket, JVMSocket, TCPObjectsVoc, TCPObjectsVoc, 

TCPNodeVoc 

   types   

      MessageTuple : Tuple [msg:Message, sender:Node, receiver:Node],  

      Status       : Enumeration [closed, notAccepting, opening,  

         emptying, connecting, reading,  

       rClosing, sConnected, connected,  

                         accepting, waiting, stopping, idle], 

      Channel      : Tuple[i:Node, j:Node, socket:Null[JVMSocket],  

                          status:Status, emptying:Bool, 

error:Null[JVMError]] 

   operators 

      empty_channel : -> Channel 

end 

 
----------------------------------------------------------------------------------------------------------------- 

B4. RecvMed.tioa 

----------------------------------------------------------------------------------------------------------------- 
imports JVMSocket 

imports JVMServerSocket 

imports TCPObjectsVoc 

imports TCPNodeVoc 

imports ChannelVoc 

imports algorithm_voc 

 

automaton RecvMed(port:Nat,timeout:Nat) 

signature  

   input TCP_respRRead 

   input TCP_readRError 

   input TCP_bind(i:Node) 

   input TCP_respAccept 

   input TCP_stopListening(i:Node) 

   input TCP_rClose(i,j:Node) 

     

   output RECEIVE(m:Null[Message]) 
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   output TCP_rRead 

   output TCP_respBind(i:Node)  

   output TCP_accept 

   output TCP_stopAccepting 

   output TCP_rCloseStream(i,j:Node) 

    

   internal TCP_senderClosing(i,j:Node)  

       

states  

   recvBuffer  : Seq[MessageTuple] := {};  

   recvChannel : Seq[Channel] := {};  

   acceptStatus: Status := idle;  

   SSocket     : Null[JVMServerSocket] := nil(); 

 

let 

   getFirst( r , s , i) : Node, Node, Nat -> Null[Message] = 

    if (i > len(recvBuffer)) then nil():Null[Message]  

     else if (recvBuffer[i].receiver = r /\     

    recvBuffer[i].sender = s) then  

      embed(recvBuffer[i].msg)  

     else  

      getFirst( r , s , i + 1); 

    

transitions 

 

   %% 

   %% emulates the RECEIVE state 

   %% 

 

   %% Two overloaded receive methods that get any message from  

   %% the receive buffer 

   %% 

   output RECEIVE(m) where len(recvBuffer) = 0 

   pre 

      m = nil(); 

    

   output RECEIVE(m) where len(recvBuffer) ~= 0 

   pre 

      m = embed(head(recvBuffer).msg); 

   eff 

      recvBuffer := tail(recvBuffer); 

       

   %--------------------------------------------------------------- 

    

   %% 

   %% Bind emulates the BIND and LISTEN socket states 

   %%    

   input TCP_bind(i) 

   eff 

      acceptStatus := connecting; 

 

   %% 

   output TCP_respBind(i) 

   pre 

      acceptStatus = connecting; 

   eff 

      SSocket := JVM_TCPServerSocketOpen(i, port, timeout); 

      acceptStatus := accepting; 

       

   %--------------------------------------------------------------- 
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   %% 

   %% emulates the ACCEPT state of the socket, however here 

   %% this is state is decoupled with creation of the stream 

   %% 

   output TCP_accept 

   pre 

      acceptStatus = accepting; 

   eff 

      acceptStatus := waiting; 

 

   %% 

   %% a response to the accept is return of a stream 

   %% 

   input TCP_respAccept 

   locals 

      socket:Null[JVMSocket] := nil(); 

   eff 

      if acceptStatus = waiting then 

         socket := JVM_TCPServerSocketAccept(val(SSocket)); 

         if (socket ~= nil()) then 

      recvChannel := recvChannel |-    

   [val(JVM_TCPSocketGetLocalIP(socket)),   

   val(JVM_TCPSocketGetRemoteIP(socket)), socket,  

       connected, false, nil()]; 

         fi 

         acceptStatus := accepting; 

      fi 

 

   %% 

   output TCP_stopAccepting 

   locals 

      error:Null[JVMError] := nil(); 

   pre 

      acceptStatus = stopping; 

   eff 

      acceptStatus := idle;    

      error := JVM_TCPServerSocketClose(val(SSocket));    

       

   %--------------------------------------------------------------- 

   

   %% 

   %% prior to entering the CLOSE_SOCKET state we empty 

   %% the local buffers. 

   %% 

   input TCP_stopListening(i) 

   eff 

      if acceptStatus ~= idle then 

         acceptStatus := stopping; 

      fi 

 

   %% 

   %% emulates CLOSE_SOCKET state. 

   %@ implementation closes the server socket 

   %% 

   input TCP_rClose(i,j) 

   locals 

      tempRecvBuffer : Seq[MessageTuple] := {}; 

   eff 

      for y:Nat where y < len(recvBuffer) do 

         if (recvBuffer[y].sender = i /\ recvBuffer[y].receiver = j) 

         then 
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            tempRecvBuffer := tempRecvBuffer |- recvBuffer[y];  

         fi 

      od 

      recvBuffer := {}; 

      for y:Nat where y < len(tempRecvBuffer) do 

         recvBuffer := recvBuffer |- tempRecvBuffer[y];  

      od 

      for y:Nat where y < len(recvChannel) do 

         if (recvChannel[y].i = i /\ recvChannel[y].j = j)  

         then 

            recvChannel[y].status := rClosing; 

         fi 

      od 

    

   %--------------------------------------------------------------- 

    

   %% 

   %% sockets provide access to streams, which then are can be read 

   %% this action emulates the read access to a stream 

   %% 

   output TCP_rRead 

   pre 

      len(recvChannel) > 0; 

   eff 

      for y:Nat where y < len(recvChannel) do 

         if (recvChannel[y].socket ~= nil() /\ 

             recvChannel[y].status = connected)  

         then 

            recvChannel[y].status := reading; 

         fi 

      od 

 

   input TCP_respRRead 

   locals 

      msg:Null[Message] := nil(); 

   eff 

      for y:Nat where y < len(recvChannel) do 

         if (recvChannel[y].socket ~= nil() /\ 

             recvChannel[y].status = reading)  

         then 

            msg := JVM_read_TCPSocket(val(recvChannel[y].socket)); 

            if (msg ~= nil()) then 

               recvBuffer := recvBuffer |- [val(msg),  

    recvChannel[y].i, recvChannel[y].j]; 

            fi 

         fi 

      od       

 

   input TCP_readRError 

   eff 

      for y:Nat where y < len(recvChannel) do 

         if (recvChannel[y].socket ~= nil() /\ 

             recvChannel[y].status ~= closed)  

         then 

            recvChannel[y].emptying := true;  

         fi 

      od 

       

   %---------------------------------------------------------------        

    

    



69 

 

 

