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Summary

In this thesis graph theoretic techniques are adopted for addressing the network
survivability issue of digjoint paths selection. The evaluation was conducted after the
implementation of a solver that produces a solution of the problem after successive
application of two algorithms on any given topology, the algorithm of Louca et a [19]
and Castanon’s [8]. The first algorithm transforms any networks into atrellis graph and
the second exploits the special structure of the trellis graph and solves for the k-best
paths using the minimum cost network flow (MCNF) algorithm. The transformation and
evaluation of the K-best paths solution is illustrated for a number of topologies through
the graphical user interface adapted from [37]. It is also contrasted with the k-successive
approximation methods, which cannot guarantee the selection of the K-best paths, due
to the successive removal of shortest paths at each iteration. Furthermore, the
performance of the algorithm and its time complexity are investigated and also
compared with Surballe’s Digjoint Pair Algorithm [31]. Even though the trellis
transformations algorithm can find all possible disoint paths in the vast majority of
cases, pathological situations where the algorithm may fail is also identified in the
thesis, analysed, and a solution is provided and evaluated.
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Chapter 1

Introduction

1.1 TheDefinition of SUrVIVaDITITY........ccoooiiiiiiiie e 4
1.2 Glossary of SUrvivability TEIMIS.......c.coiiiiiiiiiie e 6
1.3 NEtWOrk SUrVIVADIHTTITY ....cooueieiieiic e 7
14 TheSISODJECTIVE ..ot 7
1.5 K-best Path Problem ... 8
1.6 PrevioUSWOIK .....coociiiiiiie et e et e e e e e e e e nnneas 9

Today’ s large-scale, highly distributed, networked systems improve the efficiency and
effectiveness of organizations by permitting whole new levels of organizational
integration. However, such integration is accompanied by elevated risks of intrusion
and compromise. Incorporating survivability capabilities into an organization's

systems can mitigate these risks.

Survivability builds on related fields of study (e.g., security, fault tolerance, safety,
reliability, reuse, performance, verification, and testing) and introduces new concepts
and principles. Survivability focuses on preserving essential services, even when

systems are penetrated and compromised [43].
1.1 The Definition of Survivability

We define survivability as the capability of a system to fulfil its mission, in a timely
manner, in the presence of attacks, failures, or accidents. The term system is used in
the broadest possible sense, including networks and large-scale systems of systems.

The term mission refers to a set of very high-level requirements or goals. Missions are
not limited to military settings, because any successful organization or project must
have a vision of its objectives whether expressed implicitly or as a formal mission
statement. Judgments as to whether or not a mission has been successfully fulfilled
are typically made in the context of external conditions that may affect achievement
of that mission. For example, imagine that a financial system shuts down for 12 hours
during a period of widespread power outages caused by a hurricane. If the system
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preserves the integrity and confidentiality of its data and resumes its essential services
after the period of environmental stress is over, the system can reasonably be judged
to have fulfilled its mission. However, if the same system shuts down unexpectedly
for 12 hours under normal conditions or minor environmental stress, thereby
depriving its users of essential financial services, the system can reasonably be judged
to have failed its mission even if data integrity and confidentiality are preserved.

Timeliness is a critical factor that is typically included in (or implied by) the very
high-level requirements that define a mission. However, timeliness is such an
important factor that we included it explicitly in the definition of survivability.

The terms attack, failure, and accident are meant to include all potentially damaging
events, but in using these terms we do not partition these events into mutually
exclusive or even distinguishable sets. It is often difficult to determine if a particular
detrimental event is the result of a malicious attack, a failure of a component, or an
accident. Even if the cause is eventually determined, the critical immediate response
cannot depend on such speculative future knowledge.

Attacks are potentially damaging events orchestrated by an intelligent adversary.
Attacks include intrusions, probes, and denials of service. Moreover, the threat of an
attack may have as severe an impact on a system as an actual occurrence. A system
that assumes a defensive position because of the threat of an attack may reduce its
functionality and divert additional resources to monitor the environment and protect
system assets.

We include failures and accidents in the definition of survivability. Failures are
potentially damaging events caused by deficiencies in the system or in an external
element on which the system depends. Failures may be due to software design errors,
hardware degradation, human errors, or corrupted data. The term accident comprises a
broad range of randomly occurring and potentially damaging events such as natural
disasters. We tend to think of accidents as externally generated events (i.e., outside

the system) and failures as internally generated events.

With respect to system survivability, a distinction between a failure and an accident is
less important than the impact of the event. Nor is it often possible to distinguish
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between intelligently orchestrated attacks and unintentional or randomly occurring
detrimental events. Our approach concentrates on the effect of a potentially damaging
event. Typically, for asystem to survive, it must react to and recover from a damaging
effect (e.g., the integrity of a database is compromised) long before the underlying
cause is identified. In fact, the reaction and recovery must be successful whether or
not the cause is ever determined.

Finally, it is important to recognize that it is the mission fulfilment that must survive
not any particular subsystem or system component. Central to the notion of
survivability is the capability of a system to fulfil its mission, even if significant
portions of the system are damaged or destroyed. We use the term survivable system
as shorthand for a system with the capability to fulfil a specified mission in the face of
attacks, failures, or accidents. Again, it is the mission, not a particular portion of the
system that must survive.

1.2 Glossary of Survivability Terms

In this section we summarize terms often used when describing survivability.

1. Accidents. A broad range of randomly occurring and potentially damaging
events such as natural disasters. Accidents are often externally generated
events.

2. Adaptation services. system functions provided to continually improve a
system’'s capability to deliver essential services, typically by improving
resistance, recognition and recovery capabilities.

3. Attack: A series of steps taken by an intelligent adversary to achieve an

unauthorised result. Attacks include intrusions, probes, and denial of service.

4. Essential services. Services that must be provided to system users in the
presence of attacks, failures or accidents.

5. Failure: A potentially damaging event caused by deficiencies in the system or
in an external element on which the system depends. Failures may be due to
software design errors, hardware degradation, human errors or corrupted data.



6. Detection services: System functions that detect anomalies, possible attacks,

and the extent of system damage or compromise.

7. Recovery services. system functions to support the restoration of services after
an attack has occurred. Recovery services also help a system maintain

essential services during an attack.

