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Summary 

In this thesis graph theoretic techniques are adopted for addressing the network 

survivability issue of disjoint paths selection. The evaluation was conducted after the 

implementation of a solver that produces a solution of the problem after successive 

application of two algorithms on any given topology, the algorithm of Louca et al [19] 

and Castanon’s [8]. The first algorithm transforms any networks into a trellis graph and 

the second exploits the special structure of the trellis graph and solves for the k-best 

paths using the minimum cost network flow (MCNF) algorithm. The transformation and 

evaluation of the K-best paths solution is illustrated for a number of topologies through 

the graphical user interface adapted from [37]. It is also contrasted with the k-successive 

approximation methods, which cannot guarantee the selection of the K-best paths, due 

to the successive removal of shortest paths at each iteration. Furthermore, the 

performance of the algorithm and its time complexity are investigated and also 

compared with Surballe’s Disjoint Pair Algorithm [31]. Even though the trellis 

transformations algorithm can find all possible disjoint paths in the vast majority of 

cases, pathological situations where the algorithm may fail is also identified in the 

thesis, analysed, and a solution is provided and evaluated. 
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Today’s large-scale, highly distributed, networked systems improve the efficiency and 

effectiveness of organizations by permitting whole new levels of organizational 

integration. However, such integration is accompanied by elevated risks of intrusion 

and compromise. Incorporating survivability capabilities into an organization’s 

systems can mitigate these risks. 

Survivability builds on related fields of study (e.g., security, fault tolerance, safety, 

reliability, reuse, performance, verification, and testing) and introduces new concepts 

and principles. Survivability focuses on preserving essential services, even when 

systems are penetrated and compromised [43]. 

1.1 The Definition of Survivability 

We define survivability as the capability of a system to fulfil its mission, in a timely 

manner, in the presence of attacks, failures, or accidents. The term system is used in 

the broadest possible sense, including networks and large-scale systems of systems.  

The term mission refers to a set of very high-level requirements or goals. Missions are 

not limited to military settings, because any successful organization or project must 

have a vision of its objectives whether expressed implicitly or as a formal mission 

statement. Judgments as to whether or not a mission has been successfully fulfilled 

are typically made in the context of external conditions that may affect achievement 

of that mission. For example, imagine that a financial system shuts down for 12 hours 

during a period of widespread power outages caused by a hurricane. If the system 
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preserves the integrity and confidentiality of its data and resumes its essential services 

after the period of environmental stress is over, the system can reasonably be judged 

to have fulfilled its mission. However, if the same system shuts down unexpectedly 

for 12 hours under normal conditions or minor environmental stress, thereby 

depriving its users of essential financial services, the system can reasonably be judged 

to have failed its mission even if data integrity and confidentiality are preserved. 

Timeliness is a critical factor that is typically included in (or implied by) the very 

high-level requirements that define a mission. However, timeliness is such an 

important factor that we included it explicitly in the definition of survivability.  

The terms attack, failure, and accident are meant to include all potentially damaging 

events; but in using these terms we do not partition these events into mutually 

exclusive or even distinguishable sets. It is often difficult to determine if a particular 

detrimental event is the result of a malicious attack, a failure of a component, or an 

accident. Even if the cause is eventually determined, the critical immediate response 

cannot depend on such speculative future knowledge. 

Attacks are potentially damaging events orchestrated by an intelligent adversary. 

Attacks include intrusions, probes, and denials of service. Moreover, the threat of an 

attack may have as severe an impact on a system as an actual occurrence. A system 

that assumes a defensive position because of the threat of an attack may reduce its 

functionality and divert additional resources to monitor the environment and protect 

system assets. 

We include failures and accidents in the definition of survivability. Failures are 

potentially damaging events caused by deficiencies in the system or in an external 

element on which the system depends. Failures may be due to software design errors, 

hardware degradation, human errors, or corrupted data. The term accident comprises a 

broad range of randomly occurring and potentially damaging events such as natural 

disasters. We tend to think of accidents as externally generated events (i.e., outside 

the system) and failures as internally generated events. 

With respect to system survivability, a distinction between a failure and an accident is 

less important than the impact of the event. Nor is it often possible to distinguish 
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between intelligently orchestrated attacks and unintentional or randomly occurring 

detrimental events. Our approach concentrates on the effect of a potentially damaging 

event. Typically, for a system to survive, it must react to and recover from a damaging 

effect (e.g., the integrity of a database is compromised) long before the underlying 

cause is identified. In fact, the reaction and recovery must be successful whether or 

not the cause is ever determined. 

Finally, it is important to recognize that it is the mission fulfilment that must survive 

not any particular subsystem or system component. Central to the notion of 

survivability is the capability of a system to fulfil its mission, even if significant 

portions of the system are damaged or destroyed. We use the term survivable system 

as shorthand for a system with the capability to fulfil a specified mission in the face of 

attacks, failures, or accidents. Again, it is the mission, not a particular portion of the 

system that must survive. 

1.2 Glossary of Survivability Terms 

In this section we summarize terms often used when describing survivability. 

1. Accidents: A broad range of randomly occurring and potentially damaging 

events such as natural disasters. Accidents are often externally generated 

events. 

2. Adaptation services: system functions provided to continually improve a 

system’s capability to deliver essential services, typically by improving 

resistance, recognition and recovery capabilities. 

3. Attack: A series of steps taken by an intelligent adversary to achieve an 

unauthorised result. Attacks include intrusions, probes, and denial of service. 

4. Essential services: Services that must be provided to system users in the 

presence of attacks, failures or accidents. 

5. Failure: A potentially damaging event caused by deficiencies in the system or 

in an external element on which the system depends. Failures may be due to 

software design errors, hardware degradation, human errors or corrupted data. 
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6. Detection services: System functions that detect anomalies, possible attacks, 

and the extent of system damage or compromise. 

7. Recovery services: system functions to support the restoration of services after 

an attack has occurred. Recovery services also help a system maintain 

essential services during an attack. 

8. Survivability: a system’s capability to fulfil its mission, in a timely manner, in 

the presences of attacks, failures or accidents. 

1.3 Network Survivability 

Network Survivability can be defined as: (1) the ability of a network to maintain or 

restore an acceptable level of performance during network failure conditions by 

applying various restoration techniques; and (2) the mitigation or prevention of 

service outages from potential network failures by applying preventive techniques. 

