UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SIENCE

EVALUATION OF ALGORITHMS IMPLEMENTING MULTIPLE
WRITER MULTIPLE READER ATOMIC REGISTERS ON

PLANET-LAB

Andreas Savva

A Thesis Submitted in Partial Fulfillment of
the Requirements for the Degree of
Master of Science
At the

University of Cyprus

Recommended for Acceptance

By the Department of Computer Science

August, 2010

ABSTRACT

A lot of research has been conducted for studying efficient data survivability in
distributed storage systems. A challenging question that researches attempt to
address is “How can a distributed system efficiently maintain data consistency among
the data replicas despite system asynchrony and failures?” Recent work introduced
algorithm SFW where for the first time in the Multiple Writer Multiple Reader setting it
allows for both read and write operations to be fast (the operation takes one
communication round-trip to complete) but it does so by compromising the system
robustness. A Server Side Ordering (SSO) technique and reader/writer predicates
are utilized by algorithm SFW to allow fast operations.

The goal of this thesis is to evaluate the efficiency and practicality of algorithm
SFW in a realistic network environment. For this purpose, a heuristic method is used
to implement the reader and writer predicates in order to efficiently search the
solution space. The algorithm is implemented in C and Sockets programming and an
empirical evaluation of the algorithm is performed on PlanetLab, in respect to the
percentage of fast operations, CPU consumption and operation latency. The
efficiency of algorithm SFW is compared to that of algorithm SIMPLE - a robust,
reliable algorithm that always performs slow operations (the operation takes two
communication rounds-trips to complete). It is shown that the efficiency of algorithm
SFW is minor over the SIMPLE algorithm in terms of operations latency, nevertheless
network resources are reduced since they are essentially traded for CPU time
consumption. Furthermore, the experiments suggest that algorithm SFW is best
suited in environments that exhibit large communication delay, or when the number of

readers and writers is relatively small.

APPROVAL PAGE

Master of Science Thesis

EVALUATION OF ALGORITHMS IMPLEMENTING MULTIPLE
WRITER MULTIPLE READER ATOMIC REGISTERS ON

PLANET-LAB

Presented by

Andreas Savva

Research Supervisor

Chryssis Georgiou, Assistant Professor

Committee Member

George Pallis, Lecturer

Committee Member

Demetris Zeinalipour, Lecturer

University of Cyprus

August, 2010

Acknowledgements

| would like to thank my research supervisor, Assistant Professor Chryssis
Georgiou for providing me the opportunity to work with him. He was supporting and
guiding me throughout the completion of this thesis. | would also like to thank Nicolas
Nicolaou for his insight and ideas during the implementation. Finally, | am grateful to
my partner and colleague loanna Savva for her support and help during the writing of

this thesis.

TABLE OF CONTENTS

A B ST R A C T ettt ettt e e e e ettt et e e e e e e ettt e e e e e e e eeenb e e aaaaae i
INEFOAUCTION it e st e e et e e e aarree s 1
1.1 Motivation and Related WOrKcoooiiiiiiiiiiiei e 1

1.2 CONEIDULION .t e e e e e e e e aneeees 4

1.3 Chapter Breakdown ... 5

2 F= Tod (o 01U o Lo EEN PR PP PPRT PP 6
2.1 Atomic Read/Write ODJECLcccvviiiiiiiiii 6

2.2 QUOIUM SYSTEIMS ...ttt e et e e e e e e et e e e e e e eeebnaan s 8

2.3 PrIOr WOTK. ...ttt 10

2.4 PlANEELADeiiiiieii e 16
MWMR AIGOTITRMS e 17
3.1 AIGOMtNM SIMPLE ...ttt 17

3.2 AlGOTtRM SFW ..ottt e s e assssssssssssesssesssseannes 20

.21 SEIVET ittt 23

B2 2 REAUEN ...ceiiii ittt 24

Be2 3 W ettt ettt e e et e e e e e e e nneeees 25

IM P LM ENTALION . 28
I D TS T o R TP PRSP 28

4.2 COMMUNICALION. ... ittieeiitiet ettt e s anneeas 30

4.3 SEBIVEN ..ttt e e 34
=Y GO P PO PP PPPP PP 35

Rl =T (o = S PP PRT O PP 37

4.6 Code structure and Compilationccccccccvviiiiiii 37

4.7 Read/write predicates of Algorithm SFW.........ccccccoiiiiiiiiiiiiiiieeeeen 39

4.7.1 Reader PrediCate ..o iiiiiiiiiiieee st 39

4.7.2 Wrter PrediCateuveiiiio e 41

4.8 Correctness and RODUSINESSooviiiiiiiiiii e 43
EXPerimentation SEIUP ... 46
5.1 Methodology and configurationcccccccciiiiiiiiii 46

5.2 Executing on Planetlab...........c...eeeiiiiiiiiiii e 48

5.3 Problems and LimitationsScoocuviiiiiiiiieniiie e 52
EMPirical EVAIUALIONuviiiiiii ettt e e e e e e e re e e e e e e e ennnnnenees 57
6.1 Experiments and SCENAIIOS..........cuvviiiiiiieeeeeeeeeeeeeee e 57

6.1.1 Experiment 1: Number of readers and writers effect 58

Scenario 1: Number of WHEEIScoiiiiiiiiiiiiiiiiiee e 58

Scenario 2: Number of REAErScuevviiiiiiiieii e 58

Scenario 3: Operation Intervalcooeoo oo, 58

6.1.2 Experiment 2: Quorum Intersection Degreecccceeeeeeeeeeenn, 59

Scenario: Effect of Quorum Intersection Degree........cccccccveeeeviiivnnen. 59

6.1.3 Experiment 3: Comparison of the SFW with the SIMPLE

=10 o] 111 o] o PR 59

Scenario: Increasing readers and WIIterScccceevvvvcviieeeeeeeeessceeenen 60

8.2 RESUILS....eiiiiiiit ettt 60

L = o 1= 4= 0 A SR 60

6.2.2 EXPEIHMENT 2. ., 70

6.2.3 EXPEMIMENT 3. ..ttt 73

6.3 CONCIUSIONSceeiiiiitiete e e ettt e e et e e e e e e e s snbbbb e e e e e e e e e aans 79
EPIHOQUE .. 81

BibDIIOGIapRY oo 84

APPENTIX A ittt e e e et et e e e e e b et ea e e e e e b raereaaaaaas 88
APPENIX B oo 91
2N o o 1= o o 1 G PSR 95
7N o o L= o o [Gl 5 PSR 98
APPENAIX B 100
APPENAIX For 102
APPENTIX G oottt e e e e e e e et e e e e e e s e b r e e e e e e e e e e aannreaees 105

Vi

LIST OF TABLES

Table 1: the SFW reader predicate, where |B| is rounded down to the nearest integer
X022 PSP 25

Table 2: The writer predicate for the SFW algorithm, where |B| is rounded down to

the nearest iNtEgEr [12]. «oovvii i 27
Table 3: Message header fields deSCriPtioN............uuuuiiiiiiiiiiiiiiiiiii. 31
Table 4: Messages format used in communication between clients and servers 32
Table 5: communicate funNction detailS ..o 33
Table 6: Message creation functions used in client and server implementation 33
Table 7: Main Server fUNCHIONSiiiiiiiie e 35
Table 8: Writer process main fUNCLONSccoiiiiiiiiiiiiiie e 36
Table 9: Pseudo code for the reader prediCate..........cccccveeeiiiiiiiiiiiiiee e 42
TADIE 10: TESE CASES ..eeiiiiieiiiiiiitiee e e e ettt e e e e e et e e e e e e e e e bbb e e e e e e e e s aanbbbbreeeaaeaeaans 44
Table 11: PlanetLab nodes used for SErVer ProCESSEScccuvvveeiieeeriiiiiiiieeeaae e e 48
Table 12: PlanetLab machines minimum hardware specifications [28].........c............ 48
Table 13: example of pssh cOmMmMaNd ..., 50
Table 14: Example of steps for starting a SCENArioc.ooeccvvvieiiiee s 53
Table 15: Example of steps to download results..........ccccccovvivciiiiieiee e 54
Table 16: PlanetLab kill auto send message exampleevvevveviiimiieeeeiirenineenn. 55
Table 17: example of configuration file: CONfiC.iNi.............uuviiiiiiiiiiiiiiii. 90
Table 18: Client PlanetLab NOGES............ooeiiiiiiiiiiiiiiiee e 102

Vii

LIST OF FIGURES

Figure 1: Atomicity EXample [17].....ccoorriiiiiii 7
Figure 2: Examples of quorum system types. Circles represent servers and the black
line surrounds the servers that belong to a quOrUM. ..., 9
Figure 3: the writer processes communication round in the SWMR model [17]......... 12
Figure 4: Atomicity violation in the absence of reader second communication round
[L7] e Error! Bookmark not defined.
Figure 5: Wrter protoCOI [L17]...ceeueiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeetee ettt e eeeees 18

Figure 6. Reader Protocol, the maxTag denotes the maximum tag that a reader

process receives from the qUOrUM. [L7] ... 19
Figure 7: uniqueness of the SIMPLE tags [17].....cccccoiiiiiiiiiiiiiiiiiiiieeeeeeeee e 19
Figure 8: non-uniqueness of the SFW algorithm tags [17]ccooovevviiiiiee i, 22
Figure 9: Writer communication messages and 10giC [17]......cccovvvvviiireeeeiiiiiiiieeeeenn, 26
Figure 10: write operation of the SIMPLE algorithm. [17].......cccccccciiiiiiii, 26
Figure 11: pseudo code for the reader predicate [12]ccccceviiiiiiiiieiieeiiiiiiiieeeeen, 41
Figure 12: writer predicate implementation pseudo code [12].........ccccceeiiiiiiiiiieennnnn. 43
Figure 13: PIMan slice login, it request AuthString and PrivateKeyPassword 49

Figure 14: PIMan host selection screen on the right and Overview of connected

NOSES 10 ThE TEFE. e 50
Figure 15: Percentage of fast write operations with 80 readers.............cccccccvvvvvvnnnnnn, 61
Figure 16: Percentage of fast read operations with 80 readersccccccovvvvviveennnnn. 62
Figure 17: client performance: average operation [atencycccccccvveeeeeinccviinennnnn. 63
Figure 18: percentage of client timeout failuresccccccciiiiic 63
Figure 19: Percentage of fast write operations as the readers increase.................... 65
Figure 20: percentage of fast read operations as the readers increase..................... 66

Figure 21: The average operation latency while reader processes increase and

VLS BT (I 1) (= 66

viii

Figure 22: percentage of failures from timeouts while reader processes increase and
WIILEIS @I fIXEU ...ttt e e e et e e e e e st aeeeaaeeeas 67
Figure 23: Effect on % of fast read operations, on the vertical axis is the percentage
and on the horizontal axis there are two categories, (1)80 readers and 10 writers, (2)
10 readers and 80 WIILEIS.cui i ittt e ettt e e e e e e st e e e e e s enbbeeeeeeas 68
Figure 24: Effect on % of fast write operations, on the vertical axis is the percentage
and on the horizontal axis there are two categories, (1) 80 readers and 10 writers, (2)
10 readers and 80 WIILEIS.coiiiiriiieii et e e e s eeas 69
Figure 25: The percentage of fast write operations with 40 readers and 40 writers,
WHIIE 70 INCIBASES. ... eieiiiiieiie ettt et e e e e e e e r e e e e e e e nnbrneeeaaaeeas 71
Figure 26: The percentage of fast read operations with 40 readers and 40 writers,
WHIIE 70 INCIBASESviiiiiiiie ettt e e r e e e e e st b e e e e e e e aans 72
Figure 27: 40 reader and 40 writer time of execution in respectto n......................... 72

Figure 28: Percentage of fail operations due to timeouts in communication in respect

Figure 29: Read operations CPU time comparison of the SIMPLE with the SFW
= 1[0 o] 11 1 o PP 75
Figure 30: Write operations CPU time comparison of the SIMPLE with the SFW
= 1[0 [0 11] o P 75

Figure 31: Read operation latency comparison of the SIMPLE with the SFW algorithm

Figure 32: Read operations fail% and fast% for the SFW algorithm.......................... 76
Figure 33: Write operations operation latency comparison of the SIMPLE with the
T VAV = 1o To 11 T USSR 77

Figure 34: Write operations %fail and %fast for the SFW algorithmc......... 78

Chapter 1

Introduction

1.1 Motivation and Related Work

A distributed system is a collection of autonomous processes which interact
by sending and receiving messages, but appears to its users as one compact logical
system. Sharing data in distributed systems is not merely natural system functionality
but a core requirement by its users. Processes can share data in a reliable way since
data are replicated over multiple locations on inexpensive basic storage units (e.g.,
hard disks, servers, tapes).

Survivability of data is crucial in systems and applications. Distributed
systems offer distributed storage of data on geographically diverse locations
providing more robustness and fault-tolerance than single box servers. On the other
hand how can a distributed system efficiently maintain data consistency among the
data replicas despite system asynchrony and failures? System component failures of
hardware such as hard disks, network links, routers and software are frequent. It is a
great challenge for a distributed storage system to be able to continue sharing data in
an unpredictable environment.

A common approach to ensure data survivability on single box server
machines is data replication using redundant array of inexpensive disks (RAID) [1].
Consider that server machines can also fail if any of its hardware fails (e.g., network
interface) and hence the services it provides will not be available to clients. Single
box servers are single point of failures. RAID may avoid data loss from common disk

failures but it still resides on a physical location exposed to natural disasters.
1

Distributed storage systems may overcome the problems of single box server
systems by exploiting redundancy. Still, each of the servers in the system is exposed
to the same failures as a single box system but not to catastrophic site failures. The
more servers the distributed storage system has the more robust, fault-tolerant and
reliable it is but with added cost.

Researchers have been addressing the survivability issue by constructing
efficient read and write operations to access atomic registers. Atomic registers
represent replicated data objects on distributed nodes. Any data object is perceived
by the system and its users as a single data object with sequential access
(linearizability) to it, regardless of the multiple replicas of the object existing in the
system. Have in mind that atomic registers [2] [3] [4] are different from atomic
operations commonly found in concurrency control of database systems, transaction
processing (serializability properties [5] [6]).

The efficiency of read and write operations is measured as the number of
communication rounds between the system processes, which are classified as
reader, writer and server processes. A communication round starts when a client
sends an operation request to all the servers and ends when the client has received
“enough” of the server responses.

Faster distributed algorithms that efficiently maintain data consistency among
the data replicas despite system asynchrony and failures have a broad range of
applications. Pioneers in the message-passing model in [7] implemented an atomic
Single Writer Multiple Reader (SWMR) register in which write operations need one
(1) communication round (fast) and read operations need two (2) communication
rounds (slow) to complete. In the SWMR model any client process may fail, while

only a minority of servers may fail.

Continuing on the work of [7], the authors of [8] [9] presented a Multiple Writer
Multiple Reader (MWMR) register in which read and write operations are slow and
generalized majorities to quorums. The servers are organized into a quorum system:
a collection of server sets (quorum) in which every two intersect with each other. A
variation of the algorithm of [8] is referred to as algorithm SIMPLE in the context of
this thesis.

Further research [10] concluded that fast read and write operations are
possible in the SWMR but set a bound on the number of reader processes in the
system. A bound that was later removed in [11], allowing an unbound number of
readers but with the overhead of one (1) slow read operation per write operation. The
register implementations in which fast and slow operations coexist are called semi-
fast.

Fast or semi-fast operations were shown as not possible in the MWMR model
[11]. In [12] two new implementations (algorithms CwFr and SFW) show that under
certain constrains both read and write operations can be fast while atomicity is
preserved in the presence of asynchrony and crashes. The write operations in
algorithm CwFr need two communication rounds but it optimizes on read operations
by taking advantage of quorum views. Quorum views [13] are a tool used to analyze
the tag participation in the quorum. A tag is a tuple that essentially consists of a
timestamp, a process identifier and a value. The SFW algorithm exploits a new
technique called Server Side Ordering (SSO) which allows for fast read and write

operations in certain cases.

1.2 Contribution

The goal of this thesis is to evaluate the efficiency and practicality of
algorithms SIMPLE and SFW.

Algorithm SFW uses predicates at the client side to decide if operations need
to proceed to a second communication round or not. These predicates search a huge
solution space in order to decide. A heuristic method is used to implement the
predicate. Our experiments demonstrate that the solution space the method searches
can contain a valid answer for the predicate. However, it is possible that if the
heuristic method does not find any answer it is not necessarily the case that a valid
answer does not exist. The precise accuracy of the heuristic method is beyond the
scope of this thesis and is left for future work.

An empirical evaluation of algorithms SFW and SIMPLE is contacted on
PlanetLab [14], which is a global network for testing distributed services. The
algorithms’ performance is compared against their average operation latency (the
total time it takes for an operation to complete) and the percentage of fast operations
(for algorithm SFW).

The SFW algorithm promise of fast operations requires a high intersection
degree on the underlying quorum system which might compromise the SFW
robustness. So, one wonders how would the algorithm actually perform in a realistic
distributed setting where crashes, failures and asynchrony are inherent? PlanetLab
provides such arbitrary network conditions [15], and hence it is suitable to assess the
practicality of algorithm SFW.

The first of the experiments performed for the empirical evaluation of the
efficiency of algorithm SFW, examines the effect of the number of writers and readers

in the system and their operation intervals. The results from this experiment are then

used to subsequent experiments, where the effect of the quorum system intersection
degree is investigated. Finally a comparison of the average operation latency of
algorithms SFW and SIMPLE is given.

The empirical evaluation of algorithm SFW shows that its implementation is
practically feasible on unreliable distributed systems (such as PlanetLab) and its
performance is reasonable (in the scenarios run) under the extreme conditions of

PlanetLab.

1.3 Chapter breakdown

In the next chapter, atomic registers and quorum systems are discussed and
an overview of related work is given. In Chapter 3, algorithms SIMPLE and SFW are
described and in Chapter 4 the implementations of the algorithms are explained. In
Chapter 5, the configuration and setup of running experiments on PlanetLab is
presented and in Chapter 6 the results of the empirical evaluation of the algorithms
are illustrated. Finally, in Chapter 7 conclusions and possible future work is presented

on the subject.

Chapter 2

Background

In this chapter the notion of atomicity and quorum systems are defined.

Related work is summarized and a description of PlanetLab is provided.

