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ABSTRACT 

 

A lot of research has been conducted for studying efficient data survivability in 

distributed storage systems. A challenging question that researches attempt to 

address is “How can a distributed system efficiently maintain data consistency among 

the data replicas despite system asynchrony and failures?” Recent work introduced 

algorithm SFW where for the first time in the Multiple Writer Multiple Reader setting it 

allows for both read and write operations to be fast (the operation takes one 

communication round-trip to complete) but it does so by compromising the system 

robustness. A Server Side Ordering (SSO) technique and reader/writer predicates 

are utilized by algorithm SFW to allow fast operations. 

The goal of this thesis is to evaluate the efficiency and practicality of algorithm 

SFW in a realistic network environment. For this purpose, a heuristic method is used 

to implement the reader and writer predicates in order to efficiently search the 

solution space. The algorithm is implemented in C and Sockets programming and an 

empirical evaluation of the algorithm is performed on PlanetLab, in respect to the 

percentage of fast operations, CPU consumption and operation latency. The 

efficiency of algorithm SFW is compared to that of algorithm SIMPLE - a robust, 

reliable algorithm that always performs slow operations (the operation takes two 

communication rounds-trips to complete). It is shown that the efficiency of algorithm 

SFW is minor over the SIMPLE algorithm in terms of operations latency, nevertheless 

network resources are reduced since they are essentially traded for CPU time 

consumption. Furthermore, the experiments suggest that algorithm SFW is best 

suited in environments that exhibit large communication delay, or when the number of 

readers and writers is relatively small.  
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Chapter 1 

Introduction 

1.1 Motivation and Related Work 

 

A distributed system is a collection of autonomous processes which interact 

by sending and receiving messages, but appears to its users as one compact logical 

system. Sharing data in distributed systems is not merely natural system functionality 

but a core requirement by its users. Processes can share data in a reliable way since 

data are replicated over multiple locations on inexpensive basic storage units (e.g., 

hard disks, servers, tapes). 

Survivability of data is crucial in systems and applications. Distributed 

systems offer distributed storage of data on geographically diverse locations 

providing more robustness and fault-tolerance than single box servers. On the other 

hand how can a distributed system efficiently maintain data consistency among the 

data replicas despite system asynchrony and failures? System component failures of 

hardware such as hard disks, network links, routers and software are frequent. It is a 

great challenge for a distributed storage system to be able to continue sharing data in 

an unpredictable environment. 

A common approach to ensure data survivability on single box server 

machines is data replication using redundant array of inexpensive disks (RAID) [1]. 

Consider that server machines can also fail if any of its hardware fails (e.g., network 

interface) and hence the services it provides will not be available to clients. Single 

box servers are single point of failures. RAID may avoid data loss from common disk 

failures but it still resides on a physical location exposed to natural disasters. 



2 

 

 

 

Distributed storage systems may overcome the problems of single box server 

systems by exploiting redundancy. Still, each of the servers in the system is exposed 

to the same failures as a single box system but not to catastrophic site failures. The 

more servers the distributed storage system has the more robust, fault-tolerant and 

reliable it is but with added cost. 

Researchers have been addressing the survivability issue by constructing 

efficient read and write operations to access atomic registers. Atomic registers 

represent replicated data objects on distributed nodes. Any data object is perceived 

by the system and its users as a single data object with sequential access 

(linearizability) to it, regardless of the multiple replicas of the object existing in the 

system. Have in mind that atomic registers [2] [3] [4] are different from atomic 

operations commonly found in concurrency control of database systems, transaction 

processing (serializability properties [5] [6]). 

The efficiency of read and write operations is measured as the number of 

communication rounds between the system processes, which are classified as 

reader, writer and server processes. A communication round starts when a client 

sends an operation request to all the servers and ends when the client has received 

“enough” of the server responses. 

Faster distributed algorithms that efficiently maintain data consistency among 

the data replicas despite system asynchrony and failures have a broad range of 

applications. Pioneers in the message-passing model in [7] implemented an atomic 

Single Writer Multiple Reader (SWMR) register in which write operations need one 

(1) communication round (fast) and read operations need two (2) communication 

rounds (slow) to complete. In the SWMR model any client process may fail, while 

only a minority of servers may fail. 
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Continuing on the work of [7], the authors of [8] [9] presented a Multiple Writer 

Multiple Reader (MWMR) register in which read and write operations are slow and 

generalized majorities to quorums. The servers are organized into a quorum system: 

a collection of server sets (quorum) in which every two intersect with each other. A 

variation of the algorithm of [8] is referred to as algorithm SIMPLE in the context of 

this thesis. 

Further research [10] concluded that fast read and write operations are 

possible in the SWMR but set a bound on the number of reader processes in the 

system. A bound that was later removed in [11], allowing an unbound number of 

readers but with the overhead of one (1) slow read operation per write operation. The 

register implementations in which fast and slow operations coexist are called semi-

fast.  

 Fast or semi-fast operations were shown as not possible in the MWMR model 

[11]. In [12] two new implementations (algorithms CwFr and SFW) show that under 

certain constrains both read and write operations can be fast while atomicity is 

preserved in the presence of asynchrony and crashes. The write operations in 

algorithm CwFr need two communication rounds but it optimizes on read operations 

by taking advantage of quorum views. Quorum views [13] are a tool used to analyze 

the tag participation in the quorum. A tag is a tuple that essentially consists of a 

timestamp, a process identifier and a value. The SFW algorithm exploits a new 

technique called Server Side Ordering (SSO) which allows for fast read and write 

operations in certain cases. 
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1.2 Contribution 

 

The goal of this thesis is to evaluate the efficiency and practicality of 

algorithms SIMPLE and SFW. 

Algorithm SFW uses predicates at the client side to decide if operations need 

to proceed to a second communication round or not. These predicates search a huge 

solution space in order to decide. A heuristic method is used to implement the 

predicate. Our experiments demonstrate that the solution space the method searches 

can contain a valid answer for the predicate. However, it is possible that if the 

heuristic method does not find any answer it is not necessarily the case that a valid 

answer does not exist. The precise accuracy of the heuristic method is beyond the 

scope of this thesis and is left for future work. 

An empirical evaluation of algorithms SFW and SIMPLE is contacted on 

PlanetLab [14], which is a global network for testing distributed services. The 

algorithms’ performance is compared against their average operation latency (the 

total time it takes for an operation to complete) and the percentage of fast operations 

(for algorithm SFW). 

The SFW algorithm promise of fast operations requires a high intersection 

degree on the underlying quorum system which might compromise the SFW 

robustness. So, one wonders how would the algorithm actually perform in a realistic 

distributed setting where crashes, failures and asynchrony are inherent? PlanetLab 

provides such arbitrary network conditions [15], and hence it is suitable to assess the 

practicality of algorithm SFW. 

 The first of the experiments performed for the empirical evaluation of the 

efficiency of algorithm SFW, examines the effect of the number of writers and readers 

in the system and their operation intervals. The results from this experiment are then 
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used to subsequent experiments, where the effect of the quorum system intersection 

degree is investigated. Finally a comparison of the average operation latency of 

algorithms SFW and SIMPLE is given. 

 The empirical evaluation of algorithm SFW shows that its implementation is 

practically feasible on unreliable distributed systems (such as PlanetLab) and its 

performance is reasonable (in the scenarios run) under the extreme conditions of 

PlanetLab.  

 

1.3 Chapter breakdown 

 

 In the next chapter, atomic registers and quorum systems are discussed and 

an overview of related work is given. In Chapter 3, algorithms SIMPLE and SFW are 

described and in Chapter 4 the implementations of the algorithms are explained. In 

Chapter 5, the configuration and setup of running experiments on PlanetLab is 

presented and in Chapter 6 the results of the empirical evaluation of the algorithms 

are illustrated. Finally, in Chapter 7 conclusions and possible future work is presented 

on the subject. 
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Chapter 2 

Background 

  

 In this chapter the notion of atomicity and quorum systems are defined. 

Related work is summarized and a description of PlanetLab is provided. 

 

2.1 Atomic Read/Write Object 

 

An atomic register is an abstract data structure that is defined by a set of 

possible values and a set of primitive operations, such as read and write. A process 

performs one operation at a time by sending a request to all the servers holding a 

replica of the register. To perform a read or write operation on the atomic register two 

steps are necessary. The invocation step includes either a read or a write request. 

Similarly, the corresponding response step includes either a read or a write 

acknowledgement [13]. The operation is considered complete if both steps are 

performed [4]. 

An operation ߙ precedes an operation ߚ if ߙ completes before	ߚ’s invocation. 

Any operations ߙ and ߚ are considered concurrent if and only if ߙ does not precede ߚ 

and ߚ does not precede	ߙ. In other words, two operations are concurrent if neither of 

them precedes the other [16]. If two operations are complete, not concurrent and are 

invoked by two distinct processes then they are called consecutive [12]. 

A register guarantees that once a processor reads a particular value, then, 

unless the value of this register is changed by a write, every future read of this 
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value written by the write operation despite the fact that it was invoked after it. On the 

other hand read2 must read the value 8 since it is invoked after the write1 completes. 

The second example shows a write2 operation that writes the value 8 and is 

concurrent with read3 and read4. It is possible for read3 to read the value 8 or the 

previous value (0) but read4 must read the same value as read3 since its invocation 

starts after read3 completes, otherwise atomicity is violated.  

 Finally, the atomic register must be wait-free [2], which guarantees that if a 

non-faulty process invokes an operation then the operation completes in a finite 

number of steps, regardless of the status (execution speeds or failures) of the other 

processes. 

 

2.2 Quorum Systems 

 

A quorum is a group from a set of distributed nodes, typically servers [18]. A 

quorum system is a collection of quorums, in which any two quorums intersect with 

each other. Since any two quorums intersect, the quorum system is characterized as 

a pairwise (2-wise) quorum system. Formally a quorum system ℚ is defined as,	ℚ ൌ

ሼ	ܳ:	ܳ ⊆ ܵሽ	ݏ. .ݐ ∀	ܳ௜, ܳ௝ ∈ ܳ: ܳ௜ ∩ ܳ௝ ് ∅, where ܵ ൌ ሼݏଵ, ଶݏ 	݊) ௡ሽݏ	… ൒ 1) is the set of 

servers. 

There are different types of quorum systems [19], some examples can be 

seen in Figure 2: Examples Of Quorum System Types:  

(a) A matrix type where servers form a grid and a combination of a row with a 

column defines a quorum. All quorums have the same size of		2ඥ|ܵ| െ 1, 

where ܵ is the set of servers.  

(b) A majority type quorum system where each quorum size must be at 

least	ڿ	ሺ|ܵ| ൅ 1ሻ/2	ۀ, where ܵ is the set of servers.  
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of the service overall. Also the basic technique to ensure consistency of the data in 

distributed storage systems is to notify some quorum	Q of the update made. When a 

client accessing the data contacts some quorum	Q′, it is ensured that it learns about 

the earlier update since quorums intersect. 

It is not obvious how to efficiently deploy a theoretically good quorum system 

in a real network system. By first designing the quorum system, and then determining 

a good deployment, it seems possible to obtain both good network performance as 

well as good quorum system properties.  

The quorum deployment problem is studied in [20] as a new combinatorial 

optimization problem. There are two parts to solving this problem: mapping a quorum 

system to real nodes and mapping from nodes to quorums. The general quorum 

deployment problem is defined as: given a quorum Q, and a distributed network C, 

the goal is to determine a deployment that has optimal cost. It is shown [20] that the 

general deployment problem cannot be approximated and that majorities is the most 

simple deployable quorum system in all networks. The quorum system deployment 

used in this thesis is presented in Chapter 4. 

 

2.3 Prior Work 

 

In the message-passing model, the processes communicate via messages 

sent through communication links. Each process has a unique identifier and is 

located at one node of the network and can only send messages to processes 

located in directly neighboring nodes. We consider three sets of processes: R 

readers, W writers and S servers communicating through reliable TCP channels in 

the asynchronous message passing model.   
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The network setup considered is unpredictable; processes may crash and 

there is asynchrony. A process may stop executing at any point of the computation 

with no prior notification and slow processes cannot be differentiated from crashed 

ones. Any of the clients may crash or get disconnected; for ܵ servers where ܶ servers 

may fail by crashing, up to half of the servers may crash (ܶ ൏
ௌ

ଶ
) when considering 

majorities. In the case of quorums at least one quorum must not crash. Asynchrony 

means that there are no guarantees in message delays and relative process speeds 

(some process may be slower than others).  

The Single-Writer, Multiple-Reader (SWMR) register implementation is 

presented by [7] in the message-passing model. The clients include only a single 

process for write operations and multiple processes for read operations while all the 

servers hold a register replica. Clients do not communicate between them and neither 

do servers. Clients only communicate with servers through communication rounds.  

A process ݌ performs a communication round for an operation ߨ if: 

 to a subset of processes ߨ sends a message ݉ regarding ݌ .1

2. Any process that receives ݉, replies to ݌ 

3. Process ݌ collects “enough” of such replies and proceeds accordingly. 

A process collects “enough” replies when a quorum of servers reply. The SWMR 

model in [7] considers “enough” server replies when a majority of them reply.  

A tag-value pair is introduced to impose an order on the read operations. The 

tag consists of a label which basically is a positive number of type integer used as a 

timestamp. To support asynchrony the timestamp has nothing to do with real time 

and logical clocks, it is just a number that is incremented only by the writer process 

each time it performs a write operation. Essentially this label is used to define the 

order of write operations and which write value is read by the read operations. 
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operations the authors of [10] bound the numbers of readers to be	ܴ	 ൏ 	ܵ/ܶ	 െ 2 

(where ܴ is the number of readers, ܵ	the number of servers and ܶ the number of 

servers that may crash). Also they show that a fast implementation is impossible in 

the MWMR setting. 

Observe that the limit on the number of readers shown in [10] for fast 

implementations is impractical. Later work [11] provides a non-straightforward 

extension of the work in [10] by implementing a semifast SWMR model while 

preserving atomicity. In a semifast implementation the writer operations take one 

communication round to complete whereas read operations take one or two 

communication rounds to complete. Formally the SWMR model implementation of an 

atomic object is semifast when the following are satisfied: 

1. all write operations are fast and  

2. all complete read operations can be either fast or slow iff T ൏
ୗ

ଶ
 and 

3. If a read operation ݎଵ is slow, then all read operations that precede or succeed 

 ଵ are fast (only a single complete read isݎ ଵ and return the same value asݎ

slow per write operation). 

4. There exists an execution of the implementation which contains only fast read 

and write operations (even if operations are concurrent). 

The notion of Virtual Node is introduced, a group of reader processes that all 

share the same Virtual Identifier. Particularly a read operation must be fast if it 

precedes or succeeds a complete fast read operation, when both reads return the 

value written by the same write operation. Concurrent read operations with a slow 

read operation may or may not be fast. Furthermore it is also shown that no semifast 

implementation exists for the MWMR model even for	ܶ ൌ 1. Simulations presented in 

[11] suggest that under reasonable execution conditions only a small percentage 
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(7.5% - 10%) of read operations are slow. In summary, fast or semi-fast operations in 

the MWMR model were shown as not possible.  

A Semifast Like Implementation for Quorum systems (SLIQ) algorithm for the 

SWMR model is introduced in [13]. This implementation is weak-semifast, meaning 

that it enables fast reads but allows multiple slow reads per write; formally, a weak-

semifast implementation is the same as a semifast implementation but without 

property 3. For this purpose a client-side prediction tool called Quorum Views is 

introduced. The Quorum Views are used to supply adequate data involving the 

distribution of the latest tag in the quorum being accessed. Read operations use the 

Quorum Views to make educated decisions locally whether a second round is 

needed. The SLIQ algorithm was simulated using the NS-2 network simulator [24]. 

The results showed that only about 13% of the read operations proceed to a second 

communication round, in common cases.  

