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Optimal Graph Design (OGD) is a problem frequently occurring in several 

common applications ranging from designing communication and transportation 

networks to discovering new drugs. More often than not the graphs to be designed 

need to satisfy multiple, conflicting, objectives e.g. total length, complexity or other 

shape and property limitations. In addition to problem specific criteria, the methods 

proposed to solve the problem need to consider several issues related to the 

representation of the solutions and the manipulation of graphs. These graph-structure 

specific issues coupled with the multi-objective nature of OGD form a challenging 

problem of increased complexity with wide applications in several research fields. 

Our research proposes, MEGA, an algorithmic framework for solving the problem 

of multi-objective optimal graph design for labeled, undirected graphs. The method 

uses the multi-objective evolutionary graph, a graph-specific optimization meta-

heuristic that combines evolutionary algorithms with graph theory and local search 

techniques exploiting domain-specific knowledge, to efficiently explore the feasible 

search space and obtain multiple equivalent compromising solutions. The algorithm 

introduces a novel niching mechanism that takes into account both parameter and 

objective space solution diversity. Morevoer, the method implements a self-adaptive 

approach to control and ensure appropriate local search use. In the experimental 

section we present results for the problem of designing molecules satisfying multiple 

pharmaceutically relevant objectives. The results suggest that the method can 

provide a variety of valid, interesting graph solutions. In comparisons with commonly 

used algorithms, MEGA is found to produce statistically significant better results.  
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Chapter 1 

 

Introduction 

 

1.1 Overview 

Optimal Graph Design (OGD) is a problem of significant interest to a wide range 

of problem domains including engineering (e.g. transport network design), 

telecommunications (e.g. wireless antenna positioning), electronics (e.g. digital circuit 

design), computer science (e.g. neural network architecture) and life sciences (e.g. 

molecular design) [G89], [BBS97], [CS04]. The objective in all of these applications is 

to design from scratch, or refine from a given initial graph, the optimal graph(s) 

satisfying any constraints or criteria imposed on the problem. Applied OGD, as most 

other real life problems, is often subject to multiple criteria or objectives. Depending 

on the specific problem these objectives may include requirements related to the sets 

of vertices and edges to use in the graph [EMS01], limitations on the size of the 

graph, constraints on the number of edge crossings and the type of angles used 

[UBSE98], or matching specific 2D shapes or 3D volumes [NAP09]. In addition to the 

problem specific criteria, methodologies proposed to solve the OGD problem need to 

take into account several issues related to the graph representation of the solutions. 

Such issues include the encoding of the graphs using appropriate data structures, the 

generation of valid -according to the specific problem- graphs, the construction and 

preservation of certain geometries and the accommodation of special topological 

features related to the problem. These graph-structure specific issues coupled with
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the multi-objective nature of applied OGD form a challenging problem of increased 

complexity with wide applications across several research fields.  

The purpose of the research described in this thesis is to propose an algorithmic 

framework for the problem of multi-objective optimal graph design for labelled, 

undirected graphs. Solutions to this problem are graphs consisting of components 

from two sets, the set of vertices and the set of edges. Multiple types/labels of 

vertices and edges are allowed therefore, the problem suffers from the combinatorial 

explosion of the number of potential graph solutions. Similar to most multi-objective 

problems, the OGD problem usually has a complex, multi-modal solution space due 

to the multiple potentially conflicting objectives that need to be satisfied by the 

solution graphs and, the combinatorial nature of the problem. Consequently, from a 

computational optimization perspective the problem corresponds to searching the 

huge space of valid graphs to discover and select few designs satisfying, or 

compromising in the case of conflicts, the objectives imposed. In this context, validity 

of the resulting graphs is problem specific and, as such, the inclusion of problem 

domain knowledge to the process can facilitate the process [CLV07]. To solve the 

problem, a search strategy capable of efficient exploration of the space needs to be 

implemented.  

 

1.2 Strategy 

The strategy required to address the OGD problem needs to combine efficiency, 

to enable sufficient exploration of the space, and effectiveness since the presence of 

multiple objectives and the complexity of the space point to the presence of multiple 

solutions at different regions of the space. Our research aims to develop an 

algorithmic framework that can be generally applicable to problems requiring multi-

objective optimization of solutions that may be better and more naturally represented 

as graphs. The approach we have chosen to follow is twofold, blending global search 
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methods with local search techniques to create a new, hybrid algorithm, and also 

expanding on current research on Evolutionary and Memetic Algorithms by 

introducing novel features, such as self-adaptation capabilities. Global search is 

achieved via the use of multi-objective evolutionary algorithm principles while local 

search is driven by knowledge, either specific to the problem available through 

previous efforts or, acquired during the search process. In this sense, the proposed 

methodology we term Multi-objective Evolutionary Graph Algorithm (MEGA) [NAP09] 

is both knowledge-driven and self-adaptive, related to research performed in the 

fields of Memetic Algorithms and Genetic Local Search [M89], [K02].  

An implementation of the proposed framework is applied to the problem of 

computer-aided small molecule design [SF05] complemented by domain specific 

techniques to design chemical structures satisfying multiple pharmaceutically related 

objectives. In this problem the primary objective is that the chemical design exhibits 

appropriate pharmacodynamic properties (i.e., binding affinity) to the target receptor 

while satisfying several additional objectives/constraints that are essential for a 

molecule to be an effective and safe drug. Predicted performance of chemical 

designs has been provided by computational modeling methods developed for the 

purpose of this work that enable scoring of molecular designs to each objective 

considered to guide chemical space search [NAP09]. 

The evaluation of our research is performed on test cases with potential practical 

use to the drug design community via both, quantitative measures implemented for 

this purpose, and qualitatively through expert validation of the results. Quantitatively, 

computational performance measures widely used for the validation of multi-objective 

methods are used for the evaluation of the results produced by the experimental 

runs. Numerous runs with multiple starting populations and attribute settings are 

rigorously applied to assess the ability of the algorithms to consistently converge. 

Qualitatively, the algorithm implementation is evaluated through its performance in 

producing chemical structures satisfying multiple objectives in real problem cases 
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selected in collaboration with expert academic partners. The qualitative evaluation of 

our results is facilitated by the choice of test cases with known 3D structures and 

solutions (i.e., ligands). The available knowledge is used for comparison purposes 

with our results and provides indications for the success of the method. Expert 

validation is performed by collaborating partners in medicinal chemistry. 

It is worth noting that the general algorithmic framework may be used in 

numerous other problems, for example the graph-drawing problem [BBS97] where 

the aim is to design graphs with an optimal layout according to some aesthetic 

criteria, the traveling salesman problem [G89] where a graph satisfying the 

requirement for the shortest route visiting all the cities is sought, or the design of a 

telecommunication network [CS04] where the requirements may be related to the 

determination of the vertices and the links of the network and the selection of the best 

possible router patterns to use to ensure the best possible coverage at the minimum 

cost. 

 

1.3 Original Aspects 

In the field of optimization research, when confronted with complex, unknown 

search landscapes, it is common to utilize algorithms inspired by nature. Such 

algorithms, known as Evolutionary Algorithms (EA), are known to have excellent 

capabilities for global search even when little or no information is available about the 

underlying functions defining the feasible search space [G89]. EAs are stochastic, 

heuristic-based approaches to objective optimization that have been shown to be 

especially suitable for exploring large search spaces [MZ96]. EAs have also been 

used extensively for multi-objective problems with several Multi-objective 

Optimization Evolutionary Algorithms (MOEA), sometimes referred to as Evolutionary 

Multi-objective Optimization (EMO), cited in the literature [CLV07]. However, EA-

based approaches suffer from comparatively slow performance which may limit 
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applicability in several problem cases and cannot guarantee the discovery of the 

optimal solution [KCL08]. A related class of techniques, Memetic Algorithms (MA), 

has been proposed to alleviate these problems. MAs combine the excellent global 

search capabilities of EAs with local search methods to improve performance and at 

the same time reduce the time to convergence [M89], [K02]. In effect MAs 

incorporate appropriate methods known to excel in local search problem settings to 

EAs to guide search and expedite convergence.  

Our research is expanding on current state of the art Multi-objective Optimization 

(MOOP) research to introduce MEGA, a new class of self-adaptive multi-objective 

memetic algorithms that use graphs for solution representation and exploit available 

knowledge to control and enhance search space exploration and efficient solution 

discovery. The method combines the best characteristics of EAs and local search 

with graph theory elements, data mining techniques and knowledge-driven 

approaches to meet its goals.  

Specifically, the work presented in the following chapters combines and advances 

the latest research from the fields of multi-objective optimization, memetic and 

evolutionary algorithms and optimal graph design. Although each of the three fields 

has periodically seen intense research, work at bridging them and utilizing ideas 

across research domains has been extremely limited. Most existing implementations 

in the optimal graph design field use evolutionary algorithms but few use graph 

chromosome representations and even fewer attempt to accommodate the conflicting 

objectives imposed by the problem through MOEA algorithms. Alternatively, a 

number of graph drawing applications resort to the use of evolutionary algorithms and 

several use graph-based chromosomes but very few have attempted to take into 

account multiple objectives. Our strategy has been to select the best approaches, as 

reported in the literature, integrate them and build on them to form new, hybrid 

optimal graph design methods able to search complex, vast solution spaces both 

effectively and efficiently. On several occasions algorithmic novelties had to be 
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introduced to ensure improved performance of the proposed systems. The list of 

original aspects introduced includes: 

• Graph-based chromosome representation: Typical Evolutionary 

Algorithms use bit strings to represent the individual chromosome members 

of the population. While in some problems this representation is convenient, 

when solutions to a problem can be naturally represented as graphs, the 

usage of bit strings requires creative techniques to encode solutions 

appropriately. This encoding and subsequent decoding step has three main 

drawbacks: (a) increased algorithmic complexity (b) information loss and, (c) 

performance costs. Our approach to design and use graphs as 

chromosomes deals with all of these problems effectively. This approach has 

seen only limited use previously and our results support its usefulness and 

demonstrate its advantages to the scientific community. 

• Information-rich subgraph genes: Our methodology provides for subgraph 

genes containing information about their weight and likely attachment points. 

Weights are set so as to encode available knowledge about the privileged 

status, or suitability, of the specific subgraph for the problem investigated. 

Information on attachment points enables appropriate graph 

extension/modification according to the problem constraints. Taken together, 

information-rich subgraph genes have the ability to encode problem specific 

knowledge to favor the design of more promising graphs and increase 

chances to success.  

• Niching mechanism: The proposed framework uses a unique niching 

mechanism designed to preserve population diversity in both, parameter 

(genotype) and objective (phenotype) space. The mechanism makes use of 

graph clustering to ensure that a variety of different promising graph designs 

survive long enough in the evolutionary cycle to contribute to the solution 

search. It is worth noting that the niching mechanism does take into account 
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the performance of the solutions in objective space in order to ensure that the 

solution set produced combines chromosome diversity with performance. 

• Elitism: The algorithm proposed is -to the best of our knowledge- the first 

genetic graph algorithm reported to incorporate a secondary population 

mechanism designed specifically to preserve good nondominated solutions 

from getting lost. Elitism is also incorporated by allowing solutions from 

previous generations to compete on equal terms with the solutions created 

by evolutionary steps, i.e., mutation and crossover. 

• Exploitation of Knowledge (Memetic) Component: The algorithm 

incorporates novelties that exploit knowledge of two types: problem-specific 

knowledge available during the set-up of the search process and knowledge 

acquired during optimization. To accommodate available problem specific 

knowledge the method incorporates simple heuristics to improve local search 

efficiency. These heuristics involve the usage of subgraph genes weighted 

according to information about the performance of pre-existing graphs 

containing them, rules to restrict the formation of new graphs using 

appropriate edge types and attachment points and custom graph-specific 

mutation and crossover operators. Knowledge obtained during the 

optimization search requires first, a mechanism to discover that knowledge 

and second an operator to exploit it. The discovery mechanism relies on the 

use of quantitative performance measures monitoring the progress of the 

search and, thus, providing information on conditions indicating premature 

convergence or stall/stagnation of the process. Exploitation takes place 

through a memetic mechanism which uses a novel, self-adaptive, anti-

stagnation mechanism that attempts to escape local minima by selectively 

applying local search techniques to intensively explore local neighborhoods 

for promising solutions and enrich the population with new genetic material. 

This memetic, self-adaptive component of the algorithm complements the 
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global search capabilities inherent to EA-based approaches, provides a 

means for focused exploration of select space regions and promotes steady 

search progress. 

At the application level, our algorithm has made contributions through its 

application to a unique type of small molecule structure design -also known as de 

novo drug design- problem, that of selectivity between closely resembling target 

receptors. In this context, molecules are interpreted as graphs whose vertices and 

edges correspond to atoms and bonds respectively [LG03]. This is in line with current 

structure-activity relationship theory according to which, drug action is a function of its 

chemical graph and specifically its ability to complement, or bind to, specific sites of 

biological targets (the receptors) and, thereby, cause certain biological effects 

[MG04]. We have designed tests cases where for example, the solutions are required 

to bind effectively to a “positive” pharmaceutical receptor and show little or no affinity 

to a “negative” pharmaceutical receptor. The compound selectivity problem is of 

immense importance to the drug discovery community, since a drug needs to bind 

selectively to the target it was designed for and avoid off-target interactions which 

cause undesired side-effects and toxicity. Exploiting the unique features of the 

proposed method, especially multi-objectivity, population-based search, graph 

representation of chromosomes, chromosome structure-based niching and self-

adaptive local search, we have shown that our method can successfully design 

compounds binding to ER-! and not to the highly similar ER-". The above results 

have been presented at the [NPA08], and, published at the Journal of Chemical 

Information Modeling of the American Chemical Society [NAP09]. Additional 

computational experiments, designed to compare MEGA against widely used MOEA 

methods produced results indicating that, for the problem domain under investigation, 

the proposed algorithm outperforms competing methods at a statistically significant 

level. The latter results are described in later chapters of the present dissertation. A 

full list of the publications resulting from this dissertation is given in Appendix 1. 
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In summary, the implementation of our graph design and optimization algorithmic 

framework is able to generate solutions satisfying multiple, even conflicting 

objectives; the solutions are represented as graphs to avoid information loss and 

spurious results; the feasible search space is explored both in a global sense using 

the inherent global search properties of evolutionary algorithms to identify potential 

solutions of diverse nature, and, in a local sense through the intensive application of 

local search methods to detect the best possible solution of a certain region of the 

space. To expedite solution discovery, available knowledge, supplied a! priori or 

generated during the optimization process is exploited through custom algorithmic 

evolutionary operations and self-adaptive means, among others. Special emphasis is 

also placed on system performance and scalability issues to ensure the practical 

usefulness of our research. To this end a pilot parallel implementation of our 

algorithm has been prepared and is also presented.  

 

1.4 Thesis Organization 

The remainder of this dissertation is organized in three sections: the first, 

consisting of three chapters, introduces the problem and provides the necessary 

background information and related research. An overview of the targeted research 

area of optimal graph design, multi-objective optimization and evolution-based search 

methods is also provided. The second section of the thesis, consisting of chapters 5 

and 6 describes in detail the research performed both at an algorithmic and at an 

application level. Chapter 5 describes the method proposed and the implementation 

for the purposes of this work. Chapter 6 focuses on the experiments performed for 

the evaluation of the proposed method and discuses the experimental design 

followed and the results obtained from the validation tests performed. Section 3 

consists of chapter 7 that discusses in detail the findings from the research 

performed and relates them to the general research area of multi-objective problems 
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and algorithms, chapter 8, that draws conclusions and summarizes the lessons 

learned, and chapter 9, that presents open research questions related and/or inspired 

by this thesis and outlines directions for future research.  
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Chapter 2 

 

Multi-objective Optimization Problem Considerations 

 

Optimization problems involve the identification of solutions to one or more 

objective functions considering all the decision parameters involved in the specific 

problem. Optimizing an objective -also known as cost- function amounts to finding 

valid solutions minimizing or maximizing the function as defined by the problem at 

hand. Potential solutions are only valid if they comply with the constraints of the 

specific function(s). Optimal solutions are those optimizing, i.e., minimizing or 

maximizing, the cost function of the investigated problem. Without loss of generality, 

for the remainder of this thesis only minimization objective functions are considered. 

Definitions and solution processes are similar for maximization problems. 

Famous optimization problems include the Traveling Salesman Problem (TSP) 

where the objective is to minimize the cumulative distance traveled by a salesman to 

visit a number of destinations D and return to their starting point, and, the Flow-Shop 

scheduling Problem (FSP) where the aim is typically to minimize the time for 

completing a number of jobs N on M machines. A solution to the TSP problem is valid 

if the proposed route begins and ends at the same point and visits all the destinations 

D. Moreover, a solution Sopt is optimal for a specific TSP problem if there is no other 

valid solution defining a shorter route for the journey of the salesman, i.e., it is a 

global minimum. 

Optimization problems can be divided into two broad categories: single-objective 

and multi-objective, depending on the number of objective functions to be optimized. 
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The solution to a single-objective optimization problem (SOP) involves finding 

the optimum to one-objective function, whereas a multi-objective problem (MOP) 

problem requires the more difficult task of finding solutions that satisfy a whole 

spectrum of objectives [NBP07]. Depending on the type of decision variables 

optimization problems can be categorized into continuous, where the variables are 

continuous real numbers, discrete, where the variables are integer numbers, and 

combinatorial, where the variables consist of a finite set, e.g. the permutations on a 

set of numbers such as pairs of destinations in the TSP problem [CS04]. This 

dissertation focuses on optimal graph design, a multi-objective combinatorial 

optimization problem. 

The next sections of this chapter describe in detail the mathematical definition of 

multi-objective problems and related notions such as domination, optimality and 

diversity, and, introduce the class of multi-objective optimization algorithms. The final 

section of the chapter presents the methods used in this research for assessing 

solution quality in MOPs and, thereby, measuring the performance of the available 

algorithms. 

 

2.1 Multi-objective Optimization Problems 

Solutions to multi-objective problems can be described by decision vectors   

! 

! 
x  of 

the form (x1, x2, …, xn) in the decision space X. Objective functions measure the 

quality of a decision vector and collectively assign it an objective vector  
  

! 

! 
y  = (y1, y2, 

… , yc) in the objective space Y [BST03]. In essence, multi-objective optimization 

focuses on optimizing (i.e., minimizing) a function of the form 
  

! 

! 
f (
! 
x )  consisting of 

many objective functions. In this context, optimization is the process of identifying 

solutions in the decision space X minimizing the C objectives under consideration.  
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Fig. 2.1 Solutions (represented by small circles) of a multi-objective problem are mapped from decision 
space to objective space through objective functions. Proximity of solutions in objective space is not 
related to solution similarity in the decision space and vice versa. The objective space, as defined by the 
objective functions y1 and y2, is enclosed by the dashed lines. In practice, the feasible search space of a 
MOP may be further constrained by limitations related to solution validity in the decision or objective 

space. 

 

In formal terms optimization is the process of [CS04]: 

 minimizing function 
  

! 

! 
f (
! 
x )   

 with 
  

! 

! 
g (
! 
x ) " 0  inequality constraints    Eq. (1) 

 and   

! 

! 
h (
! 
x ) = 0   equality constraints 

where   

! 

! 
x " R

n
, n is the number of decision variables, 

  

! 

! 
g (
! 
x )" R

m , m is the number of 

inequality constraints and   

! 

! 
h (
! 
x )" R

p , p is the number of equality constraints. The 

constraints delineate the feasible search space for a solution   

! 

! 
x  to be valid.  

In the special case where the objective vector 
  

! 

! 
f (
! 
x )  consists of a single objective 

function the problem is single-objective, i.e., 
  

! 

! 
y  has a single element. Identifying 

optimal solutions in SOPs is relatively simple since comparing solutions is 

straightforward. For example, comparing two solutions to the TSP problem amounts 

to comparing a pair of numbers each corresponding to the total cost (length of 

journey) described by a solution. Searching for the optimal solution, the global 

minimum, is then performed via modifications of the decision vector variables that 

result in new candidate solutions.  
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Fig. 2.2. A graph showing solutions to a bi-objective problem. Each point represents a potential solution 
to the problem. The curved line represents the Pareto-front, identified nondominated solutions are 
labeled with a Pareto rank of zero, and the Pareto rank of the other solutions refers to the number of 
solutions dominating it. Note that the problem requires minimization of both objectives and so the ideal 
solution is located at point (0,0). 
 

Comparing solutions when the objective vector 
  

! 

! 
y  consists of two or more 

elements is more complex. When the objectives are in competition, the task of finding 

a solution is further complicated because there is no single best solution that 

outperforms all the other solutions in all criteria [BM04]. Instead, several equally good 

solutions, the so-called nondominated solutions, exist representing various possible 

compromises among the objectives. For a particular solution to be nondominated it is 

necessary for it to have no superordinate solutions among all the objectives being 

considered. A specific solution s is a Pareto global optimum if and only if there is no 

s’ ! Y such that s’ is better in one or more objectives and not worse in any objective, 

where Y is the set of feasible solutions [P06]. This is best illustrated in Fig. 2.2, where 

the optimal compromise surface between two objectives (depicted by the curved line) 

is shown together with a set of candidate solutions. Each solution is designated a 

Pareto rank – that is, is ordered according to the number of other solutions that 

dominate it over all objectives. It is important to note that for this specific example the 

ideal solution, usually only theoretically feasible, is assumed to be located at the 

bottom, left-most corner of the figure where both objectives have a zero value. 

Nondominated solutions have a Pareto rank of zero. The set of nondominated 

solutions is also known as Pareto-front or optimal set or the trade-off surface. We say 



 

 

15 

that a set of nondominated solutions is the Pareto global optimum set if and only if it 

contains only and all Pareto global optimum solutions.  

The following section considers component-wise vector orders in the Euclidean 

space since this binary ordering relation is the basis of Pareto-based multi-objective 

optimization techniques that are of interest to this research. Alternative ordering 

relations can be used which give rise to different methodological approaches to multi-

objective optimization algorithms, such as the lexicographic relation [CS04].  

Let   

! 

! 
u  and   

! 

! 
v  be vectors in the Euclidean space representing solutions of a multi-

objective problem. Vector   

! 

! 
u  dominates   

! 

! 
v , denoted by   

! 

! 
u "
! 
v , if ui < vi, i = 1, ..., n 

where n is the dimension of vectors u and v, and ui ! vi . Vector   

! 

! 
u  weakly dominates 

  

! 

! 
v , denoted by   

! 

! 
u "
! 
v , if ui ! vi, i = 1, . . . , n where n is the dimension of vectors u and 

v. Two vectors are nondominated if neither of them dominates the other. Similarly, 

two vectors are weakly nondominated if neither of them weakly dominates the other. 

Defining domination relations between pairs of vectors thus requires the component-

wise ordering of the vectors. A solution that is not dominated by any other feasible 

solution is globally nondominated, also known as Pareto global optimum. 

Mathematically the domination relation is defined as: 

 Vector   

! 

! 
u  dominates vector   

! 

! 
v if: 

  
  

! 

! 
u 

i
 is at least as good as 

  

! 

! 
v 

i
 for all the objectives 

! 

i   Eq. (2) 

  
  

! 

! 
u j is better than 

  

! 

! 
v j  for at least one objective j 

Typically, and especially in the case of conflicting objectives, there is a multitude 

of Pareto global optima. Note that the Pareto global optimum set is formed by the 

collection of the Pareto solutions in the decision space. The image of this set in the 

objective space is called the efficient set or the Pareto-front [PSS07], [CLV07].  

Multi-objective problems are often characterized by vast, complex search spaces 

with various local optima that are difficult to explore thoroughly. The challenge facing 

Pareto-based optimization methods is to ensure the convergence of well-dispersed 
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solutions to guarantee the effective coverage of the true optimal front (Fig. 2.3A) 

[ZLB04]. The Pareto ranking algorithm is of the order O(MN2), where M is the number 

of objectives, and N is the number of data points [NBP07]. Such an order can 

therefore be computationally expensive for large numbers of objectives and data 

points, and lead to non-convergence of the solutions (Fig. 2.3B). A further potential 

issue with Pareto ranking is that the nondominated frontier of solutions may be vast, 

particularly in circumstances with large numbers of objectives. The distribution of 

solutions on the Pareto-front may also lead solutions to drift to more densely 

distributed regions of the surface and, in more extreme circumstances, lead to 

dictatorship conditions where a single objective dominates (Fig. 2.3C). Therefore, it is 

often prudent to employ techniques, known as niching, to ensure the appropriate 

distribution of the solutions produced and the coverage of the Pareto-front. Typically, 

niching uses techniques for maintaining diversity in the population through solution 

similarity calculations, clustering analysis, etc [CS04].  

 

Fig. 2.3: The solution set produced by a Pareto-based multi-objective optimization method must 

converge to the true Pareto-front and cover it effectively. (A) Effective coverage of the true Pareto-front. 
(B) Non-convergence. (C) Lack of effective coverage.   

 

Solution proximity in the objective space is not necessarily indicative of similarity 

between solutions in the decision space (see Fig. 2.1). Consequently, it is possible 

for multiple distinct solutions in the decision space to share the same objective 
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function vector and, therefore, one single point on the Pareto front may correspond to 

several solutions in parameter space. Typical MOOP algorithms are commonly 

interested in one solution for each element of the efficient set and do not attempt to 

identify multiple solutions giving rise to a single Pareto solution. However, there are 

specific cases where solution diversity in parameter space is equally -if not more- 

important as in the case of the optimal graph design problem. Therefore, it is a 

specific goal of the work presented in this dissertation to address solution diversity in 

both decision and objective space. 

 

2.2 Multi-objective Optimization Algorithms 

Multi-objective optimization algorithms can be classified based on the quantity of 

the solutions produced; for example, those producing single 'best' solutions and 

those that attempt to map the entire Pareto-front. A second classification scheme 

divides MOOP methods into the following three groups: (a) a! priori methods that 

take into account the preferences of the user before the optimization process is 

conducted; (b) progressive methods that enable the user to interact with the 

optimization process to guide the search; and (c) a! posteriori methods that produce 

a Pareto-front and allow users to choose the most appropriate solution subset [VL00].  

The straightforward approach to finding compromise solutions when numerous 

objectives are present is to transform the problem to a single-objective one by 

combining the multiple objectives. An example of this approach is the weighted-sum-

of-objective-functions method [CS04]. According to this method, a weight is 

associated a! priori with each objective function and the weighted sum of the 

functions is taken as the new composite fitness function, as defined by the following 

equation: 

f(n) = w1(Objective1) + w2(Objective2) +…+ wn(Objectiven)  Eq. (3) 



 

 

18 

where f(n) is the fitness function, and wi are the user defined weights. A great 

advantage of using such a scalarized objective function is that the same algorithms 

used for solving single-objective problems can be used for multi-objective problems. 

A major drawback of the method is the selection of the most appropriate weighting, 

because it is often not clear how the different objectives should be ranked. A further 

drawback is that the method ignores the presence of the Pareto-front of the 

objectives, leading to unpredictability about where the identified solutions will lie on 

this surface. Finally, the method is limited in its ability to find solutions to problems 

involving competing objectives [CS04] since, when finding optimal solutions with 

respect to the scalarized objective function, only solutions on the convex hull of the 

efficient set, can be obtained [CLV07]. 

Pareto-based MOOP methods introduce a different approach to optimization that 

is founded on compromises and trade-offs among the various objectives. The aim of 

MOOP methods is to discover a set of satisfactory compromises and, through them, 

the global optimal solutions by optimizing numerous dependent properties 

simultaneously [CS04]. In terms of Pareto optimality, the goal of these methods is to 

find solutions that are not worse than any other solution and strictly better in at least 

one of the objectives. The major benefit of MOOP methods is that local optima 

corresponding to one objective can be avoided by consideration of all the objectives 

simultaneously, thereby escaping single objective dead-ends and leading to a more 

efficient overall process. Moreover, the ability of Pareto-based methods to optimize 

numerous properties simultaneously helps to avoid the pitfalls associated with 

methods combining multiple objectives into a single one described previously. The 

methods return a set of nondominated solutions, the Pareto-approximation set (PAS), 

and allow the users to choose the solutions that are most suitable for the task a! 

posteriori. Ideally, the PAS should consist of a well-distributed set of solutions 

representative of the true Pareto-front and, therefore, there is a need for both, 

identifying true Pareto global optima and preserving solution diversity. To this end, 
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population diversity analysis is applied either in objective or decision space with the 

former being the area of most activity. It is worth noting that few efforts to combine 

population diversity in both decision and objective space concurrently have been 

recorded and therefore this specific research direction remains largely unexplored. 

The algorithm proposed in Chapter 5 aspires to contribute in filling this gap. Section 

3.3.2 elaborates further on a popular class of Pareto-based MOOP methods, the 

multi-objective evolutionary algorithms.  

 

2.3 Quantitative Quality Assessment Measures 

Quantitative measuring of the quality of the solution set produced by a Pareto-

based MOOP method has attracted considerable interest in recent years [VL00], 

[ZTLF02], [CS04], [TKL05]. The presence of multiple equivalent solutions combined 

with the frequent lack of information of the best possible set of solutions complicates 

the process further. A number of performance assessment measures have been 

proposed in the literature aiming to quantify the goodness of a produced Pareto-

approximation set. Some of the methods focus on calculating the proximity of the 

approximation to the true Pareto-front, others on capturing characteristics such as 

solution diversity and dispersion while others are concerned solely with the 

comparison of two proposed approximation sets, the so-called relative performance 

metrics. Despite the multitude of methods proposed, no single measure has been 

proven to be able to provide definitive information on the quality of the Pareto-

approximation set produced and therefore combinations of measures are often used.  

The performance measures encoded for the purposes of this research include 

the calculation of the Pareto-approximation set hypervolume [ZT99], the spacing 

measure [CS04] and a measure based on the calculation of the average diversity 

[TTW97]: 
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a. Hypervolume: The hypervolume measure HV, also known in the literature as 

the S metric, calculates the volume of the objective space dominated by an 

approximation set and produces an arithmetic value indicative of the quality of 

the set [Z99]. Note that in the case of two objectives the measure actually 

describes the area dominated by the Pareto-front assessed. Calculations take 

into account a reference, nadir point, i.e., a sort of a “worst” solution, to define 

the boundaries of the dominated space as seen in Fig. 2.4 for a bi-objective 

problem case.  The reference point may be defined by taking the worst value 

for each objective from the solutions in a population or via other, typically 

heuristic, means. Care must be exercised in the selection of this point in order 

to enable valid performance comparison between Pareto-approximations sets 

produced by different experiments [ZBT07]. 

