
FUZZY LOGIC BASED AQM CONGESTION

CONTROL IN TCP/IP NETWORKS

Chrysostomos Chrysostomou

Advisor

Prof. Andreas Pitsillides

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

September 2006

© Copyright by

Chrysostomos Chrysostomou

All Rights Reserved

2006

Acknowledgements

I would like to express my gratitude to my advisor Prof. Andreas Pitsillides for his

precious guidance and continuous support throughout my Ph.D. study. His trust in

my work and his advices always helped me to shape my research work towards

something more meaningful.

I would also like to thank our research collaborators Prof. Marios Polycarpou of

University of Cyprus and Dr. Ahmet Sekercioglu of Monash University of Australia

for their fruitful comments and reviews on my research work.

Further, I would like to thank my colleagues in the Networks Group, and

especially to George Hadjipollas and Yiannos Mylonas for their support and

encouragement. Special thanks go to my former colleague Loukas Rossides who had

introduced me to the world of fuzzy logic.

Finally, I wish to express my gratitude to my parents, Pantelis and Maria, who

under difficult financial conditions have always been encouraging me to achieve high

education. My parents, together with my fiancée Anna, were always very supportive,

and kept me going on the right path to complete my Ph.D. study, and so I deeply

dedicate this thesis to them.

 ii

Abstract

Network management and control is a complex problem that requires robust,

intelligent, control methodologies to obtain satisfactory performance. Active Queue

Management (AQM) mechanisms have been introduced for router support to assist

the TCP congestion control to perform satisfactorily in all circumstances. However,

certain, well-known limitations, identified in the AQM literature, motivates the need

to investigate alternative control techniques to control the time-varying dynamics,

high variability, and nonlinearities of TCP/IP systems.

We present a new fuzzy logic based AQM control methodology to provide

effective congestion control in TCP/IP networks. We adopt fuzzy logic due to its

reported strength in controlling nonlinear systems using linguistic information. This

methodology is developed to offer a simple and generic process, and thus it is

adequately adopted in both best-effort and differentiated services (Diff-Serv) TCP/IP

environments, providing acceptable quality of service (QoS).

The proposed fuzzy logic approach for congestion control allows the use of

linguistic knowledge to capture the dynamics of nonlinear probability marking

functions, and uses multiple inputs to capture the (dynamic) state of the network

more accurately. The potential of Fuzzy logic control methodology to incorporate

human knowledge into such a control strategy is demonstrated, and the capability to

qualitatively capture the attributes of a control system based on observable

phenomena is a main feature of fuzzy logic control and has been shown in the

simulative evaluation.

We demonstrate through simulation evaluation, under widely differing operating

conditions, that the fuzzy control methodology (for both best-effort and Diff-Serv

 iii

environments) satisfies all the design requirements. It provides quality of service and

high link utilization, with minimal losses, and bounded queue fluctuations and

delays. In the framework of Diff-Serv, an adequate differentiation is further offered

among different drop precedence’s traffic. The proposed fuzzy control methodology

is shown to exhibit many desirable properties, like robustness and fast system

response, with capabilities of adapting to highly variability and uncertainty in

network, in contrast with other schemes compared with. It offers significant

improvements in controlling congestion in TCP/IP networks, without the need for

retuning.

 iv

Contents

Acknowledgements

ii

Abstract

iii

List of Figures

xii

List of Tables

xvii

List of Abbreviations and Acronyms

xviii

1. Introduction

1.1 Problem Statement .

1.2 Motivation .

1.3 Contributions of the Thesis .

1.4 Thesis Structure .

1

1

2

3

4

2. Congestion Control in Internet Protocol Networks

2.1 Introduction .

2.2 Defining Congestion .

2.3 Congestion Control Principles .

2.4 Internet Congestion Control .

2.4.1 TCP Feedback Signaling Scheme .

2.4.2 TCP Evolution.

2.4.3 TCP-like Variants .

2.4.4 TCP-friendly Congestion Control .

6

6

6

9

11

12

13

14

15

 v

2.4.5 Network-assisted Congestion Control

2.4.5.1 Binary Feedback .

2.4.5.2 Multi-bit Feedback .

2.5 Conclusions .

16

17

19

20

3. Active Queue Management in TCP/IP Networks

3.1 Introduction .

3.2 The Need for Active Queue Management .

3.3 Active Queue Management Principles .

3.4 Random Early Detection – A Linear Heuristic-based Technique . . .

3.4.1 Control-Theoretic Design and Analysis of TCP/RED

3.5 Proportional Integral Control – A Linear Control Theory-based

Technique .

3.6 Random Exponential Marking – An Exponentially Increasing

Probability Function-based Technique .

3.7 Adaptive Virtual Queue-based Technique .

3.8 Limitations of Existing AQM Mechanisms .

3.8.1 Illustrative Example of Limitations .

3.9 Conclusions .

21

21

21

24

26

29

33

36

38

40

42

45

4. Differentiated Services Congestion Control

4.1 Introduction .

4.2 Differentiated Services Architecture .

4.2.1 Diff-Serv Functional Elements .

4.2.1.1 Classifiers .

4.2.1.2 Traffic Profiles .

4.2.1.3 Traffic Conditioners .

4.2.1.4 Per-Hop Behaviors .

4.2.2 Diff-Serv Service Classes .

4.2.2.1 Aggregation of Diff-Serv Service Classes

4.3 Differentiated Services Congestion Control

48

48

48

50

51

51

51

52

54

56

57

 vi

4.4 Conclusions .

60

5. Fuzzy Logic

5.1 Introduction .

5.2 Fuzzy Logic Principles .

5.2.1 Fuzzy Sets .

5.2.2 Membership Functions .

5.2.3 Logical Operations .

5.2.4 IF-THEN Rules .

5.2.5 Inference Process .

5.2.5.1 Fuzzification of the Input Variables

5.2.5.2 Application of Fuzzy Operators

5.2.5.3 Implication .

5.2.5.4 Aggregation .

5.2.5.5 Defuzzification .

5.2.6 Fuzzy Logic Control System .

5.3 Application of Fuzzy Logic in Networks .

5.4 Conclusions .

62

62

63

64

66

67

69

70

72

73

74

77

78

80

82

86

6. Fuzzy Explicit Marking (FEM): An Intelligent Nonlinear Fuzzy

Logic-based Control Methodology in TCP/IP Best-Effort Networks

6.1 Introduction .

6.2 The Need for the Alternative .

6.3 Fuzzy Logic Control Methodology Design Goals

6.4 Fuzzy Explicit Marking System Model .

6.4.1 Selecting FEM Controller Inputs and Output

6.4.2 Control Knowledge - Linguistic Description

6.4.3 Specifying the Knowledge – Rule Base

6.4.4 Fuzzy Quantification of Knowledge – Inference Prcocess . .

6.4.4.1 Selected Membership Functions

6.4.4.2 Implication-Aggregation-Defuzzification

88

88

89

90

92

93

97

100

103

103

105

 vii

6.4.4.3 FEM Nonlinear Control Surface

6.5 Illustrative Example of Computing Controller Output

6.6 Sensitivity of Fuzzy Logic Control Methodology to External

Parameters Settings .

6.7 Practicability of Fuzzy Logic Control Methodology

6.7.1 Computation Time .

6.7.2 Memory Requirements .

6.7.3 Ease of Implementation .

6.8 Conclusions .

107

108

109

119

119

119

120

120

7. Performance Evaluation of Fuzzy Explicit Marking in TCP/IP Best-

effort Networks

7.1 Introduction .

7.2 Selection of Simulation Parameters .

7.2.1 Simulation Environment .

7.2.2 Simulation Topologies – Network/Traffic Parameters

7.2.3 Simulation Performance Indices .

7.2.4 AQM Control Parameters .

7.3 Single-bottleneck Link .

7.3.1 Scenarios I .

7.3.1.1 Scenario I-1: Simple case

7.3.1.2 Scenario I-2: Transient Performance – Speed of

Response .

7.3.1.3 Scenario I-3: Effect of Heterogeneous Propagation

Delays .

7.3.1.4 Scenario I-4: Effect of Delays

7.3.1.5 Scenario I-5: Effect of Traffic Load

7.3.1.6 Scenario I-6: Performance in the Presence of Short-

lived Flows .

7.3.1.7 Scenario I-7: Effect of Reverse-path Traffic

7.3.1.8 Scenario I-8: Performance in the Presence of

122

122

122

123

123

124

124

125

126

126

128

128

131

136

142

144

 viii

Unresponsive Traffic .

7.4 Congestion at Peripheral Links .

7.4.1 Scenarios II .

7.4.1.1 Scenario II-1 .

7.4.1.2 Scenario II-2: Performance in the Presence of Short-

lived Flows .

7.5 Multiple-bottleneck Links .

7.5.1 Scenarios III .

7.5.1.1 Scenarios III-1-3: Effect of Traffic Load and Speed

of Response .

7.5.1.2 Scenarios III-4: Effect of Round-Trip-Delays

7.5.1.3 Scenario III-5: Performance in the Presence of Short-

lived Flows .

7.6 Conclusions .

147

149

149

150

152

154

154

155

161

166

168

8. Fuzzy Explicit Marking In/Out (FIO): An Intelligent Nonlinear

Fuzzy Logic-based Control Methodology in TCP/IP Diff-Serv

Networks

8.1 Introduction .

8.2 The Need for the Alternative .

8.3 Diff-Serv Fuzzy Logic Control Methodology Design Goals

8.4 Fuzzy Explicit Marking In/Out System Model

8.5 Advantages of FIO over Existing Schemes .

8.6 Illustrative Examples of FIO Operation .

8.7 Ease of Implementation – Flexibility .

8.8 Conclusions .

170

170

170

172

174

176

177

180

180

9. Performance Evaluation of Fuzzy Explicit Marking In/Out in

TCP/IP Diff-Serv Network

9.1 Introduction .

9.2 Selection of Simulation Parameters .

182

182

182

 ix

9.3 Single-bottleneck Link .

9.3.1 Scenarios I .

9.3.1.1 Scenario I-1-3: Effect of Increase of High-priority

Traffic .

9.3.1.2 Scenario I-4: Effect of Time-varying Dynamics

9.3.1.3 Scenario I-5: Effect of Heterogeneous Propagation

Delays .

9.3.1.4 Scenario I-6: Effect of Delays

9.3.1.5 Scenario I-7: Performance in the Presence of Short-

lived Flows .

9.3.1.6 Scenario I-8: Effect of Reverse-path Traffic

9.3.1.7 Scenario I-9: Effect of Intense Web Traffic

9.4 Multiple-bottleneck Links .

9.4.1 Scenarios II .

9.4.1.1 Scenario II-1-3: Effect of Increase of High-priority

Traffic .

9.4.1.2 Scenario II-4: Effect of Time-varying Dynamics

9.4.1.3 Scenario II-5: Effect of Delays

9.4.1.4 Scenario II-6: Performance in the Presence of Short-

lived Flows .

9.4.1.5 Scenario II-7: Effect of Intense Web Traffic

9.5 Conclusions .

183

184

184

188

189

191

194

196

197

199

200

200

204

205

208

210

212

10. Concluding Remarks and Future Work

10.1 Concluding Remarks .

10.2 Future Work .

213

213

215

List of Publications Stemming from the Thesis Study

218

Bibliography

221

 x

Appendix A

Linguistic Rules of the Fuzzy Logic based Control Methodology

233

Appendix B

FEM Simulation Results

238

Appendix C

FIO Simulation Results

247

 xi

List of Figures

2.1 Network throughput and delay vs offered load 8

2.2 Responsiveness and smoothness of the control 12

2.3 Evolution of TCP’s congestion window 14

3.1 Drop Tail queue length dynamics 23

3.2 RED control law 26

3.3 TCP/AQM feedback control system 30

3.4 Implementation of the PI controller 35

3.5 The PI Controller queue length dynamics with default parameter

values 44

3.6 The PI Controller queue length dynamics with new parameter values 44

4.1 The DS field structure 50

4.2 Logical view of packet classification and traffic conditioning at a

Diff-Serv boundary node 51

4.3 Diff-Serv scenario with RED queue for control 58

4.4 RIO control law 59

5.1 Example of (a) classical versus (b) fuzzy sets 65

5.2 Triangular-type membership function of a fuzzy set 66

5.3 Trapezoidal-type membership function of a fuzzy set 66

5.4 Intersection logical operation 67

5.5 Union logical operation 68

5.6 Membership functions of the linguistic values representing the

linguistic variables of the fuzzy system used as an example 71

5.7 Fuzzification of the input variable 73

 xii

5.8 Application of the Fuzzy Operator AND (min) 75

5.9 Application of the implication method (min) 76

5.10 Application of aggregation method (min) 78

5.11 Application of defuzzification method (centroid) 79

5.12 Fuzzy logic control system 81

5.13 Nonlinear control surface of the fuzzy system used as an example 82

6.1 Fuzzy logic based AQM system model 95

6.2 Membership functions of the linguistic values representing the input

variables “normalized error on queue length for two consecutive

sample periods”, and the output variable “mark probability” 104

6.3 Control-decision surface of the fuzzy inference engine of FEM

controller 107

6.4 Example of computing FEM output 108

6.5 Sensitivity of Fuzzy Logic Control Methodology to External

Parameter of TQL

115-

116

6.6 Sensitivity of Fuzzy Logic Control Methodology to External

Parameter of Sampling Interval 117

6.7 Sensitivity of Fuzzy Logic Control Methodology to External

Parameter of Output Scaling Gain 118

7.1 Single-bottleneck network topology I 125

7.2 Scenario I-1: Queue lengths 127

7.3 Scenario I-2: Queue lengths 129

7.4 Scenario I-3: Queue lengths 130

7.5 Scenario I-4: Queue lengths (for bottleneck prop. Delay = 30 msec) 132

7.6 Scenario I-4: Queue lengths (for bottleneck prop. Delay = 60 msec) 133

7.7 Scenario I-4: Queue lengths (for bottleneck prop. Delay = 120 msec) 134

7.8 Scenario I-4: Utilization vs mean delay (bottleneck propagation

delay varies from 30, 60, 120 msec)

 135

7.9 Scenario I-4: Utilization vs delay variation (bottleneck propagation

delay varies from 30, 60, 120 msec)

 135

 xiii

7.10 Scenario I-5: Loss Rate vs Traffic Load (for 100-500 flows) 136

7.11 Scenario I-5: Utilization vs Mean Delay (for 100-500 flows) 137

7.12 Scenario I-5: Utilization vs Delay Variation (for 100-500 flows) 137

7.13 Scenario I-5: Queue lengths (for 200 flows) 138

7.14 Scenario I-5: Queue lengths (for 300 flows) 139

7.15 Scenario I-5: Queue lengths (for 400 flows) 140

7.16 Scenario I-5: Queue lengths (for 500 flows) 141

7.17 Scenario I-6: Queue lengths 143

7.18 Scenario I-7: Queue lengths (with reverse-path web traffic) 145

7.19 Scenario I-7: Queue lengths (with reverse-path web traffic and FTP) 146

7.20 Scenario I-8: Queue lengths (with reverse-path web traffic and FTP

+ unresponsive forward traffic) 148

7.21 A network topology with congestion at peripheral links 149

7.22 Scenario II-1: Queue lengths 151

7.23 Scenario II-2: Queue lengths 153

7.24 Multiple- bottleneck network topology 154

7.25 Scenario III-1: Queue lengths (for 200 flows) 156

7.26 Scenario III-2: Queue lengths (for 600 flows) 157

7.27 Scenario III-3: Queue lengths (for 700 flows) 158

7.28 Scenario III-1-3: Loss Rate vs Traffic Load (for 200, 600, 700

flows) 159

7.29 Scenario III-1-3: Utilization vs Mean Delay (for 200, 600, 700

flows) 160

7.30 Scenario III-1-3: Utilization vs Delay Variation (for 200, 600, 700

flows) 160

7.31 Scenario III-4: Queue lengths (for bottleneck prop. delay = 120

msec) 162

7.32 Scenario III-4: Queue lengths (for bottleneck prop. delay = 200

msec) 163

7.33 Scenario III-4: Loss Rate vs Propagation Delay (bottleneck

propagation delay varies from 30, 120, 200 msec) 164

 xiv

7.34 Scenario III-4: Utilization vs Mean Delay (bottleneck propagation

delay varies from 30, 120, 200 msec) 165

7.35 Scenario III-4: Utilization vs Delay Variation (bottleneck

propagation delay varies from 30, 120, 200 msec) 165

7.36 Scenario III-5: Queue lengths 167

8.1 FIO system model 175

8.2 FIO queue evolution (Illustrative examples of FIO operation) 179

9.1 Scenario I-1: Queue lengths 185

9.2 Scenario I-2: Queue lengths 186

9.3 Scenario I-3: Queue lengths 187

9.4 Scenarios I-1-3: Utilization of high-priority traffic vs percentage of
high-priority traffic (high-priority traffic increases from 2%, 10, and
90% of the total traffic) 188

9.5 Scenario I-4: Queue lengths 189

9.6 Scenario I-5: Queue lengths 190

9.7 Scenario I-6: Queue lengths (bottleneck link propagation delay = 30

msec) 192

9.8 Scenario I-6: Queue lengths (bottleneck link propagation delay = 60

msec) 193

9.9 Scenario I-6: Utilization of high-priority traffic vs mean queuing
delay (bottleneck propagation delay varies from 30, 60, and 120
msec) 194

9.10 Scenario I-7: Queue lengths 195

9.11 Scenario I-8: Queue lengths 196

9.12 Single-bottleneck network topology II 197

9.13 Scenario I-9: Queue lengths 198

9.14 Scenario II-1: Queue lengths 201

9.15 Scenario II-2: Queue lengths 202

9.16 Scenario II-3: Queue lengths 203

9.17 Scenarios II-1-3: Utilization of high-priority traffic vs percentage of
high-priority traffic (high-priority traffic increases from 1.33%, to
13.33%, and 93.33% of the total traffic passing through the
bottleneck link) 204

 xv

9.18 Scenario II-4: Queue lengths 205

9.19 Scenario II-5: Queue lengths (bottleneck link propagation delay =
30 msec) 206

9.20 Scenario II-5: Queue lengths (bottleneck link propagation delay =
120 msec) 207

9.21 Scenario II-5: Utilization of high-priority traffic vs mean queuing
delay (bottleneck propagation delay varies from 30, 60, and 120
msec – high-priority traffic consists of 1.33% of the total traffic
passing through the bottleneck link) 208

9.22 Scenario II-6: Queue lengths 209

9.23 Scenario II-7: Queue lengths 211

 xvi

List of Tables

 2.1 The ECN field in IP 18

4.1 Example of Diff-Serv Service Classes 55

4.2 Example of Aggregation of Diff-Serv Service Classes 57

6.1 FEM Linguistic rules – Rule base 102

6.2 Summary of statistical results – Sensitivity of Fuzzy Logic Control

Methodology to External Parameter of TQL 113

6.3 Summary of statistical results – Sensitivity of Fuzzy Logic Control

Methodology to External Parameter of Sampling Interval 114

6.4 Summary of statistical results – Sensitivity of Fuzzy Logic Control

Methodology to External Parameter of Output Scaling Gain 114

8.1 Summary of statistical results –

Illustrative examples of FIO operation 178

B.1 Control parameter values of selected AQM mechanisms 238

B.2 Distributions and parameters for Web Traffic 238

B.3 Summary of statistical results – Scenarios I 239

B.4 Summary of statistical results – Scenarios II 244

B.5 Summary of statistical results – Scenarios III 245

C.1 Summary of statistical results – Scenarios I 248

C.2 Summary of statistical results – Scenarios II 252

 xvii

List of Abbreviations and Acronyms

ACK Acknowledgment

ACP Adaptive Congestion Protocol

AF PHB Assured Forwarding Per-hop Behavior

AIMD Additive-Increase, Multiplicative-Decrease

AQM Active Queue Management

A-RED Adaptive Random Early Detection

ATM Asynchronous Transfer Mode

AVQ Adaptive Virtual Queue

CE Congestion Experienced

CI Computational Intelligence

CU Currently Unused

CWR Congestion Window Reduced

DCCP Datagram Congestion Control Protocol

Diff-Serv Differentiated Services

DSfield Differentiated Services field

DT Drop Tail

ECE ECN-Echo

ECN Explicit Congestion Notification

ECT ECN-Capable Transport

EF PHB Expedited Forwarding Per-hop Behavior

EWMA Exponentially Weighted Moving Average

FEM Fuzzy Explicit Marking

FIE Fuzzy Inference Engine

FIO Fuzzy Explicit Marking In/Out

FLC Fuzzy Logic Control

 xviii

FLCM Fuzzy Logic-based Control Methodology

FTP File Transfer Protocol

Goodput Useful Throughput

ICCRG Internet Congestion Control Research Group

IETF Internet Engineering Task Force

Int-Serv Integrated Services

IP Internet Protocol

Jitter Variation in delay

Latency End-to-End Delay

Mbps Mega bits per second

MISO Multiple Input Single Output

NS-2 Network Simulator - 2

PHB Per-Hop Behavior

PI Proportional Integral

QoS Quality of Service

RED Random Early Detection

REM Random Exponential Marking

RFC Request For Comments

RIO Random Early Detection In/Out

RTT Round Trip Time

SACK Selective Acknowledgement

SLA Service Level Agreement

TCP Transmission Control Protocol

TFRC TCP Friendly Rate Control

TOS Type Of Service

TQL Target Queue Length

UDP User Datagram Protocol

VoIP Voice-over-IP

WG Working Group

XCP Explicit Control Protocol

 xix

Chapter 1

Introduction

1.1 Problem Statement
Network management and control is a complex problem, which is becoming even

more difficult with the increased demand to use the Internet for time/delay-sensitive

applications with differing Quality of Service (QoS) requirements (e.g. Voice over

IP, video streaming, Peer-to-Peer, interactive games). The existing TCP congestion

avoidance/control mechanisms, while necessary and powerful, are not sufficient to

provide good service in all circumstances. The insufficiencies of the implicit end-to-

end feedback adopted by the TCP paradigm necessitate the design and utilization of

new effective congestion control algorithms, to supplement the standard TCP based

congestion control, since the replacement of the current TCP congestion control

algorithm does not appear to be realistic at this point in time. Further, given the need

for providing adequate QoS new network architectures have been proposed, such as

the Differentiated Services (Diff-Serv) architecture (Blake et al., 1998) to deliver

aggregated QoS in IP networks*.

Basically, there is a limit to how much control can be accomplished from the edges

of the network of such an end-to-end implicit feedback based congestion control.

Some additional mechanisms are needed particularly in the routers to complement

the endpoint congestion control methods. Thus the need for router control has

recently led to the concept of active queue management (AQM). We will focus our

* Other architectures were also proposed, such as Integrated Services, but were not widely adopted,
mainly due to identified scalability problems.

attention to AQM based schemes that aim to provide high network utilization with

low loss and delay.

1.2 Motivation
The problem of network congestion control remains a critical issue and a high

priority; despite the many years of research efforts and the large number of different

control schemes proposed, there are still no universally acceptable congestion control

solutions. Current solutions of existing AQM mechanisms, introduced to assist the

TCP congestion control, are ineffective to meet the diverse needs of today’s Internet,

due to the dynamic, time-varying nature of TCP/IP networks. It is widely accepted

that they have serious limitations and drawbacks, including:

• The linearity of the control functions of existing AQM mechanisms that cannot

capture effectively the nonlinearities of the TCP network.

• The dependency of AQM control parameters on dynamic network parameters,

like the number of flows and the round trip propagation delays.

• The linearization of the existing models to allow analysis and design of AQM-

based controllers, often making stability bounds overly conservative, and

performance sluggish when dynamic changes occur.

• The accuracy of the existing TCP/AQM models, as they ignore the slow start

phase of TCP and/or timeout events that are prominent conditions in today’s

Internet with the existence of short-lived TCP/Web flows.

Thus, despite the classical control system techniques used from various

researchers, these still do not perform sufficiently to control the dynamics, and the

nonlinearities of the TCP/IP networks. Given the need to capture such important

attributes of the controlled system, the design of robust, intelligent control

methodologies is required.

Hence, given the need for such control methodology – to capture the dynamics, the

highly bursty network traffic, and the nonlinearities of the TCP/IP system, under

 2

widely differing operating conditions, we investigate the usefulness of fuzzy logic

control to meet such objectives. Fuzzy Logic Control can be considered as suitable

candidate for AQM-based control mechanism due to its reported strength in

controlling nonlinear systems using linguistic information.

The capability to qualitatively capture the attributes of a control system based on

observable phenomena is a main feature of fuzzy logic control and has been

demonstrated in various places in the research literature as well as in commercial

products. The main idea is that if the fuzzy logic control is designed with a good

(intuitive) understanding of the system to be controlled, the limitations due to the

complexity system’s parameters introduced on a mathematical model can be avoided.

A common approach in the networking literature is to either ignore such complex

parameters in the mathematical model (e.g., Misra, Gong, & Towesly, 2000), or to

simplify the model (e.g., Hollot, Misra, Towsley, & Gong, 2001) to such an extent

(in order to obtain some stability results), which render the designed controllers and

their derived stability bounds overly conservative.

Therefore, the application of fuzzy control techniques to the problem of congestion

control in TCP/IP networks is worthy of investigation, due to the difficulties in

obtaining a precise enough mathematical model (amicable to analysis) using

conventional analytical methods, while some intuitive understanding of congestion

control is available.

1.3 Contributions of the Thesis
The complex, but challenging, concept of TCP/AQM congestion control, in both

best-effort and Diff-Serv environments, is the key issue of our research study. In this

thesis we investigate the suitability of fuzzy logic control to capture efficiently the

dynamics, the high burstiness of the network traffic, and the nonlinearities of the

TCP/IP system and obtain satisfactory performance.

In particular, we make a significant contribution in formulating an effective,

robust, and generic AQM control methodology, using fuzzy logic based control,

 3

easily adopted in TCP/IP best-effort and Diff-Serv networks to solve the problem of

congestion control.

The proposed fuzzy control methodology offers significant improvements in

controlling congestion in TCP/IP networks, under differing operating conditions,

without the need for retuning, and thus provides acceptable QoS, with high link

utilization, minimal losses, and bounded queue fluctuations and delays. Furthermore,

the proposed methodology provides adequate and effective differentiation among

different drop precedence’s traffic in the presence of congestion in a Diff-Serv

environment.

1.4 Thesis Structure
The structure of the thesis is as follows: In Chapter 2 we discuss congestion

control, and give a short overview of the main features and functionalities of the

Transmission Control Protocol (TCP), its evolution, as well as other TCP-

like/friendly congestion control mechanisms. We further discuss the use of router

support to congestion control, either by having single-bit feedback (like Explicit

Congestion Notification – ECN), or multi-bit feedback (like eXplicit Control

Protocol – XCP, and Adaptive Congestion Protocol – ACP).

In Chapter 3 we study a number of existing AQM-based mechanisms for

congestion control in TCP/IP best-effort networks and identify common limitations.

In Chapter 4 we give a brief overview of the Diff-Serv architecture, and we further

discuss the properties of the Diff-Serv congestion control.

Chapter 5 reviews some of the properties of Fuzzy Logic Control, and the design

steps of a Fuzzy Logic Controller. We further give a brief overview of the

application of fuzzy logic in networks, in recent years.

In Chapter 6 we present our proposed non-linear Fuzzy Logic based AQM Control

methodology applied in TCP/IP best-effort networks, namely Fuzzy Explicit

Marking (FEM). We discuss the design steps, the complexity of the implementation,

and the sensitivity of the results to the control parameters.

 4

Chapter 7 presents detailed simulation results and discusses the performance of

FEM as compared to other representative AQM schemes. It is demonstrated through

extensive simulations over a wide range of network conditions that the fuzzy logic

based AQM control methodology better handles the nonlinearities of the TCP

network, and thus provides an effective control to congestion.

In Chapter 8 we present the extended non-linear Fuzzy Logic based Control

methodology applied in TCP/IP Diff-Serv networks, namely Fuzzy Explicit Marking

In/Out (FIO), and in Chapter 9 we present simulation results and discuss the

performance of FIO.

Finally, in Chapter 10 we present the main conclusions of this thesis, and we

introduce some thoughts for future work.

Appendix A of the thesis gives in detail the linguistic rules chosen in the proposed

Fuzzy Logic based Control Methodology. Appendix B and C contain simulation

results concerning the performance of FEM and FIO, and their counterparts,

respectively.

 5

Chapter 2

Congestion Control in Internet Protocol

Networks

2.1 Introduction
Congestion control is a critical issue in Internet Protocol (IP) networks. Many

research proposals can be found in the literature to provide means of avoiding and/or

controlling the congestion. The fundamental principles of congestion, and different

approaches to avoid or/and control congestion are widely discussed. In this Chapter,

the main functionalities of the standard Transmission Control Protocol (TCP)

congestion control mechanisms are explained. In addition, many variants of TCP

which have been proposed to meet Internet’s today needs are briefly described. As

there is strong trend to progressively move the controls inside the network, closer to

where it can be sensed, we discuss the use of router support to congestion control,

either by having explicit single-bit feedback, or multi-bit feedback. Due to its current

practical significance, in this thesis we focus on explicit single-bit feedback.

2.2 Defining Congestion
Congestion is a complex process to define. Despite the many years of research

efforts in congestion control, currently there is no agreed definition. One may refer to

 6

the ongoing discussion between the active members of the networking community as

to give the right definition for congestion (ICCRG, 2006).

Two perspectives on network congestion are the user perspective and the network

perspective.

Keshav (1991) states that “Network congestion is a state of degraded performance

from the perspective of a particular user. A network is said to be congested from the

perspective of a user if that user’s utility has decreased due to an increase in network

load”. The user experiences long delays in the delivery of data, perhaps with heavy

losses caused by buffer overflows. Thus, there is degradation in the quality of the

delivered service, with the need for retransmissions of packets (for services intolerant

to loss). In the event of retransmissions, there is a drop in the throughput, which

leads to a collapse of network throughput, when a substantial part of the carried

traffic is due to retransmissions (in that state not much useful traffic is carried). In the

region of congestion, queue lengths, hence queuing delays, grow at a rapid pace –

much faster than when the network is not heavily loaded.

Yang and Reddy (1995) give a network-centric definition of congestion, as a

network state in which performance degrades due to the saturation of network

resources, such as communication links, processor cycles, and memory buffers. For

example, if a communication link delivers packets to a queue at a higher rate than the

service rate of the queue, then the size of the queue will grow. If the queue space is

finite then in addition to the delay experienced by the packets until service, losses

will also occur. Observe that congestion is not a static resource shortage problem, but

rather a dynamic resource allocation problem (Pitsillides & Sekercioglu, 2000).

Networks need to serve all users requests, which may be unpredictable and bursty in

their behaviour. However, network resources are finite, and must be managed for

sharing among the competing users. Congestion will occur, if the resources are not

managed effectively. The optimal control of networks of queues is a well-known,

much studied, and notoriously difficult problem, even for the simplest of cases (e.g.,

Hassan & Sirisena, 2001; Andrews & Slivkins, 2006).

 7

(a)

(b)

 Figure 2.1 Network throughput and delay vs offered load

Figure 2.1a shows the throughput-load relationship in a packet-switching network

(Schwartz, 1988). This plot shows the effect of excessive loading on the network

throughput for three cases: no control, ideally controlled, and practically controlled.

In the case of ideal control, the throughput increases linearly until saturation of

resources, where it flattens off and remain constant, irrespective of the increase of

loading beyond the capacity of the system. Obviously, this type of control is

impossible in practice. Hence for the practically controlled case, we observe some

loss of throughput, as there is some communication overhead associated with the

controls, possible some inaccuracy of feedback state information as well as some

time delay in its delivery. Finally, for the uncontrolled case, congestion collapse may

occur whereby as the network is increasingly overloaded the network throughput

collapses, i.e. very little useful network traffic is carried – due to retransmissions or

deadlock situations.

Figure 2.1b shows the corresponding delay-load relationship. The delay (response

time) plot follows a similar pattern as the throughput plot. At first, the delay rises

slowly with the offered load even for fast increments of the throughput. Then after

the knee point is reached (i.e., the queues start building), the delay curve jumps

significantly while the throughput stays flat. Finally, the delay grows indefinitely

when the network becomes congested (i.e., the queues start overflowing).

 8

2.3 Congestion Control Principles
Chiu and Jain (1989) classify most congestion control approaches into two

categories: approaches for congestion avoidance and approaches for congestion

recovery. Congestion avoidance mechanisms allow a network to operate in the

optimal region of low delay and high throughput, thus, preventing the network from

becoming congested. In contrast, the congestion recovery mechanism allows the

network to recover from the congested state of high delay and losses, and low

throughput. Even if a network adopts a strategy of congestion avoidance, congestion

recovery schemes would still be required to retain throughput in the case of abrupt

changes in a network that may cause congestion.

Both types of approaches are basically resource management problems. They can

be formulated as system control problems, in which the system senses its state and

feeds this back to its users who adjust their control (Chiu & Jain, 1989). This simple

classification only provides a very general picture of common properties between

separating groups of approaches.

A number of taxonomies of congestion control were/could be considered. A

detailed taxonomy for congestion control algorithms is proposed by Yang and Reddy

(1995), which focuses on the decision-making process of individual congestion

control algorithms. The main categories introduced by the Yang and Reddy (1995)

taxonomy are:

• Open loop: These are the mechanisms in which the control decisions of

algorithms do not depend on any sort of feedback information from the congested

spots in the network, that is, they do not monitor the state of the network

dynamically.

• Closed loop: These are the mechanisms that make their control decisions based

on some sort of feedback information to the sources. With the provision of

feedback, these mechanisms are able to monitor the network performance

dynamically. The feedback involved may be implicit or explicit. In the explicit

feedback scheme, feedbacks have to be sent explicitly as separate packets (or can

 9

be piggybacked) (e.g. Ramakrishnan, Floyd, & Black, 2001). If there is no

necessity of sending the feedback explicitly, the scheme is said to be an implicit

feedback scheme. Some examples of such implicit feedbacks are time delays of

acknowledgment or timeouts, and packet loss (e.g. Jacobson, 1988; Stevens,

1997 - an implicit binary feedback scheme).

o The feedback can be further categorised into binary and “full” feedback.

A single bit in the packet header is used as a binary feedback mechanism

(e.g. Ramakrishnan, Floyd, & Black, 2001 – an explicit binary feedback

scheme). “Full” feedback incorporates use of more than one bit in the

packet header that are used to send a whole (i.e. “full”) information about

the status of the network, like the exact sending rate, the round-trip time,

etc (e.g. Katabi, Handley, & Rohrs, 2002 – an explicit multi-bit (“full”)

feedback scheme).

A congestion control system should be preventive, if possible. Otherwise, it should

react quickly and minimise the spread of congestion and its duration. A good

engineering practice will be to design the system in such a way as to avoid

congestion. But taken to the extreme (i.e. to guarantee zero losses and zero queuing

delay), this would not be economical. For example, assuring zero waiting at a buffer

implies increasing the service rate at its limit to infinity. A good compromise would

be to allow for some deterioration of performance, but never allow it to become

intolerable (congested). The challenge is to keep the intolerance at limits acceptable

to the users. Note the fuzziness present in defining when congestion is actually

experienced.

The difficulty of the congestion control problems has caused a lot of debate as to

what are appropriate control techniques for the control of congestion, and depending

on one’s point of view, many different schools of thought were followed, with many

published ideas and control techniques.

 10

2.4 Internet Congestion Control
The Internet Protocol (IP) architecture is based on a connectionless end-to-end

packet service. Transmission Control Protocol (TCP) is an end-to-end transport

protocol that provides reliable, in-order service. Congestion control is implemented

via a reactive, closed-loop, dynamic window control scheme (Jacobson, 1988). This

window-based scheme operates in the hosts to cause TCP connections to “back off”

during congestion. That is, TCP flows are responsive to congestion signals (i.e.

dropped packets indicated by a timeout or a triple duplicate acknowledgment) from

the network. It is primarily these TCP congestion avoidance algorithms that prevent

the congestion collapse of today’s Internet.

A fundamental aspect of TCP is that it obeys a “conservation of packets” principle,

where a new segment is not sent into the network until an old segment has left. TCP

implements this strategy via a self-clocking mechanism (acknowledgements received

by the sender are used to trigger the transmission of new segments). This self-

clocking property is the key to TCP’s congestion control strategy. Other elements of

TCP’s congestion control include the congestion avoidance algorithm, the congestion

recovery algorithm (i.e. slow-start), and the fast retransmit/recovery algorithms

(Stevens, 1994, 1997).

A TCP sender additively increases its rate when it perceives that the end-path is

congestion-free, and multiplicatively decreases its rate when it detects (via a loss

event) that the path is congested. Thus, in such situations, TCP congestion control

deploys the so called additive-increase, multiplicative-decrease (AIMD) algorithm.

The linear increase phase of TCP’s congestion control protocol is known as

congestion avoidance. The value of congestion window repeatedly goes through

cycles during which it increases linearly and then suddenly drops to half its current

value (when a loss event occurs, and particularly a triple duplicate acknowledgment),

giving rise to a saw-toothed pattern in long-lived TCP connections (Shenker, Zhang,

& Clark, 1990; Lakshman & Madhow, 1997).

During the initial phase of TCP’s congestion control, which is called slow-start,

the TCP sender begins by transmitting at a slow rate but increases its sending rate

 11

exponentially, until a slow-start threshold is reached, where the congestion avoidance

phase begins. In the case of a loss event, the AIMD saw-toothed pattern begins.

The TCP congestion control reacts differently to a loss event that is detected via a

timeout event, than it does to a loss event detected via receipt of a triple duplicate

acknowledgment (ACK). After a triple duplicate ACK, the congestion window is cut

in half and then increases linearly (i.e. AIMD). However, after a timeout event, a

TCP sender enters a slow-start phase, where the congestion window is set to 1, and

then it grows exponentially, until it reaches one half of the value it had before the

timeout event. At that point, the TCP enters congestion avoidance phase.

2.4.1 TCP Feedback Signalling Scheme
The TCP feedback signalling scheme in the current Internet is binary and implicit

(i.e., network congestion is detected at the sources by loss events). Due to the binary

nature of the feedback, and consequently the AIMD saw-toothed pattern, the system

does not generally converge to a single steady state. The system reaches an

“equilibrium”, in which it oscillates around the optimal state (Chiu & Jain, 1989)

(see Figure 2.2). The time taken to reach the equilibrium (that determines the

responsiveness of the control), and the size of the oscillations (that determines the

 12

Figure 2.2 Responsiveness and smoothness of the control

(Chiu & Jain, 1989)

smoothness of the control) jointly determine the convergence. Ideally, we would like

the time as well as oscillations to be small. Therefore, the controls with smaller time

and smaller amplitude of oscillations are called more responsive and smoother,

respectively.

2.4.2 TCP Evolution
The congestion control mechanisms continue to be enhanced as TCP/IP evolves to

meet new and more demanding requirements.

The early version of TCP, known as TCP Tahoe, enters the slow-start phase

irrespective of the type of loss event. The newer version of TCP, TCP Reno, cancels

the slow-start phase after a triple duplicate ACK, which is called fast recovery, and

resends the lost packet, without waiting for a timeout event, that is a fast retransmit

occurs. Figure 2.3 illustrates the evolution of TCP’s congestion window for both

Reno and Tahoe (Kurose & Ross, 2005).

The TCP NewReno (Allman, Paxson, & Stevens, 1999; Floyd, Henderson, &

Gurtov, 2004) improves the Reno implementation regarding the fast recovery

mechanism. The aim of TCP NewReno is to prevent a TCP sender from reducing its

congestion window multiple times in case several packets are dropped from a single

window of data (a problem Reno has). The NewReno remains in fast recovery until

all of the data outstanding by the time the fast recovery was initiated have been

acknowledged. NewReno can retransmit one lost packet per round trip time (RTT),

until all the lost packets from a particular window of data have been retransmitted.

Thus NewReno avoids multiple reductions in the congestion window, or unnecessary

retransmit timeout with slow start invocation.

Another proposed modification to TCP, the TCP Selective Acknowledgement

(SACK) (Mathis, Mahdavi, Floyd, & Romanow, 1996) allows a TCP receiver to

acknowledge out-of-order packets selectively rather than just cumulatively

acknowledging the last correctly received, in-order packet. Thus TCP Sack may

recover multiple lost packets in a window of data in just one single RTT.

 13

Figure 2.3 Evolution of TCP’s congestion window
(Kurose & Ross, 2005)

2.4.3 TCP-like Variants
The behaviour of TCP/IP congestion control still remains a matter of continuous

research interest in the TCP/IP world (highlighted by the frequent Internet

Engineering Task Force – IETF – Request for Comments – RFCs, and many

published papers in various journals and conferences, proposing fixes or new

solutions). What follows, are some examples of the vast research proposals:

TCP Vegas (Brakmo & Peterson, 1995; Hengartner, Bolliger, & Gross, 2000)

observes the indication of congestion differently than the previous TCP variants

mentioned above. In particular, TCP Vegas does not detect network congestion by

loss events; rather it monitors the changes in the RTTs associated to the packets that

it has sent previously. If the observed RTTs increase, TCP Vegas infers incipient

network congestion and so it reduces the congestion window by one; otherwise, it

increases the congestion window by one. There is also a RTT range, in which no

changes on the congestion window happens (i.e. the sending rate is matching the

network capacity).