Constrains on the efficiency of the MWMR model are analyzed in [12] and two 

new algorithms are introduced. These algorithms support some fast operations while 

atomicity is preserved in the presence of asynchrony and crashes (Recall that it is 

impossible to have all operations to be fast [10] [11]). 

The first is algorithm CwFr, which optimizes on read operations by taking 

advantage of Quorum Views. The write operations still need two communication 

rounds to complete. The second algorithm is the SFW algorithm, which exploits a 

new technique called Server Side Ordering (SSO). The SSO allows for both fast read 

and write operations in certain cases. When the intersection degree of the underlying 

quorum system is below 4, it is not clear which of the two algorithms performs better 

because all write operations of the SFW are slow as well.  

This thesis focuses on algorithm SFW and explores its efficiency on 

PlanetLab when the intersection degree of the deployed quorum system is above 4. 
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2.4 PlanetLab 

  

PlanetLab is built-up as a collaborative distributed system in which different 

organizations donate two or more computers adding up to a total of hundreds of 

nodes. Together these computers form a distributed overlay network for deployment 

and assessment of distributed planetary-scale network services [15] [25].  

 As of the writing of this thesis, PlanetLab is composed of 1089 nodes at 503 sites 

worldwide provided by academic and industry institutions. Its resources are divided 

into slices where each can be viewed as a network of virtual machines. The allocated 

resources are controlled on a per-slice, per-node basis. Slices expire after one month 

of their first creation (removing all the slice associated data), but can be renewed an 

unlimited number of times on a monthly basis. Access to PlanetLab nodes is feasible 

through SSH, providing encrypted and secure communication. Nodes may be 

installed or rebooted at any time turning the disk into a temporary form of storage, 

providing no guarantee regarding their reliability. Thus PlanetLab is a realistic 

deployment setting to test and evaluate SFW algorithm and compare it with a simpler, 

operation slow MWMR algorithm. 
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Chapter 3 

MWMR Algorithms 

 In this Chapter the SIMPLE and SFW algorithms are defined and explained in 

more detail. 

3.1 Algorithm SIMPLE 

 

In algorithm SIMPLE the servers are arranged in a quorum system, using the 

message passing paradigm for communication in the presence of asynchrony and 

failures. Basically SIMPLE is the algorithm defined in [8] but the servers are arranged 

in a static quorum system. There are three set of processes, a set of servers	ܵ ൌ

ሼݏଵ, ଶݏ ܴ	 ௡ሽ, a set of readersݏ	… ൌ ሼݎଵ, ଶݎ ܹ	ఘሽ and a set of writersݎ	… ൌ ሼݓଵ, ଶݓ  .ఠሽݓ	…

Any reader or writer process may crash but at least a quorum must not crash. 

Algorithm SIMPLE only considers crash failures and not Byzantine failures [26] [27], 

that is, system components are assumed to work correctly and when they fail, they 

do so by crashing or stopping. 

The algorithm uses ൏ ,݃ܽݐ ݁ݑ݈ܽݒ ൐ pairs to order the values written to the 

register. The tag is a two field tuple consisting of	൏ ,ݏݐ	 ݀݅ݓ ൐	∈ Գ ൈW, where	ݏݐ is the 

timestamp and ݀݅ݓ the writer identifier of the writer that wrote the	݁ݑ݈ܽݒ. The writers 

are the only processes responsible for incrementing the	ݏݐ. Initially the tag is set to 

൏ 0,݉݅݊ሺܹሻ ൐ for every process. The tags can be compared alphanumerically. 

Specifically, a tag	ݐଵis greater than a tag 	ݐଶ (	ݐଵ ൐ 	 .ଵݐ	 ଶሻ ifݐ ݏݐ ൐ .ଶݐ	 .ଵݐ		or ݏݐ ݏݐ ൐

.ଶݐ	 	ݏݐ ∧ 	 .ଵݐ	 ݀݅ݓ ൐ 	 .ଶݐ	  .݀݅ݓ
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3.2 Algorithm SFW 

 

In algorithm SFW the servers are arranged in an n-wise quorum system, 

using the message passing paradigm for communication in the presence of 

asynchrony and failures. As with algorithm SIMPLE, there are three sets of processes 

and only crash failures are considered. 

Algorithm SFW uses a	൏ ,݃ܽݐ ݁ݑ݈ܽݒ ൐ to attain the required order on the 

values written to the register. The ݃ܽݐ is different from the tag used by algorithm 

SIMPLE. The reason for this difference will be explained later in this section. Tag 

comparison is done alphanumerically as in the SIMPLE algorithm. The clients 

communicate with servers using communication rounds in which they sent their 

൏ .݃ܽݐ ݁ݑ݈ܽݒ ൐ pair and their operation requests (READ / WRITE / PROPAGATE). 

The servers, when they receive a request they answer by sending their latest 

confirmed ൏ ,݃ܽݐ ݁ݑ݈ܽݒ ൐ and an inprogress set which contains the ongoing write 

operations ൏ ,݃ܽݐ ݁ݑ݈ܽݒ ൐ pairs.  

The SFW algorithm uses a reader and a writer predicate. The predicates are 

used by each process to calculate the distribution of the latest tag in the responding 

quorum. If the reader (writer) predicate evaluates that the distribution of the tag is 

“good enough” such that a second communication round is not needed to ensure 

atomicity, then the read (write) operation completes in one communication round. The 

reader and the writer predicates are analyzed in Sections 3.2.2 and 3.3.3, 

respectively. 

In algorithm SIMPLE the writers’ need to proceed to second communication 

round to propagate the new tag-value pair of the write operation (Figure 10). 

Algorithm SFW is the first to introduce the possibility of one communication round 

(fast) write operations in the MWMR model. The predicate technique that enabled 
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reader operations in previous works [11] [13]  to complete in one round operations, is 

extended [12] and applied to both the reader and the writer. In order for the writer 

predicate to be feasible, the responsibility of incrementing the tag timestamp has to 

be removed from the writers. This purpose was fulfilled by a new technique, 

introduced in [12], called Server Side Ordering (SSO). 

The SSO technique created a new problem; generated tags by the servers 

may be different across servers, resulting to tag non-uniqueness. The SIMPLE 

algorithm does not have this problem, observer Figure 7; the tag is increment only by 

the writer which ensures that a quorum of server will have the same tag. To 

understand the problem, an example is given in Figure 8. Assume	 ௜ܹ 	൐ 	 ௞ܹ, and 

ܳ௜	, ܳ௝	, ܳ௭	quorums. A writer ௜ܹ communicates with 	ܳ௭	to write, and ௞ܹ communicates 

with	ܳ௜	. Since the tag is incremented by the servers, all the servers in quorums	ܳ௭	, 

ܳ௜	 increment tag from 0 to 1 but due to asynchrony is possible that the intersection of 

ܳ௭	 ∩ ܳ௜	to have its tag incremented twice resulting from 0 to 2. This leads to multiple 

tags for a single value and it violates atomicity.  

To understand how atomicity is violated, take the following execution as an 

example [17]: 

 ௜ܹ and ௞ܹ are two concurrent write operations that write values 3 and 4 with tags 

 (ଶݐ >ଵݐ without loss of generality let) ଶ respectivelyݐ ଵ andݐ

 ݎଵ and ݎଶ, succeed both write operations  

o ݎଵ		witness 	ݐଵ for ௜ܹ and value 3, so ݐଶ for	 ௞ܹ. ݎଵ returns 3 since ݐଵ< ݐଶ 

o  ݎଶwitness ݐଶ for ௜ܹ and value 3, thus ݐଵ for ௞ܹ, ݎଶ returns 4 since ݐଵ< ݐଶ 

 ଶ, succeed both write operations but they do not agree on the latest writtenݎ	ଵ andݎ

value.  

 For this purpose, the tag in the SFW is a tuple containing	൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐, 

the	ܿݓ is a writer counter, basically a number incremented by the writer at each write 
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3.2.1 Server 

 

 The server maintains the state of each register in the system and acts 

according to the message requests it receives. The state of the server for the register 

object is comprised of a tag, a confirmed tag and an inprogress set of tag-value pairs. 

The confirmed tag holds the latest confirmed tag seen by the server. The inprogress 

set is a set of tags that represent the ongoing write operations from each server 

perspective. The inprogress set holds a tag-value pair for the ongoing write operation 

of each writer process in the system. 

 Essentially when a server receives a request it first updates its local tag and 

confirmed tag, if the received tag is more recent. Additionally, if the request is for a 

write operation, the server increments its local timestamp and then assigns the writer 

id and the writer counter, of the write operation request, to its local tag. Next, the 

server removes any previously recorded tag-value pairs, of the writer, that reside in 

the server’s inprogress set. The server generates a new ݐ’ tag-value pair where the 

tag is the current local tag of the server with its timestamp incremented by one (1) 

and the write operation value to be written. Finally the new ݐ’ tag is inserted into the 

inprogress set. A more formal definition of the server steps upon receiving a request 

follows: 

1 Update (local) tag: The server adopts the request’s tag if it is more recent than 

its local tag. Tag comparison is alphanumerical. 

2 If it is a WRITE request from ௜ܹ then 

2.2 Create a new tag ݐ’, ൏ ,’ݏݐ ,’ݓ ’ܿݓ ൐ൌ൏ ,ݏݐ ,௜ݓ ௜ܿݓ ൐, assign to	ݐ’ the local 

timestamp and the WRITE request’s attributes ( ݓ௜,ܿݓ௜ ) 
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2.3 Remove any previous tag-value pairs from the specific writer and insert the 

newly generated ݐ’ tag along with the new value the writer wants to 

write.	ݏݏ݁ݎ݃݋ݎ݌݊ܫ	 ൌ 	 ሺ݅݊ݏݏ݁ݎ݃݋ݎ݌	–	ሼ൏∗, ,௜,∗൐ݓ ሼ൏	ܷ	ሻ	ሽ݈ܽݒ ,’ݏݐ ,௜ݓ ௜ܿݓ ൐,  ሽ݈ܸܽݓ݁݊

3 Update confirmed tag: The server updates confirmed tag if the request’s tag is 

more recent. 

If server receives a READ request then steps 2, 2.2 and 2.3 are not executed. 

 

3.2.2 Reader 

  

 The reader process sends a read request message to all servers containing 

the tag	൏ ,௥݃ܽݐ ݁ݑ݈ܽݒ ൐. When responses from a quorum ܳ are received, the reader 

creates and populates a new set, let that be called ݏܫ, with all tags from the 

inprogress sets of the responses and calculates the maximum confirmed tag 

ݓ So the reader has .(݂݊݋ܥݔܽ݉) ൈ  the  ݓ set, where ݏܫ tags in the (product) ݏ	

number of writers in the system and ݏ the number of servers in the responding 

quorum. The reader then compares each tag ݐ from the ݏܫ set with	݂݉ܽ݊݋ܥݔ.  

If ݂݉ܽ݊݋ܥݔ	 ൒  tag along with its value. If ݂݊݋ܥݔܽ݉ then the reader adopts ݐ	

݊ is received from an intersection between ܳ and ݂݊݋ܥݔܽ݉ െ 1 (where ݊ the 

intersection degree of the quorum system) other quorums then the reader proceeds 

to a second communication round otherwise it completes (fast).  

 If ݂݉ܽ݊݋ܥݔ ൏  satisfies the reader predicate ݐ then the reader checks if ݐ	

(Table 1: the SFW reader predicate). If the predicate is true for ݐ then, the reader 

adopts ݐ and its value. 
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Read predicate for a read ࣋ ሺࡾࡼሻ: 

	∃࣎, ሺ࣎ሻ	࢞ࢇ࢓		:ࢋ࢘ࢋࢎ࢝,ࡿࡹ,ࢢ ∈ 	⋃ ࢏ࡽ	∋	ሺ࣋ሻ࢙࢙࢙࢙ࢋ࢘ࢍ࢕࢘࢖࢔࢏ ,	  

	ࢢ ⊆ 	ℚ,

૙	 ൑ 	 |ࢢ| ൑
࢔

૛
െ ૛, ࡿࡹ	ࢊ࢔ࢇ ൌ ሼ࢙: ࢙ ∈ ࢏ࡽ ∧ ࣎	 ∈ .࢙			ሺ࣋ሻ࢙࢙࢙ࢋ࢘ࢍ࢕࢘࢖࢔࢏	 ࢚. |ࢢ|	࢘ࢋࢎ࢚࢏ࢋ 		്

૙	ࢊ࢔ࢇ	࡮ࡵ ࢏ࡽ	∩ ⊆ |ࢢ|	࢘࢕	ࡿࡹ ൌ ૙	ࢊ࢔ࢇ	࢏ࡽ ൌ .ࡿࡹ ሽ  

Table 1: the SFW reader predicate, where |ࢢ| is rounded down to the nearest integer [12]. 

The reader proceeds to a second communication round if its predicate is true for ݐ 

and ݐ is propagated in an intersection of ܳ with exactly ݊/2 െ 2 other quorums. In the 

case the predicate for ݐ is false and ݏܫ is empty, a second communication round is 

needed. While ݏܫ is not empty the reader keeps comparing the tags in it with 

 or a tag that validates its ݂݊݋ܥݔܽ݉ until it finds a tag smaller than ݂݊݋ܥݔܽ݉

predicate. In all other cases the reader is fast.  

   

3.2.3 Writer 

 

 The writer process ௜ܹ sends a writer request to all the servers in the quorum 

system. The requests contain ൏ ,௪݃ܽݐ ݁ݑ݈ܽݒ ൐ and the servers reply with the new tag 

for the write operation. The tags received from the server responses may differ. The 

writer needs a mechanism to select the latest tag and then judge based on the latest 

tag distribution in the quorum, if a second round of communication is needed to 

ensure atomicity. The write predicate provides this decision mechanism. Notice the 

differences of the writer process between the SFW and the SIMPLE algorithm in 

Figure 9 and Figure 10 respectively. The SFW writer does not need to use the first 

communication round to read the latest tag of the atomic register but rather it  
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Writer Predicate for a write ࣓ ሺࢃࡼሻ:

∃࣎, ࣎	:ࢋ࢘ࢋࢎ࢝,ࡿࡹ,࡭ ∈ ሼ〈. , ࣓〉: 〈. , ࣓〉 ∈ ሺ࣓ሻ࢙࢙࢙ࢋ࢘ࢍ࢕࢘࢖࢔࢏ ∧ ࢙ ∈   ,ሽࡽ

࡭ ⊆ ℚ, ૙	 ൑ 	 |࡭| ൑
࢔

૛
െ ૚,  ࢊ࢔ࢇ

ࡿࡹ ൌ	 ሼ࢙: ࢙ ∈ ࡽ	 ∧ ࣎	 ∈ ,ሺ࣓ሻ࢙࢙࢙ࢋ࢘ࢍ࢕࢘࢖࢔࢏	 ࢙. |ࢡ|	࢘ࢋࢎ࢚࢏ࢋ		.࢚ 		് ૙	ࢊ࢔ࢇ	࡭ࡵ ∩ ࡽ	 ⊆

|ࢡ|	࢘࢕	ࡿࡹ ൌ ૙	ࢊ࢔ࢇ	ࡽ ൌ .ࡿࡹ ሽ  

Table 2: The writer predicate for the SFW algorithm, where |ઠ| is rounded down to the nearest 

integer [12]. 

only one tag for each writer in the inprogress set. So the writer will extract |ܳ| tags in 

total, which is the number of servers of the responding quorum ܳ, all these tags are 

inserted in a new set, let that be called	ݏܫ. The writer tries to find a tag ݐ in ݏܫ that 

validates the predicate (to TRUE). If a tag ݐ, that validates the writer predicate exists 

then the writer adopts this tag along with its associated value. 