2.1 Atomic Read/Write Object

An atomic register is an abstract data structure that is defined by a set of
possible values and a set of primitive operations, such as read and write. A process
performs one operation at a time by sending a request to all the servers holding a
replica of the register. To perform a read or write operation on the atomic register two
steps are necessary. The invocation step includes either a read or a write request.
Similarly, the corresponding response step includes either a read or a write
acknowledgement [13]. The operation is considered complete if both steps are
performed [4].

An operation a precedes an operation g if « completes before 8’s invocation.
Any operations a and g are considered concurrent if and only if « does not precede
and g does not precede «a. In other words, two operations are concurrent if neither of
them precedes the other [16]. If two operations are complete, not concurrent and are
invoked by two distinct processes then they are called consecutive [12].

A register guarantees that once a processor reads a particular value, then,

unless the value of this register is changed by a write, every future read of this

register is always available, regardless of processors slow-down or failures. Atomic
registers guarantee the atomicity (linearizability) [4] of operations by satisfying the
following properties:
1. Aread operation § returns
a. the value written by the most recent preceding write, or
b. a value written by a write operation that is concurrent with &
2. If a read operation §; reads a value from a write operation y; and a read
operations §, reads a value from a write operation y, and §,; precedes §,,
then y, does not precedes y;.

3. All write operations are totally ordered.

read ack (0) read, ack (8)
0 i ! E 3
|L J Time
write (B a
 (8) ck,
Example 1
5 road 3 _ack n@_ ? rta.clfl ar_.-_lgs(_e_‘i)
| |
writqz(é} acks
Example 2

Figure 1. Atomicity Example [17]

Consider the examples in Figure 1 where initially the atomic register value is
zero (0). The first example shows a write; operation that writes the value 8 to the
atomic register. A read; operation is invoked after the write; operation but before the
acknowledgement for the write; operation is received. Since the two operations are

concurrent it is possible that the value returned by the read; operation will not be the

value written by the write operation despite the fact that it was invoked after it. On the
other hand read, must read the value 8 since it is invoked after the write; completes.
The second example shows a write, operation that writes the value 8 and is
concurrent with reads; and read,. It is possible for read; to read the value 8 or the
previous value (0) but read, must read the same value as read; since its invocation
starts after reads; completes, otherwise atomicity is violated.

Finally, the atomic register must be wait-free [2], which guarantees that if a
non-faulty process invokes an operation then the operation completes in a finite
number of steps, regardless of the status (execution speeds or failures) of the other

processes.

2.2 Quorum Systems

A quorum is a group from a set of distributed nodes, typically servers [18]. A
quorum system is a collection of quorums, in which any two quorums intersect with
each other. Since any two quorums intersect, the quorum system is characterized as
a pairwise (2-wise) quorum system. Formally a quorum system Q is defined as, Q =
{Q:Qc5}s.t.VQ;,Q; €Q:Q;nQ; # @, where S = {sy,s; ... 5,} (n = 1) is the set of
servers.

There are different types of quorum systems [19], some examples can be
seen in Figure 2: Examples Of Quorum System Types:

(a) A matrix type where servers form a grid and a combination of a row with a
column defines a quorum. All quorums have the same size of 2,/|S| —1,
where S is the set of servers.

(b) A majority type quorum system where each quorum size must be at

least[(|S| + 1)/2 1, where S is the set of servers.

(c) A crumbling wall quorum system type where a quorum is defined by any

one complete row and one server from each row below it.

Quorum systems can also be classified as static and dynamic [8]. A quorum
system is static when it is pre-computed and it does not change after the algorithm
execution starts. A dynamic quorum system may reconfigure its initial quorum
deployment, which means that process (server) participation in quorums can change

dynamically during execution.

O
OO
@O
oJol _

(b) O JOIOL:

Figure 2: Examples of quorum system types. Circles represent servers and the black line

eoolo

@)

surrounds the servers that belong to a quorum.

Quorum systems specializations are the n-wise quorum systems, in which any
quorum intersects the minimum with n other quorums. A quorum system Q is called
an n-wise quorum system [12] if for any A € Q,s.t.|A| = nwe have I, # @ holds. We
call n the intersection degree of Q, and for a set of quorums A < Q, the intersection of
the quorums in A is denoted by I, = Nge, Q-

Quorums are widely used for ensuring consistency in atomic register
implementations. In particular the servers holding the register replica are partitioned
into intersecting quorums. Hence it is not necessary for clients accessing the register
to communicate with all the nodes but only with the nodes that belong to some
quorum Q. Only the nodes of Q receive the load related with the data object in

question. Thus nodes outside Q are more relaxed and it results to higher availability

10

of the service overall. Also the basic technique to ensure consistency of the data in
distributed storage systems is to notify some quorum Q of the update made. When a
client accessing the data contacts some quorum Q’, it is ensured that it learns about
the earlier update since quorums intersect.

It is not obvious how to efficiently deploy a theoretically good quorum system
in a real network system. By first designing the quorum system, and then determining
a good deployment, it seems possible to obtain both good network performance as
well as good quorum system properties.

The quorum deployment problem is studied in [20] as a new combinatorial
optimization problem. There are two parts to solving this problem: mapping a quorum
system to real nodes and mapping from nodes to quorums. The general quorum
deployment problem is defined as: given a quorum Q, and a distributed network C,
the goal is to determine a deployment that has optimal cost. It is shown [20] that the
general deployment problem cannot be approximated and that majorities is the most
simple deployable quorum system in all networks. The quorum system deployment

used in this thesis is presented in Chapter 4.

2.3 Prior Work

In the message-passing model, the processes communicate via messages
sent through communication links. Each process has a unique identifier and is
located at one node of the network and can only send messages to processes
located in directly neighboring nodes. We consider three sets of processes: R
readers, W writers and S servers communicating through reliable TCP channels in

the asynchronous message passing model.

11

The network setup considered is unpredictable; processes may crash and
there is asynchrony. A process may stop executing at any point of the computation
with no prior notification and slow processes cannot be differentiated from crashed

ones. Any of the clients may crash or get disconnected; for S servers where T servers
may fail by crashing, up to half of the servers may crash (T < %) when considering

majorities. In the case of quorums at least one quorum must not crash. Asynchrony
means that there are no guarantees in message delays and relative process speeds
(some process may be slower than others).

The Single-Writer, Multiple-Reader (SWMR) register implementation is
presented by [7] in the message-passing model. The clients include only a single
process for write operations and multiple processes for read operations while all the
servers hold a register replica. Clients do not communicate between them and neither
do servers. Clients only communicate with servers through communication rounds.

A process p performs a communication round for an operation r if:

1. p sends a message m regarding « to a subset of processes

2. Any process that receives m, replies to p

3. Process p collects “enough” of such replies and proceeds accordingly.
A process collects “enough” replies when a quorum of servers reply. The SWMR
model in [7] considers “enough” server replies when a majority of them reply.

A tag-value pair is introduced to impose an order on the read operations. The
tag consists of a label which basically is a positive number of type integer used as a
timestamp. To support asynchrony the timestamp has nothing to do with real time
and logical clocks, it is just a number that is incremented only by the writer process
each time it performs a write operation. Essentially this label is used to define the

order of write operations and which write value is read by the read operations.

12

It takes one communication round to complete a write operation in which the
writer increments the timestamp and sends the tag to a quorum. The writer
communication round in the SWMR model is shown in Figure 3, where the writer
process increments the timestamp in its tag and sends a message to all the servers,

then it waits until the majority of the servers reply to complete the write operation.

Y & tag++

Write completes

Update <tag,value>

Figure 3: the writer processes communication round in the SWMR model [17]

The readers receive the latest tag from a majority of servers during the first
communication round and they need a second communication round to actually write
(on the register located on the servers) the value obtained in the first round.

An example of how atomicity can be violated if the reader does not perform a
second communication round is shown in Error! Reference source not found..
Initially the tag of the register is < 1,V, >. A slow writer attempts a write operation on
the register with tag < 2,V; >. While the write operation is in progress, a reader reads
the value of the register from a majority of servers that already has the tag < 2,V; >.
Since it does not do a second communication round to write this value it completes its

operation having read the tag < 2,V; >. A second reader reads the value of the

13

register from a majority of servers that the new tag has yet to be written, while the
write operation is still in progress. The read operation is completed having read the

tag < 1,V, >. This violates the second atomicity property mentioned in Section 2.1.

Read retums vy Read retumns v,

AT ‘\ »

1"0 \ .
1,'\'0 .

Wnite(v,) ... (proceeds slowly) ...

Figure 4. Atomicity violation in the absence of reader second communication round [17]

The Multiple-Writer Multiple-Reader (MWMR) register implementation is
introduced in [8] [9]. It is similar to the SWMR with the exception that there are
multiple writer processes as well. The authors implemented atomic registers using a
quorum system (specifically a generalization of majority sets). Their implementation
uses a dynamic quorum system where reconfigurations occur to accommodate
changes on the server population. The Reconfigurable Atomic Memory for Basic
Objects (RAMBO) [9], [21] implements a reconfiguration service. Even when there is
no reconfiguration, read and write operations always take two communication rounds
to complete and more otherwise. In the MWMR model, likewise to the SWMR model,
the second communication round of the read operation is needed to actually write the
value read in the first round. This led to the folklore belief that “atomic reads must
write” [3] [22] [23].

The folklore belief is shown not always be true in [10], which introduced a fast
wait-free atomic SWMR register implementation. In a fast implementation readers

and writers perform only one communication round operations. To achieve fast

14

operations the authors of [10] bound the numbers of readers to beR < S/T —2
(where R is the number of readers, Sthe number of servers and T the number of
servers that may crash). Also they show that a fast implementation is impossible in
the MWMR setting.

Observe that the limit on the number of readers shown in [10] for fast
implementations is impractical. Later work [11] provides a non-straightforward
extension of the work in [10] by implementing a semifast SWMR model while
preserving atomicity. In a semifast implementation the writer operations take one
communication round to complete whereas read operations take one or two
communication rounds to complete. Formally the SWMR model implementation of an

atomic object is semifast when the following are satisfied:

=

all write operations are fast and
2. all complete read operations can be either fast or slow iff T < ; and

3. If aread operation r; is slow, then all read operations that precede or succeed

r, and return the same value as r; are fast (only a single complete read is

slow per write operation).

4. There exists an execution of the implementation which contains only fast read
and write operations (even if operations are concurrent).

The notion of Virtual Node is introduced, a group of reader processes that all
share the same Virtual Identifier. Particularly a read operation must be fast if it
precedes or succeeds a complete fast read operation, when both reads return the
value written by the same write operation. Concurrent read operations with a slow
read operation may or may not be fast. Furthermore it is also shown that no semifast
implementation exists for the MWMR model even for T = 1. Simulations presented in

[11] suggest that under reasonable execution conditions only a small percentage

15

(7.5% - 10%) of read operations are slow. In summary, fast or semi-fast operations in
the MWMR model were shown as not possible.

A Semifast Like Implementation for Quorum systems (SLIQ) algorithm for the
SWMR model is introduced in [13]. This implementation is weak-semifast, meaning
that it enables fast reads but allows multiple slow reads per write; formally, a weak-
semifast implementation is the same as a semifast implementation but without
property 3. For this purpose a client-side prediction tool called Quorum Views is
introduced. The Quorum Views are used to supply adequate data involving the
distribution of the latest tag in the quorum being accessed. Read operations use the
Quorum Views to make educated decisions locally whether a second round is
needed. The SLIQ algorithm was simulated using the NS-2 network simulator [24].
The results showed that only about 13% of the read operations proceed to a second
communication round, in common cases.

Constrains on the efficiency of the MWMR model are analyzed in [12] and two
new algorithms are introduced. These algorithms support some fast operations while
atomicity is preserved in the presence of asynchrony and crashes (Recall that it is
impossible to have all operations to be fast [10] [11]).

The first is algorithm CwFr, which optimizes on read operations by taking
advantage of Quorum Views. The write operations still need two communication
rounds to complete. The second algorithm is the SFW algorithm, which exploits a
new technique called Server Side Ordering (SSO). The SSO allows for both fast read
and write operations in certain cases. When the intersection degree of the underlying
quorum system is below 4, it is not clear which of the two algorithms performs better
because all write operations of the SFW are slow as well.

This thesis focuses on algorithm SFW and explores its efficiency on

PlanetLab when the intersection degree of the deployed quorum system is above 4.

16

2.4 PlanetLab

PlanetLab is built-up as a collaborative distributed system in which different
organizations donate two or more computers adding up to a total of hundreds of
nodes. Together these computers form a distributed overlay network for deployment
and assessment of distributed planetary-scale network services [15] [25].

As of the writing of this thesis, PlanetLab is composed of 1089 nodes at 503 sites
worldwide provided by academic and industry institutions. Its resources are divided
into slices where each can be viewed as a network of virtual machines. The allocated
resources are controlled on a per-slice, per-node basis. Slices expire after one month
of their first creation (removing all the slice associated data), but can be renewed an
unlimited number of times on a monthly basis. Access to PlanetLab nodes is feasible
through SSH, providing encrypted and secure communication. Nodes may be
installed or rebooted at any time turning the disk into a temporary form of storage,
providing no guarantee regarding their reliability. Thus PlanetLab is a realistic
deployment setting to test and evaluate SFW algorithm and compare it with a simpler,

operation slow MWMR algorithm.

Chapter 3

MWMR Algorithms

In this Chapter the SIMPLE and SFW algorithms are defined and explained in

more detail.

3.1 Algorithm SIMPLE

In algorithm SIMPLE the servers are arranged in a quorum system, using the
message passing paradigm for communication in the presence of asynchrony and
failures. Basically SIMPLE is the algorithm defined in [8] but the servers are arranged
in a static quorum system. There are three set of processes, a set of servers S =
{s1,52 ... sp}, a set of readers R = {r,r, ... 7,} and a set of writers W = {w;, w;, ... w,,}.
Any reader or writer process may crash but at least a quorum must not crash.
Algorithm SIMPLE only considers crash failures and not Byzantine failures [26] [27],
that is, system components are assumed to work correctly and when they fail, they
do so by crashing or stopping.

The algorithm uses < tag,value > pairs to order the values written to the
register. The tag is a two field tuple consisting of < ts,wid > € N x W, where ts is the
timestamp and wid the writer identifier of the writer that wrote the value. The writers
are the only processes responsible for incrementing the ts. Initially the tag is set to
< 0,min(W) > for every process. The tags can be compared alphanumerically.
Specifically, a tagt;is greater than a tag t, (t; > t,) if t;.ts > t,.ts or ty.ts >

ty.ts A ty.wid > t,.wid.

17

18

The servers keep the data replicas of the register object. Clients sent
messages to servers. When a server receives a request it updates its (local) tag, if
the received tag is more recent than its local tag, and then responds with an ACK
message.

The writer protocol is shown in Figure 5: Writer protocol. The writer process
sends a WRITE request, with its current < tag, value > pair to all the servers. Then
the writer process waits until it receives an acknowledgement response from a
quorum. After a quorum responds, the writer discovers the maximum tag (maxTag)
received from the quorum, increments it and sends it to all the servers. When a
quorum of servers responds the write operation is complete.

The reader protocol is shown in Figure 6 and it is similar to the writer protocol

with the exception that the reader does not increment the maxTag.

Round1: Discover maximum tag 3. Compute maxTag

- =)
%:f maxTag++

ST

8 8 3 38 8 @8 B

2. Update <tag.value:=
Round2: Propagate <maxTag,value>

S:’i. 7. write completes

6)MAC

<
0 B a8 68 6 6 8

s.Update <tag,value>

Figure 5: Writer protocol [17]

Round1: Discover maximum tag 3. Compute maxTag

///\\\
s i

Round2: Propagate <maxTag,value>

7 Read completes with maxTag
and associated value

N

om quorum

e

¥ w
i' & ' i:' i'
— — —— — ——

5.Update <tag,value>

19

Figure 6: Reader Protocol, the maxTag denotes the maximum tag that a reader process receives

from the quorum. [17]

Assume Wi>Wk
read() @

«——»
@, " [ses
PLATN ad oSt e

write(<1,w>,v)

000

0]

Qj Ql

Figure 7: uniqueness of the SIMPLE tags [17]

20

3.2 Algorithm SFW

In algorithm SFW the servers are arranged in an n-wise quorum system,
using the message passing paradigm for communication in the presence of
asynchrony and failures. As with algorithm SIMPLE, there are three sets of processes
and only crash failures are considered.

Algorithm SFW uses a < tag,value > to attain the required order on the
values written to the register. The tag is different from the tag used by algorithm
SIMPLE. The reason for this difference will be explained later in this section. Tag
comparison is done alphanumerically as in the SIMPLE algorithm. The clients
communicate with servers using communication rounds in which they sent their
< tag.value > pair and their operation requests (READ / WRITE / PROPAGATE).
The servers, when they receive a request they answer by sending their latest
confirmed < tag,value > and an inprogress set which contains the ongoing write
operations < tag, value > pairs.

The SFW algorithm uses a reader and a writer predicate. The predicates are
used by each process to calculate the distribution of the latest tag in the responding
quorum. If the reader (writer) predicate evaluates that the distribution of the tag is
“good enough” such that a second communication round is not needed to ensure
atomicity, then the read (write) operation completes in one communication round. The
reader and the writer predicates are analyzed in Sections 3.2.2 and 3.3.3,
respectively.

In algorithm SIMPLE the writers’ need to proceed to second communication
round to propagate the new tag-value pair of the write operation (Figure 10).
Algorithm SFW is the first to introduce the possibility of one communication round

(fast) write operations in the MWMR model. The predicate technique that enabled

21

reader operations in previous works [11] [13] to complete in one round operations, is
extended [12] and applied to both the reader and the writer. In order for the writer
predicate to be feasible, the responsibility of incrementing the tag timestamp has to
be removed from the writers. This purpose was fulfilled by a new technique,
introduced in [12], called Server Side Ordering (SSO).

The SSO technique created a new problem; generated tags by the servers
may be different across servers, resulting to tag non-uniqueness. The SIMPLE
algorithm does not have this problem, observer Figure 7; the tag is increment only by
the writer which ensures that a quorum of server will have the same tag. To
understand the problem, an example is given in Figure 8. Assume W; > W,, and
Qi,Qj,Q, quorums. A writer W; communicates with Q, to write, and W, communicates
with Q; . Since the tag is incremented by the servers, all the servers in quorums @, ,
Q; increment tag from 0 to 1 but due to asynchrony is possible that the intersection of
Q, N Q;to have its tag incremented twice resulting from 0 to 2. This leads to multiple
tags for a single value and it violates atomicity.

