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The main goal of this research work is to develop an innovative Intelligent 

Information System (IIS) aiming at increasing the capabilities of Expert Systems (ES) 

and Decision Support Systems (DSS) by expanding their capabilities and domain 

applications. The methodology completes a framework for developing a new category 

of intelligent decision support systems to be applied in complex and uncertain 

environments which at the same time being capable of forecasting. Fuzzy Cognitive 

Maps is an alternative approach to decision making processes which expand the 

capabilities of DSS and ES and supports scenario analysis and forecasting. During this 

research, several drawbacks of FCM were identified and addressed. More specifically, 

the methodology is based on encoding experts’ assessment in problems with rich 

numbers of explanatory variables, large degrees of freedom and rapidly changing and 

uncertain environments. The assessment is inputted in a dedicated fuzzy knowledge 

base specifically design to handle linguistic variables. This knowledge is modelled 

and processed using Fuzzy Cognitive Maps, which, however, suffer from two weak 

nesses. The first one involves the invariability of the weights that participate in the 

configuration of a given problem. The second lies with the inability of the method to 

model a certain situation by performing all possible computational simulations 

following the change of a certain weight or group of weights. We addressed this issue 

by combining FCM with Genetic Algorithms (GA), thus creating an Evolutionary 

Fuzzy Cognitive Map hybrid model. 
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Another two important improvements of the FCM theory were also proposed 

in the present thesis. The first concerns the handling of the “Limit Cycle 

phenomenon” attempting to improve the inference procedure, while the second 

improvement refers to the use of a new structured approach named Multilayered-

Fuzzy Cognitive Maps for the development of FCM-based systems that are able to  

handle large-scale, complex systems.  

The methodology was successfully applied in practice where several real 

world problems were modelled using the proposed framework, based mostly on the 

fields of crisis management, political decision-making and strategy definition. More 

specifically, the Cyprus issue was modeled several times following its different stages 

over the last six years, the 2002 tension in Cyprus due to Turkey’s threats as regards 

Cyprus’s bid for full membership in the EU, the S-300 missiles crises and finally the 

settlement of the Cyprus issue through the Annan Plan. The later model made use of a 

multilayer structure consisting of 56 concepts. Furthermore, the methodology was also 

successfully validated using the Prisoner’s Dilemma, a well known example from the 

area of game theory.  

The application of the proposed methodology is not limited only to political or 

crisis management problems but can be further extended, without any restrictions, to 

other domains due to its generic nature and simple and straightforward steps. 

Therefore, it is clear that the proposed methodology may enable the study and 

modelling of a number of different problems provided that the basic principles of 

interrelated parameters (concepts) and uncertainty are satisfied. 
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1.1. Objectives 
 

The objective of this research lies with the development of a new category of 

Computational Intelligent Decision Support Systems (CI-DSS) used to model complex 

real world problems which are characterized by imprecision, uncertainty, partial truth, 

and approximation [83]. A new methodology is implemented for supporting problem-

solving and decision-making processes in the domain of Soft Computing [189], using as 

its basic elements different methods of Artificial Intelligence, such as Fuzzy Cognitive 

Maps, Fuzzy Logic, Neural Networks and Genetic Algorithms. The methodology can be 

applied to model problems requiring a decision making process, but is also well applied 

to issues related to crisis management, political decision-making and strategy definition 

[16]. Following a number of certain minor modifications, the methodology may be used, 

in addition, to face other complex problems with certain properties that require decision-

making under uncertainty and predict the strategy that needs to be followed based on 

scenario analysis [36]. The new methodology uses the Evolutionary Fuzzy Cognitive 

Maps [14] as a new approach for creating a special type of CI-DSS using the cognitive 

science to evolve both Decision Support and Experts Systems [176]. The latter is a 

decision–making software tool that mimics human experts’ knowledge, its performance 

being comparable or even exceeding that of a human expert on a specific scientific area. 

It is thus used to transfer human expert knowledge to a computer and subsequently 

process and extract it using artificial intelligent technology [140], aiming at arriving at 

specific policy conclusions and recommendations.  

The term Decision Support Systems (DSS) is used to describe any computational 

system that supports in some way the decision-making process [175]. In early 1970’s 

Scott Morton gave a definition for DSS stating that “DSS is as an iterative computer 
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based system, which help decision-makers to handle unstructured problems” [152]. 

During the last few years the term DSS is used as a super set describe any computerized 

system that supports decision making in an organization.  Their use, however, requires 

particular attention, given that their forecasts rely on extrapolations of existing data that 

introduce the underlying assumption of a stable and repeatable environment. The fact 

remains, in any case, that DSS can provide a source for data collected on a regular basis 

and support the decision making process both in identifying the decision to be made, as 

well as in monitoring results. Decision support systems have a supporting role to play in 

the decision making process, with the aim to support and improve its effectiveness [31]. 

The advantage introduced by the DSS is that decision makers can use them interactively 

to build and, what is more important, to modify analytical models of decision systems. 

This interactive facility allows immediate changes with rapid feedback, encouraging a 

learning process that would have been impossible if the decision maker had to wait for 

prolonged time periods before the effectiveness of the initial policy measures taken 

would be evaluated. DSS allow decision makers to utilize a wide variety of techniques of 

analysis, tapping either the central or the DSS special database to acquire specific 

information in a timely manner and display the resulting output in any format required.  

Expert systems can replace human judgment by transforming expert knowledge to 

a large rule knowledge base; on the other hand regular DSS play a more passive role in 

human-computer interaction [7]. In other words, DSS may execute computations, present 

data and respond to standard commands, but cannot replace an intelligent assistant to the 

decision maker, given their lack of flexibility required to face the effects of daily 

unexpected changes and discontinuities. Turning to Expert Systems (ES) the study of 

artificial intelligence uses them to simulate the human brain functions [141]. In fact, 

expert systems attempt to emulate the decisions of an expert on a particular problem 

domain and include ways to automate decisions in repetitive environments. Such systems 

are useful in cases in which rare expertise or fine-tuning of complex policy manoeuvres is 

required. This task, however, is rather demanding, requiring constant revision of complex 

decisions depending on the environment instability. This accounts for the use of a wide 

variety of expert systems, some of which are very effective rule-based systems that 

classify objects in a complex environment [42].  
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While the motivation of an expert system is the computerization of rare expertise 

to the point of actually replacing the human expert, in practice the general idea is much 

simpler: Expertise is transferred from the expert to a computer. This knowledge is then 

stored in the computer and users run the program for specific advice as needed. To build 

expert systems a considerable amount of time to programme, test and store expert 

information for further use is needed [93], thus requiring a lot of effort to time develop a 

reliable system that can face a complicated task.  

The above indicate the differences between DSS and ES, the most significant one 

being that ES are mainly used for repetitive tasks while DSS aim at coping with 

unstructured environment involving specific decisions [141]. It follows therefore, that 

DSS require flexibility in order to respond to a changing environment while ES tend to 

stick closer to the process paradigm of cognitive decision theory. In fact they are not 

structure related, with much smaller domains of application than DSS. The knowledge in 

ES is represented not as tables and data but in many different ways, such as, linguistic 

terms, frames, rules etc [32]. The new technologies make the borders between ES and 

DSS very narrow, some scientists believe that ES are part of DSS while others see DSS 

and ES as two completely different systems. Moreover others combine the two 

approaches into a new form termed “Knowledge-based systems” [101].   

A cognitive approach using Fuzzy Cognitive Maps (FCM) has been praised for 

the radically different stance it takes towards environmental uncertainties [100]. In fact, 

whereas trend-projecting forecasting techniques attempt to remove uncertainties by 

providing one specific forecast at a time, FCM use scenario analysis that faces 

environmental uncertainties by considering several alternative forecasts [107]. They, 

thus, aim at influencing the decision makers’ reasoning by pointing to a feasible future 

state of the issue under consideration. 

Computational Intelligent DSS extent the concept of a typical DSS by adding 

Computational Intelligence techniques [76], such as genetic algorithms, fuzzy logic and 

neural computing, aiming to assist decision-making [178].     

Genetic Algorithms solve problems in an evolutionary way by searching for an 

optimal solution through the process of evolution [130]. The Fuzzy Logic approach, on 

the other hand, is closer to the human pattern of information communication, providing 
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for ways to face the lack of precision involved in human value judgments by relying on 

other artificial methods, such as expert systems and artificial neural networks [75]. 

Neural computing [111], in particular, is a concept that attempts to emulate the basic 

structure and functionality of the human brain, thus being able to support the knowledge 

acquisition process during the development of an expert system [176].    

One of the main objectives of this research is to develop a Computational 

Intelligent DSS aiming at increasing the capabilities of expert systems by expanding their 

capabilities via the use of Fuzzy Cognitive Maps (FCMs) [3]. The use of FCMs helps to 

create an efficient, and at the same time easy to build, fuzzy knowledge base system 

using simulation techniques [27].  

The proposed research is based on encoding experts’ assessment on the 

parameters and their interdependencies which describe large scale complex problems. 

This assessment is inputted in a Fuzzy Knowledge Base (FKB) [21] using a linguistic 

form; this knowledge is modelled and processed using Fuzzy Cognitive Maps [107]. A 

new technique is proposed for encoding the linguistic variables in a FKB, while a 

fuzzification and defuzzification process is implemented and used to interpret the results 

along the lines of human reasoning pattern. This type of defuzzification allows decision-

makers to define their strategy in order to promote a future desired state, or to plan 

certain actions to avoid an undesirable development.  

Furthermore, with the use of a genetic optimisation algorithm, the user is able to 

hypothesise different scenarios aiming at choosing the most appropriate strategy. In that 

sense, this research deals with the optimisation technique not only for proving the 

reliability of the underlying method, but also for its expansion when the problem 

becomes more complicated or multidimensional. Thus, in this case, modelling is achieved 

through a new methodology, which produces a Multilayer Hybrid System comprising of 

layers of Fuzzy Cognitive Maps and Genetic Algorithms [168].  
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1.2.  Research methodology  
 
The steps taken to develop the hybrid model include a number of phases which 

also take into consideration the usability and reliability of the proposed Computational 

Intelligent Decision-Support model: 

The first phase of the methodology requires on the collection and coding of expert 

knowledge on the specific issue under study. More specifically this phase is supported by 

the utilization of experts to determine the factors influencing the problem and the 

interaction between these factors for the creation of the initial analysis part of the model. 

The coding of experts’ knowledge presumes the development of a fuzzy knowledge base, 

which encodes this knowledge in the form of linguistic variables [114]. The type of 

encoding and the fuzzification/defuzzification process to support inference is studied and 

analyzed in detail during this phase. 

           The next phase relates to the processing of information, the conversion of 

linguistic variables to mathematical variables, and the processing of the latter so that they 

can be inserted into mathematical equations that will computationally support the model. 

The use of Genetically Evolved Fuzzy Cognitive Maps (GE-FCMs), which essentially 

constitute an extension of FCMs, comprises the computational basis of the methodology. 

Genetic Algorithms are used for the simulation of future states and for the creation of 

multiple scenarios with the involvement of one or more of the states in any scenario 

outlining a problem on which decisions must be taken [165]. The use of various 

algorithms, the reliability of the results provided and also their use in a multi-level 

decision-making model is the subject of thorough investigation in this phase. 

             Previous research studies in the field of Fuzzy Cognitive Maps have shown that 

when a problem is complicated and multidimensional it requires a novel methodology for 

the clustering of the various participating factors, as well as for their structuring in a 

multilevel decision-making model. The use of multilayered Fuzzy Cognitive Maps 

constitutes the next phase. A dedicated software tool is developed which executes a new 

algorithm that supports the development and execution of Multilayer Fuzzy Cognitive 

Maps (ML-FCM) [121].  
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Scenario analysis and the interpretation (conversion) of mathematical results to 

linguistically understandable results comprise the final phase of the methodology. 

Emphasis is placed on how to reach conclusions safely and on the selection of indications 

produced by the simulations that can point to the right decisions depending on the 

problem under study.  

The phases described above comprise a new methodology for developing a 

specific type of Computational Intelligent DSS having the ability to handle real-world 

complex problems, thus contributing to the broader area of Decision Support Systems 

and promoting  the decision making process under uncertainty [122].  

 
1.3. An outline of the main research activities. Statement of the problem  
 
1.3.1. A cognitive approach to identify and formulate domain variables 
 
One of the most important requirements of a Computational Intelligent DSS is the 

identification of the problem variables using expert knowledge, a task that heavily 

depends on the effectiveness of the identification and description methods used e.g 

(questionnaires, formal consultations, texts etc). The importance of this task, however, is 

crucial given that it provides a descriptive overview of the system. Once this is 

established, Fuzzy Cognitive Maps methodology, we treat variables and the causal 

relationships among them as concepts (nodes) and directed arcs participating in the CI-

DSS model [91].  

The proposed CI-DSS works in discrete steps. When a strong positive correlation 

(i.e. effect, dependency) exists between the current state of a concept and that of another 

concept, the former exercises a positive influence on the latter, this indicated by a 

positively weighted arrow directed from the causing to the influenced concept. On the 

other hand, when a strong negative correlation exists, a negative weighted arrow will 

indicate the existence of a negative causal relationship. Once the activation levels of each 

of the system nodes, as well as the weighted arrows, are set to a specific value as 

suggested by expert assessment, the system is free to execute a sequence of calculations 

that measure the level of interaction between nodes. This interaction continues until the 

model reaches a stable equilibrium, or presents a limit cycle or, even, a chaotic 

behaviour. The first objective of this research is the selection of the appropriate variables 
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required and their transformation to candidate concepts of an FCM model [92]. Each 

concept is assigned a descriptive name while its causal relationship with other concepts is 

identified, and the sign and the weight value for each of these relationships are estimated. 

Once the concepts have been identified they are partitioned into fuzzy sets with each set 

assigned a linguistic value as described in the next subsection [98]. The transformation of 

linguistic variables to a mathematical form is studied and a new fuzzification and 

defuzzification technique is proposed [116].  

 
1.3.2. Linguistic fuzzy sets encoding 
 
 The analysis of a given problem helps to determine assumption-abstracting 

reality, locating the required variables and transforming them to candidate concepts of a 

FCM model. Once the names and roles of each concept have been identified, they are 

described by fuzzy sets [54]. The advantage of using fuzzy sets, therefore, is that they 

provide a basis for a systematic way of manipulating vague and imprecise concepts and 

as such they are often treated as representing linguistic variables. A linguistic variable 

can be regarded as a variable with values appearing either as fuzzy numbers or in 

linguistic terms [61]. The number of linguistic variables depends on the complexity of the 

real-world problem described by the model and the desired model accuracy. The fuzzy 

set encoding is a key step in our framework because it is used to build up the most 

important element of the CI- DSS, namely the Fuzzy Knowledge Base [108]. 

 
1.3.3. Encoding of experts knowledge in a Fuzzy Knowledge Base 
 
The construction of a fuzzy knowledge base system is a very complicated task 

requiring occasional adjustment of knowledge, especially in cases of complex 

applications. The integration of a Fuzzy Knowledge Base (FKB) to CI-DSS is a 

milestone for the success of this research, attempting to overcome the difficulty of 

encoding the domain experts’ assessment.  

The linguistic sample is encoded directly in a numerical matrix using an 

uncertainty fuzzy distribution and is subsequently reduced to a scalar form [114]. This 

linguistic matrix provided by the fuzzy encoding procedure, reflects the quantization 
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levels of the input and output spaces, and the number of fuzzy set values assumed by the 

fuzzy variables. 

 
1.3.4.  Hybrid FCM 
 
Promising as they may appear, the FCMs have two weak points: The first 

involves the invariability of the weights, which leaves only the activation levels to 

participate in the configuration of a problem. The second lies with the inability of the 

method to model a certain complex situation by performing all possible computational 

simulations following the change of a certain weight or group of weights [128]. This 

research aims at solving these problems by combining FCMs with Genetic Algorithms 

(GAs) [131], thus creating a hybrid model we named Genetically Evolved Fuzzy 

Cognitive Map (GE-FCM) and applying it in real-world problems [118]. 

 In this context, the FCM part of the algorithm computes the final activation levels 

given the weights and relationships between concepts, while the GA part develops the 

weight matrix attempting to find the optimal set of weights that satisfy a predefined 

activation level for a specific concept. A hybrid model of this type is able to trace the 

degree of the causal relationships between the various concepts so that it can “force” 

them to be activated to a certain level.  Such hybrid models are expected to contribute to 

the effectiveness of decision-making by defining, for each possible concept selected, the 

activation level achieved with a certain set of weights evolved by the GA [15]. The 

resulting simulations retrieve the final activation levels of the rest of the concepts, as well 

as the strength of the causal relationship between them. The analyst is thus able to 

proceed to tactical movements in his decision-making exercise by varying the degree of 

such relationships in line with the final activation levels the model has suggested. 

  
1.3.5. Multi-objective Hybrid FCM  
 
 In cases of multiple scenario analysis the methodology is unable to support multi-

objective decision-making due to the fact that the GA may compute a weight matrix only 

for one particular concept. The proposed methodology outlined thus far was improved in 

order to overcome this limitation and was based on a new Genetic Algorithm especially 

designed to support a multi-objective decision-making environment [120].  
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In general, finding an optimal weight matrix, which will guide a FCM to desired 

AL values for specific concept, is a task which may be performed using a variety of 

algorithms. The selection of GAs is driven by the functional characteristics of FCMs, 

with the algorithms adopting a stochastic methodology for solving problems, being based 

primarily on the generation of random values. 

 
1.3.6. Limit Cycles   
 
As previously mentioned, the development of the FCM is based on the utilization 

of domain experts’ knowledge that defines the active concepts and the degree of 

influence between them in the form of numerical values. The activation level of the nodes 

participating in an FCM model can be calculated using specific updating equations in a 

series of iterations [100]. As a result, the model can either reach equilibrium at fixed 

points in a direct way with activation levels ranging in the interval [-1, 1] or, exhibit limit 

cycle behaviour or present chaotic behavional characteristics [70]. Once the system 

reaches equilibrium, the decision-makers use this information to make decisions leading 

to the desired simulated solution. In cases, however, in which the system reaches limit 

cycle decision-making is practically impossible. Once in a simple FCM environment, one 

approach to overcome this problem is to resort to the experts’ contribution once again, 

asking them to estimate the exogenous disturbance which causes the instability of the 

system by influencing one or more concepts. When a GE-FCM is used, domain experts 

are not able to help since the weight recalculation is performed with the involvement of 

GAs as previously mentioned, thus creating a hybrid model. An extension of the GE-

FCM algorithm is proposed aiming at increasing its reliability by overcoming the 

weakness appearing in cases of limit cycle behaviour [123]. An additional contribution 

that faces the difficulties arising in limit cycle cases is suggested by means of a new 

fuzzification technique which will be introduced later in this thesis. This modification is 

integrated in the defuzzification process to give credibility to the results by introducing a 

confidence rate for each result.  
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1.3.7. Multi-Layer FCM   
 

Large-scale problems are characterized by a large number of parameters, 

concepts, variables, nonlinearities and uncertainties that make their analysis and 

modelling a very difficult task. Facing such complications requires the design of a new 

computational algorithm that supports the creation of parameter and variable layers 

describing the system under study, as well as the simulation of its evolution dynamics.  

The present work proposes a new structured approach we called Multi-Layer 

Fuzzy Cognitive Map (ML-FCM) [121]. The ML-FCM algorithm supporting this 

approach is used to improve the decision making process in problems which are modelled 

using the Fuzzy Cognitive Maps approach. The main issue is the decomposition of the 

parameters into smaller, more manageable quantities organized in a hierarchical structure 

forming a model, which consists of subsystems working together and supporting a central 

objective. The latter is related to the modelling of a particular system and is represented 

by a main, central FCM, with distinct sub-models (layers) implemented also as FCMs 

and linked together in a hierarchical structure. The sub-models represent and implement 

(in computational terms) the decomposed parameters and variables of the system, thus 

offering the ability of isolating and studying its critical parts. 

 
1.3.8. Multi-layer Hybrid FCM   
 
The use of a Multi Layer hybrid approach reflecting both the implementation of 

the GA and the multilayer methodology applied for solving large scale problems aims at 

obtaining the optimal values of the weights corresponding to the ALs in any FCM Layer. 

This is very useful for the simulation process and helps the decision maker to develop 

scenarios with the involvement of more than one concept in any place of the Multilayer 

FCM. 

Given that Fuzzy Cognitive Maps have the potential to be used as a tool for 

creating separate sub-models [124], the Hybrid Multi Layer FCM (HML-FCM) algorithm 

improves the decision making process in cases in which  the approach takes the following 

steps:  First,  the parameters are decomposed into smaller, more manageable parts, 

organized in a hierarchical form resulting in a model. Thus, this model consists of sub-

systems working together and supporting the main objective of the system which is 
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represented by the main FCM model. Second, the HML-FCM is used for scenario 

analysis through simulation techniques, which gives the ability to perform forecasting 

activities.  

 
1.4. Thesis structure  
 
Chapter 2 presents a detailed review of the relevant literature. First, an 

introduction to soft computing is presented, followed by a short reference to Neural 

Networks and detailed description evolutionary algorithms and genetic computing. The 

presentation includes, in addition, Genetic algorithms and how these are integrated in 

neural networks and fuzzy logic. Fuzzy logic is described next, divided into two sections; 

(i) the foundation of fuzzy logic including fuzzy logic principles, membership functions, 

fuzzy sets and linguistic variables and (ii) the fuzzy inference system in which 

fuzzification/defuzzification techniques are presented. The final section presents the 

combination of fuzzy logic and neural networks yielding neuro-fuzzy systems.    

Chapter 3 is devoted to the theory of Cognitive science and Fuzzy Cognitive 

Maps, starting with a historical overview about Cognitive science and the theory of Fuzzy 

Cognitive Maps with the enclosure of examples. Following the description of other 

related work and different applications using the FCM theory, this chapter introduces the 

main activities of this research work that will be described in detail in chapter 4.  

  This makes chapter 4 a key chapter as the research activities are described in 

details through real examples. It starts with a case study, namely “The solution of the 

Cyprus issue”. To begin with, the issue is analyzed in parameters followed by manual 

static analysis of the model aiming at pointing out the limitations of FCMs.  The next 

subsections present the various improvements in the FCM theory and methodology 

showing how a hybrid FCM solves the problem of recalculating the weights 

corresponding to each concept every time a new strategy is adopted by combining FCMs 

with Genetic Algorithms. The application of the hybrid model is presented on a new case 

study, namely the S-300 crisis. The improvement of the hybrid methodology is 

demonstrated through the introduction of a Multiple Scenario Analysis algorithm that 

enables the experts to deal with combined scenarios using Genetically Evolved Fuzzy 

Cognitive Maps.  

 



12  

 

The next part introduces the integration of Fuzzy Knowledge Base with Fuzzy 

Cognitive Maps and describes the encoding of linguistic fuzzy sets, as well as the 

Fuzzification and Defuzzification processes using the FKB and the Fuzzy Sets encoding. 

The next subsection deals with the automatic drawing of FCM, which improves the time 

needed to construct an FCM and presents the handling of Limit Cycles to improve the 

inference procedure of FCM while proposing a way to  eliminate the phenomenon of the 

limit cycle. Then the methodology is summarised and the results of the case study, using 

the Cyprus issue case study are presented. Finally the chapter is concluded with some 

discussion with emphasis to two major issues that were fazed during this research 

activity. The first one compares the FCM proposed methodology with other methods and 

particularly with the Bayesian methodology applied in politics and the second one is 

giving the performance of the FCM methodology in respect of time.    

Chapter 5 introduces the Multilayer Fuzzy Cognitive Maps (ML-FCM) algorithm 

which is used to improve the decision-making process in large scale problems. The 

selection of a very complicated case study, namely the Cyprus issue, aims at validating 

this methodology. The identification of fifty-six (56) concepts grouped in seven FCMs 

and connected together in a hierarchical structure is followed by a discussion of the 

results and the characteristics of the models used. Appendix A describes fully the fuzzy 

knowledge base for the 56 concept followed by the presentation of the results of the 

initial state of the case study. An example of scenario analysis for layer 1 and 2 and sub-

graphs FCM1, FCM2 and FCM5, is also presented there.   

 The final part of this research, Chapter 6, provides a comprehensive summary  

and draws the appropriate conclusions, proposing future work  and new research steps 

while suggesting improvements for the decision making process in problems with even 

higher complexity [26].    

In Appendix B validation of this methodology is introduced, using a well known 

game theory problem, the classical Prisoner’s Dilemma (PD) paradigm. Starting with the 

Fuzzy interpretation of the PD and an introduction to game theory the PD is transformed 

to a Fuzzy Cognitive Maps formulation.   
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The next step is the validation of the problem evaluating all steps of the FCM 

methodology, with the results proving that the methodology is appropriate and reliable in 

such game theory problems. The application of the PD to the case of the Cuban Missile 

Crisis of 1963 validates both the PD and the FCM methodology.   

 

 



Chapter 2: Background Theory 

 
2.1 Soft Computing  
2.2 Artificial Neural Networks  
2.3 Evolutionary Computing  
2.4 Fuzzy Logic  
2.5 Neuro Fuzzy Systems  
 
  

2.1  Soft Computing  
 
A way to describe the term “Soft Computing” is by using the original definition 

given by Lotfi Zadeh [189]:   

“Soft computing differs from conventional (hard) computing in that, unlike hard 

computing, it is tolerant of imprecision, uncertainty, and partial truth. In effect, the role 

model for soft computing is the human mind. The guiding principle of soft computing is: 

exploit the tolerance for imprecision, uncertainty, and partial truth to achieve tractability, 

robustness, and low solution cost.” 

 Generally Speaking Soft Computing (SC) is a collection of computational 

methods in artificial intelligence, which attempt to study, model and analyze complicated 

problems. It involves the use of theories like fuzzy logic, neural networks and 

evolutionary computing to solve real-world problems for which conventional computing 

techniques can not provide satisfactory solutions [59].  

Soft computing represents a set of computational intelligence-based 

methodologies which are used to deal effectively with systems that are characterized by 

complex structures, incomplete knowledge and uncertainties [21]. The above approaches 

can contribute to the design and development of intelligent information systems.   

Most of the solutions in “hard computing” are predictable while solutions in SC 

are not programmed for each and every possible situation. As an alternative, the problem 

is represented in such a way that the system can be measured and compared to a certain 

desired state. The superiority of a SC system is the adaptation of its parameters, which 

slowly converge towards a solution. This is the basic approach employed by genetic 

algorithms and neural networks.  

http://en.wikipedia.org/wiki/Artificial_intelligence
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Soft-computing is more efficient under an environment with uncertainty which is 

characterized by imprecision present among the data on which it operates. Lotfi Zadeh, 

founder of Fuzzy Logic, says for Computing with Words (CW) “Computing, in its usual 

sense, is centred on manipulation of numbers and symbols using as an object of 

computation words and propositions coming from natural language” [146]. Computing 

with words is essential when the available information is not precise, it is too general or 

abstract and its association with numbers is quite difficult. Many applications [177] and 

research studies are developed and implemented using soft computing techniques [10]. 

The present research work is one of them presenting a comprehensive and consistent 

utilization of soft computing in the form of Fuzzy Cognitive Maps [81]. 

Fuzzy Cognitive Maps, as a Soft Computing technique, allow the system designer 

to take advantage of the knowledge accumulated by the system either in linguistic or data 

form [160], in order to utilize a continuous learning process based on operating 

experience, and optimize the operation by making use of state-of-the-art evolutionary 

computing algorithms [129]. It is important to point out in this case that evolution is the 

process by which life adapts to changing environments while Evolutionary Fuzzy 

Cognitive Maps is a new methodology proposed in this research work which combines 

the advantage of evolutionary computing and Fuzzy Cognitive Maps [18]. This 

combination is used to design a new category of Computational Intelligent Decision 

Support Systems the main advantage of which is the ability to perform forecasting and 

scenario analysis [36]. In this sense, evolutionary computing represents another tool of 

soft computing techniques based on the concepts of artificial evolution [57].  

 
2.2  Artificial Neural Networks  
 
Artificial Neural Networks (ANN) aim at reproducing at least some of the 

functioning and power of the human brain [78]. ANN consist of many simple computing 

elements linked by connections of varying strength [105]. ANN assist in solving 

problems relying on natural mechanisms of generalization like signal processing, speech 

recognition, visual perception, controls, robotics etc. To oversimplify, suppose we 

represent an object which is part of a network, as a pattern of activation of several sub-

networks. In case that a sub-network responds incorrectly then the overall pattern stays 
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almost the same, and the network still responds correctly [88]. When ANN operate, 

similar inputs naturally produce similar outputs [8]. 

ANN structure refers to the ordering and organization of the nodes from the input 

layer to the output layer. The choice of how to build or how to structure an ANN is 

mainly dictated by the type of problem being considered or in some cases how the nodes 

are organized and therefore how data is processed through the network [5]. A 

feedforward ANN is a network that has its nodes hierarchically arranged in layers starting 

with the input layer and ending with the output layer [78]. A number of internal layers 

called “hidden” layers provide the computational power of ANN. Unlike Feedforward 

(FF) ones, recurrent networks allow for feedback connections among their nodes. They 

are structured in such a way so as to permit storage of information in their output nodes 

through dynamic states providing the network with some sort of memory [81].    

 Learning in neural networks is highly important and has been the subject of 

intense research in both biological and artificial networks [88]. Learning is the process by 

which the neural network adapts itself to a stimulus, and after making adjustments in the 

parameter, it produces a desired response. In fact during the process of learning, the 

network adjusts its parameters, the synaptic weights, in response to an input stimulus so 

that it’s actual output response converges to the desired one, in which case the network 

has completed the learning phase [182]. As the neurons may be interconnected in 

different ways, the learning process may not be the same for every neuron.  

 ANN and Fuzzy Systems have many similarities but they are also very different 

in their details [103]. The main features of ANN are located in the structure of the 

networks, their dynamics and their data representation. Fuzzy systems deal with real 

world problems having imprecise information described in natural language, which is 

then transformed in linguistic variables used for computational purposes [103]. Therefore 

the theory of fuzziness developed in a system may sometimes be easier to use and 

simpler to apply to a particular problem than ANN while the opposite may also apply. 

The combination of the two depends particularly on the application and good engineering 

judgment. Fuzzy Cognitive Maps actually combine the technology of ANN and Fuzzy 

Systems to design structures that utilize the strong features of each approach [1]. 

 

 



 17

2.3 Evolutionary Computing  
 
Computerisation has created a rapidly growing demand for problem-solving 

automation and development of well performing new algorithms applicable to a wide 

range of problems. Evolutionary algorithms satisfy the need to design new algorithms 

that will handle complex problems in shorter time [18]. Evolutionary computing can be 

characterized as another tool of soft computing based on the concept of natural evolution 

[29]. Evolutionary processes are the subject of scientific studies that focus on 

understanding how evolution works and can be simulated by a computer, with millions of 

generations executed in just minutes, hours or days and repeated under various 

circumstances.   

The essence of Evolutionary Algorithms is based on evolution observed in nature 

where the survival of species depends on the natural selection and evolution processes to 

produce a better representative [19]. The basic idea is to represent every individual of the 

potential solution as an array of sequences of chromosomes. The encoding string or array 

in the chromosome is called gene and has a particular position in the chromosome called 

locus [23]. 

The basic functioning of evolutionary computation is as follows: Firstly the 

Initialization phase is used to create the initial population of the potential solutions. The 

initial population normally is generated randomly. Then the evolution is performed using 

selection, recombination or crossover, and mutation operations in which every 

chromosome in the population is evaluated and receives a fitness value [35]. During 

crossover and mutation operation the new offspring is created using the chromosomes 

with the most successful chromosomes. Then the encoding mechanism is used to present 

the population of potential solutions. Different mechanisms are used dependent of the 

problem being addressed. The most frequently used are binary and floating point 

encoding [49].  

 
2.3.1 Genetic Algorithms   
 
Genetic Algorithms (GA) represent a very popular, well defined and important 

class of evolutionary computing techniques [24]. GA is a non-comprehensive search 

technique used to determine, among other things, the global optimum of a given function 
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(or process) that may or may not be subject to constraints. The origin of GA dates back to 

the early 50s, while Holland was the first to introduce the methodology in a more formal 

way [74]. He proved that genetic algorithms have sound theoretical roots and they are 

able to solve a wide range of optimization problems accurately [67]. This is done through 

a procedure inspired from the biological process of evolution and the survival of the 

fittest concept [37]. 

GA have enjoyed a wide interest from researchers in the field of mathematics, 

connectionist modeling and approximate reasoning in recent years [7]. The search 

procedure of GA is stochastic in nature and doesn't usually provide the exact location of 

the optima as some other gradient-based optimization techniques do [136]. However, 

GA-based techniques possess two attractive features putting them at an advantage with 

respect to their derivative-based counterparts. In fact, given their discrete search nature, 

they could be easily applied to continuous as well as to discontinuous functions. The 

inputs to the GA are candidate solutions (population) which initially are randomly 

generated. The GA then evaluates each candidate according to its fitness function and 

only the more fit candidates pass to the next generation. These candidates are combined, 

reproduced or slightly altered in a random way and the offspring pass to the next 

generation, creating a new group of candidate solutions which is subjected to fitness 

evaluation as in the previous generation. Those candidate solutions which did not 

improve their fitness are not selected for evaluation and thus “die”. The process continues 

until the overall fitness function of the population, which normally is increased in each 

cycle (generation), does not improve further or until the target value is reached attaining 

very good solutions to the problem [24]. A GA may also terminate if it reaches a 

predefined maximum of generations. GA has been used in a wide variety of fields to 

develop solutions to problems equally, or even more difficult compared to those faced by 

human designers [19]. The solutions given by the GA are often more efficient and more 

complicated than any engineer would produce.  

 
2.3.2 Representation of individuals – genotype  
 
As mentioned earlier, the basic principle of Evolutionary algorithms derives from 

the real world. When attempting to map natural evolution into the framework of artificial 
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evolution, we must first consider the "data" for the system. In the natural environment, 

this data consist of living creatures [29]. Each individual represents a potential solution to 

the problem of survival. Similarly, in genetic algorithms, we consider a set of potential 

solutions, which are referred to collectively as “population” with each single solution 

called an “individual”. Each individual in nature has a form determined by its DNA and 

its collection of genetic character is commonly known as a “genotype”. In genetic 

algorithms, the term “genotype” is used to describe the encoding of a problem solution 

represented by an individual. Thus, each individual has a genotype, which encodes a 

solution while many individuals in a population may have the same or similar genotypes. 

In the GA literature, an individual's genotype is often referred to as its chromosome 

[130]. 

Genotypes in genetic algorithms are typically represented by strings, sometimes 

called “bits” or “characters”. Each element of the string represents a gene, which is a 

single unit of genetic information. In the natural environment genes control, various traits 

of the individual directly or indirectly [35]. For example, in the case of humans there are 

genes to determine eye and hair color, and genes for determining other characteristics. It 

is important to note that in nature, several genes often collectively determine a physical 

attribute, and that they are not necessarily independent. This is true in genetic algorithms 

as well, where a solution encoding may make use of several interacting genes. 

 
2.3.3 Fitness function or evaluation  function  
 
Fitness assessment is a procedure that plays the role of evaluation to genotype 

(Chromosomes) and is the basis of selection of the new candidates that will pass to the 

next generation in case that the predefine requirements are met. The fitness function is a 

collection of quality measures applied in the chromosome [23]. The best chromosomes 

using minimization or maximization techniques are mixed (crossed) with other, less fit 

chromosomes, hoping that the characteristics of the resulted chromosomes are better than 

the previous ones. The fitness function is very important step in the evolutionary 

procedure and special attention should be given in cases where a contradiction might 

arise if the original problem requiring minimization of the fitness is associated with 
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maximization. Generally speaking the fitness function is a measure that indicates the 

evolution success of a set of individuals in a given environment [18]. 

 
2.3.4 Selection   
 
The new set of individuals which are generated during the evolutionary process 

consist the new population that will be evaluated during the next generation. This 

population, which in most of GA is constant, contains the possible solutions for the 

optimal solution [130]. The entire population is taken into consideration during 

evaluation process and the selection criteria are applied to all individuals.  

Several techniques are used for the selection of the new individuals. The most 

popular techniques are the followings: The “Elitist selection” in which the best 

individuals of each generation are selected for further evolution and the “Fitness-

proportionate selection” according to which the individuals are selected based on their 

fitness value [74]. Within the latter, other approaches for selection of the best individuals 

are the roulette wheel, the tournament and the rank-based. In the “Roulette-wheel” the 

form of fitness-selection is proportional to the amount by which an individual’s fitness is 

greater or less than its competitor’s fitness. “Tournament” selection is based on the 

creation of subgroups of individuals and the “leading” individual is selected for 

reproduction. Finally in “Rank” selection the individuals are ranked in accordance to the 

fitness function and their selection criterion is based on this ranking instead of absolute 

difference in fitness [19].  

 
2.3.5 Methods of change – Mutation and Crossover 
 
Mutation is very important operator in genetic algorithm helping the creation of 

offspring. The method to create new individuals is based on the biological mutation and 

is used to preserve genetic diversity from one generation to another. Mutation delivers the 

modified offspring depending on the outcome of random variable for each bit.  The 

objective of this randomness is to identify the particular bits that will be changed. The 

principle is to avoid the phenomenon of local minimum by allowing the mutation 

operator to "jump" everywhere in the offspring preventing chromosomes becoming too 

similar each other [35].  

 

http://www.iscid.org/encyclopedia/Measure
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Although several techniques are used for mutation the most common is binary 

encoding which considers each gene separately and allows each bit to flip. It basically 

inverts the value of a gene from 1 to Ο or Ο to 1 with a small probability Pm.  Figure 2.1 

illustrates the case where the third, fourth, and eighth random values generated are less 

than the bitwise mutation rate Pm [24]. 

 
1 0 1 0 0 0 0 1 0 

1 0 0 1 0 0 0 0 0 

    
Figure 2.1: Mutation rate for small probability 

Other mutation operator is boundary that replaces randomly the new gene by the 

upper or lower bound of the particular gene. Uniform and Non uniform operator are other 

popular methods of mutation in which in the uniform method the value of the chosen 

gene is substituted by random value among specified gene. In the Non-uniform operator 

during the evolutionary process and while the number of generation increases the 

mutation is kept close to 0. This allows GA to make fine turning in the last states of 

evolution [29].  

The second method of change is called crossover which is used to diverge the 

programming of chromosome from one gene to the other, involving two individuals to 

swap segments of their code. The offspring produced is a combination of their parents. 

This process is also called recombination because the new individual solution is created 

from the information contained within two (or more) parent solutions [48]. The intention 

here is to simulate the process of recombination that occurs to chromosomes during 

reproduction. Figure 2.2 indicates a single point crossover technique between two 

individuals. 

Another crossover technique is the two-point crossover in which all bits between 

two setting points are swapped. Uniform and half uniform are also very popular crossover 

technique. In the uniform crossover, bits are swapped with probability rate while in half-

uniform half of the non matching bits are swapped [105].   
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0 0 1 0 1 1 0 1 

1 0 1 1 0 0 1 1 

1 0 1 1 0 1 0 1 

                                  
Figure 2.2: Crossover and Mutation 

 
2.3.6 Termination   

The genetic Algorithm terminates if a criterion is met or the number of execution 

or predefine time elapsed. Several criteria can be setup that is examined after the 

formation of each generation. Fitness function is the most common one with the 

evolutionary process to stop if the best fitness in the current population becomes greater 

or less than the specified fitness threshold when the objective is to maximize or minimize 

the fitness respectively [35].  

 
2.4 Fuzzy Logic  
 
2.4.1 Introduction 
 
To understand how fuzzy systems [45] provide improved information modeling, 

we need to go back to its origin. The concept of Fuzzy Logic (FL) was envisaged by Lotfi 

Zadeh in an attempt to explain and reducing system complexity [190]. He was concerned 

with extreme increase of information afforded by traditional mathematical models as the 

complexity of a system increased. He introduced the term imprecision in which most of 

the phenomena we come across everyday are imprecise, that is, they carry a certain 

degree of fuzziness in the description of their nature [190]. This imprecision may be 

associated with their shape, color, texture, environment or even the semantics that 

describe their nature. In many cases the same concept has a different meaning in different 

contexts of time. Thus, a hot day in winter is not exactly the same as a hot day in summer 

simply because the boundary line between warm and hot is imprecise. This kind of 

imprecision or fuzziness associated with continuous phenomena is common in all fields 

of study, in modeling real world problems as well as in every day life [50]. 

In most of the cases imprecision is not something we pay too much attention to, 

even if we use it extensively in our daily life because we accept it as a natural 
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consequence of the way things happen. The precision of mathematical modelling in 

which involve uncertainty of the "real world" is generally not addressed by scientists. We 

simply approximate these events as numerical functions and choose a result that either 

makes sense from the empirical point of view. More over we process and understand 

imprecise data easily, from morning traffic reports to complex business analyses [30]. 

