Individual Thesis

IMPLEMENTATION OF A STUDENT SELECTION SYSTEM
FOR INDIVIDUAL THESIS PROJECTS USING CONSTRAINT
SATISFACTION TECHNIQUES

Panagiotis Kourkoulis

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

December 2025

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Implementation of a student selection system for individual thesis projects using

constraint satisfaction techniques

Panagiotis Kourkoulis

Supervising Professor

Dr Yiannis Dimopoulos

The Individual Thesis was submitted in partial fulfillment of the requirements for the
degree of Computer Science of the Department of Computer Science of the University of

Cyprus.

December 2025

II

Acknowledgments

I would like to, first of all, give a special thanks to my supervisor for my Individual Thesis,
Dr Yiannis Dimopoulos, for the guidance and support he provided me with throughout the
whole thesis, helping me to fully understand the objectives of the system and guiding me in
the creation of my constraint satisfaction model for student assignment.

Additionally, I would like to thank my family, friends, and fellow students who pushed me
every day and encouraged me to give my all and achieve my goals.

Again, I would like to thank all the aforementioned individuals, as without their contribution,

my academic journey over the past 4 years would not have been the same.

III

Abstract

This thesis presents the design and implementation of a web-based system aimed at
streamlining the assignment of supervisor teachers to students for their Thesis Project in the
Computer Science Department of the University of Cyprus. The existing manual process,
based on email exchanges and editable Word Documents, has proven to be error-prone,
inefficient, and difficult to manage. To address these challenges, the proposed system
automates the collection of preference lists from both students and teachers, provides a
centralized interface for the Thesis Coordinator and department secretary, and integrates a
matching algorithm to generate supervisor assignments based on the submitted preferences.
The system improves transparency, reduces the risk of mismatches, and simplifies the
overall workflow. User interfaces were developed based on my experience as a student who
has been through this process, feedback from my supervisor, and feedback from
administrative staff members, ensuring usability and alignment with the needs of each user
group. The result is a more reliable, organized, and user-friendly solution for managing

thesis supervision assignments.

1Y%

Table of Contents

Chapter 1: Introduction.......ccceeeeeiiiiiinrriiiiinnrrieiiennreccsiensstccsennnses 1
1.1 Background Information and Motivation.......c..ccccvveiieiiiiiiiiiciniinnnnn 1

1.2 System Integration.......cccoeeviiuiiiiiiiniiieiiiniiieriiieiennrcissressscsnssennces 2
Chapter 2: Constraint Satisfaction Problems and Programming.......... 3
2.1 INtroduction...cccieeieiiieiieiineiieiietieeiierietiecieeieceessaciaccnscsasesccnssnsnn 3

2.2 Constraint Satisfaction and Minizinc Language........ccccceviiniiiiniiiniennnn 3

2.2.1 Constraint Satisfaction Problems (CSPS)....c.ccceiiiiiniiiiinniiiinnnienn 3
2.2.2 Introduction to0 MiniZiNC......ccccovuviiiiiiiiniiiiieiieiieiiieciesieccnececen 5
2.2.3 Application in ThesiS.....cccoeeiiiniiiiiiiiiiiiiiiiiiiiiiiieieiiiciieiennecnns 6

2.2.4 Function and Constraint Explanations.........c..cccceviiiiiiiniiiniiinnnn 7

Chapter 3: Problem Definition and Methodology..........ccccccevviinnnnnnn. 10
3.1 Problem Definition....ccccciuviuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicieiiiicierieciiennenns 10

3.1.1 Research Context and Motivation........cccceeveiieiiieiieiiniiiecieninnnn 10

3.1.2 Formal Problem Statement........ccccceiiiiiiiiniiiiiieiiiiiieiiecinennnen, 10

3.2 Similar Problems......cccceiieitieene, 14

3.2.1 Stable Marriage Problem..........cccccviiiiiiiiiiiniiiiiiiniiiiiiiniinnnene 14

3.2.1.1 Problem Definition.......cccovieiiiiiiiiiiiiiiiiiiiiiiiiiieiienieien 14

3.2.1.2 Problem Modeling as CSP.....c.c.ccceeiiiiiiiiiiiniiiniiiieiiiniennnnn 14

3.2.2 Hospitals — Residents Problem.........ccccceviiiiiiiniiiiiiiiniiinininnnnnnss 15

3.2.2.1 Problem Definition.......ccccovieiiiiiiiiiiiiiiiiiiiiiiiiiiieniiecen 15

3.2.2.2 Problem Modeling as CSP.......cccceciiieiiiiiiiniiiniiiieiiiniennnnn 16

3.2.3 Comparison with Related Matching Problems.......ccccoeeevieeennsenees 17
Chapter 4: Constraint Programming Solution...........cccoovvieviiiiinnnn. 19
4.1 Constraint Satisfaction Problem.......cc.cccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiienn. 19

4.2 Minizinc Model EXplanation.........cccccviveiiiiiiiiiiiiiiiiiniiiiiiieieinecinnnens 19

4.3 Integration of Minizinc into the System..........ccccevvviiiiiiiiiiiiiiinniennee. 23

4.3.1 Python-Minizinc Library.....ccccceeiiiiiiiiiiiiiiiiiiiiiiiiiiiicnnenen. 23

4.3.2 Python-Minizinc Implementation..........cccccevveiiiniiiniiinnnennne. 23

4.3.3 Node.js Parent Process.........cccceevveiiiniiiiiiiiniiiniiierincinnnenns 25

Chapter 5: Software Technologies........ccceeviiiiiiiniiiiiiinniiiiiinnnriennn 34
5.1 INtroduction....ccieiieiieiiiiiiiiieiiiiieiieiiieeieriuiieieieciariecsesisccnecscnns 34

ST DTS O 1 {71) o (e 34

5.3 System Architecture......coceeeieiiiiiiiiiiiniiiiiiiieiiiiiiiieieirciierecnscnnscnns 35

5.4 Implementation ToOOIS......cccviuiiiieiiiiiiiiiiiiiiiiiiiieiieiiieieineciisreensens 36

5.4.1 Front-end Web Development..........c.ccoeeiiiiiiiniiiiiiiiniiiiiiinniennes 36

5.4.2 Back-end Development........ccccviiniiiieiiiniiiieiiiniiineieinrciecennnen 38

5.5 Database SectioNu....ccceieiieiiieiiiiiieiiiiiiiiiiiieiiiiiietieeiieiieciatinecencenscens 41
Chapter 6: User Interfaces......ccceeviiiiiniiiiiiiniiiiiiinriiiiiinnecenene 46
6.1 INtroduction.....cccvvuviiiiiiiiiiiieiiiiieiieiiieiiitietiiecierieceeeieciacenscacenes 46

