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Abstract

This thesis studies graph-theoretic aspects of stochastic planning under behavioral biases, start-
ing from the sunk cost model of Kleinberg, Oren, Raghavan, and Sklar [1]. In this model, an
agent plans in a directed acyclic graph with probabilistic transitions, pays edge costs along a
path, and receives a fixed reward only upon reaching a designated target state. Sunk cost bias
is captured by a parameter λ ≥ 0, if the agent abandons after incurring total cost Csunk, it ex-
periences an additional psychological loss of λ ·Csunk. The performance of a biased agent is
measured by the loss in expected payoff relative to an optimal, unbiased agent facing the same
stochastic environment. Kleinberg et al. established general upper bounds on this loss for so-
phisticated agents who correctly anticipate their own future sunk cost distortions and provided
evidence that fan graphs might be the worst-case for the gap between sophisticated and optimal
payoffs.

The main contribution of this thesis is to resolve that open question in the negative. Work-
ing in the same stochastic sunk cost framework, we introduce a new class of Layered Graph
With Skips and construct within it a family of instances in which the payoff gap between the
sophisticated and optimal agents is strictly larger than in fan graphs. At the technical level, we
develop a collection of structural lemmas that track how sunk costs accumulate along multi-
ple paths in a layered stochastic environment, and how a sophisticated agent’s forward-looking
continuation decisions interact with this accumulation. These lemmas yield a general upper
bound on sophisticated loss of the form

πo(s)−πσ (s) ≤ λ abmR
(

1− 1
k

)k

,

where a, b, and m are structural parameters of the graph, R is the reward obtained upon reaching
the terminal node, πo denotes the expected payoff of the optimal agent, πσ the expected payoff
of the sophisticated agent, and s the starting node. Moreover, we exhibit an asymptotically
tight worst-case family within this class for which the loss approaches λabmR

e , and in which
the product abm can exceed 1.This shows that fan graphs are not the worst-case and that more
damaging network topologies exist.

Beyond the sunk cost setting, the thesis also extends the Layered Graph With Skips con-
struction to present biased, reward-seeking agents who overweight immediate rewards relative
to future ones. We analyze the behavior of sophisticated present biased agents and optimal
agents on our layered family and show that it generates an exponential gap in reward, matching
the asymptotic behavior of fan graphs up to constant factors. Taken together, the results sug-
gest general principles for designing environments that either amplify or mitigate the impact of
behavioral biases, and they illustrate how a common structural template Layered Graph With
Skips can support worst-case analyses for multiple distortions, including sunk cost bias and
present bias.
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Chapter 1

Introduction

1.1 Motivation and Purpose of the Thesis . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation and Purpose of the Thesis
Human decision making is frequently skewed by sunk cost bias once resources have been
invested in a project, individuals are inclined to persist even when a fresh evaluation would
recommend stopping. This phenomenon has been documented in diverse settings, from per-
sonal finance to large-scale organizational decisions, and it becomes especially subtle when
decisions unfold over time under uncertainty. In sequential environments, an agent repeatedly
decides whether to continue or abandon a project, facing stochastic transitions between states
and uncertain future costs and rewards. Understanding how sunk cost bias interacts with such
uncertainty is therefore important both for behavioral economics and for the algorithmic study
of planning problems.

Recent theoretical work has introduced a formal model of sunk cost bias in stochastic plan-
ning, due to Kleinberg, Oren, Raghavan, and Sklar [1]. In this model, an agent plans in a
directed acyclic graph with probabilistic transitions, pays costs along a path, and receives a
fixed reward only upon reaching a designated target state. Sunk cost bias is captured by a pa-
rameter λ ≥ 0, if the agent abandons after incurring total cost Csunk, it experiences an additional
psychological loss of λ ·Csunk. The benchmark is an optimal unbiased agent that maximizes
expected payoff in the same stochastic environment. A central focus of this line of work is
sophisticated agents, who anticipate their own future sunk cost bias and plan accordingly. The
performance of such an agent is measured by the gap between its expected payoff and that of
the optimal unbiased agent.

Kleinberg et al. obtained general upper bounds on the payoff loss of sophisticated sunk cost
agents and identified fan graphs as natural candidates for worst-case instances in these graphs,
the gap between sophisticated and optimal payoffs can be made on the order of λR

e , where R is
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the terminal reward. They also provided evidence that fan graphs might in fact be worst-case,
but stopped short of a definitive characterization. This leaves open a fundamental structural
question among all stochastic planning environments of this form, which network topologies
yield the largest possible performance loss for sophisticated agents with sunk cost bias?

This thesis addresses that question. Working in the same stochastic sunk cost framework,
we introduce an alternative class of environments based on Layered Graphs with Skips and
develop an analytical framework for sophisticated agents in these graphs. Conceptually, the
classical fan graph construction fits naturally into this framework. A fan graph can be viewed
as a degenerate Layered Graph With Skips the states lie on a single chain of layers, forward
transitions move to the next layer, and each “fan” edge corresponds to a skip directly to the
terminal layer. In this sense, fan graphs are a highly restricted special case of Layered Graphs
With Skips, with only one node per layer and skips only to the final layer. Our model strictly
generalizes this template by allowing multiple states per layer and skip transitions between
arbitrary layers. Within this framework, we prove a general upper bound on the loss of a
sophisticated agent in terms of structural parameters of the instance, and we construct a family
of Layered Graphs with Skips in which the sophisticated-optimal gap is strictly larger than in
fan graphs. In particular, we show that in this family, the loss can approach

λ abmR
e

,

where a, b, and m are structural parameters describing the graph, and it is possible to have
abm > 1. This demonstrates that fan graphs are not worst-case instances; there exist network
topologies that generate an even greater degradation in expected payoff due to sunk cost bias.

