

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SIENCE

EVALUATION OF ALGORITHMS IMPLEMENTING MULTIPLE

WRITER MULTIPLE READER ATOMIC REGISTERS ON

PLANET-LAB

Andreas Savva

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

At the

University of Cyprus

Recommended for Acceptance

By the Department of Computer Science

August, 2010

i

ABSTRACT

A lot of research has been conducted for studying efficient data survivability in

distributed storage systems. A challenging question that researches attempt to

address is “How can a distributed system efficiently maintain data consistency among

the data replicas despite system asynchrony and failures?” Recent work introduced

algorithm SFW where for the first time in the Multiple Writer Multiple Reader setting it

allows for both read and write operations to be fast (the operation takes one

communication round-trip to complete) but it does so by compromising the system

robustness. A Server Side Ordering (SSO) technique and reader/writer predicates

are utilized by algorithm SFW to allow fast operations.

The goal of this thesis is to evaluate the efficiency and practicality of algorithm

SFW in a realistic network environment. For this purpose, a heuristic method is used

to implement the reader and writer predicates in order to efficiently search the

solution space. The algorithm is implemented in C and Sockets programming and an

empirical evaluation of the algorithm is performed on PlanetLab, in respect to the

percentage of fast operations, CPU consumption and operation latency. The

efficiency of algorithm SFW is compared to that of algorithm SIMPLE - a robust,

reliable algorithm that always performs slow operations (the operation takes two

communication rounds-trips to complete). It is shown that the efficiency of algorithm

SFW is minor over the SIMPLE algorithm in terms of operations latency, nevertheless

network resources are reduced since they are essentially traded for CPU time

consumption. Furthermore, the experiments suggest that algorithm SFW is best

suited in environments that exhibit large communication delay, or when the number of

readers and writers is relatively small.

ii

APPROVAL PAGE

Master of Science Thesis

EVALUATION OF ALGORITHMS IMPLEMENTING MULTIPLE

WRITER MULTIPLE READER ATOMIC REGISTERS ON

PLANET-LAB

Presented by

Andreas Savva

Research Supervisor

 Chryssis Georgiou, Assistant Professor

Committee Member

 George Pallis, Lecturer

Committee Member

 Demetris Zeinalipour, Lecturer

University of Cyprus

August, 2010

iii

Acknowledgements

I would like to thank my research supervisor, Assistant Professor Chryssis

Georgiou for providing me the opportunity to work with him. He was supporting and

guiding me throughout the completion of this thesis. I would also like to thank Nicolas

Nicolaou for his insight and ideas during the implementation. Finally, I am grateful to

my partner and colleague Ioanna Savva for her support and help during the writing of

this thesis.

iv

TABLE OF CONTENTS

ABSTRACT ... i

Introduction .. 1

1.1 Motivation and Related Work ... 1

1.2 Contribution .. 4

1.3 Chapter breakdown .. 5

Background .. 6

2.1 Atomic Read/Write Object .. 6

2.2 Quorum Systems .. 8

2.3 Prior Work ... 10

2.4 PlanetLab ... 16

MWMR Algorithms ... 17

3.1 Algorithm SIMPLE .. 17

3.2 Algorithm SFW ... 20

3.2.1 Server .. 23

3.2.2 Reader ... 24

3.2.3 Writer ... 25

Implementation ... 28

4.1 Design .. 28

4.2 Communication ... 30

4.3 Server ... 34

4.4 Writer .. 35

4.5 Reader .. 37

4.6 Code structure and Compilation ... 37

v

4.7 Read/write predicates of Algorithm SFW .. 39

4.7.1 Reader Predicate ... 39

4.7.2 Writer Predicate ... 41

4.8 Correctness and Robustness ... 43

Experimentation Setup .. 46

5.1 Methodology and configuration .. 46

5.2 Executing on PlanetLab .. 48

5.3 Problems and Limitations ... 52

Empirical Evaluation .. 57

6.1 Experiments and Scenarios .. 57

6.1.1 Experiment 1: Number of readers and writers effect 58

Scenario 1: Number of Writers ... 58

Scenario 2: Number of Readers ... 58

Scenario 3: Operation Interval .. 58

6.1.2 Experiment 2: Quorum Intersection Degree 59

Scenario: Effect of Quorum Intersection Degree 59

6.1.3 Experiment 3: Comparison of the SFW with the SIMPLE

algorithm ... 59

Scenario: Increasing readers and writers ... 60

6.2 Results .. 60

6.2.1 Experiment 1 .. 60

6.2.2 Experiment 2 .. 70

6.2.3 Experiment 3 .. 73

6.3 Conclusions .. 79

Epilogue .. 81

vi

Bibliography ... 84

Appendix A ... 88

Appendix B ... 91

Appendix C ... 95

Appendix D ... 98

Appendix E .. 100

Appendix F .. 102

Appendix G ... 105

vii

LIST OF TABLES

Table 1: the SFW reader predicate, where |ࢢ| is rounded down to the nearest integer

[12]. .. 25

Table 2: The writer predicate for the SFW algorithm, where |ࢢ| is rounded down to

the nearest integer [12]. ... 27

Table 3: Message header fields description ... 31

Table 4: Messages format used in communication between clients and servers 32

Table 5: communicate function details ... 33

Table 6: Message creation functions used in client and server implementation 33

Table 7: Main server functions ... 35

Table 8: Writer process main functions .. 36

Table 9: Pseudo code for the reader predicate .. 42

Table 10: Test cases .. 44

Table 11: PlanetLab nodes used for server processes .. 48

Table 12: PlanetLab machines minimum hardware specifications [28] 48

Table 13: example of pssh command .. 50

Table 14: Example of steps for starting a scenario .. 53

Table 15: Example of steps to download results .. 54

Table 16: PlanetLab kill auto send message example ... 55

Table 17: example of configuration file: confic.ini ... 90

Table 18: Client PlanetLab Nodes .. 102

viii

LIST OF FIGURES

Figure 1: Atomicity Example [17] .. 7

Figure 2: Examples of quorum system types. Circles represent servers and the black

line surrounds the servers that belong to a quorum. .. 9

Figure 3: the writer processes communication round in the SWMR model [17] 12

Figure 4: Atomicity violation in the absence of reader second communication round

[17] ... Error! Bookmark not defined.

Figure 5: Writer protocol [17] .. 18

Figure 6: Reader Protocol, the		ࢍࢇࢀ࢞ࢇ࢓	denotes the maximum tag that a reader

process receives from the quorum. [17] ... 19

Figure 7: uniqueness of the SIMPLE tags [17] ... 19

Figure 8: non-uniqueness of the SFW algorithm tags [17] ... 22

Figure 9: Writer communication messages and logic [17] .. 26

Figure 10: write operation of the SIMPLE algorithm. [17] ... 26

Figure 11: pseudo code for the reader predicate [12] .. 41

Figure 12: writer predicate implementation pseudo code [12] 43

Figure 13: PlMan slice login, it request AuthString and PrivateKeyPassword 49

Figure 14: PlMan host selection screen on the right and Overview of connected

hosts to the left. .. 50

Figure 15: Percentage of fast write operations with 80 readers 61

Figure 16: Percentage of fast read operations with 80 readers 62

Figure 17: client performance: average operation latency ... 63

Figure 18: percentage of client timeout failures ... 63

Figure 19: Percentage of fast write operations as the readers increase 65

Figure 20: percentage of fast read operations as the readers increase 66

Figure 21: The average operation latency while reader processes increase and

writers are fixed .. 66

ix

Figure 22: percentage of failures from timeouts while reader processes increase and

writers are fixed .. 67

Figure 23: Effect on % of fast read operations, on the vertical axis is the percentage

and on the horizontal axis there are two categories, (1)80 readers and 10 writers, (2)

10 readers and 80 writers ... 68

Figure 24: Effect on % of fast write operations, on the vertical axis is the percentage

and on the horizontal axis there are two categories, (1) 80 readers and 10 writers, (2)

10 readers and 80 writers ... 69

Figure 25: The percentage of fast write operations with 40 readers and 40 writers,

while ࢔ increases. .. 71

Figure 26: The percentage of fast read operations with 40 readers and 40 writers,

while ࢔ increases .. 72

Figure 27: 40 reader and 40 writer time of execution in respect to 72 ࢔

Figure 28: Percentage of fail operations due to timeouts in communication in respect

to 73 ... ࢔

Figure 29: Read operations CPU time comparison of the SIMPLE with the SFW

algorithm... 75

Figure 30: Write operations CPU time comparison of the SIMPLE with the SFW

algorithm... 75

Figure 31: Read operation latency comparison of the SIMPLE with the SFW algorithm

 ... 76

Figure 32: Read operations fail% and fast% for the SFW algorithm 76

Figure 33: Write operations operation latency comparison of the SIMPLE with the

SFW algorithm.. 77

Figure 34: Write operations %fail and %fast for the SFW algorithm 78

1

Chapter 1

Introduction

1.1 Motivation and Related Work

A distributed system is a collection of autonomous processes which interact

by sending and receiving messages, but appears to its users as one compact logical

system. Sharing data in distributed systems is not merely natural system functionality

but a core requirement by its users. Processes can share data in a reliable way since

data are replicated over multiple locations on inexpensive basic storage units (e.g.,

hard disks, servers, tapes).

Survivability of data is crucial in systems and applications. Distributed

systems offer distributed storage of data on geographically diverse locations

providing more robustness and fault-tolerance than single box servers. On the other

hand how can a distributed system efficiently maintain data consistency among the

data replicas despite system asynchrony and failures? System component failures of

hardware such as hard disks, network links, routers and software are frequent. It is a

great challenge for a distributed storage system to be able to continue sharing data in

an unpredictable environment.

A common approach to ensure data survivability on single box server

machines is data replication using redundant array of inexpensive disks (RAID) [1].

Consider that server machines can also fail if any of its hardware fails (e.g., network

interface) and hence the services it provides will not be available to clients. Single

box servers are single point of failures. RAID may avoid data loss from common disk

failures but it still resides on a physical location exposed to natural disasters.

2

Distributed storage systems may overcome the problems of single box server

systems by exploiting redundancy. Still, each of the servers in the system is exposed

to the same failures as a single box system but not to catastrophic site failures. The

more servers the distributed storage system has the more robust, fault-tolerant and

reliable it is but with added cost.

Researchers have been addressing the survivability issue by constructing

efficient read and write operations to access atomic registers. Atomic registers

represent replicated data objects on distributed nodes. Any data object is perceived

by the system and its users as a single data object with sequential access

(linearizability) to it, regardless of the multiple replicas of the object existing in the

system. Have in mind that atomic registers [2] [3] [4] are different from atomic

operations commonly found in concurrency control of database systems, transaction

processing (serializability properties [5] [6]).

The efficiency of read and write operations is measured as the number of

communication rounds between the system processes, which are classified as

reader, writer and server processes. A communication round starts when a client

sends an operation request to all the servers and ends when the client has received

“enough” of the server responses.

Faster distributed algorithms that efficiently maintain data consistency among

the data replicas despite system asynchrony and failures have a broad range of

applications. Pioneers in the message-passing model in [7] implemented an atomic

Single Writer Multiple Reader (SWMR) register in which write operations need one

(1) communication round (fast) and read operations need two (2) communication

rounds (slow) to complete. In the SWMR model any client process may fail, while

only a minority of servers may fail.

3

Continuing on the work of [7], the authors of [8] [9] presented a Multiple Writer

Multiple Reader (MWMR) register in which read and write operations are slow and

generalized majorities to quorums. The servers are organized into a quorum system:

a collection of server sets (quorum) in which every two intersect with each other. A

variation of the algorithm of [8] is referred to as algorithm SIMPLE in the context of

this thesis.

Further research [10] concluded that fast read and write operations are

possible in the SWMR but set a bound on the number of reader processes in the

system. A bound that was later removed in [11], allowing an unbound number of

readers but with the overhead of one (1) slow read operation per write operation. The

register implementations in which fast and slow operations coexist are called semi-

fast.

 Fast or semi-fast operations were shown as not possible in the MWMR model

[11]. In [12] two new implementations (algorithms CwFr and SFW) show that under

certain constrains both read and write operations can be fast while atomicity is

preserved in the presence of asynchrony and crashes. The write operations in

algorithm CwFr need two communication rounds but it optimizes on read operations

by taking advantage of quorum views. Quorum views [13] are a tool used to analyze

the tag participation in the quorum. A tag is a tuple that essentially consists of a

timestamp, a process identifier and a value. The SFW algorithm exploits a new

technique called Server Side Ordering (SSO) which allows for fast read and write

operations in certain cases.

4

1.2 Contribution

The goal of this thesis is to evaluate the efficiency and practicality of

algorithms SIMPLE and SFW.

Algorithm SFW uses predicates at the client side to decide if operations need

to proceed to a second communication round or not. These predicates search a huge

solution space in order to decide. A heuristic method is used to implement the

predicate. Our experiments demonstrate that the solution space the method searches

can contain a valid answer for the predicate. However, it is possible that if the

heuristic method does not find any answer it is not necessarily the case that a valid

answer does not exist. The precise accuracy of the heuristic method is beyond the

scope of this thesis and is left for future work.

An empirical evaluation of algorithms SFW and SIMPLE is contacted on

PlanetLab [14], which is a global network for testing distributed services. The

algorithms’ performance is compared against their average operation latency (the

total time it takes for an operation to complete) and the percentage of fast operations

(for algorithm SFW).

The SFW algorithm promise of fast operations requires a high intersection

degree on the underlying quorum system which might compromise the SFW

robustness. So, one wonders how would the algorithm actually perform in a realistic

distributed setting where crashes, failures and asynchrony are inherent? PlanetLab

provides such arbitrary network conditions [15], and hence it is suitable to assess the

practicality of algorithm SFW.

 The first of the experiments performed for the empirical evaluation of the

efficiency of algorithm SFW, examines the effect of the number of writers and readers

in the system and their operation intervals. The results from this experiment are then

5

used to subsequent experiments, where the effect of the quorum system intersection

degree is investigated. Finally a comparison of the average operation latency of

algorithms SFW and SIMPLE is given.

 The empirical evaluation of algorithm SFW shows that its implementation is

practically feasible on unreliable distributed systems (such as PlanetLab) and its

performance is reasonable (in the scenarios run) under the extreme conditions of

PlanetLab.

1.3 Chapter breakdown

 In the next chapter, atomic registers and quorum systems are discussed and

an overview of related work is given. In Chapter 3, algorithms SIMPLE and SFW are

described and in Chapter 4 the implementations of the algorithms are explained. In

Chapter 5, the configuration and setup of running experiments on PlanetLab is

presented and in Chapter 6 the results of the empirical evaluation of the algorithms

are illustrated. Finally, in Chapter 7 conclusions and possible future work is presented

on the subject.

6

Chapter 2

Background

 In this chapter the notion of atomicity and quorum systems are defined.

Related work is summarized and a description of PlanetLab is provided.

2.1 Atomic Read/Write Object

An atomic register is an abstract data structure that is defined by a set of

possible values and a set of primitive operations, such as read and write. A process

performs one operation at a time by sending a request to all the servers holding a

replica of the register. To perform a read or write operation on the atomic register two

steps are necessary. The invocation step includes either a read or a write request.

Similarly, the corresponding response step includes either a read or a write

acknowledgement [13]. The operation is considered complete if both steps are

performed [4].

An operation ߙ precedes an operation ߚ if ߙ completes before	ߚ’s invocation.

Any operations ߙ and ߚ are considered concurrent if and only if ߙ does not precede ߚ

and ߚ does not precede	ߙ. In other words, two operations are concurrent if neither of

them precedes the other [16]. If two operations are complete, not concurrent and are

invoked by two distinct processes then they are called consecutive [12].

A register guarantees that once a processor reads a particular value, then,

unless the value of this register is changed by a write, every future read of this

re

re

fo

ze

at

ac

co

egister is alw

egisters gua

ollowing prop

1. A read

a.

b.

2. If a re

opera

then ߛ

3. All wri

Consi

ero (0). The

tomic registe

cknowledge

oncurrent it

ways availab

arantee the

perties:

d operation ߜ

the value w

a value wr

ead operatio

tions ߜଶ rea

ଶ does not pߛ

ite operation

der the exa

e first exam

er. A read1 o

ment for the

is possible t

ble, regardle

atomicity (li

 returns ߜ

written by th

ritten by a w

on ߜଵ reads

ads a value

precedes ߛଵ

ns are totally

Figure 1:

mples in Fig

ple shows a

operation is

e write1 ope

that the valu

ess of proce

inearizability

e most rece

rite operatio

s a value fro

from a writ

.

y ordered.

Atomicity Exa

gure 1 wher

a write1 ope

invoked afte

eration is rec

ue returned

essors slow-

y) [4] of ope

ent preceding

on that is con

om a write

te operation

ample [17]

re initially the

eration that w

er the write1

ceived. Sinc

by the read1

-down or fa

erations by

g write, or

ncurrent with

operation ߛ

n ߛଶ and ߜଵ

e atomic reg

writes the v

1 operation b

ce the two o

1 operation w

ilures. Atom

satisfying th

h ߜ

ଵ and a reaߛ

precedes ߜ

gister value

value 8 to th

but before th

operations a

will not be th

7

mic

he

ad

 ,ଶߜ

is

he

he

re

he

8

value written by the write operation despite the fact that it was invoked after it. On the

other hand read2 must read the value 8 since it is invoked after the write1 completes.

The second example shows a write2 operation that writes the value 8 and is

concurrent with read3 and read4. It is possible for read3 to read the value 8 or the

previous value (0) but read4 must read the same value as read3 since its invocation

starts after read3 completes, otherwise atomicity is violated.

 Finally, the atomic register must be wait-free [2], which guarantees that if a

non-faulty process invokes an operation then the operation completes in a finite

number of steps, regardless of the status (execution speeds or failures) of the other

processes.

2.2 Quorum Systems

A quorum is a group from a set of distributed nodes, typically servers [18]. A

quorum system is a collection of quorums, in which any two quorums intersect with

each other. Since any two quorums intersect, the quorum system is characterized as

a pairwise (2-wise) quorum system. Formally a quorum system ℚ is defined as,	ℚ ൌ

ሼ	ܳ:	ܳ ⊆ ܵሽ	ݏ. .ݐ ∀	ܳ௜, ܳ௝ ∈ ܳ: ܳ௜ ∩ ܳ௝ ് ∅, where ܵ ൌ ሼݏଵ, ଶݏ 	݊) ௡ሽݏ	… ൒ 1) is the set of

servers.

There are different types of quorum systems [19], some examples can be

seen in Figure 2: Examples Of Quorum System Types:

(a) A matrix type where servers form a grid and a combination of a row with a

column defines a quorum. All quorums have the same size of		2ඥ|ܵ| െ 1,

where ܵ is the set of servers.

