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Summary 
 

In wireless sensor networks (WSNs), nodes have very limited power due to hardware 

constraints. Packet losses and retransmissions resulting from congestion, cost precious energy 

and shorten the lifetime of sensor nodes. This problem motivates the need for congestion 

control mechanisms in WSNs. 

In this research we concentrate on event-based networks. In event-based networks, 

data packets are produced only upon the observation of specific events that satisfy pre-

specified conditions. When a specific condition is satisfied, there may be a huge transmission 

of data packets, which, if not controlled, can easily lead to congestion. Congestion, especially 

in these networks, is highly undesirable, not just because of the obvious power consumption 

but also due to the fact that is able to destroy the networks’ mission. The data packets which 

are produced when an event- based network satisfies the pre- specified condition are critical 

for the success of the applications.  

The target of this Thesis is the development of a specific algorithm which is able to 

transmit these critical packets to the sink, safely, without throttling the data rate. 

Based on the above, a congestion control scheme is proposed. The target of this 

scheme is, during a congestion situation, to maintain the reliability of information flow to the 

sink. In order to maintain the data rate, we try to take advantage of the plethora of sensor 

nodes which are in the network and are not used during a session (i.e increase resource 

provisioning).  

Specifically the algorithm consists of three main parts: (i) Hierarchical Flooding which 

is used initially for the network discovery (ii) Hierarchical Tree Alternative Path (HTAP) 

algorithm in order to deal with the expected congestion situation and to safely forward the data 

packets to sinks (iii) Handling of powerless (dead) nodes. The HTAP (Hierarchical Tree 

Alternative Path) algorithm tries to solve a congestion situation locally “by- passing” the 

congested node through the creation of alternative paths form the source to the sink. 

This scheme has been implemented in MATLAB. Simulations have been conducted to 

evaluate this algorithm. Results show that HTAP algorithm can cope with congestion and 

maintain the reliability of data packets transmission to the sink. In addition it achieves good 

performance in terms of energy dissipation, latency and transmission efficiency. 
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Chapter 1 
 

 
Introduction 

 

 

1.1  Motivation 

1.2  WSNs unique features 

1.3  Sensor Node Details  

1.4 Protocol Stack 

1.5   Thesis objectives 

 

 

 

1.1 Motivation 

 

Wireless sensor network (WSN) is a wireless network consisting of spatially distributed 

autonomous devices using sensors to cooperatively monitor physical or environmental 

conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different 

locations[1][2]. 

Research in WSN was originally motivated for military applications, especially for 

monitoring the battlefield. In recent years, due to the advances in low power units and 

improvements in radio technologies, wireless sensor networks technologies have emerged. 

Applications using sensors are increasing fast. A wide range of them is now deployed in 

civilian areas, like habitat observation [3], [4], health monitoring [5], object tracking [6], [7]. 

 In recent years intense study has been carried out concerning many aspects of WSN 

especially physical layer [8], [9], MAC layer [10], [11], [12], and network layer [13], [14], 
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[15], [16]. Having addressed many of these fundamental problems, nowadays the problem of 

congestion control and avoidance begins to attract a lot of attention [Chapter 2]. 

 Congestion in WSN is expected to occur in many cases due to the high density of sensor 

nodes in a network and the variable data rates that they exhibit. Congestion usually appears in 

two major “patterns”. 

 The first “pattern” is the congestion which appears when a sensor node receives more 

data than it can forward. When this happens, the sensor node must buffer the excess data. A 

node when it receives more data than it can store the excess data must be dropped. Bearing in 

mind that the buffer space of these nodes is limited and the production of data, especially 

when an event is taking place, is high, congestion can happen easily.  

 In Fig.1, three nodes W, Z, Y are transmitting simultaneously packets to node X. Node’s 

X buffer will soon fill up and excess data will be dropped.  

 

Fig. 1. 1 Simultaneous transmission causes buffer overflow 

 In addition the same event can occur if the source node transmits data packets in higher 

rate than the receiving node can transmit. An example is presented in Fig.1.1. In this figure if 

node Z transmits data packets in a higher rate than the ones node X can forward, the buffer of 

node X’s will soon come in a congestion state. Exactly this type of congestion we try to 

counter in this Thesis. 

 The second “pattern” of congestion occurs when a particular area is densely deployed. 

In such a case, when a number of nodes attempt to transmit simultaneously, triggered from a 

specific event, interference is caused at the listening node. One solution for this problem is 

exponential random back-off and virtual carrier sensing [17]. 

In this thesis, we will focus on buffer- based congestion which still remains an open 

problem in WSN.  
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1.2 WSNs unique features 

 

WSNs belong to the family of ad-hoc networks. The main feature of ad-hoc networks is 

the lack of infrastructure and the ability of self configuration. Sensor networks obey to these 

characteristics, but they also have some distinguishing features.  

The most important of them are the following: 

 

a. Application Specific: WSN are targeted to a specific application. Depending on the 

application their characteristics change. For example, their deployment could be different, 

from very dense to very sparse, their communication protocol could be different, even their 

size. It is impossible that there will be a “one-size-fits-all” solution for all the applications. 

 

b. Data rates: Due to their interaction with the environment, WSN exhibit very 

different traffic characteristics compared to other networks. So, for significant amount of time 

their data rate could be very low and in case that a specific event takes place, very high data 

rate may appear.  

 

c. Power: Due to the small size and the low cost, the energy in these nodes is a scarce 

resource. The entire architecture of these networks is based on the power limitations, so as to 

maximize their lifetime for applications, which may be deployed in hazardous environments. 

 

d. Self- Configuration: Most of the sensor networks applications demand the self 

configuration of the sensor nodes to networks. Self configuration is also a requirement which 

arises due to the limitations of power. Limitation in power often leads to nodes failure and the 

network needs to be configured again. 

 

e. Cooperation between nodes: WSNs operate as typical ad- hoc networks as far as 

the transmission of data. So, each node may sense and transmit data by itself or it can act as a 

router, transmitting other nodes’ packets (hop by hop).   
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f. QoS: Quality of service in WSN is application depended. This means that the QoS is 

anticipated by the success of the mission and not out of the number of packets drops etc. 

 

1.3 Sensor Node Details 

 

The main components of sensors consist of a sensing unit, a processing unit, a 

transceiver, and a power unit, as shown in Fig. 1, adapted from [18]. Each component is 

described below. 

 

Fig. 1. 2 Sensor Node’s Hardware Units 

 

a. Sensing Unit  

The main functionality of the sensing unit is to sense or measure physical data from the 

target area. The analog voltage, which is generated by the sensor corresponding to an “event’’, 

is then digitized by an analog-to digital converter (ADC) and then delivered to the processing 

unit for more analysis.  

 

b. Processing Unit 

The processing unit takes a major role in managing collaboration with other sensors to 

achieve the predefined tasks. There are currently several families of this unit including 

microcontrollers, microprocessors, and field-programmable gate arrays (FPGAs).  

The Non-volatile memory and interfaces such as ADCs can be integrated onto a single 

integrated circuit [19] [20]. The processing unit needs storage for tasking and to minimize the 

size of transmitted messages by local processing and data aggregation [21]. Flash memory is 

widely used due to its low cost and storage capacity. 

 

 

4 



c.  Transceiver  

There are three deploying communication schemes in sensors, including optical 

communication (laser), infrared, and radiofrequency (RF). RF is the easiest to use, but requires 

antenna.   

 

d. Power Unit 

Power consumption is a major weakness (problem) of sensor networks. Batteries used 

in sensors can be categorized into two groups; rechargeable and non-rechargeable. Often, in 

harsh environments, it is impossible to recharge or change a battery. 

 

 
Fig. 1.3 Sensor nodes 

 

1.4 Protocol Stack 

 

The sensor networks follow the general rules of other networks concerning their 

protocol stack with the following layers: Application, Transport, Network, Data Link and 

Physical. Though, due to specific characteristics of these networks especially power 

constraints or specific application tasks, some of these layers could merge in one. Moreover, 

some of the functionalities of each layer, as it is explained below, can be very different than 

classical TCP/IP protocol stack.  Following, we present some of the main functionalities of 

each layer in a typical sensor network. 

 

a. Physical Layer  
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Physical Layer deals with frequency selection, carrier frequency generation, signal 

detection, modulation and encryption. Its main priority is energy minimization and secondary 

tasks, like other wireless networks.  

 

b. Data Link Layer  

Data Link Layer deals with the multiplexing of data streams, data frame detection, 

medium access and error control. Due to power constraints, WSNs implement specific MAC 

protocols that take in mind the power conservation and data- centric routing. The design of 

MAC protocols embodies the achievement of at least two targets. The first target is the 

creation of a specific network infrastructure that is able to self- organize and, also, to be able 

to establish connections among thousand of nodes. The second target is the fair recourse 

allocation between all nodes. 

Unfortunately, existing MAC protocols fail to meet these targets due to the fact that 

power conservation is a secondary concern in their development. These MAC protocols are 

not designed to provide self- organization of the network during the initial deployment or  in 

case of nodes failure, due to power limitations. Two efforts for MAC protocols that meet these 

requirements are the Sensor- MAC (SMAC) [22] and CSMA MAC [22]. 

 

c. Network Layer 

Network layer design is based on the power considerations of the network. WSNs 

embody attributed based addressing and location awareness. Network layer, like in traditional 

networks, is responsible for deciding which node to talk to.  

The simplest and mostly spread network protocol is flooding. With flooding, each node 

broadcast its data to all the other nodes in network until these data reach the destination.  