 

Fig. 2.4: A Pareto approximation set and the hypervolume it defines with respect to the reference point 
Pref (enclosed by the solid line). The hypervolume measures the size of the dominated space covered by 
the Pareto-set. In the case of two objectives the measure describes the area dominated by the front 

assessed. 

 

Hypervolume is defined by the combination of hyper-rectangles formed by 

individual solution vectors and the reference point. Formally, the definition of 

the measure is: 

   Eq. (4)
 

where PAS is the Pareto approximation set of solutions 

! 

i " 1...S . 

  

! 

HV (PAS,Pref ) = !
i"1... S

HV (PASi,Pref )
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Given a solution A = (ya1, ya2 , …, yan) in PAS and the reference point Pref = 

(p1, p2, …, pn) dominated by A, the hyper-rectangle enclosed in the space 

bounded by A and Pref is defined by intersections of the following hyper-

planes: for each axis in the objective space, there exists a hyperplane 

perpendicular to the axis and passing through Pref and, for each axis in the 

objective space, there exists a hyperplane perpendicular to the axis and 

passing through y. Figure 2.5 illustrates the hypervolume defined by two 

solutions A and B individually and collectively. 

 

Fig. 2.5: The hypervolume measure is defined as the size of the dominated space by a Pareto-set and a 
reference point. The size of the space is calculated for each point of the Pareto-set individually and then 
combined. In a two dimensional problem the space defined by a solution A and the reference point Pref is 

depicted by the union of the rectangles S1 and S3; the space defined by solution B and Pref is depicted 
by the union of the rectangles S2 and S3; the hypervolume of the set {A, B} with respect to Pref is the 
union of the space defined by points A and B individually, i.e., rectangles S1, S2, and S3. 

 

b. Spacing: The spacing measure S is based on the distribution of the 

nondominated solutions on the Pareto-surface in objective space [CS04]. 

Ideal surfaces have uniformly spread solutions along the Pareto-surface. The 

metric is defined as:  

! 

S =
1

n "1
. d " d

i( )
i"1

n

#
2$ 

% 
& 
& 

' 

( 
) 
) 

1

2

  Eq. (5)

 

where  

  

! 

di =min
i

f1
i
(
! 
x ) " f1

j
(
! 
x ) + f2

i
(
! 
x ) " f2

j
(
! 
x )( )  Eq. (6) 
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! 

i " j , n is the number of solutions in the approximation set and 

! 

d  is the mean 

value of all 

! 

d
i
. 

c. Diversity: The diversity measures used aim to capture the average solution 

diversity either in the parameter or the objective space. Two measures, one 

for each space have been encoded. The measures are essentially calculated 

using the same method, i.e., by averaging the Euclidean distances of each 

solution to all other solutions in the proposed set [TTW97]. The definition of 

the measure is: 

   Eq. (7)

 

where 

! 

di, j  is the Euclidean distance between the vectors representing 

solutions i and j and n is the number of solutions available. The Euclidean 

distance between vectors A, B is defined as: 

! 

E(A,B) = (x jA " x jB )
2

j=1

j= n

#   Eq. (8) 

where j is the length of vector elements and 

! 

x jA
 is the jth element of the vector 

of object A. Calculating solution diversity in objective space uses the objective 

function vectors 
  

! 

! 
y  of each solution. Solution diversity in parameter space is 

problem specific since it uses the vector representation of the solution 

description i.e., in the case of the TSP problem the actual journey description.  

In the remainder of this dissertation the performance measures described above 

are used to calculate the quality of each solution set produced during our 

experimental runs using popular multi-objective algorithms described in the literature 

or the algorithm proposed by this research. The combination of these measures 

allows the comparisons of the Pareto-surfaces produced by each algorithm and 

facilitates the extraction of conclusions with respect to their performance. 
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Chapter 3  

 

Optimization Methods and Evolutionary Algorithms  

 

An optimization algorithm is a method for searching for solutions to a problem 

given a representation of the problem and a way to measure the quality of a 

proposed solution. The methods are typically used to find the global optimum(s) in 

non-trivial problems with large solution spaces. Several classifications of optimization 

algorithms are possible based on various characteristics such as the encoding of the 

solutions, the methodology used to generate candidate solutions, the specific 

strategy used for exploring the feasible solution space, the method for evaluating the 

quality of the candidate solutions, etc [CS04]. 

The simplest example of such an algorithm would be the total enumeration of all 

possible solutions, the evaluation of each one of them and the selection of the one 

producing the best results. This naive, brute-force approach suffices when the search 

space is sufficiently small and the evaluation of each candidate solution is trivial. 

However, with increasing problem dimensionality and complexity this approach 

becomes impossible. Other approaches utilize systematic search strategies or 

special properties of the solution space to find an optimal solution in an efficient 

manner. Local search algorithms use local properties of the solution space to guide 

the search and tend to work well in some problem cases especially where the target 

function is unimodal. Global search algorithms try to explore the whole of the search 

space when trying to detect the optimal solution. These techniques are appropriate 

when the target function is multimodal, e.g. contains multiple local and global optima, 

or completely unknown. Heuristic-based approaches employ problem specific 
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information to limit the size of the search space and increase the efficiency of the 

optimization process. Heuristics are rules of thumb used to help solve problems by 

incorporating problem domain knowledge. Artificial Neural Networks (ANN), a 

technique inspired by the structure of biological neural networks and their way of 

encoding and solving problems, have also shown great promise in identifying 

approximation solutions in difficult optimization problems [PS03]. ANNs explore the 

search space through iteratively modifying their structure in order to reach good 

solutions in a systematic manner. Evolutionary Algorithms (EAs) are a special class 

of techniques often applied to search for the optimum when the optimization problem 

is overly complex due to high dimensionality, noise, non-linearity or other unusual 

properties of the search space [CLV07]. 

Following is a brief overview of some traditional search-based optimization 

methods. Although these methods may not be the most sophisticated optimization 

techniques they can be very useful in the case of non-complicated solution spaces, 

e.g. single optimum point, or as first pass approaches to get an estimate of the 

magnitude of the solution space and the complexity of the problem. Heuristic-based 

approaches are discussed further in a later section of the chapter. Throughout this 

chapter emphasis is placed on the review of approaches used later in this 

dissertation. 

 

Blind-Search Methods 

Methods following the Blind-Search paradigm typically make no use of 

information related to the problem domain. A typical example of these methods is 

Monte-Carlo (MC) Search, also known as Random Search [W08]. MC is an iterative 

blind search strategy that makes no use of knowledge gained from previously 

generated solutions. In each iteration, MC performs a random sampling of solutions 

of the complete search space followed by their evaluation. The “best” solution is 
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memorized and is only replaced if some solution in a subsequent iteration is superior. 

MC terminates when the “best” solution meets some predefined quality criteria or a 

certain number of iterations has been completed. A special case of blind search 

strategies are certain implementations based on search trees [RN95]. These 

strategies define a hierarchical tree structure where each node represents a solution 

or a step to a solution. In each following step the algorithm searches the 

neighborhood of the node following some strategy that does not take into account 

any problem related information. Examples of such tree-based blind-search 

strategies are depth-first search (DFS) and breadth-first search (BFS).  

 

Heuristic-based Optimization Methods 

Heuristic-based methods employ problem specific information to focus the 

search and expedite the solution finding process. In order to achieve this they 

incorporate domain knowledge often in the form of rules to guide the process to 

segments of the search space more likely to contain the solution sought. In the case 

of tree-based search problems mentioned previously a heuristic-based strategy 

would be the best-first search [RN95] where the best solution -according to some 

evaluation criterion- is explored first.  

Several heuristic methods are inspired by the Hill-Climbing (HC) approach [W08]. 

HC algorithms start with a random initial solution. In each generation the current 

solution is mutated, i.e., it is subjected to a random modification. If the mutant is 

better, the mutant replaces the current solution; if not the current solution is kept for 

the next generation. In effect HC methods perform a greedy local search. 

Neighborhood-based iterative improvement algorithms are variation of HC that start 

from an arbitrary feasible solution and search neighbors for better solutions to 

replace the current one. The methods require the definition of a neighborhood 

function that associates a set of feasible solutions N(s), the neighbors, to every 
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feasible solution s. The solution s is a local optimum with respect to N if, and only if, 

there is no s! ! N(s) such that f(s!) is better than f(s). The neighborhood search is 

repeated until no improvement is found anymore and the algorithm stops in a local 

optimum [PSS07]. The HC strategy can be rather efficient in simple unimodal search 

spaces, but is prone to premature convergence in local optima in case of multimodal 

search spaces. To reduce the chance of premature convergence the Hill-Climbing 

strategies can be extended to a Multi-Start also known as Random-Restart Hill-

Climber [RN95], where multiple local HCs start from randomly chosen initial 

solutions.  

Simulated Annealing (SA) [KGV83] is an evolution of the HC methods where the 

replacing scheme is adjusted to keep more than just the best solution. This strategy 

is inspired by the mechanism of metals cooling into a minimum energy structure and 

the search for an optimum in a given solution space. This mechanism is simulated 

using a control parameter, the temperature, which is decreased during the 

optimization process. The degradation function for the temperature is called the 

Annealing Schedule and causes the optimization process to become more and more 

restrictive accepting better solutions towards the end of the optimization process. The 

speed of convergence and also the vulnerability to premature convergence of the SA 

strategy depends on this Annealing Schedule. The ability to allow temporary 

degradation in solution quality enables the SA to escape local optima. Similar to the 

Hill-Climber, a population in Simulated Annealing may be exploited using a multi-start 

strategy, which can further decrease the chance of premature convergence in a local 

optimum [W08]. 

 

Evolutionary Algorithms 

Evolutionary Algorithms (EA) are a special class of stochastic, population-based 

optimization approaches that have been inspired by principles of natural evolution. 
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EAs employ heuristic search techniques and are generally categorized in the broadly 

defined domain of artificial intelligence [W08]. Any EA designed to solve a particular 

problem must have the following five components [MZ96]: 

! A genetic representation for potential solutions to the problem 

! A way to create an initial population of potential solutions 

! Evaluation function(s) for rating solutions in term of their fitness 

! Genetic operators that alter the composition of children 

! Values for various parameters that the EA uses (population size, probabilities 

of applying genetic operators, etc.). 

An EA starts with a population of usually randomly initialized individuals and 

iteratively applies genetic operators (e.g. recombination and mutation) and 

environmental pressure (e.g. evaluation function and selection process) to produce 

subsequent generations of candidate solutions. The process terminates when a 

termination criterion is met, often when the current set of individuals meets some 

quality threshold. The consecutive rounds of reproduction and selection explore 

various sections of the search space and gradually produce one or more optimized 

solutions that ideally converge close to optimal solutions. Figure 3.1 describes the 

main steps in the execution of EA algorithms.  

 

 

 

 

 

Fig. 3.1: General scheme for Evolutionary Algorithms 

 

There are several variations of EA algorithms that differ mainly in the 

representation of the solutions and the genetic operators used to generate new 

Generate initial population P 
Evaluate solutions in P against objective O 

While Not Stop Condition: 

 Select parents Pparents in proportion to fitness scores 
 Generate population Poffspring by variation of Pparents 

 Evaluate solutions in Poffspring against objective O 

 Select population Pnew from P and/or Poffspring  
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candidate solutions by varying representatives from the current population. A widely 

accepted categorization distinguishes four main categories of EAs [MZ96]: 

a) Genetic Algorithms which use bit-string solution representations and, typically, 

two parent crossover 

b) Evolutionary Programming which uses a finite-state machine and mutation 

operators 

c) Evolutionary Strategies which use real-valued vectors and Gaussian mutation, 

and,  

d) Genetic Programming which employs an executable structure representation and 

two parent crossover.  

It is worth noting that many EA implementations use strategies from a combination of 

categories and therefore cannot be classified to a single category.  

EAs have been applied successfully to a variety of optimization problems even 

when the target function has been noisy, non-linear, non-differentiable, or multi-

modal and high dimensional [W08]. The robustness of the method coupled with its 

limited requirements, i.e., a suitable objective function for a given solution to guide 

the selection process and an appropriate solution representation, have increased its 

popularity among researchers. Unfortunately, EAs often do not find the global optimal 

solutions. Rather, they are able to find sufficiently good solutions within a limited 

amount of time [G89]. In the following section we describe in more detail some of the 

main EA categories as defined by the encoding mechanism used to represent 

members of the population. Section 3.2 overviews the field of Multi-objective EA and 

3.3 discusses Memetic Algorithms, a hybrid method that combines natural evolution 

principles with other search methods.  

3.1 EA Categories 

The representation of individuals in an EA is a task of crucial importance and 

several encoding mechanisms have been suggested for this purpose. These 
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mechanisms influence the ability to represent accurately the individuals and measure 

their fitness. In addition, the mechanisms are instrumental to the processes of 

evolution since both mutation and crossover operations act on the chromosome 

structure. The main EA categories according to the representation mechanism used 

are described below.  

3.1.1 Genetic Algorithms 

Genetic Algorithms (GA), originally proposed by Holland [HJ75], are the most 

widely known representatives of EAs. GAs are stochastic, population-based search 

heuristics, which require nothing but the target function of the optimization problem to 

guide their search [W08]. Individuals, i.e., potential solutions to the optimization 

problem, are represented using a string of characters, the genes, often consisting of 

only two, “0” and “1”. The availability of a population enables GAs to simultaneously 

search various regions of the search space instead of focusing on the neighborhood 

of a single, best, current solution. GAs utilize the evolutionary operators of selection, 

random variation and mating, through mutation and recombination/crossover on the 

population of individuals.  

 

 

 

 

 

 

Fig. 3.2: General scheme for Genetic Algorithms 

 

The initial population P of the GA is usually initialized randomly to obtain a 

diverse sampling of the search space. The increased diversity in the initial population 

of solutions enables the GA to search a sufficiently large section of the search space. 

Generate initial population P 

Evaluate solutions in P against objective O 

While Not Stop Condition: 
 Select parents Pparents in proportion to fitness scores 

 Generate population Poffspring by reproduction of Pparents  

  Mutation on individual parents 

  Crossover on pairs of parents 
 Evaluate solutions in Poffspring against objective O 

 Select population Pnew from P and/or Poffspring 
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P is then evaluated and a fitness score is computed for each solution. The evaluation 

of the solutions is performed by assessing the fitness of the individuals to the 

optimization problem, i.e., by testing each individual on the target function.  Following 

fitness calculation the algorithm enters its core, iterative section that continues until a 

termination criterion is met. The first step of the iterative cycle is to select possible 

parents from the current population based on their fitness score. The selected 

parents are then used to generate a new population Poffspring mostly through 

recombination of parents. Recombination combines the characteristics/traits from 

multiple parents to generate novel solutions. The aim is to obtain suitable 

combinations of positive traits and, thus, individuals adapted to the optimization 

problem at hand. The process of recombination is achieved through the crossover 

mechanism where one point -or more- in the genotype of the parents is selected, 

and, the genotypes are split at that point and exchanged between the parents. A 

round of random mutations may also be applied on the Pparents or the offspring from 

the recombination process often using a simple mutation operator to invert a 

randomly chosen bit of an individual. Recombination combines two or more parent 

solutions to form one or more offspring whereas a mutation results in a small random 

change to a single solution. A crossover and a mutation probability set the frequency 

of recombination and mutation respectively. In GAs recombination is considered to 

be the primary operator whereas mutation is intended for recovering lost traits in the 

population [F06]. It is important to note that the evolutionary operators of crossover 

and mutation usually treat the binary string as a whole and ignore word boundaries in 

the chromosome. The reproduction stage with recombination and mutation is then 

followed by the evaluation of the resulting solutions. The new population Pnew is 

generated from the population of parents Pparents and Poffspring using some generation 

strategy, often the complete replacement of the Pparents by Poffspring [G89]. The process 

aims to increase the fitness of newer generation solutions and gradually find optimal 
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solutions. Several extensions to GAs that use alternative solution representation, e.g. 

non-binary or real-valued genes, have also been proposed.  

3.1.2 Genetic Programming 

Genetic Programming (GP) is an extension of the GA that uses a procedural or 

functional representation for solutions [PLP08]. This representation enables GP to 

encode and optimize, for example, computer programs using EA principles. 

Examples of GP applications include the evolution of program code to solve a given 

programming problem [PLP08], the discovery of a mathematical function for a 

symbolic regression problem [W08] and the design of neural network architecture 

[RWPHM03]. Traditionally GP uses a tree-based representation for 

programs/solutions. This representation uses a directed acyclic graph with functions 

as nodes and terminals as leaves. The execution order is given by evaluating the left 

child node before the right node. An example is shown in Fig. 3.3. Note that except 

for the solution representation GP is identical to standard GA.  

 

Fig. 3.3: The tree based GP geno- and phenotype 

 

The initial population of programs for a GP application consists of a number of 

randomly initialized individual syntax trees. Tree initialization can take place using 

one of a number methods specifically designed for this purpose. Typically the 

process starts with a random root node and recursively new random nodes are 

added until a certain depth has been reached. Each program is then evaluated and a 

fitness score is computed for each solution [GSM04]. Similarly to a GA the algorithm 
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selects a set of parents and applies genetic operators to generate offspring. In the 

case of GP, recombination is implemented as subtree crossover between two 

parents. The process simply selects two nodes of the parents and exchanges their 

subtrees. Mutation selects a random node in a GP program tree and alters the node 

accordingly depending on its type. Multiple alternatives have been suggested 

depending on e.g. whether the successive nodes of the mutation node remain 

unchanged. Subtree crossover tends to be the dominant operator in GP while 

mutation operators are often used at lower rates [PLP08]. The rest of the GP 

process, including the evaluation of the resulting solutions, the generation of the new 

population and looping, is similar to that of GAs. A common GP problem worth 

mentioning is bloat, which refers to the over excessive growth of trees with no 

analogous improvement in the fitness of the solution [W08]. Bloat can lead to a 

significant increase of computation time as well as over-fitting of an individual. 

Several strategies are usually employed to limit the overall tree size and avoid bloat. 

3.1.3 Genetic Graphs 

Graph representations of individuals have also been used in combination with 

EA methodology. Initial efforts appeared in the graph drawing field where efforts 

focus on the design of graphs with an optimal layout according to some measurable 

aesthetics such as the number of edge crossings, the variation in the length of edges, 

the variation of the angles etc. [BBS97]. Typically, graphs are represented by two 

distinct sets, a vertex/node set and an edge set. For example, to represent a graph 

with n nodes and m edges a 2*n matrix may be used to indicate the positions of the 

nodes and a 2*m matrix to indicate the edges by storing pairs of the nodes. The 

corresponding end points for an edge are then found from the node matrix [EM01]. 

Graph chromosome encoding may consist of the graph and edge tables only [EM01], 

a mechanism for serializing the information in the tables [MJV00], or graph data 

structures that enable manipulation of node and edge objects [G99]. In all cases, 
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appropriate mutation and crossover operations need to be used to operate on the 

graph chromosome representation. Both node and edge mutation may be used. In 

node mutation, node positions, or labels if available, may be altered or swapped, 

while in edge mutation the pair of nodes connected by the edge may be modified. 

Additionally, mutation operations may include the removal of a node or an edge. 

Crossover operations involve the exchange of subgraphs. Often, genetic graph 

algorithms contain a large number of mutation and crossover operations that are 

meaningful for the specific problem under consideration. Fitness evaluation of the 

individual graphs involves a method for quantifying their performance, e.g. in the 

problem of graph drawing the method evaluates the aesthetics of a graph based on 

the number of edge crossings and the uniformity of the graph by taking into account 

the variation in edge length, distance between pairs of nodes and angle sizes. 

Genetic graphs have also been used in other problem areas including the design of 

digital circuits [MJV00], and small molecule design [G99]. An overview of graph 

theory fundamentals and a detailed description of genetic graphs literature with an 

emphasis on molecular design is presented in chapter 4.  

3.2 Multi-objective Evolutionary Algorithms (MOEA) 

Among the most popular algorithms used in optimization, including Pareto-based 

MOOP approaches, are evolutionary algorithms [CS04]. Intensive research efforts for 

almost two decades have focused on the application of EA methodology to MOOP 

with considerable advances being reported in various fields [ZLB04], [CS04], 

[NBP07]. The popularity of MOEAs is probably due to some inherent algorithmic 

characteristics. Namely, the population-based approach enables the simultaneous 

search of multiple search space regions and thus the identification of numerous 

Pareto solutions in a single run. Additionally, EAs impose no constrains on the 

morphology of the search space and are therefore suitable for complex, multi-modal 

surfaces such as the ones typically produced by MOOP problems. Algorithmically, 
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MOEAs are an extension of traditional EAs that can address multiple objectives 

simultaneously by the addition of appropriate components such as Pareto-based 

selection that incorporates fitness assessment on multiple objectives, calculation of 

domination relations and Pareto-rank and definition of a scalar efficiency value for 

each solution, and the techniques of niching and elitism aiming to maintain population 

diversity and avoid good solution loss [CLV07]. Figure 3.4 outlines the main steps of 

a simple MOEA algorithm. Below we discuss the key features of MOEAs 

distinguishing them from normal, single-objective EAs. 

 

 

 

 

 

 

 

 

Fig. 3.4: A typical MOEA algorithm. 

 

3.2.1 Pareto-based selection 

Selection in MOEAs involves the generation of the objective vector of each 

individual and the use of that set of vectors for the selection of solutions for use in 

subsequent steps of the algorithm. The objective vectors are obtained by assessing 

the fitness of each individual to all objective functions available for a specific problem. 

Selection requires the establishment of a comparison mechanism among objective 

vectors and the identification of the subset to be used in next steps. According to 

Zitzler (1999), there are three main approaches to selection based in MOEAs: (a) 

selection by aggregation of objective values, where fitness scores are combined into 

a single composite one, (b) selection by switching objectives, where the choice of 

Generate initial population P 

Evaluate solutions in P against objectives O1-n 
Assign Pareto-rank to solutions 

Assign efficiency value to solutions based on Pareto-rank 

While Not Stop Condition: 

 Select parents Pparents in proportion to efficiency values 
 Generate population Poffspring by reproduction of Pparents  

  Mutation on individual parents 

  Crossover on pairs of parents 
 Evaluate solutions in Poffspring against objectives O1-n 

 Merge P, Poffspring to create Pnew 

 Assign Pareto-rank to solutions 
 Assign efficiency value to solutions based on Pareto-rank 

  

Select Pnew from P, Poffspring 
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each individual is based on a single objective function and, (c) Pareto-based 

selection where objective vectors are used to establish domination relations between 

all pairs of individuals, followed by the application of a technique for Pareto-ranking 

the individuals based on their domination relations and selection based on the rank 

[Z99]. A number of Pareto-based selection variations have been proposed that differ 

mainly in the technique used to determine the Pareto-rank from the domination 

relations and, in the definition of a scalar solution efficiency score from the Pareto-

rank. Some of the most prominent of these techniques are described below. 

3.2.2 Niching 

Niching aims to preserve solution diversity during the optimization process to 

enable the concurrent search of multiple regions of the search space and the 

identification of solutions representative of the Pareto-front in a single run. The need 

for niching is related to the problem of genetic drift [DJ75] where the population 

converges towards a less fit region from multiple, similarly fit sampled regions 

through stochastic sampling effects in the sampling procedure [KJ02]. Although 

existing, the problem is not as obvious in single-objective settings where the goal is 

to identify the single best solution. In MOPs the lack of diversity in the population 

leads to a limited range of solutions and, in the worst of cases, dictatorship conditions 

where solutions from a single local optimum dominate the Pareto approximation set. 

Among the many techniques proposed for niching fitness sharing, crowding and 

clustering deserve special mention: 

a. Fitness sharing, the most commonly used niching technique in the 

MOEA field, is based on identifying neighborhoods of solutions and 

reducing the efficiency of the solutions from more dense neighborhoods. 

Neighborhoods are defined using a distance measure   

! 

d(
! 
u ,
! 
v ) and a 

neighborhood radius !share provided by the user (Fig. 3.5).  
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Fig. 3.5: Fitness sharing adjusts solution efficiency so that solutions from a scarcely populated 

neighborhood have increased chance of being selected. The method uses the variable !share to define 

the solution neighborhoods. Fitness sharing can take place in either objective or decision space with the 
former being overwhelmingly preferred. 

 

The underlying assumption behind fitness sharing is that solutions within 

the same neighborhood are more similar and therefore the inclusion of 

multiple representatives from a neighborhood does not contribute to the 

diversity of the working population. It follows that isolated solutions, i.e., 

solutions from less dense regions of the Pareto-front should be favored 

during the selection process. In practice, the fitness of a solution s is 

adjusted by dividing with its niche count NC(s) defined as the sum of the 

values of the function share between s and all members of the population 

P. Mathematically: 

! 

NC(s) = share(d(s,i))
i"P

#
  Eq. (9) 

 

where the function share typically has values ranging between zero  and 

one with solutions having a distance to s larger than the !share radius 

producing a zero value and solutions closer to s producing values 

approaching to one.  Fitness sharing may be applied in genotypic 
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(decision) space to ensure diversity of the genotypes or, phenotypic 

(objective) space to maintain diversity among the nondominated solutions 

with respect to their objective vectors. 

b. Crowding, in which fit offspring added to the working population replace 

similar existing solutions from the current population. The technique has 

similar end results as fitness sharing since new-coming offspring 

members of a neighborhood of solutions remove existing members and 

therefore the neighborhoods are prevented from growing at the expense 

of diversity. However, and despite being one of the oldest techniques 

introduced for niching, crowding has found limited applications in the 

MOEA field [Z99].   

c. Clustering is also founded on the assumption that dense neighborhoods 

of solutions, are not beneficial to the optimization process. The method 

uses a clustering method to define natural groups of solutions, the 

clusters. In a following step the density of clusters is taken into account 

when selecting parents for reproduction by favoring candidates 

representing the entire collection of clusters.  

3.2.3 Elitism 

In the EA and MOEA field, elitism refers to the set of techniques used to ensure 

the presence and continued influence of good solutions found in earlier generations 

throughout the search process. The technique has been proposed as early as 1975 

[DJ75] and has been applied in a variety of forms. A simple implementation of elitism 

provides for the selection of the best individuals from the parent population and their 

inclusion into the current population. Alternatively, the parent population may be 

merged with the offspring and the new population may be selected from this enlarged 

set thereby allowing good solutions to survive in later generations.  
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Implementation of elitism in modern MOEAs also takes place through a 

dedicated data structure, the Pareto-archive, which contains a second set of 

solutions in addition to the working population. This archive is used to store the best 

nondominated solutions found during the algorithm's run. During execution time, 

upon discovery of a new Pareto approximation set, the algorithm updates the archive 

by (a) adding new nondominated solutions to it, (b) Pareto-ranking the extended set 

of solutions, and, (c) removing the dominated ones. Depending on the specific 

problem and algorithm implementation the archive may grow continuously and 

become difficult, and time consuming, to maintain. To cope with this problem the 

technique of archive bounding has been proposed where an upper limit to the size of 

the archive is imposed and a solution pruning procedure, often based on diversity 

analysis, is used to limit the number of nondominated solutions in the archive. 

The introduction of elitism in the form of an external archive of solutions has 

been the most important innovation in the MOEA field in recent years [KJ02]. In 

addition to preserving good solutions from getting lost due to sampling effects the 

Pareto-archive can also accommodate sets of nondominated solutions exceeding the 

working population size, a feature not possible using ordinary EA data structures.  

 

3.2.4 MOEA literature review 

The Multiple-Objective Genetic Algorithm (MOGA) algorithm [FF98] was one of 

the first MOEAs to be proposed. In MOGA, the efficiency calculation of a solution is 

inversely proportional to its Pareto-rank, i.e., the lower the rank, the higher the 

efficiency score and therefore the higher the probability to be selected for 

reproduction. In this manner, nondominated solutions which have the lowest possible 

rank (set to rank 1) have the highest chance to become parents and generate 

offspring. Niching, in the form of a fitness sharing technique, was also introduced to 

maintain population diversity by adjusting efficiency values appropriately.  
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The downside of MOGA is that it can introduce a bias towards certain solutions 

in the search space due to the nature of its rank-based fitness assignment method 

and thereby allow solutions with substantially better performance at an iteration to 

dominate the population of later generations. Furthermore, setting the value of !share, 

a task typically left to the user, can have dire effects on the efficiency scores 

produced with larger values of !share resulting in extended neighborhoods that may 

fail to map the Pareto-front accurately, and smaller values running the risk of allowing 

solutions with a worse rank to have better fitness than solutions with a better rank 

[DK01].  

The Nondominated Sorting Genetic Algorithm (NSGA) [SD94], [DAPM00] 

modifies the Pareto-ranking and the efficiency calculation step of the algorithm using 

the nondominated sorting concept. In NSGA the population is classified into layers, or 

waves, of nondominated sets. The process successively defines the nondominated 

set of the population, removes its members from the current population and iterates 

until all solutions have been taken into account. Fitness sharing and solution 

sampling are performed at the nondominated layer level starting from the globally 

nondominated solution level. Fitness values of solutions in successive layers are 

reduced to be less than the worst fitness value of the previous layer. In the original 

version of NSGA, selection is performed using a stochastic-remainder wheel-like 

operator while in an updated elitist version, named NSGA-II, selection is performed 

by choosing the best solutions from a population combining both parents and 

offspring. The NSGA-II conducts niching through the use of a crowding distance 

calculated for each solution, used to maintain population diversity during selection by 

ensuring that selected solutions are sufficiently apart. This keeps the population 

diverse and helps the algorithm to explore the fitness landscape [CLV07]. The 

NSGA-II algorithm successfully addresses some of the shortcomings of MOGA and 

succeeds in preserving the diversity of the population although the method is still 

sensitive to the choice of !share. The Niched Pareto Genetic Algorithm (NPGA) 
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method [HNG94] is a further extension of the NSGA where the selection step is 

based on a modified tournament-based method that uses a larger subset of the 

population and shared efficiency values of the individuals.   

The Strength Pareto Evolutionary Algorithm (SPEA) presented by Zitzler [ZLB04] 

introduced elitism in the form of an external population archive to ensure that 

nondominated solutions are not lost because of population size limitations or 

sampling effects. A clustering process is used to reduce the number of solutions 

stored in the archive by removing some of the solutions from the same cluster without 

loosing the characteristics of the trade-off front [Z99]. Solutions from the external 

archive also participate in the selection process since, for example, the pairs of 

individuals for the crossover operation are formed by one solution from each of the 

two populations. In SPEA2 archive bounding is introduced to limit the size of the 

archive within manageable numbers. SPEA also introduced an alternative fitness 

assignment technique that combines dominance rank with dominance count, i.e., the 

number of individuals dominated by a solution [CLV07]. According to this method the 

fitness of a population member is determined only from the dominance relation of 

individuals stored in the external set to individuals in the working population; 

domination relations between members of the working population is not taken into 

account.  