8. Survivability: a system’s capability to fulfil its mission, in atimely manner, in

the presences of attacks, failures or accidents.
1.3 Network Survivability

Network Survivability can be defined as: (1) the ability of a network to maintain or
restore an acceptable level of performance during network failure conditions by
applying various restoration techniques; and (2) the mitigation or prevention of
service outages from potential network failures by applying preventive techniques.
Survivability techniques can be classified into three categories [23,24]: (a) prevention,

(b) network design, and (c) traffic management and restoration.

Prevention techniques focus primarily on improving component and system
reliability. Some examples are the use of fault-tolerant hardware architectures in
switch design, provision for backup power supplies, pre-deployment stress testing of
software, use of frequency hopped spread spectrum techniques to prevent jamming in
military radio networks and so on. Network design techniques try to mitigate the
effects of system level failures such as link or node failures by placing sufficient
diversity and capacity in the network topology. For example, the use of multi-homing
nodes so that a single link failure cannot isolate a network node or an access network.
Traffic management and restoration procedures seek to direct the network load such
that a failure has minimum impact when it occurs, and that connections affected by a

failure are reconnected around the failure.
1.4 Thesis objective

Survivability, or at least graceful degradation, in the event of network failure remains

with open research issues.



Knowledge of the K-best paths can be used in the network survivability problem. It is
worth noting that the identification of the K-best paths can be useful in solving
numerous networking problems, such as flow balancing, MPLS traffic engineering,
video streaming, and so forth, as well as other diverse problems, such as molecular
biology [10, 14, 15, 16, 18, 20, 29, 34].

Motivation for this thesis is the fact that finding the K-best paths in a network with
hop count h>5 in an NP-Complete problem as shown by the authors of [42,44].
Castanon in [8] gave an O(n®logn) algorithm for finding the K-best disjoint paths by
using minimum cost network flow (MCNF) algorithm. However the algorithm can
only be applied on atrellis graph. A trellis graph is a structured graph offering several
advantages in formulating many problems of diverse fields such as radar, sonar, and
radio astronomy [3, 5, 18]. In order to overcome this limitation a heuristic approach
was taken by [19] in order to transforms any given network into a Trellis graph and
then into an equivalent minimum-cost network problem using the Castanon [8]

algorithm.

The main thesis objective is to provide extensive evaluation of the K-best paths
solution by the combination of [19] and [8] and propose any necessary extensions or
modifications. We adopt the transformation provided in [19] as our initial
transformation and proceed to compute the K-best paths using Castanon’s algorithm
[8]. An animation solver is implemented and used to evaluate representative network

topologies and known problematic cases, as for example the trap topology [9].
1.5 K-best Path Problem

The K-best path problem isto list the k mutually disjoint (exclusive) paths connecting
a source-destination pair in a network. Mutually disjoint means with no link or node

dependencies between paths listed.

The selection of the K-best digjoint paths can take into account many factors, such as
selection of the shortest paths (hence minimizing delay), minimization of the
bandwidth allocation (given the bandwidth demanded by customers), and
maximization of network throughput. “Best” (disjoint) paths are those paths which are

as diverse as possible (i.e. if the network topology permits, k disjoint paths can be
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found), and therefore will maximize our chances of survivability, or ensure at least a

graceful degradation, (i.e. display fault tolerance) in the event of a network fault.
1.6 PreviousWork

The majority of published work concentrates on the k-shortest link disjoint path
problem, [9, 26, 27, 30] rather than the K-best paths. A number of these algorithms
are based on the iteration of Dijkstra’s shortest path algorithm to find restoration paths
for the failed links via surviving spare links on other spans of the network (referred to
as the k-successively shortest link digjoint path algorithm in [9]). It is worth pointing
out that once arestoration path is found, the spare links which make it up are removed
from the network description, and the algorithm is run again until it fails to find any
additional paths. Examples include: [9] which addresses span restoration rather than
path restoration; [26] and [27] which are based on matrix and recursive matrix
calculations respectively to improve computational complexity. Note that these
methods are not strictly optimal in terms of finding the maximal number of paths in
all possible networks, and worse they may underestimate the number of paths
whenever the k-successively shortest link disjoint path algorithm selects a path which
blocks other potential paths (well illustrated in [9] using the generalized “trap”
topology), or even worse, they may overestimate the number of link disjoint paths
(e.g. [27]). On the other hand, [5, 28, 31] concentrate on finding only a pair of digjoint
paths between a given pair of nodes, by optimizing the physical length of paths. In
[31], the shortest pair of node-disjoint paths is found, but cannot be applied at the
span (physical) level (e.g. physical links sharing a common conduit). In [5], a pair of
disjoint paths between a given pair of nodes taking into consideration any span
sharing by links is found, but the solution for networks with arbitrary connection
patternsis not given, and in [28] a heuristic approach for finding in polynomial time a
pair of paths which is as diverse as possible, taking into account common spans, is

presented.

! Trap-topology is such a topology where a heuristic fails to find diverse routes even though they exist. A
demonstration of its solution through our proposed transformation is given | ater.



In Chapter 2 we define the K-best path problem and proposed solution. The two
proposed algorithms are outlined along with the Trellis graph theoretical model. In
Chapter 3 we describe the implementation of the K-best Path problem solver and in
Chapter 4 we present the evaluation of the proposed solutions through a series of
transformations of illustrative topologies and well know problematic topologies. Also
we present problematic topologies of the first transformation along with some

solutions and their evaluation. We conclude in Chapter 5 giving future work.
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Chapter 2

K-best Path Problem Proposed Solution

2.1 Trellis Graph Theoretical MOdEl ...........ccooiiiiiiiiiii e 11
2.2 Link and Path COSL.......ccueiiiiiiieiiie e 12
2.3 Trellis Graph Transformation .............cooeeiieiieeneeiesee e 13
231 Network Partitioning and Labelling .........ccoccveviiieiiieniee e, 13
2.3.2 Transformation AlQOrithm ..........cceoiiiiiii e 14
2.3.21 Theroutine FiNdPatN(X,Y) ...cooouiiiiiiieieee e 15
2.3.22 The Algorithm: Convert to TrelliS.......oocveviiiiiinieee e 15

2.4 Castanon’S AlQOTTNM .......oviiiiiiiicieee e 17

In this chapter we present the transformation provided in [19] and the computation of
the K-best paths using Castanon’s algorithm [8]. Next we present the first step in the
formulation of the K-best path problem in terms of mapping the original network onto
atrellis graph. After that we outline the second step, which is the algorithm proposed
by Castanon [8] to compute the k-best paths from the trellis graph.

