

ABSTRACT

The term automated implementation of distributed algorithms refers to the process

during which an algorithm written in Input/Output Automata (IOA) and/or Timed IOA is

automatically translated to executable code. The Tempo toolkit provides a connection with the

IOA compiler and using particular plug-ins makes the above feasible. In that way, simple

algorithms such as LCR Leader Election or even more complex such as Lamport's Paxos

algorithm for the consensus problem can be translated very easily from TIOA to Java

executable code using the toolkit, with the generated code preserving and keeping the

correctness of the specification. The mediator between IOA compiler and Tempo is the

Eclipse environment, which under the certain configuration and setup, is used for the desired

translation.

So far, the generated code by the toolkit was able to run on several workstations that

were communicating via the Message Passing Interface. Even though MPI is very powerful, it

has certain limitations and restrictions such as that is suitable for WANs, nor it supports

dynamic ad hoc connections. Hence, there was an urgency of finding a mechanism to

overcome those limitations and enhance the toolkit with more capabilities.

In this Thesis we enhance the Tempo toolkit to support Java TCP connections

between the communicating nodes. For this purpose, we created several classes imitating the

behavior of the .Net package of Java. For certain reasons, which will be mentioned later,

classes such as Socket and ServerSocket could not be used directly and hence we ended up

creating our own classes.

Christos Ploutarchou – University of Cyprus, 2011

To provide evidence of the correctness of our implementation we firstly tested the

model using a very simple algorithm that uses two communicating nodes. The first machine,

A, was a Sender and the other one, B, was the Receiver, managing successfully to send a

message from A to B and print that in B. Then, we tested our implementation with the well

known Paxos algorithm. The algorithm was translated and run correctly suggesting that our

implementation does what it should; this is a strong indication that Tempo has been

successfully enhanced to support Java/TCP Sockets.

ENCHANCING THE TEMPO COMPILER TO SUPPORT

JAVA-SOCKETS/TCP-BASED COMMUNICATION

Christos C. Ploutarchou

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

June, 2011

ii

APPROVAL PAGE

Master of Science Thesis

ENCHANCING THE TEMPO COMPILER TO SUPPORT

JAVA-SOCKETS/TCP-BASED COMMUNICATION

 Presented by

Christos C. Ploutarchou

Research Supervisor

 Chryssis Georgiou

Committee Member

 Anna Philippou

Committee Member

 Georgia Kapitsaki

University of Cyprus

June, 2011

iii

ACKNOWLEDGEMENTS

First of all I am heartily thankful to my project advisor Dr. Chryssis Georgiou for trusting me

from the very beginning and giving me the opportunity to work on this project. He was the

one who gave me the motivation to expand my knowledge in distributed systems after

attending his postgraduate course. Moreover, he was always willing to assist me and

encourage me, whenever his help was needed.

Furthermore, I will always be grateful to Dr. Peter M. Musial who was also supportive of me

during all this period, spending many hours emailing and chatting with me in an attempt to

successfully complete the project. Because of him I managed to overcome many difficulties

starting from the Eclipse configuration and ending with the successful completion of the

project.

Finally, I offer my regards and blessings to my fiancé and my family for supporting me all

these years in every possible way. Without their patience and love I would have never been

able to complete this thesis.

iv

TABLE OF CONTENTS

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Contribution ... 3

1.3 Document Structure ... 3

Chapter 2 Background and Related Work .. 4

2.1 Input/Output Automata .. 5

2.2 Timed Input/Output Automata ... 8

2.3 Tempo toolkit ... 12

2.4 Message Passing Interface ... 13

2.5 Java TCP Sockets ... 15

2.6 IOA Compiler .. 17

2.7 The Consensus Problem and the Paxos Algorithm .. 20

2.8 Other Formal Methods ... 22

Chapter 3 Enhancing Tempo with TCP/Java Sockets .. 25

3.1 Tempo Language .. 26

3.1.1 Booleans ... 26

3.1.2 Natural Numbers .. 27

3.1.3 Integers .. 27

3.1.4 Characters.. 28

3.1.5 Extensions by nil .. 28

3.2 Java TCP Sockets Integration .. 29

3.2.1 JVMError ... 34

3.2.2 JVMServerSocket ... 34

v

3.2.3 JVMSocket .. 36

3.2.4 JVMStream ... 37

3.2.5 TCPNodeVoc .. 37

3.3 Problems Faced and How They Were Solved .. 38

Chapter 4 Proof-of-concept Implementation... 41

4.1 A First Implementation of an Algorithm Using a TCP Channel 42

4.2 An Implementation of Paxos Algorithm using TCP Sockets 45

4.3 Automated translation procedure .. 50

Chapter 5 Conclusions and Future Work ... 51

5.1 Conclusions ... 51

5.2 Future work ... 52

Bibliography ... 54

APPENDIX A ... 57

APPENDIX B ... 62

APPENDIX C ... 76

vi

LIST OF TABLES

Table 1. Java Client-Server Behavior

Table 2. Boolean supported notations

Table 3. Boolean supported operators

Table 4. Natural Number supported operators

Table 5. Integer additional supported operators

Table 6. Characters supported operators

Table 7. Nil supported notations

Table 8. Data types translation mapping

vii

LIST OF FIGURES

Figure 1. A communication channel modeled as a Timed I/O Automaton

Figure 2. TIOA description of Alarm Component

Figure 3. Invariant

Figure 4. Hello World Program using MPI

Figure 5. Auxiliary automata mediate between MPI and algorithm automata to yield a reliable

FIFO channel

Figure 6. Node automata

Figure 7. Java TCP Sockets import statements

Figure 8. Java TCP Sockets Input parameters

Figure 9. Java TCP Sockets data types declaration

Figure 10. Specifying the communication type in Tempo

Figure 11. Part of JVMChanTest.tioa's schedule

Figure 12. Schedule's automated translated code

 1

Chapter 1

Introduction

1.1 Motivation

Nowadays, the need for direct communication from a point to another is more urgent than

ever before. As time goes by newer and more complex systems are constantly implemented,

aiming towards the same goal, the distribution of information around the world. The field of

distributed systems is nowadays more dominating than ever before with distributed systems

being all around us. A distributed system is a collection of independent computers that appear

to the users of the system as a single coherent system. [1]. People are continuously interacting

with such systems in their daily routine without even noticing. Such systems may include

online airline reservation systems, telephone networks and of course, the world wide web.

2

For a system to be distributed, it means that one or more distributed algorithms are

concurrently running on different machines of the system. Because of their nature, their scale

and complexity, both distributed systems and distributed algorithms are difficult to

comprehend. Several formal methods, have been implemented by researchers in an attempt to

understand, analyze and implement such algorithms. Those methods include process algebras

[2] and Input/Output automata [3].

Even if one would rigorously specify and verify distributed systems and algorithms, still it

would need to write code and implement them from scratch. This process could jeopardize the

correctness of the implementation. The IOA compiler [4], is a concrete tool supporting

algorithm design, development, testing, and formal verification using automated tools.

Through the compiler, programmers are allowed to specify an algorithm in an IOA form,

ensuring that way that all its characteristics will be preserved and then by using the toolkit this

algorithm is automatically translated into Java executable code.

 The compiler has been used widely for modeling and automatically implementing many

distributed algorithms during the past years. [5, 6, 7] All these implementations share one

common characteristic: they use the Message Passing Interface as a communication protocol,

as this was the only communicating mechanism supported by the toolkit.

Tempo is a formal language for modeling distributed systems as collections of interacting

state machines called Timed Input/Output automata [8]. It was created by VeroModo [9]

providing modeling and machine-checked proofs for distributed algorithms. Moreover, it

provides a connection with the IOA compiler and hence timing is also taken into

consideration when modeling distributed algorithms.

Even though MPI [10] is really important in parallel computing, it has however some

limitations, concerning dynamicity and scalability. All participating nodes should be defined

in advance and no new node can join at a later stage. Moreover, MPI can only be implemented

3

in LANs. Therefore, we should use a different approach aiming to overcome the above

limitations; one approach is to use of Java TCP Sockets [11].

1.2 Contribution

In this Thesis an enhancement of the Tempo Compiler is presented that supports Java

TCP Sockets [11]. What makes this very important is that in this way we offer a considerable

extension to the toolkit thus eliminating and overcoming many of the MPI's limitations.

An automated implementation of an algorithm using Java TCP Sockets supports dynamic

creation and tearing down of communication links between participating network nodes [12].

Moreover, Java Sockets provide the ability for a global execution of the algorithm. All the

above suggest that our enhancement advances significantly the usability and importance of the

Tempo Compiler.

1.3 Document Structure

The rest of this document is organized as follows. In Chapter 2, essential concepts and

ideas are presented to ease comprehension. Moreover, previous work is presented. Chapter 3

is making a much deeper reference to the Tempo Compiler that has been used for the

implementation, starting from some basic information, and ending with how the integration of

Java TCP Sockets into it was achieved. Chapter 4 makes a reference in two implementation

examples that suggest that our implementation is correct. We conclude in Chapter 5.

 4

Chapter 2

Background and Related Work

We begin by first describing the Input/Output Automata framework. All presented

algorithms are specified within this framework. Then, we present an extension of the model,

the Timed IOA, which as its name suggests imports time into the model. The IOA Compiler,

presented next, it is embedded in the Tempo toolkit is the mechanism which makes possible

the automated implementation of complex algorithms. Later on, we present the MPI and Java

TCP Sockets communication mediums. Finally, we briefly compare the IOA and Process

algebra frameworks, and we overview the Paxos algorithm, which is one of the algorithms we

implemented.

5

2.1 Input/Output Automata

The appearance of Input / Output Automata, or simply IOA, dates back to 1988 and it was

introduced by Nancy A. Lynch and Mark R. Tuttle [13]. This model, which may be

considered as an improvement of Communicating Sequential Processes (CSP) [14] it was

partially based on Dijkstra’s “guarded commands” and was intended to be used in modelling

concurrent and distributed discrete event systems which in those days was a newly appearing

field in Computer Science. Such systems can be used in modeling network resource allocation

algorithms, communication algorithms, database systems, as well as in shared atomic objects

and dataflow architectures. More specifically, the model performs better when it is used in

systems whose components operate asynchronously. Systems with the characteristics

described above, continuously receive input from and react to their environment.

For a system to be modeled using IOA, all its consisting components have to somehow be

transformed as a separate I/O automaton using a unique language which as it has already be

mentioned above, is very similar to the Dijkstra’s “guarded commands”. What has to be

specified first defining an IOA is a suitable name and a list of optional input parameters. For

example if we were defining an automaton taking two natural numbers as input parameters,

the declaration would look as follows:

 automaton A(i, j: Nat)

 After defining the name and parameters of the automaton, it is necessary to list the set of

its actions which are classified either as input, output, or internal and can be thought as a

connection between the automaton and the external environment.

This set of actions is called action Signature, or S, and is a partition of the actions set,

act(S), which is divided into in(S), out(S), and int(S) for each one of the classifications

mentioned above. Input actions are those actions which are generated by the external

environment and are transmitted to the automaton, with this transmission being instantaneous.

6

On the other hand, internal and output actions are generated autonomously by the

automaton and the result is transmitted to the environment. Another distinction between

internal and the rest of actions is that no restrictions can be established on them whereas

output and internal actions can be blocked or restricted using several preconditions. That way

the automaton has the ability to handle both "bad" and "good" input exhibiting the appropriate

behavior each time. Hence its correct behavior depends on the nature and type of the input.

The union of input and output actions forms the set of external actions, ext(S), containing

those actions which are visible to the external environment. When having a system in IOA

with no input actions we refer to it as a "closed" system.

What has to be specified next to fully describe an automaton A, is a set of state variables,

Av, which can be thought like system variables that are visible only to the automaton.

Moreover, we need a set of states As which is a subset of all possible assigns to the state

variables of the automaton, a nonempty set containing the start states, start (A), a transition

relation specifying what will happen when a particular event is fired, step (A), and an

equivalence relation, part (A), which it is used to identify the primitive components of the

system being modeled by the automaton [4]. A step is defined as a tuple of three components

(s', π, s) where an action π is enabled in state s' and the fire of that action leads to a new state

s. Transitions are usually accompanied with preconditions defining under which conditions

the transition can be enabled. If no preconditions exist means that the transition will always be

enabled. Finally, is important to mention that input actions are always enabled.

For better comprehension of the above, consider an example where there are two nodes

(A, B) that are communicating through a common channel C, and A wants to send a message

to B. The signature and one of the transitions of this model can be expressed in IOA as below:

7

signature

 input send(m: Message, j,j:Nat)

 output recv(m: Message, j,i:Nat)

 transitions

 input send(m, i, j)

An execution is a finite or infinite sequence of alternating actions (input, internal, output)

and states and it represents a computation of the system. The set containing all automaton’s

executions is denoted by execs(A). In particular, an execution is of the form S0, π1, S1, π2, …

(where S is a state and π is an action) and leads to what we call a fair execution. More

precisely, for an IOA to solve a problem P, the set of its fair, behaviors, that is the set of

executions that lead to a solution of the problem, should be a subset of P. Since the automaton

cannot block the input actions, this subset cannot be empty. As we mentioned earlier, an

execution is composed both from actions and states. If we ignore the states and focus only to

the actions we then have an automaton's schedule where the set containing all schedules is

denoted as scheds(A). More precisely, β is a schedule of an automaton A if β is the schedule

of an execution of A [13]. A schedule might look as follow:

 schedule

 states

 %Definition of all required states

 do

 %Action's executions

 fire output A;

 fire input B;

 od

The term fire means that an action can be executed and hence the automaton will proceed

after the execution to a new state. Another powerful operation supported by the model is the

composition. Different IOA can be used to compose other IOA enhancing that way the

behavior and capabilities of the model since simple automata can result to more complex

ones. One of the key ideas of the composition is that if an action π appears as output action in

8

one automaton, then that action has to be input action in all the rest. The result of the output

action is transmitted to all other automata which they have that action as input and behave

accordingly. In that way we establish synchronization between the automata or in other words

we define a way of communication between them. Two automata A, B, can only form a

composition if their internal and external actions are unique. That means:

int(A) ∩ acts(B) = 0, int(B) ∩ acts(A) = 0, out(A) ∩ out(B) = 0.

Finally, abstraction mapping at different levels is also allowed in the model and that aids

in correctness proofs of algorithms. That is, if we have a problem A that solves a particular

problem P, and B is an image of A, then B also solves B. Additionally, the model is non-

deterministic, which results in having many different executions of an algorithm, since many

actions may be enabled at any given time.

2.2 Timed Input/Output Automata

IOA model is used to express distributed algorithms but it lacks in terms of timing issues.

Timed Input/Output Automata [3], or just TIOA is an extension of the IOA model and it is

addressed to systems which their correctness and performance is highly correlated with timing

events such as real-time operating systems.

Such systems usually exhibit very complex behaviors and it is therefore needed to have a

framework that is able to model them adequately. A system in TIOA is expressed in a similar

way as in IOA meaning that it is translated to a nondeterministic state machine with possibly

infinite-states. Like IOA, TIOA is expressed by firstly defining a set of state variables that are

only visible within the automaton and not to the external environment. The values of those

variables affect the state of the automaton at any time and therefore the set containing all

possible states can be thought as a subset of all possible valuation of state variables.

9

Moreover, another set contains all starting states which is a subset of all states. Actions in

TIOA are divided into external and internal (or hidden) where external action contains the

union of input and output and internal those actions that are visible only within the automaton.

A fundamental difference between IOA and TIOA is that the state of the latter does not

only depend on discrete transitions but on trajectories as well, which are either continuous or

discontinuous functions enclosed in a left-closed time interval and describe how the values of

state variables are changing and affected within specific intervals of time. Based on that,

TIOA supports both static and dynamic variable types. The static type simply describes the set

of values that the variable may take on. The dynamic type, on the other hand, describes the

acceptable ways in which a variable may evolve [3] and they are usually used for constraining

the values that the variable may take during trajectories.

More specifically, a variable might have a specific static data type and a dynamic type

which will be equal to a set of values of a specific function. Figure 1 illustrates how a simple

communication channel could be modeled in the form of a Timed I/O Automaton. In this

example, a sender appends a message m into the channel by firing the input send(m) action

and the receiver gets the message from the channel by using the output action receive(m). In

this example we do not take into consideration other factors such as state variables,

trajectories or whatever else is needed for a TIOA to be fully defined.

Figure 1: A communication channel modeled as a Timed I/O Automaton [7]

Since TIOA can be used for model checking we need a mechanism that will allow us to

check whether specific properties are satisfied by the algorithm that is expressed using TIOA.

10

This mechanism offered by TIOA is called invariant, and it is a property which is true in

every reachable state, starting from an initial one. Further details about the idea of invariant as

well as an example will be provided in section 2.3.