MOEA is an active field of research and new developments are reported 

frequently. Several developments in selection and niching techniques as well as 

elitism have contributed to the development of more efficient algorithms able to 

address multi-objective problems. Ongoing research aims to build on the latest 

findings to create improved versions of the algorithms that converge quicker and map 

the entire Pareto front in a single run. Zitzler et.al. [ZLB04] have prepared an 

excellent overview of the field. The interested reader is also referred to Collette and 

Siarry [CS04] as well as Coello [C99] for a concise, although dated, introduction to 

the field.  
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3.3 Memetic Algorithms 

Memetic Algorithms (MA) is a population-based approach for heuristic search in 

optimization problems closely related to EAs [M89]. In general, MAs may be 

described as EAs which include a stage of individual optimisation or learning usually 

in the form of local search [K02]. Due to their relation to EAs they are also known as 

Genetic Local Search, Hybrid Genetic Algorithms and Parallel Genetic Algorithms. 

The name has been inspired by the Dawkins “Meme” theory [D76]. A “meme” stands 

for “unit of imitation” in cultural transmission and the methodology is named memetic 

due to its analogy to cultural instead of biological evolution. The first use of the term 

Memetic Algorithms in the computing literature has appeared in 1989 in [M89]. 

The local search technique employed can be a simple hill-climbing method, a 

more sophisticated method such as simulated annealing or tabu-search [K02] or 

even one or more problem-specific heuristics [KN04], [S07]. The overall strategy 

reflects the fact that although good performance is commonly achieved by using the 

most appropriate general purpose optimization algorithm, much greater gains can 

often be made by combining it with heuristics or operators that incorporate ‘domain 

knowledge’ [KC04].  

In several cases MAs have been proven to be orders of magnitude faster than 

traditional EAs [M04]. Due to its improved performance the method is gaining wide 

acceptance, in particular in well-known combinatorial optimization problems where 

large instances have been solved to optimality and where other metaheuristics have 

failed. A typical outline of MAs is presented in Fig. 3.6. 
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Fig. 3.6: The general framework of Memetic Algorithms. 
 

More recently newer generations of memetic algorithms have been reported in 

the literature. Multi-meme algorithms provide a range of memes (i.e., local 

searchers), which compete in each generation for selection and application 

[CHKB02]. Other approaches seek to produce a metaheuristic that creates from 

scratch the appropriate local searcher to use under different circumstances [KN04]. 

Coevolving memetic algorithms [S07] are a family of metaheuristic search algorithms 

in which a rule-based representation of local search is co-adapted alongside 

candidate solutions within a hybrid evolutionary system. Simple versions of these 

systems have been shown to outperform other non-adaptive memetic and 

evolutionary algorithms on a range of problems [M04].  

The MA field is still new, dynamic and rapidly evolving, and several open 

research issues remain. A list of typical issues to address when designing an MA 

include [K02]:  

! when to use local search; may be applied before or after mutation or 

crossover  

! which individuals to improve using local search; may be applied on the 

parents, the offspring individuals or a combination of the two. 

! at what intensity to apply local search 

Generate initial population P 
Evaluate solutions in P against objective O 

While Not Stop Condition: 

 Select parents Pparents in proportion to fitness scores 
 Generate population Poffspring by reproduction of Pparents  

  Mutation on individual parents 

  Crossover on pairs of parents 

  Select Pimprove subset: 
          Improve via local search   

 Evaluate solutions in Poffspring against objective O 

 Select population Pnew from P and/or Poffspring 
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! how to integrate genetic operators with local search 

! how to escape local minima 

! how to avoid premature convergence. 

The algorithm presented in the next chapters belongs to the MA family. The 

method strives to incorporate problem-domain knowledge in numerous ways and 

combines global search with knowledge-driven local search methods. Moreover, the 

genes used contain problem-specific information potentially useful in the course of 

optimization and thereby exhibiting more similarity to the “meme”, as defined by 

Dawkins, than commonly used MA methods. 
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Chapter 4  

 

Research Question and Related Work 

 

The main motivation for the work presented in this dissertation has been to 

design and implement a new algorithm for the Optimal Graph Design problem. OGD 

is a multi-objective combinatorial (MOCO) problem with several instantiations in the 

real world, ranging from transport and water distribution network design to wireless 

antenna positioning in telecommunications and the design of molecules with desired 

biological properties in the pharmaceutical industry. We have chosen to use a hybrid 

approach, combining evolutionary principles with a strong memetic component so as 

to support the optimization process with available problem specific knowledge. Due 

to the overall approach followed, but also to the interdisciplinary nature of the OGD 

problem, our work required research in multiple directions including chromosome 

representation in EAs, niching and elitism in MOEAs, and knowledge encoding and 

reuse in a memetic approach. Following a brief section providing the necessary 

background information in graph theory this chapter reviews previous work in graph 

design in general (section 4.2) and small molecular graph design (section 4.2.1) 

which will be the area of application of the proposed algorithm. The specific research 

questions that the present thesis attempts to answer are outlined in section 4.3.  
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4.1 Graph Theory Fundamentals 

A graph G = (V, E) consists of a set of vertices V(G) and a set of edges E(G) 

[G88]. In the case of labeled graphs both vertices and edges have identifiers, i.e., 

each vertex and edge has a label drawn from a predefined set of vertex labels LV and 

edge labels LE. Note that vertices and edges need not have unique labels, as is the 

case in molecular graphs where, for example, multiple vertices in any drug-like 

molecule have the C (carbon) label. Graphs can be directed or undirected. In directed 

graphs edges are ordered pairs of the vertices they connect where, in undirected, 

edges simply list the pair of vertices they connect. A vertex VI is said to be incident 

with an edge if one of the two endpoints of the edge is VI while an edge Ea is incident 

with an edge Eb if they have a vertex in common. Two vertices VI, VJ of graph G are 

connected, or adjacent, if there is an edge EIJ = (VI, VJ) ! E(G). If there is a path P = 

(E1, E2,…, En) between every pair of vertices in a graph G, then G is a connected 

graph [G88].  

A graph S = (Vs, Es) is a subgraph of G = (V, E) if and only if VS ! V and ES ! E. 

If ES contains all edges in E connecting the vertices in VS then S is an induced 

subgraph of G. An additional property of induced subgraphs is that it can be shown 

that there is a one-to-one mapping between the edges in ES and all edges in E 

incident on vertices in VS when VS is mapped on V. A clique is a special case of an 

induced subgraph where all its vertices are incident on each other. A maximum clique 

of a graph G is its largest clique.  

The problem of determining whether two graphs are identical is known as graph 

isomorphism [LG03]. In graph theoretic terms two graphs G1 = (V1, E1) and G2 = (V2, 

E2) are isomorphic if there is a mapping from V1 to V2 such that there exists a 

mapping for each edge in E1 to an edge in E2. A common induced subgraph between 

G1 and G2 is a graph CS that is an induced subgraph of both G1 and G2. The largest 

induced subgraph between G1 and G2 is known as the Maximum Common Induced 
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Subgraph (MCIS). A related concept is that of Maximum Common Edge Subgraph 

(MCES) also known as Maximum Overlapping Set (MOS). An MCES is a subgraph 

consisting of the largest number of edges common to both G1 and G2 [RGW02]. It is 

worth pointing out that the MCIS and MCES between two graphs may consist of 

several disconnected subgraphs as seen in Fig. 4.1. The largest contiguous common 

substructure is known as the Maximum Common Substructure (MCS). Informally, the 

MCS of two graphs G1 and G2 is the largest possible graph that is isomorphic to 

subgraphs of G1 and G2. 

 

Fig. 4.1: A pair of molecular graphs and their corresponding MCS (in blue) and MOS (in blue and red). 

 

Several algorithms have been proposed in the literature dealing with the problem 

of graph isomorphism. Among them the category of clique finding algorithms is one of 

the most popular [RGW02], [LG03]. These methods rely on the calculation of a new 

graph, the compatibility graph CG, via a modular product operation on graphs G1 and 

G2. Following is the determination of the maximum clique in the CG by applying one 

of the many maximum clique algorithms available. The maximum clique of the CG 

has been shown to be equivalent to the MCIS of the two input graphs [RGW02b]. The 

modular product of the graphs G1 and G2, denoted as G1 ! G2, is defined as:  

   Eq. (10) 

where two vertices (ui, vi) and (uj, vj) are adjacent if: 

(ui, vi) ! E(G1) and (uj, vj) ! E(G2)  Eq. (11) 

or 
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(ui, vi) !! E(G1) and (uj, vj) !! E(G2) Eq. (12) 

Note that the vertices of CG consist of pairs of vertices, one vertex from each input 

graph. For a more detailed explanation please look at [RGW02], [RGW02b]. 

Graph data structures may be used in problems that can be represented 

naturally as sets of vertices related through edges. For example, graphs may be used 

to represent solutions to the TSP problem with cities as vertices and paths 

connecting the cities as edges. Similarly, water distribution network designs may be 

represented as graphs using edges for water pipes and channels and vertices for 

reservoirs, desalination plants, pumping stations etc. Chemical structures can also be 

represented as labeled, undirected graphs where atoms correspond to vertices and 

chemical bonds are represented by edges. In this context, molecular fragments, or 

substructures, are induced subgraphs of molecular graphs. Interestingly, the latter 

have been used as units for knowledge encoding and transfer through the 

development of the privileged substructure and chemical scaffold concepts which 

relate chemical structure with certain biological characteristics, often increased 

potency towards a specific pharmaceutical target [NP06]. 

 

4.2 Optimal Graph Design Review 

There exist a large number of references in the literature describing OGD related 

algorithms and applications. The applications come from a wide variety of problem 

domains that can best be conceptualized as graphs and, therefore, the use of a 

graph representation facilitates meaningful algorithmic operations. In effect, the use 

of the graph structure imposes a geography on the solutions and thereby constrains 

the solution space, something that can lead to the improvement of the overall 

algorithm performance [BACW06]. However, due to the combinatorial nature of a 

MOCO problem the solution space to be searched can grow to sizes impossible to 

exhaustively enumerate. Optimization approaches have been the methods of choice 
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since they are quite appropriate to this type of problems, especially those capable of 

handling large, complex, multimodal search spaces with minimal information on the 

underlying problem specifics.  

The general objective in OGD applications is to design from scratch, or refine 

from a given initial graph, the optimal graph(s) satisfying the constraints imposed on 

the problem. The methodologies used to solve the OGD problem need to also take 

into account issues related to the graph representation of the solutions. Such issues 

include the encoding of the graphs using appropriate data structures, the generation 

of valid -according to the specific problem- graphs, the construction and preservation 

of certain geometries and the accommodation of special topological features related 

to the problem. These graph-structure specific issues coupled with the multi-objective 

nature of applied OGD form a challenging problem for any optimization method. In 

the following sections we initially present briefly some representative OGD algorithms 

from several problem domains and then review in detail the field of de novo design 

on which our proposed algorithm is tested.   

Emmerich et al. (2001) introduced a graph-based evolutionary algorithm for the 

optimization of chemical processes [EMS01]. The algorithm, based on the Evolution 

Strategies methodology, represents chemical plants as parameterized networks (i.e., 

graphs) and uses custom genetic operators working on both, the structure and the 

parameters of this graph. The method uses problem specific structure and parameter 

mutation operators and, a simple recombination operator that selects similar 

subgraphs from two parents to exchange. The algorithm has been applied 

successfully to the optimization of chemical plants and the optimization of feed water 

strings of thermal power plants [HHMS00].   

Several graph based evolutionary algorithms have been described in the 

literature for the general graph drawing problem that aims to identify the “best” way to 

draw a given graph. Typically, in the graph drawing problem, the number of vertices 

and edges are fixed but the placement of the vertices in space is not. Solutions to the 
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problem need to satisfy aesthetic criteria to facilitate readability i. e. the capability to 

convey the meaning of the diagram quickly and clearly to the user [KT98]. The 

algorithm proposed by Utech et al. [UBSE98] primarily aims at minimizing edge 

crossings. Chromosomes contain information about the graph vertices which is 

modified through simple crossover operations and two types of mutation, a standard 

random-based mutation referred to as “shake” and, a more elaborate mutation step 

that incorporates the knowledge of a well-known problem-specific heuristic. The 

algorithm was compared extensively with popular graph-drawing heuristics on a 

number of problem cases and was found to perform significantly better. Kobler and 

Tettamanzi [KT98] describe a similar algorithm for the general graph drawing 

problem that manages several constraints. Their implementation combines the 

several aesthetic objectives considered into a single one. Individuals are represented 

using vectors of the form: 

((x1, y1), (x2, y2), …, (xn,yn))    Eq. (13) 

where n is the number of nodes and each tuple xi, yi corresponds to the coordinates 

of the vertex i encoded using integer numbers. The algorithm uses mutation and a 

rich set of crossover operations to evolve solutions. The population is distributed in 

several subpopulations evolved independently with good solutions migrating between 

them on a regular basis. Elitism is also implemented to ensure that the best individual 

of the current population survives unchanged. Rosete and Ochoa [RO98] presented 

their version of a multi-objective genetic graph algorithm for graph drawing where 

coordinates are encoded using bit vectors and mutation and crossover use standard 

bit-based operations. The proposed method was tested on several planar and non-

planar graphs of varying complexity that showed its wide range of potential 

applications in the automatic graph drawing field. Vrajitoru (2007) describes an 

application designed to build consistent graph layouts using a hybrid multi-objective 

optimization genetic algorithm approach [V07]. The method employs a linear 

aggregate objective function with equal coefficients for each of the measures 
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pursued. Solutions were encoded by real-valued vectors where each vertex is 

represented by its coordinates in 3D space and evolved using crossover and a 

hybrid, problem-specific mutation operator. The application was tested on the design 

of Platonic solids and was found to outperform standard methods used for the same 

problem [V09].  

In a series of publications, Bryden, Ashlock et al. present a different approach 

using a graph to represent the entire population [BACW06] with the goal to constrain 

evolutionary operations as required by the problem and ensure the diversity of the 

population. In this representation, evolution can be restricted to neighboring solutions 

in an effort to mimic an analog of the biological refuge found in nature. A local mating 

rule that operates similar to roulette selection but only within the bounds of a well-

defined neighborhood is used for selection. The experimental results provided on a 

large variety of problems showed that the graph-based algorithm performs 

significantly better than normal genetic algorithms on identical problems [ABC05],  

[BACW06].  

Mabu et al. describe Genetic Network Programming (GNP) for evolving software 

agents active in dynamic environments [MHH07]. The method was intended as an 

extension of GP exploiting the higher expression ability of graph structures as 

opposed to that of trees. GNP individuals consist of a directed graph containing a 

fixed number of nodes of different types (start, judgement, processing) that can 

perform different actions, connected by a number of directed edges. Chromosomes 

represent graphs with a two-segment data structure; the first section contains 

information about the nodes of the chromosome and the second the connectivity 

information. Evolution occurs through mutation and crossover while selection follows 

an elitist approach where the best individuals are preserved in next generations. A 

hybrid version of GNP, complemented with Reinforcement Learning (RL), aimed at 

combining the advantages of the evolutionary approach, i.e., the ability to perform a 

global search, with the intensified, local search provided by RL through the 
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immediate rewards obtained after agent actions. Experimental results provided by the 

authors show that GNP compares favourably with GP, with the RL enhanced version 

further improving the quality of the solutions [MHH07]. 

In the engineering domain, Farmani et al. [FSW05] presented a multi-objective 

optimization evolutionary application for the design of a water distribution network. 

Their work involved the implementation of popular MOOP algorithms, i.e., SPEA and 

NSGA, and the optimization of several test cases including the New York tunnel 

system and the Hanoi distribution network. The objective used was a non-linear 

aggregate function combining water demand, construction cost and overall length 

goals. The design task was simplified since vertices were known and fixed and 

therefore only graph edges could be modified by adjusting for example, the number 

of pipes, the diameter of each pipe, etc. Individual designs were encoded as bit 

strings with standard single-point crossover and bit-flip mutation used for evolution. In 

their conclusions, the authors suggested that the application of such methods 

produced several potential solutions although the solution sets were incomplete 

[FSW05]. 

A similar algorithm was described in [CS04] for the design of the extension of a 

telecommunication network. In this application the nodes of the graph were also 

known and so the problem consisted of determining the optimal combination of edge 

capacities so as to minimize the cost and maximize the reliability of the network. 

Solutions were encoded using vectors of 15 elements each of which could take one 

of four different values. The method used a Pareto archive updated in each iteration. 

Solution breeding took place using high level processes designed for local 

optimization and diversification of the solution population, combining multiple steps of 

the mutation and crossover operations. Selection was performed using an efficiency 

score calculated according to the MOGA process described previously. The overall 

method was tested on a real scenario and successfully produced a Pareto 

approximation set consisting of a diverse set compromise solutions. 
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In the following section a more detailed review of the area of small molecule 

design is given. This specific field has long attracted significant interest from the 

optimization community and has provided the motivation and test-bed for several 

innovations in the field. A brief introductory description of the problem is also given to 

facilitate user understanding. 

 

4.2.1 De Novo Design 

Drug discovery focuses on identifying biological keys, i.e., molecules that interact 

with specific biological receptors and cause a certain desired behaviour. The ability to 

interact is controlled by the molecular graph of the drug and namely, by its 

complementarity to the targeted, receptor site. More specifically, to achieve 

appropriate binding a molecule must have the right pharmacodynamic properties, i.e., 

complementary shape, size and electrostatic properties to the receptor site [MG04]. 

However, not all potent binding molecules are suitable as drugs. In order to be truly 

effective within a living organism a molecule must satisfy several additional 

properties, e.g. Absorption-Distribution-Metabolism-Excretion (ADME), collectively 

known as pharmacokinetics and, toxicity (Tox). These properties enable drugs to 

move appropriately “in vivo” (i.e., in the living organism to be treated), reach the 

region of the target without causing side effects and bind selectively to the 

pharmaceutical target [BM04]. The presence of the pharmacokinetics and toxicity 

requirements turn drug discovery into a true multi-objective problem where a solution 

can only be found if multiple objectives are concurrently fulfilled. From an 

optimization perspective drug discovery can be thought of as an optimal graph design 

problem subject to sufficient binding and appropriate pharmacokinetics and toxicity 

properties.  

De-novo drug (or ligand) design (DND) is an attempt to generate ligands from 

scratch based only on information about the pharmaceutical target site or known 
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ligands [NAP09]. Effectively, DND methods face the task of exploring a chemical 

search space estimated to be in the order of 1060 [BMG96]. Such space cannot 

possibly be fully enumerated and so powerful search methods need to be applied to 

detect the best possible solutions in a limited amount of time.  

DND algorithms proposed in the literature typically use an evolutionary algorithm 

related technique for searching and a set of molecular fragments as genes. The use 

of a predefined collection of molecular fragments is sometimes combined with the 

identification of reaction points and synthetic rules that, when used, increase the 

synthetic feasibility potential of the designed chemical structures. Most methods are 

designed to accommodate a single objective, either predicted binding affinity to a 

known protein target or, similarity to a known ligand. MOOP-based methodologies 

are limited to [NAP09] and [BMGG04] although the need for their greater adoption is 

gaining support within the drug discovery community [ES02], [BM04], [NBP07]. 

 

Fig. 4.2: A crystallographic image of the receptor of the ER-alpha protein, with a bound ligand (1ert). In 

the lock and key paradigm the protein is the lock, the receptor is the keyhole and the key is the 
drug/ligand. 

 

Excellent reviews on the topic can be found in [SHRTPS08], [SF05] and [CW96] 

for the older methodologies. A review of the use of EAs in drug design in general can 

be found in [LBKI05]. In the following section we focus on EA related approaches that 

seem to be the overwhelmingly preferred method in recent years. Table 1 presents a 

comprehensive list of published DND methods using EA related approaches. The 

subsequent discussion section elaborates on these methods and, highlights 

commonalities, shortcomings and potential improvement research directions.  
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TABLE 4.1: A SUMMARIZATION OF EA-BASED DND METHODS 
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Pro_Ligand reported by Clark et al. [CF95] uses a fragment-based approach and 

a DFS method to incrementally design de novo ligands fitting a model derived from a 

well-defined target receptor site or a collection of highly similar actives. The method 

constructs the ligands by matching fragments with the model components and may 

“link” or “grow” virtual molecules using standard chemical rules. The DFS strategy, 

chosen primarily for performance reasons resulted inevitably in the generation of 

structures with varying degrees of quality. In later publications Pro_Ligand was 

complemented by a post-processing GA-driven module that further evolved the 

designed compounds using a limited set of crossover and mutation operations and 

roulette selection type [WC95].  

Glen and Payne proposed their Chemical Genesis system in 1995 [GP95]. Their 

program used 3D molecular fragments to design molecules using a single-objective 

evolutionary algorithm. The method clearly recognized the need to accommodate 

multiple objectives and therefore used a composite objective function, combining both 

receptor and ligand-based objectives. Chromosomes were represented via a 

molecular graph structure with additional bits to indicate various topological and 

geometrical features. Structure evolution took place by directly operating on the 

chemical graph via mutation and crossover with a preference on the former. 

Crossover involved exchanging fragments between two molecules taking care not to 

break rings, while mutation, with 12 different variants, allows modifications including 

changing atom and bond types, inserting and removing fragments and breaking and 

forming rings.  

A sizeable category of EA-driven applications proposed has been using linear or 

simple tree representations of molecules. Most of these approaches opt to use 

molecular fragments as genes, a choice that in effect reduces complexity by 

sidestepping the issue of ring handling.  Under these conditions perturbation of the 

chemical structure is achieved by actions such addition, deletion, substitution or 
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exchange of whole fragments. Venkatasubramanian et al. [VCC94] were among the 

first ones to use such an approach and test it successfully to design polymer 

structures. Similar approaches have been reported in [KH02] and [DML05]. The latter 

used a pool of 3D fragments, which were combined in a linear fashion in a 

chromosome string. The method used a composite fitness function taking into 

account both receptor and ligand-based constraints. The application TOPAS [SLS00] 

used 2D subgraph genes derived from known drug molecules and an EA method to 

design molecules similar to a target chemical structure. TOPAS, and its ancestor Flux 

[FS05], [FS07], used retrosynthetic analysis [LBWH98] to generate the fragment 

genes and kept information about the type of bonds at each attachment point. 

Candidate compounds were then evolved via operations that take into account 

chemical synthetic rules. TOPAS used exclusively mutation in the form of fragment 

substitution. Flux [FS05] uses a richer collection of genetic operators that enables 

recombination of parent molecules via crossover, and changes in the number of 

fragments a molecule contains. In both algorithms the fitness function was based on 

the chemical similarity of the candidate compounds to a known active molecule 

calculated by first transforming the molecules into descriptor vectors and applying a 

vector distance/similarity measure. Certain drug-likeness rules were taken into 

account for compound selection. GANDI [DC08] joins a collection of predocked 3D 

fragments to a receptor site with a set of linkers to generate candidate molecules. 

Individuals are represented as simple trees whose general shape and structure is 

restricted by the receptor site present. The method divides the working population 

into subpopulations and uses a parallel genetic algorithm (see section 5.2) with 

binary tournament selection of parents for selecting the predocked fragments and 

tabu-search [W08] to select the linkers. The scoring function in GANDI is a linear 

combination of terms measuring both 2D and 3D properties of an individual.  

Nachbar [N98], [N00] proposed a ligand-based DND algorithm that uses a tree-

like structure for molecule representation. Rings were represented using special 
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pointer nodes to link appropriate tree branches. The method uses a single objective 

evolutionary approach employing both mutation and a constrained crossover version 

paying special attention not to make or break rings. The objective used to drive the 

process was a predictive regression model generated using a set of known actives.  

A different category of DND methods exploit the simplicity of the SMILES 

chemical language to represent molecules [W89]. Weininger (1995), the inventor of 

SMILES, proposed an evolutionary method that used single atoms and bonds as 

genes to design molecules satisfying any single given objective function [W95]. The 

method used both mutation and crossover operators and was shown to be successful 

in test cases where the objective function was similarity to a known ligand. Douguet 

et. al [DTG00] also used SMILES for molecular representation and an EA-based 

search strategy but chose fragments for genes. Their method used an extensive set 

of mutation and crossover operators, and a set of repair mechanisms to ensure the 

validity of the produced SMILES strings, especially with regard to branching and ring 

correctness.  

Globus [G99] introduced an evolutionary algorithm designed to evolve molecular 

graphs. The individuals used are labeled, cyclic graphs able to accommodate vertices 

and edges of various types. In this application evolution is taking place using 

crossover through a process of initially “ripping” individuals into two parts and then 

combining the parts from the different parents. Ripping selects and removes 

randomly an edge and adds on the two resulting fragments “cut bonds”. If this 

operation fails to break the graph in two, i.e., when the edge is part of one or more 

cycles, the algorithm iterates until there is no path connecting the two vertices of the 

original edge. During mating one of the cut bonds is picked randomly and merged 

with a cut bond edge belonging to a fragment from a different parent. The merger 

results in connecting the two graph fragments from different parents into a new 

offspring graph. This approach is capable of crossing over rings a feature not 

available in most other algorithms reviewed for the purposes of this report. 
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Tournament selection is used for choosing parents and replacing poor individuals. 

The algorithm implements a steady-state genetic system where new individuals 

replace existing poor individuals in the population rather than creating a new 

generation [G99]. Globus applied the technique to evolve individuals similar to a 

specific target molecule. The fitness function used was simply graph similarity to the 

target molecule. In their tests the authors were able to reproduce several target 

molecules of varying complexity.  

Multi-objective optimization technology has been introduced to de novo design 

through the system proposed by Brown et al. that optimizes candidate drugs using as 

objective functions similarity to existing molecules of interest [BMGG04]. The system, 

named COG, explores the chemistry space of interest via perturbations of a genetic 

graph molecular representation. COG, is flexible enough to accommodate both 

molecular fragments and atoms/bonds as genes and, imposes no constraint on the 

size or complexity other than those required for the graph to represent a valid 

molecule. The set of genetic operators available includes an extended set of 

mutations on both nodes and edges, and crossover that enables crossing over rings. 

The multi-objective fitness score mechanism implemented in COG is based on the 

Pareto ranking procedure of MOGA described previously. COG has been applied 

successfully to fill gaps in property space by using quantitative structure-property 

relationship (QSPR) models to calculate individual fitness [BMG04]. However, a 

recognized limitation of optimizing in similarity space is that the resulting designs are 

highly similar to existing molecules. To overcome this problem, Brown et al. have 

more recently published a similar method using the inverse QSPR methodology that 

optimizes molecules directly in property space, allowing multiple molecular properties 

to be optimized simultaneously [BMG06].  
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Fig. 4.3. A graph showing different approaches to objective optimization in drug discovery. The dashed 

line represents the sequential single-objective optimization of conflicting objectives. The continuous 
straight line represents the ideal optimization solution (not achievable in practice). The continuous wavy 
line represents the multi-objective optimization of conflicting objectives, whereby the solution space for 
satisfactory compromises to all objectives is searched simultaneously, resulting in a more direct route to 
the drug candidate compared to the SOOP method. (Figure adapted with permission from Wiley-VCH 
Verlag GmbH & Co KGaA and Baringhaus K-H, Matter H: Efficient strategies for lead optimization by 
simultaneously addressing affinity, selectivity and pharmacokinetic parameters. In: Chemoinformatics in 
Drug Discovery. Oprea T (Ed), Wiley-VCH, Weinheim, Germany (2004):333-379. © 2004 Wiley-VCH 

Verlag GmbH & Co KGaA.) 

 

More recently, two independent groups have published their research on the 

design and implementation of the software programs MoleculeEvoluator and Mobius 

that provide a progressive, user-directed de novo design approach [LKBI06], [CO08], 

[EWBB08]. In both algorithms the generated candidate compounds are profiled and a 

range of properties of pharmaceutical interest, such as molecular weight, number of 

hydrogen-bond acceptors/donors, and polar surface area are calculated. Selection is 

left to the user who assigns a score for each of the candidate molecules based on 

their expert knowledge, taking into account the molecular structure and the 

associated property values calculated previously. The MoleculeEvoluator represents 

molecules using the SMILES chemical language and emphasizes mutation while 

Mobius uses a simple tree representation with molecular fragments as genes and 

limits the evolutionary operations allowed so that any new design produced will 

conform to a predefined blueprint, i.e., a recipe for combining fragments to create a 

molecule. Mobius also offers the ability to measure the fitness of the individuals on 

additional objective functions that can be added to the process. In effect, in this 

approach, the user is the multi-object optimizer and can therefore, focus the area of 
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exploration to those regions deemed to be of most interest for the particular 

application [NBP07]. 

Overall, a wide variety of representation schemata, molecule synthesis engines, 

compound evaluation criteria and search methods have been applied to the de novo 

design problem [NBP07]. While no standard methodology has evolved most of the 

recent approaches use some form of an EA to search the chemical space due to its 

flexibility, robustness and the limited requirements it imposes on the objective 

functions. Furthermore, the majority of the methods uses either a single-objective 

optimization approach or transforms the multi-objective problem into a single one 

using a composite, weighted-average function. This has profound effects on the 

procedure since such methodology can only provide solutions from a single region of 

the search space in a single run and has known issues in finding solutions in complex 

spaces with non-convex surfaces [CS04]. An additional issue arises from the various 

limitations imposed by most of the methods on the compound design component 

mainly due to their choice of representation schema (linear or tree structure) and the 

perturbation operators encoded. Limitations such as the exclusive use of fragment-

based genes and constrained versions of mutation and crossover reduce the feasible 

search space and facilitate the search process. Although such reduction in the search 

space risks missing potentially interesting solutions, it may also be advantageous, 

provided that the search space is reduced in a meaningful way since it enables a 

more thorough exploration of the remaining space. A final point that needs to be 

raised is the lack of use of domain-specific knowledge in the process other than what 

is needed for representing and generating solutions (only valid molecules are 

allowed) and fitness scoring (problem specific objective functions are used). Such 

knowledge, already available in various forms in the drug discovery process, has 

already proven of great assistance in other fields by guiding search to more 

promising regions of the space and enabling convergence to optimality with less 

effort and higher certainty [M89], [M04].   
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4.3 Research Perspective 

The purpose of the research described in this thesis is to propose an algorithmic 

framework for the problem of multi-objective optimal graph design for labeled, 

undirected graphs. Solutions to this problem are graphs consisting of genes from two 

sets, the set of vertices and the set of edges. Multiple types/labels of vertices and 

edges are allowed and therefore the problem suffers from the combinatorial explosion 

of the number of potential graph solutions. Additionally, the OGD problem usually has 

a complex, multi-modal solution space due to the multiple potentially conflicting 

objectives that need to be satisfied by the solution graphs and, the combinatorial 

nature of the problem. Consequently, from a computational optimization perspective, 

the problem corresponds to searching the huge space of valid graphs to discover and 

select the few designs satisfying, or compromising in the case of conflicts, the 

objectives imposed. In this context validity of the resulting graphs is problem specific 

and, as such, the inclusion of problem domain knowledge to the process can facilitate 

the process. The role of diversity in the population of solutions also assumes 

increased importance; since multiple solutions, and not only the single best one, are 

being sought, the process needs to ensure that the population is -to the degree 

feasible- representative of the range of solutions existing in the various regions of the 

search space. To solve the problem a search strategy capable of global exploration 

while paying special attention to the diversity of the population and the ability to 

converge to individuals in promising localities of the space needs to be implemented. 