(b) A majority type quorum system where each quorum size must be at

least	ڿ	ሺ|ܵ| ൅ 1ሻ/2	ۀ, where ܵ is the set of servers.

sy

ex

de

dy

q

a

ca

th

im

in

to

q

q

(c) A

one co

Quoru

ystem is sta

xecution sta

eployment, w

ynamically d

Figure 2: E

Quoru

uorum inters

n ݊-wise qu

all ݊ the inte

he quorums

Quoru

mplementatio

nto intersecti

o communic

uorum	Q. O

uestion. Thu

crumbling w

omplete row

um systems

atic when it

arts. A dyn

which mean

during execu

Examples of qu

sur

um systems

sects the m

orum system

ersection deg

in A is deno

ums are w

ons. In parti

ing quorums

cate with all

Only the nod

us nodes ou

wall quorum

w and one se

can also be

is pre-comp

namic quoru

ns that proce

ution.

uorum system

rounds the se

specializatio

inimum with

m [12] if for

gree of	ℚ, an

oted by	ܫ஺ ൌ

widely used

icular the se

s. Hence it is

l the nodes

des of Q re

utside	Q are

system type

erver from ea

e classified

puted and it

um system

ess (server)

m types. Circle

ervers that bel

ons are the ݊

h ݊ other quo

any	ܣ	 ⊆ ℚ,

nd for a set

⋂ ܳொ∈஺ .

for ensuri

ervers holdin

s not necess

 but only w

eceive the lo

more relaxe

e where a q

ach row belo

as static an

does not ch

may recon

participation

es represent s

long to a quor

݊-wise quoru

orums. A qu

.ݏ .ݐ |ܣ| ൌ ݓ	݊

of quorums

ng consiste

ng the regist

sary for clien

with the nod

oad related

ed and it res

quorum is de

ow it.

nd dynamic [

hange after

nfigure its i

n in quorum

servers and th

rum.

um systems

uorum syste

஺ܫ	݁ݒ݄ܽ	݁ݓ ്

ܣ ⊆ ℚ, the i

ency in ato

ter replica a

nts accessin

des that bel

 with the d

sults to high

efined by an

[8]. A quoru

the algorith

nitial quoru

s can chang

e black line

, in which an

em ℚ is calle

് W .ݏ݈݀݋݄	∅

ntersection

omic regist

are partitione

ng the regist

long to som

data object

her availabili

9

ny

m

m

m

ge

ny

ed

We

of

er

ed

er

me

in

ity

10

of the service overall. Also the basic technique to ensure consistency of the data in

distributed storage systems is to notify some quorum	Q of the update made. When a

client accessing the data contacts some quorum	Q′, it is ensured that it learns about

the earlier update since quorums intersect.

It is not obvious how to efficiently deploy a theoretically good quorum system

in a real network system. By first designing the quorum system, and then determining

a good deployment, it seems possible to obtain both good network performance as

well as good quorum system properties.

The quorum deployment problem is studied in [20] as a new combinatorial

optimization problem. There are two parts to solving this problem: mapping a quorum

system to real nodes and mapping from nodes to quorums. The general quorum

deployment problem is defined as: given a quorum Q, and a distributed network C,

the goal is to determine a deployment that has optimal cost. It is shown [20] that the

general deployment problem cannot be approximated and that majorities is the most

simple deployable quorum system in all networks. The quorum system deployment

used in this thesis is presented in Chapter 4.

2.3 Prior Work

In the message-passing model, the processes communicate via messages

sent through communication links. Each process has a unique identifier and is

located at one node of the network and can only send messages to processes

located in directly neighboring nodes. We consider three sets of processes: R

readers, W writers and S servers communicating through reliable TCP channels in

the asynchronous message passing model.

11

The network setup considered is unpredictable; processes may crash and

there is asynchrony. A process may stop executing at any point of the computation

with no prior notification and slow processes cannot be differentiated from crashed

ones. Any of the clients may crash or get disconnected; for ܵ servers where ܶ servers

may fail by crashing, up to half of the servers may crash (ܶ ൏
ௌ

ଶ
) when considering

majorities. In the case of quorums at least one quorum must not crash. Asynchrony

means that there are no guarantees in message delays and relative process speeds

(some process may be slower than others).

The Single-Writer, Multiple-Reader (SWMR) register implementation is

presented by [7] in the message-passing model. The clients include only a single

process for write operations and multiple processes for read operations while all the

servers hold a register replica. Clients do not communicate between them and neither

do servers. Clients only communicate with servers through communication rounds.

A process ݌ performs a communication round for an operation ߨ if:

 to a subset of processes ߨ sends a message ݉ regarding ݌ .1

2. Any process that receives ݉, replies to ݌

3. Process ݌ collects “enough” of such replies and proceeds accordingly.

A process collects “enough” replies when a quorum of servers reply. The SWMR

model in [7] considers “enough” server replies when a majority of them reply.

A tag-value pair is introduced to impose an order on the read operations. The

tag consists of a label which basically is a positive number of type integer used as a

timestamp. To support asynchrony the timestamp has nothing to do with real time

and logical clocks, it is just a number that is incremented only by the writer process

each time it performs a write operation. Essentially this label is used to define the

order of write operations and which write value is read by the read operations.

w

co

p

th

Fi

co

(o

se

In

th

th

S

o

It take

writer increm

ommunicatio

rocess incre

hen it waits u

igure 3: the w

The re

ommunicatio

on the regist

An ex

econd comm

nitially the ta

he register w

he value of t

Since it does

peration ha

es one comm

ments the t

on round in

ements the t

until the majo

riter processe

eaders rece

on round an

ter located o

xample of ho

munication

ag of the reg

with tag	൏ 2, ܸ

the register

not do a se

ving read t

munication r

timestamp a

the SWMR

timestamp in

ority of the s

es communica

eive the late

d they need

on the server

ow atomicity

round is sh

gister is	൏ 1,

ଵܸ ൐. While

from a majo

cond commu

he tag	൏ 2,

round to com

and sends

R model is s

n its tag and

servers reply

ation round in

st tag from

d a second c

rs) the value

can be viola

hown in Err

଴ܸ ൐. A slow

the write op

ority of serve

unication rou

ଵܸ ൐. A sec

mplete a wri

the tag to

shown in Fi

d sends a me

y to complete

 the SWMR m

a majority o

communicati

e obtained in

ated if the re

ror! Referen

w writer attem

peration is in

ers that alrea

und to write

cond reader

ite operation

o a quorum

gure 3, whe

essage to a

e the write o

model [17]

of servers d

on round to

n the first rou

eader does

nce source

mpts a write

 progress, a

ady has the

this value it

r reads the

1

n in which th

m. The writ

ere the writ

ll the server

operation.

uring the fir

actually wri

und.

not perform

e not found

e operation o

a reader read

tag	൏ 2, ଵܸ ൐

completes i

value of th

12

he

er

er

rs,

rst

te

 a

d..

on

ds

൐.

its

he

re

w

ta

Fi

in

m

q

us

ch

O

no

to

th

va

w

w

a

egister from

write operatio

ag	൏ 1, ଴ܸ ൐.

igure 4: Atom

The

ntroduced in

multiple write

uorum syste

ses a dyna

hanges on

Objects (RAM

o reconfigur

o complete a

he second co

alue read in

write” [3] [22]

The fo

wait-free atom

nd writers

a majority o

on is still in

 This violate

icity violation

Multiple-Wri

n [8] [9]. It

er processes

em (specific

amic quorum

the server

MBO) [9], [2

ration, read a

and more oth

ommunicatio

n the first ro

[23].

olklore belief

mic SWMR

perform onl

of servers t

progress. T

es the secon

 in the absenc

iter Multiple

is similar to

s as well. Th

ally a gener

m system w

population.

1] implemen

and write op

herwise. In t

on round of

und. This l

f is shown n

register im

ly one com

hat the new

The read ope

nd atomicity p

ce of reader se

e-Reader (M

o the SWMR

he authors im

ralization of

where recon

The Recon

nts a reconfi

perations alw

the MWMR

the read ope

ed to the fo

not always be

mplementatio

mmunication

w tag has ye

eration is co

property me

econd commu

MWMR) reg

R with the

mplemented

majority se

nfigurations

nfigurable A

iguration ser

ways take tw

model, likew

eration is ne

olklore belief

e true in [10

on. In a fast

round ope

et to be writt

ompleted ha

entioned in S

unication roun

gister imple

exception t

d atomic reg

ts). Their im

occur to a

Atomic Mem

rvice. Even

wo communi

wise to the S

eeded to act

f that “atomi

0], which intr

t implement

rations. To

1

ten, while th

aving read th

Section 2.1.

nd [17]

ementation

hat there a

isters using

mplementatio

accommoda

mory for Bas

when there

cation round

SWMR mode

ually write th

ic reads mu

roduced a fa

tation reade

achieve fa

13

he

he

is

re

a

on

ate

sic

is

ds

el,

he

ust

ast

ers

ast

14

operations the authors of [10] bound the numbers of readers to be	ܴ	 ൏ 	ܵ/ܶ	 െ 2

(where ܴ is the number of readers, ܵ	the number of servers and ܶ the number of

servers that may crash). Also they show that a fast implementation is impossible in

the MWMR setting.

Observe that the limit on the number of readers shown in [10] for fast

implementations is impractical. Later work [11] provides a non-straightforward

extension of the work in [10] by implementing a semifast SWMR model while

preserving atomicity. In a semifast implementation the writer operations take one

communication round to complete whereas read operations take one or two

communication rounds to complete. Formally the SWMR model implementation of an

atomic object is semifast when the following are satisfied:

1. all write operations are fast and

2. all complete read operations can be either fast or slow iff T ൏
ୗ

ଶ
 and

3. If a read operation ݎଵ is slow, then all read operations that precede or succeed

 ଵ are fast (only a single complete read isݎ ଵ and return the same value asݎ

slow per write operation).

4. There exists an execution of the implementation which contains only fast read

and write operations (even if operations are concurrent).

The notion of Virtual Node is introduced, a group of reader processes that all

share the same Virtual Identifier. Particularly a read operation must be fast if it

precedes or succeeds a complete fast read operation, when both reads return the

value written by the same write operation. Concurrent read operations with a slow

read operation may or may not be fast. Furthermore it is also shown that no semifast

implementation exists for the MWMR model even for	ܶ ൌ 1. Simulations presented in

[11] suggest that under reasonable execution conditions only a small percentage

15

(7.5% - 10%) of read operations are slow. In summary, fast or semi-fast operations in

the MWMR model were shown as not possible.

A Semifast Like Implementation for Quorum systems (SLIQ) algorithm for the

SWMR model is introduced in [13]. This implementation is weak-semifast, meaning

that it enables fast reads but allows multiple slow reads per write; formally, a weak-

semifast implementation is the same as a semifast implementation but without

property 3. For this purpose a client-side prediction tool called Quorum Views is

introduced. The Quorum Views are used to supply adequate data involving the

distribution of the latest tag in the quorum being accessed. Read operations use the

Quorum Views to make educated decisions locally whether a second round is

needed. The SLIQ algorithm was simulated using the NS-2 network simulator [24].

The results showed that only about 13% of the read operations proceed to a second

communication round, in common cases.

Constrains on the efficiency of the MWMR model are analyzed in [12] and two

new algorithms are introduced. These algorithms support some fast operations while

atomicity is preserved in the presence of asynchrony and crashes (Recall that it is

impossible to have all operations to be fast [10] [11]).

The first is algorithm CwFr, which optimizes on read operations by taking

advantage of Quorum Views. The write operations still need two communication

rounds to complete. The second algorithm is the SFW algorithm, which exploits a

new technique called Server Side Ordering (SSO). The SSO allows for both fast read

and write operations in certain cases. When the intersection degree of the underlying

quorum system is below 4, it is not clear which of the two algorithms performs better

because all write operations of the SFW are slow as well.

This thesis focuses on algorithm SFW and explores its efficiency on

PlanetLab when the intersection degree of the deployed quorum system is above 4.

16

2.4 PlanetLab

PlanetLab is built-up as a collaborative distributed system in which different

organizations donate two or more computers adding up to a total of hundreds of

nodes. Together these computers form a distributed overlay network for deployment

and assessment of distributed planetary-scale network services [15] [25].

 As of the writing of this thesis, PlanetLab is composed of 1089 nodes at 503 sites

worldwide provided by academic and industry institutions. Its resources are divided

into slices where each can be viewed as a network of virtual machines. The allocated

resources are controlled on a per-slice, per-node basis. Slices expire after one month

of their first creation (removing all the slice associated data), but can be renewed an

unlimited number of times on a monthly basis. Access to PlanetLab nodes is feasible

through SSH, providing encrypted and secure communication. Nodes may be

installed or rebooted at any time turning the disk into a temporary form of storage,

providing no guarantee regarding their reliability. Thus PlanetLab is a realistic

deployment setting to test and evaluate SFW algorithm and compare it with a simpler,

operation slow MWMR algorithm.

17

Chapter 3

MWMR Algorithms

 In this Chapter the SIMPLE and SFW algorithms are defined and explained in

more detail.

3.1 Algorithm SIMPLE

In algorithm SIMPLE the servers are arranged in a quorum system, using the

message passing paradigm for communication in the presence of asynchrony and

failures. Basically SIMPLE is the algorithm defined in [8] but the servers are arranged

in a static quorum system. There are three set of processes, a set of servers	ܵ ൌ

ሼݏଵ, ଶݏ ܴ	 ௡ሽ, a set of readersݏ	… ൌ ሼݎଵ, ଶݎ ܹ	ఘሽ and a set of writersݎ	… ൌ ሼݓଵ, ଶݓ .ఠሽݓ	…

Any reader or writer process may crash but at least a quorum must not crash.

Algorithm SIMPLE only considers crash failures and not Byzantine failures [26] [27],

that is, system components are assumed to work correctly and when they fail, they

do so by crashing or stopping.

The algorithm uses ൏ ,݃ܽݐ ݁ݑ݈ܽݒ ൐ pairs to order the values written to the

register. The tag is a two field tuple consisting of	൏ ,ݏݐ	 ݀݅ݓ ൐	∈ Գ ൈW, where	ݏݐ is the

timestamp and ݀݅ݓ the writer identifier of the writer that wrote the	݁ݑ݈ܽݒ. The writers

are the only processes responsible for incrementing the	ݏݐ. Initially the tag is set to

൏ 0,݉݅݊ሺܹሻ ൐ for every process. The tags can be compared alphanumerically.

Specifically, a tag	ݐଵis greater than a tag 	ݐଶ (ݐଵ ൐ 	 .ଵݐ	 ଶሻ ifݐ ݏݐ ൐ .ଶݐ	 .ଵݐ		or ݏݐ ݏݐ ൐

.ଶݐ	 	ݏݐ ∧ 	 .ଵݐ	 ݀݅ݓ ൐ 	 .ଶݐ	 .݀݅ݓ

m

th

m

se

th

q

re

q

w

The s

messages to

he received

message.

The w

ends a WRI

he writer pr

uorum. Afte

eceived from

uorum of se

The re

with the exce

servers kee

servers. W

tag is more

writer protoc

TE request,

rocess waits

r a quorum

m the quoru

rvers respon

eader protoc

ption that th

ep the data

When a serve

e recent tha

ol is shown

 with its cur

s until it re

responds, t

um, increme

nds the write

col is shown

e reader do

Figure 5

a replicas o

er receives a

n its local ta

in Figure 5

rent ൏ ,݃ܽݐ	

eceives an

the writer di

ents it and s

e operation i

n in Figure 6

es not incre

5: Writer proto

of the regis

a request it

ag, and the

5: Writer pro

	݁ݑ݈ܽݒ ൐ pa

acknowledg

scovers the

sends it to

s complete.

 and it is sim

ment the	݉ܽ

ocol [17]

ster object.

updates its

n responds

otocol. The w

ir to all the s

gement resp

 maximum t

all the serv

milar to the w

 .݃ܽܶݔܽ

1

Clients se

 (local) tag,

with an AC

writer proces

servers. The

ponse from

tag (݉ܽ݃ܽܶݔ

vers. When

writer protoc

18

nt

if

CK

ss

en

a

݃)

a

col

Figure 6: Reader Protocol, th

Fig

he		ࢍࢇࢀ࢞ࢇ࢓	de

from

gure 7: unique

enotes the ma

m the quorum.

eness of the S

aximum tag th

. [17]

SIMPLE tags [

hat a reader pr

17]

1

rocess receive

19

es

20

3.2 Algorithm SFW

In algorithm SFW the servers are arranged in an n-wise quorum system,

using the message passing paradigm for communication in the presence of

asynchrony and failures. As with algorithm SIMPLE, there are three sets of processes

and only crash failures are considered.

Algorithm SFW uses a	൏ ,݃ܽݐ ݁ݑ݈ܽݒ ൐ to attain the required order on the

values written to the register. The ݃ܽݐ is different from the tag used by algorithm

SIMPLE. The reason for this difference will be explained later in this section. Tag

comparison is done alphanumerically as in the SIMPLE algorithm. The clients

communicate with servers using communication rounds in which they sent their

൏ .݃ܽݐ ݁ݑ݈ܽݒ ൐ pair and their operation requests (READ / WRITE / PROPAGATE).

The servers, when they receive a request they answer by sending their latest

confirmed ൏ ,݃ܽݐ ݁ݑ݈ܽݒ ൐ and an inprogress set which contains the ongoing write

operations ൏ ,݃ܽݐ ݁ݑ݈ܽݒ ൐ pairs.

The SFW algorithm uses a reader and a writer predicate. The predicates are

used by each process to calculate the distribution of the latest tag in the responding

quorum. If the reader (writer) predicate evaluates that the distribution of the tag is

“good enough” such that a second communication round is not needed to ensure

atomicity, then the read (write) operation completes in one communication round. The

reader and the writer predicates are analyzed in Sections 3.2.2 and 3.3.3,

respectively.

In algorithm SIMPLE the writers’ need to proceed to second communication

round to propagate the new tag-value pair of the write operation (Figure 10).

Algorithm SFW is the first to introduce the possibility of one communication round

(fast) write operations in the MWMR model. The predicate technique that enabled

21

reader operations in previous works [11] [13] to complete in one round operations, is

extended [12] and applied to both the reader and the writer. In order for the writer

predicate to be feasible, the responsibility of incrementing the tag timestamp has to

be removed from the writers. This purpose was fulfilled by a new technique,

introduced in [12], called Server Side Ordering (SSO).

The SSO technique created a new problem; generated tags by the servers

may be different across servers, resulting to tag non-uniqueness. The SIMPLE

algorithm does not have this problem, observer Figure 7; the tag is increment only by

the writer which ensures that a quorum of server will have the same tag. To

understand the problem, an example is given in Figure 8. Assume	 ௜ܹ 	൐ 	 ௞ܹ, and

ܳ௜	, ܳ௝	, ܳ௭	quorums. A writer ௜ܹ communicates with 	ܳ௭	to write, and ௞ܹ communicates

with	ܳ௜	. Since the tag is incremented by the servers, all the servers in quorums	ܳ௭	,

ܳ௜	 increment tag from 0 to 1 but due to asynchrony is possible that the intersection of

ܳ௭	 ∩ ܳ௜	to have its tag incremented twice resulting from 0 to 2. This leads to multiple

tags for a single value and it violates atomicity.