Otherwise if such a tag ݐ does not exist, the writer adopts the maximum tag in 

 and proceeds to a second communication round. The server may also proceed to ݏܫ

a second communication round if the predicate is true but ݐ is only propagated in an 

intersection of ܳ with more than ݊/2	– 	2 other quorums. In any other case the write 

operation is fast and completes in one communication round. 
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Chapter 4 

Implementation 

 In this chapter we present the design and implementation of the algorithms. 

Additionally, the tools created to execute the scenarios and retrieve the results are 

specified.  

 

4.1 Design 

 

An application for testing the MWMR algorithms on PlanetLab was 

implemented using the C programming language with Linux as Operating System. 

Specifically, it was compiled to be compatible with Fedora 8. The Client-Server model 

and TCP sockets were used for communication between servers, readers and 

writers. The server uses the paradigm of serve one client with each server thread, 

while clients use one thread per server for each communication round. Standard C 

libraries were used as the main building blocks of the implementation, with POSIX 

pthreads for threading. 

The application consists of three major components: the server, reader and 

writer each of which executes as an independent process. The reader and writer 

processes require that the server processes are executed first and are listening to the 

designated ports in order to begin sending read/write operation requests. An arbitrary 

number of server, reader and writer processes are supported by the implemented 

system through a parameterized configuration file. The same is true for read and 

write operations. 
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 Servers can only queue up to 256 requests on their accepting socket and can 

spawn up to a maximum of 200 threads for serving incoming requests. In practice the 

servers reach their maximum service capacity when a high number of readers and 

writers execute on PlanetLab, hence a preliminary experiment is executed to 

recognize these bounds. 

 The quorum system used in experiments is ݊-wise (where ݊ the intersection 

degree of the quorum system). A static quorum system deployment is used for the 

servers. Server process participation in quorums is fixed and known before a 

scenario starts its execution and it remains the same until the end of its execution, 

despite the fact that network topology may dynamically change as links and network 

nodes fail. Also client processes assume that at least a single quorum is correct, that 

is it contains no faulty servers. 

In the implementation of algorithm SIMPLE the quorum system type used is 

the majority. For the needs of algorithm SIMPLE we use ݊-wise quorum systems 

where ݊ is the intersection degree of the quorum system, meaning that any ݊ 

quorums of the system have a non-empty intersection. Specifically, in the 

implementation of SFW we define a quorum as a set of  ܵ െ ܶ, where ܵ is the number 

of the servers and ܶ the number of the servers that the system can afford to fail such 

that the total number of quorums in the system is  
ୗ!

ሺୗି୘ሻ!	୘!		
 . Practically in the 

implementation we consider “enough” replies when the first ܵ െ ܶ responses from 

servers are received. It is not difficult to observe that this results to an ݊-wise Quorum 

System configuration. 

Each thread spawned by the server receives the client request and examines 

the request’s header to discover if a message body follows and needs to be received. 

Then the thread waits until it manages to acquire a spin lock on the critical section, 

which protects the server’s state from concurrent access.  A spin lock is a mechanism 
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to enforce mutual exclusion. It essentially causes the thread to wait in a loop until a 

variable (of type pthread_spinlock_t) is unlocked. 

Functions that provide similar functionality to either of the processes share the 

same name. For example the process function is used by all processes to process an 

incoming messaging but the implementation in each case differs. This is similar to 

polymorphism used in object oriented languages. 

An important requirement in design was that both the SIMPLE and the SFW 

algorithm share the same architecture and core code, such as shared libraries, 

communication procedures, same data structures and similar message exchange 

format. In the next sections a reference to the differences of the implementation of 

the two algorithms are given whenever it applies. 

 

4.2 Communication 

 

Clients communicate with Servers through TCP sockets by exchanging 

messages. The servers connection information such as IP or domain name are 

loaded from the configuration file. Each message has a dynamic size in bytes and 

contains a header and a body. The message header has a set of fields needed for 

the algorithm. For the needs of communication between clients and servers a 

protocol is created which is defined by the fields in the message header. Fields that 

can appear in the message header are summarized in table 3: message header . 

table 4 lists the message format used for communication between clients and 

servers. 

The code that is responsible for generating the message header is located in 

the message.c code file. The definition of the message header creation functions is 

detailed in Table 6. 
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Message Header Field Description 

SentValue Describes the Body value, zero(0) means body is empty 

and one(1) has value 

Id Process id of the sender 

AlgorithmType SIMPLE for always two round operations algorithm. 

SFW for operations that are predicate depended for 2nd 

round of communication. 

ObjectID The unique object id of the register (atomic object). 

MessageType WRITE/ READ / INFO 

WRITEACK/ READACK/ INFOACK 

Cnt Request counter 

Tag.ts Tag Timestamp  

Tag.wid Tag writer id 

Tag.wc Tag write counter 

ConfirmedTag(ts,wid,wc) The same tag info for the confirmed tag 

ConfirmedTag(value) The confirmed object value, not sent for INFO message 

type requests 

InprogressSet An Inprogress [ Tag( ts, wid, wc), Value ] for each 

writer. Note that Value is not sent for INFO message 

type requests. 

Table 3: Message header fields description 

The configuration of the processes is setup using a confic.ini file. This file 

contains all the global information shared among the implementation; essentially it 

defines the configuration of the system. The order of variable declaration in this file is 
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important. An example of a confic.ini file with enough self-explanatory comments can 

be found in Appendix A. 

SIMPLE server response message format 

SentValue,Id,AlgorithmType,ObjectID,MessageType,Cnt,Tag.ts,Tag.wid,Tag.wc

SFW server response message format 

SentValue,Id,AlgorithmType,ObjectID,MessageType,Cnt,Tag.ts,Tag.wid,Tag.wc, 
ConfirmedTag(ts,wid,wc),ConfirmedTag(value),InprogressSet 

SIMPLE client request message format 

SentValue,Id,AlgorithmType,ObjectID,MessageType,Tag.ts,Tag.wid,Tag.wc,Cnt 

SFW client request message format 

SentValue,Id,AlgorithmType,ObjectID,MessageType,Tag.ts,Tag.wid,Tag.wc,Cnt 

Table 4: Messages format used in communication between clients and servers 

 On the client side, the communicate procedure (Table 5) is used as the 

communication primitive by which a complete communication round is performed. 

The communicate function implementation was inspired from [7], in which a function 

is described that handles communication. It takes as parameter the packet to send 

and returns an array of the acknowledging servers in quorum_data data structure 

along with its size.  

Since clients need to communicate with all servers, the communicate 

procedure spawns a thread for each server to handle message interaction with the 

client. To manage these threads a controlling thread monitors the responses from the 

servers. When enough responses have been received, the controlling thread 

graciously notifies the threads which handle the servers that are yet to respond. The 

notified threads are responsible to stop any current action with their respective server 

and terminate. 

 



33 

 

 

 

 

 

The main Communication function used by clients 

data_t*  

communicate(  

pck_t *sMsg,  

data_t* quorum_data,  

int* quorum_size, bool_t *done ); 

Communicate performs one communication 
round between client and servers. 
-input parameter sMsg: a pointer to 
message to send. 
-output parameter quorum_data: the data 
of the responding acknowledging quorum. 
-output param quorum_size (the size of 
quorum_data). 
 

Table 5: communicate function details 

Message header creation functions Description 

char*  messageToString( pck_t* 

msg ); 

 

allocates memory for a new string and 

populate it with the fields as described in 

table 2. Memory allocated must be explicitly 

freed afterwards. Note: used by the client to 

send a request. 

pck_t*  

stateToMessage( pckt_t *recv_msg 

); 

 

Creates a new package to send as 

response, using data from the received 

message and from current server process 

state. Memory allocated for return value 

must be explicitly freed afterwards. Note: 

this version is intended for use by the 

server. 

void  

stateToMessage( pck_t *msg, 

state_t * state); 

Includes the current client state in an 

existing package. Note: this version is 

intended for use by the client. 

Table 6: Message creation functions used in client and server implementation 
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4.3 Server 

 

 The servers’ main functionality is implemented in the function detailed in 

Table 7. The basic steps of the server execution are: 

 internal state is initialized,  

 binds to a newly created socket,  

 Initializes thread management data structures and listens for incoming 

connections.  

 On each accepted connection to the listening socket the server spawns a 

thread to handle the new request on a new socket.  

Due to the concept of one thread per client this can severely limit the number 

of concurrent threads a server can handle simultaneously. For 32-bit OS systems this 

limit is 512 threads. The pthread_detach function is called after a thread creation to 

let the OS release all the thread resources as soon as it finishes execution. Each 

thread executes the serve_thread function, the code of which is attached on 

Appendix C. 

The server_thread function receives the client message and checks if the 

message body has a value (it may be empty) that needs to be received as well. Note 

that a value may be present but if it is the same as the server’s current value, it is not 

necessary to actually receive and overwrite the object value. This has a great impact 

on performance when the message value is a large file.  

Each request is processed by the process function; it examines the request 

tag and updates the server state according to the algorithm. Finally a response 

message is created and sent to the client. 
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void initialize(); Initialize server state 

int create_socket(&socketFd);    //1. 
Create the socket 

Create a new socket 

bind_socket(&socketFd, &server, 
sys_conf.serverPort[pid]); 

Bind socket 

listen(socketFd, MAX_PENDING);  
//3. Set Socket to Listen 

Listen for connections 

while(1){ 
         acceptReq(socketFd, 
&newSocket, &client, rem); 
         pthread_create(&threads[ i ], 
&attr, (void*) pt2ProcessThread, 
(void*)(&threads_data[ i ]));     
} 

Accept any incoming connection and create 
a new thread to serve it. 

void* serve_thread( void* 
thread_args ); 
    
 

The main serving code of the server. 
Generally it calls: 

1. recvReq() 
2. recvMsgVa() 
3. process() 
4. sendRes 

pck_t* create_message( msg_t t, 
obj_t ot, alg_t alg ); 

Allocates and initializes memory for a new 
message. 

int    recvReq(int , pck_t*, int*); Receive request message 
 

int    recvMsgVal(int , pck_t *,int, 
bool_t ); 

Receive message value if needed 
 

void   process(pck_t*); 
 

Process request: update server state and 
prepare response 
 

void   sendRes(int , pck_t* ); Send response 

Table 7: Main server functions 

 

4.4 Writer 

 

 The writer process calls the writeObject function whenever it needs to write a 

value to the atomic object.  After each write operation the writer sleeps for a 
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preconfigured amount of time. The write interval between operations can be 

configured through the confic.ini file. The writeObject function code initializes a 

message to send, sets the writer process state to WRITE , increments the operation 

counters and then calls the communicate function to send the message.  

 Upon successful completion of the communicate function the responses 

received from the quorum are processed by the process function. The latter 

examines the responses from all the servers, updates the writer current state and 

proceeds to a second communication round if necessary. 

 In Table 8 the main functions of the writer process are summarized. 

void   writeObject(  

int objectId,  
state_t*objectState,  
int* intVal,  
obj_t objType,  
alg_t algType); 
 

Performs a write operation, input 

parameters are the object id, the 

current writer state for the supplied 

object id, the integer value to write, 

the object type(file or integer) and 

the algorithm type(SIMPLE or SFW) 

int  compareTag(tag_t* a, tag_t* b); 
 

Compares the two input parameters: 

If a > b return 1,  

If a==b returns 0 and -1 otherwise. 

bool_t process(state_t *, data_t*, int ); 
 

Process the server responses and 

act according to the current 

executing algorithm.  

int  recvMsgVal(int, pck_t *,int );//(newSck, 

*msg,writeIt) 

 

Receives message value pending on 

socket. 

bool_t writerConditions( 
data_t* quorum_data, 
 int quorum_size,  
tag_t** t,  
bool_t *isPropagated ); 
 

The predicate of the writer for the 

SFW algorithm returns True if 

predicate is valid, False otherwise. 

void stateToMessage(pck_t *, state_t*); Puts the current writer state into a 

message. 

Table 8: Writer process main functions 
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4.5 Reader 

 

The main function used by the reader is the readObject function, which is very 

similar to the writeObject function used by the writer. It creates a message to send, 

uses communicate function to send it and receives responses in quorum_data data 

structure which is passed to the process function for examination. The Process 

function updates the reader state as necessary, which is the most recent object value 

read and its tag. It also decides if a second communication round is needed in the 

case of algorithm SFW. 

 

4.6 Code structure and Compilation 

 

 The code files are located under the src folder and they are organized in 

folders: 

 reader: reader.c, reader_main.c 

 server: server.c, server_main.c 

 writer: writer.c, writer_main.c 

 net: sockets.c, sockets.h 

 utilities:  

o communicate.c communicate.h 

o config.c, config.h 

o log.c, log.h:  

o message.c, message.h 

o utilities.c, utilities.h 

o quorum_gen.c 
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 test/reader/, test/writer/, test/server/: all three folders need to exist in order for 

the make file to output the three executable files. 

The Global header files are also located under the src folder:  

 data_structures.h, all data structure definitions 

 mwmr.h, all include files in one place 

 main.h, include files, declarations of the functions, macros and global 

variables that are used by reader_main.c, writer_main.c and server_main.c  

 makefile, has commands to build the whole source code or parts of it 

individually for unit testing. Executing make under src folder creates the 

executable files. 

 Code related to sockets such as binding, creating, receiving and sending is 

under net/sockets.c. Code related to communication between processes is in the 

communicate.c and message.c files. 

 Common resources and functionality that is not related to communication, 

such as management of log files, configuration files, comparison functions on various 

data structures and common logic are included in the utilities folder and are globally 

visible to all code in the implementation. An exception is the quorum_gen.c which is a 

separate individual program and is located directly under src folder. The quorum_gen 

program takes four (4) command line arguments: the quorum type, number of 

servers, number of failures and a seed number. The quorum type can be –݉ for 

majority or – ݀ for ݎ݁ݒݎ݁ݏ	ݎܾ݁݉ݑ݊	–  quorum size generation. The ݎܾ݁݉ݑ݊	ݏ݁ݎݑ݈݂݅ܽ	

output in the first case is majorities.dat file where in the latter is majorities_x.dat. The 

output file contains the total number of quorums generated in the first line and the 

number of failures the quorum system can sustain in the second line. Each line that 

follows defines a quorum. 
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 Each process has a main file (reader_main.c, writer_main.c, server_main.c), 

which contains the main function, command argument management functions and 

signal handling functions. Basically the main files for each process call the execute 

function. The execute function loads the confic.ini file parameters into a global data 

structure (confg_t sys_conf) so that is visible by the whole system, and setups timers 

for monitoring the operation latency of each read/write operation in the process. 

There are two operation latency timers that monitor the processor time and the actual 

real time it takes for a read/write operation to complete.   

 

4.7 Read/write predicates of Algorithm SFW 

 

As mentions in Section 3, the reader and writer algorithms use a predicate to 

decide when to proceed to a second communication round. The predicate 

implementation is a challenge due to the existential quantifier. 

 

4.7.1 Reader Predicate 

 

The idea behind the implementation of the predicate is to reduce the size of 

the solution space while searching for a tag that satisfies the predicate conditions. In 

order to avoid examining every possible case in the solution space, a heuristic 

method to move towards the solution is presented. 

The algorithm implemented for the reader predicate is shown in Figure 11. 

Recall that the inprogress set contains the latest tag for each writer in the system. 

The concept of the heuristic algorithm is to find all the possible quorums which 

include all the servers that responded with the largest tag. The procedure that 
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evaluates the predicate and calculates the size of the intersection between the 

responding quorum and a subset of quorums from the quorum system is shown in 

Table 9. 

In more detail, the heuristic implementation first sorts (descending) the unique 

tags return from the servers into	 ௞ܶ. If many servers responded with the largest tag 

then only a “few” quorums ܳ௦ (comparing with the total number of quorums	
ୗ!

ሺୗି୘ሻ!	୘!		
) 

will exist that include all these servers. Thus the intersection size of ܳ௦ with ܳ௞ 

(responding quorum) will be big and for this reason is less probable for	ܫ௦ ⊆ ܵ௧, where 

ܵ௧ is a set of servers that have in their inprogress set the ݐ tag being currently 

examined from		 ௞ܶ. 