Below we outline the directions investigated for the purposes of this research: 

! Graph-based Representation of Solutions: Problems naturally represented 

as more complex data structures, e.g. graphs, are often encoded as 

numerical vectors using abstract descriptors for the sake of simplicity. This 

transformation enables the usage of a variety of software tools designed to 
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manipulate vectors at the cost of information loss occurring due to the inability 

of simpler abstractions to represent complex structures. Specifically for EAs, 

the choice of chromosome representation is a crucial design step with direct 

impact on performance. However, there exist only a few systematic 

approaches for the design of EAs on nonstandard representations with most 

algorithms using string or matrix based data structures [EMS01]. In order to 

avoid information loss we are using graph representations of solutions and 

appropriate computational data structures and methods. Graph representation 

is especially useful in assessing the diversity of the population since actual 

calculations can be performed on the natural representations of the 

individuals using graph theory techniques. 

! Solution Quality – Niching and Elitism: In a multi-objective optimization 

setting multiple equivalent solutions representing different compromises 

among the objectives are possible. Although in many applications the 

presence of multiple solutions may be considered a problem, and therefore 

methods for selecting a! priori the single ‘best’ solution are employed, in graph 

design, including drug discovery, it is widely accepted that multiple instances 

may provide a different alternative solution equally viable as for example in 

the case of different chemical structures with the potential to interact with the 

same target in a different binding mode. Based on this requirement the 

proposed method produces multiple, diverse solutions and enable users to 

choose a! posteriori from a variety of candidates. Of prime importance is the 

issue of solution diversity. Most current MOEA approaches focus exclusively 

on diversity of solutions in objective space and ignore diversity in parameter 

space. This can lead to niching conditions in the parameter space, i.e., the 

potential domination of the population by a comparatively better family of 

solutions sharing structural similarity surfacing at a specific generation. This 

condition, widely recognized in the field of evolutionary algorithms, results in 
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insufficient exploration of the search space, loss of population diversity in 

objective space and production of nearly identical solutions in genotype 

space. The problem may remain unnoticed when searching for a single 

solution e.g. in single-objective optimization problems where the population of 

solutions used serves only as a breeding mechanism for the single best 

solution. However, in multi-objective settings, where a set of solutions 

representative of the true Pareto-front is the goal, niching constitutes a 

serious problem. A novel niching mechanism securing solution diversity in 

both parameter and objective space is introduced in the algorithm proposed in 

chapter 5. The proposed algorithm also uses elitism to ensure that valuable 

solutions discovered during the optimization search are preserved in a 

secondary population. 

! Exploitation of Knowledge (Memetic) Component: It is often the case that 

there exists substantial knowledge on a given optimization problem that can 

facilitate the search process if used appropriately. For example, currently, 

there exists a large volume of pharmacologically relevant knowledge 

accumulated during past efforts to discover drugs. In order to focus the search 

effort and speed-up search our supports the inclusion -and exploitation- of 

available problem-specific knowledge to achieve fast exploration of the search 

space. A mechanism has been implemented to encode and import the 

knowledge to the algorithmic process and, to effectively use it during the 

optimization process. The modular representation of our graph-based 

algorithm is exploited for the integration of knowledge into the operators and 

algorithm. Additionally, knowledge related to the search progress, in the form 

of the advancement of the Pareto-front towards the optimal point, is mined 

and exploited to self-adapt the system and achieve improved performance. 

Such knowledge is used to activate the memetic component of the algorithm 
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that divides the population into natural groups according to solution genotype 

and applys a local search technique on each group to exploit that region. 

! Performance and Scalability: The inclusion of multiple objectives to an 

optimization problem defines a complex search space with multiple local 

minima, and potential non-uniform landscape features. Such search space 

needs to be effectively explored and, therefore, it has been a requirement for 

the proposed platform to be able to search both globally and locally to detect 

solutions within a reasonable amount of time. In order to achieve this goal a 

system must be able to maintain performance standards for reasonably bigger 

and more complex problems. Our research efforts have focused on exploring 

the knowledge available to the system from previous runs to avoid non-

promising regions of the search space and on maintaining archives of already 

visited solutions. Further, our work has investigated the use of modern 

hardware features, i.e., multi-core processors, that if exploited can provide 

additional computational resources and increase method scalability. The 

approach followed focused on preparing a parallel implementation of the 

method through the evolution of numerous subpopulations, and, on 

distributing the optimization process during run time on multiple cores of a 

single processor so as to increase scalability with the minimum algorithmic 

modifications. 
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Chapter 5 

 

The MEGA Algorithm: Design, Implementation and Application 

Domain 

 

The global-search capabilities of evolutionary algorithms, the successful record 

of multi-objective optimization methods utilizing evolutionary principles in various 

applications and the ability to combine these principles with knowledge-driven local 

search techniques has driven us to design a memetic algorithm for the optimal graph 

design problem. The research proposed in this dissertation follows a hybrid 

approach, combining methods from the fields of multi-objective optimization, 

evolutionary/memetic algorithms and graph theory. In addition to smoothly integrating 

these fields, the resulting method expands appropriately research in each area by 

introducing innovative steps as described initially in section 1.3 and in more detail in 

4.3. In this chapter we describe in detail the proposed method. 

 

5.1 The MEGA Algorithm  

The Multi-objective Evolutionary Graph Algorithm (MEGA) framework proposed 

in this dissertation combines evolutionary techniques with graph data structures to 

directly manipulate graphs and perform a global search for structurally diverse, 

promising solutions compromising the objectives. MEGA can incorporate problem-

specific knowledge and local search heuristics and techniques, to improve 

performance and scalability. MEGA was initially proposed in [NPA08], [NAP09] where 

it was applied successfully to the design of novel small molecules exhibiting 
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selectivity to one of two closely related pharmaceutical targets. Applications of MEGA 

have also been published in [NKP09] while pMEGA has been introduced in [KNP09]. 

A general diagram of the algorithm framework showing its major components is 

shown in Fig. 5.1. The pseudocode of the algorithm is shown in Fig. 5.2. 
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Fig. 5.1: The MEGA algorithmic framework. Efficiency calculation involves the calculation of Pareto-
ranking, chromosome clustering and assignment of the efficiency value to each solution. The local 
search step involves the usage of local search methods on subsets of the population following the 
approach of Memetic Algorithms.  
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Fig. 5.2: The pseudocode of the MEGA algorithmic framework. 

 

 

0. Initialization 
Generate initial population P of size S 

 Initiate Pareto-archive 

1. Fitness computation 

Evaluate solutions in P against primary objectives O1-n 
2. Hard filtering  

Perform hard-filtering using secondary objectives 

3. Efficiency calculation 
Update Pareto-archive 

Assign Pareto-rank to solutions 

Perform graph-based clustering of solutions 

Assign efficiency value to solutions based on Pareto-rank and clustering 
While Not Stop Condition: 

 4. Select parents Pparents in proportion to efficiency values 

 Generate population Poffspring by reproduction of Pparents 
  5. Domain-specific mutation on individual parents 

  6. Domain-specific crossover on pairs of parents 

  7. Local search improvement  
 Merge P, Poffspring to create Pnew 

1. Fitness computation 

2. Hard-filtering 

 3. Efficiency calculation 
 Perform graph-based clustering of solutions 

Assign efficiency value to solutions based on Pareto-rank and clustering 

Reduce Pnew to size S 

   

 



 

 

70 

 

MEGA operates on two population sets, the normal, working population (Fig. 

5.1.A), and the secondary population or Pareto-archive (Fig. 5.1.B) [NKP09]. The 

former population consists of the individuals subjected to objective performance 

calculation and obtained through evolution in a single iteration. The latter supports a 

form of elitism aimed at preserving promising solutions found throughout evolution 

and ensuring that the final Pareto-approximation will contain the best solutions found. 

The algorithm requires the supply of a set of genes, the implemented objectives to be 

used for scoring the graphs and a set of attributes controlling mutation and crossover 

methods and probabilities, parent selection, size of working and secondary 

population, hard filters for solution elimination, etc. Optionally, a set of graphs to be 

used as the initial working population may be supplied as well. The supplied data is 

used for initialization purposes, i.e., to create graph-based chromosomes, to 

construct a list of subgraph gene objects and to initiate additional internal data 

structures required for the execution of the algorithm (Fig. 5.1.0). At this stage the 

external archive of solutions intended to store the secondary population of elite 

solutions is also created.  

The first phase of the algorithm (Fig. 5.1.1) applies the objectives on the working 

population to obtain a list of scores for each individual. The list of scores may be used 

for the elimination of solutions with values outside a predefined range allowed by the 

corresponding active hard filters provided by the user (Fig. 5.1.2). Objectives used in 

this manner are typically referred to as secondary, while objectives used to guide 

optimization are considered primary. Secondary objectives are used to filter out 

solutions not conforming to some well-established problem specific constraints and 

thus limit the search space. In the next step (Fig. 5.1.3), the two populations, working 

and secondary, are merged and the individuals’ list of scores is used in a Pareto-

ranking procedure to set the rank of each individual. The combined population forms 

the new working population. The algorithm then proceeds to calculate an efficiency 
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score for each individual using a novel methodology that operates both in parameter 

and objective space. The methodology employs an elaborate niching mechanism that 

performs diversity analysis of the population based on the genotype, i.e., the 

chromosome graph structure, and subsequently assigns an efficiency score that 

takes into account both the Pareto-rank and the diversity analysis [NAP09]. The 

efficiency score of each individual is then used to update the Pareto-archive. The 

current Pareto-archive is replaced with a subset of the working population that favors 

individuals with high efficiency score, i.e., low domination rank and high chromosome 

graph diversity. Note that the size of the subset selected to populate the Pareto-

archive is limited by a user-supplied parameter.  

Following the update of the Pareto-archive MEGA checks for the termination 

conditions, typically if the number of preset maximum allowed iterations has been 

reached; if satisfied the process terminates. However, if this is not the case the 

process moves to select the parent subset population (Fig. 5.1.4) from the combined 

population set using a variation of the “roulette” method [CS04] on the efficiency 

scores of the candidate solutions. The “roulette” selection method chooses solutions 

via a probabilistic mechanism that assigns higher selection probability to solutions 

with higher efficiency score. The parents are then subjected to evolution, i.e., 

mutation (Fig. 5.1.5) and crossover (Fig. 5.1.6) as well as local search (Fig. 5.1.7) 

according to the probabilities indicated by the user. The new working population is 

formed by merging the original working population with the newly produced offspring 

of the parent evolution step and reducing it to the user defined population size also 

using a “roulette”-like method. The method is essentially identical to the “roulette” 

parent selection method described previously except that it assigns a higher selection 

probability to the worst performing solutions. Best performing solutions, i.e., 

nondominated solutions, essentially have a selection probability of zero. The process 

then iterates as shown in Fig. 5.1 and 5.2. 
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MEGA incorporates heuristics to enable the exploitation of existing problem 

specific knowledge. The heuristics involve the usage of the weights associated with 

the subgraph genes provided and result in favoring those with an increased weight. 

Additionally, the progress of the Pareto approximation set is monitored to self-adapt 

certain attributes controlling the optimization process and specifically the initiation of 

local search on specific subsets of solutions from certain regions of the space. 

In order to avoid duplicate work and the resulting performance degrade, MEGA 

incorporates two additional mechanisms worth special mention. The first is a caching 

mechanism that contains each and every chromosome evaluated during the 

execution of the algorithm. This includes all members of the initial population as well 

as the complete set of offspring generated in all iterations. The size of the cache is 

limited since it only includes the identity (ID) and fitness values of the chromosome 

measured in some previous iteration. An associative memory hash data structure is 

used to store the cache to ensure negligible cost to the execution run time. When 

new chromosomes need to be evaluated against the set of objectives the cache is 

used to identify whether a specific chromosome has been previously scored and, if 

so, omit the potentially costly fitness evaluation process and return the values 

calculated previously. The choice of a chromosome ID is crucial to the success of this 

scheme since it needs to guarantee that different chromosomes have different IDs 

and identical chromosomes have the same ID. The operation of the mechanism is 

especially useful in optimization processes with costly objective functions, such as 

docking in the de novo design problem case. The second mechanism, active during 

the evolutionary steps, simply checks and removes those offspring that are identical 

to some parent chromosomes. The key features of the algorithm are described in 

detail below: 
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Graph-based Chromosome Repesentation. MEGA uses graph-based 

chromosomes to avoid the information loss associated with the encoding of more 

complex structures into simpler ones, i.e., graphs into bit vectors, and the need for 

encoding and decoding graphs into other data structures. In addition to the graph 

data structure, MEGA chromosomes contain information that can be used during 

evolutionary design including details related to ways that they can be connected to 

other fragments. Additionally, chromosomes contain information about their parent 

structure(s) and the operation that produced them including the fragments used (if 

any), the type of operation (mutation or crossover), etc. 

Information-Rich Subgraph Genes. MEGA uses collections of vertices and edges 

as well as subgraphs for genes. These collections are also referred to as alphabets. 

Similar to chromosomes, a subgraph gene may contain information about its 

attachment points and type, i.e., what kind of edges can be attached to it, and about 

its weight so as to favor the selection of those that are known to produce individuals 

with higher chances of exhibiting increased fitness to the problem. The weights are 

exploited in later steps of the algorithm in two ways: first, to increase the chances of 

the highly weighted genes to take part in the formation of the initial population and, 

second, to favor the selection of privileged genes for use during evolutionary steps, 

and especially mutation, described in detail in a later section. Effectively, this type of 

gene information can be used to apply mating restrictions during evolution, a 

technique also used in some other MOEAs [CLV07]. Mating restrictions in MEGA are 

based on available knowledge, for example rules determining what kind of edges can 

be used to connect two subgraphs. Fig. 5.3 below presents a sample chemical 

subgraph gene and its associated information. 
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Fig. 5.3: A sample, relatively simple chemical subgraph gene with information on the subgraph structure, 

its single attachment point marked with R and its weight. 

 

Graph-specific Evolutionary Operations. MEGA uses a rich set of operations 

inspired by nature to evolve solutions. The modifications effected by the operations 

cause changes at the level of single edges and vertices as well as on subgraphs that 

may be selected from a predefined list or adaptively calculated. The available 

processes can be divided into two main categories, those inspired by mutation and 

those inspired by crossover.    

A. Mutation-inspired processes: 

• Flip-Vertex: Modifies the type/label of a vertex by choosing from 

the available vertex alphabet collection; for example in the case of 

chemical graphs the vertex alphabet may consist of the collection 

of valid atoms. 

• Flip-Edge: Modifies the type/label of an edge by choosing from the 

available edge alphabet collection; for example in the case of 

chemical graphs the alphabet may consist of the collection of valid 

bond types. 

• Remove-Vertex: Removes a vertex 

• Remove-Edge: Removes an edge 

• Remove-Ring: Identifies and removes a ring/cycle  

• Remove-Fragment: Identifies and removes a subgraph  
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• Exchange-Fragment: Identifies a subgraph of the existing 

chromosome and exchanges it with a subgraph from the available 

subgraph alphabet collection. 

• Insert-Fragment: Identifies an attachment point and inserts a 

subgraph from the subgraph alphabet collection. 

B. Crossover-inspired processes: 

• Combine-1-point: Given two parent chromosomes the process 

identifies and cleaves an edge from each of them and recombines 

the resulting fragments to generate two offspring. 

The frequency of occurrence of the evolutionary operations is controlled by user-

defined probability parameters supplied during the initialization of the process. 

Mutation probability ranges from 0 to 1 with probability 0 resulting in no mutation 

operations taking place and probability 1 resulting in the generation of one mutant 

offspring for each of the mutation-inspired processed described above. Note that the 

mutation operator can result in several offspring per parent contributing in this way to 

a more intensive local search of the parent neighborhood. Similarly, crossover 

probability ranges from 0 to 1 with 0 resulting in no crossover taking place between 

the supplied parents and 1 resulting in one crossover operation producing two 

offspring.  

Problem-domain specific knowledge is incorporated via the usage of weights on 

the collection of subgraph genes that in effect reflect privileged status and affect the 

probability of usage of each gene, and, through the mating restrictions enabled by the 

information-rich genes used. The weight value of each gene may be calculated using 

problem domain specific data; for example, the weight for chemical subgraph genes 

used in a de novo drug design problem can be determined by the drug-like 

characteristics of each subgraph. 

Objective Encoding-Scorers. Several methods for assessing the fitness of a graph 

solution have been prepared. These so-called objective scorers are typically problem 
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specific measuring the quality of the graph as relating to the optimization problem 

investigated. Moreover, a methodology for incorporating additional objective scorers 

as needed has been defined. The methodology defines an advanced programmer 

interface (API) that enables the encoding of graph fitness calculation tools and their 

use to obtain quality measures in real time. 

Niching Mechanism. MEGA avoids the niching problem by performing a diversity 

analysis at the genotype level, i.e., of the graph chromosomes, using a novel 

mechanism. As previously mentioned, proximity of solutions in objective space does 

not necessarily correlate to proximity in parameter space (see Fig. 2.1). In order to 

preserve population diversity, both at the genotype and phenotype level, MEGA 

clusters the chromosome graphs, ranks the clusters based on their size and the 

number of Pareto solutions they contain and samples parents based on solution 

cluster assignment and rank. Specifically, the selection method is applied on the 

clusters rather than the entire population. The process picks one solution from each 

cluster starting from the most populous ones and proceeding to clusters containing 

fewer compounds. The process traverses the set of clusters until the required number 

of parents is selected. This approach enables sampling of diverse graphs and the 

preservation of the overall population diversity.  

The specific Pareto ranking method used is the one proposed by MOGA (see 

section 3.2.4). According to this procedure the rank of an individual is set to the 

number of individuals that dominate it incremented by one, thus, nondominated 

individuals are assigned rank order one (see Fig. 2.2). A linear transformation 

function that assigns a higher score to solutions with low Pareto-rank is used to 

calculate the first element of the MEGA efficiency score. This function operates 

exclusively on phenotypes, i.e., in objective space. A second method performs 

diversity analysis of the population via clustering of the genotypes, i.e., the chemical 

structures, and assigns the cluster placement of each individual as the second 

element of the efficiency score. The efficiency score calculation technique can be 
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fine-tuned by user supplied parameters to favor the parameter space, the objective 

space or to balance between the two. Note that in the current implementation, 

traditional methods for efficiency calculation operating exclusively on the phenotype, 

i.e., the objective space, have also been implemented for performance assessment 

comparisons. 

Elitism. Pareto-archiving, an elitist mechanism designed specifically to preserve 

good nondominated solutions from getting lost [ZT99], is implemented in MEGA. The 

mechanism uses a secondary population where nondominated solutions found during 

previous iterations are stored. In each iteration MEGA merges the Pareto archive with 

the current population before the efficiency score calculation step and uses this larger 

set as the current, working population. This extended population is used during the 

parent selection step. The Pareto-archive is then reset based on the efficiency scores 

of the extended working population. Note that the size of the Pareto-archive is 

typically set to a large number so as to allow the storage and preservation of a 

number of solutions exceeding the user-defined population size. When the number of 

nondominated solutions exceeds the size of the archive clustering of the solutions 

based on the chromosome graphs is used to appropriately reduce the number of the 

elit solutions. Specifically, solutions are eliminated from the most populous clusters 

while care is exercised to preserve solutions from under-represented clusters. 

The mechanism is a result of observations made during runs of initial versions of 

MEGA where some promising solutions were lost due to the large number of Pareto 

solutions found. This paradox, partly caused by the success of Pareto-based MOOP 

methods in generating large, dense populations with multiple nondominated 

solutions, resulted in the obligatory elimination of good solutions since the number of 

nondominated individuals exceeds the size of the population. Zitzler [ZT99] already 

identified the problem and proposed techniques based on Pareto-front archiving and 

creation of an elite population of solutions.  
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Exploitation of Knowledge (Memetic) Component. In an effort to improve search 

efficiency, MEGA incorporates simple heuristics that can be used to exploit existing 

pharmacologically relevant problem specific knowledge. The heuristics involve the 

usage of the weights associated with the genes provided and result in favoring those 

with a privileged status, i.e., increased weight. Specifically, the flip_edge, flip_vertex, 

insert_fragment and exchange_fragment chromosome evolution operations select the 

gene to use using a mechanism based on a “rulette” principle that favors blocks with 

higher weight. Provided that the schema used to assign weights to genes reflects the 

likelihood of increased performance when a specific gene is used, the mechanism 

results in the production of individuals with genes associated with better performance. 

Additionally, MEGA monitors the optimization process execution and acquires 

knowledge about the progress performed through the calculation of quantitative 

performance measures of the Pareto approximation set obtained in successive 

iterations. This knowledge may optionally be exploited to self-adapt and adjust the 

search performed by initiating local search on selected search space regions. 

Specifically, MEGA identifies lack of progress during the search and selectively 

applies local search to improve certain solution subsets. This characteristic is similar 

to the memetic algorithms reported in [KN04], [S07]. Our efforts have initially focused 

on utilizing the self-adaptive capabilities of MEGA to escape local minima. In order to 

achieve this, a STagnation Identification and Resolution mechanism (STIR) has been 

implemented. STIR relies on measuring progress over successive generations and 

identifying the lack of new, nondominated solutions a condition referred to as 

stagnation. The method calculates and stores the hypervolume measure of the 

current Pareto-approximation set at the end of each iteration. Stagnation, or lack of 

progress, is identified when the hypervolume measure value remains unchanged 

over a user-defined number of iterations. When stagnation conditions are detected 

STIR invokes a subpopulation-based mechanism to focus search space exploration 

on local regions. The careful selection of a subset of closely related promising 
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solutions is seen as a method to explore thoroughly the solution space defined by 

them and converge to the local optimum more efficiently. The normal processes of 

fitness calculation, mutation, crossover and selection take place within each 

subpopulation to emphasize local, rather than global, solution search. The use of 

subpopulations requires a more intelligent strategy for splitting the original population 

since evolution continues within the limited subset of solutions and diversity issues 

may arise. MEGA employs a clustering method on the solutions in the Pareto-archive 

identical to the one used to eliminate the niching problem. Upon clustering of the 

available population the algorithm simply selects subpopulations based on the 

resulting clusters. Following the application of STIR, the algorithm merges the various 

subpopulations and proceeds as usual. The self-adaptive version of MEGA may 

invoke STIR several times in a given run to re-split and perform local search (see Fig 

5.4). 

 

 

 

 

 

 

 

Fig. 5.4: The STIR (STagnation Identification and Resolution) mechanism is designed to detect lack of 

progress in successive generations, a sign of getting stuck in local minima, and use local search 
techniques to perform local region exploration of subpopulations and boost search efforts. 

 

 

5.2 pMEGA: Parallelizing the MEGA Algorithm 

EAs are easily parallelizable partly due to their population-based search strategy. 

Efforts for Parallel EAs (PEA) often follow the fine-grained parallelization paradigm 

[CLV07] that focuses on distributing calculations based on individuals, i.e., processes 

that only use information from single chromosomes, such as fitness calculation. For 

example, a population may be divided randomly in subsets and each subset may be 

Initiate STIR mechanism  

 Assess progress achieved with current P 

 if progress:  
  Continue 

 else: 

  Identify clusters in population P 

  Form subpopulations SP1-n based on clusters 
  Improve subpopulations independently via local search 

  Merge subpopulations to form Pintermediate 

End STIR mechanism [set Pnew = Pintermediate] 
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forwarded to a different processor for fitness scoring. The scores obtained in such 

distributed manner are re-integrated and supplied to the later steps of the algorithm 

that proceeds to evolve and select parents as usual [W08]. Similarly, individuals (or 

subsets) of the working population may be evolved independently in a distributed 

manner and re-integrated into a combined set for subsequent use by the algorithm.  

A second approach to adopt parallelization requires the division of the working 

population into subpopulations, the distribution of each subpopulation to a different 

processor and its independent evolution [MZ96]. This approach, known as coarse-

grained parallelization, requires a master process controlling general evolution and 

the ability to generate slave-processes that can operate independently on different 

processing units for a number of iterations [AT02]. In this paradigm, subpopulations 

evolve independently of each other for a certain number of generations the so-called 

isolation time. Upon completion of the isolation time the master process collects and 

merges the results produced and reinitiates evolution of the total population or in a 

distributed fashion. During merger a number of the resulting individuals is re-

distributed between the subpopulations, a process referred to as migration. The 

number of exchanged individuals (migration rate), the selection method of the 

individuals for migration and the scheme of migration determines how much genetic 

diversity can occur in the subpopulation as well as the exchange of information 

between subpopulations. The selection of the individuals for migration typically takes 

place in a random manner or using fitness scores, e.g. select the best individuals for 

migration.  

Several possibilities exist for the migration scheme of individuals among 

subpopulations. Common migration schemes include the complete, unrestricted net 

topology, which exchanges individuals among all subpopulations, the ring topology, 

where exchange of individuals is allowed only to a specific subpopulation, and the 

neighborhood topology which exchanges individuals across a “neighborhood” [AT02]. 
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Fig. 5.5: Diagram of a coarse-grained parallel EA (PEA) using the subpopulations model and 
unrestricted migration topology. 

 

pMEGA, [KNP09] the parallel implementation of MEGA, uses population level 

parallelism, i.e., follows the coarse-grained paradigm, and distributes the population 

into several smaller subpopulations to be evolved concurrently. The algorithm 

randomly splits the working population to several subpopulations and uses a 

predefined pool of processes generated by the master process, to which it assigns 

tasks for execution. An example of a task is the independent evolution of a 

subpopulation set. In order to take full advantage of the processes that will handle the 

tasks, care is taken so that the number of subpopulations is greater or equal to the 

number of the processes created. A diagram of pMEGA is shown in Fig. 5.6. The 

pseudo-code of pMEGA is given in Fig. 5.7. 

Subpop 1 

Subpop 2 Subpop 3 

Subpop 4 Subpop 5 
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Fig. 5.6: A diagram of the pMEGA algorithm. 

 

 

Fig. 5.7: The pMEGA algorithm pseudo-code. 
 

 

Subpopulations are evolved independently for a specific number of iterations 

defined by a user-supplied epoch_counter, which is set to a percentage of the total 

iterations the algorithm has to run. The default setting for pMEGA is set to 10% of 

total iterations. The independent evolution of each subpopulation is a scaled-down 

execution of the MEGA algorithm as shown in Fig. 5.6. Specifically, during execution 

time a pre-constructed process from the pool of processes is assigned a task i.e., to 

# Master process 

Create pool of processes 

Initiate working population 

While Not Stop Condition: 

 Split working population into several subpopulations 

 Create tasks list (Each task evolves a given subpopulation using MEGA) 

 Assign tasks to processes in pool  

 Wait for results 

  Collect results 

  Merge and post process results 

 Create new working population 

 

# Process 

Receive task 

Evolve subpopulation for epoch_counter iterations; 

Return results 
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execute a scaled-down MEGA. The working population of the process/task is set to a 

subpopulation set and the number of iterations is set to the epoch_counter. During 

the evolution of subpopulations, migration is not permitted between the 

subpopulations. Upon completion of the task, the process returns the results 

produced and gets assigned a new task, if one is pending [K10]. 

When all subpopulations complete their evolution, their results are gathered and 

merged. The new working population is created from the merger of the resulting 

populations provided by the set of task executions, thus performing complete, 

unrestricted migration among the subpopulations. The new working population is 

subjected to Pareto-ranking and dominated individuals are removed so that the 

working population consists of the Pareto approximation set of the solutions. 

Following, pMEGA checks for the termination conditions; if satisfied the process 

terminates. However, if this is not the case the process moves to repeat the previous 

steps.  

5.3 De Novo Design Specific Implementation and Materials 

The validation of MEGA was performed through application on the DND problem 

(see section 4.2.1) using a variety of objective types. Pareto-based MOOP methods 

have recently been introduced to the drug discovery field [NBP07], a domain which 

has traditionally been in the forefront of computational science research [J04], with 

some successes reported [SF05], [SHRTPS08], [NAP09]. DND involves the design of 

molecular graphs that satisfy multiple objectives concurrently. The problem 

represents a challenging test case for the optimal graph design problem with intense 

ongoing research from a variety of research groups due to its direct applications in 

drug discovery, agrochemicals and fine chemicals research, among others. 

Following, some implementation specific details are provided as well as the materials 

used for the experiments performed in chapter 6. 
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Subgraph Gene Generation. As previously mentioned MEGA uses collections of 

vertices and edges as well as subgraphs for genes. In the DND specific 

implementation vertices correspond to atoms, edges to chemical bonds and 

subgraphs to molecular fragments or substructures. The sets of atoms and bonds 

correspond to those found typically in chemical structures and especially drugs. For 

the purposes of this implementation we use a substructure mining tool [NOES08] 

able to extract fragments from graphs in a variety of ways including frequent 

subgraph mining [NP06] and the RECAP (Retrosynthetic Combinatorial Analysis 

Procedure) chemical bond type identification and cleaving technique [LBWH98]. This 

tool facilitates the preparation of a large pool of subgraph genes that contain 

information about their attachment points and the type of bond cleaved at each 

attachment point prior to evolutionary design. The resulting fragments are profiled 

using available knowledge on the molecules that contain them, and weights, 

reflecting their privileged or not status, are recorded. In this context, knowledge is the 

result of past efforts to discover drugs, for example experiments performed to 

experimentally measure the potency of a set of compounds to a specific target. 

