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Abstract

This thesis studies graph-theoretic aspects of stochastic planning under behavioral biases, start-
ing from the sunk cost model of Kleinberg, Oren, Raghavan, and Sklar [1]. In this model, an
agent plans in a directed acyclic graph with probabilistic transitions, pays edge costs along a
path, and receives a fixed reward only upon reaching a designated target state. Sunk cost bias
is captured by a parameter A > 0, if the agent abandons after incurring total cost Cgypy, it ex-
periences an additional psychological loss of A - Cgyni. The performance of a biased agent is
measured by the loss in expected payoff relative to an optimal, unbiased agent facing the same
stochastic environment. Kleinberg et al. established general upper bounds on this loss for so-
phisticated agents who correctly anticipate their own future sunk cost distortions and provided
evidence that fan graphs might be the worst-case for the gap between sophisticated and optimal
payoffs.

The main contribution of this thesis is to resolve that open question in the negative. Work-
ing in the same stochastic sunk cost framework, we introduce a new class of Layered Graph
With Skips and construct within it a family of instances in which the payoff gap between the
sophisticated and optimal agents is strictly larger than in fan graphs. At the technical level, we
develop a collection of structural lemmas that track how sunk costs accumulate along multi-
ple paths in a layered stochastic environment, and how a sophisticated agent’s forward-looking
continuation decisions interact with this accumulation. These lemmas yield a general upper
bound on sophisticated loss of the form

() — s (s) < AabmR <1 - %)k

where a, b, and m are structural parameters of the graph, R is the reward obtained upon reaching
the terminal node, 7, denotes the expected payoff of the optimal agent, 75 the expected payoff
of the sophisticated agent, and s the starting node. Moreover, we exhibit an asymptotically
tight worst-case family within this class for which the loss approaches M, and in which
the product abm can exceed 1.This shows that fan graphs are not the worst-case and that more
damaging network topologies exist.

Beyond the sunk cost setting, the thesis also extends the Layered Graph With Skips con-
struction to present biased, reward-seeking agents who overweight immediate rewards relative
to future ones. We analyze the behavior of sophisticated present biased agents and optimal
agents on our layered family and show that it generates an exponential gap in reward, matching
the asymptotic behavior of fan graphs up to constant factors. Taken together, the results sug-
gest general principles for designing environments that either amplify or mitigate the impact of
behavioral biases, and they illustrate how a common structural template Layered Graph With
Skips can support worst-case analyses for multiple distortions, including sunk cost bias and
present bias.
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1.1 Motivation and Purpose of the Thesis

Human decision making is frequently skewed by sunk cost bias once resources have been
invested in a project, individuals are inclined to persist even when a fresh evaluation would
recommend stopping. This phenomenon has been documented in diverse settings, from per-
sonal finance to large-scale organizational decisions, and it becomes especially subtle when
decisions unfold over time under uncertainty. In sequential environments, an agent repeatedly
decides whether to continue or abandon a project, facing stochastic transitions between states
and uncertain future costs and rewards. Understanding how sunk cost bias interacts with such
uncertainty is therefore important both for behavioral economics and for the algorithmic study
of planning problems.

Recent theoretical work has introduced a formal model of sunk cost bias in stochastic plan-
ning, due to Kleinberg, Oren, Raghavan, and Sklar [1]. In this model, an agent plans in a
directed acyclic graph with probabilistic transitions, pays costs along a path, and receives a
fixed reward only upon reaching a designated target state. Sunk cost bias is captured by a pa-
rameter A > 0, if the agent abandons after incurring total cost Cyk, it experiences an additional
psychological loss of A - Cgynk. The benchmark is an optimal unbiased agent that maximizes
expected payoff in the same stochastic environment. A central focus of this line of work is
sophisticated agents, who anticipate their own future sunk cost bias and plan accordingly. The
performance of such an agent is measured by the gap between its expected payoff and that of
the optimal unbiased agent.

Kleinberg et al. obtained general upper bounds on the payoff loss of sophisticated sunk cost
agents and identified fan graphs as natural candidates for worst-case instances in these graphs,
the gap between sophisticated and optimal payoffs can be made on the order of )L?R, where R is



the terminal reward. They also provided evidence that fan graphs might in fact be worst-case,
but stopped short of a definitive characterization. This leaves open a fundamental structural
question among all stochastic planning environments of this form, which network topologies
yield the largest possible performance loss for sophisticated agents with sunk cost bias?

This thesis addresses that question. Working in the same stochastic sunk cost framework,
we introduce an alternative class of environments based on Layered Graphs with Skips and
develop an analytical framework for sophisticated agents in these graphs. Conceptually, the
classical fan graph construction fits naturally into this framework. A fan graph can be viewed
as a degenerate Layered Graph With Skips the states lie on a single chain of layers, forward
transitions move to the next layer, and each “fan” edge corresponds to a skip directly to the
terminal layer. In this sense, fan graphs are a highly restricted special case of Layered Graphs
With Skips, with only one node per layer and skips only to the final layer. Our model strictly
generalizes this template by allowing multiple states per layer and skip transitions between
arbitrary layers. Within this framework, we prove a general upper bound on the loss of a
sophisticated agent in terms of structural parameters of the instance, and we construct a family
of Layered Graphs with Skips in which the sophisticated-optimal gap is strictly larger than in
fan graphs. In particular, we show that in this family, the loss can approach