Going back to trajectories, and in order to define such a function, we need to combine

together algebraic and differential equations as well as stopping conditions. First of all, for

each trajectory we are going to use, we need to specify a name. Secondly, we have the option

to specify a list of formal parameters and impose restrictions on their possible values by

making use of the where clause. Moreover, we can specify, if needed, functions definitions,

stopping conditions, evolve conditions and invariants which are used to check whether

specific properties are satisfied by an algorithm, such as mutual exclusion.

If a trajectory T satisfies the stopping conditions of the automaton A, then we can say that

T belongs to set of trajectories of A. A trajectory begins with the evolve clause and terminates

with the stop when clause. That way, the automaton is not allowed to continue its execution

after a specific value of time. It is also very important to mention that when several TIOAs are

composed, then the trajectory of any of them may be interrupted by a discrete function of one

of the other composed automata.

Since the main difference between IOA and TIOA is the presence of trajectories, what

needs to be added in the definition of a system in the form of a timed input/output automaton

is a set T which will be a subset of all trajectories, T ⊆ trajs(Q).

The following Figure represents how an Alarm could be defined using the TIOA model.

11

Figure 2: TIOA description of Alarm Component [3]

This automaton has three input actions and one output. Both the two input actions are

parameterized with two natural numbers that are used to display the time and set an alarm

time respectively. The let statement is used to define a predicate legalTime used to constraint

the values of these action parameters. Moreover, the automaton has three state variables of

type natural with initial value 0, and boolean initialized as false, used for representing the

time, whether the automaton is turned on or off, and whether the alarm should be ringing. The

values of these state variables can only change by the occurrence of a discrete transition.

There are no preconditions for the input actions, meaning that they are always enabled and

ready to be fired. The effect of the first input action, setAlarm, is to set the alarmTime to the

time which the alarm should ring. showTime effect is to set the ringNow to true, if the alarm is

12

on and should ring. Finally, toggleAlarm results in turning on, or off the alarm depending on

its current state. Finally, the ring action can only occur if the alarm is enabled and the

ringNow state variable is true.

Even though the above example is a simple one, TIOA can be used to express algorithms

with any level of complexity. This is because its language supports many statements including

assignments of the form :=, conditional like if x<y then, and for loops. Furthermore, the

model is fitted with a large number of primitive types like Bool, Nat, Int, Real,

AugmentedReal, Char, String and many others. In addition, other data types can be defined by

the user by creating what we call a vocabulary.

2.3 Tempo toolkit

Tempo [8] is an implementation of Timed Input/Output Automata created by

VeroModo Inc [9] providing computer aid for describing and checking properties of

distributed algorithms using several tools such like PVS and UPPAAL. What makes Tempo

very powerful and fully compatible with TIOA is that they use almost the same language and

syntax. Hence any algorithm defined in TIOA can be very easily analyzed and validated using

the tools that come along with Tempo.

What is needed when analyzing an algorithm is first to have a way of checking that it

is syntactically and semantically written correctly and that is why Tempo uses a checker.

Secondly, we need to know if the algorithm runs correctly and gives the results it was

supposed to. For that purpose, Tempo recommends its simulator.

As in TIOA, Tempo uses vocabularies in order to declare data types that are going to

be used by the algorithm and can be imported later in the main automata by using the imports

13

clause. States, Actions and Transitions are specified exactly like in TIOA. Moreover,

invariants in Tempo are checked by either PVS, UPPAAL, or by running simulations of the

algorithm and observing its execution behavior. An invariant checking that no more than one

process will be in its critical section at any time, is defined as shown in the following figure.

Figure 3: Invariant [8]

In the previous sections we explained that an execution of a TIOA is an alternating

sequence of actions and states. Furthermore, it is worth mentioning that Tempo supports

Simulations, meaning that by the use of a schedule and a loop, an automaton may run several

times with different parameter values.

For all the above, Tempo is enriched with a very user friendly interface which is

implemented on the Eclipse Rich Client Platform [15] and can be used for easier TIOA

writing and checking but also for step-by-step debugging with the usage of breakpoints.

2.4 Message Passing Interface

One of the most important aspects when running parallel algorithms is the way in which

communication between the participating processes is established. We want a mechanism that

will be reliable, efficient and robust ensuring that almost all messages will be delivered within

a reasonable time period and without the occurrence of drops of connections.

The Message Passing Interface (MPI) [10] provide us with several predefined methods

that allows process communications via message exchange, in the sense that one processor

14

sends a message and another processor receives it. MPI dates back to 1993 and has nowadays

more than 40 different organizations participating in its forum, including IBM. Even though it

includes several of ready-made functions, MPI is considered to be a specification rather that a

library. There are many reasons why MPI has become a standard [10] and some of them are

listed below.

First of all, MPI is supported by almost all platforms and that makes it a kind of a

standard. Moreover, it allows portability of code since a program written with MPI standard in

a specific platform can be very easily migrated to a completely different platform.

Furthermore, performance and functionality are the other two factors that aid in the wide use

of the interface. MPI is enriched with more than 115 routines available for use without the

need for any modification. In the following paragraphs we give be a brief description of how a

program could be written using MPI for process communication.

What a programmer has to do first for writing an MPI compatible program, is to

download the MPJ library that is freely available from the internet and import it to the header

declarations of the source code. After that, the MPI.Init(args) statement has to fired and that

initializes the MPI environment. This method is called in the program once and from that

point and on, the programmer starts writing parallel code. Finally, MPI.Finalize() identifies

that the MPI environment terminates and therefore no other MPI routines can be called or

parallel code can be written.

A communication in MPI might be either point-to-point or collective, including

broadcasting, all-to-all, and other. Point-to-point communication refers to the case where a

communication is between only two processes with one sending a message and the other

receiving it. A message in MPI may be either of specific data type supported by the interface,

like float, integer and double, or it may be an object. At any case, the communication could be

Blocking or Non-blocking. What distinguishes these two is that in the first case, when process

15

sends or receives a message, using Send() or Recv(), the methods do not terminate until the

message has physically been sent or received. On the other hand, non-blocking uses Isend() or

Irecv() and these terminate immediately. If there is a need to wait, other methods can be used,

such as Test() or Wait().

Operations like knowing the current number of participating processes or getting the

unique identifier, or "task ID" of any communicating parties at each time, can be done by

simply using the MPI.COMM_WORLD.Size() and MPI.COMM_WORLD.Rank() respectively.

As already mentioned, many other methods exist and can be found on the net. The following

figure illustrates how the well known "Hello World" program can be written in MPI.

Figure 4: Hello World Program using MPI [16]

2.5 Java TCP Sockets

As time goes by, new technologies and methods arise. Therefore, even though MPI is

adequate for process communications for all the reasons mentioned in the previous sections, it

nevertheless has some limitations when we are talking about distributed and parallel

16

computing. A major limitation of MPI is that it is suitable for use in a local area network

(LAN) rather than in a WAN. Furthermore, in MPI the number of participating nodes should

be defined in advanced and hence an additional node cannot be added later on.

It is therefore obvious that an alternative candidate for process communication should

exist. In this thesis, we enhanced Tempo Toolkit to support Java TCP Sockets [11] making it

more powerful since many of the MPI limitations can be eliminated. In the following

paragraphs the client-server model will be presented in order to provide a basic understanding.

As it is implied by the name of the model, for two nodes to communicate, a Transport

Control Protocol socket should be used ensuring that way the presence of a reliable point-to-

point connection-oriented communication channel. This model is also referred as Client-

Server since one node is acting like a serving machine and the other as a client making

requests to the server. A socket, which is a combination of an IP address and a port bounded

to that address, provides a bi-directional link between two entities enabling them to read from

it and to write on it. The Java language provides the java.net package which makes the writing

of a client-server application very simple and easy, and of course, in a platform-independent

fashion.

Since client and server behave differently, in the sense that the first one is the requester

and the other the provider, when writing a client-server program we should separate into two

different classes the communicating entities. What a server machine has to do first is to create

a ServerSocket instance at a specific port. A ServerSocket is a class included in the java.net

package and corresponds to a server machine. That instance will be the gateway through

which a client could connect to.

After creating a ServerSocket, the server invokes the accept() method which indicates its

readiness and willingness to accept clients. Hence it stays at that state until a client establishes

17

a connection or until the ServerSocket's timeout period expires. On the other hand, a client

trying to connect to a server should first of all create a Socket instance using the java.net

Socket class and identifying the IP address (or host name) of the server and the port number

that socket corresponds to. When the connection is established both machines continue their

execution in parallel.

If they want to exchange messages, both client and server should declare a

BufferedReader and a PrintWriter for reading and writing to the socket respectively. This

process of sending and receiving messages between server and client could last until one of

them closes the connection by invoking the close() method. The following table depicts how a

server and a client behave under normal circumstances.

 Client Server

1 Open a socket Opens a server socket, waiting for connections

2 Open input, output stream to the socket Accept a connection and return a socket

3 Read from and write to the stream Open input and output stream to the socket

4 Close the streams Read from and write to the stream

5 Close the socket Close the streams and the socket

6 Either close the server socket or wait for a new

connection

Table 1. Java Client-Server behavior

2.6 IOA Compiler

The need for having automated implementation of Complex Distributed algorithms

specified in the IOA Language, has led researchers in trying to creating an IOA Compiler

capable of translating IOA specifications to executable code. Several attempts, including

Goldman's Spectrum System [17], Goldman's Programmer's Playground [18], and Cheiner

18

and Shvartsman [19] experiments, and others, were done, before the creation of Josh’s IOA

Compiler [4], with no significant success. The IOA Compiler manages to turn IOA imperative

constructs into Java executable code with the resulting code to be able to run on workstations

supporting Java. The first way of communication between all participating nodes running the

generated code was, in those days, via MPI.

What makes the IOA compiler really important and what magnifies its abilities is that the

generated code preserves the properties of the algorithm which were proved formally to be

correct during its definition as an automaton [4]. Hence, a programmer can write a

specification in IOA language, and then use the compiler for validation and automated

translation of it into Java executable code preserving all the correctness properties of the IOA

[6] under the assumptions that no other factors such as the network behavior and programmer

annotations may affect correctness.

For an IOA program to be able for compilation it must firstly comply with several syntax

and semantics constraints imposed by the compiler's nature. Therefore, a programmer writing

an IOA for compilation should of first all combine the automaton with some other auxiliary

automata and then provide additional annotations for resolving the nondeterminism [6].

Moreover, all IOA should be structured in a node-channel form reflecting the architecture of

the target systems regarding the communication method. In that way, the generated code is

consisted not only of the algorithm automata, which is an algorithm implementation at a node,

but with the communication protocol as well. Moreover, in that way, we are not concerned

about synchronization issues between processes running on different workstations.

The first implementation of the IOA compiler was supporting only Message Passing

Interface for process communication using Isend, test, Iprobe, and recv. Additionally,

communication between nodes in the system was using, (and still does) asynchronous,

reliable, one-way, FIFO channels [6]. Those channels are implemented by combining the

19

communication protocol that will be applied in the algorithm, and the mediator automata,

SendMediator and ReceiveMediator, which are composed with the algorithm automata we

have mentioned above. Figure 5 illustrates how a node (algorithm automaton) is able of

communicating with another node.

Figure 5: Auxiliary automata mediate between MPI and algorithm automata to yield a

reliable FIFO channel [6]

The translated node can be thought of as an autonomous Java program which can run on a

host. Each data type specified in the IOA is transformed during translation into a Java class

file where all automaton’s states are represented as system variables and transitions are

transformed to Java methods. The interaction between other nodes and the mediators is done

using Java procedure calls, firing the appropriated methods each time.

Since the IOA language is nondeterministic, a mechanism is needed so the translation can

comply with the imperative nature of the Java language. This means that there should be a

mechanism defining the order with which all actions of the algorithm will be fired and

executed. For this to be accomplished, the IOA compiler uses schedules (in the same sense we

have already seen them) specifying which action will be executed at any time at each node.

Additionally, the choose clause allows picking random values within a range and used as

execution parameters contributing to explicit nondeterminism. An example of choosing a

random number between 0 and 3 would look as below [6]:

 num:= choose n:Int where 0 ≤ n /\ n < 3

20

At this point, it is important to mention that even though IOA are input enabled since

input actions are always enabled, the generated code is not. Instead the input is passed to the

program during the run-time and only when that is required to happen, so this has to be

considered when writing automata for compilation. For avoiding a node trying to read data

that do not actually exist, the compiler is proposing the usage of buffers where the messages

are appended to and the node is checking whether the buffer is not empty before proceeding

and read. Of course, as a part of the nondeterminism, the programmer should define the

starting values of the automaton's states by using the initially clause.

Finally, the IOA compiler was tested by implementing correctly several complex

distributed algorithms such as the LCR Leader Election [20], the GHS algorithm [21], the

Paxos algorithm [7] and many others.

2.7 The Consensus Problem and the Paxos Algorithm

The consensus problem [22] where a collection of processes must agree on a common

value, is considered one of the most fundamental problems in distributed computing. In

general, the problem of consensus refers to the case where n processes can propose a value,

and at the end all of them should agree on the same value. Moreover, the resulting value

cannot be different from those that were proposed by the processes. In other words, if set {S}

contains all the values proposed by the processes, the resulting value should exist in S.

Finally, all non-faulty processes should decide on a value. What has been described so far

corresponds to the conditions of Agreement, Validity and Termination. The first two have to

do with safety conditions and should always be present for a consensus correctly to exist

where the latter is a liveness condition and it is necessary only for performance issues.

21

The Paxos Algorithm is one of the most popular algorithms for solving consensus

problem. Paxos was presented by Lamport in 1990 and published in 1998 [23]. What makes

Paxos really important is that it can tolerate process crashes, message losses and timing

failures. In addition, the algorithm assures direct communication between each process in the

distributed system.

The Paxos algorithm is divided into six different phases [7] which are outlined below.

1. The leader starts a new ballot, that is a new voting, and informs others about it.

2. A process that learns about the new ballot, abstains from any earlier ballot for

which it has not voted for. In response, a process replies to the leader with the

value of the ballot for which is last voted for.

3. Once the leader receives responses from a majority of votes, it chooses a value

for the ballot that is based on the received values and announces that value to

the others.

4. A process that learns about the new value may vote for the ballot, if it has not

already abstained. If the process votes, then it informs the leader and others

about its vote.

5. The leader decides on the ballot’s value once it receives messages from a

majority of votes with a vote for that value. In case that the leader has failed, a

separate leader election service is used to elect a new one. Timeouts are used to

determine which processes are operational, and among these, the one with the

highest id is elected as the leader. After the election, the new leader starts a new

ballot.

6. Timeouts are also used for the leader to decide when it should start new ballots.

Paxos was one of the first algorithms that had been used to verify the ability of the IOA

compiler for automated implementation using MPI as a communication channel. We have also

used Paxos for our automated implementation using Java TCP Sockets. However we are not

22

going into details about exactly how the Paxos algorithm was implemented since it is beyond

the scope of this Thesis. All information however can be found in [7] and [24].

2.8 Other Formal Methods

Input/Output automata is not the only formal method candidate for verification and

analysis of distributed and parallel systems. Process Algebra [25], or just PA, provides us an

alternative framework for modeling and analyzing such systems in a very concrete way.

The Process algebra family contains a lot of variations like Temporal Process Algebra

(TPA) [26], and others. One of the most basic and fundamental PAs however is CCSv [2, 27]

which is a value-passing calculus including conditional agents [2, 27], while CCS refers to

Calculus of Communicating Systems. In order to define CCSv we firstly need a set of

constants, a set of functions, and a set of variables. In addition we have to define a set of

channels L which allows process communication.

As in IOA, PA actions are also divided as input, output and internal with α, ᾶ, and τ being

their representations. Internal actions arise when an input and an output action are performed

in parallel in the communication channel and hence synchronization occurs. We can therefore

say that input and output actions on the same channel are complimentary actions [28]. What

has to be defined lastly when dealing with CCSv is a set of processes C. For each process P

included in the set of C, the syntax of CCSv is as below:

 P ::= 0 | α.P | P1 + P2 | P1 || P2 | P\L | cond (e1 ► P1,…en ► Pn) | C<ṽ> [28].

Process 0 represents a process which is inactive. α.P means that process P can perform the

action α and then behave as P. On the other hand P1+P2 represent the nondeterministic choice

between these two processes whereas P1 || P2 represent the parallel execution of them. The

conditional process says that process P has the option to choose between those actions

23

included in the set and behave accordingly. Finally, P\L indicates that some actions will be

restricted only for use in channel L and hence those components do not have direct interaction

with the external environment of P. The greatest precedence has the . operator, with the +

operator coming next.

As in the IOA model, PA also represents process in the model using the notion of

transitions. A transition in CCS without considering internal actions is of the form

meaning that process E is capable of performing action α and then behaving as process F. We

therefore have the same notation as in IOA, (s, α, s'). On the other hand, if process E can

perform action α but performing first some internal actions, we then denote that as .