To understand how atomicity is violated, take the following execution as an

example [17]:

 ௜ܹ and ௞ܹ are two concurrent write operations that write values 3 and 4 with tags

 (ଶݐ >ଵݐ without loss of generality let) ଶ respectivelyݐ ଵ andݐ

 ݎଵ and ݎଶ, succeed both write operations

o ݎଵ		witness 	ݐଵ for ௜ܹ and value 3, so ݐଶ for	 ௞ܹ. ݎଵ returns 3 since ݐଵ< ݐଶ

o ݎଶwitness ݐଶ for ௜ܹ and value 3, thus ݐଵ for ௞ܹ, ݎଶ returns 4 since ݐଵ< ݐଶ

 ଶ, succeed both write operations but they do not agree on the latest writtenݎ	ଵ andݎ

value.

 For this purpose, the tag in the SFW is a tuple containing	൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐,

the	ܿݓ is a writer counter, basically a number incremented by the writer at each write

o

be

be

im

as

tw

co

im

p

S

at

w

peration. Th

etween write

een assign

mplements M

In [12

s quorum sh

wo distinct

ommon inte

mplementatio

rocesses (݊

SFW can ha

tomicity, thu

We n

writer process

he wc field

e operations

Figure 8

ed to a w

MWMR atom

], two opera

hifting opera

quorums. If

ersection th

on with only

 is the inters

ave up to

us it is nearly

ow proceed

ses in SFW.

d of the tag

s, since any

8: non-uniquen

write operati

mic read/write

ations, origin

ations if they

f quorums,

hen an atom

y fast write

section degr

݊/2 fast co

y optimal.

d to describ

.

g enables

processes c

ness of the SF

on. In [12]

e registers.

nating from t

y are conse

in an ݊-wis

mic register

operations,

ree of the u

onsecutive

be the funct

read/write p

can recogniz

FW algorithm

] it is prov

two different

ecutive and

se quorum

r implement

cannot hav

nderlying qu

write opera

tionalities of

processes t

ze that differe

tags [17]

ved that alg

t processes,

they receive

system, do

tation is im

ve more than

uorum syste

ations, while

f the server

2

to distinguis

ent tags hav

gorithm SFW

are regarde

e replies fro

o not have

mpossible. A

n ݊ - 1 writ

em). Algorith

e maintainin

r, reader an

22

sh

ve

W

ed

om

a

An

er

m

ng

nd

23

3.2.1 Server

 The server maintains the state of each register in the system and acts

according to the message requests it receives. The state of the server for the register

object is comprised of a tag, a confirmed tag and an inprogress set of tag-value pairs.

The confirmed tag holds the latest confirmed tag seen by the server. The inprogress

set is a set of tags that represent the ongoing write operations from each server

perspective. The inprogress set holds a tag-value pair for the ongoing write operation

of each writer process in the system.

 Essentially when a server receives a request it first updates its local tag and

confirmed tag, if the received tag is more recent. Additionally, if the request is for a

write operation, the server increments its local timestamp and then assigns the writer

id and the writer counter, of the write operation request, to its local tag. Next, the

server removes any previously recorded tag-value pairs, of the writer, that reside in

the server’s inprogress set. The server generates a new ݐ’ tag-value pair where the

tag is the current local tag of the server with its timestamp incremented by one (1)

and the write operation value to be written. Finally the new ݐ’ tag is inserted into the

inprogress set. A more formal definition of the server steps upon receiving a request

follows:

1 Update (local) tag: The server adopts the request’s tag if it is more recent than

its local tag. Tag comparison is alphanumerical.

2 If it is a WRITE request from ௜ܹ then

2.2 Create a new tag ݐ’, ൏ ,’ݏݐ ,’ݓ ’ܿݓ ൐ൌ൏ ,ݏݐ ,௜ݓ ௜ܿݓ ൐, assign to	ݐ’ the local

timestamp and the WRITE request’s attributes (ݓ௜,ܿݓ௜)

24

2.3 Remove any previous tag-value pairs from the specific writer and insert the

newly generated ݐ’ tag along with the new value the writer wants to

write.	ݏݏ݁ݎ݃݋ݎ݌݊ܫ	 ൌ 	 ሺ݅݊ݏݏ݁ݎ݃݋ݎ݌	–	ሼ൏∗, ,௜,∗൐ݓ ሼ൏	ܷ	ሻ	ሽ݈ܽݒ ,’ݏݐ ,௜ݓ ௜ܿݓ ൐, ሽ݈ܸܽݓ݁݊

3 Update confirmed tag: The server updates confirmed tag if the request’s tag is

more recent.

If server receives a READ request then steps 2, 2.2 and 2.3 are not executed.

3.2.2 Reader

 The reader process sends a read request message to all servers containing

the tag	൏ ,௥݃ܽݐ ݁ݑ݈ܽݒ ൐. When responses from a quorum ܳ are received, the reader

creates and populates a new set, let that be called ݏܫ, with all tags from the

inprogress sets of the responses and calculates the maximum confirmed tag

ݓ So the reader has .(݂݊݋ܥݔܽ݉) ൈ the ݓ set, where ݏܫ tags in the (product) ݏ	

number of writers in the system and ݏ the number of servers in the responding

quorum. The reader then compares each tag ݐ from the ݏܫ set with	݂݉ܽ݊݋ܥݔ.

If ݂݉ܽ݊݋ܥݔ	 ൒ tag along with its value. If ݂݊݋ܥݔܽ݉ then the reader adopts ݐ	

݊ is received from an intersection between ܳ and ݂݊݋ܥݔܽ݉ െ 1 (where ݊ the

intersection degree of the quorum system) other quorums then the reader proceeds

to a second communication round otherwise it completes (fast).

 If ݂݉ܽ݊݋ܥݔ ൏ satisfies the reader predicate ݐ then the reader checks if ݐ	

(Table 1: the SFW reader predicate). If the predicate is true for ݐ then, the reader

adopts ݐ and its value.

25

Read predicate for a read ࣋ ሺࡾࡼሻ:

	∃࣎, ሺ࣎ሻ	࢞ࢇ࢓		:ࢋ࢘ࢋࢎ࢝,ࡿࡹ,ࢢ ∈ 	⋃ ࢏ࡽ	∋	ሺ࣋ሻ࢙࢙࢙࢙ࢋ࢘ࢍ࢕࢘࢖࢔࢏ ,	

	ࢢ ⊆ 	ℚ,

૙	 ൑ 	 |ࢢ| ൑
࢔

૛
െ ૛, ࡿࡹ	ࢊ࢔ࢇ ൌ ሼ࢙: ࢙ ∈ ࢏ࡽ ∧ ࣎	 ∈ .࢙			ሺ࣋ሻ࢙࢙࢙ࢋ࢘ࢍ࢕࢘࢖࢔࢏	 ࢚. |ࢢ|	࢘ࢋࢎ࢚࢏ࢋ 		്

૙	ࢊ࢔ࢇ	࡮ࡵ ࢏ࡽ	∩ ⊆ |ࢢ|	࢘࢕	ࡿࡹ ൌ ૙	ࢊ࢔ࢇ	࢏ࡽ ൌ .ࡿࡹ ሽ

Table 1: the SFW reader predicate, where |ࢢ| is rounded down to the nearest integer [12].

The reader proceeds to a second communication round if its predicate is true for ݐ

and ݐ is propagated in an intersection of ܳ with exactly ݊/2 െ 2 other quorums. In the

case the predicate for ݐ is false and ݏܫ is empty, a second communication round is

needed. While ݏܫ is not empty the reader keeps comparing the tags in it with

 or a tag that validates its ݂݊݋ܥݔܽ݉ until it finds a tag smaller than ݂݊݋ܥݔܽ݉

predicate. In all other cases the reader is fast.

3.2.3 Writer

 The writer process ௜ܹ sends a writer request to all the servers in the quorum

system. The requests contain ൏ ,௪݃ܽݐ ݁ݑ݈ܽݒ ൐ and the servers reply with the new tag

for the write operation. The tags received from the server responses may differ. The

writer needs a mechanism to select the latest tag and then judge based on the latest

tag distribution in the quorum, if a second round of communication is needed to

ensure atomicity. The write predicate provides this decision mechanism. Notice the

differences of the writer process between the SFW and the SIMPLE algorithm in

Figure 9 and Figure 10 respectively. The SFW writer does not need to use the first

communication round to read the latest tag of the atomic register but rather it

p

F

tim

se

T

ev

roceeds to d

igure 3 but

mestamp an

The w

erver reply h

he writer ex

very tag of t

Figure 9

Figure 1

directly write

the differen

nd it waits a

writer predic

has an inpro

xtracts only

he form ൏∗,

9: Writer comm

10: write oper

e the new v

ce is that th

reply from a

cate (Table

ogress set w

the tag ref

൐ whe∗,݀݅ݓ

munication me

ration of the S

alue to it. L

he writer in t

a quorum of s

2) is simpl

which contain

ferring to its

ere asterisk c

essages and l

IMPLE algorit

ike the write

the SFW do

servers.

ler than the

ns a tag for e

s unique ide

can be anyth

ogic [17]

hm. [17]

er in the SW

oes not incre

e reader pre

each writer i

entifier (݀݅ݓ

hing. Practic

2

WMR model

ement the ta

edicate. Eac

in the system

݀), specifical

cally there is

26

in

ag

ch

m.

lly

27

Writer Predicate for a write ࣓ ሺࢃࡼሻ:

∃࣎, ࣎	:ࢋ࢘ࢋࢎ࢝,ࡿࡹ,࡭ ∈ ሼ〈. , ࣓〉: 〈. , ࣓〉 ∈ ሺ࣓ሻ࢙࢙࢙ࢋ࢘ࢍ࢕࢘࢖࢔࢏ ∧ ࢙ ∈ ,ሽࡽ

࡭ ⊆ ℚ, ૙	 ൑ 	 |࡭| ൑
࢔

૛
െ ૚, ࢊ࢔ࢇ

ࡿࡹ ൌ	 ሼ࢙: ࢙ ∈ ࡽ	 ∧ ࣎	 ∈ ,ሺ࣓ሻ࢙࢙࢙ࢋ࢘ࢍ࢕࢘࢖࢔࢏	 ࢙. |ࢡ|	࢘ࢋࢎ࢚࢏ࢋ		.࢚ 		് ૙	ࢊ࢔ࢇ	࡭ࡵ ∩ ࡽ	 ⊆

|ࢡ|	࢘࢕	ࡿࡹ ൌ ૙	ࢊ࢔ࢇ	ࡽ ൌ .ࡿࡹ ሽ

Table 2: The writer predicate for the SFW algorithm, where |ઠ| is rounded down to the nearest

integer [12].

only one tag for each writer in the inprogress set. So the writer will extract |ܳ| tags in

total, which is the number of servers of the responding quorum ܳ, all these tags are

inserted in a new set, let that be called	ݏܫ. The writer tries to find a tag ݐ in ݏܫ that

validates the predicate (to TRUE). If a tag ݐ, that validates the writer predicate exists

then the writer adopts this tag along with its associated value.

Otherwise if such a tag ݐ does not exist, the writer adopts the maximum tag in

 and proceeds to a second communication round. The server may also proceed to ݏܫ

a second communication round if the predicate is true but ݐ is only propagated in an

intersection of ܳ with more than ݊/2	– 	2 other quorums. In any other case the write

operation is fast and completes in one communication round.

28

Chapter 4

Implementation

 In this chapter we present the design and implementation of the algorithms.

Additionally, the tools created to execute the scenarios and retrieve the results are

specified.

4.1 Design

An application for testing the MWMR algorithms on PlanetLab was

implemented using the C programming language with Linux as Operating System.

Specifically, it was compiled to be compatible with Fedora 8. The Client-Server model

and TCP sockets were used for communication between servers, readers and

writers. The server uses the paradigm of serve one client with each server thread,

while clients use one thread per server for each communication round. Standard C

libraries were used as the main building blocks of the implementation, with POSIX

pthreads for threading.

The application consists of three major components: the server, reader and

writer each of which executes as an independent process. The reader and writer

processes require that the server processes are executed first and are listening to the

designated ports in order to begin sending read/write operation requests. An arbitrary

number of server, reader and writer processes are supported by the implemented

system through a parameterized configuration file. The same is true for read and

write operations.

29

 Servers can only queue up to 256 requests on their accepting socket and can

spawn up to a maximum of 200 threads for serving incoming requests. In practice the

servers reach their maximum service capacity when a high number of readers and

writers execute on PlanetLab, hence a preliminary experiment is executed to

recognize these bounds.

 The quorum system used in experiments is ݊-wise (where ݊ the intersection

degree of the quorum system). A static quorum system deployment is used for the

servers. Server process participation in quorums is fixed and known before a

scenario starts its execution and it remains the same until the end of its execution,

despite the fact that network topology may dynamically change as links and network

nodes fail. Also client processes assume that at least a single quorum is correct, that

is it contains no faulty servers.

In the implementation of algorithm SIMPLE the quorum system type used is

the majority. For the needs of algorithm SIMPLE we use ݊-wise quorum systems

where ݊ is the intersection degree of the quorum system, meaning that any ݊

quorums of the system have a non-empty intersection. Specifically, in the

implementation of SFW we define a quorum as a set of ܵ െ ܶ, where ܵ is the number

of the servers and ܶ the number of the servers that the system can afford to fail such

that the total number of quorums in the system is
ୗ!

ሺୗି୘ሻ!	୘!		
 . Practically in the

implementation we consider “enough” replies when the first ܵ െ ܶ responses from

servers are received. It is not difficult to observe that this results to an ݊-wise Quorum

System configuration.

Each thread spawned by the server receives the client request and examines

the request’s header to discover if a message body follows and needs to be received.

Then the thread waits until it manages to acquire a spin lock on the critical section,

which protects the server’s state from concurrent access. A spin lock is a mechanism

30

to enforce mutual exclusion. It essentially causes the thread to wait in a loop until a

variable (of type pthread_spinlock_t) is unlocked.

Functions that provide similar functionality to either of the processes share the

same name. For example the process function is used by all processes to process an

incoming messaging but the implementation in each case differs. This is similar to

polymorphism used in object oriented languages.

An important requirement in design was that both the SIMPLE and the SFW

algorithm share the same architecture and core code, such as shared libraries,

communication procedures, same data structures and similar message exchange

format. In the next sections a reference to the differences of the implementation of

the two algorithms are given whenever it applies.

4.2 Communication

Clients communicate with Servers through TCP sockets by exchanging

messages. The servers connection information such as IP or domain name are

loaded from the configuration file. Each message has a dynamic size in bytes and

contains a header and a body. The message header has a set of fields needed for

the algorithm. For the needs of communication between clients and servers a

protocol is created which is defined by the fields in the message header. Fields that

can appear in the message header are summarized in table 3: message header .

table 4 lists the message format used for communication between clients and

servers.

The code that is responsible for generating the message header is located in

the message.c code file. The definition of the message header creation functions is

detailed in Table 6.

31

Message Header Field Description

SentValue Describes the Body value, zero(0) means body is empty

and one(1) has value

Id Process id of the sender

AlgorithmType SIMPLE for always two round operations algorithm.

SFW for operations that are predicate depended for 2nd

round of communication.

ObjectID The unique object id of the register (atomic object).

MessageType WRITE/ READ / INFO

WRITEACK/ READACK/ INFOACK

Cnt Request counter

Tag.ts Tag Timestamp

Tag.wid Tag writer id

Tag.wc Tag write counter

ConfirmedTag(ts,wid,wc) The same tag info for the confirmed tag

ConfirmedTag(value) The confirmed object value, not sent for INFO message

type requests

InprogressSet An Inprogress [Tag(ts, wid, wc), Value] for each

writer. Note that Value is not sent for INFO message

type requests.

Table 3: Message header fields description

The configuration of the processes is setup using a confic.ini file. This file

contains all the global information shared among the implementation; essentially it

defines the configuration of the system. The order of variable declaration in this file is

32

important. An example of a confic.ini file with enough self-explanatory comments can

be found in Appendix A.

SIMPLE server response message format

SentValue,Id,AlgorithmType,ObjectID,MessageType,Cnt,Tag.ts,Tag.wid,Tag.wc

SFW server response message format

SentValue,Id,AlgorithmType,ObjectID,MessageType,Cnt,Tag.ts,Tag.wid,Tag.wc,
ConfirmedTag(ts,wid,wc),ConfirmedTag(value),InprogressSet

SIMPLE client request message format

SentValue,Id,AlgorithmType,ObjectID,MessageType,Tag.ts,Tag.wid,Tag.wc,Cnt

SFW client request message format

SentValue,Id,AlgorithmType,ObjectID,MessageType,Tag.ts,Tag.wid,Tag.wc,Cnt

Table 4: Messages format used in communication between clients and servers

 On the client side, the communicate procedure (Table 5) is used as the

communication primitive by which a complete communication round is performed.

The communicate function implementation was inspired from [7], in which a function

is described that handles communication. It takes as parameter the packet to send

and returns an array of the acknowledging servers in quorum_data data structure

along with its size.

Since clients need to communicate with all servers, the communicate

procedure spawns a thread for each server to handle message interaction with the

client. To manage these threads a controlling thread monitors the responses from the

servers. When enough responses have been received, the controlling thread

graciously notifies the threads which handle the servers that are yet to respond. The

notified threads are responsible to stop any current action with their respective server

and terminate.

33

The main Communication function used by clients

data_t*

communicate(

pck_t *sMsg,

data_t* quorum_data,

int* quorum_size, bool_t *done);

Communicate performs one communication
round between client and servers.
-input parameter sMsg: a pointer to
message to send.
-output parameter quorum_data: the data
of the responding acknowledging quorum.
-output param quorum_size (the size of
quorum_data).

Table 5: communicate function details

Message header creation functions Description

char* messageToString(pck_t*

msg);

allocates memory for a new string and

populate it with the fields as described in

table 2. Memory allocated must be explicitly

freed afterwards. Note: used by the client to

send a request.

pck_t*

stateToMessage(pckt_t *recv_msg

);

Creates a new package to send as

response, using data from the received

message and from current server process

state. Memory allocated for return value

must be explicitly freed afterwards. Note:

this version is intended for use by the

server.

void

stateToMessage(pck_t *msg,

state_t * state);

Includes the current client state in an

existing package. Note: this version is

intended for use by the client.

Table 6: Message creation functions used in client and server implementation

34

4.3 Server

 The servers’ main functionality is implemented in the function detailed in

Table 7. The basic steps of the server execution are:

 internal state is initialized,

 binds to a newly created socket,

 Initializes thread management data structures and listens for incoming

connections.

 On each accepted connection to the listening socket the server spawns a

thread to handle the new request on a new socket.

Due to the concept of one thread per client this can severely limit the number

of concurrent threads a server can handle simultaneously. For 32-bit OS systems this

limit is 512 threads. The pthread_detach function is called after a thread creation to

let the OS release all the thread resources as soon as it finishes execution. Each

thread executes the serve_thread function, the code of which is attached on

Appendix C.

The server_thread function receives the client message and checks if the

message body has a value (it may be empty) that needs to be received as well. Note

that a value may be present but if it is the same as the server’s current value, it is not

necessary to actually receive and overwrite the object value. This has a great impact

on performance when the message value is a large file.

Each request is processed by the process function; it examines the request

tag and updates the server state according to the algorithm. Finally a response

message is created and sent to the client.