Survivability techniques can be classified into three categories [23,24]: (a) prevention, 

(b) network design, and (c) traffic management and restoration. 

Prevention techniques focus primarily on improving component and system 

reliability. Some examples are the use of fault-tolerant hardware architectures in 

switch design, provision for backup power supplies, pre-deployment stress testing of 

software, use of frequency hopped spread spectrum techniques to prevent jamming in 

military radio networks and so on. Network design techniques try to mitigate the 

effects of system level failures such as link or node failures by placing sufficient 

diversity and capacity in the network topology. For example, the use of multi-homing 

nodes so that a single link failure cannot isolate a network node or an access network. 

Traffic management and restoration procedures seek to direct the network load such 

that a failure has minimum impact when it occurs, and that connections affected by a 

failure are reconnected around the failure. 

1.4 Thesis objective 

Survivability, or at least graceful degradation, in the event of network failure remains 

with open research issues. 
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Knowledge of the K-best paths can be used in the network survivability problem. It is 

worth noting that the identification of the K-best paths can be useful in solving 

numerous networking problems, such as flow balancing, MPLS traffic engineering, 

video streaming, and so forth, as well as other diverse problems, such as molecular 

biology [10, 14, 15, 16, 18, 20, 29, 34]. 

Motivation for this thesis is the fact that finding the K-best paths in a network with 

hop count 5≥h  in an NP-Complete problem as shown by the authors of [42,44]. 

Castanon in [8] gave an O( nn log3 ) algorithm for finding the K-best disjoint paths by 

using minimum cost network flow (MCNF) algorithm. However the algorithm can 

only be applied on a trellis graph. A trellis graph is a structured graph offering several 

advantages in formulating many problems of diverse fields such as radar, sonar, and 

radio astronomy [3, 5, 18]. In order to overcome this limitation a heuristic approach 

was taken by [19] in order to transforms any given network into a Trellis graph and 

then into an equivalent minimum-cost network problem using the Castanon [8] 

algorithm. 

The main thesis objective is to provide extensive evaluation of the K-best paths 

solution by the combination of [19] and [8] and propose any necessary extensions or 

modifications. We adopt the transformation provided in [19] as our initial 

transformation and proceed to compute the K-best paths using Castanon’s algorithm 

[8]. An animation solver is implemented and used to evaluate representative network 

topologies and known problematic cases, as for example the trap topology [9]. 

1.5 K-best Path Problem 

The K-best path problem is to list the k mutually disjoint (exclusive) paths connecting 

a source-destination pair in a network. Mutually disjoint means with no link or node 

dependencies between paths listed. 

The selection of the K-best disjoint paths can take into account many factors, such as 

selection of the shortest paths (hence minimizing delay), minimization of the 

bandwidth allocation (given the bandwidth demanded by customers), and 

maximization of network throughput. “Best” (disjoint) paths are those paths which are 

as diverse as possible (i.e. if the network topology permits, k disjoint paths can be 
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found), and therefore will maximize our chances of survivability, or ensure at least a 

graceful degradation, (i.e. display fault tolerance) in the event of a network fault. 

1.6 Previous Work 

The majority of published work concentrates on the k-shortest link disjoint path 

problem, [9, 26, 27, 30] rather than the K-best paths. A number of these algorithms 

are based on the iteration of Dijkstra’s shortest path algorithm to find restoration paths 

for the failed links via surviving spare links on other spans of the network (referred to 

as the k-successively shortest link disjoint path algorithm in [9]). It is worth pointing 

out that once a restoration path is found, the spare links which make it up are removed 

from the network description, and the algorithm is run again until it fails to find any 

additional paths. Examples include: [9] which addresses span restoration rather than 

path restoration; [26] and [27] which are based on matrix and recursive matrix 

calculations respectively to improve computational complexity. Note that these 

methods are not strictly optimal in terms of finding the maximal number of paths in 

all possible networks, and worse they may underestimate the number of paths 

whenever the k-successively shortest link disjoint path algorithm selects a path which 

blocks other potential paths (well illustrated in [9] using the generalized “trap” 

topology1), or even worse, they may overestimate the number of link disjoint paths 

(e.g. [27]). On the other hand, [5, 28, 31] concentrate on finding only a pair of disjoint 

paths between a given pair of nodes, by optimizing the physical length of paths. In 

[31], the shortest pair of node-disjoint paths is found, but cannot be applied at the 

span (physical) level (e.g. physical links sharing a common conduit). In [5], a pair of 

disjoint paths between a given pair of nodes taking into consideration any span 

sharing by links is found, but the solution for networks with arbitrary connection 

patterns is not given, and in [28] a heuristic approach for finding in polynomial time a 

pair of paths which is as diverse as possible, taking into account common spans, is 

presented. 

                                                

1 Trap-topology is such a topology where a heuristic fails to find diverse routes even though they exist. A 

demonstration of its solution through our proposed transformation is given later. 
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In Chapter 2 we define the K-best path problem and proposed solution. The two 

proposed algorithms are outlined along with the Trellis graph theoretical model. In 

Chapter 3 we describe the implementation of the K-best Path problem solver and in 

Chapter 4 we present the evaluation of the proposed solutions through a series of 

transformations of illustrative topologies and well know problematic topologies. Also 

we present problematic topologies of the first transformation along with some 

solutions and their evaluation. We conclude in Chapter 5 giving future work. 
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In this chapter we present the transformation provided in [19] and the computation of 

the K-best paths using Castanon’s algorithm [8]. Next we present the first step in the 

formulation of the K-best path problem in terms of mapping the original network onto 

a trellis graph. After that we outline the second step, which is the algorithm proposed 

by Castanon [8] to compute the k-best paths from the trellis graph. 