An attempt for comparing IOA and PA was presented in [29] by specifying and verifying

the LCR algorithm [20] using both methods and evaluating the results concluding the

following. First of all, both models are applicable for successfully model and verify the

algorithm. Considering the correctness criterion of the algorithm (a common leader is elected)

and the confluent behavior, the process-calculus seemed to be easier to apply. At the end, the

researchers ask a newcomer to the two formalisms to evaluate them regarding the language

they use. The result was that IOA are easier to understand as compared to PA.

The concurrency factory is an integrated toolset for specification, simulation, verification,

and implementation of real-time concurrent systems such as communication protocol and

process control systems [30]. Through a graphical user interface called VTView, a user can

design and simulate concurrent systems using process algebra. Moreover, the tool uses a

language called VPL, which can be translated through a compiler into networks of finite-state

processes. Checkers and verification routines are also available in the tool supporting between

others strong and weak bisimulation checkers. Finally, a graphical compiler translates VPL

specifications into C++ executable code.

24

This tool however has been designed for sequential algorithm and to the best of our

knowledge there does not exist other framework than IOA to provide automated

implementation of distributed systems and algorithms. Hence, that is a huge advantage for the

IOA model without of course ignoring or neglecting the abilities of Process Algebra.

 25

Chapter 3

Enhancing Tempo with TCP/Java Sockets

In this chapter we present the basic primitive data types supported by Tempo. Then an

explanation is provided about how the TCP communication protocol was embedded to the

compiler and what Java classes have to be created. Finally, a review is given summarizing all

problems were faced during this integration and how we managed to overcome them.

26

3.1 Tempo Language

In this section we present some of the primitive data types that are supported by Tempo

and that are necessary for a programmer to know when writing a Tempo specification. Other

user-defined data types are also supported by using "vocabularies" in the specification.

3.1.1 Booleans

This data type in Tempo can either be true or false. The following two tables list the

notations and operators supported by this data type.

Tempo Symbol Sample use Meaning

 True The logical value true

 False The logical value false

~ ┐p Negation (not)

/ \ p /\ q Conjunction (and)

\ / P \/ q Disjunction (or)

=> p => q Implication (implies)

<=> p <=> q Logical equivalences (if and only if)

Table 2: Boolean supported notations [31]

Symbol Tempo Symbol Sample use Meaning

= x = y Equal to

≠ ~= x ≠ y Not equal to

∀ \A ∀n:Nat┐(n<0) For all

∃ \E ∃i:Int(i<0) There exists

Table 3: Boolean supported operators [31]

27

3.1.2 Natural Numbers

This data type contains all the non-negative integers 0,1,2.. and supports the following

notations.

Symbol Tempo Symbol Sample use Meaning

0,1,… 123 Natural Numbers

succ succ(x) Successor (succ(x) = x + 1)

pred pred(x) Predecessor (pred(succ(x)) = x)

+ x+y+z Addition

- - x-y Subtraction (undefined if x<y)

* x*(y**z) Multiplication, exponentiation

** x**y Exponentiation x^y

min, max min(x,y) Minimum, maximum

div, mod mod(x,y) Quotient, modulus

<. ≤ x ≤ y Less than (or equal to)

>, ≥ x ≥ y Greater than (or equal to)

=, ≠ x = y Equal to, not equal to

Table 4: Natural Number supported operators [31]

3.1.3 Integers

This data type contains all integer numbers ranging from …,-2, -1, 0 to 1, 2, … .As it

easy to understand, Natural numbers are a subset of Integers and therefore all notations shown

28

above for the Natural numbers are also applicable for Integers. Furthermore, Integers are

equipped with the following operations.

Symbol Tempo symbol Sample use Meaning

- - -x Additive inverse (unary minus)

abs abs(x) Absolute value

Table 5: Integer additional supported operators [31]

3.1.4 Characters

This data type consists of characters, letters, digits and all possible combinations between

them. As above, we list all supported notations.

Symbol Tempo Symbol Sample use Meaning

'A',…,'Z' 'J' Uppercase letters

'a',…,'z' 'j' Lowercase letters

'0',…,'9' '7' Digits

<, ≤, >, ≥ 'A' < 'Z' Alphabetic ordering

Table 6: Characters supported operators [31]

3.1.5 Extensions by nil

All elements that are contained into the Null[E] data type are equipped with an additional

element, nil, that supports the following notations.

29

Symbol Sample use Meaning

nil nil The additional element nil

embed embed(e) The element corresponding to e:E

val val(n) The e such that n = embed(e); undefined if n = nil

Table 7: Nil supported notations [31]

3.2 Java TCP Sockets Integration

Our work is based on [12] where an abstract channel specification and an algorithm

implementing it using java sockets was introduced consisted of several automata. First of all,

an automaton was specified modeling the behavior of a many-to-many asynchronous

communication channel, called ABSCH.tioa. Then, an automaton called JVMCH, modeling

the behavior of the Java interface to a communication channel using TCP was specified.

Finally, two additional automata were used based on Tauber’s approach [4] for establishing a

mediation between the sending application, communication channel, and the destination

application. Figure 5 illustrates the approached briefly described above.

Figure 6: Node automata [12]

30

For integrating Java TCP Sockets to the toolkit several changes had to done in the Tempo

to Java project which can be found in the Tempo's SVN Repository [32]. This package, as it

implied by its name, it is responsible for translating Timed I/O Automata into java executable

code.

The very first files that needed to be changed were BasicTranslator.java and

CompositeTranslator.java which are responsible for translating primitive and composite

automata respectively. These two classes implement the algorithm automata code which will

contain all import declarations, main method and of course schedules. In the following

paragraphs all changes that were done during the integration are presented step by step.

Since we wanted to enhance Tempo to support both MPI and Java TCP Sockets we

should define a mechanism for distinguishing which communication protocol will be used and

generate the appropriate code at each case. In both cases however, we have to import the

Datatypes package which contains all those Datatypes needed to establish either an MPI or

Sockets communication. This import statement is specified as below:

 _automaton.appendToStart(0, "import Datatypes.*;"+ EOL);

meaning that import Datatypes.*; will be added in the head of the file and then will change a

line, by using the EOL clause.

The communication type is specified before running the plug-in to translate the code in

the Argument tabs of Run Configuration and can be accessed during translation by using the

_spec.getCommType() method. When using Java TCP Sockets we decided to allow the

following declarations: TCP, JVM, UDP all producing the same code. Figure 6 depicts how

we handle the case when the algorithm will use Java Sockets for communication type and

import java.utilVector, java.net, and java.io packages.

31

Figure 7: Java TCP Sockets import statements

Another distinction that has to be made when using either MPI or Java Sockets is the

number of the input parameters that have to be passed to the main method of the algorithm.

MPI needs three input parameters whereas Java Sockets needs seven. Firstly, we need to pass

an IP address of the form xxx xxx xxx xxx (for example 192 168 10 4) which can be used

both in the schedules and for creating sockets to that address. Next, we need to specify the

port number to which the server socket will listen to and finally, a timeout period for the

socket and the trajectory need to be defined.

If the main method is fed with correct number of parameters, it will then create an array of

java.lang.String that will hold in those parameters and use them later on for instantiating all

other components (sendMediator, recvMediator, driver, and so on). Otherwise, an appropriate

message will be thrown to the user. The reason why java.lang.String is used instead of simply

String is because Tempo's string is not exactly the same as Java String data type and hence we

had to create a separate java file and make this distinction possible. Figure 7, depicts how the

generated code that will responsible for reading all program's input arguments and store them

into an array, when using TCP communication will look like.

32

Figure 8: Java TCP Sockets Input parameters

Finally, code was added for telling the compiler which data types classes should be

created depending again on the type of the communication channel.

if (_spec.getCommType().equals("TCP"))

 VocabTranslator.createTCPClasses(_log, _outputDir, _spec);

The next class that had to be modified after BasicTranslator.java and

CompositeTranslator.java was the one just mentioned above, the VocabTranslator.java. This

java class file provides the actual translation of all data types specified in TIOAs in the form

of vocabularies and which are needed for the MPI or Java Socket model to work.

First of all, we created an ArrayList adding all data types supported by the new model.

Those are JVMError, JVMStream, JVMServerSocket, JVMSocket, and TCPNode. For each

one of them, we had to create a separate Java class file which would contain all methods and

fields supported by each one of them.

The reason why we had to create our own data types and not just use ServerSocket,

Socket and so on was because Tempo has certain assumptions about its supported data types

and therefore we could not use directly those types. They are going to be referred to in the

33

following sections. In the following figure illustrates how the split between MPI’s and JVM’s

data types was managed.

Figure 9: Java TCP Sockets data types declaration

When the IOA compiler is calling VocabTraslator.java firstly checks if the data type

going to be translated is included into the ArrayLists specified above. If that does not happen,

it then informs the user that has been found a data type for which a separate placeholder class

should be created. Otherwise it proceeds to the translation.

For this translation separate Java classes were created with each one corresponding to one

of our custom data types, with all Java Classes being under the

com.veromodo.tempo.java.structure.comm package. In the table that follows a mapping is

provided showing which class file corresponds to which data type.

Data type Class file responsible for the translation

JVMServerSocket JVMServerSocketNode

JVMSocket JVMSocketNode

JVMError JVMErrorNode

JVMStream JVMStreamNode

TCPNodeVoc TCPNode

Table 8. Data types translation mapping

34

In the following subsections a reference is given for each one of the classes we created for

TCP data types explaining what each method that is contained in them is responsible to do.

Finally, the Java code is listed in Appendix A.

3.2.1 JVMError

The first custom data type that had to be created is the JVMError. This class consists of

two constructors and two methods. The first constructor, JVMError() does not take any input

parameters and it simply instantiates an object of type JVMError. On the other hand,

JVMError(java.lang.String.m) takes one parameter and sets the message of the JVMError

object to the one passed in as parameter.

Finally, public java.lang.String value(), and public java.lang.String toString() just return

the message that has been set to the object.

We have created this class to handle cases when other functions, such as creating a new

socket need to throw an exception. Because of the incompatibility issue of Tempo with

exceptions, all methods return a new JVMError instead.

3.2.2 JVMServerSocket

This class extends the java.net ServerSocket class imitating its behaviors.

JVMServerSocket class is used by a node that will behave as a server and for all the reasons

explained earlier it was not feasible to use the ServerSocket class directly.

35

This class consists of one constructor and three methods. JVMServerSocket(int arg0, is

only responsible to create and return a new JVMServerSocket object listening to the port

passed in as a parameter.

Null<JVMServerSocket> JVM_TCPServerSocketOpen(tuple_4<Nat, Nat, Nat, Nat> i,

Nat port, Nat timeout) method, accepts three parameters and returns either a Null object or a

new JVMServerSocket. The first parameter corresponds to the IP address of the node that will

behave as a server. The second and third arguments correspond to the port that the server will

listen to, the to the timeout period of the server socket. When this method is invoked, first of

all we create a new JVMServerSocket bounded to a specific port. We then set the maximum

period of time the object will exist before shutting down. If there are no errors during this

process we return the JVMServerSocket object, otherwise we return an instance of a Null

object.

The next method contained in JMVServerSocket class is the Null<JVMSocket>

JVM_TCPServerSocketAccept(JVMServerSocket sS) and is called immediately after the

JVM_TCPServerSocketOpen. This method creates a new JVMSocket object which initially is

null. It then invokes the JVMSocket accept() method waiting for an incoming request by a

client. When that request arrives, the JVMSocket object is initialized and returned.

Finally, Null<JVMError> JVM_TCPServerSocketClose(JVMServerSocket sS) is

responsible for closing the JVMServerSocket passed in as a parameter and return either Null

if the closing will successful, or a JVMError in any other case.

36

3.2.3 JVMSocket

This data type is primarily related to the node acting as a client. It contains two

constructors and six methods. Starting from the constructors, JVMSocket() returns an instance

of an unconnected JVMSocket. On the other hand, JVMSocket(InetAddress addr, int port)

creates a JVMSocket and connects it to the specified address and port.

Null<JVMSocket> JVM_TCPSocketOpen(tuple_4<Nat, Nat, Nat, Nat> j, Nat port, Nat

timeout) is the first address that a client-like node has to invoke. The first parameter is the IP

address of the JVMServer that client will connect to. Port represents the port number that the

JVMSocket will listen, and finally, timeout indicates the maximum period the object will

exist. This method, creates an InetAddress by using the IP address extracted from tuple_4 and

then calls JVMSocket(InetAddress addr, int port) to create the object. If there are problems

during these steps, a JVMSocket object is returned otherwise we return a new Null object. If

there is need any more for having the socket, Null<JVMError>

JVM_TCPSocketClose(JVMSocket cS) can be invoked for closing the socket and return a Null

or a JVMError object.

We sometimes need to know if the JVMSocket object is bounded to a local address and if

so, to also get the IP address of the machine that the socket is remotely connected to. For these

reasons we use Null < tuple_4 <Nat, Nat ,Nat ,Nat >>

JVM_TCPSocketGetLocalIP(Null<JVMSocket>socket) and Null < tuple_4 < Nat , Nat , Nat

, Nat >> JVM_TCPSocketGetRemoteIP(Null<JVMSocket> socket). Moreover, to check

whether the JVMSocket is connected we created a boolean method, Bool

JVM_TCPSocketIsConnected(Null<JVMSocket> cS).

Finally, the most important interaction between a client and server machine, that is

sending messages to each other, is done via the Null<JVMError>

37

JVM_write_TCPSocket(JVMSocket socket, Object msg) and Null<tuple_3<Object,

tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>>>JVM_read_TCPSocket(Null<JVMSo

cket>cS) which invoke JVMStream.JVM_write_TCPStream(socket, msg) and

JVMStream.JVM_read_TCPStream(cS) respectively.

3.2.4 JVMStream

This class file makes writing and reading from a JVMSocket feasible. It contains only two

methods, one handling writing to a socket and another for reading from a socket. The first one

is the Null<JVMError> JVM_write_TCPStream(JVMSocket cS, Object msg) which takes as

input the JVMSocket that is going to be used for writing and the actual message to be sent.

First of all, we create an ObjectOutputStream which we assign to the JVMSocket. We then

use writeObject and flush methods to send the message. If that is successful, we return Null,

else we return a JVMError.

On the other hand, Null < tuple_3 < Object , tuple_4 < Nat, Nat, Nat, Nat >,

tuple_4<Nat,Nat,Nat,Nat>>> JVM_read_TCPStream(Null<JVMSocket> cS), creates as a first

step a message object and then an ObjectInputStream assigned to the JVMSocket passed as a

parameter. It then waits there until a message is arrived. As soon as this happens, it reads the

message using the readObject and returns the message. Again, as in previous methods, a Null

is returned in those cases something goes wrong.

3.2.5 TCPNodeVoc

This class file that consists of three methods allows us to perform operations on Node

types. The first method, Bool GT(tuple_4<Nat,Nat,Nat,Nat> p0, tuple_4<Nat,Nat,Nat,Nat>

38

p1) returns true if the first Node, p0, is greater than the node p1. Bool

EQ(tuple_4<Nat,Nat,Nat,Nat> p0, tuple_4<Nat,Nat,Nat,Nat> p1) returns true if the two

nodes are equal, and finally, Bool LT(tuple_4<Nat,Nat,Nat,Nat> p0,

tuple_4<Nat,Nat,Nat,Nat> p1) returns true if p0 is less than p1.

3.3 Problems Faced and How They Were Solved

 Enhancing the Tempo compiler to support Java TCP Sockets was not an easy task. We

faced many difficulties and spent many hours trying to overcome these obstacles in order to

accomplish our objectives successfully.

First of all, we faced significant difficulties configuring the Eclipse environment and

started modifying the code. Even though we followed the instructions as shown in [32] we

faced problems in defining the run configuration, export the correct projects from the SVN

repositories and others.

Our first try was to configure the Eclipse in a Linux environment. We managed to create

an SSH connection to the SVN repository and started checking out the code from it. While we

were trying to become familiar with the Tempo compiler, the projects and classes it consists

of, the Eclipse crashed and the whole workspace was no longer accessible. We uninstalled

Eclipse and tried to reconfigure it again, but then for some reason we could not access the

Subversion plug-in to check out the projects again. After working on it for about a week with

no success, we decided to leave Ubuntu and migrate to a Windows 7 machine.

After migrating to a Windows 7 machine and configuring the Eclipse we then tried to

embed Java TCP Sockets into the code. The first approach included additional if-else

statements when the MPI appeared specifying that way how the compiler should behave when

39

the communication type will be TCP. The communication type is specified in advance in the

Arguments tab of run configuration as shown in the following figure

.

Figure 10: Specifying the communication type in Tempo

We therefore had to replace only those files where the MPI was shown and that seemed to

be easy. First of all, FunctionTranslator.java which is responsible for translating all methods

defined in myvocabs.tioa was modified. We then proceeded and changed ExprTranslator.java

which is responsible for checking whether a function is passed the correct number of

parameters and if not then break. Finally we changed BasicTranslator.java and

CompositeTranslator.java which are responsible for translating primitive automata and

composite automata respectively. Moreover, these classes are responsible for creating the

main method and the import statements in the generated code.