AabmR

)
e

where a, b, and m are structural parameters describing the graph, and it is possible to have
abm > 1. This demonstrates that fan graphs are not worst-case instances; there exist network
topologies that generate an even greater degradation in expected payoff due to sunk cost bias.
The analysis proceeds via a collection of structural lemmas about biased planning in lay-
ered stochastic graphs. These lemmas track how sunk costs accumulate along multiple paths
and how a sophisticated agent’s forward-looking continuation decisions interact with this accu-
mulation. They yield new upper and lower bounds on the agent’s expected payoff and identify
asymptotically tight worst-case instances within the class of Layered Graph With Skips.
Beyond the sunk cost setting, We also extend the Layered Graph With Skips construction
to present biased, reward-seeking agents who overweight immediate rewards relative to future
ones. We analyze the behavior of a sophisticated present biased agent and an optimal agent
on the same layered family and show that it produces an exponential gap in reward, matching
the asymptotic behavior of the classical fan graph constructions up to constant factors. This
illustrates that Layered Graph With Skips form a flexible structural template for worst-case
analysis across multiple behavioral distortions, including sunk cost bias and present bias.

1.2 Related Literature

This thesis builds directly on the stochastic sunk-cost framework of Kleinberg, Oren, Raghavan,
and Sklar [1]. More broadly, a line of work has developed graph-theoretic models of planning
to study how different behavioral distortions affect sequential decision-making. These include
deterministic planning models for present-biased sophisticated agents [2], extensions in which
multiple behavioral biases interact, notably present bias and sunk-cost bias [4], and principal—
agent formulations where incentives are shaped through subgraph design for present-biased
agents [3]. In addition, related graph-based planning frameworks have been studied in other
contexts, such as stochastic planning against prophet benchmarks [5] and planning models
capturing projection bias [6].



1.3 Structure of the Thesis

Chapter 2 presents the formal stochastic planning model, introduces Layered Graph With Skips,
and sets up the notation and fundamental quantities used throughout the thesis.

Chapter 3 develops a general upper bound on the loss of sophisticated sunk cost agents
in Layered Graph With Skips. The chapter proves structural lemmas relating costs, transition
probabilities, and optimal payoffs, and then combines them into a bound of the form

k
T,(s) — ms(s) < AabmR <1—%> )

where a, b, and m are structural parameters of the graph, m, denotes the expected payoff of
the optimal agent, 75 the expected payoff of the sophisticated agent, and s the starting node.
Moreover, we exhibit an asymptotically tight worst-case family within the class of Layered
Graph With Skips. It shows that the upper bound can be achieved up to lower-order terms,
that the loss can scale like @, and that there exist instances with abm > 1. The chapter
concludes by comparing these layered constructions with the fan graph examples of Kleinberg
et al. [1] and showing that fan graphs are not the worst-case.

Chapter 4 extends the framework to present biased, reward-seeking agents. It adapts the
Layered Graph With Skips construction to a reward-based model with present bias, analyzes
the behavior of sophisticated and optimal agents on this family, and compares the resulting
exponential reward gap to known present bias results on fan graphs.

Chapter 5 concludes the thesis. It summarizes the main contributions, discusses the broader
implications for the design and analysis of stochastic environments with behavioral agents, and
outlines directions for extending the approach to heterogeneous structural settings, paths of
non-uniform lengths, and interactions with other behavioral distortions.
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2.1 The Layered Graph with Skip Edges: Model Definition

A Layered Graph With Skips contains various paths of differing lengths that a single agent may
traverse from one node to another. The graph consists of L layers, with each layer containing
a finite number of nodes, which may vary across layers. For simplicity, we presume that all
pathways terminating at the node of interest (namely, node uy;) possess identical lengths. An
illustration of a representative path is the path (s = uy,uy,...,uy,t), where n denotes the number
of nodes the agent traverses before reaching the target, and where for each integer i such that
1 <i < n, the transition probability is defined as p(u;,u;+1) = 1/j for a fixed integer j > 1,
with p(u,,t) = 1. Traversing from a node u; incurs a cost ¢(u;) = ¢;, with ¢, denoting the cost
incurred at the final non-terminal node. A depiction of a Layered Graph With Skips is presented
in Figure 2.1.

Layered Graphs With Skips can represent numerous circumstances. For example, they can
illustrate a project development process wherein, at each stage, one must select an investment
level that enables the project to proceed; if an erroneous choice is made, the project ceases.
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Figure 2.1: Layered Graph with Skip Edges

2.2 Fundamental Quantities and Structural Properties

We collect here the notation and quantities that will be used throughout the analysis.
L: Number of layers of the graph.

Jj: Number of next nodes that a non-terminal node has (a layer may contain more or fewer than
Jj nodes.

1/j: Uniform transition probability from a node to each of its j next nodes.
c;: Cost incurred when traversing from a node in layer i to one of its next nodes.
s: Starting node of the graph.
t: Terminal (target) node where the agent receives the reward R.
7,(u): The expected payoff when the optimal agent starts from node u:

7T, (u) = max{ Z p(u,v)m,(v) —c(u), 0} .

veN (u)

7s(u): The expected payoff when the sophisticated agent starts from node u
ur: Node at which, by assumption, the optimal agent stops.