To understand how atomicity is violated, take the following execution as an
example [17]:

e W, and W, are two concurrent write operations that write values 3 and 4 with tags
t; and t, respectively (without loss of generality let t;< t,)
e 1, and ry, succeed both write operations

0 1 witness t; for W; and value 3, so t, for W,. r; returns 3 since t;< t,

0 nwitness t, for W; and value 3, thus t; for W, r, returns 4 since t;< t,

. and ry, succeed both write operations but they do not agree on the latest written
value.

For this purpose, the tag in the SFW is a tuple containing < ts, wid, wc >,

the wc is a writer counter, basically a number incremented by the writer at each write

22

operation. The wc field of the tag enables read/write processes to distinguish

between write operations, since any processes can recognize that different tags have

Assume Wi>Wk

\.rurite(fO.W?.V) 0
GO0 e,
@
(0

Qj o e Q;

#

Figure 8: non-uniqueness of the SFW algorithm tags [17]

been assigned to a write operation. In [12] it is proved that algorithm SFW
implements MWMR atomic read/write registers.

In [12], two operations, originating from two different processes, are regarded
as quorum shifting operations if they are consecutive and they receive replies from
two distinct quorums. If quorums, in an n-wise quorum system, do not have a
common intersection then an atomic register implementation is impossible. An
implementation with only fast write operations, cannot have more than n - 1 writer
processes (n is the intersection degree of the underlying quorum system). Algorithm
SFW can have up to n/2 fast consecutive write operations, while maintaining
atomicity, thus it is nearly optimal.

We now proceed to describe the functionalities of the server, reader and

writer processes in SFW.

23

3.2.1 Server

The server maintains the state of each register in the system and acts
according to the message requests it receives. The state of the server for the register
object is comprised of a tag, a confirmed tag and an inprogress set of tag-value pairs.
The confirmed tag holds the latest confirmed tag seen by the server. The inprogress
set is a set of tags that represent the ongoing write operations from each server
perspective. The inprogress set holds a tag-value pair for the ongoing write operation
of each writer process in the system.

Essentially when a server receives a request it first updates its local tag and
confirmed tag, if the received tag is more recent. Additionally, if the request is for a
write operation, the server increments its local timestamp and then assigns the writer
id and the writer counter, of the write operation request, to its local tag. Next, the
server removes any previously recorded tag-value pairs, of the writer, that reside in
the server’s inprogress set. The server generates a new t’ tag-value pair where the
tag is the current local tag of the server with its timestamp incremented by one (1)
and the write operation value to be written. Finally the new t’ tag is inserted into the
inprogress set. A more formal definition of the server steps upon receiving a request
follows:

1 Update (local) tag: The server adopts the request’s tag if it is more recent than
its local tag. Tag comparison is alphanumerical.

2 Ifitis a WRITE request from W; then

2.2 Create a new tag t,<ts,w,wc >=<ts,w;,wc; >, assign tot" the local

timestamp and the WRITE request’s attributes (w;, wc;)

24

2.3 Remove any previous tag-value pairs from the specific writer and insert the
newly generated t' tag along with the new value the writer wants to
write. Inprogress = (inprogress - {<*,w;,*>,val}) U {< ts’,w;, wc; >, newVal}

3 Update confirmed tag: The server updates confirmed tag if the request’s tag is
more recent.

If server receives a READ request then steps 2, 2.2 and 2.3 are not executed.

3.2.2 Reader

The reader process sends a read request message to all servers containing
the tag < tag,, value >. When responses from a quorum Q are received, the reader
creates and populates a new set, let that be called Is, with all tags from the
inprogress sets of the responses and calculates the maximum confirmed tag
(maxConf). So the reader has w x s (product) tags in the Is set, where w the
number of writers in the system and s the number of servers in the responding
guorum. The reader then compares each tag t from the Is set with maxConf.

If maxConf = t then the reader adopts maxConf tag along with its value. If
maxConf is received from an intersection between Q and n—1 (where n the
intersection degree of the quorum system) other quorums then the reader proceeds
to a second communication round otherwise it completes (fast).

If maxConf < t then the reader checks if t satisfies the reader predicate
(Table 1: the SFW reader predicate). If the predicate is true for t then, the reader

adopts t and its value.

25

Read predicate for aread p (PR):

3t,B,MS,where: max(t) € U,¢ g, inprogressg(p),

B c Q

0 < |B| < g— 2,and MS = {s:s € Q; AT € inprogressg(p) s.t.either |B| +

OandIgn Q; S MSor |B|=0and Q; = MS.}

Table 1: the SFW reader predicate, where |B| is rounded down to the nearest integer [12].

The reader proceeds to a second communication round if its predicate is true for t
and t is propagated in an intersection of Q with exactly n/2 — 2 other quorums. In the
case the predicate for t is false and Is is empty, a second communication round is
needed. While Is is not empty the reader keeps comparing the tags in it with
maxConf until it finds a tag smaller than maxConf or a tag that validates its

predicate. In all other cases the reader is fast.

3.2.3 Writer

The writer process W; sends a writer request to all the servers in the quorum
system. The requests contain < tag,,, value > and the servers reply with the new tag
for the write operation. The tags received from the server responses may differ. The
writer needs a mechanism to select the latest tag and then judge based on the latest
tag distribution in the quorum, if a second round of communication is needed to
ensure atomicity. The write predicate provides this decision mechanism. Notice the
differences of the writer process between the SFW and the SIMPLE algorithm in
Figure 9 and Figure 10 respectively. The SFW writer does not need to use the first

communication round to read the latest tag of the atomic register but rather it

26

writer server
P1: write(t, ,v)

reply(t,,v)

P2: write(t,,,v)

By vrac D

Return(OK)

Figure 9: Writer communication messages and logic [17]

writer server
P1: read()

»

reply(t;)

P2: write(t,.v)

v

‘reply(max(t, ..)

Return(OK)

Figure 10: write operation of the SIMPLE algorithm. [17]

proceeds to directly write the new value to it. Like the writer in the SWMR model in
Figure 3 but the difference is that the writer in the SFW does not increment the tag
timestamp and it waits a reply from a quorum of servers.

The writer predicate (Table 2) is simpler than the reader predicate. Each
server reply has an inprogress set which contains a tag for each writer in the system.
The writer extracts only the tag referring to its unique identifier (wid), specifically

every tag of the form <x, wid,*> where asterisk can be anything. Practically there is

27

Writer Predicate for a write w (PW):

3t, A, MS,where: T € {(., w): (., w) € inprogresss(w) A s € Q},

ASQ0 < |4/ <7-1and

MS = {s:s€ QAT € inprogresss(w),s.t. either |[A] #0andI;N Q <

MSor|A|=0and Q = MS.}

Table 2: The writer predicate for the SFW algorithm, where |B| is rounded down to the nearest
integer [12].

only one tag for each writer in the inprogress set. So the writer will extract |Q| tags in
total, which is the number of servers of the responding quorum @, all these tags are
inserted in a new set, let that be called Is. The writer tries to find a tag t in Is that
validates the predicate (to TRUE). If a tag t, that validates the writer predicate exists
then the writer adopts this tag along with its associated value.

Otherwise if such a tag t does not exist, the writer adopts the maximum tag in
Is and proceeds to a second communication round. The server may also proceed to
a second communication round if the predicate is true but t is only propagated in an
intersection of Q with more than n/2 - 2 other quorums. In any other case the write

operation is fast and completes in one communication round.

Chapter 4

Implementation

In this chapter we present the design and implementation of the algorithms.
Additionally, the tools created to execute the scenarios and retrieve the results are

specified.

4.1 Design

An application for testing the MWMR algorithms on PlanetLab was
implemented using the C programming language with Linux as Operating System.
Specifically, it was compiled to be compatible with Fedora 8. The Client-Server model
and TCP sockets were used for communication between servers, readers and
writers. The server uses the paradigm of serve one client with each server thread,
while clients use one thread per server for each communication round. Standard C
libraries were used as the main building blocks of the implementation, with POSIX
pthreads for threading.

The application consists of three major components: the server, reader and
writer each of which executes as an independent process. The reader and writer
processes require that the server processes are executed first and are listening to the
designated ports in order to begin sending read/write operation requests. An arbitrary
number of server, reader and writer processes are supported by the implemented
system through a parameterized configuration file. The same is true for read and

write operations.

28

29

Servers can only queue up to 256 requests on their accepting socket and can
spawn up to a maximum of 200 threads for serving incoming requests. In practice the
servers reach their maximum service capacity when a high number of readers and
writers execute on PlanetLab, hence a preliminary experiment is executed to
recognize these bounds.

The quorum system used in experiments is n-wise (where n the intersection
degree of the quorum system). A static quorum system deployment is used for the
servers. Server process participation in quorums is fixed and known before a
scenario starts its execution and it remains the same until the end of its execution,
despite the fact that network topology may dynamically change as links and network
nodes fail. Also client processes assume that at least a single quorum is correct, that
is it contains no faulty servers.

In the implementation of algorithm SIMPLE the quorum system type used is
the majority. For the needs of algorithm SIMPLE we use n-wise quorum systems
where n is the intersection degree of the quorum system, meaning that any n
quorums of the system have a non-empty intersection. Specifically, in the
implementation of SFW we define a quorum as a set of S — T, where S is the number

of the servers and T the number of the servers that the system can afford to fail such

S!

that the total number of quorums in the system is —(S_T)"T,

. Practically in the

implementation we consider “enough” replies when the first S — T responses from
servers are received. It is not difficult to observe that this results to an n-wise Quorum
System configuration.

Each thread spawned by the server receives the client request and examines
the request’s header to discover if a message body follows and needs to be received.
Then the thread waits until it manages to acquire a spin lock on the critical section,

which protects the server’s state from concurrent access. A spin lock is a mechanism

30

to enforce mutual exclusion. It essentially causes the thread to wait in a loop until a
variable (of type pthread_spinlock_t) is unlocked.

Functions that provide similar functionality to either of the processes share the
same name. For example the process function is used by all processes to process an
incoming messaging but the implementation in each case differs. This is similar to
polymorphism used in object oriented languages.

An important requirement in design was that both the SIMPLE and the SFW
algorithm share the same architecture and core code, such as shared libraries,
communication procedures, same data structures and similar message exchange
format. In the next sections a reference to the differences of the implementation of

the two algorithms are given whenever it applies.

4.2 Communication

Clients communicate with Servers through TCP sockets by exchanging
messages. The servers connection information such as IP or domain name are
loaded from the configuration file. Each message has a dynamic size in bytes and
contains a header and a body. The message header has a set of fields needed for
the algorithm. For the needs of communication between clients and servers a
protocol is created which is defined by the fields in the message header. Fields that
can appear in the message header are summarized in table 3: message header .
table 4 lists the message format used for communication between clients and
servers.

The code that is responsible for generating the message header is located in
the message.c code file. The definition of the message header creation functions is

detailed in Table 6.

31

Message Header Field

Description

SentValue Describes the Body value, zero(0) means body is empty
and one(1) has value

Id Process id of the sender

AlgorithmType SIMPLE for always two round operations algorithm.
SFW for operations that are predicate depended for 2™
round of communication.

ObjectID The unique object id of the register (atomic object).

MessageType WRITE/ READ / INFO
WRITEACK/ READACK/ INFOACK

Cnt Request counter

Tag.ts Tag Timestamp

Tag.wid Tag writer id

Tag.wc Tag write counter

ConfirmedTag(ts,wid,wc)

The same tag info for the confirmed tag

ConfirmedTag(value) The confirmed object value, not sent for INFO message
type requests
InprogressSet An Inprogress [Tag(ts, wid, wc), Value] for each

writer. Note that Value is not sent for INFO message

type requests.

Table 3: Message header fields description

The configuration of the processes is setup using a confic.ini file. This file

contains all the global information shared among the implementation; essentially it

defines the configuration of the system. The order of variable declaration in this file is

32

important. An example of a confic.ini file with enough self-explanatory comments can

be found in Appendix A.

SIMPLE server response message format

SentValue,ld,AlgorithmType,ObjectlD,MessageType,Cnt,Tag.ts, Tag.wid, Tag.wc

SFW server response message format

SentValue,ld,AlgorithmType,ObjectID,MessageType,Cnt, Tag.ts, Tag.wid, Tag.wc,
ConfirmedTag(ts,wid,wc),ConfirmedTag(value),InprogressSet

SIMPLE client request message format

SentValue,ld,AlgorithmType,ObjectID,MessageType, Tag.ts, Tag.wid, Tag.wc,Cnt

SFW client request message format

SentValue,ld,AlgorithmType,ObjectID,MessageType, Tag.ts, Tag.wid, Tag.wc,Cnt

Table 4: Messages format used in communication between clients and servers

On the client side, the communicate procedure (Table 5) is used as the
communication primitive by which a complete communication round is performed.
The communicate function implementation was inspired from [7], in which a function
is described that handles communication. It takes as parameter the packet to send
and returns an array of the acknowledging servers in quorum_data data structure
along with its size.

Since clients need to communicate with all servers, the communicate
procedure spawns a thread for each server to handle message interaction with the
client. To manage these threads a controlling thread monitors the responses from the
servers. When enough responses have been received, the controlling thread
graciously notifies the threads which handle the servers that are yet to respond. The
notified threads are responsible to stop any current action with their respective server

and terminate.

33

The main Communication function used by clients

data_t*
communicate(

pck_t *sMsg,

data_t* quorum_data,

int™ quorum_size, bool_t *done);

Communicate performs one communication
round between client and servers.

-input parameter sMsg: a pointer to
message to send.

-output parameter quorum_data: the data
of the responding acknowledging quorum.
-output param quorum_size (the size of
quorum_data).

Table 5: communicate function details

Message header creation functions

Description

char* messageToString(pck_t*

msg);

allocates memory for a new string and
populate it with the fields as described in
table 2. Memory allocated must be explicitly
freed afterwards. Note: used by the client to

send a request.

pck_t*
stateToMessage(pckt_t *recv_msg

)i

Creates a new package to send as
response, using data from the received
message and from current server process
state. Memory allocated for return value
must be explicitly freed afterwards. Note:
this version is intended for use by the

server.

void

stateToMessage(pck_t *msg,

state_t * state);

Includes the current client state in an
existing package. Note: this version is

intended for use by the client.

Table 6: Message creation functions used in client and server implementation

34

4.3 Server

The servers’ main functionality is implemented in the function detailed in
Table 7. The basic steps of the server execution are:
e internal state is initialized,
e binds to a newly created socket,
e Initializes thread management data structures and listens for incoming
connections.
e On each accepted connection to the listening socket the server spawns a
thread to handle the new request on a new socket.

Due to the concept of one thread per client this can severely limit the number
of concurrent threads a server can handle simultaneously. For 32-bit OS systems this
limit is 512 threads. The pthread_detach function is called after a thread creation to
let the OS release all the thread resources as soon as it finishes execution. Each
thread executes the serve thread function, the code of which is attached on
Appendix C.

The server_thread function receives the client message and checks if the
message body has a value (it may be empty) that needs to be received as well. Note
that a value may be present but if it is the same as the server’s current value, it is not
necessary to actually receive and overwrite the object value. This has a great impact
on performance when the message value is a large file.

Each request is processed by the process function; it examines the request
tag and updates the server state according to the algorithm. Finally a response

message is created and sent to the client.

35

void initialize();

Initialize server state

int create_socket(&socketFd); //1. | Create a new socket
Create the socket
bind_socket(&socketFd, &server, | Bind socket

sys_conf.serverPort[pid]);

listen(socketFd,
//3. Set Socket to Listen

MAX_PENDING);

Listen for connections

while(1){
acceptReq(socketFd,
&newSocket, &client, rem);
pthread_create(&threads[i],

Accept any incoming connection and create
a new thread to serve it.

&attr, (void*) pt2ProcessThread,

(void*)(&threads_data[i]));

bs

void> serve_thread(void™* | The main serving code of the server.

thread_args);

Generally it calls:
1. recvReq()
2. recvMsgVa()
3. process()
4. sendRes

pck_t* create_message(msg_t t,
obj_tot, alg_t alg);

Allocates and initializes memory for a new
message.

int recvReq(int, pck_t*, int*); Receive request message
int recvMsgVal(int , pck_t *,int, | Receive message value if needed
bool_t);

void process(pck_t*);

Process request: update server state and
prepare response

void sendRes(int , pck_t*);

Send response

Table 7: Main server functions

4.4 Writer

The writer process calls the writeObject function whenever it needs to write a

value to the atomic object.

After each write operation the writer sleeps for a

36

preconfigured amount of time. The write interval between operations can be

configured through the confic.ini file. The writeObject function code initializes a

message to send, sets the writer process state to WRITE , increments the operation

counters and then calls the communicate function to send the message.

Upon successful completion of the communicate function the responses

received from the quorum are processed by the process function. The latter

examines the responses from all the servers, updates the writer current state and

proceeds to a second communication round if necessary.

In Table 8 the main functions of the writer process are summarized.

void writeObject(
int objectid,
state_t*objectState,
int>* intval,

obj_t objType,

alg_t algType);

Performs a write operation, input
parameters are the object id, the
current writer state for the supplied
object id, the integer value to write,
the object type(file or integer) and

the algorithm type(SIMPLE or SFW)

int compareTag(tag_t* a, tag_t* b);

Compares the two input parameters:
Ifa>breturn 1,
If a==b returns 0 and -1 otherwise.

bool_t process(state_t *, data_t*, int);

Process the server responses and

act according to the current

executing algorithm.

int recvMsgVal(int, pck_t *,int);//(newSck,

*msg,writelt)

Receives message value pending on
socket.

bool_t writerConditions(
data_t* quorum_data,
int quorum_size,
tag_t** t,

bool_t *isPropagated);

The predicate of the writer for the
SFW algorithm
predicate is valid, False otherwise.

returns True if

void stateToMessage(pck_t *, state_t*);

Puts the current writer state into a
message.

Table 8: Writer process main functions

37

4.5 Reader

The main function used by the reader is the readObject function, which is very
similar to the writeObject function used by the writer. It creates a message to send,
uses communicate function to send it and receives responses in quorum_data data
structure which is passed to the process function for examination. The Process
function updates the reader state as necessary, which is the most recent object value
read and its tag. It also decides if a second communication round is needed in the

case of algorithm SFW.