TCP-Westwood+ (Mascolo et al., 2001; Grieco & Mascolo, 2003) is a new version

of the TCP protocol, aimed at improving its performance under random or sporadic

 14

losses. It introduces “faster” recovery to avoid over-shrinking the congestion window

after a loss event (due to a timeout or a triple duplicate ACK), by taking into account

the end-to-end estimation of the bandwidth available to TCP. The available

bandwidth is estimated at the TCP source by measuring and performing low-pass

filtering of the returning rate of ACKs. The estimated bandwidth is then used to

adaptively decrease the congestion window and the slow-start threshold after a loss

event.

Recently, there is an ongoing research towards enhancing the TCP congestion

control mechanisms in order for TCP to fully exploit the network capacity of fast,

long-distance networks (i.e. high-speed networks operating at 622 Mbit/s, 2.5 Gbit/s,

or 10GBit/s, which have a high bandwidth-delay product). Research proposals in

changing the way TCP adapts its congestion window include HighSpeed TCP

(Floyd, 2003), Scalable TCP (Kelly, 2003), FAST TCP (Jin, Wei, & Low, 2004),

High TCP (Leith & Shorten, 2004), as well as the TCP Westwood+ (Altman et al.,

2006) mentioned above.

2.4.4 TCP-friendly Congestion Control
With the widespread deployment of applications with stringent QoS requirements,

like streaming multimedia and IP telephony, it is becoming increasingly important to

ensure that this kind of applications can coexist with each other and with current

TCP based applications (e.g., file transferring, Web-like, etc). Many current

multimedia applications use the User Datagram Protocol (UDP), which does not

offer any kind of congestion control, and do not change their sending rate regardless

of the congestion state of the network. This can cause severe degradation in the

performance of TCP-based applications, and may lead to network collapse. Thus

recent proposals aim to incorporate some form of congestion control in multimedia

applications, and make them “TCP-friendly”. By saying TCP-friendliness, it is meant

that “the steady state send rate of the protocol will be roughly equal to that of a TCP

connection experiencing similar network conditions” (Padhye, 2000).

 15

To accomplish this goal, equation-based rate-controlled congestion control has

been proposed in the literature (Handley, Floyd, Padhye, & Widmer, 2003). By that,

it is meant that for traffic competing in the best-effort Internet with TCP, the

appropriate response function is a model of TCP that characterises the steady-state

sending rate of TCP as a function of the round-trip time and steady-state loss event

rate. Thus using a TCP like response function makes the protocol “TCP-friendly”.

Further, the non-TCP flows should be able to satisfy requirements of the demanding

application, but should not be unfair to the competing TCP flows. So, such non-TCP

flows should use a control equation to govern their sending rate friendly from the

TCP flows perspective. The equation relies on the loss event rate that is generally

computed at the receiver and sent to the sender. The accuracy of the equation is

fundamental for this alternative congestion control approach (see ongoing

discussions at the Datagram Congestion Control Protocol Working Group (DCCP-

WG, 2001)). However, given the complexity of such a modelling, a complete model

appears still to be too far from being conceived.

Recently, a new unreliable transport protocol incorporating end-to-end congestion

control (Floyd, Handley, & Kohler, 2006; Kohler, Handley, & Floyd, 2006) has been

proposed, namely Datagram Congestion Control Protocol (DCCP). DCCP

implements a congestion-controlled, unreliable flow of datagrams for use by

applications, such as streaming media or on-line games. DCCP provides a choice of

modular congestion control mechanisms. Two mechanisms are currently specified:

TCP-like Congestion Control (Floyd & Kohler, 2006), and TCP-Friendly Rate

Control (TFRC) (Floyd, Kohler, & Padhye, 2006).

2.4.5 Network-assisted Congestion Control
With network-assisted congestion control, routers provide explicit feedback to the

sender regarding the congestion state in the network. This feedback may be as simple

as a single bit indicating congestion at a link, or more complex as a multi-bit

feedback giving to the source “full” information about the network state (e.g., the

exact sending rate). Congestion information is typically conveyed from each router at

 16

the path from the sender to the receiver, by marking/updating a field in a packet’s

header, to indicate congestion, and then fed back from the receiver to the sender as a

form of notification.

It has become clear (Braden et al., 1998) that the existing TCP congestion

avoidance/control mechanisms and its variants, while necessary and powerful, are

not sufficient to provide good service in all circumstances. Basically, there is a limit

to how much control can be accomplished from the edges of the network. Some

additional mechanisms are needed in the routers to complement the endpoint

congestion avoidance/control methods, as suggested by various researchers (Floyd &

Jacobson, 1993; Braden et al., 1998; Ramakrishnan, Floyd, & Black, 2001). Note

that the need for router control was realised early; e.g. see Jacobson (1988), where

for future work the router side is advocated as necessary. A clear trend is observed:

to progressively move the controls inside the network, closer to where it can be

sensed.

By using network-assisted congestion control, TCP does not need to await a loss

event – due to buffer overflow – to detect congestion and slow down properly.

Instead, it is informed by the intermediate nodes (routers) when incipient congestion

starts, and reacts accordingly.

2.4.5.1 Binary Feedback

The simplest method of assisting the TCP from the network point of view is to

provide a binary feedback to the source about the network state. The use of Explicit

Congestion Notification (ECN) was proposed (Ramakrishnan, Floyd, & Black, 2001)

in order to provide TCP an alternative to packet drops as a mechanism for detecting

incipient congestion in the network. The ECN proposal works together with the

addition of active queue management (AQM) to the Internet infrastructure, where

routers detect congestion before the queue overflows (see discussion of AQM in

detail in Chapter 3).

 17

 Table 2.1 The ECN field in IP

ECN FIELD

0 0 Not-ECT

0 1 ECT (1)

1 0 ECT (0)

1 1 CE

The ECN scheme requires both end-to-end and network support. An ECN-enabled

router can mark a packet by setting a bit in the packet’s header, if the transport

protocol is capable of reacting to ECN. Specifically, the ECN proposal requires

specific flags in both IP and TCP headers. Two bits are used in each header for

proper signalling among the sender, routers, and the receiver.

In the IP header, the two bits (ECN field) results in four ECN codepoints (see

Table 2.1). The ECN-Capable Transport (ECT) codepoints ‘10’ and ‘01’ are set by

the data sender to indicate that the end-points of the transport protocol are ECN-

capable. Routers treat both codepoints as equivalent; senders are free to use either of

the two to indicate ECT. The not-ECT codepoint ‘00’ indicates a packet that is not

using ECN. The ECN codepoint ‘11’ is set by a router to indicate congestion to the

end nodes (i.e. marks the packet); this is called the Congestion Experienced (CE)

codepoint. Upon the receipt by an ECN-capable transport of a single CE packet, the

congestion control algorithms followed at the end nodes must be essentially the same

as the congestion control response to a single dropped packet.

In the TCP header, two new flags are introduced. The ECN-Echo (ECE) flag is

used by the receiver to inform the sender that a CE packet has been received. This is

done in the ACK packet sent. Similarly, the sender uses the Congestion Window

Reduced (CWR) flag to announce to the receiver that its congestion window has been

reduced, as a consequence of the reception of the ECE ACK.

The use of ECN for notification of congestion to the end-nodes generally prevents

unnecessary packet drops, and thus is appealing to be used in the Internet.

 18

2.4.5.2 Multi-bit Feedback

As discussed in Section 2.4.1, if feedback control is binary, then the system does

not generally converge to a single steady state; it rather reaches an “equilibrium”, in

which it oscillates around the optimal state. Further, the congestion information fed

back to the end-node, obviously, is not as rich as it could be using multiple-bit

feedback. If multiple bits were used to convey the feedback, more precise

information can be made available to the source. Of course, issues like creating/or

not more overhead in the network is a subject that still needs investigation.

A recent proposal for enhancement of the current TCP, using multiple-bit feedback

is an optional Quick-Start mechanism proposed by Floyd, Allman, Jain, and

Sarolahti (2006). The aim of this mechanism is, in cooperation with routers, to

determine an allowed sending rate at the start and at times in the middle of a data

transfer (e.g., after an idle period), to allow connections to use higher sending rates –

when there is significant unused capacity along the path and the sender and all the

routers along the path approve the Quick-Start request. Quick-Start is being proposed

as a mechanism that could be used in controlled environments. Each router along the

path could approve the requested rate, reduce the requested rate, or indicate that the

Quick-Start request is not approved (based on the ability of all routers along the path

to determine if their respective output links are significantly underutilized or not).

The Quick-Start option includes a request for a sending rate in bits per second, and a

Quick-Start time-to-live to be decremented by every router along the path that

understands the option and approves the request. The Quick-Start request includes,

among other information, a four-bit rate request field, in which the request range is

from 80Kbit/s to 1.3Gbit/s, using an encoding function.

Further, proposed solutions for TCP congestion avoidance problems in high speed

networks, using multiple-bit feedback are the eXplicit Control Protocol (XCP), and

the Adaptive Congestion Protocol (ACP).

The XCP (Katabi, Handley, & Rohrs, 2002) generalizes the ECN proposal. Instead

of the one-bit congestion notification used by the ECN, XCP-enabled routers inform

senders of the degree of congestion at the bottleneck. Each XCP packet carries a

 19

congestion header, which is used to communicate a flow’s state to routers and

feedback from the routers to the receivers. Decisions on how to update the sending

rate of the sources are taken by the sources themselves, based on congestion signals

that they receive from the network. These congestion signals are generated by the

routers using a static control law.

An alternative proposal to XCP is ACP (Lestas, 2005), in which the decisions on

how to update the sending rate of the sources are taken by the routers using a

dynamic control law. That means that intelligence is transferred from the end nodes

to the network. ACP aims to achieve max-min fairness and high network utilization

at equilibrium; to clear the queues at equilibrium and to ensure small number of

drops; to exhibit smooth responses and fast convergences.

2.5 Conclusions
Congestion control is still a critical issue, despite literally hundreds of proposed

possible, and probably very good, solutions addressing the diverse needs of today’s

Internet. However, the difficulty in changing any deployed protocol, together with

the “robust” behaviour (Internet as is, practically works!) of the ubiquitous Jacobson

TCP congestion control mechanisms in most cases, are resisting the employment of

new algorithms. In order to supplement the standard TCP based congestion control,

network-assisted congestion control is introduced, that is, routers provide explicit

feedback to the source regarding the congestion state in the network. This type of

feedback can be either binary or multi-bit. Many research solutions towards this aim

have been proposed.

The feedback signalling scheme in the current Internet is binary and implicit. With

the standardization of ECN (Ramakrishnan, Floyd, & Black, 2001), the Internet

feedback mechanism can become explicit and binary. This is the base of our research

study; introduce intelligent, control methodology, as part of router support for

congestion control, to supplement the standard TCP, to obtain satisfactory

performance.

 20

Chapter 3

Active Queue Management in TCP/IP

Networks

3.1 Introduction
Network management and control is a complex problem, which is becoming even

more difficult with the increased demand to use the Internet for time-sensitive

applications with differing QoS requirements. The deficiencies of the implicit end-to-

end feedback adopted by the TCP paradigm has led to the introduction of active

queue management (AQM) mechanisms, as router support to the TCP congestion

control. In this chapter we motivate the need for AQM and then the modelling and

control approach followed by a number of well-known AQM schemes are discussed,

and their limitations to meet the diverse needs of today’s Internet are identified.

3.2 The Need for Active Queue Management
The TCP congestion avoidance/congestion control mechanisms have been very

successful, as the Internet has evolved from a small-scale research network to today’s

interconnected millions of networks. However, the increased demand to use the

Internet for time/delay-sensitive applications with differing QoS requirements,

questions the efficiency and the feasibility of such an end-to-end implicit feedback

 21

based congestion control. It has become clear (Braden et al., 1998) that the existing

TCP congestion avoidance/control mechanisms and its variants, while necessary and

powerful, are not sufficient to provide good service in all circumstances. Basically,

there is a limit to how much control can be accomplished from the edges of the

network. Some additional mechanisms are needed in the routers to complement the

endpoint congestion avoidance/control methods, as suggested by various researchers

(Floyd & Jacobson, 1993; Braden et al., 1998; Ramakrishnan, Floyd, & Black,

2001). Note that the need for router control was realised early; e.g. see Jacobson

(1988), where for future work the router side is advocated as necessary. A clear trend

is observed: to progressively move the controls inside the network, closer to where it

can be sensed. Thus AQM mechanisms were proposed, which aim to provide high

link utilization with low loss rate and queuing delay, while responding quickly to

load changes.

Braden et al. (1998) distinguish between two types of router algorithms that are

related to congestion control, that is queue management, and scheduling: “To a rough

approximation queue management algorithms manage the length of packet queues by

dropping packets (or sending feedback signal to regulate the rate) when necessary or

appropriate, while scheduling algorithms determine which packet to send next and

are used primarily to manage the allocation of bandwidth among flows” (Braden et

al., 1998).

Queues are used to smooth spikes in incoming packet rates, and to allow the router

sufficient time for packet transmission. When the incoming packet rate is higher than

the router’s outgoing packet rate, the queue size will increase, and eventually will

exceed the available buffer space. In the existing TCP implementation, when the

buffer is full, the packets that are just arriving are dropped; this dropping policy is

known as Tail-Drop or Drop Tail (DT). DT is the most widespread dropping policy,

due to its simplicity.

Although DT is simple to implement, and has been used for many years, it was

shown to interact badly with TCP congestion control mechanisms and to lead to poor

performance. In particular, studies have shown that DT can cause global

 22

Figure 3.1 Drop Tail queue length dynamics

synchronisation, lockouts, and full queues (Pentikousis, 2001). Global

synchronisation occurs when a significant number of TCP sources slows down at the

same time and leads to underutilization of scarce network resources, like the

bottleneck link. This phenomenon is likely to happen when a router drops many

consecutive packets in a short period of time. With many TCP sources observing

losses during the same period of time, an undesired cycle starts with periods of

relatively low network utilization followed by heavy congestion. The lockout

phenomenon may occur when DT allows a few connections to monopolize queue

space (Ryu, Rump, & Qiao, 2003). Since the router sends back (implicitly)

congestion signals to sources by means of packet losses only when the buffer has

become full, a full queue phenomenon may persist for a long time under DT queue

management. Full queues increase per-packet delays, and can lead to increased

variation in delay (jitter).

 23

Figure 3.1 illustrates the DT queue length dynamics over time at the bottleneck of

a single-congested router network topology – shown in Figure 7.1 (see Chapter 7).

The bottleneck link capacity is 15 Mbit/s with a propagation delay of 120 msec. The

number of TCP active flows, used in this simulation, is 100 long-lived File Transfer

Protocol (FTP) flows, and 100 short-lived TCP flows (Web-like flows). It can be

observed that the DT queue management scheme exhibits the full queue

phenomenon, by keeping the buffer full, for a long period of time, and this has the

negative effect of consecutive packet losses, and low useful throughput of the link.

The frequent oscillations shown, indicates an undesired cycle with long periods of

heavy congestion followed by relatively low network utilization.

One possible solution to overcome the drawbacks of the DT scheme is to drop

packets before a queue becomes full so that a source can respond to congestion

before buffers overflow. Another approach is to control the queue length, by

regulating the flow of packets from the sources*. Therefore, in order to cope with the

dynamic, time-varying nature of TCP/IP networks effectively, intelligent congestion

control mechanisms for queue management are required at routers.

Thus the need for a robust enough controller to capture the dynamics, the highly

bursty network traffic, and the nonlinearities of the controlled system leads to the

introduction of Active Queue Management (AQM) mechanisms to assist the TCP

congestion control to obtain satisfactory performance.

Due to the adherence to the current Internet standards next we focus on AQM

mechanisms, which either drop or mark packets to indicate congestion, and also keep

the TCP’s window increase and decrease mechanism at the sources unchanged.

3.3 Active Queue Management Principles
The AQM approach can be contrasted with the DT queue management approach,

employed by common Internet routers, where the discard policy of arriving packets

* For example, in this class of controllers, the router calculates the rate it will accept from a particular
source over the next control interval. Various feedback schemes are proposed in the literature to
transfer this feedback information to the source, as well as various algorithms to calculate the rate the
router can accept over the next control interval.

 24

is based on the overflow of the output port buffer. Contrary to DT, AQM

mechanisms (Braden et al., 1998) start dropping or marking packets earlier in order

to notify traffic sources about the incipient stages of congestion (TCP interprets

dropped packets as congestion). AQM allows the router to separate policies of

dropping packets from the policies for indicating congestion. In the case of dropping

of packets the TCP congestion controller relies on the implicit feedback signal

(generated by the lost packet as a timeout) to reduce the TCP congestion window. In

the case of packet marking packets are not dropped, rather a bit is set on their header

indicating congestion (hence termed Explicit Congestion Notification, ECN), and

returned via the destination to the source. The use of ECN (Ramakrishnan, Floyd, &

Black, 2001) was proposed in order to provide TCP an alternative to packet drops as

a mechanism for detecting incipient congestion in the network. The ECN scheme

requires both end-to-end and network support. An AQM-enabled gateway can mark

a packet either by dropping it or by setting a bit in the packet’s header, if the

transport protocol is capable of reacting to ECN. The use of ECN for notification of

congestion to the end-nodes generally prevents unnecessary packet drops.

Several schemes have been proposed to provide congestion control in TCP/IP

networks (e.g., Floyd & Jacobson, 1993; Floyd, Gummadi, & Shenker, 2001; Hollot,

Misra, Towsley, & Gong, 2002; Athuraliya, Li, Low, & Yin, 2001; Kunniyur &

Srikant, 2004).

The main AQM performance characteristics include (Hollot, Misra, Towsley, &
Gong, 2002):

• Efficient queue utilization: the queue should avoid overflow that results in lost

packets and undesired retransmissions or emptiness that results in link

underutilization.

• Queuing Delay: It is desirable to keep small both the queuing delay and its

variations.

• Robustness: AQM scheme needs to maintain robust behaviour in spite of varying

network conditions, such as variations in the number of TCP sessions, and

variations in the propagation delay and link capacity.

 25

qmin qmax qavg

p

pmax

1

0

Figure 3.2 RED control law

A discussion of a number of representative, well-known, AQM schemes follows,

in terms of modelling and control approach, and their limitations are identified.

3.4 Random Early Detection – A Linear Heuristic-based

Technique
Random Early Detection (RED) (Floyd & Jacobson, 1993) was the first AQM

algorithm proposed. It sets some minimum and maximum drop/mark thresholds in

the router queues. In case the average queue size exceeds the minimum threshold,

RED starts randomly dropping/marking packets, based on a linear heuristic-based

control law (see Equation 3.1 and Figure 3.2), with a drop/mark probability

depending on the average queue length, whereas if it exceeds the maximum threshold

every packet is dropped.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

≤≤
−

−

<

=

max

maxminmax
minmax

min

min

,1

,

,0

qqif

qqqifp
qq
qq

qqif

p

avg

avg
avg

avg

(3.1)

 26

where and are the lower and upper thresholds, and is the maximum

drop/mark probability. The average queue length, , is updated at every packet

arrival according to the exponentially weighted moving average (EWMA) method, as

shown in Equation 3.2:

minq maxq maxp

avgq

 (3.2)
inst

old
avg

new
avg qwqwq ×+×−=)1(

where is the instantaneous queue length, and w is the averaging weight,

.

instq

10 ≤≤ w

RED is designed to avoid “global synchronization”, a case where all active sources

reduce their sending rates at the same time that results in a fluctuation of link

utilization, by introducing randomized packet dropping/marking.

The properties of RED and its variants have been extensively studied in the past

few years. It is becoming clear that for successful implementation of RED based

AQM (or its variants) in TCP/IP networks, there are still a number of unresolved

issues. These include:

• Problems with performance of RED under different scenarios of operation and

loading conditions. For example, the influence of: the moving average of the

queue occupancy on the responsiveness of control; the loss function on the

congestion control feedback mechanism; and the buffer size to the reaction time

of the congestion controller is documented, see for example Kohler, Menth, and

Vicari (2000). Note that numerous RED variants (e.g. Ott, Lakshman, & Wong,

1999; Feng, et al., 1999a, b) have been proposed, motivated by the difficulty in

obtaining satisfactory performance under all network conditions. In Iannaccon et

al. (2001) a comparative evaluation of RED with standard parameter settings,

RED with optimal parameter settings (Ziegler, Fdida, & Brandauer, 2001), and

Gentle RED (Floyd, 2000) showed no significant performance improvements

with RED compared to DT queue management scheme that may justify

deployment of RED in current backbone by ISPs; the performance of RED with

standard parameters setting exhibits higher dependency on the traffic load

dynamics than other mechanisms, indicating that fine tuning of the RED

 27

parameters is not sufficient to cope with undesired RED behavior. It is worth

noting that Gentle RED† addressed many of the RED deficiencies, but many

serious deficiencies still remain (Iannaccon et al., 2001).

• Tuning of RED parameters has been an inexact science for sometime now, so

much, so that some researchers have advocated against using RED, in part

because of this tuning difficulty (May, Bolot, Diot, & Lyles, 1999; May, Bonald,

& Bolot, 2000). Recently, some effort was undertaken to evaluate the

performance of RED analytically. In May, Bonald, and Bolot (2000) the

dependence of RED performance with respect to bursty traffic is studied. An

approach to investigate RED in the presence of feedback traffic is presented in

Peeters and Blondia (1999) where a source consists of a 3-state Markov model.

Firoiu and Borden (2000) investigated the issue of recommendations of RED

parameters and derived a set of recommendations of RED parameters for

configuration of the RED queue size estimator: the frequency of queue sampling

and the average weight. In Misra, Gong, and Towsley (2000) a more formal,

control theoretic stand-point is adopted to also investigate the issue of

recommending settings for the RED parameters. Ziegler, Fdida, and Brandauer

(2001) derived quantitative models on how to set RED parameters with TCP

traffic. The effective tuning of RED implies a “global” parameterisation that is

very difficult, if not impossible to achieve, as it is shown in Feng (1999).

In (Ott, Lakshman, & Wong, 1999; May, Bolot, Diot, & Lyles, 1999; Misra, Gong,

& Towsley, 2000) it is stated that one of RED’s main weaknesses is that the average

queue size varies with the level of congestion and with parameter settings. As a

result, the mean queuing delay from RED is sensitive to the traffic load, as well as to

the RED parameters. Consequently the throughput is also sensitive to the traffic load

and to RED parameters. The authors of RED themselves have identified later on

(Floyd, Gummadi, & Shenker, 2001) that: “RED does not perform well when the

average queue becomes larger than max threshold, resulting in significantly

† Gentle RED (Floyd, 2000) modifies RED’s drop/mark probability function in the case where the
average queue size exceeds the maximum threshold; in that case, the drop/mark probability increases
linearly between the maximum threshold and twice the maximum threshold.

 28

decreased throughput and increased dropping rates. Avoiding this regime would

require constant tuning of the RED parameters”.

Adaptive-RED (A-RED) (Floyd, Gummadi, & Shenker, 2001), proposed by the

one of the authors of RED (Floyd & Jacobson, 1993), attempts to solve the problem

for the need of continuously tuning RED parameters by modifying a similar proposal

by Feng, Kandlur, Saha, and Shin (1999b). In particular, A-RED adjusts the value of

the maximum drop/mark probability to keep the average queue size within a target

range half way between the minimum and maximum thresholds. Thus, A-RED

maintains a desired average target queue length (TQL) twice the minimum threshold

(if the maximum threshold is kept three times the minimum threshold). The

adjustment of the maximum drop/mark probability is based on an additive fixed

increase step when the average queue length exceeds the desired average queue, and

on a multiplicative fixed decrease step when the average queue length goes below the

desired average value, following a linear AIMD approach. Furthermore, A-RED also

specifies a procedure for automatically setting the RED parameter of average queue

weight as a function of the link capacity, following the approach in Ziegler, Fdida,

and Brandauer (2001).

However, in Li, Zhang, Addie, and Clerot (2003) it is demonstrated that the fixed

increase step size for the adjustment of the maximum drop/mark probability affects

the performance of A-RED algorithm with loose convergence to the target average

queue, as it is hard to quickly respond to traffic changes. The study in Li, Zhang,

Addie, and Clerot (2003) shows that for different traffic conditions, different values

of the increase step size would be preferred.

3.4.1 Control-Theoretic Design and Analysis of TCP/RED
Recently, some effort has been undertaken to evaluate the performance of RED-

like AQM mechanisms analytically using control theory. For this purpose, the

TCP/AQM flow dynamics are modelled and analysed in terms of feedback control

theory. The design of such models is used to analyse the AQM system and provide

guidelines/recommendations for correct configuration of AQM parameters that lead
 29

 AQM
 controller

 TCP

 Delay

 Queue

Plant

q p

Feedback signal

Figure 3.3 TCP/AQM feedback control system

to stable and robust operation, as well as to illustrate, in some cases, the difficulty of

setting AQM parameters to stabilize TCP for the control approaches under study.

As shown in Figure 3.3, the TCP congestion control dynamics with an AQM

scheme can be modelled as a feedback control system. It consists of (i) a plant - the

controlled process – with TCP sources, receivers, and routers, (ii) an AQM controller

– the controlling element – which generates as a control signal the packet drop/mark

probability, p, (iii) the controlled variable queue length, q, and (iv), the feedback

signal, which is a system output observed information.

In Firoiu and Borden (2000), RED implementation is studied and several structural

problems are identified, such as large traffic oscillations. The system model Firoiu

and Borden (2000) introduced is a deterministic nonlinear dynamic feedback system

model, consisting of a derived plant function (queue law), averaging function, and

RED control function. The exact form of the plant function depends on system

parameters such as the number N of connections, the nature of the connections, and

the round-trip delays. Potential problems of instability of the feedback system are

identified, and therefore, a set of recommendations for configuration of the RED

control law (frequency of queue sampling and the average queue weight) are derived.

Misra, Gong, and Towsley (2000) have developed a system of nonlinear

differential equations for TCP/AQM dynamics using fluid-flow analysis that ignores

the TCP slow start phase. Using the derived model, the role played by the RED

configuration parameters on the behavior of the algorithm in a network is explained.

It is believed that the RED averaging mechanism is a cause of tuning problems for

RED.

 30

A combined TCP and AQM model is designed and analyzed from a control

theoretic standpoint in Hollot, Misra, Towsley and Gong (2001). Linearization is

used to analyze a previously developed nonlinear model of the system (Misra, Gong,

& Towsley, 2000). The forward-path transfer function of the plant depends on the

number of connections, the round trip time, the link capacity, and a time delay factor.

The analysis on an AQM system implementing RED is performed. Design guidelines

are presented for choosing parameters that lead to stable operation of the linear

feedback control system.

Low et al. (2002, 2003) studied the dynamics of TCP over RED queues through

linearization around equilibrium points. The main conclusion of this paper is that “it

is stability that largely determines the dynamics of TCP/RED”, and not only because

of noise traffic or its Additive Increase/Multiplicative Decrease (AIMD) probing. A

general nonlinear model of TCP/RED is developed, and linearization of the model is

done around the equilibrium in order to study local stability. The linear model

generalizes the model of Hollot, Misra, Towsley, and Gong (2002). The results taken

suggest that TCP/RED becomes unstable when the delay increases, or when the link

capacity increases. The analysis done illustrates the difficulty of setting RED

parameters to stabilize TCP: they can be tuned to improve stability, but only at the

cost of large queues, even when they are dynamically adjusted.

A nonlinear modeling and analysis framework is provided in Ranjan, Abed, and La

(2004). A deterministic nonlinear dynamical model for a simplified TCP network

with RED control is used. This work goes beyond a simple linear stability analysis

and studies regions where nonlinear instabilities occur due to the nonlinearity in the

TCP throughput characteristic as a function of drop probability at the gateway. The

model is shown to exhibit a rich variety of bifurcation behavior, leading to irregular

operation. As system parameters are varied, the system dynamics are shown to transit

between a stable fixed point and oscillatory and/or chaotic behavior (instability). In

particular, the effects of various system and control parameters (such as, the

averaging weight w, the lower queue threshold qmin, the number of connections, and

the round trip delay) on average queue behavior are studied, as each of these

 31

parameters is varied while the others are fixed. The results show that as the averaging

weight is increased a chaos-type phenomenon appears. Also, the system becomes

less stable as qmin is increased. On the other hand, the system stabilizes as the number

of connections increases, though at the expense of increased delay. Furthermore,

larger round trip propagation delays cause instability. The oscillatory behavior

appearing in the system is due to the inherent nonlinearity of the interaction between

RED mechanism and TCP.

A different approach is followed in Plasser and Ziegler (2004), where the above

mentioned problems of a TCP/RED system are due mainly to the linearity of the

drop/mark probability function of the RED algorithm, and not a matter of appropriate

tuning of RED parameters.

Several papers have introduced models (as explained above) that aim to give

appropriate configuration of RED parameters (such as averaging weight, minimum

and maximum thresholds, maximum drop/mark probability) that can lead to stable

and robust operation. However, as discussed earlier, it is a difficult task to find an

appropriate configuration set that can be applied to broad network conditions. A

major weakness of these models is that the selection of an appropriate parameter set

is done for a specific operating point for which various system’s parameters are

assumed to be known (such as the number of flows and the round trip time).

As Plasser and Ziegler (2004) stated, even if the assumptions regarding the input

parameters fit the specific scenario, the applicability of the RED algorithm would be

restricted to a small range of the assumed values only. Therefore, the configured

parameter set and the stability conditions introduced by the proposed models lack

applicability to all possible real scenarios with varying dynamics of network

conditions. As observed in Plasser and Ziegler (2004), during high load conditions a

disproportionately higher drop/mark probability is required than in a low load

condition, in order to keep the queue length in the same range, a requirement met

only by a nonlinear drop/mark function. Such a nonlinear function fulfills the

requirement of the queue length to remain between qmin and qmax for a much broader

load conditions than the original linear RED function. Therefore, it is concluded that

 32

the linear drop/mark probability function of RED itself is not robust enough for the

highly bursty network traffic. The motivation should be to find a proper nonlinear

function, rather than to find appropriate tuned RED parameters for a specific

operating point for the original linear RED function.

3.5 Proportional Integral Control – A Linear Control

Theory-based Technique
Hollot et al. use classical control system techniques to develop controllers well

suited for TCP/AQM system (Hollot, Misra, Towsley, & Gong, 2002). Three key

network parameters – the number of TCP sessions, the link capacity and the round-

trip time – are related to the underlying feedback control system. It is determined that

the queue averaging in RED algorithm is not beneficial. It also recommends an

alternative AQM scheme, a proportional-integral (PI) control, on managing queue

utilization and delay. The key feature is that PI control allows one to explicitly set

the network queuing delay by introducing a desired queue length. Using a linearized

TCP/AQM dynamics, the PI controller has been proposed not only to improve

responsiveness of the TCP/AQM dynamics but also to stabilize the router queue

length around the desired value. The latter can be achieved by means of integral

control, while the former can be achieved by means of proportional control using the

instantaneous queue length instead of using the average queue length.

The authors use a simplified version of a previously developed dynamic TCP

model (Misra, Gong, & Towsley, 2000) – that uses fluid-flow and stochastic

differential equation analysis, which ignores both slow start phase and timeout

mechanism. This model is described by the coupled, nonlinear differential equations

shown in Equation 3.3 (Hollot, Misra, Towsley, & Gong, 2002).

 33

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

+−

>+−

=

−
−
−

−=

0,)(
)(
)(,0max

0),(
)(
)(

))((
))((
))((

2
)(

)(
1)(

qtW
tR
tNC

qtW
tR
tNC

q

tRtp
tRtR
tRtWtW

tR
tW

&

&

 (3.3)

where W is the average TCP window size, q is the average queue length, N(t) is the

number of TCP sessions, R(t) is the round-trip time, which is equal to pT
C
tq
+

)(, C is

the link capacity, and Tp is the propagation delay (denotes the time-derivative).

The first differential equation in (3.3) describes the TCP window control dynamic,

and the second equation in (3.3) models the bottleneck queue length.

x&

Using this simplified model, the linearization about an operating point is done to

approximate these dynamics. To linearize (3.3) the authors have assumed that the

number of TCP sessions is constant, that is, NtN ≡)(. Given the vector of network

parameters (N, C, Tp) the set of feasible operating points (Wo, qo, po) is defined. The

linearization about the operating point results in Equation 3.4 (Hollot, Misra,

Towsley, & Gong, 2002).

()

()

)(1)()(

)(
2

)()(1

)()()(

2

2

2

2

tq
R

tW
R
Ntq

Rtp
N
CR

Rtqtq
CR

RtWtW
CR

NtW

oo

o
o

o
o

o
o

δδδ

δδδ

δδδ

−=

−−−+−

−+−=

&

&

 (3.4)

where oWWW −=δ , oqqq −=δ , oppp −=δ represent the perturbed variables

about the operating point. As indicated in Hollot et al. (2002) the linearization of the

queue dynamics does not yield a pure integrator, but produces a leaky integrator with

time constant Ro. This is explained by noting that the queue’s arrival rate
oR

NW is a

 34

TCP/AQM dynamic

 PI

q

qo

p

δp

po

Figure 3.4 Implementation of the PI controller
(Hollot, Misra, Towsley, & Gong, 2002)

function of the round-trip time which, in turn, is a function of the queue length due to

the queuing delay
C
q .

A PI control law implementation with the TCP/AQM dynamic is shown in Figure

3.4 (Hollot, Misra, Towsley, & Gong, 2002). Implementing the PI controller in

AQM-enabled routers, results in a difference equation, at time t = kT, where

sf
T 1
= is the sampling period, as shown in Equation 3.5.

 (3.5) () ()TkpTkqbkTqakTp)1()1()()(−+−−= δδ

Design rules are given in (Hollot, Misra, Towsley, & Gong, 2002) for a PI

controller for the linear control system to identify PI parameters (a and b). It is found

that the PI controller stabilizes the feedback control system for all and all −≥ NN
+≤ RR , where N - is considered to be a lower bound on the number of flows, and R+

the upper bound on round-trip time. That is, by stabilizing against the largest

expected Ro and C, and against the smallest expected N can lead to a robust AQM

design.

However, the properties of this controller are not the desirable, since it depends on

network dynamic parameters (such as the number of flows and the round-trip time).

In Wang et al. (2004) an analysis for the lower bound of response time for PI, among

others, is presented. As stated, since stability and response time are often in conflict

 35

with each other in system performance, the PI scheme tries to find a tradeoff between

them. If network parameters (especially the number of flows and the round-trip time)

are known a priori, PI can adjust its control constant parameters to obtain the best

response properly while guaranteeing stability. However, this is not the general case,

since in a dynamic network it is difficult to obtain these parameters precisely. The

analysis done shows that the response time of PI is dependent on their control

constant parameters: buffer size, desired queue length, and desired stable packet

drop/mark probability, po, which is an increasing function of the number of TCP

flows and a decreasing function of round-trip time and link capacity. Under heavy

congestion, PI suffers from a long response time (which is the opposite of what one

wants during a congestion). In addition, with small buffer size, the responsiveness of

PI will become worse as well.

3.6 Random Exponential Marking – An Exponentially

Increasing Probability Function-based Technique
Athuraliya, Li, Low, and Yin (2001) proposed a new AQM scheme, namely

Random Exponential Marking (REM). The key idea behind this AQM design is to

stabilize both the input rate around link capacity and the queue length around a small

target.

REM maintains a control parameter called “price” as a congestion measure. This is

used to determine the drop/mark probability. “Price” is updated, periodically, based

on two key factors:

• rate mismatch: the difference between input rate at the router and link capacity

• queue mismatch: the difference between queue length and the TQL.

The price is incremented if the weighted sum of these mismatches is positive;

otherwise, it is decremented. The weighted sum of the two mismatches is positive

when either the input rate exceeds the link capacity or there is excess backlog to be

cleared, and negative otherwise.

 36

In particular, the price in period t is updated according to Equation 3.6.)(tp

 (3.6) ()()())()()()(,0max)1(tctxqtqtptp o −+−+=+ αγ

where γ > 0 and α > 0 are small design constants, is the aggregate buffer

occupancy in period t, is the target queue length (TQL), is the aggregate input

rate in period t, and is the available bandwidth in period t. The difference

measures the queue mismatch, and the difference measures the

rate mismatch. The design constant α trades off utilization and queuing delay during

the transient period (it determines the prominence given to the queue length when

determining the level of congestion), whereas the design constant γ controls the

responsiveness of REM to changes in network conditions (it determines the speed of

convergence of the algorithm).

)(tq

oq)(tx

)(tc

oqtq −)()()(tctx −

Since the difference measures the rate at which the queue length grows,

it can be approximated as

)()(tctx −

)()1(tqtq −+ . Thus, Equation 3.6 can be reduced to

Equation 3.7.

()()()oqtqtqtptp ααγ −−−++=+)(1)1()(,0max)1(

It turns out that the PI controller as expressed in (3.5) (Hollot, Misra, Towsley, &

Gong, 2002) and REM as expressed in (3.7) are equivalent. Of course, REM uses the

price, updated in (3.7) to further determine the drop/mark probability using an

exponentially increasing technique (it can be said that REM has PI-type control

structure and exponentially dropping/marking method for loss-probability).

In particular, the queue drops/marks each arrival packet with a probability that is

calculated periodically and it is exponentially increasing in the current price. This is

illustrated in Equation 3.8.

 (3.7)

 (3.8))(1)(tptprob −−= ϕ

where is the drop/mark probability in period t, φ > 1 is a design constant (it

determines the range of loss or marking probability), and is the price in period

t.

)(tprob

)(tp

 37

A critical issue of concern is the proper selection of values for the design

parameters of REM, namely α, γ, and φ. Athuraliya (2002) gives recommendations

(α = 0.1, γ = 0.001, φ = 1.001) based on simulation experiences. However, these

design control parameters depend on network parameters, such as the number of

sources and their delays, as well as capacities. Hence, as stated by Athuraliya (2002),

given a set of network parameters, REM parameters can be tuned to optimize

performance. However, this requires the knowledge of network parameters a priori,

which is not practical.

Definitely, REM control parameters can significantly influence the overall

performance of the proposed AQM scheme, as this can be understood by looking at

(3.7) and (3.8). Thus the correct configuration of REM control parameters is still an

issue for further investigation, concerning the dynamic, time-varying nature of

TCP/IP networks.

3.7 Adaptive Virtual Queue-based Technique
Kunniyur and Srikant (2004) proposed an Adaptive Virtual Queue (AVQ) -based

dropping/marking scheme for AQM. AVQ uses a modified token bucket model as a

virtual queue to regulate link utilization, rather than the actual queue length. The

AVQ scheme detects congestion solely on the arrival rate of the packets at the link.

In particular, the AVQ algorithm maintains a virtual queue whose capacity (i.e. the

virtual capacity) is less than the actual capacity of the link, and whose buffer size is

equal to the buffer size of the real queue. When a packet arrives in the real queue, the

virtual queue is also updated to reflect the new arrival. Packets in the real queue are

dropped/marked when the virtual buffer overflows. The virtual queue capacity at

each link is then adapted to ensure that the total flow entering each link achieves a

desired utilization of the link. Thus the virtual queue capacity is updated according

to the differential equation 3.9.

()λγα −= C
dt
Cd ~

 (3.9)

 38

where C is the link capacity, C~ is the virtual queue capacity, λ is the arrival rate at

the link, γ is the desired link utilization, and α > 0 is the smoothing parameter. As

Kunniyur and Srikant (2004) stated, “the rationale behind (3.9) is that

dropping/marking has to be more aggressive when the link utilization exceeds the

desired utilization and should be less aggressive when the link utilization is below

the desired utilization”.

A critical issue of concern is the proper selection of values for the design

parameters of AVQ, namely, γ and α. The desired utilization γ determines the

robustness of the scheme. It allows the trade-off between high levels of utilization

and small queue lengths. The design parameter α determines how fast one adapts the

dropping/marking probability at the link to the changing network conditions. A

design rule is given by Kunniyur and Srikant (2004) for choosing the parameter α

using a control theoretic approach to ensure system stability.

Specifically, a fluid-model representation of the TCP flow control is used as

proposed by Kunniyur and Srikant (2003), along with the AVQ scheme. The

nonlinear TCP/AVQ model is then linearized to obtain conditions for local stability

in terms of the round-trip delay, the number of users, the utilization of the link, and

the smoothing parameter α of the AVQ scheme. Thus for a given feedback delay,

utilization, and a lower bound on the number of users the design parameter α can be

specified. However, in their study, only the single-router case accessed by TCP

sources with the same RTT is considered. Also, the slow-start and timeouts are

neglected in modelling the TCP dynamics, which strongly affect today’s TCP in case

of short-lived flows.

Definitely, the AVQ design parameter α can much influence the overall

performance of the proposed AQM scheme, as this can be understood by looking at

(3.9). Using the design rule proposed by Kunniyur and Srikant (2004) – for selecting

the proper value of the design parameter α – which is based on the a priori

knowledge of network parameters, like RTT and number of TCP flows can be

impractical due to the dynamic nature of the network and the difficulty in obtaining

these dynamic parameters precisely.

 39

3.8 Limitations of Existing AQM Mechanisms
Some limitations of the existing AQM mechanisms that have been identified

follow firstly and then some general remarks.