2.1 Trellis Graph Theoretical Model 

A directed graph G = (V, E) is a structure consisting of a finite set of nodes V = { v1, 

v2, v3, …, vn}  and a finite set of links  

{( , ) | , }i j i j i jE v v v v V and v v= ∈ ≠  

where each link is an ordered pair. We define a trellis as a directed graph G = (V, E) 

with nodes and directed links that satisfy the following conditions: 

i. The node set V is partitioned into L (mutually disjoint) subsets V1, V2, …,VL such 
that  

i jV V H= = . 

ii. Links connect nodes only of consecutive subsets Vl and Vl+1, i.e., if (vi,vj) ∈ E, 
then vi ∈ Vl  and vj ∈ Vl+1, 1 l L≤ < .  
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The magnitude T we shall call depth of the trellis. A K-trellis is a trellis graph with 

two additional properties: 

1.It has two more nodes s ∈ V0 and  t ∈ VL+1, such that the edge (s,vi) ∈ E for 
every vi ∈ V1 and the edge (vj,t) ∈ E for every  vj ∈ L. 

2.The node vi of the set Vl is connected (where possible) with K = 2g+1 nodes {vi-

g,…,vi,…,vi+g} of the set Vl+1, where Hi ≤≤1 , Ll <≤1 , and g = 1,2,3, …, (Η-
1)/2. 

The depth of a K-trellis graph will be equal to L+2. In Figure 2.1 a K-trellis is 

presented with L = 5, H = 4 and K = 4. Throughout the paper, we shall refer to a K-

trellis graph with K =H as trellis graph. 

ts

 
Figure 2.1: K-trellis graph with L = 5, H = 4 and K = 4 

A walk in a trellis is an alternating sequence of nodes and links, i.e., 

W=[v1,(v1,v2),v2,…,vk-1,(vk-1,vk),vk]. The length L(W) of a walk is the number of links 

in it. A path is a walk in which all nodes are distinct. For simplicity, we shall denote 

the path P by P = {v1,v2,…,vk} and we shall refer to v1 and vk as first and last nodes of 

P, respectively (i.e. the origin and destination nodes). 

Let G = (V, E) be a trellis graph with LH nodes, i.e., |V| = LH. Two paths 

P1={s,u1,u2,…,uL,t}, P2= {s,u’1,u’2,…,u’L,t} are said to be mutually exclusive or 

unmerged if  ul ≠ ul for every l = 1,2,…,L; otherwise, they are said to be merged. 

Hereafter, we shall refer to unmerged paths as disjoint paths (see Figure 2.2). 

2.2 Link and Path Cost 

In addition to the above trellis definition, in each link (vi,vj) ∈ Ε of a trellis graph, we 

associate a third number, which we call link cost and denote by c(vi,vj) or c(i,j). The 

cost of a path P = {v1,v2,…,vk} is defined as: 

∑
∈

=
Pji

ji vvcPc
),(

),()(
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The shortest path from the node vi to node vj is a path P={v1,v2,…,vj} with minimum 

cost. 

ts

 
Figure 2.2: Illustration of three mutually disjoint paths on a K-trellis with L = 5, H = 4 and K = 4. 

2.3 Trellis Graph Transformation Algorithm 

The objective of the transformation algorithm [19] is to map any network topology G, 

onto a Trellis graph, and subsequently enable the shortest paths in the original graph 

to be computed. In this algorithm, a trellis graph is used where K=H. That is, every 

node on level Vi is directly connected with all the nodes on level Vi+1. Every given 

topology is being partitioned and labeled (see Section 2.3.1 below) with respect to the 

source node. The labeled network is being used by the transformation algorithm for 

mapping it onto a trellis graph. 

2.3.1 Network Partitioning and Labelling 

Given a graph G = (V, E) and a node v ∈ V, a partition L(G, v) of the node set V is 

defined (we shall frequently use the term partition of the graph G), with respect to the 

node v as follows:  

( , ) { ( , ) | ,0 ,1 }v vL G v AL v v V L L V= ∈ ≤ ≤ ≤ <l l  

where vLvAL ≤≤ ll 0),,( , 

are the adjacency-level sets, or simply the adjacency-levels, and Lv is the length of the 

partition L(G, v). The adjacency-level sets of the partition L(G, v), are defined as 

follows: 

( , ) { | ( , ) , 0 }vAL v u d v u L= = ≤ ≤l l l  
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where d(v, u) denotes the distance between nodes v and u in G. Notice that d(v,u)≥0, 

and d(v,u)=0 when ,v u u v V= ∀ ∈ . Thus, the adjacency-level sets of the graph of 

Figure 2.3(a), with respect to node s are shown in Figure 2.3(b), i.e.,  

AL(s, O)={s}, AL(s, 1)={A, B, C}, AL(s, 2)={D, E, F}, AL(s, 3)={J, K} και AL(s, 4)={t}. 

 

s 

( 1 , 1 ) (2 , 1 ) ( 3 , 1 ) 

(2 , 2 ) ( 1 , 2 ) 

( 1 , 3 ) (2 . 3 ) ( 3 , 3 ) 

t

3 

1 

4 4 

1 

5 

1 

3 

1 

1 

1 

6 2 5 

s ( 1 , 1 ) 
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5 
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A    B 
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Figure 2.3: (a). A weighted undirected graph G = (V, E) or a network (all weights are positive 

integer numbers) (b). Partition of the graph G, with respect to vertex s 

The transformation algorithm begins by labeling the nodes of the network at "vertical" 

levels according to their distance, in terms of the number of links, from the source 

node, s. These labels consist of the ordered pairs v(d,i) where v ∈ V, d is the distance of 

node v from s (in terms of number of links) and 1≤ i ≤ deg , where deg is the degree of 

graph G. The nodes of the trellis graph are eventually labeled in a similar manner. We 

label the nodes of the trellis graph by the ordered pairs u(d, j) where u ∈ U (the set of 

nodes in the Trellis graph), d is the distance from s to u, and 1≤j ≤ H.  

2.3.2 Transformation Algorithm 

In order to determine the size of the Trellis, its preliminary dimensions L´ and H´ are 

found. L´ is determined by taking the maximum between the number of vertical levels 

of the partition network and the length of the shortest path based on the number of 

links (excluding s and t), and not on the weight of each link. L´ minimum value is 2. 