6.2 Student Interface.......cccevuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiicieeine 46

6.2.1 Teacher Selection Page.......ccccevvviiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiincnan. 46

6.2.2 Submitted Preferences Summary Page.........ccceeviiniiiiniiininnnnnnnes 48

6.2.3 Student Assignment Page........cccceeiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiaienn, 50

6.3 Teacher Interface........ccooeviiieeeae, 51

6.3.1 Student Preferences Page.......cccoeviiiiiiiniiiiiiiiniiiiiiiiiiiinieinenen. 51

6.3.2 Student Selection Page.........ccceviiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiennenns 52

6.3.3 Submitted Preferences Summary Page........cccoeeviiniiiiiiiiiiinnnnns 54

6.3.4 Assigned Students Summary Page.........cccceeviiiiiiiiiniiiiiiiinicnnnen. 55

6.4 Administrator Interface.......ccocevieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieie. 56

6.4.1 Submitted Preferences Overview Page........cccccevvviiiiiiiniiinninnnn. 56

6.4.2 Matching Algorithm Page........cccoivviiiniiiiiiiiiiiiiiiiiiiiiiineiine. 57

6.4.3 Assignments Summary Page.......ccccoviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieen 58

6.4.4 Administrator Control Page.........ccccovviiiiiiiiiiiiiiiiiiiiiiiniiinnnnnn. 59

(0] 1 F:101 73 G/ 61 1 To 11 T3 11 1 1 62
7.1 SyStemM OVeIVIEW. . uviiuuiiiieiiinriiietenereinstsestossscsestosssssessossscsssssnsons 62

7.2 INSEIUCHIONS.c.vviniiiniiieiieiitiieiietieiietiatieeieciaceneciessscenessscsncenscnnca 63

7.3 ReStIICtIONS. .cutiniiniiiiiiiiiiiiiiiiiiieiieiitiieeietieeciesiecisecscsncenccnacnnns 63

7.4 Future System Enhancements.........ccccovveiiiiiiiiiiiiiiiiiiiiiiiieiennnennns 64

VI

Bibliography....ccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiitntitiniinnnnes 65

N 0] 4 1 1 10 U G A-1
. N 0] 4 1 1 10 U0 G 5 B-1
N 0] 4 1 1 10 U0, G C-1

VI

Chapter 1

Introduction

1.1 Background Information and Motivation

Currently, the process in place for the assignment of supervisor teachers to students consists
of a lot of manual tasks, which makes the process more complex and less organized, while
also, at the same time, increasing the likelihood of errors. The current procedure begins with
the Thesis Coordinator, who is a selected academic member of the department, who works
closely with the secretary of the department to prepare the preference forms for the students
and the teachers. The forms have fields where the students rank four teachers that they would
prefer to be supervised by (for the student forms), and the teachers select four students that
they would prefer to supervise (for the teacher forms). The forms, after being prepared, are
sent by the secretary of the department to the students and the teachers, who then have to
complete them before sending them back to the secretary of the department. The secretary,
after receiving all the forms, has to manually assign supervisors to the students based on all
the preference lists they received. This process poses many risks for possible errors, such as
a mismatch from the secretary when assigning the supervisors, or a form not being received
by the secretary. After the secretary finishes the assignments, they send a new list containing
all the assignments made, along with another list that contains the names of the students who
were not assigned to a teacher in the last assignment round and are referred to a subsequent
assignment round, and another list that contains the teachers who can receive assignments in
the next round based on their remaining capacity. For the next assignment round, the
aforementioned process has to be repeated with the students who remained unassigned and
the teachers with remaining capacity.

With the implementation of this system, the students will submit their preferences through
the website, the teachers will be able to view the students who have selected them, along with
the preference rank they placed them in, and will also be able to submit their own preferences
list. The Thesis Coordinator and the secretary of the department will be able to view an

overview of all the preferences submitted by both students and teachers, and they will also

have the option to run the matching algorithm straight from the website. After successfully
running the matching algorithm, they will view a table with the assignments made, along
with the list of unmatched students and a list with the remaining capacities of the teachers.

The goal of this project was to implement this process in a web-based system in order to
simplify the whole procedure for everyone involved. Firstly, the students and the teachers
will no longer need to manually fill out their preference lists and send them to the secretary
of the department. Moreover, the secretary will no longer need to track down all the submitted
lists, which could lead to lost lists, and will not need to go through the process of manually
assigning teachers to students, which introduces the risk of mismatching errors. Overall, the

whole process will be easier and safer.

1.2 System Integration

The system will, at a later time, be integrated into the existing infrastructure of the Computer
Science Department of the University of Cyprus. The users will be able to log into the system
using their university credentials, username, and password, and then, based on their role, they
will be redirected to the appropriate page (students’ page, teachers’ page, and admins’ page).
The table used to store the users’ credentials is similar to the one already used by the
university to allow for seamless integration. The table stores the internal database identifier
(database ID) of the user, their full name, username, user role (Student, Faculty, Admin), and
hashed password. Furthermore, the technology used for the application layer, which is

Express on top of Node.js, is also compatible with the infrastructure of the university.

Chapter 2

Constraint Satisfaction Problems and Programming

2.1 Introduction

In this chapter, we introduce the Constraint Satisfaction Problems (CSPs) declarative
programming paradigm, which was used in this thesis to model and solve the problem of
assigning teachers to students.

The tool used for the model is Minizinc [10], a high-level modeling language for Constraint
Satisfaction Problems. This chapter explains the concept of Constraint Satisfaction Problems

and how it was used in the context of the teacher assignment.

2.2 Constraint Satisfaction and Minizinc Language

2.2.1 Constraint Satisfaction Problems (CSPs)

Constraint Satisfaction Problems (CSPs) are a fundamental concept in computer science and
Artificial Intelligence. A Constraint Satisfaction Problem is defined as a problem where the
goal is to find values for a set of variables that satisfy the constraints defined in the problem.
A typical Constraint Satisfaction Problem consists of: the variables (e.g., X1, X2, X3, ..., Xn)
to which we want to assign values that satisfy the constraints, the domains (e.g., D1, D2, D3,
..., Dn) that define the possible values that a variable can have and each variable has its own
domain, and the constraints which are rules that define the allowable combinations of values
that can be assigned to variables (e.g., X1 # X2).