Essentially, the weight of a specific fragment is incremented by one for each 

molecule containing it that has a favorable biological profile, e.g. is a drug, or is 

“active” against the target of interest, and, decremented by one for each molecule 

containing it that is considered unfavorable. The RECAP utility of the tool is also used 

during evolutionary operations as explained in a following section.  

Graph-specific Evolutionary Operations. For the fragment removal and exchange 

operations RECAP is used to break the molecule in two disconnected parts and 

either remove or replace one of them with a fragment from the fragment collection. 

Note that fragment weights influence the probability of selection of a fragment for the 

insertion and exchange operations. Also note that users can optionally restrict the 

exchange fragment operation to subgraph genes with attachment points of 

compatible RECAP bond types in order to increase synthetic feasibility chances.  
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Crossover takes place using two operations. The first identifies and cleaves a 

RECAP-type bond in each of two parents and recombines the resulting fragments to 

generate offspring. In a manner similar to the exchange fragment operation described 

above, this type of crossover can also be restricted to breaking specific bond types 

and combining fragments with compatible bond types in order to produce chemical 

designs with higher chances of being synthesizable. The second uses a methodology 

initially proposed in [G99] and later used in [BMGG04] as well. A bond is selected 

randomly in each of two parents and removed. If the bond is part of a ring system, 

then additional appropriate bonds are also cleaved to obtain two fragments. The 

resulting fragments are then recombined to generate offspring. Note that a check and 

repair or discard mechanism is applied to ensure that the resulting offspring are valid 

molecules with respect to valences. Briefly, in its current implementation the 

mechanism identifies atoms with valence problems and attempts to repair them by 

either removing hydrogens attached to the atom or by downgrading atom bonds to a 

lower order, i.e., converts a double bond to single or a triple to double. If such action 

is not possible or sufficient to fix the problem, then the offspring is discarded. 

Caching. The caching mechanism implemented in the current implementation is 

specific to chemical structures. The required unique IDs for the molecular 

chromosome graphs are calculated using the SMILES chemical language [W89] 

which represents molecules using unique alphanumeric strings. The SMILES 

implementation provided in the NSisToolkit [NOES08] chemoinformatics was used.  

Niching. In the current implementation we have used the Wards agglomerative 

clustering technique [WB00] and a variation of atom-type descriptors [KSF96] for the 

encoding of molecular structure in vector representation. The resulting Wards cluster 

tree is processed with the Kelley cluster level selection method [WB00] to identify the 

main solution clusters. The clusters obtained are ranked based on their size, and 

solutions are labeled with the characteristics of the cluster they belong to. Care is 

exercised to accommodate the likely presence of singleton and under-represented 
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clusters often found when the population size is small or particularly diverse. Such 

clusters may cause problems during selection therefore MEGA implements 

appropriate rules, such as allowing only simple selection from singleton clusters. 

Objectives. Several methods for assessing the fitness of a molecule have been 

prepared. The methods fall in three main categories: 

(a) Binding Affinity Scorers. We have chosen to use the docking program 

Glamdock [TA07] recently developed by Tietze and Apostolakis. We have developed 

pyChill, a python wrapper for Glamdock, to enable tight integration into our de novo 

design system and facilitate the encoding of docking related objectives, i.e., 

objectives based on the predicted binding affinity of a designed molecule to a target 

protein. The designed molecules are docked into the binding site of the 

corresponding protein, and the interaction score of the best solution is used as an 

objective function. Settings for docking correspond to the slow settings described in 

ref [TA07]. The ChillScore is used to score interactions. This integration allows us to 

easily prepare a binding affinity scorer for a chosen target protein and produce fitness 

scores of our designed molecules via an interactive process in real time. 

(b) Molecular Similarity Scorers. Our system can use molecular similarity as a 

distinct objective when one of our goals is to produce molecules that resemble (or are 

quite different from) a known ligand. Similarity was calculated using the tool Fuzzee 

[MOD09]. The specific method used operates on abstractions of molecular graphs 

that replace atoms with molecular features to produce the so-called feature graphs. 

The actual similarity is calculated in a pair-wise manner by first aligning the feature 

graphs of two molecules, identifying common features and then applying the 

Tanimoto similarity measure [WBD98]. An alternative method relies on the calculation 

of a variation of the atom-type descriptor vectors proposed in [KSF96] that includes 

ring membership information of the calculated atom types. Again similarity 

calculations are performed using the Tanimoto measure [WBD98]. 
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(c) Chemical Structure Scorers. Often, selected classes of drug molecules tend to 

obey some simple rules easily calculable from the chemical graph of a molecule. An 

example of this type of rules is the widely known oral bioavailability Rule-of-Five 

described by Lipinski et al. [LC97]. In order to exploit such rules and generate fitness 

scores for the molecular structure we have encoded scorers measuring simple 

molecular structure properties such as the number of rotatable bonds, the number of 

hydrogen bond donors and acceptors, and the molecular weight. 

Self-Adaptive Mechanism. Stagnation, the condition used to trigger the activation of 

the STIR mechanism, depends on measuring lack of PAS progress over consecutive 

iterations of the optimization process. The current implementation of MEGA enables 

the user to set the number of iterations required to invoke STIR. For the purposes of 

this dissertation, STIR is invoked when the hypervolume measure values of a number 

of iterations equal to 5% of the total iterations of the optimization progress remain 

unchanged. As an effect, the STIR mechanism can be activated multiple times, every 

5% of the total number of iterations in the worst case. 

Evaluation. The application of MEGA, as well as its parallel version pMEGA, 

includes runs with a variety of input parameter settings. Multiple runs were performed 

for each combination of parameter settings to obtain a reliable profile of the 

implementation performance and its robustness. The results from the application of 

MEGA were evaluated both in a quantitative and a qualitative manner. Quantitative 

evaluation was performed via the application of the performance measures 

implemented (e.g. hypervolume, spacing, diversity) on the Pareto-approximation set 

produced in each run. Visual inspection, including expert partner review, provided 

qualitative evaluation. The results of MEGA have been presented successfully at the 

8th International Conference on Chemical Structures (ICCS) Conference in the 

Netherlands (June 1-5, 2008) [NPA08], the Leiden Workshop on Drug Design 

Optimization also in the Netherlands (July 19-23, 2009) [NPK09] and the 13th 

International Conference on Information Technology and Applications in Biomedicine 
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(ITAB) Conference in Larnaca, Cyprus (November 4-7 2009) [NKP09]. Furthermore, 

the algorithm and some of the results obtained were published in the Journal of 

Chemical Information and Modeling of the American Chemical Society. 

Performance Boosting. Following the validation of the algorithm implementation 

through the initial successful runs, efforts aiming at improving the computational 

performance of MEGA have been made. These efforts have produced pMEGA, a 

parallel version of the algorithm. Moreover, several mechanisms focusing on caching 

and reusing of fitness scores have been successfully implemented. Additional efforts 

for parallelizing the execution of the algorithm are planned for the future.  

Materials. Two datasets were used during the MEGA and pMEGA tests performed. 

Dataset 1, a set of well-known Estrogen Receptor (ER) ligands, contains five 

compounds, three with increased selectivity to ER-! and two with selectivity to ER-". 

Dataset 2 is an ER inhibitor dataset obtained from Pubchem [WEA06]. The dataset 

consists of 86098 compounds tested on both ER-" (Bioassay 629) and ER-! 

(Bioassay 633). Two collections of subgraph genes were used for all the tests 

performed, the first with 51123 blocks and the second with 2363. Both subgraph gene 

collections were obtained via fragmentation of molecular datasets with the 

substructure mining tool provided by [NOES08]. The 51123-collection was the result 

of fragmentation of Dataset 2 described above. The weights for these subgraph 

genes were assigned according to the activity labels of the molecules containing it. 

The 2363-collection was the result of fragmentation of 53 known ER ligands from 

[SR01]. Additionally, the known structures of the ER-alpha (Protein Data Bank - PDB 

code: 1xpc) and -beta (PDB code: 2fsz1) have been used for the encoding of 

optimization objectives. Finally, the structure of Tamoxifen, a known ER-alpha ligand 

marketed as a drug, has also been used.  

The application of the algorithm presented in the experimental section relied on 

the encoding of receptor-based objectives to guide the design of molecules with 

sufficient binding affinity and/or ligand-based objectives that measure the average 
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similarity of a query molecule to known ligands. The receptor-based objectives 

encoded the ER-! and ER-" receptors and measured the potential binding affinity of 

a query molecule. The ligand-based objectives measured similarity of a given query 

molecule to a set of molecules, e.g. known ER-! selective and ER-" selective 

ligands. The use of these objectives enabled the design of molecules possessing a 

variety of properties, e.g. selectivity to one of the receptors by maximizing average 

similarity to the ER-" ligand set and minimizing the average similarity to the ER-! 

ligand set. A set of hard filters based on chemical structure objectives was also 

applied in order to remove potentially problematic designs from further consideration. 

Similarity to Tamoxifen was also used as a hard filter in order to constrain the 

chemical structures designed to those exhibiting substantial Tanimoto similarity and 

thereby facilitate qualitative evaluation of the resulting designs.  

Tanimoto similarity is defined as [WBD98]: 

! 

T(A,B) =
c

a + b " c
     Eq. (14) 

where 

! 

a  is the number of enabled features in object/vector A, 

! 

b is the number of 

enabled features in object/vector B, and 

! 

c  is the number of enabled features in both 

A and B.  Soergel distance is defined as the complement of the Tanimoto similarity 

coefficient for binary vectors [WBD98]: 

! 

S(A,B) =1"T(A,B)      Eq. (15) 

Euclidean distance, also used in the experiments performed has been defined 

previously (see Eq. (8)). 

Performance has been assessed using the hypervolume, spacing and diversity 

(genotype and phenotype) quantitative measures as described in section 2.3. In the 

case of hypervolume, lower measure values indicate better performance while in 

spacing and diversity better performance is shown by higher measure values. Note 

that the implementation of the hypervolume measure relies on the PISA platform and 

programming language interface for search algorithms [BLTE03], [PISA09] which, by 



 

 

90 

convention, uses lower values for better performance. The performance measure 

results and analysis are depicted using primarily box-plots as implemented in the 

package MatPlotLib/Pylab [PYLAB09]. In each plot we display the median, lower, and 

upper quartiles and confidence interval around the median. The box extends from the 

lower to the upper quartile values of the data, with a line at the median. The whiskers 

extend from the box to show the range of the data. Crosses indicate possible outliers 

with values beyond the whiskers. The performance measure values are typically 

processed using the Mann-Whitney non-parametric test for statistical significance. 

We have used the implementation of this test found in the [SCIPY09] scientific 

computing software package.  

All runs were performed on two computers: Machine 1 is equipped with an Intel 

Core 2 Duo E8400 @ 3.0 GHz (2 Physical Cores) Central Processing Unit (CPU) and 

4 GB of memory; Machine 2 is equipped with an Intel Core 2 Duo Quad Q6600 @ 2.4 

GHz (4 Physical Cores) CPU and 4 GB of memory as well. 
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Chapter 6  

 

Results 

 

 

The next sections describe a series of validations tests performed and the results 

obtained. The experiments include runs with MEGA using a variety of input 

parameters configurations testing, among others, the effect of the population size and 

iterations number as well as the impact of elitism and the STIR mechanism, and runs 

with our implementation of the popular MOEA algorithms MOGA and SPEA for 

comparison purposes. In order to fully assess the influence of elitism and STIR, 

simpler versions of MEGA were prepared where the execution of those components 

has been disabled. These versions of the algorithm are termed simple-MEGA 

(sMEGA) and elitist-MEGA (eMEGA) in the remainder of this document. Parallel 

MEGA (pMEGA) runs were executed to evaluate the performance of this variation of 

the algorithm to MEGA both with respect to the quality of the solution set produced 

and the speed-up achieved. Runs of the MEGA algorithm on optimization problems 

with a single-objective were also performed to validate the correct functionality of the 

algorithmic components and investigate the ability of our method to discover solutions 

from the entire range of the Pareto-front and specifically from the extremities of the 

search space obtained when focusing the optimization process on a single objective. 

Analytically, the experimental design for the evaluation of MEGA includes 

investigating the impact of the elitism and memetic components on performance 

(section 6.2), applying the algorithm on a significant de novo design case study in 

close cooperation with medicinal chemistry experts who validated the results 

obtained qualitatively (section 6.3), and, comparing MEGA with commonly 
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used MOEA algorithms, namely MOGA and SPEA (section 6.4). Section 6.5 aims at 

assessing the performance of the parallel implementation of MEGA, the pMEGA, 

against MEGA. A brief section, preceding the main experimental part of the chapter, 

was designed to test the various components of MEGA as well as its overall search 

capability (section 6.1). This section addresses single-objective de novo design 

problems that are simpler to evaluate. All experiments were performed using the 

materials described in section 5.4. Any additional materials used by each set of 

experiments are described at the beginning of each subsection. 

 

6.1 Validation of MEGA Evolutionary Operations 

MEGA has been initially applied to a series of single-objective de novo design 

problems in order to evaluate its search capability on problems with known, easy to 

assess objectives. Through these tests the correctness of individual MEGA 

components such as the graph-based evolutionary operations and the 

implementations of the objectives have also been tested. The tests also served to 

test various algorithmic settings including population size, mutation and crossover 

probabilities and number of maximum iterations. The results produced by the single-

objective tests using different combinations of input parameters were subsequently 

used in the experimental design of the multi-objective tests presented in later 

sections of this chapter. Both ligand-driven and receptor-driven tests were performed 

to test the ability of the algorithm to design molecules meeting single criteria. The 

tests involved designing molecules with high similarity to a known ligand or predicted 

binding affinity to a given receptor.  
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6.1.1 Molecules Similar to a Query Molecule 

In the similarity-driven tests the single objective function used was similarity to 

Ibuproxam, a molecule with a relatively simple chemical structure (see Fig. 6.1.1). 

This test case mimics the capabilities of several modern, ligand-driven DND 

algorithms including those reported in [G99], [SLS00] and [FS07]. The objective 

function used was the Euclidean distance of the atom-type [KSF96] descriptor 

vectors of the query molecule to the individuals in the population. The optimization  

TABLE 6.1.1: EXPERIMENTAL DESIGN FOR THE TESTS VALIDATING THE CORRECTNESS OF MEGA 
 

Objectives Population Iterations Evolutionary 

Operations 

Configurations 

Descriptor 

distance to 

Ibuproxam 

10, 20, 50, 

100 

20, 50, 100, 

500, 1000 

Mutation: 0, 0.25 

Crossover: 0, 1.0 

Niching, Elitism, STIR: on 

(MEGA);  

Niching: on, Elitism, STIR: off 

(sMEGA) 

 

 

Fig. 6.1.1: The 2D chemical structure of Ibuproxam 

 

process aimed at minimizing the Euclidean distance (see Eq. 8) value to zero. The 

initial population was selected randomly from Dataset 1, and the 2363 subgraph gene 

collection was used (see section 5.4). Since the subgraph genes were not related in 

any way with the specific similarity objective, the weights were disabled, i.e., all 

fragments were set to weight one. The experiments used population sizes 10, 20, 50, 

and 100. Runs were performed with MEGA and its simpler version sMEGA that does 

not use the elitism and STIR mechanisms. Three types of evolutionary operation 

combinations were tested with mutation only, crossover only, and both mutation and 

crossover applied. When mutation was enabled its probability was set at 0.25 while 

when crossover was used its probability was set at 1.0. Multiple runs, a total of five, 
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were performed for each parameter settings combination with different initial 

populations to avoid drawing conclusions from chance results produced by single 

runs. Results were assessed after 20, 50, 100, 500, and 1000 iterations.  

In all runs performed with 500 and 1000 iterations the end structures proposed 

by the algorithm were close to identical to the query molecule even for the smallest of 

populations (see Fig. 6.1.2). Smaller numbers of iterations revealed varying 

performance highlighting the effect of additional input parameters. The results 

demonstrated that the effect of population size can be significant with larger 

population sizes consistently producing better results both in number of iterations 

required to converge and the similarity of the final products to the query molecule. In 

general, tests using both mutation and crossover provided better results than using 

only mutation or only crossover. Note that the use of the STIR mechanism overall 

produced slightly better results although it is difficult to conclude whether that 

mechanism contributes to a consistently better performance. All runs were performed 

on Machine 1 (see section 5.4). Time requirements for the execution of the runs were 

limited to less than two minutes for the lengthiest of the runs, i.e., a run with 

population 100, 1000 iterations, mutation, crossover, and diversity analysis enabled. 

Figure 6.1.2 presents the progress of the designed molecules until convergence 

using MEGA and similarity to Ibuproxam. 

 
 
Fig. 6.1.2: Successive evolution of a chemical structure towards a known molecule, in this case 
Ibuproxam. The molecules shown were the best performers (most similar) in generations 1, 20, 100 in a 
MEGA run with population 100 and both, mutation and crossover enabled. 
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6.1.2 Molecules with Binding Affinity to a Target Receptor 

The second single-objective test case aims to design molecules based on 

predicted binding affinity to a known target receptor site using the ChillScore 

interaction score family [TA07]. The receptor chosen for this purpose is the ER-! 

receptor, a relatively constrained receptor where the search space is limited by its 

well-defined shape. In addition to testing the correct functionality of MEGA 

components, this test case aims to establish a benchmark against which receptor-

based multi-objective results may be compared and validate the evolutionary search 

capability of the algorithm on a problem where known solutions exist. Note that this 

test case corresponds to most of the original DND approaches [SF05]. The initial 

population was sampled in a quasi-random approach from Dataset 2. 

TABLE 6.1.2: EXPERIMENTAL DESIGN FOR THE TESTS VALIDATING THE CORRECTNESS OF MEGA 
 

Objectives Population Iterations Evolutionary 

Operations 

Configurations 

Docking score  

to ER-a  

10, 20, 50, 

100 
20, 50, 100  

Mutation: 0, 0.25 

Crossover: 0, 1.0 

Niching, Elitism, STIR: on 

(MEGA);  

Niching: on, Elitism, STIR: off 

(sMEGA) 

 

The method used atom-type descriptors [KSF96] and the Tanimoto measure 

[WBD98] to calculate the similarity of all compounds in Dataset 2 to Tamoxifen and 

then selected randomly from the subset of compounds having similarity values less 

than 0.4 to Tamoxifen. This guaranteed that no member of the initial population would 

be similar to a molecule known to bind strongly to the target receptor. The 2363 

fragment collection was used with the weights enabled since the fragments (and 

weights) were calculated from a dataset screened on ER-alpha. The population sizes 

used were 10, 20, 50, and 100 and runs were performed with MEGA and simple-

MEGA. When used, mutation probability was set at 0.25 and crossover at 1.0. 

Multiple runs, a total of five, were performed for each set of parameter settings in 

combination with different initial populations to avoid drawing conclusions from 

chance results produced by single runs. Results were assessed after 20, 50 and 100 
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iterations. All runs were performed on Machine 1 (see section 5.3). Time 

requirements for the execution of the experiments were substantially higher than 

those of the similarity based objective tests. A typical run with population 50, 100 

iterations, mutation, crossover, and niching enabled took approximately 20 hours. 

Results indicate that MEGA can generate solutions comparing favourably with 

the known solutions, i.e., the drugs designed for the specific receptors, in this case 

Tamoxifen. Consistently, in all runs performed, the fitness/docking score of the single 

best solution quickly exceeded the docking score of Tamoxifen. This conclusion 

refers only to the docking scores obtained for the new compounds in comparison to 

Tamoxifen and not their drug-like potential that was not taken into account in any 

way. The role of a larger population heavily influenced the quality of the final solution 

with larger populations generating better solutions. The effect of the STIR and elitism 

mechanisms as far as the fitness of the final best solution was negligible. A simple 

diversity analysis of the final solution sets indicated, as expected, that the final 

populations consisted of diverse chemical structures due to the use of the MEGA 

niching mechanism. 

 

Fig. 6.1.3: Predicted docking poses of two molecules to ER-alpha receptor. Tamoxifen, the known drug 
modulating ER-alpha is shown to the left. A compound designed using MEGA in a single-objective mode 
is shown to the right. Note that the compound designed by MEGA is predicted to have higher binding 
affinity than Tamoxifen despite its non drug-likeness.  

 

Figure 6.1.3 presents the known drug and one of the designed molecules docked 

into the ER-alpha receptor. Tamoxifen, at the left is predicted to bind with interaction 
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score -22.8 while the designed molecule at the right has a score of -40.4 (see section 

5.3. Objectives, for more information on the definition of interaction score). Note the 

obvious non-druglike characteristics (i.e., large size and increased flexibility) and 

potential structural issues of the design caused by focusing the exploration of the 

space exclusively to interaction score. This outcome exemplifies the risks associated 

with excessive training of the optimization process in combination with single-

objective optimization. Figure 6.1.4 presents the 2D structure of another of the 

designed molecules with a better docking score than Tamoxifen and its docking pose 

in ER-alpha. 

 

 
 
Fig. 6.1.4: 2D structure of a de novo designed molecule (left figure) predicted to bind to ER-a with a 
higher affinity than Tamoxifen. The molecule, posessing several non-druglike characteristics such as 

large size, flexibility and structural issues, has been designed with a single-objective optimization 
process focusing only on maximizing the predicted binding affinity. The docking pose of the molecule in 
ER-alpha is shown to the right. 

 

 

6.2 Investigation of MEGA Components 

The objective of this set of tests is to investigate the influence of the main, 

custom components of MEGA and better understand the inner workings of the 

algorithm. For the purposes of these tests the MEGA algorithm implementation was 

executed with each of the elitism and the STIR/memetic components active or not. 



 

 

98 

The impact of the population size, already proven important in past experiments, in 

conjunction with the usage of the above components was also examined. 

TABLE 6.2.1: EXPERIMENTAL DESIGN FOR THE TESTS ASSESING THE IMPACT OF MEGA CUSTOM COMPONENTS 
 

Test Objectives Population Iterations Evolutionary 

Operations 

Configurations 

Test 1 

Descriptor 

dissimilarity to 

Ibuproxam, molecular 

complexity 

Test 2 

Fuzzee dissimilarity to 

ER ligands, molecular 

complexity 

Test 3 

Fuzzee similarity to 

ER-a ligands, Fuzzee 

dissimilarity to ER-b 

ligands 

Test 4 

Fuzzee similarity to 

ER-a ligands, Fuzzee 

dissimilarity to ER-b 

ligands, molecular 

complexity 

50, 100, 

150 

100, 250, 

500 

Mutation: 0.25 

Crossover: 1.0 

Niching: on 

Elitism, STIR: off 

(sMEGA) 

 

Niching, Elitism: on, 

STIR: off (eMEGA) 

 

Niching, Elitism, 

STIR: on (MEGA) 

 

The experimental design, summarized in Table 6.2.1 above, included 

experiments on two and three objectives and population size 50, 100 and 150. Five 

runs were performed for each input parameter combination to eliminate the chance of 

drawing conclusions on extreme sets of results produced due to serendipity. The 

number of iterations was set to 500 but, results were also assessed at 100 and 250 

iterations. The choice of parameters for population size and maximum number of 

iterations took into account observations on the results of the single-objective 

experiments (see section 6.1 above) which indicated the adequacy of the chosen 

settings in enabling the identification of good quality solutions. The evolutionary 

operations of mutation (probability = 0.25) and crossover (probability = 1.0) were 

used throughout the runs. The maximum size allowed for a Pareto-archive set, 

controlling the number of solutions stored in the secondary population when elitism 

was used (see Fig. 5.1.B: Pareto Archive), was set to 1000. The niching mechanism 

was set to balance diversity between parameter and objective spaces. The STIR 

mechanism was activated when successive iterations, equal to 5% of the experiment 

iterations, produced identical hypervolume measure values since such behaviour 
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may be interpreted as an indication of stagnation. The objectives used included 

similarity to Ibuproxam, similarity to ER-alpha ligands, similarity to ER-beta ligands 

and molecular complexity. Two methods described in the Materials section (5.3) were 

used for (dis)similarity calculations: the atom-pairs [KSF96] descriptor method and 

the Fuzzee shape-based technique [MOD09]. Performance assessment of the results 

from each run took place in a post-processing step that included the calculation of the 

Pareto-approximation set hypervolume, spacing and solution diversity (see section 

2.3). Note that in the case of the bi-objective problems the hypervolume measure 

actually calculates the area dominated by the Pareto-front under assessment. 

The simplest multi-objective tests, Test 1 and Test 2, involved the design of 

molecules compromising similarity to query molecules and, molecular complexity. 

The two different test cases used Ibuproxam and a set of ER ligands respectively for 

the similarity objective implementations. The tests aimed at investigating the 

performance of various MEGA versions, or configurations, in a setting where both 

simple (complexity-based) and more complex (similarity-based) objectives need to be 

compromised. Note that in Test 1 the objectives are not necessarily conflicting since 

Ibuproxam is a molecule with a relatively simple chemical structure. The remaining 

tests are substantially more difficult with Test 3 compromising ligand-based similarity 

objectives to ER-beta and ER-alpha and Test 4 adding a third objective, that of 

complexity, to the two similarity-based objectives of Test 3. We have purposefully 

chosen to allow the algorithm to search for the global Pareto-front, i.e., no hard filters 

were imposed to restrict the search space. 

In all tests the initial population was chosen from the Dataset 2 described in the 

Materials section. In Test 1 the 51123 subgraph gene collection was used with no 

weights applied since the weights available were not relevant to similarity to 

Ibuproxam. In Tests 2, 3 and 4 the weighted 2363 collection was used. An account of 

the tests performed and the results obtained follows. 
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Figure 6.2.1 presents a typical view of the progress of a Pareto-approximation 

set during the execution of a MEGA run. Initial populations contain few nondominated 

solutions further from the ideal point. Later generations gradually approach the ideal 

point and include more solutions spanning a wider range of values.  

 

Fig. 6.2.1: Pareto-front approximations obtained with MEGA at iterations 1, 10, 50, 100, 500 for Test 1. 
Fronts 1,10,100 and 500 are labeled with the corresponding number. Later generations have a more 
advanced (closer to the ideal point – leftmost, bottom point) and dense front approximation. The x-axis 
corresponds to chemical graph complexity; the y-axis to descriptor dissimilarity/distance to Ibuproxam. 
 

Solutions at the extremities of the Pareto-front produced represent individuals 

satisfying exclusively one of the objectives and therefore, in principle, should be 

comparable to the individuals obtained using a single-objective optimization process 

on each of the objectives. Tests comparing such extreme solutions with products of 

single-objective optimization runs have been performed and verified the ability of 

MEGA to satisfy each of the objectives on an individual basis. Following is a detailed 

presentation of the results produced by the four tests. The results produced by the 

first two tests, the simplest of the four attempted, bear significant similarities and are 

therefore presented together.  

Figure. 6.2.2 compares the performance of the different algorithmic versions on 

all runs performed for Test 2, with population 50, using the hypervolume measure 
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while 6.4.3 uses the spacing, and diversity measures to compare the algorithms. 

Results for different population sizes were almost identical.  

 
 
Fig. 6.2.2: Hypervolume performance for eMEGA, MEGA and simple-MEGA for population 50 on Test 2. 
Each boxplot depicts the range of hypervolume values obtained by the runs of the corresponding 

algorithm. Lower values correspond to better performance. The box extends from the lower to the upper 
quartile values of the data, with a line at the median. The whiskers extend from the box to show the 
range of the data. Crosses indicate possible outliers with values beyond the whiskers. 
 

 

Fig. 6.2.3: Comparison of the Pareto-approximations produced by eMEGA, MEGA and simple-MEGA 
using spacing (top) and diversity in parameter/genotype space (middle) and in objective/phenotype 
(bottom) space for Test 2, population 50. Higher values correspond to better measure performance. 
Each box extends from the lower to the upper quartile values of the data, with a line at the median. The 
whiskers extend from the box to show the range of the data. Crosses indicate possible outliers with 
values beyond the whiskers. 

 
 

As it can be clearly seen in Fig. 6.2.2 the hypervolume measure results for the 

three versions of the algorithm are of similar quality. Even simple-MEGA, the version 

of the algorithm not using elitism and the STIR mechanism, produces comparable 

results with the two other implementations. MEGA and eMEGA results are even more 
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similar. Similar observations with respect to the similarity of the results produced by 

the three algorithms have been made for both Test 1 and Test 2 tests and varying 

population sizes. Table 6.2.2 confirms the lack of statistically significant differences 

among the results produced by the three MEGA versions as measured using the 

hypervolume measure for all population sizes attempted.  

TABLE 6.2.2: STATISTICAL SIGNIFICANCE ANALYSIS FOR THE HYPERVOLUME PERFORMANCE MEASURE FOR RUNS OF 

SMEGA, EMEGA AND MEGA WITH POPULATION 50, 100, 150 ON TESTS 1, 2. 

 eMEGA MEGA sMEGA 

Test 1 – Population 50, 100, 150 

eMEGA  NS  NS 

MEGA   NS 

Test 2 – Population 50, 100, 150 

eMEGA  NS NS 

MEGA   NS 

Statistical test used: Mann-Whitney test; S: Statistically significant at 0.05 level; NS: Non-statistically significant 

 

TABLE 6.2.3: STATISTICAL SIGNIFICANCE ANALYSIS FOR THE SPACING AND DIVERSITY PERFORMANCE MEASURES 

FOR RUNS OF SMEGA, EMEGA AND MEGA WITH POPULATION 50 ON TEST 2. 

 eMEGA MEGA sMEGA 

Spacing 

eMEGA  NS  NS 

MEGA   NS 

Genotype Diversity 

eMEGA  NS S 

MEGA   S 

Phenotype Diversity 

eMEGA  NS NS 

MEGA   NS 

Statistical test used: Mann-Whitney test; S: Statistically significant at 0.05 level; NS: Non-statistically significant 

With respect to the spacing measure (Fig. 6.2.3 top) MEGA and eMEGA produce 

comparable results, while simple-MEGA seems to produce results widely varying in 

performance but, on average, better than the other two algorithm versions. 