H´ is defined to be the maximum between the degree of node s and t. L´ and H´ may 



 - 15 - 

change depending on the final form of the Trellis. L´ and H´ are then used to create a 

preliminary Trellis graph which is used to map the nodes and edges of the original 

network G. The labeling of the Trellis nodes is done as described above. Once the 

preliminary trellis is constructed, the source node, s, and its adjacent nodes are 

mapped onto their corresponding nodes of the trellis graph. If one of the adjacent 

nodes of s is the destination node, t, it is moved to the end of the trellis, and the path 

from s to t is determined using Find-Path(X,Y) (described later). The second step of 

the algorithm is to map the end node and all it’s adjacent. If an adjacent of the end 

node is already mapped we compute using Find-Path(X,Y) a path from the node to the 

end node. If more than one edge is used in determining a valid connection (using 

Find-Path(X,Y)), the extra edges and nodes are assigned value 0 to represent dummy 

connections at no cost. The edges and nodes which remain unmapped in the trellis 

graph are assigned to infinity in order to illustrate that they cannot be used in the 

network. The algorithm is bounded by O(n2) [19] where n is the number of nodes. 

2.3.2.1 The routine FindPath(X,Y) 

The routine FindPath(X,Y) is used to determine a path from X to Y in the trellis by 

considering the first available node in the vertical levels, moving in a forward 

direction. Nodes and edges from the original network that have already been assigned 

cannot be used (so that the form of the original network does not change). If there is 

no available node in the next level, the Trellis graph is enlarged by making H=H+1. 

The final step of the routine is to assign the nodes and edges along the path to 0, 

except the first edge encountered which is assigned to the weight of the corresponding 

edge in the original network. The path established under these conditions is referred to 

as a valid_path. 

2.3.2.2 The Algorithm: Convert to Trellis 

Before the transformation algorithm begins the partition of the network was 

computed. 

Step 1: Construct Preliminary Trellis 

Find the shortest path in the network for the source destination pair. Compute the 

length of the shortest path. Computer L by taking the maximum between the 
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number of levels of the partitioned network, the length of the shortest path. If the 

L<2 then set L=2. Compute H by taking the maximum between the degrees of the 

start and end nodes. Create the preliminary trellis of size LH. 

Step 2: Map Start Node 

Map the source node, s, of the original graph onto the source node of the trellis. 

Create two sets, the first one to contain the nodes from the original network that 

have been assigned to the trellis graph (Nodes_assigned_original ={v(1,i)}), and 

the second one to contain the nodes from the trellis network that have been 

assigned nodes from the original network (Nodes_assigned_trellis (u(x,y)). 

For all adjacent nodes of s, v(1,i) ∈ V { 

If v(1,i)  ≠ t{ /* t is the destination node */ 

v(1,i) is assigned to their corresponding edge in the trellis, u(1,i). The edge (s, 

v(1,i) is assigned to the edge (st, u(1,i)).Update the two sets to contain the new 

nodes that have been assigned.} 

If v(1,i) = t { 

v(1,i) is assigned to the furthest node along the trellis. Find the path which 

connects the source node with the destination node t through FindPath(s,t). 

Update the two sets to contain the new nodes that have been assigned, 

including the 0 ones.} 

} 

Step3: Assign Shortest Path 

Assign the nodes along the shortest path to their corresponding nodes and edges on 

the trellis and update the two sets. 

Step 4: Assign the rest 

For all nodes v(d,i) ∈Nodes_assigned_original, do  

/*Assume v(d,i) was mapped on u(x,y){ 
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For all nodes v(j,k) being adjacent to v(d,i),{ 

If (v(j,k) ∉ Nodes_assigned_original) { 

Assign v(j,k) to the next available node in the next level from the node u(x,y) 

in the trellis graph. In the case that there is no available node, increase the 

size of the Trellis by one row or level (if it is at the last level). Assign node 

v(j,k) to the new node.  Assign the weight of edge (v(d,i), v(j,k)) to the edge 

(u(x,y), u(z,e)) where u(z,e) is the node corresponding to v(j,k). Update the 2 

sets} 

If (v(j,k) ∈Nodes_assigned_original) { 

If the connection with u(x,y) and u(z,e) in the trellis is valid, (i.e. no vertical 

connection), then use FindPath(u(x,y),u(z,e)) to connect them.  If a vertical 

connection exists, reassign u(x,y) to the first available node. If no node is 

available, enlarge the Trellis, and move the node to one of the new nodes 

created.  /* The edge will be determined when the node assigned to 

u(z,e)will be examined. */} 

 } /*end of second loop 

} /* end of first loop 

This algorithm generates a mapping where the best set of mutually exclusive K paths 

can directly be found using the method described in the next Section. 

2.4 Castanon’s Algorithm 

Castanon [8] illustrates that the problem of computing the K-best mutually exclusive 

paths in a trellis graph can be defined as a Minimum Cost Network Flow (MCNF) 

problem. He also showed that the worst-case computation time for this problem is 

bounded by n3 log n, where n is the number of nodes in the trellis. His O(n3 log n) 

time algorithms are much faster than those proposed in [32]. It is important to note 

that, for K ≥ 2 the best set of k paths is not found in general by finding the best path, 

and then removing it and calculating the next best path that is completely disjoint with 
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the best path, and so on (as in the k-successively shortest link disjoint paths [9]). The 

reason for this is that these paths are not independent of one another because of the 

requirement that the paths be completely disjoint so that it might be better to use one 

or more of the branches that are part of the best single path for other paths [32]. This 

is illustrated later during our evaluation. 

The solution that was given from Castanon was to define the K-best path problem as: 

Find K paths p1,p2, …,pk through a Trellis G(V,E) which minimizes the total cost, 

∑
=

=
K

k

kpcJ
1

)(  

Subject to constrain that the paths p1,p2, …,pk are mutually disjoint 

After that definition an equivalent MCNF problem was defined that did not ensure 

that the path selected would be mutually exclusive. A transformation of the trellis 

though met that constraint. Specifically for each subset Nt where t = 2 … T-1, a new 

set of nodes is created and outgoing edges which start at nt ∈ Nt are redefined to start 

from the corresponding new node that we just added. A zero cost edge is defined to 

connect the node nt ∈ Nt to the new corresponding node. Figure 2.4 below 

demonstrates this transformation. 
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Figure 2.4: Castanon’s AlgorithmTransformation 

To solve the MCNF problem one may use the solver provided by the Neos Server 

[39], [40], [41] to solve it through Relax IV algorithm created by Bertsekas in [4]. 