The main advantage of flooding is simplicity.  It requires no costly topology 

maintenance or complex route discovery.  The shortcomings, however, are substantial. The 

first problem is that of implosion. Implosion occurs when two nodes (A and B) share multiple 

(n) neighbours. Node A will broadcast data to all of these neighbours. Node B will then 

receive a copy of the data from each of them. The second issue is that of overlapping, when 

two nodes share the same sensing region. If a stimulus occurs within this overlap, both nodes 

will report it. The last and most crucial problem is resource blindness. Flooding does not take 

into account available energy resources.  
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A step further from flooding is gossiping. In gossiping, when a node receives data, it 

randomly chooses a neighbour and sends the data to it. Gossiping avoids the problem of 

implosion, but does not address the other two concerns (overlap, recourse blindness) and 

contributes to the latency of the network.  

 

d. Transport Layer 

Transport layer is mainly used when there is need for communication with a network 

outside the WSN. This is usually needed from the sink to the user. This can become a problem 

due to the fact WSN addressing is not based on global addressing and attribute-based naming 

is used to indicate the destinations of DATA packets.  

 

e. Application Layer 

One example is Sensor Management Protocol, SMP [23] at the application layer, 

which is used to make the hardware and software of lower layers transparent to the Sensor 

Network Management Applications. The system administrators and programmers interact with 

the Sensor Network using SMP. Again, the lack of global identification and infrastructure-less 

nature of sensor networks must be taken into consideration. SMP provides the rules to enable 

interaction between applications and sensor networks for the followings:  

 

• Data aggregation, attribute-based naming, and clustering  

• Exchanging of data related to the location finding algorithms  

• Time synchronization  

• Moving sensor nodes  

• Turning nodes on or off  

• Querying WSN configuration status, reconfiguring the WSN 

• Authentication, key distribution, and security  

 

1.5 Thesis objectives 

 

 In this Thesis, congestion in a special category of WSNs, the event- based networks is 

investigated. The distinguishing feature of event- based networks is the production and 

transmission of a big number of data packets to the sinks when the network comes in a crisis 
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state. Crisis state is the network’s state, when a specific event satisfies a pre- specified 

condition.  

 A typical example is the case of fire in a forest. Sensors are programmed to send data 

packets when the temperature in the forest exceeds a pre-specified value. In the case of a fire, 

sensor nodes which are neat to the event, sense the fire and begin transmitting a large amount 

of data packets simultaneously. The target of this network is the continuous provision to sinks 

(i.e. local fire stations) with data packets, in order to keep them updated, for the fire’s 

frontline. If the high load of data packets left unattended (no congestion control) in this case 

the network becomes congested and the packets will not be forwarded to sinks. The result will 

be the failure of the network’s mission. 

Taking these input as granted, it is obvious that there is a need for the development of an 

algorithm which is able to forward almost all data packets to the sinks, safely and reliably. 

Due to the high importance of these packets and the strict time limitations, reduction of data 

rate is prohibited (i.e. in a forest which is getting burned, almost every data packet provides 

new information for the spreading of fire).  

In order to achieve this target, we take advantage of a special characteristic of these 

networks, namely the plethora of unused nodes. Using these nodes we increase the recourse 

provisioning in the paths, using the power and buffers of nodes which in this specific moment 

are in dormant state. The use of these nodes creates alternative paths to the sinks, alleviating 

the highly congested areas.   
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Chapter 2 
 

 

Related Work 

 

 

2.1  Proposals and Implementations aiming to solve the Congestion Problem 

2.2  Comments on Related Work 

 

 
 

2.1  Proposals and Implementations aiming to Solve Congestion Problem 

 

   In this chapter we present a number of publications which are focusing on Congestion 

Control in WSNs either directly or indirectly. Publication which are focusing directly in 

Congestion, are presented in more detail. 

 

Publication Directly focusing on Congestion Control in WSNs 

 

 a. CODA (COngestion Detection and Avoidance) [24] 

 

Comprises of three mechanisms: 

• CODA congestion indicators 

• Open-loop, hop-by-hop backpressure 

• Closed-loop, multi-source regulation 

 

 CODA congestion indicators:  Uses a combination of the present and past channel 

loading conditions and the current buffer occupancy, in order to accurately detect congestion 

at each receiver. CODA uses a technique called channel sampling (to obtain current channel 
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utilization) that activates local channel monitoring at the appropriate time to minimize cost 

while forming an accurate estimate.  

The channel sampling algorithm is triggered when the node’s packet queue becomes 

non empty. This is the time when nodes want to start packet transmission and when the 

question of whether the channel is congested or not, becomes important. The time after 

starting the sampling period is divided in sampling epochs, in which one of the channels is 

periodically sampled, say N times.  When, in epoch n, a number of M out of N samples 

indicate a busy channel, this epoch’s utilization = M/N. Then, the estimate of k consecutive 

epochs must be combined. Once congestion is detected, nodes notify their upstream neighbors 

via a backpressure mechanism. 

 

Open-loop, hop-by-hop backpressure: In CODA, a node broadcasts backpressure 

messages for the period it detects congestion. Backpressure signals are propagated upstream to 

the source. In the case of impulse data events in dense networks, it is very likely that 

backpressure will propagate directly to the sources. Nodes that receive backpressure signals 

can reduce their sending rates or drop packets based on the local congestion policy (e.g., 

packet drop, AIMD, etc.). When an upstream node (toward the source) receives a 

backpressure message it decides whether or not to further propagate the backpressure 

upstream, based on its own local network conditions.  

It can also serve as an on demand “clear to send" signal, so that all other neighbors 

except one sender (which could be chosen randomly, or a node can assign more chances to 

more desirable senders) can be silenced at least for a single packet transmission time.  

 

Closed-loop, multi-source regulation: A sink node might receive data from multiple 

sources. This may create a persistent hot spot close to the sink or in other regions of the 

network. In this situation, hop – by- hop backpressure mechanism is not efficient.  

  In CODA, closed loop regulation operates over a slower time scale and is capable of 

asserting congestion control over multiple sources from a single sink in the event of persistent 

congestion.  When the source event rate is less than some fraction of the maximum theoretical 

throughput of the channel, the source regulates itself. When this value (threshold) is exceeded, 

a source is more likely to contribute to congestion and, therefore, closed-loop congestion 

control is triggered.  
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The source enters sink regulation only if this threshold is exceeded. At this point a 

source requires constant, slow time-scale feedback (e.g., ACK) from the sink to maintain its 

rate. The reception of ACKs at sources serves as a self-clocking mechanism allowing sources 

to maintain their current event rates. In contrast, failure to receive ACKs forces a source to 

reduce its own rate. The sources stop to request further regulation as soon as their generation 

rate drops below the threshold value. 

   

b. Congestion Control and Fairness for Many-to-One Routing [25] 

 

This proposal for congestion control assumes a tree routing structure from all data 

sources to a sink. It is a distributed and scalable algorithm (each sensor mote requires state 

proportional to the number of its neighbors), implemented in sensor nodes that eliminates 

congestion within a sensor network, and ensures the fair delivery of packets to a central node 

(sink).  

This algorithm exists in the transport layer of the traditional network stack model, and 

is designed to work with any MAC protocol in the data-link layer with minor modifications.  

Since in general we have many sensors transmitting data to the sink, the scenario is 

about many-to-one multi-hop routing (can easily be extended to unicast or many-to-many 

routing). Each sensor receives and forwards packets from its upstream neighbors; each 

upstream neighbor is the root of an upstream sub-tree. The sensor learns the number of data 

sources in each of those upstream sub-trees, measures its own downstream forwarding rate, 

computes per-source fair rate, which is propagated upstream such that the data sources do not 

send packets beyond the rate. 

 

Fig. 2. 1 CODA routing examples 
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There are two alternative scenarios in which this algorithm can be applied to: 

• All nodes are generating data and routing them to the sink 

• Most nodes in the network are silent, only the nodes that detect an event generate 

data. 

 Such routing structures often result in the sensors closer to the base station 

experiencing congestion, which inevitably cause packets originating from sensors further 

away from the base station to have a higher probability of being dropped.  

The algorithm deals with two types of congestion: 

• Reduce Type A: a lot of nodes transmit simultaneously producing interference 

(reduce throughput of each other)] via phase shifting (including jitters in DLL or Application 

Layer). 

• Reduce Type B: [buffer within a particular node overflows] via buffer monitoring.  

The basic concept for controlling congestion consists of the following steps that 

repeatedly run at each sensor node: 

• Measure the average rate r at which packets can be sent to from this mote 

• Divide the rate r among the number of children motes downstream n, to give the 

per-node data packet generation rate rdata = r/n, adjust the rate if queues are overflowing or 

about to overflow, 

• Compare the rate rdata with the rate rdata,parent sent from the parent, use and propagate 

the smaller rate downstream. 

The implementation of this solution requires: 

o Obtaining the number of downstream nodes n,  

o Measurement of the average rate r, 

o Obtaining the per-node rate disseminated by the parent, and  

o Propagation of rate downstream.  
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c.  Mitigating Congestion Control in WSN [26] 

 

In this paper, a technique called fusion is suggested. Fusion combines three 

congestion control techniques that operate at different layers.   These techniques are working 

together in order to provide the congestion control in WSN.  

The three techniques are the following: 

• Hop-by-hop flow control 

• Source rate limiting scheme 

• Prioritized MAC 

 

Hop-by-hop flow control: Each sensor sets a congestion bit in the header of every 

transmitted packet. Using the broadcast characteristic of the wireless medium, every packet 

provides congestion feedback to all nodes in a radio neighborhood with every transmission. 

So, there is no need for explicit control messages, which waste a large portion of the, already 

limited, bandwidth.  

 Hop-by-hop flow control consists of two components: congestion detection and 

congestion mitigation. Congestion detection is a way to detect congestion, based on 

monitoring sensor’s queue size. If the sensor’s queue space falls below a specified limit, a 

congestion bit is set. Otherwise the congestion bit is removed. Congestion mitigation is a way 

to control the nodes’ transmissions in order to prevent queues at their next- hop node from 

overflowing.  