The analysis proceeds via a collection of structural lemmas about biased planning in lay-
ered stochastic graphs. These lemmas track how sunk costs accumulate along multiple paths
and how a sophisticated agent’s forward-looking continuation decisions interact with this accu-
mulation. They yield new upper and lower bounds on the agent’s expected payoff and identify
asymptotically tight worst-case instances within the class of Layered Graph With Skips.

Beyond the sunk cost setting, We also extend the Layered Graph With Skips construction
to present biased, reward-seeking agents who overweight immediate rewards relative to future
ones. We analyze the behavior of a sophisticated present biased agent and an optimal agent
on the same layered family and show that it produces an exponential gap in reward, matching
the asymptotic behavior of the classical fan graph constructions up to constant factors. This
illustrates that Layered Graph With Skips form a flexible structural template for worst-case
analysis across multiple behavioral distortions, including sunk cost bias and present bias.

1.2 Related Literature
This thesis builds directly on the stochastic sunk-cost framework of Kleinberg, Oren, Raghavan,
and Sklar [1]. More broadly, a line of work has developed graph-theoretic models of planning
to study how different behavioral distortions affect sequential decision-making. These include
deterministic planning models for present-biased sophisticated agents [2], extensions in which
multiple behavioral biases interact, notably present bias and sunk-cost bias [4], and principal–
agent formulations where incentives are shaped through subgraph design for present-biased
agents [3]. In addition, related graph-based planning frameworks have been studied in other
contexts, such as stochastic planning against prophet benchmarks [5] and planning models
capturing projection bias [6].
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1.3 Structure of the Thesis
Chapter 2 presents the formal stochastic planning model, introduces Layered Graph With Skips,
and sets up the notation and fundamental quantities used throughout the thesis.

Chapter 3 develops a general upper bound on the loss of sophisticated sunk cost agents
in Layered Graph With Skips. The chapter proves structural lemmas relating costs, transition
probabilities, and optimal payoffs, and then combines them into a bound of the form

πo(s)−πσ (s) ≤ λ abmR
(

1− 1
k

)k

,

where a, b, and m are structural parameters of the graph, πo denotes the expected payoff of
the optimal agent, πσ the expected payoff of the sophisticated agent, and s the starting node.
Moreover, we exhibit an asymptotically tight worst-case family within the class of Layered
Graph With Skips. It shows that the upper bound can be achieved up to lower-order terms,
that the loss can scale like λabmR

e , and that there exist instances with abm > 1. The chapter
concludes by comparing these layered constructions with the fan graph examples of Kleinberg
et al. [1] and showing that fan graphs are not the worst-case.

Chapter 4 extends the framework to present biased, reward-seeking agents. It adapts the
Layered Graph With Skips construction to a reward-based model with present bias, analyzes
the behavior of sophisticated and optimal agents on this family, and compares the resulting
exponential reward gap to known present bias results on fan graphs.

Chapter 5 concludes the thesis. It summarizes the main contributions, discusses the broader
implications for the design and analysis of stochastic environments with behavioral agents, and
outlines directions for extending the approach to heterogeneous structural settings, paths of
non-uniform lengths, and interactions with other behavioral distortions.
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Chapter 2

The Stochastic Planning Model and
Foundational Properties for Sunk Cost
Bias

2.1 The Layered Graph with Skip Edges: Model Definition . . . . . . . . . . 5

2.2 Fundamental Quantities and Structural Properties . . . . . . . . . . . . . 6

2.1 The Layered Graph with Skip Edges: Model Definition
A Layered Graph With Skips contains various paths of differing lengths that a single agent may
traverse from one node to another. The graph consists of L layers, with each layer containing
a finite number of nodes, which may vary across layers. For simplicity, we presume that all
pathways terminating at the node of interest (namely, node uk) possess identical lengths. An
illustration of a representative path is the path (s= u1,u2, . . . ,un, t), where n denotes the number
of nodes the agent traverses before reaching the target, and where for each integer i such that
1 ≤ i < n, the transition probability is defined as p(ui,ui+1) = 1/ j for a fixed integer j ≥ 1,
with p(un, t) = 1. Traversing from a node ui incurs a cost c(ui) = ci, with cn denoting the cost
incurred at the final non-terminal node. A depiction of a Layered Graph With Skips is presented
in Figure 2.1.

Layered Graphs With Skips can represent numerous circumstances. For example, they can
illustrate a project development process wherein, at each stage, one must select an investment
level that enables the project to proceed; if an erroneous choice is made, the project ceases.
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Figure 2.1: Layered Graph with Skip Edges

2.2 Fundamental Quantities and Structural Properties
We collect here the notation and quantities that will be used throughout the analysis.

L: Number of layers of the graph.

j: Number of next nodes that a non-terminal node has (a layer may contain more or fewer than
j nodes.

1/ j: Uniform transition probability from a node to each of its j next nodes.

ci: Cost incurred when traversing from a node in layer i to one of its next nodes.

s: Starting node of the graph.

t: Terminal (target) node where the agent receives the reward R.

πo(u): The expected payoff when the optimal agent starts from node u:

πo(u) = max

{
∑

v∈N(u)
p(u,v)πo(v)− c(u), 0

}
.

πσ (u): The expected payoff when the sophisticated agent starts from node u

uk: Node at which, by assumption, the optimal agent stops.

S: Event that the optimal agent eventually reaches the target node t. The probability of failure
is therefore 1− p(S).

m: Total number of distinct paths that reach node uk.