At first, as the RED-based algorithms control the macroscopic behaviour of the

queue length (looking at the average) they often cause sluggish response and

fluctuation in the instantaneous queue length. As a result, a large variation in end-to-

end delays is observed.

A-RED attempts to tune the RED parameters for a robust behavior but fails to do

so in various dynamic cases due to the fact that A-RED retains RED’s basic linear

structure. Thus, fine tuning of the RED parameters is not sufficient to cope with the

undesired RED behavior.

The PI controller behaves in a similar way by exhibiting sluggish response to

varying network conditions. This can be explained due to the fact that as the

fixed/static PI parameters are dependent on network parameters, like the number of

flows and round-trip time, it is difficult to get a stable operation in a broad range of

dynamic varying traffic conditions. In addition, the PI controller is based on a

simplified linear model which does not consider the slow start phase of TCP and

timeout events. These modelling assumptions are not consistent with what real/live

measurements indicate (Christiansen et al., 2001; Guo & Matta, 2001; Khalifa &

Trajkovic, 2004; Padhye, Firoiu, Towsley, & Kurose, 2000), and should be taken

into account. In particular, the TCP traffic constitutes 90 percent of all traffic with

50-70 percent of this TCP traffic being short-lived connections both in size and in

lifetime (the so called mice) (Christiansen et al., 2001; Guo & Matta, 2001). In case

of short-lived flows, TCP is strongly affected by slow start phases, with segment

losses mostly being timeout losses (Khalifa & Trajkovic, 2004). Also, real TCP

traces used in (Padhye, Firoiu, Towsley, & Kurose, 2000), where a stochastic model

for the steady-state throughput of long-lived bulk transfer TCP flows is developed,

contained more timeout loss events than fast retransmit events. Therefore capturing

the effect of the timeout mechanism is important from a modelling prospective.

Thus, the applicability of the derived model is questioned, when considering today’s

 40

Internet dynamics. The PI controller shows difficulties to accommodate itself to the

complex, nonlinear, time-varying network status, with bursty, short-lived flows, and

also unresponsive flows. This modelling approach is common, due to the difficulty in

modelling the effect of slow start and/or timeout events; thus it is questionable

whether the proposed models can capture the rich dynamics, and thus makes the

analysis overly conservative.

Moreover, the TCP/AVQ model derived, also neglects the slow start phase of TCP

and timeout events, making the AVQ scheme show difficulties in handling the

dynamics and the nonlinearities of TCP. Also, the AVQ control parameters are

dependent on network parameters, like the round trip delay and the number of flows.

Thus, it is difficult, as discussed above, to get a stable operation in a broad range of

dynamic varying traffic conditions.

The REM controller follows an equivalent to PI controller price control function,

thus it is also found to exhibit sluggish response to varying network conditions. The

correct configuration of REM control parameters is still an issue for further

investigation, concerning the dynamic, time-varying nature of TCP/IP networks.

Some general remarks follow next. The existing AQM mechanisms still require a

careful configuration of non-intuitive control parameters. Most of the AQM schemes

have been designed by taking into account a simple network containing a single-

congested router. Thus, the stability study of the controlled system, done by using a

control-theoretic analysis, considers a single-router accessed by TCP sources with

the same RTT. Further, most of the related simulation studies assumed idealized

traffic, which differs significantly from real IP traffic. For example, most simulations

have been performed assuming persistent (long-lived) connections, constant RTTs,

and a limited number of connections. This traffic environment provides similar

traffic conditions, and is very different from the dynamic, bursty traffic nature in real

IP networks.

Furthermore, the dynamics of TCP/AQM models are mostly studied with the aid of

linearization around equilibrium points of the nonlinear model developed, in order to

study TCP/AQM stability around equilibrium. However, linearization fails to track

 41

the system trajectories across different regions dictated by the nonlinear equations

derived. As stated in Guirguis, Bestavros, & Matta (2003), linearization “assumes,

and hence requires that the system always stays within a certain operating regime”.

Moreover, the equations modeled are dependent on various network parameters, such

as the number of flows and the round trip delays, which in current Internet vary

substantially. Therefore, the linearization around a specific operating point and the

dependence on varying network parameters makes it difficult to get a stable and

robust operation, in the case of TCP/IP networks with dynamic load and delay

changes.

Hence, a major weakness of the proposed models is that the configuration of

control parameters is done for a specific operating point for which various system’s

parameters are assumed to be known, and certain important dynamics are ignored.

As stated in Plasser & Ziegler (2004), even if the assumptions regarding the input

parameters fit the specific scenario, the applicability of the AQM algorithm would be

restricted to a small range of the assumed values only. Therefore, the configured

parameter set and stability conditions introduced by the proposed models lack

applicability to all possible real scenarios with varying dynamics of network

conditions.

In addition, even if the linearized system is made stable at equilibrium, there is no

guarantee that the nonlinear system will remain stable (Plasser & Ziegler, 2004),

especially if the deviations from the equilibrium are at times large. As stated in Low

et al. (2003), instability is undesirable, and can cause three problems: (i) it increases

variations in source rate and delay, (ii) it subjects short-lived transfers to unnecessary

delay and loss, and (iii) it can lead to underutilization of network links if queues

oscillate between empty and full.

3.8.1 Illustrative Example of Limitations
Possible limitations of the existing AQM schemes have been addressed in Section

3.8. A detailed demonstration of the performance of a number of representative,

well-known, AQM schemes can be found in Chapter 7, where an extensive

 42

simulative evaluation is done. In this section, we only give an illustrative example of

how the PI AQM mechanism requires careful configuration of non-intuitive control

parameters, and shows weaknesses to detect and control congestion under dynamic

traffic changes, and a slow response to regulate queues.

Specifically, we conducted an experiment to investigate the influence of the

network parameters (number of TCP flows and round trip time) on the behavior of

the PI controller. As indicated in Section 3.5, the PI parameters (a and b, see

Equation 3.5) are selected so as to stabilize the feedback control system for all

 and all −≥ NN +≤ RR , where N - is considered to be a lower bound on the number

of flows, and R+ the upper bound on round-trip time. However, the PI parameters are

fixed/static and it is difficult to get a stable operation in a broad range of dynamic

varying traffic conditions. This is illustrated in Figure 3.5 and 3.6.

In particular, Figure 3.5 shows the queue length evolution of the PI controller in

the case of a single-bottleneck network topology – shown in Figure 7.1 (see Chapter

7). The bottleneck link capacity is 15 Mbit/s with a propagation delay of 120 msec.

The number of TCP active flows, used in this simulation, is 200 long-lived File

Transfer Protocol (FTP) flows, and 200 short-lived TCP flows (Web-like flows). The

TCP senders are grouped equally into 4 groups, with each group having a

propagation delay increased by 5 msec, starting from 5 msec up to 35 msec (that is,

we create heterogeneous delays in the network). We also provide some time-varying

dynamics by stopping half of the TCP/FTP flows at time t = 70 sec and resuming

transmission at time t = 150 sec.

The default values of the PI parameters used are those given in Hollot, Misra,

Towsley, and Gong (2002); that is: a = 0.00001822, b = 0.00001816 (these values

correspond to N - = 60 flows, R+ = 0.246 sec, C = 15 Mbit/sec, and a sampling

frequency of 170 HZ).

From Figure 3.5, the poor performance of the PI controller can be seen in the case

of an increased traffic load and high RTT. It cannot manage the queue, leading to

sustained packet losses due to overflow. Also, at the time of the traffic changes, the

 43

Figure 3.5 The PI Controller queue length dynamics
with default parameter values

Figure 3.6 The PI Controller queue length dynamics
with new parameter values

PI controller shows a sluggish response to maintain the queue at the desired queue

length.

Then, we have manually changed the PI parameters (by following the design rules

explained in Hollot, Misra, Towsley, and Gong (2002)), by considering the particular

 44

network conditions for this experiment, that is, the increased number of TCP flows,

that its lower bound can be approximated to 200, as well as the high RTT that can be

approximated to 0.420 sec), and the new result is shown in Figure 3.6. As it can be

seen, the new values have improved the performance of the PI controller, as

compared to the Figure 3.5, even though the sluggish response and large buffer

fluctuations still exist. This experiment demonstrates a major weakness of the PI

controller: having fixed parameters that are dependent on network parameters, like

the number of flows and round-trip time. Hence, in the case of dynamic, varying

conditions the PI controller fails to exhibit a robust behaviour.

3.9 Conclusions
The dynamic, time-varying nature of TCP/IP networks necessitates the design of

robust, possibly intelligent, control methodologies to capture the dynamics, highly

bursty network traffic, and nonlinearities of the controlled system, and obtain

satisfactory performance. AQM mechanisms have been introduced to supplement the

TCP based congestion control.

A number of representative AQM schemes in TCP/IP networks are studied; the

modelling and control approach these follow are discussed, and their limitations are

identified, including:

• The linearity of the control functions of existing AQM mechanisms that cannot

capture effectively the nonlinearities of the TCP network.

• The dependency of AQM control parameters on dynamic network parameters,

like the number of flows and the round trip propagation delays.

• The linearization of the existing models to allow analysis and design of AQM-

based controllers, often making stability bounds overly conservative, and

sluggish performance when dynamic changes occur.

 45

• The accuracy of the existing TCP/AQM models, as they ignore the slow start

phase of TCP and/or timeout events that are prominent conditions in today’s

Internet with the existence of short-lived TCP/Web flows.

Based on the above identified limitations it is evident that by using a nonlinear

drop/mark probability function‡, which does not require knowledge of dynamic

system/network parameters, an effective and robust AQM system can be designed to

drive quickly the system to be controlled into the steady-state. This should be

contrasted with the linear drop/mark probability function that itself is not robust

enough for the highly bursty network traffic and cannot capture the dynamics and

nonlinearities of TCP/IP networks. For example, during high load conditions a

disproportionately higher drop/mark probability is required than in a low load

condition, in order to keep the queue length in the same range, a requirement met

only by a nonlinear drop/mark function.

Thus, the complexity of these problems and the difficulties in implementing

conventional controllers to eliminate those problems, as summarized in section 3.8,

motivate the need to investigate intelligent control techniques to derive nonlinear

control law, such as fuzzy logic, as a solution to controlling systems in which

dynamics and nonlinearities need to be addressed. The capability to qualitatively

capture the attributes of a control system based on observable phenomena is a main

feature of fuzzy logic control and has been demonstrated in various research

literature and commercial products. The main idea is that if the fuzzy logic control is

designed with a good (intuitive) understanding of the system to be controlled, the

limitations due to the complexity system’s parameters introduce on a mathematical

model can be avoided. A common approach in the networking literature is to either

ignore such complex parameters in the mathematical model (e.g., ignoring the slow-

start phase in the nonlinear model derived by Misra, Gong, and Towesly (2000)), or

to simplify the model (e.g., ignoring the timeout mechanism and linearization of the

model derived by Hollot, Misra, Towsley, and Gong (2001)) to such an extent (in

order to obtain tractable model for controller design and/or stability results), which

‡ In this study we use a nonlinear fuzzy logic based control methodology to derive a nonlinear
drop/mark probability function

 46

render the designed controllers and their derived stability bounds overly

conservative.

 47

Chapter 4

Differentiated Services Congestion

Control

4.1 Introduction
The Differentiated Services (Diff-Serv) approach proposes a scalable means to

deliver IP QoS based on handling of traffic aggregates. It operates on the premise

that complicated functionality should be moved toward the edge of the network with

very simple functionality at the core. The Diff-Serv framework enables QoS

provisioning within a network domain by applying rules at the edges to create traffic

aggregates and coupling each of these with a specific forwarding path treatment in

the domain through use of a codepoint in the IP header. The Diff-Serv Working

Group (WG) of IETF (DIFFSERV, 1998) has defined the general architecture for

differentiated services and has focused on the forwarding path behaviour required in

routers. The WG has also discussed the functionality required at Diff-Serv domain

edges to select and condition traffic according to the rules. Further, AQM

mechanisms are needed at the core of the Diff-Serv domain to provide bandwidth

assurance, with low loss and bounded delay to various (aggregated) service classes.

4.2 Differentiated Services Architecture
Today’s Internet provides a best-effort service to all of its applications; that is, it

serves all users in a best-effort manner, and thus does not make any promises about

 48

the QoS an application will receive. An application will receive whatever level of

performance (for example, end-to-end packet delay and loss) that the network is able

to provide at that moment. Thus the IETF, recently, has been under active discussion

in various working groups to identify new architectural components that can be

added to the Internet architecture to provide QoS in the Internet.

The Integrated Services (Int-Serv) architecture (Braden, Clark, & Shenker, 1994)

is developed to provide individualized QoS guarantees to individual application

sessions. Int-Serv allows sources and receivers to exchange signaling messages,

which establish additional packet classification and forwarding state on each node

along the path between them (Braden et al., 1997; Herzog, 2000). In the absence of

state aggregation, the amount of states on each node scales in proportion to the

number of concurrent reservations, which can be potentially large on high-speed

links. Thus, Int-Serv failed to be adopted for widespread use, due to these scalability

problems.

The IETF proposed a more evolutionary approach that did not require significant

changes to the Internet infrastructure and provided differentiation of services (Blake

et al., 1998). In particular, the Diff-Serv architecture aims to provide scalable and

flexible service differentiation; that is, the ability to handle different “classes” of

traffic in different ways within the Internet, without the need for per-flow state and

signaling at every hop.

Service differentiation is desired to accommodate heterogeneous application

requirements and user expectations, and to permit differentiated treatment, and

pricing of Internet service. By service it is meant (Blake et al., 1998) “some

significant characteristics of packet transmission. These characteristics may be

specified in quantitative or statistical terms of throughput, delay, jitter, and loss, or

may otherwise be specified in terms of some relative priority of access to network

resources”.

This architecture achieves scalability by aggregating the traffic classification state,

which is conveyed by means of IP-layer packet marking using the Differentiated

Services field (DS Field) (Nichols, Blake, Baker, & Black, 1998). Packets are

 49

0 1 2 3 4 5 6 7

DSCP CU

Figure 4.1 The DS Field structure

classified and marked to receive a particular per-hop forwarding behavior (PHB) on

nodes along their path. Sophisticated classification, marking, policing, and shaping

operations need only be implemented at network boundaries (at the edges of the

network) or hosts, which thus reduces the operational complexity in the network core

and makes it more scalable. Network resources are allocated to traffic streams by

service provisioning policies, which govern how traffic is marked and conditioned

upon entry to a differentiated services-capable network, and how that traffic is

forwarded within that network.

The DS Field in the IP header, mentioned above, is intended to supersede the

existing definitions of the IPv4 TOS (type of service) octet (Postel, 1981), and the

IPv6 Traffic Class octet (Deering & Hinden, 1998). Six bits of the DS Field are used

as a codepoint (DSCP) to select the PHB a packet experiences at each node. A two-

bit currently unused (CU) field is reserved (see Figure 4.1). In the packet forwarding

path, differentiated services are realized by mapping the DSCP contained in a field in

the IP packet header to a particular forwarding treatment, or PHB, at each network

node along its path. PHBs are expected to be implemented by employing queue

management disciplines on a network node’s output interface queue.

4.2.1 Diff-Serv Functional Elements
The Diff-Serv architecture is composed of a number of functional elements

implemented in network nodes, including a small set of per-hop forwarding

behaviors, packet classification functions, and traffic conditioning functions

including metering, marking, shaping, and policing. This architecture achieves

scalability by implementing complex classification and conditioning functions only

at network boundary nodes, and by applying per-hop behaviors to aggregates of

traffic, which have been appropriately marked using the DS Field in the IP packet

 50

Classifier Shaper/Dropper Marker

Meter

packets forward

Figure 4.2 Logical view of packet classification and traffic conditioning

at a Diff-Serv boundary node

header. Per-hop behaviors are defined to permit a reasonably granular means of

allocating buffer and bandwidth resources at each node among competing traffic

streams.

4.2.1.1 Classifiers

Packet classifiers select packets in a traffic stream based on the content of some

portion of the packet header. The Behavior Aggregate classifier classifies packets

based on the DSCP only. The Multi-Field classifier selects packets based on the

value of a combination of one or more header fields, such as source and destination

IP address, source and destination port numbers, DS Field, and protocol ID.

4.2.1.2 Traffic Profiles

A traffic profile provides rules for determining whether a particular packet is in-

profile or out-of-profile. The concept of in- and out-of-profile can be extended to

more than two levels, i.e. multiple levels of conformance with a profile may be

defined and enforced.

4.2.1.3 Traffic Conditioners

A traffic conditioner may contain the following elements: meter, marker, shaper,

and dropper (see Figure 4.2). A traffic stream is selected by a classifier, which steers

the packets to a logical instance of a traffic conditioner. A meter is used to measure

 51

the traffic stream against a traffic profile. The state of the meter with respect to a

particular packet (e.g., whether a packet is in- or out-of-profile) may be used to affect

marking, dropping or shaping action. A marker sets the DS Field of a packet to a

particular codepoint, adding the marked packet to a particular Diff-Serv behavior

aggregate. A shaper/dropper delays/discards some or all of the packets in a traffic

stream in order to bring the stream into compliance with a traffic profile. Traffic

conditioners are usually located within Diff-Serv ingress and egress boundary nodes.

4.2.1.4 Per-Hop Behaviors

A per-hop behavior (PHB) is a description of the externally observable forwarding

behavior (i.e., loss, delay, jitter) of a Diff-Serv node applied to a particular Diff-Serv

behavior aggregate. The PHB is the means by which a node allocates resources to

behavior aggregates, and it is on top of this basic hop-by-hop resource allocation

mechanism that useful differentiated services may be constructed from. PHBs are

implemented in nodes by means of some buffer management mechanisms on a

network node’s output interface queue. It is recommended (Nichols, Blake, Baker, &

Black, 1998) that PHB implementations do not introduce any packet re-ordering

within a flow.

The two PHBs being standardized are the Expedited Forwarding (EF) (Jacobson,

Nichols, & Poduri, 1999; Davie et al., 2002), and the Assured Forwarding (AF)

(Heinamen, Baker, Weiss, & Wroclawski, 1999).

• Expedited Forwarding (EF) PHB:

The EF PHB specifies a forwarding behavior that is intended to provide low delay,

low jitter and low loss services by ensuring that the EF aggregate is served at a

certain configured rate. This is done through a Service Level Agreement (SLA)

during the connection setup. The departure rate of the aggregate’s packets from any

Diff-Serv node must equal or exceed a configurable rate. The EF traffic should

receive this rate independent of the intensity of any other traffic attempting to transit

the node.

 52

If the EF PHB is implemented by a mechanism that allows unlimited preemption

of other traffic (e.g., a priority queue), the implementation must include some means

to limit the damage EF traffic could cause on other traffic (e.g., a token bucket rate

limiter). Traffic that exceeds this limit must be discarded.

• Assured Forwarding (AF) PHB:

The AF PHB specifies a forwarding behavior in which packets are expected to see

a very small amount of loss. The AF PHB group is a means to offer different levels

of forwarding assurances for IP packets, and it provides delivery of IP packets in four

independently forwarded AF classes (AF1, AF2, AF3, and AF4). Each AF class is, in

each Diff-Serv node, allocated a certain amount of forwarding resources (buffer

space and bandwidth), and should be serviced to achieve the configured service rate

(bandwidth). Within each AF class, IP packets are marked with one of three possible

drop precedence values (e.g., AF11, AF12, AF13). In case of congestion, the drop

precedence of a packet determines the relative importance of the packet within the

AF class. A congested Diff-Serv node tries to protect packets with a lower drop

precedence value from being lost by preferentially discarding packets with a higher

drop precedence value (e.g., packets non-conforming to contract); thus it

differentiates flows with different drop preference levels.

Also, a Diff-Serv node does not reorder IP packets of the same flow when they

belong to the same AF class, no matter if they are in- or out-of-profile (i.e.,

regardless of their drop precedence).

An AF implementation must attempt to minimize congestion within each class.

This requires an active queue management algorithm. The queuing discipline

mechanism must be insensitive to the short-term traffic characteristics of the flows

using an AF class. Also, all packets within a single AF class and precedence level

must be treated identically.

The AF PHB group could also be used to implement a low loss and latency (end-

to-end delay) service by setting, for example, a low maximum limit to the buffer

space available for an AF class.

 53

4.2.2 Diff-Serv Service Classes
Currently, there is an ongoing work between active members of the networking

community as to give recommended configuration guidelines for Diff-Serv Service

Classes (Babiarz, Chan, & Baker, 2006). Service classes are defined based on the

different traffic characteristics and required performance of the applications/services.

This approach allows the mapping of current and future applications/services of

similar traffic characteristics and performance requirements into the same service

class.

A service class represents a set of traffic that requires specific delay, loss, and jitter

characteristics from the network. It is essentially a statement of the required

characteristics of a traffic aggregate that can be realized by the use of defined PHB.

Examples of recommended service classes are as follows (see also Table 4.1):

• Telephony service class: It is best suited for applications that require real-time,

very low delay variation and packet loss and are of constant rate, such as IP

telephony, and circuit emulation over IP applications. This type of service class

should use EF PHB, and should also be configured to use a priority queuing

system. Normally, traffic in this service class does not respond dynamically to

packet loss; thus AQM should not be applied to EF marked packet flows.

• Multimedia Conferencing service class: It is best suited for applications that

require real-time, very low delay service for rate adaptive traffic (i.e., have the

ability to change the encoding rate), such as H.323/V2 and later versions of video

conferencing service. This type of service class should use the AF PHB to

provide a bandwidth assurance for AF41, AF42, and AF43 marked packets to

ensure that they get forwarded. AQM should be used primarily to switch video

encoding rate under congestion, changing from high rate to lower rate.

 54

Table 4.1 Example of Diff-Serv Service Classes

Service Class DSCP AQM

Telephony EF No

Multimedia Conferencing AF41, AF42, AF43 Yes per DSCP

Multimedia Streaming AF31, AF32, AF33 Yes per DSCP

Low Latency Data AF21, AF22, AF23 Yes per DSCP

High Throughput Data AF11, AF12, AF13 Yes per DSCP

• Multimedia Streaming service class: It is best suited for applications that require

near-real-time packet forwarding of variable rate elastic traffic sources. This type

of service class should use the AF PHB to provide a minimum bandwidth

assurance for AF31, AF32, and AF33 marked packets to ensure that they get

forwarded. In such service class, an application has the capability to react to

packet loss by reducing its transmission rate, such as streaming video and audio,

web casts, etc. Thus, AQM should be used primarily to reduce forwarding rate to

the minimum assured rate during network congestion.

• Low Latency Data service class: It is best suited for elastic and responsive

applications, such as TCP short-lived flows (e.g., data processing applications,

web-based transactions, etc). This type of service should use the AF PHB to

provide a minimum bandwidth assurance for AF21, AF22, and AF23 marked

packets to ensure that they get forwarded. Since this type of service is elastic and

responds dynamically to packet loss, AQM should be used primarily to control

TCP flow rates, when congestion occurs, by dropping packets from TCP flows

that have large burst size.

• High Throughput Data service class: It is best suited for elastic applications that

require timely packet forwarding of variable rate traffic sources, and more

specifically is configured to provide good throughput for TCP long-lived flows,

such as FTP, electronic-mail, etc. This type of service should use the AF PHB to

 55

provide a minimum bandwidth assurance for AF11, AF12, and AF13 marked

packets to ensure that they get forwarded in timely manner. Since this type of

service is elastic and responds dynamically to packet loss, AQM should be used

primarily to control TCP flow rates, when congestion occurs, by dropping

packets from TCP flows that have higher rates first.

4.2.2.1 Aggregation of Diff-Serv Service Classes

Concurrently, there is an ongoing work to further aggregate (Chan, Babiarz, &

Baker, 2006) the recommended configured Diff-Serv service classes (Babiarz, Chan,

& Baker, 2006). It is believed that some network segments may be configured in

such a way that a single forwarding treatment satisfies the traffic characteristics and

performance requirements of two or more service classes. For such cases, it may be

desirable to aggregate two or more service classes into a forwarding treatment. The

treatment aggregates recommended in Chan, Babiarz, & Baker (2006) are designed

to aggregate the service classes in such a manner as to protect real-time traffic, on the

assumption that real-time sessions are protected from each other by admission

control at the edge.

The performance requirements (tolerance to loss, delay and jitter) from the

application/user are used as guidance on how to map the service classes into

treatment aggregates. Examples of recommended aggregates of the service classes,

defined in Table 4.1, are as follows (see also Table 4.2):

• Real Time treatment aggregate: All real-time (inelastic) service classes are

aggregated. This treatment aggregate may include, among others, the Telephony

and Multimedia Conferencing service classes. Traffic in each service class that is

going to be aggregated into the treatment aggregate should be conditioned prior

to aggregating. As such, there is a predictable and enforceable upper bound on

the traffic that can enter such a queue, and to provide predictable variation in

delay it must be protected from bursts of elastic traffic.

 56

Table 4.2 Example of Aggregation of Diff-Serv Service Classes

Treatment

Aggregate

Service Class

Treatment

Aggregate

Behavior

DSCP name

Real Time Telephony,

Multimedia Conferencing

EF EF,

AF41, AF42, AF43

Assured Elastic Multimedia Streaming,

Low Latency Data, High

Throughput Data

AF AF31, AF32, AF33,

AF21, AF22, AF23,

AF11, AF12, AF13

• Assured Elastic treatment aggregate: All elastic traffic that uses the AF model is

aggregated. This treatment aggregate may include, among others, Multimedia

Streaming, Low Latency Data, and High Throughput Data service classes. The

DSCPs of the original service classes remain an important consideration and

should be preserved during aggregation. Traffic bearing these DSCPs is carried

in a common queue or class with a AF PHB. Since the traffic is elastic and

responds dynamically to packet loss, AQM should be used primarily to reduce

forwarding rate to the minimum assured rate, during network congestion.

4.3 Differentiated Services Congestion Control
The Diff-Serv architecture aims to provide aggregated QoS by using differentiated

services aware congestion control algorithms. Recently, active queue management

mechanisms (e.g. RED and its variants) have been proposed (Blake et al., 1998;

Clark & Fang, 1998) within the framework of the Diff-Serv architecture (Braden et

al., 1998) to preferentially drop non-conforming against conforming packets. Thus,

the focus is on the development of differential dropping/marking algorithms for

network core routers.

 57

Figure 4.3 Diff-Serv scenario with RED queue for control

The most popular algorithm used for Diff-Serv implementation is RED (Floyd &

Jacobson, 1993). The RED implementation for Diff-Serv defines that we have

different thresholds for different drop precedence levels. The lowest drop precedence

packets have the lowest minimum and maximum thresholds and therefore they are

dropped/marked with larger probability than packets of a higher drop precedence

level.

In Figure 4.3 we see a simple Diff-Serv scenario where RED is used for AQM

based congestion control. A leaky bucket traffic shaper is used to check if the packets

comply with the SLA. EF packets are discarded if they do not comply with the SLA.

For the case of the AF class, both in- and out-of-profile packets share a RIO (Clark &

Fang, 1998) queue. RIO stands for RED In/Out queue, where “In” and “Out” mean

packets are in or out of the connection conformance agreement. EF packets use a

separate high priority queue. There are different minimum and maximum thresholds

(see Figure 4.4) for “In” (high priority) and “Out” (low priority) packets.

 RIO uses the same mechanism as in RED, but it is configured with two different

sets of parameters, one for “In” packets, and one for “Out” packets. Upon each

packet arrival at the router, RIO checks whether the packet is tagged as “In” or
 58

qmax qmin qavg
0

1

pmax

p

qmax qmin qavg
0

1

pmax

p

 “In” – low-level of drop precedence “Out” – high-level of drop precedence

Figure 4.4 RIO control law

“Out”. If it is an “In” packet, RIO calculates the average queue length of “In” packets

only; otherwise (i.e., the packet is tagged as “Out”) RIO calculates the total average

queue length (i.e., of both “In” and “Out” arriving packets). The probability of

dropping/marking an “In” packet depends on the average queue length of “In”

packets, whereas the probability of dropping/marking an “Out” packet depends on

the total average queue length.

 The discrimination against “Out” packets is created by carefully choosing the

parameters of minimum and maximum thresholds, and maximum drop/mark

probability. As illustrated in Figure 4.4, RIO is more aggressive in dropping “Out”

packets than “In” packets. It drops “Out” packets much earlier than it drops “In”

packets; this is achieved by choosing the minimum threshold for “Out” packets

smaller than the minimum threshold for “In” packets. It also drops/marks “Out”

packets with a higher probability, by setting the maximum drop/mark probability for

“Out” packets higher than the one for “In” packets.

However, as RIO is actually the RED implementation for Diff-Serv, it still suffers

from the undesired RED behavior, as this was discussed in Chapter 3. May, Bolot,

Jean-Marie, and Diot (1999) state, based on analytic evaluation of the loss

probability, that the “choice of different RIO parameter values can have a clear

impact on performance”. RIO also retains RED’s basic linear structure that itself is

 59

not robust enough for the bursty network traffic and cannot capture the dynamics and

nonlinearities of TCP/IP networks. Furthermore, RIO’s decision for

dropping/marking a packet of any level of drop precedence is not based on the total

buffer occupancy; this may be a drawback if we want to have a bounded delay for

the queue as a whole, and under any congestion level.

Apart from RED, the standard PI AQM (Hollot, Misra, Towsley, & Gong, 2002)

was proposed for Diff-Serv AQM based congestion control. In particular Chait et al.

(2002) proposed a two-level AQM controller for providing differential marking

probabilities at the Diff-Serv core. The PI AQM scheme proposed by Hollot, Misra,

Towsley, & Gong (2002) is used to preferentially drop/mark high-level of drop

precedence than low-level, by introducing two set points (TQLs) for the core queue,

which correspond to the two levels of drop precedence used, respectively. The

drop/mark probability for both levels is computed by two PI AQM controllers, using

the same parameter values, except for the TQL. The TQL of the low-level of drop

precedence is set higher than the TQL of the high-level of drop precedence, in order

to preferentially drop/mark packets of high drop precedence, during congestion.

However, as the two-level PI controller is actually the PI implementation for Diff-

Serv congestion control, it still suffers from the undesired PI behavior, as this was

discussed in Chapter 3 (e.g., the dependency of PI control parameters on dynamic

network parameters, like the number of flows and the round trip propagation delays,

the linearity of the control law, etc).

4.4 Conclusions
Differentiated Services provide an approach to IP QoS that is modular,

incrementally deployable, and scalable while introducing minimal per-node

complexity (Blake et al., 1998). From the end user’s point of view, QoS should be

supported end-to-end between any pair of hosts. However, this goal is not

immediately attainable. It will require interdomain QoS support, and many untaken

steps remain on the road to achieve this (Nichols & Carpenter, 2001). Nevertheless,

there is a need to use AQM for Diff-Serv congestion control at the core, to realize

 60

multiple levels of drop/mark precedence, and thus offer an adequate differentiation

among different traffic levels of priority. Further, there is a need to implement a low

loss and delay service by setting, for example, a low maximum limit to the buffer

space available for a traffic class or aggregate of classes. This can be achieved by the

use of an effective AQM scheme, implemented at the core routers of the Diff-Serv

domain, offering bandwidth assurance (high utilization, with low loss and bounded

delay); thus addressing QoS issues to different traffic levels of precedence in TCP/IP

networks. In this thesis, we investigate the suitability of Fuzzy Logic to provide

effective control for differentiated services. At the same time, we investigate whether

a generic fuzzy logic based AQM control methodology can be adopted to different

TCP/IP environments, such as best-effort and Diff-Serv architectures.

 61

Chapter 5

Fuzzy Logic

5.1 Introduction
Fuzzy logic is a logical system, which is an extension and generalization of

multivalued logic systems. In recent years, fuzzy logic control has been found to be

very useful in the realms of industrial systems and consumer products, as well as in

communication data networks. Fuzzy logic control has strengths in controlling highly

nonlinear, complex systems, which are commonly encountered in product design,

manufacturing and control. Fuzzy logic provides a set of mathematical methods for

representing information in a way that resembles natural human communication, and

for handling this information in a way that is similar to human reasoning. By using

fuzzy logic, a designer is able to blend qualitative linguistic expressions favored by

human experts in the structure of control systems. A fuzzy logic controller can be

conceived as a nonlinear controller whose input-output relationship is described in

linguistic terms that can be better understood and easily modified (tuned). It is

independent of mathematical models of the system to be controlled, thus achieving

inherent robustness and reducing design complexity. Even for complicated processes

whose models are not easily obtainable, one can still design a controller

encapsulating the knowledge of the process operator or human expert.

 62

5.2 Fuzzy Logic Principles
Fuzzy logic is one of the tools of what is commonly known as Computational

Intelligence (CI). CI is an area of fundamental and applied research involving

numerical information processing. While these techniques are not a panacea (and it is

important to view them as supplementing proven traditional techniques), there is a lot

of interest not only from the academic research community (e.g. Pitsillides &

Sekercioglu, 2000; Sekercioglu, Pitsillides, & Vasilakos, 2001), but also from the

telecommunications industry (e.g. Azvine & Vasilakos, 2000).

Fuzzy Logic Control (FLC) (Passino & Yurkovich, 1998) denotes the field in

which fuzzy set theory (Zadeh, 1965) and fuzzy inference are used to derive control

laws. A fuzzy set is defined by a membership function that can be any real number in

the interval [0, 1], expressing the grade of membership for which an element belongs

to that fuzzy set. The concept of fuzzy sets enables the use of fuzzy inference, which

in turn uses the knowledge of an expert in a field of application to construct a set of

“IF-THEN” rules. Fuzzy logic becomes especially useful in capturing human expert

or operator’s qualitative control experience into the control algorithm, using

linguistic rules.

The idea of FLC was initially introduced by Zadeh (1973) and first applied by

Mamdani (1974) in an attempt to control systems that are difficult to model

mathematically. FLC may be viewed as a way of designing feedback controllers in

situations where rigorous control theoretic approaches are too difficult and time

consuming to use, due to difficulties in obtaining a formal analytical model, while at

the same time some intuitive understanding of the process is available. The control

algorithm is encapsulated as a set of linguistic rules, leading to algorithms describing

what action should be taken based on system behaviour observations. FLC has been

applied successfully for controlling numerous systems in which analytical models are

not easily obtainable or the model itself, if available, is too complex and possibly

highly nonlinear (e.g. Yasunobu & Miyamoto, 1985; Morales, Polycarpou,

Hemasilpin, & Bissler, 2001).

 63

Therefore, FLC concentrates on attaining an intuitive understanding of the way to

control the process, incorporating human reasoning in the control algorithm. It is

independent of mathematical models of the system to be controlled, thus achieving

inherent robustness and reducing design complexity. This is in contrast with

conventional control approaches that concentrate on constructing a controller with

the aid of an analytical system model that in many cases is uncertain, nonlinear, and

subject to noises. The capability to qualitatively capture the attributes of a control

system based on observable phenomena is a main feature of FLC and has been

demonstrated in various research papers as well as in commercial products. Thus, if

the fuzzy logic control is designed with a good (intuitive) understanding of the

system to be controlled, the limitations due to the complexity the system’s

parameters introduce on a mathematical model can be avoided. A common approach

in classical control theory is to either ignore such complex parameters in the

mathematical model, or to simplify the model to such an extent (in order to obtain

some stability results), which render the designed controllers and their derived

stability bounds overly conservative.

5.2.1 Fuzzy Sets
Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a

crisp, clearly defined boundary. It can contain elements with only a partial degree of

membership. Thus, fuzzy sets are generalizations of ordinary/classical sets. In

ordinary/classical sets, objects called elements of the set can claim only full

membership or no membership at all. In fuzzy sets, partial membership is allowed.

A typical example is people height. In this case, it is unrealistic to say that, for

example, two individuals who differ in height by less than a few centimetres belong

to different classical sets, such as short and tall sets. Thus, the concept of degree of

membership is proposed by Zadeh (1965), where the degree of membership is

changed gradually from false (0) to true (1) rather than abruptly (see Figure 5.1).

In general, in fuzzy logic, the truth of any statement becomes a matter of degree.

Reasoning in fuzzy logic is just a matter of generalizing the familiar true-false
 64

short

tall

height

ta
ll-

ne
ss

0.0

1.0

(a)

not very tall

tall

height

ta
ll-

ne
ss

0.0

1.0

(b)

Figure 5.1 Example of (a) classical versus (b) fuzzy sets

(Boolean) logic. Figure 5.1(a) shows the truth values for “tall-ness”. In Figure 5.1(b)

the truth value of “tall-ness” is shown, when we are allowed to respond with multiple

values. Thus, fuzzy logic is a multivalued logic. Any value of height has a partial

membership in the corresponding fuzzy set. The characteristic function that defines

the fuzzy set is known as a membership function.

In fuzzy logic theory, the range of values for a given input or output space is often

called the universe of discourse (Lee, 1990). For greater flexibility in fuzzy

 65

controller implementation, the universes of discourse are “normalized” to a certain

interval (e.g., [-1, 1] or [0, 1]) by means of constant scaling factors.

5.2.2 Membership Functions
A membership function is a curve that defines how each point in the universe of

discourse is mapped to a membership value (or degree of membership) between 0

and 1, and is often given the designation μ.

In general, if X is the universe of discourse and its elements are denoted by x, then

a fuzzy set A in X is defined as a set of ordered pairs (see Equation 5.1).

{ }XxxxA A ∈=)(, μ

 (5.1)

where)(xAμ is called the membership function of x in A. The membership function

maps each element of X to a membership value between 0 and 1. Notice that a fuzzy

set is simply a crisp set of pairs of elements of the universe of discourse coupled with

their associated membership values.

There are various types of membership functions. The simplest membership

functions are formed using straight lines. Of these, the simplest is the triangular

membership function (see Figure 5.2). Further, the trapezoidal membership function

has a flat top, and is just a truncated triangle curve (see Figure 5.3). These straight

line membership functions have the advantage of simplicity. Other types of

membership functions may include the Gaussian- and bell-shaped curves.

1.0

0.0

de
gr

ee
 o

f
m

em
be

rs
hi

p

input space

 66

Figure 5.2 Triangular-type
 membership function of a fuzzy set

1.0

0.0

de
gr

ee
 o

f
m

em
be

rs
hi

p

input space

Figure 5.3 Trapezoidal-type

membership function of a fuzzy set

 A B

A AND B

(a) Two-valued (Boolean) logic

A B

A AND B

(b) Multivalued (fuzzy) logic

Figure 5.4 Intersection logical operation

5.2.3 Logical Operations
Following the conventional fuzzy logic operations, initially defined by Zadeh,

three basic operations fulfil the needs of most typical fuzzy logic based systems. Let

A and B be fuzzy sets on a mutual universe of discourse with membership functions

)(xAμ and)(xBμ , respectively.

• Fuzzy Intersection (AND): The min operator represents the intersection of the

two fuzzy sets A and B. That is, the elements of A and B are operated one-by-

 67

 A B

A OR B

(a) Two-valued (Boolean) logic

A B

A OR B

(b) Multivalued (fuzzy) logic

Figure 5.5 Union logical operation

one and the minimum of them is taken as the output (see Equation 5.2). This is

illustrated in Figure 5.4, where the multivalued (fuzzy) logic operation of

intersection is contrasted with the relative operation using two-valued

(Boolean) logic.

 68

 (5.2) () ())(),(min xxx BABA μμμ =∪

• Fuzzy Union (OR): The max operator represents the union of the two fuzzy sets

A and B. That is, the elements of A and B are operated one-by-one and the

maximum of them is taken as the output (see Equation 5.3). This is illustrated

in Figure 5.5, where the multivalued (fuzzy) logic operation of union is

contrasted with the relative operation using two-valued (Boolean) logic.

() ())(),(max xxx BABA μμμ =∩

• Fuzzy Complement (NOT): The fuzzy complement is obtained by using

Equation 5.4.

())(1 xx AA μμ −=

The above defined fuzzy logic operators are the classical ones used, because of

their computational simplicity. Other logical operations, however, can also be

defined.

5.2.4 IF-THEN Rules
Fuzzy sets and fuzzy logic operators are the so-called “subjects” and “verbs” of

fuzzy logic, respectively. IF-THEN rule statements are used to formulate the

conditional statements that comprise fuzzy logic.

A single fuzzy IF-THEN rule can have the form:

if x is A and y is B then z is C

 (5.3)

 (5.4)

 (5.5)

where A, B and C are linguistic values defined by fuzzy sets on the ranges (universes

of discourse) X, Y, and Z, respectively. These linguistic values are part of their

corresponding linguistic variables. While an algebraic variable takes numbers as

values, a linguistic variable takes words as values. Using linguistic variables, such a

variable, for example called “height”, would assume (linguistically) values like

“short”, “tall”, “very tall”, etc. The linguistic values that describe the linguistic

 69

variable “height” are defined by fuzzy sets that are represented by certain

membership functions.

The IF-parts of the rule (5.5) are called the antecedents (or premises), while the

THEN-part is called the consequent. The antecedent as well as the consequent of a

rule can have multiple parts.

A fuzzy system contains generally a certain number of rules specifying the system

behaviour against the input variables. This collection of fuzzy relational expressions

representing the qualitative knowledge of the human operator forms the rule base. A

fuzzy system performs reasoning on every rule in this rule base toward a final

inference. However, the operations performed on these rules are simple, which is

advantageous regarding computational processing.