The objective is to assign values to all variables, from their respective domains, in a way that
all the constraints are satisfied simultaneously.

Constraint Satisfaction Problems appear in a wide range of real-world applications, such as
scheduling (e.g., university timetable and lecture room allocation), resource allocation, and

optimization in logistics and manufacturing (e.g., route planning for delivery vehicles).

Solving Constraint Satisfaction Problems can be approached using brute-force methods by
trying all the possible value assignments to variables, but more efficient techniques have been

suggested. These techniques include: backtracking and constraint propagation.

Example of Solving a simple CSP using Backtracking and Arc Consistency techniques:
Problem:
e Variables: X, X»
e Domains: D(X1) = {1,2,3}, D(X2) = {2,3}
e Constraints:
I. Xi1<Xz
2. Xi#X2

Step 1: Apply Arc Consistency — we check each arc and remove unsupported values from

the domains.

Arc: X1 — X5 (X1 < X>)

e For X;=1— X;canbe 2 or 3 = OK — no values removed from D(X;)
e For X; =2 — X; can be 3 = OK —no values removed from D(X)
e For X; =3 — X; must be >3 — no values in D(X2) = remove 3 from D(X)

Now: D(X1) = {1,2}

Arc: Xo &> X

e For Xo=2 — Xjcanbe 1 = OK —no values removed from D(X3)
e ForXo=3—> Xjcanbe 1 or 2= OK — no values removed from D(X>)

Now: D(X2) = {2,3} — no change

Step 2: Backtracking search — assigning values to variables one at a time and backtracking
in case of unsatisfied constraints.

1. Assign X1 =2 — no constraints violated — OK

2. Assign Xp =2 — violates X1 # X2 — backtrack (unassign X; = 2 and assign other
value from D(X2))

3. Assign X; =3 — no constraints violated — OK

Solution: X; =2, X> =3

2.2.2 Introduction to Minizinc

Minizinc is a high-level, declarative modeling language designed for describing constraint
satisfaction and optimization problems. The declarative syntax of the language allows users
to describe what the problem is and not how it should be solved. This makes it easier to model
Constraint Satisfaction Problems, as the syntax of Minizinc is also very straightforward and
understandable. Moreover, Minizinc offers a wide range of built-in. arithmetic, logical, and
global constraints such as alldifferent, which enforces that the values of specific variables
should all be different from each other, and cumulative, which can be used in scheduling
problems to ensure that resources over time do not exceed a given capacity. Additionally, it
offers optimization for the minimization and maximization of selected parameters. Also,
Minizinc offers modularity as it supports reusable components through modules and
‘include’ files. Finally, another very important feature of Minizinc is that it is solver-
independent, meaning that problems modelled in Minizinc can be solved using different
solvers such as Gecode, Chuffed, and COIN-BC. This flexibility is very important as,

depending on the problem structure, different solvers can perform differently.

H'H
HN
! p_unassigned;

of int: Workers 1..W;

of int: Tasks = 1..T;

array[Workers, Tasks] of int: cost;

array[Workers, Tasks] of @..1: can_do;

array[Workers] of int: max_tasks;

array[Workers, Tasks] of var @..1: x;

array[Tasks] of var 0..1: u;

constraint forall(t in Tasks)(sum(w in Workers) (x[w,t]) + ul[t] = 1);

constraint forall(w in Workers, t in Tasks)(x[w,t] <= can_do[w,t]);

constraint forall(w in Workers)(sum(t in Tasks)(x[w,t]) <= max_tasks([w]);

solve minimize sum(w in Workers, t in Tasks)(cost[w,t] * x[w,t]) + p_unassigned * sum(t in Tasks)(ultl);

Figure 1: Simple Minizinc model example. Assign workers to tasks such that we minimize

the assignment cost and the penalty for unassigned tasks.

2.2.3 Application in Thesis

The Minizinc model used in this thesis was written as a .mzn file and executed through
Python using the official minizinc-python library [11]. More specifically, when the declared
endpoint (/admin/run-matching) is called, JavaScript spawns a child process using the spawn
module from the child process library to run the aforementioned Python script. The Minizinc
model included sections to define the students’ and teachers’ preferences data, assignment
and capacity constraints, and optimization criteria. Once executed, Minizinc returned the
solution that minimized the number of students that were left unassigned. This optimization
statement allowed us to get the solution that matched the most students to teachers while

satisfying the assignment constraints.

Minizinc was chosen for its expressiveness and its ability to work with a range of solvers,
which made it possible to improve the performance by choosing the appropriate solver for
the specific problem structure.

In summary, Minizinc proved to be a powerful tool for modeling and solving the teacher
assignment problem. Its syntax, paired with its optimization capabilities and solver
compatibility, allowed for concise and readable problem encodings and enabled the

generation of fast and high-quality solutions.

2.2.4 Function and Constraint Explanations

For this project, built-in functions of Minizinc were used to model and solve the problem.
Firstly, the array2d function was used. This function is called as follows: arra2d(<rows>,
<columns>, <flat-list>), and it rearranges the flat list that it takes as input into a 2d array with
rows and columns based on the values given as first and second parameters to the function

respectively.

int: rows
int: cols

array[1..rowsxcols] of int: flat_list =[5, 3, 8, 6, 2, 9, 1, 4, 7, 0, 3, 2];

array[l..rows, 1l..cols] of int: grid = array2d(1l..rows, 1l..cols, flat_list);

Figure 2: Simple example of formatting a flat list into a 2D array in Minizinc, using the

array2d built-in function.

The exists function was also used. The exists function is a quantifier used to check if at least
one element in a set or array satisfies a condition. The formal call syntax for the function is:
exists(1 in <IndexSet>)(<Condition(i)>), where <IndexSet> is a set or range of values to
iterate over, and <Condition(i)> is a boolean expression involving i. The function will return

true if any value in the IndexSet makes Condition(i) true.

int: n = 5;
array[l..n] of int: ages = [25, 42, 67, 33, 59];

constraint (exists(i in 1..n)(ages[i] > 60));

Figure 3: Simple example of the exists function that checks if at least one of the values in

the ages array is over 60.