When a sensor overhears to a packet with the congestion bit set, it stops forwarding 

data. Otherwise, the congestion would grow bigger, and eventually the whole network will 

collapse. 

 

Rate Limiting: It is a way of limiting the sending rate of a sensor.  Each sensor listens 

to the traffic its parent forwards to estimate N, the total number of unique sources routing 

through the parent. A token bucket scheme is used to regulate each sensor's send rate. A sensor 

accumulates each token every time it hears its parent forward N packets, up to a maximum 

number of tokens. The sensor is allowed to send, only when its token count is above zero and 

each send costs one token.  
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Prioritized MAC:  Mac layer provides assistance to sensors in order to react to 

congestion fast enough. A standard CSMA Mac layer is used, with the modification that 

implements a prioritization scheme. According to this scheme, congested nodes have higher 

priority compared to the other nodes. Specifically, if a sensor is congested, its back-off 

window is one-fourth of the size of a non-congested sensor’s back off window, allowing 

queues to drain and increasing the likelihood congestion control in- formation will propagate 

throughout a sensor's neighborhood. 

 

 

Methods Indirectly referring to Congestion Control in WSNs 

 

d. Event-To-Sink Reliable Transport (ESRT) Protocol [27] 

 

Wireless sensor networks (WSN) are event based systems that rely on the collective 

effort of several sensor nodes.  

 

Fig. 2. 2 Typical sensor network topology with event and sink. 

 

The event-to-sink reliable transport (ESRT) protocol is a transport solution. It works 

by carefully adjusting the sensor’s reporting rate to achieve two goals: 

• A sufficient number of packets is received 

• Not many more packets than needed are received to avoid congestion and save 

energy. 

The algorithms of ESRT mainly run on the sink, with minimal functionality required at 

resource constrained sensor nodes. ESRT protocol operation is determined by the current 

network state based on the reliability achieved and congestion condition in the network.  If the 

event-to-sink reliability is lower than required, ESRT adjusts the reporting frequency of source 

nodes aggressively in order to reach the target reliability level as soon as possible.  
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If the reliability is higher than required, then ESRT reduces the reporting frequency 

conservatively in order to conserve energy while still maintaining reliability. This self-

configuring nature of ESRT makes it robust to random, dynamic topology in WSN.  

 

Fig. 2. 3 The five characteristics regions in the normalized reliability, n, vs reporting frequency, f, behavior 

 

In a decision period, this protocol counts the number of packets ri received during 

round i and this value is compared with the desired number R of packets that is needed for 

sufficient information fidelity.  The ratio ni = ri /R is a metric of reliability. The goal of the 

protocol is to keep ni in the interval [ 1-ε , 1+ε]. Protocol via sink controls the sensor’s 

reporting frequency f. The reporting frequency f i+1   to be used for round i+1 is computed by 

the sink at the end of the round i and is broadcasted (high power sink) to all sensors, which 

immediately adopt the new frequency.  

Protocol operation is divided in five separate states, where f reporting is accordingly 

computed. Summary of the ESRT protocol operation is presented on the table below. 

Network State Description ESRT Action 

(NC , LR) No congestion, Low Reliability Multiplicatively increase f 

Achieve required reliability as soon as 

possible 

(NC , HR) No congestion, High  Reliability Decrease f  conservatively 

Cautiously reduce energy consumption so as 

not compromise on reliability 
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(C , HR) Congestion , High Reliability Decrease f  aggressively  to state(NC/HR)to 

relieve congestion 

Then follow action in (NC, HR) 

 

(C , LR) 

 

Congestion, Low/Equal Reliability 

 

Decrease f  exponentially 

Relieve congestion as soon as possible 

OOR Optimal Operating Region f remains unchanged 

Fig 2. 4 Summary of ESRT protocol operation  

 

e. RAP: A Real-Time Communication Architecture for Large- Scale Wireless 

Sensor Network. [28] 

 

 RAP supports real-time communication in large-scale sensor networks. The network 

layer of RAP ensures fairness between nodes and improves the ratio of packets that make their 

latency deadlines. To accomplish this task, RAP provides support for deadline- and distance- 

aware packet scheduling.  

Packets originating from deeper in the network sources, have higher priority than 

packets originating from close to the sink sources. While RAP focuses on the network's ability 

to meet deadlines, our work focuses on managing overload and congestion in a sensor network 

The architecture of RAP is shown in Fig 2.5 

 

Fig. 2. 5 The RAP communication architecture 

Sensing and control applications interact with RAP through a set of Query/Event 

Service APIs. A Query/Event Service layer submits the query or event registration to an area. 

The Query/Event Service at the sensors in that area then (periodically or a periodically) sends 
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query results back to the base station. If an event is registered, the query is started only if the 

registered event happens. 

The sensor-based communication is supported by a network stack, including a 

transport-layer Location- Addressed Protocol (LAP), a Geographic Forwarding (GF) routing 

protocol, a Velocity Monotonic (packet) Scheduling (VMS) layer, and a prioritized MAC. 

This network stack embodies a set of efficient and localized algorithms to reduce the end-to-

end deadline miss ratio of sensor-base communication. This network stack is the focus of this 

paper. 

The coordination service is responsible for dynamic group management and data 

aggregation among sensors (e.g., multiple sensors coordinate to determine the location of a 

target through triangulation).  

 

f. Directed Diffusion [14] 

 

Directed diffusion is data centric (design philosophy than a protocol) because all 

communication is for named data. In a directed diffusion-based network all nodes are 

application-aware. This enables diffusion to achieve energy savings by empirically selecting 

good paths (small delay) by caching and processing data in-network (e.g., data aggregation). 

Directed diffusion has four basic elements: interests, data messages, gradients, and 

reinforcements. An interest message is a query from a sink node to the network, which 

indicates what a user wants. It carries a description of a sensing task that is supported by a 

sensor network.  

In sensor networks data is the collected or processed information of an event (e.g. 

physical phenomenon), is named (addressed) using attribute-value pairs and a sensing task is 

diffused throughout the sensor network as an interest for named data. This dissemination sets 

up gradients within the network designed to “draw” events (i.e., data matching the interest). 

Specifically, a gradient is direction state created in each node that receives an interest. 

This direction is set toward the neighboring node from which the interest was received. Events 

start flowing towards the sinks of interests along multiple gradient paths. Finally, the sensor 

network reinforces (via the sink) one, or a small number of these paths.  
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Fig. 2. 6 A simplified schematic for directed diffusion 

 

Fig.2.6 shows interests propagation, initial gradients set –up and, finally, data delivery 

from source to destination. 

Directed Diffusion could be responsive to congestion. Although it is not specifically 

designed for congestion control it may adapt for this task (to some degree): 

• By reinforcing paths with small delays 

• It can use in-network data reduction techniques such as aggressive aggregation 

when congestion is detected. 

 

 

2.2  Comments on Related Work 

  

 The methods listed below are directly focusing on Congestion Handling problems   

• CODA (COngestion Detection and Avoidance) 

• Congestion Control and Fairness for Many-to-One Routing 

• Mitigating Congestion Control In WSN 

 

The following methods, although their main purpose is not Congestion Handling they 

deal with it in some extend 

• Directed Diffusion  

•  RAP: A Real-Time Communication Architecture for Large- Scale Wireless Sensor 

Network 

• Event-To-Sink Reliable Transport (ESRT) Protocol 

 

[24] CODA: seems to be a very well- designed protocol for congestion detection 

and handling. It consists of two congestion control mechanisms that, in isolation, seem to be 
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insufficient. Nevertheless, when cooperating, they complement each other with very 

interesting results. Channel sampling used for congestion detection maintains low or no cost 

operations during no congestion conditions and it also seems to work well enough when 

congestion occurs. Rate adjustment is done for controlling congestion. 

This feature (rate control) renders CODA inadequate for the nature of networks 

that we examine in our Thesis. Rate Control in not acceptable for the reasons that are 

explained in section 1.5 and Chapter 4. 

 

   [25] Congestion Control and Fairness for Many-to-One Routing: it is a distributed 

algorithm that is scalable and robust enough in nodes failures. and is also seems to be fair to 

all data sources on the network. On the other hand, it uses sub-tree size computations and in 

order to work well, it needs some modifications on the MAC Layer Protocols to be able to 

accept packets from the parent nodes. It is also strictly depended on the sub-tree size 

information and network topology (childs - parent). 

    This approach has many similarities with the algorithm that we suggest in this 

Thesis. Nodes are “placed” in a hierarchical tree from the source to the sink and they report 

data only when a specific event is taking place. The main contrast with our algorithm is that in 

the context of this paper congestion is also attempted to alleviated, with data rate reduction 

techniques. 

[26] The Fussion Technique, which is suggested, seems to be effective but in no 

applicable to the nature of networks that we deal with in this Thesis.  

Although, the Hop- by- Hop flow control for congestion detection and Prioritized 

MAC can easily become part of our algorithm, Rate limiting, which is used for congestion 

alleviation, is not accepted. 

[27] In ESRT, most of the protocol complexity is into the sink, and in addition the 

sink doesn’t need to know the global network properties like the number of nodes. The sensor 

nodes just need to be able to receive the sink’s commands to set new reporting frequencies. 

The protocol seems also to have some disadvantages: it only takes into account the reporting 

rate, and, on the other hand it is assumed that when sink broadcasts it is listened everywhere, 

which is often no true. Furthermore it uses a common regulation rate (for worst case hotspot 

area) for all sources in the network and this seems to be very conservative for sources with no 

congestion. Finally it doesn’t quickly response when congestion is transient, because feedback 

latency is large. 
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ESRT can in no way apply to the specific event networks that we deal with in our 

Thesis. Its whole philosophy is very different. The main reason is the fact that the whole 

complexity is in the sink. According to our study (Chapter 4) we believe that congestion 

problem in WSN is easier to and can be more efficiently solved locally and not globally. 