35

void initialize(); Initialize server state

int create_socket(&socketFd); //1.
Create the socket

Create a new socket

bind_socket(&socketFd, &server,
sys_conf.serverPort[pid]);

Bind socket

listen(socketFd, MAX_PENDING);
//3. Set Socket to Listen

Listen for connections

while(1){
 acceptReq(socketFd,
&newSocket, &client, rem);
 pthread_create(&threads[i],
&attr, (void*) pt2ProcessThread,
(void*)(&threads_data[i]));
}

Accept any incoming connection and create
a new thread to serve it.

void* serve_thread(void*
thread_args);

The main serving code of the server.
Generally it calls:

1. recvReq()
2. recvMsgVa()
3. process()
4. sendRes

pck_t* create_message(msg_t t,
obj_t ot, alg_t alg);

Allocates and initializes memory for a new
message.

int recvReq(int , pck_t*, int*); Receive request message

int recvMsgVal(int , pck_t *,int,
bool_t);

Receive message value if needed

void process(pck_t*);

Process request: update server state and
prepare response

void sendRes(int , pck_t*); Send response

Table 7: Main server functions

4.4 Writer

 The writer process calls the writeObject function whenever it needs to write a

value to the atomic object. After each write operation the writer sleeps for a

36

preconfigured amount of time. The write interval between operations can be

configured through the confic.ini file. The writeObject function code initializes a

message to send, sets the writer process state to WRITE , increments the operation

counters and then calls the communicate function to send the message.

 Upon successful completion of the communicate function the responses

received from the quorum are processed by the process function. The latter

examines the responses from all the servers, updates the writer current state and

proceeds to a second communication round if necessary.

 In Table 8 the main functions of the writer process are summarized.

void writeObject(

int objectId,
state_t*objectState,
int* intVal,
obj_t objType,
alg_t algType);

Performs a write operation, input

parameters are the object id, the

current writer state for the supplied

object id, the integer value to write,

the object type(file or integer) and

the algorithm type(SIMPLE or SFW)

int compareTag(tag_t* a, tag_t* b);

Compares the two input parameters:

If a > b return 1,

If a==b returns 0 and -1 otherwise.

bool_t process(state_t *, data_t*, int);

Process the server responses and

act according to the current

executing algorithm.

int recvMsgVal(int, pck_t *,int);//(newSck,

*msg,writeIt)

Receives message value pending on

socket.

bool_t writerConditions(
data_t* quorum_data,
 int quorum_size,
tag_t** t,
bool_t *isPropagated);

The predicate of the writer for the

SFW algorithm returns True if

predicate is valid, False otherwise.

void stateToMessage(pck_t *, state_t*); Puts the current writer state into a

message.

Table 8: Writer process main functions

37

4.5 Reader

The main function used by the reader is the readObject function, which is very

similar to the writeObject function used by the writer. It creates a message to send,

uses communicate function to send it and receives responses in quorum_data data

structure which is passed to the process function for examination. The Process

function updates the reader state as necessary, which is the most recent object value

read and its tag. It also decides if a second communication round is needed in the

case of algorithm SFW.

4.6 Code structure and Compilation

 The code files are located under the src folder and they are organized in

folders:

 reader: reader.c, reader_main.c

 server: server.c, server_main.c

 writer: writer.c, writer_main.c

 net: sockets.c, sockets.h

 utilities:

o communicate.c communicate.h

o config.c, config.h

o log.c, log.h:

o message.c, message.h

o utilities.c, utilities.h

o quorum_gen.c

38

 test/reader/, test/writer/, test/server/: all three folders need to exist in order for

the make file to output the three executable files.

The Global header files are also located under the src folder:

 data_structures.h, all data structure definitions

 mwmr.h, all include files in one place

 main.h, include files, declarations of the functions, macros and global

variables that are used by reader_main.c, writer_main.c and server_main.c

 makefile, has commands to build the whole source code or parts of it

individually for unit testing. Executing make under src folder creates the

executable files.

 Code related to sockets such as binding, creating, receiving and sending is

under net/sockets.c. Code related to communication between processes is in the

communicate.c and message.c files.

 Common resources and functionality that is not related to communication,

such as management of log files, configuration files, comparison functions on various

data structures and common logic are included in the utilities folder and are globally

visible to all code in the implementation. An exception is the quorum_gen.c which is a

separate individual program and is located directly under src folder. The quorum_gen

program takes four (4) command line arguments: the quorum type, number of

servers, number of failures and a seed number. The quorum type can be –݉ for

majority or – ݀ for ݎ݁ݒݎ݁ݏ	ݎܾ݁݉ݑ݊	– quorum size generation. The ݎܾ݁݉ݑ݊	ݏ݁ݎݑ݈݂݅ܽ	

output in the first case is majorities.dat file where in the latter is majorities_x.dat. The

output file contains the total number of quorums generated in the first line and the

number of failures the quorum system can sustain in the second line. Each line that

follows defines a quorum.

39

 Each process has a main file (reader_main.c, writer_main.c, server_main.c),

which contains the main function, command argument management functions and

signal handling functions. Basically the main files for each process call the execute

function. The execute function loads the confic.ini file parameters into a global data

structure (confg_t sys_conf) so that is visible by the whole system, and setups timers

for monitoring the operation latency of each read/write operation in the process.

There are two operation latency timers that monitor the processor time and the actual

real time it takes for a read/write operation to complete.

4.7 Read/write predicates of Algorithm SFW

As mentions in Section 3, the reader and writer algorithms use a predicate to

decide when to proceed to a second communication round. The predicate

implementation is a challenge due to the existential quantifier.

4.7.1 Reader Predicate

The idea behind the implementation of the predicate is to reduce the size of

the solution space while searching for a tag that satisfies the predicate conditions. In

order to avoid examining every possible case in the solution space, a heuristic

method to move towards the solution is presented.

The algorithm implemented for the reader predicate is shown in Figure 11.

Recall that the inprogress set contains the latest tag for each writer in the system.

The concept of the heuristic algorithm is to find all the possible quorums which

include all the servers that responded with the largest tag. The procedure that

40

evaluates the predicate and calculates the size of the intersection between the

responding quorum and a subset of quorums from the quorum system is shown in

Table 9.

In more detail, the heuristic implementation first sorts (descending) the unique

tags return from the servers into	 ௞ܶ. If many servers responded with the largest tag

then only a “few” quorums ܳ௦ (comparing with the total number of quorums	
ୗ!

ሺୗି୘ሻ!	୘!		
)

will exist that include all these servers. Thus the intersection size of ܳ௦ with ܳ௞

(responding quorum) will be big and for this reason is less probable for	ܫ௦ ⊆ ܵ௧, where

ܵ௧ is a set of servers that have in their inprogress set the ݐ tag being currently

examined from		 ௞ܶ.

If the latest tag failed to validate the predicate, then the heuristic

implementation examines older tags. As older tags are examined the |ܵ௧| decreases,

reasonably fewer servers will have older tags, but |ܳ௦| increases because more

quorums exist that include all servers in	ܵ௧. This causes the size of the intersection of

quorums in ܳ௦ (|ܫொ௦|) to decrease, resulting in |ܫ௦| (ܫ௦ ൌ ሼݏ: ݏ ∈ ொ௦ܫ ∩	ܳ௞ሽ) to also

decrease. Thus it is more probable to find a	ܫ௦ ⊆ ܵ௧; this depends on the size of ܵ௧ as

well. If a tag satisfying the predicate does not exist it will be faster to find and stop

earlier in the computation hence saving on average operation latency.

The procedure shown in Table 9:

1. Calculates, by reference parameter output ݎ, the size of the quorums in the

intersection of ܳ௞ with ܳ௦ .

2. Returns true or false if the predicate found a valid tag

The pseudocode in Table 9 assumes that is looking for a tag in the inprogress

set and not the set of confirmed tags, which is needed in the case an inprogress tag

is not found (which is the case shown in Figure 11 at lines 19-24). The reader

Fi

p

ev

ex

de

se

ac

a

4

im

th

igure 11: pseu

redicate mu

valuates it.

The p

xists and alw

escription a

ets that con

ccuracy and

nd are left fo

.7.2 Writer P

The

mplementatio

he pseudoco

udo code for t

ust search th

purpose of th

ways find no

nd the pseu

ntain tags re

d a formal p

or future wor

Predicate

writer pre

on’s pseudo

ode as pres

he reader pre

he confirme

he heuristic

o solution w

udo code pr

eturned by t

roof of its co

rk.

edicate is

ocode for the

ented in Ta

dicate [12]

ed tags if no

is to somet

hen none ex

resented in T

he respond

orrectness a

simpler t

e writer is s

able 9 to cal

o tag in the

times find a

xists; this is

Table 9 sinc

ing quorum.

are beyond t

han the

shown in Fig

culate the in

inprogress

solution wh

clearly dedu

ce the heuri

. A study of

the purpose

reader pre

gure 12. Th

ntersection

4

is found th

hen a solutio

uced from th

istic works o

f the heurist

 of this thes

edicate. Th

he writer use

degree of th

41

at

on

he

on

tic

sis

he

es

he

42

responding quorum with a set of quorums from the quorum system and validate the

predicate. The only exception in this case is wherever ݀݅ݓ appears it refers to the

specific writer id which initiates the write request.

procedure predicate_and_num_of_quorums_in_intersection(input ܳ݇, output ݎ):
/* ܳ௞ the responding Quorum */
݃ݏܯݒܿݎ ← ሼ൏ ݉,ݏ ൐:݉ ൌ ሺܴܭܥܣ, ,ݏݏ݁ݎ݃݋ݎ݌݊݅ ,݀݁݉ݎ݂݅݊݋ܿ 	݉		݀݊݁ݏ	ݏ	⋀	ሻݎ݁ݐ݊ݑ݋ܥݎ
ݏ	⋀ ∈ ܳ௞}
/*find max confirmed tag*/
݂݊݋ܥݔܽ݉ ൌ ሼ	൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐:൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐	∈ ݉. ⋀	݀݁݉ݎ݂݅݊݋ܿ 	൏ ݉,ݏ ൐	∈ ሽ	݃ݏܯݒܿݎ	
/*find unique tags*/
௞ܶ ൌ ሼ൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐:൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐	∈ ݉. ⋀	ݏݏ݁ݎ݃݋ݎ݌݊݅ 	൏ ݉,ݏ ൐	∈ ሽ	݃ݏܯݒܿݎ

sort_descending(௞ܶ); /*sort	 ௞ܶ in descending order*/
For each ݐ in ௞ܶ /*starting from the largest tag*/
if ݂݊݋ܥݔܽ݉ > ݐ then
 /* put all servers that have in their in progress set the ݐ tag into ܵݐ set*/

ܵ௧ ൌ ሼݏ: ݏ ∈ ܳ ∧ 	ݐ ∈ 	݉. ⋀	ݏݏ݁ݎ݃݋ݎ݌݊݅ 	൏ ݉,ݏ ൐	∈ { ݃ݏܯݒܿݎ	
 /*while there is a combination ܵ௧′ from ܵ௧, initially ܵ௧′ ൌ ܵ௧,

comb(ܾܿ݉, ݇, ݊) generates the next combination of ݊ elements as ݇ after ܾܿ݉,
where ݇ is also the size of the subsets to generate */
while comb(ܵ௧’, ݇, |ܵ௧|) ∧ ܵ௧’ ് { }

/*get all Quorums that include all servers from ܵ௧′ and put them in ܳݏ */
ݏܳ ൌ ሼݏ: ݏ ∈ ܵ௧′ ∧ ܵ௧′ ⊆ ܵ௧ ∧ |ܵ௧′| ് 0ሽ

 /*servers in intersection of: all quorums in ܳݏ with ܳ௞,
put them in ܫ௦ */

௦ܫ ൌ ሼݏ: ݏ ∈ ொ௦ܫ ∩	ܳ௞ሽ /*finish: if intersection is a subset of ܵ௧ */	
 If ܫ௦ ⊆ ܵ௧	݄݊݁ݐ Return ݐ /*and predicate is TRUE*/

If not a valid combination exists then ݇--; /*comb(ܵ௧’, ݇, |ܵ௧|) is valid? */
else if ݉ܽ=< ݂݊݋ܥݔ	ݐ	then
/* If none of ݐ in ௞ܶ satisfies the predicate then	ݐ	 ൌ predicate is FALSE for ,݂݊݋ܥݔܽ݉	
all ݐ in	 ௞ܶ.*/

return ݂݉ܽ݊݋ܥݔ /* predicate is FALSE */
Table 9: Pseudo code for the reader predicate

Fi

4

co

m

ro

ex

ev

T

ca

se

o

cr

igure 12: write

.8 Correctn

Local

omponents

manually tar

obustness o

xecution of

vent of error

est cases 1

ase 3 has in

erver proces

ne server, a

rucial that at

er predicate im

ess and Ro

tests were

are workin

rgeted test

f the implem

test cases i

rs. Specific r

 and 2 veri

nitially one re

sses are inc

at each exec

tomicity is n

mplementation

obustness

e frequently

g as expec

cases wer

mentation. Fo

n which criti

robustness t

fy that read

eader, writer

reased. Tes

cution the s

ot violated d

n pseudo code

executed d

cted. Once

re performe

or this purpo

ical values a

test cases (T

der and write

r and server

st case 4 inc

erver proces

due to imple

e [12]

during deve

the implem

ed to valida

ose a log file

are exported

Table 10: Te

er processe

and at each

ludes multip

sses are inc

mentation e

elopment to

mentation w

ate the cor

e is generat

d for later an

est cases) a

s execute c

h execution

ple reader an

creased. At

errors. Test c

4

validate th

was complet

rectness an

ted during th

nalyses in th

re performe

correctly. Te

the writer an

nd writers an

all cases it

cases 3 and

43

at

te,

nd

he

he

d.

est

nd

nd

is

 4

44

are difficult to practically test due to multiple writers in the system, for this reason only

a subset of operations were checked.

 One Server Two

Servers

... Twenty Servers

1. One reader(SR) Test reader messages used in communications

Test reader communication with multiple servers

2. One writer(SW) Test writer messages validity with one, two and twenty

servers.

3. SR

(SWMW)

Test that reader process reads the correct value while the

writers and the servers in the system increase.

4. MWMR Is atomicity violated?

Table 10: Test cases

 After the implementation described in Chapter 4 was tested locally for

correctness, a robustness stress test was performed. It is important that server

processes do not crash due to implementation errors, since general system errors

caused in PlanetLab cannot be avoided. To ensure all processes robustness a stress

test was performed locally with more aggressive settings than those used in

experiment in PlanetLab. The stress setup included a hundred of readers and writers

processes and starting from one (1) server multiple test were performed for up to

twenty(20) servers.

 Specifically, the tests attempted to either crash the servers due to memory

leakage or reach system limits, such as max concurrent thread numbers, opened file

descriptors, stack size, deadlocks and starvation. The stress test revealed a lot of

areas that improvement could be made. Although most major server failures were

45

counteracted the problem of starvation of concurrent threads trying to acquire access

to the atomic register is anticipated. The starvation issue is resolved on the client side

with timeout on the server response. The downscale is an increase of fail operations

from the client side but this problem only arises when the client number is very large

and their operation interval is small. Another workaround to the starvation issue is to

increase the timeout on the clients but this applies only on experiments since in real

application examples functional requirements may restrict operation latency.

46

Chapter 5

Experimentation Setup

 In this chapter the experimentation setup used during empirical evaluation is

detailed. In Section 5.1 the methodology followed and the configuration used are

given. Section 5.2 lists the procedure used to execute the scenarios on PlanetLab.

Lastly in Section 5.3 the problems and limitations encounter during the configuration

and execution of experiments are described.

5.1 Methodology and configuration

 To evaluate the algorithm implementations, experiments are executed on

PlanetLab and statistics are recorded for slow operations, operation latency and

execution time. The quorum system deployment uses the same PlanetLab nodes for

server processes in all experiments and scenarios.

 Quorums are arranged to have ܵ	– 	ܶ size, where	ܵ a set of servers and ܶ the

preconfigured maximum server failures which is configured based on the quorum

intersection degree required in each experiment. The quorum intersection degree for

each experiment is calculated using	݊	 ൌ 	 ۀ	ܶ	/ܵ	ڿ െ 	1. All write operations in algorithm

SFW are slow for ݊ ൑ 4 [12]. In other words, for	ܵ servers and intersection degree	݊

the maximum number of server failures is	ܶ	 ൌ 	ܵ	/	ሺ݊ ൅ 1ሻ. The system must be

robust “enough” in order to avoid read/write operation failures when a few servers

crash or are acting very slowly in PlanetLab. Furthermore, enough servers are

47

needed such that	ܶ ൐ 1. For these reasons, in most of the experiments scenarios

include twenty (20) servers were the quorum system intersection degree is	݊	 ൌ 	6

for	ܶ ൌ 3. When the quorum intersection degree is different in an experiment, the

respective value for ܶ is given.

The algorithm implementations do not explicitly restrict the number of reader

and writer processes but the system performance is expected to degrade when a lot

of client processes are present in a scenario. To discover suitable configurations for

the experiments, preliminary experiments are performed, where various scenarios

examine the effect of a variable parameter as it is progressively increased. The

parameters that are used as variables, only one at a time for each scenario, are:

number of readers, number of writers, read operation interval, writer operation

interval and quorum system intersection degree. In each scenario readers execute

200 read operations and writers 200 write operations. Due to the nodes’ arbitrary

slowness, most scenarios were executed two or three times in order to complete the

200 read/write operations assigned to each client involved in the scenario. An

average is calculated when assembling the results from scenarios that executed

more than once.

A list of all 20 nodes used for server processes is given in Table 11. In total,

100 PlanetLab nodes were included in the slice by randomly selecting from a list of

more than 1000 nodes.

The apparently faster machines, based on their uptime and load during the

last week, are selected for execution of the server processes. A list of all machines

used for executing client processes can be found in Appendix F.

The PlanetLab machines use Fedora release 8 (code werewolf) kernel

versions 2.6.x and their minimum hardware specification are show in Table 12. The

PlanetLab machines have adequate hardware specifications to execute the

48

experiments needed during empirical evaluation but usually about 1 GByte of

memory is available, CPU usage arbitrary varies and disk space is for the most part

sufficient.

Server Host Names

freedom.informatik.rwth-aachen.de flow.colgate.edu

chronos.disy.inf.uni-konstanz.de jupiter.cs.brown.edu

dannan.disy.inf.uni-konstanz.de ebb.colgate.edu

host2.planetlab.informatik.tu-darmstadt.de pl1.ucs.indiana.edu

adrastea.mcs.suffolk.edu pl2.planet.cs.kent.edu

75-130-96-12.static.oxfr.ma.charter.com planetlab04.cs.washington.edu

pl1.grid.kiae.ru fobos.cecalc.ula.ve

75-130-96-13.static.oxfr.ma.charter.com ds-pl1.technion.ac.il

host3.planetlab.informatik.tu-darmstadt.de cs-planetlab4.cs.surrey.sfu.ca

node-1.mcgillplanetlab.org pl1.rcc.uottawa.ca

Table 11: PlanetLab nodes used for server processes

 PCU CPU RAM Disk

Built-in, remote-access
power-reset capability,
accessible from PLC, such
as IntelAMT, HPiLO,
DellRAC, IPMIv2, etc.