4.6 Code structure and Compilation

The code files are located under the src folder and they are organized in
folders:
o reader: reader.c, reader_main.c
e server: server.c, server_main.c
e writer: writer.c, writer_main.c
e net: sockets.c, sockets.h
o utilities:
0 communicate.c communicate.h
o0 config.c, config.h
o log.c, log.h:
0 message.c, message.h
o utilities.c, utilities.h

0 quorum_gen.c

38

o test/reader/, test/writer/, test/server/: all three folders need to exist in order for

the make file to output the three executable files.
The Global header files are also located under the src folder:

e data_structures.h, all data structure definitions

e mwmr.h, all include files in one place

e main.h, include files, declarations of the functions, macros and global
variables that are used by reader_main.c, writer_main.c and server_main.c

o makefile, has commands to build the whole source code or parts of it
individually for unit testing. Executing make under src folder creates the
executable files.

Code related to sockets such as binding, creating, receiving and sending is
under net/sockets.c. Code related to communication between processes is in the
communicate.c and message.c files.

Common resources and functionality that is not related to communication,
such as management of log files, configuration files, comparison functions on various
data structures and common logic are included in the utilities folder and are globally
visible to all code in the implementation. An exception is the quorum_gen.c which is a
separate individual program and is located directly under src folder. The quorum_gen
program takes four (4) command line arguments: the quorum type, number of
servers, number of failures and a seed number. The quorum type can be -m for
majority or —d for server number - failures number quorum size generation. The
output in the first case is majorities.dat file where in the latter is majorities_x.dat. The
output file contains the total number of quorums generated in the first line and the
number of failures the quorum system can sustain in the second line. Each line that

follows defines a quorum.

39

Each process has a main file (reader_main.c, writer_main.c, server_main.c),
which contains the main function, command argument management functions and
signal handling functions. Basically the main files for each process call the execute
function. The execute function loads the confic.ini file parameters into a global data
structure (confg_t sys_conf) so that is visible by the whole system, and setups timers
for monitoring the operation latency of each read/write operation in the process.
There are two operation latency timers that monitor the processor time and the actual

real time it takes for a read/write operation to complete.

4.7 Read/write predicates of Algorithm SFW

As mentions in Section 3, the reader and writer algorithms use a predicate to
decide when to proceed to a second communication round. The predicate

implementation is a challenge due to the existential quantifier.

4.7.1 Reader Predicate

The idea behind the implementation of the predicate is to reduce the size of
the solution space while searching for a tag that satisfies the predicate conditions. In
order to avoid examining every possible case in the solution space, a heuristic
method to move towards the solution is presented.

The algorithm implemented for the reader predicate is shown in Figure 11.
Recall that the inprogress set contains the latest tag for each writer in the system.
The concept of the heuristic algorithm is to find all the possible quorums which

include all the servers that responded with the largest tag. The procedure that

40

evaluates the predicate and calculates the size of the intersection between the
responding quorum and a subset of quorums from the quorum system is shown in
Table 9.

In more detail, the heuristic implementation first sorts (descending) the unique

tags return from the servers into T;. If many servers responded with the largest tag

then only a “few” quorums Qg (comparing with the total number of quorums ﬁ)

will exist that include all these servers. Thus the intersection size of Q; with Qg
(responding quorum) will be big and for this reason is less probable for I; € S;, where
S; is a set of servers that have in their inprogress set the t tag being currently
examined from T,.

If the latest tag failed to validate the predicate, then the heuristic
implementation examines older tags. As older tags are examined the |S;| decreases,
reasonably fewer servers will have older tags, but |Qg| increases because more
quorums exist that include all servers in S;. This causes the size of the intersection of
quorums in Qs (|Iys|) to decrease, resulting in |I;| (Iy = {s:s € Ips N Qk}) to also
decrease. Thus it is more probable to find a I; < S;; this depends on the size of S; as
well. If a tag satisfying the predicate does not exist it will be faster to find and stop
earlier in the computation hence saving on average operation latency.

The procedure shown in Table 9:
1. Calculates, by reference parameter output r, the size of the quorums in the

intersection of Q; with Qs .

2. Returns true or false if the predicate found a valid tag

The pseudocode in Table 9 assumes that is looking for a tag in the inprogress

set and not the set of confirmed tags, which is needed in the case an inprogress tag

is not found (which is the case shown in Figure 11 at lines 19-24). The reader

41

at each reader r

procedure initialization:

tag «— (0,0,0), rCounter «— 0

procedure read()

rCounter — rCounter + 1

send (R, tag, tag.we, rCounter) to all servers

wait until receive (RACK , inprogress, con firmed, rCounter) from some quornm Q €

rcvM — {(s,m) : m = (RACK, inprogress, con firmed, rCounter) A ssent mA s € Q

09: maxC = max,, erevM (Mm.con firmed) /* find the maximum confirmed tag */

10: inP = {({ts, wid, we) : (ts, wid, we) € U G Eneand m.inprogress}

11: if 3+, MS.B : (+ € inP AT > mazC)A MS = {s: (s,m) € revM A T € m.inprogress} A
BCQst.0<|B| < —2 A f;;._,{L” C MS then

12: tag — T

13: if |B| =2 max(0, 3 — 2) then

QRIPUUR toH

el -

(X et

14: rCounter «— rCounter + 1

15: send (RP, tag, tag.we, rCounter) to all servers

16: wait until receive (RPACK, inprogress, con firmed, rCounter) from some quorum @ € Q
17: end if

18: else
‘,1.9: tag — maxC; MC — {s: ((s,m) € rc
20: ifAC:CCQAICIEm—2AIcug

M) A (m.con firmed = maxC)}
MC then

Mg

21: rCounter «— rCounter + 1
22: send (RP, tag, tag.we, rCounter) to all servers
23: wait until receive (RPACK, inprogress, con firmed, rCounter) from some quorum @ €

24: endif
25: end if
26: return(tag)

Figure 11: pseudo code for the reader predicate [12]

predicate must search the confirmed tags if no tag in the inprogress is found that

evaluates it.

The purpose of the heuristic is to sometimes find a solution when a solution
exists and always find no solution when none exists; this is clearly deduced from the
description and the pseudo code presented in Table 9 since the heuristic works on
sets that contain tags returned by the responding quorum. A study of the heuristic
accuracy and a formal proof of its correctness are beyond the purpose of this thesis

and are left for future work.

4.7.2 Writer Predicate

The writer predicate is simpler than the reader predicate. The
implementation’s pseudocode for the writer is shown in Figure 12. The writer uses

the pseudocode as presented in Table 9 to calculate the intersection degree of the

42

responding quorum with a set of quorums from the quorum system and validate the
predicate. The only exception in this case is wherever wid appears it refers to the

specific writer id which initiates the write request.

procedure predicate_and_num_of _quorums_in_intersection(input Qk, output r):
[* Qy, the responding Quorum */
rcvMsg « {< s,m >:m = (RACK, inprogress, confirmed,rCounter) A\ s send m
As € Qr}
/*find max confirmed tag*/
maxConf = { < ts,wid,wc >: < ts,wid,wc > € m.confirmed A <s,m > € rcvMsg }
/*find unique tags*/
T, = {< ts,wid,wc >: < ts,wid,wc > € m.inprogress \ <s,m > € rcvMsg }
sort_descending(Ty); /*sort T, in descending order*/
For each t in T}, /*starting from the largest tag*/
if t <maxConf then
/* put all servers that have in their in progress set the t tag into St set*/
S ={s:s€eQ At € m.inprogress A\ <s,m > € rcvMsg }
/*while there is a combination S’ from S, initially S, = S;,
comb(cmb, k,n) generates the next combination of n elements as k after cmb,
where k is also the size of the subsets to generate */
while comb(S,’, k, |S:|) A S¢” #{}
/*get all Quorums that include all servers from S,’ and put them in Qs */
Qs ={s:s€S/AS' S NI|S| # 0}
[*servers in intersection of: all quorums in Qs with Q,
put them in I */
Iy = {s:s € Ips N Q} [inish: if intersection is a subset of S, */
If Iy € S; then Return t /*and predicate is TRUE*/
If not a valid combination exists then k--; /*comb(S;’, k, |S¢|) is valid? */
else if maxConf >=t then
/* If none of t in T}, satisfies the predicate thent = maxConf, predicate is FALSE for
all tinT,.*/
return maxConf /* predicate is FALSE */

Table 9: Pseudo code for the reader predicate

43

1: at each writer w

2: procedure initialization:

3: tag — (0, wid,0), we — 0, wid — writer id, rCounter «— 0

4: procedure write(v)

5 we— we+1

6: send (W, tag, we, rCounter) to all servers

T: wait until receive (W ACK, inprogress, con firmed,rCounter) from some quorum @Q € {J

8: revM — {(s,m) : m = (WACK , inprogress, con firmed, rCounter)A s sent m A s € Q}

9: T = {(ts, wid, we) : (ts, wid, we) € m.inprogress A (s, m) € recvM} /* find unique tags */

10: if 3r, MS,A: 7 €T A MS = {s:(s,m) ErcvM AT E m.inprogress} A
ACQst.0<|A| <3 —1A Tauqq) € MS then

11: tag =171

12: if |A| =2 max(0, 5 — 2) then

14 rCounter «— rCounter + 1

14: send (RP, tag, tag.we, rCounter) to all servers

15: wait until receive (RPACK . inprogress, con firmed, rCounter) from some quorum Q € Q
16: end if

17: else

18: tag = mMax 4, wid.we) (T); rCounter «— rCounter + 1

19: send (RP, tag, tag.we, rCounter) to all servers

20: wait until receive (RPACK, inprogress, con firmed, rCounter) from some quorum Q € Q

21: end if
22: return(OK)

Figure 12: writer predicate implementation pseudo code [12]

4.8 Correctness and Robustness

Local tests were frequently executed during development to validate that
components are working as expected. Once the implementation was complete,
manually targeted test cases were performed to validate the correctness and
robustness of the implementation. For this purpose a log file is generated during the
execution of test cases in which critical values are exported for later analyses in the
event of errors. Specific robustness test cases (Table 10: Test cases) are performed.
Test cases 1 and 2 verify that reader and writer processes execute correctly. Test
case 3 has initially one reader, writer and server and at each execution the writer and
server processes are increased. Test case 4 includes multiple reader and writers and
one server, at each execution the server processes are increased. At all cases it is

crucial that atomicity is not violated due to implementation errors. Test cases 3 and 4

44

are difficult to practically test due to multiple writers in the system, for this reason only

a subset of operations were checked.

One Server | Two Twenty Servers

Servers

1. | One reader(SR) | Test reader messages used in communications

Test reader communication with multiple servers

2. | One writer(SW) | Test writer messages validity with one, two and twenty

servers.

3.| SR Test that reader process reads the correct value while the
(SW->MW) writers and the servers in the system increase.

4. | MWMR Is atomicity violated?

Table 10: Test cases

After the implementation described in Chapter 4 was tested locally for
correctness, a robustness stress test was performed. It is important that server
processes do not crash due to implementation errors, since general system errors
caused in PlanetLab cannot be avoided. To ensure all processes robustness a stress
test was performed locally with more aggressive settings than those used in
experiment in PlanetLab. The stress setup included a hundred of readers and writers
processes and starting from one (1) server multiple test were performed for up to
twenty(20) servers.

Specifically, the tests attempted to either crash the servers due to memory
leakage or reach system limits, such as max concurrent thread numbers, opened file
descriptors, stack size, deadlocks and starvation. The stress test revealed a lot of

areas that improvement could be made. Although most major server failures were

45

counteracted the problem of starvation of concurrent threads trying to acquire access
to the atomic register is anticipated. The starvation issue is resolved on the client side
with timeout on the server response. The downscale is an increase of fail operations
from the client side but this problem only arises when the client number is very large
and their operation interval is small. Another workaround to the starvation issue is to
increase the timeout on the clients but this applies only on experiments since in real

application examples functional requirements may restrict operation latency.

Chapter 5

Experimentation Setup

In this chapter the experimentation setup used during empirical evaluation is
detailed. In Section 5.1 the methodology followed and the configuration used are
given. Section 5.2 lists the procedure used to execute the scenarios on PlanetLab.
Lastly in Section 5.3 the problems and limitations encounter during the configuration

and execution of experiments are described.

5.1 Methodology and configuration

To evaluate the algorithm implementations, experiments are executed on
PlanetLab and statistics are recorded for slow operations, operation latency and
execution time. The quorum system deployment uses the same PlanetLab nodes for
server processes in all experiments and scenarios.

Quorums are arranged to have S - T size, where S a set of servers and T the
preconfigured maximum server failures which is configured based on the quorum
intersection degree required in each experiment. The quorum intersection degree for
each experiment is calculated usingn = [S/ T | — 1. All write operations in algorithm
SFW are slow for n < 4 [12]. In other words, for S servers and intersection degree n
the maximum number of server failures isT = S/ (n+1). The system must be
robust “enough” in order to avoid read/write operation failures when a few servers

crash or are acting very slowly in PlanetLab. Furthermore, enough servers are

46

47

needed such thatT > 1. For these reasons, in most of the experiments scenarios
include twenty (20) servers were the quorum system intersection degree isn = 6
forT = 3. When the quorum intersection degree is different in an experiment, the
respective value for T is given.

The algorithm implementations do not explicitly restrict the number of reader
and writer processes but the system performance is expected to degrade when a lot
of client processes are present in a scenario. To discover suitable configurations for
the experiments, preliminary experiments are performed, where various scenarios
examine the effect of a variable parameter as it is progressively increased. The
parameters that are used as variables, only one at a time for each scenario, are:
number of readers, number of writers, read operation interval, writer operation
interval and quorum system intersection degree. In each scenario readers execute
200 read operations and writers 200 write operations. Due to the nodes’ arbitrary
slowness, most scenarios were executed two or three times in order to complete the
200 read/write operations assigned to each client involved in the scenario. An
average is calculated when assembling the results from scenarios that executed
more than once.

A list of all 20 nodes used for server processes is given in Table 11. In total,
100 PlanetLab nodes were included in the slice by randomly selecting from a list of
more than 1000 nodes.

The apparently faster machines, based on their uptime and load during the
last week, are selected for execution of the server processes. A list of all machines
used for executing client processes can be found in Appendix F.

The PlanetLab machines use Fedora release 8 (code werewolf) kernel
versions 2.6.x and their minimum hardware specification are show in Table 12. The

PlanetLab machines have adequate hardware specifications to execute the

48

experiments needed during empirical evaluation but usually about 1 GByte of

memory is available, CPU usage arbitrary varies and disk space is for the most part

sufficient.

Server Host Names
freedom.informatik.rwth-aachen.de flow.colgate.edu
chronos.disy.inf.uni-konstanz.de jupiter.cs.brown.edu

dannan.disy.inf.uni-konstanz.de

ebb.colgate.edu

host2.planetlab.informatik.tu-darmstadt.de | pll.ucs.indiana.edu

adrastea.mcs.suffolk.edu

pl2.planet.cs.kent.edu

75-130-96-12.static.oxfr.ma.charter.com planetlab04.cs.washington.edu

pll.grid.kiae.ru

fobos.cecalc.ula.ve

75-130-96-13.static.oxfr.ma.charter.com ds-pll.technion.ac.il

host3.planetlab.informatik.tu-darmstadt.de | cs-planetlab4.cs.surrey.sfu.ca

node-1.mcgillplanetlab.org

pll.rcc.uottawa.ca

Table 11: PlanetLab nodes used for server processes

PCU

CPU RAM Disk

Built-in, remote-access
power-reset capability,
accessible from PLC, such
as IntelAMT, HPILO,
DellRAC, IPMIv2, etc.

4x Intel cores @ 2.4Ghz
(e.g., quad core or 2x dual 4 GByte 500 GB
core)

Table 12: PlanetLab machines minimum hardware specifications [28]

5.2 Executing on PlanetLab

To access PlanetLab network an account is needed on planet-lab.org

website. Once an account is obtained, it can be used to login to PlanetLab and setup

49

a slice. After a slice is created nodes can be added to it through the web interface on
the PlanetLab site [28]. However in order to securely connect to any node (through
ssh) a public and a private key must be associated with the account. Step by step
instructions for setting up keys can be found on PlanetLab website [28]. The tools
used to assist execution of scenarios during empirical evaluation are PIMan and
pssh.

The PIMan tool is developed in java and it provides a method to login to a
PlanetLab slice (Figure 13), connect with a set of slice nodes (Figure 14),
add/remove new nodes to the slice, upload the implementation executable(s) and
download the results. While connected to the nodes, PIMan can direct any
commands needed to the connected cost concurrently. To launch PIMan run
Jrun_linux_x86.sh from the command line, complete the AuthString which is the
same as the password used on planet-lab.org website and the privatekeyPassword

which is the password used at the creation of the private key.
(@) PIMan : run
File Edit View Scrollback Bookmarks Settings Help
e - 1: done MD5all done
done MD5all done
all done
L.net:

linux_x86.s LDEE)]

done
> MD5all «
.tw: disconnected during S

'adam.ee.ntu.edu.tw' aborting copy
an$ sudo
- papiras:

a ...an : run_linux_x86.s - adam : - papiras : bash

Figure 13: PIMan slice login, it request AuthString and PrivateKeyPassword

The pssh tool is a command executed through a terminal, for example, the

command in Table 13 executes the comExec shell command to each of the hosts

50

listed in host_list.txt as user slice_name. The output of the command of each host is
outputted into the dirOut. The dirOut directory contains a file with the name of each

host which contains the output of the latest execute command.

‘m PL axperiment manager mIEE) D

Ele View Connect Transfer PLC Help Select hosts

Deerview select the hosts to connect to

Site Hostname | Exec commar Exit stabwe Time Progress Last line

Select Site Host' Load aver comonqu mem free mem tota
& Worcester Poly 75-12 7.61 305 100.0 0.99
e Worcester Poly 75-12 0.73 305 100.0 099
¥ Wisconsin plane 20.36 9.09 100.0 345
= Williams Colle plane 1.06 12.53 100.0 297
¥ Willlams Colle plane 4.2 19.21 100.0 297
¥ WIDE Project plane ? 7 T T
= Washu wndc 11.15 9.13 100.0 345
% WashU Q vn5.c 0.28 813 100.0 345
¥ Washington 5t plane 4.31 0.23 100.0 3.45
o Wash plane 1.75 217 100.0 347
¥ Wash plane 3.01 i 100.0 3.47
& LA nlane 09 an3 100 0 naa =
Quick select: Random Sites | | Random Hosts | | All hosts
Command Exit status Completed hosts
0 #connect -
Einish Cancel
Execuie

Figure 14: PIMan host selection screen on the right and Overview of connected hosts to the left.

pssh —h host_list.txt —I slice_name —o ./dirOut comExec

Table 13: example of pssh command

These are the tools used for executing in parallel commands on PlanetLab
nodes during the empirical evaluation of the algorithms. The PIMan tool is user
friendly but it displays only the first line return from each command executed on
connected nodes. In contrast pssh can execute a command to all hosts and save all
output lines from each node in local files for later processing. Practically PIMan tool is
used to upload the directory tree needed by the scenario execution scripts and to
download the whole directory tree that resides in each node when needed. On the
other hand pssh tool is used for uploading configuration files, scenario startup and
monitoring. Concluding the pssh tool proved more practical and useful than PIMan

tool, even though PIMan is intuitive because of its GUI.