 

output TCP_rCloseStream(i,j) 

   locals 

      error:Null[JVMError] := nil(); 

   pre 

      len(recvChannel) > 0; 

   eff 

      for y:Nat where y < len(recvChannel) do 

         if (recvChannel[y].i = i /\ 

             recvChannel[y].j = j /\ 

             recvChannel[y].status = rClosing /\ 

             ~recvChannel[y].emptying = true)  

         then 

            recvChannel[y].status := closed; 

         fi  

      od 

    

   %---------------------------------------------------------------  

    

   internal TCP_senderClosing(i,j) 

   locals 

      noMessages:Bool := true; 

   pre 

      len(recvChannel) > 0; 

   eff 

      for y:Nat where y < len(recvChannel) do 

         if recvChannel[y].status = emptying then 

            for v:Nat where v < len(recvBuffer) do 

               if (recvBuffer[v].sender ~= i) then 

                  noMessages := false; 

               fi 

            od 

         fi 

      od 

      if noMessages then 

         for y:Nat where y < len(recvChannel) do 

            if (recvChannel[y].i = i)  

            then 

              recvChannel[y].status := closed; 

            fi 

         od 

      fi 

      

----------------------------------------------------------------------------------------------------------------- 

B5. SendMed.tioa 

----------------------------------------------------------------------------------------------------------------- 
imports JVMSocket 

imports JVMServerSocket 

imports TCPObjectsVoc 

imports TCPNodeVoc 

imports ChannelVoc 

imports algorithm_voc 

 

automaton SendMed(port:Nat, timeout:Nat) 

 

signature 

   input SEND(m:Message, r,s:Node)  

    

   input TCP_senderOpen(s,r:Node, port:Nat) 

   input TCP_senderClose(s,r:Node)  

       

   output TCP_write(m: Null[Message], r,s:Node)  
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states  

   sendBuffer  : Seq[MessageTuple] := {};  

   sendChannel : Seq[Channel] := {};  

   clocks      : Array[Node,AugmentedReal];  

initially 

   clocks = constant(timeout); 

 

let 

  getMessage(r,s,index) : Node, Node, Nat -> Null[Message] = 

     if index = len(sendBuffer) then 

        nil() : Null[Message] 

     else  

     if (sendBuffer[index].sender = s /\ sendBuffer[index].receiver = 

r) then  

        embed(sendBuffer[index].msg) 

     else 

        getMessage(r,s,index+1); 

 

transitions 

 

   %%% 

   %%% SEND simply deposits a message to the channel 

   %%% 

   input SEND(m,r,s) 

   eff 

      for y:Nat where y < len(sendChannel) do 

         if (sendChannel[y].i = s /\ 

             sendChannel[y].j = r /\ 

             sendChannel[y].status ~= closed /\ 

             sendChannel[y].emptying ~= true)  

         then 

            sendBuffer := sendBuffer |- [m,r,s]; 

         fi 

      od; 

 

   %--------------------------------------------------------------- 

    

   %%% 

   %%% Messages to be sent must be written to the channel (analogous 

   %%% to calling flush() on socket.  TCP_write action either returns 

   %%% null if there are no more messages or the message that was 

   %%% just sent onto the network medium. 

   %%% 

   output TCP_write(m,r,s) where len(sendBuffer) = 0 

   pre  

      m = nil(); 

       

   output TCP_write(m,r,s) where len(sendBuffer) ~= 0 

   locals 

      tempSendBuffer :Seq[MessageTuple] := {}; 

      error :Null[JVMError] := nil(); 

      msg :Null[MessageTuple] := nil(); 

   pre 

      sendBuffer ~= {}; 

      m = getMessage(r,s,0); 

   eff 

      for y:Nat where y < len(sendChannel) do 

         if (sendChannel[y].i = s /\ sendChannel[y].j = r)  

         then 

            for v:Nat where v < len(sendBuffer) do 
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     if (sendBuffer[v].sender = s /\ sendBuffer[v].receiver = r) then 

                  error := 

JVM_write_TCPSocket(val(sendChannel[y].socket), sendBuffer[v].msg); 

                  clocks[r] := 0; 

                  tempSendBuffer := tempSendBuffer |- sendBuffer[v]; 

                  if (error ~= nil()) then 

                     sendChannel[y].error := error; 

                     print val(error); 

                  fi 

               fi 

            od          

         fi 

      od 

      sendBuffer := {}; 

      for y:Nat where y < len(tempSendBuffer) do 

         sendBuffer := sendBuffer |- tempSendBuffer[y]; 

      od 

 

   %--------------------------------------------------------------- 

    

   %% 

   %% models set up of the client socket 

   %% 

   input TCP_senderOpen(s,r,port) 

   locals 

      match :Bool := false; 

      index :Nat := 0; 

      socket:Null[JVMSocket] := nil(); 

      error :Null[JVMError]  := nil(); 

   eff 

      for y:Nat where y < len(sendChannel) do 

         if (sendChannel[y].i = s /\ sendChannel[y].j = r)  

         then 

            match := true; 

            if (sendChannel[y].socket = nil())  

            then 

               socket := JVM_TCPSocketOpen(r,s,port); 

               sendChannel[y].socket := socket; 

            fi 

         fi 

      od 

      if (~match) then 

        socket := JVM_TCPSocketOpen(r,s,port);  

   sendChannel := sendChannel |- [s, r, socket, opening, false, 

nil()]; 

      fi 

    

   %--------------------------------------------------------------- 

       

   input TCP_senderClose(s,r) 

   locals 

      error:Null[JVMError] := nil(); 

   eff 

      for y:Nat where y < len(sendChannel) do 

         if (sendChannel[y].i = s /\ sendChannel[y].j = r)  

         then 

            sendChannel[y].emptying := true; 

            error := JVM_TCPSocketClose(val(sendChannel[y].socket)); 

            if (error ~= nil()) then 

               sendChannel[y].error := error; 

               print val(error); 
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            fi 

         fi 

      od 

    

   %--------------------------------------------------------------- 

    

   %%% 

   %%% Trajectory added to support timeout 

   %%% 

   trajectories 

      trajdef v(n:Node) 

      invariant len(sendBuffer) ~= 0; 

      stop when clocks[n] >= timeout;    

      evolve d(clocks[n]) = 1; 

       

       

----------------------------------------------------------------------------------------------------------------- 

B6. TCPChan.tioa 

----------------------------------------------------------------------------------------------------------------- 
include "myvocabs.tioa" 

 

imports TCPObjects 

imports myVocab 

 

automaton JvmCh  

signature 

   input TCP_write(m:Message) 

   input TCP_rRead 

   input TCP_accept(j:Node) 

   input TCP_stopAccepting(j:Node) 

   input TCP_createStream(i,j:Node) 

   input TCP_senderCloseStream (i,j:Node) 

   input TCP_receiverCloseStream (i,j:Node) 

   

   output TCP_respRead(m:Message) 

   output TCP_writeError(m:Message) 

   output TCP_readError 

   output TCP_respAccept(i,j:Node) 

   output TCP_respCreateStream(i,j:Node) 

   output TCP_createStreamError (i,j:Node)  