If the latest tag failed to validate the predicate, then the heuristic 

implementation examines older tags. As older tags are examined the |ܵ௧| decreases, 

reasonably fewer servers will have older tags, but |ܳ௦| increases because more 

quorums exist that include all servers in	ܵ௧. This causes the size of the intersection of 

quorums in ܳ௦ (|ܫொ௦|) to decrease, resulting in |ܫ௦| (ܫ௦ ൌ ሼݏ: ݏ ∈ ொ௦ܫ ∩	ܳ௞ሽ) to also 

decrease. Thus it is more probable to find a	ܫ௦ ⊆ ܵ௧; this depends on the size of ܵ௧ as 

well. If a tag satisfying the predicate does not exist it will be faster to find and stop 

earlier in the computation hence saving on average operation latency. 

The procedure shown in Table 9: 

1. Calculates, by reference parameter output ݎ, the size of the quorums in the 

intersection of ܳ௞ with ܳ௦ .  

2. Returns true or false if the predicate found a valid tag 

The pseudocode in Table 9 assumes that is looking for a tag in the inprogress 

set and not the set of confirmed tags, which is needed in the case an inprogress tag 

is not found (which is the case shown in Figure 11 at lines 19-24). The reader  
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responding quorum with a set of quorums from the quorum system and validate the 

predicate. The only exception in this case is wherever ݀݅ݓ appears it refers to the 

specific writer id which initiates the write request.  

 

procedure predicate_and_num_of_quorums_in_intersection( input ܳ݇, output ݎ ):  
/* ܳ௞ the responding Quorum */ 
݃ݏܯݒܿݎ ← ሼ൏ ݉,ݏ ൐:݉ ൌ ሺܴܭܥܣ, ,ݏݏ݁ݎ݃݋ݎ݌݊݅ ,݀݁݉ݎ݂݅݊݋ܿ  	݉		݀݊݁ݏ	ݏ	⋀	ሻݎ݁ݐ݊ݑ݋ܥݎ
ݏ	⋀ ∈ ܳ௞} 
/*find max confirmed tag*/ 
݂݊݋ܥݔܽ݉ ൌ ሼ	൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐:൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐	∈ ݉. ⋀	݀݁݉ݎ݂݅݊݋ܿ 	൏ ݉,ݏ ൐	∈  ሽ	݃ݏܯݒܿݎ	
/*find unique tags*/ 
௞ܶ ൌ ሼ൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐:൏ ,ݏݐ ,݀݅ݓ ܿݓ ൐	∈ ݉. ⋀	ݏݏ݁ݎ݃݋ݎ݌݊݅ 	൏ ݉,ݏ ൐	∈  ሽ	݃ݏܯݒܿݎ

sort_descending( ௞ܶ); /*sort	 ௞ܶ in descending order*/  
For each ݐ in ௞ܶ /*starting from the largest tag*/ 
if ݂݊݋ܥݔܽ݉ > ݐ then 
            /* put all servers that have in their in progress set the ݐ tag into ܵݐ set*/ 

ܵ௧ ൌ ሼݏ: ݏ ∈ ܳ ∧ 	ݐ ∈ 	݉. ⋀	ݏݏ݁ݎ݃݋ݎ݌݊݅ 	൏ ݉,ݏ ൐	∈  { ݃ݏܯݒܿݎ	
     /*while there is a combination ܵ௧′ from ܵ௧, initially ܵ௧′ ൌ ܵ௧,  

comb(ܾܿ݉, ݇, ݊) generates the next combination of ݊ elements as ݇ after ܾܿ݉, 
where ݇ is also the size of the subsets to generate */ 
while comb(ܵ௧’, ݇, |ܵ௧|) ∧ ܵ௧’ ് { }  

/*get all Quorums that include all servers from ܵ௧′ and put them in ܳݏ */ 
ݏܳ ൌ ሼݏ: ݏ ∈ ܵ௧′ ∧ ܵ௧′ ⊆ ܵ௧ ∧ |ܵ௧′| ് 0ሽ  

          /*servers in intersection of: all quorums in ܳݏ with ܳ௞,  
put them in ܫ௦ */ 

௦ܫ   ൌ ሼݏ: ݏ ∈ ொ௦ܫ ∩	ܳ௞ሽ    /*finish: if intersection is a subset of ܵ௧ */	
 If ܫ௦ ⊆ ܵ௧	݄݊݁ݐ Return ݐ /*and predicate is TRUE*/ 

If not a valid combination exists then ݇--; /*comb(ܵ௧’, ݇, |ܵ௧|) is valid? */ 
else if ݉ܽ=< ݂݊݋ܥݔ	ݐ	then 
/* If none of ݐ in ௞ܶ satisfies the predicate then	ݐ	 ൌ  predicate is FALSE for ,݂݊݋ܥݔܽ݉	
all ݐ in	 ௞ܶ.*/ 

return ݂݉ܽ݊݋ܥݔ /* predicate is FALSE */ 
Table 9: Pseudo code for the reader predicate 
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are difficult to practically test due to multiple writers in the system, for this reason only 

a subset of operations were checked. 

 

 One Server Two 

Servers  

... Twenty Servers 

1. One reader(SR) Test reader messages used in communications 

Test reader communication with multiple servers 

2. One writer(SW) Test writer messages validity with one, two and twenty 

servers. 

3. SR 

(SWMW) 

 

Test that reader process reads the correct value while the 

writers and the servers in the system increase. 

4. MWMR Is atomicity violated? 

Table 10: Test cases 

  After the implementation described in Chapter 4 was tested locally for 

correctness, a robustness stress test was performed. It is important that server 

processes do not crash due to implementation errors, since general system errors 

caused in PlanetLab cannot be avoided. To ensure all processes robustness a stress 

test was performed locally with more aggressive settings than those used in 

experiment in PlanetLab. The stress setup included a hundred of readers and writers 

processes and starting from one (1) server multiple test were performed for up to 

twenty(20) servers.  

 Specifically, the tests attempted to either crash the servers due to memory 

leakage or reach system limits, such as max concurrent thread numbers, opened file 

descriptors, stack size, deadlocks and starvation. The stress test revealed a lot of 

areas that improvement could be made. Although most major server failures were 
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counteracted the problem of starvation of concurrent threads trying to acquire access 

to the atomic register is anticipated. The starvation issue is resolved on the client side 

with timeout on the server response. The downscale is an increase of fail operations 

from the client side but this problem only arises when the client number is very large 

and their operation interval is small. Another workaround to the starvation issue is to 

increase the timeout on the clients but this applies only on experiments since in real 

application examples functional requirements may restrict operation latency. 
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Chapter 5   

Experimentation Setup 

 

 In this chapter the experimentation setup used during empirical evaluation is 

detailed. In Section 5.1 the methodology followed and the configuration used are 

given. Section 5.2 lists the procedure used to execute the scenarios on PlanetLab. 

Lastly in Section 5.3 the problems and limitations encounter during the configuration 

and execution of experiments are described. 

 

5.1 Methodology and configuration 

 

 To evaluate the algorithm implementations, experiments are executed on 

PlanetLab and statistics are recorded for slow operations, operation latency and 

execution time. The quorum system deployment uses the same PlanetLab nodes for 

server processes in all experiments and scenarios. 

 Quorums are arranged to have ܵ	– 	ܶ size, where	ܵ a set of servers and ܶ the 

preconfigured maximum server failures which is configured based on the quorum 

intersection degree required in each experiment. The quorum intersection degree for 

each experiment is calculated using	݊	 ൌ 	 ۀ	ܶ	/ܵ	ڿ െ 	1. All write operations in algorithm 

SFW are slow for ݊ ൑ 4 [12]. In other words, for	ܵ servers and intersection degree	݊ 

the maximum number of server failures is	ܶ	 ൌ 	ܵ	/	ሺ݊ ൅ 1ሻ. The system must be 

robust “enough” in order to avoid read/write operation failures when a few servers 

crash or are acting very slowly in PlanetLab. Furthermore, enough servers are 
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needed such that	ܶ ൐ 1. For these reasons, in most of the experiments scenarios 

include twenty (20) servers were the quorum system intersection degree is	݊	 ൌ 	6 

for	ܶ ൌ 3. When the quorum intersection degree is different in an experiment, the 

respective value for ܶ is given.  

The algorithm implementations do not explicitly restrict the number of reader 

and writer processes but the system performance is expected to degrade when a lot 

of client processes are present in a scenario. To discover suitable configurations for 

the experiments, preliminary experiments are performed, where various scenarios 

examine the effect of a variable parameter as it is progressively increased. The 

parameters that are used as variables, only one at a time for each scenario, are: 

number of readers, number of writers, read operation interval, writer operation 

interval and quorum system intersection degree. In each scenario readers execute 

200 read operations and writers 200 write operations. Due to the nodes’ arbitrary 

slowness, most scenarios were executed two or three times in order to complete the 

200 read/write operations assigned to each client involved in the scenario. An 

average is calculated when assembling the results from scenarios that executed 

more than once. 

A list of all 20 nodes used for server processes is given in Table 11. In total, 

100 PlanetLab nodes were included in the slice by randomly selecting from a list of 

more than 1000 nodes. 

The apparently faster machines, based on their uptime and load during the 

last week, are selected for execution of the server processes. A list of all machines 

used for executing client processes can be found in Appendix F. 

The PlanetLab machines use Fedora release 8 (code werewolf) kernel 

versions 2.6.x and their minimum hardware specification are show in Table 12. The 

PlanetLab machines have adequate hardware specifications to execute the 
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experiments needed during empirical evaluation but usually about 1 GByte of 

memory is available, CPU usage arbitrary varies and disk space is for the most part 

sufficient. 

Server Host Names 

freedom.informatik.rwth-aachen.de flow.colgate.edu 

chronos.disy.inf.uni-konstanz.de jupiter.cs.brown.edu 

dannan.disy.inf.uni-konstanz.de ebb.colgate.edu 

host2.planetlab.informatik.tu-darmstadt.de pl1.ucs.indiana.edu 

adrastea.mcs.suffolk.edu pl2.planet.cs.kent.edu 

75-130-96-12.static.oxfr.ma.charter.com planetlab04.cs.washington.edu 

pl1.grid.kiae.ru fobos.cecalc.ula.ve 

75-130-96-13.static.oxfr.ma.charter.com ds-pl1.technion.ac.il 

host3.planetlab.informatik.tu-darmstadt.de cs-planetlab4.cs.surrey.sfu.ca 

node-1.mcgillplanetlab.org pl1.rcc.uottawa.ca 

Table 11: PlanetLab nodes used for server processes 

 PCU  CPU RAM Disk 

Built-in, remote-access 
power-reset capability, 
accessible from PLC, such 
as IntelAMT, HPiLO, 
DellRAC, IPMIv2, etc. 

4x Intel cores @ 2.4Ghz 
(e.g., quad core or 2x dual 
core) 

 4 GByte  500 GB 

Table 12: PlanetLab machines minimum hardware specifications [28] 

 

5.2 Executing on PlanetLab 

 

To access PlanetLab network an account is needed on planet-lab.org 

website. Once an account is obtained, it can be used to login to PlanetLab and setup 
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Executing in parallel hundreds of processes and monitoring them is not a 

trivial task even with the help of tools. For example, how multiple processes are 

launched concurrently to multiple nodes with different command line parameters for 

each process and for each node? For this reason a shell script is created to prepare 

each PlanetLab node for the execution of a scenario. The shell script code 

runscenario.sh is appended in Appendix B. 

In brief, the script requires eight (8) command line parameters: 

 total servers in the system,  

 number of server failures,  

 number of readers, 

 number of writers,  

 the algorithm type, (0 for SIMPLE, 1 for SFW) 

 the register value type, (0 for integer, 1 for file) 

 run test mode (1 executes in test mode, 0 executes normally) 

 start mode, 1 executes only servers and 0 executes only clients,  

The runscenario.sh script grants to all executable files permission to execute 

on the node it runs on and kills all currently executing server, reader and writer 

processes. The runscenario.sh script cleans all preexisting log files and parses a 

server.ini file. The server.ini file contains a line for each node required to participate in 

the scenario. Each line includes the node in the slice, the reader and writers 

processes it needs to execute in the following format: 

The_PlanetLab_Node_ip_or_hostName:ReadersNum:WritersNum 

The value of the first (number of servers) runscenario.sh script parameter, let 

it be num, also implies that the first num lines in server.ini file are configured to 

execute a server process. Finally the runscenario.sh shell script starts the execution 

of the client/server processes needed for the scenario.  
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The server and client processes need three (3) command line parameters:  

 id, the unique identifier of the process of integer type that starts from zero and 

counts first the servers then the readers and finally the writers. The purpose of 

this id is to define a total order on the priority of processes in the algorithms 

and for internal book keeping of their state. 

 the algorithm type, same as the parameter passed in shell script 

  the register value type, same as the parameter passed in shell script 

Before the shell script is executed servers.ini, majorities_x.dat and confic.ini 

are uploaded to PlanetLab nodes. The shell script is executed twice with the pssh 

tool, firstly to start the servers execution and secondly to start the clients execution. 

An example of the steps to start a scenario is given in Table 14 and for downloading 

the results in Table 15.  

 

5.3 Problems and Limitations  

  

Various values for scenario parameters were tested during the preliminary 

experiments. Specifically, the number of reader and writer processes in the system, 

the operation intervals between sequential operations, the quorum intersection 

degree and the timeout of requests. 

Test parameter values were driven by values used in local tests. The local 

tests were executed in order to provide an initial configuration for the preliminary 

experiments. Local test cases that include more than 80 processes, executed in a 

reasonable amount of time when run locally and under a specific configuration. This 

high number of processes in PlanetLab proved impractical due to the arbitrary 

slowness of machines and the implementation approaching full service capacity. The 

server processes reach full service capacity in PlanetLab when overwhelmed from  
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Table 14: Example of steps for starting a scenario 

operation requests, causing operation cancellation (due to timeouts in 

communication). 

Although increasing the timeout in communication may allow more processes 

to participate in the scenario, it leads to a high average of operation latency. During 

the preliminary experimentation phase it was discovered that the average latency in 

communication between PlanetLab nodes is 125ms. It is not practical to increase 

timeout beyond 10 seconds considering that with operation intervals at 1 second and 

timeouts at 10 seconds, it takes more than one hour to execute a scenario with 400  

1 pscp -h servers.txt -l cyprus_ATOMIC ./PlanetLab/scenarios/int.sfw/confic.ini 

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw 

2 pscp -h servers.txt -l cyprus_ATOMIC ./PlanetLab/scenarios/servers.ini 

/home/cyprus_ATOMIC/PlanetLab/scenarios/ 

3 pscp -h servers.txt -l cyprus_ATOMIC ./PlanetLab/scenarios/majorities_x.dat 

/home/cyprus_ATOMIC/PlanetLab/scenarios/ 

4 pnuke -h servers.txt -l cyprus_ATOMIC serverexe 

pnuke -h servers.txt -l cyprus_ATOMIC readerexe 

pnuke -h servers.txt -l cyprus_ATOMIC writerexe 

5 pssh -h ./test_servers.txt -l cyprus_ATOMIC -o ./outs 

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw/runscenario.sh 20 4 80 80 0 

0 0 1 

6 pssh -h ./test_servers.txt -l cyprus_ATOMIC -o ./outs 

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw/runscenario.sh 20 4 80 80 0 

0 0 0 
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1 pnuke -h servers.txt -l cyprus_ATOMIC serverexe 

pnuke -h servers.txt -l cyprus_ATOMIC readerexe 

pnuke -h servers.txt -l cyprus_ATOMIC writerexe 

2 pssh -h ./servers.txt -l cyprus_ATOMIC -o ./results/sfw/writer cat 

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw/writer*.result 

3 pssh -h ./servers.txt -l cyprus_ATOMIC -o ./results/sfw/reader cat 

/home/cyprus_ATOMIC/PlanetLab/scenarios/int.sfw/reader*.result 

4 (a shell script to parse the results file and calculate averages and percentages of 

required fields, the script code is on Appendix G) 

results.sh ./results/sfw/reader 

results.sh ./results/sfw/writer 

(the script takes one parameter as input: the output directory location of step 2. 

and 3. Respectively) 

Table 15: Example of steps to download results 

operations in total. Thus, there is no need to set the operation interval to a higher 

value than 1 second. 