4x Intel cores @ 2.4Ghz
(e.g., quad core or 2x dual
core)

 4 GByte 500 GB

Table 12: PlanetLab machines minimum hardware specifications [28]

5.2 Executing on PlanetLab

To access PlanetLab network an account is needed on planet-lab.org

website. Once an account is obtained, it can be used to login to PlanetLab and setup

a

th

ss

in

us

ps

P

ad

do

co

./r

sa

w

Fi

co

slice. After

he PlanetLab

sh) a public

nstructions fo

sed to assi

ssh.

The P

PlanetLab s

dd/remove

ownload th

ommands n

/run_linux_x8

ame as the

which is the p

igure 13: PlMa

The p

ommand in

a slice is cre

b site [28].

c and a priva

or setting u

st execution

PlMan tool is

lice (Figure

new nodes

e results.

needed to

86.sh from

password u

password us

an slice login,

pssh tool is

Table 13 e

eated nodes

However in

ate key mus

p keys can

n of scenar

s developed

e 13), conn

to the slice

While conn

the connec

the comma

used on pla

sed at the cre

 it request Au

a command

executes the

s can be add

order to se

st be assoc

be found o

rios during e

d in java an

nect with a

e, upload th

nected to t

cted cost c

and line, co

net-lab.org w

eation of the

thString and P

d executed

e comExec s

ded to it thro

curely conn

iated with th

on PlanetLab

empirical ev

d it provide

a set of s

e implemen

the nodes,

concurrently.

omplete the

website and

e private key

PrivateKeyPas

through a te

shell comma

ough the we

ect to any n

he account.

b website [2

valuation ar

s a method

lice nodes

ntation exec

PlMan ca

. To launch

AuthString

d the private

y.

ssword

erminal, for

and to each

4

b interface o

node (throug

Step by ste

28]. The too

re PlMan an

 to login to

(Figure 14

cutable(s) an

n direct an

h PlMan ru

which is th

ekeyPasswo

example, th

h of the hos

49

on

gh

ep

ols

nd

a

4),

nd

ny

un

he

rd

he

sts

lis

o

ho

Fi

ps

Ta

no

fr

co

o

us

do

ot

m

to

sted in host_

utputted into

ost which co

igure 14: PlMa

ssh –h host_

able 13: exam

These

odes during

riendly but i

onnected no

utput lines fr

sed to uplo

ownload the

ther hand p

monitoring. C

ool, even tho

_list.txt as u

o the dirOut

ontains the o

an host select

_list.txt –l sli

mple of pssh co

e are the to

g the empir

t displays o

odes. In con

rom each no

ad the direc

e whole dire

pssh tool is

Concluding t

ough PlMan

ser slice_na

t. The dirOu

output of the

tion screen on

ce_name –o

ommand

ols used fo

rical evaluat

only the firs

trast pssh c

ode in local f

ctory tree ne

ectory tree t

used for up

the pssh too

is intuitive b

ame. The ou

t directory c

e latest execu

n the right and

o ./dirOut co

r executing

tion of the

st line return

can execute

files for later

eeded by th

hat resides

ploading con

ol proved m

because of it

utput of the c

contains a fi

ute comman

d Overview of

omExec

in parallel c

algorithms.

n from each

a command

r processing

he scenario

in each nod

nfiguration fi

more practica

s GUI.

command o

le with the n

nd.

f connected ho

commands

The PlMan

h command

d to all hosts

g. Practically

execution s

de when ne

les, scenari

al and usefu

5

f each host

name of eac

osts to the lef

on PlanetLa

n tool is us

executed o

s and save a

y PlMan tool

scripts and

eeded. On th

o startup an

ul than PlMa

50

is

ch

ft.

ab

er

on

all

is

to

he

nd

an

51

Executing in parallel hundreds of processes and monitoring them is not a

trivial task even with the help of tools. For example, how multiple processes are

launched concurrently to multiple nodes with different command line parameters for

each process and for each node? For this reason a shell script is created to prepare

each PlanetLab node for the execution of a scenario. The shell script code

runscenario.sh is appended in Appendix B.

In brief, the script requires eight (8) command line parameters:

 total servers in the system,

 number of server failures,

 number of readers,

 number of writers,

 the algorithm type, (0 for SIMPLE, 1 for SFW)

 the register value type, (0 for integer, 1 for file)

 run test mode (1 executes in test mode, 0 executes normally)

 start mode, 1 executes only servers and 0 executes only clients,

The runscenario.sh script grants to all executable files permission to execute

on the node it runs on and kills all currently executing server, reader and writer

processes. The runscenario.sh script cleans all preexisting log files and parses a

server.ini file. The server.ini file contains a line for each node required to participate in

the scenario. Each line includes the node in the slice, the reader and writers

processes it needs to execute in the following format:

The_PlanetLab_Node_ip_or_hostName:ReadersNum:WritersNum

The value of the first (number of servers) runscenario.sh script parameter, let

it be num, also implies that the first num lines in server.ini file are configured to

execute a server process. Finally the runscenario.sh shell script starts the execution

of the client/server processes needed for the scenario.

52

The server and client processes need three (3) command line parameters:

 id, the unique identifier of the process of integer type that starts from zero and

counts first the servers then the readers and finally the writers. The purpose of

this id is to define a total order on the priority of processes in the algorithms

and for internal book keeping of their state.

 the algorithm type, same as the parameter passed in shell script

 the register value type, same as the parameter passed in shell script

Before the shell script is executed servers.ini, majorities_x.dat and confic.ini

are uploaded to PlanetLab nodes. The shell script is executed twice with the pssh

tool, firstly to start the servers execution and secondly to start the clients execution.

An example of the steps to start a scenario is given in Table 14 and for downloading

the results in Table 15.

5.3 Problems and Limitations

Various values for scenario parameters were tested during the preliminary

experiments. Specifically, the number of reader and writer processes in the system,

the operation intervals between sequential operations, the quorum intersection

degree and the timeout of requests.

Test parameter values were driven by values used in local tests. The local

tests were executed in order to provide an initial configuration for the preliminary

experiments. Local test cases that include more than 80 processes, executed in a

reasonable amount of time when run locally and under a specific configuration. This

high number of processes in PlanetLab proved impractical due to the arbitrary

slowness of machines and the implementation approaching full service capacity. The

server processes reach full service capacity in PlanetLab when overwhelmed from

53

Table 14: Example of steps for starting a scenario

operation requests, causing operation cancellation (due to timeouts in

communication).

Although increasing the timeout in communication may allow more processes

to participate in the scenario, it leads to a high average of operation latency. During

the preliminary experimentation phase it was discovered that the average latency in

communication between PlanetLab nodes is 125ms. It is not practical to increase

timeout beyond 10 seconds considering that with operation intervals at 1 second and

timeouts at 10 seconds, it takes more than one hour to execute a scenario with 400

1 pscp -h servers.txt -l cyprus_ATOMIC ./PlanetLab/scenarios/int.sfw/confic.ini

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw

2 pscp -h servers.txt -l cyprus_ATOMIC ./PlanetLab/scenarios/servers.ini

/home/cyprus_ATOMIC/PlanetLab/scenarios/

3 pscp -h servers.txt -l cyprus_ATOMIC ./PlanetLab/scenarios/majorities_x.dat

/home/cyprus_ATOMIC/PlanetLab/scenarios/

4 pnuke -h servers.txt -l cyprus_ATOMIC serverexe

pnuke -h servers.txt -l cyprus_ATOMIC readerexe

pnuke -h servers.txt -l cyprus_ATOMIC writerexe

5 pssh -h ./test_servers.txt -l cyprus_ATOMIC -o ./outs

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw/runscenario.sh 20 4 80 80 0

0 0 1

6 pssh -h ./test_servers.txt -l cyprus_ATOMIC -o ./outs

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw/runscenario.sh 20 4 80 80 0

0 0 0

54

1 pnuke -h servers.txt -l cyprus_ATOMIC serverexe

pnuke -h servers.txt -l cyprus_ATOMIC readerexe

pnuke -h servers.txt -l cyprus_ATOMIC writerexe

2 pssh -h ./servers.txt -l cyprus_ATOMIC -o ./results/sfw/writer cat

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw/writer*.result

3 pssh -h ./servers.txt -l cyprus_ATOMIC -o ./results/sfw/reader cat

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw/reader*.result

4 (a shell script to parse the results file and calculate averages and percentages of

required fields, the script code is on Appendix G)

results.sh ./results/sfw/reader

results.sh ./results/sfw/writer

(the script takes one parameter as input: the output directory location of step 2.

and 3. Respectively)

Table 15: Example of steps to download results

operations in total. Thus, there is no need to set the operation interval to a higher

value than 1 second.

The main problem is not communication latency between PlanetLab machine

nodes but the arbitrary slowness of nodes, especially the heavy loaded nodes, thus

the execution time slots given to the slice are less. PlanetLab has a fairness resource

allocation policy [14]. However, a process may execute slower than expected but it

may still be killed if it uses too many resources during high pressure times.

The PlanetLab slice used for the experiments had 100 nodes from which only

about 80 nodes were active while others were unavailable due to maintenance. This

caused problems when some of the unavailable nodes were selected to execute

server processes.

55

It is also important to note that PlanetLab nodes do not guarantee a static IP

or message delays and have varying bandwidth limitations. Configuring the

implementation of the algorithms to connect to servers using their IP address can fail,

since their IP can change between (re)connections. To solve this issue the IP of the

server must be resolved using the host name of the machine but this adds to the

communication time. An alternative to PlanetLab DNS servers arbitrary slow behavior

is CoDNS which basically gives benefit to anyone who wants more reliable name

lookup service [29].

On some of the stress test scenarios were the timeout and capacity of

processes is stressed, some node processes are killed and a notification email

similar to the one shown in Table 16 is received.

Sometime before Thu Aug 12 16:28:24 2010 GMT, swap space was

nearly exhausted on kc-sce-plab1.umkc.edu.

Slice cyprus_ATOMIC was killed since it was the largest consumer of

physical memory at 244.4 MB (24.4%) (96.8 MB writable)

after repeated restarts.

Please reply to this message explaining the nature of your experiment,

and what you are doing to address the problem.

cyprus_ATOMIC processes prior to reset:

 PID VIRT SZ RES %CPU %MEM COMMAND

23278 177.5 MB 44.4 MB 122.3 MB 12.1

/home/cyprus_ATOMIC/PlanetLab/writer/writerexe 149 0 1

23213 209.5 MB 52.4 MB 122.1 MB 12.1

/home/cyprus_ATOMIC/PlanetLab/reader/readerexe 49 0 1

Thu Aug 12 16:28:24 2010 GMT kc-sce-plab1.umkc.edu reset cyprus_ATOMIC

Table 16: PlanetLab kill auto send message example

56

When a scenario execution starts all client processes start sending requests

concurrently, overwhelming the servers. This is also reflected in the results where the

majority of operations latency at the beginning of the scenario execution is very high

and during the execution it slowly drops to more expected values. This initial burst

causes a high average of latency for operations and a high percentage of failures due

to communication timeouts. For these reasons a small wait interval was added to

each client process before scenario launch, in order to provide a less aggressive

behaviour at the beginning of scenarios. The initial wait interval that each process

waits before it starts its execution is fixed for all scenarios and it can be configured

from the confic.ini file.

During the empirical evaluation of the algorithms a lot of problems appeared

due to the nature of PlanetLab. Servers were arbitrarily going offline or were too slow

to communicate with. During the file upload of execution files for the experiments

some servers received the latest configurations while some others did not. This

created a lot of confusion, making the file upload procedure a tedious task to

accomplish.

Downloading the results of scenario executions faced the same problem

causing even more delays to a scenario execution. To download the results from the

PlanetLab nodes cat reader*.result unix command is used as the execCom

parameter to pssh. As a result to pssh command all result files were downloaded to a

local folder.

57

Chapter 6

Empirical Evaluation

 In this chapter the experiments, scenarios and their parameters used during

empirical evaluation are described. Subsequently for each experiment, the scenario

results are represented in graphs and analysed.

6.1 Experiments and Scenarios

 In this section the parameters for each experiment and their scenarios are

detailed. The parameters that are the same for all scenarios except when explicitly

stated otherwise are:

 Read operation interval: 1 second

 Writer operation interval: 1 second

 Quorum system intersection degree: ݊	 ൌ 	6, failures ܶ ൌ 3

 Communication timeout 10 seconds

 20 servers

Using a large number of PlanetLab nodes for object replicas and expecting

only ܶ ൌ 3 of them to not fail is impractical. In practice, the operation latency of

operations will further increase as reader/writers must wait responses from a larger

set of servers and the possibility some of them are performing arbitrarily slow is high.

For these reasons, the number of servers was set to 20 and the server failures were

varied from 1 to 3.

58

6.1.1 Experiment 1: Number of readers and writers effect

 The purpose of this experiment is to study how the number of readers and

writers affect the efficiency of algorithm SFW. The results obtained from this

experiment are used to define a reasonable number of readers and writers to use in

further experiments. The number of readers and writers differs in each scenario.

Scenario 1: Number of Writers

 The efficiency of algorithm SFW is investigated when the number of writer

processes in the system increases. Experiments are run with 10, 30, 40, 50, 80

writers while the number of readers remains 80.

Scenario 2: Number of Readers

 In this scenario the efficiency of algorithm SFW is investigated when the

number of readers in the system increases. Experiments are run with 10, 30, 50, 80

readers while the number of writers remains 80.

Scenario 3: Operation Interval

 The purpose of this scenario is to study the impact of operation frequency on

the efficiency of algorithm SFW. For this purpose the reader (ܫݎ) and writer intervals

 :are varied as follows (ܫݓ)

 ܫݎ	 ൐ 	ܫݎ ,ܫݓ	 ൌ 	1, 	ܫݓ ൌ 	10	

 ܫݎ	 ൏ ,ܫݓ	 	ܫݎ ൌ 	10, 	ܫݓ ൌ 	1	

 ܫݎ	 ൌ 	ܫݓ	 ൌ 	1	

59

The value of 1 second is chosen based on the observed PlanetLab average

latency in communication as explained in Section 5.3. The value of 10 seconds is

chosen such that there is a great difference between ܫݎ and ܫݓ	in order to get clear

results. Experiments are run for 10 readers - 80 writers and 80 readers - 10 writers.

6.1.2 Experiment 2: Quorum Intersection Degree

 In this experiment the effect of the quorum system intersection degree to the

efficiency of algorithm SFW is investigated. The following scenario is considered.

Scenario: Effect of Quorum Intersection Degree

 After observing the results of Scenarios 1 and 2 of Experiment 1, the number

of writers and readers are set to 40 and the operation interval is set to 1 second.

 Recall that algorithm SFW’s write predicate allows fast write operations for

quorum system intersection degree,	݊	 ൐ 	4 (note that ݊ cannot be greater than		ܵ	 െ

	1ሻ. In this experiment the parameters used for servers ܵ	 ൌ 20 and server

failures	ܶ ൌ 3. In the case of 20 servers, the values for ݊ used in the experiment is {6,

9, 19}, calculated as follows:

 ݊ ൌ ۀ20/3ڿ െ 1 ൌ 6, ܶ ൌ 3

 ݊ ൌ ۀ20/2ڿ െ 1 ൌ 9, ܶ ൌ 2

 ݊ ൌ ۀ20/1ڿ െ 1 ൌ 19, ܶ ൌ 1

6.1.3 Experiment 3: Comparison of the SFW with the SIMPLE algorithm

60

 In this experiment the average operation latency of algorithm SFW is

compared against the latency of algorithm SIMPLE. The following scenario is

considered.

Scenario: Increasing readers and writers

The scenario is executed with reader and writer processes at 10, 20, 30 and

40 respectively. The two algorithms’ performance is compared in respect to their

average operation latency, average CPU cycles consumed (execution time),

operation failure percentage due to timeouts and percentage of fast operations

executed for algorithm SFW.

6.2 Results

 The experiments and their results are depicted in graphs and analyzed

separately for each scenario.

6.2.1 Experiment 1

Scenario	1:	Number	of	Writers	

 The effect of changing the number of writers is investigated while the number

of readers is fixed to 80. Different plots are presented that show how the amount of

writers affects the percentage of fast operations, operation latency and failures. Note

that the operations that timeout are not included in the calculation of the results for

Figure 15, 16 and 17.

It is expected that the percentage of fast write operations will decrease while

the number of writers increase. The readers are expected to perform a higher

61

percentage of fast read operations since it is more likely their predicate to be

validated (return TRUE) on larger inprogress sets.

 Before the turning point at ܹ ൑ 40 in Figure 15, the results observed are

similar to the expected results. As writers increase they perform fewer fast write

operations. This is expected behaviour since the writers proceed to a second

Figure 15: Percentage of fast write operations with 80 readers

communication round if there is a tag returned by the servers (of the quorum that

replied) that is distributed among enough quorums. When there are more readers in

the system it is more difficult to validate the predicate due to multiple concurrent write

operations.

As mentioned, a turning point exists at 40 writers in Figure 15 (the average

percentage of fast writes is 3.7% for	ݓ ൌ 40). At the turning point the performance

regarding the percentage of fast write operations is the worst, which indicates that the

system approaches its capacity limit. This limit means that there are so many write

and read processes in the system that the percentage of fast write operations is

reduced. After the turning point the percentage of fast operations increases. Studying

the log files generated during the execution of the scenario the following are

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80

P
e
rs
e
n
ta
ge

number of writers

% fast operations

Writes

62

observed: some processes have crashed or are very slow, others suffer from long

service starvation, while some other processes are serviced more frequently due to

latency and the asynchrony of clients with the servers. Another reason could be that

geographical proximity favours’ some clients. The value of 80 writers is included in

the results for completeness, to show that the system reaches its limits and is not

used to draw conclusions on the efficiency of algorithm SFW.

Figure 16: Percentage of fast read operations with 80 readers

In Figure 16 it is shown that the percentage of fast read operations increases,

as the number of writers increase. This is in accordance to our expectation. The

readers will first check if the max confirmed tag returned by the replying quorum is

greater than any other tag in the inprogress set. With increasing number of readers,

the read requests will be more frequent than write requests and as such it is more

likely a fast read operation to occur. When the system has over 30 writers the

percentage of fast read operations becomes stable, near 100%, hence this result

gives a good indication for the efficiency of read operations of algorithm SFW.

In Figure 17, the operation latency of read operations is stable with increasing

number of writers, which is expected, given the results in Figure 16. When ܹ ൌ 40,

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80

p
e
rc
e
n
ta
ge

number of writers

% fast operations

Reads

63

Figure 17: client performance: average operation latency

the operation latency of write operations is at its peak (28 seconds). Observe that the

curve of Figure 17 (the write operations latency increases) is relatively the inverse of

the curve shown in Figure 15 (the percentage of fast write operations decreases).

In Figure 18 the fail percentage caused by timeout of read operations

increases as the number of writers increase until	ܹ ൌ 30. Readers’ fail percentage is

at its peak when 30 writers are in the system since the readers in this case perform

Figure 18: percentage of client timeout failures

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80

se
co
n
d
s

Number of writers

Operation Latency

Writes

Reads

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80

p
e
rc
e
n
ta
ge

Writers Number

% timeout failures

Reads

Writes

64

mostly fast operations (96.6%) and they “compete for access” to the object’s replicas.