5.2.5 Inference Process
Fuzzy inference is the process of formulating the mapping from a given input to an

output using fuzzy logic. Mamdani’s fuzzy inference method is the most commonly

seen fuzzy methodology (Mamdani & Assilian, 1975) for controlling systems.

Mamdani-type inference expects the output membership functions to be fuzzy sets.

The steps needed to be followed are explained below. To illustrate the necessary

steps needed to be taken, let us use the following fuzzy system as our example:

• Two input linguistic variables are used: the “queue length”, and the “rate of

change of queue”.

o The linguistic variable “queue length” is composed of three linguistic

values: “empty”, “moderate” and “full”.

o The linguistic variable “rate of change of queue” is composed of three

linguistic values: “decreasing”, “zero” and “increasing”.

• One output linguistic variable is used: the “drop probability”, which is

composed of four linguistic values: “zero”, “low”, “medium” and “high”.

 70

Figure 5.6 Membership functions of the linguistic values representing the
linguistic variables of the fuzzy system used as an example

 71

• The rule base of such a fuzzy system can be constructed by the following

example rules:

Rule 1: if queue is empty then drop_probability is zero

Rule 2: if queue is moderate and rate_of_change_of_queue is

decreasing then drop_probability is zero

Rule 3: if queue is moderate and rate_of_change_of_queue is

zero then drop_probability is low

Rule 4: if queue is moderate and rate_of_change_of_queue is

increasing then drop_probability is medium

Rule 5: if queue is full and rate_of_change_of_queue is

decreasing then drop_probability is medium

Rule 6: if queue is full and rate_of_change_of_queue is zero

then drop_probability is high

Rule 7: if queue is full and rate_of_change_of_queue is

increasing then drop_probability is high

The linguistic values of the three variables are defined by fuzzy sets with their

membership functions shown in Figure 5.6.

5.2.5.1 Fuzzification of the Input Variables

The fuzzification of the input variables is carried out by taking the inputs of the

fuzzy control system and determining the degree to which they belong to each of the

appropriate fuzzy sets via their membership functions. Each input is a crisp

numerical value limited to the universe of discourse of the associated input linguistic

variable, and the output is a fuzzy degree of membership in the qualifying linguistic

set (always in the interval between 0 and 1); that is, each input is “fuzzified” over all

the qualifying membership functions required by the rules. This procedure is called

“fuzzification” of the input, and amounts to either a table lookup or a function

evaluation.

For example, if the normalized input variable “queue”, of the fuzzy system used as

an example, has a current crisp value of 0.45, to what extent is the “queue” really

 72

Figure 5.7 Fuzzification of the input variable

μmoderate(0.45) = 0.5
(Result of input
fuzzification)

input = 0.45

“moderate”? Given the graphical definition of “moderate queue” (see Figure 5.6), the

“queue” being rated as 0.45, corresponds to 5.0)45.0(mod =erateμ for the “moderate

queue” membership function (see Figure 5.7). For such input value of queue, the

corresponding degree of membership for the “empty queue” value is

8.0)45.0(=emptyμ , and for the “full queue” is 0.0)45.0(=fullμ .

5.2.5.2 Application of Fuzzy Operators

Once the inputs have been fuzzified, we know the degree to which each part of the

antecedent has been satisfied for each rule. If the antecedent of a given rule has more

than one part, the fuzzy operator used in the IF-part of the rule (as described in

Section 5.2.3) is applied to obtain one number that represents the result of the

antecedent for that rule (in the interval between 0 and 1). This number will then be

applied to the output function. The input to the fuzzy operator is the membership

values derived from the fuzzification of the input variables. The output is a single

truth value. This is the degree of support for the rule.

 For example, let us take rule number 3, of the fuzzy system used as an example,

reproduced here:

 73

Rule 3: if queue is moderate and rate_of_change_of_queue is

zero then drop_probability is low

The IF-part of the rule has two antecedents. The fuzzy logic operator AND,

forming the Fuzzy Intersection logic operation between the two antecedents, is

represented by the min operator; that is, a particular element of “moderate” linguistic

value of the linguistic variable “queue”, and the one of “zero” linguistic value of the

linguistic variable “rate of change of queue” are compared, and the minimum of

them is taken as the output. For a particular instance, let us assume that the two

inputs have values of 0.45 and 0.43, respectively (i.e., the normalized queue is 0.45,

and the normalized rate of change of queue is 0.43). The two different pieces of the

IF-part yielded the fuzzy membership values 0.5 and 0.8, respectively. The fuzzy

AND operator simply selects the minimum of the two values, 0.5 (see Equations

5.6), and the fuzzy operation for rule 3 is complete (see Figure 5.8). Thus, we are 0.5

(or 50%) certain that this rule applies to the current situation. The rule indicates that

if its antecedent part has a degree of truth (certainty) then the action indicated by its

consequent part should be taken.

5.0)45.0(mod =queue
erateμ , 8.0)43.0(_ =queuerate

zeroμ

() 5.0)43.0(),45.0(min _
mod == queuerate

zero
queue

erateantecedent μμμ

 (5.6)

where antecedentμ is the minimum membership value of all antecedents of the IF-part of

a particular rule.

5.2.5.3 Implication

A consequent is a fuzzy set represented by a membership function, which weights

appropriately the linguistic characteristics that are attributed to it. The consequent is

reshaped using a function associated with the antecedent (a single number). The

input of the implication method is a single number given by the antecedent, and the

output is a fuzzy set. Implication is implemented for each rule. The most popular,

well-known implication method, which is also used by the fuzzy logic AND

operator, is the min (minimum) that truncates the output fuzzy set. The justification

 74

queue input = 0.45 change_of_queue input = 0.43

0.5

0.8

0.5
Result of
fuzzy
operator

queue is moderate and change_of_queue is zero

Figure 5.8 Application of the Fuzzy Operator AND (min)

of using the minimum operator to represent the implication is that we can be no more

certain about our consequent than our antecedent (premise).

Thus, the implication method shapes the consequent (the output fuzzy set) of a

particular rule on the basis of the antecedent. What we achieve, is to get the

implication of applying the result of the antecedents constituting the IF-part to the

consequent in the IF-THEN rule.

Equation 5.7 shows how the reshaped (implied) output fuzzy set of a particular

rule is constructed. The implication method used is the min. That is, all possible

values in the universe of discourse of the specific output fuzzy set are compared with

the generated antecedent single value, and the minimum is taken. Thus, the result is

to get a truncated output fuzzy set, which is the outcome of the specific implication

from the antecedents to the consequent:

 (5.7) () ()()iconsequentantecedentiimplied xx μμμ ,min=

where antecedentμ is the minimum (if the min represents the fuzzy logic operator AND)

membership value of all antecedents of the IF-part of a particular rule, and

()iconsequent xμ is the membership value of the ith element belonging to the universe of

discourse of the consequent – output fuzzy set, which is updated whenever

 75

Result of the implication
(min) from the antecedents
to the consequent

 0.5
Result of the fuzzy
logic AND
operator (min)
applied to the
antecedents

Figure 5.9 Application of the implication method (min)

antecedentμ < ()iconsequent xμ to form the implied output fuzzy set with membership value

()iimplied xμ . This is illustrated in Figure 5.9, where we apply the min implication

method to the rule number 3 of the fuzzy system used as an example. Remember that

this rule is the following:

Rule 3: if queue is moderate and rate_of_change_of_queue is

zero then drop_probability is low

Recall from the Equation 5.6 that the antecedentμ = 0.5. Therefore, all possible

membership values, in the interval between 0 and 1, of the output fuzzy set “low” are

limited – truncated to the value 0.5. This clearly shows the implication of applying

the result of the antecedents constituting the IF-part to the consequent in the IF-

THEN rule. We see that the ()iimplied xμ is in general a time-varying function that

quantifies how certain the specific rule is that the output of the fuzzy logic system

should take on certain values. It has a certain degree of truth that the output of the

fuzzy system should lie in a region around low values.

 76

5.2.5.4 Aggregation

Since decisions are based on the testing of all of the rules in the rule base of a

fuzzy system, the rules must be combined in some manner in order to make a

decision. Aggregation is the method by which the fuzzy sets that represent the

resulted outputs of each rule are combined into a single fuzzy set. Aggregation only

occurs once for each output variable. The input of the aggregation method is the list

of output functions returned by the implication method for each rule. The output of

the aggregation method is one fuzzy set for each output variable. It is important to

notice that the order in which the rules are executed is unimportant. The most

popular and well-known aggregation method, which is also used by the fuzzy logic

OR operator, is the max, which has the properties discussed in Section 5.2.3. If this is

the method used in the aggregation process, the resulting fuzzy set contains the

maximum membership values among those generated by the implication process.

Equation 5.8 shows how the aggregated fuzzy set is obtained from the implied

output fuzzy sets of all rules.

() () () ()()i
N
impliediimpliediimpliediaggregated xxxx μμμμ ...,,,max 21=

 (5.8)

where ()iaggregated xμ is the ith membership value of the aggregated fuzzy output set,

and is the membership value of the i()i
j

implied xμ th element belonging to the universe

of discourse of the consequent – output fuzzy set, obtained in the implication process

of the rule number j (1 < j < N). This is illustrated in Figure 5.10, where we apply

the max aggregation method to the fuzzy system used as an example. For a particular

instance, let us assume that the two inputs have values of 0.45 and 0.43, respectively

(i.e., the normalized queue is 0.45, and the normalized rate of change of queue is

0.43). We apply the min-operation for the fuzzy logic AND operator, and the min-

max inference method, that is, the min-operation for the implication of each rule is

selected, and the max-operation for the aggregation of all the resulted-implied output

fuzzy sets is used. The result is to get a single aggregated output fuzzy set that needs

however to be transformed into a single output crisp value.

 77

5.2.5.5 Defuzzification

Figure 5.10 Application of aggregation method (min)

normalized
queue input = 0.45

normalized
change_of_queue input = 0.43

Result of aggregation

The input for the defuzzification process is a fuzzy set (the aggregated output

fuzzy set) and the output is a single number. As the aggregated fuzzy set

encompasses a range of output values, a single output value must be resolved from

the set. Looking at the example of the aggregation process illustrated in Figure 5.10,

we can observe that two rules contribute to the production of the aggregated output

fuzzy set, namely rule number 3 and 4. The implied output fuzzy sets of these rules

have defined the linguistic values “low” and “medium”, respectively. Thus, the

aggregated fuzzy set constitutes of a range of the maximum membership values of

those implied fuzzy sets. What would be the final crisp output result? The answer to

this question is found at the last step of the fuzzy reasoning process: the process of

defuzzification, which converts the fuzzy reasoning output, which is a fuzzy set, into

a crisp value that represents the whole inference process outcome.

There are various methods for defuzzification purposes. The most popular method

is the centroid method, which returns the centre of area under the curve that

 78

represents the aggregated output fuzzy set. Equation 5.9 gives, in the case of a

continuous aggregated fuzzy set, the definition of the centroid.

()

()∫

∫
=

S
C

S
C

dyy

dyyy
p

μ

μ

 (5.9)

where ()yCμ is the membership degree of y in the aggregated output fuzzy set C.

The limits of integration correspond to the entire universe of discourse S of the

output variable p. If discrete values are used, then Equation (5.9) may be simplified

as shown in Equation 5.10.

()

()∑

∑

=

== k

i
iC

k

i
iCi

y

yy
p

1

1

μ

μ

(5.10)

where the output universe of discourse S is discretized to k values.

The Centroid method is the most widely used method because it exhibits effective

properties including: 1) the defuzzified values tend to move smoothly around the

output fuzzy region, and 2) it is relatively easy to compute.

The Centroid method for defuzzification is illustrated in Figure 5.11, where we

apply this method to the fuzzy system used as an example. Recalling the resulted

aggregated output fuzzy set in Figure 5.10, the output crisp value of the fuzzy system

is found, which is equal to 0.27. This value is at the start of the range of the

“medium” value and very close to the range of the “low” value of the output

linguistic variable.

Figure 5.11 Application of defuzzification method (centroid)

output probability = 0.27
Result of defuzzification using the centroid method

 79

5.2.6 Fuzzy Logic Control System
Having introduced the concepts that form the fuzzy logic theory, we summarize in

this section the use of these concepts in designing a fuzzy logic Mamdani-type

control system (Mamdani & Assilian, 1975). A block diagram of a fuzzy logic

control system is given in Figure 5.12, where we show a fuzzy logic controller

embedded in a closed-loop control system. The fuzzy logic controller is composed of

the following four main components:

• A rule base that holds the knowledge of how best to control the system in the

form of a set of IF-THEN rules. It contains a fuzzy logic quantification of the

expert’s linguistic description of how to achieve good control.

• An inference mechanism (also called a “fuzzy inference engine (FIE)”), which

emulates the expert’s decision making in interpreting and applying knowledge

about how best to control the plant. It basically evaluates which control rules are

relevant at the current time, and then decides what the input to the plant should

be.

• A fuzzification interface, which converts the fuzzy logic controller’s inputs into

information that the inference mechanism can use to activate and apply rules.

• A defuzzification interface, which converts the conclusions reached by the

inference mechanism into crisp input(s) for the plant.

Basically, the fuzzy logic controller can be viewed as an artificial decision maker

that operates in a closed-loop system in real time (Passino & Yurkovich, 1998). It

gathers plant output data y(t), compares it to the reference input r(t), and then decides

what the plant input should be to ensure that the performance objectives will be met.

Fuzzy logic control system design essentially amounts to (1) choosing the fuzzy

logic controller input(s) and output(s), (2) choosing the preprocessing that is needed

for the controller input(s) and possibly postprocessing that is needed for the output(s)

(i.e, normalisation of the input and output values), and (3) designing each of the four

components of the fuzzy logic controller shown in Figure 5.12.

 80

Plant output
 y(t)

Crisp
controller
output

Reference
input r(t)

 Inference
mechanism

Rule
base

Fu
zz

ifi
ca

tio
n

D
ef

uz
zi

fic
at

io
n

Fuzzy Logic Controller

fuzzified inputs fuzzy conclusions

Plant

(controlled
system)

feedback

Crisp controller
input(s)

Figure 5.12 Fuzzy logic control system

A fuzzy logic control system (see Figure 5.12) is a nonlinear mapping between its

inputs and output(s). The inputs and output(s) are crisp – real numbers. The

fuzzification block converts the crisp inputs to fuzzy sets, the inference mechanism

uses the fuzzy rules in the rule base to produce fuzzy conclusions (e.g., the implied

fuzzy sets), and the defuzzification block converts these fuzzy conclusions into crisp

output(s).

This nonlinear mapping from input to output implemented by the fuzzy logic

controller is called the control surface. This mapping can be visualized by a

nonlinear surface plot, where the controller’s output is plotted against its inputs.

Figure 5.13 shows such a control surface for the fuzzy logic system used as an

example in this Section (i.e., a plane with three dimensions). Notice that the surface

represents in a compact way all the information in the fuzzy logic controller. The

rippled surface is created by the rules and the membership functions. There is a type

of interpolation between the rules that is performed by the fuzzy logic controller. The

output is an interpolation of the effects of the rules that are activated at the current

time.

 81

Figure 5.13 Nonlinear control surface of the fuzzy system used as an example

5.3 Application of Fuzzy Logic in Networks
Fuzzy Logic Control has been successfully used in a wide variety of applications

in engineering, science, business, medicine and other fields. For instance, in

engineering some potential applications areas include the following:

• Robotics: Position control and path planning

• Process control: Temperature, pressure, level control, and failure diagnosis

• Manufacturing systems: Scheduling and deposition process control

• Automobiles: Brakes, transmission, suspension, and engine control

• Aircraft/Spacecraft: Flight control, engine control, navigation, and failure

diagnosis

• Power industry: Motor control, power distribution, and load estimation

 82

Further, the use of fuzzy logic based control methods in communication data

networks is becoming an effective alternative, non-conventional way of designing

such controllers without relying on formal models of the controlled system.

In recent years, a number of research papers using fuzzy logic investigating

solutions to congestion control issues in networking, especially in Asynchronous

Transfer Mode (ATM) networks, have been published. Given the complexity of

ATM networks, rich variety of traffic sources that operate on them, and difficulty of

obtaining formal models for in depth analysis, it is not surprising to see that FLC was

adopted by many researchers. For example, Sekercioglou, Pitsillides, and Egan

(1994), Douligeris and Develekos (1995), Pitsillides, Sekercioglou, and Ramamurthy

(1997), Pitsillides and Sekercioglu (2000), since early 90’s, have successfully used

the concept of FLC for congestion control in ATM, as an alternative to the

conventional counterparts. A survey of these techniques is given by Sekercioglu,

Pitsillides, and Vasilakos (2001).

 Based on the vast experience of successful implementations of FLC in the design

of control algorithms, as indicated above, the reported strength of fuzzy logic in

controlling complex and highly nonlinear systems has recently started to be used in

the IP world as well. To the best of our knowledge, fuzzy logic, in the concept of

active queue management in TCP/IP networks, has been firstly introduced for

providing congestion control by Pitsillides, Rossides, Chrysostomou, et al. (early

2000 and onwards). This novel research demonstrated that the application of fuzzy

control techniques to the problem of congestion control in TCP/IP networks is

worthy of further investigation. The main reasoning can be attributed to the

difficulties in obtaining a precise enough mathematical model (amicable to analysis),

using conventional analytical methods, while some intuitive understanding of

congestion control is available.

Lately, we are witnessing an increase of research papers focusing on the use of

fuzzy logic in various fields of the IP world. Fengyuan, Yong, and Xiuming (2002)

have proposed a fuzzy controller for AQM in IP networks, with input variables the

error on the queue length, and the rate of change of the error, while the output is the

 83

increment step of the packet drop/mark probability. Their choice of the range of

possible values (universe of discourse) of the rate of change of the error, as well as

for the output variable, however, are dependent on the actual scenarios that have

been depicted, and not a generic normalisation of all possible values that can appear.

Specifically, as the authors stated in their paper, after running simulation experiments

the maximum range of the rate of change of the error is set at half the buffer size.

Further, they have chosen, using the same procedure, the range of the increment step

size of the drop/mark probability to be [-8.75x10-5, 8.75x10-5]. Thus, this procedure

is much dependent on specific scenarios, and questions the universality of the chosen

ranges to be applicable in any dynamic network/traffic environment. This advocates

the need of choosing the right inputs and output with generic normalised universes of

discourse. Chrysostomou et al. have successfully addressed this problem by suitably

choosing the right generic variables with normalised universes of discourse

applicable in any possible network/traffic topology (see Chapter 6 for details).

Further, Fengyuan, Yong, and Xiuming (2002) have used only the single-bottleneck

link topology to evaluate their proposed controller, while a tandem network with

multiple congested routers (which gives a more realistic picture of today’sTCP/IP

networks) is not considered at all.

Wang, Li, Sohraby, and Peng (2003) proposed a fuzzy controller for AQM, with

only one input – the queue length, while the output is the drop probability. However,

this scheme is implemented by keeping the RED’s algorithm semantics (they use the

same threshold-based method as that in RED, i.e., when the queue length is less than

a minimum threshold the probability is zero; when the queue length is between the

minimum and maximum threshold the drop probability is computed, and when the

queue length is greater than the maximum threshold then the same gentle mechanism

in RED is used). In this way, the difficulty of RED parameters’ tuning is not avoided.

Also, by keeping a single input variable, the system dynamics are not captured more

accurately than using multiple inputs. Another limitation of keeping only the queue

length as input is the direct coupling between queue length and loss feedback that

results in load dependent queue levels, as this is well-known by the study of the

RED’s behavior.

 84

Aul, Nafaa, Negru, and Mehaoua (2004) proposed a fuzzy controller for AQM,

with input variables the error on the queue length, and the rate of change of the error,

while the output is the drop probability. No normalization of the input variables is

done, as this can be seen by the control surface they provide (thus, questioning the

suitability of the controller in a generic network topology), and also a limited

performance evaluation is offered (a single scenario is used) using a single-

bottleneck network topology that is not sufficient to demonstrate the wider

applicability of the scheme.

Di Fatta, Hoffmann, Lo Re, and Urso (2003) proposed a fuzzy PI-controller for

AQM, where the gains are tuned by a genetic algorithm. Although, this approach is

indeed interesting, the results provided are not convincing for the suitability of the

specific scheme as an effective candidate of AQM, as the proposed scheme shows

almost identical (closed) behaviour with the PI counterpart scheme*. Thus, not much

gain in terms of performance is demonstrated.

Fuzzy logic control has also been used, beside AQM, in other fields concerning

today’s Internet. Siripongwutikorn, Banerjee, and Tipper (2002) have proposed an

adaptive bandwidth control algorithm based on fuzzy control to maintain the

aggregate loss QoS. Habetha and Walke (2002) developed a new clustering scheme

concerning mobility and load management, based on fuzzy logic. Wang et al. (2004)

presented a fuzzy-based dynamic channel-borrowing scheme to maximize the

number of served calls in a distributed wireless cellular network. Savoric (2003)

proposed a fuzzy explicit window adaptation scheme that can decrease the advertised

receiver window in TCP acknowledgements if necessary in order to avoid congestion

and packet losses. Oliveira and Braun (2004) proposed a technique for packet loss

discrimination using fuzzy logic over multihop wireless networks.

* The PI scheme is compared with our proposed approach later.

 85

5.4 Conclusions
Fuzzy Logic Control defines a nonlinear control law by employing a set of fuzzy

“IF-THEN” rules. The “IF” part describes the fuzzy inputs and the “THEN” part of a

fuzzy rule specifies a control action (law) applicable within the fuzzy region from the

“IF” part. FLC can be viewed as an alternative, non-conventional way of designing

feedback controllers where it is convenient and effective to build a control algorithm

without relying on formal models of the controlled system and control theoretic

tools. For example, obtaining a formal (mathematical) model may prove infeasible

for control system design (e.g., linearization of the nonlinear model may result in

poor controlled system). The control algorithm is encapsulated as a set of

commonsense linguistic rules. FLC has been applied successfully to the task of

controlling systems for which analytical models are not easily obtainable or the

model itself, if available, is too complex and highly nonlinear.

In this thesis, we adopt fuzzy logic control due to the significant property of

attaining an intuitive understanding of the way to control the process, through

incorporating human reasoning in the control algorithm. It is independent of

mathematical models of the system to be controlled, thus achieving inherent

robustness and reducing design complexity. This is in contrast with conventional

control approaches that concentrate on constructing a controller with the aid of an

analytical system model that in many cases is uncertain, nonlinear, and subject to

noises. The capability to qualitatively capture the attributes of a control system based

on observable phenomena is a main feature of FLC and has been demonstrated in

various research papers as well as in commercial products. Thus, if the fuzzy logic

control is designed with a good (intuitive) understanding of the system to be

controlled, the limitations due to the complexity the system’s parameters introduce

on a mathematical model can be avoided. A common approach in classical control

theory is to either ignore such complex parameters in the mathematical model, or to

simplify the model to such an extent (in order to obtain some stability results, or to

make model tractable for the controller design), which render the designed

controllers and their derived stability bounds overly conservative. Further, the non-

 86

intuitive tuning of conventional controllers makes it very difficult, due to the

dependency on system dynamic parameters; thus are much affected by the dynamics,

and the nonlinearities of the controlled system.

Of course, fuzzy logic control has its own limitations. Much work remains for the

analytical study of fuzzy logic, particularly in the area of universally applicable

global stability and performance analysis. Most proposed fuzzy logic controllers in

literature do not have any stability analysis because of the difficulty in analysis. This

is mainly due to the existence of the nonlinearity in the control structure that makes it

difficult to conduct theoretical analysis to explain why fuzzy logic controllers in

many instances achieve better performance than the conventional counterparts,

especially for highly nonlinear processes.

However, as elegantly pointed out by Mamdani (1993), overstressing the necessity

of mathematically derived performance evaluations may be counter productive and

contrary to normal industry approach (e.g. prototype testing may suffice for

accepting the controlled systems performance).

Nevertheless, the reported strength of FLC in controlling nonlinear systems

(including many diverse commercial products) using linguistic information motivates

the investigation of such intelligent control techniques as a solution to controlling

TCP/IP networks in the form of intelligent AQM.

 87

Chapter 6

Fuzzy Explicit Marking (FEM): An

Intelligent Nonlinear Fuzzy Logic-

based AQM Control Methodology in

TCP/IP Best-Effort Networks

6.1 Introduction
The use of fuzzy logic control as an alternative to conventional based AQM

mechanisms for congestion control is motivated from certain well-known limitations

identified in the AQM literature. It is widely accepted that we need to design a

nonlinear drop/mark probability, and that the control law must be easily tuneable

over a wide range of operating conditions, (note that the requirement by certain

schemes of non-intuitive dynamic system/network parameters for tuning makes this

task very difficult). Also, the resultant nonlinear control law must exhibit desirable

control properties, such as to drive quickly the system to be controlled into the

steady-state (good transient and steady state response), and be robust.

Our aim is to adopt a methodology that deals with the uncertainties and high

variability appearing in the network, and exhibits fast system response and robust

behavior in spite of varying network conditions, without the need to (re)tune

 88

complex control parameters. Our objective is to investigate the suitability of fuzzy

logic based control that can exhibit such desirable properties.

6.2 The Need for the Alternative
As discussed in Chapter 3, the current Internet feedback mechanism for congestion

control is binary and implicit and the network provides a best effort service.

However, the existing TCP congestion avoidance/control mechanisms and its

variants, while necessary and powerful, are not sufficient to provide good service in

all circumstances (Braden et al., 1998). Therefore, network-assisted mechanisms

have been introduced (e.g., ECN) to provide a more responsive feedback mechanism.

The pressing need to better capture the dynamics and the highly bursty network

traffic, and nonlinearities of TCP has lead to the design of AQM mechanisms as

router support to the TCP congestion control.

While many AQM mechanisms (e.g., Floyd & Jacobson, 1993; Floyd, Gummadi,

& Shenker, 2001; Hollot, Misra, Towsley, & Gong, 2002; Athuraliya, Li, Low, &

Yin, 2001; Kunniyur & Srikant, 2004) have recently been proposed in the best effort

TCP/IP environment, these require careful configuration of non-intuitive control

parameters that are dependent on network/traffic parameters, and show weaknesses

to detect and control congestion under dynamic traffic changes, and exhibit a slow

response to regulate queues (Chrysostomou et al.).

Thus the complexity of these problems and the difficulties in implementing

conventional controllers to eliminate those problems, as identified in Chapter 3,

motivate the need to investigate intelligent control techniques, such as fuzzy logic, as

a solution to controlling systems in which dynamics and nonlinearities need to be

addressed. This work supplements the standard TCP to obtain satisfactory

performance in a best-effort environment.

Fuzzy logic control has been widely applied to control nonlinear, time-varying

systems, in which they can provide simple and effective solutions. Hence, the main

objective is to investigate the alternative of using fuzzy control approach for AQM

 89

control law rather than conventional approaches. Thus, the problem we solve is the

following: formulate and evaluate an intelligent TCP/AQM control methodology that

performs adequately over a wide variety of network/traffic conditions, capturing the

nonlinearities and dynamics of the process itself. The main idea is to design a new

probability function for packet dropping/marking, and the major interest is on the

requirement of a nonlinear control law derived by a fuzzy logic based control

methodology.

By using a nonlinear drop/mark probability function, which does not require

knowledge of dynamic system/network parameters for tuning, an effective and robust

AQM system can be designed to drive quickly the system to be controlled into the

steady-state. This should be contrasted with the linear drop/mark probability function

that itself is not robust enough for the highly bursty network traffic and cannot

capture the dynamics and nonlinearities of TCP/IP networks over widely different

operating conditions. For example, during high load conditions a disproportionately

higher drop/mark probability is required than in a low load condition, in order to

keep the queue length in the same range, a requirement met only by a nonlinear

drop/mark function. On the other hand, the existing AQM schemes (Floyd &

Jacobson, 1993; Floyd, Gummadi, & Shenker, 2001; Hollot, Misra, Towsley, &

Gong, 2002; Athuraliya, Li, Low, & Yin, 2001; Kunniyur & Srikant, 2004) fail to

achieve such an important requirement, either due to the linearity of the control law

they obey, or/and the dependency of their control parameters on network/traffic

parameters (such as the number of flows, RTTs). The control parameters are

designed for “worst-case”, which typically leads to degraded performance under

normal dynamic situations. This has been identified and elaborated in Chapter 3.

6.3 Fuzzy Logic Control Methodology Design Goals
The nonlinear fuzzy logic-based control methodology (FLCM) is designed to

operate in TCP/IP best-effort networks, and specifically in the IP routers’ output port

buffer. However, the aim is to achieve such design goals, as to be feasible to use the

FLCM in other network architectures, as e.g. TCP/IP Diff-Serv networks; that is, to

 90

design a generic control methodology that can be easily adopted in other network

environments as well.

The proposed FLCM is an AQM approach for delivering an improved and more

predictable, inherently robust congestion control implementation in TCP/IP

networks. The fuzzy logic approach allows the use of linguistic knowledge to capture

the dynamics of a nonlinear probability function, and by using multiple inputs can

capture the dynamic state of the network more accurately. It supports the explicit

congestion notification (ECN) in order to mark packets, when decided, instead of

dropping them. This will prevent unnecessary packet drops. Drop of a packet

happens only in the case of buffer overflow.

The principal aim of the proposed nonlinear FLCM is to achieve the following,

very significant for an AQM scheme, goals:

• Dynamic and effective fast system response with robustness to the time-varying,

dynamic nature of the controlled system

• High link utilization (based on the useful throughput)

• Minimal packet losses

• Bounded-regulated queue fluctuations and delays (mean and variation).

The bounded mean queuing delay and delay variation can be achieved by

regulating the queues of the output port buffers of IP routers at predefined levels.

This will have as a consequence to have low losses and to maintain high utilization

as well. By having a nonlinear control law, based on fuzzy logic, the aim is to

effectively deal with the uncertainties and high variability appearing in the network,

and thus exhibit fast system response and robust behavior in spite of varying network

conditions.

 91

6.4 Fuzzy Explicit Marking System Model
The proposed FLCM in TCP/IP best-effort networks, called Fuzzy Explicit

Marking (FEM) controller provides a new nonlinear probability function based on

fuzzy logic for packet marking. Linguistic rules are used to represent how to control

the plant, that is, to mark packets in TCP/IP networks. FEM controller has been

implemented with marking capabilities, so that FEM-like routers have the option of

either dropping a packet or setting its ECN bit in the packet header, instead of relying

solely on packet drops (for the rest of the Thesis, by marking a packet it is meant

setting its ECN bit).

In order to process the inputs of the fuzzy logic based FEM controller to get the

output reasoning the following steps are needed:

• Identify the inputs and their ranges

• Identify the output and its range

• Construct the rule base that the system will operate under

• Create the degree of fuzzy membership function for each input and output

• Decide how the action will be executed for each rule

• Combine the rules and defuzzify the output.

There is no systematic procedure to design the fuzzy controller (Passino &

Yurkovich, 1998). The most used approach is to define membership functions of the

inputs and output, together with a rule data base and to test the controller. The fuzzy

controller is nonlinear and it is very difficult to examine analytically the influence of

certain parameters. Because of that, we rely on the use of heuristic expertise and

study of the plant dynamics about how to best configure the control law. The focus is

on the achievement of the design goals indicated in Section 6.3, whilst keeping the

design of the controller as simple and generic as possible.

 92

6.4.1 Selecting FEM Controller Inputs and Output
Our aim is to ensure that the controller will have the proper information available

to be able to make good decisions, and will have proper control inputs to be able to

steer the controlled system in the directions needed, so that it achieves a high-

performance operation, as pointed out in Section 6.3.

Since multiple inputs are usually used not only to capture the dynamic state of the

controlled system more accurately, but also to offer better ability to linguistically

describe the system dynamics (Passino & Yurkovich, 1998), we utilize a two-input,

single-output (the simplest of the Multiple Input Single Output (MISO) model based)

fuzzy controller on the buffer of each output port of a router in TCP/IP networks.

An obvious information that is available to the controller is the queue length, as the

controller operates on the router buffer queues. Thus, it can be considered as an

input, as it can give a clear view of the local congestion status at a given time, like

the level of queuing delay. As one of our design goals is to put bounds on the queue

fluctuations and delay, we aim to regulate the queue at a specified level. This leads to

the introduction of a constant reference input, the desired-target queue length (TQL)

that can be set by the network operator at a level that can achieve acceptably low

mean queuing delay and variation. With the aim of keeping the instantaneous queue

size at a specified level, this can provide tighter control and can avoid losses and

unacceptable levels of fluctuation around the reference point. This is in contrast with

RED-based algorithms that since they control the macroscopic behavior of the queue

length (i.e., average), they often cause sluggish response and fluctuation in the

instantaneous queue length, and as a result an important variation in delay has been

observed (Kohler, Menth, & Vicari, 2000). Thus, the first controller input is chosen

to be the error on the instantaneous queue length at a given time. The mismatch of

the instantaneous queue length and the TQL means deviation from equilibrium state

and the necessity of updating the packet mark probability.

The selection of the rate of change in error – as a second input on the controller,

which is found in many research papers concerning feedback systems, needs careful

setting of appropriate range of values. As pointed out by Passino and Yurkovich

 93

(1998) the range of possible values for such an input could be determined by

experimenting with various input values to the controlled system to determine the

normal range of values that the change in error can reach during one sampling

interval, in order to effectively define partitions over that input space; thus this kind

of input and, consequently, the choice of its normalizing scaling gain, is application-

dependent (see earlier discussion in Chapter 5, Section 5.3). However, considering

the dynamics, the time-varying behavior and the nonlinearities of the controlled

system under investigation (i.e., TCP/IP networks), makes it difficult to determine a

correct and effective range of values of such a controller’s input; thus resulting in a

less generic controller.

The same considerations apply for a possible choice of the increment step of the

packet mark probability as the controller’s output. The effective range of such an

increment needs a vast experimentation that makes it hard to determine such a range.

This advocates the need to choose the right inputs and output with generic

normalised universes of discourse, applicable in any network/traffic environment.

Thus, the decision is to use the error on the instantaneous queue length for two

consecutive sampling intervals; that is, the current error on queue length and the

error on queue length with a specified delay (at the previous sampling interval).

Sampling at every packet arrival, just like RED does, is an overkill and provides no

perceptible benefit.

By measuring the queue at two consecutive sampling intervals (the current and the

past), we attempt to estimate the future behavior of the queue (can be interpreted as a

prediction horizon).

Notice that the difference between the input arrival rate at a buffer and the link

capacity at discrete time intervals can be approximated and visualized as the rate at

which the queue length grows when the buffer is non-empty. Thus, as it is usually

easier to sample queue length than rate in practice, we track the change of the queue

length for two consecutive discrete time intervals. That is, we compare the

instantaneous queue length with its previous sampled value. The system converges

 94

FEM

Fuzzy logic

controlled

AQM

p(kT)

SGo

Plant q

SGi

SGi

Delay, T

Σ

-

+qdes e(kT)

e(kT - T)

Figure 6.1 Fuzzy logic based AQM system model

only when both sampled queue lengths reach the TQL (i.e. the errors on the queue

length go to zero). The errors converging to zero imply that the input rate has been

matched to the link capacity, and there is no growth or drain in the router queue

level. This has the effect of decoupling the congestion measure from the performance

measure by keeping as congestion indices the queue length and the input rate (which

is approximated with queue growth rate, as discussed above). Thus, the calculation of

the mark probability is not directly related to the actual queue length.

Further, the output of the controller is clearly a nonlinear mark probability that is

given as input of the controlled system in order to decide whether to mark a

particular packet.

After all the inputs and the output are defined for the FEM controller, we can

specify the fuzzy control system shown in Figure 6.1, where all quantities are

considered at the discrete instant kT:

• T is the sampling period

• is the error on the controlled variable queue length, , at each

sampling period kT, defined in Equation 6.1.

(kTe))(kTq

() ()kTqqkTe des −=

 (6.1)

where is the specified desired TQL. desq

 95

• is the error on queue length with a delay T (at the previous sampling

period)

(TkTe −)

)

)

• is the packet mark probability (kTp

• and are the input and output scaling gains, respectively iSG oSG

In fuzzy control theory, the range of values for a given controller input or output is

often called the “universe of discourse”. Often, for greater flexibility in fuzzy

controller implementation, the universe of discourse for each process input is

“normalized” to the interval [-1, +1] by means of constant scaling factors (Passino &

Yurkovich, 1998). For our fuzzy controller design, the scaling gains and ,

shown in Figure 6.1, are employed to normalize the universe of discourse for the

controller inputs error and

iSG oSG

()kTp(kTe ()TkTe − , and for the controller output ,

respectively (e.g., *) is an input value to the fuzzy controller). The gain

 is chosen so that the range of values of *

(kTe)iSG

()kTeiSG iSG and * lie on

[-1, 1], and is chosen by using the allowed range of inputs to the plant in a

similar way. The range of values of the controller’s output lies between 0 and 1 (i.e.,

).

(TkTe −)iSG

oSG

() []1,0∈kTp

In order to achieve a normalized range of the FEM input variables from -1 to 1, the

input scaling gain SG is set to be equal to -1/(qi des–QueueBufferSize), if the

instantaneous queue length, , is greater than the TQL (); otherwise SGinstq desq i is

equal to 1/qdes (see Equation 6.2):

⎪
⎪
⎩

⎪
⎪
⎨

⎧ >
−

−

=
otherwise

q

qq
BufferSizeq

SG

des

desinst
des

i

,1

,1

 (6.2)

The SGi values are taken by considering the lower and upper bounds of the queue

length. When the instantaneous queue length takes its maximum value (i.e., is equal

 96

to the buffer size), then the error on the queue length (see Equation 6.1) should have

its minimum value of qdes–BufferSize. On the other hand, when the instantaneous

queue length takes its minimum value, that is, zero, then the error on the queue

length has its maximum value that is equal to qdes.

The output scaling gain SGo is determined so that the range of outputs that is

possible is the maximum, as well as to ensure that the input to the plant will not

saturate around the maximum. Following the approach of Floyd, Gummadi, and

Shenker (2001) SGo is dynamically set to a value indicating the maximum mark

probability (e.g. initially set to 10%) in response to changes of the instantaneous

queue length, . That is, instq

9.0*9.0
01.0*1.1

bySGdecreaseTHENTQLqif
bySGincreaseTHENTQLqif

oinst

oinst

<
>

The dynamic selection of SGo based on formal adaptive control theory is a subject of

future research.

6.4.2 Control Knowledge - Linguistic Description
To specify rules for the rule base, we need to provide a description of how best to

control the plant. We seek to take this “linguistic” description and load it into the

fuzzy controller. Hence, linguistic expressions are needed for the inputs and the

output, and the characteristics of the inputs and the output. We will use “linguistic

variables” (that is, constant symbolic descriptions of what are in general time-

varying quantities) to describe fuzzy system inputs and output. For FEM controller,

()kTe• “queue-error” describes

()TkTe −• “previous-queue- error” describes

()kTp• “mark-probability” describes

The linguistic variables take on “linguistic values” that change dynamically over

time and are used to describe specific characteristics of the variables. Linguistic

 97

values are generally descriptive terms such as “positive-big”, “zero” and “negative-

small”.

The linguistic variables and values provide us a language to express our ideas

about the control decision-making process in the context of the framework

established by our choice of FEM controller inputs and output. In order to determine

the linguistic values of the input and output variables, we need to define partitions

over the input and output space that will adequately represent the linguistic variables.

Since the inputs of the FEM controller deals with the queue evolution, which is

dynamic and time-varying in nature, we need to have as “many” operating regions –

state partitions as possible, in order to capture as much detail of the dynamics and the

nonlinearities of the TCP/IP plant. We also need to keep the controller as simple as

possible by not increasing the number of linguistic values – state partitions beyond a

number, which offers insignificant improvement on the plant performance. The same

applies for the output of the FEM controller, the mark probability.

Firstly, we need to quantify certain dynamic behaviors with linguistics. For

example, each of the following statements quantifies a different configuration of the

queue:

• The statement “queue-error is positive-big” can represent the situation where,

recalling Equation 6.1, the queue is much below the desired TQL.

• The statement “queue-error is negative-small” can represent the situation where,

recalling Equation 6.1, the queue is driven slightly above the desired TQL, but

not too close to the TQL to justify quantifying it as “zero”, and not too far away

to justify quantifying it as “negative-big”.

• The statement “queue-error is zero” can represent the situation where, recalling

Equation 6.1, the queue is very closed to the desired TQL, and thus has reached

the “equilibrium” state (a linguistic quantification is not precise, thus we are

willing to accept any value of the queue-error around the TQL as being

quantified linguistically by “zero” since this can be considered a better

quantification than “positive-small” or “negative-small”).

 98

• The statement “queue-error is negative-big and previous-queue-error is

negative-small” can represent the situation where the queue is much above the

TQL, and it has the trend of “moving” away, in the “upward” direction, from the

specified desired queue length.

• The statement “queue-error is positive-big and previous-queue-error is negative-

small” can represent the situation where the queue is much below the TQL, and it

has the trend of “moving” away, in the “downward” direction, from the specified

desired queue length.