The main problem is not communication latency between PlanetLab machine 

nodes but the arbitrary slowness of nodes, especially the heavy loaded nodes, thus 

the execution time slots given to the slice are less. PlanetLab has a fairness resource 

allocation policy [14]. However, a process may execute slower than expected but it 

may still be killed if it uses too many resources during high pressure times.  

The PlanetLab slice used for the experiments had 100 nodes from which only 

about 80 nodes were active while others were unavailable due to maintenance. This 

caused problems when some of the unavailable nodes were selected to execute 

server processes.  
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It is also important to note that PlanetLab nodes do not guarantee a static IP 

or message delays and have varying bandwidth limitations. Configuring the 

implementation of the algorithms to connect to servers using their IP address can fail, 

since their IP can change between (re)connections. To solve this issue the IP of the 

server must be resolved using the host name of the machine but this adds to the 

communication time. An alternative to PlanetLab DNS servers arbitrary slow behavior 

is CoDNS which basically gives benefit to anyone who wants more reliable name 

lookup service [29].  

On some of the stress test scenarios were the timeout and capacity of 

processes is stressed, some node processes are killed and a notification email 

similar to the one shown in Table 16  is received. 

 

Sometime before Thu Aug 12 16:28:24 2010 GMT, swap space was 

nearly exhausted on kc-sce-plab1.umkc.edu. 

Slice cyprus_ATOMIC was killed since it was the largest consumer of 

physical memory at 244.4 MB (24.4%) (96.8 MB writable) 

after repeated restarts. 

Please reply to this message explaining the nature of your experiment, 

and what you are doing to address the problem. 

cyprus_ATOMIC processes prior to reset: 

 PID       VIRT         SZ        RES %CPU %MEM COMMAND 

23278   177.5 MB    44.4 MB   122.3 MB 12.1 

/home/cyprus_ATOMIC/PlanetLab/writer/writerexe 149 0 1 

23213   209.5 MB    52.4 MB   122.1 MB 12.1 

/home/cyprus_ATOMIC/PlanetLab/reader/readerexe 49 0 1 

Thu Aug 12 16:28:24 2010 GMT kc-sce-plab1.umkc.edu reset cyprus_ATOMIC 

Table 16: PlanetLab kill auto send message example 
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When a scenario execution starts all client processes start sending requests 

concurrently, overwhelming the servers. This is also reflected in the results where the 

majority of operations latency at the beginning of the scenario execution is very high 

and during the execution it slowly drops to more expected values. This initial burst 

causes a high average of latency for operations and a high percentage of failures due 

to communication timeouts. For these reasons a small wait interval was added to 

each client process before scenario launch, in order to provide a less aggressive 

behaviour at the beginning of scenarios. The initial wait interval that each process 

waits before it starts its execution is fixed for all scenarios and it can be configured 

from the confic.ini file. 

During the empirical evaluation of the algorithms a lot of problems appeared 

due to the nature of PlanetLab. Servers were arbitrarily going offline or were too slow 

to communicate with. During the file upload of execution files for the experiments 

some servers received the latest configurations while some others did not. This 

created a lot of confusion, making the file upload procedure a tedious task to 

accomplish.  

Downloading the results of scenario executions faced the same problem 

causing even more delays to a scenario execution. To download the results from the 

PlanetLab nodes cat reader*.result unix command is used as the execCom 

parameter to pssh. As a result to pssh command all result files were downloaded to a 

local folder.  
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Chapter 6 

Empirical Evaluation 

 

 In this chapter the experiments, scenarios and their parameters used during 

empirical evaluation are described. Subsequently for each experiment, the scenario 

results are represented in graphs and analysed. 

 

6.1 Experiments and Scenarios 

 

 In this section the parameters for each experiment and their scenarios are 

detailed. The parameters that are the same for all scenarios except when explicitly 

stated otherwise are: 

 Read operation interval: 1 second  

 Writer operation interval: 1 second  

 Quorum system intersection degree: ݊	 ൌ 	6, failures ܶ ൌ 3 

 Communication timeout 10 seconds 

 20 servers 

Using a large number of PlanetLab nodes for object replicas and expecting 

only ܶ ൌ 3 of them to not fail is impractical. In practice, the operation latency of 

operations will further increase as reader/writers must wait responses from a larger 

set of servers and the possibility some of them are performing arbitrarily slow is high. 

For these reasons, the number of servers was set to 20 and the server failures were 

varied from 1 to 3. 
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6.1.1 Experiment 1: Number of readers and writers effect 

 

 The purpose of this experiment is to study how the number of readers and 

writers affect the efficiency of algorithm SFW. The results obtained from this 

experiment are used to define a reasonable number of readers and writers to use in 

further experiments. The number of readers and writers differs in each scenario. 

 

Scenario 1: Number of Writers 

 The efficiency of algorithm SFW is investigated when the number of writer 

processes in the system increases. Experiments are run with 10, 30, 40, 50, 80 

writers while the number of readers remains 80. 

 

Scenario 2: Number of Readers 

 In this scenario the efficiency of algorithm SFW is investigated when the 

number of readers in the system increases. Experiments are run with 10, 30, 50, 80 

readers while the number of writers remains 80. 

 

Scenario 3: Operation Interval 

 The purpose of this scenario is to study the impact of operation frequency on 

the efficiency of algorithm SFW. For this purpose the reader (ܫݎ) and writer intervals 

 :are varied as follows (ܫݓ)

 ܫݎ	 ൐ 	ܫݎ ,ܫݓ	 ൌ 	1, 	ܫݓ ൌ 	10	

 ܫݎ	 ൏ ,ܫݓ	 	ܫݎ ൌ 	10, 	ܫݓ ൌ 	1	

 ܫݎ	 ൌ 	ܫݓ	 ൌ 	1	
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The value of 1 second is chosen based on the observed PlanetLab average 

latency in communication as explained in Section 5.3. The value of 10 seconds is 

chosen such that there is a great difference between ܫݎ and ܫݓ	in order to get clear 

results. Experiments are run for 10 readers - 80 writers and 80 readers - 10 writers. 

 

6.1.2 Experiment 2: Quorum Intersection Degree 

 

 In this experiment the effect of the quorum system intersection degree to the 

efficiency of algorithm SFW is investigated. The following scenario is considered. 

 

Scenario: Effect of Quorum Intersection Degree 

 After observing the results of Scenarios 1 and 2 of Experiment 1, the number 

of writers and readers are set to 40 and the operation interval is set to 1 second. 

 Recall that algorithm SFW’s write predicate allows fast write operations for 

quorum system intersection degree,	݊	 ൐ 	4 (note that ݊ cannot be greater than		ܵ	 െ

	1ሻ. In this experiment the parameters used for servers ܵ	 ൌ 20 and server 

failures	ܶ ൌ 3. In the case of 20 servers, the values for ݊ used in the experiment is {6, 

9, 19}, calculated as follows: 

 ݊ ൌ ۀ20/3ڿ െ 1 ൌ 6, ܶ ൌ 3 

 ݊ ൌ ۀ20/2ڿ െ 1 ൌ 9, ܶ ൌ 2 

 ݊ ൌ ۀ20/1ڿ െ 1 ൌ 19, ܶ ൌ 1 

 

6.1.3 Experiment 3: Comparison of the SFW with the SIMPLE algorithm 
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 In this experiment the average operation latency of algorithm SFW is 

compared against the latency of algorithm SIMPLE. The following scenario is 

considered. 

 

Scenario: Increasing readers and writers 

The scenario is executed with reader and writer processes at 10, 20, 30 and 

40 respectively. The two algorithms’ performance is compared in respect to their 

average operation latency, average CPU cycles consumed (execution time), 

operation failure percentage due to timeouts and percentage of fast operations 

executed for algorithm SFW. 

 

6.2 Results  

 

 The experiments and their results are depicted in graphs and analyzed 

separately for each scenario. 

 

6.2.1 Experiment 1 

Scenario	1:	Number	of	Writers	

 The effect of changing the number of writers is investigated while the number 

of readers is fixed to 80. Different plots are presented that show how the amount of 

writers affects the percentage of fast operations, operation latency and failures. Note 

that the operations that timeout are not included in the calculation of the results for 

Figure 15, 16 and 17. 

It is expected that the percentage of fast write operations will decrease while 

the number of writers increase. The readers are expected to perform a higher 
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percentage of fast read operations since it is more likely their predicate to be 

validated (return TRUE) on larger inprogress sets. 

 Before the turning point at ܹ ൑ 40 in Figure 15, the results observed are 

similar to the expected results. As writers increase they perform fewer fast write 

operations. This is expected behaviour since the writers proceed to a second  

 

Figure 15: Percentage of fast write operations with 80 readers 

communication round if there is a tag returned by the servers (of the quorum that 

replied) that is distributed among enough quorums. When there are more readers in 

the system it is more difficult to validate the predicate due to multiple concurrent write 

operations.  

As mentioned, a turning point exists at 40 writers in Figure 15 (the average 

percentage of fast writes is 3.7% for	ݓ ൌ 40). At the turning point the performance 

regarding the percentage of fast write operations is the worst, which indicates that the 

system approaches its capacity limit. This limit means that there are so many write 

and read processes in the system that the percentage of fast write operations is 

reduced. After the turning point the percentage of fast operations increases. Studying 

the log files generated during the execution of the scenario the following are 
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observed: some processes have crashed or are very slow, others suffer from long 

service starvation, while some other processes are serviced more frequently due to 

latency and the asynchrony of clients with the servers. Another reason could be that 

geographical proximity favours’ some clients. The value of 80 writers is included in 

the results for completeness, to show that the system reaches its limits and is not 

used to draw conclusions on the efficiency of algorithm SFW. 

 

Figure 16: Percentage of fast read operations with 80 readers 

In Figure 16 it is shown that the percentage of fast read operations increases, 

as the number of writers increase. This is in accordance to our expectation. The 

readers will first check if the max confirmed tag returned by the replying quorum is 

greater than any other tag in the inprogress set. With increasing number of readers, 

the read requests will be more frequent than write requests and as such it is more 

likely a fast read operation to occur. When the system has over 30 writers the 

percentage of fast read operations becomes stable, near 100%, hence this result 

gives a good indication for the efficiency of read operations of algorithm SFW. 

In Figure 17, the operation latency of read operations is stable with increasing 

number of writers, which is expected, given the results in Figure 16. When ܹ ൌ 40,  
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Figure 17: client performance: average operation latency 

the operation latency of write operations is at its peak (28 seconds). Observe that the 

curve of Figure 17 (the write operations latency increases) is relatively the inverse of 

the curve shown in Figure 15 (the percentage of fast write operations decreases). 

In Figure 18 the fail percentage caused by timeout of read operations 

increases as the number of writers increase until	ܹ ൌ 30. Readers’ fail percentage is 

at its peak when 30 writers are in the system since the readers in this case perform  

 

Figure 18: percentage of client timeout failures 
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mostly fast operations (96.6%) and they “compete for access” to the object’s replicas. 

Observe that the read operation latency is a bit higher for ܹ	 ൌ 30 than ܹ	 ൌ 	10. 

After ܹ ൌ 30, the failure timeout of read operations is unexpectedly 

decreased, because after ܹ ൌ 30 all read operations are fast and write operations 

are slow (up to ܹ ൌ 40) giving more access to the atomic register to readers. This 

also agrees with the fact that a lot of reader processes have crashed. 

 The write operation timeout percentage is increased until ܹ ൌ 50 since the 

number of writers is increased and there is more traffic towards the servers. As we 

approach 40 writers the percentage of fast write operations dramatically drops 

(Figure 15) and write operations latency radically increases (Figure 17), which causes 

more failures due to timeouts. After	ܹ ൌ 50, as already mentioned, the system 

approaches its limit. The timeout percentage value after ܹ ൌ 50 is not representative 

since a lot of processes crash. 

 

Scenario	2:	Number	of	Readers	

 As an addition to the previous scenario, the effect of the number of readers is 

investigated while the number of writers is fixed. It is expected that the percentage of 

fast read and write operations will not be affected by the increase of the number of 

reader processes because their predicates are not influenced by the number of 

readers. The operation latency, of both read and write operations, is expected to 

increase when the number of readers increase since the load on the servers is 

increased. 

As it can be seen in Figure 19, the percentage of fast write operations 

increases linearly from 10 to 30 readers. This behaviour is possible since more 

processes are executing concurrently competing for service, which intuitively reduces 

the number of writers gaining access to servers because they are being overrun by  
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Figure 19: Percentage of fast write operations as the readers increase 

the readers. In other words, it is more likely less writers to execute concurrently, since 

a portion of the servers capacity is been “attained” by readers. From 30 to 50 readers 

the percentage appears more stable (on average 26%). After the number of reader 

processes exceed 50 the fast write operation percentage is increased, which may be 

caused by the same reasons explained in Scenario 1. At 80 readers the system is 

unstable since, as observed from the log files, a lot of processes crash thus fewer 

read and write processes are actually executing in the system. 

Essentially, the increased percentage of fast write operations at 80 readers is not 

representative but is included in the results for completeness.  

In Figure 20, increasing the number of readers does not affect, by a 

noticeable degree, the percentage of fast read operations since it only drops by 2% 

(from 99% to 97%) from 30 to 50 readers. As mentioned, this is indeed our 

expectation. 

The average operation latency of read operations, in Figure 21, is not 

significantly affected by the number of readers. On the other hand, the operation 

latency of write operations is substantially affected by the number of readers. 

Specifically, there is a notable decrease of the writer’s latency between 10 and 30 
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Figure 20: percentage of fast read operations as the readers increase 

 

Figure 21: The average operation latency while reader processes increase and writers are fixed 

since in Figure 19 for the same range there was an increase in the percentage of fast 

write operations. Between 30 and 50 readers a big increase in writer’s operation 

latency is observed. Considering that for the same range the percentage of fast write 

operations was stable, it seems that the system approaches its capacity limit at 50 

readers. At 80 readers the system is unstable since, as observed from the log files, a 

lot of processes crash.  
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Figure 22: percentage of failures from timeouts while reader processes increase and writers are 

fixed 

the number of readers increase.  The read operation latency and percentage of slow 

read operations at 10 readers is not higher than at 30 readers but the fail operations 

when considering 10 readers (in Figure 22) is unreasonably high. Observing from the 

log files we see that there are a few readers which perform almost only fail operations 

due to timeouts. These PlanetLab machines are either very slow due to transient load  

or they are experiencing network congestion. When there are more readers these 

slow machines have less effect on the results. 

 

Scenario	3:	Operation	Interval	

Recall that read interval is denoted by ܫݎ	and write interval by	ܫݓ. For the read 

operations, when ܫݎ	 ൏  it is expected that a high percentage of ,(1sec < 10 sec) ܫݓ	

one round (fast) read operations will occur. In the case of write operations, a slower 

write frequency is expected to lead to one round (fast) write operations.  
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consume server resources, the percentage of fast write operations is expected to be 

high. Since the write operations are frequent and they finish earlier they stop 

consuming server resources leaving only readers to execute in the scenario. It is 

expected to result to a high percentage of fast read operations. 