[28] RAP is a suggested Communication Architecture for Sensor Networks.  The 

congestion control is achieved by minimizing  a packet deadline miss ratio by providing 

general service APIs to an application service, and Velocity Monotonic Scheduling (VMS) to 

priorities packet urgency based on both deadline and distance-aware. VMS also solves a 

fairness problem, as the more distant packets tend to have higher priority than the closer ones. 

Each packet priority is based on a static or dynamic requested velocity. It in not clear yet 

whether this technique is scalable for all networks.  

This paper does not focus on the Congestion Control Problem and, of course, it is 

infeasible to apply it in our case. Nevertheless as a future work, the adoption of its fairness 

technique in our algorithm can be studied. 

 [14] Directed Diffusion is not specifically designed for congestion control, but it 

may adapt to this to some degree, using reinforced paths with a small delay (therefore 

choosing paths with least traffic). However this strategy will penalize distant data sources 

from the sink. Furthermore, because it uses sink –initiated congestion control, it reacts much 

slower than the other localized methods 

 Directed Diffusion can not apply to event- based networks due to the sink- initiated 

data requests. 
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Chapter 3 
 

 

Congestion  
 

 

3.1 Congestion in Wired Networks 

3.2 Congestion in WSN 

3.3 Study of Congestion through simulation in OPNET 

 

 

 
3.1 Congestion in Wired Networks 

 

 Network congestion occurs when offered traffic load exceeds the available capacity at 

any point in a network. Basically, in wired networks, the main issue is the effective and fair 

allocation of resources among the competing nodes. The resources are the bandwidth of the 

links and the buffers on the routers where the packets are forwarded. 

 The packets are placed in a queue in the routers, waiting their turn in order to get 

transmitted. When too many packets are expecting to use the same link, the routers queue 

overflows and packets have to be dropped. When such drops are frequently happening, the 

network is congested. 

 In wired networks congestion can be detected with the following ways: 

a. By monitoring Queue length: If the routers’ buffers begins to grow up and the 

transmission rate is lower that the packets’ arrival rate, this is an indication that congestion is 

going to happen 

b. By monitoring packet losses: If the routers begin to drop packets due to overflow, 

this is also an indication of congestion 
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c. Indirectly, by monitoring the trend of throughput or response time (Fig 3.1): 

As the load in the network increases, the throughput of the network increases linearly up 

to a “knee” point. Then, as the load increases more than the knee point, the throughput 

reduces.  

 

 

Fig. 3. 1 Network Performance versus load 

Congestion control in wired networks is usually achieved using end-to-end and 

network-layer mechanisms acting in concert. However, this approach does not solve the 

problem in wireless networks, because concurrent radio transmissions on different ``links'' 

interact with and affect each other, and, because radio channel quality shows high variability 

over multiple time-scales 

3.2 Congestion in WSN 

 

As stated in Chapter 1 a wireless sensor network is constrained by computation ability, 

memory space and energy supply. Congestion is an event which adds to energy waste in these 

networks, causes even, network collapse, when it takes place on a large scale. 

Specifically when a packet is dropped, the energy spent by upstream sensors on the 

packet is wasted. The further the packet has traveled, the more the waste. When the buffer at a 

sensor x is already full and if the upstream neighbors attempt to send data to x, their efforts 
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(and energy) are deemed to be wasted and, worse yet, counter-productive. For instance, their 

RTS packets may collide with nearby transmissions, causing throughput reduction of other 

sensors. 

 Thus measures must be taken in order to avoid or control congestion when this happens 

in a network. 

Generally, congestion may appear in two patterns (types): 

Pattern A: In a particular area, densely deployed nodes attempt to transmit 

simultaneously (triggered from a specific event). This causes interference at the listening node 

which is in range of the transmitting node. 

Pattern B: In a particular node, the buffer that holds packets to be transmitted overflows 

due to continuous packet transmission from other nodes. 

 

a. Mechanisms for Congestion Detection and handling 

 

There are three mechanisms for congestion handling 

• Congestion detection, which judges if congestion occurs, using two indicators: 

buffer occupancy and channel utilization.  

• Congestion avoidance, which studies how to prevent congestion (usually 

controlling rate either locally or end-to-end) from happening  

• Congestion alleviation, which reacts to congestion in order to eliminate it  

  

 Generally, congestion control mechanisms are based on three “techniques” 

 

• End- to- End 

• Path based 

• Hop-by-Hop 

 

End -to- End: In this approach, a congestion control mechanism is embedded in the 

transport layer protocol [29]. The receiver can figure out how many packets and which have 

arrived, by checking their sequence number, as indicated by ACK packets. Additionally, 

mechanisms like window- size or feedback information can be used to inform the sender for 

the possibility of congestion in a certain path. 
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The End- to- End approach is difficult to apply in WSN due to the fact that the path from 

the sender to the receiver is usually very long, and mostly many to one (many sensors to a 

sink). Furthermore the numbers of data (event) packets that are generated when an event is 

taking place are huge. This fact renders impossible the transmission of acknowledgement 

packets for all the data packets. To cope with this problem new efforts are taking place for 

end- to- end reliable event transfer. 

 

Path based: This approach tries to improve some of the drawbacks of the end- to end 

solution. The main difference is the faster recognition of congestion. When congestion is 

detected, the source is informed backwards by hop- by- hop signals. 

This solution can work, if congestion is detected near the source. If congestion is 

detected near the sink, which is the most usual event, then the same problems as in the end- to- 

end approach appliy. 

 

 Hop- By- Hop: This approach employs hop- by- hop detection and prevention. The 

difference, compared to the other approaches, is that there is no need for a long backward path 

to sender. The problem of congestion is solved locally, through communication between the 

neighbor nodes. This hop-by-hop mechanism does not focus on a particular transmission. It 

focuses on the detection of congestion and the transport of corresponding information to all 

neighbors. There, appropriate countermeasures must be taken in order to prevent any further 

congestion. Actions can vary from the random discard of new packets to further signaling of 

the congestion situation towards the next neighboring nodes.  

 

3.3  Study of Congestion in sensor networks through simulation in OPNET 

 

 Ιn order to investigate the behaviour of a sensor network during congestion we created 

specific scenarios using the OPNET simulation tool. For our work, we used MANET Station 

Advanced (Fig 3.2), accordingly customizing it, to emulate a real sensor node. 
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Fig. 3. 2 Manet station advanced in OPNET 

 

 

Specifically the followings parameters were used: 

 

I. Network consists of sensor  nodes in a square area 500 x 500m having the attributes 

listed below: 

• Buffer size 1024 B 

• Channel capacity : 2Mbps 

• Packet size : 512 B 

• Max distance 50m (Rx Group) 

• Tx power : 1mw 

• Event generation (120 s  -  end of simulation) using bursty (geometric distribution 

0.8) 

 

In Fig 3.3, Rx Group is customized for all transceivers to have maximum distance radio 

coverage 50m. 
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Fig. 3. 3 Rx Group attributes 

 

II. DSR routing protocol   

 

The Dynamic Source Routing (DSR) [30] protocol has been used for our simulations, 

because it is used in the domains of sensor networks. 

DSR is a simple, but efficient, routing protocol specifically designed for use in multi-

hop wireless ad hoc networks of mobile nodes. By using DSR, the network is completely self-

organizing and self-configuring, and doesn’t require any existing network infrastructure or 

administration. Network nodes cooperate to forward packets to each other to allow 

communication over multiple “hops” between nodes that are not directly within wireless 

transmission range of one another. As nodes in the network move about or join or leave the 

network, and as wireless transmission conditions (such as sources of interference change), 

routing is automatically configured and maintained by the DSR routing protocol. Since the 

number or sequence of intermediate hops needed to reach any destination may change at any 

time (due to battery, interference, etc), the resulting network topology may be quite rich and 

rapidly changing. 
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The DSR protocol allows nodes to dynamically discover a source route across multiple 

network hops to any destination in the ad hoc network. Each data packet in the network carries 

the complete in its header, ordered list of nodes through which the packet must pass, allowing 

packet routing to be trivially loop-free. 

 

a. Scenarios 

 

In this section, through simulations that we conduct, we will demonstrate the ways that 

congestion appears in WSN  

The approach used in the scenarios consists of one sink (node 66) and several sensors. 

Scenario 1 : The topology presented in Fig 3.4 has been created. 

 

 

Fig. 3. 4 Topology for Scenario 1 

 

On the above scenario, we tried to simulate a real Manet network, in order to 

investigate its behaviour (specifically packets drops) with the selected topology and to 

compare it with a sensor network (scenario 2). We deliberately create this topology, because 

each node is able to transmit data only to the node next to it. So, we will be able to understand 

exactly the point and reason of congestion (if appears) in the network  

For this scenario, the default node’s buffer size is 16 MB. 
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Scenario 2: The same topology, as is scenario 1, has been used, but in this scenario Manet 

nodes have been customized accordingly to emulate sensor nodes according to the changes 

stated in the beginning of section 3.3. 

In this topology, every node is forced to route its packets through its neighbour node. 

This happens because every node in its radio range has only one node on the direction to the 

sink. (Fig 3.5) 

 

Fig. 3. 5 Topology for Scenario 2 

Results 

Comparing the results of Scenario 1 and 2 concerning packet drops the graph in Fig 3.6 is 

created. 

 

Fig. 3. 6 Packets/ sec dropped for Scenario 1 and 2. 
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It is clear that in scenario 2 (sensors network) congestion occurs and results in packets 

drop. The change on the behaviour between scenarios 1, 2 happens mainly due to the large 

difference on nodes buffer size (Manet 16 MB, Sensors 1KB). 