Moreover, the let—in construct was used. This construct is a scoping expression used to
introduce temporary local definitions that are only visible inside a single expression. The
formal syntax for the construct is: let { <local declarations> } in <expression>, where the
<local declarations> is one or more definitions (e.g., int: x = 5; set of int: A = 1..3;), and

<expression> is any Minizinc expression that can use those local declarations/definitions.

set of int: S = 1..3;
array[S] of int: vals = [10, 20, 30];

array[S] of int: doubled =

[let { int: temp = vals[s] *x 2 }
in temp
| s in S 1;

Figure 4: Simple example of the let-in construct that is used to create a new array that
stores the doubled values of an original array. The ‘|” symbol is used in Minizinc inside
comprehensions (like arrays and sets), and it separates the expression being built from the

iteration/filtering condition.

Additionally, the bool2int function was used. This function is used to convert a boolean
value (true or false) into an integer. True becomes 1 and False becomes 0. The formal call

syntax of the function is: bool2int(<boolean-value>).

int: n = 5;
array[1l..n] of int: ages = [12, 18, 25, 17, 30];

array[l..n] of int: is_adult = [bool2int(ages[i] >= 18) | i in 1..n];

Figure 5: Example of the bool2int function in Minizinc that is used to create an array that

holds 1 if a value is greater than or equal to 18 and 0 if otherwise.

Chapter 3
Problem Definition and Methodology

3.1 Problem Definition

3.1.1 Research Context and Motivation

Assigning teachers to supervise students for their Thesis Project is a time-consuming and
error-prone process that is currently done manually. Also, the process that teachers and
students follow to submit their preferences is outdated, and it itself poses risks for errors. At
the same time, this is a mandatory process that has to be completed by all students of the
department, so creating a modern solution that is simpler and eliminates the risk of
mismatching errors was important.

The task of assigning teachers to students takes into account the preferences of the students
and the teachers alike, as well as the capacity of the teachers, meaning how many students
they can supervise. Satisfying the preferences of both aforementioned parties to the
maximum degree while also respecting the teacher’s capacities at the same time presents

significant research challenges.

3.1.2 Formal Problem Statement

This study addresses the problem of mutual preference-based student-teacher assignment for
their thesis, where both teachers and students express ranked preferences over each other.
The objective is to assign teachers to students in a way that respects mutual preferences,
capacity constraints, and prioritizes optimal satisfaction of student choices.
Let:

S = {s1,52,...,5n} be the set of students
and

T = {ti,t2,...,tm} be the set of teachers

Each student s; provides a ranked list of their four preferred teachers, denoted as:

10

Py(si) = [ti, tio, tiz, tia]

Each teacher ¢; provides a ranked list of their four preferred students, denoted as:

Pu(t) = [sj1, Sp2, Sj3, Sja)

Each teacher t; has supervision capacity C(t;), indicating the maximum number of students

they can supervise.

The goal is to derive a mapping f: S — T U {0} where f(s;) = t; if student s; is assigned to

teacher ¢t or f(s;) = 0 if the student remains unassigned.

From f'we can derive the mapping g: T — 25 where g(tj) = { sie S| f(s) = ¢; }

The constraints defined for the problem are:

1.

Capacity constraint: no teacher can be assigned more students than their capacity

allows — how many students they can supervise.

lg)I<Ct)yvteT

Mutual Preference constraint: a student s; can only be assigned to a teacher ¢; if:

tj € Py(sy) and s; € Py(t))

Coherence constraint: the mappings f and g must be consistent

fs) =t;=si€ g(ty)

and

9t) = {silfls) =4}

Preference Prioritization (Blocking Pairs): if a student s; is assigned to a lower-ranked

teacher ¢, in their preferences, it must be because any higher-ranked teacher t5 in their
list either:
e Has not selected the student in their preferences
si & P(tp)
e Has reached their capacity limit

lg(ty)| = C(ts)

11

Example of a Student-Teacher Assignment Problem:
Let the set of students be:

S = {51, 52, 53, S4, S5, S6}

And the set of teachers be:
T={t,t,t}

Each teacher has a supervision capacity of 2:

C(t;)) =C(t;) =C(t3) =2

Each student submits a ranked list of preferred teachers:
Py(sy) = [t112,15]
Py(s3) = [t1,13,12]
Py(s3) = [t2,11,13]
Py(sq) = [t2,13,11]
Py(ss) = [t3,11,12]
Py(s¢) = [t3,12,11]

Each teacher submits a list of preferred students:
Py(t1) = [s1,52,53]
Py(tz) = [s3,54,51]
Py(t3) = [s5,56,52]

Decision Variable f where f(s;) = ¢ if student s; is assigned to teacher #, or f(s;) = 0 if the

student remains unassigned.

The assignment must satisfy the following constraints:
1. No teacher may supervise more students than their capacity.
2. A student may only be assigned to a teacher if both have selected each other.

3. Each student may be assigned to at most one teacher.

12

4. If a student is assigned to a lower-ranked teacher, then all higher-ranked teachers in

their preference list either did not select the student or have reached their capacity.

The objective is to maximize student satisfaction while minimizing the number of unassigned

students. This is achieved by prioritizing higher-ranked teachers in each student’s preference

list and minimizing the total number of students who are unassigned (assigned to 0)

Example of a Valid Assignment (Solution):

fls1) =t
f(s2) =t
f(s3) =12
fls4) =12
f(ss) =t3
f(s6) = 13

This assignment is valid because:

All teachers supervise exactly two students, respecting capacity limits.

All assigned pairs satisfy mutual preferences.

No student is assigned to more than one teacher.

No blocking pairs exist, as no student-teacher pair would prefer to deviate

from the assignment.

Example of an Invalid Assignment (Not a Solution):

fs1) =t
f(s2) =t
f(s3) =t
fls4) =12
flss) =13
f(ss) = t3

13

This assignment is not valid because teacher #; is assigned three students, exceeding its

capacity constraint.

3.2 Similar Problems

3.2.1 Stable Marriage Problem

3.2.1.1 Problem Definition
The Stable Marriage Problem involves matching equal numbers of men and women, each

with a ranked preference list for the other group, to find a stable matching where no man and
woman would prefer each other to their assigned partners. A stable matching has no
“blocking pairs” — individuals who are matched but would both prefer to be with each other

than their current partners.