For ܫݎ	 ൌ  it is expected that both readers and writers perform fewer ,(1sec) ܫݓ	

fast operations than in ܫݎ ൏ ܫݎ	or ܫݓ ൐  .ܫݓ

Results are close to the expected but in most of the cases there is no 

noticeable influence to the percentage of fast read operations (Figure 23). A 

noticeable effect of the read and write operation interval is observed when the 

number of readers is significantly more than the number of writers regarding write 

operations (Figure 24). The percentage of fast write operations in this case is 

increased when ܫݎ ൌ ܫݎ	and ܫݓ ൐   .ܫݓ

 

Figure 23: Effect on % of fast read operations, on the vertical axis is the percentage and on the 

horizontal axis there are two categories, (1)80 readers and 10 writers, (2) 10 readers and 80 

writers 

In the case of	ܫݎ ൌ  the percentage of fast write operations is the highest ܫݓ

because there are few writers affecting the server tags. In the case of 80 writers and 

10 readers, regardless of the chosen interval the percentage of fast write operations 

is low affected by the high number of writers in the system. 
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Figure 24: Effect on % of fast write operations, on the vertical axis is the percentage and on the 

horizontal axis there are two categories, (1) 80 readers and 10 writers, (2) 10 readers and 80 

writers 

 

Summary	

 

Concluding from Scenario 1 and Scenario 2, it was indicated that the number 

of writers and readers in the scenarios should be low enough (less than 80) to 

provide stability of the system while scenarios are executed. In order to balance 

service congestion the number of processes could be leveraged around 40 readers 

and writers or by increasing the operation interval. 

The system exhibits reasonable behaviour when the number of readers is 

equal with the number of writers in the system. In the case of fewer readers there are 

more read failures but nonetheless the readers perform fast read operations. Overall, 

it is desirable to keep the average operation latency low enough such that the 

scenarios in subsequent experiments complete in a reasonable amount of time. 
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From Scenario 3, it was observed that the read and write intervals do not 

greatly affect the efficiency of the algorithm. However, in the case of 80 readers and 

10 writers a notable difference in the percentage of fast write operations was 

observed with the highest percentage being when	ܫݓ ൌ  Thus, it was decided to .ܫݎ

keep the read interval equal to the write interval in further experiments. 

 

6.2.2 Experiment 2 

 

 The second experiment focuses on the quorum intersection degree of the 

underlying quorum system. Recall that a single scenario was considered here (effect 

of quorum intersection degree). 

It is expected that for	݊	 ൐ 	4, the percentage of fast write operations increases 

due to the writer predicate that requires the writer tag to appear in an intersection with 

at most ݊/2	– 	1  other quorums. As ݊ increases so do the intersected quorums, thus 

their intersection size decreases and thus the predicate is easier to validate. Recall 

that ݊ cannot be greater than	ܵ	– 	1. The results are close to the expected ones 

(Figure 25).  

The percentage of fast read operations is expected to increase due to the 

reader predicate that examines all tags returned from servers and needs a tag to 

appear in the intersection with at most ݊/2	– 	2  other quorums. As ݊ increases so do 

the quorums that get intersected, thus their intersection size decreases and the 

predicate is easier to validate.  

The percentage of fast read operations is high at all values for ݊ (Figure 26). 

There is a slight drop on the percentage on high values of	݊ (i.e., ݊ ൌ 19ሻ that may be 

caused by the high percentage of operation timeouts (Figure 28) discussed later. 
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It is expected that the operation latency increases as the quorum intersection 

degree increases, since an operation waits for more servers to respond. In Figure 27 

it can be observed that the operation latency of the read and write operations 

increases for values	݊	 ൌ 	6 and	݊	 ൌ 	9. Even though the percentage of fast write 

operations is the same when ݊ is 6 and 9, the average write operation latency 

doubles. The same is true for read operations that exhibit less fast operations. This 

increase in the operation latency can be explained by the fact that clients expect 

more servers to respond at each communication round. 

 

 

Figure 25: The percentage of fast write operations with 40 readers and 40 writers, while ࢔ 

increases. 

In the case of	݊ ൌ 19, the operation latency is still high but less than ݊ ൌ 9 

since the percentage of fast write operations is the highest for	݊ ൌ 19.  

The percentage of fail operations in Figure 28 shows an increase of failures 

while the intersection degree increases, due to the fact that clients expect more 

servers to respond during a communication round. 
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Figure 26: The percentage of fast read operations with 40 readers and 40 writers, while  ࢔ 

increases 

 

 

 

 

Figure 27: 40 reader and 40 writer time of execution in respect to ࢔ 
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Figure 28: Percentage of fail operations due to timeouts in communication in respect to ࢔ 

Summary	

 

 The results are close to the expected ones when examining the percentage of 

fast write operations. The percentage of fast write operations increases as the 

quorum intersection degree increases. On the other hand the percentage of fast read 

operations slightly drops as the intersection degree increases because there are a lot 

of failures due to timeouts. The operation latency increases as the quorum 

intersection degree increases. When a high percentage of fast operations exists then 

the operations latency is balanced off. From our experiments we observe that the 

quorum intersection degree is an important parameter, since in most cases it greatly 

affects the efficiency of algorithm SFW. 

 

6.2.3 Experiment 3  

 

 In the last experiment the efficiency of algorithm SFW and is compared with 

the efficiency of algorithm SIMPLE. Recall that a single scenario was considered for 

this experiment as well. 
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 It is expected that algorithm SIMPLE’s operations will consume on average 

less CPU time than of the algorithm SFW, because SFW must also validate its 

operation’s predicates. On the other hand, algorithm SFW’s operation latency for 

read and write operations is expected to be less than of SIMPLE, given that algorithm 

SFW allows fast operations. In respect to failures, due to timeouts, it is expected that 

SFW will generally have a higher percentage of failures than SIMPLE, since SFW 

must wait for more server acknowledgements at every round of communication. This 

behavior is expected to be more noticeable when SFW performs mostly slow read or 

write operations. 

 The results for CPU time consumption for the read operations are close to our 

expectations. In the case of read operations (Figure 29), algorithm SIMPLE’s CPU 

time consumption appears to be constant while processes increase. Algorithm SFW’s 

read operations always need more CPU time than of SIMPLE. Increasing the number 

of processes also increases the time needed to validate the reader predicate, 

increasing the gap between SFW and SIMPLE even more. 

 Algorithm SIMPLE’s write operations CPU time is stable as the number of 

processes increase in the system as well. Instead, algorithm SFW’s write operations 

CPU time increases linearly with the increase of processes in the system (Figure 30), 

as expected. 

On average, a read operation takes more time to execute in algorithm 

SIMPLE than in algorithm SFW and increasing the number of processes also 

increases their difference (Figure 31), since SFW allows fast read operations as 

depicted in Figure 32. Given the percentage of fast read operations at 30 readers and 

writers (and below),the difference in operation latency between the two algorithms is 

disappointing. However the efficiency of algorithm SFW is clear at 40 reader and 

writers where there is around 7 seconds difference in operation latency. 
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Figure 29: Read operations CPU time comparison of the SIMPLE with the SFW algorithm 

 

 

Figure 30: Write operations CPU time comparison of the SIMPLE with the SFW algorithm 

This suggests that even larger difference will be witnessed at larger number of 

readers and writers. 

  In the case of write operations, per Figure 33, algorithm SIMPLE’s operation 

latency increases linearly when the number of processes increases, which was 
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Figure 31: Read operation latency comparison of the SIMPLE with the SFW algorithm 

expected since the bottleneck are the servers’s capacity to serve (based on 

bandwidth, hardware specifications and load). In the range of 10-20 reader and 10-20  

 

Figure 32: Read operations fail% and fast% for the SFW algorithm 

writer processes in the system, algorithm SFW’s write operations need slightly less 

time to execute because the percentage of one round write operations also increases 
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(Figure 34). In the range of 20-40 readers and writers algorithm SFW’s write 

operations’ execute slower than of SIMPLE with the peak of difference at the point 

where SFW performs 6.3% (Figure 34) of one round fast write operations. Algorithm 

SFW is slower in this case (30 reader and writers) due to the high write CPU 

execution time as seen in Figure 30. Again the difference between the two algorithms 

regarding operation latency is disappointing. Considering the high percentage of fast 

write operations at 20 readers and writers the operation latency of algorithm SFW is 

only 0.2 seconds better than the SIMPLE; we expected algorithm SFW to perform 

write operations in less time. One may conclude that for the chosen experiment 

values, the CPU time required by algorithm SFW voids the reduced time of fast 

writes. 

 

Figure 33: Write operations operation latency comparison of the SIMPLE with the SFW algorithm 
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Figure 34: Write operations %fail and %fast for the SFW algorithm 

 

Summary	

 

 Assuming no more servers than ܶ=3 will fail and under a reasonable setup of 

readers and writers in the system, algorithm SFW’s efficiency is better than of 

algorithm SIMPLE’s efficiency, but by a small margin. The most important parameter 

is the operation latency and only for read operations algorithm SFW shows a small 

difference. The CPU time consumption is always higher for algorithm SFW due to the 

predicate computation and is increased with increasing clients. On the other hand, 

algorithm SIMPLE’s CPU time consumption is stable while increasing the number of 

clients. This experiment suggests that algorithm SFW would be preferred over 

SIMPLE in settings where the communication delay dominates the time needed for 

the predicate computation (e.g., when the delay exceeds 0.2 secs). 
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6.3 Conclusions 

 

In this section our conclusions from the scenarios are summarized. The first 

experiment provided indications for the number of readers and writers to use in 

further experiments. With very high numbers of readers and writers (specifically 80 

readers, 80 writers and 20 servers) the system configuration (over PlanetLab) seems 

to reach a limit in which a lot of processes crash. Thus, it is important to choose 

carefully the number of servers and clients in order to avoid overwhelming the 

system. 

Regarding the operation interval, it does not affect the efficiency of the system 

considerably. Consequently, it is appropriate to keep a low value in order for the 

execution to take a reasonable amount of time. 

Will more scenarios with a larger amount of object replicas (servers) possibly 

show a larger effect of the quorum intersection degree (݊)? Increasing the total 

number of servers to allow more servers to fail (“more” robustness), while maintaining 

desirable efficiency, do not change the fact that the maximum number of server 

failures “allowed” is a small percentage over the total number of servers.  

Using a large number of PlanetLab nodes for object replicas and expecting 

almost all of them to be responsive is impractical. In practise the latency of operations 

further increases as reader/writers must wait for responses from a larger set of 

servers and the possibility that some of them might perform arbitrarily slow is high. 

Also, increasing the number of replicas may not be practical since it also increases 

the economical (total cost of ownership) aspect of maintaining the quorum system. 

The results indicate that ݊	is an important parameter to the overall efficiency of 

algorithm SFW and in a real application setup it should be optimized according to the 
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application expected behaviour in order to obtain efficient operation latency and small 

percentage of failures. 

 Under reasonable conditions algorithm SFW can be efficient in comparison 

with algorithm SIMPLE. That is in the case when the number of reader and writers in 

the system is low. An indication for the number of writers is to be about the same as 

the number of servers (replicas) without restrictions on the number of the readers 

(besides the systems’ load capacity). Algorithm SFW may not provide a substantial 

improvement on the operation latency when compared to SIMPLE, but it still reduces 

the communication overhead on the network links. The CPU time consumption is only 

a small issue for algorithm SFW because the processing of the predicate is 

performed on the client’s side and thus server performance is not affected. Although 

algorithm SFW saves network bandwidth it does so by increasing CPU time 

consumption. If the predicate for any reason decides that a second communication 

round is needed then the CPU time spent is clearly an overhead. Thus it is important 

that the method used in the implementation to calculate the predicate be optimal. On 

the other hand, the large percentage of fast read and write operations suggest that 

algorithm SFW would perform much better than algorithm SIMPLE in settings where 

the communication delay dominates the time needed for the predicate computation. 
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Chapter 7 

Epilogue 

A lot of research has been conducted for studying efficient data survivability in 

distributed storage systems. Considering Multiple Writers and Multiple Readers 

(MWMR) implementations where the atomic data object is replicated on a set of 

servers susceptible to failures. Researchers have attempted to answer the question 

of how efficient can a read/write operation be. Recent work introduced algorithm SFW 

which is the first algorithm in the MWMR model to allow fast read and write 

operations. 

In this thesis the practicality of algorithm SFW under real network conditions 

provided by PlanetLab is examined. Algorithm SFW uses read and write predicates to 

decide if a second communication round is needed by the read or write operation, 

respectively. These predicates try to discover the distribution of the tag in a large 

solution space. For this reason a heuristic method is proposed that reduces the 

solution space. An empirical evaluation of algorithm SFW is performed on PlanetLab 

using as metrics the percentage of fast operations, the operation latency, the quorum 

intersection degree, the CPU consumption and the percentage of failures from 

timeouts. The results are compared with a robust, reliable algorithm (SIMPLE) that 

always performs slow operations. Careful design is needed if implementations are to 

maximize the efficiency of algorithm SFW, although the restrictions imposed on the 

quorum system due to high intersection degree may be too much for most application 

specifications. 

Overall, the algorithm mostly behaves as expected in the experiments we 

conducted. An essential decision that needs to be made when building a system 
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using algorithm SFW is the number of servers and clients to use. It is imperative to 

choose the appropriate number of servers for the wanted number of clients to avoid 

overwhelming the system.  According to the experiments the operation interval does 

not notably affect the efficiency of the algorithm.  

When the quorum intersection degree increases, the percentage of fast write 

operations and the operations latency increase as well. When a high percentage of 

fast operations exists then the operations latency is balanced off. The percentage of 

fast read operations remains generally high for all experimental values of quorum 

intersection degree.  

 Algorithm SFW can be efficient in comparison with algorithm SIMPLE but only 

by a small margin. That is in the case when the number of reader and writers in the 

system is low compared to the servers. Thus, the number of writers should approach 

the number of servers in the system. The minor improvement that SFW provides on 

the operation latency is disappointing. Regardless, considering the percentage of fast 

operations allowed by algorithm SFW in comparison to no fast operations offered by 

algorithm SIMPLE, it reduces the communication overhead on the network links. 

Although algorithm SFW saves network bandwidth it does so by increasing CPU time 

consumption used for the predicate computation. If the validation of the predicate 

procedure decides that a second communication round is needed, then the increased 

CPU time is an overhead compared to SIMPLE. It is critical that the technique chosen 

to implement the predicate validation be optimum.  

 A proof is still necessary for the accuracy of the proposed heuristic method 

and its efficiency. Additionally, an optimization of the algorithms’ implementation can 

be done to reduce communication time by exploring the benefits of CoDNS [29] 

(reliable DNS on PlanetLab) to reduce host name address resolution. Reducing the 

communication delay can benefit both algorithms but it may give advantage to 
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SIMPLE, since algorithm SFW seems to perform better in settings where the 

communication delay overshadows the predicate computation. 

Dynamic calculation of the operations timeout could be developed similar to 

the concept of TCP Vegas [30] congestion control algorithm, in which timeouts are 

set and round-trip delays are measured for every packet in the transmit buffer and 

additive increases in the congestion window are made dynamically. The concept is to 

dynamically calculate the timeout of an operation as a function of previous 

communication round-trips between servers. As a result the timeout can be 

dynamically readjusted to reflect both network congestion and client awareness of the 

servers performing arbitrarily slow. Finally, it remains to investigate the efficiency of 

algorithm SFW when the atomic object size increases (e.g. files of varying sizes are 

used). Despite the rather disappointing results regarding write operation latency in 

these experiments, it is expected that the efficiency of algorithm SFW will be clearer 

when files of varying sizes are used; in algorithm SIMPLE the writers send the file 

twice while algorithm SFW sometimes sends it only once.  
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Appendix A 

The format of the configuration file confic.ini is shown Table 17: example of 

configuration file: confic.ini, with included comments that explain each field. 

#IMPORTANT! AS A GENERAL RULE DO NOT CHANGE THE ORDER OF VARIABLE 
#DEFINITION IN THIS FILE!!  
 