Observe that the read operation latency is a bit higher for ܹ	 ൌ 30 than ܹ	 ൌ 	10.

After ܹ ൌ 30, the failure timeout of read operations is unexpectedly

decreased, because after ܹ ൌ 30 all read operations are fast and write operations

are slow (up to ܹ ൌ 40) giving more access to the atomic register to readers. This

also agrees with the fact that a lot of reader processes have crashed.

 The write operation timeout percentage is increased until ܹ ൌ 50 since the

number of writers is increased and there is more traffic towards the servers. As we

approach 40 writers the percentage of fast write operations dramatically drops

(Figure 15) and write operations latency radically increases (Figure 17), which causes

more failures due to timeouts. After	ܹ ൌ 50, as already mentioned, the system

approaches its limit. The timeout percentage value after ܹ ൌ 50 is not representative

since a lot of processes crash.

Scenario	2:	Number	of	Readers	

 As an addition to the previous scenario, the effect of the number of readers is

investigated while the number of writers is fixed. It is expected that the percentage of

fast read and write operations will not be affected by the increase of the number of

reader processes because their predicates are not influenced by the number of

readers. The operation latency, of both read and write operations, is expected to

increase when the number of readers increase since the load on the servers is

increased.

As it can be seen in Figure 19, the percentage of fast write operations

increases linearly from 10 to 30 readers. This behaviour is possible since more

processes are executing concurrently competing for service, which intuitively reduces

the number of writers gaining access to servers because they are being overrun by

65

Figure 19: Percentage of fast write operations as the readers increase

the readers. In other words, it is more likely less writers to execute concurrently, since

a portion of the servers capacity is been “attained” by readers. From 30 to 50 readers

the percentage appears more stable (on average 26%). After the number of reader

processes exceed 50 the fast write operation percentage is increased, which may be

caused by the same reasons explained in Scenario 1. At 80 readers the system is

unstable since, as observed from the log files, a lot of processes crash thus fewer

read and write processes are actually executing in the system.

Essentially, the increased percentage of fast write operations at 80 readers is not

representative but is included in the results for completeness.

In Figure 20, increasing the number of readers does not affect, by a

noticeable degree, the percentage of fast read operations since it only drops by 2%

(from 99% to 97%) from 30 to 50 readers. As mentioned, this is indeed our

expectation.

The average operation latency of read operations, in Figure 21, is not

significantly affected by the number of readers. On the other hand, the operation

latency of write operations is substantially affected by the number of readers.

Specifically, there is a notable decrease of the writer’s latency between 10 and 30

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80

P
e
rs
e
n
ta
ge

number of readers

% fast operations

Writes

66

Figure 20: percentage of fast read operations as the readers increase

Figure 21: The average operation latency while reader processes increase and writers are fixed

since in Figure 19 for the same range there was an increase in the percentage of fast

write operations. Between 30 and 50 readers a big increase in writer’s operation

latency is observed. Considering that for the same range the percentage of fast write

operations was stable, it seems that the system approaches its capacity limit at 50

readers. At 80 readers the system is unstable since, as observed from the log files, a

lot of processes crash.

The timeout failures of write operations (in Figure 22) are relatively stable as

96

96.5

97

97.5

98

98.5

99

99.5

10 20 30 40 50 60 70 80

p
e
rc
e
n
ta
ge

number of readers

% fast operations

reads

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80

se
co
n
d
s

Readers Number

Operation Latency

readers

writers

67

Figure 22: percentage of failures from timeouts while reader processes increase and writers are

fixed

the number of readers increase. The read operation latency and percentage of slow

read operations at 10 readers is not higher than at 30 readers but the fail operations

when considering 10 readers (in Figure 22) is unreasonably high. Observing from the

log files we see that there are a few readers which perform almost only fail operations

due to timeouts. These PlanetLab machines are either very slow due to transient load

or they are experiencing network congestion. When there are more readers these

slow machines have less effect on the results.

Scenario	3:	Operation	Interval	

Recall that read interval is denoted by ܫݎ	and write interval by	ܫݓ. For the read

operations, when ܫݎ	 ൏ it is expected that a high percentage of ,(1sec < 10 sec) ܫݓ	

one round (fast) read operations will occur. In the case of write operations, a slower

write frequency is expected to lead to one round (fast) write operations.

For ܫݎ	 ൐ it is expected to see a high percentage of fast (10sec > 1sec) ܫݓ	

read and write operations. Since the read operations are infrequent and do not

0

5

10

15

20

25

10 20 30 40 50 60 70 80

p
e
rc
e
n
ta
ge

Readers Number

timeout failures

readers

writers

68

consume server resources, the percentage of fast write operations is expected to be

high. Since the write operations are frequent and they finish earlier they stop

consuming server resources leaving only readers to execute in the scenario. It is

expected to result to a high percentage of fast read operations.

For ܫݎ	 ൌ it is expected that both readers and writers perform fewer ,(1sec) ܫݓ	

fast operations than in ܫݎ ൏ ܫݎ	or ܫݓ ൐ .ܫݓ

Results are close to the expected but in most of the cases there is no

noticeable influence to the percentage of fast read operations (Figure 23). A

noticeable effect of the read and write operation interval is observed when the

number of readers is significantly more than the number of writers regarding write

operations (Figure 24). The percentage of fast write operations in this case is

increased when ܫݎ ൌ ܫݎ	and ܫݓ ൐ .ܫݓ

Figure 23: Effect on % of fast read operations, on the vertical axis is the percentage and on the

horizontal axis there are two categories, (1)80 readers and 10 writers, (2) 10 readers and 80

writers

In the case of	ܫݎ ൌ the percentage of fast write operations is the highest ܫݓ

because there are few writers affecting the server tags. In the case of 80 writers and

10 readers, regardless of the chosen interval the percentage of fast write operations

is low affected by the high number of writers in the system.

0

20

40

60

80

100

120

r80w10 r10w80

p
e
rc
e
n
ta
ge

% fast read operations

ri>wi

ri<wi

ri=wi

69

Figure 24: Effect on % of fast write operations, on the vertical axis is the percentage and on the

horizontal axis there are two categories, (1) 80 readers and 10 writers, (2) 10 readers and 80

writers

Summary	

Concluding from Scenario 1 and Scenario 2, it was indicated that the number

of writers and readers in the scenarios should be low enough (less than 80) to

provide stability of the system while scenarios are executed. In order to balance

service congestion the number of processes could be leveraged around 40 readers

and writers or by increasing the operation interval.

The system exhibits reasonable behaviour when the number of readers is

equal with the number of writers in the system. In the case of fewer readers there are

more read failures but nonetheless the readers perform fast read operations. Overall,

it is desirable to keep the average operation latency low enough such that the

scenarios in subsequent experiments complete in a reasonable amount of time.

0

5

10

15

20

25

30

35

40

45

r80w10 r10w80

p
e
rc
e
n
ta
ge

% fast write operations

ri>wi

ri<wi

ri=wi

70

From Scenario 3, it was observed that the read and write intervals do not

greatly affect the efficiency of the algorithm. However, in the case of 80 readers and

10 writers a notable difference in the percentage of fast write operations was

observed with the highest percentage being when	ܫݓ ൌ Thus, it was decided to .ܫݎ

keep the read interval equal to the write interval in further experiments.

6.2.2 Experiment 2

 The second experiment focuses on the quorum intersection degree of the

underlying quorum system. Recall that a single scenario was considered here (effect

of quorum intersection degree).

It is expected that for	݊	 ൐ 	4, the percentage of fast write operations increases

due to the writer predicate that requires the writer tag to appear in an intersection with

at most ݊/2	– 	1 other quorums. As ݊ increases so do the intersected quorums, thus

their intersection size decreases and thus the predicate is easier to validate. Recall

that ݊ cannot be greater than	ܵ	– 	1. The results are close to the expected ones

(Figure 25).

The percentage of fast read operations is expected to increase due to the

reader predicate that examines all tags returned from servers and needs a tag to

appear in the intersection with at most ݊/2	– 	2 other quorums. As ݊ increases so do

the quorums that get intersected, thus their intersection size decreases and the

predicate is easier to validate.

The percentage of fast read operations is high at all values for ݊ (Figure 26).

There is a slight drop on the percentage on high values of	݊ (i.e., ݊ ൌ 19ሻ that may be

caused by the high percentage of operation timeouts (Figure 28) discussed later.

71

It is expected that the operation latency increases as the quorum intersection

degree increases, since an operation waits for more servers to respond. In Figure 27

it can be observed that the operation latency of the read and write operations

increases for values	݊	 ൌ 	6 and	݊	 ൌ 	9. Even though the percentage of fast write

operations is the same when ݊ is 6 and 9, the average write operation latency

doubles. The same is true for read operations that exhibit less fast operations. This

increase in the operation latency can be explained by the fact that clients expect

more servers to respond at each communication round.

Figure 25: The percentage of fast write operations with 40 readers and 40 writers, while ࢔

increases.

In the case of	݊ ൌ 19, the operation latency is still high but less than ݊ ൌ 9

since the percentage of fast write operations is the highest for	݊ ൌ 19.

The percentage of fail operations in Figure 28 shows an increase of failures

while the intersection degree increases, due to the fact that clients expect more

servers to respond during a communication round.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

%
fa
st
 o
p
e
ra
ti
o
n
s

Quorum Intersection Degree

Effect of ݊ on fast operation

%writes

72

Figure 26: The percentage of fast read operations with 40 readers and 40 writers, while ࢔

increases

Figure 27: 40 reader and 40 writer time of execution in respect to ࢔

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

%
fa
st
 o
p
e
ra
ti
o
n
s

Quorum Intersection Degree

Effect of ݊ on fast operations

%reads

0

2

4

6

8

10

12

14

6 9 19

se
co
n
d
s

quorum intersection degree

Operation Latency

Read avgEXe

Write avgEXe

73

Figure 28: Percentage of fail operations due to timeouts in communication in respect to ࢔

Summary	

 The results are close to the expected ones when examining the percentage of

fast write operations. The percentage of fast write operations increases as the

quorum intersection degree increases. On the other hand the percentage of fast read

operations slightly drops as the intersection degree increases because there are a lot

of failures due to timeouts. The operation latency increases as the quorum

intersection degree increases. When a high percentage of fast operations exists then

the operations latency is balanced off. From our experiments we observe that the

quorum intersection degree is an important parameter, since in most cases it greatly

affects the efficiency of algorithm SFW.

6.2.3 Experiment 3

 In the last experiment the efficiency of algorithm SFW and is compared with

the efficiency of algorithm SIMPLE. Recall that a single scenario was considered for

this experiment as well.

0

10

20

30

40

50

6 9 19

p
e
rc
e
n
ta
ge

N, quorum intersection degree

%timeout failures

%read fail

%write fail

74

 It is expected that algorithm SIMPLE’s operations will consume on average

less CPU time than of the algorithm SFW, because SFW must also validate its

operation’s predicates. On the other hand, algorithm SFW’s operation latency for

read and write operations is expected to be less than of SIMPLE, given that algorithm

SFW allows fast operations. In respect to failures, due to timeouts, it is expected that

SFW will generally have a higher percentage of failures than SIMPLE, since SFW

must wait for more server acknowledgements at every round of communication. This

behavior is expected to be more noticeable when SFW performs mostly slow read or

write operations.

 The results for CPU time consumption for the read operations are close to our

expectations. In the case of read operations (Figure 29), algorithm SIMPLE’s CPU

time consumption appears to be constant while processes increase. Algorithm SFW’s

read operations always need more CPU time than of SIMPLE. Increasing the number

of processes also increases the time needed to validate the reader predicate,

increasing the gap between SFW and SIMPLE even more.

 Algorithm SIMPLE’s write operations CPU time is stable as the number of

processes increase in the system as well. Instead, algorithm SFW’s write operations

CPU time increases linearly with the increase of processes in the system (Figure 30),

as expected.

On average, a read operation takes more time to execute in algorithm

SIMPLE than in algorithm SFW and increasing the number of processes also

increases their difference (Figure 31), since SFW allows fast read operations as

depicted in Figure 32. Given the percentage of fast read operations at 30 readers and

writers (and below),the difference in operation latency between the two algorithms is

disappointing. However the efficiency of algorithm SFW is clear at 40 reader and

writers where there is around 7 seconds difference in operation latency.

75

Figure 29: Read operations CPU time comparison of the SIMPLE with the SFW algorithm

Figure 30: Write operations CPU time comparison of the SIMPLE with the SFW algorithm

This suggests that even larger difference will be witnessed at larger number of

readers and writers.

 In the case of write operations, per Figure 33, algorithm SIMPLE’s operation

latency increases linearly when the number of processes increases, which was

0.00

0.05

0.10

0.15

0.20

R10W10 R20W20 R30W30 R40W40

se
co
n
d
s

Reader and Writer

Read CPU time comparison
SIMPLE ‐ SFW

SIMPLE

SFW

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R10W10 R20W20 R30W30 R40W40

se
co
n
d
s

number of readers and writers

Write CPU time comparison
SIMPLE ‐ SFW

SIMPLE

SFW

76

Figure 31: Read operation latency comparison of the SIMPLE with the SFW algorithm

expected since the bottleneck are the servers’s capacity to serve (based on

bandwidth, hardware specifications and load). In the range of 10-20 reader and 10-20

Figure 32: Read operations fail% and fast% for the SFW algorithm

writer processes in the system, algorithm SFW’s write operations need slightly less

time to execute because the percentage of one round write operations also increases

0

5

10

15

20

R10W10 R20W20 R30W30 R40W40

se
co
n
d
s

number readers and writers

Read Operation Latency comparison
SIMPLE ‐ SFW

SIMPLE

SFW

0

20

40

60

80

100

120

R10W10 R20W20 R30W30 R40W40

p
e
rc
e
n
ta
ge

Reader and Writer

Read Operations for SFW
%fail and%Fast

%FAIL

%FAST

77

(Figure 34). In the range of 20-40 readers and writers algorithm SFW’s write

operations’ execute slower than of SIMPLE with the peak of difference at the point

where SFW performs 6.3% (Figure 34) of one round fast write operations. Algorithm

SFW is slower in this case (30 reader and writers) due to the high write CPU

execution time as seen in Figure 30. Again the difference between the two algorithms

regarding operation latency is disappointing. Considering the high percentage of fast

write operations at 20 readers and writers the operation latency of algorithm SFW is

only 0.2 seconds better than the SIMPLE; we expected algorithm SFW to perform

write operations in less time. One may conclude that for the chosen experiment

values, the CPU time required by algorithm SFW voids the reduced time of fast

writes.

Figure 33: Write operations operation latency comparison of the SIMPLE with the SFW algorithm

0

5

10

15

20

R10W10 R20W20 R30W30 R40W40

Se
co
n
d
s

number of readers and writers

Write Operation Latency comparison
SIMPLE ‐ SFW

SIMPLE

SFW

78

Figure 34: Write operations %fail and %fast for the SFW algorithm

Summary	

 Assuming no more servers than ܶ=3 will fail and under a reasonable setup of

readers and writers in the system, algorithm SFW’s efficiency is better than of

algorithm SIMPLE’s efficiency, but by a small margin. The most important parameter

is the operation latency and only for read operations algorithm SFW shows a small

difference. The CPU time consumption is always higher for algorithm SFW due to the

predicate computation and is increased with increasing clients. On the other hand,

algorithm SIMPLE’s CPU time consumption is stable while increasing the number of

clients. This experiment suggests that algorithm SFW would be preferred over

SIMPLE in settings where the communication delay dominates the time needed for

the predicate computation (e.g., when the delay exceeds 0.2 secs).

0

2

4

6

8

10

12

14

16

R10W10 R20W20 R30W30 R40W40

p
e
rc
e
n
ta
ge

number of readers and writers

Write Operations for SFW
%fail and %fast

%FAIL

%FAST

79

6.3 Conclusions

In this section our conclusions from the scenarios are summarized. The first

experiment provided indications for the number of readers and writers to use in

further experiments. With very high numbers of readers and writers (specifically 80

readers, 80 writers and 20 servers) the system configuration (over PlanetLab) seems

to reach a limit in which a lot of processes crash. Thus, it is important to choose

carefully the number of servers and clients in order to avoid overwhelming the

system.

Regarding the operation interval, it does not affect the efficiency of the system

considerably. Consequently, it is appropriate to keep a low value in order for the

execution to take a reasonable amount of time.

Will more scenarios with a larger amount of object replicas (servers) possibly

show a larger effect of the quorum intersection degree (݊)? Increasing the total

number of servers to allow more servers to fail (“more” robustness), while maintaining

desirable efficiency, do not change the fact that the maximum number of server

failures “allowed” is a small percentage over the total number of servers.

Using a large number of PlanetLab nodes for object replicas and expecting

almost all of them to be responsive is impractical. In practise the latency of operations

further increases as reader/writers must wait for responses from a larger set of

servers and the possibility that some of them might perform arbitrarily slow is high.

Also, increasing the number of replicas may not be practical since it also increases

the economical (total cost of ownership) aspect of maintaining the quorum system.

The results indicate that ݊	is an important parameter to the overall efficiency of

algorithm SFW and in a real application setup it should be optimized according to the

80

application expected behaviour in order to obtain efficient operation latency and small

percentage of failures.

 Under reasonable conditions algorithm SFW can be efficient in comparison

with algorithm SIMPLE. That is in the case when the number of reader and writers in

the system is low. An indication for the number of writers is to be about the same as

the number of servers (replicas) without restrictions on the number of the readers

(besides the systems’ load capacity). Algorithm SFW may not provide a substantial

improvement on the operation latency when compared to SIMPLE, but it still reduces

the communication overhead on the network links. The CPU time consumption is only

a small issue for algorithm SFW because the processing of the predicate is

performed on the client’s side and thus server performance is not affected. Although

algorithm SFW saves network bandwidth it does so by increasing CPU time

consumption. If the predicate for any reason decides that a second communication

round is needed then the CPU time spent is clearly an overhead. Thus it is important

that the method used in the implementation to calculate the predicate be optimal. On

the other hand, the large percentage of fast read and write operations suggest that

algorithm SFW would perform much better than algorithm SIMPLE in settings where

the communication delay dominates the time needed for the predicate computation.

81

Chapter 7

Epilogue

A lot of research has been conducted for studying efficient data survivability in

distributed storage systems. Considering Multiple Writers and Multiple Readers

(MWMR) implementations where the atomic data object is replicated on a set of

servers susceptible to failures. Researchers have attempted to answer the question

of how efficient can a read/write operation be. Recent work introduced algorithm SFW

which is the first algorithm in the MWMR model to allow fast read and write

operations.