 

   internal TCP_senderClosingStream (i,j:Node) 

states  

   jvmBuffer   : Seq[MessageTuple] := {};  

   writeErrors : Seq[MessageTuple] := {};  

   sReading    : Seq[Stream]       := {};  

   sAccepting  : Seq[Node]         := {};  

   jvmChannel  : Seq[Channel]      := {};  

    

transitions  

 

input TCP_write(m,s) 

  eff  

     for y:Nat where y < len(jvmChannel) do 

     if (jvmChannel[y].status = connected \/ 

            jvmChannel[y].status = sConnected) 

        then 

           jvmBuffer := jvmBuffer |- [m, , jvmChannel[y].j]; 

        else 

           writeErrors := writeErrors |- [m, embed(s), 

jvmChannel[y].j]; 
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        fi; 

    od; 

     

input TCP_read(s)  

  eff 

    sReading := sReading |- s; 

 

input TCP_accept(j)  

  eff 

    sAccepting := sAccepting |- j; 

 

input TCP_stopAccepting(j) 

  locals 

     tempAccepting:Seq[Node] := {};  

  eff 

    for y:Nat where y < len(sAccepting) do 

       if (j ~= sAccepting[y]) then 

          tempAccepting := tempAccepting |- sAccepting[y]; 

       fi; 

    od; 

    sAccepting := {}; 

    for y:Nat where y < len(tempAccepting) do 

        sAccepting := sAccepting |- tempAccepting[y]; 

    od; 

 

input TCP_createStream(i,j) 

   locals 

      tempAccepting:Seq[Node] := {}; 

   eff  

      if j \in sAccepting then  

         jvmChannel := jvmChannel |- [i,j,nil(),connecting,false]; 

         for y:Nat where y < len(sAccepting) do 

            if (j ~= sAccepting[y]) then 

               tempAccepting := tempAccepting |- sAccepting[y]; 

            fi; 

         od; 

         sAccepting := {}; 

         for y:Nat where y < len(tempAccepting) do 

            sAccepting := sAccepting |- tempAccepting[y]; 

         od; 

      else 

         for y:Nat where y < len(jvmChannel) do 

            if (jvmChannel[y].i = i /\ 

                jvmChannel[y].j = j) 

            then 

               jvmChannel[y].status := notAccepting; 

            fi; 

         od; 

     fi; 

   

input TCP_senderCloseStream(i,j)  

   eff 

      for y:Nat where y < len(jvmChannel) do 

         if (jvmChannel[y].status = connected \/ 

            jvmChannel[y].status = sConnected) 

         then 

            jvmChannel[y].emptying := true; 

         else 

            jvmChannel[y].status := closed; 

         fi; 

      od; 
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input TCP_receiverCloseStream(i,j)  

   locals 

      tempJvmBuffer:Seq[MessageTuple] := {};  

      tempBool:Bool := false; 

      tempNatSeq:Seq[Nat] := {}; 

   eff 

      for y:Nat where y < len(jvmChannel) do 

         for z:Nat where y < len(jvmBuffer) do 

            if (val(jvmChannel[y].s) = val(jvmBuffer[z].stream) /\ 

                jvmChannel[y].emptying)  

            then 

               jvmChannel[y].status := closed; 

               tempBool := close_TCPStream(val(jvmChannel[y].s)); 

               tempNatSeq := tempNatSeq |- z; 

            fi; 

         od; 

       

      od; 

      for y:Nat where y < len(jvmBuffer) do 

         if (y \notin tempNatSeq) then 

            tempJvmBuffer := tempJvmBuffer |- jvmBuffer[y]; 

         fi; 

      od; 

      jvmBuffer := {}; 

      for y:Nat where y < len(tempJvmBuffer) do 

       jvmBuffer := jvmBuffer |- tempJvmBuffer[y]; 

      od; 

 

 

output TCP_respRead(m, s)  

   locals 

      tempJvmBuffer:Seq[MessageTuple] := {}; 

      tempReading:Seq[Stream] := {}; 

   pre 

     len(jvmBuffer) ~= 0; 

     s \in sReading;  

   eff 

     for y:Nat where y < len(jvmBuffer) do 

        if (jvmBuffer[y].data ~= m /\ 

            val(jvmBuffer[y].stream) ~= s)  

        then 

           tempJvmBuffer := tempJvmBuffer |- jvmBuffer[y]; 

        fi; 

     od; 

     jvmBuffer := {}; 

     for y:Nat where y < len(tempJvmBuffer) do 

        jvmBuffer := jvmBuffer |- tempJvmBuffer[y]; 

     od; 

      

     for y:Nat where y < len(sReading) do 

        if (tempReading[y] ~= s) then 

           tempReading := tempReading |- sReading[y]; 

        fi; 

     od; 

     sReading := {}; 

     for y:Nat where y < len(tempReading) do 

        sReading := sReading |- tempReading[y]; 

     od; 

 

output TCP_writeError(m,s)  
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   locals 

     tempWriteErrors:Seq[MessageTuple] := {}; 

   pre 

     len(writeErrors) ~= 0;  

   eff 

     for y:Nat where y < len(writeErrors) do 

      if (val(writeErrors[y].stream) ~= s /\ 

          writeErrors[y].data ~= m)  

      then 

       tempWriteErrors := tempWriteErrors |- writeErrors[y]; 

      fi;  

     od; 

     writeErrors := {}; 

     for y:Nat where y < len(tempWriteErrors) do 

      writeErrors := writeErrors |- tempWriteErrors[y];  

     od; 

 

output TCP_readError(s) 

   locals 

      tempJvmChannel:Seq[Channel] := {};  

   pre 

      s \in sReading;  

   eff 

      for y:Nat where y < len(jvmChannel) do 

         if (val(jvmChannel[y].s) = s) then 

            if (jvmChannel[y].status ~= closed) then 

           tempJvmChannel := tempJvmChannel |- jvmChannel[y]; 

          fi; 

         else  

            tempJvmChannel := tempJvmChannel |- jvmChannel[y]; 

         fi; 

      od; 

      jvmChannel := {}; 

      for y:Nat where y < len(tempJvmChannel) do 

         jvmChannel := jvmChannel |- tempJvmChannel[y]; 

      od; 

 

output TCP_respAccept(i,j)  

   pre 

      jvmChannel ~= {}; 

   eff 

      for y:Nat where y < len(jvmChannel) do 

         if (jvmChannel[y].i = i /\ 

            jvmChannel[y].j = j /\ 

            jvmChannel[y].status = sConnected) then 

            jvmChannel[y].status := connected; 

         fi; 

      od; 