3.2.1.2 Problem Modeling as CSP
The stable marriage problem can be modelled as a Constraint Satisfaction Problem as

follows:

Parameters:
n: number of women and men (number of women is equal to number of men)
rankm(mi, w;): The ranking list of the men — position of woman w; in man m; ‘s preferences

rank,(wj, m;): The ranking list of the women — position of man m;in woman w; ‘s preferences

Variables:
Let:

M = {mi, m, ..., my} be the set of Men
and

W = {wiwa, ..., w,} be the set of Women

Define:

14

X; : the partner/wife assigned to man m;
Y;: the partner/husband assigned to woman w;

Each value X;and Y, represents a match and must be assigned a value from the opposite set

Domains:
D(X;) = W: Each man can be matched to a woman

D(Y;) = M: Each woman can be matched to a man

Constraints:

1. Unique assignments constraint: All men must be matched to a different woman, and

all women must be matched to a different man — no two (or more) men can have the
same wife, and no two (or more) women can have the same husband.

Alldifferent(X;, X>,
Alldifferent(Y,, Y>,

X): all men should have different wives from one another

ey

Y,): all women should have different husbands from one another

ey

2. Coherence constraint: if a man m; is matched to a woman wj;, then w; is matched to m;

and vice versa.

Xi=w e Y=m;

3. Blocking Pairs constraint: prevent blocking pairs (m;, w;) that would prefer each other

over their current partners. For each unmatched pair, should enforce:

— (rankm(mi, wy) < rankm(mi, Xj) A rankw(w;, m;) < rank,,(wj, Y;))

3.2.2 Hospitals — Residents Problem

3.2.2.1 Problem Definition
The Hospitals — Residents problem involves matching a set of residents to a set of hospitals,

where each resident has a ranked preference list of hospitals, and each hospital has a ranked
preference list of residents, along with a capacity indicating how many residents it can accept.

The goal is to find a stable matching where no resident and hospital would both prefer to be

15

matched to each other over their current assignments. A stable matching has no blocking
pairs — a resident and hospital who are not matched together but would both prefer each other
to their current assignments, and where the hospital either has an unfilled position or prefers

the resident over at least one of its current assignees.

3.2.2.2 Problem Modeling as CSP
The Hospitals — Residents problem can be modelled as a Constraint Satisfaction Problem as

follows:

Parameters:

r: the number of residents

h: the number of hospitals

capacity[k]: capacity of hospital /4

rank,(r;, hi): position of hospital /i in resident 7; ‘s preference list

ranky(hi, r;): position of resident 7; in hospital /i ‘s preference list

Variables:
Let:
R = {r1, ry, ..., r} be the set of residents

H = {hy, hy, ..., hi} be the set of hospitals
Define:
X; : the hospital assigned to resident 7; (0 if unassigned)

Yk : the set of residents assigned to hospital 7

Domains:
D(X;) = {0} v H: each resident can remain unassigned (0) or be matched to a hospital

D(Yy) < R: each hospital can have a subset of residents assigned to it

Constraints:

16

Capacity constraint: a hospital cannot be assigned more residents than its capacity

allows.

|Yi| < capacity[k] V hx e H

Coherence constraint: if a resident is assigned to a hospital, then the resident should

belong in the set of assigned residents to that hospital, and vice versa.

Xi=hi<rieY

Unique assignment constraint: each resident is assigned to at most one hospital

Xi € {0} VH

Blocking pairs constraint:

— (rank-(ri, hy) < rank.(rvi, Xi) A (Y| < capacity[k] v Ir;e Yi : rankn(hi, ri) <
rankn(hi, 1i)))

3.2.3 Comparison with Related Matching Problems

Both the Stable Marriage Problem and the Hospitals-Residents Problem share fundamental
characteristics with the Students-Teachers Assignment Problem addressed in this thesis:

1.

Mutual Preference: All three problems involve two distinct sets of entities that
express ranked preferences over members of the opposite set.
¢ In the Stable Marriage Problem, men and women rank each other.
¢ In the Hospitals-Residents Problem, residents rank hospitals, and hospitals
rank residents.
e In the Students-Teachers Problem, students rank teachers, and teachers
select students.

Matching: Each problem requires finding a matching that satisfies specific
constraints.
¢ In the Stable Marriage Problem, the constraint is stability — no blocking
pairs.

17

In the Hospitals-Residents Problem, the constraints are stability and hospital
capacity limits.

In the Students-Teachers Problem: the constraints are teacher capacity
limits, mutual selection, and avoidance of blocking pairs.

3. Goal: All three problems aim to produce assignments that are as fair and optimal as
possible within the given constraints.

The Stable Marriage Problem seeks a stable matching where no pair would
prefer each other over their current partners.

The Hospitals-Residents Problem seeks a stable matching between the
residents and the hospitals, while respecting the capacities of the hospitals.
The Students-Teachers Problem seeks to maximize student satisfaction
while respecting the teacher capacities and mutual preferences.

18

Chapter 4

Constraint Programming Solution

4.1 Constraint Satisfaction Problem

The objective was to assign teachers to students based on the preference lists submitted by

all the teachers and the students. The solution should respect the preferences of everybody

and should try to satisfy the rankings of the students. At the same time, the solution should

respect the capacity limitations of the teachers so that no teacher is assigned more students

than their capacity allows.

4.2 Minizinc Model Explanation

The model used in this project is defined in minizincModel.mzn, and consists of:

Parameters: (Figure 1)

numStudents: the total number of students who have submitted preferences
numTeachers: the total number of teachers with remaining capacity
Students: the set with integer values 1 — numStudents

Teachers: the set with integer values 1 — numTeachers

[Array] studentsPreferences: 2D array that holds the preferences of each
student. Each teacher selected by a student is denoted in the choices of the
student with the index of the teacher in the set of Teachers as defined above.
[Array] teacherPreferences: 2D array that holds the preferences for each
teacher. Each student selected by a teacher is denoted in the choices of the
teacher with the index of the student in the set of Students as defined above.
[Array] teacherCapacity: 1D array that holds the capacity of each teacher. The
index in the array is the index of the specific teacher from the Teachers set as

defined above.