FL is theoretically easier to understand because the mathematical concepts behind 

fuzzy reasoning are very simple [45]. The methodology is very flexible and it is easy to 

mix with other conventional control techniques [186]. But what makes FL very attractive 

and easy to understand is the simplicity of the language used which is a close 

approximation of human reasoning [20]. In fact, FL is based on natural language and its 

basis is actually the basis of human communication that uses common daily natural 

language [191]. This innovative design and the strong features of FL make it a very 

flexible and powerful tool dealing with imprecise data and uncertainties, in a quick and 

cost effective way [133]. 

 
2.4.2 Membership function 

 
A membership function (MF) as proposed by Lotfi Zadeh [188] extends the 

bivalent indicator function of IA of a non fuzzy set to multi value called membership      

μA :  [0,1].  

μA (x)   measures the degree to which element x belongs to set A by  μA (x) = Degree (x ∈ 

A).  If X defines a set of universe and A is fuzzy set then let x ∈ X be an arbitrary element 

in this universe set. For the Crisp value Set we have the characteristic function of A as 

follows: 

   fA: X  {0, 1} such that 
    fA(x) = 1 if x ∈ A    2.1 

            fA(x) = 0 if x ∉ A      
 

Recall that the notation fA: X → {0, 1} implies that either fA(x) = 0 or fA(x) = 1, 

with no other options, a restriction which we must be more loose in the case of a fuzzy 

set. Figure 2.3 indicates the relation between crisp set and fuzzy set. The membership 

function [137] representing a fuzzy set normally is represented by μA. For example for an 

element x of X, the value μA(x) is called the membership degree of x in the fuzzy set A 
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[181]. In Fuzzy sets the membership degree μA(x) gives the degree in which an element x 

of o the fuzzy set is member of the set. For instance the value 0 means that x is not a 

member of the fuzzy set while the value 1 means that x is 100% full member of the fuzzy 

set [188].  

 
Figure 2.3: Relation between crisp and fuzzy value 

 
2.4.3  Fuzzy set 

 
Before entering in the analysis of fuzzy sets we need to distinguish the main 

differences between classical set theory and fuzzy sets. In a classical set an element of a 

set x either belongs or does not belong to the set. On the other hand, fuzzy set theory 

allows partial membership of elements in a set. As it was explained earlier this is 

achieved with the help of a membership function [184].  

For a fuzzy set A, we have the membership function of A 

μA: X → [0, 1], which is to say that for all x ∈ X, we have 0 ≤ μA(x) ≤ 1. 

The values obtained by the membership function are as follows [61]: 

  μA(x) = 0  if x is not in the set A 
  μA(x) = 1  if x is totally in the set A 
  0 < μA(x) < 1   if x belongs partially to A  
 
The example of tall men is a classic example in fuzzy set theory. Consider the set 

of tall men, with x being the height of an individual, in meters.  We may say the 

following. 

  μA(2.26) = 1.0  John is absolutely tall 
  μA(1.85) = 0.83 Nick  is to some extent tall 
  μA(1.40) = 0.0  Mario is not tall 

 

 

http://en.wikipedia.org/wiki/Set_theory
http://en.wikipedia.org/wiki/Membership_function_%28mathematics%29
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Taking into consideration the set of tall men, we can define the boundaries of 

this set which it might say that all people taller than 1.80 cm are considered to be tall. 

But such a distinction does not seem very logical. Figure 2.4 below shows the crisp 

values and Figure 2.5 a smoothly varying curve passing from not-tall to tall. The 

output axis known as membership function (μ) defines the transition from “not tall” 

to “tall”. Both people are tall to some degree, but one is less tall than the other. 

 
 Figure 2.4: Crisp value                               Figure 2.5. Membership function, 

 
Example: Fuzzy set TALL that would answer the question: 

 "To what degree a person is tall?" 

  0             if height(x) < 180  

 μTALL(x) = ⎨ (height(x) -180)/140 if 180 ≤ height(x) ≤ 220 

 1             if height(x) > 220 

 
Person                    height        μTALL(x)
Peter               140 0 
John      190 0.25 
Mario    195 0.37 
Kostas      210 0.75 
Andreas    220 1 
 

μTALL(x) is considered the true value of the statement: x belongs to the set of TALL 

people. For example John has a height of 190cm. We can consider John as TALL with a 

truth value of 0.25 
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2.4.4 Fuzzy sets and linguistic variables 
 
A fuzzy set indicates to which degree a value may be a member of the set. The 

element of fuzzy set has degree of membership [102]. It takes values between zero and 

one indicating its actual degree of membership with zero value meaning that it is 

completely representative of the set [45]. As an example consider the concept of a long 

project with Figure 2.6 illustrating the degree of membership function for such a concept.  

                        
                                           Figure: 2.6: The idea of a long project 

 
The members of this set are duration period of the project in weeks, required for 

the completion of a project. The fuzzy set indicates to what degree a project of a specified 

duration is a member of the set of LONG projects. As the number of weeks increases our 

belief that the project is indeed LONG increases. Α project 2 weeks in duration would not 

be considered LONG, a project ten weeks in duration would have a moderate 

membership in the set of LONG projects, and a project of more than 15 weeks in duration 

is most certainly a LONG project. Of course, the actual definition of what a LONG 

project actually is depends on the context in which it is used. For some models even a 

one- or two-day project might be LONG, and for others, for example projects performed 

by movement contractors, the idea of LONG only begins to make sense at some distant 

point in the future (e.g. one year). 

The centre of the fuzzy modelling technique is the idea of a linguistic variable. At 

its root, a linguistic variable is the name of a fuzzy set. In the previous example, the fuzzy 
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set LONG is a simple linguistic variable and could be used in a rule-based system to 

make decisions based on the length of a particular project: 

IF project duration is LONG 

THEN the completion risk is INCREASED 

In terms of linguistic variables using the same example of Long project the fuzzy 

set “LONG”- “very LONG”, “somewhat LONG”, “slightly LONG”, and “positively not 

very LONG” are identified. We interpret these expressions using the same rules of 

precedence as English; thus, “not very LONG” and “very not LONG” are two distinct 

statements. Linguistic variables permit the fuzzy modelling language to express directly 

the shades of semantic meanings used by experts. This is illustrated in the following rule, 

IF project-duration is positively not very LONG.  

THEN the completion-risk is somewhat REDUCED 

Qualifiers may also be applied to fuzzy sets in an easy way; for example we can 

say “most LONG projects are usually LATE”. This has important representational 

implications for time-series-based fuzzy models. A linguistic variable summarizes the 

properties of approximate or imprecise concepts in a systematic and computationally 

useful way, while reducing the apparent complexity of a system bum matching a 

semantic tag to the underlying concept [97]. 

 
2.4.5  Fuzzy “IF–Then” rule  
 
In most fuzzy problems fuzzy rules are generated using past experience.  In case 

where rules are expressed by a single input variable, a  simple fuzzy If-Then rule [139], 

assumes the form IF x is A then y is B  where A and B are linguistic values defined by 

fuzzy sets on the ranges (universe of discourse) X and Y, respectively. In most of the 

cases fuzzy logic problems involve more than one variable.  

The If-Then rule becomes more difficult to put it into a table, if the fuzzy 

statements have more variables [148] such as,  

      If Ai and BBj and Ck, Then Hijk 

This statement is decomposed as,  

        If Ai and BBj, Then Hij  

        If Hij and Ck, Then Hijk  
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The above statement can be further extended to include many variables and 

applications. Fuzzy rules have many applications and are used in Expert Systems forming 

in a Fuzzy Rule Base [48].  

 
2.4.6 Fuzzification  
 

The fuzzification process starts by taking the inputs and determining the degree to 

which they belong to each of the fuzzy sets identified through membership functions 

[45]. The input value is always numerical and the output is a degree of membership in the 

fuzzy set. This encoding is a very important step of the entire process and the success of 

correct fuzzification will reflect to the reliability of the results during the execution of the 

defuzification process.  

The fuzzification process consists of two basic steps. During the first step the 

interval of each concept is analyzed into known membership function (e.g. trapezoidal or 

triangular). A number of intervals can be used during the fuzzification process depending 

on the complexity of a problem [98]. The minimum number of intervals is two. This 

number can be increased up to twelve or even higher.   

Figure 2.7 in particular, shows how the fuzzification of three crisp values causes 

the distribution of the variables according to a certain profile. It is interesting to point out 

that this distribution produces two overlapping areas, an outcome which has been 

regarded as rather common and even desirable on certain occasions. In such a case the 

problem arising when values that fall within an overlapping area must be allocated is 

handled during the defuzzification process [102].  
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    Figure 2.7: Parameter with 3 membership functions of variable width 

 
2.4.7  Defuzzification  
 
Defuzzification is the last step of the process and is very important because the 

output results define the level of success for the fuzzy model [164]. Generally speaking, 

Defuzzification is the process that uses the membership functions to find the degree of 

membership that defines an outcome. As it was mentioned earlier, a fuzzy set is used as 

an input for the defuzzification process and the output is a number within the fuzzy set 

interval. Several techniques have been developed to produce an output. The most 

common ones are, the “maximizer" by which the maximum output is selected, the 

“weighted average” by which the averages weighted possible outputs and the “centroid 

calculation” which returns the center of the fuzzy area [137].  

As we have already pointed out, the defuzzification process is more complicated 

than the fuzzification one and follows the next steps [116]: The first is the determination 

of the technique that will be used. For example, if we use the Max-Min and Mean 

Computation we need to compute the minimum, maximum and average values for each 

concept, while the various levels are matched according to the membership functions of 

each parameter. Then the matching process starts and the value of the parameters fall into 

a particular interval as a result of the fuzzification process.  
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2.5 Neuro Fuzzy Systems  
 

2.5.1 Introduction   
 

Artificial Neural Networks and Fuzzy Systems have been recognized as 

promising alternative approaches to Intelligent Information processing [1]. The two 

technologies have certain advantages in the case of imprecise data or when prior 

knowledge is involved. Neuro-fuzzy systems have been proposed so as to take 

advantages of both technologies and complement each other [58]. This combination 

allows overcoming some of the individual weaknesses, while offering some strong 

features in developing a new class of intelligent systems [111]. The main objective is to 

avoid difficulties appearing in fuzzy logic for systems represented by numerical 

knowledge (data sets), or similarly in applying neural networks for systems represented 

by linguistic information (fuzzy sets) . 

Fuzzy Logic and neural networks are not capable to address successfully specific 

types of problems due to their inability to handle numerical and linguistic variables at the 

same time [81]. For instance, while fuzzy logic theory permits the accurate representation 

of a given system behaviour using a set of simple "IF-Then" rules, it is nevertheless 

unable to tackle knowledge stored in the form of numerical data. For this particular type 

of system, "IF-Then" rules have to be extracted manually from the data sets, a process 

that becomes very tedious or even impossible to achieve for data sets with large numbers 

of patterns. The problem becomes even harder when the knowledge about the system is 

stored in both forms: linguistic (fuzzy sets) and numerical (data sets). 

Neural networks on the other hand have been shown to be universal 

approximators capable of learning virtually any (smooth) non-linear mapping with a high 

degree of accuracy, while also being excellent classifiers and predictors. As it was 

previously described they accomplish this through a learning process in which numerical 

data are presented to the system for training under a computational structure composed of 

neurons and weighted links. Once a network has been trained, computation is then carried 

out in a parallel and distributed manner. But despite their versatility, neural networks 

suffer from several weaknesses among which are the implicit representations of 

knowledge (known among researchers as the black box structure). It is, for instance, very 
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difficult to explicitly quantify the meaning of weights among the nodes of the network 

once the systems have been trained. As such, neural networks are not very "transparent" 

at explaining their decision-making process [26]. In addition, it is difficult to incorporate 

additional knowledge into the system without retraining it, or to extract linguistic 

representation patterns of knowledge from the data. 

 
2.5.2 Combining Artificial Neural Networks and Fuzzy Systems 
 
To overcome the limitations of both system representations (fuzzy and neural), 

researchers in the area have proposed incorporating fuzzy logic reasoning [20] within a 

learning architecture of some sort, a task for which ANN have been shown to be an 

excellent candidate [1]. Fuzzy logic and artificial neural networks paradigms have 

originated from totally different mathematical formalisms; it has been shown that both 

these methodologies are universal approximators for a large class of nonlinear mappings 

[45]. It has also been shown that they can be combined to form a hybrid structure [154] 

powerful enough to deal with a wide range of systems involving different types of 

knowledge, both numerical and linguistic. 

The combination of fuzzy systems and neural networks can help avoiding the 

drawbacks of both approaches when used individually. Therefore, neuro-fuzzy methods 

are especially suited for applications that desire user interaction in model design or 

interpretation. 

Fuzzy Cognitive Maps are combinations of neural networks and fuzzy logic but as 

they are also directed graphs with closed loops they cannot be strictly classified as neuro-

fuzzy systems. There are a lot of common features in the layers of neuro-fuzzy system 

[179], but there are also some significant differences that permit simulation and 

forecasting, which are very important tools in the hands of decision makers and strategic 

planners. Fuzzy Cognitive Maps will be described in detail in the next chapter, while the 

proposed methodology for a new class of Intelligent Decision Support System will be 

presented in Chapter 4.  

 



Chapter 3: Fuzzy Cognitive Maps 

 
3.1 Introduction 
3.2 Cognitive Maps  
3.3 Technical background on Fuzzy Cognitive Maps  
3.4 Overview of FCM applications.  
 
 

3.1 Introduction  
 
A Fuzzy Cognitive Map introduced by Kosko as an extension to Cognitive Maps 

in 1986 [100] is a technique incorporating and adapting human knowledge by combining 

fuzzy logic and neural networks. During the past twenty years, there has been a large and 

active improvement in research efforts aiming at synthesizing fuzzy logic with neural 

networks, thus leading to FCM models [103]. The combination of fuzzy logic and neural 

networks is essential because the two approaches view the design of “Intelligent’’ 

systems from different angles and one complete the other [83]. The strong features of 

neural networks providing algorithms for learning, classification, and optimization 

associated with fuzzy logic which deals with high level reasoning issues and uncertainty 

in a linguistic form create a new type of systems. [192].  

The combination of neural networks with fuzzy logic takes place by means of a 

dynamic fuzzy system in which certain processing stages are implemented with neural 

networks while others with a fuzzy inference system [46]. An example of such a system 

would be a tree classifier in which classification at some node can be carried out with a 

fuzzy inference system and classification at some other node could be performed using a 

neural network [111]. In general, we cannot combine two or more trees to produce a new 

tree, while the problem increases with the number of trees combined [77]. It is evident 

that these difficulties limit the number of knowledge sources or experts who can build the 

search tree in an environment in which a larger expert sample size should produce a more 

reliable knowledge structure [162].  

Kosko suggested the Fuzzy Cognitive Map model as a technique to overcome the 

limitations of representing knowledge as a search tree [99]. Thus, instead of viewing 

FCM as graph search can be viewed as a dynamical system represented by an acyclic 
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graph while its equilibrium behaviour may be used an inference mechanism [128]. The 

advantage of this qualitative dynamic model when compared with other quantitative 

models is its simplicity in both model representation and execution [146]. It is interesting 

to point out, that the main restriction of quantitative models is the fact that they require 

substantial effort and specialized knowledge from outside the application domain to 

develop a correct model, which is practically eliminated in an FCM model. 

 
3.2 Cognitive Maps 
 
The origin of Cognitive mapping derive from graph theory put forward by Euler 

in 1736, while Tolman in 1948 laid the basis for cognitive psychology research in which 

cognitive maps are considered as schemes inside the human mind [169]. Cognitive 

mapping is essentially a part of our expression of the physical world and participates in 

the formulation of our decision and attitudes [156]. In early sixties, this theory was put 

into use in quantitative measures in order to make a structural analysis of observations. 

Such types of a structural analyses produced maps called “digraphs” which, later on, 

were modified by the political scientist Robert Axelrod [8,17] from the subjective 

interpretations of anthropologists to the observations of individuals and called “Cognitive 

Maps” [55].  

Cognitive Maps (CM) have also been used to support knowledge acquisition, 

specifically in structuring problems that need qualitative modelling performed by human 

decision analysts [34]. Cognitive maps are interesting for their potential practical 

relevance to social science [47], political science and cognitive modelling. Successful 

application in those areas enhanced their suitability for decision support [26], as they 

form a bridge between graph theory models and encoding of subjective beliefs and 

preferences. Finally, CM possesses historical interest as a relatively early attempt to 

formalize a form of qualitative reasoning in a decision-making context [95].  

 The basic principle and elements of a CM are simple: The concepts used by an 

individual decision-maker are represented as nodes, and the causal relationships between 

these concepts are represented as directed arrows [92]. Each arrow is characterized by a 

weight, a real value that indicates the effect of the causal relationship between nodes. 

This representation gives a figure of nodes and arrows called “cognitive map” in which 
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the various concepts are considered as variables of the system. The advantage of this 

scheme is that it offers a global view of the different links between causal relationships 

and concepts in the model. The map offers three different types of causal relationships 

between two nodes p and q (p q) indicating all possible causality directions as follows:  

• Positive (+) causality, in cases in which p promotes q meaning that an increase in 

the cause variable will bring about an increase in the effect variable, while a 

decrease in the cause concept will result to a decrease in the effect concept.  

• Negative (-) causality, in cases in which p prevents, or is harmful to q, in which 

case an increase in the cause variable will result to a decrease of the effect 

variable and vice-versa. 

• No effect (0), when p has no effect on, or does not matter for q. 

Axelrod was the first to introduce a slightly modified form of cognitive map in 

terms of interpretation and representation in political modelling [16].  In fact, Figure 3.1 

shows causal relationships that were identified by Henry Kissinger in 1982 trying to 

model the Middle East Crisis [102]. However, this first approach of modelling real-world 

problems using positive and negative causality suffered from the inability of experts to 

extract precise results giving just indications of how the model should behave in certain 

changes. In the case, let us say, of the relation between two causes, Soviet imperialism, 

until the fall of the USSR in the beginning of the nineties, and Arab radicalism, this 

depended on how they interacted to produce the effect which was the Syrian Control on 

Lebanon for the former and PLO terrorism for the latter. In cases in which two causes are 

competing, and then establishing one would tend to decrease the other, while if they are 

complementary, then positions for both causes are directly related. Take, for example, the 

case depicted in Figure 3.1, which may only have a historical value, however it describes 

the causal relations very clearly: If the Islamic Fundamentalism increased in the Middle 

East, the answer according to the map is that the Arab Radicalism would also increase, 

but the Soviet Imperialism would decrease. In this case, then the control of Syria to 

Lebanon would decrease to a certain level leading to the strengthening of the Lebanese 

government. On the other hand, the increase of the Arab Radicalism would make PLO 

terrorism more powerful, encouraging more attacks in Lebanon, thus weakening the 

Lebanese Government.  
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Figure 3.1:  Henry Kissinger’s CM modelling of Islamic Fundamentalism [102]. 

 
It is clear that the introduction of fuzzy logic [45] gave new capabilities to CMs, 

enabling the indication of both the type of representation of the causal relationships 

between concepts (i.e. positive, negative, zero) and the degree or strength of this 

relationship. The most significant improvement concerns the representation of the 

relationships involved which were fuzzified. This means that their description is 

improved by numerical values instead of just signs, permitting the application of varying 

degrees of causal inferences. The main difference, when compared with cognitive maps, 

being that each directed edge is associated with a number that expresses relationship [95]. 

Our research work moves to this direction aiming at improving the FCM theory to such a 

degree that will allow us to develop an Intelligent Decision Support System [135] using 

FCM as an inference machine.   

 
3.3 Technical background on Fuzzy Cognitive Maps  
 
3.3.1     Introduction to FCM  
 
 Each concept node possesses a numeric state, which denotes the qualitative 

measure of its presence in the conceptual domain. Thus, a high numerical value indicates 

that the concept is strongly present in the analysis, while a negative or zero value 
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indicates that the concept is not currently active or relevant to the conceptual domain. 

This value is usually normalized to the interval [–1, 1]. The value of -1 represents a full 

negative causality and creates inhibiting effects, while +1 represents full positive 

causality creating a promoting effect. Zero value denotes a neutral causal effect. Other 

values correspond to different intermediate levels of causal effect [128]. When a strong 

positive correlation exists between the current state of a concept and that of another 

concept in a preceding period, we say that the former positively influences the latter, 

indicated by a positively weighted arrow directed from the causing to the influenced 

concept. By contrast, when a strong negative correlation exists, it reveals the existence of 

a negative causal relationship indicated by an arrow charged with a negative weight. Two 

conceptual nodes without a direct link are, obviously, independent.  

The principle of how simple FCMs works is explained via an example, consisting 

of two connected concepts as depicted in Figure 3.2. 

 

 
Figure 3.2:  Connection between nodes 

 
The directed edge Wij from concept Ci to concept Cj indicates how much Ci causes 

Cj. The edges Wij take νa1ues in the fuzzy causa1 interνa1 [-1, 1]. Wij=0 shows no 

causa1ity Wij > 0 indicates causal increase: Cj increases as Ci increases, and Cj decreases 

as Ci decreases. Wij < 0 indicates causa1 decrease or negative causa1ity: Cj decreases as 

Ci increases, and Cj increases as Ci decreases.  

The calculation of AL of each node indicates the degree to which the concept is 

active in a model. This value is a floating-point number from -1 to +1, explicitly defined 

by equation 3. 1. 
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    the strength of relation from concept CijW i  to concept Cj

               f       the transformation function 

The main purpose of the transformation function f is to reduce the weighted sum 

to a certain value range i.e. from -1 (negatively inactive) to +1 (Positive active). The most 

commonly used transformation functions are the following [102]: 
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An FCM works in discrete steps and the activation level of each of the system 

nodes as well as the weighted arrows are set to specific values based on expert 

assessment. 

Thereafter, the system is free to interact and this interaction continues until the model: 

• Reaches equilibrium at a fixed point, with the activation levels, being 

decimals in the interval [-1, 1], stabilizing at fixed numerical values.  

• Exhibits a limit - cycle behaviour, with the activation levels falling in a 

loop of numerical values under a specific time-period.  

• Exhibits a chaotic behavior, with the activation level reaching a variety of 

numerical values in a non-deterministic, random way. 

Since the system follows an iteration process, the calculation of the new 

activation level should take into consideration the previous value of the AL. For a given 

concept, the AL can be calculated taking into account the activation levels of all the 

concepts that have exerted influence on it at the previous iteration and Equation 3.1 is 

transformed as follows:  
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newA  is the new activation level of concept  Ci at time t+1, oldA   is the activation 

level of concept Cj at time t.  

The graph representation of a FCM may be described also by a square matrix. This 

matrix contains the weight values of connections between corresponding concepts. Thus 

we can write the FCM function of equation 3.5 in an even simpler way by writing the 

status of all concepts as a row-vector S, with notation { C1 , C2 , … , Cn  } for n concepts, 

and the weights of the edges in a n × n matrix W, where each element  gives the 

weight of the edge from concept C

ijA

i  to Cj . If there is no causal link between two 

concepts, the value of that link Aij is zero. The general form of a weight matrix is the 

following: 
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where, W12  is the weight of the causal relationship between C1 and C2. 

 
3.3.2 Methods for developing FCMs  
 
There are several techniques to create FCM models, but we can distinguish them 

in two main categories, manual and semi-automatic methods [3]. Despite the fact that 

some trials have been made on pre-existing data trying to develop an automatic FCM, 

until now, to the best of our knowledge,  no fully automatic method has been proposed 

and applied to general problems Mainly due to the difficulties encountered during the  

automatic estimation of the Activation levels and weights [171]. The manual method, by 

contrast, covers techniques that exploit only human (expert) knowledge and for a long 

time this was practically the only way for establishing FCM models, in the absence of 

automated or semi-automated approaches that would support this process. Recently, 
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however, several attempts were made for the development of semi-automatic 

computational Fuzzy Cognitive Maps.  

 
3.3.2.1 Manual method  
 
One of the advantages of FCM modelling is its easiness concerning expert 

knowledge aggregation [25], given that it enables a whole group of experts, instead of 

just one, to work on the model, something which improves its reliability. Once this is 

performed then at a second stage, all individual expert models are combined together. 

The experts are required to build up a model using a specific procedure. Firstly 

they are asked to identify the main parameters influencing a problem, transform them in 

concepts and identify the causal relationships among them. Finally they estimate the 

causal relationships’ strength and the initial activation level for each concept [91]. Since 

the number of possible connections among concepts increases at a quadratic rate with the 

increase of the number of concepts, expressing complex systems that consist of a large 

number of nodes is often very difficult or even impossible to perform by humans and if it 

must be done by humans, it  may result in simplifications, which eventually lead to 

inaccuracy or inefficiency, given that the development process often requires many 

iterations and simulations before a suitable model is established [104]. 

In case of group development, the quality of the final model can be improved by 

varying the impact of a given expert model on the final one based on the reliability of the 

particular expert in each case. The reasoning behind this modification is that combining 

incomplete, conflicting opinions of different experts may cancel out the effect of 

oversight, ignorance and prejudice [25]. However, such an extension requires additional 

parameters, like for example the credibility coefficient of each individual expert, which 

complicates the FCM development task. This parameter reflects the fact that some 

experts may be more credible than others [163].  

If is the score of experts i and WiS i is the weight matrix according to a certain 

expert, the final weight matrix is then given by a normalized sum according to equation 

3.7. This equation improves the accuracy and reliability of an FCM model by minimizing 

the possibility of bias results. This formula eliminates the opposite opinions and a more 

general weight is accepted: 
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Manual methods for developing FCM models also share the major disadvantage 

of relying on human knowledge, meaning that it is very difficult to assess the model's 

accuracy in an unbiased way [45]. What is more, even if historical data are available to 

justify the model's quality, obtaining an appropriate model that mimics the data requires a 

lot of effort, which is performed by drawing and simulating successive models. 

 
3.3.2.2 Semi-automatic methods  
 
Different semi-automatic methods are proposed in literature [3]. A class of semi-

automatic methods uses the simple Differential Hebbian Learning law (DHL). Dickerson 

and Kosko proposed DHL to be applied in the learning process of FCM [52].  

The updating function of this learning process is based on the change of the 

values of weights of all edges on the FCM graph until the desired structure is found. 

Considering that value ΔCi, which is defined as the difference between the concept’s 

values in two successive states, ranges between -1 and 1, the Ci and Cj concept values 

increase or decrease only when ΔCi – ΔCj >0. Then, if one of the concept values 

decreases while the other increases. Generally speaking, the weights of outgoing edges 

for a given concept node are modified when the corresponding concept value changes. 

The weights are updated according to equation 3.8: 
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where t is the current iteration number, and a parameter n is chosen to ensure the 

learning coefficient Ci. This parameter is always positive and is usually equal to the 

number of iterations or generations of observed states used for learning. The results of the 

experiments performed using this learning method were very promising [143]. The main 

problem in this type of learning on one hand is that weights measure the causal-effect 
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strength between two concepts Ci, , Cj  , and thus take into consideration only these two 

and on the other hand it turned out that the learning process is highly sensitive to the 

order of data presentation. 

To overcome the above limitations, an extension to the DHL algorithm was 

proposed introducing new rules to update edge values [178]. This new algorithm, called 

Balanced Differential Algorithm (BDA), eliminates the drawback of the DHL method in 

which weight updating for an edge connecting two concepts (nodes) depends only on the 

values of these two specific concepts. In BDA, by contrast, during the learning process 

weights are updated taking into account all concept values that change at the same time. 

This means that the formula for calculating eij(t+1) takes into consideration not only the 

changes ΔCi and ΔCj but also the changes in all other concepts if they occur at the same 

iteration and in the same direction. The BDA algorithm was applied to FCM models 

which use bivalent transformation function, based on historical data consisting of a 

sequence of state vectors. The goal was to develop FCM that is able to generate identical 

sequence of state vectors given the same initial state vector.  

Another method based on Hebbian learning was proposed in 2003 by 

Papageorgiou et al. who developed an algorithm, called Nonlinear Hebbian Learning 

(NHL) [143]. The main contribution of this method is a nonlinear extension to the basic 

Hebbian rule, using a semi-automated approach, since it requires initial human 

intervention. The main idea behind this method is to update weights associated only with 

edges that are initially suggested by expert(s), i.e. non-zero weights. Additionally, the 

experts have to indicate the signs for each non-zero weight according to its physical 

interpretation. Weight values are updated at the same time, yet they bear fixed signs for 

the entire learning process. As a result, the NHL algorithm allows obtaining models that 

retain their structure, which is enforced by the expert(s), but at the same time it requires 

human intervention before the learning process starts. 

Finally, in 2003 Mateou and Andreou developed a hybrid methodology offering a 

solution to the problem of the participation of the weights in the forecasting process 

[118]. This problem is solved through the introduction of Genetic Algorithms which 

produce a set of solutions and new weights following a strategy change. The 

methodology has two stages, the first one being the consideration of expert judgment 
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under a semi-automatic method and the second involving the recalculation the of weight 

matrix via a Genetic Algorithm as a fully automated method [90]. The advantage of this 

methodology is that it is based on experts for the development of the model’s initial 

condition which reflects the current environment describing a real world problem thus 

ensuring the reliability and credibility of the model. Then the experts are disengaged from 

the process and an automatic method performs forecasting through the development of a 

number of scenarios [66]. Since 2003 this methodology as part of this Phd work was 

developed in such a way to constitute a complete methodology of the new category of 

Intelligent Decision Support Systems.  The different steps of this development is fully 

explained and demonstrated in chapter 4. 

 
3.4 Overview of FCM and applications  
 
Due to enormous increase of research work related to FCM theory, we decided to 

present also studies that are not confined to the period prior to this thesis, but also to 

make an overview of FCM applications up-to-date so as to give a more complete and 

comprehensive picture of current research trends.  In this section we briefly describe or 

make reference to selected studies and applications on Fuzzy Cognitive Maps [68]. At 

present, there are several applications in different domains and new studies (dynamical 

characteristics, learning procedures, etc.) aiming to improve the performance of FCMs 

[146]. The number of applications and their diversity indicate that FCMs are indeed very 

promising. In fact, the encoding of knowledge in FCMs is a very important issue 

examined by researchers [147]. The notion of “time” is also very important for dynamic 

systems and requires additional research, whiles the automated construction of FCMs, is 

a new and growing field [34]. 

Lee et al. [106] suggested a FCM methodology that may be used by decision 

makers to understand the parameters influencing complex dynamics associated with 

certain strategic goal related environmental factors [60]. The main issue was the 

development of a cognitive causal knowledge to identify those factors relevant to the 

strategic goals being considered. They proposed the classification of environments into 

three categories: Uncontrollable, Semi-controllable and Controllable.  
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Carlsson and Fuller in their work [38] proposed that the theory of strategic 

management, using the Fuzzy Cognitive Maps approach, can be represented with a 

“Hyper-knowledge based support system”, consisting of a set of interrelated concepts.  

More precisely they proposed a hyper-knowledge support system using Adaptive FCM in 

which during the adaptation process a system changes its operation in a dynamically 

changing environment [52].  

An indication, to which extent the FCM is in balance, is given by the notion of the 

Balance Degree. In case that some strong paths between the same nodes are of different 

signs then the system has some strong possibilities to be unbalanced. To identify if a 

FCM is imbalanced two methods were proposed. The first one uses the principle of the 

shortest path between two nodes and the total effect of the sign of the shortest path. In the 

second one, Tsadiras and Margaritis introduce a new approach for measuring the balance 

degree of FCM, stating that “the sign of the total effect should be the sign of the most 

important path where the most important path is the one that passes through the most 

important nodes” [172]. 

Tsadiras and Margaritis [173] also addressed the problem of the natural behaviour 

of a node. The concept node can be imagined as a living entity (cell) that is positively or 

negatively activated and can be influenced by cells in its neighborhood. The natural 

behaviour for that cell would be to lose some of its activation when there is no 

stimulation to maintain the activation. They introduced Certainty Neuron FCMs [174] 

that can be defined as a neuron having the new activation level depending not only on the 

sum of weight influences that it receives but also on their previous state. While the 

classical FCMs allows two values for the activation function of FCM [0,1] the Certainty 

Neuron FCM  may allow any value within the interval of -1 to +1.  

Another work has been presented by Stylios and Groumbos [159] related to the 

use of FCMs in Control Systems. Control systems are an interesting area of industry that 

FCMs can handle specific types of problems. They proposed a new methodology for 

modelling the supervision of a complex control system using Fuzzy Cognitive Maps [70]. 

This methodology uses a two-level structure where the FCM is the upper level for more 

complicated supervisory control of manufacturing systems and the other is the control 

system itself.  In another work Stylios and Groumbos addressed the issue of modeling 
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large scale complex systems [158], while M. Mohammadian proposed a Self-Learning 

Hierarchical Fuzzy Logic for Guidance and Control of Multirobot Systems [132]. 

During the past few years a lot of research has been devoted to different FCM 

applications. FCMs are applicable for modelling scientific, political and social problems 

[171]. The implementation of FCMs for modelling mobile robot motion, in computer 

assisted learning check, and the extent to which students understand their lessons are just 

a few scientific applications of FCMs [161].  In addition, introducing FCMs to the public 

business can be used for strategic planning [87], while in economics exchange rate [9] 

and stock investment [108]; FCMs may support the use of game theory in more complex 

settings [96]. Some other important applications where FCMs are used is business 

performance [193], the designing of hybrid models for complex systems, studies related 

to virtual world [144], advanced robotics, assessing business performance [86], diagnosis 

problem [64], fault diagnosis  problems [106], radiation therapy [142], Fuzzy PI+ D 

controller [110], Pattern recognition [187], financial modelling [134], prediction of 

interest rate [94], diagnosis of bone diseases [185]. 

It is important to mention that FCM models have also been applied in politics and 

particularly in crisis management problems and modelling of political, issues which is a 

very sensitive and demanding area.  Tsadiras and Margaritis created a dynamic model of 

the Former Yugoslavian Republic of Macedonia (FYROM) Crisis in March 2001 [170].  

Neocleous and Schizas studied the political dynamics of a Fuzzy Cognitive model 

in the case of the Cyprus problem [138]. The system that has been developed was used to 

study the effects of a change in the parameter influencing the solution of the Cyprus 

problem in relation to the stability and growth of some other parameters.   

Mateou et. al created several political models examining the possibilities of a 

solution to the Cyprus issue during the last five years, starting from 2002 and concluding 

with Cyprus obtaining full EU membership status [117]. Additional issues considered 

have been the S300 crisis in 2003 and the possibilities of a solution according to the 

provisions of the Annan plan [11]. The results derived were very promising and the 

methodology developed aims at a new category of Intelligent Decision Support Systems 

[115]. 
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4.1 Research challenges – Open issues  
 

When this research was initiated, different objectives were set out. Entering deeply in the 

area of Fuzzy Cognitive Maps and working to develop a new category of Intelligent 

Decision Support Systems [39] applied in problems with a very high degree of 

uncertainty were among the first objectives.  

One of the aims of chapter 3 was to present the recent advances in the theory of 

fuzzy cognitive maps, the work of other researches and some applications of FCM. 

Currently, several applications in different domains and studies are in progress to 

improve the performance of Fuzzy Cognitive Maps (dynamical characteristics, learning 

procedures, etc) [108]. In this chapter a more detailed explanation of the development of 

a new Intelligent Decision Support System will be given [76] using as an inference 

engine the Fuzzy Cognitive Maps approach. The following sections describe the major 

drawbacks of FCMs and offer a brief discussion on how these drawbacks may be 

addressed and tackled. We start with presenting the FCM weaknesses and the solutions 

given in the context of the present thesis.  
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4.1.1 The inability of FCMs to encode linguistic variables in a Fuzzy 
Knowledge Base 

 
A FCM can avoid many of the knowledge extraction problems which are usually posed 

by rule based systems, by integrating with a Fuzzy Knowledge Base (FCM) [41].  The 

classical knowledge representation in expert systems is made through a decision tree.  

The most difficult part when designing a Fuzzy System is knowledge acquisition and 

representation via fuzzy values that may then be used as input to model a real-world 

problem [21]. To the best of our knowledge there is currently no systematic way of 

constructing and utilizing a FKB that could complement the modeling framework of 

FCMs, by enabling it to translate fuzzy knowledge on key issues of a problem to 

numerical values and vice-versa [101].  

The absence of a FKB in FCMs was due to the lack of linguistic encoding in the 

fuzzification and defuzzification processes, something which made inference very 

difficult or even impossible without the help of programmers. The construction of the 

FKB is primarily based on producing fuzzy information provided by a group of experts 

[33] which is utilized to identify and assess the significance of the various concepts 

describing a problem under study and define the relations among them. Based on this 

information, the various activation levels of the FCM concepts, which are used to model 

the specific problem, are classified, labeled, coded and stored in the form of a Fuzzy 

Knowledge Based System. When the FKB is introduced in the system the experts may be 

automatically informed about the results without the need to transform numbers in 

linguistic form understandable to anyone. This improvement is a very important step in 

the development of a system that could be used also by domain experts. Part of this thesis 

was devoted to this issue, achieving to provide a system that combines numerical 

information describing activation levels and weights calculated during the interaction 

cycles of the model with linguistic values of the fuzzy knowledge representation 

reflecting the behavior of the system under study. In our FCM extension the number of 

linguistic variables depends on the complexity of the problem.  The linguistic sample is 

encoded directly in a numerical matrix using an uncertainty fuzzy distribution and is 

substantially reduced to a scalar form [13].  
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4.1.2 A Weakness in the forecasting process: The presence of weights in the 
simulation experiments 

 
When we are dealing with forecasting with FCMs we come across two weak points: The 

first involves the invariability of the weights, which leaves only the activation levels to 

participate in the configuration of a given problem. The second lies with the inability of 

the method to model a certain situation by performing all possible computational 

simulations following the change of a certain weight or group of weights. We addressed 

these issues by combining FCMs with Genetic Algorithms (GAs) [90], and the weak 

points were resolved, thus creating an Evolutionary Fuzzy Cognitive Map hybrid model 

able to perform forecasting activities, something that was not possible in the past. More 

specifically, the hybrid model was the solution to the above limitations expecting to 

contribute to the effectiveness of decision-making. As the main part of this research, the 

hybrid model was first proposed in [14] and validated in real world political problems. 

During this validation process another weak point was identified when multiple scenario 

analysis was involved. The methodology was unable to support multi-objective decision-

making due to the fact that the GA could compute a weight matrix only for one particular 

concept. Thus, the methodology was further improved, to overcome the above weakness 

based on a new Genetic Algorithm specially designed to support a multi-objective 

decision-making environment [120]. FCM hybrid models are expected to contribute to 

the effectiveness of decision-making by defining for each concept the desired activation 

level, achieved with a certain set of weights evolved by the GA. When multiple scenario 

analysis is involved, the methodology will be able to support multi-objective decision-

making. 

 
4.1.3 The inability of FCMs to handle large-scale problems 

 
Modelling complex systems in an effective way is very difficult, especially when trying 

to formulate a mathematical model which is very costly to design and difficult to adopt in 

a new environment. None of the current FCM approaches has been tested and proved as 

capable to handle models consisting of a large number of concepts. These approaches 

were applied only to relatively small models, i.e. consisting of up to ten nodes.  
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In a given problem consisting of a rich number concepts, it is very difficult or even 

impossible to create a single map and identify each interaction between concepts. This is 

exactly what the present research aspired also to tackle, by proposing a new methodology 

using Multi-Layer Fuzzy Cognitive Maps to handle the complexity of such a problem 

[121]. The layered structure, along with a new algorithm named ML-FCM, were 

designed and proposed to serve the above methodology. The purpose of the new 

algorithm was to form layered Fuzzy Cognitive Maps in a hierarchical structure, to 

compute the activations levels of the children FCMs in each layer and to update the 

activation list of the decomposed father FCM in the upper layer.  

The essence of the methodology lays with grouping a number of concepts in a 

way that each group is associated with a concept of interest in the upper level, which 

corresponds to a crucial, complex parameter of the system. The group of concepts creates 

logically a “local” FCM, which is dedicated to the concept of interest properly expanded 

for further analysis. This grouping may be performed for a number of concepts of interest 

and may decompose a concept using a stepwise approach. Each step gives birth to a new 

discrete level, which includes in its turn a new FCM corresponding to an expanded form 

of the central concept in the previous level. 

The international literature includes some studies and applications of FCM in 

scientific, political and social problems (see chapter 3) [22] but not in large complicated 

issues like the solution of the Cyprus issue [12]. The Cyprus issue has been a source of 

international discussions and friction between Cyprus, Greece and Turkey. The Annan 

Plan, as it was shaped in 2004 and rejected by Greek Cypriots, was the basic for 

designing a complicated FCM model to be used as a validation to the Multilayer 

methodology. We believe that this application, using a novel software tool especially 

designed for this purpose, is among the first (or even the only) complete application in 

the field.  

 
4.1.4 The limit cycle phenomenon 

 
In cases where a dynamic system like a FCM reaches a limit cycle (LC), decision-making 

is practically impossible [69]. This research also deals with the phenomenon of limit 
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cycle and proposes an extension of FCMs aiming at increasing their reliability by 

overcoming the weakness realized in cases of limit cycle behaviour. 