The model of the FEM control system, comprising the control rules and the values

of the linguistic variables, is obtained through an offline intuitive tuning process that

starts from a set of the initial insight considerations and progressively modifies the

number of linguistic values of the system until it reaches a level of adequate

performance. The design objective is to keep the controller as simple as possible to

start with, and only increase complexity, by adding more linguistic values, if

required. The right number of linguistic values is essential to describe the nonlinear

behavior of a system accurately enough. A formal sensitivity analysis to the choice

and number of rules is beyond the scope of this thesis, but our experimentation has

shown that it is not very sensitive. Adding more rules, as expected, increases the

accuracy of the approximation, which yields an improved control performance. But

beyond a certain point the improvement is marginal. Guidelines for selecting the

rules are discussed in the next section.

The linguistic values chosen for the queue-error and previous-queue-error input

linguistic variables are the following:

• negative-very-big

• negative-big

• negative-small

• zero

• positive-small

 99

• positive-big

• positive-very-big

The corresponding linguistic values chosen for the mark-probability output

linguistic variable are the following:

• zero

• tiny

• very-small

• small

• big

• very-big

• huge

6.4.3 Specifying the Knowledge – Rule Base
Using the linguistic quantification described in Section 6.4.2, we next specify a set

of rules (i.e., create a rule base) that captures our knowledge about how to control the

plant.

By choosing the simplest MISO controller, we have avoided the exponential

increase of the rule base, and thus increase the complexity of the controller, when the

number of input variables increases.

A careful design of the rule base is done based on two goals:

• Completeness: Completeness of rules means that all kinds of situations of

system behavior are taken into consideration, i.e., all kinds of combinations of

input variables results in an appropriate output value.

• Consistency: The rule base is consistent if it does not contain any

contradiction. A set of rules is inconsistent if there are at least two rules with

the same antecedents-part and different consequent-part.

 100

The knowledge-base for the fuzzy controller is generated from IF-THEN control

rules of the form:

IF queue-error is E AND previous-queue-error is E THEN mark-probability is Pi j m

where queue-error and previous-queue-error denote the linguistic variables

associated with the two controller inputs, the error on queue length for two

consecutive sampling periods (()kTe ()TkTe − and), mark-probability denotes the

the linguistic variable associated with the controller’s output (), E(kTp) b denote the

bth linguistic value associated with the input linguistic variables, and Pb denotes the

bth consequent linguistic value associated with the output linguistic variable.

As a generic example consider the case where one fuzzy rule could be

IF queue-error is negative-big AND previous-queue-error is negative-small

THEN mark-probability is big.

A set of such rules forms the “rule base”, which characterizes how to control a

dynamical system.

The fuzzy control rules are given empirically to determine the control signal

according to the errors on the queue length. This relationship between the inputs and

the output is mainly based on intuitive understanding and considerations (using

expert knowledge) of the concept of congestion control, and tuned manually offline

from system behavior observation such as packet marking, delay occurrences and

throughput curves. For example, if the current error on queue length is negative-big

and the past error on queue length is negative-small then the output control signal

should be big enough in order that the system can respond quickly to drive the

controlled system’s output downward closed to the TQL. Another example could be

the situation where the current error on queue length is positive-big and the past error

on queue length is negative-small then the output control signal should be zero in

order to let the queue length “move” upwards towards the TQL. Thus, the design of

the rule matrix can be straightforward. The fuzzy rules are easy to understand and

highly suitable for representation of the decision-making process a fuzzy-based

AQM controller has to possess.
 101

Table 6.1 FEM Linguistic rules – Rule base

The philosophy behind the knowledge base of the FEM scheme is that of being

aggressive when the queue length deviates from the TQL (where congestion starts to

set in and quick relief is required), but on the other hand being able to smoothly

respond when the queue length is around the TQL. All other rules can represent

intermediate situations, thus providing the control mechanism with a highly dynamic

action.

Using the above approach, we can continue to write rules for FEM controller for

all possible cases. With two inputs and seven linguistic values for each of these, there

are at most 72 = 49 possible rules; that is, all possible combinations of antecedent

linguistic values for the two inputs. The designed rule base has a compact size that

can achieve a fast reasoning. Note that for a given time, not all of the rules are

activated (that is, a nonzero activation level exists, when the fuzzy AND operation on

the antecedents-part of a rule gives a nonzero value); thus making the rule base

simple and fast. This is discussed in the next section.

The complete set of rules that define the knowledge base of the FEM controller is

given in Appendix A. A convenient way to list all possible rules is to use a tabular

representation (see Table 6.1*). These rules reflect the particular view and

experiences of the designer, and are easy to relate to human reasoning processes and

gathered experiences.

* Table content notations: negative/positive very big (NVB/PVB), negative/positive big (NB/PB),
negative/positive small (NS/PS), zero (Z), huge (H), very big (VB), big (B), small (S), very small
(VS), tiny (T).

Qerror (kT - T) p(kT)
 NVB NB NS Z PS PB PVB

NVB H H H H H H H
 NB B B B VB VB H H
 NS T VS S S B VB VB
Q Z Z Z Z T VS S B error
(kT) PS Z Z Z Z T T VS

PB Z Z Z Z Z Z T
PVB Z Z Z Z Z Z Z

 102

Note that the actual number of rules is reduced, since when the current error on

queue length is negative-very-big, then the output control signal is always huge,

irrespective of the status of the past error on queue length. The same applies when

the current error on queue length is positive-very-big, then the output control signal is

always zero.

6.4.4 Fuzzy Quantification of Knowledge – Inference Process
The FEM controller is a Mamdani-based model. Mamdani’s fuzzy inference

method is the most commonly seen fuzzy methodology (Mamdani & Assilian, 1975).

We also adopt this approach due to its simplicity and investigate its suitability

through extensive simulations.

6.4.4.1 Selected Membership Functions

Firstly, we need to quantify the meaning of the linguistic values using membership

functions. The membership functions of the linguistic variables are determined (deep

structure), and are the result of a more intuitive and pragmatic choice and not of an

analytic approach (that this works – see Chapter 7 – is one of the main advantages of

fuzzy logic controllers compared to the conventional counterparts). Due to

computational simplicity the membership function of a linguistic variable is often

triangular or trapezoidal shaped, thus they are used in our FEM control model. These

types of shapes are a standard choice used in many industry applications due to their

simple expressions. The chosen membership functions representing the linguistic

values for both the inputs and the output of the FEM controller are shown in Figure

6.2.

The amount of overlapping between the membership functions’ areas is

significant. The left and right half of the triangle membership functions for each

linguistic value is chosen to provide membership overlap with adjacent membership

functions. Our method is simple in that we use symmetric-and-equally spaced

membership functions, where the sum of the grade of membership of an input value,

 103

(a) linguistic input variables

(b) linguistic output variable

Figure 6.2 Membership functions of the linguistic values representing

the input variables “normalized error on queue length for two consecutive
sample periods”, and the output variable “mark probability”

concerning the linguistic values of a specific input variable, is always one (see

Equation 6.3).

()∑
=

=
m

k
ik x

1
1μ

 (6.3)

()ik xμ is the membership value of the input value xwhere i taken from the

membership function of the linguistic value k, (1 < k < m, where m is the number of

linguistic values of a linguistic variable), of the input variable of concern.

The overlapping of the fuzzy regions, representing the continuous domain of each

control variable, contributes to a well-behaved and predictable system operation; thus

the fuzzy system can be very robust.

 104

If there were no overlap, no more than one rule could be activated at the same

time; thus no adequate inference applies. Further, we remark that the choice of equal-

width intervals entails no loss of generality (Chen, Pham, & Weiss, 1995).

The membership functions at the outer edges in Figure 6.2 deserve special

attention. For the input variables we see that the outermost membership functions

“saturate” at a value of one (thus, the use of a trapezoidal-like shapes). This makes

intuitive sense as at some point we just group, for example, all large values together

in a linguistic description such as “positive-very-big”. The membership functions at

the outermost edges appropriately characterize this phenomenon since they

characterize “greater than” (for the right side) and “less than” (for the left side)

situations.

For the output variable, the membership functions at the outermost edges cannot be

saturated for the FEM controller to be properly defined. The basic reason for this is

that in fuzzy-based decision-making processes we seek to take actions that specify an

exact value for the controlled system’s input.

As the membership functions are designed to be overlapping-symmetric-equally

spaced, this results in having at most two membership functions overlapping, thus we

will never have more than four rules on/activated at a given time. This offers

computational simplicity on the implementation of the FEM controller, a design

objective.

6.4.4.2 Implication-Aggregation-Defuzzification

After the linguistic rules are set (called surface structure), and the membership

functions of the linguistic values are determined (called deep structure), we need to

further define the following: the fuzzy AND operator used in the antecedents part of

the rule base is chosen to be the min (minimum) operation, which indicates that we

can be no more certain about the conjunction of the two statements (that belong to

the IF-part of each rule) than we are about the individual terms that make them up.

 105

For the implication of the antecedents-part to the consequent-part of each rule, we

use the min (minimum) operation that truncates the output fuzzy set. The

justification of using the minimum operator to represent the implication is that we can

be no more certain about our consequent than our antecedent.

Further, the max (maximum) operation to all implied output fuzzy sets is used in

the aggregation process. The resulted fuzzy set contains the maximum membership

values among those generated by the implication process. This single aggregated

output fuzzy set needs however to be transformed into a single output crisp value,

using a defuzzyfication method.

The calculated output control signal of the nonlinear fuzzy controller, shown in

Equation 6.4, uses the center of gravity – the most common defuzzification method -

(Passino & Yurkovich, 1998) or centroid of area of the aggregated fuzzy output set

C:

dyy

dyyy
p

C

C
k

∫
∫=

)(

)(

μ

μ
 (6.4)

()(),...,(),(max)(21 yyyy NC)μμμμ =where, is the membership degree of y in the

aggregated fuzzy set C (which is found using the max-operation over all N

implicated output fuzzy sets), and N is the number of linguistic rules.

The limits of integration correspond to the entire universe of discourse Y of output

mark probability values, to which y belongs. To reduce computations, we discretize

the output universe of discourse Y to m values, { }myyyY ,...,, 21= , which gives the

discrete fuzzy centroid (see Equation 6.5).

∑

∑

=

=

×
= m

j
jC

m

j
jCj

k

y

yy
p

1

1

)(

)(

μ

μ
 (6.5)

Note that the use of symmetric triangular and trapezoidal membership functions

makes the computation of the equation easy.

 106

Figure 6.3 Control-decision surface of the fuzzy inference engine of FEM controller.
The nonlinear control surface is shaped by the rule base

 and the linguistic values of the linguistic variables.

6.4.4.3 FEM Nonlinear Control Surface

The nonlinearity that is implemented by the FEM controller, called the control-

decision surface, is shaped by the constructed rule base and the linguistic values of

the inputs and output variables (see Figure 6.3). This surface represents in a compact

way all the information in the fuzzy controller. It is useful to notice that there is a

type of interpolation between the rules that is performed by the FEM controller that

is illustrated in Figure 6.3. The output is actually an interpolation of the effects of the

four rules that are mostly on/activated. For a certain queue length, different mark

probabilities are calculated depending on the past error on queue length. An

inspection of this nonlinear control surface and the linguistic rules shown in Table

6.1 provides hints on the operation of FEM. The mark probability behaviour under

the region of equilibrium (i.e., where the error on the queue length is close to zero) is

smoothly calculated. On the other hand, the rules are aggressive by increasing the

probability of packet marking sharply in the region beyond the equilibrium point

(and where congestion starts to set in and quick relief is required). Thus the

inference process of FEM controller dynamically calculates the mark probability

 107

Figure 6.4 Example of computing FEM output

queue-error = -0.3 previous-queue-error = -0.08
mark-probability =0.67

behaviour based on the two inputs. The dynamic way of calculating the mark

probability by the inference process comes from the fact that according to the error

of queue length for two consecutive sample periods, a different set of fuzzy rules and

so inference apply. Based on these rules and inferences, the mark probability is more

responsive than other AQM approaches, (as for e.g. Floyd & Jacobson, 1993; Floyd,

Gummadi, & Shenker, 2001; Hollot, Misra, Towsley, & Gong, 2002; Athuraliya, Li,

Low, & Yin, 2001; and Kunniyur & Srikant, 2004) due to the human reasoning and

the inbuilt non linearity.

6.5 Illustrative Example of Computing Controller Output
An illustrative example on the operation of the proposed fuzzy logic based control

methodology is given in Figure 6.4. Assume that at the end of two successive sample

intervals (past and current) the normalised errors on the queue length are calculated

as -0.08 and -0.3, respectively; that is there is a trend of the queue “moving” away, in

the “upward” direction, from the specified desired queue length.

 Note that the current error is a member of the fuzzy sets “negative-big” and

“negative-small” with equal membership values of 0.5 each. On the other hand, the

 108

past error is a member of the fuzzy sets “negative-small” and “zero” with

membership values of 0.4 and 0.6, respectively. Their membership of any other

fuzzy sets is equal to zero. Each rule is visited and the minimum of membership

values of the inputs to the corresponding linguistic values are found. Then the

corresponding (for each rule) output linguistic value is truncated (using the min

operation) accordingly. That is, with the numerical values of input variables used in

this example, only rules 10, 11, 17, and 18 of Appendix A contribute in the

calculation of the output. For further clarification the above mentioned rules are

shown below:

10. IF queue-error is negative-big and the previous-queue-error is negative-small

THEN mark-probability is big

11. IF queue-error is negative-big and the previous-queue-error is zero

 THEN mark-probability is very-big

17. IF queue-error is negative-small and the previous-queue-error is negative-small

THEN mark-probability is small

18. IF queue-error is negative-small and the previous-queue-error is zero

 THEN mark-probability is small

In rules 10 and 17, the output fuzzy sets of “big” and “small”, respectively, are

truncated by the antecedents’ minimum membership value of 0.4, whereas in rules

11 and 18 the output fuzzy sets of “very-big” and “small”, respectively, are truncated

by the antecedents’ minimum membership value of 0.5.

We then take the aggregated of all four implied fuzzy sets using the max operator

and by using the center-of-gravity defuzzification method, a numerical value for the

output of the controller is computed as 0.67, which is considered as rather “big”

mark probability, in order that the system can respond quickly to drive the queue

length downward closed to the TQL.

 109

6.6 Sensitivity of Fuzzy Logic Control Methodology to

External Parameters Settings
The design of the fuzzy logic control methodology, as explained in the previous

sections is based on intuitive understanding and considerations (using expert

knowledge) of the concept of congestion control, and tuned manually offline from

system behavior observation. At the same time it is kept as simple and generic as

possible.

Since the fuzzy controller is nonlinear, it is very difficult to examine analytically

the influence of certain parameters. The general properties of FLC are widely

discussed in the literature. We rather investigate the effects that the external

parameters (TQL, sampling interval, and scaling gain) of the fuzzy controller have

on the controlled system’s behavior.

Let us recall what the significance of these parameters is:

• The desired-target queue length (TQL), is a constant reference input that can be

set by the network operator at a level that can achieve bounded mean queuing

delay and variation.

• The sampling interval (T) is used to periodically compute a new/updated mark

probability, that is, a new input for the controlled system, in order to adequately

respond to possible changes in the behavior of the controlled system. In general,

the smaller the sampling interval, the better. It means that the feedback signal

arriving at the hosts is more up-to-date. On the other hand, a small sampling

interval means more processing overhead.

• The input scaling gain (SGi) values are taken by considering the lower and upper

bounds of the queue length, in order to achieve a normalized range of the input

controller’s variables from -1 to 1. Thus, it is a constant factor (see Equation 6.2)

that can not be changed over any network/traffic conditions. The output scaling

gain (SGo) is determined so that the range of outputs that is possible is the

maximum. Following the approach of Floyd, Gummadi, and Shenker (2001) SG o

 110

is dynamically set to a value indicating the maximum mark probability (e.g.

initially set to 10%).

To investigate the sensitivity of the fuzzy logic control methodology to the above

parameters we use the case of a single-bottleneck network topology – shown in

Figure 7.1 (see Chapter 7), with the following setup. We set the link capacities of the

sources to the first-hop router (C1, d1) to be 100 Mbps. The number of TCP active

flows used is 100 long-lived File Transfer Protocol (FTP) flows, and 100 short-lived

TCP flows (Web-like flows). The senders are grouped equally into 4 groups, with

each group having a propagation delay increased by 5 msec, starting from 5 msec up

to 35 msec (that is, we create heterogeneous delays in the network). The bottleneck

link capacity is 15 Mbit/s with a propagation delay of either 30 msec or 120 msec

(C , d2 2). The last link to the destination (C , d3 3) is set to (200 Mbps, 5 msec). We also

provide some time-varying dynamics by stopping half of the TCP/FTP flows at time

t = 70 sec and resuming transmission at time t = 150 sec (the whole simulation time

is set to 200 sec), in order to examine the effects of decreasing/increasing the number

of flows.

We have conducted two kinds of experiments: one with a bottleneck link

propagation delay of 30 msec and another with a bottleneck link propagation delay of

120 msec; thus we further investigate the effect of delays. For both kinds of

experiments, we vary one of the three parameters under study, and keep the other

two fixed.

In particular, we vary the TQL for 10%, 20%, 40% and 60% of the buffer size (we

don’t examine larger values of TQL because this will violate our goal of having low

mean delay). For a buffer size of 500 packets (and assuming a packet of 1000 bytes),

the TQL is varied starting from 50, 100, 200, and 300 packets. For a fixed value TQL

is chosen to be 40% of the buffer size, that is, 200 packets.

The sampling interval, T, is at first fixed at 6 msec, which corresponds to a

sampling frequency of about 160 Hz (we keep the value selected by Hollot, Misra,

Towsley, & Gong, 2002, for convenient comparison). Also, this choice is further

confirmed by Athuraliya (2002) that indicates that a value of the sampling interval

 111

between 1 msec and 10 msec seems to work well for REM controller (Athuraliya, Li,

Low, & Yin, 2001). This sampling interval is by far large enough to complete a

fuzzy inference cycle, and small enough to respond to fluctuations of incoming

flows. Note that Dualibe, Jespers, and Verleysen (2000) report on a programmable

analogue fuzzy controller implemented in CMOS technology, capable of performing

5.26 million fuzzy inferences per second. Thus, we vary the sampling period for

values 1 msec, 6 msec, and 10 msec.

The output scaling gain SGo, following the approach of Floyd, Gummadi, and

Shenker (2001), is initially set to a value of 0.1 (10%) that indicates the maximum

mark probability. We vary the SGo with initial values of 0.02, 0.1, and 0.5.

For both kinds of experiments (i.e., bottleneck link propagation delay of 30 msec

and 120 msec), we show the instantaneous queue length evolution with respect to

time (see Figure 6.5, 6.6 & 6.7, where we show the sensitivity of Fuzzy Logic

Control Methodology to the setting of external parameters of TQL, sampling

interval, and SGo, respectively). We further obtain the main statistical results of mean

queuing delay and its standard deviation, the utilization of the bottleneck link

(regarding the useful throughput), and the loss rate (see Table 6.2, 6.3 & 6.4, for

sensitivity of Fuzzy Logic Control Methodology to external parameters of TQL,

sampling interval, and SG , respectively). o

The results obtained show that the proposed methodology is not very sensitive to

the external parameters of the target queue length, the sampling interval, and the

output scaling gain over the tested scenarios. There is a very small variation on the

various statistical results, which do not influence the overall behaviour of the

controlled system. Based on these results, the proposed methodology is shown to be

acceptably robust against different parameters, rendering it tolerant to a wide range

in parameter selection. Of course, looking at Table 6.4, we see an increase of the loss

rate for both kinds of experiments, when the SGo is initially set to 0.02. Even though

the loss ratio is small in general, the increase we observe, as opposed to much lower

ratios for other SGo initial values used, indicates that a further investigation of the

dynamic tuning of the output scaling gain, based on formal adaptive control theory,

 112

Table 6.2 Summary of statistical results –

Sensitivity of Fuzzy Logic Control Methodology to External Parameter of TQL

T=0.006 sec, SG =0.1, 0

Bottleneck propagation delay (Bpd)=30 or 120 msec

TQL=50: expected mean delay = 26.67 msec

TQL=100: expected mean delay = 53.33 msec

TQL=200: expected mean delay = 106.67 msec

TQL=300: expected mean delay = 160 msec

Mean Delay Std-Deviation Utilization Loss Rate

(msec) (msec) (%) (%)

 Bpd=

30ms

Bpd=

120ms

Bpd=

30ms

Bpd=

120ms

Bpd=

30ms

Bpd=

120ms

Bpd=

30ms

Bpd=

120ms

TQL=50 29.92 24.83 9.45 12.69 99.9 99.23 0.0197 0.004

TQL=100 55.11 50.92 9.86 14.03 99.92 99.47 0.017 0.007

TQL=200 105.96 100.62 12.26 21.83 99.92 99.46 0.0186 0.0075

TQL=300 159.53 151.27 14.68 27.23 99.92 99.58 0.012 0.005

can improve the responsiveness and the accuracy of control. This is recommended as

a topic for future research.

 113

Table 6.3 Summary of statistical results –

Sensitivity of Fuzzy Logic Control Methodology to

External Parameter of Sampling Interval

TQL=200: expected mean delay = 106.67 msec, SG =0.1, 0

Bottleneck propagation delay (Bpd)=30 or 120 msec

Mean Delay Std-Deviation Utilization Loss Rate

(ms) (ms) (%) (%)
 Bpd=

30ms

Bpd=

120ms

Bpd=

30ms

Bpd=

120ms

Bpd=

30ms

Bpd=

120ms

Bpd=

30ms

Bpd=

120ms

T=0.001

sec

109.22 103.84 15.93 21.8 99.86 99.46 0.0697 0.14

T=0.006

sec

105.96 100.62 12.26 21.83 99.92 99.46 0.0186 0.0075

T=0.01

sec

105.19 100.41 13.36 19.21 99.92 99.54 0.017 0.009

Table 6.4 Summary of statistical results –

Sensitivity of Fuzzy Logic Control Methodology to

External Parameter of Output Scaling Gain

TQL=200: expected mean delay = 106.67 msec, T=0.006 sec,

Bottleneck propagation delay (Bpd)=30 or 120 msec

Mean Delay Std-Deviation Utilization Loss Rate

(ms) (ms) (%) (%)

 Bpd=

30ms

Bpd=

120ms

Bpd=

30ms

Bpd=

120ms

Bpd=

30ms

Bpd=

120ms

Bpd=

30ms

Bpd=

120ms

SG0=0.02 106.84 102.38 17.07 23.29 99.78 99.36 0.107 0.16

SG0=0.1 105.96 100.62 12.26 21.83 99.92 99.46 0.0186 0.0075

SG0=0.5 104.27 97.99 15.97 24.75 99.92 99.06 0.0245 0.02

 114

TQL = 300 (bottleneck propagation delay: 30 and 120 msec, respectively)

TQL = 200 (bottleneck propagation delay: 30 and 120 msec, respectively)

TQL = 100 (bottleneck propagation delay: 30 and 120 msec, respectively)

 115

TQL = 50 (bottleneck propagation delay: 30 and 120 msec, respectively)

Figure 6.5 Sensitivity of Fuzzy Logic Control Methodology to External Parameter of TQL

 116

T = 0.001 sec (bottleneck propagation delay: 30 and 120 msec, respectively)

T = 0.006 sec (bottleneck propagation delay: 30 and 120 msec, respectively)

T = 0.01 sec (bottleneck propagation delay: 30 and 120 msec, respectively)

Figure 6.6 Sensitivity of Fuzzy Logic Control Methodology to External Parameter of Sampling
Interval

 117

SG = 0.02 (bottleneck propagation delay: 30 and 120 msec, respectively) o

 = 0.1 (bottleneck propagation delay: 30 and 120 msec, respectively) SGo

SG = 0.5 (bottleneck propagation delay: 30 and 120 msec, respectively) o

Figure 6.7 Sensitivity of Fuzzy Logic Control Methodology to External Parameter of Output
Scaling Gain

 118

6.7 Practicability of Fuzzy Logic Control Methodology
The fuzzy logic based control methodology is proposed having in mind the

simplicity of the various parts that constitute the chosen fuzzy system structure. We

can assert that this aim is achieved by the choice of the triangular-shaped

membership functions, the careful design of overlapping-symmetric-and-equally

shaped membership functions, the relatively small number of linguistic rules that our

rule base consists of and the min-max inference process that is selected.

Of course, if severe implementation constraints are present in the implementation,

there are a number of code optimisations with respect to memory and computation

time one can adopt. This is beyond the scope of this thesis.

6.7.1 Computation Time
Our methodology defines a rule base of 49 rules. However, due to the specific

design of our membership functions, at most two membership functions overlap at

any one point, thus we have at most 4 rules that can be activated at any time. This

significant property of the implementation methodology we selected can be used to

smartly modify the implementation code so that it will compute only at most four

values for the antecedent membership functions, only at most four values for areas of

implied fuzzy sets, and hence have only at most four additions in the numerator and

denominator of the centroid computation. This procedure reduces the number of

required computations significantly.

6.7.2 Memory Requirements
In a real router there is no need for a fuzzy inference engine in the FLC controller.

After the linguistic rules have been found and the linguistic values are tuned by a

simulator, the control surface is known and can be stored as lookup table for selected

sampling points requiring only a few kilobytes of read-only-memory (ROM) in a

FEM-capable router. In combination with a simple interpolation algorithm FEM can

be implemented in such a way with a very fast response time.

 119

6.7.3 Ease of Implementation
The fuzzy logic based control methodology designed for best-effort networks can

be easily adopted in different TCP/IP network environments as well due to the

simplicity and generality of the control design of FEM controller. Thus the simplicity

of the controller implementation is carried out to the differentiated services network,

where only one controller is implemented and called by all differentiated services

classes (see Chapter 8 later).

6.8 Conclusions
A nonlinear fuzzy controller is designed, as an alternative AQM mechanism, to

supplement the standard TCP to obtain satisfactory performance, in terms of link

utilization, delays, and losses. The proposed methodology does not require

knowledge of dynamic system/network mathematical model parameters. Rather it

relies on an intuitive linguistic model, which results in a nonlinear control law that

drives quickly the system to be controlled into the steady-state. By capturing – in an

easy way to interpret – the dynamics of the system the fuzzy controller deals with the

uncertainties and the high variability appearing in the network and exhibits fast

system response and robust behavior in spite of varying network conditions. A

comprehensive evaluation and comparison with popular schemes will be presented in

Chapter 7.

The fuzzy logic control methodology is expressed in an intuitive form using

linguistic variables and semantic rules. The selection of the number of membership

functions and their values is based on process knowledge and intuitive understanding

and considerations of the concept of congestion control, and tuned manually offline

from system behavior observation. At the same time we kept it as simple and generic

as possible, by choosing the triangular-shaped membership functions, the careful

designing of overlapping-symmetric-and-equally shaped membership functions,

selecting a relatively small number of linguistic rules that our rule base consists of,

combined with the min-max inference process.

 120

Further, the proposed methodology is shown over a number of tested scenarios not

to be very sensitive to the external parameters of the target queue length, the

sampling interval, and the output scaling gain. Based on these results, the proposed

methodology is shown to be reasonably robust against different parameters,

rendering it tolerant to a wide range in parameter selection.

The design of the proposed fuzzy logic based congestion control system allows the

use of linguistic knowledge to capture the dynamics of nonlinear probability marking

functions, and uses multiple inputs to capture the dynamic state of the network more

accurately. It aims to generally provide effective congestion control, and thus better

utilization of the network, with lower losses and bounded delays than other AQM

schemes, as for example in Floyd and Jacobson (1993), Floyd, Gummadi, and

Shenker (2001), Hollot, Misra, Towsley, and Gong (2002), Athuraliya, Li, Low, and

Yin (2001), and Kunniyur and Srikant (2004). The design of such a generic control

methodology can be easily adopted in different TCP/IP network environments.

We have not attempted to optimally tune our fuzzy controller because, on one

hand, this appears to be very demanding due to the many degrees of freedom

associated with the membership functions, the rule base, and the parameters thereof,

and on the other hand, any further tuning beyond the basic intuitive ideas is not

necessary and the fuzzy controller performs adequately, as demonstrated in Chapter

7. Thus, keeping the fuzzy inference process as is, is quite acceptable; however,

adaptively tuning of the output scaling gain, using formal adaptive control theory, to

investigate whether the tradeoff between increased complexity and improved

performance is worthwhile, can be a subject of future research.

 121

Chapter 7

Performance Evaluation of Fuzzy

Explicit Marking in TCP/IP Best-effort

Networks

7.1 Introduction
In this chapter we use simulative evaluation to demonstrate the effectiveness and

robustness of the AQM-based nonlinear fuzzy logic control methodology

implemented in TCP/IP best-effort networks, namely Fuzzy Explicit Marking (FEM).

Experiments with a wide range of network/traffic environments are conducted to

compare FEM with other published results by taking some representative, well-

known AQM schemes, namely A-RED (Floyd, Gummadi, & Shenker, 2001), PI

(Hollot, Misra, Towsley, & Gong, 2002), REM (Athuraliya, Li, Low, & Yin, 2001),

and AVQ (Kunniyur & Srikant, 2004).

7.2 Selection of Simulation Parameters
In order to evaluate the performance of the AQM schemes under comparison, we

need to define an appropriate simulation environment and parameters that are of

major significance in the investigation of the effectiveness and robustness.

We need to carefully choose the right network topologies and parameters to be

examined, so as to be as close to the dynamics of the TCP/IP system as possible.

 122

Furthermore, for comparative evaluations and commonly accepted stress results it is

necessary to have a common simulative framework. However, this is not an easy

task. There are as yet no standard topologies and performance indices. One may

refer to the current ongoing discussion between the active members of the

networking community, which aims to give recommendations/guidelines for a right

evaluation of congestion control algorithms in terms of test topologies, and

measurements (TMRG, 2006).

7.2.1 Simulation Environment
The Network Simulator NS-2 is the most widely used simulator for simulating

advanced TCP/IP algorithms and protocols. It can expand other network modules

flexibly and has trusted simulation results. Thus, in our study we adopted NS-2 for

the simulative evaluation of the fuzzy logic control methodology.

7.2.2 Simulation Topologies – Network/Traffic Parameters
To stress our algorithm in as realistic scenarios as practical, we use both single-

and multiple-congested (tandem) links (bottlenecks) network environments, and

through a wide range of experiments we examine the effects, on the AQM schemes,

of the following:

• dynamic traffic changes – time-varying dynamics

• traffic load factor

• heterogeneous propagation delays

• different propagation delays at bottleneck links

• different link capacities

• introduction of noise-disturbance (background traffic) to the network (e.g. short-
lived TCP connections)

• introduction of reverse-path traffic

• different types of data streams, like TCP/FTP and TCP/Web-like traffic, as well
as unresponsive traffic (UDP-like).

 123

By examining the above effects on the selected AQM schemes we intend to get a

clear view on the effectiveness and robustness of the algorithms under comparison.

The choice of these network/traffic parameters, in our opinion, can lead to an

acceptably close representation of TCP/IP’s system dynamics.

7.2.3 Simulation Performance Indices
The performance metrics that we use for evaluating the performance of the fuzzy

control methodology and the other selected AQM schemes are:

• Bottleneck link utilization (based on the useful throughput that is commonly

called goodput)

• Loss rate

• Mean queuing delay and its standard deviation.

The selection of the above metrics as performance indices is common. These

metrics indicate both network utilization and QoS. As such they are prominent

design goals of an AQM scheme. By observing the queuing delay and the amount of

delay variation, we can also evaluate indirectly the stabilization performance of the

queue. The link utilization is defined as the useful throughput normalized by the link

capacity, and the loss rate is defined as the ratio of the number of lost packets to the

number of packets transmitted by the source.

7.2.4 AQM Control Parameters
The control parameter values of the AQM schemes under evaluation are set based

on the recommendations each of the AQM scheme’s authors give, unless otherwise

specified (see Table B.1). The objective is to allow a fair comparison using the

settings recommended by the respective authors and also allow for a comparative

evaluation using the same controller objectives, as for example the queue length

reference value.

 124

.

.

.
iMac

N flows
dest

Router A Router B

(C1,d1)

(C2,d2) (C3,d3)
src

Figure 7.1 Single-bottleneck network topology I

7.3 Single-bottleneck Link
The network topology of a single-bottleneck link is shown in Figure 7.1. We use

TCP/Newreno. The buffer size of all queues is set to 500 packets (1000 bytes each).

The sampling interval for FEM controller is set to 0,006 sec (this allows direct

comparison with the scheme proposed by Hollot, Misra, Towsley, and Gong,

(2002)), and the TQL for FEM, PI, and REM controllers is set to 40% of the buffer

size, that is, 200 packets (which is also adopted by Hollot, Misra, Towsley, and

Gong, (2002)). For A-RED, we set the minimum threshold to 20% of buffer size

(i.e., 100 packets) and the maximum to 60% of buffer size (i.e., 300 packets), giving

an average TQL of 40% of buffer size, that is 200 packets, which is in line with the

TQL setting of the other algorithms). All nodes and algorithms are ECN-enabled.

The simulation time is 100 sec.

To allow fairness in the comparative evaluation, for the various network

parameters (e.g., range of RTTs, link capacities, etc) we again select values as used

by other researchers in their study of AQM-based congestion control (i.e. Hollot,

Misra, Towsley, & Gong, 2002; Floyd, Gummadi, & Shenker, 2001).

 125

7.3.1 Scenarios I
Table B.3 (see Appendix B) contains the statistical results (mean queuing delay

and its standard deviation, loss rate, and bottleneck link utilization) obtained for each

of the AQM schemes under comparison for the conducted experiments.

7.3.1.1 Scenario I-1: Simple case

We conduct a first comparison of the selected AQM mechanisms using the

following parameters:

• number of TCP flows (greedy sustained FTP traffic) is 60,

• link capacities and propagation delays are set as

o (C1, d1) = (15Mbps, 40ms),

o (C2, d2) = (15Mbps, 5ms), which is the bottleneck (note that 15Mbps is

adopted in simulations used in Hollot, Misra, Towsley, and Gong, (2002)

and Floyd, Gummadi, and Shenker (2001), and in other published papers

regarding AQM-based congestion control), and

o (C3, d3) = (30Mbps, 5ms).

Figure 7.2 shows the queue length with respect to time of all AQM schemes under

comparison. FEM quickly regulates the queue to the reference value, while the PI

controller after a significant overshoot spends a considerably long time to reach

steady state. A-RED and REM show good control performance, however, after a

significant transient period with large overshoots. AVQ, on the other hand, does not

have any explicit control for the queue length. It always tries to keep the queue

length as small as possible. However, the queue length cannot be controlled, as it

oscillates from empty to 200 packets approximately. This has as a negative impact

the AVQ scheme to have the longest variation in delay (see Table B.3), and also the

worst utilization, as compared to the other AQM schemes. FEM achieves the highest

utilization, with no losses and the lowest delay variation (see Table B.3).

 126

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.2 Scenario I-1: Queue lengths
 127

7.3.1.2 Scenario I-2: Transient Performance – Speed of Response

In Scenario I-2 we increase the number of flows from 60 to 100, in order to explore

the transient performance of the AQM schemes. The performance of the AQM

schemes under dynamic traffic changes is also examined. We provide some time-

varying dynamics by stopping half of the flows at time t = 40 sec and resuming

transmission at time t = 70 sec. The results (see Figure 7.3 and Table B.3) show that

FEM is very robust against the dynamic traffic changes and keeps very good

response by successfully maintaining the queue length at the target value. Further,

FEM has the highest utilization and lowest delay variation with minimal losses, as

compared to the others (see Table B.3). PI and REM are not as robust (especially in

the case of PI), as they are slower to settle down to the reference value, resulting in

large queue fluctuation. A-RED responds well, except for some larger overshoots at

the time of the traffic changes. AVQ shows weaknesses in responding to dynamic

changes, as it exhibits sluggishness in adapting to the changing network conditions.

This has as a consequence, to have large variations in delay, and the lowest link

utilization.

7.3.1.3 Scenario I-3: Effect of Heterogeneous Propagation Delays

In Scenario I-3, we investigate the effect of having heterogeneous propagation

delays at the access links. In particular, we use the previous Scenario I-2 and we split

the 100 flows into 5 groups with propagation delays ranging from 5 – 25 msec, with

a step increase of 5 msec for each group. The queue length evolutions of the AQM

schemes are shown in Figure 7.4, and the statistical results in Table B.3. We can

observe that FEM is not influenced by the heterogeneity of the propagation delays,

and in fact it increases the link utilization with a small decrease in the delay

variation, thus achieving the highest utilization and the lowest delay variation with

no losses. On the other hand, A-RED has increased its losses, and the utilization has

decreased. PI has increased a bit its losses, and REM has shown a more sluggish

response than in the previous scenario. AVQ has increased its utilization, retaining

however the large sluggishness in adapting to the changing network conditions.

 128

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.3 Scenario I-2: Queue lengths

 129

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.4 Scenario I-3: Queue lengths

 130

7.3.1.4 Scenario I-4: Effect of Delays

In Scenario I-4, we investigate the performance of AQM schemes under variation

of bottleneck link propagation delays. We specifically examine the effect of the

round-trip time by increasing the propagation delay to 30, 60, and 120 msec. We

have also increase the access link capacities, that is, we set (C1, d1) = (100Mbps,

5ms) and (C3, d3) = (200Mbps, 5ms), while we keep the number of flows, N = 100.

We also keep the time-varying dynamics on the network, as used in Scenario I-2.

The results are shown in Figure 7.5 up to Figure 7.7 (for 30msec, 60msec, and

120msec, respectively), and Table B.3. From the results, we can observe the superior

steady performance of FEM with stable queue dynamics, irrespective of the increase

of RTT. FEM has the highest utilization, and the lowest losses and the shortest delay

variation. PI, REM, A-RED and AVQ exhibit large queue fluctuations that result in

degraded utilization and high variance of queuing delay. Thus, these mechanisms are

shown to be sensitive to variations of RTT.

This is clearly illustrated in Figure 7.8, where we show the utilization of the

bottleneck link with respect to the mean queuing delay, as well as in Figure 7.9,

where we can see the utilization with respect to the queuing delay variation. FEM

outperforms the other AQMs, in managing to achieve high utilization, and at the

same time regulating the queue and thus providing bounded mean delay, and delay

variation.

 131

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.5 Scenario I-4: Queue lengths for bottleneck prop. delay = 30 msec
 132

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.6 Scenario I-4: Queue lengths for bottleneck prop. delay = 60 msec

 133

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.7 Scenario I-4: Queue lengths for bottleneck prop. delay = 120 msec

 134

Figure 7.8 Scenario I-4: Utilization vs mean delay
(bottleneck propagation delay varies from 30, 60, 120 msec)

FEM

A-RED

AVQ

REM

PI

Figure 7.9 Scenario I-4: Utilization vs delay variation
(bottleneck propagation delay varies from 30, 60, 120 msec)

FEM

A-RED

AVQ

REM

PI

 135

7.3.1.5 Scenario I-5: Effect of Traffic Load

Scenario I-5 investigates the effect of the traffic load factor (N) in the last scenario

(i.e., bottleneck propagation delay = 120 msec), by increasing N from 100 to 200,

300, 400, and 500 flows. Figure 7.10 shows the loss rate as traffic load increases,

where it can be seen that FEM has the lowest drops. FEM shows stable and low

packet loss over large traffic load. A-RED has the largest drops with a large increase

of packet loss with respect to higher loads. Figure 7.11 and Figure 7.12 show the

utilization of the bottleneck link with respect to the mean queuing delay, and with

respect to the delay variation, respectively. FEM outperforms other AQM schemes

on both high utilization and low delay variation, thus it exhibits a more stable, and

robust behavior with a bounded delay. The other AQM schemes show a poor

performance as the number of traffic load increases, achieving much lower link

utilization, and large queuing delays, far beyond the expected value. From Table B.3,

and Figure 13-16 (for N=200-500, respectively – note that for N=100 Figure 7.7

applies), it is clear that FEM has the lowest variance in queuing delay, resulting in a

stable and robust behavior. On the other hand, the other AQM schemes exhibit very

large queue fluctuations with large amplitude that inevitably deteriorates delay jitter.

 136

Figure 7.10 Scenario I-5: Loss Rate vs Traffic Load
(for 100-500 flows)

FEM

A-RED

AVQ
REM

PI

Figure 7.11 Scenario I-5: Utilization vs Mean Delay
(for 100-500 flows)

FEM

A-RED

AVQ

REM

PI

Figure 7.12 Scenario I-5: Utilization vs Delay Variation
(for 100-500 flows)

FEM

A-RED

AVQ

REM

PI

 137

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.13 Scenario I-5: Queue lengths (for 200 flows)

 138

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.14 Scenario I-5: Queue lengths (for 300 flows)

 139

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.15 Scenario I-5: Queue lengths (for 400 flows)

 140

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

 141
Figure 7.16 Scenario I-5: Queue lengths (for 500 flows)

7.3.1.6 Scenario I-6: Performance in the Presence of Short-lived Flows

Scenario I-6 investigates the performance of AQM schemes by introducing

additional web-like traffic that can be seen as noise-disturbance to the network. As a

large part of the connections in the Internet comprise of short-lived flows, it is

important to study the response of the AQM schemes under comparison in the

presence of short flows. In particular, for a bottleneck link propagation delay of 100

msec we start with 100 long-lived TCP flows, and at the middle of the simulation

(i.e., t=50 sec) we introduce short-lived flows, which arrive at the link at the rate of

30 flows per second (of 20 packets each), as suggested by Kunniyur and Srikant

(2004). Figure 7.17 shows the queue length evolution of the AQM schemes. We can

observe the robustness of the FEM controller that adequately controls the queue at

the specified TQL, without being affected by the sudden introduction of short flows.