19

int: numStudents;
int: numTeachers;

set of int: Students = 1..numStudents;
set of int: Teachers 1..numTeachers;

array[Students, 1..4] of int: studentsPreferences;

array[Teachers, 1..4] of int: teacherPreferences;

array[Teachers] of int: teacherCapacity;

Figure 1: Parameters of the Minizinc Model

Derived Parameters: (Figure 2)

e [Array] studentPrefers: 2D boolean array that stores whether a student prefers
a teacher — studentPrefers[s,t] = true if student s has listed teacher t in their
preferences list, = false if otherwise.

e [Array] teacherPrefers: 2D boolean array that stores whether a teacher prefers
a student — teacherPrefers[t,s] = true if teacher t has listed student s in their
preferences list, = false if otherwise.

e [Array] allowed: 2D boolean array that stores whether a student can be
matched to a teacher based on the preferences of both. Uses the teacherPrefers
and studentPrefers arrays to decide — allowed[s,t] = true iff studentPrefers(s,t]
= true AND teacherPrefers[t,s] = true.

e [Array] rankS: 2D array that stores the ranking that each student selected for
each teacher. If the student has selected a teacher more than once in their
preferences list, then it stores the best ranking the student gave to the teacher.
If the student has not selected the teacher, then it sets the ranking in the rankS
array for that teacher by that student to 5 — rankS[s,t] = 5.

20

array[Students, Teachers] of bool: studentPrefers =
array2d(Students, Teachers,
[exists(i in 1..4)(studentsPreferences[s,il = t) | s in Students, t in Teachers 1);

array[Teachers, Students] of bool: teacherPrefers =
array2d(Teachers, Students,
[exists(j in 1..4)(teacherPreferences([t,j] = s) | t in Teachers, s in Students 1);

array[Students, Teachers] of bool: allowed =
array2d(Students, Teachers,
[studentPrefers[s,t] /\ teacherPrefers[t,s] | s in Students, t in Teachers]);

array[Students, Teachers] of int: rankS =
array2d(Students, Teachers,
[let {
set of int: hits = { i | i in 1..4 where studentsPreferences[s,i] = t }
} in if card(hits) > @ then min(hits) else 5 endif
| s in Students, t in Teachers 1);

Figure 2: Derived parameters of the Minizinc model

Decision Variables: (Figure 3)

e [Array] supervisor: 1D array that holds the assigned teacher/supervisor of
each student. The length of the array is equal to the number of students, and
the index of the array corresponds to the specific student from the Students
set as defined above. The values that can be given to each position in the array
are values from the Teachers set as defined above, and the value O if the
student remains unassigned.

e [Array] x: 2D array that holds the assignment of each student. If a student s
has been assigned to a teacher t, then x[s,t] = 1, otherwise x[s,t] = 0.

e [Array] unassigned count: Integer value that represents the number of

students who have remained unassigned.

array[Students, Teachers] of var 0..1: x;

array[Students] of var @..numTeachers: supervisor;

var int: unassigned_count = sum(s in Students)(1 - sum(t in Teachers)(x[s,t]));

Figure 3: Variables of the Minizinc Model

21

Constraints: (Figure 4)

e Constraint 1: Coherence constraint — ensure that if a student s is assigned
to a teacher t, then supervisor[s] =t or if unassigned then supervisor[s] =
0.

e Constraint 2: Ensures that a student can only be assigned to a teacher if
both the teacher and the student have selected each other — uses the
‘allowed’ derived parameter.

e Constraint 3: Ensures that a student can be assigned to at most one
teacher.

e Constraint 4: Ensures that the number of students assigned to a teacher
does not exceed the capacity of the teacher.

e Constraint 5: Ensures that no blocking pairs occur. If a student s is
assigned to a teacher t, but there exists a teacher a that s prefers to t, then
that should be because either a has not selected s in their preference list or

because a has reached their capacity.

constraint forall(s in Students) (
supervisor[s] = sum(t in Teachers)(t * x[s,t])
);

constraint forall(s in Students, t in Teachers) (
x[s,t] <= bool2int(allowed[s,t])
);

constraint forall(s in Students) (
sum(t in Teachers)(x[s,t]) <= 1
);

constraint forall(t in Teachers) (
sum(s in Students) (x[s,t]) <= teacherCapacity[t]
);

constraint forall(s in Students, t in Teachers where rankS[s,t] <= 4)(
(x[s,t] = 1) —> forall(b in Teachers where rankS[s,b] < rankS[s,t])(
(not allowed[s,bl) \/ (sum(ss in Students)(x[ss,b]) >= teacherCapacity([b])

);

Figure 4: Constraints of the Minizinc Model

22

4.3 Integration of Minizinc Into the System

4.3.1 Python-Minizinc Library
Python offers an official Minizinc library that lets us run the model straight from Python. The

library allows the definition of a model through the Model module, which takes as a
parameter the .mzn file, the selection of a solver using the Solver module with the built-in
lookup function, and the creation of an instance which allows us to give values to the
parameters so the model can run on the specified data without having to create a .dzn file by
parsing the data. Furthermore, through this approach, we can create a dataclass that stores
the output of the model in a structured manner in order to work on the resulting data more
easily and have the option to pass it to Node.js in order to manipulate it, and query the

database to insert it into the table that stores the assignments.

4.3.2 Python-Minizinc Implementation

Firstly, the minizincModel.mzn file, which contained the model of the problem, was added
to the project sub-folder dedicated to the backend of the website. The Model() module from
the Minizinc library was then used to access the model from the Python script. Next, the
lookup function of the Solver module was utilized to select the solver that would be used to
solve the problem. Finally, the Instance module was used to define the values of the
parameters expected by the model, instead of creating a separate .dzn data file. After the
parameters were set up, the solve() function was called on the instance to run the model and
obtain the result, which was stored in a variable called res, along with the solution extracted

from the result, which was saved in a variable named sol.

23

here = Path(__file__).resolve().parent
model_path = here / "minizincModel.mzn"

model = Model(str(model_path))
model.output_type = MatchSolution
solver = Solver.lookup(*“gecode")
inst = Instance(solver, model)

inst["numStudents"] = payload["numStudents"]
inst["numTeachers"] = payload["numTeachers"]
inst["studentsPreferences"] = payload["student_prefs"]
inst["teacherPreferences"] = payload["teacher_prefs"]
inst["teacherCapacity"] = payload["teacher_capacity"]

res inst.solve()
sol res.solution

Figure 5: Model, Solver, Instance from Python script

The wvalues that were given to the parameters, numStudents, numTeachers,
studentsPreferences, teacherPreferences, and teacherCapacity, were fetched from the
database by Node.js before calling the sub-process that spawned the Python script, and upon
spawning the Python script, the data was passed to the child process by Node.js.