2.1 TrellisGraph Theoretical M odel

A directed graph G = (V, E) is a structure consisting of a finite set of nodesV = { v,

Vo, V3, ..., o} and afinite set of links
E={(v,v,)|v,v;eV and Vv =v;}

where each link is an ordered pair. We define atrellis as a directed graph G = (V, E)
with nodes and directed links that satisfy the following conditions:

I. 'I;]he node set V is partitioned into L (mutually disjoint) subsets Vi, V>, ...,V such
that

li. Links connect nodes only of consecutive subsets V, and V.1, i.e., if (vi,vj) € E,
thenv, e V, anva e Vi+1, 1< < L.
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The magnitude T we shall call depth of the trellis. A K-trellis is a trellis graph with
two additional properties:

1.1t has two more nodes s € Vo and t e Vi .1, such that the edge (s,vi) € E for
every v; € Vq and the edge (vj,t) € E for every v; e L.

2.The node v; of the set V, is connected (where possible) with K = 2g+ 1 nodes gvi-
%_1)./.21Vi1.“1\/i+g} of the set V41, where 1<i<H, 1<I<L,and g = 1,23, ...,

The depth of a K-trellis graph will be equal to L+2. In Figure 2.1 a K-tréellis is
presented with L = 5, H = 4 and K = 4. Throughout the paper, we shall refer to aK-
trellis graph with K =H astrellis graph.

@

A\ /&
LA NN
‘@(&&‘M&‘@ﬂ&‘

ITaYais
PR

Figure2.1: K-trelisgraph withL =5, H=4and K =4

A walk in a trellis is an alternating sequence of nodes and links, i.e,
W=[ v, (V1,V2), V2, . Vi1, (Vke1, Vi), Vi] - The length L(W) of a walk is the number of links
init. A path isawalk in which all nodes are distinct. For simplicity, we shall denote
the path P by P = {v1,v,,...,vi} and we shall refer to v; and vi asfirst and last nodes of
P, respectively (i.e. the origin and destination nodes).

Let G = (V, E) be a trellis graph with LH nodes, i.e, |V| = LH. Two paths
Pi={sug,u,...,u,t}, P= {su ,u,,..,ut} are sad to be mutually exclusive or
unmerged if u = u for every | = 1,2,....L; otherwise, they are said to be merged.

Hereafter, we shall refer to unmerged paths as digoint paths (see Figure 2.2).
2.2 Link and Path Cost

In addition to the above trellis definition, in each link (v,v) e E of atrellis graph, we
associate a third number, which we call link cost and denote by c(vi,v) or c(i,j). The
cost of apath P = {v;,v,,...,} isdefined as:

c(P)= Yo .v,)

(i,j)eP
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The shortest path from the node v to node v; is a path P={vy,v,,...,v} with minimum
cost.

Figure 2.2: lllustration of three mutually digoint pathson aK-trelliswithL =5 H =4and K = 4.

2.3 TrélisGraph Transfor mation Algorithm

The objective of the transformation algorithm [19] isto map any network topology G,
onto a Trellis graph, and subsequently enable the shortest paths in the original graph
to be computed. In this algorithm, a trellis graph is used where K=H. That is, every
node on level V; is directly connected with all the nodes on level Vi.1. Every given
topology is being partitioned and labeled (see Section 2.3.1 below) with respect to the
source node. The labeled network is being used by the transformation algorithm for
mapping it onto atrellis graph.

2.3.1 Network Partitioning and Labelling

Given agraph G = (V, E) and a node v € V, a partition L(G, v) of the node set V is
defined (we shall frequently use the term partition of the graph G), with respect to the

node v as follows:
L(G,v) ={AL(v,/)|veV,0< /<L, 1< L, <V}

where AL(v,?), 0</<L,,

are the adjacency-level sets, or simply the adjacency-levels, and L, is the length of the
partition L(G, v). The adjacency-level sets of the partition L(G, v), are defined as

follows:

AL(v,?) ={uld(v,u)=7¢, 0</<L}
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where d(v, u) denotes the distance between nodes v and u in G. Notice that d(v,u)>0,
and d(v,u)=0 when v=u VYu,veV . Thus, the adjacency-level sets of the graph of

Figure 2.3(a), with respect to node s are shown in Figure 2.3(b), i.e.,

AL(s, O)={s}, AL(s, 1)={A, B, C}, AL(s, 2)={D, E, F}, AL(s, 3)={J, K} xau AL(s, 4)={t}.

OSSN
@ @>'
6

o

é : u;y :
1 A
\‘7 23) (33)

Figure 2.3: (a). A weighted undirected graph G = (V, E) or anetwork (all weightsare positive

)

J
(2 1) (£

(:

&

integer numbers) (b). Partition of the graph G, with respect to vertex s

The transformation algorithm begins by labeling the nodes of the network at "vertical"
levels according to their distance, in terms of the number of links, from the source
node, s. These labels consist of the ordered pairs v(d,i) wherev V, d is the distance of
node v from s (in terms of number of links) and 1<i < deg , where deg is the degree of
graph G. The nodes of the trellis graph are eventually labeled in a similar manner. We
label the nodes of the trellis graph by the ordered pairs u(d, j) where u € U (the set of
nodes in the Trellis graph), d is the distance from sto u, and 1<j <H.

2.3.2 Transformation Algorithm

In order to determine the size of the Trellis, its preliminary dimensionsL” and H™ are
found. L” is determined by taking the maximum between the number of vertical levels
of the partition network and the length of the shortest path based on the number of
links (excluding s and t), and not on the weight of each link. L™ minimum value is 2.