 

output TCP_respCreateStream (i,j,s)  

   pre 

      jvmChannel ~= {}; 

   eff 

      for y:Nat where y < len(jvmChannel) do 

        if (jvmChannel[y].i = i /\ 

            jvmChannel[y].j = j /\ 

            jvmChannel[y].status = connecting /\ 

            val(jvmChannel[y].s) ~= s) 

        then 

           jvmChannel[y].status := sConnected; 

           jvmChannel[y].s := embed(new_TCPStream); 
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        fi; 

     od; 

 

output TCP_createStreamError(i,j)  

   pre 

      jvmChannel ~= {};  

   eff 

      for y:Nat where y < len(jvmChannel) do 

         if (jvmChannel[y].i = i /\ 

             jvmChannel[y].j = j /\ 

             jvmChannel[y].status = notAccepting)  

         then   

            jvmChannel[y].status := closed; 

         fi; 

      od; 

 

internal TCP_senderClosingStream(i, j)  

   pre 

      len(jvmChannel) > 0; 

   eff 

      for y:Nat where y < len(jvmChannel) do 

         if (jvmChannel[y].i = i /\ 

             jvmChannel[y].j = j /\ 

             jvmChannel[y].status = closed /\ 

             jvmChannel[y].emptying) 

         then 

            jvmChannel[y].status := closed;  

            jvmChannel[y].emptying := false; 

         fi; 

      od; 

 

 

APPENDIX C 

Paxos TCP Implementation 

----------------------------------------------------------------------------------------------------------------- 

C1. TCPPaxos.tioa 

----------------------------------------------------------------------------------------------------------------- 
include "myvocabs.tioa" 

 

imports JVMSocket 

imports JVMServerSocket 

imports TCPObjectsVoc 

imports TCPNodeVoc 

imports ChannelVoc 

imports paxos_voc 

 

 

%%% .:TCP mediator automata:. 

include "TCPRecvMed.tioa" 

include "TCPSendMed.tioa" 

include "TCP_ChanMed.tioa" 

   

%%% .:Paxos automata 

include "starteralg.tioa" 

include "bpleader.tioa" 

include "bpagent.tioa" 

include "bpsuccess.tioa" 
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include "leaderelector.tioa"   

include "detector.tioa" 

 

%%% meaning of automata parameters  

%%% L:Int :: upper bound on time to execute any enabled action 

%%% D:Int :: upper bound on message deliver time 

%%% C:Int :: time interval between checking if alive status of other 

nodes 

%%% Z:Int :: time interval between sending of alive message 

 

automaton paxos(n1:Nat, n2:Nat, n3:Nat, n4:Nat, port:Nat,   

         timeout:Nat) 

  components  

 A_starteralg   :starteralg([n1,n2,n3,n4],5,timeout,510,500);  

   A_detector     :detector([n1,n2,n3,n4],5,timeout,510,500);    

   A_bpleader     :bpleader([n1,n2,n3,n4],5,timeout,510,500); 

   A_bpagent      :bpagent([n1,n2,n3,n4],5,timeout,510,500); 

   A_bpsuccess    :bpsuccess([n1,n2,n3,n4],5,timeout,510,500);   

   A_leaderelector:leaderelector([n1,n2,n3,n4]); 

   S              :SendMed(port,timeout); 

   R              :RecvMed(port,timeout); 

   C              :ChanMed(port,timeout); 

     

  schedule 

   

    states 

       AtHome :Bool := true;  

       myIP  :Node := [n1,n2,n3,n4]; % IP from parameters 

       world :Seq[Node];  

       % 

       D :AugmentedReal := 0; 

       Z :AugmentedReal := 20; 

       % 

       dummy :Null[Message] := nil();  

       ms    :Null[Message] := nil(); 

       mr    :Null[Message] := nil(); 

       % 

       leaderIP  :Node; 

       decision  :Null[Int] := nil();  

       value:Int := 0; 

       % 

       exitloop :Bool := false; 

       dowhile  :Bool := true; 

       error    :Null[JVMError] := nil(); 

        

       server   :Node := [192,168,2,2]; 

 

    % -- especially when variable initialization involves automata  

    %    parameters it is best to use the initially block 

    initially   

       D = timeout /\ leaderIP = [n1,n2,n3,n4] /\ world = world |- 

[n1,n2,n3,n4]; 

     

    % -- begins paxos schedule     

   do 

    

       % -- Everyone sets up their server socket. 

        

       % -- bind  

       fire output R.TCP_bind(myIP); 

       fire output C.TCP_respBind(error,myIP); 
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       % -- A dedicated server awaits connection requests. 

       if (myIP = server) then 

          while( dowhile = true ) do 

        % -- accept only on new connections 

             fire output R.TCP_accept; 

             % -- listen and accept 

             fire output C.TCP_respAccept(error); 

             if (error ~=nil()) then 

               print val(error); 

  if (val(error) = "NoConnectionOnAccept") then dowhile := false; fi 

             fi 

          od 

       else 

          % -- create connections to the server 

     fire output S.TCP_senderOpen( server, port ); 

       fi 

 

       if (AtHome = true)  

       then 

          if ([192,168,2,2] \notin world) then 

             world := world |- [192,168,2,2]; % seed the world 

             fire output A_detector.InformAlive( [192,168,2,2]); 

          fi 

          if ([192,168,2,3] \notin world) then 

             world := world |- [192,168,2,3]; % seed the world 

             fire output A_detector.InformAlive( [192,168,2,3]); 

          fi 

       else 

           if ([136,145,181,12] \notin world) then 

             world := world |- [136,145,181,12]; % seed the world 

            fire output A_detector.InformAlive( [136,145,181,12]); 

          fi 

          if ([136,145,181,41] \notin world) then 

             world := world |- [136,145,181,41]; % seed the world 

            fire output A_detector.InformAlive( [136,145,181,41]); 

          fi 

       fi 

    

    

  %%% Run the leader election protocol. %%% 

   

   

    % -- prep and send alive messages 

    fire internal A_detector.PrepAliveMessages; 

  for y:Nat where y < len(world) do 

           fire internal A_detector.Check( world[y] ); 

     %%%fire output   A_detector.InformStopped( world[y] ); 

     fire output   A_detector.SEND( ms ); 

     fire output   S.TCP_write( ms, myIP, world[y]); 

     if (ms ~= nil()) then print val(ms); fi 

     ms := nil(); 

  od 

  exitloop := false; 

  while ~exitloop do 

 % -- gives time for messages to arrive and be responded to 

   follow A_detector.v duration \infty(); 

   % -- extract messages from channel if there are any 

           fire output R.TCP_read; 

           dowhile := true; 

      while( dowhile = true ) do 



79 

 

 

 

              fire output C.TCP_respRead( mr ); 

         fire output R.RECEIVE( mr ); 

      if (mr ~= nil()) then 

      fire output A_detector.InformAlive( val(mr).sender );  

            if (val(mr).sender \notin world) then 

               world := world |- val(mr).sender; 

            fi 

      fire output A_detector.InformAlive( val(mr).sender );  

            print val(mr); 

         else  

            dowhile := false; 

         fi 

   od;  

   fire output A_detector.HasEnough( exitloop ); 

  od 

  % -- locally, announce leader 

  fire output A_leaderelector.Leader( leaderIP ); 

  print leaderIP; 