In this thesis the practicality of algorithm SFW under real network conditions

provided by PlanetLab is examined. Algorithm SFW uses read and write predicates to

decide if a second communication round is needed by the read or write operation,

respectively. These predicates try to discover the distribution of the tag in a large

solution space. For this reason a heuristic method is proposed that reduces the

solution space. An empirical evaluation of algorithm SFW is performed on PlanetLab

using as metrics the percentage of fast operations, the operation latency, the quorum

intersection degree, the CPU consumption and the percentage of failures from

timeouts. The results are compared with a robust, reliable algorithm (SIMPLE) that

always performs slow operations. Careful design is needed if implementations are to

maximize the efficiency of algorithm SFW, although the restrictions imposed on the

quorum system due to high intersection degree may be too much for most application

specifications.

Overall, the algorithm mostly behaves as expected in the experiments we

conducted. An essential decision that needs to be made when building a system

82

using algorithm SFW is the number of servers and clients to use. It is imperative to

choose the appropriate number of servers for the wanted number of clients to avoid

overwhelming the system. According to the experiments the operation interval does

not notably affect the efficiency of the algorithm.

When the quorum intersection degree increases, the percentage of fast write

operations and the operations latency increase as well. When a high percentage of

fast operations exists then the operations latency is balanced off. The percentage of

fast read operations remains generally high for all experimental values of quorum

intersection degree.

 Algorithm SFW can be efficient in comparison with algorithm SIMPLE but only

by a small margin. That is in the case when the number of reader and writers in the

system is low compared to the servers. Thus, the number of writers should approach

the number of servers in the system. The minor improvement that SFW provides on

the operation latency is disappointing. Regardless, considering the percentage of fast

operations allowed by algorithm SFW in comparison to no fast operations offered by

algorithm SIMPLE, it reduces the communication overhead on the network links.

Although algorithm SFW saves network bandwidth it does so by increasing CPU time

consumption used for the predicate computation. If the validation of the predicate

procedure decides that a second communication round is needed, then the increased

CPU time is an overhead compared to SIMPLE. It is critical that the technique chosen

to implement the predicate validation be optimum.

 A proof is still necessary for the accuracy of the proposed heuristic method

and its efficiency. Additionally, an optimization of the algorithms’ implementation can

be done to reduce communication time by exploring the benefits of CoDNS [29]

(reliable DNS on PlanetLab) to reduce host name address resolution. Reducing the

communication delay can benefit both algorithms but it may give advantage to

83

SIMPLE, since algorithm SFW seems to perform better in settings where the

communication delay overshadows the predicate computation.

Dynamic calculation of the operations timeout could be developed similar to

the concept of TCP Vegas [30] congestion control algorithm, in which timeouts are

set and round-trip delays are measured for every packet in the transmit buffer and

additive increases in the congestion window are made dynamically. The concept is to

dynamically calculate the timeout of an operation as a function of previous

communication round-trips between servers. As a result the timeout can be

dynamically readjusted to reflect both network congestion and client awareness of the

servers performing arbitrarily slow. Finally, it remains to investigate the efficiency of

algorithm SFW when the atomic object size increases (e.g. files of varying sizes are

used). Despite the rather disappointing results regarding write operation latency in

these experiments, it is expected that the efficiency of algorithm SFW will be clearer

when files of varying sizes are used; in algorithm SIMPLE the writers send the file

twice while algorithm SFW sometimes sends it only once.

84

Bibliography

1 Patterson, David A., Gibson, Garth, and Katz, H. Randy. A case of Redundant

Arrays of Inexpensive Disks (RAID). International Conference on Management of

Data, Proceedings of the 1988 ACM SIGMOD international conference on

Management of data (1988), 109 - 116.

2 Herlihy, Maurice P. and Wing, Jeannette M. Axioms for Concurrent Objects.

Annual Symposium on Principles of Programming Languages Proceedings of the

14th ACM SIGACT-SIGPLAN symposium on Principles of programming

languages (1987), 13-26.

3 Lamport, Leslie. On Interprocess Communication. Distributed Computing, 1

(1985).

4 Herlihy, Maurice M. and Wing, Jannette. Linearizability: A correctness condition

for concurrent objects. ACM Transactions on Programming Languages and

Systems, 12, 3 (1990), 463-492.

5 Bernstein, Philip A., Hadzilacos, Vassos, and Goodman, Nathan. Concurrency

Control and Recovery in Database Systems. Addison Wesley, 1987.

6 Weikum, Gerhard and Vossen, Gottfried. Transactional Information Systems.

Elsevier, 2001.

7 Attiya, H., Bar-Noy, A., and Dolev, D. Sharing Memory Robustly in Message-

Passing Systems. Journal of the ACM, 42, 1 (Jan 1995), 124-142.

8 Lynch, Nancy A. and Shavartsman, Alexander A. Robust emulation of shared

memory using dynamic quorum-acknowledged broadcasts. In Proceedings of

Symposium on Fault-Tolerant Computing (1997), 272-281.

9 Lynch, N. and Shvartsman, A. A. RAMBO: A reconfigurable atomic memory

85

service for dynamic networks. In Proceedings of 16th International Symposium on

Distributed Computing (DISC) (2002), 173-190.

10 Dutta, Partha, Guerraoui, Rachid, Levy, Ron R., and Chakraborty, Arindam. How

fast can a Distributed Atomic Read Be? In Proceedings of the 23rd ACM

symposium on Principles of Distributed Computing (PODC) (2004), 236-245.

11 Georgiou, Chryssis, Nicolaou, Nicolas, and Shvartsman, Alexander A. Fault-

tolerant semifast implementations for atomic read/write registers. Journal of

Parallel and Distributed Computing, 69, 1 (2009), 62-79. Preliminary version

appeared in SPAA 2006.

12 Englert, Burkhard, Georgiou, Chryssis, Musial, Peter M., Nicolaou, Nicolas, and

Shvartsman, Alexander A. On the Efficiency of Atomic Multi-Reader, Multi-Writer

Distributed Memory. Proc. of the 13th International Conference on Principles of

Distributed Systems (OPODIS 2009) (2009), 240-254. Also as Technical Report at

the University of Cyprus.

13 Georgiou, Chryssis, Nicolaou, Nicolas C., and Shvartsman, Alexander A. On the

Robustness of (Semi)Fast Quorum-Based Implementations of Atomic Shared

Memory. Proc. of the 22nd International Symposium on Distributed Computing

(DISC 2008) (May 2008), 289-304.

14 Spring, Neil, Peterson, Larry, Bavier, Andy, and Vivek, Pai. Using PlanetLab for

Network Research:Myths, Realities and Practices. ACM SIGOPS Operating

Systems Review, 40, 1 (January 2006), 17-24.

15 Peterson, L. L., Bavier, A. C., Fiuczynski, M. E., and Muir, S. Experiences building

planetlab. OSDI (2006), 351-366.

16 Lamport, Leslie. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21, 7 (July 1978), 558-565.

86

17 Georgiou, Chryssis. Robust Implementations of Atomic Read/Write Objects in

Message-Passing Systems. Computer Science Seminar Presentation, University

of Cyprus (March 23, 2010).

18 Malkhi, D. and Reiter, M. Byzantine Quorum Systems. Distributed Computing, 11,

4 (1998), 203-213.

19 Peleg, D. and Wool, A. Crumbling walls: A class of high availability quorum

system. In Proceedings of 14th ACM Symposium on Principles of Distributed

Computing (PODC) (1995), 120-129.

20 Seth, Gilbert and Grzegorz, Malewicz. The Quorum Deployment Problem.

Proceedings of the 8th International Conference on Principles of Distributed

Systems (OPODIS) (December 2004).

21 Chockler, Gregory, Gilbert, Seth, Gramoli, Vincent, Peter, Musial M., and

Shvartsman, Alexander A. Reconfigurable distributed storage for dynamic

networks. Journal of Parallel and Distributed Computing, 69, 1 (January 2009),

100-116.

22 Attiya, H, Chaudhuri, S, Friedman, R, and Welch, J.L. Shared Memory

Consistency Conditions for Non-Sequential Execution: Definitions and

Programming Strategies. SIAM Journal on Computing, 27, 1 (February 1998), 65-

89.

23 Fan, Rui and Lynch, Nancy. Efficient Replication of Large Data Objects.

Proceedings of the Twenty-Second Annual ACM Symposium on Principles of

Distributed Computing (July 2003), 335.

24 NS-2 Wiki Available at: http://nsnam.isi.edu/nsnam/index.php/Main_Page.

25 Bavier, A., Muir, S., Peterson, L. et al. Operating system support for planetary-

scale network services. Symposium on Networked Systems Design and

87

Implementation (NSDI ‘04) (May 2004).

26 Lamport, Leslie, Shostak, Robert, and Pease, Marshall. The Byzantine Generals

Problem. ACM Transactions on Programming Languages and Systems, 4, 3 (July

1982), 382-401.

27 Fisher, Michael J., Lynch, Nancy A., and Paterson, Michael S. Impossibility of

Distributed Consensus with One Faulty Process. Journal of the ACM, 32, 2 (April

1985), 374-382.

28 PlanetLab Home Page Available at: http://www.planet-lab.org.

29 KyoungSoo, Park, Vivek, Pai S., Peterson, Larry, and Zhe, Wang. CoDNS:

Improving DNS Performance and Reliability via Cooperative Lookups.

Proceedings of the Sixth Symposium on Operating Systems Design and

Implementation(OSDI '04) (2004).

30 Low, Steven, Peterson, Larry, and Wang, Limin. Understanding TCP Vegas: A

Duality Model. Technical Report TR-616-00 (November 2000).

31 Garcia-Molina, Hector and Barbara, Daniel. How to assign votes in a distributed

system. Journal of the ACM, 32, 4 (October 1985), 841-860.

32 Englert, Burkhard, Georgiou, Chryssis, Musial, M. Peter, Nicolaou, Nicolas, and

Shvartsman, Alexander A. On the Efficiency of Atomic Multi-Reader Multi-Writer

Distributed Memory. Technical Report, University Of Cyprus. in Proc. of the 13th

International Conference on Principles of Distributed Systems (OPODIS 2009)

(Nimes, France, 2009), 240-254.

88

Appendix A

The format of the configuration file confic.ini is shown Table 17: example of

configuration file: confic.ini, with included comments that explain each field.

#IMPORTANT! AS A GENERAL RULE DO NOT CHANGE THE ORDER OF VARIABLE
#DEFINITION IN THIS FILE!!

#casing(upper/lower) of variables in this file does not matter
port=4709
serverNum=20
quorumNum=1140
readerNum=83
writerNum=83
alwaysSentValue=0
#for each server we define the IP address and the port
#maybe a port has been reserved at some point and all our servers crash
#.. this way only one server goes down due to port which we can accept

#freedom.informatik.rwth-aachen.de
serverAddr=137.226.138.154
serverPort=4709
#chronos.disy.inf.uni-konstanz.de
serverAddr=134.34.246.5
serverPort=4710
#dannan.disy.inf.uni-konstanz.de
serverAddr=134.34.246.4
serverPort=4711
#host2.planetlab.informatik.tu-darmstadt.de
serverAddr=130.83.166.199
serverPort=4708
#adrastea.mcs.suffolk.edu
serverAddr=192.138.213.236
serverPort=4713
#75-130-96-12.static.oxfr.ma.charter.com
serverAddr=75.130.96.12
serverPort=4714
#pl1.grid.kiae.ru
serverAddr=144.206.66.56
serverPort=4715
#75-130-96-13.static.oxfr.ma.charter.com
serverAddr=75.130.96.13
serverPort=4716
#host3.planetlab.informatik.tu-darmstadt.de
serverAddr=130.83.166.200
serverPort=4717
#node-1.mcgillplanetlab.org
serverAddr=192.197.121.2
serverPort=4718
#flow.colgate.edu

89

serverAddr=149.43.80.22
serverPort=4719
#jupiter.cs.brown.edu
serverAddr=198.7.242.41
serverPort=4720
#ebb.colgate.edu
serverAddr=149.43.80.20
serverPort=4721
#pl1.ucs.indiana.edu
serverAddr=156.56.250.226
serverPort=4722
#pl2.planet.cs.kent.edu
serverAddr=131.123.34.36
serverPort=4723
#planetlab04.cs.washington.edu
serverAddr=128.208.4.99
serverPort=4724
#fobos.cecalc.ula.ve
serverAddr=150.189.2.101
serverPort=4725
#ds-pl1.technion.ac.il
serverAddr=132.68.237.34
serverPort=4726
#cs-planetlab4.cs.surrey.sfu.ca
serverAddr=206.12.16.155
serverPort=4727
#pl1.rcc.uottawa.ca
serverAddr=216.48.80.12
serverPort=4728

###############################
quorum
#votingMethod = 0, majority voting
1, majority - x
2, Grid type dynamically generated quorums
#quorum = list of servers in the quorum according with
#the order given in their definition(ip,port) above starting from 0
#note that if method=0 quorums will be ignored

#also note that quorum get auto assigned id starting from 0
###############################
quorumFileName=../majorities_x.dat
votingMethod=1
#quorum=0,1
#quorum=0,2
#quorum=1,2
###############################
#algorithm execution modifiers
###############################
#scenarioNum, number of scenarios, according to the number of scenarios or algorithm execution
modifiers are redefined
#executionNum, how many times to execute the algorithm
#setting, 0 = stochastic(intervals can be randomly any of [OpTime .. Interval])

90

note that operationTime(Optime) is the average time between a node and a server.
and also that Interval can be any of read/write/fail
1 = fixed
#readNum, number of reader operations to execute
#readInterval & writeInterval, time betwen requests in millisecs
#will randomly try to fail every failInterval with failureProbability
#note that if is zero then a failure check for every server reply is performed.
#failProbability, fail percentage from 100%
scenarioNum=3

#scenario 1
executionNum=5
setting=1
readNum=200
writeNum=200
readInterval=5000000
writeInterval=5000000
startWait=200000
failInterval=60
failProbability=1000000
#scenario 2
executionNum=5
setting=1
readNum=200
writeNum=200
readInterval=430000
writeInterval=430000
startWait=200000
failInterval=60
failProbability=1000000
#scenario 3
executionNum=5
setting=1
readNum=200
writeNum=200
readInterval=430000
writeInterval=230000
startWait=200000
failInterval=60
failProbability=1000000
#no /n at end of file please

Table 17: example of configuration file: confic.ini

91

Appendix B

#!/bin/bash
time=20m
totalServers=$1
fails=$2
totalReaders=$3
totalWriters=$4
alg=$5 #O SIMPLE, 1 SFW
type=$6 #0 INT, 1 FILE
testEcho=$7
#if is 1 start server only
#Else only reader and writers
startServerParam=$8

apath='/home/cyprus_ATOMIC/PlanetLab'

echo totalServers=$totalServers fails=$fails totalReaders=$totalReaders
totalWriters=$totalWriters alg=$alg type=$type testEcho=$testEcho
startServerParam=$startServerParam

counter=0
lines=0
ReadersSoFar=0
WritersSoFar=0
#--error-limit=no
valgrindParams='--tool=memcheck --leak-check=yes --show-reachable=yes -v'

 > scripttest.ini #OVERWRITE TO NOTHING

s=serverexe
r=readerexe
w=writerexe
m=memcheck-x86-li

if [$testEcho == 0]; then
 #chmod +x ./../quorum_gen.exe
 #./../quorum_gen.exe -d $totalServers $fails 832916
 chmod +x $apath/reader/readerexe
 chmod +x $apath/writer/writerexe
 chmod +x $apath/server/serverexe
 #the following lines kill any running process
 #ps axco pid,command | grep $s | awk '{ print "$s"; }' | xargs kill -9 &
 #ps axco pid,command | grep $m | sed
's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | cut -d" " -f1 | xargs kill -9 &
 if [$startServerParam == 1]; then
 ps axco pid,command | grep $s | sed
's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | cut -d" " -f1 | xargs kill -9 &
 ps axco pid,command | grep $w | sed
's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | cut -d" " -f1 | xargs kill -9 &
 ps axco pid,command | grep $r | sed

92

's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | cut -d" " -f1 | xargs kill -9 &
 #wait to kill all previously running instances
 echo "wait to kill all previously running instances..."
 sleep 1
 fi

 #rm *.log &
 #rm *.txt &
 #rm *.result &
 #rm *.predicate &
 cd $apath/scenarios/int.simple.S5.R5.W5
 ls * | grep -vE "^[0-9]\.[0-9]\.data$" | grep -vE ".*\.dat$" | grep -vE
".*\.sh$" | grep -vE ".*\.exe$" | grep -vE ".*\.ini$" | xargs rm -f &
 #wait to delete all previously generated .data files
 echo "wait to delete all previously generated .data files"
 sleep 1
fi

startServer()
{
 echo serverID $1 $HOSTNAME >> scripttest.ini
 if [$testEcho == 0]; then
 echo serverID $1 $HOSTNAME
 cd $apath/scenarios/int.simple.S5.R5.W5
 $apath/server/serverexe $1 $type $alg &>
$apath/scenarios/int.simple.S5.R5.W5/server$1.txt.log &
 fi
}

startReader() #Two parameters p1=number p2=readersSoFar
{
rp1=$1
rp2=$2
fromReader=0
toReader=0

 fromReader=$((totalServers + rp2))
 toReader=$((fromReader + rp1))
 echo READER P1=$rp1 P2=$rp2 fromReader=$fromReader
toReader=$toReader >> scripttest.ini
 cd $apath/scenarios/int.simple.S5.R5.W5
 for ((ir=fromReader;ir<toReader;ir++))
 do
 echo readerID $ir $HOSTNAME >> scripttest.ini
 if [$testEcho == 0]; then
 echo readerID $ir $HOSTNAME
 $apath/reader/readerexe $ir $type $alg &>
$apath/scenarios/int.simple.S5.R5.W5/reader$ir.txt.log &
 fi
 done
}

startWriter() #Two parameters p1=number p2=numbersSoFar
{

93

wp1=$1
wp2=$2
fromWriter=0
toWriter=0

 fromWriter=$((totalServers + totalReaders))
 fromWriter=$((fromWriter + wp2))
 toWriter=$((fromWriter + wp1))
 echo WRITER P1=$wp1 P2=$wp2 fromWriter=$fromWriter
toWriter=$toWriter >> scripttest.ini
 cd $apath/scenarios/int.simple.S5.R5.W5
 for ((iw=fromWriter;iw<toWriter;iw++))
 do
 echo writerID $iw $HOSTNAME >> scripttest.ini
 if [$testEcho == 0]; then
 echo writerID $iw $HOSTNAME
 $apath/writer/writerexe $iw $type $alg &>
$apath/scenarios/int.simple.S5.R5.W5/writer$iw.txt.log &
 fi
 done
}

if [$testEcho == 0]; then
 sleep 1
fi

for i in $(cat $apath/scenarios/servers.ini)
do
 ar=$(echo "$i" | tr -s ':' ' ')
 counter=0
 param1=0
 param2=0
 for k in $ar; do
 case "$counter" in
 0)
 host=$k
 ;;
 1)
 param1=$k

 ;;
 2)
 param2=$k

 ;;
 esac
 #counter=$(echo "$counter+1" | bc -lq)
 counter=$((counter + 1))
 done
 if [$host == $HOSTNAME]; then
 echo $host == $HOSTNAME
 echo $host == $HOSTNAME >> scripttest.ini
 if [$lines -lt $totalServers]; then
 if [$startServerParam == 1]; then
 startServer $lines