E[C | S]: Expected total cost conditional on the event that the agent stops before reaching the
target.
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Chapter 3

Bounding Sophisticated Loss in Layered
Graphs With Skips for Sunk Cost Bias

3.1 The General Upper-Bound Theorem . . . . . . . . . . . . . . . . . . . . . 7

3.2 Structural Lemmas for Costs and Continuation . . . . . . . . . . . . . . 8

3.3 Parameter Interpretation and Upper-Bound Construction . . . . . . . . 9

3.4 Tightness Theorem for Layered Graph With Skips . . . . . . . . . . . . . 11

In this chapter, we prove an upper bound on the loss of the sophisticated agent on Layered
Graphs with Skips. The proof is based on a sequence of structural lemmas that control the costs,
probabilities, and structural parameters of the graph, and then we combine them to obtain the
desired bound on πσ (u) in terms of πo(u).

3.1 The General Upper-Bound Theorem
We are now ready to state and prove the main result of this chapter.

Theorem 1. There are Layered Graphs With Skips such that πσ (s) ≥ πo(s) −
λ abmR

(
1− 1

k

)k
.

Proof. By Corollary 3.5 of Kleinberg et al. [1], the sophisticated agent’s payoff satisfies πσ ≥
πo −λ (1− p(S))E[C | S] , where S is the event that the optimal agent reached the target and
E[C | S̄] is the expected cost of the optimal agent for paths in which it stopped before the target.
To bound the payoff of the sophisticated agent, we bound (1− p(S))E[C | S] . Assume without
loss of generality that the optimal agent stopped traversing at uk. In the Layered Graph With
Skips, many paths can lead to uk (we assume for our convenience that all these paths have the
same length). Thus,

(1− p(S)) ·E[C | S̄] = m

(
k−1

∏
i=1

(pi)

)
·

(
k−1

∑
i=1

ci

)
.
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We now use the fact that the optimal agent traverses the graph till uk to get an upper bound on
(1− p(S))E[C | S].

□

3.2 Structural Lemmas for Costs and Continuation
We begin with a lemma relating the costs and the continuation probabilities along an optimal
path.

Lemma 1. If the optimal agent reaches uk along a path, then ∑
k−1
i=1 ci ≤∑

k−1
i=1 ∑u∈next(i)

u̸=i+1
pi πo(u).

Proof. Define πo(u j,uk) as the expected reward of the optimal agent navigating the graph
from the node u j. We demonstrate using backward induction that for all j≥1, πo(u j,uk) ≤
∑

k−1
i= j ∑u∈next(i)

u̸=i+1
pi πo(u)− ci. In the base case, we note that when the agent proceeds from

node uk−1, it holds true that πo(uk−1,uk) = ∑u∈next(k−1) pi πo(u) − ck−1 = pk−1πo(uk) +

∑u∈next(k−1)
u̸=k

pi πo(u)− ck−1 = ∑u∈next(k−1)
u̸=k

pi πo(u)− ck−1. In the induction stage, we assume

the validity of u j+1 and demonstrate it for an agent navigating the graph commencing from u j.
It is noted that as the agent moves across the graph from u j to uk, the equation is expressed
as πo(u j,uk) = p jπo(u j+1)+∑u∈next( j)

u̸= j+1
pi πo(u)− c j. According to the induction hypothesis,

it follows that πo(u j+1,uk) ≤ ∑
k−1
i= j+1 ∑u∈next(i)

u̸=i+1
pi πo(u)− ci By consolidating this information,

we derive that πo(u j,uk) ≤ ∑
k−1
i= j ∑u∈next(i)

u̸=i+1
pi πo(u)− ci, as necessitated. The expected payoff

for the optimal agent attaining uk is no greater than ∑
k−1
i=1 ∑u∈next(i)

u̸=i+1
pi πo(u)−ci. Given that this

amount must be non-negative, it follows that ∑
k−1
i=1 ci ≤ ∑

k−1
i=1 ∑u∈next(i)

u̸=i+1
pi πo(u). □

Next, we state separate upper and lower bounds on the optimal payoff.

Lemma 2. The upper bound on the optimal payoff is at most R.

Proof. Assume for the sake of contradiction that πo(u) > R. However, this contradicts Propo-
sition 3.3 in the stochastic sunk cost model [1], that proves πo(u) = p(S) ·R − p(S) ·E[C |
S] − (1− p(S)) ·E[C | S], thus the payoff can never be bigger than the reward but it can be at
most equal to it. □

Lemma 3. The lower bound on the optimal payoff is at least 0.

Proof. Assume for the sake of contradiction that πo(u) < 0. However, this contradicts the
optimal expected payoff equation that states that the optimal expected payoff is at least zero,
πo(u) = max

{
∑v∈N(u) p(u,v)πo(v)− c(u), 0

}
, thus the minimum optimal expected payoff is

zero. □

Combining the previous two lemmas, we can normalize the optimal payoff as a fraction of
the reward.

Lemma 4. There exists a parameter b ∈ [0,1] such that πo(u) = bR.

8



Proof. Assume for the sake of contradiction that there is not a b ∈ [0,1] such that πo(u) = bR.
From Lemma 2 and Lemma 3, we proved that πo(u) ∈ [0,R] for all the nodes of the Graph. We
observe that we can alter the equation πo(u) = bR to b = πo(u)

R . After this alteration, we use
the πo(u) ∈ [0,R], we see that 0 ≤ πo(u) ≤ R, now we divide this with R and we observe that
now we have 0 ≤ πo(u)

R ≤ R
R and this is 0 ≤ πo(u)

R ≤ 1. However, this πo(u)
R is equal to b and leads

to a contradiction, and thus there is a b ∈ [0,1] such that πo(u). □

We also isolate the structural parameter a describing the fraction of non-terminal next nodes
among the next nodes of a node.

Lemma 5. Let a given node have j next nodes in total, of which j−1 are not part of the path,
and of which d are non-terminal of the j−1 next nodes not in the path. Define a = d

j−1 . Then
a ∈ [0,1].

Proof. Assume for the sake of contradiction that there is not a a ∈ [0,1] such that a = d
j−1 .