 

 

  %%% RUN PAXOS %%% 

   

   

  if (EQ(leaderIP, myIP)) then 

   

   %% PAXOS LEADER ALGORITHM 

    

   % -- create a value to vote for and initialize  

   value := choose x; 

   fire input A_bpleader.Init( value ); 

    

  % gives time for messages to arrive and be responded to 

   exitloop := false; 

   while ~exitloop do 

      % -- leader starts a new round 

      fire output A_starteralg.NewRound; 

       

      % -- prep collect messages 

      fire internal A_bpleader.Collect; 

       

      % -- send collect messages 

      for y:Nat where y < len( world ) do 

      fire output A_bpleader.SEND( ms ); 

     fire output S.TCP_write(ms, myIP, world[y]); 

      if (ms ~= nil()) then print val(ms); fi 

      ms := nil( ); 

      od 

follow A_starteralg.v, A_bpsuccess.v, A_bpleader.v duration \infty(); 

       

     % -- extract messages from channel if there are any 

              fire output R.TCP_read; 

              dowhile := true; 

         while( dowhile = true ) do 

                 fire output C.TCP_respRead( mr ); 

            fire output R.RECEIVE( mr ); 

      if (mr ~= nil()) then  

         print val(mr);  

      else 

         dowhile := false; 

      fi  

      od; 
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      % -- gather last messages 

      fire internal A_bpleader.GatherLast; 

      fire internal A_bpleader.Continue; 

    fire output   A_bpleader.NextPhase( begincast, exitloop ); 

      fire internal A_starteralg.CheckRndSuccess; 

   od; 

    

   exitloop := false; 

   while ~exitloop do 

      % -- prep and send begincast messages 

      fire output A_bpleader.BeginCast;  

   

      for y:Nat where y < len( world ) do 

       fire output A_bpleader.SEND( ms ); 

      fire output S.TCP_write(ms, myIP, world[y]); 

       if (ms ~= nil()) then print val(ms); fi 

       ms := nil( ); 

       od 

 % -- gives time for messages to arrive and be responded to 

follow A_starteralg.v, A_bpsuccess.v, A_bpleader.v duration \infty(); 

     

                % -- extract messages from channel if there are any 

               fire output R.TCP_read; 

               dowhile := true; 

          while( dowhile = true ) do 

                  fire output C.TCP_respRead( mr ); 

             fire output R.RECEIVE( mr ); 

       if (mr ~= nil()) then  

          print val(mr);  

       else 

          dowhile := false; 

       fi  

       od; 

        

    % -- process accept messages  

    fire internal A_bpleader.GatherAccept; 

  fire output   A_bpleader.NextPhase( decided, exitloop ); 

    fire internal A_starteralg.CheckRndSuccess; 

   od 

    

   % -- reached decision 

   fire output   A_bpleader.RndSuccess( decision ); 

   fire internal A_starteralg.CheckRndSuccess; 

   fire internal A_bpleader.GatherOldRound; 

 

   exitloop := false; 

   while ~exitloop do 

       % -- prep and send announce success 

       fire internal A_bpsuccess.SendSuccess; 

       for y:Nat where y < len( world ) do 

       fire output A_bpsuccess.SEND( ms ); 

      fire output S.TCP_write(ms, myIP, world[y]); 

       if (ms ~= nil()) then print val(ms); fi 

       ms := nil( ); 

       od; 

follow A_starteralg.v, A_bpsuccess.v, A_bpleader.v duration \infty(); 

     

                % -- extract messages from channel if there are any 

               fire output R.TCP_read; 

               dowhile := true; 

          while( dowhile = true ) do 
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                  fire output C.TCP_respRead( mr ); 

             fire output R.RECEIVE( mr ); 

       if (mr ~= nil()) then  

          print val(mr);  

       else 

          dowhile := false; 

       fi  

       od; 

    fire internal A_bpsuccess.GatherAck; 

  fire output   A_bpsuccess.HasEnoughAcks( exitloop ); 

   od; 

    

    

  else 

   

   

   %%% PAXOS AGENT ALGORITHM 

   exitloop := false; 

   while ~exitloop do  

follow A_starteralg.v, A_bpsuccess.v, A_bpagent.v duration \infty(); 

     

         % agents collect 

                % -- extract messages from channel if there are any 

               fire output R.TCP_read; 

               dowhile := true; 

          while( dowhile = true ) do 

                  fire output C.TCP_respRead( mr ); 

             fire output R.RECEIVE( mr ); 

       if (mr ~= nil()) then  

          print val(mr);  

       else 

          dowhile := false; 

       fi  

       od; 

        

    % -- three stages of agent, preconditions should ensure that 

       %    only the proper one is executed 

    fire internal A_bpagent.LastAccept; 

    fire internal A_bpagent.Accept; 

    fire internal A_bpsuccess.GatherSuccess; 

 

    % -- send response 

    dowhile := true; 

    while dowhile do 

       fire output A_bpagent.SEND( ms ); 

      fire output S.TCP_write(ms, myIP, leaderIP); 

       if (ms ~= nil()) then  

          print val(ms); 

          ms := nil(); 

       else  

          dowhile := false; 

       fi 

    od; 

       

   fire output A_bpsuccess.NextPhase( exitloop ); 

   od; 

    

   fire internal A_bpsuccess.SendSuccess; 

      for y:Nat where y < len( world ) do 

         fire output A_bpsuccess.SEND( ms ); 

      fire output S.TCP_write(ms, myIP, world[y]); 
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      ms := nil( ); 

   od; 

    

  fi 

 

  fire output A_bpsuccess.Decide( decision ); 

 

        if (decision ~= nil()) then 

     print val(decision); 

  fi 

   

   fire output R.TCP_read; 

        dowhile := true; 

        while( dowhile = true ) do 

           fire output C.TCP_respRead( mr ); 

           fire output R.RECEIVE( mr ); 

     if (mr ~= nil()) then  

        print val(mr);  

     else 

        dowhile := false; 

     fi  

     od; 

      

   od 

 

----------------------------------------------------------------------------------------------------------------- 

C2. myvocabs.tioa 

----------------------------------------------------------------------------------------------------------------- 
vocabulary TCPObjectsVoc 

   types 

      IPv4     : Tuple[one:Nat, two:Nat, three:Nat, four:Nat], 

      IPv6     : Tuple[one:Nat, two:Nat, three:Nat, four:Nat,  

       five:Nat, six:Nat], 

      JVMError : String 

end 

 

vocabulary TCPNodeVoc 

   imports TCPObjectsVoc 

   types 

      Node     : IPv4 

   operators 

      GT : Node, Node -> Bool, 

      EQ : Node, Node -> Bool, 

      LT : Node, Node -> Bool 

end 

 