H" is defined to be the maximum between the degree of nodesand t. L” and H™ may
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change depending on the final form of the Trellis. L” and H™ are then used to create a
preliminary Trellis graph which is used to map the nodes and edges of the original
network G. The labeling of the Trellis nodes is done as described above. Once the
preliminary trellis is constructed, the source node, s, and its adjacent nodes are
mapped onto their corresponding nodes of the trellis graph. If one of the adjacent
nodes of sis the destination node, t, it is moved to the end of the trellis, and the path
from sto t is determined using Find-Path(X,Y) (described later). The second step of
the algorithm is to map the end node and all it's adjacent. If an adjacent of the end
node is already mapped we compute using Find-Path(X,Y) a path from the node to the
end node. If more than one edge is used in determining a valid connection (using
Find-Path(X,Y)), the extra edges and nodes are assigned value 0 to represent dummy
connections at no cost. The edges and nodes which remain unmapped in the trellis
graph are assigned to infinity in order to illustrate that they cannot be used in the
network. The algorithm is bounded by O(n?) [19] where n is the number of nodes.

2.3.21 Theroutine FindPath(X,Y)

The routine FindPath(X,Y) is used to determine a path from X to Y in the trellis by
considering the first available node in the vertical levels, moving in a forward
direction. Nodes and edges from the original network that have already been assigned
cannot be used (so that the form of the original network does not change). If there is

no available node in the next level, the Trellis graph is enlarged by making H=H+1.

The final step of the routine is to assign the nodes and edges along the path to 0,
except the first edge encountered which is assigned to the weight of the corresponding
edge in the original network. The path established under these conditions is referred to

asavalid_path.

2.3.22 TheAlgorithm: Convert to Trellis

Before the transformation algorithm begins the partition of the network was

computed.

Step 1: Construct Preliminary Trellis

Find the shortest path in the network for the source destination pair. Compute the
length of the shortest path. Computer L by taking the maximum between the
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number of levels of the partitioned network, the length of the shortest path. If the
L<2 then set L=2. Compute H by taking the maximum between the degrees of the
start and end nodes. Create the preliminary trellis of size LH.

Step 2: Map Start Node

Map the source node, s, of the original graph onto the source node of the trellis.
Create two sets, the first one to contain the nodes from the original network that
have been assigned to the trellis graph (Nodes assigned original ={v(1,i)}), and
the second one to contain the nodes from the trellis network that have been

assigned nodes from the original network (Nodes_assigned_trellis (u(x,y)).
For all adjacent nodes of s, v(1,i) € V{
If v(1,i) #t{ /* tisthe destination node */

v(1,i) is assigned to their corresponding edge in the trellis, u(1,i). The edge (s,
v(1,i) isassigned to the edge (st, u(1,i)).Update the two sets to contain the new

nodes that have been assigned.}
If v(1,i) =t{

v(1,i) is assigned to the furthest node along the trellis. Find the path which
connects the source node with the destination node t through FindPath(st).
Update the two sets to contain the new nodes that have been assigned,

including the O ones.}

}

Step3: Assign Shortest Path

Assign the nodes along the shortest path to their corresponding nodes and edges on
the trellis and update the two sets.

Step 4: Assign therest

For al nodes v(d,i) eNodes assigned_original, do

/* Assume v(d,i) was mapped on u(x,y){
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For all nodes v(j,k) being adjacent to v(d,i),{
If (v(j,K) ¢ Nodes assigned_original) {

Assign v(j,K) to the next available node in the next level from the node u(x,y)
in the trellis graph. In the case that there is no available node, increase the
size of the Trellis by one row or level (if it is at the last level). Assign node
Vv(j,K) to the new node. Assign the weight of edge (v(d,i), v(j,k)) to the edge
(u(x)y), u(z,e)) where u(ze) isthe node corresponding to v(j,k). Update the 2
sets}

If (v(j,k) eNodes assigned original) {

If the connection with u(x,y) and u(z,e) in the trellis is valid, (i.e. no vertical
connection), then use FindPath(u(x,y),u(ze€)) to connect them. If a vertical
connection exists, reassign u(x,y) to the first available node. If no node is
available, enlarge the Trellis, and move the node to one of the new nodes
created. /* The edge will be determined when the node assigned to
u(z.e)will be examined. */}

} /*end of second loop
} /* end of first loop

This algorithm generates a mapping where the best set of mutually exclusive K paths
can directly be found using the method described in the next Section.

2.4 Castanon’s Algorithm

Castanon [8] illustrates that the problem of computing the K-best mutually exclusive
paths in a trellis graph can be defined as a Minimum Cost Network Flow (MCNF)
problem. He also showed that the worst-case computation time for this problem is
bounded by n® log n, where n is the number of nodes in the trellis. His O(n® log n)
time algorithms are much faster than those proposed in [32]. It is important to note
that, for K > 2 the best set of k paths is not found in general by finding the best path,
and then removing it and calculating the next best path that is completely disjoint with
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the best path, and so on (as in the k-successively shortest link digjoint paths [9]). The
reason for this is that these paths are not independent of one another because of the
requirement that the paths be completely disjoint so that it might be better to use one
or more of the branches that are part of the best single path for other paths [32]. This
isillustrated later during our evaluation.

The solution that was given from Castanon was to define the K-best path problem as:
Find K paths p1,p2, ....p« through a Trellis G(V,E) which minimizes the total cost,

K
J=2 c(p")
k=1
Subject to constrain that the paths pa,p2, ....pxare mutually disjoint

After that definition an equivalent MCNF problem was defined that did not ensure
that the path selected would be mutually exclusive. A transformation of the trellis
though met that constraint. Specifically for each subset N; wheret =2 ... T-1, a new
set of nodes is created and outgoing edges which start at n; € N; are redefined to start
from the corresponding new node that we just added. A zero cost edge is defined to
connect the node n; € N; to the new corresponding node. Figure 2.4 below

demonstrates this transformation.