It exhibits the highest utilization, with the lowest losses, and the shortest delay

variation (see Table B.3). This is in contrast with the other AQM schemes that it is

evident at t=50sec that they are greatly influenced by the introduction of short flows.

REM, PI, and A-RED after a significant transient response with large overshoots,

they are slow to settle down to the reference value, whereas AVQ has further

increased the delay variation at the queue, resulting in degraded utilization.

 142

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.17 Scenario I-6: Queue lengths
 143

7.3.1.7 Scenario I-7: Effect of Reverse-path Traffic

Scenario I-7 investigates the effect of reverse traffic on the behavior of the AQM

schemes. We particularly introduce Web traffic in the reverse path of the simulation

topology, where 200 web-like sources are sending data based on distributions and

parameters (see Table B.2) as introduced by Iannaccon et al. (2001). In the forward

path we have 100 long-lived FTP sources sharing a bottleneck link of 120 msec

propagation delay, and we keep the time-varying dynamics as explained in Scenario

I-2. The results are shown in Figure 7.18 and Table B.3. We further introduce 2

additional FTP flows sending data in the reverse path (see Figure 7.19 and Table

B.3).

We can observe that as the reverse-path traffic increases, FEM responds

adequately, and manages to keep the queue around the desired value, while it

exhibits the highest utilization and the lowest – minimal – losses in comparison to

the other schemes under study. On the other hand, the other AQM schemes

responded badly in the presence of increased reverse-path traffic. Specifically, A-

RED, PI, and REM cannot regulate the queue, and show large oscillations, with no

sign of “driving” the queue at the reference value. This has as a result to have larger

loss rate and much lower link utilization than FEM achieves. AVQ tries to keep the

queue length as small as possible. However, this has a negative impact on the

utilization of the link, as it leads to an unwanted underutilization (AVQ achieves

only 81.58% of the link utilization, as opposed to FEM that achieves almost 99%),

thus, it fails to accomplish its general goal of gaining high utilization.

 144

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.18 Scenario I-7: Queue lengths (with reverse-path web-traffic)

 145

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ (note that AVQ suffers from underutilization; it only achieves 81% of link utilization,
in contrast with FEM that achieves the highest utilization among others of 99%)

Figure 7.19 Scenario I-7: Queue lenghs (with reverse-path web-traffic and FTP)
 146

7.3.1.8 Scenario I-8: Performance in the Presence of Unresponsive Traffic

Scenario I-8 investigates the performance of AQM schemes under the presence of

unresponsive traffic. We use the previous Scenario I-7 with the reverse-path traffic,

and we add two UDP unresponsive forward flows that simulate the voice-over-IP

(VoIP) application with 64kbps. From Figure 7.20 and Table B.3, we can observe

that the FEM controller can still manage to regulate the queue, exhibiting robust

behavior, and it achieves the highest utilization of 99.12%, much larger than the

other AQM schemes; thus showing its superiority against the others. On the other

hand, A-RED, PI, and REM schemes exhibit large queue fluctuations, and show their

weaknesses to control the queue under such situations; this has a negative impact to

the link utilization. The AVQ scheme exhibits a very poor behavior; while it keeps

the queue length at very low levels, at the same time the link is badly underutilized

(it achieves only 44% utilization, in contrast with FEM that achieves 99%

utilization). This behavior apparently shows weakness of AVQ to find an adequate

tradeoff between high utilization and low delay.

 147

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ (note that AVQ suffers from underutilization; it only achieves 44% of link utilization,
in contrast with FEM that achieves the highest utilization among others of 99%)

 148
Figure 7.20 Scenario I-8: Queue lengths (with reverse-path web-traffic and FTP +

unresponsive forward traffic)

iMac

dest 1

Router B

(C1,d1)

(C2,d2)

src

(C3,d3)

Router A

iMac

dest 2

Router C Router D Router E

(C4,d4)

(C5,d5) (C6,d6) (C7,d7)

Figure 7.21 A network topology with congestion at peripheral links

7.4 Congestion at Peripheral Links
Figure 7.21 is used for the following simulations. Its topology consists of a high-

bandwidth 1Gps core link between router-C and router-D, with a set of lower-

bandwidth 45 Mbps attached to it, and sources and receivers connected by 100 Mbps.

Particularly, we set (C1, d1) = (C2, d2) = (C7, d7) = (100Mbps, 5ms), (C3, d3) = (C4,

d4) =(C6, d6) = (45Mbps, 30msec), and (C5, d5) = (1Gps, 10msec). With these settings

(taken by Bitorika et al. (2004)), the congestion occurs typically in the 45 Mps links

between the high-bandwidth core and the LAN-like traffic source links. This

scenario provides a more realistic network topology, in which the core is over-

provisioned and congestion occurs on more peripheral links.

7.4.1 Scenarios II
Table B.4 (see Appendix B) contains the statistical results of the conducted

experiments. Note that we keep the control parameter values of the AQM schemes as

used in Section 7.3.

 149

7.4.1.1 Scenario II-1

In Scenario II-1 we use 100 FTP flows sending data from one edge to the other,

passing through the core link, from router-A to router-E, and finally to destination

node attached to router-E. Another 100 FTP flows are active sending data from the

LAN-like 100Mbps link to router-A, with destination node the one attached to router-

B, through the 45Mps link between router-A and router-C. Thus, the peripheral link

of 45Mps at router-A is the bottleneck link. Table B.4 shows the statistical results

obtained and Figure 7.22 shows the queue length evolution with respect to time of

each AQM scheme. FEM controller manages to control the queue around the

reference point, while it exhibits the highest utilization of the 45Mps link, and no

losses. On the other hand, the other AQM schemes have large oscillations, and show

slow response to regulate the queue. This has a negative impact with the occurrences

of losses, and lower link utilization than FEM has. The AVQ exhibits large variation

in delay that degrades the link utilization; it exhibits the lowest link utilization as

compared with the others.

 150

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

 151Figure 7.22 Scenario II-1: Queue lengths

7.4.1.2 Scenario II-2: Performance in the Presence of Short-lived Flows

Scenario II-2 investigates the performance of AQM schemes by introducing

additional web-like traffic that can be seen as noise-disturbance to the network. We

keep the traffic conditions as used in the previous Scenario II-1, and at the middle of

the simulation (i.e., t=50 sec) we introduce the short-lived flows, which arrive at the

link at the rate of 30 flows per second (of 20 packets each), as suggested by

Kunniyur and Srikant (2004). Figure 7.23 shows the queue length evolution of the

AQM schemes. We can observe the robustness of the FEM controller that adequately

controls the queue at the specified TQL, without noticeably being affected by the

sudden introduction of short flows. It exhibits the highest utilization, with no losses,

and the shortest delay variation (see Table B.4). This is in contrast with the other

AQM schemes, which at t=50sec are influenced by the introduction of short flows.

PI, and A-RED after a significant transient response with large overshoots, are slow

to settle down to the reference value, REM exhibits a large overshoot at t=50sec that

results in losses, whereas AVQ has further increased the delay variation at the queue,

resulting in degraded utilization. All, except for FEM controller, have decreased the

link utilization – with AVQ having the lowest value – and have further increased the

loss rate.

 152

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.23 Scenario II-2: Queue lengths
 153

iMac

N1 flows

dest 1

Router A Router B

(C1,d1)

(C2,d2)

(C8,d8)src

Router C

(C3,d3)

Router D

(C4,d4)

Router E

(C6,d6)

Router F

(C7,d7)

N2 flows

iMac

dest 2

iMac

dest 3

(C9,d9)

N3 flowssrc src

(C10,d10)

(C5,d5)
(C11,d11)

Figure 7.24 Multiple-bottleneck network topology

7.5 Multiple-bottleneck Links
The network topology of a multiple-bottleneck link is shown in Figure 7.24. We

have considered network topologies with multiple bottleneck links in order to

examine the performance of the AQM schemes in more realistic scenarios.

We use AQM in the queues of all core links from router-A to router-F. All other

links (access links) have a simple Drop Tail queue. The link capacities and

propagation delays are set as follows: (C1, d1) = (C8, d8) = (C9, d9) = (100Mbps,

5ms), (C2, d2) = (C4, d4) = (C6, d6) = (15Mbps, 10ms), (C3, d3) = (15Mbps, 60ms),

(C5, d5) = (15Mbps, 30ms), and (C7, d7) = (C10, d10) = (C11, d11) = (200Mbps, 5ms).

N1 flows end up at destination 1, whereas N2 flows end up at destination 2, and N3

flows end up at destination 3 creating cross traffic. The results show that both

bottleneck links, where the cross traffic exists, (i.e., between router-B and router-C,

and between router-D and router-E) exhibit similar behaviour, as far as the

performance comparison is concerned. Therefore, we have chosen the bottleneck link

between router-D and router-E to show the results obtained.

7.5.1 Scenarios III
All results (the bottleneck link utilization, the loss rate, and the mean queuing

delay with its standard deviation) are summarized in Table B.5 (see Appendix B).

 154

Note that we keep the control parameter values of the AQM schemes as used in

Section 7.3.

7.5.1.1 Scenarios III-1-3: Effect of Traffic Load and Speed of Response

We investigate the performance of AQM schemes under comparison for dynamic

traffic changes and different traffic loads. In Scenario III-1 the number of FTP flows

is N1 = 100, N2 = 50, and N3 = 100. We also introduce time-varying dynamics on the

network, by stopping half of all the flows at time t = 40 sec, and resuming

transmission at t = 70 sec. In Scenario III-2, we have increased the N1 flows to 500

flows, in order to examine the performance of the AQM schemes in high traffic load

with time-varying dynamics and kept the other traffic conditions as in Scenario III-1.

Finally, in Scenario III-3, we kept the traffic conditions as in Scenario III-2 with an

increase of the number of N2 and N3 flows to 100 and 200 flows, respectively. Table

B.5 (see Appendix B) gives the obtained statistical results. Also, Figures 7.25-7.27

show the queue length evolutions of the AQM schemes for the three scenarios. It is

clear from these figures that the FEM controller exhibits a robust behaviour in terms

of both increased traffic load, as well as quick response to the time-varying dynamics

that we have introduced. Under such conditions, FEM is able to maintain the queue

around the specified target value. Thus FEM achieves high utilization (the highest

among the others), minimal losses (the lowest among the others), and bounded delay

variation (the shortest among the others). On the other hand, the other AQM schemes

exhibit slow response to regulate the queue that inevitably deteriorates delay

variation. AVQ, despite the fact that it always tries to keep the queue length as small

as possible, shows weaknesses in responding to dynamic changes, as is exhibits

sluggishness in adapting to the changing network conditions. This has as a

consequence to have large variations in delay.

 155

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.25 Scenario III-1: Queue lengths (for 200 flows)

 156

(a) FEM (b) PI

(c) A-RED (d) REM

 157

(e) AVQ

Figure 7.26 Scenario III-2: Queue lengths (for 600 flows)

(a) FEM (b) PI

(c) A-RED (d) REM

 158

(e) AVQ

Figure 7.27 Scenario III-3: Queue lengths (for 700 flows)

Figure 7.28 Scenario III-1-3: Loss Rate vs Traffic Load
(for 200, 600, 700 flows)

FEM

A-RED

AVQ

REM

PI

Figure 7.28 shows the loss rate as traffic increases at the bottleneck link of

concern. FEM has the lowest losses, following by the AVQ scheme that is very close

to FEM. A-RED has the largest loss rate with a large increase of packet loss with

respect to higher loads. Figure 7.29 and Figure 7.30 show the utilization of the

bottleneck link with respect to the mean queuing delay, and with respect to the delay

variation, respectively. FEM outperforms the other AQM schemes on both high

utilization and low delay variation, thus it exhibits a more stable, and robust behavior

with a bounded delay. Note that in accordance with its design objectives, AVQ has

lower delay performance, but it achieves this at the expense of a lower throughput

and with high delay variation. On the other hand, FEM achieves the designed delay,

as set by the reference value of 200 (TQL=200: expected mean delay = 106.67

msec). The other AQM schemes show weaknesses to maintain a robust (adequate)

behavior irrespective of traffic changes, and time-varying dynamics. They achieve

lower link utilization, and large queuing delays and delays variation.

 159

Figure 7.29 Scenario III-1-3: Utilization vs Mean Delay
(for 200, 600, 700 flows)

FEM

A-RED

AVQ
REM

PI

Figure 7.30 Scenario III-1-3: Utilization vs Delay Variation
(for 200, 600, 700 flows)

FEM

A-RED

AVQ
REM

PI

 160

7.5.1.2 Scenarios III-4: Effect of Roud-Trip-Delays

In Scenario III-4, we investigate the performance of AQM schemes under variation

of the bottleneck link propagation delays. We specifically, take as basis the last

Scenario III-3, and examine the effect of the round-trip time by increasing the

propagation delay from 30 msec to 120 and 200 msec. The results are shown in

Figure 7.31 and Figure 7.32 (for 120msec and 200msec, respectively – note that for

30msec Figure 7.27 applies), and Table B.5. From the results, we can observe the

superior steady performance of FEM with stable queue dynamics, with graceful

performance degradation as the propagation delay increases up to a value of 200

msec. FEM has the highest utilization, the lowest losses and the shortest delay

variation (even though for 200 msec, FEM exhibits larger variation around the TQL

than in previous situations, it still behaves much better that the other schemes as seen

by Table B.5). PI, REM, A-RED and AVQ exhibit large queue fluctuations, and

show weakness to react quickly to dynamic changes resulting in degraded utilization

and high variance of queuing delay.

 161

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

 162
Figure 7.31 Scenario III-4: Queue lengths (for bottleneck prop. delay = 120 msec)

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.32 Scenario III-4: Queue lengths (for bottleneck prop. delay = 200 msec)

 163

Thus, these mechanisms are shown to be sensitive to variations of RTT within the

range of interest. This is clearly illustrated in Figure 7.33, where we show the loss

rate as the propagation delay increases. FEM shows robustness by having minimal,

and the lowest among the others, losses. Figure 7.34 shows the utilization of the

bottleneck link with respect to the mean queuing delay, and Figure 7.35, shows the

utilization with respect to the queuing delay variation. FEM outperforms the other

AQMs, in managing to achieve high utilization, and at the same time regulating the

queue and thus providing bounded mean delay, and delay variation.

Figure 7.33 Scenario III-4: Loss Rate vs Propagation Delay
(bottleneck propagation delay varies from 30, 120, 200 msec)

FEM

A-RED

AVQ

REM

PI

 164

Figure 7.34 Scenario IIII-4: Utilization vs Mean Delay
(bottleneck propagation delay varies from 30, 120, 200 msec)

A-RED

FEM

AVQ

REM
PI

 165

Figure 7.35 Scenario III-4: Utilization vs Delay Variation
(bottleneck propagation delay varies from 30, 120, 200 msec)

FEM

A-RED

AVQ

REM
PI

7.5.1.3 Scenario III-5: Performance in the Presence of Short-lived Flows

Scenario III-5 investigates the performance of AQM schemes by introducing

additional web-like traffic that can be seen as noise-disturbance to the network. In

particular, we use Scenario III-3, without the dynamic changes, and for a bottleneck

link with propagation delay of 100 msec. We introduce short-lived flows, as cross

traffic passing through the bottleneck link, at the middle of the simulation (i.e., t=50

sec), which arrive at the link at the rate of 30 flows per second (of 20 packets each),

as suggested by Kunniyur and Srikant (2004). Figure 7.36 shows the queue length

evolution with respect to time of the AQM schemes. We can observe the robustness

of the FEM controller that adequately controls the queue at close to the specified

TQL, without being noticeably affected by the sudden introduction of short flows. At

the same time, it exhibits the highest utilization, with the lowest losses, and the

shortest delay variation (see Table B.5). This is in contrast with the other AQM

schemes, which at t=50sec are influenced by the introduction of short flows. REM

after a significant transient response with large overshoots, is slow to settle down to

the reference value, whereas PI and A-RED are far away of the reference value and

cannot regulate the queue. AVQ has further increased the delay variation at the

queue. This poor behavior of these AQM schemes has as a result to exhibit large

variation in delay, and degraded utilization, as compared with the FEM controller.

 166

(a) FEM (b) PI

(c) A-RED (d) REM

(e) AVQ

Figure 7.36 Scenario III-5: Queue lengths

 167

7.6 Conclusions
A detailed evaluation and comparison of the proposed AQM-based nonlinear fuzzy

logic controller (FEM) with well-known AQM schemes (A-RED, PI, REM, and

AVQ) is conducted using the NS-2 simulator. Simulation scenarios are carefully

designed in order to investigate the effectiveness and robustness of the selected

schemes. Results have demonstrated that the FEM controller exhibits many desirable

properties, like robustness and fast system response, and behaves better than the

other AQM schemes in terms of queue fluctuations, bounded mean delay and delay

variations, packet losses, and link utilization, with capabilities of adapting to highly

variability and uncertainty in network.

FEM achieves better robustness and queue stabilization than other AQM schemes

under dynamic environments, where the number of flows, RTT and propagation

delays varies significantly, or where there are short-lived TCP flows or unresponsive

UDP flows. FEM can effectively control the queue length to a given reference value

with short variation in delay. It also achieves a better tradeoff between utilization and

queuing delay than the AVQ scheme, since by regulating the queue around a

specified value, it achieves bounded mean delay and short delay variation, and at the

same time it achieves the highest link utilization among the other AQM schemes,

including the AVQ mechanism.

The AVQ scheme tries to keep the queue length as small as possible while trying

to achieve a target (in our study, full) utilization. However, it is shown that FEM

outperforms AVQ in terms of utilization. Moreover, the queue length of AVQ cannot

be controlled to a target value, as it does not have any explicit control for queue

length, and consequently to control jitter; thus it shows much variation in the queue

when time-varying dynamics exist, and it exhibits sluggishness in adapting to the

changing network conditions. Further, it has queue properties dependant on traffic

loads. Hence it is shown that AVQ is not as robust as FEM is demonstrated to be.

With the introduction of short-lived flows and unresponsive flows, AVQ is shown to

perform poorly in terms of link utilization (recall that the main goal of AVQ is to

achieve a target – high – utilization).

 168

A-RED is sensitive to the level of network load, and dynamic changes; the queue

length usually oscillates significantly; Since A-RED controls the macroscopic

behavior of the queue length (average), it often causes sluggish response and

fluctuation in the instantaneous queue length. As a result, an important variation in

delay is observed, and very high loss rates are exhibited.

PI and REM suffer from a long response time under heavy congestion. When

network conditions are changed dynamically, and/or short-lived flows are

introduced, in PI and REM, there is a much longer response time before arriving at a

new steady state, which causes large queue deviation and lower utilization, with

significant amount of loss rate.

Overall, we have demonstrated the effectiveness and robustness of the proposed

methodology with simulative evaluation, and at the same time we demonstrated

limitations the other AQM schemes have. Thus, from the results presented, the fuzzy

logic AQM-based control methodology offers significant improvements on

controlling congestion in TCP/IP networks under widely differing operating

conditions. It is worth pointing out that the settings of FEM, as well as of the other

controllers, remain unchanged (i.e. they are not retuned) throughout all simulation

scenarios.

 169

Chapter 8

Fuzzy Explicit Marking In/Out (FIO):

An Intelligent Nonlinear Fuzzy Logic-

based Control Methodology in TCP/IP

Diff-Serv Networks

8.1 Introduction
Congestion control at the Diff-Serv core requires AQM schemes to preferentially

drop/mark packets based on the level of precedence they belong to, by giving priority

to low drop precedence against high drop precedence traffic. At the same time, it is

significant to provide adequate QoS-centric performance objectives, in terms of

bounded delays, with high link utilization and minimal losses in overall. The existing

AQM schemes for Diff-serv congestion control are identified to show weaknesses to

respond to such objectives. Thereafter, we build on the fuzzy controller we designed

for best-effort service and investigate its extension and suitability to provide effective

congestion for Diff-Serv environments.

8.2 The Need for the Alternative
The Diff-Serv architecture (Braden et al., 1998) proposes a scalable means to

deliver IP QoS based on handling of traffic aggregates. The focus is on the

 170

forwarding path behaviour required in routers*. AQM mechanisms are needed at the

core of the Diff-Serv domain to provide differentiated services aware congestion

control algorithms, and more precisely to provide differential dropping algorithms

for network core routers by preferentially drop/mark non-conforming (high drop

precedence) against conforming (low drop precedence) packets during periods of

congestion. By doing so, a differential treatment, that is, a differentiation between

high- and low-priority traffic aggregates, is provided.

An advantage of the aggregated behavior of Diff-Serv is its simplicity and

scalability. For example, the preferential dropping scheme adopted in routers in the

network core is not likely to change over time due to new applications with new

service requirements in the future. Since the characteristics of a service are defined

and captured by its corresponding traffic profile, it is only necessary to create this

profile at the edge of the Diff-Serv network, while the mechanisms at the core remain

unaffected. A disadvantage due to the aggregated treatment is that Quality of Service

cannot be guaranteed for individual users, but it is differentially provided. To provide

aggregated QoS effective mechanism are required.

Recently, a number of AQM mechanisms have been proposed (e.g., Clark & Fang,

1998; Chait et al., 2002) within the framework of Diff-Serv architecture to provide

differential marking probabilities at the core, aiming at throughput differentiation to

different traffic aggregates. However, these mechanisms show weaknesses to detect

and control congestion under dynamic traffic changes, and a slow response to

regulate queues (Chrysostomou et al.). The inability of providing, in most cases, a

bounded delay on the queue as a whole, has a negative impact on the overall

performance regarding delays, losses and link utilization.

Therefore, there is a need of an effective AQM scheme, implemented at the core

routers of the Diff-Serv domain, addressing utilization and QoS issues, like high

throughput, low losses, and bounded delays, combined with an adequate

differentiation among different traffic levels of priority.

* In this thesis we focus on the core aspects of Diff-Serv, and assume that appropriate edge policies for
Diff-Serv are in place.

 171

Hence, the main objective is to investigate the alternative of using fuzzy control

approach for Diff-Serv AQM, based on the ability of fuzzy logic control to provide

simple and effective solutions on controlling nonlinear, time-varying systems. We

also investigate whether we can adopt the same controller construction as for the

best-effort service (see Chapter 5 and 6 for related discussion). Thus, the problem we

solve is the following: formulate and evaluate an intelligent TCP/AQM control

methodology implemented at the Diff-Serv core, which performs adequately over a

wide variety of network/traffic conditions, capturing the nonlinearities and dynamics

of the process itself. By performing adequately, we mean to provide an adequate

differentiation among different priorities of traffic aggregates, and at the same time

to provide bounded delays, with high link utilization and low losses, thus addressing

QoS issues in TCP/IP Diff-Serv environments.

Summarising our earlier assertions for the use of Fuzzy Logic in best-effort, the

use of fuzzy logic can provide us with a nonlinear mapping of the inputs and output

of the controller, which does not require knowledge of dynamic network parameters.

Thus, an effective and robust AQM system at Diff-Serv core can be designed to drive

quickly the controlled system into the steady-state. This is contrasted with the linear

counterpart that itself is not robust enough to capture the dynamics and nonlinearities

of TCP/IP networks. Existing Diff-Serv AQM mechanisms (e.g., Clark & Fang,

1998; Chait et al., 2002) fail to achieve such an important requirement, due to the

linearity of the control law they obey and the strong dependency of their control

parameters on network/traffic parameters (like the number of flows and RTTs).

8.3 Diff-Serv Fuzzy Logic Control Methodology Design

Goals

Our focus is on the queue management disciplines required to implement the

differential treatment an individual packet receives at the core of a Diff-Serv-

compliant domain. In particular, we are interested for the employment of such a

methodology of queuing disciplines for the Assured Forwarding PHB, since this kind

 172

of PHB allows differential treatment of packets by the use of buffer management

(Heinamen, Baker, Weiss, & Wroclawski, 1999). Thus, we focus on services built

on top of the AF PHB (see related discussion in Chapter 4).

The main design goal is, in case of congestion, to protect packets with a lower drop

precedence value from being lost by preferentially discarding packets with a higher

drop precedence value; thus differentiating traffic aggregates with different drop

precedence levels. At the same time, we aim to achieve bounded delays by

stabilizing the queue variations around pre-defined targets (which are different for

each priority class) that indirectly provide delay assurances, while also ensuring high

link utilization and low losses; thus, offering (differentiated) QoS to traffic

aggregates.

Summarizing from Chapter 6, the design goals of the nonlinear fuzzy logic control

methodology proposed for effective AQM are the following:

• Dynamic and effective fast system response with robustness to the time-varying,

dynamic nature of the controlled system

• High link utilization (based on the useful throughput)

• Minimal packet losses

• Bounded-regulated queue fluctuations and delays (mean and variation).

These goals have been utilized for providing congestion control in TCP/IP best-

effort networks (see Chapter 6). Since these goals are QoS-based, they are also

utilized for providing QoS assurances in the Internet, albeit aggregated for Diff-Serv.

Thus, the nonlinear fuzzy logic-based control methodology proposed in Chapter 6

is adopted for Diff-Serv AQM to operate on the core routers’ buffer queue. The goals

are to achieve differentiated treatment of traffic aggregates, ensuring at the same

time bounded queuing delays, low losses, and high link utilization in overall; hence

offering (differentiated) QoS in traffic aggregates. In accomplishing these goals, fast

system response with robustness to the time-varying dynamic nature of the controlled

 173

system play a significant role and hence are important design requirements.

Furthermore, low complexity is also sought.

8.4 Fuzzy Explicit Marking In/Out System Model

The proposed fuzzy logic control methodology in TCP/IP Diff-Serv networks

provides a nonlinear probability function for a differentiated mark treatment during

congestion to support different levels of precedence.

Particularly, a two-level†of precedence FEM controller (see Figure 8.1) is designed

to operate on the core routers’ buffer queue, called Fuzzy Explicit Marking In/Out

(FIO), where “In” and “Out” terms are used to distinguish packets that are classified

into different precedence traffic aggregates, distinguished by the drop/mark

precedence level they belong to. “In” packets belong to the low drop/mark

precedence (i.e., high-priority traffic), while the “Out” packets belong to the high

drop/mark precedence (i.e., low-priority traffic).

Both high- and low-priority traffic aggregates share a FIO queue. FIO comprises of

two identical FEM controllers (as described in Chapter 6), one for each traffic

aggregate, and we introduce two different TQLs, on the total queue length, one for

each FEM controller. The TQL for low-priority traffic is lower than the one for high-

priority traffic. Therefore, low-priority packets are more likely to be marked than the

high-priority ones.

The idea behind this is to regulate the queue at the lower TQL. In this case, the

mark probability of the high-priority traffic is closer to zero, as the TQL is set higher

and thus it is less likely that high priority packets will be marked. In the presence of a

small amount of high-priority packets, the queue would be mostly regulated at the

lower TQL and thus marking of high-priority packets would be less likely. If

however, the high-priority traffic is high in comparison to the low-priority traffic,

† Extension to multiple-levels of precedence are trivial, since the same controller is implemented for
each level, but with a different target queue length reference setting, as described later. By selecting
appropriate target queue references adequate differentiation between the multiple levels can be
provided.

 174

FEM

AQM

Plant p(kT) q

FEM

AQM
TQLhigh

TQLlow

packet belongs to low-level
drop precedence (In)

packet belongs to high-level
drop precedence (Out)

Figure 8.1 FIO system model

then the queue is regulated at the higher TQL (as there is not enough low priority

traffic to ensure the lower TQL is maintained). In this case the mark probability for

low-priority traffic is closer to one. In either case, the lower-priority traffic is marked

at a higher rate. Therefore, we can accomplish both differentiation as well as a

bounded delay, by regulating the queue between the two TQLs, depending on the

dynamic network traffic conditions.

It is therefore expected that FIO‡ can achieve an adequate differentiation between

the two precedence traffic aggregates in the presence of congestion, by preferentially

marking the lowest-priority packets, and giving priority/preference to high-priority-

tagged traffic, while controlling the queue at the predefined levels, and thus

providing QoS assurances for delay, loss, and link utilization.

‡ This is not a unique feature of FIO. Any scheme with two regulators operating on two different
Target Queue Lengths (reference setpoints) can potentially achieve differentiation in the sense we
described above.

 175

8.5 Advantages of FIO over Existing Schemes

The FIO controller can maintain short queue length (around the lowest TQL) or

bounded queue, between low and high TQL, and high throughput with low losses,

depending on the dynamic network traffic conditions. The FIO controller, at the

same time, can offer adequate differentiation among different drop precedence

traffic. It can achieve a bounded delay at the buffer based on the fact that the overall-

total buffer occupancy is considered as the basis for each decision to enqueue, drop

or mark a packet, and not the virtual queue of a particular precedence level, as it is

the case of RIO (Clark & Fang, 1998) for “In” packets. We consider this as a

drawback for RIO, if we want to have a bounded delay for the queue as a whole and

under any congestion level.

In particular, RIO cannot adequately control the queue size, since its control laws

for “In” and “Out” are not related to each other. The drop probability of “In” packets

is not correlated with the total buffer size, in contrast to “Out” packets, thus, it fails

to regulate the queue length, and consequently the queuing delay of the router’s

output buffer, to any targeted predefined values. This is because when excess packets

arrive at the router, and congestion begins, the “In” TQL§ is unlikely to be achieved,

since the “In” drop probability only considers the “In” average queue length**,

whereas the “In” TQL is set by the network administrator over the total buffer

occupancy††. Thus it would be more appropriate to correlate the “In” drop

probability with the total average queue size, in order to achieve the specified TQL

during periods of congestion. This has a negative impact to link utilization, as well as

to packet loss, while introducing unwanted large queue oscillations with large delay

variation.

Further, the nonlinear probability function that the FIO controller follows has as a

consequence to deal the dynamics and the nonlinearities of the network, providing a

§ The TQL for RIO is indirectly set by the network operator by the min and max thresholds for “In”
packets.
** That is, the possibility of dropping/marking “In” packets depends on the buffer occupancy of “In”
packets.
†† In other words, the “In” average queue size, used in the calculation of the drop/mark probability, is
compared with the “In” queue thresholds on the total average queue length.

 176

dynamic and effective fast system response. On the other hand, existing AQM

schemes for Diff-Serv control (like RED implementation - RIO, and the two-level PI

controller by Chait et al. (2002)), retain the weaknesses and limitations identified in

Chapter 3. RIO retains RED’s basic linear structure, and the two-level PI controller

also retains the undesired PI behaviour (e.g., the dependency of PI control parameters

on dynamic network parameters).

Hence, the implementation of the FIO controller at the Diff-Serv core is expected

to offer significant improvement over the existing AQM schemes, providing

adequate (differentiated) QoS.

8.6 Illustrative Examples of FIO Operation

The properties of the FIO controller are illustrated using some indicative examples.

We use the case of a single-bottleneck network topology – shown in Figure 7.1 (see

Chapter 7) – with the following setup: The sampling interval of FIO is fixed at 0.006

sec, the TQL for high-priority (low drop precedence) traffic is set to 200 packets,

whereas the TQL for low-priority (high drop precedence) traffic is set to 100 packets,

for a buffer size of 500 packets. The maximum drop/mark probability for high-

priority traffic is set to 0.02, whereas for the low-priority traffic is set to 0.1. We use

TCP/FTP traffic for 100 flows, and we assume that the classification is already done

at the Diff-Serv boundary nodes, and that the traffic profiles are based on source-

destination IP pairs. The link capacities and propagation delays are set as follows:

(C1, d1) = (100Mbps, 5ms), (C2, d2) = (15Mbps, 120ms), which is the bottleneck link,

and (C3, d3) = (200Mbps, 5ms). The simulation time is set to 100 sec.

 177

Table 8.1 Summary of statistical results – Illustrative examples of FIO operation

TQL=100: expected mean delay = 53.33 msec

TQL=200: expected mean delay = 106.67 msec

Utilization (%) Loss Rate (%) Delay (ms) Scenarios

Low-

Priority

High-

Priority

Total Low-

Priority

High-

Priority

Total Mean-

Delay

Std-

Deviation

(a) 49.69 49.33 99.02 0.47 0.019 0.25 62.61 23.05

(b) 14.42 84.6 99.02 1.285 0.084 0.26 84.27 28.59

(c) 48.78 46.58 95.36 0.39 0.15 0.27 84.55 34.93

(d) 0.28 99.07 99.35 1.8 0.41 0.41 113.74 25.12

We have conducted four experiments. The main statistical results of mean queuing

delay and its standard deviation, the utilization of the bottleneck link (regarding the

useful throughput), and the loss rate are shown in Table 8.1. Figure 8.2 shows the

queue length evolution for all experiments.

Scenario (a) considers a limited number of flows tagged as high-priority traffic; 2

out of 100 flows are considered belonging to high-priority, whereas the rest, 98

flows, are tagged as low-priority. From Figure 8.2(a) we can observe that FIO

regulates its queue to the lower TQL (100 packets). Furthermore, FIO achieves an

adequate differentiation between the two traffic classes (see Table 8.1), even though

the number of high-priority flows is very small compared to the low-priority.

Scenario (b) increases the number of flows tagged as high-priority traffic class to

10. FIO accomplishes a bounded queuing delay, between the two TQLs, that results

in high link utilization and minimal losses (see Figure 8.2(b) and Table 8.1).

Furthermore, FIO achieves a high differentiation between the two traffic aggregates,

thus can provide adequate QoS.

Scenario (c) examines the behavior of the FIO AQM scheme under dynamic

traffic changes. We use the previous experiment, and provide some time-varying

 178

(a) (b)

(c) (d)

Figure 8.2 FIO queue evolution

(Illustrative examples of FIO operation)

dynamics by stopping the high-priority-tagged flows at time t = 40 sec, and resuming

transmission at time t = 70 sec. The results (see Figure 8.2(c)) show that FIO is very

robust against the dynamic traffic changes and keeps very good response. Between t

= 40 – 70 sec, where only low-priority-tagged flows are active, FIO successfully

manage to regulate the queue length at the TQL for low-priority.

Scenario (d) increases the number of flows tagged as high-priority traffic to 90,

and also examines the effect of the RTT by having heterogeneous propagation delays

of the links between the sources and their first-hop router (we separate the 100 flows
 179

into groups of 10, and for each group - that consists of 9 high-priority-tagged flows

and 1 low-priority-tagged flow – its propagation delay is increased by 5 msec,

starting from 5 msec up to 50 msec). The propagation delay of the bottleneck link has

also changed to 60 msec. In the presence of large amount of high-priority, compared

with the low-priority traffic, FIO regulates its queue at the higher TQL (see Figure

8.2(d)) that results in high link utilization with minimal losses.

8.7 Ease of Implementation - Flexibility

The Diff-Serv architecture operates on the premise that complicated functionality

should be moved at the edge of the network with simple functionality at the core.

This requirement is met by the proposed fuzzy control methodology, as this is

designed to be effective and simple at the same time (see practicability issues of

fuzzy logic control methodology clearly explained in Chapter 6).

Note also that in a real implementation due to the use of identical FEM controllers

only one fuzzy inference process is really required to operate at the router’s output

buffer. At each sampling period, depending on the type of the packet arrived, that is,

whether it belongs to the high- or low-priority, a new/updated mark probability is

computed, from the generic inference engine, based on the corresponding TQL.

Furthermore, even though we introduce FIO with two drop/mark precedence, it is

easy to extend the fuzzy logic control methodology to multiple drop/mark

precedence. The ease of this approach is the result of the design of a generic control

methodology (as described in Chapter 6) that enables us to adopt easily the

corresponding methodology and extend it in multiple-level related schemes.

8.8 Conclusions

We investigated the suitability of fuzzy logic to provide effective congestion for

Diff-Serv environments, and particular the employment of a queue management

discipline required to implement differential treatment among different traffic

 180

priorities belonging to the Assured Forwarding PHB. Using the generic fuzzy logic

based control methodology described earlier, we develop a simple Diff-Serv aware

AQM controller that can realize multiple levels of drop precedence, and can offer an

adequate differentiation among different priorities of traffic. At the same time, using

the strengths of fuzzy logic, we can assure bounded delays and high link utilization,

as well as low losses; thus addressing QoS issues to different traffic levels of

precedence in TCP/IP networks. The proposed nonlinear fuzzy control methodology

for Diff-Serv congestion control can offer significant improvement, on providing

QoS, over the existing AQM schemes (Clark & Fang, 1998; Chait et al., 2002) due to

the identified limitations they obey.

 181

Chapter 9

Performance Evaluation of Fuzzy

Explicit Marking In/Out in TCP/IP

Diff-Serv Networks

9.1 Introduction
In this chapter we use simulative evaluation to demonstrate the effectiveness and

robustness of the generic nonlinear fuzzy logic based AQM control methodology

implemented also in TCP/IP Diff-Serv networks, namely Fuzzy Explicit Marking

In/Out (FIO). Experiments with a wide range of network/traffic environments are

conducted to compare FIO with other existing, well-known, AQM schemes for Diff-

Serv congestion control, namely RIO (Clark & Fang, 1998), and two-level PI

controller (Chait et al., 2002). Note that extensive simulations for the best-effort

environment are included in Chapter 7.

9.2 Selection of Simulation Parameters
In order to evaluate the performance of the AQM schemes under comparison, we

use the same simulation environments and parameters used in Chapter 7 for the

evaluation of the proposed control methodology implemented in TCP/IP best-effort

networks (see Section 7.2 for details).

 182

We use the NS-2 simulator in both single- and multiple-congested links network

environments, and we examine the effects on the AQM schemes of various

network/traffic parameters, like time-varying dynamics, heterogeneous RTTs, short-

lived flows that are of major significance in the investigation of the effectiveness and

robustness of the algorithms under comparison. We also keep the same performance

metrics, as in Chapter 7, for evaluating the performance of the fuzzy control

methodology and the other selected AQM schemes; that is, bottleneck link

utilization, loss rate, and mean queuing delay and its standard deviation, which

provide us a QoS-aware evaluation.

Moreover, as we introduce the AQM schemes with two mark precedence levels:

the low mark precedence level for the high-priority traffic (“IN” packets), and the

high mark precedence level for the low-priority traffic (“OUT” packets), we are also

interested to demonstrate adequate differentiation between these. Note that since in

this thesis we focus on the core aspects of Diff-Serv, we assume that the

classification is already done at the Diff-Serv boundary nodes, based on source-

destination IP pairs.

9.3 Single-bottleneck Link
The network topology of a single-bottleneck link is shown in Figure 7.1 (in

Chapter 7). We use TCP/Newreno. The buffer size of all queues is set to 500 packets

(1000 bytes each). The sampling interval for FIO controller is set to 0,006 sec (same

as adopted by decision taken by Hollot, Misra, Towsley, and Gong, (2002)).

The TQL for FIO and PI controllers regarding the high-priority traffic is set to 40%

of the buffer size, that is, 200 packets. The corresponding TQL for the low-priority

traffic is set to 20% of the buffer size, that is, 100 packets. For RIO, we set, in the

case of the high-priority traffic, the minimum threshold to 20% of buffer size (i.e.,

100 packets) and the maximum to 60% of buffer size (i.e., 300 packets), giving an

average TQL of 40% of buffer size, that is 200 packets. For low-priority traffic, we

set the minimum threshold to 10% of buffer size (i.e., 50 packets) and the maximum

to 30% of buffer size (i.e., 150 packets), giving an average TQL of 20% of buffer

 183

size, that is 100 packets. For both FIO and RIO, the maximum mark probability for

high-priority traffic is set to 0.02, whereas for the low-priority traffic is set to 0.1.

Above settings are selected so as to provide an adequate differentiation between the

high- and low-priority traffic, when congestion occurs. All nodes and algorithms are

ECN-enabled. The simulation time is 100 sec.

9.3.1 Scenarios I
Table C.1 (see Appendix C) contains the statistical results of the conducted

experiments (mean queuing delay and its standard deviation, loss rate, and bottleneck

link utilization).

9.3.1.1 Scenario I-1-3: Effect of Increase of High-priority Traffic

In these scenarios we investigate the performance of the AQM schemes as the

high-priority-tagged traffic increases in comparison to the low-priority traffic. The

link capacities and propagation delays are set as follows: (C1, d1) = (100Mbps, 5ms),

(C2, d2) = (15Mbps, 120ms), which is the bottleneck link, and (C3, d3) = (200Mbps,

5ms). All sources are greedy sustained FTP applications, and set to N = 100.

Scenario I-1 considers a limited number of flows tagged as high-priority traffic;

2% of the flows are considered belonging to high-priority, whereas the rest, 98%, are

tagged as low-priority. Figure 9.1 shows the queues of FIO, RIO, and two-level-PI

(we designate it as TL-PI, for easier convenience) where we can observe that FIO

regulates its queue to the lower TQL (100 packets) that corresponds to the low-

priority traffic, whereas RIO cannot regulate, at all, the queue and exhibits very large

queue fluctuations that results in degraded utilization, losses and high variance of

queuing delay (see Table C.1). TL-PI tries to regulate the queue at a low level;

however it spends considerably long time with a considerably long delay variation.