The limit cycle phenomenon results from a certain combination of weight values 

in a specific FCM, which drive the map away from reaching equilibrium. The main 

reason for this phenomenon is a set of weight value(s), that, when combined with the rest 

of the weights connecting concepts form positive or negative cycles in the FCM (loops 

starting and ending to the same node) and give rise to a limit cycle.  

Two approaches are suggested to handle the limit cycle phenomenon. The first 

one is to design an evolutionary algorithm based on the correction of the weight matrix 

the origin of which is responsible for the limit cycle [123]. The system traces the 

presence of a limit cycle or chaotic behaviour [72] and searches the weight matrix using 

evolutionary techniques to identify which weights or group of weights are responsible for 

the cause of limit cycle. The second approach to handle this phenomenon is a 

defuzzification method applicable to the limit cycle behaviour [15]. The proposed method 

calculates the mean value of the levels that fluctuate on a limit cycle and evaluates the 

reliability of the corresponding results. 

 
4.1.5 Creation of new category of Computational Intelligent Decision 

Support Systems (CI-DSS) 
 
Decision makers and policy proponents face serious difficulties when they have to design 

dynamic systems because it requires special knowledge outside their domain of interest. 

In addition, formulating a mathematical model may be difficult, costly and even 

impossible for some of them. Numerical data may be hard to be transformed in a 

linguistic form.  In order to understand a system an expert may need to deal with natural 

language arguments [191]. Our research work moves along this direction aiming to built 

such a system that will be easier to use by an expert, and will also be easy to modify and 

adopt in a changing environment. What is also important to emphasise is the 

interpretation of the results which are self explanatory without the need to transform 

mathematical values into natural language.  

The final research aim of this thesis is to propose a new Computational Intelligent 

Decision Support System (CI-DSS), extending  the concept of a typical DSS by adding 
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Artificial Intelligence techniques as reasoning systems, natural language processing, 

knowledge representation etc. These techniques use the CI-DSS terminology [60] and 

include genetic algorithms, neural computing and fuzzy logic [31].  

 
4.2 Initiating the problem  

 
This section provides a detailed description of the first part of the research work 

conducted in this thesis. It starts with the static analysis of a given real-world problem, 

then the dynamic analysis is presented and the various improvements and contributions to 

this sub-area work are presented in a detailed and comprehensive way.   

 

4.2.1 Static Analysis and dynamic models  
 

In every FCM model, the dynamic behavior should be measured in order to 

identify its density [100]. This is achieved through the static analysis which is based on 

studying the characteristics of the weighted directed graph that represents the model. One 

way to receive an insight of the behavior of the model is by calculating its density. Basic 

analysis of the FCM structure includes the number of concepts (N) and the maximum 

number of connections (relationships) (R). The density (D) is an index of the degree of 

connectivity, calculated as: 

2N
RD =

      4.1 

Density is very useful indication of the complexity of a dynamic model. High 

density indicates increased complexity of the problem the model represents. Typical 

values of density are in the interval [0.05, 0.3]. Equation 4.1 assumes that concepts are 

allowed to have a causal effect on them.  

A higher density indicates a view which recognizes more relationships among 

concepts. The types of concepts included and their relative role in FCM are also 

important in detecting differences among views. For any concept Ci, the in-degree idi, is 

the sum of the weights affecting (feeding) a concept and is given by equation 4.2. The 

out-degree odi (equation 4.3) is the sum of the outgoing weights of a concept to other 

concepts connecting it to them.  
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The in-degree represents the increasing influence received concept i. The overall 

effect of the concept can then be represented by the total degree or centrality tdi, which is 

the sum of the in-degree and out-degree, calculated as: 

iii odidtd +=      4.4 

Centrality gives a measure of the significance of any concept in the system. This 

is based on the strength of both the effects it produces and receives [173]. The in-degree 

and out-degree also indicate the role of the concept in the system and concepts may be 

classified as being input (id > 0, od = 0), output (od > 0, id = 0) or normal variables (id 

and od > 0).   

 
4.2.2 Model related to the Cyprus Issue 

 
A FCM as an acyclic graph, with multiple cycles each representing a possible decision 

making path. Dynamic testing of an application requires a proper static analysis at an 

earlier stage in the development of the cycle, which allows finding and correcting 

problems that might be difficult to manage during the dynamic test phase. Through the 

static analysis of a problem, the verification of the correctness of the map and an analysis 

of the components and resources of an application is executed.  

 The main concepts that influenced the Cyprus problem in 2002 are used as an 

example to simplify things and describe better the key notions of the proposed approach. 

As shown in Table 4.1 sixteen concepts have been identified with the help of a team of 

domain experts. These experts have filled in a questionnaire concerning the causal 

relationships and the weights involved, i.e. the degree to which concepts influence each 

other, using a positive (+) or negative (-) number between zero and seven, to indicate the 

direction and intensity of the causal relationships between the concepts. For 

computational purposes, each number corresponded to the intensity of the casual 

relationship as follows: Absent 1 (0), very weak 2 (0.18), weak 3 (0.36), average 4 (0.54), 
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strong 5 (0.72), very strong 6 (0.9) and decisive 7 (1.0). The resulting general model 

(Figure 4.1) manually designed, focused on the instability/intensity in Cyprus (C1) as its 

central concept, with all model concepts interacting with one another. On the left hand 

side of Figure 4.1 the weights are presented in a form that indicates the link from the 

starting to the ending concept.    

 

 
Figure 4.1: The Cyprus issue FCM model 

 
Table 4.1: Description of the concepts employed in the Cyprus issue model  

 
C1 Instability /Intensity in Cyprus C9 Support to the Greek-Cypriot Army 

C2 Turkish Forces Actions in Cyprus C10 Reinforcement of the Greek Army 
C3 Turkish Threats C11 Reinforcement of the Turkish Army 
C4 Solution of the Cyprus Problem C12 Stability of the Greek Government 
C5 Greek Political Support C13 Stability of the Turkish Government 

C6 UN Talks for the Cyprus Problem C14 EU/ΝΑΤΟ Economic, Military and 
Political Support 

C7 Stability of the Cyprus Government C15 International Influence 
C8 Support to the Turkish Forces C16 Turkish-Cypriot Reactions 
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 The opinion of the experts, used to determine the weights of the different causal 

links and the initial activation level for each concept, was given a degree of reliability 

expressed by a value between 1 and 10 representing the relevance of the expert to the 

subject and his credibility [33]. Multiplying the degree of reliability of each expert by 

every weight determined by the expert and then averaging the two or more partial weight 

matrices resulted in the final weight matrix [163]. This is the usual practice followed for 

obtaining a normalized weight matrix, which can be considered more representative and 

objective as optimistic or pessimistic expert characteristics are better taken into 

consideration according to the degree of expertise. In this case study we employed two 

experts. The weight values of the normalized weight matrix for the Cyprus issue 

modelling attempt are given in Table 4.2.  

 
Table 4.2: Normalized weight matrix for the Cyprus issue model 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 

0.10 0.29 0.03 0.32 -0.06 0.10 -0.16 0.13 0.21 0.21 -0.23 

w12 w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 

-0.21 0.34 0.29 0.06 0.10 0.13 0.23 0.26 0.34 -0.19 0.26 

w23 w24 w25 w26 w27 w28 w30 w31 w32 w33 w34 

0.23 0.19 0.19 0.06 0.10 0.10 0.10 0.19 0.13 0.23 0.16 

w35 w36 w37 w38 w39 w40 w41 w42 w43 w44 w45 

0.16 0.13 -0.23 -0.19 0.23 0.26 0.19 0.13 0.13 -0.03 -0.03 

 

 As previously mentioned, the static analysis of the model focuses on the 

characteristics of the weighted arrows presented in the model using techniques from 

graph theory. The first important characteristic is that the density of the model according 

to equation 4.1 is 0.23 indicating that the model is in balance. Another important element 

to consider is the feedback cycles that exist in the graph. We consider a cycle in a FCM 

the path which starts from a concept, passes through other concepts and terminates at the 

concept it started.  Each cycle is accompanied by a sign, which is determined by the 

multiplication of the signs of the arrows participating in the cycle. If all signs in a cycle 

are positive, or the number of negative signs in the same cycle is even, then the behavior 
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of the entire cycle is positive. Positive cycles are those that behave as amplifiers: A 

positive change in the activation of a node in the cycle leads to a constant increase of the 

activation at the end of the cycle. The negative cycles on the other hand may neutralize 

the activation at the end of the cycle or even deactivate the cycle all together. This means 

that the activation level of the ending node will be decreased in cases in which an 

increase is introduced in the activation of any node in the cycle.  

The model of Figure 4.1 has a plethora of cycles: 59 cycles exist, 32 of which are 

positive and 27 negative. The close numbers of positive and negative cycles leads to 

characterizing the model as rather complex. An example of a positive cycle, the 

identification of which is performed manually, as this appears in Table 4.3, is C1+  

C11+ C8 + C2+ C1. This cycle begins with concept C1 (Instability/Intensity in 

Cyprus). Concept C1 exercises a positive effect on the Turkish Forces represented by 

concept C11 that any form of instability in Cyprus will lead to reinforcing the Turkish 

Army. C11 influences the support to the Turkish forces in Cyprus (C8) positively and 

this, in its turn, affects Turkish actions in Cyprus (C2) in a positive way. Concept C2 

leads to an increase of concept C1 revealing increased instability in Cyprus. It is easy to 

see that if this cycle persists, then instability in Cyprus will constantly increase. An 

example of a negative cycle as this appears in Table 4.3 is C1+ C5+ C6+ C4− C1. 

The cycle begins with concept C1, which exercises a positive effect on the concept 

representing the Greek Political Support (C5). This situation influences positively the UN 

talks for the Cyprus problem (C6), which in its turn affects the solution of the Cyprus 

Problem (C4) favorably, while C4 influences the Instability in Cyprus adversely. Via this 

cycle the Instability in Cyprus will constantly decrease if a positive change in the 

activation of any node in the cycle takes place.  

 The examples that follow attempt to show the effect of a weight changing 

gradually from negative to positive; weight w12 from its negative value given by the 

experts is changed to its positive equivalent, hence we expect a modification in the cycle 

status of the model as follows: The negative effect of concept C4 (Solution of the Cyprus 

Problem) on concept C1 (Instability in Cyprus) expressed by w12 will now be altered to 

positive, expecting an increase of the intensity and instability in Cyprus as a consequence 

of a solution to the problem. Indeed, when weight w12 becomes positive the number of 
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positive cycles is greater than the number of the negative ones (now 33 positive and 26 

negative cycles) meaning that an augmentative tendency is amplified in the model. The 

point of this example is that the intensity will not necessarily recede in the case in which 

the solution of the Cyprus problem promotes it.  

 
           Table 4.3: Examples of cycles starting and ending at concept C1 

C1 w1 + C5 w13 + C2 w9 + C1    

C1 w1 + C5 w14 + C3 w10 + C1    

C1 w2 + C6 w17 + C4 w12 - C1    

C1 w1 + C5 w15 + C4 w12 - C1    

C1 w1 + C5 w16 + C6 w17 + C4 w12 - C1 

C1 w1 + C5 w14 + C3 w11 - C4 w12 - C1 

C1 w3 - C10 w23 + C9 w22 + C4 w12 - C1 

C1 w4 + C11 w24 + C8 w21 - C4 w12 - C1 

C1 w4 + C11 w24 + C8 w20 + C2 w9 + C1 

C1 w5 - C12 w25 + C5 w13 + C2 w9 + C1 

C1 w5 - C12 w25 + C5 w14 + C3 w10 + C1 

C1 w5 - C12 w26 + C7 w18 + C4 w12 - C1 

 

 A second example of static analysis involves a manual change of the positive sign 

of weight w10, which links the concept of the Turkish Threats (C3) to that of 

Instability/Intensity in Cyprus (C1). A negative w10, involving constructive Turkish 

statements rather than threats (C3) will lead to counting 28 positive and 31 negative 

cycles, which suggests a clear receding tendency in the model and a decrease of the 

intensity in Cyprus, a development that contributes to the solution of the Cyprus issue.  

The problem with static analysis, though, is that it involves a large number of restrictions 

while it is very difficult to identify which of the numerous cycles in a model, 59 in our 

case, will finally prevail and which are the ones with the strongest effect on the model. In 

other words, calculating the interactions between the cycles, altering the weights each 

time a new scenario is introduced and trying to identify which concept(s) and which 

weight(s) will eventually prevail can be very complicated even for models with a much 
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smaller number of concepts than the one currently studied. These problems can be 

overcome by the use of dynamic analysis based on computational simulations. This issue 

is covered in the next section.  

 
4.3   Dynamic analysis of a model related to the Cyprus issue 

 
 The dynamic analysis involves using our model in the context of a scenario 

approach as a technique for strategic management and decision-making. In broad terms a 

scenario is taken to describe some feasible future state of the environment under study by 

modeling the dynamic sequence of interacting events, conditions and changes required to 

reach that state. Such an approach is particularly suitable for the evaluation and selection 

of strategies, decision-making and identification of future possibilities in face of 

uncertainties.   

4.3.1 Model initialization  
 
 The first step of dynamic analysis is the initialization of the model meaning that 

the model is stabilized and the results reflects the initial condition of a given problem. In 

the example of Figure 4.1 the new activation levels of the sixteen concepts are calculated 

with equation 3.5 of chapter 3, following which the model can simmer down to either a 

state of coverage or when it reaches in a final immutable situation, which can be either an 

equilibrium, or a limit cycle, or even chaos. Using as input the weights (Wi) and the 

activation levels (Ai) defined by the experts we allow the concepts of the system to 

interact. The activation levels calculated after 250 iterations are presented in Table 4.4, 

while Figure 4.2 indicates that the model reached an equilibrium state. 

Table 4.4: Activation levels (Ai) calculated by the Cyprus issue  

C1 C2 C3 C4 C5 C6 C7 C8 

0.69 0.59 0.75 -0.59 0.79 -0.44 -0.74 0.78 

C9 C10 C11 C12 C13 C14 C15 C16 

-0.65 -0.62 0.60 0.30 0.67 0.56 -0.81 0.54 
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Figure 4.2:  Stabilization of the model at equilibrium after 250 iterations 

 
4.3.2 The Politics of the initial state  

 
 After running the FCM, the model outlined the current political situation of 

Cyprus as follows: The current activation level of concept C1, which is the Instability in 

Cyprus, was found to be at a high level (A1=0.69), influenced by the Turkish Actions in 

Cyprus (C2). This assumed a value of A2=0.59, a rather high value explained by the 

continuous support and reinforcement of the Turkish troops in Cyprus by Turkey and the 

continuous violations of the Greek and Cypriot FIR. The instability is also influenced by 

the Turkish threats (C3) with A3=0.75, a remarkably high figure given the continuing 

threats expressed by various Turkish officials following the Cyprus full EU membership. 

The third concept which relates to the instability in the island is the solution of the 

Cyprus problem (C4) with A4=-0.59, a concept inversely related to the intensity in Cyprus 

as long as the Cyprus problem remains unsolved. Concept C15 which is the International 

Influence comes up with an activation level of A15=-0.81, indicating that the current 

status leaves a lot of room for pressure upon the factors that contribute to the decrease of 

the instability in Cyprus . The UN talks on the Cyprus problem represented by C6 bear a 

negative activation level (A6=-0.44), as it appears that the UN alone is not in a position to 

contribute to the solution of the Cyprus problem effectively. A final concept that appears 
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to exercise an important positive effect is the NATO/EU economic, military and political 

support represented as C14, with an activation level of A14=0.56 

A straightforward conclusion drawn on the basis of these results is that there is a high 

level of instability in Cyprus, suggesting that as things are described at this initial state a 

solution to the problem is just a remote possibility. These results reflected exactly the 

political situation in 2002.  

 Scenario analysis is a process of analyzing possible future events by considering 

different possible outcomes. Here it is used in to indicate the inability of static analysis to 

perform dynamic and reliable scenarios due to the fact that only one or a limited number 

of weights take part in this process. It can be difficult to foresee what the future holds in 

an FCM system using only static analysis due to the fact that FCM works in discrete steps 

for a number of iterations. To verify the above indicative scenarios are given below.  

4.3.3 Solving of the Cyprus problem: First scenario  
 
This scenario involves differentiating the probability of solution of the Cyprus problem 

and changing the weight w12, which is the causal link between concepts C4 and C1, from 

negative to positive. The value of the weight w12 has been changed from -0.21 to the 

strongly positive value of 0.7. The meaning of this change is that the solution to the 

Cyprus problem (C4) is expected to contribute (strongly as the selected value of 0.7 

indicates) to the climate of intensity promoting stability in Cyprus (C1). The calculated 

activation levels reflecting this scenario are given in Table 4.5 and presented graphically 

in Figure 4.3, indicating that the model again reaches equilibrium.  

 

Table 4.5: Scenario 1: Calculated activation levels (Ai) for W12=0.7 

C1 C2 C3 C4 C5 C6 C7 C8 

0.67 0.58 -0.19 0.69 0.72 0.48 0.77 0.46 

C9 C10 C11 C12 C13 C14 C15 C16 

0.68 0.63 0.47 0.73 0.48 0.85 0.73 0.42 

 
 
 

 



 59
 

 
Figure 4.3: Scenario 1: Equilibrium for W12=0.7                                                         

     
 The first conclusion drawn based on this scenario is that there is a considerable 

chance of a solution to the Cyprus problem, given that the activation level of concept C4 

has assumed a quite substantial positive value (A4=0.69). This calls, however, for a 

requirement that the Turkish side changes its attitude from being aggressive to 

contributing through a series of positive statements to solving the Cyprus problem. This 

radical change of attitude is reflected in the dramatic change of the activation level of 

concept C3 (Turkish threats) down to A3=-0.19. Moreover, it is interesting to mention 

that the rise of the activation level of the talks under the UN auspices (C6) to A6 =0.48 

indicates that such talks can be quite helpful and must be continued, together, of course, 

with the exercise of what we term “International Influence” (C15). The sign of the latter 

changes and its value becomes strongly positive, indicating its decisive effect upon the 

possibility of tracing a solution of the Cyprus Problem. Likewise, concept C14 

representing the political, economic and military support by the NATO and the EU, 

assumes an increased activation level of A14=0.85. This last conclusion points out the 

possibilities that may be offered by the contribution of these two powerful entities on 

reaching a solution to the Cyprus issue. Concerning the government stability in all three 

countries directly involved in this issue (C7, C12, C13) the activation levels are 

considerably high, indicating its essentiality in all cases.  
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A further interesting finding in this scenario concerns the reinforcement of the 

Greek Army (C10) and the military support to the Greek-Cypriots (C9), that if the Greek 

Army is strengthened (A10=0.63) wile more military support is given to the Greek-

Cypriot Army (A9=0.68), then this may support a solution of the Cyprus issue in the 

context of a “si vis pacem para bellum” policy (the Latin for “if you want peace prepare 

for war”). It seems that the unstable environment in Cyprus will continue prevailing 

given its high activation level (A1=0.67), combined with an almost equally high 

activation level of the Turkish military activity on the island (A2=0.58). This simply 

means that a solution to the Cyprus issue will not necessarily lead to stability, the latter 

being adversely affected by the strong presence of the Turkish troops on the island.  It is 

necessary to recall here that the results reflected the 2002 political situation in Cyprus. 

 
4.3.4 Solution of the Cyprus problem: Second scenario 

 
To face the adverse repercussions predicted by the first scenario we have resorted to 

asking the model to forecast the political impact in cases in which all Turkish forces 

activity is neutralised. This is introduced by setting the weight w9, which represents the 

causal link between concepts C2 and C1, to zero. As a result the model has reached a 

mixed state of equilibrium and limit cycles as depicted in Figure 4.4. 

 
Figure 4.4: Scenario 2: Limit Cycle and equilibrium for W9=0.0        
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It is impressive to notice in Table 4.6 that the relevant activation level has turned 

to negative (A1=-0.11) meaning that there are chances for attaining a stable equilibrium in 

Cyprus after all! However, combining the concept solution of the Cyprus Problem (C4) 

with an activation level of A4=0.07 leads to a neutral environment implying that in this 

scenario the Cyprus issue appears to be “frozen” possibly due to the absence of events 

causing a general instability that could trigger a process leading “wake-up” the public 

opinion and give the necessary momentum to the settlement of the problem. This leads to 

a conclusion very much similar to that of the previous scenario, i.e. that the solution of 

the Cyprus problem may not contribute to the stability in Cyprus meaning that after the 

solution it may be a period that the two communities will be in conflict until a mutual 

trust will be built. Regarding the International Influence (C15), this assumes a lower 

activation level compared to the first scenario (A15=0.34) Generally speaking, the main 

conclusion of this scenario refers to the tendency of most concepts to assume a neutral 

attitude, given the absence of actions on behalf of the Turkish troops in Cyprus.  

 
Table 4.6: Scenario 2: Final activation levels (Ai) for W9=0.0 

C1 C2 C3 C4 C5 C6 C7 C8 

-0.11 0.00 0.17 0.07 -0.19 0.06 0.15 -0.09 

C9 C10 C11 C12 C13 C14 C15 C16 

0.15 0.07 0.02 0.14 0.12 0.48 0.34 -0.05 

 

The conclusions drawn above have been reached to their largest extent on the basis of 

quantitative analysis in order to avoid personal evaluations and normative biases. The 

method, as previously described (section 4.1.2), suffers from two main limitations: The 

invariability of the weights to participate in the process and the inability of the method to 

model a certain political situation by performing all possible computational simulations 

following the change of a certain weight or group of weights. The GA part will be 

responsible for developing the weight matrix attempting to calculate the optimal set of 

weights that satisfy a predefined activation level for a specific concept. The use of the 

GA will allow exploiting the potentials of forecasting leading some times to entirely 

unexpected results.   
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4.4  Hybrid model  
 

4.4.1  Introduction to evolutionary strategy  
 
The objective of the Genetically Evolved Fuzzy Cognitive Map (GE-FCM), is to 

overcome the main weakness of FCMs, which relates to the recalculation of the weights 

corresponding to each concept every time a new strategy is adopted [10]. This approach 

aims at solving these problems by combining FCMs with Genetic Algorithms (GAs) thus 

creating a hybrid model much more suitable, bearing in mind the complication of real 

world problems. In this context, the FCM part of the algorithm computes the final 

activation levels given the weights and relationships between concepts, while the GA part 

develops the weight matrix attempting to find the optimal set of weights that satisfy a 

predefined activation level for a specific concept. The GA concepts are very appealing 

since they offer the optimal solution without a problem-solving strategy, once the 

requirements are defined [154]. It is interesting to point out that the hybrid approach is 

reflected in both the implementation of the GA and in the methodology applied for 

solving the problem. In fact, the reasoning behind this hybrid methodology is to use it for 

obtaining the optimal values of the weights corresponding to the variables of the model 

rather than the optimal values of the variables themselves. 

More specifically, the GA evolves a population of individuals each of which is 

encoded as a weight matrix structure describing the degree of causal relationships 

between the participating concepts [37]. The initial generation contains weights matrices 

with random values. The evolution of the individuals is performed with the help of the 

FCM model, which computes the final activation levels of the concepts. The activation 

level of a certain concept in focus denoted by ALd,i  is used to calculate the fitness of each 

individual-weight matrix Wi according to the following equation: 

 
Fitness (Wi)=1/(1-abs(ALd,i – mean50(ALa,i))         4.5 

 
where ALd,i is the target (desired) value of the activation level for the concept in focus Ci 

and mean50(ALa,i) is the mean value of the last fifty actual activation levels of concept Ci 

as these are computed by the FCM. It is clear from equation 4.5 that the closer to the 

target value this mean is, the more appropriate the weight matrix. In fact, the fitness 
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function uses the average values of the last fifty activation levels to account for limit-

cycles, that is, a state in which the ALd,i exhibit periodic fluctuations and do not stabilize 

at equilibrium values as previously described. Thus, if the activation level of the concept 

in focus reaches equilibrium then the corresponding weight matrix in this case can be 

considered to be more appropriate compared to another individual-matrix that has 

resulted to limit cycle [69]. 

Genetic algorithms are used to find optimized values for the membership function 

parameters, particularly when manual selection of their values becomes difficult or takes 

too much time to attain [18]. Using GAs for the purpose of enhancing the learning 

capabilities of neural networks has been suggested since the early days of the back-

propagation learning algorithm. But it was only recently that powerful and more formal 

algorithms have been developed for integrating the optimization tools [150] of GAs with 

the learning schemes of a large class of neural networks [67]. 

Table 4.7: The Cyprus issue: Weight matrix  

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 

0.10 0.29 0.03 0.32 -0.06 0.10 -0.16 0.13 0.21 0.21 -0.23 -0.21 

w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 

0.34 0.29 0.06 0.10 0.13 0.23 0.26 0.34 -0.19 0.26 0.23 0.19 

w25 w26 w27 w28 w29 w30 w31 w32 w33 w34 w35 w36 

0.19 0.06 0.10 0.10 0.16 0.10 0.19 0.13 0.23 0.16 0.16 0.13 

w37 w38 w39 w40 w41 w42 w43 w44 w45    

-0.23 -0.19 0.23 0.26 0.19 0.13 0.13 -0.03 -0.03    

 

 All simulations conducted in the next section use the following variable values: 

The population size has been set equal to 100 and the number of generations equal to 

400. The weight values were initialized in the range [-1.0, 1.0] while the probability of 

applying the genetic operator of crossover was set to 0.25 and that of mutation to 0.01. 
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4.4.2 Experimental results 
 

New simulations for the Cyprus issue case study were performed as follows: The first 

step involved the calculation of the activation levels by the FCM model (Table 4.4) at 

equilibrium using the initial weight matrix shown in Table 4.7. The next step simulated 

different scenarios by asking the model to reach a desirable activation level for a certain 

concept the policy–maker focuses on. The GE-FCM model calculated the new optimal 

weight matrix, which was then used by the FCM model to recalculate the new activation 

levels of the 16 concepts participating in the model of the Cyprus issue [12]. In fact the 

recalculation of all weights that participate in the simulation process constitutes the most 

important difference between the GE-FCM and the simple FCM models. Its importance 

is underlined by the fact that the policy-makers will not base their decision only on 

experts’ evaluation, but also on the optimal weights that lead a concept to be activated to 

a certain predetermined degree. This means that decision-makers are able to introduce 

hypothetical cases which are represented by a target activation level for a certain concept 

in the model. Then the corresponding weights and activation levels for the rest of the 

concepts are studied. Based on this information, the policy-maker is in position to take 

decisions leading to the desired simulated solution and is to assess the consequences of 

such a decision. 

4.4.2.1 Scenario 1: An environment of increased instability 
 
Rising instability in Cyprus is introduced by increasing A1 from 0.69 (Table 4.4) to 0.95. 

The final activation levels of Table 4.10 were obtained using the optimal weights 

calculated by the GE-FCM listed in Table 4.8. As depicted in Figures 4.5 and 4.6, the 

model has reached equilibrium showing a reliable fitness. The simulated results pointed 

out that the cause of the increased instability in Cyprus (A1=0.88) are concepts C2 and 

C3, representing the Turkish provocative actions (w9=-0.75; A2=-0.75) and the Turkish 

threats (w10=-0.53; A3 =-0.59) respectively. The environment instability is further 

aggravated given the combination of the negative activation levels of C2 and C3 to the 

weights that link them with C1 which have turned from positive (Table 4.4), to negative 

(Table 4.9). The activation level of 0.76 assumed by C4 (solution of the Cyprus problem) 

can only contribute to this instability.  
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Table 4.8:  Increased instability (A1=0.95): GE-FCM optimal weight matrix   

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

0.89 0.90 0.98 -0.03 -0.19 -0.21 0.02 -0.15 -0.75 -0.53 0.18 0.81

w13 W14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24

0.05 -0.33 0.91 0.42 0.89 0.39 0.28 0.73 0.11 -0.59 -0.24 0.88

w25 W26 w27 w28 w29 w30 w31 w32 w33 w34 w35 w36

-0.76 -0.68 -0.37 -0.28 -0.40 0.32 -0.78 0.07 -0.84 -0.78 -0.69 0.35

w37 W38 w39 w40 w41 w42 w43 w44 w45    

-0.52 -0.49 0.71 -0.01 -0.50 -0.02 0.07 0.34 -0.04    

 

Table 4.9: Increased instability (A1=0.95):  GE-FCM’s AL with optimal weights 

C1 C2 C3 C4 C5 C6 C7 C8 

0.88 -0.75 -0.59 0.76 0.84 0.75 0.69 -0.67 

C9 C10 C11 C12 C13 C14 C15 C16 

-0.67 0.41 -0.72 -0.79 0.73 0.63 0.81 0.50 

 

      
      Figure 4.5:  Equilibrium for target concept A1 = 0.95 
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Figure 4.6:  Fitness evolution generations for target A1=0.95 

 

A further interesting point regards the consequences of a reduced support offered to the 

Turkish forces on the island, a possibility indicated by a decrease of the appropriate 

activation level down to A8=-0.67 from 0.78 and the results of which is a reduction of the 

provocative statements, threats and actions from the part of Turkey. It is important to 

point out that the effectiveness of reducing the support to the Turkish forces is revealed 

by the increase of the corresponding weight (w20) to twice its original value due to the 

reduction of the Turkish forces, as indicated by the relevant weights and activation levels. 

Concluding the experiments involving an unstable environment, it is interesting to 

observe that the pronounced activation level of the international influence (C15) has 

turned from negative to positive, while its impact upon solving the Cyprus problem (w39) 

has risen to three times as much as its baseline value, underlining the importance of the 

pressure exercised by international organizations or superpowers.   

 
4.4.2.2 Scenario 2:  How to solve the Cyprus problem 

 
This scenario examines the solution of the Cyprus problem in two ways: The first 

involves simulating the situation under which the potential of a solution to the problem is 

decreased, while the second investigates the scenery in case this potential is marginally 
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increased. In the former case the simulations were performed with a target activation 

level A4=-0.9, while in the latter case this level was equal to A4=-0.2.  

 
Table 4.10: Solving the Cyprus problem: GE-FCM optimal weight matrix for target     

A4= -0.9 
 
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 

0.43 -0.85 -0.98 0.98 -0.04 -0.82 0.63 -0.98 -0.81 -0.61 -0.70 -0.93

w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 

-0.23 -0.94 -0.44 -0.90 0.76 -0.79 -0.73 0.33 0.55 0.30 -0.81 -0.43

w25 w26 w27 w28 w29 w30 w31 w32 w33 w34 w35 w36 

0.57 -0.41 -0.58 -0.28 0.55 0.90 -0.40 0.39 -0.64 -0.96 -0.20 -0.76

w37 w38 w39 w40 w41 w42 w43 w44 w45    

-0.09 -0.21 0.81 0.63 0.20 0.99 -0.76 0.01 -0.22    

 

 

Table 4.11: Solving the Cyprus problem: GE-FCM Activation levels for target  A4= -0.9 

C1 C2 C3 C4 C5 C6 C7 C8 

0.93 -0.84 0.18 -0.86 0.89 -0.83 0.90 -0.84 

C9 C10 C11 C12 C13 C14 C15 C16 

-0.66 0.79 0.73 0.79 -0.75 -0.77 -0.83 -0.85 
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Figure 4.7:   Equilibrium for target A4 =-0.9 

 

 

   
Figure 4.8: Equilibrium for target A4 =-0.2 
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Table 4.12: Solving the Cyprus problem GE-FCM weight matrix for target A4=-0.2 

w1 w2 w3 w4 w5 w6 w7 W8 w9 w10 w11 w12

-0.81 0.27 0.76 0.27 -0.86 0.15 -0.09 0.96 0.75 -0.57 0.95 0.52

w13 w14 w15 w16 w17 w18 w19 W20 w21 w22 w23 w24

0.58 -0.15 0.41 -0.70 -0.64 -0.60 -0.52 0.33 -0.40 -0.93 -0.89 0.62

W25 w26 w27 w28 w29 w30 w31 W32 w33 w34 w35 w36

-0.10 -0.12 -0.79 0.69 0.53 -0.91 0.55 0.57 0.25 0.02 0.65 0.68

w37 w38 w39 w40 w41 w42 w43 W44 w45    

0.01 0.45 0.57 -0.62 -0.60 -0.12 -0.01 0.52 0.37    

 

Table 4.13: Solving the Cyprus problem: GE-FCM final activation levels for target    

A4=-0.2 

C1 C2 C3 C4 C5 C6 C7 C8 

-0.14 -0.28 -0.30 -0.21 -0.61 0.33 -0.14 -0.02 

C9 C10 C11 C12 C13 C14 C15 C16 

0.42 -0.57 -0.04 -0.47 -0.58 -0.72 -0.27 0.15 

  

Decreasing the activation level of C4 to –0.9 the GE-FCM yields the optimal weight 

matrix depicted in Table 4.10 which activates the concept almost to its equilibrium target 

value (C4=–0.86; Table 4.11, Figure 4.7). In this case concept’s interactions are the 

following: Intensity in Cyprus climbs to A1=0.93, while the Turkish hostile decrease to 

A2=-0.84 with the Turkish threats almost neutralized. This high level of intensity comes 

as a result of the negative A2 and the negative w9 linking C2 with C1, the multiplication 

of which contributes to increasing A1 to the previous directions. The same holds for A4 

and w12, linking C4 with C1, while the international influence (C15) is negatively 

activated (A15 =-0.83), thus affecting the solution to the Cyprus problem adversely given 

its positive link to C4. The Turkish government appears quite unstable (A13 =-0.75), while 

the Turkish army is substantially reinforced (A11=0.73). These levels are certainly 

expected to contribute to raising tension in the area, given the tendency of the Turkish 
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authorities to “export” their domestic economic, political and social problems in a crises 

form. 

 Turning to our second policy, setting the target A4=-0.2 seems to be more fruitful 

as the equilibrium values of the results indicate (Tables 4.12 and 4.13, Figure 4.8). While 

A4 rises to -0.21, intensity appears to be significantly decreased to the value of A1=-0.14, 

unlike the previous case, given the drop of both the level of the Turkish forces actions in 

Cyprus and that of the Turkish threats.   

 
4.4.2.3  Application of the hybrid model on a real case: The S-300 

crisis  
 Unlike the hypothetical cases examined thus far, the hybrid model is tested in an 

environment of a crisis between January 1997 and December 1998, namely that  of  the 

S–300 missiles, involving installation of such an efficient long-range ground to air 

missile on Cyprus that was considered a threat to Turkey, improving the effectiveness of 

the Greek and Cypriot armed forces in the context of the Integrated Defence Doctrine, 

while, in parallel, compelling Turkey to resort to purchasing expensive countermeasures 

to such an alleged threat.  

Table 4.14:  S-300 crisis weight values defined by the experts 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 

0.0 -0.1 0.0 0.0 0.0 -0.4 0.0 0.0 0.8 0.1 -0.3 -0.4 

w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 

0.0 0.1 0.1 0.1 0.2 0.0 0.1 0.1 -0.8 -0.1 0.2 0.2 

w25 w26 w27 w28 w29 w30 w31 w32 w33 w34 w35 w36 

0.0 0.1 0.0 0.25 -0.3 0.1 0.2 0.0 0.0 0.1 0.1 0.0 

w37 w38 w39 w40 w41 w42 w43 w44 w45    

-0.5 -0.3 0.3 0.9 -0.3 0.3 0.1 0.4 0.1    

 
The Greek side, in its turn, claimed that the installation of the S-300 would not be enough 

to shift the balance of power in the area to its favour, given that these missiles would be 

exposed to a sudden blow from the part of Turkey to which they would be able to 

respond only if they survived. In such a case, therefore, any form of destabilizing action 
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in the area would only come from the Turkish side, given that the role of the S-300 would 

have been purely defensive. The strong opposition to this purchase by the USA and Great 

Britain finally led to the installation of the missiles on the island of Crete and to the 

purchase of just a short-range ground to air system for Cyprus. 

Table 4.15: S-300 crisis: FCM calculated activation levels 

 C1 C2 C3 C4 C5 C6 C7 C8 

0.79 0.87 0.77 -0.77 -0.41 -0.63 -0.41 0.88 

C9 C10 C11 C12 C13 C14 C15 C16 

0.70 0.00 0.66 0.60 -0.71 0.58 -0.85 -0.27 

 

 In order to analyze the environment described above, we first simulated the S-300 

incident using the weight matrix presented in Table 4.14. The final activation levels of 

the sixteen concepts involved are shown in Table 4.15 and depicted graphically in Figure 

4.9 reflecting a picture characterised by increased tension (A1=0.79) and strong reactions 

and threats from the part of Turkey (A2=0.87 and A3=0.77 respectively). It is reminded 

that these threats included attacking and destroying the system once installed and was 

accompanied by sending F16 fighters to the occupied airport of Lefkoniko aiming at 

reinforcing the Turkish position on the island. In short, the results obtained recreate the 

atmosphere prevailing on the island during the actual crisis period, when the FIR 

violations, the reinforcement to the Turkish forces on the island and the intense 

diplomatic activity from the part of Turkey were culminating. These seem to lead to 

adverse repercussions as regards the possibilities of a solution to the Cyprus problem 

(A4=-0.77) and chances for peace talks (A6=-0.63), while both the Cypriot and the 

Turkish governments suffer destabilizing effects (A7=-0.41 and A13=-0.71 respectively), 

results which are strongly supported by historical evidence referring to the period under 

study. The incident, however, does not appear to affect the stability of the Greek 

government (A12=0.60), the support of which to the Greek-Cypriot army appears to be 

considerable (A9=0.70), as it has been the actual case. The support to the Turkish forces 

on the island is very strong (A8=0.88), a development sustained by the strength of the 

Turkish forces (A11=0.66). Finally, the international influence has affected the crisis 
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negatively (A15=-0.85) given that, at least indirectly, it encouraged Turkish 

aggressiveness by opposing the purchase of the S-300 system.  

 

 
Figure 4.9: Graphical representation of S-300 crisis baseline simulation  

 

 
Figure 4.10: Scenario 1: Tension reduction for the S-300 crisis 
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4.4.2.4 Coping with the S–300 crisis: Tension reduction  
 

 At this stage we requested the model to consider a 50% reduction of the intensity 

on the island, aiming at evaluating the extent to which it can reflect the climate prevailing 

on the island with the tension cooling down after December 1998. Τhe model has indeed 

reached the intensity-reduction target by attaining equilibrium at A1=0.37 (Table 4.17 and 

Figure 4.10). The role of the international influence, climbed from A15=-0.85 to A15=0.74 

indicating reluctance to approve the Turkish threats and actions in Cyprus that used to 

support a climate of tension, while its pressure upon the Cypriot side has also 

considerably contributed to the same direction. The latter is introduced in the model 

through the weight w40=0.27 (Table 4.16) which links the international influence C15 to 

the peace talks C6. The negative weight w39=-0.50 that links C15 with C4 (solution to 

the Cyprus issue) implies a decrease of the international support to the solution of the 

problem, something which reflects the shift of emphasis placed during the crisis period 

from solving the Cyprus problem to facing the S-300 crisis.  

 The reluctance of the Greek side to provide active military support to the 

installation of the S-300 on the island is reflected in the relevant zero activation level 

(A10=0.0), unlike that of the Cypriot National Guard, the strength of which had reached 

A9=0.8 revealing its adherence to the S-300 project. The Cypriot government itself does 

not seem to be confident enough about the decision to install the missiles, since its 

activation level drops to A7=-0.53, given the disagreement which took place between the 

military and the politicians over the issue. Finally, special attention should be drawn to 

w25 that links the stability of the Greek government (C12) to the Greek support to the 

Cyprus issue (C5), the weight linking the two assuming the impressive value of 0.99. 

This underlines the unanimity and confidence of the Greek side concerning the influence 

exercised upon Cyprus.  
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Table 4.16: Settling the S-300 crisis: GE-FCM optimal weight matrix for target A1=0.4 

w1 W2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 

0.10 0.60 -0.65 0.13 0.25 -0.24 -0.21 0.48 0.59 -0.70 -0.49 0.81 

W13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 

-0.63 -0.67 0.88 -0.41 -0.77 0.79 0.89 0.38 -0.53 -0.04 0.22 -0.32

w25 w26 w27 w28 w29 w30 w31 w32 w33 w34 w35 w36 

0.99 -0.20 0.80 0.88 -0.52 0.01 0.05 -0.47 -0.62 -0.67 0.88 0.55 

w37 w38 w39 w40 w41 w42 w43 w44 w45    

-0.73 -0.14 -0.50 0.27 -0.41 -0.13 -0.09 -0.41 -0.37    

 
           Table 4.17: Settling the S-300 crisis: Final activation levels for target A1=0.4 
 

C1 C2 C3 C4 C5 C6 C7 C8 
0.37 -0.53 -0.10 -0.29 0.44 0.49 -0.53 -0.53 
C9 C10 C11 C12 C13 C14 C15 C16 

0.80 0.00 0.50 0.58 0.12 0.32 0.74 0.12 
 
 So far we have demonstrated that using the proposed methodology decision-

makers are able to introduce hypothetical cases reflected through a target activation level 

for a certain concept in the model and study the corresponding weights and activation 

levels for the rest of the concepts compatible with the predetermined target activation 

level. Based on this information, the policy maker is then able to take decisions leading to 

the desired simulated solution.  Scenario analysis using only one concept is too simplistic 

a case. In most of the cases multiple scenarios are required because more than one 

condition may change at the same time.   