Figure 2.4: Castanon’s AlgorithmTransfor mation

To solve the MCNF problem one may use the solver provided by the Neos Server
[39], [40], [41] to solve it through Relax IV algorithm created by Bertsekas in [4].
This is the approach we took in order to solve the problem. The animated solver
creates a file which contains the definition of our trellis in DIMACS format. This is
then sent to the NEOS server (http://www-neos.mcs.anl.gov/) to be solved using the
Liner Network Optimization Solver RelaxIV written by Bertsekas et al [4]. The MCF

results are obtained from the server and analysed locally.
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When we receive the MCF results from the NEOS server the flow for each arc is
either one or zero. The arcs that have flow equal to one belong to the K-paths. We

then mark the paths to the trellis and show the results.
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The two algorithms described in Chapter 2 have been implemented using an object-
oriented approach. The implementation was enhanced with a graphical user interface
to provide a complete solver of our problem. One can use the GUI to design the
topology and then pass it to the algorithm package to solve it and finally present the
solution. The animated solver of [37] for finding the shortest path has been adapted in
order to provide the Graphical User Interface in our implementation. The language of
implementation is Java. The objects of the graph are implemented through classes
which describe the characteristics of the objects through variables and their functions
through methods. Objects communicate among themselves via messages.

The solver provides the ability to find the K-best paths through the conversion of the
Trellis produced, into a Minimum Cost Network Flow problem as described by
Castanon in [8]. The MCNF problem formulation of the Trellis Graph is then
submitted for solution by the Relax 1V algorithm written by Bertsekas [4] and hosted
at Neos Server [39,40,41].
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The model contains one Java interface called constants which defines some constants
used by the various classes for the definition of the values of some of their
characteristics. For example, the definition of infinity and dummy nodes are defined
through this interface. The classes Node, Network, ShortestPath, TrellisGraph

implement it.
3.1 Algorithms L ogic mplementation

In this Section, the classes which implement the algorithm logic are presented. The
implementation of the algorithm was based in object orientation in order to be able to
distinguish between the various actions that a node had to take. This will make it

easier if one wants to transfer this algorithm in areal network.
3.1.1 Edge

The class Edge defines the connection between two nodes. Its characteristics are the
source node, the destination node and the weight on the link of the two nodes. Every

object can return its characteristics and change the weight of the link.
3.1.2 Node

The class Node defines a node in a graph. I1ts main characteristics are the name of the
node, its type (a source node, a destination node, or any other node within the graph)
and the edges initiating from that node. In addition, it defines the position of the node

in alabelled graph with respect to the source node, and its previous node in a path.
3.1.3 EdgelList

The class Edgelist isaset of edges. It is being used to keep the edge of a network and
the edges initiating from a node. It can return the edges with respect to their position
in the set, and with respect to the destination node, if such a node exists in the set.

3.1.4 NodelList

The class NodeL.ist is a set of nodes. It is being used to keep the nodes of a network as
well as for the creation of the two sets being used by the algorithm (nodes-

assigned_original, nodes_assigned_trellis).
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3.1.5 Network

The class Network defines a network. Every network can be represented by a set of
nodes and a set of edges. The class has as main characteristics the two sets NodeL ist
and EdgelList which are being implemented as objects. In addition, it can define a
partitioned network which has two more characteristics, the source node and the final

node.
3.1.6 ShortestPath

The class ShortestPath implements Dijkstra’s algorithm for finding the shortest path

in a network.
3.1.7 TrellisGraph

The class TrellisGraph implements a Trellis graph. The Trellis graph is being
characterized by the two sets of nodes and edges which are implemented by the
classes Nodelist and Edgelist respectively. Given a network topology, this class

transforms it into a Trellis using the transformation algorithm.
3.2 Graphical User Interface

In this Section, the classes used to implement the graphical user interface are being
described. The classes were first implemented by [37] and were adapted in order to

run the algorithm logic.
3.2.1 DocOptions

The class DocOptions has all the various user choices for the application and

transformation of the original network onto a Trellis graph.
3.2.2 DocText

The class DocText enlarges the TextArea and contains documentation on the various

user choices. This classis being called by DocOptions.
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3.2.3 Documentation

This class contains the above two classes and is responsible for the presentation and
explanation of the various functions, or other explanations during the algorithm

execution. Figure 3.1 shows the location of the class on the animator

Figure 3.1: The class Documentation which contains the class DocOptions and DocT ext

3.24 GraphCanvas

The class GraphCanvas extends the class Canvas and is responsible for the
presentation of the graphical network and Trellis. It uses the classes which implement
the algorithm in order to pass them the network graphically designed by the user, to

use it in the transformation.
3.25 Options

The class Options contains all the various user choices. Depending on what the user
chooses, GraphCanvas will execute the analogous task and presents the result to the

user.
3.2.6 GraphAlgorithm

This class extends the class Applet and it is the main class of our application. This
class contains the objects which implement the graphical representation of the

algorithm. Figure 3.2 shows the location of the classes on the animator.
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Figure 3.2: The class GraphAlgorithm

3.3 Graphical User Interface Usage

The usage of the graphical user interface is simple. When started, the user can click
on the canvas to create a node. The first two nodes created are the start and end node
painted as blue and yellow respectively. The rest of the nodes are painted grey. The
user can then connect the nodes by clicking on one node and while pressing the
mouse button move to another node and releasing the mouse button. Thiswill create a
link with initial weight equal to 50. The weight can be then adapted by moving the
arrow on the edge created. In order to move a node the user can click on the node and
while pressing the SHIFT button on the keyboard move the node to another position
on the canvas. In order to change the source or destination the user can click on either
the source or destination and while pressing the CTRL button move the blue or yellow
circle to another node. To delete a node or link the user has to first click on the node
or link and then press the DELETE button on the keyboard.

When the user finishes designing the network he presses the “Partition” button on the
options pane and the network is partitioned in respect of the blue node (the start
node). After this step is complete the user can then click on the “To Trellis” button to
map the partitioned network to a Trellis. While the algorithm runs the user can see the
actions taken on the Documentation text area.