Statistically, the results for the spacing measure are not significant. Results for 

population 50 runs are shown in Table 6.2.3. The results are representative of runs 

with all populations for Test 2.  
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In the diversity measures (Fig. 6.2.3 middle and bottom) sMEGA is the worst 

performer. For the phenotype diversity (Fig. 6.2.3 bottom), functioning in 

objective/phenotype space as is the spacing measure, MEGA and eMEGA seem to 

produce better results than sMEGA but, this conclusion is not supported by the 

statistical analysis. In genotype diversity (Fig. 6.2.3 middle), functioning in parameter 

space, sMEGA performs considerably worse than MEGA and eMEGA, a conclusion 

also supported by the statistical significance tests shown in Table 6.2.3. The different 

measure values for these three measures, observed despite the similar hypervolume 

performance of the three algorithms, may be related to the smaller count of solutions 

in the final Pareto approximation set produced by simple-MEGA. The reduced count 

facilitates larger spacing measure values along the Pareto-front surface. However, 

the significantly lower performance in phenotype diversity indicates that the 

distribution along the front may not be optimal while the lower performance in 

genotype diversity shows that the lack of a Pareto archive mechanism affects the 

structural diversity of the solutions found. 

Figure 6.2.4 graphically presents Pareto-fronts produced by the three versions of 

the algorithm examined, MEGA, eMEGA and simple-MEGA, for the Test 2 and 

provides additional insides. Specifically, one of the multiple runs performed for Test 2 

with population 50, for each of the three versions of the algorithm has been chosen 

randomly and visualized. As clearly seen the three runs produced near-identical 

results with only minimal differences between the algorithms tested. This pattern, i.e., 

the generation of near identical results for Test 2 (and Test 1) by the three algorithms 

has been observed throughout the experiments performed and can be attributed to 

the relatively simpler nature of the problem to be solved. Tests attempted with a 

larger population, even though producing a more dense Pareto front, failed to 

advance the front closer to the optimal point and/or identify a set with wider 

extremities.  
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Fig. 6.2.4: The Pareto-fronts obtained with simple-MEGA (red line), eMEGA (blue line) and the fully 
enabled MEGA (green line) for population 100 on Test 2. Note the resemblance between the three fronts 

indicating near identical performance. The x-axis corresponds to chemical graph complexity; the y-axis 
to fuzzee dissimilarity to known ER ligands. 

  

 

Fig. 6.2.5: Hypervolume performance for eMEGA, MEGA and simple-MEGA for population 50 on Test 3. 
Each box depicts the entire range of hypervolume values obtained by the runs of the corresponding 
algorithm. Lower values correspond to better performance. The box extends from the lower to the upper 
quartile values of the data, with a line at the median. The whiskers extend from the box to show the 
range of the data. Crosses indicate possible outliers with values beyond the whiskers.  
 

In the case of Test 3, a bi-objective problem optimizing shape similarity-based 

objectives on distinct sets of ligands, results indicate varying performance between 

the three algorithms. In this test, as in the following Test 4, sMEGA significantly lags 

when compared with MEGA and eMEGA. Note that Test 3 and 4 are substantially 

harder than Test 1 and 2 described previously requiring the search of a more 

complex space compromising more demanding objectives. The difference is 

immediately apparent in Fig. 6.2.5 (and Table 6.2.4). The performance of MEGA and 
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eMEGA, although comparable also differs (note the difference in scale necessary to 

accommodate the huge deficiency of the sMEGA results).  

TABLE 6.2.4: STATISTICAL SIGNIFICANCE ANALYSIS FOR THE HYPERVOLUME PERFORMANCE MEASURE FOR RUNS OF 

SMEGA, EMEGA AND MEGA WITH POPULATION 50, 100, 150 ON TESTS 3, 4. 

 eMEGA MEGA sMEGA 

Test 3 – Population 50, 100, 150 

eMEGA  NS  S 

MEGA   S 

Test 4 – Population 50, 100, 150 

eMEGA  NS S 

MEGA   S 

Statistical test used: Mann-Whitney test; S: Statistically significant at 0.05 level; NS: Non-statistically significant 

 

The results for Test 4, the hardest test for which results are presented in this 

dissertation, are shown in Fig. 6.2.6-6.2.7 below for population size 50 and 500 

iterations. With respect to hypervolume simple-MEGA again shows significantly 

worse performance than either eMEGA or MEGA as is also verified in the statistical 

analysis presented in Table 6.2.4. This is attributed to the generation of Pareto 

approximation sets with fewer solutions further from the ideal point confined in a 

smaller range of values. eMEGA and MEGA produce comparable values for the 

hypervolume measure given the same input parameters indicating high similarities in 

the overall nature of the Pareto-fronts produced.  
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Fig. 6.2.6: Hypervolume performance for elitist-MEGA (eMEGA), MEGA, and simple-MEGA for 
population 50 on Test 4. Lower values correspond to better performance. Each box extends from the 
lower to the upper quartile values of the data, with a line at the median. The whiskers extend from the 
box to show the range of the data. Crosses indicate possible outliers with values beyond the whiskers. 
 
 

 

Fig. 6.2.7: Comparison of the Pareto-approximations produced by eMEGA, MEGA and simple-MEGA 
using spacing (top), diversity in parameter/genotype space (middle) and in objective/phenotype (bottom) 
space for Test 4 for population 50. Higher values correspond to better performance. Each box extends 
from the lower to the upper quartile values of the data, with a line at the median. The whiskers extend 
from the box to show the range of the data. Crosses indicate possible outliers with values beyond the 

whiskers. 
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MEGA and eMEGA produce comparable results also with respect to the spacing 

measure (Fig. 6.2.7 top). However, MEGA produces superior results in both diversity 

measures (Fig. 6.2.7 middle, bottom), indicating that the Pareto approximation sets it 

produces have a better distribution both in parameter and objective space. Once 

again, sMEGA results produce better spacing measures than the other two 

algorithms attributed to the significantly smaller number of solutions it identifies. Note 

that we have found no significant performance difference during the analysis of the 

results produced for different number of maximum iterations, i.e., when results are 

compared at 100, 250 or 500 iterations. Results for the spacing and the diversity 

measures were similar -almost identical- for Test 3. 

The influence of population size on the performance of MEGA was also 

investigated through comparing the results produced by runs with different 

populations on the same problem. Figure 6.2.8 compares the quality of the results 

produced by runs of MEGA on Test 2, 3 and 4 for population sizes 50, 100, 150 

using the hypervolume measure.  
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Fig. 6.2.8: Hypervolume performance for runs of MEGA for population 50, 100, 150 on Test 2 (top 
section), Test 3 (middle) and Test 4 (bottom). Lower values correspond to better performance. Each box 

extends from the lower to the upper quartile values of the data, with a line at the median. The whiskers 
extend from the box to show the range of the data. Crosses indicate possible outliers with values beyond 
the whiskers. 
 

 

The results show that the population size can have a significant impact on the 

quality of the solutions produced given certain circumstances. For example, runs with 

smaller populations, e.g. 50 in the specific problem investigated, have worse 

hypervolume with respect to runs with larger populations sizes. However, this 

conclusion cannot be generalized since the hypervolume volume measures of the 

runs with 100 and 150 populations are sometimes comparable with the former having 

a slight edge (Fig. 6.2.8 top).  
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Specifically, for Test 2 (and Test 1) results obtained with population 50 are 

worse than those obtained for population 100 and 150. However, no noticeable 

difference in performance is observed for the results of the runs with populations 100 

and 150. On the contrary, in the case of the more difficult problems, Test 3 and 4, the 

increase of population size is associated with a steady trend of hypervolume measure 

improvement confirming the significant positive impact of increased populations. It is 

thus apparent that the benefit of using larger population size in MEGA is clearer for 

more difficult problems with a more complex solution space, while in problems with 

simpler solution spaces population size does not seem to influence the end result 

given a sufficient number of iterations for the runs to converge.  

TABLE 6.2.5: STATISTICAL SIGNIFICANCE ANALYSIS FOR THE HYPERVOLUME PERFORMANCE FOR RUNS OF MEGA 

WITH POPULATION 50, 100, 150 ON TEST 2, 3, 4. 

 Population 50 Population 100 Population 150 

Test 2 

Population 50  NS  NS 

Population 100   NS 

Test 3 

Population 50  S S 

Population 100   NS 

Test 4 

Population 50  S S 

Population 100   NS 

Statistical test used: Mann-Whitney test; S: Statistically significant at 0.05 level; NS: Non-statistically significant 

 

Table 6.2.5 presents the outcomes of the statistical analysis with the Mann-

Whitney non-parametric test performed on Tests 2,3 and 4 with varying population 

sizes. The results confirm that population size, in relation to the complexity of the 

problem investigated, can result in statistically significant differences in performance. 

Specifically, the results produced with populations 50, 100 and 150 for Test 2 (Fig 

6.2.8, top) do not differ significantly from a statistical perspective (at level 0.05) 

indicating that the smallest population tested may be sufficient for this simpler 

problem and that the use of larger populations is not justified by the qualitative 
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improvement of the results. On the contrary, in the case of Tests 3 and 4, which are 

substantially more complex than Test 2, results obtained when using population size 

100 and 150 are statistically significantly better than those obtained with population 

50. However, differences between the results produced with population 100 and 150 

are insignificant.    

Figure 6.2.9 compares the final Pareto-approximation sets produced by simple-

MEGA and MEGA on Test 1 at 100 iterations. We have already shown that in the 

case of this simple bi-objective problem both algorithms reach approximately the 

same Pareto surface given 500 iterations, sufficient for the algorithms to converge 

(see Fig. 6.2.4). Overall, and despite the lack of niching, a Pareto-archive or the STIR 

mechanism in simple-MEGA, the two versions of the algorithm generate Pareto-fronts 

with several common solutions. Specifically, the solution set produced by simple-

MEGA is almost a proper subset of the solution set produced by MEGA. However, 

the front produced by MEGA has a much wider spread, especially at fewer 

generations (i.e., 100 versus 500) and contains many more solutions. Additional 

results obtained for Test 1 runs confirmed the ability of all versions of the algorithm 

used to converge to (or near) the real Pareto-front. The differences between the 

Pareto approximation sets generated by the various algorithms was found in the 

spread and density of the sets with more elaborate versions of the algorithm having 

an edge in performance. Similar observations have been made for the results of Test 

2 despite the higher difficulty associated with identifying solutions for that problem.  
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Fig. 6.2.9: A comparison between the Pareto-front obtained with MEGA (dots connected with line 

marked with MEGA (green)) and simple-MEGA (dots connected with line marked with sMEGA (blue)) for 
Test 1 at 100 iterations. The MEGA front is denser with larger spread. The x-axis corresponds to 
chemical graph complexity; the y-axis to descriptor dissimilarity/distance to Ibuproxam. 
 

Overall, MEGA runs resulted in solutions with more diverse genotypes, i.e., 

chemical structures, than runs with simple-MEGA in all tests included in Table 6.2.1. 

The density of the Pareto-front, i.e., the number of Pareto-solutions in between the 

two extremes, was heavily influenced by the use of elitism in the form of the Pareto-

archive. In simple-MEGA the size of the final Pareto-front was limited by the user-

defined population size. Note that despite this limitation, the final Pareto-front 

produced may slightly exceed the population size depending on the number of non-

dominated solutions produced in the final population since the method retains all best 

performing solutions until after the termination conditions are checked. In runs with 

MEGA proper where no such limitations exist due to the storage of the entire set of 

non-dominated solutions found over all iterations in the Pareto-archive, a larger 

number of non-dominated solutions, exceeding the user-defined population size, was 

produced. Since no hard-filters have been used we obtained a wealth of solutions 

ranging, for example in the case of Test 1, from the minimum possible complexity 

and maximum possible dissimilarity to the other extreme of maximum complexity and 

minimum possible dissimilarity. Typically, when the user-defined population size is 
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too small, for example 10 or 20 (attempted in tests described in section 6.3), the 

number of non-dominated solutions in the Pareto-archive reaches the user-defined 

population size more quickly than when the population size is larger.  

A general observation is that the application of simple-MEGA occasionally shows 

problems with niching and lack of ability to produce diverse solutions despite the 

enabled niching mechanism. The use of the niching mechanism clearly works in 

identifying a diverse set of nondominated solutions from a given population, but in 

later iterations of the optimization search, as more and more points on the Pareto-

front are produced the algorithm necessarily drops important solutions representing 

whole regions of the solution space. This effect results in genetic-drift, a behaviour 

closely related to niching, and loss of diversity. The use of the Pareto-archive 

manages to preserve diversity and achieve convergence in each execution run. The 

additional use of the STIR mechanism provides an added performance benefit, 

especially in obtaining Pareto approximation sets with a better distribution in objective 

space and a higher diversity in parameter space. 

 

 

6.3 MEGA Application in Estrogen Receptor Selectivity 

In a test specifically designed in close consultation with computational and 

medicinal chemistry experts, MEGA was used to design molecules exhibiting 

selectivity between two target receptors. The collaborating experts (Chemistry 

Department, National and Kapodestrian University of Athens) provided assistance in 

the experimental design and set-up, and in the qualitative evaluation of the results 

produced. Note that the results presented in this section and the related discussion 

section in the next chapter (section 7.3), have been published in [NAP09].  

The goal in the ER selectivity experiments is to discover molecules with high 

binding affinity towards a known target receptor site and low binding activity to 

another receptor. For this specific test case we used ER-beta (PDB code: 2fsz1) as 
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the “positive” target and ER-alpha (PDB code: 1xpc), a closely related target as a 

“negative” target. The description files for both receptors were pre-processed and 

prepared for computational modeling by the collaborating experts. In addition to the 

two primary optimization objectives several others were used as hard filters. 

Specifically, similarity to a known ER-alpha ligand, Tamoxifen, has been encoded via 

the similarity scorer mechanism described in the Materials section and applied as a 

hard filter to constrain the chemical structures designed to those exhibiting Tanimoto 

similarity to Tamoxifen greater than 0.4. The similarity objective has been applied to 

favor the design of more familiar chemical structures that would facilitate validation of 

the results by human experts. A collection of chemical structure scorers, i.e., 

molecular weight, hydrogen-bond donors and acceptors, and number of rotatable 

bonds, were also used as hard filters. These scorers, set to values in line with the 

Rule-of-Five [LC97] for oral bioavailability, were applied as hard filters in each 

generation to remove potentially problematic designs from further consideration. In 

the case where the application of the hard filters resulted in fewer solutions than 

required by the algorithm for parent selection the filters were ignored. This only 

proved necessary in very few instances during the initial iterations of the algorithm. 

TABLE 6.3.1: EXPERIMENTAL DESIGN FOR THE QUALITATIVE ASSESSMENT TESTS OF MEGA  

Test Objectives Population Iterations Evolutionary 

Operations 

Test 1 

Predicted high 

binding affinity to 

ER-b, predicted 

low binding 

affinity to ER-a, 

similarity to 

Tamoxifen    

(hard filter) 

10, 20, 50, 100 20, 50, 100 
Mutation: 0.25 

Crossover: 1.0 

 

The experimental settings for the MOOP tests provided for population sizes 10, 

20, 50 and 100 and, 100 iterations. Three types of evolutionary operation 

combinations were tested with mutation only, crossover only, and both mutation and 

crossover applied. Mutation probability was set at 0.25 and crossover at 1.0. Runs 

were performed for each settings combination. Results were assessed after 20, 50 
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and 100 iterations. For each test case the initial population was selected from a user-

defined data set. Specifically, the initial population was sampled in a quasi-random 

fashion from Dataset 2. The method used atom-type descriptors [KSF96] and the 

Tanimoto measure [WBD98] to calculate the similarity of all compounds to Tamoxifen 

and then selected randomly from the subset of compounds having similarity values 

less than 0.4 to Tamoxifen. This guaranteed that no member of the initial population 

would be similar to a molecule known to bind strongly to the target receptors. The 

2363-collection of subgraph genes (see section 5.3) was used. Runs were performed 

with MEGA and the simpler, simple-MEGA version of the algorithm with the diversity 

mechanism for niching on and elitism and STIR disabled. The receptor-based MOOP 

selectivity tests carry a heavy computational burden due to the multiple, repeated 

docking experiments performed at each generation. Indicatively, a MEGA run with the 

settings described above and population 20, 100 iterations took approximately 40 

hours on Machine 1 described section 5.3. 

Apart from the solutions removed during the hard filtering step all other designs 

were kept. This allowed the algorithm to search for the entire Pareto-front 

compromising the targeted objectives. As a result we obtained solutions ranging from 

one extreme, i.e., high binding affinity to both receptors, to the other extreme, i.e., 

reduced binding affinity to both receptors. In between the two extremes several 

compromising solutions were obtained approximating the ideal point (Fig. 6.3.1).  
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Fig. 6.3.1. Pareto-front approximations with population 10 at generations 1, 20, 50, 100 (lines with 
circles, triangles, x’s, squares respectively). The objective function results were transformed for clarity to 
depict two minimization objectives. The x-axis corresponds to the predicted interaction score to ER-beta; 
the y-axis to the inverted predicted interaction score to ER-alpha. Later generations tend to “move” the 
approximated Pareto-front towards the ideal-point (bottom left). The run shown uses the simple-MEGA 
implementation and thus the number of Pareto solutions is limited by the user defined population size.    

 

As expected, MEGA runs resulted in sets of solutions with diverse genotypes, 

i.e., chemical structures. The density of the Pareto-front, i.e., the number of Pareto-

solutions in between the two extremes, was heavily influenced by the population size 

and the number of iterations performed. Typically, the final Pareto approximation set 

produced by a MEGA run contained a large number of non-dominated solutions, far 

exceeding the user-defined population size. Indicatively, a typical run of MEGA with a 

population of 20, 50 iterations using both mutation and crossover generated a Pareto-

front consisting of 23 non-dominated solutions. In runs with simple-MEGA, where no 

archive exists, a smaller Pareto approximation set is produced, with the population 

size being the upper limit to the number of solutions found. Note that despite this 

limitation, the final Pareto-front produced may slightly exceed the population size 

depending on the number of non-dominated solutions produced in the final population 

since simple-MEGA retains all best performing solutions until after the termination 

conditions are checked. An example of a final Pareto-front produced by a simple-

MEGA run with population size 10 consisting of 12 non-dominated solutions is shown 

in Fig. 6.3.1. In general, in runs with too small user-defined population size, for 

example 10 or 20, the number of non-dominated solutions in the Pareto-archive 
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reaches the user-defined population size more quickly than when the population size 

is larger.  

The solutions in the final Pareto-front provide a global view of the possible 

solution space to the user and enable him/her to make their selections a! posteriori 

based on their preferences and goals. Although all the solutions of the generated 

Pareto-front satisfy the multiple hard filters applied and represent different 

compromises of the two objectives used to guide the optimization, i.e., docking 

scores towards ER-beta and ER-alpha, the interesting region of the Pareto-front for 

the problem under consideration is found where solutions exhibit high docking affinity 

to ER-beta and substantially lower affinity to ER-alpha. For the test run described 

above, with elitism enabled and a resulting Pareto-front of 23 solutions, the 

interesting region contained 14 structures. Several of these structures have 

reasonable, interesting chemical designs and may serve as idea generators for 

further development following expert validation, while others are less promising due 

to reasons such as relatively poorer selectivity performance or potential structural 

issues. Further analysis via visual inspection and Tanimoto similarity calculations 

revealed that the 14 structures belong to four structural groups. Figure 6.3.2 presents 

Tamoxifen and a group of four chemical structures, one from each of the identified 

structural groups. Each of the structures shown is characterized by the highest 

predicted selectivity potential within its group. Note the diversity of the structures, a 

result of the niching mechanism used by MEGA. 
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Fig. 6.3.2. Tamoxifen (upper left) and a group of four chemical structures designed by MEGA during a 

run performed for the MOOP validation tests. The four structures are representative of the section of the 
Pareto-front where solutions exhibit increased docking affinity to ER-beta than ER-alpha and are sorted 
according to predicted selectivity potential. 

 
Figure 6.3.3 presents one of the structures, the most similar to Tamoxifen, 

docked in the ER-beta and ER-alpha pockets. The predicted selectivity of the 

structure, as explained from the docking pose in the two receptors may be due to the 

presence of the sulphur atom, labelled with ‘S’, which causes collisions in the “neck” 

of the ER-alpha and therefore forces the molecule to be docked in a non-optimal 

manner. In contrast, the proposed molecule docks nicely in the ER-beta receptor due 

to the different morphology of the pocket and especially the shorter, more 

accommodating “neck”. 
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Fig. 6.3.3. Sample chemical structure proposed by the algorithm. Left: The sample design in 2D format. 
Center: The sample docked in ER-beta. Right: The sample design docked in ER-alpha. Note that the 
proposed design causes several collisions (red barrels) in ER-alpha. 

 

 

6.4 MEGA Versus Established MOEAs 

A major experimental part for the testing of MEGA involved the comparison of 

the performance of the algorithm against two established, commonly used MOEA 

algorithms, MOGA and SPEA. MOGA [FF98] was selected since it is one of the 

earliest, most commonly cited algorithms in the MOOP field. SPEA [ZLB04] is a more 

recent method that popularized the use of the Pareto-archive in MOEA algorithms. 

The comparative tests of MEGA, MOGA and SPEA included multi-objective problems 

with varying degree of difficulty. The experimental design, aiming to quantitatively 

define the performance of MEGA is described below. 

TABLE 6.4.1: EXPERIMENTAL DESIGN FOR THE TESTS COMPARING MEGA TO ESTABLISHED MOEAS 

Test Objectives Population Iterations Evolutionary 

Operations 

Test 1 

Fuzzee similarity 

to ER-a ligands, 

Fuzzee 

dissimilarity to 

ER-b ligands 

Test 2 

Fuzzee 

dissimilarity to 

ER-a ligands, 

molecular 

complexity  

50, 100, 150 100, 250, 500 
Mutation: 0.25 

Crossover: 1.0 

 

The experiments performed applied MOGA, SPEA and MEGA on two multi-

objective problems, the design of selective ERs, i.e., ligands that bind to ER-! and 
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not ER-! and the design of ER-alpha inhibitors with reduced complexity. The 

experimental settings used population sizes 50, 100 and 150, and 500 iterations. 

Results were assessed at 100, 250 and 500 iterations. For each combination of input 

parameter settings five runs were performed, using different initial population sets. In 

each test case the initial population was selected from a user-defined data set. Runs 

were performed using both mutation and crossover. Mutation probability was set at 

0.25 and crossover at 1.0. In the case of MEGA and SPEA the maximum size of the 

Pareto-archive was set to 1000. The objectives used included similarity to ER-alpha 

ligands, similarity to ER-beta ligands and molecular complexity [BC01]. The Fuzzee 

[MOD09] tool, described in the Materials section (section 5.3), was used for similarity 

calculation. Performance assessment of the results from each run took place through 

a post-processing step that included the calculation of the Pareto-approximation set 

hypervolume [ZT99], spacing [CS04] and the solution set diversity [TTW97] as 

described in section 2.3. The former in fact corresponds to the area dominated by the 

PAS assessed since the test cases are bi-objective while the latter has been 

calculated by averaging the Euclidean distances of all pairs of solutions in the 

proposed set, using the atom-pair descriptors [KSF96] of the molecules involved. 

MEGA niching was set to balance between the diversity in parameter and objective 

space. The experimental design is summarized in Table 6.4.1. An account of the 

tests performed and the results obtained follows.  

The two tests described in Table 6.4.1 have different degrees of difficulty. Test 2 

seeks chemical structures that are similar in shape and properties to a set of ER 

ligands and exhibit low graph complexity. The latter objective is quite easy to achieve, 

e.g. by decreasing the size of the graph or by creating linear graphs, while the former 

requires the more difficult task of designing structures similar to known ligands. 

Consequently, Test 1 that optimizes two similarity-based objectives is a more difficult 

problem to solve. 
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Fig. 6.4.1: Sample Pareto approximation set produced by MEGA for Test 1. The X and Y axes represent 

the two objectives, dissimilarity to ER-! ligands and similarity to ER-" ligands respectively. Note that 

both objectives need to be minimized. The upper (blue) dots connected with a (blue) dashed line 
represent the starting population. The lower (red) dots connected with a (red) dashed line represent the 
individuals of the final Pareto Front.  

 

 

 

Fig. 6.4.2: Sample Pareto approximation set produced by MOGA for Test 1. The X and Y axes represent 

the two objectives, dissimilarity to ER-! ligands and similarity to ER-" ligands respectively. Note that 

both objectives need to be minimized. The upper (blue) dots connected with a (blue) dashed line 
represent the starting population. The lower (red) dots connected with a (red) dashed line represent the 
individuals of the final Pareto Front.   

 

 

 

Fig. 6.4.3: Sample Pareto approximation set produced by SPEA for Test 1. The X and Y axes represent 
the two objectives, dissimilarity to ER-! ligands and similarity to ER-" ligands respectively. Note that 

both objectives need to be minimized. The upper (blue) dots connected with a (blue) dashed line 
represent the starting population. The lower (red) dots connected with a (red) dashed line represent the 
individuals of the final Pareto Front. 
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In Figures 6.4.1-6.4.3 Pareto-approximation sets produced by MEGA, MOGA 

and SPEA for Test 1, with population 50 and 500 iterations, are presented. The sets 

are indicative of the type of results produced by the three algorithms for one of the 

numerous runs performed for Test 1, the more complex test, with the parameter 

combinations described in the experimental design. Note that the upper (blue) dots 

and line represent the initial population, which, for the examples presented is 

identical. As it can be clearly seen, the MOGA run produces a less populated Pareto 

front than both MEGA and SPEA that can be attributed to the lack of a Pareto archive 

and, thus, the limitation on the size of non-dominated solution set imposed by the 

user defined population size. The Pareto fronts produced by the latter algorithms are 

comparable although MEGA seems to have a slightly more dense and extended 

front.  

 

Fig. 6.4.4: Hypervolume performance for MEGA (eMEGA), SPEA (LSPEA), and MOGA for population 
150 on Test 1. Each boxplot depicts the range of hypervolume values obtained by the runs of the 
corresponding algorithm. Lower values correspond to better performance. The box extends from the 

lower to the upper quartile values of the data, with a line at the median. The whiskers extend from the 
box to show the range of the data. Crosses indicate possible outliers with values beyond the whiskers. 

 

Figures 6.4.4 and 6.4.5 present a cumulative view of the results produced that 

facilitate performance comparison across multiple runs. Figure 6.4.4 presents the 

hypervolume measure box plots for MEGA, MOGA and SPEA for all five runs 

performed for Test 1 with population 150 and 500 iterations. 

Table 6.4.2 presents the outcomes of the Mann-Whitney non-parametric test 

performed on Test 1 with varying population sizes. The results confirm that there are 

statistically significant differences in the performance of the three methods for this 
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problem. Specifically, the results produced with populations 50, 100 and 150 for Test 

1 differ significantly from a statistical perspective (at level 0.05) indicating that MEGA 

outperforms both SPEA and MOGA, and that SPEA has an overall edge in 

performance over MOGA especially when smaller populations are used.  

TABLE 6.4.2: STATISTICAL SIGNIFICANCE ANALYSIS FOR THE HYPERVOLUME PERFORMANCE FOR RUNS OF MEGA, 
SPEA AND MOGA WITH POPULATION 50, 100, 150 ON TEST 1. 

 MEGA SPEA MOGA 

Population 50 

MEGA  S  S 

SPEA   S 

Population 100 

MEGA  S S 

SPEA   NS 

Population 150 

MEGA  S S 

SPEA   NS 

Statistical test used: Mann-Whitney test; S: Statistically significant at 0.05 level; NS: Non-statistically significant 

 

The hypervolume indicating the area (since the problem investigated is bi-

objective) dominated by the Pareto-fronts of the MEGA algorithm is substantially 

larger than those produced by SPEA and MOGA, with the latter exhibiting the worst 

performance (lower values correspond to larger hypervolume and thus better 

performance). Note that the nadir point, crucial to the calculation of the hypervolume, 

has been carefully chosen and is identical across the various runs of the three 

algorithms to enable comparisons. This conclusion is of special importance since 

better performance in hypervolume indicates Pareto-fronts closer to the optimal point 

that, in essence, is the primary indication of the success of an MOEA and, in general, 

any Pareto-based optimization run. Of interest is the consistency in hypervolume 

values obtained in different runs for both MEGA and MOGA indicating that the 

algorithms are capable of reaching results of similar quality despite different starting 

populations, all other input parameters being equal. 
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Fig. 6.4.5: Comparison of the Pareto-approximations produced by MEGA, SPEA and MOGA using 
spacing (top) and diversity in parameter/genotype space (middle) and in objective/phenotype (bottom) 

space for Test 1 for population 150. Higher values correspond to better measure performance. Each box 
extends from the lower to the upper quartile values of the data, with a line at the median. The whiskers 
extend from the box to show the range of the data. Crosses indicate possible outliers with values beyond 
the whiskers. 

 

Figure 6.4.5 presents the results of additional performance measures for the 

three algorithms, namely the spacing and the diversity in parameter and objective 

space, for all five runs performed for Test 1 with population 150 and 500 iterations. 

The plot clearly shows that MEGA, with its unique niching mechanism specifically 

designed to promote structural diversity, produces solution sets with increased 

diversity in parameter space, i.e., individuals with diverse graph structures (see Fig. 

6.4.5, middle). The sets proposed by MOGA and SPEA, show comparable decision 

space diversity performance but at a much lower level than MEGA. The performance 

of the three algorithms in the objective space diversity measure is roughly 

comparable with SPEA producing slightly better performance followed by MEGA, 

however, at a non-statistically significant level (see Table 6.4.3). MOGA generates 

Pareto-sets more evenly spread across the front identified as measured by the 

spacing measure. These conclusions are also supported by the statistical analysis 
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results shown in Table 6.4.3. Similar observations, indicating the consistently superior 

results produced by MEGA were made for all population sizes attempted for Test 1.   

TABLE 6.4.3: STATISTICAL SIGNIFICANCE ANALYSIS FOR THE SPACING AND DIVERSITY PERFORMANCE MEASURES 

FOR RUNS OF MEGA, SPEA AND MOGA WITH POPULATION 150 ON TEST 1. 

 MEGA SPEA MOGA 

Spacing 

MEGA  NS  S 

SPEA   S 

Genotype Diversity 

MEGA  S S 

SPEA   NS 

Phenotype Diversity 

MEGA  NS NS 

SPEA   NS 

Statistical test used: Mann-Whitney test; S: Statistically significant at 0.05 level; NS: Non-statistically significant 

 

Results differed for the simpler Test 2 that searches the solution space 

compromising a ligand-based similarity objective and the easier complexity objective. 

Figure 6.4.6 presents the hypervolume measure for the three algorithms for the 

specific run with population 50 and 500 iterations on Test 2. Note the resemblance 

with Fig. 6.4.4 showing the hypervolume measure for the three algorithms for Test 2. 

Similar results were obtained for the spacing and diversity measures as well.  