 

4.5 Multiple scenario analysis using Genetically Evolved FCMs 
 

4.5.1 Fitness function  
 

The purpose of the proposed methodology for planning and executing scenarios with two 

or more desired Activation Level (AL) values is to find a suitable weight matrix with 

which the FCM reaches these final AL values after a predefined number of iterative 
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computational steps thus satisfying a multi-objective scenario [120]. In this respect, the 

GA part of the GE-FCM is modified to a large extent so as to correspond to the demands 

and characteristics of FCMs scenario analysis more accurately in the light of its use in a 

multi-objective environment [37]. These modifications target at a quicker, more reliable 

and more efficient optimal or near-to-optimal solution [85].  

In our GA part each individual (chromosome) represents a specific weight matrix used by 

the FCM to provide the final activation values of the participating concepts in 

equilibrium state [35]. It is obvious that more than one target values can be used. The 

evaluation of each individual is performed using the following fitness function (F): 

F = 1/(abs(targetofAL1−(AL1))+abs(targetofAL2− (AL2)).... (abs(targetofALn−(ALn)))   4.6 

where, targetofALn  represent the desired values of specific ALs and ALn the actual values 

calculated by the FCM using the specific weight matrix-individual.  

The fitness value for each individual is always positive. The larger this number is the 

better the solution to the problem the matrix-individual offers.  

 The computation procedure of the GA starts with the random selection of the 

initial individuals (weight matrices). The evaluation of the fitness of each individual is 

performed after the FCM is run for a specific number of iterations. According to this 

calculated fitness value the most suitable individuals pass to the next generation and 

undergo crossover and mutation operations [130]. 

 
4.5.2 Crossover (recombination) and mutation  

 

 The GA executes a recombination for each couple of the fittest individuals as a 

result of which two offspring are produced. The technique we use is called 

intermediate recombination and it is ideal for real numbers [74]. Its main operation is 

based on the generation of a random value a in the range [−0.25, 1.25], which 

corresponds to the percentage of participation of each individual in the offspring. Each 

new value of the offspring’s weight is calculated by the following equation: 

               w new (x,y)= w1(x,y) · a + w2(x,y) · (1−a)                        4.7             
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where, w1(x,y) and w2(x,y) correspond to the weight value located at row x and column y 

of the weight matrix corresponding to  the first and second offspring respectively. 

Following the production of the offspring of the fittest individuals among the 

parents, the offspring pass to the next generation. Also it should be noted that 50% of the 

next generation’s individuals represent parents that rank top as regards fitness, while the 

rest 50% is chosen among the rest offspring. After this selection the mutation operation is 

executed on all new individuals.  

The mutation is used in the GA not only for the exploration of new solution sub-

spaces, which otherwise would not be explored using only the recombination operation, 

but also for avoiding the “trapping at local maximum” phenomenon [35]. Due to the fact 

that the operation of FCM is similar to Gradient methods (e.g. hill-climbing, greedy first 

search, etc) [105], and because the specific optimization problem may contain a rich 

number of local maxima that increase proportionately to the increase of the number of 

ALs used in the fitness function, the utilization of mutation is not only desirable but also 

required. From a different point of view, mutation may cause a serious problem to the 

evolution of the value of the fitness function we call “backtrack”.  

Local  
maximum 
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Global  
maximum 

B
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Fitness  

 Weight matrix 
 

                        Figure 4.11: The mutation effect on the fitness value 

 

More specifically, since one of the main characteristics of the FCM is its strong 

dependence on the values of specific weights (the first characteristic of an FCM as 

mentioned before), a random change of such a weight resulting from a mutation 
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execution may cause a decrease of the fitness value of the specific individual [24]. Thus, 

the specific individual value, which gave a better fitness before the mutation (place A in 

Figure 4.11), and was probably a candidate optimal solution, is driven even to rejection 

from the next generation because its fitness is now considerably decreased (place B). 

Aiming at avoiding this complication together with the loss of “good” individuals, 

our algorithm does not experiment only with a single mutation operation, but with a fixed 

number of mutations for each individual. It then selects the new individual value, which 

yielded a better fitness performance compared to that of the initial one and passes it to the 

next generation. If a better individual value in terms of fitness is not produced then the 

algorithm selects the best individual among the newly created after mutation.  
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Figure 4.12: Logical diagram of the Genetic Algorithm 

 

This means that an undesirable “local maximum” may appear in case the best 

individual generated yields only a small improvement or reduction in the fitness value of 

the initial. The process is as follows:  The GA checks the progress of each individual 
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after a specific number of epochs. If this progress is sufficient (i.e. there is an increase in 

fitness above a given threshold), then the GA continues its normal operation; in the 

opposite case it performs mutation not to just one weight but to a number of weights thus 

causing a significant change of the individuals, which helps exiting the “local maximum” 

and avoiding the loss of significant computational time [23]. The algorithm described 

above executes a number of iterations as depicted in Figure 4.12 and terminates when a 

predefined condition is met or when a maximum number of iterations (epochs) is 

reached. 

 
4.5.3 Validation of the multi-optimization hybrid model on a real case: 

The S-300 crisis  
 
 In order to analyze the technical environment described above, we simulated the 

S-300 incident using the FCM model of Figure 4.1, with the initial activation levels 

defined on the basis of experts’ knowledge. The model was adopted to reflect the 1998   

S-300 missile crisis utilized to verify the methodology.  

Table 4.18:  S-300 crisis - Final ALs computed by the FCM  

C1 Instability in Cyprus = 0.79 
C2 Turkish Forces Actions = 0.87 
C3 Turkish Threats = 0.77 
C4 Solution of the Cyprus Problem = −0.77 
C5 Greek political support = −0.41 
C6 Un talks for the Cyprus problem = −0.63 
C7 Stability of the Cyprus government = −0.41 
C8 Support to the Turkish forces = 0.88 
C9 Support to the Greek-Cypriot Army = 0.70 
C10 Strengthening of the Greek army = 0.00 
C11 Strengthening or the Turkish army = 0.66 
C12 Stability of the Greek government = 0.60 
C13 Stability of the Turkish government = −0.71 
C14 EU/NATO political support = 0.58 
C15 International influence = −0.85 
C16 Turkish - Cypriot reactions = −0.27 

 

The crisis between Cyprus, Turkey and Greece was started when Russia announced that 

they were ready to deliver the S-300 system to the Republic of Cyprus. The S-300 system 

was an advanced system capable of integrating and destroying aircraft at range up to 150 
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kilometers, and incoming missiles at range of up to 40 kilometers. With this procurement, 

the Cyprus government was potentially simply trying to change Turkey’s air force 

superiority while at the same time protecting its newly built military base in Paphos. The 

capabilities of this system were considered that these missiles would pose a threat to its 

security.  

 
Figure 4.13:  The S-300 crisis  

  

The general political picture modeled (see figure 4.13 and Table 4.18) is characterized by 

increased tension (A1=0.79) and strong reactions and threats from the part of Turkey 

(A2=0.87 and A3=0.77 respectively). It is reminded that these threats included attacking 

and destroying the system once installed. The results obtained reproduce the atmosphere 

prevailing on the island during the actual crisis period, when the FIR violations, the 

support to the Turkish forces on the island and the intense diplomatic activity from the 

part of Turkey were culminating. These seem to lead to adverse repercussions as regards 

to the possibilities of a solution to the Cyprus problem (A4= −0.77) and chances for peace 

talks (A6= −0.63), while both the Cypriot and the Turkish governments suffer 

destabilizing effects (A7= −0.41 and A13= −0.71 respectively), results which are strongly 

supported by historical evidence referring to the period under study. The incident, 

however, does not appear to affect the stability of the Greek government (A12=0.60), the 
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support of which to the Greek-Cypriot army appears to be considerable (A9=0.70), as it 

has in fact been the case. The support to the Turkish forces on the island is very strong 

(A8=0.88), a development sustained by the strength of the Turkish forces (A11=0.66). 

Finally, the international influence has contributed negatively to the crisis (A15= −0.85) 

given that, at least indirectly, it encouraged Turkish aggressiveness by opposing the 

purchase of the   S-300 system.  

4.5.4 Hypothetical Scenario: Increase of international influence and 
reduction of Greek political support to Cyprus 

 

 In this scenario we aim at investigating the potentials of increasing the influence 

of the international factor by setting A15=0.8 and at the same time of reducing the political 

support offered by Greece to Cyprus by setting A5=0.2. This hypothetical scenario will 

allow us to study the dynamics of the concepts, as well as the type of their relationships 

in the map (positive or negative), provided that both activation level targets are met. 

Under this scenario the GA will seek an optimal weight matrix, which will satisfy the 

hypothetically increased international influence and the reduction of the Greek support to 

the Cyprus government’s decision to install the S-300 missile system in the island.  

 
Table 4.19: S-300 crisis - ALs computed by the FCM  

C1 Instability in Cyprus = 0.88 
C2 Turkish Forces Actions = 0.77 
C3 Turkish Threats = 0.80 
C4 Solution of the Cyprus Problem = −0.77 
C5 Greek political support = 0.19 
C6 UN talks for the Cyprus problem = −0.76 
C7 Stability of the Cyprus government = −0.49 
C8 Support to the Turkish forces = 0.71 
C9 Support to the Greek-Cypriot Army = −0.12 
C10 Strengthening of the Greek army = −0.20 
C11 Strengthening or the Turkish army = 0.75 
C12 Stability of the Greek government = 0.62 
C13 Stability of the Turkish government = 0.51 
C14 EU/NATO political support = −0.46 
C15 International influence = 0.7 
C16 Turkish - Cypriot reactions = −0.61 
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The simulations are based on the following constant values for the variables 

involved: The population size has been set equal to 100 and the number of generations to 

400. The weight values were randomly initialized in the range [-1, 1], while the 

probability of applying the genetic operator of recombination was set to 0.25 and that of 

mutation to 0.01. 

Following the simulation the model reached the multiple targets yielding an 

equilibrium state. The final AL values calculated by the FCM using the optimal weight 

matrix (Table 4.19).  

The analysis of the results will allow decision makers to understand the 

circumstances under which such a hypothesis may be realized: The instability in Cyprus 

is high (A1=0.88) and this is mainly due to Turkish reactions (A2=0.77) and Turkish 

threats which are increased (A3=0.80). The role of the international influence is important 

in this case indicating that when pressure is exercised on Cyprus and with the role of the 

Greek Government almost neutral the instability can be high and no negotiations for the 

settlement of the Cyprus issue will exist (A6=–0.76). The absence of negotiations keeps 

the solution of the Cyprus issue to the minimum level (A4=–0.77). The Turkish Cypriots 

are against the decision of the Cyprus Government to purchase the missile system (A16=–

0.61) and do not participate to the negotiations for the settlement of the Cyprus Issue. The 

strengthening of the Greek-Cypriot army A9=–0.12 and the Greek Army A10=–0.20 stays 

at low levels in contrast to the strength of the Turkish army which is considered high 

(A11=0.75). The reluctance of the Greek side to provide active military support to the 

installation of the S-300 missiles on the island is reflected in the activation level (A10=–

0.20), affecting the Cypriot National Guard, the support to which reached the low level of 

A9=–0.12. The Cypriot government itself does not seem to be confident enough about the 

decision to install the missiles, since its activation level drops to A7=–0.49, given the 

disagreement which took place between the military and the politicians over the issue. On 

the contrary, the stability for the Greek government (A12=0.62) and the Turkish 

government (A13=0.51) is high, showing that their decisions regarding this matter have 

already been taken.  The EU/NATO withdraws its support to the Cyprus government 

(A14=−0.46) and seems to support the International pressures to the Cyprus government 

not to install the S-300 system in Cyprus. 
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The hybrid system was validated on a well-known political crisis, that of the S-

300 missiles, which took place between Turkey, Greece and Cyprus in 1997-1998, and 

proved its modelling efficiency. The model successfully predicted the dynamics behind a 

hypothetical situation giving the ability to decision makers to reach to some interesting 

conclusions. Thus, decision makers may study the concepts that led our model to reach 

this hypothetical state and plan their actions so as to work towards promoting or 

deteriorating the possibility for certain concepts to take the activation levels appearing in 

the map. 

 
4.6 Fuzzy Knowledge Base   

 
4.6.1 Linguistic Fuzzy Sets Encoding   

 
 Given that fuzzy knowledge-based systems [107] simulate human thinking; we 

have integrated a fuzzy knowledge base to GE-FCMs, aiming at capturing these aspects 

of human intelligence that are associated with the complexity of a real-world problem. 

The main focus in this case is to deal with this complexity by providing a simple 

methodology for constructing a GE-FCM hybrid system that bases its processing on a 

Fuzzy Knowledge Base, especially constructed for this particular case. This approach 

enables the incorporation of both symbolic and connectionist knowledge in one system 

and provides the means by which linguistic variables [61] are encoded in numerical 

values for carrying out mathematical computations with the result transformed back to 

descriptive values for inference purposes. 

 Our system is defined as an expert system [93], which uses the method of fuzzy 

logic and fuzzy knowledge in the form of Evolutionary Fuzzy Cognitive Maps systems 

using fuzzy data and fuzzy inference. The advantage of this method is the fuzzy 

knowledge representation reflecting the behaviour of the system [101]. 

 The use of fuzzy sets provides a basis for a systematic way of manipulating vague 

and imprecise concepts which are treated in this case as representing linguistic variables 

[61]. A linguistic variable can be regarded either as a variable, the value of which is a 

fuzzy number, or as a variable assuming values defined in linguistic terms.  It may be 

described by the quintuplet (x, T(x),U, G, M) in which x is the name of variable, T(x) is 

the term set of x, that is, a set of linguistic values of x each of which corresponds to a 
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fuzzy number defined in a set of real values U, G is a syntactic rule for generating the 

linguistic of values of x from their numerical counterpart, and M is a semantic rule for 

associating with each value its meaning. Each term u in T(x) can be classified in a certain 

fuzzy set A that uses a membership function ]1,0[)( →=Α Uuμ which provides a real 

number in the interval [0, 1] indicating the degree to which u belongs to set A. A value of 

zero (0) means that the term is not a member of the set while a value of unity denotes 

complete set membership. 

      A rather simple example will clarify the matter: If we interpret Temperature, as a 

linguistic variable we may have a term set T(temperature)={Low, Medium, High} and 

each term in the term set may be characterized by a fuzzy set in a universe of discourse 

U=[0oC, 40oC]. The three crisp variables may be defined as Low=10oC, Medium=20oC 

and High=30oC. This definition, though, does not cover values between the crisp 

variables, e.g. when temperature ranges between 0oC and 10oC, 10oC and 20oC, 20oC and 

30oC. This is the reason why the conventional set operations must be extended to move 

from ordinary set theory to fuzzy set theory in order to consider cases in which, the fuzzy 

subsets have membership degrees. For example we may interpret Low as “Temperature 

below 10oC”, Medium as “Temperature close to 20oC” and High as “Temperature above 

30oC”. The terms can then be characterized as fuzzy sets whose membership functions 

are:  
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4.10

 The fuzzification of the three crisp values as shown in Figure 4.14 describes the 

distribution of the variables that reflects the problem under study. It is obvious that this 

distribution produces two overlapping areas. Despite the fact, however, that overlapping 
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is both common and even desirable on certain occasions, there is a problem with 

allocating values that fall within an overlapping area. For example, if temperature is 

equal to 17.5oC then this temperature belongs to both the Low and the Medium fuzzy sets, 

with membership values 0.25 and 0.75 respectively. Thus, we may infer that this 

temperature value may be considered as belonging to the Low interval with confidence 

level 25% and to the Medium with 75%. It is quite important to note in this case that we 

do not rule out the Low set membership of this temperature value just because its 

confidence level is significantly lower compared to that of the Medium set. In fact if 

fuzzy structure is used for decision-making, in particular, the two alternative 

classifications of the linguistic variables are equally important as indicating that we must 

consider more than one reaction.     

The number of linguistic variables depends on the complexity of the real-world problem 

described by the model and the accuracy required. Along the same line in FCM the 

general structure of the fuzzification of a typical six-crisp variable describing the 

activation levels of a FCM is depicted in Figure 4.17.  

 

 
Figure 4.14: Membership Function of Linguistic Variable Temperature 

 
The first interval begins at -1 and the last ends at +1. Each of the intervals is given 

a name, corresponding to a certain linguistic variable, and is subsequently stored in a 

fuzzy knowledge base in order to be used during the defuzzification process. The fuzzy 

set encoding is a key step in our framework because it is used to build up the most 

important element of the GE-FCM based Decision Support System, namely the Fuzzy 

Knowledge Base (FKB).   
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4.6.2 Integration of Fuzzy Knowledge Base to GE-FCM  
 
 Building knowledge-based systems is a very complicated task requiring 

occasional adjustment of knowledge, especially in cases of complex applications [104]. 

The integration of a Fuzzy Knowledge Base (FKB) to GE-FCMs as described in this 

section attempts to overcome this difficulty by encoding the experts’ assessment 

concerning a given real-world problem and representing this knowledge in a graphical 

representation language [13]. More specifically, the linguistic sample is encoded directly 

in a numerical matrix using an uncertainty fuzzy distribution and is subsequently reduced 

to a scalar form [122]. This linguistic matrix reflects the quantization levels of the input 

and output spaces, and the number of fuzzy set values assumed by the fuzzy variables 

[54].  

      In Fuzzy Cognitive Maps the term set consists of specific linguistic variables 

describing the activation level of the concepts participating in the model. These variables 

are associated with values within the range [–1, +1].  The number of linguistic variables 

depends on the complexity of the real-world problem described by the model and the 

desired model accuracy. The general structure of the fuzzification of the crisp variables 

describing the activation levels is given in Figure 4.15.  

      The process of designing a GE-FCM model and integrating a FKB system is the 

following: 

Stage 1.  Identification  

 Verbal identification and description of the problem. Definition of the problem 

 parameters that determine its target. These parameters will be treated in the next 

 stage as the concepts participating in the model under construction. 

Stage 2. Conceptualization  

 Selection of the parameters identified above as the candidate concepts of a FCM. 

 For each concept the following must be defined: 

• A descriptive name  

• The causal relationships between this concept (source) and the rest of the 

concepts (destinations) 

• The sign and weight value of each relationship 
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Stage 3. Formalization 

Graphical representation of the FCM containing the concepts identified and their 

causal relationships. Implementation of the updating mechanism that calculates 

the new activation levels of the concepts for every iteration of the model. 

Stage 4. Integration 

 Implementation of each concept as a linguistic variable. 

 For each linguistic variable definition of the following: 

• The term set of the activation levels of the concept 

• The range of numerical values for each member of the term set of the 

concept 

• The membership function of each member of the term set. This will 

normally orient the overlapping areas 

Stage 5. Experimentation  

Determination of the initial levels of activation for each concept on the FCM. 

Calculation of the final activation levels (baseline) by running the model for a 

certain number of iterations and evaluation of the results. In case of a stable 

equilibrium then execution of next stage 

Stage 6. Realization-Inference   

Baseline activation levels analysis and interpretation of the results according to 

the Fuzzy Knowledge Base and the membership functions (i.e. the overlapping 

areas). 

Creation of a number of scenaria with target values set for each activation level 

and use of the GE-FCM to drive the activation of the concept in focus to the 

desired level. 

If the target is attained then use of the Fuzzy Knowledge Base to determine the 

context in which the target activation level is realized (i.e. the activation of the 

remaining concepts evolved by the GA that contribute to attaining the target). 

Stages 1, 2 and 4 described above must be carried out with the aid of a group of experts 

who can determine the variables affecting the scope of the problem, and can describe the 

magnitude of each concept in the FCM using a linguistic fuzzy classification. Every 
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expert proposes a fuzzy interval and its related linguistic explanation for each concept, 

thus identifying the important concepts or variables influencing our strategic target, as 

well as the various causal links between them.  

 
4.6.3 Fuzification/Defuzzification Process  

 
 Decision-making is a task of critical importance. There is a wide variety of 

difficulties that decision makers face when approaching significant, real-world systems 

under uncertainty. For example, decision makers have to face the increased complexity 

which characterizes the interrelation of the various dynamic components (concepts) of a 

certain problem encountered. When it comes to requiring numerical data, these may be 

hard to trace, or unreliable, while formulating a mathematical model may be difficult and 

costly, or even impossible. What a FCM does, in fact, is allow the policy-maker to 

perform a qualitative simulation through scenario analysis [36]. In fact, policy proponents 

can publish a model of the system under discussion and illustrate their case using 

simulation experiments. The next step involves simulating different scenarios by asking 

the model to reach a desirable activation level for a certain concept that the policy maker 

focuses on [107]. The Genetically Evolved Fuzzy Cognitive Maps (GE-FCM) model 

calculates the new optimal weight matrix, which is then used by the GE-FCM model to 

recalculate the new activation levels of the concepts [14].  

  The fuzzification process is based on producing fuzzy information provided by a 

group of experts, each concept analyzed into membership functions of fixed or variable 

widths. Each of these intervals is labelled and stored for the defuzzification process later 

on. For each domain expert consulted, their activation levels and weight values are 

entered and normalized based on their respective ranking [163]. The defuzzification 

procedure takes place, where the levels are matched according to the membership 

functions of each concept. This process is more complicated than the fuzzification and 

consists of four basic iterative stages: The Iteration stage involves the determination of 

the initial levels of activation for each concept on the FCM and the calculation of the 

final activation levels. The next step computes the minimum, maximum and average 

values for each concept of this matrix, with the levels matched according to their 

membership functions. The third stage matches the average, minimum and maximum 
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values for each concept derived during fuzzification to find the interval these three 

parameters fall into. The last stage is the inference stage in which, following the creation 

of hypothetical scenarios [66], the Fuzzy Knowledge Base is used to determine the 

context in which the target activation level will be realized.  

 
4.6.3.1 Fuzzification Process   

 
 The fuzzification process consists of two basic steps [116]. During the first step 

the interval of each concept is analyzed into trapezoidal membership functions, as shown 

in Figure 4.15. Since the concept activation levels fall in the range between -1 and +1, the 

concept intervals themselves must also fall in this range. The minimum and maximum 

number of intervals used in all our models ranges between two and eight, having a fixed 

width or variable length, as shown in Figures 4.15 and 4.16. Other membership functions 

(e.g. triangle) may also be appropriate and can be utilised with success depending on the 

problem being modelled; the trapezoidal membership function is selected in our case 

studies on one hand due to its simplicity and efficiency with respect to computability and 

on the other because it is able to represent more accurately the linguistic variables used in 

our modelling attempt. 

 

 
Figure 4.15: The trapezium formed by the interval limits and overlap percentage 
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Figure 4.16 shows how the fuzzification of three crisp values causes the distribution of 

the variables according to a certain profile that reflects the problem under study. In such a 

case the problem arising when values that fall within an overlapping area must be 

allocated is handled during the defuzzification process.  

 

 
Figure 4.16: A concept with 3 membership functions of variable width 

 

            
Figure 4.17: A concept with 6 membership functions 
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As previously mentioned in Fuzzy Cognitive Maps the term set consists of specific 

linguistic variables describing the activation levels of the concepts participating in the 

model. These variables are linked to specific values within the range of [–1, +1]. The 

general structure of the fuzzification of six crisp variables describing the activation levels 

is depicted in Figure 4.17. 

 

 
Figure 4.18: A concept associated with a number of linguistic variables 

 
 Each interval is then given a name, corresponding to a certain linguistic variable 

as shown in Figure 4.18 and is subsequently stored in a Fuzzy Knowledge Base (FKB) in 

order to be used in the defuzzification process. Building a FKB is the second step of the 

fuzzification process [13]. The linguistic sample is encoded directly in a numerical matrix 

using an uncertainty fuzzy distribution and is subsequently reduced to a scalar form. As 

shown in Figure 4.19 this linguistic matrix reflects the quantization levels of the input 

and output spaces, and the number of fuzzy set values assumed by the fuzzy variables.  
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Figure 4.19: Linguistic Fuzzy knowledge Base 

 
4.6.3.2 Defuzzification Process  

 
As we have already pointed out, the defuzzification process is more complicated than the 

fuzzification one and consists of four basic iterative stages [116]. These steps are 

described in this section, while examples of the results of defuzzification process are 

shown in Figure 4.19 and Table 4.20.   

Stage 1.  Iteration   

Determination of the initial activation levels for each concept of the FCM. 

Calculation of the final (baseline) activation levels by running the model for a 

certain number of iterations and subsequent evaluation of the results derived.  

Following one hundred iterations, the results are stored in an m-by-n matrix K 

where  m is the number of concepts and n is the number of iterations remaining 

after the final iteration. We consider that the model is stabilized after one hundred 

iterations. 

Stage 2.  Max-Min and Mean Computation  

The next step uses matrix K to match the appropriate values according to the 

membership functions of each concept. There are several methods for matching 

the estimated values, with the main ones being Max-Min and Average.  
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Running the model may lead to three possible outcomes: Equilibrium, limit cycle 

 or chaos [112]. A concept is considered to reach equilibrium if the absolute 

difference of Max-Min (peak to peak) value is 0.01 or lower. A concept is 

classified as a limit cycle in cases in which the absolute difference of Max-Min 

value lies between 0.01 and 0.75.  

Stage 3.   Categorization  

The average, Maximum and Minimum values of the oscillations of the limit cycle 

are matched depending on the interval these three parameters fall into as a result 

of the fuzzification process. In cases of equilibrium and limit cycle, if the average 

value of the concept falls in just one interval then the concept has a confidence 

rate of 100% and the final level is assigned the meaning of that interval. 

Whenever the average value falls  within two adjacent intervals, the algorithm 

retains the interval with the highest  confidence rate, with the meaning of that 

interval assigned to the final level. In the case of chaos, by contrast, no meaning 

can be given to the final level. 

Stage 4. Realization-Inference   

 This last stage involves the implementation of a number of hypothetical scenaria 

 with target values set for each activation level and the GE-FCM used to drive the 

 activation of the concept of interest to the desired level. If the target is attained 

 then the Fuzzy Knowledge Base is employed to determine the context in which 

 the target activation level is realized. 

Table 4.20: Defuzzification analysis results 

ID MIN. MAX. AVER. FINAL CONF. ANALYSIS RESULT 
C1 -0,57 -0,57 -0,57 -0,57 100,00 Approval of Solution by T/C, Rejection by G/C 
C2 -0,01 -0,01 -0,01 -0,01 57,60 Statements reducing tension before referendum 
C3 -0,79 -0,79 -0,79 -0,79 100,00 Rejected by both sides 
C4 0,41 0,41 0,41 0,41 100,00 Approved by the majority of the parties 
C5 0,43 0,43 0,43 0,43 100,00 Approved by the majority of the parties 
C6 -0,68 -0,68 -0,68 -0,68 58,83 Rejection by both sides/ Greece and Turkey 
C7 -0,79 -0,79 -0,79 -0,79 100,00 Unanimous rejection 
C8 -0,87 -0,87 -0,87 -0,87 100,00 Unanimous rejection by all parties 
C9 0,39 0,39 0,39 0,39 93,36 Pressure on the T/C and the Turkish 
C10 -0,70 -0,70 -0,70 -0,70 78,32 Full membership of Cyprus freezes  
C11 -0,54 -0,54 -0,54 -0,54 100,00 No support to Turkish full membership 
C13 0,72 0,72 0,72 0,72 92,72 Support of the full membership of Turkey  
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4.7 Automatic drawing of FCM (Simplification)  
 
After all expert level and weight matrices have been included in the model [119], what is 

left is to normalise the matrices based on the ranking of each expert. Since the expert 

levels and weights form the basic inputs of the FCM and GE-FCM algorithms it is 

essential that all levels and weights be represented in one single matrix in each case. In 

order to avoid complicated calculations, a tool which was designed to serve this 

capability automatically calculates the normalised values followed by the automatic 

drawing of the Fuzzy Cognitive Map. Following the fuzzification process, the 

methodology is improved to offer the ability to construct the model map 

diagrammatically so that the decision-maker can visually observe the problem at its 

current state. The map is drawn using nodes and edges, where each concept is symbolised 

by a node with a unique colour in order to be easily identified (Figure 4.20). Similarly, 

each weight is symbolised by an arrow leading from the cause concept to the effect 

concept taking the colour that is equivalent to that of the cause concept. However, if a 

certain layout is unsatisfactory, there is an option to redraw the map until an improved 

layout is decided upon. Other actions the tool allows include printing and saving the map 

in the workspace, while the user is given the ability to right-click on the map draw 

additional information on concept levels and weights with the aid of dialog boxes. 

 
Figure 4.20: Map depiction via the tool 
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4.8 The limit cycle phenomenon  
 
 As previously mentioned, a GE-FCM can reach equilibrium at fixed points in a 

direct way with the activation levels being decimals in the interval [-1, 1]. It can also 

exhibit limit cycle behaviour where the system falls in a specific-period loop, reaching 

the same state after a certain number of steps [71]. A limit cycle phenomenon is 

encountered in cases where a dynamic system falls into periodic oscillations, failing to 

ever reach equilibrium. Such oscillations can occur in neural systems due to properties of 

single neurons [112] and properties of synaptic connectivity among neurons.  

 The equations that are applied at equilibrium points can be calculated by means of 

equation (4.11). The equilibrium state is described as: 
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This is true only when  and  are of the same sign. The equilibrium point is reached 

on the basis of either the first or the second rule expressed by equations 4.12 and 4.13 
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In case that  and are of opposite signs, we can conclude that  cannot be 
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In this case the system enters into limit cycle behaviour and the values assumed by the 

various concept activation levels change periodically, something that reveals the 

existence of strong interactions between the concepts. 

 
4.8.1 Handling limit cycles: Improving the inference procedure 

   
During the execution phase of the FCM algorithm, all values computed for iterations after 

processing this limit cycle bound are stored in a matrix, with a minimum, maximum and 

average value computed for each concept (i.e. each row in the matrix). Under these 

circumstances there are three possible outcomes: A concept is considered at equilibrium 

if its minimum and maximum values have an absolute difference of 0.01 or lower. The 

behaviour of a concept is classified as a limit cycle if the absolute difference between its 

minimum and maximum values lies between 0.01 and 1.50 (75% of the range of values). 

Finally, a concept is treated as presenting chaotic behaviour if the absolute difference 

between its minimum and maximum values exceeds 1.50. In cases of equilibrium and 

limit cycle, the inference procedure may be applied, while in the case of chaos [180] no 

linguistic variable can be assigned to the final level and the results can not be considered 

reliable enough to be used for inference purposes [15].   
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With respect to limit cycle the proposed inference process for a certain activation 

level under limit cycle consists of two basic steps: 

The first step involves classifying the activation level with respect to its minimum 

and maximum values as “Bounded limit cycle”, or “Unbounded limit cycle- Possible 

chaos”. Since the range of values for the activation levels in our case is [-1, 1] the 

Baseline Size of the interval is 2. This value is used as reference figure with respect to 

which the difference between maximum and minimum values (peak to peak) of each AL 

is calculated in percentage terms. If this difference is lower or equal to the 75% of the 

Baseline Size then the oscillation of the activation level is characterized as “Bounded 

limit cycle”, and inference is possible through the Mean value which is then matched to 

the appropriate fuzzy interval and defuzzified. In cases in which this difference is greater 

than [0.75*Baseline Size] the oscillation is characterized as “Unbounded limit cycle- 

Possible chaos”. In this case the oscillation spans all the available space in the range 

[Minimum, Maximum] and thus the Mean value cannot be matched to a single fuzzy 

interval with confidence, meaning that inference is not possible due to the low degree of 

reliability of the resulting Mean value. 

The second step is followed only in the case of a “Bounded limit cycle”. The 

Mean value of the specific activation level presenting limit cycle is matched with a 

certain fuzzy set interval according to the analysis given for the specific concept. There 

are two possibilities in this case: 

• The Mean value falls in one interval only, and thus the confidence level of 

this fuzzy set is 100%. 

• The Mean value belongs to two overlapping fuzzy intervals, thus 

corresponding to two confidence levels, one for each interval. In this case, the 

value indicating the actual confidence level is assumed by the membership 

function of the Mean value for each of the overlapping fuzzy intervals. The 

interval chosen for inference purposes is the one for which the Mean assumes 

the highest membership value, or, equivalently, the highest confidence level. 

Figure 4.21 demonstrates the proposed smoothening method: The system is run for a total 

of 250 iterations presenting limit-cycle behaviour while the smoothening process has 

been applied after the first 100 iterations. Following the computation of the Mean value 
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for every activation level presenting limit cycle, the system investigated the type each 

oscillation something that led to all limit cycles being classified as “BOUNDED”. Given 

that smoothening was considered reliable, for the next 150 iterations the system stabilizes 

and reaches equilibrium at the fixed points of the smoothened values.  

 

 
Figure 4.21: Smoothened Limit cycle 

 

The weakness introduced by the limit cycle phenomenon in such systems is an 

open issue offering ample room for further research in the topic. As described above, 

when a GE-FCM hybrid system enters a limit cycle phase the experts cannot identify the 

external influences that drive the system to this behaviour, as in the case of the simple 

FCM, due to the fact that these influences are controlled automatically by the 

optimisation process of the Genetic Algorithm [59]. Therefore, the only alternative is to 

turn to a method that will attempt to eliminate the limit cycle observed and lead to a 

stable and reliable model.   

 
4.8.2 Methodology for elimination of limit cycles  in FCM  

 
The presence of a limit cycle reached by a weight matrix-individual (“seek” individual) 

causes many problems to the hybrid system. The algorithm we will propose here avoids 
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the persistence of a limit cycle by tracing the weight(s) that caused the limit cycle and 

modifying its (their) value(s). More specifically, following the modification of a weight 

matrix-individual using recombination or mutation, our algorithm checks the values of 

certain activation levels for a given number of iterations. 

 

 
Figure 4.22: Limit cycle 

If a difference is observed, then this case is classified as “limit cycle”. The weights are 

then examined one-by-one until those causing the limit cycle (newly modified weights) 

are located. The values of these weights are repeatedly changed in a random way and the 

map is run until the limit cycle is removed. 

 This GA-based methodology to eliminate the limit cycle consists of two main 

steps described in the subsections below: 

 
4.8.2.1 Checking for limit cycles 

 
 Before applying the elimination technique the structure of a limit cycle must be 

first investigated [72]. The functioning of an oscillation is characterized by three 

parameters: (i) frequency, (ii) phase and (iii) amplitude. Equilibrium can be described as 

the case in which all oscillatory units of an ensemble stabilise their frequency to a 

constant value and their phase and amplitude difference to a constant point within the 
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interval [–1, 1]. Consequently, the stability of an equilibrium oscillation can be described 

as follows: 
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Where, Fk(t) is the frequency of the kth oscillator, at time t in the ensemble of n 

oscillators, and Pk (t) is its phase at time t. In our case the oscillation is not continuous, as 

in the case of a sinus wave; it emerges in discrete steps as the activation levels are 

computed for a certain number of iterative steps.  

 The objective of the proposed methodology is to eliminate the phenomenon by 

adjusting the weight matrix which is responsible for the creation of the limit cycle 

phenomenon. The system first checks whether the system exhibits a limit cycle or chaotic 

behaviour; if so it searches in the weight matrix table to identify which weight or group 

of weights created the limit cycle.  

 

4.8.2.2 Genetic optimization to eliminate the phenomenon of limit 
cycles 

 
 The purpose of the proposed methodology for eliminating the limit cycle 

phenomenon is first to define a new weight matrix W that will lead to equilibrium and 

second to specify the importance of each node in achieving the goal state. The relative 

importance of each node is encoded in a weight matrix.  Thus, the objective is to identify 

the weight or group of weights that cause the limit cycle behaviour, using a new 

algorithm named Genetically Evolved Limit Cycle Elimination (GE-LCE) which is 

proposed and described in this section [123].  

 According to the pseudo code of Table 4.21, the first step is to create the FCM 

model and run it according to the weights and initial activation levels defined by the 

experts. Next, the FCM algorithm is executed and the final state of the map is checked to 

see whether it presents limit cycle(s). If so, we turn to the experts once again for manual 

correction of the weights so as to avoid the cycles. If not, we move to executing the GE-
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FCM algorithm which takes a target activation level value and attempts to evolve an 

optimal weight matrix with which the map reaches the target value.  

 
Table 4.21: Pseudo code of the algorithm that eliminates limit cycles. 

 
Procedure create_FCM  
  READ Activation List  
  READ Weight Matrix  
  RUN CNFCM algorithm  
  IF model is in Equilibrium THEN 
      RUN GECNFCM algorithm  
  ELSE  
      Go back to the experts and revise the Weight Matrix 
  ENDIF 
  EXECUTE GECNFCM algorithm  
  READ new Weight Matrix (optimized)  
  RUN CNFCM algorithm  
  IF model is in Equilibrium THEN 
      CALL Defuzzification Process  
  ELSE  
      CALL Limit_Cycle_Elimination Procedure 
  ENDIF 
End Procedure create_FCM  
 
Procedure Limit_Cycle_Elimination   
  FOR  j = 1 to number of weights 
       {Crossover}   
        Select two individuals (weight matrices) according to fitness 
        Select Crossover Point cp 
        Exchange j weights from point cp to the left {Mutation } 
        Select one individual (weight matrix) according to fitness 
        Select randomly a weight and mutate it (+/- 0.1) 
        Evaluate individuals and calculate their fitness 
        RUN CNFCM algorithm  
        IF model is in Equilibrium  
            CALL Defuzzification process  
            BREAK (stop) 
        ENDIF 
  ENDFOR 
End Procedure Limit_Cycle_Elimination  

 

 Once the evolutionary process is completed we check for limit cycles by using the 

optimal weight matrix produced by the genetic algorithm of the GE-FCM and executing 

the simple FCM. If one or more limit cycles are traced we run the limit cycle elimination 
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procedure, otherwise we proceed with the defuzzification of the numerical values 

calculated for the ALs. The elimination procedure attempts to evolve the weights so as to 

stabilize all activation levels in steady states. To do so the algorithm starts evolving the 

weight matrices by basing the application of genetic operations (crossover, mutation) on 

n weights each time, with n starting from 1 and reaching to the total number of weights 

(if necessary). 

 In the GE-LCE algorithm a dedicated fitness function is used to define the 

appropriateness of the weight matrices participating in the optimization process [53]. The 

evaluation of each individual weight matrix WMi is performed using the following fitness 

function: 
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where dsj=|max-min|50 values represents the maximum distance between the highest and 

lowest activation level value of concept i measured over the last 50 out of a total of n 

iterations, while n is the total number of activation levels (i.e the participating concepts). 

This distance should be zero in case of equilibrium, otherwise the larger its value the 

higher the amplitude of the limit cycle and hence the less fit the individual weight matrix.  

 The computational procedure of the GA starts with the random selection of the 

initial individuals (weight matrices). One of the main characteristics of the FCM is its 

strong dependence on the values of specific weights, thus a random change of such a 

weight resulting from a crossover or mutation may cause an increase or a decrease of the 

fitness value of the specific individual [73]. More specifically, each individual 

(chromosome) represents a specific weight matrix used by the FCM to provide the final 

activation values of the participating concepts in equilibrium state. For every pair of 

weight matrices selected on a fitness basis (the more fit the individuals the more frequent 

the selection) the values of the specific weights lying to the left of the crossover point 

randomly produced, are switched between the two parents thus producing two offspring. 

As regards the mutation operator, on the other hand, it involves taking a fit individual and 

randomly selecting a weight to which it adds, or, from which it subtracts the value of 0.1 
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thus producing an offspring. The algorithm described thus far executes for a number of 

iterations and terminates when a predetermined condition is met (i.e. all limit cycles are 

successfully eliminated) or when a maximum number of iterations (epochs) is reached.  

 
4.9 Genetically Evolved Fuzzy Cognitive Maps as the basis for 

developing Computational Intelligent Decision Support Systems 
 

The next section contains a summary of the methodology and a case study verifying 

its appropriateness as a means to develop Computational Intelligent Decision Support 

Systems [115]. For completeness purposes, some parts that have already been 

described may be repeated in the following subsections.  

 

4.9.1 Identification and formulation of domain variables: A 
cognitive approach 

 
   One of the most important requirements of the CI-DSS is the identification of the 

problem variables using experts’ knowledge, a task that heavily depends, to a large 

extent, on the effectiveness of the methods used (questionnaires, formal consultations, 

texts etc.) [153]. The importance of this task is high given that it provides a descriptive 

overview of the system. Once this has been established, these variables and the causal 

relationships among them which participate in the GE-FCM methodology will be treated 

as concepts (nodes) and directed arcs respectively.  

 The contribution of a CI-DSS in determining assumption abstracting reality is the 

selection of the appropriate variables required and their transformation to candidate 

concepts of a GE-FCM model [14]. After the concepts have been identified they can be 

partitioned into fuzzy sets with each set assigned a linguistic value.  