Then, the supervisor resulting list was extracted from the model’s solution and passed to the
parent process (Node.js) for handling. Only the supervisor list from the result was used, as it
was the easiest to manipulate in order to extract the assignments, which would later be stored
in the pairings table in the database.

For the extraction of the supervisor list from the result, a method given in the official
Minizinc-Python documentation was used. A dataclass was created to store the output of the
Minizinc model into variables, which could then be manipulated independently from one

another.

24

@dataclass

class MatchSolution:
supervisor: List[int]
x: Optional[Any] = None

unassigned_count: Optionallint] = None
objective: Optionall[int] = None
__output_item: InitVar([str] = None

Figure 6: Dataclass from Python script

4.3.3 Node.js Parent Process
In order to call the Python script from the endpoint ‘/admin/run-matching’ in the

admin.routes.js file, the spawn module from the child process library, which comes pre-
installed with Node.js, was used. This module allows spawning a child process within the
Node.js code and passing arguments to the child process upon spawn. Firstly, a helper

function was created to spawn the Python script process with the correct parameters.

function runPython(pythonFile, payloadPython){
return new Promise((resolve, reject) => {
const process = spawn(PYTHON_BIN, [pythonFilel, { stdio: ['pipe', 'pipe', 'pipe'l, env: CHILD_ENV })
let stdout v
let stderr

process.stdout.on('data’', (c) => (stdout += c.toString()))
process.stderr.on('data', (c) => {
const s = c.toString()
console.error('[pyl"', s.trim())
stderr += s
¥)
process.on('error', (err) => reject(err))
process.on('close', (code) => {
if(code !== 0){
| return reject(new Error(Python exited with code ${code}. stderr: ${stderr || '(empty)'}’))
¥
try{
const json = JSON.parse(stdout)
if (json && json.ok === false) {
| json._stderr = stderr

¥

resolve(json)
Ycatch (err){
| reject(new Error(Failed to parse Python JSON.\nstdout:\n${stdout}\n\nstderr:\n${stderr}))
¥

)
process.stdin.write(JSON.stringify(payloadPython))
process.stdin.end()

})

Figure 7: Helper function to call the Python child process in Node.js

25

In the ‘/admin/run-matching’ endpoint code, the database was first queried to retrieve the
database IDs of the students who had submitted preferences and were not yet assigned to a
teacher, the database IDs of the teachers who had remaining capacity, the preferences of the

students, the preferences of the teachers, and the remaining capacities of the teachers.

const [studentIdsRows] = await pool.execute(

SELECT sp.student_id

FROM student_preferences sp

LEFT JOIN pairings p ON p.student_id = sp.student_id
WHERE p.student_id IS NULL OR p.teacher_id IS NULL
ORDER BY sp.student_id

)
const studentIds = studentIdsRows.map(r => r.student_id)

const [teacherIdsRows] = await pool.execute(

SELECT u.id

FROM usersTest u

JOIN teacher_capacity tc ON tc.teacher_id = u.id

WHERE u.user_role = 'Faculty' AND tc.capacity_remaining > @
ORDER BY u.id

Figure 8: Node.js /run-matching queries (a)

26

const [studentPrefsRows] = await pool.execute(

SELECT student_id, preferencel, preference2, preference3, preference4
FROM student_preferences

WHERE student_id IN (${studentIds.map(()=>'?"').join("',")})

ORDER BY student_id

’

studentIds

const [teacherPrefsRows] = await pool.execute(

SELECT teacher_id, preferencel, preference2, preference3, preference4
FROM teacher_preferences

WHERE teacher_id IN (${teacherIds.map(()=>'?"').join("',")})

ORDER BY teacher_id

’

teacherlds

const [capacityRows] = await pool.execute(

SELECT teacher_id, capacity_remaining

FROM teacher_capacity

WHERE teacher_id IN (${teacherIds.map(() => '?').join("',")})
ORDER BY teacher_id

’

teacherlds

Figure 9: Node.js /run-matching queries (b)

The issue was that the database IDs of the teachers and the students, which were used in the
table that stored the preferences, the table that stored the remaining capacities of the
teachers, as well as in all other tables in the database, were not continuous indices, but
Minizinc expects the students and the teachers to have continuous indices in the parameter

lists. Take the example of the user table below:

27

id name username user_role password

1 Panagiotis pkourk02 Student
Kourkoulis

2 Yiannis yiannisdim Faculty
Dimopoulos

3 Panagiotis pkolios Faculty
Kolios

4 Georgia gpapad04 Student
Papadopoulou

5 Kyriakos kpoyia03 Student
Poyiadjis

6 Vassos vasosvas Faculty
Vasileiou

7 Panagiotis pioann04 Student
Ioannides

8 Costas Pattichis | costaspatt Faculty

Table 1: Users table example

And the preference tables based on example preferences submitted by students and teachers:

id student id | preferencel | preference2 | preference3 | preference4 | created at
1 1 2 3 6 8
2 4 3 6 8 2
3 5 6 8 2 3
4 7 8 2 3 6

Table 2: Student Preferences table example

28

id teacher id | preferencel | preference2 | preference3 | preference4 | created at
1 2 1 4 5 7
2 3 4 5 7 1
3 6 5 7 1 4
4 8 7 1 4 5

Table 3: Teacher Preferences table example

These preferences, if given to Minizinc unprocessed, would look like this:
studentsPreferences = [[2,3,6,8], [3,6,8,2], [6,8,2,3], [8,2,3,6]]
teacherPreferences = [[1,4,5,7], [4,5,7,1], [5,7,1,4], [7,1,4,5]]

But this creates indexing errors in Minizinc since the indices are based on the database IDs,

which are not continuous, as Minizinc expects. For this reason, in the Node.js code,

mappings for the teachers’ and the students’ database IDs were created, and new preference

tables for each group were generated, where all database IDs were replaced with the

corresponding mappings. So the mappings would look like this:

Key (Student ID) Value (Index)
1 1
4 2
5 3
7 4
Table 4: Student mapping example
Key (Teacher ID) Value (Index)
2 1
3 2
6 3
8 4