 

Fig. 6.4.6: Hypervolume performance for MEGA (eMEGA), SPEA (LSPEA), and MOGA for population 

50 on Test 2. Low values correspond to better performance. Each box extends from the lower to the 
upper quartile values of the data, with a line at the median. The whiskers extend from the box to show 
the range of the data. Crosses indicate possible outliers with values beyond the whiskers. 
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Figure 6.4.7 presents the plot for population 100 for the same experiment. In 

contrast to the results for the case study with population 50, the hypervolume 

measure performance for the three algorithms is showing great similarities. Results 

for population size 150 where almost identical, with negligible performance 

difference, indicating that Test 2 can be solved by all three algorithms tested for the 

purposes of this research for population 100 and 150 and 500 iterations. This 

conclusion is supported by the results of the Mann-Whitney test shown in table 6.4.4. 

The analysis can only detect statistically significant differences in the performance of 

MEGA versus the other two methods for population 50 only. For larger populations, 

i.e., 100 and 150, performance is comparable.    

 

Fig. 6.4.7: Hypervolume performance for MEGA (eMEGA), SPEA (LSPEA), and MOGA for population 
100 on Test 2. Low values correspond to better performance. Each box extends from the lower to the 
upper quartile values of the data, with a line at the median. The whiskers extend from the box to show 
the range of the data. Crosses indicate possible outliers with values beyond the whiskers. 
 
 

 
TABLE 6.4.4: STATISTICAL SIGNIFICANCE ANALYSIS FOR THE HYPERVOLUME PERFORMANCE FOR RUNS OF MEGA, 

SPEA AND MOGA WITH POPULATION 50, 100, 150 ON TEST 2. 

 MEGA SPEA MOGA 

Population 50 

MEGA  S  S 

SPEA   NS 

Population 100 

MEGA  NS NS 

SPEA   NS 

Population 150 

MEGA  NS NS 

SPEA   NS 

Statistical test used: Mann-Whitney test; S: Statistically significant at 0.05 level; NS: Non-statistically significant 
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It is worth noting that despite the near-identical hypervolume performance MEGA 

still exhibits significantly better genotype diversity as shown in Fig. 6.4.8 below. This 

feature indicates that although all three algorithms produce Pareto approximation 

sets that converge to the true Pareto-front and are highly similar in objective space 

(as also seen from the performance of the spacing measure in the figure below), the 

niching mechanism incorporated in MEGA contributes to the generation of more 

diverse solution sets in decision space.  

 

Fig. 6.4.8: Comparison of the Pareto-approximations produced by MEGA, SPEA and MOGA using 
spacing (top) and diversity in parameter/genotype space (middle) and in objective/phenotype (bottom) 
space for Test 2 for population 100. Higher values correspond to better performance. Each box extends 

from the lower to the upper quartile values of the data, with a line at the median. The whiskers extend 
from the box to show the range of the data. Crosses indicate possible outliers with values beyond the 
whiskers. 

 

Overall, time requirements for the execution of the runs were sufficiently 

reasonable. A typical run of MEGA with population 50 and 500 iterations took 

approximately 40 minutes on Machine 1 (see section 5.4). For comparison purposes, 

our implementations of MOGA and SPEA took roughly 70% and 80% respectively of 
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the time required by MEGA. The increase in time requirements for the experiments 

attempted was linear with respect to the population size and the number of iterations.  

 

6.5 Parallel MEGA Tests 

This section briefly summarizes experimental results from the execution of MEGA 

versus its parallel, process-enabled version of pMEGA. The design and 

implementation of pMEGA has been the subject of [K10]. Additional experiments and 

results can be found in [KNP09], [K10]. The experimental results presented 

investigate a major feature of pMEGA that affects its behaviour, specifically the 

number of subpopulations used.  A second feature affecting pMEGA’s performance, 

the isolation time, i.e., the number of iterations for which the subpopulations evolve 

independently, was set to a default value of 10% of the maximum number of 

iterations. 

TABLE 6.5.1: EXPERIMENTAL DESIGN FOR THE EVALUATION OF PARALLEL MEGA VERSUS MEGA  

Test Objectives MEGA 

type 

Population Number of 

Subpopulations 

System 

CPU 

Iterations Evol. 

Operations 

1 MEGA 1 

2 pMEGA 4, 8 

2-core 

3 MEGA 1 

4 

Descriptor 

similarity to 

ER-a 

ligands, 

descriptor 

dissimilarity 

to ER-b 

ligands 
pMEGA 

100, 150, 

200 

4, 8 
4-core 

200 

Mutation: 

0.25 

Crossover: 

1.0 

 

The initial population was taken from the compounds in Dataset 2 and the set of 

2663 subgraph genes was used, obtained as described in section 5.3, subsection 

Materials. The experimental setup provided for runs with MEGA and pMEGA with two 

different subpopulation sizes (4, 8) and three different population sizes (100, 150, 

200). Each of the above experimental settings was run five times, each time using a 

different initial population. The same set of experiments was performed on dual and 

quad core computers (see section 5.3, Machine 1 and 2 description) and the results 

obtained were compared to identify the effect of the usage of a different 
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subpopulation set on the quality of the Pareto approximation set produced and, the 

speed-up achieved. The two objectives used were based on the calculation of the 

atom-pair descriptor [KSF96] similarity to three ligands that are known to be selective 

to ER-! and, dissimilarity on two ligands known to be selective to ER-". As in 

previous experiments described above, in order to represent the problem as a bi-

objective minimization problem, similarity is calculated using the Tanimoto coefficient 

and dissimilarity using the Soergel distance measure as described in section 5.3. 

Smaller Tanimoto coefficient values indicate less similarity between the patterns 

compared with zero being the least similar/completely different. Conversely, a 

Soergel value of zero indicates identical input patterns while higher values point to 

lower similarity.  

Figure 6.5.1 is a graphical demonstration of the solutions in the Pareto-

approximation set of a run of the pMEGA algorithm with four subpopulations on a 

quad-core processor system and population 200. The X and Y-axes represent the 

two objectives. The upper (blue) dots on the (blue) dashed line represent the 

individuals of the starting working population. The lower (red) dots represent the 

individuals of the working populations over a period of iterations. 

 
Fig. 6.5.1: A graph of Pareto fronts taken from one of the runs for pMEGA with four subpopulations. The 
X and Y axes represent the two objectives, dissimilarity to ER-! ligands and similarity to ER-" ligands 

respectively. Note that both objectives need to be minimized. The upper (blue) dots connected with a 

(blue) dashed line represent the starting population. The lower (red) dots connected with a (red) dashed 
line represent the individuals of the final Pareto Front. 

  

Figure 6.5.2 and 6.5.3 compare the Pareto approximation sets generated during 

the runs of MEGA and pMEGA with four and eight subpopulations on a quad-core 
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computer with population size 200. The results are compared using the hypervolume 

(Fig. 6.5.2) and the spacing, genotype diversity and phenotype diversity (Fig. 6.5.3) 

quantitative performance measures described in section 2.3. Figure 6.5.2 presents 

the hypervolume (or hyper-area since the test problem is bi-objective) measure 

values for the five runs of each of the three algorithm implementations tested using 

box-plots. The values indicate that pMEGA with four subpopulations consistently 

produces Pareto approximation sets with seemingly a slightly better hypervolume 

measure, i.e., compromise surfaces that are closer to the ideal point (or conversely, 

further from the nadir point) than MEGA. The performance of MEGA (as indicated by 

the range of vales and the red, median line) is comparable with the performance of 

the pMEGA with eight subpopulations. However, from a statistical analysis 

perspective, the runs of MEGA and pMEGA with four and eight subpopulations 

produced results with non-significant differences (see Table 6.5.2). Results and 

conclusions were identical for the runs on the dual-core system as well. 

 

Fig. 6.5.2: A comparison of the Pareto fronts produced by MEGA, pMEGA with four subpopulations and 
pMEGA with eight subpopulations for population 200 on a quad-core system using the hypervolume 
performance measure. Each boxplot corresponds to the measure values of the runs executed by the 
corresponding algorithm with the same input parameters but different initial population. The box extends 
from the lower to the upper quartile values of the data, with a line at the median. The whiskers extend 
from the box to show the range of the data. Crosses indicate possible outliers with values beyond the 
whiskers. For the hypervolume measure lower values correspond to better performance. 
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TABLE 6.5.2: STATISTICAL SIGNIFICANCE ANALYSIS FOR THE HYPERVOLUME PERFORMANCE FOR RUNS OF MEGA 

AND PMEGA WITH POPULATION 100, 150, 200 ON TESTS 3, 4. 

 MEGA pMEGA-4 pMEGA-8 

Population 100 

MEGA  NS  NS 

pMEGA-4   NS 

Population 150 

MEGA  NS NS 

pMEGA-4   NS 

Population 200 

MEGA  NS NS 

pMEGA-4   NS 

Statistical test used: Mann-Whitney test; S: Statistically significant at 0.05 level; NS: Non-statistically significant; pMEGA-4: 
parallel MEGA with four subpopulations; pMEGA-8: parallel MEGA with eight subpopulations; 

 

The results presented in the plots in Fig. 6.5.3 indicate the similarity of the Pareto 

sets produced, on average, in terms of the spacing and diversity performance 

measures used. Specifically, the Pareto solutions have comparable distribution on 

the compromise surface for the three algorithm implementations used. Similarly, the 

results from the three implementations exhibit similar solution diversity both in 

parameter (genotype) and objective (phenotype) space. It is worth noting that this 

conclusion, as well as the one related to the hypervolume measure, has been 

generally observed for all population sizes used (100, 150, 200) and for both 

subpopulations numbers (4,8).  
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Fig. 6.5.3: A comparison of the Pareto fronts produced by MEGA, pMEGA with four subpopulations and 
pMEGA with eight subpopulations for population 200. Each boxplot corresponds to the measure values 
of the five runs executed by the corresponding algorithm with the same input parameters but different 
initial population. The box extends from the lower to the upper quartile values of the data, with a line at 
the median. The whiskers extend from the box to show the range of the data. Crosses indicate possible 
outliers. For all three measures higher values indicate better performance. 

 
The graphs presented in Fig. 6.5.3 show a general trend of the solutions over all 

experiments performed with the aim to compare pMEGA to MEGA and evaluate the 

performance of the former. An alternative view of the results, placing emphasis on the 

similarity of individual solutions produced by each algorithm, has also been 

investigated. Table 6.5.3 below presents a small subset of the solutions generated 

from the three sets of experiments, each column corresponding to one of the 

implementations. The solutions have been designed using the online depiction tool 

provided by MolInspiration [MI09]. The samples have been chosen by visual 

inspection of the sets produced by the author.  
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TABLE 6.5.3: SAMPLE OF PROPOSED SOLUTIONS BY MEGA AND PMEGA  

MEGA pMEGA (4 Subpopulations) pMEGA (8 subpopulations) 

   

   

 

 

 

As far as performance improvement on time requirements, Table 6.5.4 

summarizes the execution times of the experiment performed with population size 

200 on a quad-core computer system (see section 5.3, Machine 2). The three 

columns correspond to the time obtained by the MEGA, pMEGA using four 

subpopulations each with 50 individuals and, pMEGA with eight subpopulations each 

with 25 individuals.  
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TABLE 6.5.4: A SUMMARY OF THE TIME REQUIREMENTS FOR MEGA AND PMEGA ON A QUAD-CORE SYSTEM 

 

 Time Measured (HH:MM:SS) 

 MEGA pMEGA 4 Subpop pMEGA 8 Subpop 

Max Time 02:00:38 00:48:17 00:42:43 

Min Time 01:50:20 00:35:38 00:40:22 

Average 01:56:45 00:42:39 00:41:45 

Speedup  
2.74 2.80 

Efficiency  
0.68 0.70 

Time measured is wall clock time (total execution time). Average is calculated as (Total – Max – Min) / (5 - 2). Speedup is 
calculated as Time of serial / Time of parallel. Efficiency is calculated as Speedup / Number of processes. 

 

Table 6.5.5 shows a summary of all the experiments performed on the system 

with the quad-core CPU. Using the measured speedup observed in all the 

experiments the average speedup is calculated to be about 2.7 and the efficiency 0.7 

which is undoubtedly substantial given the lack of any fine-grained parallelization of 

the implementation and the limited modifications required to the algorithm itself.  

TABLE 6.5.5: SUMMARY TABLE FOR THE EXPERIMENTS HELD ON THE QUAD-CORE SYSTEM 
 

  MEGA 
pMEGA 4 

Subpopulations 

pMEGA 8 

Subpopulations 

Average 

Execution Time 
0:55:57 0:20:53 0:21:27 

Speedup  2.68 2.61 

Population 100, 

Iterations 200 

Efficiency  0.67 0.65 

Average 

Execution Time 
1:26:18 0:32:02 0:32:12 

Speedup  2.69 2.68 

Population 150, 

Iterations 200 

Efficiency  0.67 0.67 

Average 

Execution Time 
1:56:45 0:42:39 0:41:45 

Speedup  2.74 2.80 

Population 200, 

Iterations 200 

Efficiency  0.68 0.70 
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Chapter 7 

 

Discussion 

 

The specific test case used for assessing the performance of MEGA is that of de 

novo design, i.e., the design of chemical structures with favorable biological 

properties. The objective functions guiding the search have been implemented by 

developing models for the identification of the target specific chemical space (binding 

site-based and ligand-based) and simpler rules encoding the established knowledge 

about the chemical properties of drugs and the notion of privileged subgraph genes, 

i.e., chemical fragments that are positively correlated with a favorable biological 

profile of the compounds containing them. Several experiments have been performed 

aiming, among others, to investigate the influence of the various components of 

MEGA on its performance and to measure and compare the performance of the 

MEGA, MOGA and SPEA algorithms on the instances of the graph design problem 

described previously. Tests using MOGA and SPEA served to assess the 

performance of MEGA in comparison to commonly used algorithms from the MOOP 

field. The results showed that MEGA compares favourably with these algorithms and 

fulfils the initial objectives set for the de novo design and general optimal graph 

design problem. These conclusions were quantitatively confirmed using formal 

Pareto-front performance measures. Qualitative validation of the results produced by 

MEGA has been provided by collaborating experts for one of the selectivity 

experiments performed.  
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7.1 Effectiveness of MEGA Evolutionary Operators  

The first set of experiments designed for MEGA aimed to verify the intended 

functionality of the implementation and assess the effectiveness of the evolutionary 

operators of the algorithm. For this reason the experiments performed concerned 

single objective optimization problems with relatively easy to assess objectives such 

as similarity to a target molecule and increased predicted binding affinity to a target 

receptor. Results indicated that the MEGA algorithm easily meets these objectives 

since throughout the multiple runs performed the method was able to consistently 

identify solutions meeting the single objective. For example, in the experiments using 

the compound similarity objective, the method could design compounds similar to the 

target molecule starting from entirely different graph designs every single time. These 

results, combined with the overall behaviour of MEGA on the single-objective tests 

demonstrate the ability of the algorithm to explore the chemical space given a clear 

objective to use for solution scoring. The tests verified the correct functionality of the 

graph-based evolutionary operations and the niching mechanism. It was also 

observed that the latter, i.e., the diversity-based niching mechanism, did not really 

affect the quality of the single best solution produced. The implemented objectives, 

both the ligand, similarity-based, and the receptor, docking-based proved to be 

functioning according to expectations and be suitable to guide the search process.  

Furthermore, our tests demonstrated the importance of the population size used 

which had a substantial effect on the quality of the solutions produced. This is 

probably true because the size of the population provides a greater, more diverse 

sample of the global search space to the algorithm to start with, and, a breeding 

environment more representative of the global search space. The number of 

iterations was also of substantial importance, however, it could not compensate for 

the effect of an overly small population size. Tests with varying number of maximum 

iterations indicated that the method could converge to solutions satisfying the criteria 
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imposed at 250-500 iterations for the similarity objective and approximately 100 for 

the docking objective provided that the population size matched the complexity of the 

search space. These indications were used in setting the maximum number of 

iterations in subsequent, multi-objective experiments. Finally, our findings highlighted 

the problem of over fitting associated with excessive training and the focusing of the 

search process on a single objective. Results such as those produced for the docking 

based experiments, for example Fig. 6.1.4 where the solution proposed satisfies the 

objective but is unworthy of further investigation due to its size and complexity, 

confirm that failure to take into account any other objectives to guide the optimization, 

or as hard filters, may lead to over fit individuals that suffer from overspecialization to 

the objective under consideration. 

 

7.2 Impact of MEGA Components 

In the evolutionary mechanism nature seems to have found a robust optimization 

method capable of adapting species to their environment and thus ensuring their 

survival. The effectiveness of natural selection has living proofs in the innumerable 

variations of life in our world. The method works simply by exploiting large 

populations that strive to satisfy their needs and instincts in an environment that has 

limited resources and, often, lacks the capacity to accommodate all existing needs. 

The resulting competition is applied at the level of individuals, where fitter individuals 

have first pick on the available resources and therefore a better survival chance, as 

well as at the level of species, where whole population groups compete with one 

another in an effort to accommodate their needs and, in some cases, exert a 

collective effort for the benefit of their species. The fitness of an individual to its 

environment is key in determining its success in surviving and passing its genes to 

the next generation of individuals. Consequently, generation after generation is born 

by reproduction of fitter parents gradually leading to populations better adapted to the 
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environmental conditions of their world. In this setting it is obvious that the ability of a 

species to adapt is key in the natural selection. However, and despite its proven 

robustness, evolution may not lead to the best individual [D76]. Rather, it converges 

on individuals that are good enough to survive, prosper and reproduce and so ensure 

the survival of the species. This lack of perfection may be necessary in the real world 

where the balance of species is necessary to avoid the domination of specific species 

and the extermination of others. However, from an optimization perspective this lack 

of perfection essentially means that the adaptability of species could be sped up, or 

even lead to better individuals, by interventions to the evolutionary process that, for 

example, would recognize and eliminate a dead-end evolutionary path or exploit 

knowledge related to the environment and apply appropriate selection pressure. The 

MEGA framework implements several novelties in an effort to improve the search 

process through exploiting available knowledge, ensuring population diversity and 

facilitating self-adaptation among others. The following sections discuss these 

components of the algorithm. 

 

7.2.1 Exploitation of Knowledge  

This research has aimed to contribute in filling the current gap in Optimal Graph 

Design, a hard multi-objective combinatorial problem commonly found in the real 

world. Nature-inspired multi-objective population-based algorithms have been 

increasingly popular in the last decade and have been proven to produce good 

results in ill-defined problems, problems with large complex search spaces, problems 

with dynamic environments, etc. However, the possibility of exploiting available 

knowledge either from pre-existing information on the nature of the problem, or 

knowledge gained during the optimization process has not received as much 

attention. The method presented attempts to do exactly this by customizing the 

evolutionary process through the incorporation of features such as information rich 
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subgraph genes, monitoring of the progress of the population of solutions and 

applying local search to improve select subsets of individuals similar in parameter 

space. From an implementation perspective, the method facilitates the inclusion of 

additional objectives encoding problem-specific knowledge through the provision of a 

well-defined programmer interface.  

According to the No-Free-Lunch (NFL) theorem, no search-based optimization 

algorithm is better than another when performance is averaged over all possible 

classes of problems [WM97]. However, the theorem does not eliminate the possibility 

of an appropriately designed custom algorithm to exhibit better performance 

compared to other optimization algorithms for specific problem cases. It is a 

commonly held belief, partly derived from the results produced by custom knowledge 

or data-driven algorithms, that incorporating knowledge into the computational 

analysis can improve performance and lead to results of better quality or equally 

good results in less time. Intuitively, this expectation can be justified by arguing that 

the incorporation of problem-specific knowledge, as is done in many algorithmic 

designs, will facilitate the search by intelligently limiting the space to the most 

promising regions and lead to improved performance. More formally, an extension of 

the NFL theorem has been proposed for multi-objective optimization in [K03]. This 

implies that on average, each multi-objective optimization algorithm has the same 

performance when applied to all possible problems, provided that no a priori 

knowledge of the problem is assumed [CLV07]. 

In the field of computational optimization, the success of this approach can be 

attested by the achievements of Memetic Algorithms that have been proven to 

outperform general-purpose metaheuristics including Evolutionary Algorithms. As 

previously reported, MAs extend EAs by incorporating into the process a local search 

component that attempts to search more intensely specific regions of the search 

space. The use of local search within a MOEA is an interesting topic that has been 

only scarcely studied. Although memetic MOEAs [M89] have existed for some time, 
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most of the hybridizations between a MOEA and a local search mechanism are 

relatively straightforward algorithmic designs, lacking a careful analysis of the trade-

offs involved [CLV07]. In MEGA, the STIR component combines self-adaptive with 

memetic elements to invoke local search only when stagnation conditions occur. This 

novel -to the best of our knowledge- mechanism was shown to have clear benefits to 

the quality of the Pareto-front produced at the expense of some additional 

computational cost. However, in contrast to the majority of the existing methods 

where the memetic component is an integral part of the evolutionary cycle or is 

regularly invoked regardless of the optimization process status [CLV07], STIR 

intelligently applies local search when most needed, i.e., when the EA-driven global 

search is facing problems in finding new solutions.  

Our work follows a self-adaptive paradigm [BMK03] to develop an optimization 

method for graph design, a multi-objective combinatorial optimization problem with 

numerous real-life incarnations. The nature of the problem, i.e., the graph 

representation of the solutions, combined with domain specific information related to 

the characteristics of the problem examined, i.e., the de novo design problem, and 

the objectives to be met, provide several opportunities for knowledge inclusion into 

the method implementation. The results presented in chapter 6 verify the potential of 

knowledge inclusion and the superiority of appropriately designed MAs when 

compared to EAs. Firstly, the tests presented in section 6.2 (see Fig. 6.2.5-6.2.7) 

showed that the use of local search in MEGA, through the STIR mechanism, 

consistently improves the quality of the solution set with respect to the hypervolume, 

the genotype diversity and the phenotype diversity measures, all other conditions 

being equal. Secondly, MEGA was proven to outperform both MOGA and SPEA 

which are among the most popular MOEA algorithms used currently (see Fig. 6.4.4-

6.4.6). Note that the above conclusions hold for the more complex tests attempted for 

the purposes of this dissertation whereas in the case of simpler tests all MOEA 

methods, as well as MEGA configurations, were able to produce Pareto 
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approximation sets with small, often negligible, differences in performance. This 

observation indicates the suitability of MEGA, and appropriately designed MAs in 

general, to address complex multi-objective combinatorial optimization problems 

through incorporating domain-specific knowledge and local-search techniques.  

The computational cost related to the usage of STIR depends heavily on the 

nature of the specific problem investigated, the implemented objectives and the input 

parameters provided by the user that indirectly control the frequency of activation of 

the mechanism. As such safe conclusions can only be drawn on specific application 

problems. As an indication, MEGA required approximately 25% more time than SPEA 

or eMEGA for the complex test cases described in section 6.2 and 6.4. This 

difference generally reflects the computational overhead of the STIR mechanism in 

complex optimization processes where it is frequently invoked. 

 

7.2.2 Diversity-Niching in Population-based Algorithms and MEGA  

The influence of a diverse population is known to be crucial to the quality of 

solutions obtained in population optimization algorithms [CLV07], [DS07]. In the 

MOEA field, where the solution consists of a set of compromise solutions, diversity is 

even more important. Several schemata for diversity preservation have been 

suggested, however the overwhelming majority of them tend to focus on diversity in 

objective space and ignore diversity in parameter space. This maybe acceptable in 

single-objective optimization search problems where the goal is to detect the single 

best solution possible, or in multi-objective algorithms where one objective is more 

important than others and so the solution sought needs to have the best possible 

fitness to that specific objective. However, in many real life multi-objective problems, 

including optimal graph design instances, the identification of numerous equivalent 

solutions with differing chromosomes, e.g. graph structures, is highly desirable since 

they represent alternative solutions compromising the objectives in different ways. In 



 

 

141 

such cases, users have the ability to analyze a! posteriori the solution set produced 

and select the one that better fits the objective set imposed.   

The important issue of population diversity in EAs (and MAs) is given substantial 

attention in MEGA. In EAs the population provides the main reservoir of genetic 

material from which to produce new solutions and, therefore, the population is 

expected, to the degree possible, to simultaneously occupy different parts of the 

search space [GSM04]. The genetic drift phenomenon, a result of stochastic errors 

associated with genetic operators, causes EAs to converge to a single solution when 

used with a finite population [CLV07]. Lack of diversity in the population essentially 

means that the process is unable to explore globally the feasible search space, which 

in turn may lead to increased chances of getting stuck in suboptimal local minima and 

failure to produce sufficiently good solutions. The consequences of this phenomenon 

may not be apparent or even seriously problematic in normal single-objective 

optimization processes, however, when multiple solutions are desired as in multi-

objective problems it leads to suboptimal solution sets. For example, loss of 

population diversity in multi-objective optimization may cause that the population 

remains stack in areas far from the true Pareto front or that individuals are located 

only in selected areas of the Pareto front. Moreover, in the case of multi-objective 

problems with many local Pareto frontiers the loss of population diversity may result 

in locating only a local Pareto frontier instead of a global one [DS07].  

The concept of diversity, as well as its preservation, can be applied to the 

decision or objective space. In the decision space, population diversity is a function of 

the similarity between genotypes whereas in the objective space it is based in the 

relation among phenotype vectors. Promoting all kinds of diversity during the entire 

search process is thought to potentially be counter-productive and the type and 

amount of diversity required at different times remains unclear [GSM04]. Typical 

MOEA applications apply diversity preservation in the objective space regardless of 

the specific method used for this purpose. However, in principle, diversity should be 
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applied to the space of interest to each specific application. Phenotype diversity 

should be used if one is attempting to obtain a uniform a Pareto approximation set 

while genotype diversity, facilitating the generation of multiple equivalent solutions in 

phenotype space with different chromosome representation, may be more 

appropriate in other situations including several real world problems [CLV07]. Efforts 

in line with the latter approach include the Genetic Diversity Evaluation Method, 

which considers a distance-based measure of genetic diversity as a real objective in 

fitness assignment [TB03]. 

Several diversity preservation mechanisms have been proposed, originally in the 

SOOP GA field, including “fitness sharing” and “crowding” and the EA’s using them to 

either maintain or introduce diversity seem to have better chances of succeeding 

[ZWA06]. The crowding operator, suggested by Holland [HJ75] aims to identify 

concentrations of similar individuals and remedy this situation by replacing some of 

them with new offspring. Similarity between individuals is measured in genotype 

space. Goldberg and Richardson [GR87] used a different approach in which the 

population is divided in different subpopulations according to the similarity of the 

individuals [CLV07]. The method relies on a fitness sharing function that ultimately 

adjusts the fitness of each individual depending on the density of its neighborhood.  

In the MOEA field the approaches proposed to preserve population diversity include 

fitness sharing and niching, clustering, the use of geographically-based schemata to 

distribute solutions and the use of entropy and mating restriction schemes, among 

others [KJ02].  

The algorithm proposed in this dissertation introduces a novel niching method 

that ensures both, diversity in decision space, in this case structurally dissimilar 

graphs, and diversity in objective space so that an adequate representation of the 

Pareto-front is achieved. In addition to balancing between the two space domains the 

diversity method introduced can be tuned so as to favor either one of the two. The 

key to this method is the graph-based clustering step applied on the chromosomes 
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and the assignment of each solution to a cluster. The cluster label of each solution is 

subsequently used during selection to balance the effect of choosing just by using 

efficiency measures based solely on the Pareto-rank of the solutions. Of special 

interest is that the niching mechanism introduced, guarantees that even in cases 

where one of the objectives is “easier” than others and may easily produce multiple 

solutions with competitive fitness values, the effect of using chromosome-based 

clustering ensures that the few solutions advancing the “difficult” objective(s) get 

equal treatment and opportunities to evolve. Note that the proposed niching 

methodology, which has been applied in MEGA on solutions represented using graph 

chromosomes, can be applicable to EAs using other representation schemata, 

selection operators, etc.  

Overall, the MEGA niching method has been shown capable of maintaining 

diversity in both decision and objective space as was the initial goal set for the 

mechanism. The experiments presented in section 6.4 comparing MEGA with MOGA 

and SPEA that use niching mechanisms exclusively focused on objective space, 

serve to showcase the advantages of the technique proposed by MEGA. The results 

obtained indicate that MEGA produces solutions with higher genotype diversity than 

MOGA and SPEA in all runs performed, even in the case of simpler problems where 

other performance measures, and especially the hypervolume measure, have similar 

outcomes. Of interest is the observation that the implemented MEGA niching 

technique produces results that are comparable with those of MOGA and SPEA with 

respect to diversity in the objective space despite the fact that the latter two 

algorithms place emphasis on this type of diversity. This encouraging result suggests 

that genotype diversity can, and probably should, be taken into account since it does 

not necessarily result in solutions with low objective space diversity. Balancing 

between diversity in the two spaces still remains an open question and is likely to 

only be solvable in a problem-specific manner. For the de novo design problem 

examined in the present work we opted to use a scheme that ensured the selection of 
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at least an individual from each of the genotype-based solutions clusters as explained 

in chapter 5. This resulted in the preservation of different chemical scaffolds in the 

population and their continued influence during the generation cycle. 

 

7.2.3 Impact of Elitism 

Our experimental results also confirmed the major positive influence of elitism as 

implemented by a Pareto-archive as reported by researchers before [Z99],  [CLV07], 

[CS04]. Storing all solutions discovered in previous iterations of the process benefits 

the final Pareto approximation set produced both, with respect to the quantity of 

solutions and to the range covered by the extremes of the front. Population diversity 

also benefitted since no solutions, no-matter when they were found or how unique 

they are, were dropped due to algorithmic or implementation specific limitations.  

In particular, the use of elitism in combination with the niching mechanism, 

provided a larger number of solutions covering a more extended range of 

compromises. In comparison, the application of simple-MEGA (niching: on; elitism: 

off) resulted not only in less dense Pareto-fronts as expected, but also in Pareto-

fronts of comparatively limited span. In Fig. 7.2.1 the final solution sets produced by 

eMEGA and simple-MEGA which only differ in the use of elitism or not (respectively) 

are shown. The experiment involved the design of selective chemical structures with 

high estimated binding (i.e., interaction score) to ER-! and low estimated binding to 

ER-" (see section 6.3) in a run with population 20 and 50 iterations. As shown, the 

eMEGA solution set contains more Pareto solutions and has a larger spread than the 

front without elitism. 