 

Scenario 2 - Step 2: In this step we concentrated on congestion Pattern B. 

In this topology   five successive sensors (left to right) generate traffic to the sink and the other 

two nodes are sleep nodes. 

In Figure 3.7 the specific nodes which drop packets, are presented. 

 

 

Fig. 3. 7 Results for Scenario 2- Step 2 

As it is shown in Fig 3.7, node 6 and node 15 (in the middle of the network) are 

receiving packets in a higher rate that they can transmit and store. Eventually the excess 

packets are dropped; as it is shown in sub graphs.  This exactly situation is the one that we 

are going to handle with our proposed algorithm in Chapter 4. Nodes are becoming 

congested due to the fact that their buffer overflows. 

 

Scenario 3: In this scenario, we tried to represent Pattern A congestion, that is when a 

hotspot occurs due to interference that derives from simultaneous transmissions. 
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Fig. 3. 8 Topology for Scenario 3 

 

In the topology of Fig 3.9, nodes 30, 6, 8, 18, 15 have packets drops due to this kind of 

congestion. In this situation, the above mentioned nodes generate traffic with the remaining 

nodes being in sleep mode. 

 

Fig. 3. 9 Packets/ sec dropped for Scenario 3 

Scenario 3- Step 2: We created 4 different instances (one node generate traffic, then two 

nodes, three nodes, four nodes) of the scenario. 
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The results are depicted in Fig 3.10 

 

Fig. 3. 10 Results for Scenario 3-Step 2 

 

It is clear that each time a new traffic generator node is added, packets drops happen more 

frequently. This results from the fact that interference increases.  

By exporting data from Fig. 3.10 on a MS Excel Spreadsheet we present how the 

hotspot interference contributes in congestion occurrence (packets drops). 

In Fig. 3.11 it is shown that when node 6 is the only sensor node that transmits there 

are no packet drops. When nodes 2 and 30 transmit simultaneously, then less than 2 packets 

are dropped during the simulation, and when nodes 6, 30, 8 are simultaneously transmitting, 

more than 6 packets are dropped. The situation gets worse when all four nodes are 

transmitting.  
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Fig. 3. 11 Packets Drops’ per Scenario 

 It’s obvious that the more simultaneous transmissions occur, the bigger the congestion 

problem –packet drops and, inevitably, the more energy is consumed. 

 

Scenario 4: In this scenario we tried to simulate a situation where the traffic to the sink is 

forwarded through one node (bottleneck). 

 

Fig. 3. 12 Topology for Scenario 4 

 

 

Results are depicted in Fig. 3.13 
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Fig. 3. 13 Packets/ sec dropped for node 15 

 

Most packet drops occur in node 15, which is the bottlenecked node. Some drops also 

occur on node 30 due to interference. 

 

 

Fig. 3. 14 Packets/ sec dropped for node 30 
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Chapter 4 
 

 

Proposed Congestion Control Scheme 

 

 

4.1    General 

4.2    Scheme Design 

4.3 Algorithms Description 

4.4 Powerless (dead) nodes 

 

 

In this chapter we present a scalable and distributed framework for minimizing 

congestion and assuring reliable data transmissions in event based networks.  Event based 

networks is a particular category of sensor networks. In these networks, reports are produced 

only upon the observation of a specific event. This event should satisfy a pre-specified 

condition. 

A typical example of these networks, as we also stated in section 1.5, is the increase of 

temperature in a forest. Sensor nodes should immediately begin the transmission of data 

packets to the sinks (sinks could be the area’s neighbor fire stations). 

Especially in this crisis state, the sudden traffic increase may lead to congestion in the 

network. When congestion occurs, the network will enter into an unstable state and packets 

will be randomly dropped. This is particularly undesirable, because the data generated during 

the crisis state are of great importance, often critical, to the applications [31].  

In Chapter 4 we propose an algorithm which is able to control a congestion 

situation and which is efficient enough to safely transmit almost all these valuable data to 

the sinks. It becomes clear that this algorithm must be able to transmit almost all the data 

packets, without throttling the source nodes’ data rate.  Throttling the data rate could be 
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proved fatal for these networks, due to the fact that each data packet provides the network with 

updated information concerning the monitored event (i.e spreading of fire in a forest). 

 

4.1 General 
 

In event-based environments there is a need for controlling the sudden traffic increase. 

Due to the nature of these environments, sudden traffic increase occurs when the monitoring 

event is happening. This high generation of data packets is usually uncontrolled and often 

leads to congestion.  

 When congestion occurs, the network may enter into an unstable state. In this state the 

networks’ behavior is unpredictable. If there is no congestion control mechanism the 

network’s reaction to congestion is the random drop of data packets [31]. Beside the obvious 

energy consumption, the major drawback in this method is that the packets which are 

produced during this state are of great importance.  So, the need for early congestion 

prediction and alleviation is obligatory. 

In different studies [27, 32] it is observed that the number of nodes with occupied queues 

grows if congestion gets worse. When congestion is detected, the sources should be notified in 

order to take action to face congestion. The most popular approach for this notification is the 

transmission of a control packet to the source, from the sink.  

Nevertheless this technique, from the sink to the source, may prove fatal for the network, 

especially if congestion arises late in the path from the source to the sink. The number of 

nodes with occupied queues will increase and probably the network will collapse. 

To prove this let’s consider Fig 4.1 [33] 

 

Fig. 4. 1 A single connection in WSN 
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In this figure a source and a sink is used. Node S, R, and I denote the source, sink and 

intermediate node respectively. The total number of hops along the path is n. The source is m 

hops away from the intermediate node I, which detects the congestion. 

Let’s check the signaling cost. It is assumed that energy dissipation in transmission of 

one packet per hop is a constant, regardless of the configuration of MAC and link layer. It is 

denoted by є. 

In Figure 4.1, it is easy to deduce that the signaling energy expenses per cycle Tcn is 

 

E= m. є  

 

and the propagation delay is  

           T=2m. th      

  

where th  is the propagation delay per hope. 

 

It is clear that when m approaches n the signaling energy that is needed to inform the 

source for the congestion is increasing. Furthermore the propagation delay is increasing, 

which, in its turn leads to time lag concerning the information of the source for the congestion. 

Fatally the source will continue to send data packets in the same rate until the reception of the 

control message and eventually the number of nodes with occupied queues will increase. 

Bearing in mind these inputs, a congestion control scheme is needed which is able to 

solve the problem locally and immediately without loosing any data packets and of course 

without wasting so much energy. Other works that have been published like CODA [24] and 

fussion [26] which also try to face the problem locally by using backpressure messages; they 

manage to alleviate congestion by throttling the data rate. In our effort, due to the mission 

of the event-based networks, reduction of data rate is prohibited. Sources must continue to 

send their data with the rate that they sense the events. 
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4.2 Scheme Design 
 

Bearing in mind the related work and the unique features of WSN, especially the 

limited power and storage resources, a new algorithm is proposed attempting to solve the 

congestion problem in these networks.  

For the development of this algorithm we involve a major input, which exists in sensor 

networks. This is the plethora of unused recourses. 

 Based on this major input, our target is to develop an algorithm which is feasible and 

can be embodied in the sensor motes that are used in real networks (mica- motes etc). The 

effort to alleviate congestion situation will be enhanced by unused nodes. 

The algorithm consists of two parts, the Alternative Path Creation (APC) and 

Hierarchical Tree Creation (HTC). The philosophy of these two algorithms is similar. Both 

of them are based on the creation of alternative paths from the source to the sink, when 

congestion is going to take place. For the creation of these paths the nodes which are in 

dormant state are used. APC uses these nodes in a generally random way, compared to HTC 

where these nodes are placed in a Hierarchical tree from the source to the sink. The final 

algorithm is called HTAP (Hierarchical Tree Alternative Path) and is a combination of these 

two algorithms.  

Following we introduce these algorithms explaining why we choose their combination. 

 

a. Alternative Path Creation 
 

The initial idea for the creation of this algorithm derived from a particular concept of 

the theory of Dynamic Alternative Routing (DAR) of R.J. Gibbens, F.P. Kelly, and P.B. Key 

used in public telephony[34]. In this concept it is stated that if you have a good route without 

problems, stick to it, until something goes wrong. 

With some major changes in the implementation, this concept is adopted by us in the 

case of congestion control in WSN.  

As reporting above, according to publications [31], it is stated that in wireless sensor 

networks there are many nodes, which, in many cases, when a specific event is detected they 

are not taking part in the path from the source to the sink (in the routing process). This is due 

to the fact that these nodes are far away from the event.  
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The main target of this algorithm is to take advantage of these nodes and use them for 

the creation of alternative paths from the source to the sink. The creation of these paths will 

unload the highly dense parts of the network and will lead the data packets safely to a sink 

though other routes. 

The basic theory of this algorithm is that a source node keeps transmitting data packets 

to a specific node in a level higher than itself, until it receives a control message from this 

node that is not able to handle any more packets. This is either because is going to become 

congested or due to the fact that it will soon run out of power.  In such a case, with a 

procedure which is described in the algorithm the source node will search in its neighbor table 

and find the most appropriate node to transmit the further data.  

 To explain the concept let’s consider the figure below. 

Fig. 4. 2 Transmission from Source to Sinks 

In this figure, we consider that there is a source which is sending data packets. Initially, 

it is sending data to the node numbered 1. The data packets follow the blue path to a sink. As 

soon as node 1 calculates, that is going to be congested is sending a control packet to the 

source in order to inform it about the fact. When source node receives the control packet it is 

then searching in its neighbor table, which includes nodes 1, 2 and 3. to find the proper node 

to keep sending data (how the neighbor node is created and which is the proper node is 

explained in the algorithm).  The sending node is now transmitting to node 2. 