Furthermore, FIO achieves an adequate differentiation between the two traffic

priority classes, despite the fact that only 2% of the traffic is tagged as of high-

priority, in contrast with RIO and TL-PI that cannot provide sufficient differentiation

for high-priority traffic.
 184

(a) FIO (b) two-level PI

(c) RIO

Figure 9.1 Scenario I-1: Queue lengths

Scenario I-2 increases the number of flows tagged as high-priority traffic to 10%

of the flows. FIO accomplishes a bounded queuing delay, between the two TQLs,

that result in high link utilization and minimal losses (see Figure 9.2 and Table C.1).

On the other hand, TL-PI and RIO slowly regulate their queue (especially in the case

of RIO), after a significant transient period with large overshoots that result in lower

utilization and higher losses than FIO has. Furthermore, FIO achieves a much higher

differentiation between the two traffic priority classes, as compared with RIO and

TL-PI, thus can provide adequate QoS differentiation.

 185

(a) FIO (b) two-level PI

(c) RIO

Figure 9.2 Scenario I-2: Queue lengths

Scenario I-3 increases the number of flows tagged as high-priority traffic to 90%

of the flows. In the presence of such large amount of high-priority traffic, compared

with the low-priority traffic, FIO regulates its queue at the higher TQL (see Figure

9.3), and at the same time it offers the necessary differentiation needed among the

two traffic of priority. RIO, on the other hand, exhibits large queue fluctuations that

result in lower utilization and higher losses than FIO and TL-PI have. TL-PI shows a

sluggish response to regulate the queue and less tight control than FIO.

 186

(a) FIO (b) two-level PI

(c) RIO

Figure 9.3 Scenario I-3: Queue lengths

Figure 9.4 shows the utilization of the link regarding only the high-priority traffic

as the traffic of high-priority increases (based on the above scenarios). It is clearly

shown that FIO outperforms the other two schemes in terms of better differentiation

provided between the two drop precedence levels, in favor of the low drop

precedence level. RIO and TL-PI schemes, on the other hand, cannot give adequate

differentiation in the presence of significant amount of low-priority traffic.

 187

Figure 9.4 Scenarios I-1-3: Utilization of high-priority traffic vs percentage of
high-priority traffic

(high-priority traffic increases from 2%, 10%, and 90% of the total traffic)

FIO

RIO

TL-PI

9.3.1.2 Scenario I-4: Effect of Time-varying Dynamics

Scenario I-4 examines the behavior of the AQM schemes under dynamic traffic

changes. We use Scenario I-2, and provide some time-varying dynamics by stopping

the high-priority-tagged flows at time t = 40 sec, and resuming transmission at time t

= 70 sec. The results (see Figure 9.5) show that FIO is very robust against the

dynamic traffic changes and provides a very good response. Between t = 40 – 70 sec,

where only low-priority-tagged flows are active, FIO successfully manage to regulate

the queue length at the TQL for low-priority, whereas RIO fails to do so. TL-PI has a

slower response, than FIO has, to regulate the queue at the specified values, when

sudden change in the traffic happens. FIO also achieves better differentiation

between the two traffic priorities, and provides the highest utilization and the lowest

losses compared with the other AQM schemes.

 188

(a) FIO (b) two-level PI

(c) RIO

Figure 9.5 Scenario I-4: Queue lengths

9.3.1.3 Scenario I-5: Effect of Heterogeneous Propagation Delays

Scenario I-5 uses Scenario I-3 and examines the effect of the RTT by having

heterogeneous propagation delays of the links between the sources and router-A (we

separate the 100 flows into groups of 10, and for each group - that consists of 9 high-

priority-tagged flows and 1 low-priority-tagged flow – its propagation delay is

increased by 5 msec, starting from 5 msec up to 50 msec). The results (see Figure

9.6) show the superior steady performance of FIO with stable queue length dynamics

 189

(a) FIO (b) two-level PI

(c) RIO

Figure 9.6 Scenario I-5: Queue lengths

that result in a high link utilization with minimal losses, while RIO exhibits large

queue fluctuations, worst than in Scenario I-3, that result in a significant amount of

losses and high variance of queuing delay. TL-PI shows again a slow transient

response, with larger delay variation, than FIO. Further, FIO accomplishes an even

stronger differentiation between the two priority traffic, in favour of the high-

priority, by having an increased utilization for the high-priority. This is in contrast

with TL-PI that exhibits an increase for the low-priority (see Table C.1).

 190

9.3.1.4 Scenario I-6: Effect of Delays

In Scenario I-6 we investigate the performance of AQM schemes under variation

of bottleneck link propagation delays. We specifically examine the effect of the

round-trip time by decreasing the propagation delay from 120, to 60, and 30 msec, by

using the Scenario I-3 as the basis. The results are shown in Figure 9.7 and Figure

9.8 (for 30msec and 60msec, respectively – note that for a propagation delay of 120

msec, Scenario I-3 applies), and Table C.1. From the results, we can observe the

superior steady performance of FIO with stable queue dynamics, irrespective of the

increase of RTT (as in the best-effort environment, a graceful degradation is

observed as RTT increases). FIO has the highest utilization, and the lowest losses

and the shortest delay variation. On the other hand, RIO exhibits large queue

fluctuations as the RTT increases that result in degraded utilization and high variance

of queuing delay. Also, TL-PI suffers from a slow response to regulate the queue,

and has higher delay variation than FIO has. Thus, these mechanisms are shown to

be more sensitive with variations of RTT.

In Figure 9.9, we show the utilization of the bottleneck link regarding the high-

priority traffic with respect to the mean queuing delay. FIO outperforms the other

AQMs, in managing to achieve high utilization for the high-priority; thus it achieves

a much higher differentiation between the two drop precedence levels, and at the

same time regulating the queue and thus providing bounded mean delay, and delay

variation. On the other hand, the other schemes exhibit much larger delays, and

provide less differentiation between high- and low-priority traffic.

 191

(a) FIO (b) two-level PI

(c) RIO

Figure 9.7 Scenario I-6: Queue lengths (bottleneck link propagation delay = 30 msec)

 192

(a) FIO (b) two-level PI

(c) RIO

Figure 9.8 Scenario I-6: Queue lengths (bottleneck link propagation delay = 60 msec)

 193

Figure 9.9 Scenario I-6: Utilization of high-priority traffic vs mean queuing delay

(bottleneck propagation delay varies from 30, 60, and 120 msec)

FIO

RIO

TL-PI

9.3.1.5 Scenario I-7: Performance in the Presence of Short-lived Flows

Scenario I-7 investigates the performance of AQM schemes by introducing

additional web-like, short-lived traffic that can be seen as noise-disturbance to the

network. In particular, we keep Scenario I-3 as is, and at the middle of the simulation

(i.e., t=50 sec) we introduce short-lived flows, which arrive at the link at the rate of

30 flows per second (of 20 packets each), as suggested by Kunniyur and Srikant

(2004). The web-like traffic is categorized to belong in the high-priority traffic.

Figure 9.10 shows the queue length evolution of the AQM schemes. We can observe

the robustness of the FIO controller that adequately controls the queue, and retains

the regulation of the queue length, quickly after the sudden introduction of short

flows. It exhibits the highest utilization, with the lowest losses, and the shortest delay

variation (see Table C.1).

 194

This is in contrast with the other AQM schemes, which at t=50sec are greatly

influenced by the introduction of short flows. RIO and TL-PI suffers from a

significant transient response with large overshoots (especially in the case of RIO

that maintains the large oscillations). Further, once more, FIO exhibits the highest

differentiation between the two precedence levels.

(a) FIO (b) two-level PI

(c) RIO

Figure 9.10 Scenario I-7: Queue lengths

 195

(a) FIO (b) two-level PI

(c) RIO

Figure 9.11 Scenario I-8: Queue lengths

9.3.1.6 Scenario I-8: Effect of Reverse-path Traffic

Scenario I-8 investigates the effect of reverse traffic on the behavior of the AQM

schemes. We use the Scenario I-3 as the basis, and we additionally introduce 5 FTP

flows sending data in the reverse path, which are considered to belong to the high-

priority traffic aggregate (see Figure 9.11 and Table C.1).

We can observe that in the presence of the reverse-path traffic, the FIO controller

responds adequately, and manages to keep the queue around the desired value, while

exhibiting the highest utilization and the lowest – minimal – losses. On the other

 196

.

.

.

iMac

N flows dest

Router A Router B

(C1,d1)

(C2,d2) (C3,d3)
src Router C

(C4,d4)
Router D

(C5,d5)

Figure 9.12 Single-bottleneck network topology II

hand, the other AQM schemes have responded badly to the presence of reverse-path

traffic. Specifically, RIO and TL-PI cannot regulate the queue at all, and have shown

large oscillations, with no sign of “driving” the queue to the reference value. This has

as a result to have larger loss rate and lower link utilization than FIO achieves.

Further, FIO can adequately provide the necessary differentiation between the two

levels of precedence, irrespective of the presence of the reverse-path traffic.

However, RIO and especially TL-PI have shown to be very sensitive to such

conditions, and have not given enough differentiation to the two priority levels (see

Table C.1). For example, TL-PI provides 65% of link utilization to low-priority and

30% to high-priority traffic, which is very poor performance, whereas FIO shows its

superiority by providing 81% to high-priority and only 18% to the low-priority

traffic.

9.3.1.7 Scenario I-9: Effect of Intense Web Traffic

Scenario I-9 uses the network topology shown in Figure 9.12 with the introduction of

TCP/Web-like traffic too. This network topology, as well as the distributions and

parameters for web traffic (summarized in Table B.2 in Appendix B) are introduced

by Iannaccon et al. (2001). We use TCP/SACK with an advertised window of 240

packets. The size of each packet is 1514 bytes. The buffer size of all queues is 500

 197

(a) FIO (b) two-level PI

(c) RIO

Figure 9.13 Scenario I-9: Queue lengths

packets. We use AQM in the queues of the bottleneck link between router-B and

router-C (of 10Mbps capacity). The link capacities and propagation delays are set as

follows: (C1, d1) = (500Mbps, 30ms), (C2, d2) = (100Mbps, 10ms), (C3, d3) =

(10Mbps, 30ms), (C4, d4) = (100Mbps, 10ms), and (C5, d5) = (500Mbps, 1ms), while

N = 100. The simulation time is 1500 sec.

In this experiment web traffic is considered belonging to high-priority traffic,

whereas FTP traffic is considered belonging to low-priority traffic class. The number

of flows tagged as high-priority traffic class is set to 10, while the rest (90 flows) are

tagged as low-priority traffic class. We create intense web traffic, based on the

 198

suggestions provided by Iannaccon et al. (2001). We simulate 1000 web sessions

with distributions and parameters as given in Table B.2.

As stated by Iannaccon et al. (2001), in case of web traffic the standard deviation

of the queuing delay is mainly determined by the burstiness of the arriving traffic.

Due to the high traffic variability, there exists a large possibility for high queueing

delays. Even with these circumstances, FIO manages to maintain better the queue

around the higher TQL (200 packets), in contrast with RIO and TL-PI (see Figure

9.13). Furthermore, FIO appears to control better the flow rate across the network

and provide a more stable behaviour. From the results (see Table C.1) it can be seen

that FIO can provide the necessary congestion control and differentiation and ensure

acceptable QoS in a Diff-Serv network. It achieves a better discrimination between

the two traffic classes than RIO and TL-PI do, whilst maintaining high utilization

and minimal losses.

9.4 Multiple-bottleneck Links
The network topology of multiple-bottleneck links is shown in Figure 7.24 (in

Chapter 7). We have considered network topologies with multiple bottleneck links in

order to examine the performance of the AQM schemes in more realistic scenarios.

We use AQM in the queues of all core links from router-A to router-F. All other

links (access links) have a simple Drop Tail queue. The link capacities and

propagation delays are set as follows: (C1, d1) = (C8, d8) = (C9, d9) = (100Mbps,

5ms), (C2, d2) = (C4, d4) = (C6, d6) = (15Mbps, 10ms), (C3, d3) = (15Mbps, 60ms),

(C5, d5) = (15Mbps, 30ms), and (C7, d7) = (C10, d10) = (C11, d11) = (200Mbps, 5ms).

N1 flows end up at destination 1, whereas N2 flows end up at destination 2, and N3

flows end up at destination 3 creating cross traffic. The results show that both

bottleneck links, where the cross traffic exists, (i.e., between router-B and router-C,

and between router-D and router-E) exhibit similar behaviour, as far as the

performance comparison is concerned. Therefore, we have chosen the bottleneck link

between router-B and router-C to show the results obtained.

 199

9.4.1 Scenarios II
Table C.2 (see Appendix C) contains the statistical results of the conducted

experiments (mean queuing delay and its standard deviation, loss rate, and bottleneck

link utilization).

9.4.1.1 Scenario II-1-3: Effect of Increase of High-priority Traffic

In these scenarios we investigate the performance of the AQM schemes as the

high-priority-tagged traffic increases.

In Scenario II-1 all sources (N1=100, N2=50, and N3=100 flows) are greedy

sustained FTP applications. We consider a limited number of flows tagged as high-

priority traffic (2% of N1 flows, whereas the rest 98% are tagged as low-priority). N2

and N3 flows are considered as being of low-priority (i.e., about 1.33% of the traffic

passing through the bottleneck link, under consideration, belongs to the high-priority

level). Figure 9.14 shows the queues of FIO, RIO, and TL-PI, where we can observe

that FIO regulates its queue to the lower TQL (100 packets), whereas RIO exhibits

very large queue fluctuations that results in degraded utilization, losses and high

variance of queuing delay (see Table C.2). TL-PI shows a slow response to regulate

the queue, with considerably delay variation. Furthermore, FIO achieves an adequate

differentiation between the two traffic classes (it gives a considerable portion of the

link utilization to the high-priority traffic), in contrast with RIO that cannot provide

sufficient link utilization for high-priority class traffic. TL-PI has the worst behavior

in terms of differentiation, as it only provides 1% of the link capacity to the high-

priority traffic.

Scenario II-2 increases the number of flows tagged as high-priority traffic as

follows: 15 out of 100 N1 flows, 5 out of 50 N2 flows, and 5 out of 100 N3 flows (i.e.,

about 13.33% of the traffic passing through the bottleneck link under consideration).

FIO accomplishes a bounded queuing delay, between the two TQLs, that result in

high link utilization and minimal losses (see Figure 9.15 and Table C.2). On the other

hand, RIO and TL-PI slowly regulate their queue, after a significant transient period

with large overshoots that results in lower utilization and higher losses than FIO has.
 200

(a) FIO (b) two-level PI

(c) RIO

Figure 9.14 Scenario II-1: Queue lengths

Furthermore, FIO achieves a high differentiation between the two traffic classes (as it

provides 93% utilization regarding the high-priority traffic and only 7% for low-

priority), as compared with RIO and TL-PI (that provide only 34% and 66%,

respectively), thus can provide adequate QoS differentiation.

Scenario II-3 increases the number of flows tagged as high-priority traffic to 90%

of N1 flows, and uses all N2 and N3 flows as high-priority traffic (i.e., about 93.33%

of the traffic passing through the bottleneck link under consideration). In the

presence of large amount of high-priority traffic, FIO regulates its queue at the

 201

(a) FIO (b) two-level PI

(c) RIO

Figure 9.15 Scenario II-2: Queue lengths

higher TQL (see Figure 9.16). RIO, on the other hand, exhibits large queue

fluctuations that result in lower utilization and higher losses than FIO has. TL-PI

suffers from the sluggishness to regulate the queue.

Figure 9.17 shows the utilization of the link regarding only the high-priority traffic

as the traffic of high-priority increases (based on the above scenarios). It is clearly

shown that FIO outperforms the other two schemes in terms of much better

differentiation provided between the two drop precedence levels, in favor of the low

drop precedence level (especially when lower amount of high-priority compared to

 202

(a) FIO (b) two-level PI

(c) RIO

Figure 9.16 Scenario II-3: Queue lengths

the low-priority traffic exists). RIO and TL-PI schemes, on the other hand, cannot

give adequate differentiation in the presence of significant amount of low-priority

traffic.

 203

Figure 9.17 Scenarios II-1-3: Utilization of high-priority traffic vs percentage of

high-priority traffic
(high-priority traffic increases from 1.33%, to 13.33%, and 93.33%

of the total traffic passing through the bottleneck link)

FIO

RIO

TL-PI

9.4.1.2 Scenario II-4: Effect of Time-varying Dynamics

Scenario II-4 examines the behavior of the AQM schemes under dynamic traffic

changes. We use Scenario II-2, and provide some time-varying dynamics by

stopping the high-priority-tagged flows at time t = 40 sec, and resuming transmission

at time t = 70 sec. The results (see Figure 9.18) show that FIO is very robust against

the dynamic traffic changes and keeps very good response. Between t = 40 – 70 sec,

where only low-priority-tagged flows are active, FIO successfully manages to

regulate the queue length at the TQL for low-priority, whereas RIO fails to do so. At

that interval, TL-PI cannot regulate the queue at its lower TQL, as it supposed to do,

and it oscillates between empty and low TQL. FIO also achieves better

differentiation between the two traffic priorities (whereas, TL-PI, once more, gives

 204

(a) FIO (b) two-level PI

(c) RIO

Figure 9.18 Scenario II-4: Queue lengths

much more capacity to the low-priority traffic compared with the high-priority,

instead of doing the opposite), and provides the lowest losses compared with the

other AQM schemes.

9.4.1.3 Scenario II-5: Effect of Delays

In Scenario II-5 we investigate the performance of AQM schemes under variation

of the bottleneck link propagation delays. We specifically examine the effect of the

round-trip time by varying the propagation delay from 30, to 60, and 120 msec, by

 205

(a) FIO (b) two-level PI

(c) RIO

Figure 9.19 Scenario II-5: Queue lengths (bottleneck link propagation delay = 30 msec)

using the Scenario II-1 as the basis (recall that in this scenario, the high-priority

traffic consists of 1.33% of the total traffic passing through the particular link). The

results are shown in Figure 9.19 and Figure 9.20 (for 30msec and 120msec,

respectively – note that for a propagation delay of 60 msec, Scenario II-1 applies),

and Table C.2. From the results, we can observe the superior steady performance of

FIO with stable queue dynamics, irrespective of the change in RTT. FIO has the

highest utilization, and the lowest losses and the shortest delay variation. On the

other hand, RIO exhibits larger queue fluctuations as the RTT increases that result in

 206

(a) FIO (b) two-level PI

(c) RIO

Figure 9.20 Scenario II-5: Queue lengths (bottleneck link propagation delay = 120 msec)

degraded utilization and high variance of queuing delay. Also, TL-PI suffers from a

slow response to regulate the queue, and has higher delay variation than FIO has.

Thus, these mechanisms are shown to be sensitive to variations of RTT.

In Figure 9.21, we show the utilization of the bottleneck link regarding the high-

priority traffic with respect to the mean queuing delay. Despite the fact that the high-

priority traffic consists only of 1.33% of the total traffic passing through the

particular link, FIO outperforms the other AQMs, in managing to achieve a

considerable amount of utilization for the high-priority; thus it achieves a much
 207

Figure 9.21 Scenario II-5: Utilization of high-priority traffic vs mean queuing delay
(bottleneck propagation delay varies from 30, 60, and 120 msec – high-priority
traffic consists of 1.33% of the total traffic passing through the bottleneck link)

FIO

RIO
TL-PI

higher differentiation between the two drop precedence levels compared with the

other schemes, and at the same time regulating the queue and thus providing

bounded mean delay, and delay variation. On the other hand, the other schemes

exhibit larger delays, and provide no differentiation between high- and low-priority

traffic.

9.4.1.4 Scenario II-6: Performance in the Presence of Short-lived Flows

Scenario II-6 investigates the performance of AQM schemes by introducing

additional web-like, short-lived, traffic that can be seen as noise-disturbance to the

network. In particular, we keep Scenario II-3 as is, and at the middle of the

simulation (i.e., t=50 sec) we introduce short-lived flows, as previously explained (in

Scenario I-7). The web-like traffic is introduced as high-priority traffic. These flows

 208

(a) FIO (b) two-level PI

(c) RIO

Figure 9.22 Scenario II-6: Queue lengths

are introduced as cross traffic passing through the bottleneck link under

consideration. Figure 9.22 shows the queue length evolution of the AQM schemes.

We can observe the robustness of the FIO controller that adequately controls the

queue, and retains the regulation of the queue length, quick after the sudden

introduction of short flows. It exhibits the highest utilization, with the lowest losses,

and the shortest delay variation (see Table C.2).

This is in contrast with the other AQM schemes that it is evident at t=50sec that

they are greatly influenced by the introduction of short flows. RIO maintains large
 209

oscillations, after the critical time of 50 sec, and TL-PI suffer from a significant

transient response with large overshoots. Further, once more, FIO exhibits the

highest differentiation among the two precedence levels.

9.4.1.5 Scenario II-7: Effect of Intense Web Traffic

Scenario II-7 introduces TCP/Web traffic too. We use the distributions and

parameters for web traffic as summarized in Table B.2 in Appendix B (introduced by

Iannaccon et al. (2001)). In this experiment web traffic is considered belonging to

high-priority traffic, whereas FTP traffic is considered belonging to low-priority

traffic class. The number of flows tagged as high-priority traffic is set to 15 out of

100 N1 flows, and the rest are tagged as low-priority traffic.

Even in the case of intense web traffic with high traffic variability – and possibly

high queuing delays – FIO (see Figure 9.23) manages to maintain the queue around

the lower TQL (100 packets), while RIO exhibits larger queue fluctuations that result

in higher delays and losses. TL-PI shows a good performance, similar to FIO,

however, it fails to give the appropriate differentiation to the two levels of

precedence. It only offers 18% of link utilization to the high-priority traffic, whereas

FIO achieves a high differentiation providing 82% of the link utilization to the high-

priority traffic (see Table C.2).

From the results (see Table C.2) it can be seen that FIO can ensure acceptable QoS

in a Diff-Serv network by regulating the queue of the bottleneck link, while

achieving the highest utilization, minimal losses and low delay, as compared to the

other AQM schemes. The FIO controller also achieves an adequate differentiation

between high- and low-priority traffic, in favor of the high-priority.

 210

(a) FIO (b) two-level PI

(c) RIO

Figure 9.23 Scenario II-7: Queue lengths

 211

9.5 Conclusions
A detailed simulative evaluation and comparison of the proposed nonlinear fuzzy

logic based AQM controller for Diff-Serv congestion control (FIO) with existing,

well known AQM schemes (RIO, and two-level PI) has been carried out, using the

NS-2 simulator. We specifically investigate the suitability of these AQM

mechanisms to provide effective congestion at Diff-Serv core environments. The

obtained results demonstrate that FIO can effectively offer adequate QoS, like high

throughput, low losses, and bounded delays, combined with a satisfactory

differentiation among different traffic levels of priority. FIO is shown to exhibit

many desirable properties, like robustness and fast system response, with capabilities

of adapting to highly variability and uncertainty in network.

RIO has been shown to result in under utilization of resources and a degradation in

its performance under dynamic environments, like variation in RTTs, traffic

variation in terms of priority traffic ratio, or where there are short-lived TCP flows.

The delay bounds of RIO increase with increasing bandwidth demands (changing

network levels). Moreover, the fluctuations in instantaneous queue lengths are also

large in RIO leading to higher jitter variations.

The two-level PI controller suffers, in general, with a slow response to regulate the

queue under dynamic environments, like time-varying dynamics and when short-

lived flows are introduced. Further, it exhibits a poor differentiation between the two

drop precedence levels, in the cases where a significant amount of low-priority traffic

exists. This is in contrast with the FIO controller that manages the high-priority

traffic to utilize as much from the link capacity, fulfilling completely this basic

requirement for adequate Diff-Serv congestion control.

In overall, we have demonstrated the effectiveness and robustness of the proposed

methodology for Diff-Serv congestion control with simulative evaluation, and at the

same time we demonstrated limitations the other AQM schemes have. Thus, from the

results presented, the fuzzy logic AQM-based control methodology offers significant

improvements on controlling congestion in TCP/IP Diff-Serv networks under widely

differing operating conditions, without the need for retuning.

 212

Chapter 10

Concluding Remarks and Future Work

10.1 Concluding Remarks
The complex, but challenging, concept of TCP/AQM congestion control, in both

best-effort and Diff-Serv environments, is the key issue of our research study.

A number of representative AQM mechanisms in TCP/IP networks are studied. It

is widely accepted that they have serious limitations and drawbacks, including:

• The linearity of the control functions of proposed AQM mechanisms that cannot

capture effectively the nonlinearities of the TCP network.

• The dependency of AQM control parameters on dynamic network parameters,

like the number of flows and the round trip propagation delays.

• The linearization of the existing models to allow analysis and design of AQM-

based controllers, often making stability bounds overly conservative and sluggish

performance when dynamic changes occur.

• The accuracy of the existing TCP/AQM models, as they ignore the slow start

phase of TCP and/or timeout events that are prominent conditions in today’s

Internet with the existence of short-lived TCP/Web flows.

It is our thesis that the use of nonlinear control in AQM could lead to efficient and

effective control laws. Furthermore, due to the complexity of the dynamic

system/network parameters, a robust intelligent control methodology is necessary to

effectively control the system under widely varying operating conditions. Thus,

 213

given the need for such control methodology – to capture the dynamics, highly

bursty network traffic, and nonlinearities of the TCP/IP system, under widely

differing operating conditions – we investigate the usefulness of fuzzy logic control

to meet such objectives. Fuzzy logic control is particularly appealing in nonlinear

complex systems where satisfactory analytic models are impractical to obtain, but

where their behaviour is well understood and can be captured by linguistic models.

In this study we make a significant contribution in formulating an effective and

generic AQM control methodology, using fuzzy logic based control, to solve the

problem of congestion control in TCP/IP networks.

The potential of Fuzzy logic control methodology to incorporate human knowledge

into such a control strategy is demonstrated, and the capability to qualitatively

capture the attributes of a control system based on observable phenomena is a main

feature of fuzzy logic control and has been shown in the extensive simulative

evaluation. Results have been published in various journals and conferences. The

proposed Fuzzy Control methodology offers significant improvements in controlling

congestion in TCP/IP networks under widely differing operating conditions, without

the need for retuning.

More specifically, the main contributions of the thesis in the problem of active

queue management congestion control in TCP/IP networks for best-effort and

differentiated services can be summarized as follows:

• Formulation of a generic AQM control methodology

o efficient and effective nonlinear control law

o simplicity, independent of mathematical models of the controlled system

o inherent robustness with effective control of the system under widely

differing operating conditions, without the need to (re)tune the settings

o easily adopted in different network environments (best-effort and Diff-

Serv architectures).

• Extensive simulative evaluation of proposed mechanism

o formulated several scenarios with well-known topologies and traffic

behavior, e.g. varying round trip delays and number of active flows, as

 214

well as dynamic changes to traffic behavior, inclusion of short-lived and

unresponsive flows, and reverse-path traffic.

• Demonstrated that fuzzy logic based AQM control methodology better handles

the nonlinearities of the TCP/IP networks, in contrast with existing, well-known,

conventional counterparts.

• Offer significant improvements in controlling congestion control in TCP/IP

networks by achieving

o regulated queues

o bounded delay and delay variation

o high link utilization

o minimal packet losses

o adequate and effective differentiation among different drop precedence’s

traffic in Diff-Serv networks

o fast system response

o robustness to varying system dynamics (differing topologies and traffic

conditions).

10.2 Future Work
The design of a generic fuzzy logic control methodology for AQM that is shown to

achieve its goals for both best-effort and Diff-Serv environments motivates the

adoption of such methodology in other network environments, like mobile/wireless

networks, and rate-based multimedia transport framework for TCP-friendly

congestion control. Moreover, as currently there is an ongoing research towards

enhancing TCP for high-speed networks, we can examine how the fuzzy logic

control methodology correlates with these enhancements of TCP.

Braden et al. (1998) indicated the need for router queuing mechanisms to protect

responsive flows from other non-responsive traffic. Further, the short-lived TCP

flows are more sensitive to packet marking/dropping than long-lived TCP flows.

Thus, the effectiveness of the AQM schemes at providing the necessary fairness on

sharing the network resources can be investigated. A well-known fairness numerical

 215

metric can be used proposed by Jain, Chiu, and Hawe (1984) that reflects the fair

share distribution across the various connections.

Even though our methodology is demonstrated to behave adequately in a variety of

network and traffic conditions, we can add some form of adaptivity to search for

provable “optimal” performance. For example, the adaptation, based on formal

adaptive control theory, of the output scaling gain can be a subject of future research

to improve the responsiveness and accuracy of control, if required, and “ensure”

optimum responsiveness under any operating condition.

Further, the use of other adaptive machine learning techniques that can be

incorporated in the fuzzy logic based AQM system can be investigated. In particular,

the use of neural network principles can be used for selecting the proper adjustment

of the fuzzy logic system parameters. Fuzzy Logic and neural networks have been

successfully combined in various applications, and can play an important role in the

induction of rules and membership function parameters from observations.

An alternative procedure to set the parameters of the fuzzy logic controller (e.g.,

for deciding the optimal set of rules) can be utilized based on evolutionary

algorithms. Evolutionary algorithms provide a universal optimization technique that

imitates processes of genetic adaptation that occur in natural evolution. Unlike

mathematically more rigorous optimization methods, they require, other than the

objective itself, no particular knowledge about the problem structure, such as

gradient information. This property makes them applicable to optimization tasks, in

which the optimization function is evaluated through experiments or simulations

rather than computed directly in closed form. The different approaches, genetic

algorithms, evolution strategies, evolutionary programming and genetic

programming, are distinguished by the genetic structures that undergo adaptation and

the genetic operators by which they generate new variants (Di Fatta, Hoffmann, Lo

Re, & Urso, 2003).

Much work remains for the analytical study of fuzzy logic, particularly in the area

of stability and performance analysis. Most proposed fuzzy logic controllers in

literature do not have any stability analysis because of the difficulty in analysis. This

 216

is mainly due to the existence of the nonlinearity in the control structure that usually

makes it difficult to conduct theoretical analysis to explain why fuzzy logic

controllers in many instances achieve better performance than the conventional

counterparts, especially for highly nonlinear processes. However, as elegantly

pointed out by Mamdani (1993), overstressing the necessity of mathematically

derived performance evaluations may be counter productive and contrary to normal

industry approach (e.g. prototype testing may suffice for accepting the controlled

systems performance). Nevertheless, a certain degree of safety concerning fuzzy

logic based AQM can be examined.

 217

List of Publications Stemming from the

Thesis Study

INTERNATIONAL JOURNALS

1. Chrysostomou, C., Pitsillides, A., & Sekercioglu, A. (2006). Fuzzy Explicit

Marking: A unified congestion controller for best effort and diff-serv networks.

Submitted for publication in the Computer Networks Journal.

2. Chrysostomou, C., Pitsillides, A., Rossides, L., Polycarpou, M., & Sekercioglu,

A. (2003). Congestion Control in Differentiated Services Networks using Fuzzy-

RED, IFAC Control Engineering Practice (CEP) Journal, Vol. 11, Issue 10,

1153-1170, special Issue on "Control Methods for Telecommunication

Networks".

3. Chrysostomou, C. Pitsillides, C., Rossides, L., & Sekercioglu, A. (2003). Fuzzy

Logic Controlled RED: Congestion Control in TCP/IP Differentiated Services

Networks. Soft Computing Journal - A Fusion of Foundations, Methodologies

and Applications, Vol 8, Number 2, 79 – 92, special Issue on "The Management

of Uncertainty in Computing Applications".

INTERNATIONAL CONFERENCES

1. Chrysostomou, C. & Pitsillides, A. (2006). Fuzzy logic congestion control in

TCP/IP tandem networks, Proceedings of the 11th IEEE Symposium on

Computers and Communications (IEEE ISCC 2006), Cagliari, Italy.

2. Chrysostomou, C. & Pitsillides, A. (2005). Using Fuzzy Logic Control to

Address Challenges in AQM Congestion Control in TCP/IP Networks. Workshop

 218

on Modeling and Control of Complex Systems (MCCS’05), (CD ROM

Proceedings), Ayia Napa, Cyprus.

3. Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Polycarpou, M., &

Sekercioglu, A. (2004). Congestion Control in Differentiated Services Networks

using Fuzzy Logic. Proceedings of 43rd IEEE Conference on Decision and

Control (IEEE CDC 2004), Bahamas, 549-556 (CD ROM Proceedings - ISBN:

0-7803-8683-3, IEEE Catalog Number: 04CH37601C).

4. Chrysostomou, C., Hadjipollas, G., Pitsillides, A. (2004). Fuzzy Logic Control

in TCP/IP Networks. Proceedings of the International Conference on Integrated

Modeling & Analysis in Applied Control & Automation (IMAACA'2004), special

session on "Network Control and Network Controlled Systems", Genoa, Italy,

260-269.

5. Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Polycarpou, M., &

Sekercioglu, A. (2004). Fuzzy Logic Control for Active Queue Management in

TCP/IP Networks. Proceedings of 12th IEEE Mediterranean Conference on

Control and Automation (IEEE MED'04), Kusadasi, Aydin, Turkey, (CD ROM

Proceedings).

6. Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Sekercioglu, A., &

Polycarpou, M. (2004). Fuzzy Logic Congestion Control in TCP/IP

Differentiated Services Networks for Quality of Service Provisioning.

Proceedings of the 1st IEEE International Conference on Information &

Communication Technologies: from Theory to Applications (IEEE ICTTA'04),

Damascus, Syria, (CD ROM Proceedings – ISBN: 0-7803-8483-0, IEEE Catalog

Number: 04EX852C).

7. Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Polycarpou, M., &

Sekercioglu, A. (2004). Fuzzy Logic Based Congestion Control in TCP/IP

Networks for Quality of Service Provisioning. Proceedings of the International

Conference on Next Generation Teletraffic and Wired/Wireless Advanced

Networking (NEW2AN'04), St. Petersburg, Russia, 235-243 (ISBN: 952-15-

1132-X).

 219

8. Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Sekercioglu, A., &

Polycarpou, M. (2003). Fuzzy Logic Congestion Control in TCP/IP Best-Effort

Networks. 2003 Australian Telecommunications Networks and Applications

Conference (ATNAC 2003), Melbourne, Australia (CD ROM - ISBN: 0-646-

42229-4).

9. Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Sekercioglu, A., &

Polycarpou, M. (2003). Fuzzy Explicit Marking for Congestion Control in

Differentiated Services Networks. Proceedings of the 8th IEEE Symposium on

Computers and Communications (IEEE ISCC'2003), Vol. 1, 312-319, Antalya,

Turkey.

 220

Bibliography

Allman, M., Paxson, V., & Stevens, W. (1999). Transmission Control Protocol.

Request for Comments RFC 2581, Internet Engineering Task Force.

Altman, E., Barakat, C., Mascolo, S., Moller, N., & Sun, J. (2006). Analysis of TCP

Westwood+ in high speed networks. Proceedings of Int. Workshop on protocols

for fast long-distance networks, PFLDnet2006, Nara, Japan.

Andrews, M., & Slivkins, A. (2006). Oscillations with TCP-like flow control in

networks of queues. Proceedings of IEEE Infocom 2006.

Athuraliya, S. (2002). A note on parameter values of REM with Reno-like

algorithms. http://netlab.caltech.edu/pub/rem.htm

Athuraliya, S., Li, V. H., Low, S. H., & Yin, Q. (2001). REM: Active Queue

Management. IEEE Network Magazine, 15(3), 48-53.

Aul, Y.H., Nafaa, A., Negru, D., & Mehaoua, A. (2004). FAFC: Fast adaptive fuzzy

AQM controller for TCP/IP netwoks. Proceedings of Globecom 2004.

Azvine, B., & Vasilakos, A. (2000). Application of soft computing techniques to the

telecommunication domain. ERUDIT Roadmap, (G. Tselentis, Ed.), 89-110.

Babiarz, J., Chan, K., & Baker, F. (2006). Configuration guidelines for DiffServ

service classes. Internet Draft, Internet Engineering Task Force,

http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-diffserv-service-classes-02.txt

Bitorika, A., Robin, M., Huggard, M., and Goldrick Mc, C. (2004). A comparative

study of active queue management schemes. Proceedings of ICC’04.

Blake, S., Black, D, Carlson, M., Davies, E., Wang, Z., & Weiss, W. (1998). An

architecture for Differentiated Services. Request For Comments RFC 2475,

Internet Engineering Task Force.

 221

http://netlab.caltech.edu/pub/rem.htm
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-diffserv-service-classes-02.txt

Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S.,

Jacobson, V., Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, K.,

Shenker, S., Wroclawski, J., & Zhang, L. (1998). Recommendations on queue

management and congestion avoidance in the Internet. Request for Comments

RFC 2309, Internet Engineering Task Force.

Braden, B., Zhang, L., Berson, S., Herzog, S., & Jamin, S. (1997). Resource

Reservation Protocol (RSVP) – Version 1 Functional Specification“. Request for

Comments RFC 2205, Internet Engineering Task Force.

Braden, R., Clark, D., & Shenker, S. (1994). Integrated Services in the Internet

Architecture: An overview. Request for Comments RFC 1633, Internet

Engineering Task Force.

Brakmo, L., & Peterson, L. (1995). TCP Vegas: End to end congestion avoidance on

a global Internet. IEEE Journal of Selected Areas in Communications, vol. 13,

no. 8, 1465-1480.

Chait, Y., Hollot, C.V., Misra, V., Towsley, D., Zhang, H., &Lui, C.S. (2002).

Providing throughput differentiation for TCP flows using adaptive two-color

marking and two-level AQM. Proceedings of INFOCOM’02, New York.

Chan, K., Babiarz, J., & Baker, F. (2006). Aggregation of DiffServ service classes.

Internet Draft, Internet Engineering Task Force, http://www.ietf.org/internet-

drafts/draft-chan-tsvwg-diffserv-service-class-aggr-03.txt

Chen, G., Pham, T.T., & Weiss, J.J. (1995). Fuzzy modeling of control systems.

IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 1, 414-429.

Chiu, D-M., & Jain, R. (1989). Analysis of the increase and decrease algorithms for

congestion avoidance in computer networks. Computer Networks and ISDN

Systems, 17, 1-14.

Christiansen, M., et al. (2001). Tuning RED for Web Traffic. IEEE/ACM

Transactions on Networking, vol. 9, no. 3, 249-64.

Chrysostomou, C. & Pitsillides, A. (2005). Using Fuzzy Logic Control to Address

Challenges in AQM Congestion Control in TCP/IP Networks. Workshop on

Modeling and Control of Complex Systems (MCCS’05), (CD ROM Proceedings),

Ayia Napa, Cyprus.

 222

http://www.ietf.org/internet-drafts/draft-chan-tsvwg-diffserv-service-class-aggr-03.txt
http://www.ietf.org/internet-drafts/draft-chan-tsvwg-diffserv-service-class-aggr-03.txt

Chrysostomou, C. & Pitsillides, A. (2006). Fuzzy logic congestion control in TCP/IP

tandem networks, Proceedings of the 11th IEEE Symposium on Computers and

Communications (IEEE ISCC'2006), Cagliari, Italy.

Chrysostomou, C. Pitsillides, C., Rossides, L., & Sekercioglu, A. (2003). Fuzzy

Logic Controlled RED: Congestion Control in TCP/IP Differentiated Services

Networks. Soft Computing Journal - A Fusion of Foundations, Methodologies

and Applications, Vol 8, Number 2, 79 – 92, special Issue on "The Management

of Uncertainty in Computing Applications".

Chrysostomou, C., Hadjipollas, G., Pitsillides, A. (2004). Fuzzy Logic Control in

TCP/IP Networks. Proceedings of the International Conference on Integrated

Modeling & Analysis in Applied Control & Automation (IMAACA'2004), special

session on "Network Control and Network Controlled Systems", Genoa, Italy,

260-269.

Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Polycarpou, M., & Sekercioglu, A.

(2004b). Fuzzy Logic Control for Active Queue Management in TCP/IP

Networks. Proceedings of 12th IEEE Mediterranean Conference on Control and

Automation (IEEE MED'04), Kusadasi, Aydin, Turkey, (CD ROM Proceedings).

Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Polycarpou, M., & Sekercioglu, A.

(2004c). Congestion Control in Differentiated Services Networks using Fuzzy

Logic. Proceedings of 43rd IEEE Conference on Decision and Control (IEEE

CDC 2004), Bahamas, 549-556 (CD ROM Proceedings - ISBN: 0-7803-8683-3,

IEEE Catalog Number: 04CH37601C).

Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Polycarpou, M., & Sekercioglu, A.

(2004a). Fuzzy Logic Based Congestion Control in TCP/IP Networks for Quality

of Service Provisioning. Proceedings of the International Conference on Next

Generation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN'04),

St. Petersburg, Russia, 235-243 (ISBN: 952-15-1132-X).

Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Sekercioglu, A., & Polycarpou, M.

(2003b). Fuzzy Logic Congestion Control in TCP/IP Best-Effort Networks. 2003

Australian Telecommunications Networks and Applications Conference (ATNAC

2003), Melbourne, Australia (CD ROM - ISBN: 0-646-42229-4).

 223

Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Sekercioglu, A., & Polycarpou, M.