Further analysis of the results provided in section 6.2 indicated that the niching 

mechanism on its own sometimes fails to meet its goals, i.e., preserve solution 

diversity at the genotype level, despite the diversity analysis and sampling of the non-

dominated solutions it performs. The mechanism clearly works initially in identifying a 
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diverse set of non-dominated solutions, but as more and more points on the Pareto-

front are produced, the algorithm necessarily drops some of the non-dominated 

solutions because of the fixed population size allowed. This behaviour may 

sometimes lead to dropping solutions important enough to cause loss of large 

sections of the Pareto-approximation surface and thus reduce diversity. However, 

when combined with elitism in the form of a Pareto-archive, the niching mechanism 

proved to be effective in preventing genetic drift and domination conditions.  

 

Fig. 7.2.1. A comparison between the final Pareto-front approximations obtained with and without elitism 
for a de novo design selectivity test. Note that the front with elitism (line with triangles) contains more 
Pareto solutions and has a larger spread than the front without elitism (line with circles). The x-axis 
corresponds to the predicted interaction score to ER-beta; the y-axis to the inverted predicted interaction 

score to ER-alpha. 

7.2.4 General Remarks 

The results obtained through the extensive set of experiments presented in 

chapter 6 stressed the positive effect of providing an appropriate population size to 

the MEGA algorithm, both in the case of larger and more complex search spaces and 

in simpler problems (see Fig. 6.2.8). As a general rule, runs with larger population 

sizes consistently outperformed runs with smaller, inadequate for the specific 

problem population sizes, all other parameters being equal. This observation held 

true as long as a certain, problem-specific population size was not provided, 

indicating that an increased population size can only benefit the optimization process 
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up to a certain problem-specific number; providing larger populations above that 

number has no positive effect (see Fig. 6.2.8, top) and may complicate and 

presumably affect performance with respect to time. 

An additional general observation on the results produced in the series of tests 

performed is that MEGA produces similar Pareto-approximations in different runs 

when the same parameters -except the initial population- are provided. In this 

context, similarity refers to the values of the performance measure obtained and in 

particular those of the hypervolume and genotype diversity measures which are of 

special interest to the present work. On the contrary, results produced using other 

methods and especially MOGA and simple-MEGA show a much greater variation. 

Overall, smaller populations tend to show greater variation than larger populations 

possibly explained by the inability of small populations to cover effectively a 

representative sample of the solution space. 

Observations on the effect of the number of iterations pointed to the importance 

of this parameter for the quality of the solutions produced. However, it was evident in 

the experimental results that the number of iterations could not compensate for the 

effect of a small population size. 

The set of subgraph genes used by the algorithm, an additional way of encoding 

and exploiting problem domain knowledge, is also very important for the obtained 

results. Experimentation with smaller and/or unweighted subgraph gene sets, all 

other parameters kept equal, showed that the resulting Pareto-approximations had a 

more limited span and were less advanced compared to the fronts produced by runs 

using the 2363-collection derived from compounds tested on the biological targets of 

interest. A similar conclusion was reached for the importance of the datasets used for 

the selection of the initial populations although at a lesser extend. These 

observations indicate that the sources of subgraph genes and the datasets used to 

select the initial population represent a simple, yet effective, possibility for the user to 

control the region of the chemical space for the search.  
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MEGA also proved able to cope with situations where one of the primary 

objectives is easier to achieve than the other. For example, in the selectivity tests 

performed in section 6.2.3, identifying solutions with reduced binding affinity to ER-

alpha is substantially simpler than designing solutions with increased binding affinity 

to ER-beta. If left unattended, the uneven nature of the objectives can lead to the 

discovery of more solutions satisfying the easier objective, and a more intense 

exploration of the corresponding section of the search space, which in turn may result 

to genetic drift and potential domination conditions. Owing to its hard-filtering 

capabilities MEGA enabled the elimination of solutions overfit to the simpler objective 

while the usage of the niching mechanism ensured that no domination conditions 

from solutions found in any specific region of the search space could take place. As a 

result, the progress of the search process as indicated by the Pareto-sets produced 

in successive iterations of the specific MOOP study has been even, spanning an 

increasingly larger range of the search space.    

 

7.3 Multi-objective De Novo Design of Selective Chemical Structures  

Qualitatively, MEGA performance has been validated by human experts on a 

challenging type of the de novo design problem. Specifically, we have designed a test 

where the solutions are required to bind effectively to a “positive” pharmaceutical 

receptor and show no, or limited, affinity to a “negative” pharmaceutical receptor. This 

setting, known as compound selectivity in the drug discovery community, is of 

immense importance since a drug needs to bind selectively to the target it was 

designed for and avoid off-target interactions which cause the much dreaded –and 

outrageously costly in industrial settings– side-effects and toxicity. Exploiting the 

unique features of MEGA, especially graph-based chromosome representation, multi-

objectivity, niching that maintains diversity in both decision and objective space, and 
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local search exploitation, we have shown that our method can successfully design 

diverse compounds predicted to bind stronger to ER-! than the highly similar ER-".  

In order to obtain such range of solutions with traditional, single-objective 

methods, multiple runs with different settings favoring one or the other objective at a 

different ratio each time could be attempted. However, even an exhaustive set of 

experiments with different objective weights would fail to discover solutions in certain 

solution surfaces [NAP09]. Moreover, single-objective optimization runs require 

caution to avoid overtraining and generation of over fit individuals. MEGA, through 

the use of multiple objectives can restrict the search space and prevent the survival 

of overspecialized solutions. 

Our results have been presented at [NPA08] and have been the subject of a 

publication [NAP09] to the Journal of Chemical Information Modeling of the American 

Chemical Society. Similar problem cases and experiments are currently in 

preparation in association with partners from the life-sciences domain at their 

request. This research direction provides for the close collaboration with 

pharmaceutical scientists to prepare and use the MEGA method within the scope of 

an ongoing drug discovery project. MEGA, equipped with expert knowledge, would 

design new chemical structures, which would then be synthesized and tested in the 

lab for biological activity. This scenario could prove the usefulness of the method and 

provide feedback for further improvements to be made. In general, the selectivity 

application is especially important to the life sciences informatics and 

chemoinformatics communities since it contributes to the recognition of the necessity 

and usefulness of multi-objective methods in the field [ES02]. Standard computational 

methods supporting drug discovery and specifically lead optimization, modelled after 

traditional experimental optimization procedures, traditionally ignore the multi-

objective nature of the problem and focus on the optimization of one molecular 

property at a time [XH02]. While de novo design has long been recognized as being 

of high importance for drug discovery, it is only relatively recently that methods have 
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been proposed in which the concept of multiple objectives is exploited [NBP07]. The 

lack of research in this field presents substantial opportunities for novel algorithms to 

be developed to researchers with the know-how in the areas of multi-objective 

optimization and graph/de novo design. The ability of MEGA to design chemical 

structures acceptable to human experts for a major, common problem such as 

selectivity to ER-beta over ER-alpha is one of the few, recent success cases in the 

field. Overall the specific test case, which constitutes one of the main motivating 

factors for this research, showed that the MEGA algorithmic framework can be of use 

to the drug discovery process. The effect of various evolutionary algorithm 

parameters has been investigated, and partially elucidated, and the contributions that 

a graph structure-based niching mechanism, a secondary archive population to 

preserve solution loss and, a self-adaptive local search mechanism have been 

demonstrated. We believe that the latter findings are particularly important. 

 

7.4 Comparison of MEGA to Established MOEAs  

The experimental results presented in section 6.4 indicate that solution sets 

generated by MEGA compare favourably with those obtained using MOGA and 

SPEA. It is worth noting that our experimental results show that in the case of simple 

multi-objective problems (e.g. Section 6.4: Test 2) the performance of the three 

algorithms is comparable whereas in more complex problems (e.g. Section 6.4: Test 

1) differences become more apparent. 

With respect to the hypervolume measure, indicative of the span of a Pareto-

front and its proximity to the ideal point, MEGA consistently outperforms at a 

statistically significant level both SPEA and MOGA in the complex tests attempted. It 

is worth pointing out that for Test 1, optimizing two ligand-based similarity objectives, 

no run of SPEA and MOGA matched any of the runs of MEGA with respect to 

hypervolume, given that the initial parameters provided were the same. A similar 

observation holds for the hypervolume-based comparison between SPEA and 
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MOGA; SPEA runs perform better than those of MOGA throughout the experiments 

performed although statistical significance was only found for runs with smaller 

population sizes.  

A similar, also statistically significant, trend has been observed for the measure 

of genotype diversity, i.e., diversity of solutions in parameter space. MEGA, with its 

unique mechanism of niching specifically designed to take into account graph 

structure and preserve solution diversity both in parameter and objective space, is 

more successful than either MOGA or SPEA in this measure for both sets of tests 

attempted. Even the worse performing run of MEGA produced Pareto-fronts 

comparing favourably to the genotype diversity of any set of solutions provided by the 

more traditional MOEA algorithms of SPEA and MOGA, which in this measure exhibit 

similar performance. This conclusion verifies that the niching mechanism proposed in 

MEGA fulfils its goal and manages to ensure that the set of nondominated solutions 

produced by the algorithm will contain diverse graph structures, well dispersed in 

parameter space.   

Conclusions are not so clear for the measures focusing on objective space. 

Specifically, for the spacing measure, MOGA performs better than the other two that 

show similar performance. Moreover, MOGA results show the greatest variation in 

performance among different runs of the same experiment while MEGA and SPEA 

produce results with a much smaller range of spacing values although consistently 

worse than MOGA. This may be partly attributed to the smaller size of the Pareto-

approximation sets generated by MOGA due to the lack of a Pareto archive. Results 

for the objective space diversity measure are inconclusive since they do not show a 

trend for or against a specific algorithm.  

Overall, the results of MEGA demonstrate the ability of the algorithm to explore 

the chemical graph space given clear objectives to use for solution scoring. The 

comparisons with commonly used MOOP algorithms show that MEGA compares 

favourably with MOGA, the most commonly used technique in DND, and SPEA, 
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probably the most popular MOEA of all, since it produces Pareto-approximation sets 

with better performance in the hypervolume and genotype diversity measures in our 

experimental tests. Differences in performance are less evident in easier problems 

but become clearer in problems with more complex objectives. The above 

conclusions are supported by observations on the results produced for both sets of 

problems used to compare the three approaches and for varying population sizes. 

The conclusions have been verified by the Mann-Whitney statistical significance test.  

 

7.5 Effect of MEGA Parallelization  

Our parallelization efforts with pMEGA focused on the use of coarse-grained 

parallelization through the use of subpopulations. pMEGA follows an island model EA 

and implements restricted mating in a geographic sense where solutions mate only 

with neighbors residing within some restricted topology [CLV07]. The experimental 

results produced led to the following conclusions and related future research 

directions. Firstly, as far as the quality of the solutions produced, MEGA and pMEGA 

behave comparably, with pMEGA having a slight edge in performance on average. 

This conclusion holds even though the current pMEGA implementation splits the 

population in a random fashion without using any knowledge related to the 

morphology of the Pareto-approximation set and the density of solutions at any 

region of the search space. A potentially better way to split the population may be the 

clustering-based method used by the STIR mechanism of MEGA. Secondly, pMEGA 

achieves a speedup of almost 1.6 on a common dual-core CPU and 2.7 on a quad-

core CPU which is considerable, especially for large experimental applications [K10].  

The measured results and speedup provided by pMEGA have been used below 

to calculate the percentage of parallelism of the algorithm and estimate the upper 

bound of speedup when using additional processing units via Amdahl’s Law [AG67] 

defined as: 
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where P is the proportion of the program that can be made parallel and N is the 

number of processing cores. The average speedup measured is Savg = 2.7. Using:  

! 

P
estimated

=

1

S
"1

1

N
"1

   Eq. (13) 

with S = 2.7 and N = 4, the Pestimated = 0.84, meaning that 84% of the algorithm is 

executed in parallel. Table 7.5.1 below contains estimates for the speedup of the 

algorithm when more processing units are utilized by substituting Pestimated in Amdahl’s 

law using as reference the speed-up measured for the quad-core CPU system. 

 
TABLE 7.5.1: ESTIMATED SPEEDUP AND EFFICIENCY USING ADDITIONAL CORES.  

N Sestimated E 

4 2.7 0.7 

8 3.8 0.5 

16 4.7 0.3 

32 5.4 0.2 

64 5.8 0.1 

Pestimated 

0.84 
Estimated parallel 

percentage of the 

algorithm. 

Sestimated 

! 

1

(1" P) +
P

N

 
Estimated 

Speedup 

Smax 

! 

1

(1" P)
 

6.3 

P: proportion of program made parallel; N: number of cores, E: Efficiency; The quad-core CPU is used as reference. 

 
According to these estimates the algorithm has an average maximum speed-up 

of around 6.3 as more and more cores are provided to the process since efficiency 

gradually drops to a very low level. From the above we can conclude that using more 

than eight cores to run the current pMEGA algorithm implementation is probably 

unnecessary due to the low efficiency and small speedup from that point and on. This 

is also supported by Amdahl’s law, which states that if an algorithm can be 

parallelized at a degree of 90% then the maximum speedup it can achieve regardless 
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of the number of CPUs is 10. In the case of pMEGA the estimated parallelized part of 

the algorithm is 84% and therefore the application of Amdahl’s law in combination 

with the setting of the number of CPUs to infinite, results in a maximum estimated 

speedup of 6.3. This value indicates that there is plenty of room for additional, 

especially fine-grained, parallelization efforts. It can safely be expected that sizeable 

savings can be achieved since in de novo design, as well other optimization and 

optimal graph design problem instances, the cost of fitness evaluation dominates the 

time requirements of the process.  

Regarding the quality of the solutions produced by pMEGA compared to MEGA, 

both the quantitative performance measures as well as the visual inspection of the 

proposed solutions show that the two methods produce comparable Pareto fronts. A 

further observation is that pMEGA subpopulations typically provide solutions that 

differ between them indicating that speciation occurs due to the independent 

evolution of each subpopulation. It is interesting that speciation occurs despite 

selecting subpopulations at random, without the use of any knowledge relating the 

members of each subpopulation in this first, simple implementation of parallel MEGA. 

In a related set of experiments, the performance of pMEGA (i.e., the speedup 

gained) was shown to gradually worsen when using increased number of 

subpopulations. This can be attributed to the higher inter-process communication 

overhead and, naturally, the non-parallelizable part of the implementation, i.e., the 

main process, which collects and merges the results produced by each process 

independently evolving a subpopulation. The collection and merging requires 

additional computation to take place in the main process as additional subpopulations 

get added, resulting in a small, but noticeable amount of overhead to the pMEGA 

execution time.   



 

154 

 

Chapter 8 

 

Conclusions 

 

The research presented in this thesis introduces a new hybrid multi-objective 

evolutionary algorithm that emphasizes the use of knowledge, both problem-specific, 

available through previous attempts to tackle the problem under investigation and, 

knowledge produced during the search for the solution. The latter characteristic 

requires real-time monitoring of the search, evaluation of the progress achieved and 

self-adaptation of the algorithm execution to facilitate the discovery of solutions. The 

former functionality allows the inclusion of prior knowledge related to the problem and 

its exploitation in order to focus the search process and avoid pitfalls. MEGA uses 

graphs for solution representation and encodes available problem-specific knowledge 

through the use of weighted subgraph genes. The algorithm uses a novel, niching 

mechanism specifically designed to preserve both genotype and phenotype diversity 

in the population of solutions, and elitism, mainly in the form of a Pareto archive, to 

avoid loss of promising solutions [NKP09]. An additional novel mechanism has been 

improvised to self-adapt the optimization process through the use of a local search 

technique based on the progress of the search. This mechanism, referred to as STIR, 

monitors the progress of the Pareto approximation set through the calculation of the 

hypervolume measure at the end of each iteration, compares the progress achieved 

over successive iterations and, when deemed necessary, applies local search on 

subsets of the population to boost the optimization process. In the current 

implementation, STIR uses clustering of the solutions in parameter space to identify 

groups of similar individuals that it evolves independently through intensive 



 

 

155 

application of local search in the form of dedicated MEGA sub-processes. As a 

general framework MEGA has the ability to accommodate numerous objectives as 

primary, to guide the optimization process, or secondary, as hard filters, to limit the 

search space and exclude sections known to contain solutions unfit due to inherent 

solution structure or other problems. Accordingly, the current MEGA implementation 

has been equipped with mechanisms for the inclusion of multiple objective functions 

and their appropriate subsequent use by the algorithm during execution time.  

As a case study, we have applied our graph design method to the significant and 

challenging problem of de novo design and specifically in designing small molecular 

structures exhibiting selectivity to select pharmaceutical targets. Modern drug 

discovery process typically emphasizes potency and underestimates additional 

molecular properties in the early stages of lead identification and optimization. 

Indeed, one of the common causes for lead compounds to fail in the later stages of 

drug discovery is the lack of adequate consideration of multiple objectives (e.g. 

ADME and Toxicity) at the early stage of optimization of candidate compounds 

[BM04]. Current de novo design approaches also focus on optimizing a single 

property, typically similarity to a known ligand or docking affinity to a receptor. A 

number of objectives, measuring fitness as predicted binding affinity to a receptor, 

similarity to known ligands or chemical structure-based properties such as molecular 

weight or complexity, have been encoded and used during our optimization runs.  

The experimental design aimed at obtaining a comprehensive profile of the 

MEGA implementation with respect to its sensitivity to population size, number of 

iterations, and the usage of the niching, elitism and STIR mechanisms, as well as 

comparing the algorithm to other, established algorithms in the MOEA domain, 

namely MOGA and SPEA. A series of experiments has been performed, thoroughly 

testing the proposed method. For each combination of input parameters multiple runs 

were executed each time changing only the initial population. Our conclusions have 

been drawn on these collections of runs to eliminate the chance of arriving to 
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erroneous results due to results obtained from single runs affected by (un)fortunate 

events taking place during the stochastic process. 

The results obtained indicate that the use of niching and elitism, as implemented 

and applied in MEGA, contribute to improved performance. This finding confirms 

previous findings of [Z99], [KJ02], [CS04]. It was also observed that population size 

played a crucial role and therefore larger populations can lead to Pareto-

approximations sets of better quality compared to smaller populations in more 

complex problems. STIR, the self-adaptive mechanism was also proven to contribute 

positively to the quality of the Pareto approximation set produced. Specifically, STIR 

managed to detect lack of progress and apply local search to improve individual 

solutions, advance the trade-off surface and enrich the gene pool of the population 

with diverse graph structures. Consequently, this self-adaptive, memetic feature of 

the algorithm was crucial in generating better results or the same quality of results in 

fewer iterations.  

Overall, the results of MEGA compare favourably with established MOOP 

methodologies. Three quantitative performance measures were used to evaluate the 

performance of MEGA and compare it to MOGA and SPEA. Hypervolume [ZT99], 

which measures the hyperarea defined by a Pareto approximation set and a nadir 

point, spacing [CS04] which measures the distribution of solutions in objective space 

and diversity which measures the average similarity of solutions in parameter or 

objective space. The analysis of the algorithmic results show that MEGA outperforms 

both MOGA an SPEA, consistently producing better Pareto approximation sets at a 

statistically significant level for the hypervolume and genotype diversity measures. 

This confirms previous reports comparing hybrid, memetic algorithms such as MEGA, 

with pure EA-based methods [M04]. The improved performance can be traced to 

several of the features of the method including the graph representation of 

chromosomes, the use of niching and elitism but also to the inclusion of knowledge-

driven components enabling the exploitation of available information useful to the 



 

 

157 

search and, the activation of local search to boost the process through a self-adaptive 

step. This was confirmed by comparisons between MEGA and simpler versions of the 

method without elitism or the memetic, self-adaptive component that showed the 

value of each of the above mechanisms.   

Qualitative validation of the products of the proposed method has been 

performed through visual inspection by expert partners of the results on one of the 

test cases.  This approach, conceptually aligned with the a! posteriori principle of 

Pareto-based MOOP methodologies, showed that MEGA is able to identify 

compromising solutions of satisfactory quality and structural diversity and meet the 

stated optimization objectives. The test case chosen was that of designing molecules 

exhibiting selective potency to one of two closely related pharmaceutical targets, ER-

! and ER-". The problem is of high importance as ERs are receptors related to 

breast cancer and no drug currently available has been designed with selectivity in 

mind. The experts identified several interesting designs predicted to have a 

significantly higher binding affinity to ER-" than the similar ER-!. The findings were 

further confirmed via computational docking-scoring experiments and the 

visualization of the results which provided further insight and justification to the 

predicted selectivity. These results were the subject of a journal publication [NAP09].  

In a development phase performed later in the project we implemented pMEGA, 

a parallel version of MEGA aiming to reduce the time needed for the completion of 

the design process [KNP09]. The need for this version of the algorithm became 

apparent when using larger population sizes and/or resource-intensive objectives 

functions such as those based on docking, i.e., computational prediction of the 

binding affinity of a small molecule to a protein receptor. The first implementation of 

pMEGA focused on coarse-grained parallelization and some changes to the 

algorithm had to be performed. In pMEGA the working population is now divided into 

subpopulations evolved independently for a specific number of iterations on different 

processing units. The results produced by the evolution of each subpopulation are 
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periodically merged, Pareto-ranked, subjected to evolutionary selection pressure and 

re-split into subpopulations thereby performing unrestricted migration of good quality 

individuals. The role of the master process is limited to coordinating iterative search 

process through the initiation of sub-processes assigned with the task of evolving 

subpopulations, the collection and merger of the results and the re-distribution of 

solutions to subpopulations. pMEGA fulfilled its initial objectives by producing results 

of comparable performance with MEGA utilizing multiple cores of a single CPU. The 

similarity of the results produced was also confirmed through statistical significance 

analysis. In conclusion, pMEGA showed an average speed-up of 1.6 on a dual-core 

and 2.7 on quad-core machine. The theoretical speed-up boundary was calculated at 

approximately 6.3 indicating that further parallelization efforts need to be performed 

for effective application on larger computational infrastructure such as the Grid or 

high performance computing systems. To this end fine-grained parallelization 

provides a potential solution that will be explored in the immediate future. 

As a final conclusion, MEGA has been shown to be a powerful and flexible new 

algorithmic framework specifically designed to address the multi-objective graph 

design problem. We believe that the method as described in the previous chapters 

may be of great use to a number of real life problems that fall in the same category 

and intend to pursue such applications in the near future. Similarly, the method 

incorporates several novel features and ideas that may be directly applicable to other 

optimizations methods. Prime among them is the inclusion of knowledge to guide the 

search process, through the use of information-rich subgraph genes and rules, and, 

self-adaptive memetic mechanisms applying local search to advance subsets of 

solutions when premature convergence conditions are observed.    
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Chapter 9 

 

Future Work 

 

A number of different research directions have already been initiated to expand 

on the work presented in this dissertation. These initiatives can be grouped into three 

general categories; the first two involve research on algorithmic enhancements and 

improvements of the computational performance while the third focuses on problem-

specific applications of the method. The potential directions of future work are 

outlined below:  

9.1 Algorithmic Enhancements 

Self-adaptation. Efforts will be made to further exploit knowledge acquired during 

evolution to guide the optimization process by enhancing self-adaptation. In order to 

achieve this, additional mechanisms to encode and store qualitative information 

related to the performance of solutions will be implemented. The information may be 

used in the adaptation of evolutionary operations and subgraph gene weights to 

influence subsequent generations. One potential direction could exploit the readily 

available cache of solutions used currently only for the improvement of execution 

time. It is possible that the method counts the number of new solutions generated in a 

generation by comparing to the known solutions in the cache and devising a scheme 

whereby the measure of progress -or lack of- is a function of the new solutions 

produced. An alternative measure of progress, also easy to implement, may use the 

number of new Pareto-solutions added to the archive in a generation. The latter may 

also be used in conjunction with the STIR mechanism currently in place so that 
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certain information about the progress of individual solution groups is obtained and 

exploited. For example, more emphasis could be placed in exploring the graph space 

defined by a certain group if it has been steadily producing better solutions through 

the evolutionary process.  

Objectives Evaluation and Selection. The availability of multiple sources of 

knowledge often leads to the encoding of several objective functions to guide the 

optimization process. In turn, this produces a complex search space that complicates 

the optimization process and imposes a heavy computational burden to any MOEA 

implementation. High-dimensional problems pose additional challenges compared to 

low-dimensional problems in terms of the identification of a good Pareto 

approximation set, the computational resources required and the choice of an 

appropriate solution subset from a set of alternative solutions by the end user 

[BSDZ07]. As part of the future work planned we plan to exploit current research 

findings on dimensionality reduction techniques to decrease the number of objectives 

[BSDZ07], [DS06] and develop methods to assess the usefulness of each objective 

function and, to exploit potential objective orthogonality and redundancy issues. 

Subpopulation-based MEGA. The implementation of STIR and pMEGA provided an 

opportunity to experiment with multiple subpopulations evolving independently and 

exchanging information at regular intervals. The results produced show that pMEGA 

can provide us with equivalent solution sets in substantially less time while STIR, 

which combines subpopulation use with the normal evolutionary cycle, provides 

solutions with improved performance. While the emphasis in pMEGA has been on 

reducing time requirements and maintaining comparable performance with MEGA our 

planned implementation will aim at exploiting the presence of distinct subpopulations 

to facilitate the preservation of population diversity in parameter and objective space. 

Initial work will focus on the selection of subpopulations, as currently performed in 

STIR, and the exploration of different migration schemata. Population neighborhoods 

will be identified using knowledge discovery methods and used to ensure population 
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diversity and promote the concurrent optimization search along multiple regions of 

the Pareto-front in a more deterministic manner. 

Local Search Techniques. MEGA currently performs local search through the 

formation of subpopulations based on natural groups of solutions and the initiation of 

short, intensive MEGA runs on each of these subpopulations. Effectively, this process 

focuses the exploration on promising regions of the search space as mapped by 

clusters of parent solutions. Recent research in the memetic algorithm field has 

shown that the use of a variety of local search operators combined with adaptive 

selection may improve the performance of the algorithm [CHKB02]. To investigate 

this claim and improve MEGA performance we plan to encode additional local search 

techniques related to graph design and, for the DND problem, drug-likeness. The 

techniques implemented will include human expert–defined rules encoding problem-

specific knowledge, and simpler search methods such as blind search, hill-climbing 

and simulated annealing. An approach similar to self-adaptation will be used to 

choose the local search technique to use at each step. 

Defining the Evolutionary Potential of a Population. One of the main research 

questions that surfaced in the course of this research, especially during our efforts to 

implement self-adaptation, is related to our inability to explain why some initial 

populations lead to better final solution sets than others, or to solutions of the same 

quality in less time; why some subpopulations of the same species are more 

“successful” than others. These observations have led us to explore the likely 

presence of collective characteristics of a given population that increase its chances 

to achieve better adaptability rate than seemingly similar populations. It naturally 

follows that, if indeed such characteristics exist, it may be possible to design or favor 

populations possessing them so as to improve the quality of the search results and 

the optimization process in general. Furthermore, it may also be possible to predict 

the likely success/performance of a given population set and when likely performance 

jumps in the evolution process may be approaching, or, when our population 
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improvement potential has stalled. Recent research reviewed in [SBB09], supports 

that critical points in a dynamic system indicate imminent major and abrupt shifts from 

one population balance to another with substantially different characteristics. Using 

the same terminology, is it possible to predict the likelihood of critical points from the 

characteristics of a population and, conversely, to design populations likely to 

continue evolving to future generations with better performance. An obvious 

characteristic that should be investigated is population diversity and therefore we will 

continue to give it particular attention to ensure it is promoted and maintained both in 

objective and parameter space.  

Some initial investigations have been made to quantify the evolutionary potential 

of a population set. These have led to the vision of formulating a Population 

Intelligence Coefficient (PIC), a scalar value indicating the collective improvement 

potential of a group of solutions which could be used to self-adapt the optimization 

process through targeted modifications of parameters controlling mutation, crossover, 

selection pressure as well as the re-initialization of the population by activating STIR-

like mechanisms. We are currently investigating the idea of the PIC index and its use 

in conjunction with the STIR mechanism. Although still incomplete and inconclusive, 

the available results point out that the concept of a population collective intelligence 

coefficient may be useful to assess the potential of an optimization run and thereby 

adjust the search process accordingly. 

9.2 Performance Improvement 

Parallelization. pMEGA has been successful in using coarse-grained parallelization 

to considerably reduce the computational requirements of MEGA while maintaining 

performance at a comparable level. However, the limit of the performance 

improvements possible by the current pMEGA implementation is limited (according to 

Amdahl’s law) to less than x7 (see section 6.5). Further improvement of the algorithm 

implementation using fine-grained parallelization will enable the effective deployment 



 

 

163 

of the system on high performance computing systems and/or large scale distributed 

systems (e.g. the grid). Consequently, additional speed-up gains will be made 

possible which will allow handling a considerably larger number of objectives and 

effectively exploring more complex search spaces.  

9.3 System Application 

De Novo Design. The ultimate evaluation test of any DND application is the 

experimental validation of the molecules designed. To this end, we have been 

collaborating with expert partners on real-life problems requiring the de novo design 

of molecules for specific diseases. Such collaborations require considerable 

resources (knowledge, funding) and typically involve a long time commitment to 

produce results. It is expected that feedback provided by expert users will be crucial 

for the improvement of MEGA for the DND problem.  

Encoding Additional DND Objectives. In order to improve the search for promising 

molecular designs additional objective functions will be implemented to enrich the 

pool of computational criteria available. Namely, additional drug-likeness and/or 

ADME-Tox criteria will be encoded to guide search and optimization away from 

problematic chemical structures. Special emphasis will be given to the latter criteria 

known to be one of the main obstacles in the quest for effective drugs. Ongoing 

research in this field aims at developing models estimating the toxicity profile of a 

molecule based on its chemical structure, for example, through the definition of the 

so-called toxicophores, i.e., chemical fragments frequently occurring in toxic 

molecules. 

New OGD Domains: DND is a challenging test case for the OGD problem with real-

life application potential. For the purposes of this dissertation it has served as both, 

the motivating force for the research performed and the proof of concept for the 

potential of the proposed MEGA method. However, further work needs to be pursued 

in order to prove the ability of MEGA to successfully tackle OGD problems from 
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additional domains with different requirements and specific objectives. To this end, 

one of our immediate future goals is to extend the generic MEGA implementation to 

other problem domains such as the TSP and telecommunication network design. 

Work on these extensions is already ongoing. We expect that the successful 

conclusion of our efforts to apply MEGA to additional OGD problems will facilitate the 

adoption of our general knowledge-driven, self-adaptive approach, as well as its 

individual components, by the greater MOOP and graph design communities. 
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