 It must be stated that this procedure is taking place in all the levels and not only in the 

source. For example, if node 8 becomes congested, it will send a control message to the 

transmitting node (in this example is 5) to inform it about the fact and node 5 will apply the 

same procedure as the source node in Fig 4.3 (it will forward data through node 6 instead of 8) 
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I. Implementation of APC 
 

The implementation philosophy of the algorithm follows the steps below: 

 

• A simple hierarchical flooding protocol is used for the formation of the network’s 

topology; the purpose is for each node to discover its neighbor nodes. Through this procedure, 

each node updates its neighbor table. In addition through this protocol, sensor nodes are 

theoretically placed in levels from the source to the sink.  

 

• At each packet transmission each node piggybacks its congestion state (buffer 

occupancy). The neighbor nodes overhear the packet transmission [26] and update their 

neighbor tables with this information. 

 

• During the triggering of an event, the source node begins transmitting data packets 

creating flows to the sink. If the sending data rate is higher than the sending rate that the 

receiving node can transmit, the receiving nodes will soon face a buffer congestion situation 

and the results would probably be the random drop of data packets. In order to avoid this 

situation each candidate congested receiver is sending a backpressure packet to the sender to 

inform it, that if it continues to transmit packets with the same rate it will soon be congested. 

So the sender stops the transmission of packets to the candidate congested receiver and 

searches in its neighbor table to find the least congested receiver in order to continue the 

transmission of data. 

 

• The transmitting node begins transmitting the data to the alter node. The same 

phenomenon can happen in each level (between the neighbor nodes). The alternation of 

receivers leads to the creation of alternative paths. 

 

II. Alternative path creation (APC) issues 

 

We aim to evaluate the effectiveness of the Alternative Path Creation (APC) algorithm 

as to its effectiveness as a technique to alleviate the congestion problem in WSNs for event 

triggered networks.  
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The major advantage we anticipate is the fact that it utilizes nodes which in other 

ways would be in a dormant state. Basically, it increases the resource provisioning in the 

network with the energy and buffer capacity of these nodes.    

This solution seems to create good results concerning congestion alleviation (Appendix 

B).  But, this is not the only fact in an algorithm. 

The reason we haven’t used this algorithm solely is due to a problem it encounters. The 

problem is that it scales poorly with dense networks where there are many nodes. More 

specifically the problem has to do with the mean time of the transmission of packets from the 

sources to the sink, which in some cases is highly increasing.  This means that a packet could 

be received “late” causing problems in the accomplishment of the mission. The reason is 

explained below 
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Fig. 4. 3 APC's Mean  Time (Source to Sink) vs Number of Nodes 

 
Each node is transmitting these packets like “hot potatoes” meaning that nodes do not 

have perception about the congestion situation in other fields on the network. This algorithm 

has the perception of only the level above. The lack of knowledge of the rest network may 

lead the packets to a worst situation than the one that they are in first place meaning that they 

may traverse through many other nodes in order to reach the sink (certainly in any case they 

avoid hotspots due to the fact that they always choose the least congested node). Fig 4.4 

explains this situation. 
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Fig. 4. 4  APC snapshot 

 

In Fig 4.4 node 1 is the source and node 6 is the sink. Node 38 is just one hop away 

from the sink. If, for example node 38 becomes congested, packets from node 30 can be 

forwarded to sink either through node 32 (the best case, one hop) or following the path 30, 9, 

22, 36, 39, 32 following 6 hops. If exactly after the forward of packet to node 30, node 38 

reliefs from congestion, the next packet which carries the latest information will be received 

by the sink in one hop, and the previous packets will become a “stale” packet. 

 

b. Hierarchical Tree Creation (HTC) 
 

In order to correct the main disadvantage of APC algorithm a modification is proposed. 

The Hierarchical Tree Creation. 

 

I. Implementation of HTC 
 

 This algorithm consists of two main steps: 
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• Route Creation: In this step a hierarchical tree is created beginning at the source 

node. Each node is assigned a level according to the hierarchical tree. The source node is 

assigned a level 0 and broadcasts a level_discovery packet. Sensors that receive this packet are 

handed as children to the transmitter and are set as level 1 (they will ignore subsequent 

level_discovery packets). Each of these nodes broadcasts a level_discovery packet, and the 

pattern continues with the level 2 nodes etc. The source when it receives the level_discovery 

packet updates its neighbor table. 

 

• Flow Creation: Connection is established between each transmitter and receiver 

using a 2-way handshake. Packets are exchanged between each transmitter and receiver in the 

network, in order to get connected. Through this packet exchange, the congestion state of each 

receiver is communicated to the transmitter. This connection is performed using a 2-way 

handshake. Having a source node A and a receiver B, node A sends a first packet to B. When 

node B receives this packet, it sends an ack packet back to A. In this ack packet the node B 

piggybacks the congestion state at the moment. In this way, the source node is aware of the 

congestion state of all the children and is also able to forward them data packets. When the 

congestion state of children changes to a pre-specified limit (in our work is set to 90% of the 

buffer of each node) this node updates its congestion state by sending a packet to the source 

node. 

 

II. Hierarchical Tree issues 

 

According to the simulations that we conducted, this algorithm also reacts effectively 

to congestion (Appendix B) and the mean time for transmitting packets from the source to 

sink, reduces compared to APC algorithm (Fig 4.5). This mean that HTC algorithm is able to 

overcome the disadvantage of APC concerning the transmission time in dense networks. 
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Fig. 4. 5 HTC’s vs APC’s Mean Time (Source to Sink) 

 
  In this case, the packets follow the hierarchical tree which is created at the network 

deployment. Through the nodes above it each node has perception of the whole network 

through the routes that have been created in the route discovery phase. Each packet follows 

specific flows in order to reach the sink.  

 When congestion is going to happen in a specific receiver node, this node sends a 

control packet to the transmitter node to inform it to change destination node. The transmitter 

node searches in its neighbor table and finds the most appropriate node, towards which it 

begins the transmission of data. The procedure is exactly the same as in APC algorithm. The 

difference is that according to this algorithm route from the source to the sink, pre- exist and 

followed by the packets. 

 However as in APC so in this algorithm, a main disadvantage exist. This is the energy 

consumption compared with APC algorithm (Fig 4.6). The 2-way handshake requires each 

node to receive a packet and send one in response. For a source node A with children B and C, 

node A broadcasts level discovery packet and then connection packet. Nodes B and C receive 

both packets and then transmit an ack packet to node A, piggybacking also their congestion 

state. This example uses 4 transmissions and 4 receptions.  
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Fig. 4. 6 APC’s vs HTC’s Network Power 

 

c. The HTAP Algorithm 
 

The HTAP algorithm is a combination of the previous mentioned algorithms. Due to 

the fact that the advantage of the first algorithm is the disadvantage of the second algorithm 

and vice versa, this algorithm embodies the advantages of both algorithms in order to 

eliminate the disadvantages. 

 This means that in this algorithm the APC is going to be applied in combination with 

the HTC when the network is densely deployed. 

 The density or the sparseness of a network is not an abstract term. A specific threshold 

needs to be specified by which each node should be able to decide when to apply APC by 

itself or in combination with HTC. In most of the cases, due to the mission, sensor nodes are 

dropped by airplanes or fill a place in a field etc. This means that some nodes could not 

become part of the network, due the fact that they fell too far away from other nodes and there 

is no other node in their transmission range. Some other nodes could be very densely deployed 

and other could be very sparse. 

 This threshold results out of the number of nodes that a specific node has in its 

neighbor table. If the number is below the pre-specified (for the specific network) threshold 
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the nodes apply the APC algorithm by itself. Otherwise, they apply it with the HTC 

algorithm. Threshold is extracted through simulations in Appendix B. 

 

4.3 Algorithms Description 

 
This section describes the three previous mentioned algorithms. These algorithms are 

activated when a congestion situation is about to appear in the network.  

Moreover in this section the flooding algorithm is described. The flooding algorithm is 

used at first, at the first deployment of the network; in order for each node to discover its 

neighbor node and to update their network tables. In order to “assist” the Hierarchical Tree 

Algorithm a level_discovery functionality is also added to this algorithm  

 

 

Flooding Algorithm with Level Discovery 

set neighbor_nodes to 0 

if current_node is source node 

 Set level to 0 

 Broadcast flood_packets with level  

else if current_node receives flood_packets and is accepting them 

 set current_node to level+1 

 send ack_packet with current_node_id 

 broadcast flood_packet with  current_node_id and level 

 ignore subsequent flood_packets 

else if current_node receives ack_packet 

 neighbor nodes+1 

 

 

 

The APC algorithm is described next. After the application of the flooding algorithm, 

each node is aware of its neighbor nodes. As it was mentioned in the analysis of APC 

algorithm, the nodes are also aware of the congestion state of their neighbor nodes and are 
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update their neighbor tables, by overhearing the transmitted packets of the other nodes, in 

which their congestion state is piggybacked.  

APC algorithm is described below 

APC: Alternative Path Creation Algorithm 

 

if current_node receives ack with congestion_level full 

 update neighbor_table  

 search neighbor_table  

 find node_id with min (congestion_level) 

 send data packet 

if current_node receives congestion_update_message 

 update neighbor_table 

else if current_node receives data packet and accepting them 

 Set buffer to buffer+1 

 if buffer+3=full //Buffer is going to be congested 

 send ack packet with congestion_level full 

 

 

Figure 4.7 shows an execution of APC algorithm 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. 7 APC snapshot 
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In Fig 4.7 data are produced from a source node next to node 1 and are forwarded to sinks 6 

and 49. In our simulations we use more than one sink. 