After making these changes and running the model we realized that even thought a code

was generated there were errors in it regarding our custom data types. Tempo has certain

40

assumptions about the data types it supports and hence the idea of modifying

FunctionTranslator.java and ExprTranslator.java directly to create our methods seemed to be

problematic. In addition, another issue to be faced was that Tempo is also not compatible with

" Exceptions".

For the above problems to be solved, it was decided to abandon the first approach and

therefore delete almost all changes we had done up to that point and follow a different

methodology. The new approach is the one was explained in the previous section, that is

creating a separate java file for each custom data type and use these files for the translation.

After creating the methods and running the example we wrote, we had to test that

everything was going according to the plan. We then realized that we were facing a problem

when the receiving mediator was waiting to get a message from the sending mediator. The

node was proceeding up to the line where it was waiting for input data but from that point and

on it was like the socket connection was lost. After spending many hours in testing and trying

to understand what was causing this issue, we realized that it had to do with the mechanism

we used for Deep Copying the object since after the connection was dropped. The reason that

was happening had to do with the object's serialization, since Sockets are not able to be

serialized. Hence we had to modify this mechanism so it will return the object untouched and

keep the connection. We faced many other minor problems, which are too technical to

mention.

 41

Chapter 4

Proof-of-concept Implementation

In this Chapter we present the two algorithms that have been used in order to demonstrate

that our Tempo enhancement works. First, we describe a simple algorithm we implemented

showing that a Socket connection and a message exchange can be established and then we

explain how we managed to obtain an automated implementation of the Paxos algorithm.

42

4.1 A First Implementation of an Algorithm Using a TCP Channel

The first algorithm to be automatically compiled having Java TCP Sockets as the

communication channel was JVMChanTest, a basic algorithm that was created for testing and

was based on [12]. In the following paragraphs we describe what this algorithm was intended

to do and the approach we followed towards this.

For our algorithm implementation several automata have been used. At first we have used

an automaton modeling the algorithm which we have named JVMChanTest.tioa. Schedule

was included in this automaton specifying when and how the actions will be fired. An

illustration of the schedule used is given in the Figure 11.

Figure 11: Part of JVMChanTest.tioa's schedule

This algorithm is based on the Client-Server model [11] and uses two different types of

nodes, a Sending node and a Receiving node. In our case, the role of the client was acting the

sending node whereas the server was the receiving node. For the purpose of this example we

43

are going to refer to them as i and j respectively. The aim was to create a socket connection

between them, send a message from j to i and display that message in the i's side.

Furthermore, a driver automaton, driver.tioa, was used to define how all TCP methods

will used by the user. Two additional automata, RecvMed and SendMed used to represent the

receiving and sending node. Finally, a vocabulary automaton, myvocabs.tioa, supporting all

custom data types used and an automaton modeling all supported actions by the channel,

TCPChan.tioa were also defined. Such custom data types include JVMSocket and

JVMServerSocket.

Both i and j run the same generated code, but what each one of them was allowed to do is

distinguished in the schedule section depending on the IP address of each node, as partially

shown in Figure 11. Moreover, the way we defined the schedule ensures that both automata

will proceed in parallel.

Starting from the receiving node, i, it firstly creates a JVMServerSocket object by calling

the JVM_TCPServerSocketOpen(i, port, timeout). The returned JVMServerSocket is

bounded to the port passed in as a parameter and the maximum period of existence of the

object is determined by the timeout argument. Moreover, along with the creating of

JVMServerSocket, the accept status of the node changes to accepting.

The next step i, performs is changing its accept status to waiting and then through

Input_TCP_respAccept() that is declared in the RecvMed, invokes the

JVM_TCPServerSocketAccept(SSocket.val()) passing as a parameter the JVMServerSocket

object created in the previous step. This function call is used to create a JVMSocket object

which initially is null and then waits for an incoming connection to arrive.

44

On the other side, j's, execution starts by invoking

Input_TCP_senderOpen(tuple_4<Nat,Nat,Nat,Nat> s, tuple_4<Nat,Nat,Nat,Nat> r, Nat port)

and then JVM_TCPSocketOpen with the same parameters as the first one. Those two methods

return a JVMSocket object that is connected to the IP address corresponding to the tuple_4 of

the receiving node, i. From that point and on both nodes proceed in parallel.

When i accepts the connection request from j, it appends its JVMSocket to the receiving

channel in order to can access it later on for reading and/or writing purposes.

Input_TCP_respRRead and JVM_read_TCPSocket function calls lead the server in waiting

for a message to arrive. Figure 12, shows a part of the automated translated Java code

illustrating how all function calls are performed.

Figure 12: Schedule's automated translated code

The sender on the other hand, appends the message to be sent into a buffer and then calls

JVM_write_TCPSocket. At this point it is important to say that all calls to the JVM classes are

done through interaction of the algorithm mediator with the driver, RecvMed and SendMed.

45

When i gets the message send, it then appends it on its own receiving buffer and finally prints

this message from the buffer and terminates. J also continues and terminates. The Trajectory

condition used in this example has to do with the timeout period which is passed to the

algorithm automaton as a parameter.

All automata specified for this example are given in Appendix B.

4.2 An Implementation of Paxos Algorithm using TCP Sockets

The Paxos implementation is based on Roberto De Prisco’s Msc Thesis in 1997 [33].

Paxos is presented here in a modular basis, divided into several components with each one

handling a different aspect of the problem. Most importantly, detector.tioa is responsible for

detecting process failure and recoveries, whereas, bpleader.tioa models the process which is

responsible for running the algorithm. bpagent.tioa models the "agent's" behavior and finally

bpsuccess.tioa announces to all nodes a reached decision. In the following paragraphs a

detailed description is provided about how the model works as presented by De Prisco.

 To initiate a round, the leader sends a "Collect" message to all agents announcing

that it wants to start a new round and at the same time asking for information

about previous rounds in which agents may have been involved.

 An agent that receives a message sent in step 1 from the leader of the round,

responds with a "Last" message giving its own information about rounds

previously conducted. With this, the agent makes a kind of commitment for this

particular round that may prevent it from accepting (in step 4) the value proposed

in some other round. If the agent is already committed for a round with a bigger

46

number then it informs the leader of its commitment with an "OldRound"

message.

 Once the leader has gathered information about previous rounds from a majority

of agents, it decides, according to some rules, the value to propose for its round

and sends to all agents a "Begin" message announcing the value and asking them

to accept it. In order for the leader to be able to choose a value for the round it is

necessary to provide initial values. If no initial value is provided the leader must

wait for an initial value before proceeding with step 3. The sent procedure of

processes from which the leader gathers information is called the info-quorum of

the round.

 An agent that receives a message from the leader of the round sent in step 3,

responds with an "Accept" message by accepting the value proposed in the

current round, unless it is committed for a later round and thus must reject the

value proposed in the current round. In the latter case, the agent sends on

"OldRound" message to the leader indicating the round for which it is committed.

 If the leader gets "Accept" messages from a majority of agents, then the leader

sends its own output value to the value proposed in the round. At this point the

round is successful. The set of agents that accept the value proposed by the leader

is called the accepting-quorum.

A separate Schedule for the leader is used which it is currently somehow complicated

even though a lot of effort has been made in making it as simpler as possible. Currently, the

schedule lacks in catching all the dynamic behavior that Paxos is capable of and this is

considered to be a future work. In contrast, the agent’s schedule is very simple and robust.

47

Other limitations based on how the schedule is currently implemented have to do with the

absence of a reset procedure covering those cases where the leader fails. Anyhow, the

schedule is functional enough to run correctly and produce results.

In order to run Paxos, an IP address has to be provided that will correspond to the server

node. Moreover, all IP addresses of the other nodes have to be specified in advanced and this

also something that could be improved in the future for better dynamicity. As a first step, the

leader election is based on the IP addresses where the node having the highest IP address

becomes the initial leader.

Before explaining how Paxos schedule has been implemented to support TCP

communication, a brief review is presented about all other automata further to the

TCPPaxos.tioa are needed for the algorithm to run.

First of all, myvocabs.tioa contains all data types needed for the TCP Channel to run

starting from the IPv4 type which is a tuple of four Nat numbers and simply represents an IP

address. IPv6 is also available by the model for those cases where the deployment settings

support it. As next, we defined the JVMError which as the previous algorithm we described is

of the form of String.

In Chapter 3, Section 3.2.5, we have mentioned that TCPNode allows us to perform

additional operations on nodes such as the greater/less than and equality tests, and that is

needed for our implementation since we want to have comparisons between the participating

nodes. Moreover, it is essential know the current state of the Node, and that is determined by

using the NodeMode type and defined as live, stopped, begin, last, accept, success, oldround,

collect, gatherlast, wait, bgincast, gatheraccept, decided, rnddone and ack.

48

Round, Data, Message, and Mode types are also required for Paxos to run. Round is

defined as a tuple of an Int and a Node, Data as a tuple of a NodeMode, two Round types and

an Int. Message type is a tuple of Data, and two Node. Finally mode is an enumeration of

done, working, leader and notleader.

Finally, we need JVMSocket, JVMServerSocket having all operators we refer to earlier,

and a Channel. The latter uses all previous mentioned data types, and is defined having a

MessageTuple, a Status, and a Channel type in addition to an operator checking is the channel

is empty or not.

Next, an automaton for the modeling the interaction between the algorithm and the TCP

Channel has been created, and that is TCP_ChanMed.tioa. This automaton enables the

creation and management of JVMServerSockets and JVMSockets. tcpChannel state variable

contains all the established connections and recvBuffer the messages extracted from the

network. Finally, TCPSendMed.tioa and TCPRecvMed.tioa model the interaction of the

algorithm automata with automaton modeling the TCP protocol.

The first action that is fired when running the Paxos schedule is the TCP_Bind(myIP)

which creates a new JVMServerSocket and changes the local status of each node from idle to

connecting, indicating their willingness to accept connections. Moreover, the nodes initialize a

local variable, localError, holding any possible errors. After that, TCP_respBind(error,local)

is fired, changing the local status of the node from connecting to accepting, if the localError

state variable is equal to null. These two actions are fired in the schedule as below:

 fire output R.TCP_bind(myIP);

 fire output C.TCP_respBind(error,myIP);

49

We then handle separately the server and the client node by firing the corresponding

actions. If the node’s IP address is the same as the one we defined for the server, the machine

enters a loop and fires TCP_accept method,

 fire output C.TCP_respAccept(error);

 and that changes its status to waiting and forcing it to stay there until an incoming request

will arrive.

On the other hand, if the IP address of a running node is not the same as the one that will

behave as a server, TCP_senderOpen(server, port) action is fired,

 fire output S.TCP_senderOpen(server, port);

trying to create a connection the node has its IP address is the same as the one passed in as a

parameter and that will listen to the port specified.

After all participating nodes create a TCP connection, either as a JVMServer or

JVMClient, they all run InformAlive(n :Node) that lays into detector.tioa [24] adding

themselves into the alive and world nodes list. Then, the leader election algorithm runs as

follows. For all nodes added into the world list in the previous step, internal Check(world[y])

and then SEND(ms) are fired keeping a track which nodes have sent their message, when that

happened and updating the list containing messages to be sent.

 TCP_write(ms, myIP, world[y]) comes next,

 fire output S.TCP_write(ms, myIP, world[y]);

adding the message to the channel and as a result the TCP_ChanMed writes it into the

JVMSocket by invoking the JVM_write_TCPSocket(val(tcpChannel[n].socket), val(m))

method. At the next step, the receiving node extract any messages exist in the channel using

TCP_read which initiates read on all open connections. TCP_respRead(m) reads a message

from the first reading socket and the message is added to the receiver’s buffer where it can

later on be extracted. Finally, the leader election process continues until a leader is elected and

50

announced. After the leader election, the algorithm proceeds as presented in [7] using TCP

methods for writing.

All automata used for the TCP implementation of Paxos are presented in Appendix C. At

this point it is important to say that all Automata used for the TCP Paxos implementation have

been developed by Dr. Peter M. Musial based on the Java Sockets integration we managed to

perform.

4.3 Automated translation procedure

For an algorithm to be automated translated to Java executable code, the following steps

have to performed:

1. The algorithm and the communication channels have to be expressed using the

TIOA model.

2. The algorithm automaton, which has to be in a nodechannel form, has to be

verified using the IOA Checker

3. A schedule has to be written for resolving the nondeterminism

So far, the composition was performed prior to compilation leading to unreadable and

unmanageable code. In the current way of transation, the composition is performed during the

execution time using the "matchMaker" method that is found in each of the automaton

components and the corresponding invocation in the schedule of the top automaton.

51

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Automated implementation of complex distributed algorithms specified in a formal

language, such as IOA, is nowadays a very challenging and promising field. Distributed

algorithms are emerging in a very fast rate and we can easily and without any doubts say that

the future belongs to distributed computing and processing. Therefore, having such

mechanisms not only for specifying and verifying complex distributed algorithms but also to

automatically implement them is extremely useful.

Before this work, the Tempo toolkit and IOA Compiler gave us the ability to

automatically implement such algorithms using MPI. Even though that was good enough for

many years, it has certain limitations which had to be addressed. Limitations including the

fact that the generated code was only able to run in a LAN and not on the Internet, and the fact

all participating nodes should be defined in advance, not allowing dynamic entrance of a new

node.

52

In this Thesis we have enhanced the Tempo toolkit to support not only MPI but Java TCP

Sockets as well. This is extremely useful, since not only do we allow dynamic creation and

tearing down of communication links, but also the algorithms can now run on WANS, MAN,

or even on the Internet. Furthermore, by using Sockets the automated implementation of

dynamic distributed systems/algorithms can be extended into planetary-scale networks as was

done for RAMBO in [34].

We have firstly checked our implementation using a very basic algorithm we created that

was consisted of two machines, one acting as a sender and the other one as a receiver. Our aim

was to send a message from the sender to the receiver, and display that message in the

receiver's side. As soon as this was done, the integration was finally tested on something much

more complex, on Paxos algorithm, which also ran correctly. To the best of our knowledge

this is the first work that generates a verifiable implementation of Paxos using Java TCP

Sockets in an automated way.

5.2 Future work

In this Thesis we mainly concentrated in enabling Tempo to support Java TCP Sockets as

a way of communication between the participating nodes in an algorithm. The schedules we

have used focus on establishing a connection and sending and receiving successfully a

message from one node to the other. Therefore, further testing is needed to be done. For

example, it would be nice to test fully the closing procedures of the sockets. Moreover, we

plan to make the TCP Channel model better in terms of errors reporting, and, of course, test

the model on more algorithms for different fundamental problems.

53

In addition, further improvement is needed for eliminating all limitations mentioned

earlier about Paxos automated implementation. This includes the fact that all participating

nodes should be known in advance and the absense of a resert procedure covering those cases

where the leader fails.

Furthermore, future work could include further enhancements to the Tempo compiler to

include and support even more model interfaces, such as UDP, unicast, multicast, or both,

database interfaces, quantified expressions and others. Finally, we should consider to create a

GUI that will make the automated implementation process even more friendly.

54

Bibliography

[1] Andrew S. Tanenbaum, Maarten van Steen, "Distributed Systems, Principles and

Paradigms" Prentice Hall, 2002.

[2] R. Milner, "A Calculus of Communicating Systems", Lecture Notes in Comput.

Sci. 92, Springer, 1980.

[3] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, Frits Vaandrager, "The Theory

of Timed I/O Automata. Synthesis Lectures of Distribted Computing Theory", 2nd

Edition, 2011.

[4] Joshua A. Tauber, "Verifiable Compilation of I/O Automata without Global

Synchronization", Phd Thesis, Massachusetts Institude of Technology, 2005.

[5] Chryssis Georgiou, Panayiotis Mavrommatis, and Joshua A. Tauber,

"Implementing Asynchronous Distributed Systems Using the IOA Toolkit",

MIT CSAIL Technical Report MIT-LCS-TR-966, Cambridge, MA, 2004.

[6] Chryssis Georgiou, Nancy Lynch, Panayiotis Mavrommatis, and Joshua A.Tauber,

"Automated Implementation of Complex Distributed Algorithms Specified in

the IOA Language", in International Journal on Software Tools for Technology

Transfer (STTT), Volume 11, No. 2, pp. 153-171, Springer, April 2009.

[7] Chryssis Georgiou, Procopis Hadjiprocopiou, and Peter Musial, "On the

Automated Implementation of Timed-based Paxos Using the IOA Compiler", in Proc.

of the 14th International Conference on Principles of Distributed Systems

(OPODIS2010),pp. 235-252, Tozeur, Tunisia, 2010.

[8] N Lynch, L. Michel, and A. Shavrtsman, "Tempo: A toolkit for The Timed

Input/Output Automata Formalism", In Proceedings of the 1st International

Conference on Simulation Tools and Techniques for Communications, Networks, and

Systems (SIMUTools 2008), 2008.