This is the approach we took in order to solve the problem. The animated solver 

creates a file which contains the definition of our trellis in DIMACS format. This is 

then sent to the NEOS server (http://www-neos.mcs.anl.gov/) to be solved using the 

Liner Network Optimization Solver RelaxIV written by Bertsekas et al [4]. The MCF 

results are obtained from the server and analysed locally. 
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When we receive the MCF results from the NEOS server the flow for each arc is 

either one or zero. The arcs that have flow equal to one belong to the K-paths. We 

then mark the paths to the trellis and show the results. 
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The two algorithms described in Chapter 2 have been implemented using an object-

oriented approach. The implementation was enhanced with a graphical user interface 

to provide a complete solver of our problem. One can use the GUI to design the 

topology and then pass it to the algorithm package to solve it and finally present the 

solution. The animated solver of [37] for finding the shortest path has been adapted in 

order to provide the Graphical User Interface in our implementation. The language of 

implementation is Java. The objects of the graph are implemented through classes 

which describe the characteristics of the objects through variables and their functions 

through methods. Objects communicate among themselves via messages. 

The solver provides the ability to find the K-best paths through the conversion of the 

Trellis produced, into a Minimum Cost Network Flow problem as described by 

Castanon in [8]. The MCNF problem formulation of the Trellis Graph is then 

submitted for solution by the Relax IV algorithm written by Bertsekas [4] and hosted 

at Neos Server [39,40,41]. 
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The model contains one Java interface called constants which defines some constants 

used by the various classes for the definition of the values of some of their 

characteristics. For example, the definition of infinity and dummy nodes are defined 

through this interface. The classes Node, Network, ShortestPath, TrellisGraph 

implement it. 

3.1 Algorithms Logic Implementation 

In this Section, the classes which implement the algorithm logic are presented. The 

implementation of the algorithm was based in object orientation in order to be able to 

distinguish between the various actions that a node had to take. This will make it 

easier if one wants to transfer this algorithm in a real network. 

3.1.1 Edge 

The class Edge defines the connection between two nodes. Its characteristics are the 

source node, the destination node and the weight on the link of the two nodes. Every 

object can return its characteristics and change the weight of the link. 

3.1.2 Node 

The class Node defines a node in a graph. Its main characteristics are the name of the 

node, its type (a source node, a destination node, or any other node within the graph) 

and the edges initiating from that node. In addition, it defines the position of the node 

in a labelled graph with respect to the source node, and its previous node in a path. 

3.1.3 EdgeList 

The class EdgeList is a set of edges. It is being used to keep the edge of a network and 

the edges initiating from a node. It can return the edges with respect to their position 

in the set, and with respect to the destination node, if such a node exists in the set. 

3.1.4 NodeList 

The class NodeList is a set of nodes. It is being used to keep the nodes of a network as 

well as for the creation of the two sets being used by the algorithm (nodes-

assigned_original, nodes_assigned_trellis). 
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3.1.5 Network 

The class Network defines a network. Every network can be represented by a set of 

nodes and a set of edges.  The class has as main characteristics the two sets NodeList 

and EdgeList which are being implemented as objects. In addition, it can define a 

partitioned network which has two more characteristics, the source node and the final 

node. 

3.1.6 ShortestPath 

The class ShortestPath implements Dijkstra’s algorithm for finding the shortest path 

in a network. 

3.1.7 TrellisGraph 

The class TrellisGraph implements a Trellis graph.  The Trellis graph is being 

characterized by the two sets of nodes and edges which are implemented by the 

classes NodeList and EdgeList respectively. Given a network topology, this class 

transforms it into a Trellis using the transformation algorithm. 

3.2 Graphical User Interface 

In this Section, the classes used to implement the graphical user interface are being 

described. The classes were first implemented by [37] and were adapted in order to 

run the algorithm logic. 

3.2.1 DocOptions 

The class DocOptions has all the various user choices for the application and 

transformation of the original network onto a Trellis graph. 

3.2.2 DocText 

The class DocText enlarges the TextArea and contains documentation on the various 

user choices. This class is being called by DocOptions. 
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3.2.3 Documentation 

This class contains the above two classes and is responsible for the presentation and 

explanation of the various functions, or other explanations during the algorithm 

execution. Figure 3.1 shows the location of the class on the animator 

 
Figure 3.1: The class Documentation which contains the class DocOptions and DocText 

3.2.4 GraphCanvas 

The class GraphCanvas extends the class Canvas and is responsible for the 

presentation of the graphical network and Trellis.  It uses the classes which implement 

the algorithm in order to pass them the network graphically designed by the user, to 

use it in the transformation. 

3.2.5 Options 

The class Options contains all the various user choices.  Depending on what the user 

chooses, GraphCanvas will execute the analogous task and presents the result to the 

user. 

3.2.6 GraphAlgorithm 

This class extends the class Applet and it is the main class of our application. This 

class contains the objects which implement the graphical representation of the 

algorithm. Figure 3.2 shows the location of the classes on the animator. 
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Figure 3.2: The class GraphAlgorithm 

3.3 Graphical User Interface Usage 

The usage of the graphical user interface is simple. When started, the user can click 

on the canvas to create a node. The first two nodes created are the start and end node 

painted as blue and yellow respectively. The rest of the nodes are painted grey. The 

user can then connect the nodes by clicking on one node and while pressing the 

mouse button move to another node and releasing the mouse button. This will create a 

link with initial weight equal to 50. The weight can be then adapted by moving the 

arrow on the edge created. In order to move a node the user can click on the node and 

while pressing the SHIFT button on the keyboard move the node to another position 

on the canvas. In order to change the source or destination the user can click on either 

the source or destination and while pressing the CTRL button move the blue or yellow 

circle to another node. To delete a node or link the user has to first click on the node 

or link and then press the DELETE button on the keyboard. 

When the user finishes designing the network he presses the “Partition” button on the 

options pane and the network is partitioned in respect of the blue node (the start 

node). After this step is complete the user can then click on the “To Trellis” button to 

map the partitioned network to a Trellis. While the algorithm runs the user can see the 

actions taken on the Documentation text area. 