S: Event that the optimal agent eventually reaches the target node ¢. The probability of failure
is therefore 1 — p(S).

m: Total number of distinct paths that reach node uy.

E[C | S]: Expected total cost conditional on the event that the agent stops before reaching the
target.
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In this chapter, we prove an upper bound on the loss of the sophisticated agent on Layered
Graphs with Skips. The proof is based on a sequence of structural lemmas that control the costs,
probabilities, and structural parameters of the graph, and then we combine them to obtain the
desired bound on 7 (1) in terms of 7, (u).

3.1 The General Upper-Bound Theorem

We are now ready to state and prove the main result of this chapter.

Theorem 1. There are Layered Graphs With Skips such that 7s(s) > m(s) —
1\ K
AabmR (1—1)".

Proof. By Corollary 3.5 of Kleinberg et al. [1], the sophisticated agent’s payoff satisfies 75 >
T, — A(1 — p(S))E[C | S|, where S is the event that the optimal agent reached the target and
[E[C | §] is the expected cost of the optimal agent for paths in which it stopped before the target.
To bound the payoff of the sophisticated agent, we bound (1 — p(S))E[C | S]. Assume without
loss of generality that the optimal agent stopped traversing at u;. In the Layered Graph With
Skips, many paths can lead to u; (we assume for our convenience that all these paths have the

same length). Thus,

) k-1 k=1
(1=p(S))-E[C|5]=m (H(m)) - (Z Ci> :

i=1 i=1



We now use the fact that the optimal agent traverses the graph till u; to get an upper bound on

(1-p(S)E[C]S].
O

3.2 Structural Lemmas for Costs and Continuation

We begin with a lemma relating the costs and the continuation probabilities along an optimal
path.

Lemma 1. If the optimal agent reaches uy, along a path, then Zf;ll ¢ < Zf;ll Yucnext(i) Di 7, (u).
ui+1

Proof. Define m,(uj,uy) as the expected reward of the optimal agent navigating the graph
from the node u;. We demonstrate using backward induction that for all j>1, 7T, (u j,uk) <

]-‘;.1 N PiTt,(u) — ci. In the base case, we note that when the agent proceeds from
i=j &ucnext(i) g p

uFi+1
node w1, it holds true that 7,(ur—1,u) = Yucnext(k—1) PiTo(U) — ko1 = pr—17o(ux) +
Yucnext(k—1) PiToo(U) — Ck—1 = Yucnext(k—1) Pi o (1) — cx—1. In the induction stage, we assume
u#k u#k

the validity of u;, 1 and demonstrate it for an agent navigating the graph commencing from u;.
It is noted that as the agent moves across the graph from u; to u, the equation is expressed
as M (uj,ur) = pjmo(uj1) + Lucnext(j) Pi To(u) — cj. According to the induction hypothesis,

41
it follows that 7, (u 41, u) < Zéjfjjzuenexr(i) pi (1) — ¢; By consolidating this information,
i+1
we derive that m,(u;,u;) < Z;‘;jl Zue”ex:{;l;i m,(u) — c;, as necessitated. The expected payoff
i+1
for the optimal agent attaining u is r?Z)é ngrreater than Zi.:ll Yucnext (i) Pi To (1) — ¢;. Given that this
i+1
amount must be non-negative, it follows that Zi:ll ci < Zf:?;:enext(i) PiT,(u). O
uFi+1

Next, we state separate upper and lower bounds on the optimal payoff.
Lemma 2. The upper bound on the optimal payoff is at most R.

Proof. Assume for the sake of contradiction that m,(«) > R. However, this contradicts Propo-
sition 3.3 in the stochastic sunk cost model [1], that proves 7,(u) = p(S)-R — p(S)-E|[C |
S] — (1—p(S))-E[C| S], thus the payoff can never be bigger than the reward but it can be at
most equal to it. U

Lemma 3. The lower bound on the optimal payoff is at least 0.

Proof. Assume for the sake of contradiction that m,(u) < 0. However, this contradicts the
optimal expected payoff equation that states that the optimal expected payoff is at least zero,
7o (1) = max {¥,en(u) P(u,v) To(v) — c(u), 0}, thus the minimum optimal expected payoff is
Zero. U

Combining the previous two lemmas, we can normalize the optimal payoff as a fraction of
the reward.

Lemma 4. There exists a parameter b € [0,1] such that m,(u) = bR.



Proof. Assume for the sake of contradiction that there is nota b € [0, 1] such that 7, («) = bR.

From Lemma 2 and Lemma 3, we proved that 7,(u«) € [0, R] for all the nodes of the Graph. We
observe that we can alter the equation 7,(u) = bRto b = n"( ). After this alteration, we use
the m,(u) € [0,R], we see that 0 < m,(u) < R, now we divide thls with R and we observe that
Y < I—’§ and thisis 0 < ””Ig u) < 1. However, this LAGK is equal to b and leads

= = R
to a contradiction, and thus there is a b € [0, 1] such that 7, (u). O

We also isolate the structural parameter a describing the fraction of non-terminal next nodes
among the next nodes of a node.