 
4.9.2 Linguistic Fuzzy Sets encoding   

 
 The advantage of using fuzzy sets is that they provide a basis for a systematic way 

of manipulating vague and imprecise concepts and as such they are often treated as 

representing linguistic variables. The first interval begins at -1 and the last ends at +1. 

Each of the intervals is given a name, corresponding to a certain linguistic variable and is 

subsequently stored in a fuzzy knowledge base in order to be used during the 
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defuzzification process. The fuzzy set encoding is a key step in our framework because it 

is used to build up the most important element of the CI-DSS, namely the Fuzzy 

Knowledge Base [147].  

 
4.9.3 Fuzzy Knowledge Base representation  

 
  The integration of a Fuzzy Knowledge Base (FKB) to GEFCM attempts to 

overcome the difficulty of transforming linguistic variables into mathematical forms by 

encoding the experts’ assessment [13]. Once the concepts have been defined and the FKB 

has been built, the experts are ready to provide their estimates of the activation levels and 

weight values that aim at defining the initial state reflected by the model at a given time 

period.  

 The first input requirement is the activation levels, the values of which are 

assigned by the experts when determining the role that each concept plays in the 

environment of the problem under consideration. The higher the level, the stronger the 

influence of a specific concept, with levels taking any real value between –1 and +1. The 

experts must also assess the causal relationships between these concepts (weight values) 

ranging again between –1 and +1, with a zero value denoting complete weight absence. 

 Thus, the linguistic sample is encoded directly into a numerical matrix using an 

uncertainty fuzzy distribution and is subsequently reduced to a scalar form [116]. This 

linguistic matrix provided by the fuzzy encoding procedure reflects the quantization 

levels of the input and output spaces, and the number of fuzzy set values assumed by the 

fuzzy variables. 

  
4.9.4 Simulations  

 
 The GE-FCM proposed uses a simulation technique that facilitates the forecasting 

and inference process developed as follows:   

 Step 1: FCM Modelling 

 This step involves the computation of the normalised level and the weight matrix 

at the normalisation stage. Then, the FCM algorithm is executed up to a certain    

number of iterations, following which it calculates the final activation levels 

(baseline). 
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 Step 2: Application of the GE-FCM 

 This step introduces different strategies by tracing the near to optimal weight 

 matrix corresponding to a desired activation level for a given concept as 

 computed by the simple FCM model. The results are obtained in the form of 

 graphical representations of the near to optimal weight values and used as input in 

 the next step.  

 Step 3: Performance of the Post-GEFCM Algorithm 

 This appears as a variation of the FCM, and uses the optimal weight matrix as 

computed by the GEFCM as well as the normalised levels matrix to run the FCM 

algorithm. The results derived by each simulation assume a format similar to that 

of the FCM algorithm, and are used to perform the inference procedure.  

The contribution of GE-FCM in decision-making is their capacity to make inferences. 

This is a task which justifies the intelligent nature of this model in the sense that it 

indicates not only how to apply the linguistic variables involved, but in addition, the 

order in which these variables should be applied to solve a specific problem.  To do this, 

the proposed Intelligent DSS uses an inference engine, that is, a program that makes use 

of the linguistic variables in the Fuzzy Knowledge Base, in order to draw conclusions on 

the measures required; thus, one can work on various hypothetical scenaria that aim at 

studying the variables influencing the model concepts in each case and at selecting the 

appropriate measures.  

 
4.10 Application of a GEFCM Intelligent DSS: The case of the Annan 

plan  
 
The international literature includes some significant studies and applications that have 

been performed in the area of politics and crisis management during the last 25 years [10].  

Fuzzy Cognitive Map models were widely used for political analysis [170] and decision 

making in international relations but a wide variety of difficulties when it comes to 

modelling complex, real world problems due to the absence of a robust and 

comprehensive methodology that can handle the unexpected behaviour of such a model in 

a large-scale, uncertain environment [121].  
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Our case study on the Cyprus Issue under the Annan Plan, to the best of our 

knowledge, is the first comprehensive and complete application in this field. This case 

study uses a novel software tool for decision-making, specially designed and 

implemented to facilitate the development of intelligent DSS based on Genetically 

Evolved Fuzzy Cognitive Maps. The proposed software tool provides the policy maker 

with a graphical user interface designed for the input of data provided by field experts in 

the form of activation levels and weight values, as well as for the presentation of the 

FCM simulation results obtained. It also assists decision-makers to reach to conclusions 

regarding future actions to be taken according to the situation being modelled. The tool 

incorporates three basic functions: Creation of the model workspace, construction of the 

model including expert data entry and simulation of the FCM and GE-FCM algorithms. 

Each basic function is supported by its own graphical interface, adequately user friendly 

to support the needs of decision-makers that are not familiar with complicated 

algorithms. All simulations conducted have been based on the following constant values 

for the variables involved: The population size has been set equal to 100 and the number 

of generations equal to 400. The weight values were randomly initialized in the range     

[-1, 1], while the probability of applying the genetic operator of crossover was set to 0.25 

and that of mutation to 0.01. 

 
4.10.1  Environment description  

 
The Cyprus issue has been a source of friction between Greece and Turkey for 

several decades. The latest version of the Annan Plan, which has been advertised as the 

last chance for settling the matter by retaining a delicate balance between the Greek-

Cypriot (G/C) state and the Turkish-Cypriot (T/C) community, has become a very 

controversial issue following its rejection by the former and its approval by the latter 

during the April 2004 referendum. The attitude of the two sides, however, was quite 

different versus an earlier version of the Plan, put forward just one month before the 

Copenhagen Summit conference at the end of 2002. The Plan had been then considered 

as an acceptable solution platform, approved by the Cypriot government in view of the 

full EU membership of the island, while the T/C community had rejected it. In any case, 

the decision taken during the Copenhagen Summit conference declared that Cyprus was 
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to become a full EU member, a decision not linked to the possibility of a solution to the 

Cyprus issue. Concerning the North of the island, the aquis communautaire would 

become applicable once the Cyprus issue had been resolved. Unfortunately, the fact that 

all subsequent versions of the Annan Plan, were increasingly adverse concerning the G/C 

interests, led to a failure of the Lucerne talks, at the end of March, 2004, despite the 

strong pressure exercised on the G/C side mainly by the US/UK as well as the EU. It 

seems, therefore, that the April 2004 referendum results came as a direct and inevitable 

reaction to this political pressure, which, however, culminated in Brussels at the end of 

2004 leading to the decision to open the door for a full EU membership to Turkey in 

October, 2005. It remains to be seen to what extent this decision pointed to the right 

direction for the interests of the international community. For the time being it has been 

given a first taste of what is to follow once Turkey declared its intension to sign the 

customs union protocol with the EU member states without, however, acknowledging 

one of these member states, i.e. Cyprus, a demand in which it insist up today.  

 
4.10.2 Identification and formulation of domain variables   

 
The purpose of the model used is twofold: It has been built to describe the 

political status on the island following the Cyprus EU full membership in anticipation of 

the April 2004 referendum results. Using this structure as background information we can 

then proceed with simulating the extent to which a number of possible political and 

strategic developments may contribute to solving the Cyprus issue. These developments 

will mainly refer to the reaction of both the Greek (G/C) and the Turkish Cypriots (T/C) 

versus the Annan Plan, as well as that of the various governments involved either directly 

or indirectly with the Cyprus issue. In technical terms these developments were 

introduced by changing the various activation levels of the concepts involved in the 

model. 

The model was constructed by introducing the various key variables or concepts 

that outline the Cyprus issue while, in parallel, determining the causal relationships and 

the weights involved, i.e. the degree to which these concepts influence each other. To do 

so, we have used a scale that ranges between minus and plus seven, in order to indicate 

the direction and intensity of the causal relationships between concepts. The weight 
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values of the normalised weight matrix and the initial Activation Level are given in Table 

4.22 and 4.23 respectively.  

 

Table 4.22: Activation levels (Ai):  Initial dynamic simulation 

C1 C2 C3 C4 C5 C6 C7 
-0.57 -0.01 -0.78 0.40 0.43 -0.67 -0.57 
C8 C9 C10 C11 C12 C13  

-0.57 0.39 -0.70 -0.54 0.19 0.72  
 

The interpretation of the simulation results requires that the reader consults Table 4.24 for 

the various bracket intervals and their corresponding states. It is to be borne in mind that 

the model described is different than the previous ones given in this section. 

 

   Table 4.23: Causal relationships and normalized weights matrix 

W1 W2 W3 W4 W5 W6 
C2 C1 

-0,35 
C4 C1 

-0,5 
C3 C1 

0,6 
C6 C1 

0,9 
C10 C1 

0,3 
C13 C1 

-0,3 
W7 W8 W9 W10 W11 W12 

C1 C9 
0,1 

C1 C12
0,35 

C1 C8 
0,5 

C2 C6 
0,3 

C4 C2 
0,2 

C5 C2 
-0,1 

W13 W14 W15 W16 W17 W18 
C9 C2 

0,15 
C3 C6 

0,8 
C10 C3 

0,3 
C8 C3 

0,4 
C7 C3 

0,85 
C4 C3 

0,75 
W19 W20 W21 W22 W23 W24 

C13 C3 
-0,35 

C9 C4 
0,25 

C13 C4 
0,25 

C5 C4 
0,9 

C10 C4 
0,35 

C12 C5 
0,1 

W25 W26 W27 W28 W29 W30 
C5 C6 

-0,28 
C11 C5

-0,2 
C13 C5 

0,35 
C6 C10

-0,5 
C8 C6 

0,4 
C7 C6 

0,75 
W31 W32 W33 W34 W35 W36 

C9 C6 
-0,3 

C10 C7
0,4 

C9 C7 
0,55 

C4 C7 
-0,5 

C8 C7 
0,75 

C8 C10 
0,1 

W37 W38 W39 W40 W41 W42 
C5 C8 

0,3 
C9 C13

0,4 
C11 C10

0,4 
C8 C11

0,8 
C11 C13 

-0,2 
C12 C13

0,2 
 

It involves consulting with experts in order to identify the concepts outlining a 

given situation, in this case the possibility of settling the Cyprus Issue as a result of the 

Annan Plan. Thirteen concepts, shown in Table 4.22, were introduced; each is assigned 
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an identification number which is used when drawing the model map (Figure 4.23), or 

computing the results of the defuzzification procedure.   

 

 
Figure 4.23:  Fuzzy Cognitive Maps graphical representation 

 
4.10.3 Linguistic Fuzzy Sets encoding  

 
The tool [119] handles the fuzzification process, a very challenging task indeed, 

given the extent to supportive software which it involves vagueness and abstraction, in a 

number of ways. To begin with, it allows a variable number of fuzzy sets assigned to 

each concept, which means that it does not require all concepts to be partitioned with the 

same number of fuzzy sets. It also permits the decision-maker to impose specific limits 

for each fuzzy set in the Fuzzy Knowledge Base, which means that the sets do not 

necessarily have to have equal widths. This allows an activation level to fall in a fuzzy set 

the range of which is more (with a greater width) or less (with a smaller width) 

significant compared to other sets of the same concept.  
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 Figure 4.24: A concept associated with a given name corresponding to a linguistic 

variable and its fuzzy set partitions  

 

The calculation of the “fuzziness” between adjacent sets based upon a user-selected 

percentage of overlap indicates that fuzzy sets can overlap with each other at different 

rates, enabling a greater or smaller overlapping slope between them. Figure 4.24 presents 

an example of fuzzy sets classification of concept C1, described as the Solution of Cyprus 

Issue, through the use of the dedicated software tool for developing CI-DSS.  

 
4.10.4  Building the Fuzzy Knowledge Base 

 
Once the concepts have been included in the model, and partitioned into fuzzy sets the 

software tool provides for a Fuzzy Knowledge Base (FKB) formulation. The domain 

experts are ready to provide the model with their estimate of the activation levels and 

weight values that describe the initial state at a given time period.  

After all expert levels and weights have been introduced in the model, the two resulting 

matrices, one for each input category, are normalised based on the ranking of each expert. 

The resulting normalised level and weight matrices are stored individually as spreadsheet 

files in the workspace.  
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Table 4.24: Fuzzy Knowledge Base and model analysis 

 Concept C1 :  Solution of the Cyprus Issue 
0.60 to 1 The Issue is resolved following the referenda on both sides 

0.27 to 0.72 In principle solution in the context of the Plan finalized after May 2004. 
-0.06 to 0.39 Approval of Solution by G/C and T/C but not by Greece and Turkey 
–0.39 to 0.06 Approval of Solution by G/C, Rejection by T/C 
-0.27 to -0.72 Approval of Solution by T/C, Rejection by G/C 

-0.60 to -1 Rejection of Solution by G/C and T/C 
 Concept C2 :  Climate of Tension on the Island 

0.60 to 1 Tension escalation. Violence incidents before referendum. 
0.27 to 0.72 Violence incidents following rejection of the Plan by G/C. 
-0.06 to 0.39 Violence incidents following rejection of the Plan by T/C. 
–0.39 to 0.06 Statements intending to reduce tension before referendum. 
-0.27 to -0.72 Actions intending to reduce tension following referendum. 
-0.66    to -1 Stability on the island and approval of Plan by both sides. 

 Concept C3  : Platform Solution of the Cyprus Issue 
0.60 to 1 Approved by both sides. 

0.27 to 0.72 Approved only by G/C. 
-0.06 to 0.39 Marginally approved only by G/C. 
–0.39 to 0.06 Rejected by G/C, approved by T/C. 
-0.27 to -0.72 Rejected by T/C, approved by G/C. 

-0.60 to -1 Rejected by both sides. 
 Concept C4  : T/C Reaction to the Final Annan Plan 

0.60 to 1 Unanimous approval. 
0.27 to 0.72 Approved by the majority of the parties. 
-0.06 to 0.39 Marginal approval of the Plan. 
–0.39 to 0.06 Marginal rejection of the Plan. 
-0.27 to -0.72 Rejected by Denktash and a number of parties. 

-0.60 to -1 Unanimous rejection. 
 Concept C5 : Turkish Government Reaction to the Final Annan 

Plan 
0.60 to 1 Unanimous approval by the government and the military. 

0.27 to 0.72 Approved by the majority of the parties. 
-0.06 to 0.39 Marginal approval by the parties. 
–0.39 to 0.06 Marginal rejection by the parties. 
-0.27 to -0.72 Rejected by the government and all political parties. 

-0.60 to –1 Unanimous rejection by all sides and the military. 
 Concept C6 : Referendum Concerning the Acceptance of the Annan 

Plan 
0.60 to 1 Approval by both sides as well as by Greece and Turkey. 

0.27 to 0.72 Approval by both sides as well as by Greece. 
-0.06 to 0.39 Approval by G/C, rejection by T/C supported by Turkey. 
–0.39 to 0.06 Approval by T/C, rejection by G/C supported by Greece. 
-0.27 to -0.72 Rejection by G/C, acceptance by T/C supported by Turkey. 
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-0.60 to -1 Rejection by both sides as well as by Greece and Turkey. 
 Concept C7 : G/C Government Reaction to the Final Annan Plan 

0.60 to 1 Unanimous approval. 
0.27 to 0.72 Approved by the majority of the parties. 
-0.06 to 0.39 Marginal approval by the parties. 
–0.39 to 0.06 Marginal rejection by the parties. 
-0.27 to -0.72 Rejected by the majority of the parties. 

-0.60 to -1 Unanimous rejection. 
 Concept C8 : Greek Politicians Reaction to the Final Annan Plan 

0.60 to 1 Unanimous approval by the government and the parties. 
0.27 to 0.72 Approved by the majority of the parties. 
-0.06 to 0.39 Marginal approval by the parties. 
–0.39 to 0.06 Marginal rejection by the parties. 
-0.27 to -0.72 Rejected by the government. 

-0.60 to -1 Unanimous rejection by all parties. 
 Concept C9: US / UK Reaction to the Final Annan Plan 

0.60 to 1 Pressure on both sides to approve. 
0.27 to 0.72 Pressure on the T/C and the Turkish side to approve. 
-0.06 to 0.39 Pressure on the G/C and the Greek side to approve. 
–0.39 to 0.06 Warning about the consequences of a rejection to both sides. 

-0.27 to -0.72 Warning about the consequences of a rejection to the G/C and the Greek 
side. 

-0.60 to -1 Action to Upgrade the Status of the Occupied North in Cyprus. 
 Concept C10 :  EU Reaction to the Final Annan Plan 

0.60 to 1 Full membership of Cyprus with the issue resolved based on the Annan 
Plan and in full accordance with the acquis communautaire. 

0.27 to 0.72 Full membership of Cyprus with the issue resolved based on the Annan 
Plan with minor deviations from the acquis communautaire. 

-0.06 to 0.39 Full membership of Cyprus with the issue resolved based on the Annan 
Plan with major deviations from the acquis communautaire. 

–0.39 to 0.06 Full membership of Cyprus without solution following a rejection from 
the part of Turkey. 

-0.27 to -0.72 Full membership of Cyprus without solution under certain reservations 
following a rejection by either side 

-0.60 to -1 Full membership of Cyprus freezes due to rejection from the part of the 
G/C. 

 Concept C11 : Greek Position with Reference to Turkish EU 
Membership 

0.60 to 1 Support of the full membership of Turkey based on an agreed schedule. 

0.27 to 0.72 Agree by the end of 2004 to determine the date that marks the beginning 
of the full membership negotiations. 

-0.06 to 0.39 Vague support to Turkish full membership. 
–0.39 to 0.06 Neutral position concerning Turkish full membership. 
-0.27 to -0.72 No support to Turkish full membership. 

-0.60 to -1 Rejection of Turkish full membership. 
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 Concept C12 : EU Position with Reference to Turkish EU 
Membership 

0.60 to 1 Support of the full membership of Turkey based on an agreed schedule. 

0.27 to 0.72 Agree by the end of 2004 to determine the date that begins full 
membership negotiations. 

-0.06 to 0.39 Vague support to Turkish full membership. 
–0.39 to 0.06 Neutral position concerning Turkish full membership. 
-0.27 to -0.72 Discourage Turkish full membership. 

-0.60 to -1 Rejection of Turkish full membership. 
 Concept C13 : US / UK Position with Reference to Turkish EU 

Membership 
0.60 to 1 Support of the full membership of Turkey based on an agreed schedule. 

0.27 to 0.72 Agree by the end of 2004 to determine the date that begins full 
membership negotiations. 

-0.06 to 0.39 Vague support to Turkish full membership. 
–0.39 to 0.06 Neutral position concerning Turkish full membership. 
-0.27 to -0.72 Discourage Turkish full membership. 

-0.60 to -1 Rejection of Turkish full membership. 
 
 

4.10.5  Scenario-Based simulations – Experimental results  
 

The final part of this exercise deals with the performance of the FCM and GE-FCM 

algorithms using scenario analysis methodology. This yields the final activation levels 

and the optimal weight matrix computed by the FCM and the GE-FCM respectively. 

Needless to point out that the analyst’s interest focuses on the defuzzification results that 

are automatically computed by the software tool. In fact, the FCM execution process 

takes the normalized initial levels and a weight matrix computed at the normalization 

stage, and runs the FCM algorithm calculating the final baseline activation levels.  

 
4.10.5.1 Initial position outline  

 
The dynamic simulation of the model turned out to be rather promising since the resulting 

output provided an outline of the Cyprus issue that reflected the climate on the island as it 

prevailed a few weeks before the referenda. Thus, the dynamic simulation results, as 

shown in Table 4.25 and Figure 4.25, point to the direction of a rejection of the Annan 

Plan by the Greek Cypriots (G/C)  despite international pressure exercised, unlike the 

Turkish Cypriots (T/C)  that seem to decide for a “yes” (A1 =- 0.57).  
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Table 4.25:  Activation levels (Ai):  Initial Dynamic Simulation 

C1 C2 C3 C4 C5 C6 C7 
-0.57 -0.01 -0.78 0.40 0.43 -0.67 -0.57 
C8 C9 C10 C11 C12 C13  

-0.57 0.39 -0.70 -0.54 0.19 0.72  
 

                  
     Figure 4.25:  Stabilization of the FCM model in Equilibrium 

 

The controversy between the “yes” and “no” followers, in any case, did not seem to 

create any form of serious friction or tension (A2 = -0.01), with the possible exception of 

the North, but the model suggested the likelihood of tension in the future, especially 

during the period immediately following the referendum, thus subjecting the bilateral 

relations of the Cypriot government coalition parties to a test. Concerning the Annan 

Plan, it has not been considered by G/C as an acceptable solution platform (A3 = -0.78), 

something which has been pointed out by the majority of the G/C parties (A7 = -0.57) 

unlike the case of the T/C political parties, the majority of which have been shown to 

support the Plan (A4 = 0.40). As a consequence, the model predicted that the Annan Plan 

would face a rejection from the G/C (A6 =-0.67) side while the possibility of a rejection 

from the part of the T/C side was shown to be very remote with the support of the 

Turkish government (A5 = 0.43). The Greek government, on the other hand, is predicted 

to reject the final version of the Annan Plan (A8 = -0.57) something, which has only been 

one of the various meanings attributed to the Prime Minister’s masterly diplomatic 
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statement on the subject. This hesitant attitude concerning both the viability and 

applicability of the Annan Plan may have led the EU to stick to its initial position 

concerning the Cyprus full membership regardless the attainment of a solution, asking, 

however, for a number of restrictions (A10 = -0.70). The inflexibility of Turkey on the 

Cyprus issue, seems to point to the direction of a trade-off involving the full membership 

of Turkey, something which may be the source of bitter feelings at least as regards the 

Greek position (A11 = -0.54), unlike that of the EU and the US/UK which reveal a vague 

support (A12 = 0.19) and a warm backing (A13 = 0.72) respectively. The latter are shown 

to have exercised considerable pressure on both sides towards an approval of the Plan  

(A9 = 0.39). 

4.10.5.2 Inference through scenario analysis 
 
Following the initial dynamic simulation phase, the tool considers, in addition to the 

number of epochs (generations), the selected concept, its desired activation level and the 

probability of crossover and mutation, both in the interval [-1, +1]. Running the model 

with the normalised levels matrix and a randomly initialised weight matrix produces 

various graphical representations of the fitness functions, as well as an optimal weight 

matrix that can be used in the next step. This matrix is stored in the workspace together 

with a log file of the GE-FCM simulation. The first scenario results for the FCM 

algorithm are shown in Figure 4.26.  

The GE-FCM algorithm is a variation of the FCM algorithm. As previously 

mentioned, if the simulation attains the target activation level, then the decision maker 

uses the Fuzzy Knowledge Base to determine the environment in which this target has 

been realized, then interpret the results with the aid of the FKB at a linguistic level, and 

finally use this information to make strategic and tactical concept modifications according 

to the final activation levels as the model has suggested. 

 
4.10.5.3 First Policy Scenario: Rejection of the Annan plan by the G/C 

and acceptance by T/C. Failure to reach a solution 
 

This scenario actually verifies the initial situation by assigning a value of -0.5 to concept 

C1 indicating a failure to reach a solution of the Cyprus issue following a rejection of the 

Annan Plan by the G/C side and acceptance by the T/C side. The simulation stabilised the 
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system for a value of A1 =-0.61 thus ensuring the rejection by the G/C side, an outcome 

supported by the value assumed by A3 =-0.002. The results of this simulation, as shown in 

Table 4.26 and Figure 4.26, may be outlined as follows:  

 

 
Figure 4.26: First Scenario: Equilibrium 

 

Table 4.26: First Scenario : Plan Rejection by G/C and acceptance by T/C 

C1 C2 C3 C4 C5 C6 C7 
-0.61 0,54 -0.002 - 0.70 0,86 - 0.34 -0.75 
C8 C9 C10 C11 C12 C13  

0.37 -0.003 - 0.70 0.51 0.80 0.84  
 

 The April 24 referendum results have been forecasted to suggest a rejection of the 

Plan by the G/C side unlike the T/C side that has been taken to accept it (A6 =-0.34). The 

rejection of the Annan Plan by the G/C side has been considered to lead to a possibility of 

a rising tension and a number of violence incidents or provocative actions (A2= 0.54). The 

Plan approval by the T/C has not been exactly what one may consider as unanimous, this 

being largely a result of pressure exercised by Denktash, the T/C leader during that time, 

to reject the Plan (A4 = -0.70).  

As it concerns official and government reactions, the majority of the G/C parties 

have been assumed to reject the Plan (A7=-0.75) unlike the reaction of the Greek parties 

that have been shown to offer their marginal, certainly not wholehearted, approval 
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(A8=0.37). In fact this has been the case, with only one party expressing its full support to 

the Plan while most of the remaining ones asking for a postponement of the referndum 

which would give the Cypriots the time required to be informed on the Plan provisions. 

The majority of the Turkish political parties have been considered to more or less favour 

the Plan (A5=0.86), while the pressure exercised by the US/UK side has been taken to 

restrict itself to just warning statements (A9=-0.003). Finally, the EU has been thought as 

favouring the full membership under a number of restrictions following the Plan rejection 

by the G/C (A10 = -0.70).  

The model shows that the outlook of a Turkish EU full membership may be rather 

promissing since the Greek government has already agreed on the issue of the Turkish 

full EU membership (A11=0.51), while both the EU (A12=0.80) and the US/UK (A13=0.84) 

seem to offer their strong support. 

 
4.10.5.4 Second Policy Scenario: Excessive pressure exercised by the 

US/UK 
 
This scenario has been designed to investigate the extent to which the US/UK 

pressure can affect the environment and consequently the decision-making process on the 

Cyprus issue. To this end we have assigned the relevant concept an extreme value, 

(A9=0.8) indicating that the US/UK side exerts considerable pressure on both sides to 

accept the Annan Plan.   

 
         Table 4.27: Second Scenario: A: Excessive pressure exercised by the US/UK 

C1 C2 C3 C4 C5 C6 C7 
-0.75 - 0.78 -0.72 0.46 0.44 -0.39 0.39 
C8 C9 C10 C11 C12 C13  

0.71 0.41 0.65 0.65 0.49 0.44  
 

As shown in Table 4.27 and Figure 4.27, it seems that this pressure can lead to exactly 

the opposite result, namely a rejection by both sides (A1=-0.75), probably as a result of a 

defensive reaction to the pressure exercised. It is interesting to see, in fact, that in this 

case the US/UK pressure activation level (A9 = 0.41) reaches its maximum value allowed 

by the model, despite its much higher initial input required by this scenario (A9=0.8). The 

moderate value assumed by the model in this scenario is probably close to its ceiling 
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value and suggests that part of the US/UK pressure should probably focus on the Turkish 

and the T/C side rather than the G/C and the Greek one. The ceiling value imposed in this 

case indicates, in addition, the limits that such forms of exogenous pressure may be 

allowed to reach in order to become convincingly fruitful.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.27: Second Scenario: Equilibrium 

 

Concerning the remaining model concepts, the stability and tension reduction on 

the island (A2=-0.78) indicates the rapprochement of both sides urged by their willingness 

to cooperate, a fact that shows that the mistrust between the two sides may not be as 

widespread as it is believed to be. The Annan Plan, in this case, does not seem to be 

regarded as an acceptable platform solution by either the G/C or the T/C (A3 =-0.72) 

something that contradicts the approval of the Plan by the majority of the T/C parties 

(A4=0.46), a result that holds for the majority of the Turkish political parties (A5=0.44). 

Unlike the referendum results (A6 =-0.39) that indicate a G/C rejection of the Plan and a 

T/C approval, the majority of the G/C parties (A7=0.39) and the Greek political powers 

(A8=0.71) are shown to approve the Plan. Regarding the EU, it seems to decide that 

Cyprus is a full member with the issue resolved based on the Annan Plan, which may not, 
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however, suffer from major deviations from the aquis communautaire (A10=0.65). Finally 

all EU members including Greece, as well as the US/UK sides agree on a date given 

before the end of 2004 to Turkey to start full membership negotiations (A11=0.65, A1 

=0.49, A13 =0.44).  

 
4.11 Discussion 

 
This section will present two major issues in the form of discussion. The first one lies 

with investigating whether there is another similar method used in political and crisis 

management problems for comparison. The second issue is related to timing aspects 

during the execution process of FCM. Some results will be presented and a comparison of 

the simple FCM and the genetically evolved FCM with respect to time will be given.  

 
4.11.1  FCM and Bayesian-based methods applied in political decision 

making  
 
Forecasting in political decision making is a key issue for strategic analysis, decision 

making and policy planning. Several methods have been proposed for forecasting based 

primarily on game theory and modeling strategies [51]. The main obstacle in modeling 

political situations and developing effecting tools is the absence of numerical data in the 

decision process. Understanding such a model requires a manipulation of data relying on 

natural language arguments. Fuzzy logic and particularly Fuzzy Cognitive Maps is an 

alternative methodology to political decision models that merges mathematical values 

with a linguistic approach in decision making. This approach makes possible the 

manipulation of words without the necessity of pre-existing data. The experts’ assessment 

is encoded in a linguistic fuzzy knowledge base and each numerical value is associated 

with a fuzzy set, representing a linguistic meaning. Comparing FCM with similar 

technologies [3] applied in political decision making, like expert systems and neural 

networks, the FCM has certain advantages over them, the main one being that it is 

relatively easy to represent knowledge and inferences can be computed by numerical 

matrix operations instead of IF/THEN rules. FCM avoid several problems arising from 

the hierarchical structure of the rule-based systems from which the knowledge is 

extracted through a decision tree [77]. The disadvantages of the latter are that it is 
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impossible to use rule-based systems in large scale problems and that these systems are 

not flexible enough for modifications.  

         Instead of a fuzzy approach in political decision making probabilistic reasoning 

employed by Bayesian methods may be used as a decision making, tool. Bayesian 

methods use probabilistic approximate reasoning, while fuzzy logic reasoning uses 

fuzziness as the concept of approximation [82]. Bayesian refers to statistical data analysis 

telling us how to update prior beliefs about parameters or hypotheses in light of data 

arriving at posterior beliefs and how to learn about parameters from data based on the 

probability laws. The mathematics behind the Bayesian theorem was simplified via an 

algorithm called Markov Chain Monte Carlo (MCMC) [80, 65] which increases its 

computational power and applicability. The main distinction between probabilistic 

reasoning and fuzziness is that the former is basically a methodology that uses statistics 

to make inference. More precisely, observations or new information are used to update or 

support a hypothesis from an expert [89]. On the other hand, in the world of fuzziness, 

the decision is made when a particular concept belongs to a given fuzzy set in which the 

classification is a matter of perception. This classification is very close to the human 

thinking and behavior (reasoning) and it is more accurate and understandable to decision 

makers.   

4.11.1.1 Bayesian Belief Networks  
 

Bayesian Belief Networks (BBN) are a graphical representation model that combines the 

theory of probability with directed graphs to show the variables as nodes and the 

probabilistic dependences as arcs [113]. For example, the relationship between infection 

and symptoms is given by the description of the symptoms and then a BBN can compute 

the probability of the presence of the infection. BBN combine the causal relation and 

probabilities thus making their models very efficient in the representation of prior 

knowledge.   

The result of a Bayesian network is the posterior probability of the hypotheses 

given the identified indicators [166]. In BBN the nodes represent variables and the arcs 

causal links between variables. This sort of networks takes into consideration the 

probabilistic relationship between variables using historical information about their 
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relationships. What is interesting in BBN is their ability to model probabilistic reasoning 

and that they are very useful for modeling situations where information is inexact. The 

Bayesian statistical methods and the Bayesian network models are used for avoiding 

overfeeding of data in a system [109].  

BBN offer consistent semantics for representing uncertainty and graphical representation 

of the nodes and causal links between various concepts. They can also be seen as an 

effective method for modeling uncertain situations which may be described in the form of 

cause and effect. Variables in the BBN are represented by nodes that can be viewed as a 

switch which is on or off [28].  The weather could be cloudy or sunny, the engine is on or 

off, the enemy is near or far, the symptoms are present or not.  The above description 

seems to have many similarities with FCM in terms of nodes and arcs but the description 

of the nodes in BBN is bivalent, while fuzzy theory follows a fuzzy set classification 

[54].  

In the example of Figure 4.28, a small model of BBN is presented describing the 

possibility of the grass to be wet which is either a result of cloudy and rainy weather, or a 

sprinkler is on. The state of the first node gives the likelihood of the sky if it is sunny or 

cloudy. This possibility affects the node rain in the child node. In the second child node 

named sprinkler, the likelihood can be on or off, and the grass can be wet or dry. The 

causality is that if the weather is rainy then the grass will be wet directly or if the weather 

is sunny then the grass is wet only if the sprinkler is on. A BBN represents possible states 

of a given domain also containing probabilistic relationships among some of the states of 

the domain [44]. In those cases probabilities are introduced in BBN that can be used to 

answer questions like, how likely is it to have water on the grass on  a cloudy day?, or, 

similarly, what is the probability to have water on the grass in the summer time? This 

question, without current evidence, can be answered using conditional probability tables. 

This table is built using prior information about the relationships among nodes indicating 

that the likelihood of a node in one state is dependent on another node’s state. Prior 

information between nodes indicates the likelihood that the node in one state or another is 

dependent on another node’s state.  

 The construction of Bayesian networks follows a hierarchical tree structure with the 

higher node directly influencing the lower node [43]. When two nodes are connected by 
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an edge then the causal node is called parent node. The nodes take bivalent values called 

states in the form of something that will or will not happen.  

 

 
Figure 4.28: A BBN model: The possibility of raining   

 

4.11.1.2 Bayesian and political decision making  
 

A Bayesian method can represent knowledge in an uncertain environment using 

probability theory to represent this uncertainty. However, in this method some limitations 

are present in obtaining reliable results that may lead to computational ambiguity. This is 

mainly due to the assumption that all factors in a system are equal and assigned the same 

binary value. This inability of the Bayesian approach limits the use of the method in real-

world political problems [79]. Another reason why Bayesian Belief Networks have not 

been widely used in political decision making is that the posterior expected value requires 

integrating the posterior distribution, the analysis of which is very difficult and almost 

impossible. Encoding political judgment is a difficult task requiring special tools for the 

mathematical manipulation of this encoding. Bayesian methods provide limited ability to 

formally include this type of information given by experts using statistical analysis 

through the use of prior information [166].  
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An example of the use of comparative politics is given in Jackman’s study [79] 

describing the escalation of a crisis between two nations. The Bayesian approach can 

compare a number of independent variables to examine whether it is appropriate to 

assume that the error terms are correlated [127]. The escalation of a crisis between two 

nations can occur in different cases, taking into consideration many parameters. This 

method is suitable for comparison analysis using two actors at a time. This limitation of 

the Bayesian approach is very important and in cases of real crises or political problems 

in which a lot of parameters are involved the method can not be applied. The reason is 

that the Bayesian theorem does not support multivariate computation and the aggregation 

of many parameters into a single variable is difficult and problematic. 

 
4.11.1.3 Comparison between BBN and FCM  

 

 The Bayesian approach was selected for comparison with FCM because both are 

using a similar symbolic notation and modelling stand for the encoding of a given 

problem.  More precisely, the structure of a BBN has many common aspects with FCM; 

both use nodes to represent concepts and arcs to indicate their causal link. BNN follow a 

single parameter and associate it with another parameter in a hierarchical tree structure. 

This form of structure limits the applicability of BBN in complex real world problems 

like political decision making. For example, this structure lowers the computational 

ability of BBN [183] because it uses a linear multiplication function with pairs of 

concepts, unlike FCM which use matrix computation. [163]. The linear computation of 

BBN suffers from feedback causal influence which is a necessary feature for dynamic 

systems [155]. The way that FCM are built and the iteration process satisfy the needs of 

dynamical systems.    

A FCM represents knowledge in a symbolic manner and relates state activation 

function, causal effect and input/output events in a Fuzzy Knowledge Base (FKB). Expert 

knowledge is encoded in this FKB giving FCM the ability to handle incomplete 

information via a linguistic form. The FCM is built with the help of experts and it is used 

as an inference mechanism. The FKB is the bridge between the natural meaning of a node 

or concept and its mathematical interpretation. In FCM, approximate reasoning is also 

possible, with qualitative and linguistic knowledge. 
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In BBN the knowledge is represented through a probabilistic table using prior 

information. This table is built with the aid of existing statistical data and most of the 

times this data is bivalent (ON and OFF) [6]. This method is subjective and fixed; the 

current situation of a given problem in BBN is not known as it is not possible to gather all 

possibilities in the conditional probability table and associated these with a probability 

figure to be used for prediction. In FCM the current situation of a given problem is 

known, thanks to experts’ assessment and matrix computational formulation which, after 

the first execution of the algorithm, gives the current modelling status of a given problem.  

A FCM using GA is a goal oriented optimization technique which sets the target value of 

a concept to reflect a certain political situation.  In the Bayesian approach the target value 

is the estimation of the posterior value related to the prior value delivering an error [151]. 

This linearity in the Bayesian method allows comparison of two concepts at a time while 

in FCM all concepts are involved in the forecasting procedure. 

 The objective of finding the initial state among a large number of possible 

concepts that the FCM represents is a search problem that can be optimized. The initial 

condition, with the help of genetic algorithms, is used as the basis in the forecasting 

process. For example, uncertainty is statistical inexactness due to random future 

behaviour of events. In FCM the decision is made when a particular object belongs to a 

given set and the result is a matter of perception which can be subjective. Another 

important difference is that in uncertainty there is a degree of probability associated with 

the occurrence of conditions. In fuzziness the membership function of the condition is not 

defined under a crisp value. Summarizing the above, we can conclude that the BBN 

approach and FCM are two approaches that despite the fact that they share some 

similarities, they also have fundamental conceptual differences. It is clear, therefore, that 

the two approaches are not comparable due to their different structure, computational 

methodology and nature of applicability to political decision making. Any further 

comparison of the two approaches will provide nothing more than biased and misleading 

results.   
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4.11.2 FCM time performance – Computational burden  
 

4.11.2.1 Introduction  
 
Execution time determines the duration of execution of a program to complete a certain 

task and therefore the steadiness of a system with respect to time. The experiments for the 

purpose of time performance analysis were conducted on an Intel® Pentium (M) 

Processor with 1.50GHz speed and RAM capacity of 512MB with an access time of 40Hz 

on a Windows® XP® operating system. The tool was implemented using Matlab® 

2007b. The objective of this execution time analysis is to designate the performance of 

the FCM methodology with respect to the quantity of concepts and weights in a model. A 

total of ten different models were used with varying numbers of concepts and weights. 

 

4.11.2.2  Simple FCM execution time  
  

The simple FCM model was tested in full-scale starting with a small-sized FCM model 

consisting of 3 concepts and 5 weights, with a gradual increase in the number of concepts 

and weights resulting in a large-sized FCM model consisting of 35 concepts and 377 

weights. Table 4.28 and Figure 4.29 and Figure 30 displays the concepts and weights 

characteristics of each simple FCM model tested along with its execution time (in 

seconds), which varies from 1.39s to 6.31s. The average increase in execution time of the 

ten samples is 18.45% as can also be seen in Table 4.28. 

   
Table 4:28: Time performance of simple FCM algorithm 
 

Simple 
FCM Model 

Number of
Concepts 

Number of
Weights 

Execution  
time (s) 

Increase 
(%) 

Model 1 3 5 1.39 - 
Model 2 6 15 1.63 17.27 
Model 3 8 25 2.10 28.83 
Model 4 10 25 2.49 18.57 
Model 5 13 46 2.87 15.26 
Model 6 15 61 3.27 13.94 
Model 7 18 92 3.90 19.27 
Model 8 25 192 4.96 27.18 
Model 9 30 265 5.80 16.94 
Model 10 35 377 6.31 8.79 
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Figure 4.29: Graphical representation of time performance with respect to concepts for 
the simple FCM   
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Figure 4.30: Graphical representation of time performance with respect to weights for 
the simple FCM  

  
 

4.11.2.3  Evolutionary FCM execution time 
 
The execution time was also measured for Genetically Evolved FCM models. The same 

models used in the simple FCM  were used but furthermore they were evolved using the 

GECNFCM algorithm. For the simulation of the algorithm, a population size of 100 

individuals was used and evolved for a total of 400 generations. The weight values were 
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randomly initialized in the range [-1, 1], while the probability of applying the genetic 

operator of crossover was set to 25% and that of mutation to 1%. Table 4.29 and Figures 

4.31 and 4.32 illustrate the performance of the models by comparing the time 

performance against concepts and weights. 

The execution time for the smallest FCM was found to be 7.2 seconds while for 

the largest model (comprising 35 concepts and 377 weights) was computed at 197.66 

seconds. The average increase rate of the execution times is 46.96% largely due to the 

fact that from the first model to the second a 110.42% increase occurs. Otherwise an 

average of 39% is observed.  It appears that the increase rate follows that of simple FCM. 

Clearly, the time needed for the execution of simple FCM models compared to 

genetically evolved FCM models is due to the fact that the execution time for 

identification of the new weight matrix performing genetic operations on population of 

chromosomes becomes the more significant part of the total execution time. This is a 

clear indication that the number of weights evolved during the optimization process 

affects the execution time of the genetically evolved FCM algorithm. 