The K-best paths can be computed when the transformation is complete by entering K 

in the text box and clicking on “Best Paths” button. This will convert the Trellis to a 

Minimum Cost Network Flow problem as described in Castanon’s algorithm and send 
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it to Neos Server [39,40,41] in order to solve it through Relax IV algorithm created by 

Bertsekas in [4]. The results (K-best Paths) are then presented to the canvas with 

yellow arcs. The actual results received by the Neos Server are displayed on the 

Documentation text area. 
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In this chapter we will evaluate the computational complexity of the proposed 

algorithms [8], [19], and compare with the well known algorithm of Surballe 

[30],[31]. Also we will use representative topologies and well known problematic 

cases to evaluate the behaviour of the proposed algorithms. 

4.1  Complexity Analysis 

The transformation described, requires 3n2+(n2+2L+L)H. A discussion for the time 

complexity at each step of the algorithm follows: The initial step of this algorithm is 

the process of labelling every node in the original network. The labelling can be done 

with a slight modification to the all-pairs-shortest-path algorithm, used for finding the 

distance in terms of the number of links between the source, s, and the rest of the 

nodes. Such algorithms are of the order of n2. The first step of the algorithm is the 

construction of the preliminary Trellis which requires at most L2H2. Dijkstra’s 

algorithm is used to find the shortest path from source node, s, to destination node, t, 

requires n2 steps. In step 2, we map the start node s and the end node t along with their 

adjacent nodes onto their corresponding nodes of the trellis. If none of the adjacent 
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nodes of the start node is the destination, t, and then none of the adjacent nodes of the 

t is also adjacent to s then this step requires at most 2H steps. If one of the adjacent 

nodes is the destination, we need to determine the path from s to t, which requires in 

this case L steps. If a node is adjacent to both start and end node then we will also 

need to determine the path between that node and the end node. This is bounded by 

LH because at most all nodes are also adjacent to both start and end. Thus, the total 

time for this step is 2H+LH. In step3, the first loop will be repeated n times and the 

second one is executed at most H times. The first if statement (Node is not assigned) 

takes only one step to assign to finish) and the second one (Node is assigned) takes L 

steps to finish thus giving as at most computation time n2+n2H. Therefore, the total 

time required for this algorithm is 3n2+(n2+2L+L)H and we can say that it is bounded 

by O(n2). 

4.1.1 Comparison with Surballe’s disjoint pair algorithm 

Surballe’s algorithm [31] finds the shortest pair of disjoint paths. This algorithm is 

famous for its polynomial computational complexity in solving optimal disjoint path-

pairs in terms of the cost path of the two paths on a directed graph. It uses Dijkstra’s 

algorithm in order to find the shortest path for every individual node in the network. 

There are two versions of the algorithm. The edge-disjoint and the vertex-disjoint 

shortest pairs. 

In the edge-disjoint version, the two paths that are going to be selected through out the 

network should not have any common links. The algorithm considers the cost of each 

link as a measure to select the pair of paths. The vertex-disjoint shortest pair 

algorithm considers disjoint vertices for the paths. 

Next, the transformation algorithm in combination with Castanon’s algorithm for 

finding K-best paths throughout a trellis graph [8], is compared with Surballe’s 

algorithm [31].  

Even though the two algorithms perform the same task, the one (Castanon’s) has the 

ability to give more optional paths (k-paths), whereas Surballe’s algorithm gives only 

a pair of paths. There exist a tradeoff between the number of alternate disjoint paths 

and their optimality. Even though Castanon’s algorithm may produce more paths they 
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may not be the optimal ones. This is due to the fact that in order to get the K-best 

paths other “shortest” paths may be ignored. 

Furthermore, as stated earlier, the transformation algorithm is bounded by O( 2n ). 

This time is needed just to transform a given network into a Trellis. In order to get the 

K-best paths we need to use the Castanon’s algorithm for K-best paths. That 

algorithm requires O( nn log3 ) steps; therefore, using both algorithms will result to 

the time complexity of O( nn log6 ). Surballe’s algorithm, on the other hand, requires 

O( mn mn )/1(log + )[31, 36]. 

Thus, even though Surballe’s algorithm consumes less time and has better computing 

performance than our algorithm, it only finds a pair of disjoint paths, whereas, the 

trellis transformations can find K-best paths, with only a modest increase in 

computational complexity. 

4.2 Illustrative Solutions 

In this section some illustrative solutions of the algorithm will be presented along 

with their respective time taken for solution.  

4.2.1 Sample topology 1 

Figure 4.1 shows the illustrative example selected in [19], which demonstrates a 

topology for which the k-successive shortest path approach will fail. Figure 4.2 shows 

how the network is partitioned and labelled and Figure 4.3 the resulting trellis graph. 

Figure 4.4 and Figure 4.5 show the K-best paths for K=1 and K=2.  

It’s worth noting that for K=1 the solution of the algorithm gives the shortest path 

which if chosen the network has no alternative path. The solution though for K=2 

gives two alternative paths leaving the shortest path out. 

This topology has 10 nodes and took 110 milliseconds to be mapped to trellis. The 

resulting trellis has 20 nodes and took 0.071 milliseconds to be solved by the Neos 

Server. 
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Figure 4.1: Example Network 

 
Figure 4.2: Partitioned Network 

 
Figure 4.3: Trellis Transformation 

 
Figure 4.4: K-best Paths with K=1 

 
Figure 4.5: K-best Paths with K=2 

4.2.2 Sample topology 2 

The topology shown in Figure 4.6 has three mutually exclusive paths for which if the 

shortest path is selected it blocks all three paths.  

The resulting solutions from the Castanon’s algorithm for K=1,2,3 is shown in 

Figures Figure 4.8, Figure 4.9, Figure 4.10 and shows that it chooses the best set for 

all three cases. For K=1 the shortest path, for K=2 it ignores the shortest path and 

selects the two next (best) paths that are again the shortest but not still blocks the third 

path and for K=3 it selects the three mutually disjoint paths ignoring again the shortest 

paths selected for K=2. 
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Figure 4.6: Shortest path blocks all three 

mutually exclusive paths 

 
Figure 4.7: The Trellis Transformation 

 
Figure 4.8: Solution for K=1 

 
Figure 4.9: Solution for K=2 

 
Figure 4.10: Solution for K=3 

The time taken for the transformation of the topology to a Trellis graph was 172 

milliseconds and the Castanon’s solutions was 0.084 milliseconds. 