Lemma 5. Let a given node have j next nodes in total, of which j— 1 are not part of the path,
and of which d are non-terminal of the j— 1 next nodes not in the path. Define a = JLLI. Then
ael0,1].

Proof. Assume for the sake of contradiction that there is not a @ € [0, 1] such that a = %1.
We know that d is the total of non-terminal next nodes from the j — 1 next nodes of the node,
that is, the total next nodes that have their payoff greater than zero. We know that 0 <d < j—1
from the subset rule, now, we divide by j — 1, and thus we have 0 < ]%1 < j:—} However this

jiil is equal to a and leads to contradiction, and thus there is a a € [0, 1] such that a = j%. U

3.3 Parameter Interpretation and Upper-Bound Construc-
tion

We now describe how the parameters a, b, and m arise from the Layered Graph with Skips, and
how they interact with sunk cost bias.

Let &, denote the expected payoff of the optimal agent, and let 75 be the expected payoff
of a sophisticated agent with sunk cost parameter A.

* The optimal payoff can be written as 7,(s) = bR for some b € [0, 1] (Lemma 4).

* The structural parameter a € [0,1] describes the fraction of non-terminal next nodes
among the next nodes of a typical node (Lemma 5).

* The quantity m denotes the total number of distinct paths that reach a given critical node
(for example, uy) in the layered graph.

Using Lemma 1, we can upper bound the total cost incurred along an optimal path by
the continuation probabilities and the optimal payoffs of the off-path next nodes. Recall that

Lemma 1 states ]

X <Y T nml

i= i=1 uenext(i)
uFi+1

Substituting this inequality into the expression for the conditional expected sunk cost, we obtain

k—1
(1=p(8)-E[C|S] < m (l—ll(Pi))' Z Y, pim(u

i=1 ucnext(i)
u#i+1



We aim to eradicate the reliance on 7, («) and articulate this bound only in terms of the re-
ward R and the graph’s structural properties. This is the application of Lemma 4 and Lemma 5.
Lemma 4 indicates that for each node u, we may express m,(u«) = bR for some b € [0,1],
whereas Lemma 5 represents the proportion a € [0,1] of non-terminal offspring among the
j — 1 off-path next nodes of a typical node. In our stratified Layered Graph With Skips con-
struction, we select the case to ensure uniformity of parameters throughout the graph, each
pertinent off-path kid possesses a reward 7,(«) = bR, and at each layer, the proportion of non-
terminal off-path next nodes is precisely a. Thus, we can regard a and b as structural constants
of the instance, thereby constraining each m,(«) by bR and limiting the number of pertinent
next nodes at a layer by a factor of a, resulting in

k—1 k—1
u—mw»mcmh5m<gﬁw>-z;m L o
ui+1

In particular, this shows that the entire quantity (1 — p(S))-E[C | §] can be bounded in terms of
the continuation probabilities p;, the reward R, and the structural parameters a, b, and m.

Under our assumptions, each non-terminal node has exactly j next nodes and the transition
probabilities are uniform, so p; = 1/ for all layers i. Moreover, at each layer there are at most
a(j— 1) non-terminal off-path next nodes, and for each such child we have 7,(u) < bR. Hence,
for every layer i,

1 — 1
Y pim(u) < ~-a(j—1)-bR = ab?—R.
ucnext (i) J J
ui+1

Summing over the k — 1 layers on the optimal path and using [T"_/ p; = (1/,)*~!, we obtain

; AN j-1 j-1
(1—p(8)-E[C|3] < m(;) ~<(k—1)abTR) =mabR(k—1)".

It is convenient to write this bound as
. J—1
f(j)=mab(k—1) j—k’

and view j > 1 as a real variable. Differentiating with respect to j, we get

af —kj+k+]
The numerator vanishes when
k
—kj+k+j=0 <= (k—1)j=k < j:m,

so at the critical point, we have

1 k=1 | 1

i kK
Substituting this value of j into f() yields

fU%Zmab(l—%>é

10



Therefore,

k
(1= p($))-E[C| §] < mabR (1—%) .

In particular, the bound in Theorem 1 depends on the factor (1 — %)k, whose limit as k — o
is %; this asymptotic behavior will be exploited to obtain a worst-case family with loss on the
order of M’TmR.

We now build on the general upper bound and show that, for an appropriate Family of
Layered Graph With Skips, the sophisticated agent’s loss approaches the asymptotic value sug-
gested by that bound. Recall that Theorem 1 established

To(s) > Tols) — lame(l—%)k,

and the previous discussion highlighted that

NN 1
(1——) — — ask — oo
k e

Our goal is to construct a family of Layered Graph With Skips whose loss asymptotically
matches this bound, yielding a worst-case value on the order of 7@.

3.4 Tightness Theorem for Layered Graph With Skips

We are now ready to state the main result of this chapter.