The K-best paths can be computed when the transformation is complete by entering K
in the text box and clicking on “Best Paths’ button. This will convert the Trellisto a
Minimum Cost Network Flow problem as described in Castanon’ s algorithm and send
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it to Neos Server [39,40,41] in order to solve it through Relax |V algorithm created by
Bertsekas in [4]. The results (K-best Paths) are then presented to the canvas with
yellow arcs. The actual results received by the Neos Server are displayed on the

Documentation text area

-25-



Chapter 4

Evaluation of the K-best Paths Algorithm

4.1 ComMPlEXity ANAIYSIS....coouiiiieiiieiie ettt 26
41.1 Comparison with Surballe’ s digjoint pair algorithm..............ccccceee.e. 27

4.2 TUSIFEEiVE SOIULIONS ...ttt 28
42.1 SaMPle tOPOIOGY L....coieiiiiiiiiie s 28
4.2.2 SaMPIE tOPOIOGY 2. s 29

4.3 Algorithms Drawbacks Identified and Possible Solutions............ccccceevveenneen. 30
43.1 NEW NOGE INSEITION......iiitiiiiieiie et 31
4.3.1.1 POSSIDIE SOIULION ...t 31

4.3.2 Vertical Link 8SSIgNMENT .........coiiuiiiiieiieeiie e 32
4.3.2.1 POSSIDIE SOIULION ... 32

4.4 Known ProblematiC TOPOIOGIES .......ccuiiiiiiiieiie it 33
441 The Trap topology [9] ......ecoeriiee e 33
4.4.2 A difficult trap topology demonstrated in [45] .......ccccvvveerieeiininienne 34

4.5 COMPULELION NAIYSIS....cuviiiieiiiesiie ettt sttt e sbeeenee s 38

In this chapter we will evaluate the computational complexity of the proposed
algorithms [8], [19], and compare with the well known algorithm of Surballe
[30],[31]. Also we will use representative topologies and well known problematic

cases to evaluate the behaviour of the proposed algorithms.
4.1 Complexity Analysis

The transformation described, requires 3n’+(n*+2L+L)H. A discussion for the time
complexity at each step of the algorithm follows. The initial step of this algorithm is
the process of labelling every node in the original network. The labelling can be done
with a slight modification to the all-pairs-shortest-path algorithm, used for finding the
distance in terms of the number of links between the source, s, and the rest of the
nodes. Such algorithms are of the order of n?. The first step of the algorithm is the
construction of the preliminary Trellis which requires at most L?H% Dijkstra’s
algorithm is used to find the shortest path from source node, s, to destination node, t,
requires n” steps. In step 2, we map the start node s and the end node t along with their

adjacent nodes onto their corresponding nodes of the trellis. If none of the adjacent
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nodes of the start node is the destination, t, and then none of the adjacent nodes of the
t is also adjacent to s then this step requires at most 2H steps. If one of the adjacent
nodes is the destination, we need to determine the path from sto t, which requires in
this case L steps. If a node is adjacent to both start and end node then we will also
need to determine the path between that node and the end node. This is bounded by
LH because at most all nodes are also adjacent to both start and end. Thus, the total
time for this step is 2H+LH. In step3, the first loop will be repeated n times and the
second one is executed at most H times. The first if statement (Node is not assigned)
takes only one step to assign to finish) and the second one (Node is assigned) takes L
steps to finish thus giving as at most computation time n2+n2H. Therefore, the total
time required for this algorithm is 3n?+(n’+2L+L)H and we can say that it is bounded
by O(n?).

4.1.1 Comparison with Surballe’sdigoint pair algorithm

Surballe’s algorithm [31] finds the shortest pair of disjoint paths. This algorithm is
famous for its polynomial computational complexity in solving optimal disjoint path-
pairs in terms of the cost path of the two paths on a directed graph. It uses Dijkstra’'s
algorithm in order to find the shortest path for every individual node in the network.
There are two versions of the algorithm. The edge-disjoint and the vertex-disjoint
shortest pairs.

In the edge-digjoint version, the two paths that are going to be selected through out the
network should not have any common links. The algorithm considers the cost of each
link as a measure to select the pair of paths. The vertex-disjoint shortest pair

algorithm considers disjoint vertices for the paths.

Next, the transformation algorithm in combination with Castanon's algorithm for
finding K-best paths throughout a trellis graph [8], is compared with Surballe’s
algorithm [31].

Even though the two algorithms perform the same task, the one (Castanon’'s) has the
ability to give more optional paths (k-paths), whereas Surballe’ s algorithm gives only
apair of paths. There exist a tradeoff between the number of alternate digjoint paths
and their optimality. Even though Castanon’s algorithm may produce more paths they
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may not be the optimal ones. This is due to the fact that in order to get the K-best
paths other “shortest” paths may be ignored.

Furthermore, as stated earlier, the transformation algorithm is bounded by O(n?).
Thistime is needed just to transform a given network into a Trellis. In order to get the

K-best paths we need to use the Castanon’s algorithm for K-best paths. That
algorithm requires O(n’logn) steps; therefore, using both algorithms will result to

the time complexity of O(n°logn). Surballe’s algorithm, on the other hand, requires
O( nIOg(l—*—n/m) m)[3l1 36]

Thus, even though Surballe’s algorithm consumes less time and has better computing
performance than our algorithm, it only finds a pair of disjoint paths, whereas, the
trellis transformations can find K-best paths, with only a modest increase in

computational complexity.
4.2 Illustrative Solutions

In this section some illustrative solutions of the algorithm will be presented along

with their respective time taken for solution.
4.2.1 Sampletopology 1

Figure 4.1 shows the illustrative example selected in [19], which demonstrates a
topology for which the k-successive shortest path approach will fail. Figure 4.2 shows
how the network is partitioned and labelled and Figure 4.3 the resulting trellis graph.
Figure 4.4 and Figure 4.5 show the K-best paths for K=1 and K=2.

It's worth noting that for K=1 the solution of the algorithm gives the shortest path
which if chosen the network has no alternative path. The solution though for K=2
givestwo aternative paths leaving the shortest path out.

This topology has 10 nodes and took 110 milliseconds to be mapped to trellis. The
resulting trellis has 20 nodes and took 0.071 milliseconds to be solved by the Neos
Server.
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Figure 4.4: K-best Pathswith K=1 Figure 4.5: K-best Paths with K=2

4.2.2 Sampletopology 2

The topology shown in Figure 4.6 has three mutually exclusive paths for which if the
shortest path is selected it blocks all three paths.