%%% .:Paxos vocabs:. 

vocabulary paxos_voc 

  imports TCPObjectsVoc 

  imports TCPNodeVoc 

  types NodeMode : Enumeration [live, stopped, begin, last, accept, 

success, oldround, 

             collect, gatherlast, 

wait, begincast, gatheraccept,  

             decided, rnddone, ack], 

    Round    : Tuple [C:Int, O:Node], 

    Data     : Tuple [M:NodeMode, R:Round, RP:Round, V:Int], 

    Message  : Tuple[data:Data, sender:Node, receiver:Node], 

    Mode     : Enumeration[done,working,leader,notleader] 

end 
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vocabulary JVMSocket 

   imports TCPObjectsVoc, TCPNodeVoc 

   imports paxos_voc 

   types JVMSocket 

   operators 

      JVM_TCPSocketOpen       : Node, Nat, Nat -> Null[JVMSocket], 

      JVM_TCPSocketClose      : JVMSocket -> Null[JVMError], 

      JVM_TCPSocketGetLocalIP : Null[JVMSocket] -> Null[Node], 

      JVM_TCPSocketGetRemoteIP: Null[JVMSocket] -> Null[Node], 

      JVM_read_TCPSocket      : Null[JVMSocket] -> Null[Message], 

      JVM_write_TCPSocket     : JVMSocket, Message -> Null[JVMError], 

      JVM_TCPSocketIsConnected: Null[JVMSocket] -> Bool  

end 

 

vocabulary JVMServerSocket 

   imports TCPObjectsVoc, JVMSocket, TCPNodeVoc 

   types JVMServerSocket 

   operators 

      JVM_TCPServerSocketOpen  : Node, Nat, Nat -> 

Null[JVMServerSocket], 

      JVM_TCPServerSocketClose : JVMServerSocket -> Null[JVMError], 

      JVM_TCPServerSocketAccept: JVMServerSocket -> Null[JVMSocket] 

end 

 

%% This type provides sugar for the actual types and provides 

%% declaration for types in the specification of the JCP channel. 

vocabulary ChannelVoc 

   imports JVMServerSocket, JVMSocket, TCPObjectsVoc, TCPObjectsVoc, 

TCPNodeVoc 

   types   

      MessageTuple : Tuple [msg:Message, sender:Node, receiver:Node],  

      Status       : Enumeration [closed, notAccepting, opening, 

emptying,  

                        connecting, reading, rClosing, sConnected, 

connected,  

                        accepting, waiting, stopping, idle], 

      Channel      : Tuple[node :Node, socket:Null[JVMSocket],  

                        status:Status, emptying:Bool, 

error:Null[JVMError]] 

   operators 

      empty_channel : -> Channel 

end 

 

----------------------------------------------------------------------------------------------------------------- 

C3. TCP_ChanMed.tioa 

----------------------------------------------------------------------------------------------------------------- 
automaton ChanMed(port :Nat, timeout :Nat) 

signature  

   % -- actions paired with the RecvMed 

   input  TCP_read 

   output TCP_respRead(m :Null[Message])  

    

   input  TCP_bind(local :Node) 

   output TCP_respBind(error: Null[JVMError], local :Node) 

    

   input  TCP_accept 

   output TCP_respAccept(error: Null[JVMError]) 

   input  TCP_stopAccepting 

    

   input TCP_stopListening(remote :Node) 

   input TCP_rClose(remote :Node) 
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   input TCP_rCloseStream(remote :Node) 

    

   % -- actions paired with the SendMed 

   input TCP_senderOpen(remote :Node, port :Nat) 

   input TCP_senderClose(remote :Node)   

   input TCP_write(m: Null[Message], s,r :Node)  

    

   % -- internal actions 

   internal TCP_senderClosing(remote :Node)  

    

   % -- universal - only reports partial error information 

   %    per each established connection 

   output TCP_getError(e :Null[JVMError], remote :Node) 

    

states 

   % -- server socket 

   SSocket      : Null[JVMServerSocket] := nil(); 

   % -- current status of the server socket 

   acceptStatus : Status := idle;  

   % -- error (if any) from the last operation on server socket 

   SError       : Null[JVMError] := nil(); 

   % -- error (if any) on the last accept attempt 

   AError       : Null[JVMError] := nil(); 

   % -- a list of all established connections 

   tcpChannel   : Seq[Channel] := {};  

   % -- a buffer for network extracted messages 

   recvBuffer   : Seq[Message] := {}; 

 

let 

   % -- searches all established connections and returns an  

   %    error (if any) by the last operation on that connection 

   getError(r,index) : Node, Nat -> Null[JVMError] = 

     if index = len(tcpChannel) then 

        nil() : Null[JVMError] 

     else  

     if (tcpChannel[index].node = r) then  

        tcpChannel[index].error 

     else 

        getError(r,index+1); 

 

transitions 

 

   %%%%%%%%%%% READ %%%%%%%%%%%% 

   % -- goes through connected sockets and sets their 

   %    status to reading 

   input TCP_read 

   locals 

      msg : Null[Message] := nil(); 

   eff 

      for n:Nat where n < len(tcpChannel) do 

         if (tcpChannel[n].socket ~= nil() /\ 

             tcpChannel[n].status = connected)  

         then 

            tcpChannel[n].status := reading; 

            msg := JVM_read_TCPSocket(tcpChannel[n].socket); 

            if (msg = nil()) then 

               tcpChannel[n].error := embed("TimeoutOnRead"); 

            else 

               recvBuffer := recvBuffer |- val(msg); 

            fi 

         fi 
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      od 

 

   % -- reads a message from the first reading socket 

   output TCP_respRead(m) where len(recvBuffer) = 0 

   pre 

      m = nil(); 

   eff 

      for n:Nat where n < len(tcpChannel) do 

         if (tcpChannel[n].status = reading)  

         then 

            tcpChannel[n].status := connected; 

         fi 

      od 

    

   output TCP_respRead(m) where len(recvBuffer) ~= 0 

   pre 

      m = embed(head(recvBuffer)); 

   eff 

      recvBuffer := tail(recvBuffer); 

      for n:Nat where n < len(tcpChannel) do 

         if (tcpChannel[n].status = reading)  

         then 

            tcpChannel[n].status := connected; 

         fi 

      od 

    

   %%%%%%%%%%% BIND to SERVER SOCKET %%%%%%%%%%%% 

 

   % -- bind emulates the BIND and LISTEN socket states 

   input TCP_bind(local) 

   eff 

      acceptStatus := connecting; 

      SSocket := JVM_TCPServerSocketOpen(local, port, timeout); 

      if (SSocket = nil()) then 

         SError := embed("FailedToOpenServerSocket"); 

      fi 

    

   % -- 

   output TCP_respBind(error, local) 

   pre 

      acceptStatus = connecting; 

      error = SError; 

   eff 

      if (SSocket ~= nil()) then 

         acceptStatus := accepting; 

      fi 

    