51

Executing in parallel hundreds of processes and monitoring them is not a
trivial task even with the help of tools. For example, how multiple processes are
launched concurrently to multiple nodes with different command line parameters for
each process and for each node? For this reason a shell script is created to prepare
each PlanetLab node for the execution of a scenario. The shell script code
runscenario.sh is appended in Appendix B.

In brief, the script requires eight (8) command line parameters:

e total servers in the system,

e number of server failures,

e number of readers,

e number of writers,

e the algorithm type, (0 for SIMPLE, 1 for SFW)

e the register value type, (0 for integer, 1 for file)

e run test mode (1 executes in test mode, 0 executes normally)

e start mode, 1 executes only servers and 0 executes only clients,

The runscenario.sh script grants to all executable files permission to execute
on the node it runs on and kills all currently executing server, reader and writer
processes. The runscenario.sh script cleans all preexisting log files and parses a
server.ini file. The server.ini file contains a line for each node required to participate in
the scenario. Each line includes the node in the slice, the reader and writers
processes it needs to execute in the following format:

The_PlanetLab_Node_ip_or_hostName:ReadersNum:WritersNum

The value of the first (number of servers) runscenario.sh script parameter, let
it be num, also implies that the first num lines in server.ini file are configured to
execute a server process. Finally the runscenario.sh shell script starts the execution

of the client/server processes needed for the scenario.

52

The server and client processes need three (3) command line parameters:

e id, the unique identifier of the process of integer type that starts from zero and
counts first the servers then the readers and finally the writers. The purpose of
this id is to define a total order on the priority of processes in the algorithms
and for internal book keeping of their state.

o the algorithm type, same as the parameter passed in shell script

o the register value type, same as the parameter passed in shell script
Before the shell script is executed servers.ini, majorities_x.dat and confic.ini

are uploaded to PlanetLab nodes. The shell script is executed twice with the pssh
tool, firstly to start the servers execution and secondly to start the clients execution.
An example of the steps to start a scenario is given in Table 14 and for downloading

the results in Table 15.

5.3 Problems and Limitations

Various values for scenario parameters were tested during the preliminary
experiments. Specifically, the number of reader and writer processes in the system,
the operation intervals between sequential operations, the quorum intersection
degree and the timeout of requests.

Test parameter values were driven by values used in local tests. The local
tests were executed in order to provide an initial configuration for the preliminary
experiments. Local test cases that include more than 80 processes, executed in a
reasonable amount of time when run locally and under a specific configuration. This
high number of processes in PlanetLab proved impractical due to the arbitrary
slowness of machines and the implementation approaching full service capacity. The

server processes reach full service capacity in PlanetLab when overwhelmed from

53

1| pscp -h servers.txt -I cyprus_ ATOMIC ./PlanetLab/scenarios/int.sfw/confic.ini

/home/cyprus_ ATOMIC/PlanetLab/scenarios/int.sfw

2| pscp -h servers.txt -1 cyprus_ ATOMIC ./PlanetLab/scenarios/servers.ini

/home/cyprus_ ATOMIC/PlanetLab/scenarios/

3 | pscp -h servers.itxt -l cyprus_ ATOMIC ./PlanetLab/scenarios/majorities_x.dat

/home/cyprus_ ATOMIC/PlanetLab/scenarios/

4 | pnuke -h servers.txt -1 cyprus_ ATOMIC serverexe
pnuke -h servers.txt -I cyprus_ ATOMIC readerexe

pnuke -h servers.txt -I cyprus_ ATOMIC writerexe

5 | pssh -h Jtest_servers.txt -l cyprus_ ATOMIC -0 Jouts
/home/cyprus_ ATOMIC/PlanetLab/scenarios/int.sfw/runscenario.sh 20 4 80 80 0

001

6 | pssh -h Jtest_servers.txt -l cyprus_ ATOMIC -0 Jouts
/home/cyprus_ ATOMIC/PlanetLab/scenarios/int.sfw/runscenario.sh 20 4 80 80 0

000

Table 14: Example of steps for starting a scenario

operation requests, causing operation cancellation (due to timeouts in
communication).

Although increasing the timeout in communication may allow more processes
to participate in the scenario, it leads to a high average of operation latency. During
the preliminary experimentation phase it was discovered that the average latency in
communication between PlanetLab nodes is 125ms. It is not practical to increase
timeout beyond 10 seconds considering that with operation intervals at 1 second and

timeouts at 10 seconds, it takes more than one hour to execute a scenario with 400

54

1 | pnuke -h servers.txt -l cyprus_ ATOMIC serverexe
pnuke -h servers.txt -| cyprus_ ATOMIC readerexe

pnuke -h servers.txt -| cyprus_ ATOMIC writerexe

2 | pssh -h .servers.txt -l cyprus ATOMIC -0 ./results/sfw/writer cat

/home/cyprus_ ATOMIC/PlanetLab/scenarios/int.sfw/writer*.result

3 | pssh -h .Jservers.txt -l cyprus ATOMIC -0 ./results/sfw/reader cat

/home/cyprus_ ATOMIC/PlanetLab/scenarios/int.sfw/reader*.result

4 | (a shell script to parse the results file and calculate averages and percentages of
required fields, the script code is on Appendix G)

results.sh ./results/sfw/reader

results.sh ./results/sfw/writer

(the script takes one parameter as input: the output directory location of step 2.

and 3. Respectively)

Table 15: Example of steps to download results

operations in total. Thus, there is no need to set the operation interval to a higher
value than 1 second.

The main problem is not communication latency between PlanetLab machine
nodes but the arbitrary slowness of nodes, especially the heavy loaded nodes, thus
the execution time slots given to the slice are less. PlanetLab has a fairness resource
allocation policy [14]. However, a process may execute slower than expected but it
may still be killed if it uses too many resources during high pressure times.

The PlanetLab slice used for the experiments had 100 nodes from which only
about 80 nodes were active while others were unavailable due to maintenance. This
caused problems when some of the unavailable nodes were selected to execute

Server processes.

55

It is also important to note that PlanetLab nodes do not guarantee a static IP
or message delays and have varying bandwidth limitations. Configuring the
implementation of the algorithms to connect to servers using their IP address can fail,
since their IP can change between (re)connections. To solve this issue the IP of the
server must be resolved using the host name of the machine but this adds to the
communication time. An alternative to PlanetLab DNS servers arbitrary slow behavior
is CoDNS which basically gives benefit to anyone who wants more reliable name
lookup service [29].

On some of the stress test scenarios were the timeout and capacity of
processes is stressed, some node processes are killed and a notification emalil

similar to the one shown in Table 16 is received.

Sometime before Thu Aug 12 16:28:24 2010 GMT, swap space was

nearly exhausted on kc-sce-plabl.umkc.edu.

Slice cyprus_ ATOMIC was killed since it was the largest consumer of
physical memory at 244.4 MB (24.4%) (96.8 MB writable)

after repeated restarts.

Please reply to this message explaining the nature of your experiment,
and what you are doing to address the problem.

cyprus_ATOMIC processes prior to reset:

PID VIRT Sz RES %CPU %MEM COMMAND

23278 177.5MB 444 MB 122.3MB 12.1

/home/cyprus_ ATOMIC/ZEREE S/ writer/writerexe 149 0 1

23213 2095MB 524 MB 1221 MB12.1

/home/cyprus_ ATOMIC/FZENE L /reader/readerexe 49 0 1

Thu Aug 12 16:28:24 2010 GMT kc-sce-plabl.umkc.edu reset cyprus_ ATOMIC

Table 16: PlanetLab kill auto send message example

When a scenario execution starts all client processes start sending requests
concurrently, overwhelming the servers. This is also reflected in the results where the
majority of operations latency at the beginning of the scenario execution is very high
and during the execution it slowly drops to more expected values. This initial burst
causes a high average of latency for operations and a high percentage of failures due
to communication timeouts. For these reasons a small wait interval was added to
each client process before scenario launch, in order to provide a less aggressive
behaviour at the beginning of scenarios. The initial wait interval that each process
waits before it starts its execution is fixed for all scenarios and it can be configured
from the confic.ini file.

During the empirical evaluation of the algorithms a lot of problems appeared
due to the nature of PlanetLab. Servers were arbitrarily going offline or were too slow
to communicate with. During the file upload of execution files for the experiments
some servers received the latest configurations while some others did not. This
created a lot of confusion, making the file upload procedure a tedious task to
accomplish.

Downloading the results of scenario executions faced the same problem
causing even more delays to a scenario execution. To download the results from the
PlanetLab nodes cat reader*.result unix command is used as the execCom
parameter to pssh. As a result to pssh command all result files were downloaded to a

local folder.

56

57

Chapter 6

Empirical Evaluation

In this chapter the experiments, scenarios and their parameters used during
empirical evaluation are described. Subsequently for each experiment, the scenario

results are represented in graphs and analysed.

6.1 Experiments and Scenarios

In this section the parameters for each experiment and their scenarios are
detailed. The parameters that are the same for all scenarios except when explicitly
stated otherwise are:

e Read operation interval: 1 second

e Writer operation interval: 1 second

e Quorum system intersection degree: n = 6, failures T = 3
e Communication timeout 10 seconds

e 20 servers

Using a large number of PlanetLab nodes for object replicas and expecting
only T =3 of them to not fail is impractical. In practice, the operation latency of
operations will further increase as reader/writers must wait responses from a larger
set of servers and the possibility some of them are performing arbitrarily slow is high.
For these reasons, the number of servers was set to 20 and the server failures were

varied from 1 to 3.

58

6.1.1 Experiment 1: Number of readers and writers effect

The purpose of this experiment is to study how the number of readers and
writers affect the efficiency of algorithm SFW. The results obtained from this
experiment are used to define a reasonable number of readers and writers to use in

further experiments. The number of readers and writers differs in each scenario.

Scenario 1: Number of Writers
The efficiency of algorithm SFW is investigated when the number of writer
processes in the system increases. Experiments are run with 10, 30, 40, 50, 80

writers while the number of readers remains 80.

Scenario 2: Number of Readers
In this scenario the efficiency of algorithm SFW is investigated when the
number of readers in the system increases. Experiments are run with 10, 30, 50, 80

readers while the number of writers remains 80.

Scenario 3: Operation Interval
The purpose of this scenario is to study the impact of operation frequency on
the efficiency of algorithm SFW. For this purpose the reader (rI) and writer intervals
(wI) are varied as follows:
e 1l >wl,rl = 1,wl = 10
e rl <wlrl =10,wl =1

o rl =wl=1

59

The value of 1 second is chosen based on the observed PlanetLab average
latency in communication as explained in Section 5.3. The value of 10 seconds is
chosen such that there is a great difference between rI and wl in order to get clear

results. Experiments are run for 10 readers - 80 writers and 80 readers - 10 writers.

6.1.2 Experiment 2; Quorum Intersection Degree

In this experiment the effect of the quorum system intersection degree to the

efficiency of algorithm SFW is investigated. The following scenario is considered.

Scenario: Effect of Quorum Intersection Degree
After observing the results of Scenarios 1 and 2 of Experiment 1, the number
of writers and readers are set to 40 and the operation interval is set to 1 second.
Recall that algorithm SFW's write predicate allows fast write operations for
quorum system intersection degree,n > 4 (note that n cannot be greater than S —
1). In this experiment the parameters used for servers S =20 and server
failures T = 3. In the case of 20 servers, the values for n used in the experiment is {6,
9, 19}, calculated as follows:
e n=[20/31-1=6,T=3
e n=[20/2]1-1=9,T=2

e n=[20/11-1=19,T=1

6.1.3 Experiment 3: Comparison of the SFW with the SIMPLE algorithm

60

In this experiment the average operation latency of algorithm SFW is
compared against the latency of algorithm SIMPLE. The following scenario is

considered.

Scenario: Increasing readers and writers

The scenario is executed with reader and writer processes at 10, 20, 30 and
40 respectively. The two algorithms’ performance is compared in respect to their
average operation latency, average CPU cycles consumed (execution time),
operation failure percentage due to timeouts and percentage of fast operations

executed for algorithm SFW.

6.2 Results

The experiments and their results are depicted in graphs and analyzed

separately for each scenario.

6.2.1 Experiment 1

Scenario 1: Number of Writers

The effect of changing the number of writers is investigated while the number
of readers is fixed to 80. Different plots are presented that show how the amount of
writers affects the percentage of fast operations, operation latency and failures. Note
that the operations that timeout are not included in the calculation of the results for
Figure 15, 16 and 17.

It is expected that the percentage of fast write operations will decrease while

the number of writers increase. The readers are expected to perform a higher

61

percentage of fast read operations since it is more likely their predicate to be
validated (return TRUE) on larger inprogress sets.

Before the turning point at W < 40 in Figure 15, the results observed are
similar to the expected results. As writers increase they perform fewer fast write

operations. This is expected behaviour since the writers proceed to a second

% fast operations

D
o

(%2
o

B

S
"
\

Persentage
w
o
Vg
\

= = \Nrites

N

o
'
N\

=
o
F 4
N

o

10 20 30 40 50 60 70 80

number of writers

Figure 15: Percentage of fast write operations with 80 readers

communication round if there is a tag returned by the servers (of the quorum that
replied) that is distributed among enough quorums. When there are more readers in
the system it is more difficult to validate the predicate due to multiple concurrent write
operations.

As mentioned, a turning point exists at 40 writers in Figure 15 (the average
percentage of fast writes is 3.7% forw = 40). At the turning point the performance
regarding the percentage of fast write operations is the worst, which indicates that the
system approaches its capacity limit. This limit means that there are so many write
and read processes in the system that the percentage of fast write operations is
reduced. After the turning point the percentage of fast operations increases. Studying

the log files generated during the execution of the scenario the following are

62

observed: some processes have crashed or are very slow, others suffer from long
service starvation, while some other processes are serviced more frequently due to
latency and the asynchrony of clients with the servers. Another reason could be that
geographical proximity favours’ some clients. The value of 80 writers is included in
the results for completeness, to show that the system reaches its limits and is not

used to draw conclusions on the efficiency of algorithm SFW.

% fast operations
120

100

80 z

60

percentage

40 == == Reads

20

10 20 30 40 50 60 70 80

number of writers

Figure 16: Percentage of fast read operations with 80 readers

In Figure 16 it is shown that the percentage of fast read operations increases,
as the number of writers increase. This is in accordance to our expectation. The
readers will first check if the max confirmed tag returned by the replying quorum is
greater than any other tag in the inprogress set. With increasing number of readers,
the read requests will be more frequent than write requests and as such it is more
likely a fast read operation to occur. When the system has over 30 writers the
percentage of fast read operations becomes stable, near 100%, hence this result
gives a good indication for the efficiency of read operations of algorithm SFW.

In Figure 17, the operation latency of read operations is stable with increasing

number of writers, which is expected, given the results in Figure 16. When W = 40,

seconds

30

Operation Latency

25
20

15

10

10 20 30 40 50 60 70 80

Number of writers

= = \Nrites

Reads

Figure 17: client performance: average operation latency

63

the operation latency of write operations is at its peak (28 seconds). Observe that the

curve of Figure 17 (the write operations latency increases) is relatively the inverse of

the curve shown in Figure 15 (the percentage of fast write operations decreases).

In Figure 18 the fail percentage caused by timeout of read operations

increases as the number of writers increase until W = 30. Readers’ fail percentage is

at its peak when 30 writers are in the system since the readers in this case perform

[S = S T S Y
o N M O

percentage

o N B OO

% timeout failures

10 20 30 40 50 60 70 80
Weriters Number

== == Reads

Writes

Figure 18: percentage of client timeout failures

64

mostly fast operations (96.6%) and they “compete for access” to the object’s replicas.
Observe that the read operation latency is a bit higher for W = 30 than W = 10.

After W =30, the failure timeout of read operations is unexpectedly
decreased, because after W = 30 all read operations are fast and write operations
are slow (up to W = 40) giving more access to the atomic register to readers. This
also agrees with the fact that a lot of reader processes have crashed.

The write operation timeout percentage is increased until W = 50 since the
number of writers is increased and there is more traffic towards the servers. As we
approach 40 writers the percentage of fast write operations dramatically drops
(Figure 15) and write operations latency radically increases (Figure 17), which causes
more failures due to timeouts. After W =50, as already mentioned, the system
approaches its limit. The timeout percentage value after W = 50 is not representative

since a lot of processes crash.

Scenario 2: Number of Readers

As an addition to the previous scenario, the effect of the number of readers is
investigated while the number of writers is fixed. It is expected that the percentage of
fast read and write operations will not be affected by the increase of the number of
reader processes because their predicates are not influenced by the number of
readers. The operation latency, of both read and write operations, is expected to
increase when the number of readers increase since the load on the servers is
increased.

As it can be seen in Figure 19, the percentage of fast write operations
increases linearly from 10 to 30 readers. This behaviour is possible since more
processes are executing concurrently competing for service, which intuitively reduces

the number of writers gaining access to servers because they are being overrun by

65

% fast operations

D
o

(O]
o
\

Y
o
\

Persentage
w
o
\

= == \Nrites

N
o
\

._\
o
\

o

10 20 30 40 50 60 70 80

number of readers

Figure 19: Percentage of fast write operations as the readers increase

the readers. In other words, it is more likely less writers to execute concurrently, since
a portion of the servers capacity is been “attained” by readers. From 30 to 50 readers
the percentage appears more stable (on average 26%). After the number of reader
processes exceed 50 the fast write operation percentage is increased, which may be
caused by the same reasons explained in Scenario 1. At 80 readers the system is
unstable since, as observed from the log files, a lot of processes crash thus fewer
read and write processes are actually executing in the system.