#casing(upper/lower) of variables in this file does not matter 
port=4709 
serverNum=20 
quorumNum=1140 
readerNum=83 
writerNum=83 
alwaysSentValue=0 
#for each server we define the IP address and the port 
#maybe a port has been reserved at some point and all our servers crash 
#.. this way only one server goes down due to port which we can accept 
 
#freedom.informatik.rwth-aachen.de 
serverAddr=137.226.138.154 
serverPort=4709 
#chronos.disy.inf.uni-konstanz.de 
serverAddr=134.34.246.5 
serverPort=4710 
#dannan.disy.inf.uni-konstanz.de 
serverAddr=134.34.246.4 
serverPort=4711 
#host2.planetlab.informatik.tu-darmstadt.de 
serverAddr=130.83.166.199 
serverPort=4708 
#adrastea.mcs.suffolk.edu 
serverAddr=192.138.213.236 
serverPort=4713 
#75-130-96-12.static.oxfr.ma.charter.com 
serverAddr=75.130.96.12 
serverPort=4714 
#pl1.grid.kiae.ru 
serverAddr=144.206.66.56 
serverPort=4715 
#75-130-96-13.static.oxfr.ma.charter.com 
serverAddr=75.130.96.13 
serverPort=4716 
#host3.planetlab.informatik.tu-darmstadt.de 
serverAddr=130.83.166.200 
serverPort=4717 
#node-1.mcgillplanetlab.org 
serverAddr=192.197.121.2 
serverPort=4718 
#flow.colgate.edu 
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serverAddr=149.43.80.22 
serverPort=4719 
#jupiter.cs.brown.edu 
serverAddr=198.7.242.41 
serverPort=4720 
#ebb.colgate.edu 
serverAddr=149.43.80.20 
serverPort=4721 
#pl1.ucs.indiana.edu 
serverAddr=156.56.250.226 
serverPort=4722 
#pl2.planet.cs.kent.edu 
serverAddr=131.123.34.36 
serverPort=4723 
#planetlab04.cs.washington.edu 
serverAddr=128.208.4.99 
serverPort=4724 
#fobos.cecalc.ula.ve 
serverAddr=150.189.2.101 
serverPort=4725 
#ds-pl1.technion.ac.il 
serverAddr=132.68.237.34 
serverPort=4726 
#cs-planetlab4.cs.surrey.sfu.ca 
serverAddr=206.12.16.155 
serverPort=4727 
#pl1.rcc.uottawa.ca 
serverAddr=216.48.80.12 
serverPort=4728 
 
 
############################### 
# quorum 
#votingMethod = 0, majority voting 
#               1, majority - x 
#           2, Grid type dynamically generated quorums 
#quorum = list of servers in the quorum according with 
#the order given in their definition(ip,port) above starting from 0 
#note that if method=0 quorums will be ignored 
# 
#also note that quorum get auto assigned id starting from 0 
############################### 
quorumFileName=../majorities_x.dat 
votingMethod=1 
#quorum=0,1 
#quorum=0,2 
#quorum=1,2 
############################### 
#algorithm execution modifiers 
############################### 
#scenarioNum, number of scenarios, according to the number of scenarios or algorithm execution 
modifiers are redefined 
#executionNum, how many times to execute the algorithm 
#setting, 0 = stochastic(intervals can be randomly any of [ OpTime .. Interval ] ) 



90 

 

 

 

#                 note that operationTime(Optime) is the average time between a node and a server. 
#                 and also that Interval can be any of read/write/fail 
#         1 = fixed 
#readNum, number of reader operations to execute 
#readInterval & writeInterval, time betwen requests in millisecs 
#will randomly try to fail every failInterval with failureProbability 
#note that if is zero then a failure check for every server reply is performed.  
#failProbability, fail percentage from 100% 
scenarioNum=3 
 
#scenario 1 
executionNum=5 
setting=1 
readNum=200 
writeNum=200 
readInterval=5000000 
writeInterval=5000000 
startWait=200000 
failInterval=60 
failProbability=1000000 
#scenario 2 
executionNum=5 
setting=1 
readNum=200 
writeNum=200 
readInterval=430000 
writeInterval=430000 
startWait=200000 
failInterval=60 
failProbability=1000000 
#scenario 3 
executionNum=5 
setting=1 
readNum=200 
writeNum=200 
readInterval=430000 
writeInterval=230000 
startWait=200000 
failInterval=60 
failProbability=1000000 
#no /n at end of file please 
 
Table 17: example of configuration file: confic.ini 
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Appendix B 

#!/bin/bash 
time=20m 
totalServers=$1 
fails=$2 
totalReaders=$3 
totalWriters=$4 
alg=$5  #O SIMPLE, 1 SFW 
type=$6 #0 INT, 1 FILE 
testEcho=$7 
#if is 1 start server only  
#Else only reader and writers 
startServerParam=$8  
 
apath='/home/cyprus_ATOMIC/PlanetLab' 
 
echo totalServers=$totalServers fails=$fails totalReaders=$totalReaders 
totalWriters=$totalWriters alg=$alg type=$type testEcho=$testEcho 
startServerParam=$startServerParam 
 
counter=0 
lines=0 
ReadersSoFar=0 
WritersSoFar=0 
#--error-limit=no 
valgrindParams='--tool=memcheck --leak-check=yes --show-reachable=yes -v' 
 
 
 > scripttest.ini #OVERWRITE TO NOTHING 
 
s=serverexe 
r=readerexe 
w=writerexe 
m=memcheck-x86-li 
 
if [ $testEcho == 0 ]; then 
        #chmod +x ./../quorum_gen.exe 
        #./../quorum_gen.exe -d $totalServers $fails 832916 
        chmod +x $apath/reader/readerexe 
        chmod +x $apath/writer/writerexe 
        chmod +x $apath/server/serverexe 
        #the following lines kill any running process 
        #ps axco pid,command | grep $s | awk '{ print "$s"; }' | xargs kill -9 & 
        #ps axco pid,command | grep $m | sed 
's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | cut -d" " -f1 | xargs kill -9 & 
        if [ $startServerParam == 1 ]; then 
                ps axco pid,command | grep $s | sed 
's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | cut -d" " -f1 | xargs kill -9 & 
                ps axco pid,command | grep $w | sed 
's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | cut -d" " -f1 | xargs kill -9 & 
                ps axco pid,command | grep $r | sed 
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's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | cut -d" " -f1 | xargs kill -9 & 
                #wait to kill all previously running instances 
                echo "wait to kill all previously running instances..."          
                sleep 1 
        fi 
         
        #rm *.log & 
        #rm *.txt & 
        #rm *.result & 
        #rm *.predicate & 
        cd $apath/scenarios/int.simple.S5.R5.W5 
        ls * | grep -vE "^[0-9]\.[0-9]\.data$" | grep -vE ".*\.dat$" | grep -vE 
".*\.sh$" | grep -vE ".*\.exe$" | grep -vE ".*\.ini$" | xargs rm -f & 
        #wait to delete all previously generated .data files 
        echo "wait to delete all previously generated .data files" 
        sleep 1 
fi 
 
startServer() 
{ 
        echo  serverID $1 $HOSTNAME >> scripttest.ini    
        if [ $testEcho == 0 ]; then 
                echo  serverID $1 $HOSTNAME               
                cd $apath/scenarios/int.simple.S5.R5.W5 
                $apath/server/serverexe $1 $type $alg &> 
$apath/scenarios/int.simple.S5.R5.W5/server$1.txt.log  & 
        fi 
} 
 
startReader() #Two parameters p1=number p2=readersSoFar 
{ 
rp1=$1 
rp2=$2 
fromReader=0 
toReader=0 
         
        fromReader=$(( totalServers + rp2 )) 
        toReader=$(( fromReader + rp1 )) 
        echo READER P1=$rp1 P2=$rp2 fromReader=$fromReader 
toReader=$toReader >> scripttest.ini 
        cd $apath/scenarios/int.simple.S5.R5.W5 
        for ((ir=fromReader;ir<toReader;ir++)) 
        do 
                echo readerID $ir $HOSTNAME >> scripttest.ini 
                if [ $testEcho == 0 ]; then 
                        echo readerID $ir $HOSTNAME 
                        $apath/reader/readerexe $ir $type $alg &> 
$apath/scenarios/int.simple.S5.R5.W5/reader$ir.txt.log  & 
                fi 
        done 
} 
 
 
startWriter() #Two parameters p1=number p2=numbersSoFar 
{ 
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wp1=$1 
wp2=$2 
fromWriter=0 
toWriter=0 
 
        fromWriter=$(( totalServers + totalReaders )) 
        fromWriter=$(( fromWriter + wp2 )) 
        toWriter=$(( fromWriter + wp1 )) 
        echo WRITER P1=$wp1 P2=$wp2 fromWriter=$fromWriter 
toWriter=$toWriter >> scripttest.ini 
        cd $apath/scenarios/int.simple.S5.R5.W5  
        for ((iw=fromWriter;iw<toWriter;iw++)) 
        do 
                echo writerID $iw $HOSTNAME >> scripttest.ini 
                if [ $testEcho == 0 ]; then 
                        echo writerID $iw $HOSTNAME 
                        $apath/writer/writerexe $iw $type $alg &> 
$apath/scenarios/int.simple.S5.R5.W5/writer$iw.txt.log  & 
                fi 
        done 
} 
 
if [ $testEcho == 0 ]; then 
        sleep 1 
fi 
 
for i in $(cat $apath/scenarios/servers.ini) 
do 
        ar=$(echo "$i" | tr -s ':' ' ') 
        counter=0 
        param1=0 
        param2=0 
        for k in $ar; do 
                case "$counter" in 
                0) 
                        host=$k 
                        ;; 
                1) 
                        param1=$k 
 
                        ;; 
                2) 
                        param2=$k 
         
                        ;; 
                esac 
                #counter=$(echo "$counter+1" | bc -lq)           
                counter=$(( counter + 1 )) 
        done  
        if [ $host == $HOSTNAME ]; then 
                echo $host == $HOSTNAME 
                echo $host == $HOSTNAME >> scripttest.ini 
                if [ $lines -lt $totalServers ]; then 
                        if [ $startServerParam == 1 ]; then 
                                startServer $lines 
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                        fi 
                fi; 
                if [ $startServerParam == 0 ]; then 
                        startReader $param1 $ReadersSoFar 
                        sleep 1 
                        startWriter $param2 $WritersSoFar                        
                fi 
        fi 
        ReadersSoFar=$(( ReadersSoFar + param1 )) 
        #WritersSoFar=$(echo "$WritersSoFar+$param2"|bc -lq)             
        WritersSoFar=$(( WritersSoFar + param2 )) 
        #lines=$(echo "$lines+1"|bc -lq)         
        lines=$(( lines + 1 ))   
done 
 
#sleep $time 
#termination="\nAttempting to terminate scenario after 20m...!!\n" 
#echo -e $termination 
 
#ps axco pid,command | grep $s | sed 's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | 
cut -d" " -f1 | xargs kill -9 & 
#ps axco pid,command | grep $w | sed 's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | 
cut -d" " -f1 | xargs kill -9 & 
#ps axco pid,command | grep $r | sed 's/^[[:space:]]*\(.*\)[[:space:]]*$/\1/' | 
cut -d" " -f1 | xargs kill -9 & 
 
#we cant use command wait here because server are propably up and running 
#so give some time for kill command to act 
#sleep 5 
 
terminated="\nStarted Process Successfull!!" 
echo -e $terminated 
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Appendix C 

void* serve_thread( void* thread_args ) { 
    int serve_threaderr=0; 
    data_t * my_data;  
    char startingWith[ FILENAME_SIZE ],tempBuf[ FILENAME_SIZE ]; 
    pck_t *recvMsg = NULL; 
    int  cm=-2,writeIt=0,processIndex=0,len=0,objId = sys_conf.objId; 
 
    writeLog("Starting serve_thread"); 
    my_data = (data_t*) thread_args; 
    //Read request Message from newSocket 
    recvMsg = (pck_t*) create_message( -1 , sys_conf.objType, sys_conf.algType 
); //init a temp msg 
    if(recvMsg!=NULL)recvMsg->ptd = &(threads[ my_data->index ]); 
    objId=recvMsg->objId;     
    //delete any inprogress file we have from this writer so we can receive the new one 
    if(sys_conf.algType == SFW && sys_conf.objType==FILE_TYPE){ 
        len = sprintf( startingWith,"INPROGRESS.%d.%d", recvMsg->pid, 
sys_conf.id ); 
        writeLog("going to remove files startingWith (%s)",startingWith); 
    } 
    //remove_files( startingWith, len ); 
    //recv the value(FILE|INT) asap 
 
    if( recvReq( my_data->newSckt, recvMsg, &serve_threaderr ) == 1 
){//==1,check if need to recv val also 
        processIndex = recvMsg->pid - sys_conf.serverNum; 
        //get message value 
        cm = compareTag_s( recvMsg->pid, recvMsg->typ, &( recvMsg->tag ), &( 
state[ recvMsg->objId ].tag ) ); 
        if( cm > 0 )writeLog("msgTag>tag"); 
        writeLog("(%d)>=(%d) -- recvMsg->cnt) >= state[ recvMsg->objId ].cnt[ 
processIndex ]",recvMsg->cnt, state[ recvMsg->objId ].cnt[ processIndex ]); 
        if( recvMsg->cnt >= state[ recvMsg->objId ].cnt[ processIndex ]){ 
            if( sys_conf.algType == SIMPLE && (recvMsg->typ == INFO) ){ 
                //readers and writers always sent value on 2nd round communication(INFO) for the 
simple algorithm                 
                if( cm > 0 ){ 
                    writeIt = 1; 
                    recvMsgVal( my_data->newSckt, recvMsg, writeIt, FALSE ); 
                } 
            }else if( sys_conf.algType == SFW  ){ //handle SFW FILE type values 
                //cm = compareTag_s( recvMsg->pid, recvMsg->typ, &(recvMsg->tag), &( state[ 
recvMsg->objId ].tag ) ); 
                 
                if( sys_conf.objType == FILE_TYPE ){ 
 
                    bzero(tempBuf, FILENAME_SIZE ); 
 
                    //if( ( ( char * ) recvMsg->val ) != NULL ) sprintf( tempBuf, "%s", ( ( char * ) 
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recvMsg->val) ); 
                    //else{ 
                        //recvMsg->val = malloc( FILENAME_SIZE * sizeof( char ) ); 
                        //if( recvMsg->val == NULL ){ writeLog( "malloc return NULL" );exit(-1); } 
                    //} 
 
                    if( recvMsg->typ == WRITE ){//save the FILE VALUE AS INPROGRESS 
                        int writerIndex = recvMsg->pid  - sys_conf.serverNum - 
sys_conf.readerNum; 
                        writeIt=1; 
                        snprintf( recvMsg->val, FILENAME_SIZE, 
"INPROGRESS.%d.%d.%d.(%d.%d.%d).data", 
                        recvMsg->pid,sys_conf.id,recvMsg->objId,recvMsg->tag.ts + 
1,recvMsg->tag.wid,recvMsg->tag.wc ); 
                        writeLog("WRITE recvMsgVal %s", recvMsg->val ); 
                        //add new tag+value in the inprogress set(this is also done in the process 
function)                         
                        state[ recvMsg->objId ].inprogress[ writerIndex ].tag.ts  = 
recvMsg->tag.ts; 
                        state[ recvMsg->objId ].inprogress[ writerIndex ].tag.wid = 
recvMsg->tag.wid; 
                        state[ recvMsg->objId ].inprogress[ writerIndex ].tag.wc  = 
recvMsg->tag.wc; 
                        recvMsgVal( my_data->newSckt, recvMsg, writeIt, TRUE ); 
 
                    }else if( recvMsg->typ == INFO || recvMsg->typ == READ ){ 
                        //writeIt=1; 
                        if( cm > 0 ){ 
                            writeIt = 1; 
                            snprintf( recvMsg->val, FILENAME_SIZE, "%d.%d.data", 
sys_conf.id, recvMsg->objId ); 
                        }else writeIt = 0; 
 