[9] About Tempo, http://www.veromodo.com/code/tempo.html - Last access on

5/5/2011.

[10] The Message Passing Interface (MPI), Lawrence Livermore National Laboratory

https://computing.llnl.gov/tutorials/mpi/ - Last access on 17/5/2011.

http://www.springerlink.com/content/101563/
http://www.opodis.net/

55

[11] Lesson: All About Sockets,

http://download.oracle.com/javase/tutorial/networking/sockets/ - Last access on

2/5/2011.

[12] Chryssis Georgiou, Peter Musial, Alexander Shvartsman, and

Elaine Sonderegger, "An Abstract Channel Specification and an Algorithm

Implementing It Using Java Sockets", in the Proc. of the 7th IEEE International

Symposium on Network Computing and Applications (NCA 2008), pp. 211-219,

Cambridge, MA, 2008.

[13] Nancy A. Lynch and Mark R. Tuttle, "An Introduction to Input/Output

Automata" CWI-Quarterly, 2(3):219-246, 1989.

[14] Communicating Sequential Processes (CSP), http://www.usingcsp.com/ - Last

access on 01/06/10.

[15] Eclipse Rich Client Platform, http://www.eclipse.org/home/categories/rcp.php -

Last access on 01/06/10.

[16] Aamir Shafi, , "Parallel Programming with Java", National University of

Sciences and Technology (NUST).

[17] Kenneth J. Goldman. "Highly concurrent logically synchronous multicast".

Distributed Computing, 6(4):189–207, 1991

[18] Kenneth J. Goldman, Bala Swaminathan, T. Paul McCartney, Michael D.

Anderson, and Ram Sethuraman. "The Programmers’ Playground: I/O abstraction for

user-configurable distributed applications". IEEE Transactions on Software

Engineering,21(9):735–746, September 1995

[19] Oleg Cheiner and Alex Shvartsman. Implementing an eventually-serializable data

service as a distributed system building block. In Networks in Distributed Computing,

volume 45 of DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, pages 43–72. American Mathematical Society, 1999

[20] G´erard Le Lann. "Distributed systems - towards a formal approach". In

Information Processing 77, volume 7 of Proceedings of IFIP Congress, pages 155–

160. North-Holland Publishing Co., 1977.

[21] P. A. Humblet R. G. Gallager and P.M. Spira. "A distributed algorithm for

minimum-weight spanning trees". In ACM Transactions on Programming Languages

and Systems, volume 5(1), pages 66–77, January 1983

[22] Michael J. Fischer. "The Consensus Problem in Unreliable Distributed Systems

(A Brief Survey)", FCT 1983: 127-140, 1983

[23] L. Lamport, "The part-time parliament. ACM Transactions on Computer

Systems", 16 (2):133-169, 1998.

[24] N. Lynch and A. Shvartsman, "Paxos made even simpler", Manuscript, 2002.

http://www.ieee-nca.org/
http://www.informatik.uni-trier.de/~ley/db/conf/fct/fct83.html#Fischer83

56

[25] J. A. Bergsrea, A. Ponse, and S. A. Smolka. "Handbook of Process Algebra".

North-Holland 2001.

[26] Xavier Nicollin and Joseph Sifakis. "An overview and synthesis on timed process

algebras". North-Holland 2001.

[27] C. Tofts, "Proof Methods and Pragmatics for Parallel Programming", PhD

Thesis, Univ. of Edinburgh, 1990.

[28] R. Milner, "Communication and Concurrency", Prentice-Hall, 1989.

[29] Marina Gelastou, Chryssis Georgiou, and Anna Philippou, "On the Application

of Formal Methods for Specifying and Verifying Distributed Protocols", in the Proc.

of the 7th IEEE International Symposium on Network Computing and Applications

(NCA 2008), pp. 195-204, Cambridge, MA, 2008

[30] Rance Cleaveland, Philip M. Lewis, Scott A. Smolka and Oleg Sokolsky, "The

Concurrency Factory Software Development Environment", In Proceedings of

TACAS'1996. pp.391~395.

[31] Nancy A. Lynch, Stephen J. Garland, Dilsun Kaynar, Laurent Michel and Alex

Shvartsman, "The Tempo Language User Guide and Reference

Manual", Massachusetts Institute of Technology, 2008.

[32] The TIOA Eclipse Development Setup

http://tioa.dyndns.org/wiki/index.php/TIOA_Eclipse_Development_Setup - Last

access on 23/5/2011.

[33] Roberto De Prisco, Butler W. Lampson, and Nancy A. Lynch: Revisiting the

PAXOS algorithm. Theor. Comput. Sci. 243(1-2): 35-91 (2000).

[34] Chryssis Georgiou, Nicolas Hadjiprocopiou, and Peter Musial, Evaluating a

Dependable Sharable Atomic Data Service on a Planetary-Scale Network, in the Proc.

of the 9th International Conference on Algorithms and Architectures for Parallel

Processing (ICA3PP 2009), pp. 580-592.

http://www.ieee-nca.org/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lampson:Butler_W=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lynch:Nancy_A=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tcs/tcs243.html#PriscoLL00
http://ica3pp09.csie.ntust.edu.tw/

 54

APPENDIX A

Java TCP Custom Classes

A1. JVMError Class

public class JVMError {

 private java.lang.String _message = null;

 public JVMError() { }

 public JVMError(java.lang.String m) { this._message = m; }

 public java.lang.String value() { return _message; }

 public java.lang.String toString() { return _message; }

}

A2. JVMServerSocket Class

import java.io.IOException;

import java.net.ServerSocket;

public class JVMServerSocket extends ServerSocket {

 public JVMSocket accept() throws IOException {

 JVMSocket s = new JVMSocket();

 if (!isClosed() && isBound()) {

 implAccept(s);

 s.setSoTimeout(this.getSoTimeout());

 }

 return s;

 }

 public JVMServerSocket(int arg0) throws IOException {

 super(arg0);

 }

 public static Null<JVMServerSocket>

JVM_TCPServerSocketOpen(tuple_4<Nat, Nat, Nat, Nat> i, Nat port, Nat

timeout) {

 JVMServerSocket server = null;

 try{

 server = new JVMServerSocket(port.value());

 server.setSoTimeout(timeout.value());

 }

 catch (IOException e) { }

58

 return new Null<JVMServerSocket>(server);

 }

 public static Null<JVMError>

JVM_TCPServerSocketClose(JVMServerSocket sS) {

 JVMError error = null;

 try{

 sS.close();

 } catch (IOException e) { error = new JVMError(

e.getMessage()); }

 return new Null<JVMError>(error);

 }

 public static Null<JVMSocket>

JVM_TCPServerSocketAccept(JVMServerSocket sS) {

 JVMSocket client = new JVMSocket();

 try {

 client = sS.accept();

 } catch (IOException e) { }

 return new Null<JVMSocket>(client);

 }

}

A3. JVMSocket Class

import java.io.IOException;

import java.net.InetAddress;

import java.net.InetSocketAddress;

import java.net.Socket;

import java.net.SocketAddress;

import java.net.UnknownHostException;

public class JVMSocket extends Socket {

 public JVMSocket() { super(); }

 public JVMSocket(InetAddress addr, int port) throws IOException

 { super(addr, port); }

 public static Null<JVMSocket> JVM_TCPSocketOpen(tuple_4<Nat,

 Nat, Nat, Nat> j, Nat port, Nat timeout){

 int ipPart1 = j.f0().intValue();

 int ipPart2 = j.f1().intValue();

 int ipPart3 = j.f2().intValue();

 int ipPart4 = j.f3().intValue();

 JVMSocket cS = new JVMSocket();

 try {

 InetAddress addr = InetAddress.getByName(

 Integer.toString(ipPart1) + '.' +

 Integer.toString(ipPart2) + '.' +

 Integer.toString(ipPart3) + '.' +

 Integer.toString(ipPart4));

 cS = new JVMSocket(addr, port.intValue());

 if (!cS.isConnected()) {

 SocketAddress sockaddr = new

 InetSocketAddress(addr, port.intValue());

 cS.connect(sockaddr);

 } else

 cS.setSoTimeout(timeout.value());

 }

59

 catch (UnknownHostException e) {

 System.out.println(e.getMessage()); }

 catch (IOException e) {

 System.out.println(e.getMessage()); }

 return new Null<JVMSocket>(cS);

 }

 public static Null<JVMError> JVM_TCPSocketClose(JVMSocket cS) {

 JVMError error = null;

 try { cS.close(); }

 catch (IOException e) {

 error = new JVMError(e.getMessage()); }

 return new Null<JVMError>(error);

 }

 public static Null<tuple_4<Nat,Nat,Nat,Nat>>

 JVM_TCPSocketGetLocalIP(Null<JVMSocket> socket) {

 if (socket == null || socket.val() == null)

 return new Null<tuple_4<Nat,Nat,Nat,Nat>>();

 byte[] localAddress =

 socket.val().getLocalAddress().getAddress();

 return new Null<tuple_4<Nat,Nat,Nat,Nat>>(

 new tuple_4<Nat,Nat,Nat,Nat>(

 new Nat(localAddress[0] & 255), new Nat(

 localAddress[1] & 255),

 new Nat(localAddress[2] & 255), new Nat(

 localAddress[3] & 255)));

 }

 public static Null<tuple_4<Nat,Nat,Nat,Nat>>

 JVM_TCPSocketGetRemoteIP(Null<JVMSocket> socket) {

 if (socket == null || socket.val() == null)

 return new Null<tuple_4<Nat,Nat,Nat,Nat>>();

 byte[] localAddress =

 socket.val().getRemoteSocketAddress() != null ?

 socket.val().getInetAddress().getAddress() : new byte[0];

 if (localAddress.length == 0)

 return new Null<tuple_4<Nat,Nat,Nat,Nat>>();

 return new Null<tuple_4<Nat,Nat,Nat,Nat>>(

 new tuple_4<Nat,Nat,Nat,Nat>(

 new Nat(localAddress[0] & 255),

 new Nat(localAddress[1] & 255),

 new Nat(localAddress[2] & 255),

 new Nat(localAddress[3] & 255)));

 }

 public static Null<tuple_3<Object, tuple_4<Nat, Nat, Nat, Nat>,

tuple_4<Nat, Nat, Nat, Nat>>> JVM_read_TCPSocket(Null<JVMSocket> cS)

{

 return JVMStream.JVM_read_TCPStream(cS);

 }

 public static Null<JVMError> JVM_write_TCPSocket(JVMSocket

 socket, Object msg) {

 return JVMStream.JVM_write_TCPStream(socket, msg);

 }

 public static Bool JVM_TCPSocketIsConnected(Null<JVMSocket> cS)

 {

 if (cS == null || cS.val() == null)

 return new Bool(false);

60

 return new Bool(cS.val().isConnected());

 }

}

A4. JVMStream Class

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.net.SocketTimeoutException;

public class JVMStream {

 public static

 Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Na

 t,Nat>>> JVM_read_TCPStream(Null<JVMSocket> cS) {

 tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat

 >> msg = null;

 if (cS != null && cS.val() != null) try {

 ObjectInputStream in = new

 ObjectInputStream(cS.val().getInputStream());

 msg =

(tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>>)

 in.readObject();

 }

 catch(SocketTimeoutException e) { return new

Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>

>>(); }

 catch(ClassNotFoundException e) { return new

Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>

>>(); }

 catch(IOException e){ return new

Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>

>>(); }

 return new

Null<tuple_3<Object,tuple_4<Nat,Nat,Nat,Nat>,tuple_4<Nat,Nat,Nat,Nat>

>>(msg);

 }

 public static Null<JVMError> JVM_write_TCPStream(JVMSocket cS,

 Object msg) {

 JVMError error = null;

 if (cS != null && msg != null) try {

 ObjectOutputStream out = new

 ObjectOutputStream(cS.getOutputStream());

 out.writeObject(msg);

 out.flush();

 } catch (IOException e) {

 error = new JVMError(e.getMessage()); }

 return new Null<JVMError>(error);

 }

}

61

A5. TCPNodeVoc Class

import Utils.TJMath;

public class TCPNodeVoc {

 public static Bool GT(tuple_4<Nat,Nat,Nat,Nat> p0,

 tuple_4<Nat,Nat,Nat,Nat> p1) {

 if (TJMath.GT(p0.f0(), p1.f0()).value())

 return new Bool(true);

 if (TJMath.EQ(p0.f0(), p1.f0()).value() &&

 TJMath.GT(p0.f1(), p1.f1()).value())

 return new Bool(true);

 if (TJMath.EQ(p0.f0(), p1.f0()).value() &&

 TJMath.EQ(p0.f1(), p1.f1()).value() &&

 TJMath.GT(p0.f2(), p1.f2()).value())

 return new Bool(true);

 if (TJMath.EQ(p0.f0(), p1.f0()).value() &&

 TJMath.EQ(p0.f1(), p1.f1()).value() &&

 TJMath.EQ(p0.f2(), p1.f2()).value() &&

 TJMath.GT(p0.f3(), p1.f3()).value())

 return new Bool(true);

 return new Bool(false);

 }

 public static Bool EQ(tuple_4<Nat,Nat,Nat,Nat> p0,

 tuple_4<Nat,Nat,Nat,Nat> p1) {

 if (TJMath.EQ(p0.f0(), p1.f0()).value() &&

 TJMath.EQ(p0.f1(), p1.f1()).value() &&

 TJMath.EQ(p0.f2(), p1.f2()).value() &&

 TJMath.EQ(p0.f3(), p1.f3()).value())

 return new Bool(true);

 return new Bool(false);

 }

 public static Bool LT(tuple_4<Nat,Nat,Nat,Nat> p0,

 tuple_4<Nat,Nat,Nat,Nat> p1) {

 if (TJMath.LT(p0.f0(), p1.f0()).value())

 return new U(true);

 if (TJMath.EQ(p0.f0(), p1.f0()).value() &&

 TJMath.LT(p0.f1(), p1.f1()).value())

 return new Bool(true);

 if (TJMath.EQ(p0.f0(), p1.f0()).value() &&

 TJMath.EQ(p0.f1(), p1.f1()).value() &&

 TJMath.LT(p0.f2(), p1.f2()).value())

 return new Bool(true);

 if (TJMath.EQ(p0.f0(), p1.f0()).value() &&

 TJMath.EQ(p0.f1(), p1.f1()).value() &&

 TJMath.EQ(p0.f2(), p1.f2()).value() &&

 TJMath.LT(p0.f3(), p1.f3()).value())

 return new Bool(true);

 return new Bool(false);

 }

}

62

APPENDIX B

JVMChanTest Algorithm

B1. driver.tioa

imports JVMSocket

imports JVMServerSocket

imports TCPObjectsVoc

imports TCPNodeVoc

imports ChannelVoc

imports algorithm_voc

automaton driver

signature

 % paired to the receive mediator

 input RECEIVE(m:Null[Message])

 input respBind(i:Node)

 % paired to the send mediator

 output SEND(m:Message, r,s:Node)

 output TCP_senderOpen(s,r:Node, port:Nat)

 output TCP_senderClose(s,r:Node)

 % paired to the receive mediator

 output TCP_bind(i:Node)

 output TCP_stopListening(j:Node)

 output TCP_rClose(i,j:Node)

states

 noop:Bool := true;

transitions

 input RECEIVE(m)

 eff

 noop:=true;

 input respBind(i)

 eff

 noop:=true;

 output SEND(m,r,s)

 pre

 noop;

 eff

 noop:=true;

 output TCP_senderOpen(s,r,port)

 pre

 noop;

 eff

 noop:=true;

 output TCP_senderClose(s,r)

 pre

 noop;

63

 eff

 noop:=true;

 output TCP_bind(i)

 pre

 noop;

 eff

 noop:=true;

 output TCP_stopListening(j)

 pre

 noop;

 eff

 noop:=true;

 output TCP_rClose(i,j)

 pre

 noop;

 eff

 noop:=true;

B2. JVMChanTest.tioa

include "myvocabs.tioa"

include "driver.tioa"

include "SendMed.tioa"

include "RecvMed.tioa"

imports JVMSocket

imports JVMServerSocket

imports TCPObjectsVoc

imports TCPNodeVoc

imports ChannelVoc

imports algorithm_voc

automaton JVMChanTest(n1:Nat, n2:Nat, n3:Nat, n4:Nat, n5:Nat, n6:Nat)

 components

 S:SendMed(n5,n6);

 R:RecvMed(n5,n6);

 D:driver;

 schedule

 states

 MIP :Node := [n1, n2,n3,n4]; % IP from parameters

 SIP :Node := [192,168,10, 4]; % server IP

 CIP :Node := [192,168,10,11]; % client IP

 port:Nat := n5;

 timeout:Nat := n6;

 msrv :Null[Message] := nil();

 mcli :Null[Message] := nil();

 do

 % -- message format [message, sender, receiver]

 mcli := embed(["HiFromClient", MIP, SIP]);

 msrv := embed(["HiFromServer", CIP, MIP]);