Essentially, the increased percentage of fast write operations at 80 readers is not
representative but is included in the results for completeness.

In Figure 20, increasing the number of readers does not affect, by a
noticeable degree, the percentage of fast read operations since it only drops by 2%
(from 99% to 97%) from 30 to 50 readers. As mentioned, this is indeed our
expectation.

The average operation latency of read operations, in Figure 21, is not
significantly affected by the number of readers. On the other hand, the operation
latency of write operations is substantially affected by the number of readers.

Specifically, there is a notable decrease of the writer’s latency between 10 and 30

66

percentage

99.5
99
98.5

Yo}
[¢5]

97.5

o
~

96.5
96

% fast operations

-~ == == reads

10 20 30 40 50 60 70 80
number of readers

Figure 20: percentage of fast read operations as the readers increase

seconds

30
25
20
15
10

Operation Latency

- = - == == readers

- aer e e e & S

-~ - writers

10 20 30 40 50 60 70 80
Readers Number

Figure 21: The average operation latency while reader processes increase and writers are fixed

since in Figure 19 for the same range there was an increase in the percentage of fast
write operations. Between 30 and 50 readers a big increase in writer's operation
latency is observed. Considering that for the same range the percentage of fast write
operations was stable, it seems that the system approaches its capacity limit at 50
readers. At 80 readers the system is unstable since, as observed from the log files, a

lot of processes crash.

The timeout failures of write operations (in Figure 22) are relatively stable as

67

timeout failures
25
N\
N\
20 N
g;n \
© 15 “ -
;C: N _ - - - - - -
£ 10 ™ -~ = == readers
[} -
o ~ .
writers
5
0 T T T T T T T 1
10 20 30 40 50 60 70 80
Readers Number

Figure 22: percentage of failures from timeouts while reader processes increase and writers are

fixed

the number of readers increase. The read operation latency and percentage of slow
read operations at 10 readers is not higher than at 30 readers but the fail operations
when considering 10 readers (in Figure 22) is unreasonably high. Observing from the
log files we see that there are a few readers which perform almost only fail operations
due to timeouts. These PlanetLab machines are either very slow due to transient load
or they are experiencing network congestion. When there are more readers these

slow machines have less effect on the results.

Scenario 3: Operation Interval

Recall that read interval is denoted by rI and write interval by wi. For the read
operations, when rI < wl (1sec < 10 sec), it is expected that a high percentage of
one round (fast) read operations will occur. In the case of write operations, a slower
write frequency is expected to lead to one round (fast) write operations.

For rI > wl (10sec > 1sec) it is expected to see a high percentage of fast

read and write operations. Since the read operations are infrequent and do not

68

consume server resources, the percentage of fast write operations is expected to be
high. Since the write operations are frequent and they finish earlier they stop
consuming server resources leaving only readers to execute in the scenario. It is
expected to result to a high percentage of fast read operations.

Forrl = wli (1sec), it is expected that both readers and writers perform fewer
fast operations than in rI < wl orrl > wl.

Results are close to the expected but in most of the cases there is no
noticeable influence to the percentage of fast read operations (Figure 23). A
noticeable effect of the read and write operation interval is observed when the
number of readers is significantly more than the number of writers regarding write
operations (Figure 24). The percentage of fast write operations in this case is

increased when rI = wl and rl > wl.

120 .
% fast read operations
100

80

W ri>wi

60 - o
W ricwi

percentage

40 4 M ri=wi

20 -

r80w10 riow80

Figure 23: Effect on % of fast read operations, on the vertical axis is the percentage and on the
horizontal axis there are two categories, (1)80 readers and 10 writers, (2) 10 readers and 80

writers

In the case of rI = wil the percentage of fast write operations is the highest
because there are few writers affecting the server tags. In the case of 80 writers and
10 readers, regardless of the chosen interval the percentage of fast write operations

is low affected by the high number of writers in the system.

69

H
wv

7 tast write operations

N
o

w
(6]

w
o

W ri>wi

w
1

M ricwi

N N
o
1

percentage

W ri=wi

=
o
1 1 1

r80w10 ri0w80

Figure 24: Effect on % of fast write operations, on the vertical axis is the percentage and on the
horizontal axis there are two categories, (1) 80 readers and 10 writers, (2) 10 readers and 80

writers

Summary

Concluding from Scenario 1 and Scenario 2, it was indicated that the number
of writers and readers in the scenarios should be low enough (less than 80) to
provide stability of the system while scenarios are executed. In order to balance
service congestion the number of processes could be leveraged around 40 readers
and writers or by increasing the operation interval.

The system exhibits reasonable behaviour when the number of readers is
equal with the number of writers in the system. In the case of fewer readers there are
more read failures but nonetheless the readers perform fast read operations. Overall,
it is desirable to keep the average operation latency low enough such that the

scenarios in subsequent experiments complete in a reasonable amount of time.

70

From Scenario 3, it was observed that the read and write intervals do not
greatly affect the efficiency of the algorithm. However, in the case of 80 readers and
10 writers a notable difference in the percentage of fast write operations was
observed with the highest percentage being whenwl = rI. Thus, it was decided to

keep the read interval equal to the write interval in further experiments.

6.2.2 Experiment 2

The second experiment focuses on the quorum intersection degree of the
underlying quorum system. Recall that a single scenario was considered here (effect
of quorum intersection degree).

It is expected that forn > 4, the percentage of fast write operations increases
due to the writer predicate that requires the writer tag to appear in an intersection with
at most n/2 - 1 other quorums. As n increases so do the intersected quorums, thus
their intersection size decreases and thus the predicate is easier to validate. Recall
that n cannot be greater thanS- 1. The results are close to the expected ones
(Figure 25).

The percentage of fast read operations is expected to increase due to the
reader predicate that examines all tags returned from servers and needs a tag to
appear in the intersection with at most n/2 - 2 other quorums. As n increases so do
the quorums that get intersected, thus their intersection size decreases and the
predicate is easier to validate.

The percentage of fast read operations is high at all values for n (Figure 26).
There is a slight drop on the percentage on high values of n (i.e., n = 19) that may be

caused by the high percentage of operation timeouts (Figure 28) discussed later.

71

It is expected that the operation latency increases as the quorum intersection
degree increases, since an operation waits for more servers to respond. In Figure 27
it can be observed that the operation latency of the read and write operations
increases for valuesn = 6 andn = 9. Even though the percentage of fast write
operations is the same when n is 6 and 9, the average write operation latency
doubles. The same is true for read operations that exhibit less fast operations. This
increase in the operation latency can be explained by the fact that clients expect

more servers to respond at each communication round.

Effect of n on fast operation

35

30

%writes

%fast operations

o wn

123456 7 8 9510111213141516171819
Quorum Intersection Degree

Figure 25: The percentage of fast write operations with 40 readers and 40 writers, while n

increases.

In the case of n = 19, the operation latency is still high but less than n =9
since the percentage of fast write operations is the highest forn = 19.

The percentage of fail operations in Figure 28 shows an increase of failures
while the intersection degree increases, due to the fact that clients expect more

servers to respond during a communication round.

Effect of n on fast operations

‘ ‘ W %reads
T T T T T T T T T T T T T

T T T T T

1234567 8 910111213141516171819

Quorum Intersection Degree

120

100

(o]
o

S
o

%fast operations
(o))
o

N
o

o

Figure 26: The percentage of fast read operations with 40 readers and 40 writers, while n

increases

Operation Latency

14

12

10

B Read avgEXe

seconds

W Write avgEXe

6 9
quorum intersection degree

Figure 27: 40 reader and 40 writer time of execution in respect to n

50

%timeout failures

40

30

20

percentage

10

T T

9 19

N, quorum intersection degree

W %read fail

%write fail

Figure 28: Percentage of fail operations due to timeouts in communication in respect to n

Summary

73

The results are close to the expected ones when examining the percentage of

fast write operations. The percentage of fast write operations increases as the

quorum intersection degree increases. On the other hand the percentage of fast read

operations slightly drops as the intersection degree increases because there are a lot

of failures due to timeouts. The operation latency increases as the quorum

intersection degree increases. When a high percentage of fast operations exists then

the operations latency is balanced off. From our experiments we observe that the

quorum intersection degree is an important parameter, since in most cases it greatly

affects the efficiency of algorithm SFW.

6.2.3 Experiment 3

In the last experiment the efficiency of algorithm SFW and is compared with

the efficiency of algorithm SIMPLE. Recall that a single scenario was considered for

this experiment as well.

74

It is expected that algorithm SIMPLE’s operations will consume on average
less CPU time than of the algorithm SFW, because SFW must also validate its
operation’s predicates. On the other hand, algorithm SFW'’s operation latency for
read and write operations is expected to be less than of SIMPLE, given that algorithm
SFW allows fast operations. In respect to failures, due to timeouts, it is expected that
SFW will generally have a higher percentage of failures than SIMPLE, since SFW
must wait for more server acknowledgements at every round of communication. This
behavior is expected to be more noticeable when SFW performs mostly slow read or
write operations.

The results for CPU time consumption for the read operations are close to our
expectations. In the case of read operations (Figure 29), algorithm SIMPLE's CPU
time consumption appears to be constant while processes increase. Algorithm SFW'’s
read operations always need more CPU time than of SIMPLE. Increasing the number
of processes also increases the time needed to validate the reader predicate,
increasing the gap between SFW and SIMPLE even more.

Algorithm SIMPLE’s write operations CPU time is stable as the number of
processes increase in the system as well. Instead, algorithm SFW’s write operations
CPU time increases linearly with the increase of processes in the system (Figure 30),
as expected.

On average, a read operation takes more time to execute in algorithm
SIMPLE than in algorithm SFW and increasing the number of processes also
increases their difference (Figure 31), since SFW allows fast read operations as
depicted in Figure 32. Given the percentage of fast read operations at 30 readers and
writers (and below),the difference in operation latency between the two algorithms is
disappointing. However the efficiency of algorithm SFW is clear at 40 reader and

writers where there is around 7 seconds difference in operation latency.

0.20

0.15

0.10

seconds

0.05

0.00

Read CPU time comparison
SIMPLE - SFW

- =

R10W10 R20W20 R30W30 R40W40

Reader and Writer

== = SIMPLE
SFW

Figure 29: Read operations CPU time comparison of the SIMPLE with the SFW algorithm

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

seconds

Write CPU time comparison
SIMPLE - SFW

R10W10 R20W20 R30W30 R40W40

number of readers and writers

== = SIMPLE
SFW

Figure 30: Write operations CPU time comparison of the SIMPLE with the SFW algorithm

75

This suggests that even larger difference will be withnessed at larger number of

readers and writers.

In the case of write operations, per Figure 33, algorithm SIMPLE’s operation

latency increases linearly when the number of processes increases, which was

seconds

Read Operation Latency comparison

SIMPLE - SFW

20
e
15 -
Pl
- P d
10 -
_ - — — SIMPLE
Cd
5 = SFW
O T T T 1
RIOWIO ~ R20W20 R30W30 RAOWA0

number readers and writers

Figure 31: Read operation latency comparison of the SIMPLE with the SFW algorithm

76

expected since the bottleneck are the servers’'s capacity to serve (based on

bandwidth, hardware specifications and load). In the range of 10-20 reader and 10-20

percentage

Read Operations for SFW
%fail and%Fast

120

100

80

60

= == %FAIL
40

20

0 e e e e = - —

R10W10 R20W20 R30W30 R40W40

Reader and Writer

%FAST

Figure 32: Read operations fail% and fast% for the SFW algorithm

writer processes in the system, algorithm SFW’s write operations need slightly less

time to execute because the percentage of one round write operations also increases

77

(Figure 34). In the range of 20-40 readers and writers algorithm SFW’'s write
operations’ execute slower than of SIMPLE with the peak of difference at the point

where SFW performs 6.3% (Figure 34) of one round fast write operations. Algorithm
SFW is slower in this case (30 reader and writers) due to the high write CPU
execution time as seen in Figure 30. Again the difference between the two algorithms
regarding operation latency is disappointing. Considering the high percentage of fast
write operations at 20 readers and writers the operation latency of algorithm SFW is
only 0.2 seconds better than the SIMPLE; we expected algorithm SFW to perform
write operations in less time. One may conclude that for the chosen experiment

values, the CPU time required by algorithm SFW voids the reduced time of fast

writes.
Write Operation Latency comparison
SIMPLE - SFW
20
15 i
(%)) -
el - -
S 10 e =
i _ - = = SIMPLE
-,
5 < SFW
O T T T 1
R10W10 R20W20 R30W30 RAOWA40
number of readers and writers

Figure 33: Write operations operation latency comparison of the SIMPLE with the SFW algorithm

Write Operations for SFW
%fail and %fast
16
14 —
12
Q
,'é’ 10
8
§ 6 = = %FAIL
Q
o
4 %FAST
2 -
O ——— I_ —— _I - = ’I - 1
R10W10 R20W20 R30W30 R40W40
number of readers and writers
Figure 34: Write operations %fail and %fast for the SFW algorithm
Summary

78

Assuming no more servers than T=3 will fail and under a reasonable setup of

readers and writers in the system, algorithm SFW'’s efficiency is better than of

algorithm SIMPLE’s efficiency, but by a small margin. The most important parameter

is the operation latency and only for read operations algorithm SFW shows a small

difference. The CPU time consumption is always higher for algorithm SFW due to the

predicate computation and is increased with increasing clients. On the other hand,

algorithm SIMPLE’s CPU time consumption is stable while increasing the number of

clients. This experiment suggests that algorithm SFW would be preferred over

SIMPLE in settings where the communication delay dominates the time needed for

the predicate computation (e.g., when the delay exceeds 0.2 secs).

79

6.3 Conclusions

In this section our conclusions from the scenarios are summarized. The first
experiment provided indications for the number of readers and writers to use in
further experiments. With very high numbers of readers and writers (specifically 80
readers, 80 writers and 20 servers) the system configuration (over PlanetLab) seems
to reach a limit in which a lot of processes crash. Thus, it is important to choose
carefully the number of servers and clients in order to avoid overwhelming the
system.

Regarding the operation interval, it does not affect the efficiency of the system
considerably. Consequently, it is appropriate to keep a low value in order for the
execution to take a reasonable amount of time.

Will more scenarios with a larger amount of object replicas (servers) possibly
show a larger effect of the quorum intersection degree (n)? Increasing the total
number of servers to allow more servers to fail (“more” robustness), while maintaining
desirable efficiency, do not change the fact that the maximum number of server
failures “allowed” is a small percentage over the total number of servers.

Using a large number of PlanetLab nodes for object replicas and expecting
almost all of them to be responsive is impractical. In practise the latency of operations
further increases as reader/writers must wait for responses from a larger set of
servers and the possibility that some of them might perform arbitrarily slow is high.
Also, increasing the number of replicas may not be practical since it also increases
the economical (total cost of ownership) aspect of maintaining the quorum system.
The results indicate that nis an important parameter to the overall efficiency of

algorithm SFW and in a real application setup it should be optimized according to the

80

application expected behaviour in order to obtain efficient operation latency and small
percentage of failures.

Under reasonable conditions algorithm SFW can be efficient in comparison
with algorithm SIMPLE. That is in the case when the number of reader and writers in
the system is low. An indication for the number of writers is to be about the same as
the number of servers (replicas) without restrictions on the number of the readers
(besides the systems’ load capacity). Algorithm SFW may not provide a substantial
improvement on the operation latency when compared to SIMPLE, but it still reduces
the communication overhead on the network links. The CPU time consumption is only
a small issue for algorithm SFW because the processing of the predicate is
performed on the client’s side and thus server performance is not affected. Although
algorithm SFW saves network bandwidth it does so by increasing CPU time
consumption. If the predicate for any reason decides that a second communication
round is needed then the CPU time spent is clearly an overhead. Thus it is important
that the method used in the implementation to calculate the predicate be optimal. On
the other hand, the large percentage of fast read and write operations suggest that
algorithm SFW would perform much better than algorithm SIMPLE in settings where

the communication delay dominates the time needed for the predicate computation.

Chapter 7

Epilogue

A lot of research has been conducted for studying efficient data survivability in
distributed storage systems. Considering Multiple Writers and Multiple Readers
(MWMR) implementations where the atomic data object is replicated on a set of
servers susceptible to failures. Researchers have attempted to answer the question
of how efficient can a read/write operation be. Recent work introduced algorithm SFW
which is the first algorithm in the MWMR model to allow fast read and write
operations.

In this thesis the practicality of algorithm SFW under real network conditions
provided by PlanetLab is examined. Algorithm SFW uses read and write predicates to
decide if a second communication round is needed by the read or write operation,
respectively. These predicates try to discover the distribution of the tag in a large
solution space. For this reason a heuristic method is proposed that reduces the
solution space. An empirical evaluation of algorithm SFW is performed on PlanetLab
using as metrics the percentage of fast operations, the operation latency, the quorum
intersection degree, the CPU consumption and the percentage of failures from
timeouts. The results are compared with a robust, reliable algorithm (SIMPLE) that
always performs slow operations. Careful design is needed if implementations are to
maximize the efficiency of algorithm SFW, although the restrictions imposed on the
guorum system due to high intersection degree may be too much for most application
specifications.

Overall, the algorithm mostly behaves as expected in the experiments we

conducted. An essential decision that needs to be made when building a system

81

82

using algorithm SFW is the number of servers and clients to use. It is imperative to
choose the appropriate number of servers for the wanted number of clients to avoid
overwhelming the system. According to the experiments the operation interval does
not notably affect the efficiency of the algorithm.

When the quorum intersection degree increases, the percentage of fast write
operations and the operations latency increase as well. When a high percentage of
fast operations exists then the operations latency is balanced off. The percentage of
fast read operations remains generally high for all experimental values of quorum
intersection degree.

Algorithm SFW can be efficient in comparison with algorithm SIMPLE but only
by a small margin. That is in the case when the number of reader and writers in the
system is low compared to the servers. Thus, the number of writers should approach
the number of servers in the system. The minor improvement that SFW provides on
the operation latency is disappointing. Regardless, considering the percentage of fast
operations allowed by algorithm SFW in comparison to no fast operations offered by
algorithm SIMPLE, it reduces the communication overhead on the network links.
Although algorithm SFW saves network bandwidth it does so by increasing CPU time
consumption used for the predicate computation. If the validation of the predicate
procedure decides that a second communication round is needed, then the increased
CPU time is an overhead compared to SIMPLE. It is critical that the technique chosen
to implement the predicate validation be optimum.