Theorem 2. There exists a family of instances in which A is a function of n, such that as n goes

to infinity bR
lim (7, — ~ ) = 715
n—oo e

Proof. We examine a Layered Graph With Skips where the transition probabilities and costs
along the paths are uniform. Foreach 1 <i<n, pj=p= 1= ”;—1 and ¢; =c = ‘jl—b — Z—lz’. We
additionally establish R = 1 and indicate that there exists a layer where all nodes possess the
same value b. This graph is illustrated in Figure 3.1. The optimal agent navigates the graph
until it arrives at uy,, as the expected reward of each step is unequivocally positive. The optimal
agent would cease at u, since the expected payoff of the final step is negative. The expected

payoff of the optimal agent is

1 i1
o = m - i-l b—.—C
0 121(]) ( ; )
1\n-2
- i1
Jj—1 J

11
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Figure 3.1: Layered Graph with Skip Edges with constant b and a

Next we let A = ——"¢——_ We show that it is indeed the case when A < 1.
m(Dr (e

Lemma 6. If 7, =m ((#) — (”%1) n_2> ”;—zlab, then for A = lnﬂ_—‘q, we have A < 1.
m(;) (n—1)c
Proof. By plugging the values of 7,, % and ¢ we get

(G- (59"7) &

To show that A < 1, it is sufficient to show that

n—1 n+1 n—1 n—1
1< n—+
n n

Let f(n) = (E)HH n+ (”;l)n_l. Observe that for £(3) = 33. Thus showing that f(n) is

n n
increasing will complete the proof.

(=) (0 —n+1)In(=1) +2n—1)

n

fl(n) =

n—1
and by using calculus, one can show that it is indeed the case that f/(n) > 0 for any n > 2,
which completes the proof.
n—1
Note that lim,,_o m G) (n—1)c= mT"b. Consequently, when n approaches infinity, 7,

approaches mT“b. To finalize the proof, we demonstrate that for this value of A, 75 = 0. Conse-
quently, we demonstrate that if the agent begins to navigate the Graph, it will reach ¢, resulting



in an expected reward of zero. Note that the expected reward of a stochastic agent progressing
from node u;, to time 7 is

—k
1 n
T (ug) = 7o (ug) —mA (;) (n—1)c.
The initial term represents the reward of the sophisticated agent reaching ¢ prior to u,, equiva-
lent to that of the optimal agent, while the subsequent term denotes the expense incurred by the
sophisticated agent during the final transition from u, to . The expected payment of an astute
agent commencing at s and ceasing immediately upon reaching ¢ is

1 n—1
T, ="m,—mA <;) (n—1)c.

This is zero for the selection of A.

We now prove that the sophisticated agent that starts traversing the Graph will go all the way
to . We give a proof by backward induction. That is, we assume that if the agent arrives at
uy+1 from uy, then it will go all the way to . For the base case, observe that if the agent arrives
at u,, then the payoff for abandoning is —A ¢ (n— 1). On the other hand, moving to 7 incurs
the same payoff R— (Ac(n—1)+R) = —A c(n— 1) which is the same as quitting. For ease in
presentation, we assume that the agent breaks ties in favor of continuing, and hence the agent
will choose to continue. For the induction step, we assume correctness for ;| and prove for
the agent traversing the Graph from u; | till 7 then its expected payoff for continuing is 7 (uy).
To complete the proof, we show that the expected payoff is greater than or equal to the agent’s
sunk cost in claim 1.

Claim 1. 7i5(u;) > —Ac(k—1).
Proof. We need to show that:
1

n—k
]) (n—1)c > —Ac(k—1).

no(uk)—ml(

By rearranging that we get:

(1) > Ac<m G) n_k(n—l)—(k—1)>.

n—k
Since Ac > 0, if m (%) (n—1) — (k—1) <0 the lemma trivially holds. Else, assume that

n—k
m (%) (n—1)—(k—1) > 0, hence we can divide by this and get that

A o i4s) .
c<m (;)"k (n—1)— (k— 1))

By substituting for our choice of A we get that:

Tt < oo (uk)

m(5H)rtn—1)e ~ c(m (;)"‘km—l)—(k—l))

13




By rearranging, we get that:

which implies that:

m G) D) k1)t (%) o) <m G)H (n—1).

£

Finally, we apply claim 2 to show that the above inequality holds. This is done by proving that

n
f(k) is bounded from above by m (%) (n—1)forany i <k <n.
U

] . 1\ | n—1 |
Claim 2. The function f(x) =m (;) (n—1)—(x—1)+ <7> (x—1), where 0 < 5 <1,

n—1
is bounded above by m (%) (n—1) foreach 1 <x<n.

Proof. In order to prove this claim we show that f is convex in [1,n] and that f(1) = f(n) =

m (%) " (n—1). Therefore, for each x € [1,n], f(x) <m (%)n (n—1).

n—1
Observe that indeed f(1) = f(n) =m (%) (n—1). In addition:

o) ()
£(x) = min? G) (n—1) G)

Thus, for 1 <x <nand0 < % < 1 and m > 0 we have that f”(x) > 0. Therefore,

) <m G)l (n—1)

for each x € [1,n], as required. O
U

Corollary 1. There exist Layered Graph With Skips instances for which the quantity abm is
strictly greater than 1. In particular, fixing any constants a,b € [0, 1], one can construct in-
stances in which the number m of distinct paths from s to the critical node uy is arbitrarily
large (e.g., by adding parallel node-disjoint paths), while a and b remain unchanged. Choos-
ing m > 1/(ab) yields abm > 1.