4.3 Algorithms Drawbacks Identified and Possible Solutions 

During the algorithm evaluation many scenarios were transformed in order to ensure 

that the transformation algorithm was performing as expected. These transformations 

let to the discovery of two problems. The problems identified had to mainly do with 

the positioning of the nodes in the Trellis. During some transformation we noticed 

that due to incorrect node assignment stranded nodes were created. A stranded node is 
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a node in the Trellis that does not have any outgoing links. The problems were 

identified to be caused due to the inability of the existing algorithm to choose the 

correct level for inserting a new node or when selecting which node to move during 

the assignment of a vertical link. 

4.3.1 New Node Insertion 

The algorithm states a new node is inserted when an edge is found connecting an 

existing node to it and is assigned at the first available node in the Trellis found at the 

next level. This leads to the creation of stranded nodes due to the fact the node may be 

placed too early in the Trellis, thus nodes connecting to it will not be able to, or too 

far in the Trellis, thus any nodes it should connect to will be at earlier levels. 

4.3.1.1 Proposed Solution 

Heuristic: Given two nodes n1 already assigned, n2 not assigned: 

• Assign n1 at the next level only if there exist a node at a next or same level or 

same level connecting to n1 

• Else assign the new node at the same level as n1 and do not connect them 

o The connection will be done when evaluating n2 

This proposed solution showed that it avoids the insertion of nodes too far in the 

Trellis thus avoiding the creation of stranded nodes. 

Such networks are shown in Figure 4.11 and Figure 4.12. 

 
Figure 4.11: Problematic Topology 

 
Figure 4.12: Problematic Topology 

The partition of topology in Figure 4.11 is shown in Figure 4.13 and the trellis 

transformation in Figure 4.14. As we can see in the transformation node f is placed 
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too early in the Trellis Graph thus being mapped into the trellis before node e. This 

leads to the creation of a stranded node, node e, and loss of path [a, c, d, e, f, b] 

because the trellis graph does not allow links going backwards. 

 
Figure 4.13: The Partitioned Network 

 
Figure 4.14: The Trellis Transformation 

After the heuristic the new Trellis transformation is shown in Figure 4.15 and node e 

is now before node f eliminating the stranded node. 

 

Figure 4.15: Trellis Transformation after the heuristic 

4.3.2 Vertical Link assignment 

During the assignment of a link between two already assigned nodes that are on the 

same level one of two nodes needs to be moved to the next level. The algorithm does 

not state which of the two nodes should be moved. During the implementation of the 

algorithm the node being assigned was chosen as the node to be moved. This choice 

let in some topologies a node to be moved too far in the Trellis thus creating a 

stranded node. After the evaluation of this problem the following heuristic were 

proposed and applied. 

4.3.2.1 Proposed Solution 

Heuristic: Given two nodes on the same level n1, n2 check: 

• If n2 has no other nodes connecting to it from the previous or same level move 

all nodes of the same level except n1 to a new level 
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• Else if there exist a node not yet assigned for n1 or there exist a node already 

assigned but to a next level for n1 then move n1 to the next level. 

• Else move all nodes of the same level except n1 to a new level. 

This heuristic was applied and transformation of otherwise problematic topologies 

showed that by choosing which node to move to the next level we are able to 

minimize the possibility to allow the creation of stranded nodes thus maximising the 

ability of the algorithm to find the K-best Paths. This solution however does work in 

the specific case when there exist two vertical links for the node in question and the 

node is not connected to any other nodes except these two. This drawback is 

illustrated in section 4.4.2. It is worth noting that this does not affect the ability of the 

algorithm to find the correct k-best paths due to the fact the node is redundant. A 

direct path exists to connect the two nodes and if the node in question is connected to 

other a third node then the transformation does not give a stranded node.  

4.4 Known Problematic Topologies 

In this section we demonstrate the ability of the algorithm to find the K-best paths in 

known problematic topologies found in the literature. 

4.4.1 The Trap topology [9] 

The topology shown in Figure 4.16 was demonstrated in [9]. There, it was called the 

generalized trap–topology, due to the blocking of the 2nd shortest path, if one selects 

the direct route a-b-c-d first. This is a well known limitation in algorithms which 

successively select the shortest path, and then remove all links using it from the list of 

available links, as in the k-successive shortest path approach.  

Figure 4.16 and 4.17 shows the partitioned and trellis transformation for the trap 

topology respectively. Figure 4.18 shows the K-best paths for K=1 where it is 

noticeable that the algorithm returned the “trap” path which is also the “best” path as 

it is the shortest. In Figure 4.19 we can notice that the algorithm did not use the “trap” 

path rather that it returned the two other alternative paths. 
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Figure 4.16: The Trap Topology 

 
Figure 4.17: Trap Topology Partitioned 

 
Figure 4.18: Trellis Transformation of Trap Topology 

 

 
Figure 4.19: The Trap Topology with K=1 

 
Figure 4.20: The Trap Topology with K=2 

4.4.2 A difficult trap topology demonstrated in [45] 

The authors of [45] address the spare capacity allocation problem (SCA) considering 

any single node failure in mesh networks. The spare capacity allocation (SCA) 

problem is to decide how much spare capacity should be reserved on network links 

for given traffic flows and their working paths on two-connected mesh networks. It is 

part of survivable network design and is NP-complete [46]. The SCA node failure 

problem aims at finding backup routes and providing sufficient spare capacity to 

protect traffic when any single node fails in communication network. The authors 

propose a novel matrix formulation of the arc-flow SCA node failure model in order 

to address the problem. 
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Figure 4.21: A path from node 8 to 11 leaving the source destination pair with no alternative path 

In order to provide node-disjoint backup paths, the authors have to guarantee that each 

working path has at least one node-disjoint backup path on the given 2-node-

connected topology. This task is not trivial since working path found by general 

shortest path algorithms can not guarantee this property and may be infeasible for 

SCA node failure problem. An example of infeasible working path is shown in Figure 

4.21. The working path from node 8 to node 11 is 8-13-1-23-18-19-4-11, where all 

the numbers between 8 and 11 are intermediate nodes on the path. This path has 

shortest hop but it does not have a node-disjoint backup path! This paper deals more 

with finding a working path and a node-disjoint backup path rather that finding the K-

best paths. Their algorithm tries to remove the “trap” nodes which make the finding of 

node-disjoint backup path infeasible in order to solve their problem. 