 
Table 4.29: Time performance of evolutionary FCM Algorithm 

 
Evolutionary 
FCM Model 

Number of
Concepts 

Number of
Weights 

Execution  
time (s) 

Increase 
(%) 

Model 1 3 5 7.2 - 
Model 2 6 15 15.15 110.42 
Model 3 8 25 18.59 22.71 
Model 4 10 25 24.42 31.36 
Model 5 13 46 41.38 69.45 
Model 6 15 61 48.60 17.45 
Model 7 18 92 64.73 33.19 
Model 8 25 192 109.89 69.77 
Model 9 30 265 149.58 36.12 
Model 10 35 377 197.66 32.14 

 

The execution time for the evolutionary algorithm with respect to absolute 

numbers is reasonable for such demanding type of computation. Thanks to the evolution 

of technology situation has greatly improved as the time needed for the largest FCM 

(with 35 concepts and 377 weights) in the genetic environment is less than 3 minutes and 

may therefore be considered as acceptable. 
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Figure 4.31: Graphical representation of time performance with respect to concepts for 
the GE-FCM  
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Figure 4.32: Graphical representation of time performance with respect to weights for 

the GE-FCM  
 

Comparing the results obtained from the above tests, the clear conclusion as 

expected is that as the number of concepts and weights increases, the execution time, both 

in simple and in genetically evolved FCM algorithms progressively increases. It is also 

important to notice that in Genetically Evolved FCM the time follows more closely the 

increase of weights instead of concepts increase. On the contrary, in simple FCM the 

number of concepts and weights does not affect significantly the increase of time.  

 



Chapter 5: Multi-Layer Fuzzy Cognitive Maps (ML-FCM) 
 
 

5.1 Introduction  
5.2 Building and running a Multi-Layer FCM  
5.3 Multi-layer FCM Algorithm: How it works    
5.4 Limitation of ML FCM and proposition of a new algorithm.  
      The Enhanced ML-FCM 
5.5 Case study using the Multi-Layer approach.  
 

 

5.1 Introduction  

 

Multi-Layer Fuzzy Cognitive Maps (ML-FCM) is a new approach developed to improve 

the decision-making process in large scale problems which are modeled using Fuzzy 

Cognitive Maps [96]. The main issue here is the decomposition of complex parameters 

into smaller, more manageable quantities organized in a hierarchical structure. This 

structure forms a model, which consists of subsystems working together and supporting a 

central objective. The latter is related to the model structure of a particular system and is 

represented by a main, central FCM, with distinct FCM sub-models (layers) linked 

together in a hierarchical structure [4]. The sub-models represent and implement (in 

computational terms) the decomposed parameters and variables of the system, thus 

facilitating the focus on and the study of the critical parts of the system under 

consideration [145]. 

Recall that an FCM is a figure composed of nodes and edges, the former 

introducing the qualitative concepts of the analysis while the latter indicating the various 

causal relationships. This diagrammatical notation offering a graphical view, allows the 

decision maker to visualize the problem at its current state [92]. The activation level of 

each of the nodes describing the system and the weighted arrows are set to a specific 

value based on input provided by expert knowledge on the subject. Such input must be 

very carefully considered given that some concepts can be more important than others, 

being sometimes composed of a wide variety of variables that influence their activation 

levels. This applies for most of the concepts in an FCM, especially if the problem under 
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study is highly complicated. For example, if the problem consists of sixty concepts, it 

becomes very difficult or even impossible to create a single map and identify each 

interaction between each concept. This is exactly what the present chapter aspires to 

tackle by proposing a new methodology for constructing Multi-Layer Fuzzy Cognitive 

Maps [121], thus targeting to handle the complexity of such problems.  The essence of 

the methodology lays with grouping a number of concepts in such a way that each group 

may be associated with a specific concept of interest in the upper level, which 

corresponds to a crucial, complex variable of the system. The group of concepts sums up 

to a “local” FCM, which is linked to the concept of interest properly expanded for further 

analysis. This grouping may be repeated for a number of concepts of interest and may 

decompose a concept using a stepwise approach. Each step gives birth to a new discrete 

level, which includes in its turn a new FCM corresponding to an expanded form of the 

central concept in the previous level.  

 The execution of the computational part starts with those FCMs that lie at the 

lowest levels and continues with transferring the computed activation level of the concept 

in focus to the next upper layer. This makes sure that the main variables influencing the 

concept in focus are analyzed and assessed “locally” (i.e. focusing only on this specific 

concept of interest thus reducing complexity by sharing it evenly between layers. An 

additional advantage of this algorithm is that it contributes to the efficiency of decision 

making by allowing the simulation of the selected scenarios separately in each layer. 

More specifically, the algorithm, named ML-FCM, designs layered Fuzzy Cognitive 

Maps in a hierarchical structure, in order to compute the activation levels of the children 

FCMs in each layer and update the Activation List of the decomposed father FCMs in the 

upper layer. What this algorithm offers, in addition, is the capability to perform scenarios 

facilitating the forecasting procedure.                   

 The Genetic Algorithms implemented in the ML-FCM may be considered as a 

powerful and successful enhancement able to handle large complicated problem-solving. 

It is interesting to point out that the proposed evolutionary multilayered approach 

(described later on)  is reflected both in the implementation of the GA as well as in the 

methodology applied for solving large-scale problems [126]. In fact, the reasoning behind 

the use of this hybrid system is to obtain the optimal solution to the weight values 
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corresponding to an FCM in any layer. This is very useful for the simulation process and 

helps the decision-maker to develop scenarios with the involvement of more than one 

concept in any place of the ML-FCM. The basic principle of the methodology requires 

the initial building of the hierarchical structure forming the ML-FCMs. Subsequently, the 

GA can be applied to the central FCM or any sub-FCM generating a new, near to optimal 

set of weight values for that particular FCM. Ultimately, the FCMs are run using the 

recalculated weights beginning from the lowest-level FCMs upwards to the root FCM.  

An additional advantage of using GAs here is that genetic optimization can be 

applied to a concept that expands to a sub-model, thus being common to two FCMs 

(parent- and child-FCM). As a result, the concept’s final level computed in the child 

FCM will be the initial level of the parent FCM, both of which are predetermined by the 

user. Therefore, any scenario analysis becomes quite flexible and allows for different 

experiments at some or all of the levels of interacting FCMs. The final step involves the 

execution of the FCM. Two algorithms are used during the execution process of the 

Multi-Layer FCM: The simple FCM, which is used for the creation of the baseline of the 

model, and the Genetically Evolved ML-FCM, which is used when scenario analysis is 

required. However, before an FCM is executed if it is marked for genetic optimization 

then what actually runs is the Genetically Evolved ML-FCM (GEML-FCM) algorithm. 

The resulting weight matrices of each such experiment are then fed as input to the FCM 

algorithm for completing the scenario analysis. The proposed algorithm (which integrates 

genetic optimisation with ML-FCMs) runs following a bottom-up sequence so that any 

newly-computed final activation level of a concept in a child FCM is used as the initial 

activation level of its parent FCM after it has been calculated on the basis of the 

optimised weight matrix of the child GEML-FCM algorithm [126].  

 

5.2. Building and executing a Multi-Layer FCM 
 
 The first part of the procedure to follow has already been described in the previous 

chapters and involves the identification of the main concepts participating in a given 

problem, the sort of input provided by experts in the relevant field. Once all concepts have 

been identified they are partitioned in fuzzy sets, each assigned a linguistic variable. This 

encoding of experts’ knowledge is stored in a fuzzy knowledge base, which is an essential 
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part of the fuzzification and defuzzification processes [116]. The second part is the 

creation of the Multi-Layer FCM, in which the concepts are grouped together in smaller 

sub-systems called sub-FCMs, formatted in a hierarchical structure. The advantage of this 

structure is the creation of small and more easily manageable sub-FCM models, which 

interact to support the main FCM. For the main FCM and each of the sub-FCM models 

the domain experts provide their estimate concerning activation levels and weight values. 

It is important to point out that there may be cases of concepts in which the activation 

level (AL) value is not estimated directly. Instead, a sub-FCM model is created, which is 

used for calculating this AL for this specific concept. Each such sub-FCM model 

participates in the defuzzification process following which a report for each of these sub-

FCM models is issued to explain and justify the calculated activation level for the 

corresponding concept of interest. More specifically, the steps followed by the proposed 

ML-FCM methodology are the following:  

Step 1: Acquiring Expert Knowledge 

 When developing a model for a certain problem the first step involves consulting 

with domain experts in order to identify the concepts playing the role of the leading 

variables in the problem under consideration. In the ML-FCM environment, the experts 

are asked to decompose (describe) concepts in higher levels to various concepts forming 

smaller FCMs at a lower level. The concepts are related to each other and are grouped 

around a central concept for each FCM, which is the link of the particular FCM to the 

upper layer of the model.    

Step 2: Building the Fuzzy Knowledge Base 

 Once all concepts have been identified and grouped together, they are partitioned 

into fuzzy sets, each set assigned a linguistic value thanks to the integration of a FKB to 

each FCM, which allows the analyst to encode the domain experts’ assessment concerning 

a given real-world problem and represent this knowledge in a graphical representation 

language. To do so, the linguistic sample is encoded directly in a numerical matrix using 

an uncertainty fuzzy distribution and is subsequently reduced to a scalar form. This 

linguistic matrix reflects the quantisation levels of the input and output spaces, and the 

number of fuzzy set values assumed by the fuzzy variables. The ML-FCM methodology 
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uses a single Fuzzy Knowledge Base in which all concepts and their analysis is stored. 

Once all concepts have been defined and the FKB has been built, the domain experts 

provide their estimate of the activation levels and weight values defining the initial state 

of the main FCM that contains the selected concepts participating in the first layer (nth) of 

the model. Finally, the experts select the concepts that they consider to be the most 

important for further analysis without, however, estimating their Activation Level values. 

The fuzzy knowledge related to the case study described in this chapter is given in 

Appendix A.  

Step 3: Defining the structure of the Multi-Layer Fuzzy Cognitive Map  

 The AL values for each concept that intentionally were left without estimation by 

the experts will be computed by the new sub-FCMs, designed specifically for this 

purpose. The new sub-FCMs are children of the main FCM and consist of a number of 

concepts related to the concept in focus which is the central concept of the new sub-FCM.  

Each sub-FCM gives birth to a new discrete level, which includes, in its turn, a new FCM 

corresponding to an expanded form of the central concept in the previous level, with the 

central concept of each sub-FCM being the direct link between the father FCM and the 

child FCM. Given the complication of this analysis section 5.3 provides a detailed 

description of the design and implementation of the Multi-Layer FCM. 

 The same process is repeated for the new sub-FCMs provided that they also 

include concepts which can be further analyzed to include new sub-FCMs. For example, if 

we consider the first layer of expansion of the main FCM (layer n-1), for each sub-FCM 

participating in this layer we can identify concepts that need to be broken down to more 

components. The decomposition of such concepts results in the creation of new sub-

FCMs in another layer at a lower level (layer n-2). In case that a FCM consists of only  

leaf nodes, meaning that none of its concepts requires further analysis decomposition, the 

particular FCM is ready for executing the computational part of a simulation scenario. 

The expansion dimensions of the Multi-Layer FCM depend on the complexity of the 

problem and the number of the participating concepts. The decomposition of the problem 

structure takes place via the expansion of certain nodes to different layers until one 

reaches the leaf nodes which represent the final level of the FCM’s decomposition into 

elementary pieces of information (cognitive states). 
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Step 4: Simulation Results - Inference  

 As previously mentioned, the Multi-Layer FCM follows a hierarchical structure 

[77], meaning that we need to identify the order in which the FCMs will run and execute 

the computational part of a simulation. The methodology used for this purpose is similar 

to the Depth-First Search (DFS) [157]. DFS is used to go all the way down branch by 

branch reaching the leaf nodes at the bottom of the structure before trying the next branch 

over. The first run takes place when the lower level of a branch is visited. After running 

each FCM we backtrack to the father FCM for updating its activation level list, in which 

case the specific FCM having its activation level list completed is “removed” from the 

list (stack). The search continues until the next leaf node is reached to continue the 

process of execution, backtracking and updating until another leaf node in another branch 

at the bottom of the ML structure is found. After all FCMs that are linked together in this 

hierarchical form have been executed one-by-one, the final step involves the execution of 

the main FCM at top most layer n. Each layer uses the Fuzzy Knowledge Base to 

determine the context in which the activation level of interest is realized, while the 

inference engine directs the search through the knowledge base as soon as each layer is 

completed. This process provides the necessary information for every FCM which 

participates in each layer. The advantage of this method is that the concepts in the upper 

layer can be deeply analysed in their internal parameters. Taking into consideration the 

lower levels of the FCM model, the decision-maker retrieves the results, interprets them 

with the aid of the FKB at a descriptive, linguistic level, and uses this information to 

make strategic and tactical movements towards further analyzing a concept in a certain 

layer.  

5.3. Multi-Layer FCM Algorithm: How it works  
 

5.3.1   Search spaces and the multilayer algorithm  
 
The Multi-Layer Fuzzy Cognitive Map (ML-FCM) methodology conceives the process 

of developing and traversing such a map as being a space problem [157], with the term 

“space” used to refer to a search algorithm employed to find and execute a sub-FCM, as 

will be described later on.  
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 Search spaces are often depicted graphically by drawing the initial state and the 

states that result from the application of certain domain operators, as shown in Figure 5.1.  

The initial state is placed at the top of a ML-Structure, while the resulting states are 

grouped in layers.  

It is important to point out, however, that search spaces [2], even in cases of very 

simple problems, may contain an enormous number of states. The possible number of 

states (k) at a total level (n) is in-1, where i is the number of operators being applied on 

each state of each layer, while the total number Tn of states including level n is 

                                                                     5.1 
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Taking into consideration equation 5.1 and supposing that only two operators 

(i=2) are applied to each level  in the search space the resulting number of states (k) after 

applying the operators to a state in the previous layer is two (Figure 5.1) which raises the 

total number of states in the space to 3. At a second round, each of these 2 states may 

yield two additional ones, which means that there will be 4 states at the next layer, 

yielding a total of 7 states. Accordingly, the next level will result in 8 new states, yielding 

a total of 15 and so forth.  

 

 
 Figure 5.1:  Search space diagram 

 
Therefore, we decided to base our search algorithms on the notions of a search 

space problem due to the fact that the Multi-Layer FCM is expanded like a tree structure 

the branches of which are linked together in a hierarchical form [4]. Of course in our case 
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an FCM is not expanded strictly in accordance to equation 5.1 due to the different level 

of complexity of each problem which essentially determines the way new states are 

introduced in the model. By partially applying the above equation we have the flexibility 

to build a FCM structure more freely in order for the model under study to reflect the real 

condition of a problem [77]. For example, in Figure 5.3 the first, second and third layers 

follow the rules of equation 5.1 while layer four has only two FCMs (operators).  A 

detailed example of how the Multi-Layer FCM structure is developed in practice is given 

in the next subsection.  

 

5.3.2 Multi-Layer FCM 
 

The problem of expanding the Multi-Layer FCM can be implemented using the 

so-called partially expanded trees. In most of the problems there is an indication or 

criterion as to which action must be taken at each stage (i.e. expand or not). We can 

consider the ML-FCM structure as a partially expanded tree, in which the basic concept 

of a ML-structure FCM, in our case the Main or Initial node (sub-map), which we will 

call Main FCM, is placed at the top of the ML-FCM. Then, an arrow is drawn 

downwards to represent each possible sub-node or sub-FCM. At the end of each arrow an 

appropriate new FCM is placed. The reasoning behind placing a sub-FCM in a lower 

layer branch from the need to conduct a deeper and more extensive analysis of a certain 

concept and to form smaller groups of concepts due to the limitations observed in the 

classical FCMs to handle problems with a large number of concepts. In fact, expanding a 

specific sub-FCM is required in the case in which the execution of a parent FCM misses 

an activation level from its AL list, which is thus calculated by the child FCM at the 

lower layer. In the event that the list is complete no expansion is required.  

 

5.3.3 Genetically Evolved Multi-Layered Fuzzy Cognitive Maps (GEML-
FCM) 

 
The integration of evolutionary computing with Multi-Layer Fuzzy Cognitive 

Maps, [121] (ML-FCMs) aims at resulting in a promising and reliable methodology used 

for modelling complicated, large-scale problems. One of the main challenges faced 

hereafter, is the design of scenarios that describe specific problems in a multilayered 
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environment and the determination of the optimal solution, if any, to such problems. In 

fact, the main goal is not just the implementation of such a situation using ML-FCMs, 

but, in addition, the calculation of the AL values which represent the solution to our 

problem. 

 A new algorithm named GEML-FCM, the pseudo code of which is presented in 

Figure 5.2, is designed to serve the above evolutionary methodology. As previously 

mentioned, the essence of the proposed methodology is the decomposition of a large-

scale, complex problem into smaller and more manageable groups of parameters [124] 

that can be modelled by means of FCMs to produce a layered hierarchical structure, the 

ML-FCM. The algorithm for the methodology can be decomposed into three segments: 

The first segment involves the determination of the ML-FCM hierarchy, the second 

establishes the initial condition, and the third segment selects the FCMs used for genetic 

optimization and the simulation process [107].  

 

    Create main FCM 
    Check the AL_List  
 For each missing activation level in the AL_List  
 Create child FCM in n+1 layer  
 If  FCM is a leaf node (AL_List is complete) 
           Run CNFCM algorithm 
           Update parent FCM AL_List 
     Else repeat from 3 until all AL_Lists are complete  
       Select FCMs for scenario analysis 
     Endif 
     Select concepts for GA and identify its target level 
     For each FCM in the multilayered structure starting from the lowest level 
       If FCM requires genetic optimization 
          Run GECNFCM 
          Run CNFCM algorithm (with new weight matrix where applicable)  
          Update the parent AL_List 
       Endif 
    Endfor 
 

 

Figure 5.2:  Pseudo code of the GEML-FCM algorithm 
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Figure 5.3: An example of a ML-FCM 

 
The main idea is to create new FCMs and continue the procedure until we reach a 

leaf FCM, i.e., a map without children, which does not require any further expansion. 

Once we reach a node of the ML-FCM where the activation level list of the specific FCM 

is complete, then the algorithm backtracks to its parent in order to see whether or not 

another concept with a missing activation level exists and if so, to create another child 

FCM. Figure 5.3 illustrates how an ML-FCM structure is built. The creation sequence is 

as follows: FCM1, being the main map, is created first. The first missing value from 

FCM1’s activation level list triggers the creation of FCM2, followed by the creation of 

FCM3 is created, as it corresponds to the first missing value from FCM2’s activation list. 

The next map to be created is FCM4, a leaf node, followed by FCM5, with the creation of 

FCM5 following the FCM4 execution. Subsequent to the backtracking, FCM3 is revisited 

in order to update its activation level list and to check if it is complete. In this case it is 

not complete, thus the algorithm creates and runs FCM5 which is also a leaf node, 

followed by FCM3. The latter becomes a leaf node itself, after the execution of FCM4 

and FCM5. Further backtracking to FCM2 shows that its activation level list is 

incomplete which requires the creation of FCM6. Once FCM6 is run it is followed by a 

run of the FCM2, which is a leaf node after the execution of FCM6. It is important to 
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remember that this sequence refers to the first branch of the main node (FCM1) while the 

second branch includes FCM7, this being first in order with regard to this particular 

branch and seventh taking into account the entire structure. FCM8 followed by FCM 9, 

complete the creation sequence of the example of Figure 5.3. 

Once the ML-FCM structure is completed the second stage of the algorithm 

establishes the initial condition of the system. The execution process takes the activation 

levels and the weights given by the experts for the particular FCM and runs the FCM 

algorithm for a selected number of iterations. During the iterative process the model is 

left to interact, with each concept’s level being revised. After all iterations have been 

completed the results are fed into the defuzzification process in order to justify the 

requested value for the concept of interest. Therefore, an updating procedure is required 

to accomplish the activation level value for the concept for which the new FCM was 

build.  As soon as the updating procedure is completed, backtracking checks if the 

parent’s activation level list is complete. 

The third stage of the algorithm allows genetic optimization to be carried out on 

selected FCMs. For each FCM of interest, a concept belonging to that FCM is assigned a 

target final activation level. The genetic optimization carried out in the next phase will 

compute a new weight matrix that will bring the target concept to its target final level. 

The algorithm allows for the selection of concepts from any or all FCMs. Hence, even 

though only a number of FCMs may be selected for genetic optimization, the 

methodology will ultimately perform the FCM algorithm on all FCMs using a bottom-up 

approach. This property that allows for the application of genetic optimization on more 

than one FCM is very useful, especially when genetic optimization is applied to a concept 

that expands a particular node. Since the concept is common in two FCMs, genetic 

optimization is carried out twice, once in the child FCM and once in the parent FCM. As 

a result, the concept’s final level computed in the child FCM will at the same time be the 

initial level of the parent FCM, both of which have been predefined for a specific 

scenario analysis. This means, therefore, that such a scenario analysis can be very flexible 

allowing for different experimentations either at all or at some of the points of interacting 

FCMs. 
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The simulation process that completes the methodology involves the execution of 

the FCM and GE-FCM algorithms as explained in previous paragraphs. The proposed 

methodology executes these algorithms on the ML-FCM structure based on a bottom-up 

approach, so that any newly-computed final level of a concept (of a child FCM) may be 

used as the initial activation level of its parent FCM after it has been calculated using the 

optimized weight matrix of the child GE-FCM. More specifically, the simulation begins 

on the FCMs that are located in the bottom of the structure and the GE-FCM algorithm is 

executed on those specific FCMs while the resulting weight matrix is then fed to the 

FCM algorithm to complete the scenario analysis. 

Following the execution of the FCM algorithm, the value of the central concept’s 

final level is passed to its parent FCM node in order to update the parent’s initial 

activation level list. The backtracking procedure continues until the root FCM node is 

reached and its activation list is complete. At this stage, the last run of the main FCM 

algorithm is carried out and the results of all iterations are inputted in the defuzzification 

process so as to transform the numerical values of the final levels of the concepts to their 

linguistic equivalents. 

 
5.4 Limitation of the ML-FCM and proposition of a new algorithm: The 

Enhanced ML-FCM algorithm 
 
 As previously mentioned regarding the execution order, the ML-FCM algorithm 

starts with those FCMs that lie at the lowest levels and continues with transferring the 

computed activation level of the concept in focus to its above layer. This makes sure that 

the main variables influencing the concept in focus are analysed and assessed “locally” 

(i.e., focusing only on this specific concept of interest), thus reducing complexity by 

sharing it evenly between layers. An additional advantage of this algorithm is that it 

contributes to the efficiency of decision-making by allowing the simulation of the 

selected scenarios separately in each layer. More specifically, the ML-FCM algorithm 

forms layered Fuzzy Cognitive Maps in a hierarchical structure, in order to compute the 

activation levels of child FCMs in each layer and update the activation levels of the 

decomposed parent FCMs in the upper layers.  
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 The major weakness of the ML-FCM algorithm is the time lack between the 

layers. More specifically, the different FCMs work individually in each layer and the 

value of the intermediate outcome is transferred to the upper layer. The estimation time 

of this transformation, that is, the time corresponding to the actual events being modelled, 

cannot be determined exactly. The time estimation in FCM is a general problem 

discussed during the last years [3], thus to address it we attempted to improve the ML-

FCM algorithm by minimizing the time lag between layers using a new advanced 

algorithm named Enhanced Multi-Layer Fuzzy Cognitive Map (EML-FCM) [126]. More 

specifically the main idea of the ML-FCM algorithm is that each FCM is executed once 

for a number of iterations and only after all of the concepts resigning in it achieve an 

activation level. However, what is not taken into account is the fact that at each iteration 

the values of the levels change and as such these new values must somehow be fed back 

to the parent FCM during the same iteration. Therefore, we proposed an enhancement to 

the multilayered algorithm which takes into consideration this change in values of levels 

during each iteration. 

 
5.4.1 Description of the EML–FCM algorithm  

 
 The purpose of this new enhanced algorithm is to offer an alternative type of layer 

traversal in the map and computation of the activation levels of the nodes. In particular, 

the activation levels of all concepts in each layer starting from top to bottom are 

computed for each iteration and not after fully completing the execution process of a 

certain layer. This is performed depending on the position of a node (i.e., the layer it 

belongs to) and the status of each concept (whether it is a central, complex concept 

described in lower levels by a number of other parameters or not). Each iterative 

calculation taking place at a layer is fed back to the parent FCM and the last computed 

activation level value is used in the next iteration. This modification to the ML-FCM 

algorithm is very important because now the execution process takes into consideration 

the detailed, small-step information produced within iterations in the form of intermediate 

activation level values as opposed to the former algorithmic approach which, although 

Multi-Layered in structure, practically worked as a single map using a depth search 

mechanism [167]. Just as the original multilayered algorithm, the new algorithm begins 
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by creating the Multilayer FCM structure. However, when a leaf node is reached (i.e., the 

FCM has no children) the FCM is executed for one iteration only. The change in the 

corresponding value of the central concept of the leaf FCM (in other words, the concept 

with a missing activation level in the parent FCM) is fed back to the parent FCM which 

then continues to either execute for one iteration (if no more levels are missing) or to 

create a new child FCM that will have as a central concept the corresponding concept of 

the parent FCM with a missing activation level. 

 

Create and execute process 
1. create main FCM 
2. check the FCM’s AL list if it is complete  
3. for each missing AL in the FCM’s AL list  
4.  create child FCM in (n+1)th layer  
5.  If child FCM’s AL list is complete 
6.   run CNFCM algorithm for one iteration 
7.   update parent FCM’s AL list 
8.   repeat from step 2 
9.  else repeat from step 3 
10                    endif 
11             endfor 
 
Updating function  
1. current FCM ← root FCM 
2. for each iteration 
3.  while current FCM has children 
4.   for each child 
5.    parent FCM ← current FCM 
6.     current FCM ← child FCM 
7.    update current FCM’s AL list based on the 
     values of its parent FCM’s AL list 
8                                     endfor 
9   run current FCM for one iteration 
10           endfor 
11.  update the parent’s AL list based on the result on  
12   the current FCM’s execution 

                  
                  Figure 5.4: Pseudo code describing the Enhanced ML-FCM Algorithm  
 

 This process repeats until the root node is reached, keeping in mind that FCMs are 

run for one iteration. Once at the root, the root FCM executes, again only once, and 

passes down to its child FCMs the levels of those concepts that were once missing in 
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order for the children to execute. If the children also have child FCMs then they will halt 

their execution and pass down the value of the activation level that was also initially 

missing. As a result, execution of an FCM only takes place whilst moving in a bottom-up 

direction, and never while moving downwards. The process followed by the EML-FCM 

algorithm for creating and executing different FCMs in various layers of the modelling 

structure is presented in Figure 5.4 in pseudo code form.  

 
5.4.2 Mathematical formulation of Multi-Layer structure  

 
 Another challenge in the Multilayer FCM is the time relationship (or time lag) 

involved before a change in activation level of node Ci having an effect on node Cj. The 

problem is increased in Multilayer FCM due to the fact that an updating procedure is 

introduced in which the AL value of the central concept of an FCM is transformed to the 

upper Layer. This procedure introduces some aspects of time in the Multilayer structure. 

During the updating procedure, each concept node can be seen as a memory cell that is 

activated (positively or negatively) and can be influenced by a cell belonging to a lower 

layer of the multilayer structure (child FCM).  The behaviour of this cell is such that it 

looses some of its activation when there is no stimulation to maintain the activation. The 

activation level of a concept that has no other influence from other concepts gradually, as 

time passes decays towards zero. A time decay (Td) is introduced aiming that the 

activation level of a concept in each FCM layer will not be drawn only by the local FCM 

final state but also from its previous value and transition stage from one layer to another. 

It can take values within the interval of [0,1] and the maximum it is, the faster the cell 

becomes inactive when it receives no stimulation.  

The following formula is proposed so as to serve the multilayer structure of a 

FCM. The main characteristic of this formula is the utilization of pointers l and k which 

indicates at each execution step the layer and sub FCM respectively to which the formula 

is applied.   
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 where,  is the activation level of concept C(
1

),
+t

kliA )

)

i at time t+1 at layer l in FCM k,  

( )
t

kljA ),  is the activation level of concept Cj at time t in the same layer and same FCM. 

f is a threshold function that specifies the way the influences from the other concepts 

affect the current activation level to produce its new value. This function takes also into 

consideration the updating function of the ML-FCM algorithm. So the new state 

vector , which is computed by multiplying the previous state vector by the edge 

matrix  , shows the effect of the change in the activation level of one concept on 

the other concepts for a particular FCM k in layer l. Finally, T

(
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t
kljiW ),(,

d is the decay factor which 

subtracts a percentage of the previous activation level to weaken its effect on the current 

activation value. 

 
5.5. Case study using the Multi-Layer approach  
 
5.5.1 The solution of the Cyprus Issue through the provisions of the Annan 

Plan   
 

We have decided to extent the use the “Cyprus Issue” as a typical political and strategic 

issue in the environment of which we shall demonstrate the efficacy of the proposed ML-

FCM algorithm. The model had been built to describe the political, institutional and 

economic environment in the eve of the April 2004 referendum on the island and 

consider the extent to which a number of possible political and strategic developments 

may contribute to solving the Cyprus issue.  

The model identifies fifty six concepts as indicated in Appendix A grouped in 

seven sub-FCMs as shown in Figure 5.5. Each sub-FCM consists of a number of concepts 

which describe one central concept of interest. FCM 1 is the main FCM of the model 

consisting of 13 concepts as shown in Table 5.1, with C1 “ Solution of the Cyprus Issue” 

being the central concept of this map.  Two main concepts of interest have been selected 

for further analysis, namely C3 “Platform Solution of the Cyprus Issue” and C6 

“Referendum concerning the acceptance of the Annan Plan”. The two concepts have been 

indicated by the experts for further analysis because of their importance.  The experts 

were looking for the parameters influencing the Platform of the Solution of the Cyprus 

issue in respect to the acceptance of the Annan Plan during the referendum of the 24th of 
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April 2004. Table 5.1 indicates the 13 concepts that constitute FCM1. Figure 5.6 depicts 

FCM1, while the interconnection weights and activation level values are shown in 

Appendix A.  

 
Figure 5.5: Multilayer representation of the Annan plan 

 

Table 5.1: FCM1 concepts 

C1 Solution of the Cyprus Issue 
C2 Climate of Tension on the Island  
C3 Platform Solution of the Cyprus Issue    
C4 T/C Reaction to the final Annan Plan  
C5 Turkish Government reaction to Annan Plan  
C6 Referendum concerning the acceptance of the Annan Plan 
C7 G/C Government reaction to the final Plan  
C8 Greek politicians reaction to the  final Plan  
C9 US / UK reaction to the final Annan Plan  
C10 Greek position with reference to Turkish EU Membership 
C11 Cyprus position with reference to Turkish EU Membership 
C12 EU Position with reference to Turkish EU Membership  
C13 US/UK position with reference to Turkish EU Membership 
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Figure 5.6: FCM1 map representation  

 

FCM2 is a child node of FCM1 and represents the decomposition of concept C3 

participating in FCM1 which is a key concept for resolving the Cyprus Issue. Thus, 

concept C3 is the central concept of FCM2. FCM2 as shown in Table 5.2 consists of ten 

concepts. From FCM2, two important concepts have been selected for further analysis 
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C16 “Security” and C19 “Legislative”.  Figure 5.7 depicts FCM2 expanded, while the 

interconnection weights and activation level values are shown in Appendix A.  Due to the 

complexity of this model its detailed explanation will be skipped. All information 

regarding the model is given in Appendix A. Only few indicative values will be given to 

demonstrate some examples and used as reference for comparison purposes of the two 

multilayer algorithms, ML-FCM and EML-FCM.  

           
Table 5.2: FCM2 concepts 

C3 Platform solution of the Cyprus issue 
C14 Territorial 
C15 Property  
C16 Security  
C17 Freedoms  (freedom of movement of goods and services) 
C18 Constitutional  
C19 Legislative 
C20 Executive power 
C21 Economy 
C22 Guarantees 

 

 

C3 --> C15: -0.60 
C3 --> C19: 0.50 
C14 --> C3: 0.70 
C14 --> C15: 0.70 
C14 --> C21: -0.20 
C15 --> C18: 0.10 
C15 --> C21: 0.20 
C16 --> C3: 0.60 
C16 --> C14: 0.20 
C17 --> C3: 0.30 
C17 --> C14: 0.10 
C17 --> C15: 0.40 
C18 --> C3: 0.30 
C18 --> C17: 0.60 
C18 --> C19: 0.80 
C18 --> C22: 0.40 
C19 --> C17: 0.30 
C19 --> C20: 0.60 
C20 --> C16: 0.40 
C20 --> C17: 0.30 
C21 --> C3: 0.30 
C21 --> C20: 0.20 
C22 --> C15: 0.30 
C22 --> C16: 0.60 
C22 --> C21: 0.20 

 

Figure 5.7:  FCM2 expanded representation  
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Following the creation/execution steps of the proposed ML-FCM, it is noted that 

so far neither FCM1 nor FCM2 can be executed due to the fact that their activation level 

lists are incomplete. Such a list is left intentionally incomplete in order to instruct the 

system that an FCM in the lower layer is needed for the computation of the AL of the 

relevant concept. Continuing, FCM3 is created as a child of FCM2 in layer 3, with its 

central concept being C16. Note that FCM3 consists of nine concepts as shown in Table 

5.3, given that FCM3 is  a leaf node, that is, its activation lists are complete and is, 

therefore, readily executable. Figure 5.8 depicts FCM3 while the interconnection weights 

activation level values and results are shown in Appendix A. 
 

Table 5.3: FCM3 concepts 

C16  Security  
C22  Guarantees 
C23  EU acquis   
C47  International personality of state 
C48  Demilitarization 
C49  Intervention rights   
C50  Remaining of military forces  
C51  European guarantees 
C52  Guarantee forces 

 

 

C16 --> C22: -0.30 
C16 --> C23: -0.30 
C16 --> C47: -0.20 
C22 --> C48: 0.10 
C22 --> C49: 0.60 
C22 --> C51: 0.50 
C22 --> C52: -0.40 
C23 --> C22: 0.20 
C23 --> C50: 0.40 
C23 --> C51: 0.60 
C47 --> C23: 0.30 
C48 --> C16: 0.50 
C48 --> C50: 0.60 
C49 --> C16: -0.50 
C49 --> C47: 0.10 
C49 --> C50: -0.30 
C50 --> C16: -0.50 
C50 --> C47: -0.50 
C50 --> C52: 0.40 
C51 --> C16: 0.50 
C51 --> C48: 0.40 
C51 --> C49: 0.40 
C51 --> C52: 0.30 
C52 --> C49: 0.60 

 

Figure 5.8: FCM3 expanded representation  
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 The execution of the FCM algorithm on FCM3 results in the calculations of the 

activations of the value of concept C16 (A16=-0.69) which is then transferred to its parent 

map FCM2; the activation-level list of which is thus updated. Given that C16 represents 

the concept of “Security”, which is the central concept of FCM3, its negative value 

represents the Greek-Cypriots’ skepticism concerning the security provisions of the 

Annan Plan. Meanwhile, since the FCM2 activation level list is still incomplete 

computing the missing activation level requires the creation of FCM4 as a leaf node of 

FCM2 consisting of eleven concepts. As indicated in Table 5.4. Figure 5.9 depicts 

graphically FCM4 while the interconnection weights and activation level values are 

shown in Appendix A. 

 

 

 

C19 --> C38: 0.40 
C19 --> C41: 0.50 
C19 --> C43: 0.30 
C38 --> C42: 0.40 
C38 --> C44: 0.50 
C38 --> C45: 0.10 
C38 --> C46: 0.70 
C39 --> C40: -0.30 
C39 --> C42: 0.30 
C39 --> C45: 0.60 
C40 --> C19: 0.50 
C40 --> C38: 0.40 
C40 --> C47: -0.50 
C41 --> C39: 0.30 
C41 --> C47: -0.30 
C42 --> C19: 0.60 
C43 --> C44: 0.60 
C43 --> C45: 0.40 
C43 --> C47: -0.50 
C44 --> C19: 0.40 
C44 --> C40: -0.35 
C45 --> C19: -0.40 
C45 --> C40: -0.35 
C45 --> C42: 0.70 
C45 --> C47: 0.40 
C46 --> C40: 0.50 
C46 --> C42: -0.30 
C47 --> C19: 0.50 
C47 --> C41: 0.40 

 
Figure 5.9: FCM4 expanded representation  

 

Concept C19 “Legislation” is the central concept of FCM4 which, being a leaf node, is 

readily executable. The CNFCM algorithm applied on FCM4 yields a value of A19=-0.77. 
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This value according to the Fuzzy Knowledge Base of Appendix A is pointing to an 

inapplicable legislative framework. 
    

Table 5.4: FCM4 concepts 

C19 Legislative 
C38 Supreme court 
C39 Legislative power 
C40 Mechanism for settling disputes  
C41 Executive power – Composition  
C42 Executive power – Decision-making   
C43 Concept 43 Senate/Parliament – Representation 
C44 Senate/Parliament – decision-making   
C45 Presidential council 
C46 Judicial power 
C47 International personality of state 

 

 This value is fed back to FCM2 to complete its activation level list and thus turns 

it to a leaf node which allows for its execution process to start. The value of its central 

concept “Platform of the Cyprus issue” (A3=-0.70) indicates that the platform solution of 

the Cyprus issue (i.e. the Annan Plan) is rejected by the Greek-Cypriots. This value is 

transferred to the main FCM1 in the first layer in order to update its activation level list. 

At this point, our periodic ALs FCM1 list check indicates that concept C6 has not yet 

assumed a value, something which requires the creation of FCM5 for its computation. 
 

Table 5.5: FCM5 concepts 

C06 Referendum concerning the acceptance of a new Annan plan  
C14 Territorial 
C15 Property  
C16 Security  
C17 Freedoms  (freedom of movement of goods and services) 
C18 Constitutional  
C24 Perception for Annan plan 
C25 Cost of the solution – Help from international community  
C26 Changes in the Annan plan- New Plan  
C27 Future acceptance of a new plan from the Greek Cypriots  
C28 Future acceptance of a new plan from the Greece  
C29 Anglo-American position for a new plan 
C30 Future acceptance of a new plan from the Turkish Cypriots 
C31 Future acceptance of a new plan from the Turkey 
C32 EU position for a new plan 
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FCM5 represents the decomposition of concept C6 which is its central concept and 

consists of sixteen concepts in total, as shown in Table 5.5. FCM5 is a not leaf node, and 

its two concepts that have been selected for further analysis are C14 and C25. Figure 5.10 

depicts graphically FCM5 while the interconnection weights and activation level values 

are shown in Appendix A. 

 

 

 

 

Figure 5.10: FCM5 expanded representation  
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The next step is the creation and execution of FCM6 which is a leaf node and describes 

the decomposition of C14 as shown in Table 5.6 into seven concepts. The execution of 

FCM6 yields A14=-0.86 meaning that the territory returned under the Greek-Cypriot 

control is not adequate. This activation level is transferred to FCM5.  

 
Table 5.6: FCM6 concepts 

C14 Territorial2 
C22 Guarantees 
C33 Free settlement  
C34 Free movement  
C35 Property rights  
C36 Return of territories of the Greek Cypriot refugees 
C37 Remaining of settlers 

 

 

 

 
 
C14 --> C37: -0.50 
C22 --> C14: -0.10 
C22 --> C33: 0.30 
C22 --> C34: 0.50 
C22 --> C35: 0.50 
C22 --> C37: 0.20 
C33 --> C14: 0.10 
C33 --> C36: 0.10 
C34 --> C14: -0.20 
C34 --> C33: 0.30 
C35 --> C33: 0.70 
C35 --> C34: 0.40 
C36 --> C14: 0.30 
C36 --> C22: 0.20 
C36 --> C35: 0.20 
C37 --> C33: -0.30 
C37 --> C35: -0.30 
C37 --> C36: -0.30 

 

 

Figure 5.11: FCM6 expanded representation  

 
The next task is the formulation of FCM7 consisting of eight concepts (Table 5.7) and 

involving the parameters describing concept C25. After the execution of the map the 

activation level is calculated (A25=-0.66) and transferred to its parent FCM5 which 

subsequently becomes a leaf node. It is then executed, and the activation level value of 

concept C6 is computed (A6=-0.81) and transferred to the main map, FCM1. 
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Table 5.7:  FCM7 concepts 

C15  Property  
C21  Economy 
C25  Cost of the solution – Help from international community  
C36  Return of territories of the Greek Cypriot refugees 
C53  Functional cost of the unified state  
C54  Economical Contribution towards unified state  
C55  Compensation – External Aid  
C56  Eurozone Criteria  

 

 

 

 
C15 --> C21: 0.30 
C15 --> C55: 0.40 
C21 --> C25: 0.30 
C21 --> C53: 0.60 
C21 --> C54: 0.30 
C25 --> C15: -0.40 
C25 --> C36: 0.20 
C25 --> C53: 0.40 
C25 --> C55: 0.30 
C25 --> C56: 0.30 
C36 --> C15: 0.60 
C36 --> C53: 0.20 
C36 --> C54: 0.20 
C53 --> C15: -0.20 
C53 --> C36: 0.20 
C53 --> C56: 0.20 
C54 --> C25: -0.10 
C54 --> C53: 0.60 
C54 --> C56: 0.30 
C55 --> C21: 0.30 
C55 --> C36: 0.30 
C55 --> C56: 0.20 
C56 --> C21: 0.20 
C56 --> C25: 0.20 

 

 
Figure 5.12: FCM7 expanded representation  

 

5.5.2 Comparison of the two algorithms  
 
 In the second branch of Figure 5.13, FCM5 represents the decomposition of 

concept C6. A new FCM is created to indicate the factors influencing concept C6. As the 

central concept of FCM5, C6 consists of sixteen concepts in total, as shown in Table 5.8. 