A proof is still necessary for the accuracy of the proposed heuristic method
and its efficiency. Additionally, an optimization of the algorithms’ implementation can
be done to reduce communication time by exploring the benefits of CoDNS [29]
(reliable DNS on PlanetLab) to reduce host name address resolution. Reducing the

communication delay can benefit both algorithms but it may give advantage to

83

SIMPLE, since algorithm SFW seems to perform better in settings where the
communication delay overshadows the predicate computation.

Dynamic calculation of the operations timeout could be developed similar to
the concept of TCP Vegas [30] congestion control algorithm, in which timeouts are
set and round-trip delays are measured for every packet in the transmit buffer and
additive increases in the congestion window are made dynamically. The concept is to
dynamically calculate the timeout of an operation as a function of previous
communication round-trips between servers. As a result the timeout can be
dynamically readjusted to reflect both network congestion and client awareness of the
servers performing arbitrarily slow. Finally, it remains to investigate the efficiency of
algorithm SFW when the atomic object size increases (e.g. files of varying sizes are
used). Despite the rather disappointing results regarding write operation latency in
these experiments, it is expected that the efficiency of algorithm SFW will be clearer
when files of varying sizes are used; in algorithm SIMPLE the writers send the file

twice while algorithm SFW sometimes sends it only once.

Bibliography

Patterson, David A., Gibson, Garth, and Katz, H. Randy. A case of Redundant
Arrays of Inexpensive Disks (RAID). International Conference on Management of
Data, Proceedings of the 1988 ACM SIGMOD international conference on

Management of data (1988), 109 - 116.

Herlihy, Maurice P. and Wing, Jeannette M. Axioms for Concurrent Objects.
Annual Symposium on Principles of Programming Languages Proceedings of the
14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages (1987), 13-26.

Lamport, Leslie. On Interprocess Communication. Distributed Computing, 1
(1985).

Herlihy, Maurice M. and Wing, Jannette. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and

Systems, 12, 3 (1990), 463-492.

Bernstein, Philip A., Hadzilacos, Vassos, and Goodman, Nathan. Concurrency

Control and Recovery in Database Systems. Addison Wesley, 1987.

Weikum, Gerhard and Vossen, Gottfried. Transactional Information Systems.

Elsevier, 2001.

Attiya, H., Bar-Noy, A., and Dolev, D. Sharing Memory Robustly in Message-

Passing Systems. Journal of the ACM, 42, 1 (Jan 1995), 124-142.

Lynch, Nancy A. and Shavartsman, Alexander A. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts. In Proceedings of

Symposium on Fault-Tolerant Computing (1997), 272-281.

Lynch, N. and Shvartsman, A. A. RAMBO: A reconfigurable atomic memory

84

85

service for dynamic networks. In Proceedings of 16th International Symposium on

Distributed Computing (DISC) (2002), 173-190.

10 Dutta, Partha, Guerraoui, Rachid, Levy, Ron R., and Chakraborty, Arindam. How
fast can a Distributed Atomic Read Be? In Proceedings of the 23rd ACM

symposium on Principles of Distributed Computing (PODC) (2004), 236-245.

11 Georgiou, Chryssis, Nicolaou, Nicolas, and Shvartsman, Alexander A. Fault-
tolerant semifast implementations for atomic read/write registers. Journal of
Parallel and Distributed Computing, 69, 1 (2009), 62-79. Preliminary version

appeared in SPAA 2006.

12 Englert, Burkhard, Georgiou, Chryssis, Musial, Peter M., Nicolaou, Nicolas, and
Shvartsman, Alexander A. On the Efficiency of Atomic Multi-Reader, Multi-Writer
Distributed Memory. Proc. of the 13th International Conference on Principles of
Distributed Systems (OPODIS 2009) (2009), 240-254. Also as Technical Report at

the University of Cyprus.

13 Georgiou, Chryssis, Nicolaou, Nicolas C., and Shvartsman, Alexander A. On the
Robustness of (Semi)Fast Quorum-Based Implementations of Atomic Shared
Memory. Proc. of the 22nd International Symposium on Distributed Computing

(DISC 2008) (May 2008), 289-304.

14 Spring, Neil, Peterson, Larry, Bavier, Andy, and Vivek, Pai. Using PlanetLab for
Network Research:Myths, Realities and Practices. ACM SIGOPS Operating

Systems Review, 40, 1 (January 2006), 17-24.

15 Peterson, L. L., Bavier, A. C., Fiuczynski, M. E., and Muir, S. Experiences building

planetlab. OSDI (2006), 351-366.

16 Lamport, Leslie. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21, 7 (July 1978), 558-565.

86

17 Georgiou, Chryssis. Robust Implementations of Atomic Read/Write Objects in
Message-Passing Systems. Computer Science Seminar Presentation, University

of Cyprus (March 23, 2010).

18 Malkhi, D. and Reiter, M. Byzantine Quorum Systems. Distributed Computing, 11,

4 (1998), 203-213.

19 Peleg, D. and Wool, A. Crumbling walls: A class of high availability quorum
system. In Proceedings of 14th ACM Symposium on Principles of Distributed

Computing (PODC) (1995), 120-129.

20 Seth, Gilbert and Grzegorz, Malewicz. The Quorum Deployment Problem.
Proceedings of the 8th International Conference on Principles of Distributed

Systems (OPODIS) (December 2004).

21 Chockler, Gregory, Gilbert, Seth, Gramoli, Vincent, Peter, Musial M., and
Shvartsman, Alexander A. Reconfigurable distributed storage for dynamic
networks. Journal of Parallel and Distributed Computing, 69, 1 (January 2009),
100-116.

22 Attiya, H, Chaudhuri, S, Friedman, R, and Welch, J.L. Shared Memory
Consistency Conditions for Non-Sequential Execution: Definitions and
Programming Strategies. SIAM Journal on Computing, 27, 1 (February 1998), 65-
89.

23 Fan, Rui and Lynch, Nancy. Efficient Replication of Large Data Obijects.
Proceedings of the Twenty-Second Annual ACM Symposium on Principles of
Distributed Computing (July 2003), 335.

24 NS-2 Wiki Available at: http://nsnam.isi.edu/nsnam/index.php/Main_Page.

25 Bavier, A., Muir, S., Peterson, L. et al. Operating system support for planetary-

scale network services. Symposium on Networked Systems Design and

87

Implementation (NSDI ‘04) (May 2004).

26 Lamport, Leslie, Shostak, Robert, and Pease, Marshall. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Systems, 4, 3 (July

1982), 382-401.

27 Fisher, Michael J., Lynch, Nancy A., and Paterson, Michael S. Impossibility of
Distributed Consensus with One Faulty Process. Journal of the ACM, 32, 2 (April

1985), 374-382.
28 PlanetLab Home Page Available at: http://www.planet-lab.org.

29 KyoungSoo, Park, Vivek, Pai S., Peterson, Larry, and Zhe, Wang. CoDNS:
Improving DNS Performance and Reliability via Cooperative Lookups.
Proceedings of the Sixth Symposium on Operating Systems Design and

Implementation(OSDI '04) (2004).

30 Low, Steven, Peterson, Larry, and Wang, Limin. Understanding TCP Vegas: A

Duality Model. Technical Report TR-616-00 (November 2000).

31 Garcia-Molina, Hector and Barbara, Daniel. How to assign votes in a distributed

system. Journal of the ACM, 32, 4 (October 1985), 841-860.

32 Englert, Burkhard, Georgiou, Chryssis, Musial, M. Peter, Nicolaou, Nicolas, and
Shvartsman, Alexander A. On the Efficiency of Atomic Multi-Reader Multi-Writer
Distributed Memory. Technical Report, University Of Cyprus. in Proc. of the 13th
International Conference on Principles of Distributed Systems (OPODIS 2009)

(Nimes, France, 2009), 240-254.

Appendix A

The format of the configuration file confic.ini is shown Table 17: example of

configuration file: confic.ini, with included comments that explain each field.

#IMPORTANT!I AS A GENERAL RULE DO NOT CHANGE THE ORDER OF VARIABLE
#DEFINITION IN THIS FILE!

#casing(upper/lower) of variables in this file does not matter
port=4709

serverNum=20

quorumNum=1140

readerNum=83

writerNum=83

alwaysSentValue=0

#for each server we define the IP address and the port

#maybe a port has been reserved at some point and all our servers crash
#.. this way only one server goes down due to port which we can accept

#freedom.informatik.rwth-aachen.de
serverAddr=137.226.138.154
serverPort=4709
#chronos.disy.inf.uni-konstanz.de
serverAddr=134.34.246.5
serverPort=4710
#dannan.disy.inf.uni-konstanz.de
serverAddr=134.34.246.4
serverPort=4711
#host2.planetlab.informatik.tu-darmstadt.de
serverAddr=130.83.166.199
serverPort=4708
#adrastea.mcs.suffolk.edu
serverAddr=192.138.213.236
serverPort=4713

#75-130-96-12 static.oxfr.ma.charter.com
serverAddr=75.130.96.12
serverPort=4714

#pll.grid.kiae.ru
serverAddr=144.206.66.56
serverPort=4715
#75-130-96-13.static.oxfr.ma.charter.com
serverAddr=75.130.96.13
serverPort=4716
#host3.planetlab.informatik.tu-darmstadt.de
serverAddr=130.83.166.200
serverPort=4717
#node-1.mcgillplanetlab.org
serverAddr=192.197.121.2
serverPort=4718

#flow.colgate.edu

88

89

serverAddr=149.43.80.22
serverPort=4719
#jupiter.cs.brown.edu
serverAddr=198.7.242.41
serverPort=4720
#ebb.colgate.edu
serverAddr=149.43.80.20
serverPort=4721
#pll.ucs.indiana.edu
serverAddr=156.56.250.226
serverPort=4722
#pl2.planet.cs.kent.edu
serverAddr=131.123.34.36
serverPort=4723
#planetlab04.cs.washington.edu
serverAddr=128.208.4.99
serverPort=4724
#fobos.cecalc.ula.ve
serverAddr=150.189.2.101
serverPort=4725
#ds-pll.technion.ac.il
serverAddr=132.68.237.34
serverPort=4726
#cs-planetlab4.cs.surrey.sfu.ca
serverAddr=206.12.16.155
serverPort=4727
#pll.rcc.uottawa.ca
serverAddr=216.48.80.12
serverPort=4728

BRHAHBRHH BB R R R R

quorum

#votingMethod = O, majority voting

1, majority - x

2, 6rid type dynamically generated quorums

#quorum = list of servers in the quorum according with

#the order given in their definition(ip,port) above starting from O
#note that if method=0 quorums will be ignored

#

#also note that quorum get auto assigned id starting from O
BRAHBHAHBRAHBRAH R HBRBH R HERT
quorumFileName=../majorities_x.dat

votingMethod=1

#quorum=0,1

#quorum=0,2

#quorum=1,2
BRHAHBHHHHRH AR R R R R
#algorithm execution modifiers

BRHHBR BB R R R
#scenarioNum, number of scenarios, according to the number of scenarios or algorithm execution
modifiers are redefined

#executionNum, how many times to execute the algorithm
#setting, O = stochastic(intervals can be randomly any of [OpTime .. Interval])

90

note that operationTime(Optime) is the average time between a node and a server.
and also that Interval can be any of read/write/fail
1= fixed

#readNum, number of reader operations to execute

#readInterval & writeInterval, time betwen requests in millisecs

#will randomly try to fail every failInterval with failureProbability

#note that if is zero then a failure check for every server reply is performed.
#failProbability, fail percentage from 100%

scenarioNum=3

#scenario 1
executionNum=5
setting=1
readNum=200
writeNum=200
readInterval=5000000
writelnterval=5000000
startWait=200000
faillnterval=60
failProbability=1000000
#scenario 2
executionNum=5
setting=1
readNum=200
writeNum=200
readInterval=430000
writelnterval=430000
startWait=200000
faillnterval=60
failProbability=1000000
#scenario 3
executionNum=5
setting=1
readNum=200
writeNum=200
readInterval=430000
writelnterval=230000
startWait=200000
faillnterval=60
failProbability=1000000
#no /n at end of file please

Table 17: example of configuration file: confic.ini

Appendix B

#!1/bin/bash

time=20m

totalServers=%$1

fails=%2

totalReaders=%$3
totalWriters=%$4

alg=%$5 #O0O SIMPLE, 1 SFW
type=%$6 #0 INT, 1 FILE
testEcho=%7

#if is 1 start server only
#Else only reader and writers
startServerParam=%$8

apath='/home/cyprus_ATOMIC/PlanetLab’

echo totalServers=%$totalServers fails=%fails totalReaders=%$totalReaders
totalWriters=S$totalWriters alg=s$alg type=S$type testEcho=%$testEcho
startServerParam=3%startServerParam

counter=0

lines=0

ReadersSoFar=0

WritersSoFar=0

#--error-limit=no

valgrindParams="--tool=memcheck --leak-check=yes --show-reachable=yes -Vv'

> scripttest.ini #OVERWRITE TO NOTHING

s=serverexe
r=readerexe
w=writerexe
m=memcheck-x86-li

if [$testEcho == 0]; then
#chmod +x ./../quorum_gen.exe
#./../quorum_gen.exe -d $totalServers $fails 832916
chmod +x $apath/reader/readerexe
chmod +x $apath/writer/writerexe
chmod +x $apath/server/serverexe
#the following lines kill any running process
#ps axco pid,command | grep $s | awk '{ print "$s"; }' | xargs kill -9 &

#ps axco pid,command | grep $m | sed
's/™M[:space:11*\(.*\)[[:space:]1*$/\1/" | cut -d" " -f1 | xargs kill -9 &
if [$startServerParam == 1]; then
ps axco pid,command | grep $s | sed
's/N[[:space: 11 \(.*\)[[:space:]]*$/\1/" | cut -d" " -f1 | xargs kill -9 &
ps axco pid,command | grep Sw | sed
's/™M[:space:11*\(.*\)[[:space:1]*$/\1/" | cut -d" " -f1 | xargs kill -9 &
ps axco pid,command | grep $r | sed

91

92

's/™M[:space:]1*\(.*\)[[:space:]]*$/\1/' | cut -d" " -f1 | xargs kill -9 &
#wait to Kill all previously running instances
echo "wait to kill all previously running instances..."
sleep 1
fi

#rm *.log &

#Hrm *.txt &

#rm *.result &

#rm *.predicate &

cd $apath/scenarios/int.simple.S5.R5.W5

Is * | grep -vE "~N[0-9]\.[0-9]\.data$" | grep -vE ".*\.dat$" | grep -VE
".*\.sh$" | grep -VE ".*\.exe$" | grep -vE ".*\.ini$" | xargs rm -f &

#wait to delete all previously generated .data files

echo "wait to delete all previously generated .data files"

sleep 1
fi

startServer()
{
echo serverID $1 $SHOSTNAME == scripttest.ini
if [$testecho == 0]; then
echo serverID $1 $SHOSTNAME
cd $apath/scenarios/int.simple.S5.R5.W5
$apath/server/serverexe $1 Stype $alg &>
$apath/scenarios/int.simple.S5.R5.W5/server$l.txt.log &
fi
b

startReader() #Two parameters pl=number p2=readersSoFar
{

rpl=$1

rp2=%2

fromReader=0

toReader=0

fromReader=%$((totalServers + rp2))
toReader=%((fromReader + rpl))
echo READER P1=%rpl P2=%rp2 fromReader=%fromReader
toReader=%toReader == scripttest.ini
cd $apath/scenarios/int.simple.S5.R5.W5
for ((ir=fromReader;ir<toReader;ir++))
do
echo readerID $ir SHOSTNAME == scripttest.ini
if [$testEcho == 0]; then
echo readerID $ir SHOSTNAME
$apath/reader/readerexe S$ir $type $alg &>
$apath/scenarios/int.simple.S5.R5.W5/reader$ir.txt.log &
fi
done

startWriter() #Two parameters pl=number p2=numbersSoFar

{

93

wpl=%$1
wp2=52
fromWriter=0
toWriter=0

fromWriter=%$((totalServers + totalReaders))

fromWriter=$((fromWriter + wp2))

toWriter=$((fromWriter + wp1l))

echo WRITER P1=%wpl P2=%wp2 fromWriter=%fromWriter
toWriter=%$toWriter >> scripttest.ini

cd $apath/scenarios/int.simple.S5.R5.W5

for ((iw=fromWriter;iw<toWriter;iw++))

do
echo writerID $iw $SHOSTNAME >=> scripttest.ini
if [$testEcho == 0]; then
echo writerID $iw $SHOSTNAME
$apath/writer/writerexe $iw $type $alg &>
$apath/scenarios/int.simple.S5.R5.W5/writer$iw.txt.log &
fi
done
¥
if [$testEcho == 0]; then
sleep 1
fi
for i in $(cat $apath/scenarios/servers.ini)
do
ar=%$(echo "$i" | tr-s ':" ' ")
counter=0
param1=0
param2=0

for k in $ar; do
case "$counter” in

0)

host=%$k
1)

paraml=$k
2)

param2=3k
esac

#counter=%$(echo "$counter+1" | bc -Iq)
counter=%$((counter + 1))
done
if [$host == $SHOSTNAME]; then
echo $host == $HOSTNAME
echo $host == $HOSTNAME == scripttest.ini
if [$lines -It $totalServers]; then
if [$startServerParam == 1]; then
startServer $lines

94

fi
fi;
if [$startServerParam == 0]; then
startReader $paraml $ReadersSoFar
sleep 1
startWriter $param2 $WritersSoFar
fi

fi
ReadersSoFar=%$((ReadersSoFar + paraml))
#HWritersSoFar=%(echo "$WritersSoFar+$param2"”|bc -Iq)
WritersSoFar=%$((WritersSoFar + param?2))
#lines=%$(echo "$lines+1"|bc -1q)
lines=$((lines + 1))

done

#sleep $time
#termination="\nAttempting to terminate scenario after 20m...!"\n"
#echo -e $termination

#ps axco pid,command | grep $s | sed 's/M[:space:]1*\(.*\)[[:space:1]1*$/\1/" |
cut -d" " -f1 | xargs kill -9 &
#ps axco pid,command | grep $w | sed 's/M[:space:11*\(-*\)[[:space:11*$/\1/" |
cut -d" " -f1 | xargs kill -9 &
#ps axco pid,command | grep $r | sed 's/[[:space:11*\(.*\)[[:space:]1]1*$/\1/" |
cut -d" " -f1 | xargs kill -9 &