We conclude the chapter by briefly comparing our Layered Graph With Skips construction
with the classical fan-graph instances in the original work of Kleinberg et al [1].
Recall that Theorem 1 implies, for any layered skip-edge instance,

To(s) > m,(s) — kame(l—%)k,
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so for large k the loss satisfies

AabmR
P

TTo(s) — s (s) <

We constructed a family of Layered Graph With Skips graphs for which this bound is asymp-
totically tight, and we showed in Corollary 1 that there exist instances with abm > 1. Hence
there are graphs in which

_ AabmR _ AR
TT,(s) — s (s) = — >,
By contrast, in the classical fan-graph construction the worst-case loss is of order AR /e
with an effective coefficient of 1. Thus the fan graph can be viewed as a special case of our
framework with abm = 1, whereas our Layered Graph With Skips family realizes instances
with strictly larger worst-case loss. In particular, this shows that fan graphs are not worst-case
for sophisticated sunk cost agents.
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Chapter 4

Present Biased Reward-Seeking Agents:
An Extension

4.1
4.2
4.3
4.4

The Present Biased Layered Graph with Skips: Model Definition . . . . . 17
Behavior of the Sophisticated Present Biased Agent . .. ......... 18
Behavior of the Optimal Reward-Seeking Agent . . .. .......... 20
Comparison Between Sophisticated and Optimal Agents . ... ..... 21

In this chapter, we adapt our Layered Graph With Skips construction to the setting of present
biased, reward-seeking agents studied by Kleinberg, Oren, Raghavan, and Sklar [2], and we
present an example of this adaptation. In particular, Figure 4.1 illustrates the base construction
and its modification for the present-bias setting. In this model, the agent receives nonnegative
rewards on edges, and at each decision point it overweights the immediate reward of the next

step relative to all future rewards.

(a) Sunk cost base (b) Adoption to present bias

Figure 4.1: Base construction and its adaptation for present bias.
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Our goal is to analyze the behavior of a sophisticated present biased agent on a Layered
Graph With Skips, to compare it with the behavior of an optimal (unbiased) agent on the same
graph, and to quantify the resulting in a performance loss. We show that our layered construc-
tion achieves an exponential gap in reward between the optimal and the sophisticated agent,
matching the asymptotic behavior of the fan graphs in [2] up to a constant factor.

Throughout this chapter, we use two real parameters

n>2 and 1<c<b,

where b > 1 is the present bias factor and ¢ determines the growth of edge rewards. This use of
the symbol b is local to the present biased model and is independent of the parameter b € [0, 1]
that was used to normalize payoffs in Chapter 3.

4.1 The Present Biased Layered Graph with Skips: Model
Definition

A present biased Layered Graph With Skips contains various paths of differing lengths that a
reward-seeking agent may traverse from a starting node to a terminal node. As in Chapter 2,
the nodes are arranged in layers and the graph is acyclic. In contrast to the sunk cost model,
each edge now carries a nonnegative reward rather than a cost, and a path from the starting
node to the terminal node yields a total reward equal to the sum of the rewards on its edges.
The agent that traverses this graph will be present biased when choosing its next step, it will
overweight the immediate reward on the outgoing edge by a factor b > 1, while evaluating all
future rewards without this factor. We also fix a parameter ¢ > 1 with ¢ < b that controls how
the rewards grow across layers.

The graph is organized into n + 1 layers of regular nodes and n — 1 layers of special nodes,
together with a terminal nodes. For each integer i such that 0 < i < n, layer i contains a
collection of regular nodes of the form x;;, where the index k ranges over a finite set (the
number of such nodes may depend on 7). The starting nodes is s = xo ;. For each integer i
such that 1 <i <n— 1, layer i also contains exactly two special nodes, denoted by y; 1 and y; ».
Finally, there is a single terminal nodes .

Edges connect consecutive layers. For each integer i with 0 < i < n, and for every pair of
nodes k and k" in layers i and i + 1 respectively, there is a directed edge from x; 4 to x; 1 4. These
edges represent the regular progression through the layers and have reward r(x; ¢, ;1 %) = 0.

In addition to these regular edges, each regular nodes has skip edges to the special nodes
in the next layer. For each integer i with 1 <i < n—1 and every index k in layer i — 1, there
are directed edges from x;_j x to y; 1 and/or from x;_1 x to y;>. These skip edges carry reward
r(Xim1k,Yig) = c',1 € {1,2}. Thus, a skip from layer i — 1 into layer i yields an immediate
reward of ¢'.

Every special nodes leads directly to the terminal nodes. For each integeri with 1 <i<n—1
and each [ € {1,2}, there is a directed edge from y;; to r with reward r(y;;,t) = 1.

Finally, nodes in the last regular layer connect to the terminal nodes with a larger reward.
For each index k in layer n, there is a directed edge from x,, x to ¢ with reward r(x, x,1) = c”.

There are no other edges in the graph. A path that moves only along edges of the form
(x,-7k,x,-+17k/) until it reaches some x,, ;, and then takes the edge from x,,  to 7, collects a single
reward of ¢” at the terminal step. In contrast, a path that takes a skip edge (x;_j k,yi;) at some
intermediate layer i obtains an immediate reward of ¢, then moves from yi to t and collects an
additional reward of 1, and then terminates. The present biased agent that we study faces this
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structured choice between continuing along the regular layers to obtain a large reward ¢” at the
end, or taking earlier skip edges that offer tempting intermediate rewards of the form ¢’ + 1. A
depiction of a present biased layered graph with skips is presented in Figure 4.2.