                        writeLog("READ recvMsgVal %s, writeIt=%d", recvMsg->val, 
writeIt ); 
                        recvMsgVal( my_data->newSckt, recvMsg, writeIt, FALSE ); 
                    } 
                    snprintf( recvMsg->val, FILENAME_SIZE, "%s", tempBuf ); 
                    //means that msg->tag > state->tag, update value 
                } 
            } 
        } 
    } 
     //else if( recvMsg->typ == INFO ){ 
    //shutdown the connection so no further reading from server on sck 
        //shutdown( my_data->newSckt, SHUT_RD ); 
    //} 
    //process buf and output msg 
    /*, &state, servers, quorumSystem, &sys_conf, &sendMsg*/ 
    //always update the count var that indicates the message freshness 
    //if (state[ recvMsg->objId].fail == FALSE && recvMsg->cnt >= state[ recvMsg->objId ].cnt[ 
recvMsg->pid ]){ 
    //  state[recvMsg->objId].cnt[recvMsg->pid] = recvMsg->cnt; 
    //} 
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    /* 
    if( pthread_mutex_lock(&state_mutex) != 0 ){ 
        printf("unable to lock state_mutex"); 
    } 
     */ 
 
    //OPTIMIZATION?? maybe only WRITE request should lock 
    if( pthread_spin_trylock(&process_lock)!=0){ 
        printf("unable to lock state_mutex"); 
    } 
    process(recvMsg); 
    if( pthread_spin_unlock(&process_lock)!=0){ 
        printf("unable to lock state_mutex"); 
    } 
    /* 
    if(pthread_mutex_unlock(&state_mutex) != 0){ 
        printf("unable to unlock log_file_mutex"); 
    }*/ 
 
    //Send a response 
    sendRes( my_data->newSckt, recvMsg /*, &state, &sendMsg*/ ); 
    free(recvMsg); 
    //==>sleep(1); 
    shutdown( my_data->newSckt, SHUT_RDWR ); 
    close( my_data->newSckt ); 
    writeLog( "close sckt:%d", my_data->newSckt );     
    //--?free( recvMsg ); 
    //sleep(3); 
    writeLog("Closing serve_thread"); 
    return( NULL ); 
} 
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Appendix D 

Writer.c: WriteObject function 

//returns intValue as integer value written 
void   writeObject( msg_t msgType, int objectId, state_t*objectState, int* 
intVal, obj_t objType, alg_t algType) { 
    data_t* quorum_data=NULL; //threads data 
    int i=0, quorum_size=0, cnter = 0,m=0; 
    pck_t* pckToSent=NULL; 
    bool_t isComplete=FALSE; 
    char*createFileName; 
    pckToSent = ( pck_t * ) create_message( msgType, objType, algType ); 
    ///////////////////////////////////////// 
    //effect of write 
    if( objectState->fail == FALSE && objectState->status == IDLE ) { 
        //status<--active 
        objectState->status = ACTIVE; 
        //phase<--W 
        objectState->phase = WRITE; 
        //opc <--opc + 1, also used by reader for 
        //counting ops 
        objectState->opCnt++; 
        //the write operation counter 
        objectState->tag.wc++; 
        //pCount <-- pCount + 1 
        //value<--v         
        stateToMessage( pckToSent, objectState ); 
        if( sys_conf.objType == INT_TYPE ){ 
            pckToSent->ival  = randomVal; 
            pckToSent->ipval = objectState->tag.ival; 
        }else{ 
            //no need to do anything here filename does not change. 
            //init msg 
            if( sys_conf.objType == FILE_TYPE ){ 
                createFileName = create_file( objectId, randomVal ); 
                bzero(pckToSent->val, FILENAME_SIZE); 
                snprintf( pckToSent->val, FILENAME_SIZE, "%s", createFileName ); 
                free( createFileName ); 
            }else if( sys_conf.objType == INT_TYPE ){ 
                pckToSent->ival  = randomVal; 
                pckToSent->ipval = objectState->tag.ival; 
            } 
            write_cnt++; 
            pckToSent->cnt = write_cnt; 
        } 
    } 
    //2. send to all servers 
    //communicate(WRITE,threads_data); 
    quorum_data = communicate( pckToSent, quorum_data, &quorum_size, 
&isComplete ); 
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    if( isComplete == FALSE ){ 
        for( i = 0 ; i < quorum_size; i++ ) 
            if( quorum_data[ i ].srvAck == FALSE ) 
                cnter++; 
        writeLog( "1st Round Communicate FAILED ( servers Timeout/Offline = %d 
)", cnter ); 
        writeResult("1 %d %d %d", 
                objectState->tag.ts, 
                objectState->tag.wid, 
                objectState->tag.wc 
                ); 
        objectState->status = IDLE; 
        free( pckToSent ); 
        return; 
    } 
    //3. process buf and output msg 
    if( process(objectState, quorum_data, quorum_size ) == TRUE ){ 
        //objectState->ipval = objectState->tag.ipval = objectState->tag.ival; 
        //objectState->ival = objectState->tag.ival = randomVal; 
        if(sys_conf.objType==INT_TYPE) 
             *intVal = objectState->ival; 
        if (objType == INT_TYPE)//to do check wid 
            writeLog("object WRITE:tag(%d,%d,%d)v:%d", objectState->tag.ts, 
objectState->tag.wid, objectState->tag.wc,objectState->tag.ival); 
        else 
            writeLog("object WRITE:tag(%d,%d,%d)", objectState->tag.ts, 
objectState->tag.wid, objectState->tag.wc); 
    }else writeLog("WRITE:process FAILED"); 
    free(pckToSent); 
    objectState->status = IDLE; 
    ///////////////////////////////////////////////////////////////////// 
} 
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Appendix E 

Reader.c: readObject function: 

void readObject(msg_t msgType, int objectId, state_t*objectState, int* intVal, 
obj_t objType, alg_t algType) { 
    data_t* quorum_data = NULL; //threads data 
    int i, quorum_size, cnter = 0, m = 0; 
    pck_t* pckToSent; 
    bool_t isComplete = FALSE; 
    int serverResCount=0; 
    pckToSent = (pck_t *) create_message(msgType, objType, algType); 
    sys_conf.objId = objectId; 
    //effect of read 
    if (objectState->fail == FALSE && objectState->status == IDLE) { 
        objectState->phase = READ; 
        objectState->status = ACTIVE; 
        objectState->opCnt++; //read operations counter 
    } 
    //2. send to all servers READ request and 
    //get received acks tags in quorum_data, 
    stateToMessage(pckToSent, objectState); 
    quorum_data = communicate(pckToSent, quorum_data, &quorum_size, 
&isComplete);     
    if( isComplete == FALSE ){ 
            for (i = 0; i < quorum_size; i++) { 
                if (quorum_data[ i ].srvAck == FALSE) { 
                    cnter++; 
                } 
            } 
            writeLog("1st Round Communicate FAILED ( servers Timeout/Offline = 
%d )", cnter ); 
            writeResult("1 %d %d %d", 
                    objectState->tag.ts, 
                    objectState->tag.wid, 
                    objectState->tag.wc 
                    ); 
            objectState->status = IDLE; 
            free(pckToSent);    
            return; 
    } 
    process(objectState, quorum_data, quorum_size); 
    //3. process quorum_data 
    //select valid value and received it   
    if(sys_conf.objType==INT_TYPE) 
         *intVal = objectState->ival; 
    if (objType == INT_TYPE) 
        writeLog("object READ:tag(%d,%d,%d) v:%d", objectState->tag.ts, 
objectState->tag.wid, objectState->tag.wc,objectState->ival); 
    else 
        writeLog("object READ:tag(%d,%d,%d)", objectState->tag.ts, objectState-
>tag.wid, objectState->tag.wc); 
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    free(pckToSent); 
    objectState->status = IDLE; 
} 
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Appendix F 

A list of all PlanetLab nodes used for client follows in Table 18. 

Table 18: Client PlanetLab Nodes 

ait05.us.es 

aladdin.planetlab.extranet.uni-passau.de 

deimos.cecalc.ula.ve 

ds-pl3.technion.ac.il 

dschinni.planetlab.extranet.uni-passau.de 

orbpl1.rutgers.edu 

146-179.surfsnel.dsl.internl.net 

147-179.surfsnel.dsl.internl.net 

cs-planetlab3.cs.surrey.sfu.ca 

kc-sce-plab1.umkc.edu 

lsirextpc01.epfl.ch 

netapp7.cs.kookmin.ac.kr 

node1.lbnl.nodes.planet-lab.org 

node1.planetlab.albany.edu 

nodeb.howard.edu 

pl1.pku.edu.cn 

plab-1.sinp.msu.ru 

plab1-c703.uibk.ac.at 

plab1.cs.ust.hk 

plab2-itec.uni-klu.ac.at 

plab2.cs.ust.hk 
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planetlab-1.cs.uh.edu:0:1 

planetlab-1.imperial.ac.uk:0:1 

planetlab-1.iscte.pt:0:1 

planetlab-2.cs.auckland.ac.nz 

planetlab-2.pdl.nudt.edu.cn 

planetlab-4.EECS.CWRU.Edu 

planetlab01.erin.utoronto.ca 

planetlab01.sys.virginia.edu 

planetlab03.cs.washington.edu 

planetlab1.byu.edu 

planetlab1.cs.purdue.edu 

planetlab1.cs.uiuc.edu 

planetlab1.csg.uzh.ch 

planetlab1.eecs.wsu.edu 

planetlab1.ifi.uio.no 

planetlab1.informatik.uni-goettingen.de 

planetlab1.jhu.edu 

planetlab1.williams.edu 

planetlab14.millennium.berkeley.edu 

planetlab2.arizona-gigapop.net 

planetlab2.cs.uoregon.edu 

planetlab2.eecs.northwestern.edu 

planetlab2.hiit.fi 

planetlab2.itwm.fhg.de 

planetlab2.sfc.wide.ad.jp 
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planetlab2.williams.edu 

planetlab3.di.unito.it 

planetlab3.singaren.net.sg 

planetlab4.csres.utexas.edu 

planetlab4.wail.wisc.edu 

planetlab6.csres.utexas.edu 

planetx.scs.cs.nyu.edu 

pli1-pa-6.hpl.hp.com 

plnode-03.gpolab.bbn.com 

pnode1.pdcc-ntu.singaren.net.sg 

ricepl-1.cs.rice.edu 

ttu2-1.nodes.planet-lab.org 

vicky.planetlab.ntua.gr 

vn4.cse.wustl.edu 
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Appendix G 

 The script code that parses downloaded results and generates 

averages needed for the experiments graphs the SFW version follows in table [ ] (a 

similar script is used for the SIMPLE algorithm case). 

#!/bin/bash 
 
keyword="fail? ts wid wc fast? time(cpuTime) time(realTime)" 
# 
***************************************************************************************
** 
# find_and_replace_in_files.sh 
# This script does a recursive, case sensitive directory search and replace of files 
# To make a case insensitive search replace, use the -i switch in the grep call 
# uses a startdirectory parameter so that you can run it outside of specified directory - else this 
script will modify itself! 
# 
***************************************************************************************
** 
 
# **************** Change Variables Here ************ 
startdirectory=$1 
searchterm="fail? ts wid wc fast? time(cpuTime) time(realTime)" 
replaceterm="" 
 
if [[ $# -eq 0 ]]; then  
       echo -e "Please provide a directory name in the current folder\n" 
       exit 
fi; 
 
# ********************************************************** 
 
# Floating point number functions. 
 
######################################################
############### 
# Default scale used by float functions. 
 
float_scale=6 
 
 
######################################################
############### 
# Evaluate a floating point number expression. 
 
function float_eval() 
{ 
    local stat=0 
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    local result=0.0 
    if [[ $# -gt 0 ]]; then 
        result=$(echo "scale=$float_scale; $*" | bc -q 2>/dev/null) 
        stat=$? 
        if [[ $stat -eq 0  &&  -z "$result" ]]; then stat=1; fi 
    fi 
    echo $result 
    return $stat 
} 
 
 
######################################################
############### 
# Evaluate a floating point number conditional expression. 
 
function float_cond() 
{ 
    local cond=0 
    if [[ $# -gt 0 ]]; then 
        cond=$(echo "$*" | bc -q 2>/dev/null) 
        if [[ -z "$cond" ]]; then cond=0; fi 
        if [[ "$cond" != 0  &&  "$cond" != 1 ]]; then cond=0; fi 
    fi 
    local stat=$((cond == 0)) 
    return $stat 
} 
 
 
echo "******************************************" 
echo "* Search and Replace in Files Version .1 *" 
echo "******************************************" 
        for file in $(grep -l -R $searchterm $startdirectory) 
          do 
           sed -e "s/$searchterm/$replaceterm/ig" $file > /tmp/tempfile.tmp 
           mv /tmp/tempfile.tmp $file 
           echo "Modified: " $file 
        done 
echo " *** Yay! All Done! *** " 
 
 
operations=0 
successfullOperations=0 
fastOperations=0 
column=0 
percentageOFfast=0 
totalExecTime=0 
totalCpuTime=0 
cat $1/* > r.txt 
sed 's/$/ -1/' r.txt > results.txt 
set -f 
for i in $(cat results.txt) 
do 
       if [ $i == -1 ]; then 
               column=$(( 0 - 1 )) 
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       fi; 
       case "$column" in 
       0) 
               operations=$(( operations + 1 )) 
               isFail=$i 
               if [ $isFail == 0 ]; then 
                       successfullOperations=$(( successfullOperations + 1 ))                 
               fi;                      
       ;; 
       1) 
               ts=$i 
       ;; 
       2) 
               wid=$i 
       ;; 
       3) 
               wc=$i 
       ;; 
       4) 
               if [ $isFail == 0 ]; then                                
                       isFast=$i 
               fi; 
               if [ $isFail == 1 ]; then                                
                       isFast=2 
               fi; 
               if [ $isFast == 1 ]; then 
                       fastOperations=$(( fastOperations + 1 ))                         
               fi; 
       ;; 
       5)       
               if [ $isFail == 0 ]; then 
                       totalCpuTime=$( float_eval "$totalCpuTime + $i" ) 
               fi; 
       ;; 
       6) 
                
               if [ $isFail == 0 ]; then 
                       totalExecTime=$( float_eval "$totalExecTime + $i" ) 
               fi;              
       ;;       
       esac 
       #counter=$(echo "$counter+1" | bc -lq)           
       column=$(( column + 1 )) 
done 
failedOperations=$(( operations - successfullOperations )) 
avgCpuTime=$( float_eval "$totalCpuTime  / $successfullOperations" ) 
avgExeTime=$( float_eval "$totalExecTime / $successfullOperations" ) 
percentageOFfast=$( float_eval "$fastOperations  / $successfullOperations * 100" 
) 
percentageOFfail=$( float_eval "$failedOperations / $operations * 100" ) 
echo -e "operations=$operations\n"  >> summary_$1.txt 
echo -e "successfullOperations=$successfullOperations\n"  >> 
summary_$1.txt 
echo -e "failedOperations=$failedOperations\n"  >> summary_$1.txt 
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echo -e "percentageOFfail=$percentageOFfail\n"  >> summary_$1.txt 
echo -e "fastOperations=$fastOperations\n"  >> summary_$1.txt 
echo -e "percentageOFfast=$percentageOFfast\n"  >> summary_$1.txt 
echo -e "totalCpuTime=$totalCpuTime\n"  >> summary_$1.txt 
echo -e "avgCpuTime=$avgCpuTime\n"  >> summary_$1.txt  
echo -e "totalExecTime=$totalExecTime\n"  >> summary_$1.txt 
echo -e "avgExeTime=$avgExeTime\n" >> summary_$1.txt 
 
set +f 

 

 