   %%%%%%%%%%% ACCEPT %%%%%%%%%%%% 

    

   % -- emulates the ACCEPT state of the socket, however here 

   %    this is state is decoupled with creation of the stream 

   input TCP_accept 

   locals 

      socket:Null[JVMSocket] := nil(); 

      found :Bool := false; 

   eff 

      if (acceptStatus = accepting) then 

         acceptStatus := waiting; 

         socket := JVM_TCPServerSocketAccept(val(SSocket)); 

         if (socket ~= nil()) then 

            for n:Nat where n < len(tcpChannel) /\ ~found do 
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               if ( tcpChannel[n].node = 

val(JVM_TCPSocketGetRemoteIP(socket)) ) 

               then 

                  found := true; 

                  if (tcpChannel[n].status ~= connected \/  

                      ~JVM_TCPSocketIsConnected( tcpChannel[n].socket 

))  

                  then 

                     tcpChannel[n].socket := socket; 

                     tcpChannel[n].status := connected;  

                     tcpChannel[n].emptying := false; 

                  fi 

               fi 

            od 

            if (found = false /\ JVM_TCPSocketIsConnected( socket ))  

            then 

               tcpChannel := tcpChannel |- 

[val(JVM_TCPSocketGetRemoteIP(socket)), socket, connected, false, 

nil()]; 

            else 

               AError := embed("NoConnectionOnAccept"); 

            fi 

         else 

            AError := embed("NoConnectionOnAccept"); 

         fi 

      fi 

 

   % -- a response to the accept is return of a stream 

   output TCP_respAccept(error) 

   pre 

      error = AError; 

   eff 

      if acceptStatus = waiting then 

         acceptStatus := accepting; 

         AError := nil(); 

      fi 

 

   % -- 

   input TCP_stopAccepting 

   locals 

      error:Null[JVMError] := nil(); 

   eff 

      if (acceptStatus = stopping) then 

         acceptStatus := idle;    

         error := JVM_TCPServerSocketClose( val(SSocket) ); 

         if (error ~= nil())  

         then 

            print error; 

         fi 

      fi 

    

   %%%%%%%%%%% CLOSING %%%%%%%%%%%% 

    

   % -- prior to entering the CLOSE_SOCKET state we empty 

   %    the local buffers. 

   input TCP_stopListening(remote) 

   eff 

      if acceptStatus ~= idle then 

         acceptStatus := stopping; 

      fi 
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   % -- emulates CLOSE_SOCKET state. 

   input TCP_rClose(remote) 

   locals 

      tempRecvBuffer : Seq[MessageTuple] := {}; 

   eff 

      for y:Nat where y < len(tcpChannel) do 

         if (tcpChannel[y].node = remote)  

         then 

            tcpChannel[y].status := rClosing; 

         fi 

      od 

    

   input TCP_rCloseStream(remote) 

   eff 

      for y:Nat where y < len(tcpChannel) do 

         if (tcpChannel[y].node = remote /\ 

             tcpChannel[y].status = rClosing /\ 

             tcpChannel[y].emptying = false)  

         then 

            tcpChannel[y].status := closed; 

         fi  

      od 

    

   % --     

   internal TCP_senderClosing(remote) 

   pre 

      len(tcpChannel) > 0; 

   eff 

      for y:Nat where y < len(tcpChannel) do 

         if (tcpChannel[y].status = emptying /\ tcpChannel[y].node = 

remote) 

         then 

            tcpChannel[y].status := closed; 

         fi 

      od 

    

   %%%%%%%%%%% ERROR %%%%%%%%%%%% 

       

   % -- 

   output TCP_getError(e, remote) 

   pre 

      e = getError(remote, 0); 

   eff 

      for y:Nat where y < len(tcpChannel) do 

         if (tcpChannel[y].socket ~= nil() /\ 

             tcpChannel[y].error ~= nil() /\ 

             tcpChannel[y].node = remote /\  

             tcpChannel[y].status = reading)  

         then 

            tcpChannel[y].emptying := true;  

         fi 

      od 

       

       

   %%%% 

   %%%%  ACTIONS PAIRED WITH THE SEND MEDIATOR 

   %%%%  

    

   % -- given a message with sender and receiver as s and r 

respectively 

   %    a message is written to the appropriate channel 
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   input TCP_write(m,s,r)  

   locals 

      error :Null[JVMError] := nil(); 

      found :Bool := false; 

   eff 

      for n:Nat where (n < len(tcpChannel)) /\ (found = false) do 

         if (tcpChannel[n].socket = nil()) 

         then 

            tcpChannel[n].status := closed; 

         fi  

         if (tcpChannel[n].socket ~= nil() /\ 

             tcpChannel[n].status = connected /\  

             tcpChannel[n].node = r)  

         then 

            found := true; 

            error := JVM_write_TCPSocket(val(tcpChannel[n].socket), 

val(m)); 

            if (error ~= nil()) then 

               tcpChannel[n].error := error; 

               print val(error); 

            fi 

         fi 

      od 

 

   % -- results in a connection being established (if possible)  

   %    with the remove with specified port. 

   input TCP_senderOpen(remote,port) 

   locals 

      match :Bool := false; 

      index :Nat := 0; 

      socket:Null[JVMSocket] := nil(); 

      error :Null[JVMError]  := nil(); 

   eff 

      for n:Nat where n < len(tcpChannel) do 

         if (tcpChannel[n].node = remote)  

         then 

            match := true; 

            if (tcpChannel[n].socket = nil() \/  

                tcpChannel[n].status = closed)  

            then 

               tcpChannel[n].socket := 

JVM_TCPSocketOpen(remote,port,timeout); 

            fi 

         fi 

      od 

      if (match = false) then 

        socket := JVM_TCPSocketOpen(remote, port, timeout);  

        if (socket ~= nil())  

        then 

            tcpChannel := tcpChannel |- [remote, socket, connected, 

false, nil()]; 

         else 

            tcpChannel := tcpChannel |- [remote, socket, closed, 

false, nil()]; 

         fi 

      fi 

    

   % -- results in closing of the connection between s and r 

   input TCP_senderClose(remote) 

   locals 

      error:Null[JVMError] := nil(); 
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   eff 

      for n:Nat where n < len(tcpChannel) do 

         if (tcpChannel[n].node = remote)  

         then 

            tcpChannel[n].emptying := true; 

            error := JVM_TCPSocketClose( val(tcpChannel[n].socket) ); 

            if (error ~= nil()) then 

               tcpChannel[n].error := error; 

               print val(error); 

            fi 

         fi 

      od 

       

----------------------------------------------------------------------------------------------------------------- 

C4. TCPRecvMed.tioa 

----------------------------------------------------------------------------------------------------------------- 
automaton RecvMed(port:Nat,timeout:Nat) 

signature 

   % -- delivers a message to the algorithm automaton 

   output RECEIVE(m:Null[Message]) 

    