We know that d is the total of non-terminal next nodes from the j−1 next nodes of the node,
that is, the total next nodes that have their payoff greater than zero. We know that 0 ≤ d ≤ j−1
from the subset rule, now, we divide by j−1, and thus we have 0 ≤ d

j−1 ≤ j−1
j−1 . However this

d
j−1 is equal to a and leads to contradiction, and thus there is a a ∈ [0,1] such that a = d

j−1 . □

3.3 Parameter Interpretation and Upper-Bound Construc-
tion

We now describe how the parameters a, b, and m arise from the Layered Graph with Skips, and
how they interact with sunk cost bias.

Let πo denote the expected payoff of the optimal agent, and let πσ be the expected payoff
of a sophisticated agent with sunk cost parameter λ .

• The optimal payoff can be written as πo(s) = bR for some b ∈ [0,1] (Lemma 4).

• The structural parameter a ∈ [0,1] describes the fraction of non-terminal next nodes
among the next nodes of a typical node (Lemma 5).

• The quantity m denotes the total number of distinct paths that reach a given critical node
(for example, uk) in the layered graph.

Using Lemma 1, we can upper bound the total cost incurred along an optimal path by
the continuation probabilities and the optimal payoffs of the off-path next nodes. Recall that
Lemma 1 states

k−1

∑
i=1

ci ≤
k−1

∑
i=1

∑
u∈next(i)

u̸=i+1

pi πo(u).

Substituting this inequality into the expression for the conditional expected sunk cost, we obtain

(1− p(S)) ·E[C | S̄] ≤ m

(
k−1

∏
i=1

(pi)

)
·

k−1

∑
i=1

∑
u∈next(i)

u̸=i+1

pi πo(u)

 .
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We aim to eradicate the reliance on πo(u) and articulate this bound only in terms of the re-
ward R and the graph’s structural properties. This is the application of Lemma 4 and Lemma 5.
Lemma 4 indicates that for each node u, we may express πo(u) = bR for some b ∈ [0,1],
whereas Lemma 5 represents the proportion a ∈ [0,1] of non-terminal offspring among the
j− 1 off-path next nodes of a typical node. In our stratified Layered Graph With Skips con-
struction, we select the case to ensure uniformity of parameters throughout the graph, each
pertinent off-path kid possesses a reward πo(u) = bR, and at each layer, the proportion of non-
terminal off-path next nodes is precisely a. Thus, we can regard a and b as structural constants
of the instance, thereby constraining each πo(u) by bR and limiting the number of pertinent
next nodes at a layer by a factor of a, resulting in

(1− p(S)) ·E[C | S̄] ≤ m

(
k−1

∏
i=1

(pi)

)
·

k−1

∑
i=1

ab ∑
u∈next(i)

u̸=i+1

pi R

 .

In particular, this shows that the entire quantity (1− p(S)) ·E[C | S̄] can be bounded in terms of
the continuation probabilities pi, the reward R, and the structural parameters a, b, and m.

Under our assumptions, each non-terminal node has exactly j next nodes and the transition
probabilities are uniform, so pi = 1/ j for all layers i. Moreover, at each layer there are at most
a( j−1) non-terminal off-path next nodes, and for each such child we have πo(u)≤ bR. Hence,
for every layer i,

∑
u∈next(i)

u̸=i+1

pi πo(u) ≤ 1
j
·a( j−1) ·bR = ab

j−1
j

R.

Summing over the k−1 layers on the optimal path and using ∏
k−1
i=1 pi = (1/ j)k−1, we obtain

(1− p(S)) ·E[C | S̄] ≤ m
(

1
j

)k−1

·
(
(k−1)ab

j−1
j

R
)
= mabR(k−1)

j−1
jk .

It is convenient to write this bound as

f ( j) = mab(k−1)
j−1

jk ,

and view j > 1 as a real variable. Differentiating with respect to j, we get

∂ f
∂ j

= mab(k−1)
−k j+ k+ j

jk+1 .

The numerator vanishes when

−k j+ k+ j = 0 ⇐⇒ (k−1) j = k ⇐⇒ j =
k

k−1
,

so at the critical point, we have
1
j
=

k−1
k

= 1− 1
k
.

Substituting this value of j into f ( j) yields

f ( j) = mab
(

1− 1
k

)k

.
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Therefore,

(1− p(S)) ·E[C | S̄] ≤ mabR
(

1− 1
k

)k

.

In particular, the bound in Theorem 1 depends on the factor
(
1− 1

k

)k
, whose limit as k → ∞

is 1
e ; this asymptotic behavior will be exploited to obtain a worst-case family with loss on the

order of λabmR
e .

We now build on the general upper bound and show that, for an appropriate Family of
Layered Graph With Skips, the sophisticated agent’s loss approaches the asymptotic value sug-
gested by that bound. Recall that Theorem 1 established

πσ (s) ≥ πo(s) − λ abmR
(

1− 1
k

)k
,

and the previous discussion highlighted that(
1− 1

k

)k

−→ 1
e

as k → ∞.

Our goal is to construct a family of Layered Graph With Skips whose loss asymptotically
matches this bound, yielding a worst-case value on the order of λabmR

e .

3.4 Tightness Theorem for Layered Graph With Skips
We are now ready to state the main result of this chapter.

Theorem 2. There exists a family of instances in which λ is a function of n, such that as n goes
to infinity

lim
n→∞

(
πo −

λ abmR
e

) = πσ .