 %% server side

 if (MIP = SIP) then

 % -- bind

 fire output D.TCP_bind(MIP);

64

 fire output R.TCP_respBind(MIP);

 % -- listen and accept

 fire output R.TCP_accept;

 fire input R.TCP_respAccept;

 % -- read the network medium

 fire output R.TCP_rRead;

 fire input R.TCP_respRRead;

 fire output R.RECEIVE(mcli);

 if (mcli ~= nil()) then

 print val(mcli);

 fi

 fi

 %% client side -- order in which i and j are used as

 %% parameters is important.

 if (MIP = CIP) then

 % -- connect

 fire output D.TCP_senderOpen(MIP,SIP, port);

 % -- send a messages

 fire output D.SEND(val(mcli),SIP,MIP);

 fire output S.TCP_write(mcli,SIP,MIP);

 % -- close

 fire output D.TCP_senderClose(MIP,SIP);

 follow S.v(SIP) duration timeout;

 fi

 od

B3. myvocabs.tioa

vocabulary TCPObjectsVoc

 types

 IPv4 : Tuple[one:Nat, two:Nat, three:Nat, four:Nat],

 IPv6 : Tuple[one:Nat, two:Nat, three:Nat, four:Nat,

 five:Nat, six:Nat],

 JVMError : String

end

vocabulary TCPNodeVoc

 imports TCPObjectsVoc

 types

 Node : IPv4

 operators

 GT : Node, Node -> Bool,

 EQ : Node, Node -> Bool,

 LT : Node, Node -> Bool

end

%%% .:algorithm vocabs:.

vocabulary algorithm_voc

 imports TCPObjectsVoc

 imports TCPNodeVoc

 types Data : String,

 Message : Tuple[data:Data, sender:Node, receiver:Node]

end

65

vocabulary JVMSocket

 imports TCPObjectsVoc, TCPNodeVoc

 imports algorithm_voc

 types JVMSocket

 operators

 JVM_TCPSocketOpen : Node, Node, Nat -> Null[JVMSocket],

 JVM_TCPSocketClose : JVMSocket -> Null[JVMError],

 JVM_TCPSocketGetLocalIP : Null[JVMSocket] -> Null[Node],

 JVM_TCPSocketGetRemoteIP: Null[JVMSocket] -> Null[Node],

 JVM_read_TCPSocket : JVMSocket -> Null[Message],

 JVM_write_TCPSocket : JVMSocket, Message -> Null[JVMError]

end

vocabulary JVMServerSocket

 imports TCPObjectsVoc, JVMSocket, TCPNodeVoc

 types JVMServerSocket

 operators

 JVM_TCPServerSocketOpen : Node, Nat, Nat ->

 Null[JVMServerSocket],

 JVM_TCPServerSocketClose : JVMServerSocket -> Null[JVMError],

 JVM_TCPServerSocketAccept: JVMServerSocket -> Null[JVMSocket]

end

vocabulary ChannelVoc

 imports JVMServerSocket, JVMSocket, TCPObjectsVoc, TCPObjectsVoc,

TCPNodeVoc

 types

 MessageTuple : Tuple [msg:Message, sender:Node, receiver:Node],

 Status : Enumeration [closed, notAccepting, opening,

 emptying, connecting, reading,

 rClosing, sConnected, connected,

 accepting, waiting, stopping, idle],

 Channel : Tuple[i:Node, j:Node, socket:Null[JVMSocket],

 status:Status, emptying:Bool,

error:Null[JVMError]]

 operators

 empty_channel : -> Channel

end

B4. RecvMed.tioa

imports JVMSocket

imports JVMServerSocket

imports TCPObjectsVoc

imports TCPNodeVoc

imports ChannelVoc

imports algorithm_voc

automaton RecvMed(port:Nat,timeout:Nat)

signature

 input TCP_respRRead

 input TCP_readRError

 input TCP_bind(i:Node)

 input TCP_respAccept

 input TCP_stopListening(i:Node)

 input TCP_rClose(i,j:Node)

 output RECEIVE(m:Null[Message])

66

 output TCP_rRead

 output TCP_respBind(i:Node)

 output TCP_accept

 output TCP_stopAccepting

 output TCP_rCloseStream(i,j:Node)

 internal TCP_senderClosing(i,j:Node)

states

 recvBuffer : Seq[MessageTuple] := {};

 recvChannel : Seq[Channel] := {};

 acceptStatus: Status := idle;

 SSocket : Null[JVMServerSocket] := nil();

let

 getFirst(r , s , i) : Node, Node, Nat -> Null[Message] =

 if (i > len(recvBuffer)) then nil():Null[Message]

 else if (recvBuffer[i].receiver = r /\

 recvBuffer[i].sender = s) then

 embed(recvBuffer[i].msg)

 else

 getFirst(r , s , i + 1);

transitions

 %%

 %% emulates the RECEIVE state

 %%

 %% Two overloaded receive methods that get any message from

 %% the receive buffer

 %%

 output RECEIVE(m) where len(recvBuffer) = 0

 pre

 m = nil();

 output RECEIVE(m) where len(recvBuffer) ~= 0

 pre

 m = embed(head(recvBuffer).msg);

 eff

 recvBuffer := tail(recvBuffer);

 %---

 %%

 %% Bind emulates the BIND and LISTEN socket states

 %%

 input TCP_bind(i)

 eff

 acceptStatus := connecting;

 %%

 output TCP_respBind(i)

 pre

 acceptStatus = connecting;

 eff

 SSocket := JVM_TCPServerSocketOpen(i, port, timeout);

 acceptStatus := accepting;

 %---

67

 %%

 %% emulates the ACCEPT state of the socket, however here

 %% this is state is decoupled with creation of the stream

 %%

 output TCP_accept

 pre

 acceptStatus = accepting;

 eff

 acceptStatus := waiting;

 %%

 %% a response to the accept is return of a stream

 %%

 input TCP_respAccept

 locals

 socket:Null[JVMSocket] := nil();

 eff

 if acceptStatus = waiting then

 socket := JVM_TCPServerSocketAccept(val(SSocket));

 if (socket ~= nil()) then

 recvChannel := recvChannel |-

 [val(JVM_TCPSocketGetLocalIP(socket)),

 val(JVM_TCPSocketGetRemoteIP(socket)), socket,

 connected, false, nil()];

 fi

 acceptStatus := accepting;

 fi

 %%

 output TCP_stopAccepting

 locals

 error:Null[JVMError] := nil();

 pre

 acceptStatus = stopping;

 eff

 acceptStatus := idle;

 error := JVM_TCPServerSocketClose(val(SSocket));

 %---

 %%

 %% prior to entering the CLOSE_SOCKET state we empty

 %% the local buffers.

 %%

 input TCP_stopListening(i)

 eff

 if acceptStatus ~= idle then

 acceptStatus := stopping;

 fi

 %%

 %% emulates CLOSE_SOCKET state.

 %@ implementation closes the server socket

 %%

 input TCP_rClose(i,j)

 locals

 tempRecvBuffer : Seq[MessageTuple] := {};

 eff

 for y:Nat where y < len(recvBuffer) do

 if (recvBuffer[y].sender = i /\ recvBuffer[y].receiver = j)

 then

68

 tempRecvBuffer := tempRecvBuffer |- recvBuffer[y];

 fi

 od

 recvBuffer := {};

 for y:Nat where y < len(tempRecvBuffer) do

 recvBuffer := recvBuffer |- tempRecvBuffer[y];

 od

 for y:Nat where y < len(recvChannel) do

 if (recvChannel[y].i = i /\ recvChannel[y].j = j)

 then

 recvChannel[y].status := rClosing;

 fi

 od

 %---

 %%

 %% sockets provide access to streams, which then are can be read

 %% this action emulates the read access to a stream

 %%

 output TCP_rRead

 pre

 len(recvChannel) > 0;

 eff

 for y:Nat where y < len(recvChannel) do

 if (recvChannel[y].socket ~= nil() /\

 recvChannel[y].status = connected)

 then

 recvChannel[y].status := reading;

 fi

 od

 input TCP_respRRead

 locals

 msg:Null[Message] := nil();

 eff

 for y:Nat where y < len(recvChannel) do

 if (recvChannel[y].socket ~= nil() /\

 recvChannel[y].status = reading)

 then

 msg := JVM_read_TCPSocket(val(recvChannel[y].socket));

 if (msg ~= nil()) then

 recvBuffer := recvBuffer |- [val(msg),

 recvChannel[y].i, recvChannel[y].j];

 fi

 fi

 od

 input TCP_readRError

 eff

 for y:Nat where y < len(recvChannel) do

 if (recvChannel[y].socket ~= nil() /\

 recvChannel[y].status ~= closed)

 then

 recvChannel[y].emptying := true;

 fi

 od

 %---

69

output TCP_rCloseStream(i,j)

 locals

 error:Null[JVMError] := nil();

 pre

 len(recvChannel) > 0;

 eff

 for y:Nat where y < len(recvChannel) do

 if (recvChannel[y].i = i /\

 recvChannel[y].j = j /\

 recvChannel[y].status = rClosing /\

 ~recvChannel[y].emptying = true)

 then

 recvChannel[y].status := closed;

 fi

 od

 %---

 internal TCP_senderClosing(i,j)

 locals

 noMessages:Bool := true;

 pre

 len(recvChannel) > 0;

 eff

 for y:Nat where y < len(recvChannel) do

 if recvChannel[y].status = emptying then

 for v:Nat where v < len(recvBuffer) do

 if (recvBuffer[v].sender ~= i) then

 noMessages := false;

 fi

 od

 fi

 od

 if noMessages then

 for y:Nat where y < len(recvChannel) do

 if (recvChannel[y].i = i)

 then

 recvChannel[y].status := closed;

 fi

 od

 fi

B5. SendMed.tioa

imports JVMSocket

imports JVMServerSocket

imports TCPObjectsVoc

imports TCPNodeVoc

imports ChannelVoc

imports algorithm_voc

automaton SendMed(port:Nat, timeout:Nat)

signature

 input SEND(m:Message, r,s:Node)

 input TCP_senderOpen(s,r:Node, port:Nat)

 input TCP_senderClose(s,r:Node)

 output TCP_write(m: Null[Message], r,s:Node)

70

states

 sendBuffer : Seq[MessageTuple] := {};

 sendChannel : Seq[Channel] := {};

 clocks : Array[Node,AugmentedReal];

initially

 clocks = constant(timeout);

let

 getMessage(r,s,index) : Node, Node, Nat -> Null[Message] =

 if index = len(sendBuffer) then

 nil() : Null[Message]

 else

 if (sendBuffer[index].sender = s /\ sendBuffer[index].receiver =

r) then

 embed(sendBuffer[index].msg)

 else

 getMessage(r,s,index+1);

transitions

 %%%

 %%% SEND simply deposits a message to the channel

 %%%

 input SEND(m,r,s)

 eff

 for y:Nat where y < len(sendChannel) do

 if (sendChannel[y].i = s /\

 sendChannel[y].j = r /\

 sendChannel[y].status ~= closed /\

 sendChannel[y].emptying ~= true)

 then

 sendBuffer := sendBuffer |- [m,r,s];

 fi

 od;

 %---

 %%%

 %%% Messages to be sent must be written to the channel (analogous

 %%% to calling flush() on socket. TCP_write action either returns

 %%% null if there are no more messages or the message that was

 %%% just sent onto the network medium.

 %%%

 output TCP_write(m,r,s) where len(sendBuffer) = 0

 pre

 m = nil();

 output TCP_write(m,r,s) where len(sendBuffer) ~= 0

 locals

 tempSendBuffer :Seq[MessageTuple] := {};

 error :Null[JVMError] := nil();

 msg :Null[MessageTuple] := nil();

 pre

 sendBuffer ~= {};

 m = getMessage(r,s,0);

 eff

 for y:Nat where y < len(sendChannel) do

 if (sendChannel[y].i = s /\ sendChannel[y].j = r)

 then

 for v:Nat where v < len(sendBuffer) do

71

 if (sendBuffer[v].sender = s /\ sendBuffer[v].receiver = r) then

 error :=

JVM_write_TCPSocket(val(sendChannel[y].socket), sendBuffer[v].msg);

 clocks[r] := 0;

 tempSendBuffer := tempSendBuffer |- sendBuffer[v];

 if (error ~= nil()) then

 sendChannel[y].error := error;

 print val(error);

 fi

 fi

 od

 fi

 od

 sendBuffer := {};

 for y:Nat where y < len(tempSendBuffer) do

 sendBuffer := sendBuffer |- tempSendBuffer[y];

 od

 %---

 %%

 %% models set up of the client socket

 %%

 input TCP_senderOpen(s,r,port)

 locals

 match :Bool := false;

 index :Nat := 0;

 socket:Null[JVMSocket] := nil();

 error :Null[JVMError] := nil();

 eff

 for y:Nat where y < len(sendChannel) do

 if (sendChannel[y].i = s /\ sendChannel[y].j = r)

 then

 match := true;

 if (sendChannel[y].socket = nil())

 then

 socket := JVM_TCPSocketOpen(r,s,port);

 sendChannel[y].socket := socket;

 fi

 fi

 od

 if (~match) then

 socket := JVM_TCPSocketOpen(r,s,port);

 sendChannel := sendChannel |- [s, r, socket, opening, false,

nil()];

 fi

 %---

 input TCP_senderClose(s,r)

 locals

 error:Null[JVMError] := nil();

 eff

 for y:Nat where y < len(sendChannel) do

 if (sendChannel[y].i = s /\ sendChannel[y].j = r)

 then

 sendChannel[y].emptying := true;

 error := JVM_TCPSocketClose(val(sendChannel[y].socket));

 if (error ~= nil()) then

 sendChannel[y].error := error;

 print val(error);

72

 fi

 fi

 od

 %---

 %%%

 %%% Trajectory added to support timeout

 %%%

 trajectories

 trajdef v(n:Node)

 invariant len(sendBuffer) ~= 0;

 stop when clocks[n] >= timeout;

 evolve d(clocks[n]) = 1;

B6. TCPChan.tioa

include "myvocabs.tioa"

imports TCPObjects

imports myVocab

automaton JvmCh

signature

 input TCP_write(m:Message)

 input TCP_rRead

 input TCP_accept(j:Node)

 input TCP_stopAccepting(j:Node)

 input TCP_createStream(i,j:Node)

 input TCP_senderCloseStream (i,j:Node)

 input TCP_receiverCloseStream (i,j:Node)

 output TCP_respRead(m:Message)

 output TCP_writeError(m:Message)

 output TCP_readError

 output TCP_respAccept(i,j:Node)

 output TCP_respCreateStream(i,j:Node)

 output TCP_createStreamError (i,j:Node)

 internal TCP_senderClosingStream (i,j:Node)

states

 jvmBuffer : Seq[MessageTuple] := {};

 writeErrors : Seq[MessageTuple] := {};

 sReading : Seq[Stream] := {};

 sAccepting : Seq[Node] := {};

 jvmChannel : Seq[Channel] := {};

transitions

input TCP_write(m,s)

 eff

 for y:Nat where y < len(jvmChannel) do

 if (jvmChannel[y].status = connected \/

 jvmChannel[y].status = sConnected)

 then

 jvmBuffer := jvmBuffer |- [m, , jvmChannel[y].j];

 else

 writeErrors := writeErrors |- [m, embed(s),

jvmChannel[y].j];

73

 fi;

 od;

input TCP_read(s)

 eff

 sReading := sReading |- s;

input TCP_accept(j)

 eff

 sAccepting := sAccepting |- j;

input TCP_stopAccepting(j)

 locals

 tempAccepting:Seq[Node] := {};

 eff

 for y:Nat where y < len(sAccepting) do

 if (j ~= sAccepting[y]) then

 tempAccepting := tempAccepting |- sAccepting[y];

 fi;

 od;

 sAccepting := {};

 for y:Nat where y < len(tempAccepting) do

 sAccepting := sAccepting |- tempAccepting[y];

 od;

input TCP_createStream(i,j)

 locals

 tempAccepting:Seq[Node] := {};

 eff

 if j \in sAccepting then

 jvmChannel := jvmChannel |- [i,j,nil(),connecting,false];

 for y:Nat where y < len(sAccepting) do

 if (j ~= sAccepting[y]) then

 tempAccepting := tempAccepting |- sAccepting[y];

 fi;

 od;

 sAccepting := {};

 for y:Nat where y < len(tempAccepting) do

 sAccepting := sAccepting |- tempAccepting[y];

 od;

 else

 for y:Nat where y < len(jvmChannel) do

 if (jvmChannel[y].i = i /\

 jvmChannel[y].j = j)

 then

 jvmChannel[y].status := notAccepting;

 fi;

 od;

 fi;

input TCP_senderCloseStream(i,j)

 eff

 for y:Nat where y < len(jvmChannel) do

 if (jvmChannel[y].status = connected \/

 jvmChannel[y].status = sConnected)

 then

 jvmChannel[y].emptying := true;

 else

 jvmChannel[y].status := closed;

 fi;

 od;