The proposed solution using our algorithm shows that the problem is solved and two 

alternative paths are found to connect 8 and 11 (h and k respectively in the solver) that 

are mutually disjoint.  

 
Figure 4.22: The Network described in [45] 
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The Network is designed in the solver, Figure 4.22. The node numbers are changed to 

letters and are assigned respectively in the order the letters are found in the alphabet 

(a=1, …, h=8, …, k=11, …). Figure 4.23 shows the partitioned network in respect 

with node h (node 8 in Figure 4.21). 

 
Figure 4.23: The Partitioned Network described in [45] 

Figure 4.24 shows the Trellis transformation of the network and Figure 4.25 and 

Figure 4.26 the solutions for K=1 and K=2 respectively. The solutions found for K=1 

and K=2 show that the algorithm again selects the shortest path, the “trap path” for 

K=1 and ignores it for K=2 selecting two alternative paths that are mutually exclusive. 

 
Figure 4.24: Transformation of Network described in [45] 
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Figure 4.25: Shortest path selected if K=1 

 
Figure 4.26: Two alternative paths for the topology found in [45] 

Although the algorithm solves the problem and gives two mutually disjoint paths the 

transformation fails to ensure that all possible paths could be evaluated due to the fact 

Node f has two links to nodes directly connected together therefore creating two 

vertical links and making the heuristic unusable thus having the stranded node effect 

expained in section 0. This however does not limit the number of paths due to the fact 

that node f is not needed. As we can notice in Figure 4.22 node f is only connected to 

d and l that are directly connected to each other. A very similar topology shown in 
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Figure 4.27 that connects f with e has the transformation in Figure 4.28 and as we can 

see node f is not stranded.  

 
Figure 4.27: Small Difference in Topology from [45]. Node f and e are Connected 

 
Figure 4.28: Transformation with no stranded nodes after connecting node f with e 

4.5 Computation analysis 

In order to validate the computational complexity of the algorithm a series of 

topologies were transformed taking the time it takes for each transformation. These 

topologies all had the same characteristics and showed the same behaviour during the 

transformation. Each topology transformation was timed 10 times and after removing 

the best and worst time an average of the remaining times was taken. The number of 

nodes for each topology was increased each time from 20 nodes to 156. Specifically 
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the topologies were 20, 30, 42, 56, 72, 90, 110, 132, and 156. Figure 4.29 shows four 

of these topologies specifically the topologies with 20, 30, 42, 56 nodes in order to 

visualize how these topologies were selected. The results collected are shown in Table 

4.1. All results were run on a Pentium IV running at 3 GHz with 1 GB of RAM. 

 
Figure 4.29: Time analysis topologies 

Table 4.1: Execution time for each topology 

Number of Nodes Average Executions Time in Milliseconds 
20 477.375 
30 824 
42 1457.5 
56 2402.25 
72 3785.625 
90 5720.625 

110 8265.5 
132 11855.38 
156 16464.75 

 

In order to make a prediction for the behaviour of the transformation algorithm we 

interpolated the results for the following series, 20:5:160, 20:5:2502. The resulting 

graph is shown in Figure 4.30. The figure shows in the X axis the number of nodes 

                                                

2 20:5:160, 20:5:250 mean values that start from 20 and end to 160 and 250 respectively increasing 

each time by 5. e.g. [20, 25, 30, 35 …, 155, 160]. 
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and in the Y axis the execution time for the actual results on the blue line, the 

interpolated results for 20:5:160 on the green line and the interpolated results for 

20:5:250 on the red line. As we can see the graph shows a curve similar to an 2xy =  

as expected since the complexity analysis showed O(n2) for the transformation 

algorithm. 
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Figure 4.30: Execution times 

In order to obtain computation results for the Castanon transformation we had to run 

the resulting trellises on the NEOS server and get the execution time. Since we had no 

control on the NEOS server several attempts failed due to unexpected load on the 

server. For instance we had smaller execution times for solutions for the resulting 

trellises of the 90 nodes topology than the 42 nodes topology. Due to this problem 

these computation times are not analyzed in the thesis. 
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Chapter 5 

 

Conclusions and Future Work 
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5.2 Future Work....................................................................................................42 
 

5.1 Conclusions 

In this thesis, we evaluate a solution that uses graph theoretic techniques to address 

the problem of network survivability by finding the K-best (disjoint) paths. The 

algorithms proposed transform the original network topology onto a trellis graph and 

later transform the problem of finding the K-best paths on a Trellis to an equivalent 

Minimum Cost Network Flow problem. In order to perform our evaluation a solver 

for that implements the transformation of any given network topology to a Trellis as 

described by Louca et al in [19] was implemented and complemented with a 

Graphical User Interface. The solver also transforms the Trellis into the MCNF 

problem as proposed by Castanon in [8] and send to NEOS server [41] to be solved by 

Relax IV written by Bertsekas [4]. 

The evaluation showed that the proposed solution can find the K-best paths and 

outperforms proposed algorithms in which k-successive algorithms fail such as the 

“Trap” topology [9] and a more complicated one illustrated in [45]. The evaluation 

also revealed two problems of the transformation to trellis algorithm and two 

proposed solutions were give that overcome these problem. 

The time complexity of the transformation algorithm is investigated and in 

combination with Castanon’s algorithm [8] for finding the K-best disjoint paths, is 

compared with the Surballe’s Disjoint Pair Algorithm [31]. It is shown that even 

though Surballe’s algorithm appears to have a better time complexity, the algorithm 

deals with only a pair of paths, whereas the trellis transformation’s algorithm can find 

all possible disjoint paths. The extra computational burden is within acceptable 
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bounds. Furthermore a computation analysis of the transformation was performed that 

validated the complexity analysis performed. 

5.2 Future Work 

Future work includes optimizing the transformation of trellis graph; that is finding a 

trellis graph with the minimum number of nodes in order to do the transformation of 

the original network. Furthermore, the initial size of the Trellis will be studied so that 

no enlargement will be necessary during the transformation process in order to 

minimize the execution time of the algorithm. Other future work includes in 

identifying where the topology has a bottleneck in terms of not allowing multiple 

mutually disjoint paths and automating the procedure of finding the maximum 

number of K-best (disjoint) paths in a network. 
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