J/ Vv

\—/ NN

Figure 4.2: Present Biased Reward-Seeking Agents Layered Graph With Skips

4.2 Behavior of the Sophisticated Present Biased Agent

We now describe the behavior of a sophisticated present-biased agent on the Layered Graph
With Skips. The agent is reward-seeking and traverses a path from s to #, collecting the true
rewards on edges, but at each step it overweights the immediate reward of the next edge by a
factor of b.

For each node u, we define R,(u) to be the true total reward obtained by the sophisticated
agent when starting from u and following sophisticated behavior. The agent follows the present
biased decision rule of Kleinberg et al [2] when standing at node u, it evaluates each outgoing
edge (u,v) by

b-r(u,v)+Ri(v),

and chooses a successor that maximizes this quantity. Formally, for every u # t we set

S§R)(u) € arg (ma)x {b-r(u,v)+Ri(v)},
vi(u,v)€E

and then
R:(u) = r(u,SgR)(u)) +R; (SgR)(u))7

with boundary condition R;(7) = 0.

By symmetry, all x-nodes in the same layer have the same value R;, and all y-nodes in the
same layer have the same value R;. We write R;(X;) for the common value R;(x;x) and R;(Y;)
for the common value R, (y;;).
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We compute R; using backward induction on the layers.
At the terminal node ¢ we have

For any y; ; € Y;, the only outgoing edge is y;; — ¢ with reward 1. Thus
Ri(yi;) =1 foralli,l,

and hence
R,(Y;)=1 foralli.

At layer n, each x, ; has a unique outgoing edge to ¢ with reward c", so
R/(X,) = c".

At layer n — 1, each x,,_1 ; has only edges to nodes in X, with reward 0, and from X, the
agent goes to ¢ with reward ¢". Thus

R/(Xn—1) = Ri(Xy) = ".

Atlayer n — 2, the agent at any x,,_; x has two types of choices: continuing to some x,,_1 ¢ €
X1, or skipping to one of the traps y,—1,1,Yn—1,2.

e Continuation. Choosing any edge x,_> x — x,_1 ¢ gives perceived value

b-0+R(Xu_1) = c".

* Skip. Choosing an edge x,_2 y — Y4—1,1 OF X,—2 k — Yn—1,2 gives immediate reward -l
and then reward 1 when moving from the y-node to ¢. The perceived value is

b-c" "R (Y1) =b" 1.
Since b > ¢ and ¢ > 1, we have

b ' > =,

and hence bc" ! + 1 > ¢". Therefore, the sophisticated agent strictly prefers the skip edges at
layer n — 2, and its true reward from layer n — 2 is

R(X, ) =c"141.
The same reasoning applies inductively to all earlier layers.
Lemma 7. Foreveryi=0,1,...,n—2 we have
R(X;)=ct+1.

In particular,
R[ (S) =c+ 1.

Proof. We have already established that R, (X,,_») = ¢"~!' 4 1, which matches the claimed for-
mula fori =n—2.

Suppose that for some i+ 1 < n—2 we have
Ri(Xiy1) =2 41.

Consider any node x; ; € X;. There are two types of outgoing edges.
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* Continuation. For any child in X;; we have reward 0 and then continuation from layer
i+ 1, so the perceived value is

b‘O+R;<Xi+1) == Ci+2-|- 1.

 Skip. For a child in Y; | the immediate reward is ¢! and from Y; 11 the agent receives 1

when moving to ¢. Since R;(Y;;1) = 1, the perceived value is

b-c ™ 4R (Yip1) = b 41

Because b > ¢ and ¢ > 1, we have
bt > ¢ ot = ¢t
and therefore
b 41> 241,

Thus the sophisticated agent strictly prefers the skip edges at layer i, and its total reward from
X; 18 .
R(X)=c"+1.

This completes the induction. Setting i = 0 and using the fact that s = x¢ | € Xo yields
R(s) =R (Xo)=c'+1=c+1.
g

Lemma 7 shows that, regardless of the number of x-nodes in each layer, the sophisticated
present biased agent obtains a total reward of exactly ¢ 4 1 when starting from s on the Layered
Graph With Skips.

4.3 Behavior of the Optimal Reward-Seeking Agent

We now analyze the behavior of an optimal, unbiased reward-seeking agent on the same Lay-
ered Graph With Skips. This agent does not suffer from present bias and simply chooses a path
that maximizes the true total reward.

For each node u, we let R,(u) denote the maximum total reward obtainable when starting
from u and following an optimal strategy. As the graph is acyclic, R, (u) satisfies

0, u=t,

Ry, ‘.
v:(rgﬁl)XEE{r(u,vH— v}, u#

R,(u) =

Again, by symmetry all nodes in X; share the same value R,(X;) and all nodes in Y; share
the same value R, (Y;).
We distinguish two natural types of s— paths.

The backbone path. We fix an arbitrary backbone path

§=X09,1 —X1,] = —>Xp1 1.
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All edges x;—1,1 — x; 1 have reward 0, and the last edge x,, | — ¢ has reward ¢". Therefore the
total reward of the backbone path is

n
Rpackbone = C".