94

 fi
 fi;
 if [$startServerParam == 0]; then
 startReader $param1 $ReadersSoFar
 sleep 1
 startWriter $param2 $WritersSoFar
 fi
 fi
 ReadersSoFar=$((ReadersSoFar + param1))
 #WritersSoFar=$(echo "$WritersSoFar+$param2"|bc -lq)
 WritersSoFar=$((WritersSoFar + param2))
 #lines=$(echo "$lines+1"|bc -lq)
 lines=$((lines + 1))
done

#sleep $time
#termination="\nAttempting to terminate scenario after 20m...!!\n"
#echo -e $termination

#ps axco pid,command | grep $s | sed 's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' |
cut -d" " -f1 | xargs kill -9 &
#ps axco pid,command | grep $w | sed 's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' |
cut -d" " -f1 | xargs kill -9 &
#ps axco pid,command | grep $r | sed 's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' |
cut -d" " -f1 | xargs kill -9 &

#we cant use command wait here because server are propably up and running
#so give some time for kill command to act
#sleep 5

terminated="\nStarted Process Successfull!!"
echo -e $terminated

95

Appendix C

void* serve_thread(void* thread_args) {
 int serve_threaderr=0;
 data_t * my_data;
 char startingWith[FILENAME_SIZE],tempBuf[FILENAME_SIZE];
 pck_t *recvMsg = NULL;
 int cm=-2,writeIt=0,processIndex=0,len=0,objId = sys_conf.objId;

 writeLog("Starting serve_thread");
 my_data = (data_t*) thread_args;
 //Read request Message from newSocket
 recvMsg = (pck_t*) create_message(-1 , sys_conf.objType, sys_conf.algType
); //init a temp msg
 if(recvMsg!=NULL)recvMsg->ptd = &(threads[my_data->index]);
 objId=recvMsg->objId;
 //delete any inprogress file we have from this writer so we can receive the new one
 if(sys_conf.algType == SFW && sys_conf.objType==FILE_TYPE){
 len = sprintf(startingWith,"INPROGRESS.%d.%d", recvMsg->pid,
sys_conf.id);
 writeLog("going to remove files startingWith (%s)",startingWith);
 }
 //remove_files(startingWith, len);
 //recv the value(FILE|INT) asap

 if(recvReq(my_data->newSckt, recvMsg, &serve_threaderr) == 1
){//==1,check if need to recv val also
 processIndex = recvMsg->pid - sys_conf.serverNum;
 //get message value
 cm = compareTag_s(recvMsg->pid, recvMsg->typ, &(recvMsg->tag), &(
state[recvMsg->objId].tag));
 if(cm > 0)writeLog("msgTag>tag");
 writeLog("(%d)>=(%d) -- recvMsg->cnt) >= state[recvMsg->objId].cnt[
processIndex]",recvMsg->cnt, state[recvMsg->objId].cnt[processIndex]);
 if(recvMsg->cnt >= state[recvMsg->objId].cnt[processIndex]){
 if(sys_conf.algType == SIMPLE && (recvMsg->typ == INFO)){
 //readers and writers always sent value on 2nd round communication(INFO) for the
simple algorithm
 if(cm > 0){
 writeIt = 1;
 recvMsgVal(my_data->newSckt, recvMsg, writeIt, FALSE);
 }
 }else if(sys_conf.algType == SFW){ //handle SFW FILE type values
 //cm = compareTag_s(recvMsg->pid, recvMsg->typ, &(recvMsg->tag), &(state[
recvMsg->objId].tag));

 if(sys_conf.objType == FILE_TYPE){

 bzero(tempBuf, FILENAME_SIZE);

 //if(((char *) recvMsg->val) != NULL) sprintf(tempBuf, "%s", ((char *)

96

recvMsg->val));
 //else{
 //recvMsg->val = malloc(FILENAME_SIZE * sizeof(char));
 //if(recvMsg->val == NULL){ writeLog("malloc return NULL");exit(-1); }
 //}

 if(recvMsg->typ == WRITE){//save the FILE VALUE AS INPROGRESS
 int writerIndex = recvMsg->pid - sys_conf.serverNum -
sys_conf.readerNum;
 writeIt=1;
 snprintf(recvMsg->val, FILENAME_SIZE,
"INPROGRESS.%d.%d.%d.(%d.%d.%d).data",
 recvMsg->pid,sys_conf.id,recvMsg->objId,recvMsg->tag.ts +
1,recvMsg->tag.wid,recvMsg->tag.wc);
 writeLog("WRITE recvMsgVal %s", recvMsg->val);
 //add new tag+value in the inprogress set(this is also done in the process
function)
 state[recvMsg->objId].inprogress[writerIndex].tag.ts =
recvMsg->tag.ts;
 state[recvMsg->objId].inprogress[writerIndex].tag.wid =
recvMsg->tag.wid;
 state[recvMsg->objId].inprogress[writerIndex].tag.wc =
recvMsg->tag.wc;
 recvMsgVal(my_data->newSckt, recvMsg, writeIt, TRUE);

 }else if(recvMsg->typ == INFO || recvMsg->typ == READ){
 //writeIt=1;
 if(cm > 0){
 writeIt = 1;
 snprintf(recvMsg->val, FILENAME_SIZE, "%d.%d.data",
sys_conf.id, recvMsg->objId);
 }else writeIt = 0;

 writeLog("READ recvMsgVal %s, writeIt=%d", recvMsg->val,
writeIt);
 recvMsgVal(my_data->newSckt, recvMsg, writeIt, FALSE);
 }
 snprintf(recvMsg->val, FILENAME_SIZE, "%s", tempBuf);
 //means that msg->tag > state->tag, update value
 }
 }
 }
 }
 //else if(recvMsg->typ == INFO){
 //shutdown the connection so no further reading from server on sck
 //shutdown(my_data->newSckt, SHUT_RD);
 //}
 //process buf and output msg
 /*, &state, servers, quorumSystem, &sys_conf, &sendMsg*/
 //always update the count var that indicates the message freshness
 //if (state[recvMsg->objId].fail == FALSE && recvMsg->cnt >= state[recvMsg->objId].cnt[
recvMsg->pid]){
 // state[recvMsg->objId].cnt[recvMsg->pid] = recvMsg->cnt;
 //}

97

 /*
 if(pthread_mutex_lock(&state_mutex) != 0){
 printf("unable to lock state_mutex");
 }
 */

 //OPTIMIZATION?? maybe only WRITE request should lock
 if(pthread_spin_trylock(&process_lock)!=0){
 printf("unable to lock state_mutex");
 }
 process(recvMsg);
 if(pthread_spin_unlock(&process_lock)!=0){
 printf("unable to lock state_mutex");
 }
 /*
 if(pthread_mutex_unlock(&state_mutex) != 0){
 printf("unable to unlock log_file_mutex");
 }*/

 //Send a response
 sendRes(my_data->newSckt, recvMsg /*, &state, &sendMsg*/);
 free(recvMsg);
 //==>sleep(1);
 shutdown(my_data->newSckt, SHUT_RDWR);
 close(my_data->newSckt);
 writeLog("close sckt:%d", my_data->newSckt);
 //--?free(recvMsg);
 //sleep(3);
 writeLog("Closing serve_thread");
 return(NULL);
}

98

Appendix D

Writer.c: WriteObject function

//returns intValue as integer value written
void writeObject(msg_t msgType, int objectId, state_t*objectState, int*
intVal, obj_t objType, alg_t algType) {
 data_t* quorum_data=NULL; //threads data
 int i=0, quorum_size=0, cnter = 0,m=0;
 pck_t* pckToSent=NULL;
 bool_t isComplete=FALSE;
 char*createFileName;
 pckToSent = (pck_t *) create_message(msgType, objType, algType);
 ///
 //effect of write
 if(objectState->fail == FALSE && objectState->status == IDLE) {
 //status<--active
 objectState->status = ACTIVE;
 //phase<--W
 objectState->phase = WRITE;
 //opc <--opc + 1, also used by reader for
 //counting ops
 objectState->opCnt++;
 //the write operation counter
 objectState->tag.wc++;
 //pCount <-- pCount + 1
 //value<--v
 stateToMessage(pckToSent, objectState);
 if(sys_conf.objType == INT_TYPE){
 pckToSent->ival = randomVal;
 pckToSent->ipval = objectState->tag.ival;
 }else{
 //no need to do anything here filename does not change.
 //init msg
 if(sys_conf.objType == FILE_TYPE){
 createFileName = create_file(objectId, randomVal);
 bzero(pckToSent->val, FILENAME_SIZE);
 snprintf(pckToSent->val, FILENAME_SIZE, "%s", createFileName);
 free(createFileName);
 }else if(sys_conf.objType == INT_TYPE){
 pckToSent->ival = randomVal;
 pckToSent->ipval = objectState->tag.ival;
 }
 write_cnt++;
 pckToSent->cnt = write_cnt;
 }
 }
 //2. send to all servers
 //communicate(WRITE,threads_data);
 quorum_data = communicate(pckToSent, quorum_data, &quorum_size,
&isComplete);

99

 if(isComplete == FALSE){
 for(i = 0 ; i < quorum_size; i++)
 if(quorum_data[i].srvAck == FALSE)
 cnter++;
 writeLog("1st Round Communicate FAILED (servers Timeout/Offline = %d
)", cnter);
 writeResult("1 %d %d %d",
 objectState->tag.ts,
 objectState->tag.wid,
 objectState->tag.wc
);
 objectState->status = IDLE;
 free(pckToSent);
 return;
 }
 //3. process buf and output msg
 if(process(objectState, quorum_data, quorum_size) == TRUE){
 //objectState->ipval = objectState->tag.ipval = objectState->tag.ival;
 //objectState->ival = objectState->tag.ival = randomVal;
 if(sys_conf.objType==INT_TYPE)
 *intVal = objectState->ival;
 if (objType == INT_TYPE)//to do check wid
 writeLog("object WRITE:tag(%d,%d,%d)v:%d", objectState->tag.ts,
objectState->tag.wid, objectState->tag.wc,objectState->tag.ival);
 else
 writeLog("object WRITE:tag(%d,%d,%d)", objectState->tag.ts,
objectState->tag.wid, objectState->tag.wc);
 }else writeLog("WRITE:process FAILED");
 free(pckToSent);
 objectState->status = IDLE;
 ///
}

100

Appendix E

Reader.c: readObject function:

void readObject(msg_t msgType, int objectId, state_t*objectState, int* intVal,
obj_t objType, alg_t algType) {
 data_t* quorum_data = NULL; //threads data
 int i, quorum_size, cnter = 0, m = 0;
 pck_t* pckToSent;
 bool_t isComplete = FALSE;
 int serverResCount=0;
 pckToSent = (pck_t *) create_message(msgType, objType, algType);
 sys_conf.objId = objectId;
 //effect of read
 if (objectState->fail == FALSE && objectState->status == IDLE) {
 objectState->phase = READ;
 objectState->status = ACTIVE;
 objectState->opCnt++; //read operations counter
 }
 //2. send to all servers READ request and
 //get received acks tags in quorum_data,
 stateToMessage(pckToSent, objectState);
 quorum_data = communicate(pckToSent, quorum_data, &quorum_size,
&isComplete);
 if(isComplete == FALSE){
 for (i = 0; i < quorum_size; i++) {
 if (quorum_data[i].srvAck == FALSE) {
 cnter++;
 }
 }
 writeLog("1st Round Communicate FAILED (servers Timeout/Offline =
%d)", cnter);
 writeResult("1 %d %d %d",
 objectState->tag.ts,
 objectState->tag.wid,
 objectState->tag.wc
);
 objectState->status = IDLE;
 free(pckToSent);
 return;
 }
 process(objectState, quorum_data, quorum_size);
 //3. process quorum_data
 //select valid value and received it
 if(sys_conf.objType==INT_TYPE)
 *intVal = objectState->ival;
 if (objType == INT_TYPE)
 writeLog("object READ:tag(%d,%d,%d) v:%d", objectState->tag.ts,
objectState->tag.wid, objectState->tag.wc,objectState->ival);
 else
 writeLog("object READ:tag(%d,%d,%d)", objectState->tag.ts, objectState-
>tag.wid, objectState->tag.wc);

101

 free(pckToSent);
 objectState->status = IDLE;
}

102

Appendix F

A list of all PlanetLab nodes used for client follows in Table 18.

Table 18: Client PlanetLab Nodes

ait05.us.es

aladdin.planetlab.extranet.uni-passau.de

deimos.cecalc.ula.ve

ds-pl3.technion.ac.il

dschinni.planetlab.extranet.uni-passau.de

orbpl1.rutgers.edu

146-179.surfsnel.dsl.internl.net

147-179.surfsnel.dsl.internl.net

cs-planetlab3.cs.surrey.sfu.ca

kc-sce-plab1.umkc.edu

lsirextpc01.epfl.ch

netapp7.cs.kookmin.ac.kr

node1.lbnl.nodes.planet-lab.org

node1.planetlab.albany.edu

nodeb.howard.edu

pl1.pku.edu.cn

plab-1.sinp.msu.ru

plab1-c703.uibk.ac.at

plab1.cs.ust.hk

plab2-itec.uni-klu.ac.at

plab2.cs.ust.hk

103

planetlab-1.cs.uh.edu:0:1

planetlab-1.imperial.ac.uk:0:1

planetlab-1.iscte.pt:0:1

planetlab-2.cs.auckland.ac.nz

planetlab-2.pdl.nudt.edu.cn

planetlab-4.EECS.CWRU.Edu

planetlab01.erin.utoronto.ca

planetlab01.sys.virginia.edu

planetlab03.cs.washington.edu

planetlab1.byu.edu

planetlab1.cs.purdue.edu

planetlab1.cs.uiuc.edu

planetlab1.csg.uzh.ch

planetlab1.eecs.wsu.edu

planetlab1.ifi.uio.no

planetlab1.informatik.uni-goettingen.de

planetlab1.jhu.edu

planetlab1.williams.edu

planetlab14.millennium.berkeley.edu

planetlab2.arizona-gigapop.net

planetlab2.cs.uoregon.edu

planetlab2.eecs.northwestern.edu

planetlab2.hiit.fi

planetlab2.itwm.fhg.de

planetlab2.sfc.wide.ad.jp

104

planetlab2.williams.edu

planetlab3.di.unito.it

planetlab3.singaren.net.sg

planetlab4.csres.utexas.edu

planetlab4.wail.wisc.edu

planetlab6.csres.utexas.edu

planetx.scs.cs.nyu.edu

pli1-pa-6.hpl.hp.com

plnode-03.gpolab.bbn.com

pnode1.pdcc-ntu.singaren.net.sg

ricepl-1.cs.rice.edu

ttu2-1.nodes.planet-lab.org

vicky.planetlab.ntua.gr

vn4.cse.wustl.edu

105

Appendix G

 The script code that parses downloaded results and generates

averages needed for the experiments graphs the SFW version follows in table [] (a

similar script is used for the SIMPLE algorithm case).

#!/bin/bash

keyword="fail? ts wid wc fast? time(cpuTime) time(realTime)"

**
find_and_replace_in_files.sh
This script does a recursive, case sensitive directory search and replace of files
To make a case insensitive search replace, use the -i switch in the grep call
uses a startdirectory parameter so that you can run it outside of specified directory - else this
script will modify itself!

**

**************** Change Variables Here ************
startdirectory=$1
searchterm="fail? ts wid wc fast? time(cpuTime) time(realTime)"
replaceterm=""

if [[$# -eq 0]]; then
 echo -e "Please provide a directory name in the current folder\n"
 exit
fi;

**

Floating point number functions.

##
###############
Default scale used by float functions.

float_scale=6

##
###############
Evaluate a floating point number expression.

function float_eval()
{
 local stat=0

106

 local result=0.0
 if [[$# -gt 0]]; then
 result=$(echo "scale=$float_scale; $*" | bc -q 2>/dev/null)
 stat=$?
 if [[$stat -eq 0 && -z "$result"]]; then stat=1; fi
 fi
 echo $result
 return $stat
}

##
###############
Evaluate a floating point number conditional expression.

function float_cond()
{
 local cond=0
 if [[$# -gt 0]]; then
 cond=$(echo "$*" | bc -q 2>/dev/null)
 if [[-z "$cond"]]; then cond=0; fi
 if [["$cond" != 0 && "$cond" != 1]]; then cond=0; fi
 fi
 local stat=$((cond == 0))
 return $stat
}

echo "**"
echo "* Search and Replace in Files Version .1 *"
echo "**"
 for file in $(grep -l -R $searchterm $startdirectory)
 do
 sed -e "s/$searchterm/$replaceterm/ig" $file > /tmp/tempfile.tmp
 mv /tmp/tempfile.tmp $file
 echo "Modified: " $file
 done
echo " *** Yay! All Done! *** "

operations=0
successfullOperations=0
fastOperations=0
column=0
percentageOFfast=0
totalExecTime=0
totalCpuTime=0
cat $1/* > r.txt
sed 's/$/ -1/' r.txt > results.txt
set -f
for i in $(cat results.txt)
do
 if [$i == -1]; then
 column=$((0 - 1))

107

 fi;
 case "$column" in
 0)
 operations=$((operations + 1))
 isFail=$i
 if [$isFail == 0]; then
 successfullOperations=$((successfullOperations + 1))
 fi;
 ;;
 1)
 ts=$i
 ;;
 2)
 wid=$i
 ;;
 3)
 wc=$i
 ;;
 4)
 if [$isFail == 0]; then
 isFast=$i
 fi;
 if [$isFail == 1]; then
 isFast=2
 fi;
 if [$isFast == 1]; then
 fastOperations=$((fastOperations + 1))
 fi;
 ;;
 5)
 if [$isFail == 0]; then
 totalCpuTime=$(float_eval "$totalCpuTime + $i")
 fi;
 ;;
 6)

 if [$isFail == 0]; then
 totalExecTime=$(float_eval "$totalExecTime + $i")
 fi;
 ;;
 esac
 #counter=$(echo "$counter+1" | bc -lq)
 column=$((column + 1))
done
failedOperations=$((operations - successfullOperations))
avgCpuTime=$(float_eval "$totalCpuTime / $successfullOperations")
avgExeTime=$(float_eval "$totalExecTime / $successfullOperations")
percentageOFfast=$(float_eval "$fastOperations / $successfullOperations * 100"
)
percentageOFfail=$(float_eval "$failedOperations / $operations * 100")
echo -e "operations=$operations\n" >> summary_$1.txt
echo -e "successfullOperations=$successfullOperations\n" >>
summary_$1.txt
echo -e "failedOperations=$failedOperations\n" >> summary_$1.txt

108

echo -e "percentageOFfail=$percentageOFfail\n" >> summary_$1.txt
echo -e "fastOperations=$fastOperations\n" >> summary_$1.txt
echo -e "percentageOFfast=$percentageOFfast\n" >> summary_$1.txt
echo -e "totalCpuTime=$totalCpuTime\n" >> summary_$1.txt
echo -e "avgCpuTime=$avgCpuTime\n" >> summary_$1.txt
echo -e "totalExecTime=$totalExecTime\n" >> summary_$1.txt
echo -e "avgExeTime=$avgExeTime\n" >> summary_$1.txt

set +f