   % -- initiates read on all open connections 

   output TCP_read 

   % -- returns messages from all open connections (if any) 

   input  TCP_respRead(m :Null[Message])  

    

   % -- binds system to the server socket 

   output TCP_bind(local :Node) 

   input  TCP_respBind(error :Null[JVMError], local :Node) 

    

   % -- accept connection methods 

   output TCP_accept 

   input  TCP_respAccept(error: Null[JVMError]) 

   output TCP_stopAccepting 

  

   % -- extracts the last error for a given connection 

   input  TCP_getError(e :Null[JVMError], remote :Node) 

 

   % -- close and clean up 

   output TCP_stopListening(remote :Node)    

   output TCP_rCloseStream(remote :Node)    

   output TCP_rClose(remote:Node) 

    

states  

   recvBuffer  : Seq[Message] := { }; 

   recvErrors  : Map[Node,Null[JVMError]]; 

   remoteStatus: Map[Node,Status]; 

   localStatus : Status := idle; 

   localError  : Null[JVMError] := nil(); 

   noop        : Bool := true; 

 

transitions 

    

   %%%%%%%%%%% DELIVER %%%%%%%%%%% 

    

   % -- delivers message to the algorithm automata 

   output RECEIVE(m) where len(recvBuffer) = 0 

   pre 

      m = nil(); 

    

   output RECEIVE(m) where len(recvBuffer) ~= 0 
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   pre 

      m = embed(head(recvBuffer)); 

   eff 

      recvBuffer := tail(recvBuffer); 

    

   %%%%%%%%%%% EXTRACT %%%%%%%%%%% 

    

   % -- send request to read a message from a remote node 

   output TCP_read 

   pre 

      localStatus ~= idle; 

   %eff 

      %% @FIXME: this should be acceptable by the FE, but it is not! 

      %recvErrors := {}; 

 

   % -- if there was a message then add it to the message buffer 

   input TCP_respRead(m) 

   eff 

      if (m ~= nil())  

      then 

         recvBuffer := recvBuffer |- val(m); 

      fi 

    

   %%%%%%%%%%% BIND %%%%%%%%%%% 

    

   % -- bind emulates the BIND and LISTEN socket states 

   output TCP_bind(local) 

   pre 

      localStatus = idle; 

   eff 

      localStatus := connecting; 

      localError := nil(); 

 

   input TCP_respBind(error,local) 

   locals 

      ftoss : JVMError := "FailedToOpenServerSocket"; 

   eff 

      if (error = nil()) then 

         if (localStatus = connecting) then 

            localStatus := accepting; 

         fi 

      else 

         localError := error; 

         if (val(error) = ftoss) then 

            localStatus := idle; 

         fi 

      fi 

   

   %%%%%%%%%%% ACCEPT %%%%%%%%%%% 

    

   % -- emulates the ACCEPT state of the socket, however here 

   %    this is state is decoupled with creation of the stream 

   output TCP_accept 

   pre 

      localStatus = accepting; 

   eff 

      localStatus := waiting; 

 

   input TCP_respAccept(error) 

   eff 

      if (localStatus = waiting) then 
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         localStatus := accepting; 

      fi 

      localError := error; 

 

   output TCP_stopAccepting 

   pre 

      true; 

   eff 

      noop := true; 

       

   % -- prior to entering the CLOSE_SOCKET state we empty the local 

buffers. 

   output TCP_stopListening(remote) 

   pre 

      true; 

   eff 

      noop := true; 

 

   % -- emulates CLOSE_SOCKET state. implementation closes the server 

socket 

   output TCP_rClose(remote) 

   pre 

      true; 

   eff 

      noop := true; 

       

   % --  

   output TCP_rCloseStream(remote) 

   pre 

      true; 

   eff 

      noop := true; 

 

   % -- get an error message associated with the remote connection       

   input TCP_getError(e, remote) 

   eff 

      if (e ~= nil())  

      then 

         recvErrors := update(recvErrors, remote, e); 

         print val(e); 

      fi 

----------------------------------------------------------------------------------------------------------------- 

C5. TCPRecvMed.tioa 

----------------------------------------------------------------------------------------------------------------- 
automaton SendMed(port:Nat, timeout:Nat) 

 

signature 

   % -- deposits a message from the algorithm automata  

   input SEND(m:Null[Message])  

    

   % The following actions are paired with the ChanMed 

    

   % -- creates a connection with the remote node 

   output TCP_senderOpen(remote:Node, port:Nat) 

   % -- closes a connection with the remote node 

   output TCP_senderClose(remote:Node)   

   % -- forces a message out to the network 

   output TCP_write(m: Null[Message], s,r:Node)  

    

states  

   sendBuffer  : Seq[MessageTuple] := { };  
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   clocks      : Array[Node,AugmentedReal];  

 

initially 

   clocks = constant(\infty);  

 

let 

  getMessage(s,r,index) : Node, Node, Nat -> Null[Message] = 

     if index = len(sendBuffer) then 

        nil() : Null[Message] 

     else  

     if (sendBuffer[index].sender = s /\ sendBuffer[index].receiver = 

r) then  

        embed(sendBuffer[index].msg) 

     else 

        getMessage(s,r,index+1); 

 

transitions 

 

   % -- deposits a message to the send buffer 

   input SEND(m) 

   eff 

      if (m ~= nil()) then 

        sendBuffer := sendBuffer |- 

[val(m),val(m).sender,val(m).receiver]; 

      fi 

 

   % -- results in opening of a connection with the remote node 

   output TCP_senderOpen(remote,port) 

   pre 

      true; 

 

   % -- results in closing of a connection with the remote node    

   output TCP_senderClose(remote) 

   pre 

      true; 

    

   % -- TCP_write a message to the channel.  this results in  

   %    the TCP_ChanMed to write it into the TCP socket. 

   output TCP_write(m,s,r) where len(sendBuffer) = 0 

   pre  

      m = nil(); 

       

   output TCP_write(m,s,r) where len(sendBuffer) ~= 0 

   locals 

      tempSendBuffer :Seq[MessageTuple] := { }; 

      msg :Null[Message] := nil(); 

   pre 

      m = getMessage(s,r,0); 

   eff 

      msg := getMessage(s,r,0); 

      if (msg ~= nil()) then 

         for n:Nat where n < len(sendBuffer) do 

            if (sendBuffer[n].msg = val(msg)) then 

               clocks[r] := 0; 

            else  

               tempSendBuffer := tempSendBuffer |- sendBuffer[n]; 

            fi 

         od          

         sendBuffer := tempSendBuffer; 

      fi 
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   %--------------------------------------------------------------- 

    

   %%% 

   %%% Trajectory modeling the delay needed for a message to be 

   %%% delivered to the remote node.   

   %%% 

   trajectories 

      trajdef v(n:Node) 

      invariant len(sendBuffer) ~= 0; 

      stop when clocks[n] >= timeout;    

      evolve d(clocks[n]) = 1; 

       

       

       

 

 