#we cant use command wait here because server are propably up and running
#so give some time for kill command to act
#sleep 5

terminated="\nStarted Process Successfull!l"
echo -e $terminated

Appendix C

void* serve_thread(void™ thread_args) {
int serve_threaderr=0;
data_t * my_data;
char startingWith[FILENAME_SIZE],tempBuf[FILENAME_SIZE];
pck_t *recvMsg = NULL;
int cm=-2,writelt=0,processindex=0,len=0,0bjld = sys_conf.objld;

writeLog("Starting serve_thread™);
my_data = (data_t*) thread_args;
//Read request Message from newSocket
recvMsg = (pck_t*) create_message(-1 , sys_conf.objType, sys_conf.algType
); //init a temp msg
if(recvMsg!=NULL)recvMsg->ptd = &(threads[my_data-=index]);
objld=recvMsg-=>objld;
//delete any inprogress file we have from this writer so we can receive the new one
if(sys_conf.algType == SFW && sys_conf.objType==FILE_TYPE){
len = sprintf(startingWith,"INPROGRESS.%d.%d", recvMsg-=>pid,
sys_conf.id);
writeLog('going to remove files startingWith (%s)",startingWith);
b
//remove_files(startingWith, len);
//recv the value(FILE|INT) asap

if(recvReq(my_data-=newSckt, recvMsg, &serve_threaderr) == 1
){//==1check if need to recv val also
processindex = recvMsg-=>pid - sys_conf.serverNum;
//get message value
cm = compareTag_s(recvMsg-=>pid, recvMsg->typ, &(recvMsg->tag), &(
state[recvMsg-=>objld].tag));
if(cm = 0)writeLog("msgTag>tag");
writeLog("'(%d)>=(%d) -- recvMsg->cnt) >= state[recvMsg-=>objld].cnt[
processindex]",recvMsg->cnt, state[recvMsg-=objld].cnt[processindex]);
if(recvMsg->cnt >= state[recvMsg-=objld].cnt[processindex]){
if(sys_conf.algType == SIMPLE && (recvMsg-=>typ == INFO)){
//readers and writers always sent value on 2nd round communication(INFO) for the
simple algorithm
ifCcm = 0){
writelt = 1;
recvMsgVal(my_data->newSckt, recvMsg, writelt, FALSE);

Yelse if(sys_conf.algType == SFW){ //handle SFW FILE type values
//em = compareTag_s(recvMsg->pid, recvMsg->typ, &(recvMsg->tag), &(state[
recvMsg->objId].tag));
if(sys_conf.objType == FILE_TYPE){
bzero(tempBuf, FILENAME_SIZE);

//if(((char *) recvMsg->val) = NULL) sprintf(tempBuf, "%s", ((char *)

95

96

recvMsg->val));
//else{
//recvMsg->val = malloc(FILENAME_SIZE * sizeof(char))
//if(recvMsg->val == NULL){ writeLog("malloc return NULL");exit(-1); }

//}
if(recvMsg-=>typ == WRITE){//save the FILE VALUE AS INPROGRESS
int writerindex = recvMsg->pid - sys_conf.serverNum -
sys_conf.readerNum;
writelt=1;
snprintf(recvMsg-=>val, FILENAME_SIZE,
"INPROGRESS.%d.%d.%d.(%d.%d.%d).data",
recvMsg->pid,sys_conf.id,recvMsg-=>objld,recvMsg->tag.ts +

1,recvMsg->tag.wid,recvMsg->tag.wc);

writeLog("WRITE recvMsgVal %s", recvMsg-=>val);

//add new ftag+value in the inprogress set(this is also done in the process
function)

state[recvMsg-=objld].inprogress[writerindex].tag.ts =
recvMsg->tag.ts;

state[recvMsg-=objld].inprogress[writerindex].tag.wid =
recvMsg->tag.wid;

state[recvMsg-=objld].inprogress[writerlndex].tag.wc =
recvMsg->tag.wc;

recvMsgVal(my_data->newSckt, recvMsg, writelt, TRUE);

Yelse if(recvMsg-=typ == INFO || recvMsg->typ == READ){
//writeIt=1;
if(Ccm > 0){
writelt = 1;
snprintf(recvMsg->val, FILENAME_SIZE, "%d.%d.data",
sys_conf.id, recvMsg-=objld);
Yelse writelt = 0;

writeLog("READ recvMsgVal %s, writelt=%d", recvMsg->val,

writelt);
recvMsgVal(my_data->newSckt, recvMsg, writelt, FALSE);
¥
snprintf(recvMsg->val, FILENAME_SIZE, "%s", tempBuf);
//means that msg->tag > state->tag, update value
¥
b
by
¥

//else if(recvMsg->typ == INFO X
//shutdown the connection so no further reading from server on sck
//shutdown(my_data->newSckt, SHUT_RD);

1/}

//process buf and output msg

/*, &state, servers, quorumSystem, &sys_conf, &sendMsg*/

//always update the count var that indicates the message freshness

//if (state[recvMsg->objId].fail == FALSE && recvMsg->cnt >= state[recvMsg->objId J.cnt[
recvMsg->pid I

// state[recvMsg->objId].cnt[recvMsg->pid] = recvMsg->cnt;

//}

97

/*
if (pthread_mutex_lock(&state_mutex) I= 0 X
printf("unable to lock state_mutex");

}
*/

//OPTIMIZATION?? maybe only WRITE request should lock
if(pthread_spin_trylock(&process_lock)!=0){
printf("unable to lock state_mutex™);
s
process(recvMsQ);
if(pthread_spin_unlock(&process_lock)!=0){
printf("unable to lock state_mutex");
¥
/*
if (pthread_mutex_unlock(&state_mutex) I= 0){
printf("unable to unlock log_file_mutex");
¥/

//Send a response

sendRes(my_data-=>newSckt, recvMsg /*, &state, &sendMsg*/);
free(recvMsQ);

//==>sleep(1);

shutdown(my_data->newSckt, SHUT_RDWR);
close(my_data->newSckt);

writeLog("close sckt:%d", my_data->newSckt);
//--?free(recvMsg);

//sleep(3);

writeLog(*Closing serve_thread™);

return(NULL);

Appendix D

Writer.c: WriteObject function

//returns intValue as integer value written
void writeObject(msg_t msgType, int objectld, state_ t*objectState, int*
intval, obj_t objType, alg_t algType) {
data_t* quorum_data=NULL; //threads data
int i=0, quorum_size=0, cnter = 0,m=0;
pck_t* pckToSent=NULL;
bool_t isComplete=FALSE;
char*createFileName;
pckToSent = (pck_t *) create_message(msgType, objType, algType);
1171171771717777777117777777177771777717777
//effect of write
if(objectState->fail == FALSE && objectState->status == IDLE) {
//status<--active
objectState->status = ACTIVE;
//phase<--W
objectState->phase = WRITE;
//opc <--opc + 1, also used by reader for
//counting ops
objectState-=opCnt++;
//the write operation counter
objectState->tag.wc++;
//pCount <-- pCount + 1

//value<--v
stateToMessage(pckToSent, objectState);
if(sys_conf.objType == INT_TYPE){

pckToSent-=ival = randomVal;
pckToSent-=ipval = objectState->tag.ival;
Yelse{
//no need to do anything here filename does not change.
//init msg
if(sys_conf.objType == FILE_TYPE){
createFileName = create_file(objectld, randomVal);
bzero(pckToSent->val, FILENAME_SIZE);
snprintf(pckToSent->val, FILENAME_SIZE, "%s", createFileName);
free(createFileName);
Yelse if(sys_conf.objType == INT_TYPE){
pckToSent-=>ival = randomVal;
pckToSent->ipval = objectState->tag.ival;
} .
write_cnt++;
pckToSent->cnt = write_cnt;
b
¥

//2. send to all servers

//communicate(WRITE, threads_data);

quorum_data = communicate(pckToSent, quorum_data, &quorum_size,
&isComplete);

98

99

if(isComplete == FALSE){
for(i =0 ;i< quorum_size; i++)
if(quorum_data[i J.srvAck == FALSE)
cnter++;
writeLog("1st Round Communicate FAILED (servers Timeout/Offline = %d
)", cnter);
writeResult("1 %d %d %d",
objectState->tag.ts,
objectState->tag.wid,
objectState->tag.wc
);
objectState->status = IDLE;
free(pckToSent);
return;
¥
//3. process buf and output msg
if(process(objectState, quorum_data, quorum_size) == TRUE){
//objectState->ipval = objectState->tag.ipval = objectState->tag.ival;
//objectState->ival = objectState->tag.ival = randomVal;
if(sys_conf.objType==INT_TYPE)
*intVal = objectState-=>ival;
if (objType == INT_TYPE)//to do check wid
writeLog('object WRITE:tag(%d,%d,%d)v:%d", objectState->tag.ts,
objectState->tag.wid, objectState->tag.wc,objectState->tag.ival);
else
writeLog(*'object WRITE:tag(%d,%d,%d)", objectState->tag.ts,
objectState->tag.wid, objectState->tag.wc);
Yelse writeLog("WRITE:process FAILED");
free(pckToSent);
objectState->status = IDLE;
[17117177171777717717777777771777777777777777777777777717777117777777

by

Appendix E

Reader.c: readObject function:

void readObject(msg_t msgType, int objectld, state_t*objectState, int* intval,
obj_t objType, alg_t algType) {
data_t* quorum_data = NULL; //threads data
int i, quorum_size, cnter = 0, m = 0;
pck_t* pckToSent;
bool_t isComplete = FALSE;
int serverResCount=0;
pckToSent = (pck_t *) create_message(msgType, objType, algType);
sys_conf.objld = objectld;
//effect of read
if (objectState->fail == FALSE && objectState->status == IDLE) {
objectState->phase = READ;
objectState->status = ACTIVE;
objectState-=opCnt++; //read operations counter
¥
//2. send to all servers READ request and
//get received acks tags in quorum_data,
stateToMessage(pckToSent, objectState);
quorum_data = communicate(pckToSent, quorum_data, &quorum_size,
&isComplete);
if(isComplete == FALSE){
for (i = 0; i < quorum_size; i++) {
if (quorum_data[i J.srvAck == FALSE) {
cnter++;
¥
by

writeLog("1st Round Communicate FAILED (servers Timeout/Offline =
%d)", cnter);
writeResult("1 %d %d %d",
objectState->tag.ts,
objectState->tag.wid,
objectState->tag.wc
);
objectState->status = IDLE;
free(pckToSent);
return;
b
process(objectState, quorum_data, quorum_size);
//3. process quorum_data
//select valid value and received it
if(sys_conf.objType==INT_TYPE)
*intVal = objectState-=>ival;
if (objType == INT_TYPE)
writeLog('object READ:tag(%d,%d,%d) v:%d", objectState->tag.ts,
objectState->tag.wid, objectState->tag.wc,objectState-=ival);
else
writeLog('object READ:tag(%d,%d,%d)", objectState->tag.ts, objectState-
>tag.wid, objectState->tag.wc);

100

101

b

free(pckToSent);
objectState->status = IDLE;

Appendix F

A list of all PlanetLab nodes used for client follows in Table 18.

Table 18: Client PlanetLab Nodes

ait05.us.es

aladdin.planetlab.extranet.uni-passau.de

deimos.cecalc.ula.ve

ds-pl3.technion.ac.il

dschinni.planetlab.extranet.uni-passau.de

orbpll.rutgers.edu

146-179.surfsnel.dsl.internl.net

147-179.surfsnel.dsl.internl.net

cs-planetlab3.cs.surrey.sfu.ca

kc-sce-plabl.umkc.edu

IsirextpcO1.epfl.ch

netapp7.cs.kookmin.ac.kr

nodel.lbnl.nodes.planet-lab.org

nodel.planetlab.albany.edu

nodeb.howard.edu

pll.pku.edu.cn

plab-1.sinp.msu.ru

plabl-c703.uibk.ac.at

plabl.cs.ust.hk

plab2-itec.uni-klu.ac.at

plab2.cs.ust.hk

102

planetlab-1.cs.uh.edu:0:1

planetlab-1.imperial.ac.uk:0:1

planetlab-1.iscte.pt:0:1

planetlab-2.cs.auckland.ac.nz

planetlab-2.pdl.nudt.edu.cn

planetlab-4.EECS.CWRU.Edu

planetlabO1.erin.utoronto.ca

planetlab01.sys.virginia.edu

planetlab03.cs.washington.edu

planetlabl.byu.edu

planetlabl.cs.purdue.edu

planetlabl.cs.uiuc.edu

planetlabl.csg.uzh.ch

planetlabl.eecs.wsu.edu

planetlabl.ifi.uio.no

planetlabl.informatik.uni-goettingen.de

planetlabl.jhu.edu

planetlabl.williams.edu

planetlabl4.millennium.berkeley.edu

planetlab2.arizona-gigapop.net

planetlab2.cs.uoregon.edu

planetlab2.eecs.northwestern.edu

planetlab?2.hiit.fi

planetlab2.itwm.fhg.de

planetlab2.sfc.wide.ad.jp

103

planetlab2.williams.edu

planetlab3.di.unito.it

planetlab3.singaren.net.sg

planetlab4.csres.utexas.edu

planetlab4.wail.wisc.edu

planetlab6.csres.utexas.edu

planetx.scs.cs.nyu.edu

plil-pa-6.hpl.hp.com

plnode-03.gpolab.bbn.com

pnodel.pdcc-ntu.singaren.net.sg

ricepl-1.cs.rice.edu

ttu2-1.nodes.planet-lab.org

vicky.planetlab.ntua.gr

vn4.cse.wustl.edu

104

Appendix G

The script code that parses downloaded results and generates
averages needed for the experiments graphs the SFW version follows in table [] (a

similar script is used for the SIMPLE algorithm case).

#1/bin/bash

keyword="fail? ts wid wc fast? time(cpuTime) time(realTime)"
#

R R R R R R R b R R R R R b 2 R P R P R R R R R R b R R R R R R R R Rt R R R R R R b R Rt 2t

*%x

find_and_replace_in_files.sh

This script does a recursive, case sensitive directory search and replace of files

To make a case insensitive search replace, use the -i switch in the grep call

uses a startdirectory parameter so that you can run it outside of specified directory - else this
script will modify itself!

#

AR KR AR A A A A A A KR AR AR AR R A R A R A KK KA KA KA KA A AR AR A A AR AR KA A AR A AR AARAARAARRARRRRRRRKRKKX

*%x

AEXXAXkIkAXkkkkkkxkx Change var‘iables Her‘e XXXk kkkkkkx

startdirectory=%$1

searchterm=""fail? ts wid wc fast? time(cpuTime) time(realTime)"
replaceterm="""

if [[$# -eq 0 11; then
echo -e "Please provide a directory name in the current folder\n
exit

fi;

AAAKAAAAXAAXAAXARAAAXAAXAXXAXAKAXAXA XX AR KX XIX IRk kkkkkkkkx

Floating point number functions.

BARBHBHBHBHH BB AR AR BB R AR R R AR R AR R R R
HHAHBHBHBHBHRHHH
Default scale used by float functions.

float_scale=6

HRARBHBHBHBHHBHBHR AR HR AR AR R AR R R R
HAHBHBHBHB AR
Evaluate a floating point number expression.

function float_eval()

{

local stat=0

105

106

local result=0.0
if [$# -gt 0 1]; then
result=
stat=%$?
if [[$stat -eq 0 && -z "$result" 1]; then stat=1; fi
fi
echo $result
return $stat

BHBHARHBHHRHBH AR AR AR AR AR R AR R R AR R R R R R
HHABHHBHBRHRHBIEH
Evaluate a floating point number conditional expression.

function float_cond()

{
local cond=0
if [[$# -gt 0]]; then
cond=
if [[-z "$cond" 1]; then cond=0; fi
if [["$cond” '=0 && "$cond" '= 1]]; then cond=0; fi
fi

local stat=%$((cond == 0))
return $stat

echo "* Search and Replace in Files Version .1 *"
echo TAAXAAAXAALAAAAXAALAAAAAAAAAAAAAAAAAAAAALAAAAAAAXT
for file in
do
sed -e "s/$searchterm/$replaceterm/ig" $file > /tmp/tempfile.tmp
mv /tmp/tempfile.tmp $file
echo "Modified: * $file
done
echo " *** Yay! All Donel *** *

operations=0
successfullOperations=0
fastOperations=0

column=0

percentageOFfast=0
totalExecTime=0

totalCpuTime=0

cat $1/* > r.txt

sed "s/$/ -1/" r.txt = results.txt

set -f
foriin
do
if [$i == -117]; then

column=$((0-1))

107

fi;
case "$column™ in
0)
operations=$((operations + 1))
isFail=$i
if [$isFail == 0]; then
successfullOperations=%$((successfullOperations + 1))
fi;
1)
ts=$i
2)
wid=$i
3)
wc=3$i
4)
if [$isFail == 0]; then
isFast=%$i
fi;
if [$isFail == 1]; then
isFast=2
fi;
if [$isFast == 1]; then
fastOperations=%$((fastOperations + 1))
fi;
5)
if [$isFail == 0]; then
totalCpuTime=
fi;
6)
if [$isFail == 0]; then
totalExecTime=
fi;
esac

#counter=$(echo "$counter+1" | bc -Iq)
column=$((column + 1))
done
failedOperations=$((operations - successfullOperations))
avgCpuTime=
avgExeTime=
percentageOFfast=

percentageOFfail=

echo -e "operations=$operations\n” >> summary_$1.txt

echo -e ""successful lOperations=$successful IOperations\n"
summary_$1.txt

echo -e "failedOperations=$failedOperations\n' =>> summary_ $1.txt

108

echo -e
echo -e

echo -e "'
"totalCpuTime=$totalCpuTime\n"” =>> summary_$1.txt
‘avgCpuTime=$avgCpuTime\n" =>> summary_$1.txt
‘totalExecTime=$totalExecTime\n" >> summary_$1.txt
‘avgExeTime=$avgExeTime\n" >> summary_$1.txt

echo -e

echo -e '
echo -e '
echo -e '

set +f

“"percentageOFfai l=$percentageOFfai I\n" >> summary_$1.txt
"fastOperations=$fastOperations\n’” >> summary_$1.txt

percentageOFfast=$percentageOFfast\n" >> summary_$1.txt