The resulting solutions from the Castanon’'s algorithm for K=1,2,3 is shown in
Figures Figure 4.8, Figure 4.9, Figure 4.10 and shows that it chooses the best set for
all three cases. For K=1 the shortest path, for K=2 it ignores the shortest path and
selects the two next (best) paths that are again the shortest but not still blocks the third
path and for K=3 it selects the three mutually disjoint paths ignoring again the shortest
paths selected for K=2.
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Figure 4.6: Shortest path blocksall three

mutually exclusive paths

Figure4.7: TheTrellis Transformation

Figure 4.8: Solution for K=1

Figure 4.9: Solution for K=2

o

[ d 0 = o f a q
e Qe e
36
a i i a k a | [u}
Q 28&5 QD Q1 u] Q’I QD
g

P 0 1<h o r a H 0 1 o o
e eeeeeeeeee

u} h ul o
u} 7 o u}

13

b

am u} n ul o
1 ID I!S ID ID l14:

Figure 4.10: Solution for K=3

The time taken for the transformation of the topology to a Trellis graph was 172

milliseconds and the Castanon’ s solutions was 0.084 milliseconds.

4.3 Algorithms Drawbacks I dentified and Possible Solutions

During the algorithm evaluation many scenarios were transformed in order to ensure

that the transformation algorithm was performing as expected. These transformations

let to the discovery of two problems. The problems identified had to mainly do with

the positioning of the nodes in the Trellis. During some transformation we noticed

that due to incorrect node assignment stranded nodes were created. A stranded node is
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a node in the Trellis that does not have any outgoing links. The problems were
identified to be caused due to the inability of the existing algorithm to choose the
correct level for inserting a new node or when selecting which node to move during

the assignment of a vertical link.
4.3.1 New Node Insertion

The algorithm states a new node is inserted when an edge is found connecting an
existing node to it and is assigned at the first available node in the Trellis found at the
next level. This leads to the creation of stranded nodes due to the fact the node may be
placed too early in the Trellis, thus nodes connecting to it will not be able to, or too

far in the Trellis, thus any nodes it should connect to will be at earlier levels.

4.3.1.1 Proposed Solution

Heuristic: Given two nodes nl aready assigned, n2 not assigned:

e Assign nl at the next level only if there exist a node at a next or same level or

same level connecting to nl1
e Elseassign the new node at the same level as nl and do not connect them
o The connection will be done when evaluating n2

This proposed solution showed that it avoids the insertion of nodes too far in the

Trellis thus avoiding the creation of stranded nodes.

Such networks are shown in Figure 4.11 and Figure 4.12.

Figure 4.12: Problematic Topol ogy

Figure 4.11: Problematic Topol ogy

The partition of topology in Figure 4.11 is shown in Figure 4.13 and the trellis

transformation in Figure 4.14. As we can see in the transformation node f is placed
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too early in the Trellis Graph thus being mapped into the trellis before node e. This
leads to the creation of a stranded node, node e, and loss of path [a, ¢, d, e, f, b
because the trellis graph does not allow links going backwards.

Figure 4.13: The Partitioned Network Figure 4.14: The Trellis Transformation

After the heuristic the new Trellis transformation is shown in Figure 4.15 and node e

is now before node f eliminating the stranded node.

Figure 4.15: Trellis Transformation after the heuristic

4.3.2 Vertical Link assignment

During the assignment of a link between two already assigned nodes that are on the
same level one of two nodes needs to be moved to the next level. The algorithm does
not state which of the two nodes should be moved. During the implementation of the
algorithm the node being assigned was chosen as the node to be moved. This choice
let in some topologies a node to be moved too far in the Trellis thus creating a
stranded node. After the evaluation of this problem the following heuristic were

proposed and applied.

4.3.2.1 Proposed Solution

Heuristic: Given two nodes on the same level nl, n2 check:

e |f n2 has no other nodes connecting to it from the previous or same level move

all nodes of the same level except nl to a new level
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e Elseif there exist a node not yet assigned for nl or there exist a node already

assigned but to a next level for n1 then move nl to the next level.
e Else move all nodes of the same level except nl to anew level.

This heuristic was applied and transformation of otherwise problematic topologies
showed that by choosing which node to move to the next level we are able to
minimize the possibility to allow the creation of stranded nodes thus maximising the
ability of the algorithm to find the K-best Paths. This solution however does work in
the specific case when there exist two vertical links for the node in question and the
node is not connected to any other nodes except these two. This drawback is
illustrated in section 4.4.2. It is worth noting that this does not affect the ability of the
algorithm to find the correct k-best paths due to the fact the node is redundant. A
direct path exists to connect the two nodes and if the node in question is connected to
other athird node then the transformation does not give a stranded node.

4.4 Known Problematic Topologies

In this section we demonstrate the ability of the algorithm to find the K-best paths in

known problematic topologies found in the literature.
441 TheTrap topology [9]

The topology shown in Figure 4.16 was demonstrated in [9]. There, it was called the
generalized trap-topology, due to the blocking of the 2 shortest path, if one selects
the direct route a-b-c-d first. This is a well known limitation in algorithms which
successively select the shortest path, and then remove all links using it from the list of

available links, as in the k-successive shortest path approach.

Figure 4.16 and 4.17 shows the partitioned and trellis transformation for the trap
topology respectively. Figure 4.18 shows the K-best paths for K=1 where it is
noticeable that the algorithm returned the “trap” path which is also the “best” path as
it isthe shortest. In Figure 4.19 we can notice that the algorithm did not use the “trap”
path rather that it returned the two other alternative paths.
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4.4.2 A difficult trap topology demonstrated in [45]

The authors of [45] address the spare capacity allocation problem (SCA) considering
any single node failure in mesh networks. The spare capacity allocation (SCA)
problem is to decide how much spare capacity should be reserved on network links
for given traffic flows and their working paths on two-connected mesh networks. It is
part of survivable network design and is NP-complete [46]. The SCA node failure
problem aims at finding backup routes and providing sufficient spare capacity to
protect traffic when any single node fails in communication network. The authors

propose a novel matrix formulation of the arc-flow SCA node failure model in order
to address the problem.



Figure 4.21: A path from node 8 to 11 leaving the sour ce destination pair with no alter native path

In order to provide node-disjoint backup paths, the authors have to guarantee that each
working path has at least one node-digoint backup path on the given 2-node-
connected topology. This task is not trivial since working path found by general
shortest path algorithms can not guarantee this property and may be infeasible for
SCA node failure problem. An example of infeasible working path is shown in Figure
4.21. The working path from node 8 to node 11 is 8-13-1-23-18-19-4-11, where all
the numbers between 8 and 11 are intermediate nodes on the path. This path has
shortest hop but it does not have a node-disjoint backup path! This paper deals more
with finding aworking path and a node-disjoint backup path rather that finding the K-
best paths. Their algorithm triesto remove the “trap” nodes which make the finding of

node-disjoint backup path infeasible in order to solve their problem.