A path using a trap. Alternatively, the agent may follow the backbone up to some layer i and
then take a skip edge to a trap in layer i 4 1, followed by the edge to ¢:

s x =y —t, 1<i+1<n—1.

On such a path, all rewards are zero except:
« the skip edge x; 1 — y;; with reward ¢'*1,

e the edge y;; — ¢ with reward 1.
Hence the total reward of this path is
Ryipirny =¢'+1, 1<i+1<n-—1.

We now show that, for large enough n, the backbone path is optimal.

Lemma 8. Fix ¢ > 1. For all integers n such that c"~'(c — 1) > 1, the optimal agent on Layered
Graph With Skips chooses a backbone path and R,(s) = ¢".

Proof. Foranyi+ 1 with1 <i+1<n—1 we have
Ryip(it1) = 1< 41
If " !(c—1)>1, then
M le=1)—=1>0=c"—(""'+1)>0,

so ¢" > "1+ 1. Hence .
>t

forall 1 <i+4+1 <n-—1, and every path that uses a trap yields less reward than the backbone
path. Therefore the optimal agent selects a backbone path and obtains reward R,(s) =c". O

For any fixed ¢ > 1, the condition ¢"~!(c — 1) > 1 holds for all sufficiently large n, so
asymptotically we have R,(s) = ¢”.

4.4 Comparison Between Sophisticated and Optimal Agents

We now compare the rewards of the sophisticated and optimal agents on the present biased
layered graph.
By Lemma 7 we have
Rl (S) =c+ 17

while by Lemma 8 we have
Ry(s) =c"
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for all sufficiently large n. The reward ratio is therefore

R, (5) _ c"
R/(s) c+1°

For any fixed ¢ > 1, this ratio grows exponentially in n:

c" _
. :®(c” 1) as n — oo,

Thus, on the Layered Graph With Skips, a sophisticated present biased agent can lose an
exponential factor in n relative to the optimal reward.

In the fan-graph examples of Kleinberg et al. [2], the behavior of a present biased so-
phisticated agent also leads to an exponential gap between the optimal reward and the reward
achieved by the sophisticated agent for suitable parameters, one has

Ri(s)
In our Layered Graph With Skips construction, we obtain

Ry(s) " |

Ri(s) c+1 ¢

R,(s) =", Ri(s)=c+1,

The gap is therefore exponential in n with the same base c it differs from the fan graph only by
a constant multiplicative factor depending on c.

From an asymptotic point of view, the Layered Graph With Skips is therefore as bad as
the fan graph for sophisticated present biased agents. Combined with the sunk cost analysis of
Chapters 3, this shows that Layered Graph With Skips form a flexible framework within which
one can obtain worst-case bounds for different behavioral biases using a common structural
template.
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5.1 Summary of Contributions

In this thesis we studied planning problems on directed acyclic graphs under behavioral de-
viations from rationality, focusing primarily on sunk cost bias and sophisticated agents as in-
troduced in the framework of Kleinberg et al. [1]. We introduced a new structured family of
graphs, the Layered Graphs With Skips, which generalizes layered DAGs by allowing shortcut
edges that reshape both the accumulation of sunk costs and the evolution of expected rewards.

Within this framework we identified a set of structural parameters that describe branching
behavior, reward normalization, and layered depth. Using these parameters, we established
a general analytical upper bound on the performance loss of sophisticated sunk cost agents
relative to an optimal unbiased agent. We then constructed an explicit worst-case family of in-
stances showing that this bound is asymptotically tight. A key implication of our analysis is that
the resulting loss can exceed the classical ’ITR bound known from fan graphs, proving that fan
graphs are not necessarily worst-case structures in richer stochastic environments. Finally, we
demonstrated that the same layered-with-skips template can also generate severe inefficiencies
for present-biased agents in reward-based planning, revealing the versatility of the model.

5.2 Conclusion and Future Work

Overall, the results of this thesis show that structured stochastic environments can significantly
amplify the inefficiency of sophisticated biased agents. The Layered Graph With Skips frame-
work provides a powerful and unifying way to analyze worst-case behavior, to isolate the struc-
tural sources of inefficiency, and to demonstrate separations between biased and unbiased plan-
ning performance. The thesis therefore contributes both conceptual insight and precise quan-
titative bounds to the study of behavioral planning in graph-theoretic settings, and highlights
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that richer structural models are essential for fully understanding the impact of cognitive biases
in sequential decision-making.

Building on these insights, a natural direction for future work is to investigate how the iden-
tified worst-case phenomena extend to more general and heterogeneous structural settings. In
particular, it would be interesting to relax the homogeneity assumptions imposed on Layered
Graphs With Skips by allowing paths of non-uniform lengths, as well as instances in which the
structural parameters a and b, the transition probabilities, and the incurred costs vary across
layers or nodes. Such heterogeneity arises naturally in stochastic planning environments and
may lead to qualitatively different worst-case behavior. Beyond structural considerations, an-
other promising direction is to examine how the framework developed in this thesis interacts
with other behavioral distortions studied in graph-theoretic planning models, such as projec-
tion bias [6] or combinations of multiple biases, including the interaction of sunk-cost bias with
other forms of behavioral deviation [4], and to assess how these additional distortions affect the
structure and severity of worst-case instances.
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