(2004). Fuzzy Logic Congestion Control in TCP/IP Differentiated Services

Networks for Quality of Service Provisioning. Proceedings of the 1st IEEE

International Conference on Information & Communication Technologies: from

Theory to Applications (IEEE ICTTA'04), Damascus, Syria, (CD ROM

Proceedings – ISBN: 0-7803-8483-0, IEEE Catalog Number: 04EX852C).

Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Sekercioglu, A., & Polycarpou, M.

(2003a). Fuzzy Explicit Marking for Congestion Control in Differentiated

Services Networks. Proceedings of the 8th IEEE Symposium on Computers and

Communications (IEEE ISCC'2003), Vol. 1, 312-319, Antalya, Turkey.

Chrysostomou, C., Pitsillides, A., Rossides, L., Polycarpou, M., & Sekercioglu, A.

(2003). Congestion Control in Differentiated Services Networks using Fuzzy-

RED, IFAC Control Engineering Practice (CEP) Journal, Vol. 11, Issue 10,

1153-1170, special Issue on "Control Methods for Telecommunication

Networks".

Clark, D., & Fang, W. (1998). Explicit Allocation of Best Effort Packet Delivery

Service. IEEE/ACM Transactions on Networking, 6(4), 362-373.

Davie, B., Charny, A., Benett, J.C.R., Benson, K., Le Boudec, J.Y., Courtney, W.,

Davari, S., Sierra, PMC, Firoiu, V., & Stiliadis, D. (2002). An Expedited

Forwarding PHB (Per-Hop Behavior). Request for Comments RFC 3246, Internet

Engineering Task Force.

DCCP-WG, (2001). Datagram Congestion Control Protocol Working Group.

http://www.ietf.org/html.charters/dccp-charter.html

Deering, S. & Hinden, R. (1998). Internet Protocol, Version 6 (IPv6) Specification.

Request for Comments RFC 2460, Internet Engineering Task Force.

Di Fatta, G., Hoffmann, F., Lo Re, G., & Urso, A. (2003). A Genetic Algorithm for

the Design of a Fuzzy Controller for Active Queue Management. IEEE

Transactions on Systems, Man, and Cybernetics, Special Issue on Computational

Intelligence in Telecommunications Networks and Internet Services: Part I,

Vol.33, No.3, 313-324.

 224

http://www.ietf.org/html.charters/dccp-charter.html

DIFFSERV, (1998). Differentiated Services Working Group. Internet Engineering

Task Force. https://www1.ietf.org/mailman/listinfo/diffserv

Douligeris, C., & Develekos, G. (1995). A fuzzy logic approach to congestion

control in ATM networks. Proceedings of IEEE ICC’95, Washington, USA,

1969-1973.

Dualibe, C., Jespers, P., & Verleysen, M. (2000). A 5.26 mflips programmable

analogue fuzzy logic controller in a standard cmos 2.4μ technology. Proceedings

of ISCAS 2000, Geneva, Switzerland, 377-380.

Feng, W. (1999). Improving Internet Congestion Control and Queue Management

Algorithms. PhD Dissertation, University of Michigan.

Feng, W., Kandlur, D., Saha, D., & Shin, K. (1999a). Blue: A New Class of Active

Queue Management Algorithms. Technical Report UM CSE-TR-387-99.

Feng, W., Kandlur, D., Saha, D., & Shin, K. (1999b). A self-configuring RED

gateway. Proceedings of IEEE INFOCOM’99, New York, USA.

Fengyuan, R., Yong, R., & Xiuming, S. (2002). Design of a fuzzy controller for

active queue management. Computer Commmunications, vol 25, 874-883.

Firoiu, V., & Borden, M. (2000). A study of active queue management for

congestion control. Proceedings of IEEE Infocom’00, Tel Aviv.

Floyd, S. (2000). Recommendation on using the "gentle_" variant of RED.

http://www.icir.org/floyd/red/gentle.html.

Floyd, S. (2003). HighSpeed TCP for large congestion windows. Request for

Comments RFC 3649, Internet Engineering Task Force.

Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion

avoidance. IEEE/ACM Trans. on Networking, 1(4), 397-413.

Floyd, S., & Kohler, E. (2006). Profile for datagram congestion control protocol

(DCCP). Congestion control ID 2: TCP-like congestion control. Request for

Comments RFC 4341, Internet Engineering Task Force.

Floyd, S., Allman, M., Jain, A., & Sarolahti, P. (2006). Quick-Start for TCP and IP.

Internet-Draft, Internet Engineering Task Force.

 225

https://www1.ietf.org/mailman/listinfo/diffserv
http://www.icir.org/floyd/red/gentle.html

Floyd, S., Gummadi, R., & Shenker, S. (2001). Adaptive RED: An Algorithm for

Increasing the Robustness of RED’s Active Queue Management. Technical

report, ICSI.

 Floyd, S., Handley, M., & Kohler, E. (2006). Problem statement for the datagram

congestion control protocol (DCCP). Request for Comments RFC 4336, Internet

Engineering Task Force.

Floyd, S., Henderson, T., & Gurtov, E.A. (2004). The NewReno modification to

TCP’s fast recovery algorithm. Request for Comments RFC 3782, Internet

Engineering Task Force.

Floyd, S., Kohler, E., & Padhye, J. (2006). Profile for datagram congestion control

protocol (DCCP). Congestion control ID 3: TCP-friendly rate control. Request

for Comments RFC 4342, Internet Engineering Task Force.

Fuzzy Logic Toolbox. (2002). User’s Guide, by The MathWorks, Inc.

http://www.mathworks.com/access/helpdesk/help/toolbox/fuzzy/

Grieco, L.A. & Mascolo, S. (2003). End-to-end bandwidth estimation for congestion

control in packet networks. International Workshop QoS-IP, Milano, Italy.

Guirguis, M., Bestavros, A., & Matta, I. (2003). Exogenous-Loss Awareness in

Queue Management – Towards Global Fairness. Techical Report, Computer

Science Departrment, Boston University.

Guo, L., & Matta, I. (2001). The War Between Mice and Elephants. IEEE ICNP’01.

Habetha, J., & Walke, B. (2002). Fuzzy rule-based mobility and load management

for self-organizing wireless networks. International journal of wireless

information networks, vol. 9, no. 2, 119-140.

Handley, M., Floyd, S., Padhye, J., & Widmer, J. (2003). TCP Friendly Rate control

(TFRC): Protocol Specification. Request for Comments RFC 3448, Internet

Engineering Task Force.

Hassan, M., & Sirisena, H. (2001). Optimal control of queues in computer networks.

IEEE International Conference on Communications.

Heinanen, J., Baker, F., Weiss, W., & Wroclawski (1999). Assured Forwarding PHB

Group. Request for Comments RFC 2597, Internet Engineering Task Force.

 226

http://www.mathworks.com/access/helpdesk/help/toolbox/fuzzy/

Hengartner, U., Bolliger, J., & Gross, T. (2000). TCP Vegas revisited. Proceedings

of IEEE Infocom 2000.

Herzog, S. (2000). RSVP extensions for policy control. Request for Comments RFC

2750, Internet Engineering Task Force.

Hollot, C. V., Misra, V., Towsley, D., & Gong, W.B. (2001). A control theoretic

analysis of RED. Proceedings of IEEE Infocom’01.

Hollot, C. V., Misra, V., Towsley, D., & Gong, W.-B. (2002). Analysis and Design

of Controllers for AQM Routers Supporting TCP Flows. IEEE Transactions on

Automatic Control, vol. 47, no. 6, 945-959.

Iannaccon, G., Brandauer, C., Ziegler, T., Diot, C., Fdida, S., & May, M. (2001). Tail

Drop and Active Queue Management Performance for bulk-data and Web-like

Internet Traffic. 6th IEEE Symposium on Computers and Communications.

Hammamet, Tynisia.

ICCRG, (2006). Internet Congestion Control Research Group.

http://oakham.cs.ucl.ac.uk/mailman/listinfo/iccrg

Jacobson, V. (1988). Congestion avoidance and control. Proceedings of ACM

SIGCOMM 1998, 314-329.

Jacobson, V., Nichols, K., & Poduri, K. (1999). An Expedited Forwarding PHB.

Request for Comments RFC 2598, Internet Engineering Task Force.

Jain, R., Chiu, D, & Hawe, W. (1984). A quantitative measure of fairness and

discrimination for resource allocation in shared computer systems. Digital

Equipment Corporation, Technical Report DEC-TR-301.

Jin, C., Wei, D.X., & Low, S.H. (2004). FAST TCP: motivation, architecture,

algorithms, performance. IEEE Infocom 2004.

Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high

bandwidth-delay product networks. Proceedings of ACM SIGCOMM 2002.

Kelly, T. (2003). Scalable TCP: Improving performance on highspeed wide area

networks. ACM computer communication review.

Keshav, S. (1991). Congestion Control in Computer Networks. Ph.D. thesis,

University of California Berkeley.

 227

http://oakham.cs.ucl.ac.uk/mailman/listinfo/iccrg

Khalifa, I., & Trajkovic, L. (2004). An Overview and Comparison of Analytical TCP

Models. ISCAS 2004.

Kohler, E., Handley, M., & Floyd, S. (2006). Datagram congestion control protocol

(DCCP). Request for Comments RFC 4340, Internet Engineering Task Force.

Kohler, S., Menth, M., & Vicari, N. (2000). Analytic Performance Evaluation of the

RED Algorithm for QoS in TCP/IP. Research Report Series no. 259, University

of Wurzburg, Institute of Computer Science.

Kunniyur, S., & Srikant, R. (2003). End-to-end congestion control: utility functions,

random losses and ECN marks. IEEE/ACM Transactions on Networking.

Kunniyur, S., & Srikant, R. (2004). An adaptive virtual queue (AVQ) algorithm for

active queue management. IEEE/ACM Transactions on Networking, vol 12, no.

2, 286-299.

Kurose, J.F., & Ross, K.W. (2005). Computer networking: a top-down approach

featuring the Inernet. Addison-Wesley. ISBN: 0-321-26976-4

Lakshman, T.V., & Madhow, U. (1997). The performance of TCP/IP for networks

with high bandwidth delay products and random loss. IEEE/ACM Transactions

on Networking, vol. 5, 336-350.

Lee, C. (1990). Fuzzy logic in control systems: Fuzzy logic controller – Parts I-II.

IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, 404-435.

Leith, D., & Shorten, R. (2004). H-TCP protocol for high-speed long distance

networks. Proceedings of Int. Workshop on protocols for fast long-distance

networks (PFLDnet 2004).

Lestas, M.C. (2005). Intelligent congestion control for computer networks. PhD

Thesis. University of Southern California.

Li, Z., Zhang, Z., Addie, R., & Clerot, F. (2003). Improving the Adaptability of

AQM Algorithms to Traffic Load Using Fuzzy Logic. 2003 Australian

Telecommunications Networks and Applications Conference (ATNAC 2003),

Melbourne, Australia.

Low, S., Paganini, F., Wang, J., Adlakha, S., & Doyle, J. (2002). Dynamics of

TCP/RED and a Scalable Control. IEEE Infocom 2002, New York.

 228

Low, S., Paganini, F., Wang, J., Adlakha, S., & Doyle, J. (2003). Linear Stability of

TCP/RED and a Scalable Control. Computer Networks Journal, 43(5), 633-647.

Mamdani, E.H. (1974). Applications of fuzzy algorithms for simple dynamic plant.

Proceedings of IEE, 121(12), 1585-1588.

Mamdani, E.H. (1993). Twenty years of fuzzy logic: experiences gained and lessons

learned. IEEE International conference on fuzzy systems, 339-344, San

Franscisco.

Mamdani, E.H., & Assilian, S. (1975). An experiment in linguistic synthesis with a

fuzzy logic controller. International Journal of Man-Machine Studies, vol. 7, no.

1, 1-13.

Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M., & Wang, R. (2001). TCP

Westwood: End-to-end bandwidth estimation for efficient transport over wired

and wireless networks. Proceedings of ACM Mobicom 2001.

Mathis, M., Mahdavi, J., Floyd, S., & Romanow, A. (1996). TCP Selective

Acknowledgement options. Request for Comments RFC 2018, Internet

Engineering Task Force.

May, M., Bolot, J., Diot, C., & Lyles, B. (1999). Reasons Not to Deploy RED. 7th

International Workshop on Quality of Service, IWQoS’99, 260-262.

May, M., Bolot, J.C., Jean-Marie, A., & Diot, C. (1999). Simple perfomance

models of differentiated services schemes for the Internet. Proceedings of

INFOCOM’99, New York.

May, M., Bonald, T., & Bolot, J.C. (2000). Analytic Evaluation of RED

Performance. Proceedings of IEEE Infocom 2000. Tel Aviv.

Misra, V., Gong, W.B , & Towsley, D. (2000). Fluid-based Analysis of a Network of

AQM Routers Supporting TCP Flows with an Application to RED.

ACM/SIGCOMM’00, 151-160.

Morales, E., Polycarpou, M., Hemasilpin, N., & Bissler, J. (2001). Hierarchical

Adaptive and Supervisory Control of Continuous Venovenous Hemofiltration.

IEEE Transactions on Control Systems Technology, Vol. 9, No. 3, 445-457.

Network Simulator. (1989). NS-2, http://nsnam.isi.edu/nsnam/.

 229

http://nsnam.isi.edu/nsnam/

Nichols, K., & Carpenter, B. (2001). Definition of differentiated services per domain

behaviors and rules for their specification. Request for Comments RFC 3086,

Internet Engineering Task Force.

Nichols, K., Blake, S., Baker, F., & Black, D. (1998). Definition of the Differentiated

Services Field (DS Field) in the IPv4 and IPv6 headers. Request for Comments

RFC 2474, Internet Engineering Task Force.

Oliveira, R. & Braun, T. (2004). A delay-based approach using fuzzy logic to

improve TCP error detection in ad hoc networks. In Proceedings of IEEE

Wireless Communications and Networking conference (WCNC04), Atlanta, USA.

Ott, T.J., Lakshman, T.V., & Wong, L.H. (1999). SRED: Stabilized RED.

Proceedings of IEEE INFOCOM’99, New York, USA.

Padhye, J. (2000). Model-based approach to TCP-friendly congestion control. PhD

Thesis, University of Massachusetts.

Padhye, J., Firoiu, V., Towsley, D.F., & Kurose, J.F. (2000). Modeling TCP Reno

Performance: A Simple Model and its Empirical Validation. IEEE/ACM

transactions on Networking, vol. 8, no. 2, 133-145.

Passino, K., & Yurkovich, M. (1998). Fuzzy Control. Ed. Prentice Hall, ISBN 0-201-

18074-X.

Peeters, S., & Blondia, C. (1999). A discrete time analysis of random early detection

with responsive best-effort traffic. Technical Report 257TD(99)29, COST-257,

MC meeting, Cyprus.

Pentikousis, K. (2001). Active Queue Management. ACM student magazine

Crossroads, Connector columns, Tutorials.

Pitsillides, A., & Sekercioglu, A. (2000). Congestion Control. In Pedrycz, W. &

Vasilakos, A. V. (Eds.), Computational Intelligence in Telecommunications

Networks (pp. 109-158). Boca Raton, FL: CRC Press, ISBN: 0-8493-1075-X.

Pitsillides, A., Sekercioglou, A., & Ramamurthy, G. (1997). Effective Control of

Traffic Flow in ATM Networks Using Fuzzy Explicit Rate Marking (FERM).

IEEE Journal on Selected Areas in Communications (JSAC), vol. 15, issue 2,

209-225.

 230

Plasser, E., & Ziegler, T. (2004). A RED Function Design Targeting Link Utilization

and Stable Queue Size Behaviour. Computer Networks Journal, issue 44, 383-

410.

Postel, J. (1981). Internet Protocol. Request for Comments RFC 791, Internet

Engineering Task Force.

Ramakrishnan, K., Floyd, S., & Black, D. (2001). The addition of explicit congestion

notification (ECN) to IP. Request for Comments RFC 3168, Internet Engineering

Task Force.

Ranjan, P., Abed, E.H., & La, R.J. (2004). Nonlinear Instabilities in TCP-RED.

IEEE/ACM Transactions on Networking, vol. 12, no. 6.

Rossides, L., Chrysostomou, C., Pitsillides, A., & Sekercioglu, A. (2002). Overview

of Fuzzy-RED in Diff-Serv Networks. Lecture Notes in Computer Science,

Publisher: Springer-Verlag Heidelberg, ISSN: 0302-9743, Volume 2311 / 2002,

Title: Soft-Ware 2002: Computing in an Imperfect World : First International

Conference (Soft-Ware), D. Bustard, W. Liu, R. Sterritt (Eds), Belfast, Northern

Ireland, 1-13.

Rossides, L., Sekercioglu, A., Kohler, S., Pitsillides, A., Phuoc, T-G., & Vassilakos,

A. (2000). Fuzzy Logic Controlled RED: Congestion Control for TCP/IP Diff-

Serv Architecture. ESIT2000, 8th European Congress on Intelligent Techniques

and Soft Computing, Aachen, Germany, 263-269.

Ryu, S., Rump, C., & Qiao, C. (2003). Advances in Internet congestion control.

IEEE Communications Surveys & Tutorials, Third Quarter 2003, vol 5, no 1, 28-

39.

Savoric, M. (2003). Fuzzy explicit window adaptation: a method to further enhance

TCP performance, Technical Report TKN-03-010, Telecommunication Networks

Group, Technical University Berlin.

Schwartz, M. (1988). Telecommunication networks: Protocols, modelling, analysis.

Addison Wesley.

Sekercioglou, A., Pitsillides, A., & Egan, G.K. (1994). Study of an adaptive fuzzy

controller based on the adaptation of relative rule weights. Proceedings of

ANZIIS’94, 204-208, Brisbane, Queensland, Australia,.

 231

Sekercioglu, A., Pitsillides, A., & Vasilakos, A. (2001). Computational intelligence

in management of ATM networks. Soft Computing Journal, 5(4), 257-263.

Shenker, S., Zhang, L., & Clark, D.D. (1990). Some observation on the dynamics of

a congestion control algorithm. Computer Communications Review, 30-39.

Siripongwutikorn, P., Banerjee, S., & Tipper, D. (2002). Adaptive bandwidth control

for efficient aggregate QoS provisioning. Proceedings of Globecom 2002.

Stevens, W. (1994). TCP/IP illustrated, Volume I: the protocols. Reading, MA:

Addison-Wesley.

Stevens, W. (1997). TCP slow start, congestion avoidance, fast retransmit, and fast

recovery algorithms. Request for Comments RFC 2001, Internet Engineering

Task Force.

TMRG, (2006). The Transport Modeling Research Group. http://www.icir.org/tmrg/

Wang Y. T. (2004). A Dynamic Channel Borrowing Approach with Fuzzy Logic

Control in Distributed Cellular Networks. In the special issue of Simulation

Modeling Practice and Theory, vol. 12, 287–303

Wang, C., Li, B., Hou, Y.T., Sohraby, K., & Lin, Y. (2004). LRED: A Robust Active

Queue Management Scheme Based on Packet Loss Ratio. IEEE Infocom’04.

Wang, C., Li, B., Sohraby, K., & Peng, Y. (2003). AFRED: An adaptive fuzzy-based

control algorithm for active queue management. Proceedings of the 28th IEEE

International Conference on Local Computer Networks (LCN’03).

Yang, C.Q., & Reddy, A.V.S. (1995). A taxonomy for congestion control algorithms

in packet switching networks. IEEE Network Magazine.

Yasunobu, S., & Miyamoto, S. (1985). Automatic Train Operation by Predictive

Fuzzy Control. In Industrial Applicatons of Fuzzy Control, (M. Sugeno, Ed.), 1-

18, Elsevier Science Publishers.

Zadeh, L. A. (1965). Fuzzy Sets. Information And Control, vol. 8, 338-353.

Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems

and decision processes. IEEE Transactions on Systems, Man, and Cybernetics,

3(1), 28-44.

Ziegler, T., Fdida, S., & Brandauer, C. (2001). Stability Criteria of RED with TCP

Traffic. IFIP ATM & IP Working Conference, Budapest.

 232

http://www.icir.org/tmrg/

Appendix A

Linguistic Rules of the Fuzzy Logic

based Control Methodology

1. IF queue-error is negative-very-big and the previous-queue-error is negative-very-big

THEN mark-probability is huge

2. IF queue-error is negative-very-big and the previous-queue-error is negative-big

THEN mark-probability is huge

3. IF queue-error is negative-very-big and the previous-queue-error is negative-small

THEN mark-probability is huge

4. IF queue-error is negative-very-big and the previous-queue-error is zero

 THEN mark-probability is huge

5. IF queue-error is negative-very-big and the previous-queue-error is positive-small

THEN mark-probability is huge

6. IF queue-error is negative-very-big and the previous-queue-error is positive-big

THEN mark-probability is huge

7. IF queue-error is negative-very-big and the previous-queue-error is positive-very-big

THEN mark-probability is huge

 233

8. IF queue-error is negative-big and the previous-queue-error is negative-very-big

THEN mark-probability is big

9. IF queue-error is negative-big and the previous-queue-error is negative-big

THEN mark-probability is big

10. IF queue-error is negative-big and the previous-queue-error is negative-small

THEN mark-probability is big

11. IF queue-error is negative-big and the previous-queue-error is zero

 THEN mark-probability is very-big

12. IF queue-error is negative-big and the previous-queue-error is positive-small

THEN mark-probability is very-big

13. IF queue-error is negative-big and the previous-queue-error is positive-big

THEN mark-probability is huge

14. IF queue-error is negative-big and the previous-queue-error is positive-very-big

THEN mark-probability is huge

15. IF queue-error is negative-small and the previous-queue-error is negative-very-big

THEN mark-probability is tiny

16. IF queue-error is negative-small and the previous-queue-error is negative-big

THEN mark-probability is very-small

17. IF queue-error is negative-small and the previous-queue-error is negative-small

THEN mark-probability is small

18. IF queue-error is negative-small and the previous-queue-error is zero

 THEN mark-probability is small

19. IF queue-error is negative-small and the previous-queue-error is positive-small

 234

THEN mark-probability is big

20. IF queue-error is negative-small and the previous-queue-error is positive-big

THEN mark-probability is very-big

21. IF queue-error is negative-small and the previous-queue-error is positive-very-big

THEN mark-probability is very-big

22. IF queue-error is zero and the previous-queue-error is negative-very-big

THEN mark-probability is zero

23. IF queue-error is zero and the previous-queue-error is negative-big

THEN mark-probability is zero

24. IF queue-error is zero and the previous-queue-error is negative-small

THEN mark-probability is zero

25. IF queue-error is zero and the previous-queue-error is zero

 THEN mark-probability is tiny

26. IF queue-error is zero and the previous-queue-error is positive-small

THEN mark-probability is very-small

27. IF queue-error is zero and the previous-queue-error is positive-big

THEN mark-probability is small

28. IF queue-error is zero and the previous-queue-error is positive-very-big

THEN mark-probability is big

29. IF queue-error is positive-small and the previous-queue-error is negative-very-big

THEN mark-probability is zero

30. IF queue-error is positive-small and the previous-queue-error is negative-big

THEN mark-probability is zero

 235

31. IF queue-error is positive-small and the previous-queue-error is negative-small

THEN mark-probability is zero

32. IF queue-error is positive-small and the previous-queue-error is zero

 THEN mark-probability is zero

33. IF queue-error is positive-small and the previous-queue-error is positive-small

THEN mark-probability is tiny

34. IF queue-error is positive-small and the previous-queue-error is positive-big

THEN mark-probability is tiny

35. IF queue-error is positive-small and the previous-queue-error is positive-very-big

THEN mark-probability is very-small

36. IF queue-error is positive-big and the previous-queue-error is negative-very-big

THEN mark-probability is zero

37. IF queue-error is positive-big and the previous-queue-error is negative-big

THEN mark-probability is zero

38. IF queue-error is positive-big and the previous-queue-error is negative-small

THEN mark-probability is zero

39. IF queue-error is positive-big and the previous-queue-error is zero

 THEN mark-probability is zero

40. IF queue-error is positive-big and the previous-queue-error is positive-small

THEN mark-probability is zero

41. IF queue-error is positive-big and the previous-queue-error is positive-big

THEN mark-probability is zero

42. IF queue-error is positive-big and the previous-queue-error is positive-very-big

 236

THEN mark-probability is tiny

43. IF queue-error is positive-very-big and the previous-queue-error is negative-very-big

THEN mark-probability is zero

44. IF queue-error is positive-very-big and the previous-queue-error is negative-big

THEN mark-probability is zero

45. IF queue-error is positive-very-big and the previous-queue-error is negative-small

THEN mark-probability is zero

46. IF queue-error is positive-very-big and the previous-queue-error is zero

 THEN mark-probability is zero

47. IF queue-error is positive-very-big and the previous-queue-error is positive-small

THEN mark-probability is zero

48. IF queue-error is positive-very-big and the previous-queue-error is positive-big

THEN mark-probability is zero

49. IF queue-error is positive-very-big and the previous-queue-error is positive-very-big

THEN mark-probability is zero

 237

Appendix B

FEM Simulation Results

Table B.1 Control parameter values of selected AQM mechanisms

A-RED

Floyd, Gummadi,

and Shenker (2001)

PI

Hollot, Misra,

Towsley, and Gong

(2002)

REM

Athuraliya, Li,

Low, and Yin

(2001)

AVQ

Kunniyur and

Srikant (2004)

use gentle mode

a = 1.822(10)-5

b = 1.816(10)-5

α = 0.1

γ = 0.001

φ = 1.001

γ = 1.0

α = 0.15

Table B.2 Distributions and parameters for Web Traffic

 Inter-page
Time

Objects per
page

InterObject
time

Object Size

Distribution Pareto Pareto Pareto Pareto

Mean 50 msec 4 msec 0.5 msec 12 KB

Shape 2 1.2 1.5 1.2

 238

Table B.3 Summary of statistical results – Scenarios I

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate
(%)

Utilization
(%)

 Mean-

Delay

Std-

Deviation

FEM 106.12 12.56 0 99.82

PI 119.87 32.94 0.42 99.02

A-RED 107.06 22.74 0.39 98.97

REM 109.85 27.11 0.4 99.05

I-1

AVQ 47.84 36.7 0.26 98.32

FEM 106.18 18.14 0.009 99.85

PI 132.37 65.02 0.49 99.19

A-RED 110.06 29.13 0.55

99.12

REM 113.52 39.57 0.45

I-2

AVQ 52.37 58.22 0.24

99.21

98.32

FEM 106.27 12.69 0 99.97

PI 142.27 66.68 0.54 99.43

A-RED 111.37 22.25 3.69 96.36

REM 116.5 44.09 0.38 99.58

I-3

AVQ 37.84 41.81 0.18 99.02

 239

Table B.3 Summary of statistical results – Scenarios I (continued)

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate
(%)

Utilization
(%)

 Mean-

Delay

Std-

Deviation

FEM 108.61 13.61 0 99.92

PI 136.31 63.28 0.49 99.36

A-RED 111.65 26.19 0.55 99.28

REM 114.67 41.08 0.41 99.43

I-4

(Bottleneck

prop. delay

= 30 msec)

AVQ 49.69 50.56 0.23 98.47

FEM 106.52 18.17 0 99.81

PI 127.85 65.31 0.48 98.8

A-RED 105.56 31.54 0.47 98.88

REM 112.31 39.06 0.44 98.84

I-4

(Bottleneck

prop. delay

= 60 msec)

AVQ 81.97 69.78 0.31 98.07

FEM 101.8 24.59 0.05 99.18

PI 119.51 54.8 0.57 96.67

A-RED 106.53 72.84 0.66 97.24

REM 108.77 47.79 0.54 96.85

I-4

(Bottleneck

prop. delay

=120 msec)

AVQ 112.99 78.34 0.5 97.37

 240

Table B.3 Summary of statistical results – Scenarios I (continued)

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate
(%)

Utilization
(%)

 Mean-

Delay

Std-

Deviation

FEM 106.98 21.32 0 99.35

PI 144.99 85.65 1 96.25

A-RED 113.78 53.32 1.73 97.13

REM 116.29 50.17 0.82 97.59

I-5

(Traffic

Load=200)

AVQ 99.89 82.42 0.71 97.45

FEM 111.53 24.93 0.046 99.47

PI 168.22 96.26 1.68 96.85

A-RED 121 53.78 7.17 92.33

REM 125.4 63.1 0.99 96.66

I-5

(Traffic

Load=300)

AVQ 84.86 82.31 0.67 97.68

FEM 117.47 30.81 0.27 99.21

PI 183.28 99.53 2.8 96.68

A-RED 136.37 58.47 9.63 89.96

REM 134.92 75.57 1.52 95.65

I-5

(Traffic

Load=400)

AVQ 91.99 85.98 0.82 97.63

 241

Table B.3 Summary of statistical results – Scenarios I (continued)

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate
(%)

Utilization
(%)

 Mean-

Delay

Std-

Deviation

FEM 119.87 32.56 0.44 99.11

PI 194.9 94.08 4.24 95.55

A-RED 136.98 62.24 12.79 86.81

REM 143.33 82.23 2.19 93.87

I-5

(Traffic

Load=500)

AVQ 97.97 92.82 0.74 97.96

FEM 106.77 18.22 0.04 99.61

PI 134.9 41.26 0.62 98.25

A-RED 112.07 46.43 0.81 97.89

REM 112.96 34.11 0.62 98.2

I-6

AVQ 110.67 77.38 0.45 97.92

 242

Table B.3 Summary of statistical results – Scenarios I (continued)

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate
(%)

Utilization
(%)

 Mean-

Delay

Std-

Deviation

FEM 100.33 24.6 0.07 99.12

PI 115.25 55.6 0.7 96.58

A-RED 104.3 73.7 0.68 97.17

REM 105.86 50.44 0.56 96.78

I-7 (reverse

web-traffic)

AVQ 69.79 61.25 0.43 94.96

FEM 95.93 26.61 0.1 98.95

PI 98.67 44.98 0.96 95.6

A-RED 78.91 57.5 1.52 87.95

REM 80.61 43.51 0.78 93.59

I-7 (reverse

web-traffic +

FTP)

 AVQ 31.95 44.21 0.43 81.58

FEM 92.59 24.81 0.23 99.12

PI 95.86 45.64 1.04 95.3

A-RED 81.68 64.33 1.59 83.6

REM 78.3 44.29 0.82 92.44

I-8

AVQ 5.86 25.14 0.4 43.92

 243

Table B.4 Summary of statistical results – Scenarios II

TQL=200: expected mean delay = 35.56 msec
Scenarios AQM Delay

(ms)
Loss Rate

(%)
Utilization

(%)

 Mean-

Delay

Std-

Deviation

FEM 32.68 7.87 0 99.61

II-1

(congestion

at peripheral

link)

PI 44.33 17.01 0.46 99.31

A-RED 37.2 7.64 0.28 99.46

REM 37.3 12.34 0.4 99.4

AVQ 22.12 20.02 0.22 98.51

FEM 32.55 7.87 0 99.61
II-2

PI 45.62 17.11 0.49 99.23
(congestion

at peripheral

link + short-

lived flows)

A-RED 34.87 11.83 0.34 99.39

REM 37.54 8.32 0.44 99.34

AVQ 19.45 20.73 0.22 98.42

 244

Table B.5 Summary of statistical results – Scenarios III

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate
(%)

Utilization
(%)

 Mean-

Delay

Std-

Deviation

FEM 109.61 15.42 0.074 99.84

 PI 152.58 75.93 0.91 98.96

III-1 A-RED 112.12 25.14 5.73 94.25

 REM 119.17 52.0 0.62 99.23

AVQ 37.11 40.88 0.25 98.8

FEM 111.88 21.05 0.12 99.71

PI 203.81 74.91 2.27 97.94

III-2 A-RED 154.90 43.65 12.51 87.33

 REM 137.73 78.98 1.31 98.07

AVQ 75.46 85.59 0.17 99.0

FEM 114.56 20.27 0.19 99.91

PI 224.65 55.35 3.56 96.9

III-3 A-RED 156.46 46.63 13.47 86.73

 REM 143.95 81.82 1.65 97.89

AVQ 52.18 45.9 0.29 97.89

 245

Table B.5 Summary of statistical results – Scenarios III (continued)

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate
(%)

Utilization
(%)

 Mean-

Delay

Std-

Deviation

FEM 116.83 36.32 0.16 99.4 III-4

(Bottleneck

prop. delay

at router-D

and router-E

= 120 msec)

PI 186.39 91.92 2.26 97.91

A-RED 134.14 60.13 9.68 90.25

REM 134.88 76.02 1.43 96.46

AVQ 82.92 71.08 0.64 98.15

III-4 FEM 110.66 41.83 0.04 99.04

(Bottleneck

prop. Delay

at router-D

and router-E

= 200 msec)

PI 169.37 101.56 2.36 95.2

A-RED 135.48 79.91 7.65 90.99

REM 125.97 72.89 1.71 95.23

AVQ 95.9 81.07 0.66 97.53

FEM 117.87 27.11 0.09 98.55

PI 210.95 65.70 1.86 95.2

III-5 A-RED 177.53 33.73 12.39 90.99

REM 135.5 51.81 1.08 95.24

AVQ 92.67 51.17 0.24 97.53

 246

Appendix C

FIO Simulation Results

 247

Table C.1 Summary of statistical results – Scenarios I

TQL=100: expected mean delay = 53.33 msec

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM* Delay
(ms)

Loss Rate (%) Utilization (%)

 Mean-

Delay

Std-

Deviation

Low-

priority

High-

priority

Total Low-

priority

High-

priority

Total

FIO 62.61 23.05 0.47 0.019 0.25 49.69 49.33 99.02

TL-PI 77.32 41.56 0.57 0.11 0.5 83.89 14.83 98.72I-1

RIO 178.52 79.72 1.66 1.72 1.67 94.31 2.27 96.58

FIO 84.27 28.59 1.285 0.084 0.26 14.42 84.6 99.02

TL-PI 103.04 36.44 0.65 0.23 0.5 62.49 36.23 98.72 I-2

RIO 112.86 55.97 5.77 0.22 2.97 44.67 50.8 95.47

FIO 110.89 25.15 2.24 0.45 0.47 0.93 97.25 98.18

TL-PI 116.86 39.15 0.72 0.49 0.5 4.79 93.23 98.02 I-3

RIO 158.8 46.22 15.12 1.12 1.22 0.72 96.52 97.24

*we designate the two-level PI AQM controller as TL-PI, for easier convenience

 248

Table C.1 Summary of statistical results – Scenarios I (continued)

TQL=100: expected mean delay = 53.33 msec

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate (%) Utilization (%)

 Mean-

Delay

Std-

Deviation

Low-

priority

High-

priority

Total Low-

priority

High-

priority

Total

FIO 84.55 34.93 0.39 0.15 0.27 48.78 46.58 95.36

TL-PI 82.35 49.59 0.5 0.5 0.5 78.55 15.76 94.31I-4

RIO 87.17 79.7 3.7 0.435 2.84 65.61 25.43 91.04

FIO 113.74 25.12 1.8 0.41 0.41 0.28 99.07 99.35

TL-PI 121.99 39.04 0.59 0.41 0.42 6.43 92.6 99.03 I-5

RIO 164.71 51.87 18.89 2.02 2.12 0.47 97.28 97.75

 249

Table C.1 Summary of statistical results – Scenarios I (continued)

TQL=100: expected mean delay = 53.33 msec

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate (%) Utilization (%)

 Mean-

Delay

Std-

Deviation

Low-

priority

High-

priority

Total Low-

priority

High-

priority

Total

FIO 117.85 25.16 3.13 0.30 0.32 0.78 98.73 99.51

TL-

PI 140.59 45.81 0.5 0.33 0.35 6.79 92.34 99.13

I-6

(bottleneck

prop.

delay =

30msec)
RIO 170.28

30.21

15.3

3.53

3.59

0.43

95.84

96.27

FIO 113.94 25.42 4.1 0.41 0.43 0.65 98.48 99.13

TL-

PI

128.83 39.76 0.54 0.43 0.44 6.25 92.76 99.01

I-6

(bottleneck

prop.

delay =

60msec)
RIO 166.2 50.78 16.2 2.42 2.5 0.64 96.49 97.13

FIO 112.88 28.56 2.21 0.45 0.47 0.69 97.16 98.03

TL-

PI

123.29 42.47 0.79 0.58 0.59 4.31 93.34 97.65
I-7

RIO 160.61 69.2 15.42 1.88 1.98 0.87 95.79 96.66

 250

Table C.1 Summary of statistical results – Scenarios I (continued)

TQL=100: expected mean delay = 53.33 msec

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate (%) Utilization (%)

 Mean-

Delay

Std-

Deviation

Low-

priority

High-

priority

Total Low-

priority

High-

priority

Total

FIO 85.69 28.57 4.83 0.11 0.91 18.11 80.7 98.81

TL-PI 75.05 40.51 1.92 0.35 1.54 65.78 29.8 95.58I-8

RIO 92.03 56.32 7.5 0.55 5.19 45.89 46.97 92.86

FIO 188.38 68.07 1.81 0.47 0.48 1.0 98.3 99.8

TL-PI 201.90 116.21 0.72 1.59 1.52 12.29 87.3 99.6 I-9

RIO 231.37 108.35 17.1 0.56 2.17 10.4 89.4 99.8

 251

Table C.2 Summary of statistical results – Scenarios II

TQL=100: expected mean delay = 53.33 msec

TQL=200: expected mean delay = 106.67 msec

Scenarios AQM Delay
(ms)

Loss Rate (%) Utilization (%)

 Mean-

Delay

Std-

Deviation

Low-

priority

High-

priority

Total Low-

priority

High-

priority

Total

FIO 63.29 24.07 0.13 0 0.09 62.1 37.6 99.7

TL-PI II-1 72.07 37.02 0.32 0 0.32 98.45 0.96 99.41

RIO 218.52 48.85 1.68 0 1.68 97.38 0.16 97.54

FIO 94.56 26.71 0.87 0.03 0.09 6.85 92.82 99.67

TL-PI II-2 103.87 31.43 0.43 0.11 0.32 65.56 33.85 99.41

RIO 105.07 49.94 8.65 0.07 3.05 29.53 66.78 96.3

FIO 110.36 24.8 0 0.34 0.34 0.39 99.09 99.48

II-3 TL-PI 117.68 30.74 0.08 0.36 0.35 2.04 97.33 99.37

RIO 162.38 37.68 21.21 1.33 1.34 0.58 97.29 97.87

 252

Table C.2 Summary of statistical results – Scenarios II (continued)

TQL=100: expected mean delay = 53.33 msec

TQL=200: expected mean delay = 106.67 msec

AQM Scenarios Delay
(ms)

Loss Rate (%) Utilization (%)

 Mean-

Delay

Std-

Deviation

Low-

priority

High-

priority

Total Low-

priority

High-

priority

Total

FIO 86.75 36.08 0.18 0.049 0.099 37.15 59.5 96.65

TL-

PI
II-4 84.8 43.46 0.34 0.2 0.32 81.66 14.73 96.39

RIO 80.78 70.90 5.87 0.11 3.37 50.2 43.24 93.44

II-5

(bottleneck

prop.

delay =

30msec)

FIO 66.54 24.46 0.23 0 0.14 59.61 40.14 99.75

TL-

PI

88.05 47.23 0.33 0 0.33 98.5 1.04 99.54

RIO 227.77 42.53 1.85 3.65 1.86 97.43 0.41 97.84

II-5

(bottleneck

prop.

delay =

120msec)

FIO 57.19 22.94 0.29 0 0.24 75.8 23.0 98. 80

TL-

PI

61.02 39.12 0.51 0.07 0.51 97.59 0.76 98.35

RIO 187.48 65.64 1.35 0 1.35 94.65 0.18 94.83

 253

Table C.2 Summary of statistical results – Scenarios II (continued)

TQL=100: expected mean delay = 53.33 msec

TQL=200: expected mean delay = 106.67 msec

AQM Scenarios Delay
(ms)

Loss Rate (%) Utilization (%)

 Mean-

Delay

Std-

Deviation

Low-

priority

High-

priority

Total Low-

priority

High-

priority

Total

FIO 113.79 27.43 0 0.32 0.32 0.09 99.21 99.30

TL-PI II-6 130.44 32.01 0 0.53 0.53 2.10 97.04 99.14

RIO 164.89 48.27 20.48 2.46 2.48 0.62 96.69 97.31

FIO 57.15 16.94 0.009 0 0.007 16.36 82.37 98.73

TL-PI II-7 55.79 27.0 0.03 0.01 0.02 80.99 17.66 98.65

RIO 78.80 61.03 0.24 0.01 0.19 20.66 77.59 98.25

 254

	cover-page.doc
	Copyrights.doc
	acknowledgements.doc
	abstract.doc
	ToC.doc
	LoF.doc
	LoT.doc
	acronyms.doc
	1.Introduction.doc
	2.Congestion_control.doc
	3.AQM.doc
	4.Diff-Serv.doc
	5.Fuzzy_Logic.doc
	6.FEM.doc
	7.FEM-evaluation.doc
	8.FIO.doc
	9.FIO-evaluation.doc
	10.Conclusions-FutureWork.doc
	List-Pubs.doc
	Bibliography.doc
	Appendix-A.doc
	Appendix-B.doc
	Appendix-C.doc