Proof. We examine a Layered Graph With Skips where the transition probabilities and costs
along the paths are uniform. For each 1 ≤ i < n, pi = p = 1

j =
n−1

n and ci = c = ab
n − ab

n2 . We
additionally establish R = 1 and indicate that there exists a layer where all nodes possess the
same value b. This graph is illustrated in Figure 3.1. The optimal agent navigates the graph
until it arrives at un, as the expected reward of each step is unequivocally positive. The optimal
agent would cease at un since the expected payoff of the final step is negative. The expected
payoff of the optimal agent is

πo = m
n−1

∑
i=1

(
1
j
) i−1(ab

j−1
j

− c)

= m
j− (1

j )
n−2

j−1
(ab

j−1
j

− c)

= m

((
n

n−1

)
−
(

n−1
n

)n−2
)

n−1
n2 ab
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· · ·
· · ·
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· · ·
· · ·
· · ·
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· · ·

· · ·

· · ·

· · ·

Figure 3.1: Layered Graph with Skip Edges with constant b and a

Next we let λ = πo
m( 1

j )
n−1(n−1)c

. We show that it is indeed the case when λ ≤ 1.

Lemma 6. If πo = m
(( n

n−1

)
−
(n−1

n

)n−2
)

n−1
n2 ab, then for λ = πo

m
(1

j

)n−1
(n−1)c

, we have λ ≤ 1.

Proof. By plugging the values of πo,
1
j and c we get(( n
n−1

)
−
(n−1

n

)n−2
)

1
n(n−1

n

)n

To show that λ ≤ 1, it is sufficient to show that

1 ≤
(

n−1
n

)n+1

n+
(

n−1
n

)n−1

Let f (n) =
(n−1

n

)n+1
n+

(n−1
n

)n−1
. Observe that for f (3) = 28

27 . Thus showing that f (n) is
increasing will complete the proof.

f ′(n) =

(n−1
n

)n (
(n2 −n+1) ln

(n−1
n

)
+2n−1

)
n−1

.

and by using calculus, one can show that it is indeed the case that f ′(n) > 0 for any n > 2,
which completes the proof.

Note that limn→∞ m
(

1
j

)n−1
(n−1)c = mab

e . Consequently, when n approaches infinity, πo

approaches mab
e . To finalize the proof, we demonstrate that for this value of λ , πσ = 0. Conse-

quently, we demonstrate that if the agent begins to navigate the Graph, it will reach t, resulting

12



in an expected reward of zero. Note that the expected reward of a stochastic agent progressing
from node uk to time t is

πσ (uk) = πo(uk)−mλ

(
1
j

)n−k

(n−1)c.

The initial term represents the reward of the sophisticated agent reaching t prior to un, equiva-
lent to that of the optimal agent, while the subsequent term denotes the expense incurred by the
sophisticated agent during the final transition from un to t.The expected payment of an astute
agent commencing at s and ceasing immediately upon reaching t is

πs = πo −mλ

(
1
j

)n−1

(n−1)c.

This is zero for the selection of λ .
We now prove that the sophisticated agent that starts traversing the Graph will go all the way
to t. We give a proof by backward induction. That is, we assume that if the agent arrives at
uk+1 from uk, then it will go all the way to t. For the base case, observe that if the agent arrives
at un, then the payoff for abandoning is −λ c (n−1). On the other hand, moving to t incurs
the same payoff R− (λ c(n−1)+R) =−λ c(n−1) which is the same as quitting. For ease in
presentation, we assume that the agent breaks ties in favor of continuing, and hence the agent
will choose to continue. For the induction step, we assume correctness for uk+1 and prove for
the agent traversing the Graph from uk+1 till t then its expected payoff for continuing is πσ (uk).
To complete the proof, we show that the expected payoff is greater than or equal to the agent’s
sunk cost in claim 1.

Claim 1. πσ (uk) ≥ −λ c(k−1).

Proof. We need to show that:

πo(uk)−mλ

(
1
j

)n−k

(n−1)c ≥ −λc(k−1).

By rearranging that we get:

πo(uk) ≥ λc

(
m
(

1
j

)n−k

(n−1)− (k−1)

)
.

Since λ c > 0, if m
(

1
j

)n−k
(n− 1)− (k−1) ≤ 0 the lemma trivially holds. Else, assume that

m
(

1
j

)n−k
(n−1)− (k−1)> 0, hence we can divide by this and get that

λ ≤ πo(uk)

c
(

m
(

1
j

)n−k
(n−1)− (k−1)

) .

By substituting for our choice of λ we get that:

πo

m(1
j )

n−1(n−1)c
≤ πo(uk)

c
(

m
(

1
j

)n−k
(n−1)− (k−1)

) .

13



By rearranging, we get that:

1−
(

1
j

)n−1

m
(

1
j

)n−1
(n−1)

≤
1−
(

1
j

)n−k

m
(

1
j

)n−k
(n−1)− (k−1)

.

which implies that:

m
(

1
j

)n−k

(n−1)− (k−1)+
(

1
j

)n−1

(k−1)︸ ︷︷ ︸
f (k)

≤ m
(

1
j

)n−1

(n−1).

Finally, we apply claim 2 to show that the above inequality holds. This is done by proving that

f (k) is bounded from above by m
(

1
j

)n−1
(n−1) for any i ≤ k ≤ n.

□

Claim 2. The function f (x) = m
(

1
j

)n−x
(n−1)− (x−1)+

(
1
j

)n−1
(x−1), where 0 < 1

j < 1,

is bounded above by m
(

1
j

)n−1
(n−1) for each 1 ≤ x ≤ n.

Proof. In order to prove this claim we show that f is convex in [1,n] and that f (1) = f (n) =

m
(

1
j

)n−1
(n−1). Therefore, for each x ∈ [1,n], f (x)≤ m

(
1
j

)n−1
(n−1).

Observe that indeed f (1) = f (n) = m
(

1
j

)n−1
(n−1). In addition:

f ′(x) =−m ln
(

1
j

)
(n−1)

(
1
j

)n−x

+

(
1
j

)n−1

− 1

f ′′(x) = m ln2
(

1
j

)
(n−1)

(
1
j

)n−x

.