The same situation, concerning the neighbor table, applies for the Hierarchical Tree 

algorithm. Here, the differences are related with level discovery and the connection- oriented 

situation, in order to form the hierarchical tree. Flooding algorithm assists in level creation as 

it was described before. 

 

 HTC: Hierarchical Tree Creation Algorithm 

  

Create routes from the source to sink 

using two way handshake 

 

In case of node congestion 

find node_id with min (congestion_level) 

 send data packet 

if current_node receives congestion_update_message 

 update neighbor_table 

else if current_node receives data packet and accepting them 

 set buffer to buffer+1 

 if buffer+3=full //Buffer is going to be congested 

 send ack packet with congestion_level full 

 

 

The combination of the two algorithms to create the Hierarchical Tree Alternative Path 

(HTAP) algorithm is described below. As it was described before, when the neighbor nodes of 

a specific node is below a specified threshold the APC algorithm applies, the HT applies 

otherwise.  

In this case, we will consider that the network is facing a congestion situation, all the 

time. 
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HTAP: Hierarchical Tree Alternative Path Algorithm 

 

Set neighbor_nodes_threshold  to [prespecified value] 

if neighbor_nodes< neighbor_nodes_threshold 

apply APC 

           else 

apply HTC 

 

 

Figure 4.8 shows an execution of HTAP algorithm 

 

 

Fig. 4. 8 HTAP snapshot 
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4.5 Powerless (dead) nodes 

 

 Special care should be taken in the HTAC algorithm concerning the nodes which their 

battery is exhausted. These nodes are causing major problems to the network, especially when 

they are source nodes. 

 Thus, when a node is going to lose its power, it should immediately extracted from the 

network and the tables of their neighbor nodes should be updated. This procedure should be as 

simple as possible due to the fact that this can happen when the network is in a crisis state. 

 This algorithm deals with two cases. The first case is when the “dead” node is the source 

node and the other case is when the “dead” node is a child node. 

 In the first case, when the remaining source’s node power is diminished, the source node 

broadcast an elect_packet to its neighbor nodes. The neighbor nodes communicate their power 

levels with each other and the one with the most remaining energy is elected as the new node. 

Power is diminished, and the other nodes remove it from their neighbor tables. 

 

Powerless Nodes Handle Algorithm 

 

if current_node is source node (current_level=1) and node_power allows 2 more Tx 

// Power is going to get exhausted 

broadcast elect_packet with current_node_id 

if current node receives elect_packet 

broadcast elect_packet_power with current_node_id 

if elect_packet_power>=current_node_power 

  set current_node to root node  

else if current_node is child node (current_level!=1) and node_power allows 2 more Tx 

 broadcast remove_packet with current_node_id 
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Chapter 5 
 

 

Simulation Results and Analysis 

 

 

5.1 Simulation Environment 

5.2 Scenarios Analysis and Results 

 

 

To evaluate the proposed algorithm, scenarios were created to compare various 

network and nodes parameters. The proposed algorithm has been implemented on Matlab, as a 

part of a specific simulator for Congestion Control in WSN. The source code for the Matlab 

simulation is described in Appendix A 

 

 

5.1 Simulation Environment 

 

 In all simulation environments and scenarios we choose randomly to deploy nodes in a 

rectangular grid. We select two grid sizes 1000x 1000m and 500x 500m. This is a common 

choice for size grid in literature. We use the two different sizes to illustrate a denser node 

placement (for the same total number of nodes in the grid).  

Furthermore in order to trigger off a congestion situation, all the nodes in the network 

are almost congested, meaning that their buffer occupancy in near to 90%. 

On the other hand we introduce more than one sink. Each sink is able to handle a big 

amount of data.  

Each time the number of nodes in the network is increasing the sources produces 

proportional number of data packets.  
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5.2 Scenarios Analysis and results 

 

The first series of simulations that we conducted was in a grid of 1000m x 1000m. In 

each run, the parameters below were kept stable we altering the number of nodes in the grid. 

 

X distance (m) 1000 

Y distance (m) 1000 

Transmit Power (dBm) -2 

Sensitivity Threshold (dBm) -81 

Path Loss Coefficient 3.5 

Node CPU (MHz) 4 

Radio Freq. (MHz) 433 

Buffer Occupancy (%) 85 

Data packet 1 packet 

Control Packet  ¼ packet 

 

 In order to get some reference results, the first simulation series run has been conducted 

with no congestion control algorithm. Basically, in this case the nodes were placed in a 

hierarchical tree (flooding algorithm) but no congestion prevention measures were taken when 

congestion happened (e.g no retransmissions). The only “extra” provision was the handling of 

“dead” (powerless) nodes.  

 The first parameter that has been investigated is the networks’ energy consumption 

during a crisis state. As it was stated in Chapter 3, during a crisis state there is a sudden traffic 

increase which will certainly lead to congestion if no countermeasures are taken.  

 This specific metric, simply adds the remaining power of all nodes in the network and 

divides it by the number of nodes. 
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Fig. 5. 1 Network power versus Number of Nodes 

 
At  first glance this graph seems to give some “unexpected” results. As it is depicted 

here, as long as the number of nodes in the network is increasing, “no congestion control” 

algorithm appears to save more nodes’ power. Of course, this is not true. The reason can easily 

be explained.  

HTAP’s main target is the involvement in congestion alleviation phase, a number of 

nodes which are in dormant state. These nodes will create alternative paths to the sinks. 

Bearing in mind that the network’s dimensions are constant and the numbers of nodes are 

increasing, the more nodes are in the network, the more of them are involved in the congestion 

alleviation phase. This means that packets traverse to the sink through a higher number of 

hops, leading to energy consumption from many nodes. 

On the other hand, when the “no congestion control” algorithm applies, the situation is 

clear.  In this procedure is involved a specific number of nodes (only a path from the source to 

the sink). These nodes are, like all the nodes in the network, are almost congested. As long as 

they receive packets that are not able to handle, they drop them. Furthermore, the control 
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packets that they exchange are limited. This situation will lead to extinction of a specific 

number of nodes ,while the rest will have their power in full. 

This leads to a subjective energy saving. Taking into account that the metric we 

examine, derives from the division of the remaining nodes’ power by the number of nodes, it 

is easy to understand that as the number of nodes in the network is increasing, more nodes are 

in dormant state and of course more nodes have their power untouched, leading to increment 

of the overall power.  

The next parameter that was studied was the number of packet drops during a crisis state. 

Keeping the parameters same as above, the following results were noted: 
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Fig. 5. 2 Packet Drops versus Number of Nodes 

 

As it is presented in the graph, the number of packets drops with HTAP, increase 

slightly as the number of nodes is rising. Yet, in all cases packet losses, are much fewer 

compared with “no congestion control” algorithm. This fact is a good indication that HTAP 

algorithm is able to minimize, with good results, the congestion problem and is able to “save” 

a big number of data packets, from drop. 
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The problem concerning the “no congestion control” algorithm can become even 

worse, bearing in mind that in this simulation series, retransmissions have been disabled, and 

the “dead” nodes provision is active.  

The next metric we study is the percentage of dropped packets, compared to 

transmitted packets.  
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Fig. 5. 3 numDx/numTx (%) versus Number of Nodes 

 

As it is depicted here the percentage of dropped packets to transmitted packets is 

generally stable meaning that HTAP alleviates congestion even under a big number of nodes. 

This algorithm is able to react efficiently even when the numbers of nodes and data packets 

are increasing in the network. On the other hand, if “no congestion control” algorithm is 

applied the percentage of lost packets is increasing. The situation is getting worse, especially 

when the number of nodes in the network is increasing leading the simulation to the creation 

of more data packets  

The next parameter that has been simulated, was the mean travel time of packets from 

the source to the sink. 
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Fig. 5. 4 Mean Time (Source to Sink) versus Number of Nodes 

 
This parameter has not been compared with “no congestion algorithm”, due to the fact 

that the results of “no congestion control” algorithm are not reliable for this parameter. The 

reason is that this metric measures the time of all received packets to the sink and calculated 

the mean time. Bearing in mind that a big number of packets with “no congestion control” 

algorithm are dropped, the results could not be true. 

 Basically, this metric shows the trend of mean time while the number of nodes in the 

network is increasing.  

As it is depicted here, the time is slightly increasing as the number of nodes in the 

network is increasing. This is normal having in mind that the creation of alternative paths 

creates many hops between the source and the sink. This can be considered as a 

disadvantage of the proposed algorithm since the time is sometimes critical factor for the 

success of the application.  

  

 

 

 

 

55 



Second series of simulations: 

 

Keeping all the previous parameters the same, we narrowed the grid to 500m x 500m. 

Our target was to check how efficient is the algorithm when the grid is relatively small, 

compared to the amount of nodes that exist in the network. 

The first parameter that was checked, is the packet drops. 
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Fig. 5. 5 Packet Drops versus Number of Nodes (500m x 500m Grid) 

  

The packet drops are slightly increasing compared to 1000x1000m grid. This fact is 

normal, taking into account that keeping all the parameters the same and especially in this case 

the transmition power, the neighbor table of each transmitting node is growing. This fact leads 

to bigger number of control packets, and normally, to more packet drops. 

 Moreover, although the path from the source to the sink is now smaller, the fact that 

more nodes are slotted in this path, leads to more packet transmissions which can lead to small 

increment in packet drops. 

This conclusion is reinforced from the following graph. 
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Fig. 5. 6 numDx/numRx (%) versus Number of Nodes (500m x 500m Grid) 

As it is shown here, the ratio of transmitted to received packets is generally stable, but 

a bit above the 1000x1000m grid. This fact is trivial, bearing in mind that the number of 

control packets is a bit more when the network is densely deployed. 