FCM5 is not a leaf node; hence two of its main concepts, C14 and C25 have been 

selected for further analysis. 
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Fig. 5.13: Second Branch of the multilayered model 

 

FCM5 was executed and the results are summarised in Table 5.8. The initial values of the 

experts are shown in the first column, the results obtained from the execution of the ML-

FCM in the second column and the results of the EML-FCM in the third. 

 As can be observed from the last two columns of Table 5.8, there are some 

differences in the final results produced by the execution of the two algorithms. We 

consider this as a normal outcome since the algorithms follow a different execution 

process as regards the propagation of the central concepts from the two child FCMs (C14 

and C25) to their parent. These results were evaluated by the experts who justified that 

the results of the EML-FCM reflected more accurately the parameters of the Cyprus issue 

at that time period of the referendum. More specifically, the results differ in the values of 

the final AL of concepts C6 and C31, while the values for the rest of the concepts remain 

within the same fuzzy sets. The evaluation of our results indicates that the outcome of the 

EML-algorithm reflects more accurately the political situation at that period of time.  

From the graphs of Figures 5.14 and 5.15 that represent the results of the execution of 

FCM5 with both algorithms, it is noticed that while the exact values of each concept 

(except C6 and C31) are almost the same, the graphical representation of EML-FCM 

algorithm reveals bounded limited cycles. This phenomenon will be investigated further 

to identify the origin of the limit cycles.  
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Table 5.8: FCM5 summarised results 

Concept 
Initial 
Value 

ML-FCM 
Algorithm 

EML-FCM 
Algorithm 

C6 -0.30 -0.45 -0.30 
C14 -0.46 -0.54 -0.42 
C15 0.20 -0.16 -0.00 
C16 -0.30 -0.22 -0.19 
C17 -0.30 -0.55 -0.47 
C18 -0.60 -0.55 -0.54 
C24 -0.30 -0.78 -0.73 
C25 -0.68 -0.61 -0.61 
C26 -0.60 -0.72 -0.62 
C27 -0.60 -0.86 -0.85 
C28 -0.40 0.72 0.70 
C29 0.40 -0.70 -0.68 
C30 -0.30 0.57 0.42 
C31 0.40 -0.34 0.33 
C32 0.20 -0.66 -0.59 

 

 
Figure  5.14:  ML-FCM execution results for FCM5 
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Figure 5.15:  EML-FCM execution results for FCM5 

 

 The next step is the formulation and execution of FCM6 and FCM7 which are leaf 

nodes of FCM5. FCM6 consists of six concepts, the descriptions of which are given in 

Table 5.9 and the descriptions of FCM7, which consists of seven concepts, are provided 

in Table 5.10. After the execution of these two maps the activation levels of C14 in 

FCM6 and C25 in FCM7 are calculated and transferred to their parent FCM5, which 

subsequently becomes a leaf node of FCM1. The transfer of C14 and C25 activation 

values follows a different procedure in the two algorithms.  

 The ML-FCM performs the transfer after completion of 250 iterations, that is, 

after a full execution of the child FCMs and their stabilisation. On the other hand, the 

EML-FCM transfers the activation values after every single iteration, that is, the values 

are passed to the parent FCM 250 times. A careful examination of the results of the two 

algorithms on FCM6 and FCM7 (Tables 5.9 and 5.10, respectively) shows that the results 

are almost identical. This is due to the fact that the two FCMs are leaf nodes and they do 

not receive any influence from other FCMs. The graphical representation (Figures 5.16 

and 5.17) of the two FCMs is also quite similar, with the graph representing the EML-

algorithm presenting minor fluctuations as well as some pronounced oscillations which 

can be characterized as limit cycles.  
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Table 5.9: FCM6 summarised results 

Concept Initial 
Value 

ML-FCM 
Algorithm 

EML-FCM 
Algorithm 

C14 0.40 -0.46 -0.44 
C22 0.30 -0.29 -0.59 
C33 -0.60 -1.00 -1.00 
C34 0.20 -0.86 -0.86 
C35 -0.20 -0.86 -0.86 
C36 -0.30 -0.72 -0.72 
C37 -0.20 0.52 0.52 

 

 
Figure 5.16:  ML-FCM execution results for FCM6 

 
Figure 5.17:  EML-FCM execution results for FCM6 
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Table 5.10: FCM7 summarised results 

Concept Initial
Value 

ML-FCM 
Algorithm

EML-FCM 
Algorithm 

C15 -0.50 -0.05 0.08 
C21 0.30 -0.61 -0.55 
C25 -0.50 -0.58 -0.56 
C36 -0.30 -0.68 -0.63 
C53 -0.60 -0.85 -0.84 
C54 0.20 -0.62 -0.59 
C55 0.20 -0.49 -0.40 
C56 0.10 -0.79 -0.75 

 

 
Figure 5.18:  ML-FCM execution results for FCM7 

       
Figure 5.19:  EML-FCM execution results for FCM7 
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5.5.3 Execution time in a multilayered environment 
 
Two algorithms were designed to serve the multilayered methodology. More specifically, 

the ML-FCM works individually in each layer and the outcome of each FCM is 

transferred to the upper layer. The limitation of this methodology lies in the estimation of 

the time needed for an action that takes place in one layer and the time needed for the 

next action in another layer. The graphical representation of concepts and weights are 

shown in Figures 5.20 and 5.21 respectively. The execution time for the ML-FCM 

algorithm is rather short (19.23s) for 56 concepts and 299 weights built in a hierarchical 

form of three layers and a total of seven FCMs. On the other hand, for the EML-FCM 

algorithm, the execution times are roughly fourfold slower. Specifically, five models 

were executed using different number of maps appearing in different layers as displayed 

in Table 5.11. The first test was performed using two FCMs in two layers with a total 

number of 23 concepts and 71 weights. The execution time for the ML-FCM algorithm 

was 5.6s while for the EML-FCM algorithm 20.11s, which is almost 400% increase. The 

second test used three FCMs in two layers in which an increase of 51% for the ML-FCM 

and an increase of 56% for the EML-FCM is observed. Almost the same increase occurs 

in the third test in which four FCMs in three layers were used (20.9% and 24% 

respectively). As a whole the average increase rate for the ML-FCM algorithm is 36.7s 

while for the EML-FCM the rate is slightly lower at 33.7s. 

 
Table 5.11: Comparison table for Multilayered FCM algorithms 

Execution 
time (in seconds-s) 

Number of  
Executions Number 

of Concepts 
Number 

of Weights 
Number 
of Layers 

Number 
of FCMs ML- 

FCM 
EML- 
FCM 

ML- 
FCM 

EML- 
FCM 

23 71 2 2 5.60 20.11 500 503 
38 130 2 3 8.46 31.54 750 754 
43 124 3 4 10.23 35.87 1000 1025 
58 183 3 5 12.98 48.42 1250 1256 
73 225 3 7 19.23 62.60 1750 1724 

 
There is a considerable difference between the execution times of the two algorithms as 

depicted in Figures 5.22 and 5.23, which shows the EML-FCM around three-and-a-half 

times slower than the ML-FCM. 
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Figure 5.20: Graphical representation of time performance with respect to concepts for 

the ML-FCM  
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Figure 5.21: Graphical representation of time performance with respect to weights for 

the ML-FCM  
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Figure 5.22: Graphical representation of time performance with respect to concepts for 
the EML-FCM  
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Figure 5.23: Graphical representation of time performance with respect to weights for 
the EML-FCM  
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Comparing the execution process of the two algorithms we may point out the 
following: 

 
i. The ML-FCM algorithm is simple and quick. On the other hand, the EML-

FCM algorithm is more complicated and consumes more time to fully execute 

the maps in the layered structure as it introduces the overhead of passing the 

intermediate computed AL values to the parent nodes and vice-versa. 

ii. The ML-FCM algorithm works stepwise in a bottom-up execution process.  

The transformation of AL to the upper level is performed only when the lower 

FCM is fully executed.  The EML-FCM algorithm follows a single multilayer 

process in which for each iteration step the updating of each central concept is 

performed.  This makes the multilayer structure behave as a single map 

minimizing the time delay between each layer when the updating function is 

executed.  

iii. The execution of each map in the ML-FCM algorithm is performed 

individually and the propagation of the value to the upper layer (parent FCM) 

is performed in steps, each step requiring the full cycle execution of an FCM 

at a lower level. In the EML-FCM algorithm all concepts and all FCMs, 

irrespectively of where they belong in the Multi-Layer structure, are involved 

in the execution process in each single iteration. 

iv. The ML-FCM algorithm does not take into account the small changes in 

intermediate values of the activation levels in the different layers, while the 

EML-FCM does, thus having the advantage of being more aware of what is 

occurring within the layered structure in the behavioural evolution process of 

the numerical stabilization.  

v. The limit cycle phenomena appearing in the EML-FCM do not seem to affect 

the results but this is surely something that needs further investigation. The 

oscillations observed may be the result of the “delayed” update taking place in 

consecutive processing actions (i.e. from layer to layer). We believe that 

during the updating procedure, the time needed for a value to be passed to the 

higher layer distorts possible equilibria that are being formed. Further studies 

and experiments should be conducted to verify the source of this phenomena 
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and a good way to start this investigation is by varying the value of decay 

factor in equation 5.2. 

At this point we should some up what the current section involves: Two 

algorithms that serve a multilayer approach developed to expand the capabilities of FCMs 

were presented. The first algorithm (ML-FCM) was recently proposed to model 

effectively complicated, large scale problems. The two algorithms were compared and 

evaluated using a real-world problem from the area of political decision making. The 

results obtained suggested the superiority of the EML-FCM algorithm and provided the 

means for a comparative discussion on the strong features and weaknesses of each 

algorithm. The validation process included also a final consultation round with our 

experts, which proved that both algorithms constitute reliable tools in the hands of 

decision makers and that the enhanced Multi-Layer algorithm presents more advantages 

than the ML-FCM, such as flexibility, ability to handle efficiently the time step between 

layers, among others. Appendix A gives a complete overview of the simulation of the 56 

concepts grouped in five FCMs working together to encode a very complicated problem, 

that of the Annan plan.   



Chapter 6: Conclusions   

 
6.1 Introduction  
6.2 Research Contribution   
6.3 Future Research Directions  
   

 
 

6.1 Introduction  
 
The research of the present thesis focuses on the development of a new Intelligent Decision 

Support System (IDSS) which is based on a form of Fuzzy Cognitive Map encoding experts’ 

knowledge and assessment. This IDSS enables the creation of models that are very flexible 

and adaptive, easy to develop and friendly to use. 

A cognitive approach using Fuzzy Cognitive Maps (FCM) has been adopted in this 

research, where trend-projecting forecasting techniques attempt to remove uncertainties by 

providing one specific forecast at a time. FCM use scenario analysis that faces environmental 

uncertainties by considering several alternative forecasts. They, thus, aim at influencing the 

decision makers’ reasoning by pointing to a feasible future state of the problem under 

modeling.  

The key issue here is the encoding and assessment of experts’ knowledge which is integrated 

in a Fuzzy Knowledge Base giving the ability of computation with variables in a linguistic 

form. A new technique is proposed for this encoding, while a fuzzification and 

defuzzification process is implemented and used to interpret the results along the lines of the 

human reasoning pattern. This type of defuzzification allows decision-makers to define their 

strategy in order to promote a future desired state or to plan certain actions to avoid an 

undesirable state.  

During the implementation of the FCM methodology two weak points were 

identified: The first one involved the invariability of the weights, which leaves only the 

activation levels to participate in the configuration of a given problem. The second lies with 

the inability of the method to model a certain situation, by performing all possible 

computational simulations following the change of a certain weight or group of weights. We 

addressed these issues by combining FCMs with Genetic Algorithms (GA), thus creating an 

Evolutionary Fuzzy Cognitive Map hybrid model.   
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The validation process of our new type DSS’s performance through scenario analysis 

identified another two areas for further improvement: The first one concerned the inability to 

support multi-objective decision-making; thus, guiding the FCM to more than one desired 

AL final values was not feasible because the GA could compute an optimal weight matrix 

only for a single target concept. The second area which the initial methodology did not take 

into account was the limit-cycle phenomenon, which may occur during the FCM calculation 

process. The proposed approach was improved so as to overcome these limitations, being 

based on a new Genetic Algorithm specially designed to support a multi-objective decision-

making environment and take into account the limit-cycle phenomenon.   

The research conducted in the context of this thesis included also the expansion of the 

modeling methodology to account for cases in which the problem becomes more complicated 

or multidimensional. Modelling was enhanced through an innovative methodology, which 

produces a Multilayer Hybrid System. The introduction of Evolutionary Fuzzy Cognitive 

Maps and the new structure (Multilayer FCM) gave new potentials and advanced capabilities 

in the domain of modeling and forecasting complex systems of the real world.  

Neural Networks and Fuzzy Logic constitutes the cornerstone of the computational 

part the present thesis was based on. The factors that contributed to adopting these two 

approaches, as well some weak points, are briefly addressed below.   Neural Networks take a 

different approach to problem solving than that of conventional computers. Conventional 

computers use an algorithmic approach i.e. the computer follows a set of instructions in order 

to solve a problem. Unless the specific steps that the computer needs to follow are known the 

computer cannot solve the problem. This restricts the problem solving capability of 

conventional computers to problems that we already understand and know how to solve. By 

contrast, the ability of NN to learn by means of examples makes them very flexible and 

powerful, not requiring the development of an algorithm in order to perform a specific task, 

which means that there is not even a need for the analyst to understand the internal 

mechanisms of that task. NN process information in a similar way the human brain does. The 

network is composed of a large number of highly interconnected processing elements 

(neurons) working in parallel to solve a specific problem. Given that they learn by using 

examples, they cannot be programmed to perform a specific task. There are, however, two 

important points that must be taken into consideration: First, the examples to use must be 
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selected carefully to avoid time wasting or even worse, network incorrect functioning. 

Second, since the network finds out how to solve the problem by itself, there may be cases in 

which its operation can be unpredictable. 

Fuzzy Logic (FL) is a powerful problem-solving methodology with many 

applications in embedded control and information processing. FL provides a remarkably 

simple way to draw definite conclusions from vague, ambiguous or imprecise information. 

Thus, in a sense, the ability of FL to look for precise solutions based on approximate data 

provides a close resemblance with human decision-making. Unlike classical logic which 

requires a deep understanding of a system, exact equations, and precise numerical values, FL 

incorporates an alternative way of thinking, which allows modelling complex systems using 

a higher level of abstraction originating from our knowledge and experience. Thus, FL 

allows expressing this knowledge with subjective concepts such as “very hot”, “bright red”, 

and “long time” which are mapped into exact numeric ranges. 

Neuro-Fuzzy systems combine the strong features of both ANN and FL. Neuro Fuzzy 

systems can model general nonlinear mappings in a manner similar to feedforward ANN 

since it is a well-defined function mapping of real-valued inputs to real-valued outputs. All 

that is needed for their practical application is a means for adjusting the system parameters so 

that the system output matches the training data. Genetic algorithms can provide such means.  

Summing up the chapters of the present thesis, we have already dealt extensively with 

four key issues concerning new developments in the Fuzzy Cognitive Maps theory. The 

hybrid FCM was initially indroduced to facilitate the scenario analysis along with the 

creation of a specific Fuzzy Knowledge Base which was integrated in FCMs to give stronger 

capabilities to the fuzification and defuzzification processes. Some weak points, like the limit 

cycle phenomenon and the automatic construction of a FCM, have been successfully 

handled. The final issue to tackle has been the development of a new structural approach to 

handle large scale problems using the FCM methodology which has been validated on a case 

study, namely the possibility of settling the Cyprus issue through the provisions of the Annan 

Plan, with a number of new algorithms developed to serve this methodology.  

The genetically evolved methodology proposed in this research can effectively and 

efficiently perform tasks without requiring the structure of  a sophisticated and complicated 

Rule Base Knowledge, which is time consuming and inapplicable in complex problems. The 
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methodology is able to emulate the best human expert in building a Fuzzy Knowledge Base, 

which is considered the core of the hybrid system. In the next section a summary of the main 

contributions of this research will be presented.  

 
6.2 Research Contribution   
 
The main contribution of this thesis is summarized in the next subsections while the 

framework and methodology to develop a new type of Computational Intelligent Decision 

Support Systems is briefly described.   

 
6.2.1 FCM Hybrid Model - Integration of GA to FCM  
 
The methodology employed introduces the Genetically Evolved Fuzzy Cognitive 

Map which is based on combining the theory of Fuzzy Cognitive Maps and Genetic 

Algorithms. This combinations leads to the development of a Hybrid Form of FCM used as 

the basis of a framework  for producing a new type of Computational Intelligent DSS (CI-

DSS) [115]. The CI-DSS  involves the identification and formulation of expert knowledge 

encoded in a Fuzzy Knowledge Base and expressed in a linguistic form, followed by the 

simulation process and inference mechanism.  

The reasoning behind using GA was to overcome the two main limitations of FCMs: 

The invariability of the weights, which leaves only the activation levels to participate in the 

configuration of a problem under study and the inability of the method to model a certain 

situation by performing all possible computational simulations following the change of a 

certain weight or group of weights.  

It follows, therefore, that the integration of genetic algorithms with fuzzy systems and 

neural networks satisfied two main goals: It improved the design process of fuzzy systems by 

developing a unified cognitive model suitable for embedding various linguistic connectives 

used for handling uncertainties that serve the inference mechanism of the FCMs. The second 

goal was to improve the performance of FCMs by increasing the flexibility of the forecasting 

mechanism in the hands of the policy-makers.  This performance increase can be interpreted 

as the accuracy of the control action and the efficiency in terms of time computation. Thus, 

the hybrid model offers the ability not only to design multi-objective scenarios for specific 
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hypothetical situations, but also to predict the dynamics of a future realization of such 

scenarios.  

The importance of such a model to decision-makers is underlined by the fact that it 

offers them the luxury to base their decision not only on the experts’ evaluation, but also on 

the optimal weights that lead multiple concepts to be activated to certain predefined degrees. 

Thus, decision-makers are able to introduce hypothetical cases reflected through the target 

activation levels for certain concepts in the model and study those corresponding weights and 

activation levels for the rest of the concepts that are compatible with the predetermined target 

activation levels. Based on this information, the policy maker is then able to take decisions 

leading to the desired simulated solution. This hybrid FCM system was tested on a well-

known political crisis, the one known as the S-300 missiles crisis, which took place among 

Turkey, Greece and Cyprus in 1997-1998. The model achieved a successful prediction of the 

dynamics behind a hypothetical situation leading to some interesting conclusions.  

The Genetically Evolved Fuzzy Cognitive Map introduced is supported by a novel 

software tool.  This tool provides the policy maker with a graphical user interface designed to 

input the data provided by domain experts in the form of activation levels and weight values, 

construct and execute a FCM model, and present the FCM simulation results. 

 
6.2.2 Improving the inference process of FCM 

 
Aiming at facilitating the FCM encoding of experts knowledge and its integration to 

the model, the Fuzzification and Defuzzification processes have been reinforced through the 

development of a specific Fuzzy Knowledge Base (FKB) merging the mathematical output of 

the system with the linguistic assessments of experts. It was revealed that the fuzzy reasoning 

system working in numerical environments can be effectively and efficiently implemented by 

FKB relying on a linguistic variable encoding scheme. The above innovative encoding of 

experts knowledge in FCMs not only provides useful insight into a deeper understanding of 

the relationship between the mathematical terms and their meaning but also offers readily 

available results to the experts and policy makers whose knowledge regarding the inference 

engine of the model may be inadequate. The inference process was improved even further by 

taking into consideration the behaviour of the system in cases of a limit cycle and by 

proposing a defuzzification method to handle such a possibility.  
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More specifically, a new methodology was developed that is able to emulate the best 

human expert in order to build a FKB, which is considered the core of the hybrid system. To 

the best of our knowledge there is currently no systematic way of producing a FKB that 

could support the modelling framework of FCMs by enabling the transformation of key 

problem linguistic parameters into numerical and vice versa. The construction of a FKB 

treats each concept as a fuzzy linguistic variable, the term set of which is decomposed into 

linguistic values realized in specific numerical ranges via fuzzy sets of certain membership 

functions. Using the FKB as a guideline, the system allows inference on the level of 

realization of the different participating cognitive stages, whilst concentrating on various 

hypothetical scenarios. The decision makers are thus able to retrieve the results of a certain 

scenario and interpret them with the aid of the FKB at a descriptive linguistic level.  

 
6.2.3 Handling the Limit Cycle phenomenon 
 
An FCM system is expected to either reach equilibrium, or present a limit cycle or 

even a chaotic state. In cases of equilibrium decision-makers use the information provided by 

the FKB to make decisions leading to the desired simulated solution. In cases, however, in 

which the system reaches a limit cycle, decision-making is practically impossible. Two 

methods were suggested in the present thesis to handle this phenomenon. The first method 

improves the defuzzification process and is divided into two parts: The first part calculates 

the mean value of the limit cycle oscillation of every activation level (AL) participating in 

the conceptual domain. The mean value of each AL is considered as the equilibrium point of 

the corresponding smoothened limit cycle. The second part examines the structure of a 

certain limit cycle and attaches a degree of confidence to the output suggesting whether the 

resulting smoothened AL value is reliable enough to be used in the decision making process. 

In case the confidence level of the smoothened AL is high, a defuzzification process is 

utilized to facilitate inference based on the fuzzy intervals defined for the specific concept in 

focus. In the opposite case involving a low confidence level, inference is not possible, or to 

be more precise, it is neither reliable nor accurate.  

The above handling of limit cycle offers a solution to the outcome of a dynamic 

system but it does not deal with the origin of the problem.  In an attempt to eliminate the 

phenomenon by examining the origin of the problem, a new algorithm was designed, which 
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constitutes tributes the second method for handling limit cycles.  This method is also divided 

into two parts: The first part investigates the structure of a certain limit cycle and is checking 

whether a limit cycle or chaotic behaviour of the system exists, while the second avoids the 

sustenance of a limit cycle by tracing the weight(s) that caused the limit cycle and modifying 

its (their) value(s). More specifically, after the modification of a weight matrix - individual 

resulted from crossover or mutation, our algorithm checks the values of certain activation 

levels for a given number of iterations. If a difference is observed under a certain threshold, 

then this case is categorized as “limit cycle” and the elimination process is invoked: A 

genetic algorithm evolves new weight matrices aiming at solving a certain set of weights that 

will free the map from limit cycles.  

 
6.2.4 Multilayer FCM  
 
The advantages of FCMs lie with their simplicity and adaptability with which they 

may be utilised in various application domains. However, in large scale complicated 

problems the FCMs’ simplicity suddenly changes to complexity due to the high increase in 

cognitive states, concepts and connections, something that makes the work of experts both 

complicated and inflexible. Having this in mind another major contribution to FCM theory 

was the development of a new FCM Multi-Layer structure to handle complicated problems 

which are characterized by a large number of parameters, concepts, variables, nonlinearities 

and uncertainties that make their analysis and modelling a very difficult task. The objective 

of the proposed methodology was to provide an alternative approach for dealing with such 

difficulties, offering a new computational algorithm designed so as to support the creation of 

layers of parameters and variables describing the system under study, as well as the 

simulation of its evolution dynamics.  

The new algorithm for determining sub-FCMs, named ML FCM, has been built as a 

hierarchical structure and has been designed in such a way so that it can find the Activation 

Level (AL) that satisfies a predefined FCM, which is designed specifically to compute the 

requested AL for a certain concept. In general terms, therefore, the algorithm designs layered 

Fuzzy Cognitive Maps in a hierarchical structure aiming at computing the ALs of the 

children FCMs in each layer and updating the Activation List of the decomposed father FCM 

in the upper layer. It also performs execution of each FCM and reports the results. The 
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proposed methodology provides a robust solution for large-scale problems by grouping the 

large number of parameters influencing a problem. The advantage of this structure is the 

creation of small and more easily manageable sub-FCM models, which work together to 

support the main FCM. Domain experts provide their estimate for the activation levels and 

weight values of the main FCM and each of the sub-FCM models. Some concepts are 

decomposed into a number of parameters which affect their AL. Thus these dependent 

activation level (AL) values are not estimated and instead sub-FCM models are created as to 

calculate these missing ALs. Each sub-FCM model participates in the defuzzification process 

and a report for each sub-FCM model is issued. These reports provide explanation and 

justification of the calculated AL for the concept of interest on which each sub-FCM model 

is built.   

The use of GAs in such a FCM modelling scheme is very appealing since they offer 

the optimal solution without a problem-solving strategy, once the requirements have been 

defined. It is interesting to point out that the evolutionary Multi-Layered approach is 

reflected both in the implementation of the GA as well as in the methodology applied for 

solving large-scale problems. In fact, the reasoning behind the use of this hybrid system is to 

obtain the optimal solution to the weight values corresponding to an FCM in any layer. This 

is very useful for the simulation process and helps the decision-maker to develop scenarios 

with the involvement of more than one concept in any place of the Multi-Layered FCM. The 

basic principle of the methodology requires the initial building of the hierarchical structure 

forming the Multi-Layered FCMs. Subsequently, the GA can be applied to any FCM or sub-

FCM generating a new near to optimal set of weight values for that particular FCM. 

Ultimately, the FCMs are executed using the recalculated weights beginning from the lowest-

level FCMs upwards to the root FCM. It is interesting to point out that since genetic 

optimisation has been applied to a concept that expands to a sub-model, and this makes it 

common to two FCMs (father- and child-FCM). As a result, the specific concept’s final level 

computed in the child FCM is treated as the initial level value of the concept in the parent 

FCM, both of which have been predefined by the user. It is obvious therefore that scenario 

analysis thus becomes quite flexible and allows for different experimentations at some or all 

of the levels of interacting FCMs. The final step involves the execution of the FCM 

algorithm. However, before an FCM is executed, if it is marked for genetic optimisation then 
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the Genetically Evolved (GE) ML-FCM algorithm is executed. The resulting weight matrices 

of each execution are then fed as input to the FCM algorithm for completion of the scenario 

analysis. The proposed algorithm (which integrates genetic optimisation with multi-layered 

FCMs) executes in a bottom-up sequence  so that any newly-computed final level of a 

concept in a child FCM can be  used as the initial activation level of its parent FCM after it 

has been calculated using the optimised weight matrix of the child GE ML-FCM. The 

integration of evolutionary computing in ML-FCMs has been shown to be a promising and 

reliable methodology for modelling complicated, large-scale problems through a practical 

case study conducted. One of the main challenges faced hereafter, was the design of 

scenarios that describe specific problems in a Multi-Layered environment and the proposal of 

an optimal solution for each such problem, as this is described by the appropriate values of 

the ALs involved.   

In addition to the advantages described earlier in this section, the new enhanced 

multilayered algorithm was also proposed to take into consideration the value level changes 

during each iteration. This is a very important feature bearing in mind that one of the 

drawbacks of the Multi-Layered algorithm is that each FCM is executed once for a number 

of iterations and only after all of the concepts resigning in it achieve an activation level, not 

taking into account that at each iteration the value of the levels change and as such these new 

values must somehow be fed back to the parent FCM during the same iteration.  

 The new algorithm begins by creating the ML-FCM stucture, like the original Multi-

Layered algorithm does. However, when a leaf node is reached the FCM is executed just for 

one iteration. The change in the corresponding value of the central concept of the leaf FCM 

(in other words, the concept with a missing activation level in the parent FCM) is fed back to 

the parent FCM which then continues to either execute for one iteration (if no more levels are 

missing) or to create a new child FCM that will have as a central concept the corresponding 

concept of the parent FCM with a missing AL. This process is repeated until the root node is 

reached, keeping in mind that FCMs are run for just one iteration. Once at the root, the root 

FCM executes, again only once, and passes down to its child FCMs the levels of those 

concepts that were missing during the first iteration in order for the children to execute. If the 

children also happen to have a child FCM then they halt their execution and pass down the 
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value of the AL that was also once missing. As a result, execution of an FCM only takes 

place whilst moving in a bottom-up direction, and never while moving downwards.  

The two algorithms serve the Multi-Layer approach developed to expand the 

capabilities of FCMs. The first algorithm (ML-FCM) was proposed to model complicated, 

large scale problems effectively. The second algorithm ( Enhanced Multi-Layer FCM), aims 

at tackling  the weakness of the first algorithm to deal with calculations of the intermediate 

AL values and the participation of the latter in the evolution of the behaviour of the Multi-

Layered structure in terms of numerical stabilization and inference. The two algorithms were 

compared and evaluated using a real-world problem from the area of political decision 

making. The results obtained suggested advantage of the EML-FCM algorithm and offered a 

chance for a comparative discussion on the strengths and weaknesses of each algorithm. The 

validation process included also a final consultation round with our experts, which strongly 

suggested that both algorithms constitute reliable tools in the hands of decision makers and 

that the Enhanced Multilayer algorithm presents more advantages than the ML-FCM, such as 

flexibility and efficiency in handling  the time step between layers. 

 

6.2.5 A Framework for the Development of Computational Intelligent Decision 

Support Systems   

 
The methodology described thus far is part of a general framework for developing a new 

category of intelligent decision support systems using evolutionary fuzzy cognitive maps. 

The principal steps of this framework may be summarized as follows:  

• Identification and Formulation of Domain Variables: A Cognitive Approach 

One of the most important requirements of the methodology is the identification of 

the problem variables, using experts’ knowledge, a task that heavily depends on 

the effectiveness of the identification and description methods used 

(questionnaires, formal consultations, texts etc). The importance of this task is 

crucial given that it provides a descriptive overview of the system. Once this has 

been established, these variables and the causal relationships among them are 

treated as concepts (nodes) and directed arcs participating in the FCM model.  
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• Linguistic Fuzzy Sets Encoding 

Once the names and roles of each concept have been identified, they are 

partitioned into fuzzy sets and each set is then assigned a linguistic value. The 

advantage of using fuzzy sets, therefore, is that they provide a basis for a 

systematic way of manipulating vague and imprecise concepts and as such they 

are often treated as representing linguistic variables. A linguistic variable can be 

regarded as a variable with values that appear either as fuzzy numbers or in 

linguistic forms.  The fuzzy set encoding is a key step in our framework because it 

is used to build up the most important element of the Computational Intelligent 

DSS (CI-DSS), namely the fuzzy knowledge base.  

• Fuzzy Knowledge Base Representation   

 The construction of a fuzzy knowledge-based system is a very complicated task, 

requiring occasional adjustment of knowledge, especially in cases of complex 

applications. The integration of a Fuzzy Knowledge Base (FKB) to our CI-DSS, 

attempts to overcome this difficulty by encoding the experts’ assessment. Once the 

concepts have been defined and the FKB has been built, the domain experts are 

ready to provide their estimation of the activation levels and weight values that 

aim at defining the initial state reflected by the model at a given time period. The 

linguistic sample is encoded directly into a numerical matrix using an uncertainty 

fuzzy distribution and is subsequently reduced to a scalar form. This linguistic 

matrix provided by the fuzzy encoding procedure reflects the quantization levels 

of the input and output spaces, and the number of fuzzy set values assumed by the 

fuzzy variables. 

• Evolutionary Strategy Formation 

An evolutionary strategy represented by a hybrid model (FCM and GAs) is the 

heart of the framework, enabling forecasting by tracing the degree of the causal 

relationships between the various concepts, so that it can “force” them to be 

activated to a certain level. This technique enables simulations that retrieve the 

final activation levels of the rest of the concepts, as well as the strength of the 

causal relationships between them. The analyst is thus able to proceed to tactical 

movements in his decision-making by varying the degree of such relationships in 
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line with the final activation levels the model has suggested. In general, finding a 

near to optimal weight matrix, which will guide a FCM to desired AL values for a 

specific concept, is a task which is performed using genetic algorithms.  

• Simulations Execution  

The CI-DSS proposed in this thesis uses a simulation technique that facilitates a 

forecasting and inference process. The first step of this process incorporates all 

previously described notions, including the computation of the normalised level 

and the weight matrix, at the normalisation stage. After a certain number of 

iterations, the final activation levels are calculated giving the baseline of the 

model. In the second step, different strategies are introduced by tracing the 

optimal weight matrix corresponding to a desired activation level for a given 

concept. The results are obtained in the form of graphical representations of 

optimal weight values and used as input in the next step.  The third step, performs 

genetic optimization and different scenarios make the simulation of future 

situations possible, thus helping in forecasting and interpreting future states of the 

problem under investigation. 

• Handling Limit Cycles: Improving the Inference Procedure  

As we have already pointed out, the CI-DSS comprises Fuzzy Cognitive Maps and 

Genetic Algorithms and its execution converges to equilibrium at a fixed point, or 

present limit cycle or chaos. The dynamic behaviour of FCMs is addressed and 

improved in this stage by introducing various methods for handling the Limit 

Cycle phenomenon in two ways. Firstly, a new fuzzification technique is 

integrated in the defuzzification process and handles the limit cycle by introducing 

a confidence rate for each result. The second approach attempts to identify the 

cause of the limit cycle and to eliminate the phenomenon using again a dedicated 

evolutionary algorithm to increase the reliability of the method.  

• Multilayer FCM structure  

The framework is completed by the use of a new structured approach for the 

development of FCM-based layered models able to handle large-scale, complex 

systems. Two algorithms serve the multilayer approach for systems which are 

characterized by a large number of parameters, concepts, variables, nonlinearities 
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and uncertainties. The two algorithms offer a new computational technique 

designed to support the creation of layers of parameters and variables describing 

the system under study, as well as the simulation of its evolution dynamics. The 

main issue here is the decomposition of the parameters into smaller, more 

manageable quantities organized in a hierarchical structure forming a model, 

which consists of subsystems working together and supporting a central objective.  

The various stages either individual or combined were successfully applied in 

practice. Several problems of the real-world were modeled using the proposed 

framework, coming mostly from the fields of crisis management, political decision-

making and strategy definition. More specifically, the Cyprus issue was modeled several 

times following its different stages over the last six years, the 2002 tension in Cyprus due 

to Turkey’s threats as regards Cyprus’s bit for full member of EU, the S-300 missiles 

crises and the Turkish-Cypriots elections in December 2003 were modeled, as well as the 

settlement of the Cyprus issue through the Anan Plan using a Multi-Layer structure 

consisting of 56 concepts. The principle of the modeling approach was successfully 

validated using a well known example from game theory, namely the Prisoner’s Dilemma 

paradigm.  

The application of the framework however, is not limited to political or crisis 

management problems, but can be further extended without any restrictions, to other 

domains due to its generic nature and simple and straightforward steps. Based on the 

description of the stages of the framework, the way the CI-DSS performs the modeling 

process does not rely on any application domain parameters and is not restricted to the 

characteristics of specific real-world problems under study. On the contrary, these 

characteristics are critical parts of the modeling process itself. Therefore, it is clear that 

the proposed methodology is general enough to accommodate the study and modeling of 

a number of different problems provided that the basic principles of interrelated 

parameters (concepts) and uncertainty are satisfied. 

 

 

 

 

 



 176

6.3 Future research directions  
 

It is evident that the role of Evolutionary Fuzzy Cognitive Maps, a combination of 

Fuzzy Logic, Neural Networks and Genetic Algorithms, in the development of 

Computational Intelligent Decision Support Systems is very significant. The integration of 

Fuzzy Cognitive Maps in CI-DSS reported in this thesis has shown some promising and 

encouraging results, particularly when applied in crisis management and policy making 

environment. Despite the contribution of this work, there are still areas which offer plenty of 

room for further research and development in this field of interest.  

The boundaries between Decision Support Systems and Experts Systems are 

becoming pretty fuzzy. New technologies like Neuro-fuzzy processing, data mining, 

cognitive science and Precitiate Natural language, have emerged and their combination 

should be investigated in order to build new systems that they will behave as closer as 

possible to human behavior. The above technologies have common features revolving around 

human behavior, human knowledge and human thinking. As Lotfi Zadeh says “computing 

with words and perceptions is likely to emerge as an important direction in science and 

technology”. The necessity to deal with real world problems dictates that there is much to be 

gained by exploiting the tolerance for imprecision, uncertainty and partial truth. Developing 

future Computational Intelligent Decision Support Systems should seriously take into 

consideration the new Computational theory of Perception [192]. The basic concept of this 

new theory is computing with words and is expected to change the philosophy and the way 

current technology moves.  

The problem becomes even more complicated in the case of forecasting because the 

assessment of the results is difficult.  

The methodology described in chapter 4 has two major steps, namely the 

development of a system that reflects a current situation of a given problem and the 

forecasting process using scenario analysis methodology. The evaluation of the first phase of 

the methodology is possible and is performed through the experts’ assessments. One 

additional method that could be implemented is the automatic verification of the system to 

reflect the known situation of a given problem. The problem of judgment from different 

experts is always something that needs further analysis in order to eliminate this 

phenomenon. The way our methodology deals with this problem is by categorizing the 
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experts according to a credibility level and then by applying a formula to achieve a 

consensus. Further studies on the credibility of the experts and how their assessment is 

inserted in the system is another area of study which will improve the establishment of a 

reliable initial state of a given problem. The second step of the methodology, which is 

dedicated to identifying the future parameters by forming a hypothetical scenario using 

Genetic Algorithms, is very difficult to control. Evaluating the reliability of the results 

depends on the accuracy of the fitness function and whether the target criterion is met. These 

two conditions provide an indication of the reliability of the results. An automatic method 

that will assess the results is currently not possible and this may be studied further. Future 

work should consider the evaluation of an FCM model with respect to measurable parameters 

to determine the effects of the results in the whole process.  

One of the main challenges in FCM is the autonomous creation of Fuzzy Cognitive 

Maps. Some attempts have been executed during the past few years the main one using 

Genetic Algorithms as a methodology to identify the main principal which may consist a 

potential FCM. FCM parameter estimation techniques show the way for automatically 

determining causal strength from state observations, while their success relies heavily on 

background knowledge about the causal structure of the system, acquired from interviews 

with domain experts. The development of a FCM usually occurs within a group of experts to 

improve identification of relevant concepts and causal relationships between concepts. The 

assumption that the combined and some times incomplete opinions of different experts may 

be canceled out by the effects of omission, ignorance and prejudice is not always the case. A 

way of how the experts’ opinions are inserted into the system and how causal discovery is 

performed as fundamental tasks for automated FCM synthesis provide a basis for future work 

in the area of autonomous creation of FCM. 

Another important issue for further analysis is how to improve the performance of a 

FCM system firstly by improving the correct implementation of a problem and secondly the 

successful runs giving meaningful results.  One of the phenomena that may appear in the 

FCM methodology is Multicollinearity [63].  The analysis of an FCM reveals the presence of 

cycles, that is, paths starting and ending at the same node that include more than one node. A 

cycle is characterized as positive if the number of negative weights on the cycle is zero or 

even, otherwise it is characterized as negative. A positive cycle tends to increase the 
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activation level of the concept on which it closes, whereas a negative cycle decreases this 

value. The presence of a large number of cycles in an FCM increases its complexity. 

Moreover, in the presence of cycles some undesired effects may take place, such as a form of 

multicollinearity. The latter is realized when a concept is affected by a number of other 

concepts which are linearly correlated. This correlation may exist in FCM as a result of the 

kind of modelling followed, that is, if the map is constituted by cognitive factors of the 

problem under investigation which provide essentially the same part of information to 

describe a certain, common concept, but, at the same time they are considered too important 

to leave out of the model. 

Multicollinearity in FCM may be regarded as a phenomenon possibly present in any 

dynamic modeling attempt. One may detect it by investigating cases in which the activation 

level of a concept is constantly driven towards +1 or -1 due to the fact that the majority of its 

input weights are positive or negative values respectively. Apart from multicollinearity, one 

additional undesired effect may be observed in FCMs related to single-fed concepts (i.e. 

concepts with only one input), where the receiving concept is “forced” through the iterative 

process to a certain activation level value dictated by the input concept’s AL and the sign of 

the connection. Finally, a modelling weakness of FCM may also be brought to light 

regarding the exclusion of factors that, even though they have a role to play in the problem 

under study, they do not receive influence from other concepts participating in the map. 

Thus, these factors, although significant, can only take part in the map as external elements, 

something which requires modifying the structure (definition) of a FCM to allow their 

inclusion. 