Thus, for 1 < x < n and 0 < 1
j < 1 and m > 0 we have that f ′′(x)≥ 0. Therefore,

f (x)≤ m
(

1
j

)n−1

(n−1)

for each x ∈ [1,n], as required. □

□

Corollary 1. There exist Layered Graph With Skips instances for which the quantity abm is
strictly greater than 1. In particular, fixing any constants a,b ∈ [0,1], one can construct in-
stances in which the number m of distinct paths from s to the critical node uk is arbitrarily
large (e.g., by adding parallel node-disjoint paths), while a and b remain unchanged. Choos-
ing m > 1/(ab) yields abm > 1.

We conclude the chapter by briefly comparing our Layered Graph With Skips construction
with the classical fan-graph instances in the original work of Kleinberg et al [1].

Recall that Theorem 1 implies, for any layered skip-edge instance,

πσ (s) ≥ πo(s) − λ abmR
(

1− 1
k

)k
,

14



so for large k the loss satisfies

πo(s)−πσ (s) ≤ λ abmR
e

.

We constructed a family of Layered Graph With Skips graphs for which this bound is asymp-
totically tight, and we showed in Corollary 1 that there exist instances with abm > 1. Hence
there are graphs in which

πo(s)−πσ (s) =
λ abmR

e
>

λ R
e

.

By contrast, in the classical fan-graph construction the worst-case loss is of order λR/e
with an effective coefficient of 1. Thus the fan graph can be viewed as a special case of our
framework with abm = 1, whereas our Layered Graph With Skips family realizes instances
with strictly larger worst-case loss. In particular, this shows that fan graphs are not worst-case
for sophisticated sunk cost agents.
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Chapter 4

Present Biased Reward-Seeking Agents:
An Extension

4.1 The Present Biased Layered Graph with Skips: Model Definition . . . . . 17

4.2 Behavior of the Sophisticated Present Biased Agent . . . . . . . . . . . . 18

4.3 Behavior of the Optimal Reward-Seeking Agent . . . . . . . . . . . . . . 20

4.4 Comparison Between Sophisticated and Optimal Agents . . . . . . . . . 21

In this chapter, we adapt our Layered Graph With Skips construction to the setting of present
biased, reward-seeking agents studied by Kleinberg, Oren, Raghavan, and Sklar [2], and we
present an example of this adaptation. In particular, Figure 4.1 illustrates the base construction
and its modification for the present-bias setting. In this model, the agent receives nonnegative
rewards on edges, and at each decision point it overweights the immediate reward of the next
step relative to all future rewards.

s t

(a) Sunk cost base

s t

(b) Adoption to present bias

Figure 4.1: Base construction and its adaptation for present bias.

16



Our goal is to analyze the behavior of a sophisticated present biased agent on a Layered
Graph With Skips, to compare it with the behavior of an optimal (unbiased) agent on the same
graph, and to quantify the resulting in a performance loss. We show that our layered construc-
tion achieves an exponential gap in reward between the optimal and the sophisticated agent,
matching the asymptotic behavior of the fan graphs in [2] up to a constant factor.

Throughout this chapter, we use two real parameters

n ≥ 2 and 1 < c < b,

where b > 1 is the present bias factor and c determines the growth of edge rewards. This use of
the symbol b is local to the present biased model and is independent of the parameter b ∈ [0,1]
that was used to normalize payoffs in Chapter 3.

4.1 The Present Biased Layered Graph with Skips: Model
Definition

A present biased Layered Graph With Skips contains various paths of differing lengths that a
reward-seeking agent may traverse from a starting node to a terminal node. As in Chapter 2,
the nodes are arranged in layers and the graph is acyclic. In contrast to the sunk cost model,
each edge now carries a nonnegative reward rather than a cost, and a path from the starting
node to the terminal node yields a total reward equal to the sum of the rewards on its edges.
The agent that traverses this graph will be present biased when choosing its next step, it will
overweight the immediate reward on the outgoing edge by a factor b > 1, while evaluating all
future rewards without this factor. We also fix a parameter c > 1 with c < b that controls how
the rewards grow across layers.

The graph is organized into n+1 layers of regular nodes and n−1 layers of special nodes,
together with a terminal nodes. For each integer i such that 0 ≤ i ≤ n, layer i contains a
collection of regular nodes of the form xi,k, where the index k ranges over a finite set (the
number of such nodes may depend on i). The starting nodes is s = x0,1. For each integer i
such that 1 ≤ i ≤ n−1, layer i also contains exactly two special nodes, denoted by yi,1 and yi,2.
Finally, there is a single terminal nodes t.

Edges connect consecutive layers. For each integer i with 0 ≤ i < n, and for every pair of
nodes k and k′ in layers i and i+1 respectively, there is a directed edge from xi,k to xi+1,k′ . These
edges represent the regular progression through the layers and have reward r(xi,k,xi+1,k′) = 0.

In addition to these regular edges, each regular nodes has skip edges to the special nodes
in the next layer. For each integer i with 1 ≤ i ≤ n− 1 and every index k in layer i− 1, there
are directed edges from xi−1,k to yi,1 and/or from xi−1,k to yi,2. These skip edges carry reward
r(xi−1,k,yi,l) = ci, l ∈ {1,2}. Thus, a skip from layer i− 1 into layer i yields an immediate
reward of ci.

Every special nodes leads directly to the terminal nodes. For each integer i with 1≤ i≤ n−1
and each l ∈ {1,2}, there is a directed edge from yi,l to t with reward r(yi,l, t) = 1.

Finally, nodes in the last regular layer connect to the terminal nodes with a larger reward.
For each index k in layer n, there is a directed edge from xn,k to t with reward r(xn,k, t) = cn.