74

input TCP_receiverCloseStream(i,j)

 locals

 tempJvmBuffer:Seq[MessageTuple] := {};

 tempBool:Bool := false;

 tempNatSeq:Seq[Nat] := {};

 eff

 for y:Nat where y < len(jvmChannel) do

 for z:Nat where y < len(jvmBuffer) do

 if (val(jvmChannel[y].s) = val(jvmBuffer[z].stream) /\

 jvmChannel[y].emptying)

 then

 jvmChannel[y].status := closed;

 tempBool := close_TCPStream(val(jvmChannel[y].s));

 tempNatSeq := tempNatSeq |- z;

 fi;

 od;

 od;

 for y:Nat where y < len(jvmBuffer) do

 if (y \notin tempNatSeq) then

 tempJvmBuffer := tempJvmBuffer |- jvmBuffer[y];

 fi;

 od;

 jvmBuffer := {};

 for y:Nat where y < len(tempJvmBuffer) do

 jvmBuffer := jvmBuffer |- tempJvmBuffer[y];

 od;

output TCP_respRead(m, s)

 locals

 tempJvmBuffer:Seq[MessageTuple] := {};

 tempReading:Seq[Stream] := {};

 pre

 len(jvmBuffer) ~= 0;

 s \in sReading;

 eff

 for y:Nat where y < len(jvmBuffer) do

 if (jvmBuffer[y].data ~= m /\

 val(jvmBuffer[y].stream) ~= s)

 then

 tempJvmBuffer := tempJvmBuffer |- jvmBuffer[y];

 fi;

 od;

 jvmBuffer := {};

 for y:Nat where y < len(tempJvmBuffer) do

 jvmBuffer := jvmBuffer |- tempJvmBuffer[y];

 od;

 for y:Nat where y < len(sReading) do

 if (tempReading[y] ~= s) then

 tempReading := tempReading |- sReading[y];

 fi;

 od;

 sReading := {};

 for y:Nat where y < len(tempReading) do

 sReading := sReading |- tempReading[y];

 od;

output TCP_writeError(m,s)

75

 locals

 tempWriteErrors:Seq[MessageTuple] := {};

 pre

 len(writeErrors) ~= 0;

 eff

 for y:Nat where y < len(writeErrors) do

 if (val(writeErrors[y].stream) ~= s /\

 writeErrors[y].data ~= m)

 then

 tempWriteErrors := tempWriteErrors |- writeErrors[y];

 fi;

 od;

 writeErrors := {};

 for y:Nat where y < len(tempWriteErrors) do

 writeErrors := writeErrors |- tempWriteErrors[y];

 od;

output TCP_readError(s)

 locals

 tempJvmChannel:Seq[Channel] := {};

 pre

 s \in sReading;

 eff

 for y:Nat where y < len(jvmChannel) do

 if (val(jvmChannel[y].s) = s) then

 if (jvmChannel[y].status ~= closed) then

 tempJvmChannel := tempJvmChannel |- jvmChannel[y];

 fi;

 else

 tempJvmChannel := tempJvmChannel |- jvmChannel[y];

 fi;

 od;

 jvmChannel := {};

 for y:Nat where y < len(tempJvmChannel) do

 jvmChannel := jvmChannel |- tempJvmChannel[y];

 od;

output TCP_respAccept(i,j)

 pre

 jvmChannel ~= {};

 eff

 for y:Nat where y < len(jvmChannel) do

 if (jvmChannel[y].i = i /\

 jvmChannel[y].j = j /\

 jvmChannel[y].status = sConnected) then

 jvmChannel[y].status := connected;

 fi;

 od;

output TCP_respCreateStream (i,j,s)

 pre

 jvmChannel ~= {};

 eff

 for y:Nat where y < len(jvmChannel) do

 if (jvmChannel[y].i = i /\

 jvmChannel[y].j = j /\

 jvmChannel[y].status = connecting /\

 val(jvmChannel[y].s) ~= s)

 then

 jvmChannel[y].status := sConnected;

 jvmChannel[y].s := embed(new_TCPStream);

76

 fi;

 od;

output TCP_createStreamError(i,j)

 pre

 jvmChannel ~= {};

 eff

 for y:Nat where y < len(jvmChannel) do

 if (jvmChannel[y].i = i /\

 jvmChannel[y].j = j /\

 jvmChannel[y].status = notAccepting)

 then

 jvmChannel[y].status := closed;

 fi;

 od;

internal TCP_senderClosingStream(i, j)

 pre

 len(jvmChannel) > 0;

 eff

 for y:Nat where y < len(jvmChannel) do

 if (jvmChannel[y].i = i /\

 jvmChannel[y].j = j /\

 jvmChannel[y].status = closed /\

 jvmChannel[y].emptying)

 then

 jvmChannel[y].status := closed;

 jvmChannel[y].emptying := false;

 fi;

 od;

APPENDIX C

Paxos TCP Implementation

C1. TCPPaxos.tioa

include "myvocabs.tioa"

imports JVMSocket

imports JVMServerSocket

imports TCPObjectsVoc

imports TCPNodeVoc

imports ChannelVoc

imports paxos_voc

%%% .:TCP mediator automata:.

include "TCPRecvMed.tioa"

include "TCPSendMed.tioa"

include "TCP_ChanMed.tioa"

%%% .:Paxos automata

include "starteralg.tioa"

include "bpleader.tioa"

include "bpagent.tioa"

include "bpsuccess.tioa"

77

include "leaderelector.tioa"

include "detector.tioa"

%%% meaning of automata parameters

%%% L:Int :: upper bound on time to execute any enabled action

%%% D:Int :: upper bound on message deliver time

%%% C:Int :: time interval between checking if alive status of other

nodes

%%% Z:Int :: time interval between sending of alive message

automaton paxos(n1:Nat, n2:Nat, n3:Nat, n4:Nat, port:Nat,

 timeout:Nat)

 components

 A_starteralg :starteralg([n1,n2,n3,n4],5,timeout,510,500);

 A_detector :detector([n1,n2,n3,n4],5,timeout,510,500);

 A_bpleader :bpleader([n1,n2,n3,n4],5,timeout,510,500);

 A_bpagent :bpagent([n1,n2,n3,n4],5,timeout,510,500);

 A_bpsuccess :bpsuccess([n1,n2,n3,n4],5,timeout,510,500);

 A_leaderelector:leaderelector([n1,n2,n3,n4]);

 S :SendMed(port,timeout);

 R :RecvMed(port,timeout);

 C :ChanMed(port,timeout);

 schedule

 states

 AtHome :Bool := true;

 myIP :Node := [n1,n2,n3,n4]; % IP from parameters

 world :Seq[Node];

 %

 D :AugmentedReal := 0;

 Z :AugmentedReal := 20;

 %

 dummy :Null[Message] := nil();

 ms :Null[Message] := nil();

 mr :Null[Message] := nil();

 %

 leaderIP :Node;

 decision :Null[Int] := nil();

 value:Int := 0;

 %

 exitloop :Bool := false;

 dowhile :Bool := true;

 error :Null[JVMError] := nil();

 server :Node := [192,168,2,2];

 % -- especially when variable initialization involves automata

 % parameters it is best to use the initially block

 initially

 D = timeout /\ leaderIP = [n1,n2,n3,n4] /\ world = world |-

[n1,n2,n3,n4];

 % -- begins paxos schedule

 do

 % -- Everyone sets up their server socket.

 % -- bind

 fire output R.TCP_bind(myIP);

 fire output C.TCP_respBind(error,myIP);

78

 % -- A dedicated server awaits connection requests.

 if (myIP = server) then

 while(dowhile = true) do

 % -- accept only on new connections

 fire output R.TCP_accept;

 % -- listen and accept

 fire output C.TCP_respAccept(error);

 if (error ~=nil()) then

 print val(error);

 if (val(error) = "NoConnectionOnAccept") then dowhile := false; fi

 fi

 od

 else

 % -- create connections to the server

 fire output S.TCP_senderOpen(server, port);

 fi

 if (AtHome = true)

 then

 if ([192,168,2,2] \notin world) then

 world := world |- [192,168,2,2]; % seed the world

 fire output A_detector.InformAlive([192,168,2,2]);

 fi

 if ([192,168,2,3] \notin world) then

 world := world |- [192,168,2,3]; % seed the world

 fire output A_detector.InformAlive([192,168,2,3]);

 fi

 else

 if ([136,145,181,12] \notin world) then

 world := world |- [136,145,181,12]; % seed the world

 fire output A_detector.InformAlive([136,145,181,12]);

 fi

 if ([136,145,181,41] \notin world) then

 world := world |- [136,145,181,41]; % seed the world

 fire output A_detector.InformAlive([136,145,181,41]);

 fi

 fi

 %%% Run the leader election protocol. %%%

 % -- prep and send alive messages

 fire internal A_detector.PrepAliveMessages;

 for y:Nat where y < len(world) do

 fire internal A_detector.Check(world[y]);

 %%%fire output A_detector.InformStopped(world[y]);

 fire output A_detector.SEND(ms);

 fire output S.TCP_write(ms, myIP, world[y]);

 if (ms ~= nil()) then print val(ms); fi

 ms := nil();

 od

 exitloop := false;

 while ~exitloop do

 % -- gives time for messages to arrive and be responded to

 follow A_detector.v duration \infty();

 % -- extract messages from channel if there are any

 fire output R.TCP_read;

 dowhile := true;

 while(dowhile = true) do

79

 fire output C.TCP_respRead(mr);

 fire output R.RECEIVE(mr);

 if (mr ~= nil()) then

 fire output A_detector.InformAlive(val(mr).sender);

 if (val(mr).sender \notin world) then

 world := world |- val(mr).sender;

 fi

 fire output A_detector.InformAlive(val(mr).sender);

 print val(mr);

 else

 dowhile := false;

 fi

 od;

 fire output A_detector.HasEnough(exitloop);

 od

 % -- locally, announce leader

 fire output A_leaderelector.Leader(leaderIP);

 print leaderIP;

 %%% RUN PAXOS %%%

 if (EQ(leaderIP, myIP)) then

 %% PAXOS LEADER ALGORITHM

 % -- create a value to vote for and initialize

 value := choose x;

 fire input A_bpleader.Init(value);

 % gives time for messages to arrive and be responded to

 exitloop := false;

 while ~exitloop do

 % -- leader starts a new round

 fire output A_starteralg.NewRound;

 % -- prep collect messages

 fire internal A_bpleader.Collect;

 % -- send collect messages

 for y:Nat where y < len(world) do

 fire output A_bpleader.SEND(ms);

 fire output S.TCP_write(ms, myIP, world[y]);

 if (ms ~= nil()) then print val(ms); fi

 ms := nil();

 od

follow A_starteralg.v, A_bpsuccess.v, A_bpleader.v duration \infty();

 % -- extract messages from channel if there are any

 fire output R.TCP_read;

 dowhile := true;

 while(dowhile = true) do

 fire output C.TCP_respRead(mr);

 fire output R.RECEIVE(mr);

 if (mr ~= nil()) then

 print val(mr);

 else

 dowhile := false;

 fi

 od;

80

 % -- gather last messages

 fire internal A_bpleader.GatherLast;

 fire internal A_bpleader.Continue;

 fire output A_bpleader.NextPhase(begincast, exitloop);

 fire internal A_starteralg.CheckRndSuccess;

 od;

 exitloop := false;

 while ~exitloop do

 % -- prep and send begincast messages

 fire output A_bpleader.BeginCast;

 for y:Nat where y < len(world) do

 fire output A_bpleader.SEND(ms);

 fire output S.TCP_write(ms, myIP, world[y]);

 if (ms ~= nil()) then print val(ms); fi

 ms := nil();

 od

 % -- gives time for messages to arrive and be responded to

follow A_starteralg.v, A_bpsuccess.v, A_bpleader.v duration \infty();

 % -- extract messages from channel if there are any

 fire output R.TCP_read;

 dowhile := true;

 while(dowhile = true) do

 fire output C.TCP_respRead(mr);

 fire output R.RECEIVE(mr);

 if (mr ~= nil()) then

 print val(mr);

 else

 dowhile := false;

 fi

 od;

 % -- process accept messages

 fire internal A_bpleader.GatherAccept;

 fire output A_bpleader.NextPhase(decided, exitloop);

 fire internal A_starteralg.CheckRndSuccess;

 od

 % -- reached decision

 fire output A_bpleader.RndSuccess(decision);

 fire internal A_starteralg.CheckRndSuccess;

 fire internal A_bpleader.GatherOldRound;

 exitloop := false;

 while ~exitloop do

 % -- prep and send announce success

 fire internal A_bpsuccess.SendSuccess;

 for y:Nat where y < len(world) do

 fire output A_bpsuccess.SEND(ms);

 fire output S.TCP_write(ms, myIP, world[y]);

 if (ms ~= nil()) then print val(ms); fi

 ms := nil();

 od;

follow A_starteralg.v, A_bpsuccess.v, A_bpleader.v duration \infty();

 % -- extract messages from channel if there are any

 fire output R.TCP_read;

 dowhile := true;

 while(dowhile = true) do

81

 fire output C.TCP_respRead(mr);

 fire output R.RECEIVE(mr);

 if (mr ~= nil()) then

 print val(mr);

 else

 dowhile := false;

 fi

 od;

 fire internal A_bpsuccess.GatherAck;

 fire output A_bpsuccess.HasEnoughAcks(exitloop);

 od;

 else

 %%% PAXOS AGENT ALGORITHM

 exitloop := false;

 while ~exitloop do

follow A_starteralg.v, A_bpsuccess.v, A_bpagent.v duration \infty();

 % agents collect

 % -- extract messages from channel if there are any

 fire output R.TCP_read;

 dowhile := true;

 while(dowhile = true) do

 fire output C.TCP_respRead(mr);

 fire output R.RECEIVE(mr);

 if (mr ~= nil()) then

 print val(mr);

 else

 dowhile := false;

 fi

 od;

 % -- three stages of agent, preconditions should ensure that

 % only the proper one is executed

 fire internal A_bpagent.LastAccept;

 fire internal A_bpagent.Accept;

 fire internal A_bpsuccess.GatherSuccess;

 % -- send response

 dowhile := true;

 while dowhile do

 fire output A_bpagent.SEND(ms);

 fire output S.TCP_write(ms, myIP, leaderIP);

 if (ms ~= nil()) then

 print val(ms);

 ms := nil();

 else

 dowhile := false;

 fi

 od;

 fire output A_bpsuccess.NextPhase(exitloop);

 od;

 fire internal A_bpsuccess.SendSuccess;

 for y:Nat where y < len(world) do

 fire output A_bpsuccess.SEND(ms);

 fire output S.TCP_write(ms, myIP, world[y]);

82

 ms := nil();

 od;

 fi

 fire output A_bpsuccess.Decide(decision);

 if (decision ~= nil()) then

 print val(decision);

 fi

 fire output R.TCP_read;

 dowhile := true;

 while(dowhile = true) do

 fire output C.TCP_respRead(mr);

 fire output R.RECEIVE(mr);

 if (mr ~= nil()) then

 print val(mr);

 else

 dowhile := false;

 fi

 od;

 od

C2. myvocabs.tioa

vocabulary TCPObjectsVoc

 types

 IPv4 : Tuple[one:Nat, two:Nat, three:Nat, four:Nat],

 IPv6 : Tuple[one:Nat, two:Nat, three:Nat, four:Nat,

 five:Nat, six:Nat],

 JVMError : String

end

vocabulary TCPNodeVoc

 imports TCPObjectsVoc

 types

 Node : IPv4

 operators

 GT : Node, Node -> Bool,

 EQ : Node, Node -> Bool,

 LT : Node, Node -> Bool

end

%%% .:Paxos vocabs:.

vocabulary paxos_voc

 imports TCPObjectsVoc

 imports TCPNodeVoc

 types NodeMode : Enumeration [live, stopped, begin, last, accept,

success, oldround,

 collect, gatherlast,

wait, begincast, gatheraccept,

 decided, rnddone, ack],

 Round : Tuple [C:Int, O:Node],

 Data : Tuple [M:NodeMode, R:Round, RP:Round, V:Int],

 Message : Tuple[data:Data, sender:Node, receiver:Node],

 Mode : Enumeration[done,working,leader,notleader]

end

83

vocabulary JVMSocket

 imports TCPObjectsVoc, TCPNodeVoc

 imports paxos_voc

 types JVMSocket

 operators

 JVM_TCPSocketOpen : Node, Nat, Nat -> Null[JVMSocket],

 JVM_TCPSocketClose : JVMSocket -> Null[JVMError],

 JVM_TCPSocketGetLocalIP : Null[JVMSocket] -> Null[Node],

 JVM_TCPSocketGetRemoteIP: Null[JVMSocket] -> Null[Node],

 JVM_read_TCPSocket : Null[JVMSocket] -> Null[Message],

 JVM_write_TCPSocket : JVMSocket, Message -> Null[JVMError],

 JVM_TCPSocketIsConnected: Null[JVMSocket] -> Bool

end

vocabulary JVMServerSocket

 imports TCPObjectsVoc, JVMSocket, TCPNodeVoc

 types JVMServerSocket

 operators

 JVM_TCPServerSocketOpen : Node, Nat, Nat ->

Null[JVMServerSocket],

 JVM_TCPServerSocketClose : JVMServerSocket -> Null[JVMError],

 JVM_TCPServerSocketAccept: JVMServerSocket -> Null[JVMSocket]

end

%% This type provides sugar for the actual types and provides

%% declaration for types in the specification of the JCP channel.