 Finally we check the mean time for the transmission of packets between the source and 

the sink. The following graph depicts the results: 
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Fig. 5. 7 Mean Time (Source to Sink) versus Number of Nodes (500m x 500m Grid) 
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As it is presented in Fig 5.9 the mean time for the packets to travel between the source 

and the sink is much less, compared to the time that is needed when the grid’s dimensions are 

1000x1000m. This fact is expected, taking into account the fact that the grid is smaller and the 

propagation delay is not so much, as in 1000x1000m grid. Although the nodes that are slotted 

in the path from the source to sink are more compared to 1000 x 1000m grid, the whole 

propagation time for the transmission of data packets from the source to the sink, is still less. 

 

Third series of simulations: 

 

Finally, the following simulations run, in order to check the reaction of HTAP 

algorithm when the nodes’ transmission power is changing. To achieve this task everything 

was kept stable except of the nodes’ power transmission. More specifically, the simulations 

run in a 500x500m grid, having 300 nodes. 

The first parameter that has been examined, is the mean time for the transmission of 

packets from the source to the sink. As the transmission power of the nodes is increasing, 

more nodes are getting to its neighbor table and the source node in getting closer to the sink. 
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Fig. 5. 8 Mean Time (Source to Sink) versus Transmit Power 

 

 It is clear that HTAP functions normally, being able to transmit the packets faster to 
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the sink, as long as the nodes’ power is increasing. The more the transmission power is, the 

less is the mean time for the traverse of data packets from the source to the sink. 

 The next parameter that has been investigated was the actual packets drops. The 

following graph states the results. 
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Fig. 5. 9 Packet Drops versus Transmit Power 

 As it is represented in this graph, there is a small increment in packet’s drops when the 

networks power is increasing. This small increment results out of the fact that the neighbor 

table of the node is increasing and, normally, the control packets are increasing, too. This 

leads to more packets in the network and, normally, to a very slight increase in packets drops. 

 Normally in situations where the node’s power is increasing, packets drops are 

expected due to interference also. In this specific simulator, interference has been disabled due 

to the fact that we focus on “buffer based” congestion. So packet drops due to interference are 

not added to graphs. 
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Chapter 6 
 

Summary & Future Work 

 

 

6.1 Summary  

6.2 Future Work 

 

 

 

6.1 Summary  

 

In this thesis we investigated the congestion problem that takes place in WSN. In our 

work we dealt with a specific category of WSNs, the event- based networks. As we discussed 

in our Thesis, these networks are producing data only when the monitored event exceeds a 

pre-specified threshold. 

A typical example of event- based WSNs is the case of fire in a forest. Sensors are 

programmed to send data packets when the temperature in the forest exceeds a pre-specified 

value. In case of fire, sensor nodes which sense the event (fire) begin to transmit 

simultaneously a large amount of data packets. The target of this network is the continuous 

provision to sinks (i.e. local fire stations) with data packets, in order to keep them updated, for 

the fire’s frontline.  In this case, if the high load of data packets left unattended (no congestion 

control) the network becomes congested and the packets will not be forwarded to sinks. The 

result will be the failure of the network’s mission. 

The special features of event- based Wireless Sensor Networks have driven us to the 

need of development of a new algorithm. These features beyond the common (in WSNs) 

“power limitation” problem are the random placement and the need for transmission of all the 

data packets to the sinks. This last feature prohibits the use of data rate reduction mechanisms 

for the alleviation of congestion. 
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Studying the related works, which are presented in Chapter 2 we assert than none of 

them fully satisfies the conditions that are demanded in order for these networks to succeed in 

their mission. The most demanding condition as we also stated in the previous paragraph is the 

safe transmission of an event if a lot of data packets are produced during the crisis state. Crisis 

state is the network’s state when the monitored event is taking place and leads to a great 

production of data packets. Almost all related works approach the congestion state by reducing 

the data rate which may lead in event loss. 

In our approach we consider a special characteristic of WSNs, which according to our 

opinion has not attracted the interest that deserves in this specific problem. This is the plethora 

of sensor nodes which are in dormant state during even a congestion situation (i.e icrease 

resource provisioning). 

The algorithm that we propose, HTAP (Hierarchical Tree Alternative Tree), takes 

advantage of these nodes, involving in the congestion alleviation phase their resources, power 

and storage (buffer space). 

This algorithm consists of two similar algorithms, APC (Alternative Path Creation) and 

HTC (Hierarchical Tree Creaton). In the case of congestion these algorithms are using their 

neighbor tables to find alternative nodes in order to transmit their data. Their difference is 

basically the path they use. APC uses a completely random path compared to HTC which, as it 

name implies, uses a Hierarchical Tree path from the source to the sink. HTAP is a 

combination of these two algorithms which adopts the advantages of both algorithms and 

minimizes their disadvantages, as it is stated in Chapter 4 and Appendix B.  

HTAP algorithm has been simulated in Matlab environment and has been compared to a 

situation without congestion control mechanism. The results showed that HTAP algorithm is 

able to reliably lead a large percentage of data packets to the sinks. In contrast the same 

network without congestion control mechanism, losses almost half of its data packets. 

Moreover, simulations depicted that HTAP can also contribute to the increment of 

network’s life since it uses power from a big number of nodes. This means that networks are 

dying out, uniformly. In other cases, due to congestion, it is possible that a specific area of the 

networks gets exhausted, while other areas are “untouched”. Moreover a special provision has 

been taken in our algorithm in order that the entire exhausted nodes to get removed 

immediately from the network’s topology, because they may cause major problems. 

Finally, a problem that has also been addressed from our simulations is the fact that 

mean time for the transmission of packets form the source to the sink, is increasing while the 
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number of nodes in the network is increasing. This could become a “headache”, if the network 

is very densely deployed. 

 

6.2 Future Work 

 

Congestion Control in WSNs is a task which, in any case, is energy consuming. Having 

in mind the limited energy of these nodes, the task of even higher limitation of control packets 

remains.  

Furthermore, this algorithm has been tested only in a simulation situation for limited 

scenarios. An extensive simulative evaluation and optimization of the algorithm and a 

subsequent test in real nodes is needed in order to prove its utility 

Furthermore as future work the integration of HTAP as a congestion alleviation method 

to already proposed solutions like CODA [23] and “Congestion Control and Fairness for 

Many-to-One Routing” [25] to replace the data rate reductions that both papers are using can 

be considered.  

Moreover, we believe that HTAP could become very efficient if the nodes are grouped in 

clusters and compare their data, before these are forwarded. In this case, there could be a 

significant limitation in the transmission of control packets, which is certainly leading in 

severe energy conservation. 

 Finally, we believe that the “recourse provisioning” technique is possible to significantly 

contribute in the solution of many open issues in WSNs. The plethora of cheap recourses is an 

advantage of these networks. These nodes is possible to work collaboratively, combining in a 

way there recourse and there data.  
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Appendix A 

 

 

A.1  Matlab Source Code 

 

 

 In this Appendix we append the Matlab Source that we programmed in order to create 

this simulation environment and to evaluate our results. This simulation is specially 

constructed for congestion control, meaning that all nodes are almost congested. 
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Appendix B 

 

 

B.1  Issues on proposed Algorithms 

 

 

B.1  Issues on proposed Algorithms 

 

 In this Appendix we state the advantages and disadvantages of APC and HTC proving 

the reasons of our choice, to use these algorithms in combination and not solely.  

 The first parameter (and most important) that we check is packet drops. As it was 

reported in Chapter 4, both algorithms provide similar results concerning congestion control.  

 Fig. B.1 proves this statement. 
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Fig B. 1 

 The reason we haven’t used these algorithms solely is some performance problems that 

they present. These problems are examined below. 

 Let’s start with APC. As we stated in Chapter 4, APC reacts with very good results in a 

congestion situation. But its major problem is that the mean time for the traverse of packets 
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from the source to the sink is highly increasing when there is increment to the number of 

nodes in the network. To prove this fact let’s check fig B.2 

 

28.34

3.50

2.381.73

5.67

10.97

19.86

2.70

4.80

1.60

16.45

8.80

18.67

9.23

4.86

3.2

2.31
1.8

0

3

6

9

12

15

18

21

24

27

30

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Number of Nodes

M
ea

n 
Ti

m
e 

(S
ou

rc
e 

to
 S

in
k)

HTAP
APC
HTC

 

Fig B. 2 

 As it is depicted in Fig. B.2, the mean time from the source to the sink using APC is 

dramatically increasing when the number of nodes in the networks is increasing. This situation 

is not accepted in event- based networks, where time limits are strict.  

 If we compare the mean time in APC algorithm with the mean time in HTC we watch 

that HTC seems to be much more efficient compared with APC. This is true concerning the 

mean time. 

 This situation was accepted until we checked the remaining network power when HTC 

algorithm applies. The results are presented in fig B.3 
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Fig B. 3 

 As it is shown in Fig. B.3 the networks power is decreasing in a relative high rate when 

the number of nodes in the network is increasing. Especially if we compare these results with 

APC algorithm the result is that energy consumption is much more with HTC. This happens 

due to fact the two way handshake that is taking place between the networks nodes, in order to 

form the paths from the source to the sink, leads to the transmission and reception of, 

comparatively to APC, big number of control packets.  

 Summing the “energy tax” of these control packets it leads to the conclusion that is 

much more, comparing to the possible “extra” transmissions using the APC. 

 So, taking into the account these inputs, we concluded that a compromise between 

these two algorithms could give the better results. This how HTAP came from. 

 The final problem that we face was the threshold in HTAP. The value of this 

threshold declares the maximum number of neighbor nodes, that a transmitting node (source) 

can have in its table in order to apply only APC algorithm. If the number is above this value 

then it applies HTC. According to the results that we extracted from our simulations, out of 

similar graphs like in fig. B.2 and B.3 the threshold in our simulations is set to number 4. 

With this number we get the best “compromise” results between the two algorithms. 
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