There are no other edges in the graph. A path that moves only along edges of the form
(xi,k,xi+1,k′) until it reaches some xn,k, and then takes the edge from xn,k to t, collects a single
reward of cn at the terminal step. In contrast, a path that takes a skip edge (xi−1,k,yi,l) at some
intermediate layer i obtains an immediate reward of ci, then moves from yi,l to t and collects an
additional reward of 1, and then terminates. The present biased agent that we study faces this
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structured choice between continuing along the regular layers to obtain a large reward cn at the
end, or taking earlier skip edges that offer tempting intermediate rewards of the form ci +1. A
depiction of a present biased layered graph with skips is presented in Figure 4.2.

s t

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

Figure 4.2: Present Biased Reward-Seeking Agents Layered Graph With Skips

4.2 Behavior of the Sophisticated Present Biased Agent
We now describe the behavior of a sophisticated present-biased agent on the Layered Graph
With Skips. The agent is reward-seeking and traverses a path from s to t, collecting the true
rewards on edges, but at each step it overweights the immediate reward of the next edge by a
factor of b.

For each node u, we define Rt(u) to be the true total reward obtained by the sophisticated
agent when starting from u and following sophisticated behavior. The agent follows the present
biased decision rule of Kleinberg et al [2] when standing at node u, it evaluates each outgoing
edge (u,v) by

b · r(u,v)+Rt(v),

and chooses a successor that maximizes this quantity. Formally, for every u ̸= t we set

S(R)s (u) ∈ arg max
v:(u,v)∈E

{
b · r(u,v)+Rt(v)

}
,

and then
Rt(u) = r

(
u,S(R)s (u)

)
+Rt

(
S(R)s (u)

)
,

with boundary condition Rt(t) = 0.
By symmetry, all x-nodes in the same layer have the same value Rt , and all y-nodes in the

same layer have the same value Rt . We write Rt(Xi) for the common value Rt(xi,k) and Rt(Yi)
for the common value Rt(yi,l).
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We compute Rt using backward induction on the layers.
At the terminal node t we have

Rt(t) = 0.

For any yi,l ∈ Yi, the only outgoing edge is yi,l → t with reward 1. Thus

Rt(yi,l) = 1 for all i, l,

and hence
Rt(Yi) = 1 for all i.

At layer n, each xn,k has a unique outgoing edge to t with reward cn, so

Rt(Xn) = cn.

At layer n− 1, each xn−1,k has only edges to nodes in Xn with reward 0, and from Xn the
agent goes to t with reward cn. Thus

Rt(Xn−1) = Rt(Xn) = cn.

At layer n−2, the agent at any xn−2,k has two types of choices: continuing to some xn−1,ℓ ∈
Xn−1, or skipping to one of the traps yn−1,1,yn−1,2.

• Continuation. Choosing any edge xn−2,k → xn−1,ℓ gives perceived value

b ·0+Rt(Xn−1) = cn.

• Skip. Choosing an edge xn−2,k → yn−1,1 or xn−2,k → yn−1,2 gives immediate reward cn−1

and then reward 1 when moving from the y-node to t. The perceived value is

b · cn−1 +Rt(Yn−1) = bcn−1 +1.

Since b > c and c > 1, we have

bcn−1 > c · cn−1 = cn,

and hence bcn−1 +1 > cn. Therefore, the sophisticated agent strictly prefers the skip edges at
layer n−2, and its true reward from layer n−2 is

Rt(Xn−2) = cn−1 +1.

The same reasoning applies inductively to all earlier layers.

Lemma 7. For every i = 0,1, . . . ,n−2 we have

Rt(Xi) = ci+1 +1.

In particular,
Rt(s) = c+1.

Proof. We have already established that Rt(Xn−2) = cn−1 +1, which matches the claimed for-
mula for i = n−2.

Suppose that for some i+1 ≤ n−2 we have

Rt(Xi+1) = ci+2 +1.

Consider any node xi,k ∈ Xi. There are two types of outgoing edges.
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• Continuation. For any child in Xi+1 we have reward 0 and then continuation from layer
i+1, so the perceived value is

b ·0+Rt(Xi+1) = ci+2 +1.

• Skip. For a child in Yi+1 the immediate reward is ci+1, and from Yi+1 the agent receives 1
when moving to t. Since Rt(Yi+1) = 1, the perceived value is

b · ci+1 +Rt(Yi+1) = bci+1 +1.

Because b > c and c > 1, we have

bci+1 > c · ci+1 = ci+2,

and therefore
bci+1 +1 > ci+2 +1.

Thus the sophisticated agent strictly prefers the skip edges at layer i, and its total reward from
Xi is

Rt(Xi) = ci+1 +1.

This completes the induction. Setting i = 0 and using the fact that s = x0,1 ∈ X0 yields

Rt(s) = Rt(X0) = c1 +1 = c+1.

□

Lemma 7 shows that, regardless of the number of x-nodes in each layer, the sophisticated
present biased agent obtains a total reward of exactly c+1 when starting from s on the Layered
Graph With Skips.

4.3 Behavior of the Optimal Reward-Seeking Agent
We now analyze the behavior of an optimal, unbiased reward-seeking agent on the same Lay-
ered Graph With Skips. This agent does not suffer from present bias and simply chooses a path
that maximizes the true total reward.

For each node u, we let Ro(u) denote the maximum total reward obtainable when starting
from u and following an optimal strategy. As the graph is acyclic, Ro(u) satisfies

Ro(u) =


0, u = t,

max
v:(u,v)∈E

{
r(u,v)+Ro(v)

}
, u ̸= t.

Again, by symmetry all nodes in Xi share the same value Ro(Xi) and all nodes in Yi share
the same value Ro(Yi).

We distinguish two natural types of s–t paths.