The proposed solution using our algorithm shows that the problem is solved and two
alternative paths are found to connect 8 and 11 (h and k respectively in the solver) that

are mutually disjoint.

Figure 4.22: The Network described in [45]
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The Network is designed in the solver, Figure 4.22. The node numbers are changed to

letters and are assigned respectively in the order the letters are found in the alphabet
(a=1, ..., h=8, ..., k=11, ...). Figure 4.23 shows the partitioned network in respect

with node h (node 8 in Figure 4.21).

Figure 4.23: The Partitioned Network described in [45]

Figure 4.24 shows the Trellis transformation of the network and Figure 4.25 and
Figure 4.26 the solutions for K=1 and K=2 respectively. The solutions found for K=1
and K=2 show that the algorithm again selects the shortest path, the “trap path” for
K=1 and ignores it for K=2 selecting two alternative paths that are mutually exclusive.
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Figure 4.24: Transformation of Network described in [45]
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Figure 4.25: Shortest path selected if K=1
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Figure 4.26: Two alter native paths for the topology found in [45]

Although the algorithm solves the problem and gives two mutually disjoint paths the
transformation fails to ensure that all possible paths could be evaluated due to the fact
Node f has two links to nodes directly connected together therefore creating two
vertical links and making the heuristic unusable thus having the stranded node effect
expained in section 0. This however does not limit the number of paths due to the fact
that node f is not needed. As we can notice in Figure 4.22 node f is only connected to
d and | that are directly connected to each other. A very similar topology shown in
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Figure 4.27 that connects f with e has the transformation in Figure 4.28 and as we can

see node f is not stranded.

Figure 4.27: Small Differencein Topology from [45]. Node f and e are Connected
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Figure 4.28: Transformation with no stranded nodes after connecting node f with e

4.5 Computation analysis

In order to validate the computational complexity of the algorithm a series of
topologies were transformed taking the time it takes for each transformation. These
topologies all had the same characteristics and showed the same behaviour during the
transformation. Each topology transformation was timed 10 times and after removing
the best and worst time an average of the remaining times was taken. The number of
nodes for each topology was increased each time from 20 nodes to 156. Specifically
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the topologies were 20, 30, 42, 56, 72, 90, 110, 132, and 156. Figure 4.29 shows four
of these topologies specifically the topologies with 20, 30, 42, 56 nodes in order to
visualize how these topologies were selected. The results collected are shown in Table
4.1. All results were run on a Pentium IV running at 3 GHz with 1 GB of RAM.

Figure 4.29: Time analysistopologies

Table 4.1: Execution time for each topology

Number of Nodes | Average Executions Timein Milliseconds

20 477.375

30 824

42 1457.5

56 2402.25

72 3785.625

90 5720.625

110 8265.5

132 11855.38

156 16464.75

In order to make a prediction for the behaviour of the transformation algorithm we
interpolated the results for the following series, 20:5:160, 20:5:250°. The resulting
graph is shown in Figure 4.30. The figure shows in the X axis the number of nodes

2 20:5:160, 20:5:250 mean values that start from 20 and end to 160 and 250 respectively increasing
each time by 5. e.g. [20, 25, 30, 35 ..., 155, 160].
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and in the Y axis the execution time for the actua results on the blue ling, the

interpolated results for 20:5:160 on the green line and the interpolated results for
20:5:250 on the red line. As we can see the graph shows a curve similar to an y = x°

as expected since the complexity analysis showed O(n?) for the transformation

algorithm.
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Figure 4.30: Execution times

In order to obtain computation results for the Castanon transformation we had to run
the resulting trellises on the NEOS server and get the execution time. Since we had no
control on the NEOS server several attempts failed due to unexpected load on the
server. For instance we had smaller execution times for solutions for the resulting
trellises of the 90 nodes topology than the 42 nodes topology. Due to this problem

these computation times are not analyzed in the thesis.
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Chapter 5

Conclusions and Future Work
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5.1 Conclusions

In this thesis, we evaluate a solution that uses graph theoretic techniques to address
the problem of network survivability by finding the K-best (disoint) paths. The
algorithms proposed transform the original network topology onto atrellis graph and
later transform the problem of finding the K-best paths on a Trellis to an equivalent
Minimum Cost Network Flow problem. In order to perform our evaluation a solver
for that implements the transformation of any given network topology to a Trellis as
described by Louca et a in [19] was implemented and complemented with a
Graphical User Interface. The solver also transforms the Trellis into the MCNF
problem as proposed by Castanon in [8] and send to NEOS server [41] to be solved by
Relax 1V written by Bertsekas [4].

The evaluation showed that the proposed solution can find the K-best paths and
outperforms proposed algorithms in which k-successive algorithms fail such as the
“Trap” topology [9] and a more complicated one illustrated in [45]. The evaluation
also revealed two problems of the transformation to trellis algorithm and two

proposed solutions were give that overcome these problem.

The time complexity of the transformation algorithm is investigated and in
combination with Castanon’s algorithm [8] for finding the K-best disjoint paths, is
compared with the Surballe’s Digjoint Pair Algorithm [31]. It is shown that even
though Surballe’s algorithm appears to have a better time complexity, the algorithm
deals with only a pair of paths, whereas the trellis transformation’s algorithm can find

al possible digoint paths. The extra computational burden is within acceptable
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bounds. Furthermore a computation analysis of the transformation was performed that

validated the complexity analysis performed.
5.2 FutureWork

Future work includes optimizing the transformation of trellis graph; that is finding a
trellis graph with the minimum number of nodes in order to do the transformation of
the original network. Furthermore, the initial size of the Trellis will be studied so that
no enlargement will be necessary during the transformation process in order to
minimize the execution time of the algorithm. Other future work includes in
identifying where the topology has a bottleneck in terms of not allowing multiple
mutually digjoint paths and automating the procedure of finding the maximum
number of K-best (disjoint) paths in a network.
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