vocabulary ChannelVoc

 imports JVMServerSocket, JVMSocket, TCPObjectsVoc, TCPObjectsVoc,

TCPNodeVoc

 types

 MessageTuple : Tuple [msg:Message, sender:Node, receiver:Node],

 Status : Enumeration [closed, notAccepting, opening,

emptying,

 connecting, reading, rClosing, sConnected,

connected,

 accepting, waiting, stopping, idle],

 Channel : Tuple[node :Node, socket:Null[JVMSocket],

 status:Status, emptying:Bool,

error:Null[JVMError]]

 operators

 empty_channel : -> Channel

end

C3. TCP_ChanMed.tioa

automaton ChanMed(port :Nat, timeout :Nat)

signature

 % -- actions paired with the RecvMed

 input TCP_read

 output TCP_respRead(m :Null[Message])

 input TCP_bind(local :Node)

 output TCP_respBind(error: Null[JVMError], local :Node)

 input TCP_accept

 output TCP_respAccept(error: Null[JVMError])

 input TCP_stopAccepting

 input TCP_stopListening(remote :Node)

 input TCP_rClose(remote :Node)

84

 input TCP_rCloseStream(remote :Node)

 % -- actions paired with the SendMed

 input TCP_senderOpen(remote :Node, port :Nat)

 input TCP_senderClose(remote :Node)

 input TCP_write(m: Null[Message], s,r :Node)

 % -- internal actions

 internal TCP_senderClosing(remote :Node)

 % -- universal - only reports partial error information

 % per each established connection

 output TCP_getError(e :Null[JVMError], remote :Node)

states

 % -- server socket

 SSocket : Null[JVMServerSocket] := nil();

 % -- current status of the server socket

 acceptStatus : Status := idle;

 % -- error (if any) from the last operation on server socket

 SError : Null[JVMError] := nil();

 % -- error (if any) on the last accept attempt

 AError : Null[JVMError] := nil();

 % -- a list of all established connections

 tcpChannel : Seq[Channel] := {};

 % -- a buffer for network extracted messages

 recvBuffer : Seq[Message] := {};

let

 % -- searches all established connections and returns an

 % error (if any) by the last operation on that connection

 getError(r,index) : Node, Nat -> Null[JVMError] =

 if index = len(tcpChannel) then

 nil() : Null[JVMError]

 else

 if (tcpChannel[index].node = r) then

 tcpChannel[index].error

 else

 getError(r,index+1);

transitions

 %%%%%%%%%%% READ %%%%%%%%%%%%

 % -- goes through connected sockets and sets their

 % status to reading

 input TCP_read

 locals

 msg : Null[Message] := nil();

 eff

 for n:Nat where n < len(tcpChannel) do

 if (tcpChannel[n].socket ~= nil() /\

 tcpChannel[n].status = connected)

 then

 tcpChannel[n].status := reading;

 msg := JVM_read_TCPSocket(tcpChannel[n].socket);

 if (msg = nil()) then

 tcpChannel[n].error := embed("TimeoutOnRead");

 else

 recvBuffer := recvBuffer |- val(msg);

 fi

 fi

85

 od

 % -- reads a message from the first reading socket

 output TCP_respRead(m) where len(recvBuffer) = 0

 pre

 m = nil();

 eff

 for n:Nat where n < len(tcpChannel) do

 if (tcpChannel[n].status = reading)

 then

 tcpChannel[n].status := connected;

 fi

 od

 output TCP_respRead(m) where len(recvBuffer) ~= 0

 pre

 m = embed(head(recvBuffer));

 eff

 recvBuffer := tail(recvBuffer);

 for n:Nat where n < len(tcpChannel) do

 if (tcpChannel[n].status = reading)

 then

 tcpChannel[n].status := connected;

 fi

 od

 %%%%%%%%%%% BIND to SERVER SOCKET %%%%%%%%%%%%

 % -- bind emulates the BIND and LISTEN socket states

 input TCP_bind(local)

 eff

 acceptStatus := connecting;

 SSocket := JVM_TCPServerSocketOpen(local, port, timeout);

 if (SSocket = nil()) then

 SError := embed("FailedToOpenServerSocket");

 fi

 % --

 output TCP_respBind(error, local)

 pre

 acceptStatus = connecting;

 error = SError;

 eff

 if (SSocket ~= nil()) then

 acceptStatus := accepting;

 fi

 %%%%%%%%%%% ACCEPT %%%%%%%%%%%%

 % -- emulates the ACCEPT state of the socket, however here

 % this is state is decoupled with creation of the stream

 input TCP_accept

 locals

 socket:Null[JVMSocket] := nil();

 found :Bool := false;

 eff

 if (acceptStatus = accepting) then

 acceptStatus := waiting;

 socket := JVM_TCPServerSocketAccept(val(SSocket));

 if (socket ~= nil()) then

 for n:Nat where n < len(tcpChannel) /\ ~found do

86

 if (tcpChannel[n].node =

val(JVM_TCPSocketGetRemoteIP(socket)))

 then

 found := true;

 if (tcpChannel[n].status ~= connected \/

 ~JVM_TCPSocketIsConnected(tcpChannel[n].socket

))

 then

 tcpChannel[n].socket := socket;

 tcpChannel[n].status := connected;

 tcpChannel[n].emptying := false;

 fi

 fi

 od

 if (found = false /\ JVM_TCPSocketIsConnected(socket))

 then

 tcpChannel := tcpChannel |-

[val(JVM_TCPSocketGetRemoteIP(socket)), socket, connected, false,

nil()];

 else

 AError := embed("NoConnectionOnAccept");

 fi

 else

 AError := embed("NoConnectionOnAccept");

 fi

 fi

 % -- a response to the accept is return of a stream

 output TCP_respAccept(error)

 pre

 error = AError;

 eff

 if acceptStatus = waiting then

 acceptStatus := accepting;

 AError := nil();

 fi

 % --

 input TCP_stopAccepting

 locals

 error:Null[JVMError] := nil();

 eff

 if (acceptStatus = stopping) then

 acceptStatus := idle;

 error := JVM_TCPServerSocketClose(val(SSocket));

 if (error ~= nil())

 then

 print error;

 fi

 fi

 %%%%%%%%%%% CLOSING %%%%%%%%%%%%

 % -- prior to entering the CLOSE_SOCKET state we empty

 % the local buffers.

 input TCP_stopListening(remote)

 eff

 if acceptStatus ~= idle then

 acceptStatus := stopping;

 fi

87

 % -- emulates CLOSE_SOCKET state.

 input TCP_rClose(remote)

 locals

 tempRecvBuffer : Seq[MessageTuple] := {};

 eff

 for y:Nat where y < len(tcpChannel) do

 if (tcpChannel[y].node = remote)

 then

 tcpChannel[y].status := rClosing;

 fi

 od

 input TCP_rCloseStream(remote)

 eff

 for y:Nat where y < len(tcpChannel) do

 if (tcpChannel[y].node = remote /\

 tcpChannel[y].status = rClosing /\

 tcpChannel[y].emptying = false)

 then

 tcpChannel[y].status := closed;

 fi

 od

 % --

 internal TCP_senderClosing(remote)

 pre

 len(tcpChannel) > 0;

 eff

 for y:Nat where y < len(tcpChannel) do

 if (tcpChannel[y].status = emptying /\ tcpChannel[y].node =

remote)

 then

 tcpChannel[y].status := closed;

 fi

 od

 %%%%%%%%%%% ERROR %%%%%%%%%%%%

 % --

 output TCP_getError(e, remote)

 pre

 e = getError(remote, 0);

 eff

 for y:Nat where y < len(tcpChannel) do

 if (tcpChannel[y].socket ~= nil() /\

 tcpChannel[y].error ~= nil() /\

 tcpChannel[y].node = remote /\

 tcpChannel[y].status = reading)

 then

 tcpChannel[y].emptying := true;

 fi

 od

 %%%%

 %%%% ACTIONS PAIRED WITH THE SEND MEDIATOR

 %%%%

 % -- given a message with sender and receiver as s and r

respectively

 % a message is written to the appropriate channel

88

 input TCP_write(m,s,r)

 locals

 error :Null[JVMError] := nil();

 found :Bool := false;

 eff

 for n:Nat where (n < len(tcpChannel)) /\ (found = false) do

 if (tcpChannel[n].socket = nil())

 then

 tcpChannel[n].status := closed;

 fi

 if (tcpChannel[n].socket ~= nil() /\

 tcpChannel[n].status = connected /\

 tcpChannel[n].node = r)

 then

 found := true;

 error := JVM_write_TCPSocket(val(tcpChannel[n].socket),

val(m));

 if (error ~= nil()) then

 tcpChannel[n].error := error;

 print val(error);

 fi

 fi

 od

 % -- results in a connection being established (if possible)

 % with the remove with specified port.

 input TCP_senderOpen(remote,port)

 locals

 match :Bool := false;

 index :Nat := 0;

 socket:Null[JVMSocket] := nil();

 error :Null[JVMError] := nil();

 eff

 for n:Nat where n < len(tcpChannel) do

 if (tcpChannel[n].node = remote)

 then

 match := true;

 if (tcpChannel[n].socket = nil() \/

 tcpChannel[n].status = closed)

 then

 tcpChannel[n].socket :=

JVM_TCPSocketOpen(remote,port,timeout);

 fi

 fi

 od

 if (match = false) then

 socket := JVM_TCPSocketOpen(remote, port, timeout);

 if (socket ~= nil())

 then

 tcpChannel := tcpChannel |- [remote, socket, connected,

false, nil()];

 else

 tcpChannel := tcpChannel |- [remote, socket, closed,

false, nil()];

 fi

 fi

 % -- results in closing of the connection between s and r

 input TCP_senderClose(remote)

 locals

 error:Null[JVMError] := nil();

89

 eff

 for n:Nat where n < len(tcpChannel) do

 if (tcpChannel[n].node = remote)

 then

 tcpChannel[n].emptying := true;

 error := JVM_TCPSocketClose(val(tcpChannel[n].socket));

 if (error ~= nil()) then

 tcpChannel[n].error := error;

 print val(error);

 fi

 fi

 od

C4. TCPRecvMed.tioa

automaton RecvMed(port:Nat,timeout:Nat)

signature

 % -- delivers a message to the algorithm automaton

 output RECEIVE(m:Null[Message])

 % -- initiates read on all open connections

 output TCP_read

 % -- returns messages from all open connections (if any)

 input TCP_respRead(m :Null[Message])

 % -- binds system to the server socket

 output TCP_bind(local :Node)

 input TCP_respBind(error :Null[JVMError], local :Node)

 % -- accept connection methods

 output TCP_accept

 input TCP_respAccept(error: Null[JVMError])

 output TCP_stopAccepting

 % -- extracts the last error for a given connection

 input TCP_getError(e :Null[JVMError], remote :Node)

 % -- close and clean up

 output TCP_stopListening(remote :Node)

 output TCP_rCloseStream(remote :Node)

 output TCP_rClose(remote:Node)

states

 recvBuffer : Seq[Message] := { };

 recvErrors : Map[Node,Null[JVMError]];

 remoteStatus: Map[Node,Status];

 localStatus : Status := idle;

 localError : Null[JVMError] := nil();

 noop : Bool := true;

transitions

 %%%%%%%%%%% DELIVER %%%%%%%%%%%

 % -- delivers message to the algorithm automata

 output RECEIVE(m) where len(recvBuffer) = 0

 pre

 m = nil();

 output RECEIVE(m) where len(recvBuffer) ~= 0

90

 pre

 m = embed(head(recvBuffer));

 eff

 recvBuffer := tail(recvBuffer);

 %%%%%%%%%%% EXTRACT %%%%%%%%%%%

 % -- send request to read a message from a remote node

 output TCP_read

 pre

 localStatus ~= idle;

 %eff

 %% @FIXME: this should be acceptable by the FE, but it is not!

 %recvErrors := {};

 % -- if there was a message then add it to the message buffer

 input TCP_respRead(m)

 eff

 if (m ~= nil())

 then

 recvBuffer := recvBuffer |- val(m);

 fi

 %%%%%%%%%%% BIND %%%%%%%%%%%

 % -- bind emulates the BIND and LISTEN socket states

 output TCP_bind(local)

 pre

 localStatus = idle;

 eff

 localStatus := connecting;

 localError := nil();

 input TCP_respBind(error,local)

 locals

 ftoss : JVMError := "FailedToOpenServerSocket";

 eff

 if (error = nil()) then

 if (localStatus = connecting) then

 localStatus := accepting;

 fi

 else

 localError := error;

 if (val(error) = ftoss) then

 localStatus := idle;

 fi

 fi

 %%%%%%%%%%% ACCEPT %%%%%%%%%%%

 % -- emulates the ACCEPT state of the socket, however here

 % this is state is decoupled with creation of the stream

 output TCP_accept

 pre

 localStatus = accepting;

 eff

 localStatus := waiting;

 input TCP_respAccept(error)

 eff

 if (localStatus = waiting) then

91

 localStatus := accepting;

 fi

 localError := error;

 output TCP_stopAccepting

 pre

 true;

 eff

 noop := true;

 % -- prior to entering the CLOSE_SOCKET state we empty the local

buffers.

 output TCP_stopListening(remote)

 pre

 true;

 eff

 noop := true;

 % -- emulates CLOSE_SOCKET state. implementation closes the server

socket

 output TCP_rClose(remote)

 pre

 true;

 eff

 noop := true;

 % --

 output TCP_rCloseStream(remote)

 pre

 true;

 eff

 noop := true;

 % -- get an error message associated with the remote connection

 input TCP_getError(e, remote)

 eff

 if (e ~= nil())

 then

 recvErrors := update(recvErrors, remote, e);

 print val(e);

 fi

C5. TCPRecvMed.tioa

automaton SendMed(port:Nat, timeout:Nat)

signature

 % -- deposits a message from the algorithm automata

 input SEND(m:Null[Message])

 % The following actions are paired with the ChanMed

 % -- creates a connection with the remote node

 output TCP_senderOpen(remote:Node, port:Nat)

 % -- closes a connection with the remote node

 output TCP_senderClose(remote:Node)

 % -- forces a message out to the network

 output TCP_write(m: Null[Message], s,r:Node)

states

 sendBuffer : Seq[MessageTuple] := { };

92

 clocks : Array[Node,AugmentedReal];

initially

 clocks = constant(\infty);

let

 getMessage(s,r,index) : Node, Node, Nat -> Null[Message] =

 if index = len(sendBuffer) then

 nil() : Null[Message]

 else

 if (sendBuffer[index].sender = s /\ sendBuffer[index].receiver =

r) then

 embed(sendBuffer[index].msg)

 else

 getMessage(s,r,index+1);

transitions

 % -- deposits a message to the send buffer

 input SEND(m)

 eff

 if (m ~= nil()) then

 sendBuffer := sendBuffer |-

[val(m),val(m).sender,val(m).receiver];

 fi

 % -- results in opening of a connection with the remote node

 output TCP_senderOpen(remote,port)

 pre

 true;

 % -- results in closing of a connection with the remote node

 output TCP_senderClose(remote)

 pre

 true;

 % -- TCP_write a message to the channel. this results in

 % the TCP_ChanMed to write it into the TCP socket.

 output TCP_write(m,s,r) where len(sendBuffer) = 0

 pre

 m = nil();

 output TCP_write(m,s,r) where len(sendBuffer) ~= 0

 locals

 tempSendBuffer :Seq[MessageTuple] := { };

 msg :Null[Message] := nil();

 pre

 m = getMessage(s,r,0);

 eff

 msg := getMessage(s,r,0);

 if (msg ~= nil()) then

 for n:Nat where n < len(sendBuffer) do

 if (sendBuffer[n].msg = val(msg)) then

 clocks[r] := 0;

 else

 tempSendBuffer := tempSendBuffer |- sendBuffer[n];

 fi

 od

 sendBuffer := tempSendBuffer;

 fi

93

 %---

 %%%

 %%% Trajectory modeling the delay needed for a message to be

 %%% delivered to the remote node.

 %%%

 trajectories

 trajdef v(n:Node)

 invariant len(sendBuffer) ~= 0;

 stop when clocks[n] >= timeout;

 evolve d(clocks[n]) = 1;