The backbone path. We fix an arbitrary backbone path

s = x0,1 → x1,1 → ··· → xn,1 → t.
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All edges xi−1,1 → xi,1 have reward 0, and the last edge xn,1 → t has reward cn. Therefore the
total reward of the backbone path is

Rbackbone = cn.

A path using a trap. Alternatively, the agent may follow the backbone up to some layer i and
then take a skip edge to a trap in layer i+1, followed by the edge to t:

s → ··· → xi,1 → yi,l → t, 1 ≤ i+1 ≤ n−1.

On such a path, all rewards are zero except:

• the skip edge xi,1 → yi,l with reward ci+1,

• the edge yi,l → t with reward 1.

Hence the total reward of this path is

Rskip(i+1) = ci+1 +1, 1 ≤ i+1 ≤ n−1.

We now show that, for large enough n, the backbone path is optimal.

Lemma 8. Fix c > 1. For all integers n such that cn−1(c−1)> 1, the optimal agent on Layered
Graph With Skips chooses a backbone path and Ro(s) = cn.

Proof. For any i+1 with 1 ≤ i+1 ≤ n−1 we have

Rskip(i+1) = ci+1 +1 ≤ cn−1 +1.

If cn−1(c−1)> 1, then

cn−1(c−1)−1 > 0 = cn − (cn−1 +1)> 0,

so cn > cn−1 +1. Hence
cn > ci+1 +1

for all 1 ≤ i+ 1 ≤ n− 1, and every path that uses a trap yields less reward than the backbone
path. Therefore the optimal agent selects a backbone path and obtains reward Ro(s) = cn. □

For any fixed c > 1, the condition cn−1(c− 1) > 1 holds for all sufficiently large n, so
asymptotically we have Ro(s) = cn.

4.4 Comparison Between Sophisticated and Optimal Agents
We now compare the rewards of the sophisticated and optimal agents on the present biased
layered graph.

By Lemma 7 we have
Rt(s) = c+1,

while by Lemma 8 we have
Ro(s) = cn
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for all sufficiently large n. The reward ratio is therefore

Ro(s)
Rt(s)

=
cn

c+1
.

For any fixed c > 1, this ratio grows exponentially in n:

cn

c+1
= Θ

(
cn−1) as n → ∞.

Thus, on the Layered Graph With Skips, a sophisticated present biased agent can lose an
exponential factor in n relative to the optimal reward.

In the fan-graph examples of Kleinberg et al. [2], the behavior of a present biased so-
phisticated agent also leads to an exponential gap between the optimal reward and the reward
achieved by the sophisticated agent for suitable parameters, one has

Ro(s) = cn, Rt(s) = 1,
Ro(s)
Rt(s)

= cn.

In our Layered Graph With Skips construction, we obtain

Ro(s) = cn, Rt(s) = c+1,
Ro(s)
Rt(s)

=
cn

c+1
=

1
c

cn = cn−1.

The gap is therefore exponential in n with the same base c it differs from the fan graph only by
a constant multiplicative factor depending on c.

From an asymptotic point of view, the Layered Graph With Skips is therefore as bad as
the fan graph for sophisticated present biased agents. Combined with the sunk cost analysis of
Chapters 3, this shows that Layered Graph With Skips form a flexible framework within which
one can obtain worst-case bounds for different behavioral biases using a common structural
template.
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Chapter 5

Conclusion

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Summary of Contributions
In this thesis we studied planning problems on directed acyclic graphs under behavioral de-
viations from rationality, focusing primarily on sunk cost bias and sophisticated agents as in-
troduced in the framework of Kleinberg et al. [1]. We introduced a new structured family of
graphs, the Layered Graphs With Skips, which generalizes layered DAGs by allowing shortcut
edges that reshape both the accumulation of sunk costs and the evolution of expected rewards.

Within this framework we identified a set of structural parameters that describe branching
behavior, reward normalization, and layered depth. Using these parameters, we established
a general analytical upper bound on the performance loss of sophisticated sunk cost agents
relative to an optimal unbiased agent. We then constructed an explicit worst-case family of in-
stances showing that this bound is asymptotically tight. A key implication of our analysis is that
the resulting loss can exceed the classical λR

e bound known from fan graphs, proving that fan
graphs are not necessarily worst-case structures in richer stochastic environments. Finally, we
demonstrated that the same layered-with-skips template can also generate severe inefficiencies
for present-biased agents in reward-based planning, revealing the versatility of the model.

5.2 Conclusion and Future Work
Overall, the results of this thesis show that structured stochastic environments can significantly
amplify the inefficiency of sophisticated biased agents. The Layered Graph With Skips frame-
work provides a powerful and unifying way to analyze worst-case behavior, to isolate the struc-
tural sources of inefficiency, and to demonstrate separations between biased and unbiased plan-
ning performance. The thesis therefore contributes both conceptual insight and precise quan-
titative bounds to the study of behavioral planning in graph-theoretic settings, and highlights
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that richer structural models are essential for fully understanding the impact of cognitive biases
in sequential decision-making.

Building on these insights, a natural direction for future work is to investigate how the iden-
tified worst-case phenomena extend to more general and heterogeneous structural settings. In
particular, it would be interesting to relax the homogeneity assumptions imposed on Layered
Graphs With Skips by allowing paths of non-uniform lengths, as well as instances in which the
structural parameters a and b, the transition probabilities, and the incurred costs vary across
layers or nodes. Such heterogeneity arises naturally in stochastic planning environments and
may lead to qualitatively different worst-case behavior. Beyond structural considerations, an-
other promising direction is to examine how the framework developed in this thesis interacts
with other behavioral distortions studied in graph-theoretic planning models, such as projec-
tion bias [6] or combinations of multiple biases, including the interaction of sunk-cost bias with
other forms of behavioral deviation [4], and to assess how these additional distortions affect the
structure and severity of worst-case instances.
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