The aforementioned modelling problems and weaknesses may be overcome by using 

a form of bias in the execution process of the map. Some preliminary studies have been 

proposed in [125] where a bias concept was introduce that behaves like a constant variable in 

the application domain and normalizes the FCM in order to reflect the real condition of a 

given problem. Great care should be exercised when using the bias concept, so that 

parameters that will bring distortion to the model are not inserted. The best criteria to insert 

or to verify the correctness of using a bias node is the execution of the system and the 

analysis of the initial condition formed. This phenomenon needs to be examined in more 

detail and new research activities should be explored.  
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Another area for further improvement is the elimination of chaotic or limit cycle 

behaviour of models, which, despite the contributions of the present work, is still an open 

issue for further investigation mainly for two reasons. First, because the reliability of the 

system depends on the stability and the reliable execution of the map and second because any 

further improvement of the FCM modelling process must take the necessary steps so that the 

resulting system can guarantee stability. A new approach based on the work that has already 

been performed by Mateou and Andreou [123] which can be characterized as a semi 

automatic method for identification of limit cycles should be investigated. An automatic 

process, with the use of intelligent techniques that will automatically identify instability in 

the system and will suggest possible solutions to overcome the problem is an area for further 

research.  

The question of the functional representation, as well as the computational 

capabilities of FCM, by means of developing new flexible and more manageable structures, 

is an area requiring further investigation. Irrespectively of the links offered for further 

improvement and research, the fact remains that the creation of Multi-Layer FCMs, in which 

concepts are grouped together, has been found to be essential in facing  the limitations 

encountered  in the classical FCM cases when tackling  problems with a large number of 

concepts. Thus, Multi-Layer Fuzzy Cognitive Maps provided robust solutions for large-scale 

problems on the basis of parameter-grouping, meaning that a new algorithm is required to 

determine sub-FCMs built as a hierarchical tree structure. Suggestions for future work may 

concentrate on the development of new algorithms which will face problems with even 

higher complexity by combining the multilayer formation with some more flexible and 

ductile FCM structure. For example, the use of neighbouring FCM may give more flexibility 

and simplicity to FCM structure design. This new structure may overcome the problem of 

hierarchical level of computation appearing in the Multi-Layer FCM, by obtaining a single 

map structure working in parallel at the same layer.  

Finally the time relationship (or time lag) involved before a change in node Ci has an 

effect on node Cj may be further investigated. Currently a FCM assumes that all effects take 

place in one unit of time. Thus, a more realistic map would introduce a time lag 

corresponding to each effect. However, the time lags are hard to estimate, and there is a 

trade-off between the generality of the map and the possibility of estimating its time lags in a 
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realistic way. Several methods try to solve the problem of the time behavior of FCM but to the 

best of our knowledge this success is limited. Further research in this subject may increase the 

reliability of FCM modeling and thus may enable the study of time effects between the 

participating concepts as part of the computational procedure.  
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Appendix B 

The Example of the Prisoner's Dilemma 

  
 B.1.1  Introduction 
 B.1.2 The Prisoner's Dilemma as an example of strategic-form and Fuzzy Cognitive   Maps 

formulation 
 B.1.3  Prisoner’s Dilemma transformation to FCM  
 B.1.4  The Prisoner’s Dilemma strategies and scenaria 
 B.1.5 Fuzzy Cognitive Maps interpretation of the Prisoner’s Dilemma using three  concepts.  
 B.1.6  FCM and evolutionary strategy applied in Prisoner’s Dilemma problem 
 B.1.7 Application of FCM in a Prisoner’s Dilemma conflict resolution: The example of 1963 

Cuban missile crisis  
B.1.8  Fuzzy Cognitive Maps implementation in the Cuban missile crisis  
B.1.9  Assessment of the methodology  
 

B.1.1  Introduction  

Chapter 4 presented a detailed explanation of the proposed FCM methodology 

development together with certain politics and crisis management examples to demonstrate 

its applicability and effectiveness. What Appendix  B does is relate the FCM methodology to 

the Prisoner’s Dilemma [56], a well known game theory example [84] aiming at proving that 

FCM are applicable and reliable to face a wide selection of problems, to the extent that these 

can be translated as game theory problems instances.   

 Game theory is a branch of mathematics concerned with decision making [51] in 

social interactions and applies to situations (games) in which there are two or more sides 

(called players), each attempting to choose between two alternative strategies. The possible 

outcomes of a game depend on the choices made by all players, and can be ranked by each 

player’s order of preference. 

This part of the thesis focuses on adopting the logic of the Prisoner’s dilemma to the 

FCM methodology in the light of a case study, namely the Cuban missile crisis [62], thus 

underlining the relationship between strategic-form and extensive-form games.  
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B.1.2 The Prisoner's Dilemma as an example of strategic-Form and Fuzzy 
Cognitive Maps Formulation 

The Prisoner’s dilemma, in its original version involves two “players”, Prisoner 1 and 

Prisoner 2, and two strategies, defect or cooperate [56]. Both players aim to obtain maximum 

personal gain, this depending upon their strategies as outlined in Table B.1.1. The two 

prisoners are supposed to have committed a crime for which there is no evidence meaning 

that they can not be proven guilty [149]. So the police catch them and put them in two 

separate cells trying to use one’s testimony against the other’s. Each Prisoner is given two 

options, either to confess the crime or to deny it. If Prisoner 1 confesses but Prisoner 2 denies 

then the first Prisoner’s statement serves as testimony against the other and Prisoner 1 gets no 

punishment, while Prisoner 2 gets a full 10 years term and vice versa. If both confess, both 

get 5 years of imprisonment each, as now the police have evidence against both of them, 

while if both deny the police have evidence against none, this meaning that the two Prisoners 

get 1 year of imprisonment each [84]. These possibilities are summarised in Table B.1.1. 

Table B.1.1:  Prisoner’s Dilemma Strategy and Payoffs 

I \     II Confess Deny 

Confess 5,5 0,10 

Deny 10,0 1,1 

 

Each cell of the matrix gives the payoffs to both players for each combination of 

actions. Prisoner 1's payoff appears as the first number of each pair, Prisoner 2's as the 

second. So, if both Prisoners confess, each one gets a payoff of 5 year in prison as it is 

indicated in the upper-left cell. If both deny, they will get one year each it appears in the 

lower-right cell. If Prisoner 1 confesses and Prisoner 2 denies then Prisoner 1 is allowed to 

go free while Prisoner 2 gets 10 years in prison. This appears in the upper-right cell. The 

reverse situation, in which Prisoner 2 confesses and Prisoner 1 denies, appears in the lower-

left cell.  
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B.1.3 Prisoner’s Dilemma transformation to FCM 
 

B 1.3.1 Constructing the Prisoner’s Dilemma Model 
 

The FCM Prisoner’s Dilemma model structure relies, to its largest extent, on the 

relevant theoretical background, thus minimizing its dependence on expert knowledge, a 

reliance that constitutes probably the focus of the major criticism against the use of the 

particular method in crisis management. The required input includes concept descriptions 

together with expert activation levels and weight values, while it is considered essential to 

provide the fuzzy set partitioning as well as the assignment of linguistic variables to each 

concept’s fuzzy set. The end result of the whole process is a graphical depiction of the fuzzy 

cognitive model map at its initial/current state.  

 

B 1.3.2     Identifying the Model Concepts 
 

Developing such a decision–making model first requires identifying the key concepts 

outlining the model environment. The simplest version of the model in this Prisoner’s 

Dilemma (PD) case involves two concepts, namely, Prisoner 1 and Prisoner 2, as outlined in 

Figure B.1.1. Each concept is then given an identification number (concept C1 and C2) that 

will be used as reference for further explanation and analysis. In this context, the decision of 

Prisoner 1 affects him while it bears a direct impact on the second Prisoner’s decisions as 

well and vice versa for the second Prisoner’s decision. In order to simulate this PD problem 

in a FCM form we need to draw attention to a number of definitions that are useful in 

analyzing a suitable Fuzzy Cognitive Map.   

       Node: A point at which a player takes an action 

       Concept: A node represents a concept, in our case one of the two players (prisoners) 

       Initial Activation level: The point at which the first action in the game occurs 

       Final Activation level:  The outcome corresponding to each terminal node 

       Weights: The influence between nodes   

       Outcome: An assignment of a set of payoffs, one for each player 
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Figure B.1.1:  FCM1 Representation 

 
Table B.1.2: Concepts Description 

C1 Prisoner 1’s  Decision  
C2 Prisoner 2’s  Decision  

 
B 1.3.3  Fuzzification of the Prisoner’s Dilemma  Problem   

 
 The fuzzification process consists of two basic steps. During the first step the interval 

of each concept is analyzed into trapezoidal membership functions, as shown in Figure  B.1.2 

and Table B.1.2 Since the concept activation levels fall in the range between -1 and +1, the 

concept intervals themselves must also fall in this range, with the minimum number of 

intervals in our model being two.  

 

 
 Figure B.1.2: A Concept with 3 Membership Functions, Low, None and High 

Cooperation 
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Using the cooperation strategy we can introduce it in the Fuzzy Knowledge Base (FKB) 

which is designed to serve the methodology. Building a knowledge-based system for the 

Prisoner’s Dilemma problem is a rather straightforward task especially in cases of two 

concepts. Thus, the linguistic variables of the two concepts are encoded in a numerical matrix 

using an uncertainty fuzzy distribution as shown in Table B.1.3.  

 
Table B.1.3: Modelling Fuzzy Analysis of the Concepts Participating in the PD Problem  

 
C1 -1 -0.2 Low Cooperation 5, 5  Five years in prison for both 

Prisoners  
C1 -0.4 +0.4 No Cooperation 10, 0  Ten years in prison for the 

first Prisoner and release of the second Prisoner   
C1 0.2 1 High  Cooperation 1, 1   The two Prisoners get one 

year in prison each  
C2 -1 -0.2 Low Cooperation 5,  5  Five years in prison for both 

Prisoners  
C2 -0.4 +0.4 No Cooperation 0, 10  Ten years in prison for the 

second Prisoner and release of the first Prisoner   
C2 0.2 1 High  Cooperation 1, 1   The two Prisoners get one 

year in prison each  

 

 

 

 

 

 

 

 

 

B 1.3.4    Execution and Defuzzification Processes  
 

 The FCM execution process takes the normalised initial levels and a weight matrix 

computed at the normalisation stage, and runs the FCM algorithm for a selected number of 

iterations, thus calculating the final activation levels (baseline). During the iterative steps the 

model is left to interact and after all iterations have been completed, the results are presented 

to the decision-maker in the form of a graphical representation, followed by the 

defuzzification of the final activation levels. The defuzzification process in particular, is 

designed to facilitate the decision-maker reference from the numerical output to the 

corresponding linguistic interpretation. Thus, it is very important that the final activation 

levels be matched with their respective linguistic values in order to facilitate the decision 

maker’s effort to focus on the most efficient solution.   
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B.1.4 The Prisoner’s Dilemma strategies and scenaria 
 

 The problem is specified in terms of the following hypotheses: The two Prisoners are 

detained in separate rooms unable to communicate with each other and the police visit each 

of them and offer a deal: the one who provides evidence, i.e. testifies against the other, will 

be set free. If none of them accepts the offer, they are in fact cooperating against the police, 

and both of them will either suffer the punishment provided by the law, in case that they both 

confess or just a moderate term of imprisonment due to lack of evidence.  However, if one of 

them provides evidence against the other, then that one can walk free while the other one 

who denied will receive the full punishment, since there is enough evidence against him. If 

they both plea guilty, they will be both punished, however the punishment will be less severe 

compared to the one each of them would face if he had denied while the other one confessed. 

The difficulty of the dilemma rests, therefore, with the fact that each Prisoner has a choice 

between only two options, but cannot take the decision with the highest personal payoff 

without knowing the choice of the other Prisoner.  

 
B 1.4.1   Both Prisoners Deny  

 
 Let’s take the possibility that they both deny. The fact remains that Prisoner 1 doesn't 

know if Prisoner 2 is going to confess or deny, but he nevertheless wants to minimise his 

punishment. So he considers two cases.  

a)  Prisoner 2 (P2) confesses 

In this case confessing means at least a five–year imprisonment for Prisoner 1 (P1) So it’s 

better for P1 to confess. 

b)  Prisoner 2 denies 

In this case confessing gives P1 his freedom while denying gives them both one year in 

prison. So it’s better for P1 to confess in this case too.  

The conclusion therefore is that the best option for P1 is to confess no matter what P2 does 

and mutatis mutandis the same thing applies for P2.  

This environment can be modelled through Fuzzy Cognitive Maps in the first run with the 

activation levels and weights representing the deny situation shown in Table B.1.4. The 

model reaches equilibrium described by a Deny-Deny result which is a win-win situation for 

both Prisoners (Figure B.1.3). 
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Table B.1.4 represents a summary of the Deny-Deny configuration. The first and second 

column shows the weights and the initial activation level respectively, while the third column 

presents the final activation levels of concepts C1 and C2. The fourth column presents the 

defuzzification of concepts C1 and C2 using Table B.1.3. The model successfully 

demonstrates the Deny-Deny configuration confirming the one year in prison. The rest of the 

tables follow the same structure summarizing the different scenarios.  

 

Table B.1.4: Deny – Deny Configuration 

Weights Initial AL Final AL Defuzzification 

W1=0.9 
W2= 0.9 
W3=0.9 
W4=0.9 

C1, AL=0.9 
 

C2, AL=0.9 

C1, AL=0.9 
 

C2, AL=0.9 

Prisoner 1 -  High Cooperation: Deny 
The two prisoners get 1 year each 

 
Prisoner 2 - High Cooperation : Deny 

The two prisoners get 1 year each 
 

 
Figure B.1.3: High Cooperation -Deny – Deny Equilibrium 
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B 1.4.2    Both prisoners confess  
 
Even though the best outcome for both Prisoners is the Deny-Deny scenario, for 

modelling purposes the two other strategies will be also examined. P1 compares the two 

possible outcomes by considering which of the P2 actions are preferable for every possible 

action by P1 prisoner and chooses using the following reasoning: If P2 confesses then P1 

gets a payoff of 5 years by confessing and a payoff of 10 years by denying. If P2 denies, P1 

gets a payoff of 0 by confessing and a payoff of 1 by denying. Therefore, P1 is better off by 

confessing regardless of what P2 does. P2, meanwhile, evaluates P1’s actions by comparing 

P2’s payoffs down each row, and P2 comes to exactly the same conclusion that P1 did. 

Wherever one action for a player is superior to P2 other actions for each possible action by 

the opponent, we say that the first action strictly dominates the second one. In the PD, then, 

confessing strictly dominates denying for both players. Both prisoners know this about each 

other, thus entirely eliminating any temptation to depart from the strictly dominated path. 

Thus both prisoners will confess, and both will go to prison for 5 years. Table B.1.2 and 

Figure B.1.4 show that the model reaches equilibrium described by a Confess – Confess 

result which is a compromise for both Prisoners. 

 
Table B.1.5: Confess- Confess Configuration 

Weights Initial AL Final AL Defuzzification 

W1=0.9 
W2= 0.9 
W3=0.9 
W4=0.9 

C1 AL=-0.9 
 

C2 AL=-0.9 

C1 AL=-0.9 
 

C2 AL=-0.9 

Prisoner 1 - Low Cooperation:  
Confess, 5 years in prison for both 
Prisoners 

 
Prisoner 2 -  Low Cooperation: 
Confess, 5 years in prison for both 
Prisoners 
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Figure B.1.4: Confeess-Confess Equilibrium 

 

B 1.4.3   The first prisoner confesses and the second one denies  

 When we represent the PD as a strategic-form game, we implicitly assume that the 

Prisoners can't attempt collusive agreement since they choose their actions simultaneously. In 

this case, agreement before the fact can't help. If P1 is convinced that P2 will stick to the 

bargain then P1can seize the opportunity to go free by confessing. Of course, P1 realizes that 

the same temptation will occur to P2; but in that case P1 again wants to make sure P2 

confesses, as this is P1’s only means of avoiding the worst outcome. But now suppose that 

P1 does not move simultaneously. That is, suppose that one of the prisoners can choose after 

observing the other's action. This is the sort of situation that the two prisoners will choose a 

different strategy and not cooperate for their own maximum benefit.  This situation does not 

give equilibrium but limit cycle. (Figure B.1.5 and Table B.1.6) 
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Table B.1.6: Deny-Confess Configuration 

Weights Initial AL Final AL Defuzzification 

W1=0.9 
W2= -0.9 
W3=0.8 
W4=0.8 

C1 AL=-0.9 
 

C2 AL=0.9 

C1 AL=0.29 
 

C2 AL=-0.86 

 Prisoner 1 - Low Cooperation: Deny, 
 The two Prisoners get one year each 

 
Prisoner 2- Low Cooperation: Confess, 
Five years in prison for both Prisoners 

The experiments undertaken thus far point to a satisfactory performance of the model 

with the results derived being self explanatory in terms of a Nash equilibrium logic. It 

appears, however, that in this particular case the option of cooperation between the two 

players may provide results which are preferable compared to those suggested by the Nash 

recipe, indicating that the environment described by the specific model is a lot more 

complicated than what it seems at first sight. What we propose to do, therefore, is to 

introduce an additional concept (C3) named “Results,” which will separate the strategy 

option from the results and then apply the fuzzy knowledge reasoning to proceed with 

analysing the concepts involved.  

 
Figure B.1.5: P1 Denies and P2 Confesses. Case: Limit Cycle 
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B.1.5 Fuzzy Cognitive Maps interpretation of the Prisoner’s Dilemma using   
three concepts.  

The new model as described in Table B.1.7 consists of three concepts, Concepts 1 

and 2 representing Prisoner 1 and Prisoner 2 respectively and Concept 3 standing for the 

results of the chosen strategies from the two players. The advantage of this model is that by 

introducing a new concept, the decision of each prisoner is technically separated from the 

outcome of the model. In this way all outcomes are considered as possible and therefore 

potentially leading to an equilibrium state. The fuzzification of the three concepts is listed in 

Table B.1.8. Three fuzzy sets were identified for concept C1 and C2. The fuzzy classification 

follows the order High Cooperation, Low Cooperation  and  No Cooperation, associated by 

the expectation results from the prisoners which decide to Cooperate or not. The reasoning 

behind creating concept C3 and the fuzzification philosophy it is that using it we can verify 

the end results as these are formulated after the two prisoners have made their decisions 

while participating actively in the forecasting procedure which is our main objective.   

Table B.1.7: Analysis of PD example with three concepts 

C1 Prisoner 1 
C2 Prisoner 2 
C3 Result  

 

 
Figure B.1.6: Three-State Fuzzy Cognitive Representation of PD 
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Table B.1.8: Fuzzy Analysis of PD using three concepts 

C1 -1 -0.2 Low Cooperation 5,  5   Five  years in prison for both 
Prisoners 

C1 -0.4 +0.4 No Cooperation 10, 0 Ten Years in prisons for the first 
Prisoner and release the second Prisoner 

C1 0.2 1 High  Cooperation 1, 1  The two Prisoners get one year each 
C2 -1 -0.2 Low Cooperation 5,  5  Five years  in prison for both 

Prisoners 
C2 -0.4 +0.4 No Cooperation 10, 0 Ten Years in prisons for the second 

Prisoner and release of the first Prisoner 
C2 0.6 1 High  Cooperation 1, 1  The two Prisoners get one year each 
C3 -1 -0.4 5, 5  Five years in prison for both Prisoners 
C3 -0.5 0.1 10, 0 Ten Years in prison for the first Prisoner and release 

the second Prisoner 
C3 -0.1 0.5 0, 10  Ten Years in prison for the  second Prisoner and 

release the first Prisoner 
C3 0.4 1 1, 1 The two Prisoners get one year each 

 

B 1.5.1   High Cooperation Scenario: Both Prisoners Deny 

 As shown in Table  B.1.9 and Figure B.1.7 the results are identical to those derived 

using the two–concept model with the only difference being that the option of High 

Cooperation leads to the best possible outcome according to which both prisoners are 

released.  

Table B.1.9:  High Cooperation (Deny configuration) 

Weights Initial AL Final AL Defuzzification 
W1=0.9 
W2= 0.9 
W3=0.9 
W4=0.9 
W5=0.9 
W6=0.9 

C1 AL=0.9 
C2 AL=0.9 
C3 AL=0.9 

C1 AL=-0.9 
C2 AL=0.9 
C3 AL=0.9 

C01: Player 1 
High  Cooperation   
The two Prisoners get 1 year each 
C02: Player 2 
High  Cooperation  
 The two Prisoners get 1 year each 
C03: Result 
The two Prisoners get 1 year each 
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Figure B.1.7: High Cooperation: Both Prisoners Deny 

B 1.5.2   Low Cooperation Scenario: Five Years in Prison for both 

 In this strategy the system also verifies the possibility of Low cooperation meaning 

that the two Prisoners confess leading to minimum punishment which is five years in prison 

for both of them. The results shown in Table B.1.10 and Figure B.1.8 are similar to those of 

the previous model with the two concepts.  

 
Table B.1.10: Low Cooperation (Confess) 

Weights Initial AL Final AL Defuzzification 
W1=-0.9    
W2= 0.9  
W3=0.9   
W4=0.9   
W5=0.9 
W6=0.9 

C1 AL=-0.9 
C2 AL=-0.9 
C3 AL=0.9 

C1 AL=-0.9 
C2 AL=-0.9 
C3 AL=-0.9 

C1: Player 1 
Low Cooperation  
5 years in prison for both Prisoners  
C2: Player 2 
Low Cooperation  
5 years in prison for both Prisoners  
C3: Result 
5 years in prison for both Prisoners 
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Figure B.1.8: Low Cooperation: Both Prisoners Deny 

B 1.5.3    No Cooperation Scenario: Low-High Cooperation  

 In this case the first Prisoner confesses, hoping that his partner will confess too and 

thus suffer the minimum punishment which is five years in prison for both, while the second 

Prisoner denies, expecting his partner to do the same. The end result is that the first Prisoner 

suffers minimum punishment walking free, while the second one gets 10 years which is the 

maximum penalty.  This is the worst case scenario with the same results applying, mutatis 

mutandis, when the first prisoner denies and the second confesses. (Table B.1.11 and Figure 

B.1.9) 

  
Table B.1.11: Low to High Cooperation (Deny and confess configuration) 

Weights Initial AL Final AL Defuzzification 
W1=0.9     
W2=- 0.9  
W3=0.9   
W4=-0.9   
W5=0.9 
W6=0.9 

C1 AL=-0.50 
C2 AL=0.50 
C3 AL=0.50 

C1 AL=-0.9 
C2 AL=0.9 
C3 AL=-0.01 

C1: Player 1 
Low Cooperation:  
5 years in prison for both prisoners  
C2: Player 2 
High Cooperation: 
The two prisoners get 1 year each 
C3: Result 
10 years in prison for the  first Prisoner 
and release the second  Prisoner    
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Figure B.1.9: Low and High Cooperation 

B 1.5.4   No Cooperation Scenario: High Low Cooperation  

Table B.1.12: Deny Configuration 

Weights Initial AL Final AL Defuzzification 
W1=0.9     
W2=-0.9  
W3=0.9   
W4=-0.9   
W5=0.9 
W6=0.9 

C1 AL=.50 
C2 AL=-0.50 
C3  AL=0.50 

C1 AL= 0.9 
C2 AL=-0.9 
C3 AL=-0.01 

C1: Player 1 
High  Cooperation:  
The two prisoners get 1 year  
C2: Player 2 
Low Cooperation: 
5 years in prison for both prisoners 
C3: Result 
10 years in prison for the  second 
Prisoner and release the first 
Prisoner    
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Figure B.1.10: Low and High Cooperation 

 
B.1.6   FCM and evolutionary strategy applied in Prisoner’s Dilemma problem 

 
It became obvious from the previous paragraph that, that the Prisoner’s Dilemma problem 

can be well modelled using Fuzzy Cognitive Maps with the three concept version providing 

increased flexibility and for more efficient strategies. What is very interesting to see next is 

the forecasting behaviour of the model with the help of Genetic Algorithms.   

Evolutionary game theory is a popular subject across diverse disciplines of social and 

natural sciences. It provides a framework for studying the evolution of different strategies 

under various conditions that are modelled by the rules of games to which players must 

conform, like in the case of the Prisoner's dilemma game. In this specific case, however, 

which is known as an Evolutionary Prisoners Dilemma, the most active area of research 

concerns perhaps the evolutionary strategy when success requires doing well with other 

successful strategies, rather than doing well with a wide range of strategies. Three scenarios 

will be implemented here to verify the hybrid methodology in PDs. 
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B 1.6.1    Strategy 1: Starting from No Cooperation asking for Low Cooperation 

 Starting from the situation of No Cooperation A1=0.5 and A2=-0.5 the first one 

confesses and the other denies. We apply evolutionary strategy and ask the model to provide 

for a Low Cooperative strategy A3 =-0.7. As shown in Table B.1.13 and Figure   B.1.11, the 

model reaches equilibrium giving negative low cooperation results, A1=-0.72, A2 =-0.89, A3 

=-0.42. The meaning of these results is shown in column four of Table B.1.13. This strategy 

indicates that when the two Prisoners do not cooperate the methodology through the 

evolutionary FCM can alter the No Cooperation strategy to Low Cooperation.  

 
Table B.1.13: Strategy 1- From No Cooperation to Low Cooperation (A3 = - 0,7) 

Weights Initial AL Final AL Defuzzification 
W1=0.09    
W2=-0.64  
W3=0.76   
W4=0.38   
W5=0.9 
W6=-0.49 

C1 AL=0.50 
C2 AL=-0.50 
C3 AL=0.50 

C1 AL= -0.72 
C2 AL=-0.89 
C3 AL=-0.42 

C1: Player 1 
Low Cooperation:  
5  years in prison for both prisoners 
C2: Player 2 
Low Cooperation: 
5 years in prison for both prisoners 
C3: Result 
5  years in prison for both prisoners 

 

 
Figure B.1.11: Strategy 1- From No Cooperation to High Cooperation 
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B 1.6.2   Strategy 2: From No Cooperation (Low-High) to High Cooperation  

 Starting from the situation of no cooperation A1=0.5 (High for P1) , A2=-0.5 (Low for 

P2), we apply a strategy evolution asking the model to give a High Cooperative scenery 

denoted by A3= 0.90. As shown in Table B.1.14 and Figure B.1.12 the model reaches 

equilibrium giving positive high cooperation results. A1= 0.67, A2= 0.66 and A3= 0.87. The 

meaning of these results is shown in column four of Table B.1.14 more precisely the 

evolutionary mechanism of FCM successfully indicates that the No Cooperation can alter to 

High Cooperation.  

 
Table B.1.14: Strategy 2-From Low-High Cooperation to High Cooperation (A3= 0.90) 

Weights Initial AL Final AL Defuzzification 
W1= 0.56   
W2=-0.92  
W3= 0.59 
W4=-0.31   
W5=-0.69 
W6= 0.27 

C1  AL= 0.50 
C2 AL=-0.50 
C3  AL= 0.50 

C1  AL= 0.67 
C2  AL= 0.66 
C3  AL= 0.87 

C1: Player 1 
High  Cooperation:  
The two prisoners get 1 year each  
C2: Player 2 
High  Cooperation: 
The two prisoners are released  
C3: Result 
The two prisoners get 1 year  

 

 
     Figure B.1.12: Strategy 2 - From No Cooperation to High Cooperation (C3=0.9) 
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B 1.6.3   Strategy 3: From Low-Low Cooperation to High Cooperation   

 Another scenario to verify the applicability of Evolutionary FCM to Game theory is 

the following: Starting from the situation Low-Low cooperation A1=-0.9 and Low 

Cooperation for A2=-0.9, we apply evolutionary strategy and ask the model to give a High 

Cooperative strategy A3= 0.90. As shown in Table B.1.15 and Figure B.1.13 the model 

reaches equilibrium giving positive high cooperation results with A1= 0.9, A2= 0.9 and A3= 

0.9.  

 
Table B.1.15: Strategy 3- From Low-Low Cooperation to High Cooperation (A3= 0.90) 

Weights Initial AL Final AL Defuzzification 
W1=0.90    
W2=0.90  
W3=0.90 
W4=0.90   
W5=0.90 
W6=0.90 

C1 AL=-0.90 
C2 AL=-0.90 
C3 AL=0.90 

C1 AL=0.90 
C2 AL=0.90 
C3 AL=0.90 

C1: Player 1 
High  Cooperation: 
The two prisoners get 1 year each  
C2: Player 2 
High  Cooperation:  
The two prisoners are released  
C3: Result 
The two prisoners get one year  

 

 
Figure B.1.13:  Strategy 3 -From Low-Low Cooperation to High Cooperation (C3=0.90) 
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The main objectives of the analysis have been the followings: (a) To establish enough 

evidence indicating that FCMs can contribute to modelling game theory problems like the 

PD one with the analyst being able to consider a wide selection of strategies using Genetic 

Algorithm methodology integrated to FCM. (b) To extent the argument and provide evidence 

that the FCM methodology is efficient and robust and that it may be seen as a solid 

promising technique for modelling problem of the real-world that present a substantial level 

of uncertainty.  

B.1.7 Application of FCM in a Prisoner’s Dilemma conflict resolution: The 

example of 1963 Cuban missile crisis  

B 1.7.1  Introduction  

 The environment created by a model such as that of the “Prisoners’ Dilemma” has 

been considered particularly suitable to reflect the conditions prevailing due to the absence of 

communication between the parties involved in the Cuban crisis [62]. This is a rather 

common feature in an environment of conflicting interests given that, at least in their crisis 

initial phase, such models exclude the possibility of any form of “rapprochement” between 

the sides involved. It is often the case, however, that a period of increased tensions precedes 

a conflict incident [131]. In such a case there can be two possible reactions from the part of 

the sides involved in the conflict in their effort to evacuate the crisis. First, to prevent the 

outbreak of hostility as it has been the case with the Cuban Missile Crisis during which a 

small number of communication channels were used in an attempt of a peaceful resolution of 

the crisis. The second possibility, however, is that communication channels between the 

parties involved may degrade during the crisis, increasing the likelihood of further escalation 

and violence. In both cases, however, there will definitely be a serious attempt to increase 

communication between the sides involved in the crisis. There is always a possibility, 

however, that the parties involved will ignore all available channels of communication, or 

withhold information, or even use increasingly divisive forms of communication, in which 

case any form of compromise will be eliminated. 
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B 1.7.2  The Cuban missile crisis  

 The Cuban missile crisis was triggered by a Soviet attempt in October 1962 to install 

medium-range ballistic missiles in Cuba, a weapon that would constitute a conventional, or 

even a nuclear threat against the United States. The United States demanded their immediate 

removal and considered two strategies to achieve this end with an equal number of options 

given to the USSR side to respond. In such a case it is convenient to distinguish between 

“sustain” and “compromise” for both sides, the first one revealing an intention to “maintain” 

one’s position, while “compromise” is translated as an intention to withdraw. This distinction 

is quite clear cut to describe the USSR position on the subject. For the USA, though, things 

are different: We need to subdivide the two main categories (sustain and withdraw) as 

follows: The “sustain” option can be broken down to three alternatives, namely, “attack” 

(describing a massive attack), “strike” (meaning a surgical air strike focusing on eliminating 

the missile bases) or “blockade” (which was what actually happened).  The “compromise” 

option, in its turn, can be allowed to include choices like “complete withdrawal”, “petition” 

to the international court and “bargain”. All these alternatives for each of the two options, 

namely the “sustain-deny” and the “compromise-confess” ones  are introduced in the Fuzzy 

Knowledge Base listed in Table B.1.16 and in the analysis in the form of activation levels 

ranging between -1 and 1 depending on the reaction of each side, combined, of course, with 

the appropriate weighting scheme. 

 It is important to point out in this case that the options given by the system in the 

form of a solution to the crisis can often involve the so-called “shadow solutions”. In this 

specific case, for example, most people believe that the US reaction that led to the final 

solution was the “blockade” choice. What has been behind the actual solution, however, was 

a form of a hard “bargain” as the USSR agreed to withdraw the missiles provided that the US 

would remove its own missiles from Turkey. This is in fact a “shadow” solution and yet it 

reveals much more than what meets the eye. It will be very interesting, therefore, to see if the 

FCM used in this case points to just the actual solution, or instead, is in a position to reveal 

the shadow solution as well. 
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Table B.1.16:   Cuban missile Crisis modeled using the PD paradigm 

   USSR- Soviet Union  

  Withdraw (W) Retain (R) 

Blockade (B)  Compromise (3,3)  
 
Soviet victory, U.S. 
defeat (1,4)  

United States of 
America (U.S.A)  

Air strike (A) U.S. victory, Soviet 
defeat  (4,1) Nuclear war (1,1) 

 

 The strategies can be thought of as alternative courses of action that the two sides or 

"players" can choose. They lead to four possible outcomes, which the players are assumed to 

rank as follows: 4=best; 3=next best; 2=next worst; and l=worst. Thus, the higher the 

number, the greater the payoff; it is important to be borne in mind, however, that the payoffs 

are only ordinal, that is, they only indicate an ordering of outcomes from best to worst, and 

by no means denote a cardinal measurement of the benefit incurred. The first number in the 

ordered pairs for each outcome is the payoff to the row player (United States), the second 

number the payoff to the column player (Soviet Union).  

B.1.8 Fuzzy Cognitive Maps Implementation in the Cuban missile crisis  

Following the fuzzification principle of the Prisoner’s Dilemma the three concepts involved 

in the Cuban Missile crisis are indicated in Table B.1.17. C1 corresponds to the USA position 

in this crisis which distinguishes between three options, namely a direct massive military 

attack, a surgical air strike focusing on eliminating the missile bases and a  blockade with the 

threat of direct military attack. C2 refers to the Soviet Union position which was either to 

retain or withdraw the missiles. The third concept is the outcome of the different strategies 

namely a result concept which incorporates the outcome of the different combinations of 

strategies. The fuzzification is indicated in Table B.1.18 
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Table B.1.17: Cuban missile crisis concept description 

C1 USA Position 
C2 Soviet Union Position 
C3 Result 

 

 

 
Figure B.1.14: FCM Diagram for Cuban Missile Crisis 

 

Table B.1.18:  Fuzzy Knowledge base for Cuban Missiles Crisis 

C1 -1 -0.2 Direct massive military attack (Air strike /invention to Cuban (A)) 
C1 -0.4 +0.4 Surgical air strike focusing on eliminating the missile bases 
C1 0.2 1 Blockade with the threat of direct military attack (B) 
C2 -1 -0.2 Retain  (R) 
C2 -0.4 +0.4 Partially Retain the Missile (R) 
C2 0.2 1 Withdraw the Missiles and Proceed to Shadow Agreement (W) 
C3 
 

-1 -0.4 An air strike that partially destroys the missiles is the worst case for 
both. The outcome of (1,1), may lead to a nuclear war 

C3 
 

-0.5 0.1 An air strike that destroys the missiles is the best outcome for USA 
that thwarts the Soviets which is the worst outcome for them (4,1). 

C3 
 

-0.1 0.5 In the face of a U.S. blockade, Soviet maintenance of their missiles 
leads to a Soviet victory which is their best outcome and U.S. 
capitulation is the worst outcome for them (1,4). 

C3 
 

0.4 1 The choice of blockade by the United States and withdrawal by the 
Soviet Union is the compromise solution for both players (3,3). 
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B 1.8.1   Scenario 1: The Pessimistic Case.  Both sides Deny, Possible Nuclear 

War  

The initial AL for C1 and C2 were set to -0.7, meaning that the US will take direct 

measures like an air strike that will partially destroy the missiles and the Soviet Union will 

take action attacking American cities using Cuban bases. The model simulates this scenario 

successfully indicating that (A3=-0.87) an air strike will lead to nuclear war with 

unpredictable consequences for the two countries and their allies (Table B.1.19 and Figure 

B.1.15).  

Table B.1.19: Strategy 1- The Pessimistic Case: Both Players Deny 

Weights Initial AL Final AL Defuzzification 
W1=0.80    
W2=0.70  
W3=0.50 
W4=0.60   
W5=0.70 
W6=0.50 

C1 AL=-0.70 
C2 AL=-0.70 
C3 AL=0.50 

C1 AL= -0.90 
C2 AL=-0.90 
C3 AL=-0.87 

C1: USA 
                   Air strike (A) 
C2: USSR 
                   Maintenance (M)   
C3: Result 
An air strike that partially destroys the 
missiles is mutually the worst case. 
The outcome of, may leads to a 
nuclear war 

 

 
Figure B.1.15:  The Pessimistic Scenario: Both Players Deny 

 



 251

 Table B.1.19 simulates the negative and pessimistic case where no communication 

and no cooperation between the two countries exist. The model successfully demonstrates 

this negative scenario giving as final output of A1=-0.9, A2=0.9 and A3=-0.87. The 

defuzzification process in column four indicates that in case of Air strike from the USA 

provided that the Soviets will maintain the missiles the end result would be a possible nuclear 

world.  

B 1.8.2  Scenario 2: The Optimistic case:  Both sides compromise, End of Crisis     

 This second scenario attempts to simulate the optimistic scenario leading to the 

compromised solution. In this case, the U.S.A strategy was to blockade Cuba (A1= 0.7) 

sending a clear message to USSR that it will attack in case that the missiles do not withdraw. 

On the other hand the USSR after hard negotiations and following a possible secret 

agreement decides to withdraw its missiles (A2= 0.7). The summary results of Table B.1.20 

and Figure B.1.16 indicate that the model simulates this scenario successfully achieving a 

(A3= 0.87) which represents a compromised position.   

 
Table B.1.20: Strategy 2- The Optimistic Scenario: Both Sides Compromise (A3= 0.90) 

Weights Initial AL Final AL Defuzzification 
W1=0.80    
W2=0.70  
W3=0.50 
W4=0.60   
W5=0.70 
W6=0.50 

C1 AL=0.70 
C2 AL=0.70 
C3 AL=0.50 

C1 AL= 0.90 
C2 AL=0.90 
C3 AL=0.87 

C1: USA 
                   Blockade (B) 
C2: USSR 
                   Withdrawal (W) 
C3: Result 
The choice of blockade by the United 
States and withdrawal by the Soviet 
Union remains the compromise for 
both players  
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Figure B.1.16: The Optimistic Scenario. 

B 1.8.3   Scenario 3: The USA Denies and the USSR Withdraws   

 This scenario reflects the USA Joint Chiefs of Staff view of a full-scale attack and 

invasion to Cuba as the only solution (A1= 0.70), insisting that the Soviets would not act to 

stop the US from conquering Cuba (A2=-0.70). This option was eventually turned down by 

President Kennedy.  Supposing, however, that the Soviets would not take any action in this 

case, then the model is shown to describe the scenario successfully leading to A3= -0.20, this 

being the best outcome for the USA. Table B.1.21 simulates the best outcome for USA where 

a successful air strike with Russian to retreats from Cuba.  The defuzzification process in 

column four of the same table indicates that an air strike that destroys the missiles is the best 

outcome for USA that thwarts the Soviets which is the worst outcome for them.  
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Table B.1.21: Strategy 3- The USA Denies and the USSR Withdraws 

Weights Initial AL Final AL Defuzzification 
W1=-0.80   
W2=0.80  
W3=0.50 
W4=0.80   
W5=-0.70 
W6=0.50 

C1 AL=0.70 
C2 AL=-0.70 
C3  AL=0.50 

C1 AL= -0.02 
C2 AL=-0.02 
C3 AL=-0.20 

C1: USA 
                   Air strike (A) 
C2: USSR 
                   Maintenance (M)   
C3: Result 
An air strike that destroys the missiles 
is the best outcome for USA, that 
thwarts the Soviets which is the worst 
outcome for them  

 

 
Figure B.1.17.  The USA Denies and the USSR Withdraws 

 
B.1.9 Assessment of the methodology 

 
  
 The FCM methodology was tested on a game-theory environment, namely the well 

known Prisoner’s Dilemma, showing that such a method can be very reliable in terms of 

implementation and results. The framework proposed in chapter 4, validated with various 

problems related to the settlement of the Cyprus issue was also verified using a general well-

known problem the Prisoner’s dilemma. This dilemma has provoked various challenges to 

game theory and decision making. The methodology was validated using a two concept 
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configuration of indicating that when the two prisoners are not in agreement (one selects 

Deny and the other Confess) the system gives limit cycle. The inability of the methodology 

to implement in full scale this problem led us to propose a three state configuration which 

was successfully implemented proving the efficiency of the methodology. The FCM hybrid 

methodology was also tested with equally promising and reliable results. As a concrete 

example, the well-known Prisoner’s dilemma was examined exactly because this dilemma 

has provoked various problems in decision theory due to its complicacy. The application of 

the PD reasoning to a case study, namely the 1963 missile crisis between USA and USSR, 

highlights the usefulness of the FCMs application in facing intricate crisis environments and 

pointing to the appropriate solutions. The objective of this Appendix was primarily to apply 

the FCM approach to a general and widely known problem, and thus show that our approach 

is generalized in the sense that it is well suited in application in complicated and real world 

problems. The outcome of this implementation was successful and the results verified the 

political actions of that time.  
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