Table 5: Teacher mapping example

29

Now, using the mapped teacher and student indices, new preference arrays were created by

replacing the database IDs with the new mapped indices:

id student id | preferencel | preference2 | preference3 | preference4 | created at
1 1 1 2 3 4
2 2 2 3 4 1
3 3 3 4 1 2
4 4 4 1 2 3
Table 6: Student Preferences table with mapped indices example
id teacher id | preferencel | preference2 | preference3 | preference4 | created at
1 1 1 2 3 4
2 2 2 3 4 1
3 3 3 4 1 2
4 4 4 1 2 3

Table 7: Teacher Preferences table with mapped indices

Now, when the preference lists are created based on the newly mapped preferences, the arrays

produced match the format that minizinc expects with continuous indices:
studentsPreferences = [[1,2,3,4], [2,3,4,1], [3,4,1,2], [4,1,2,3]]
teacherPreferences = [[1,2,3,4], [2,3,4,1], [3.4,1,2], [4,1,2,3]]

The same mapping logic was used for the capacities of the teachers. The remaining capacity

of each teacher was fetched from the database, and an array was created using the mapping

of the teacher IDs, as expected from Minizinc, for the teacherCapacity parameter.

30

const studentMap = new Map(studentIds.map((id, i) => [id, i + 11))
const teacherMap = new Map(teacherIds.map((id, i) => [id, i + 1]))

const teacherSet = new Set(teacherIds)
const badTeacherRefs = []
for (const row of studentPrefsRows) {
for (const tId of [row.preferencel, row.preference2, row.preference3, row.preference4]) {
if (!teacherSet.has(tId)){
| badTeacherRefs.push(tId)

if (badTeacherRefs.length) {
const missing = Array.from(new Set(badTeacherRefs)).sort((a,b)=>a-b)
return res.status(400).json({
error:
‘Student prefs reference teacher_ids without submissions: ${missing.join(', ')}. °
‘Either collect those teachersﬂ prefs or change the teachers fethced.’,
1)

function toValidIndex(val, max) {
return (Number.isInteger(val) & val >= 1 && val <= max) ? val : 1

const student_prefs = studentPrefsRows.map(row => {
const prefs = [row.preferencel, row.preference2, row.preference3, row.preference4]
return prefs.map(tId => toValidIndex(teacherMap.get(tId), teacherIds.length))

1)

const teacher_prefs = teacherPrefsRows.map(row => {
const prefs = [row.preferencel, row.preference2, row.preference3, row.preference4]
return prefs.map(sId => toValidIndex(studentMap.get(sId), studentIds.length))

})

Figure 10: Node.js code to create the mappings for the IDs and create the appropriate

preference arrays.

const capacityMap = new Map(capacityRows.map(r => [r.teacher_id, r.capacity_remaining]))

const teacher_capacity = teacherIds.map(id => {
if (!capacityMap.has(id)) {

| throw new Error(°No capacity entry found for teacher_id ${id}")
}
return capacityMap.get(id)

o)

Figure 11: Node.js code to create the mapping for the capacity array.

31

Then, these arrays were added to the payload that would be passed as arguments to Python,
so then, in the Python script, these arrays were used as the values for the studentsPreferences,
teacherPreferences, and teacherCapacity parameters in the model. Along with the two
preference lists and the capacity list, in the payload for the Python script, the number of
teachers and the number of students were also given, as it was expected by the Minizinc
model for the parameters: numStudents and numTeachers.

Then, after the model had completed running and the Python script had returned, the
supervisor list was passed to the parent process (Node.js) by the Python script. The teacher
mappings were then used to un-map the indices from the supervisor array to the correct
database IDs. Based on the unmapped IDs, the pairs were inserted into the database table
‘pairings’, where the database IDs of the students and their assigned teacher were stored. The

entries in the ‘pairings’ table based on the above example would be:

id student id teacher id created at
1 1 2
2 4 3
3 5 6
4 7 8

Table 8: Resulting Pairings table example.

const result = await runPython(PY_PATH, payloadPython)
if(!result || !'result.ok || 'Array.isArray(result.assignments)){

| return res.status(500).json({ error: "Solver error", details: result})

b

Figure 12: The code in Node.js to run the Python script using the helper function (Image 8)

32

for (let sIdx = @; sIdx < studentIds.length; sIdx++) {
student_id = studentIds[sIdx]
teacherIndex = result.assignments[sIdx]
teacher_id = (Number.isInteger(teacherIndex) && teacherIndex >= 1 && teacherIndex <= teacherIds.length) ? teacherIds[teacherIndex - 1] : null

await pool.execute(
INSERT INTO pairings (student_id, teacher_id)

VALUES (7, ?)
ON DUPLICATE KEY UPDATE teacher_id = VALUES(teacher_id)

’
[student_id, teacher_id]

)

inserted++

Figure 13: The code in Node.js to unmap the indices of the teachers in the Minizinc result

and insert the assigned pairs in the ‘pairings’ table in the database

33

Chapter 5

Software Technologies

5.1 Introduction

This chapter provides an overview of the different user groups that would have access to
the system, the architecture of the system, and the different tools and frameworks used to
develop the system, including front-end technologies for building an intuitive user
interface, back-end technologies for handling the application logic and API endpoints, and

database solutions for data storage.

5.2 User Categories
When designing and developing a system, the users who will interact with it must be

accounted for. Each type of user has to complete different tasks and thus has to have access
to different information.

There will be 3 types of users that will have access to the present system.

Faculty Members of the Computer Science Department of the University of Cyprus

Each teacher will have access to the data that is relevant to their tasks, which include
selecting preferences for which students to supervise and managing their assigned students.
More specifically, they will be able to view the students who have selected them in their
preference lists and where they ranked them. Moreover, they will be able to select the
students they would prefer to supervise from a list of all the available students.
Additionally, they will be able to see the preference list they have submitted, along with the
option to modify and update it, as well as the students whom they have been assigned so

far.

Students of the Computer Science Department of the University of Cyprus

Each student will be able to select the four teachers, from the list of the department’s

teachers, who they would prefer to be supervised by. After submitting their preferences,

34

they will be able to view the preferences they have submitted, along with the option to
modify and update them. After being assigned to a teacher, they will not be able to make
new submissions or modifications to their submission, and they will view the teacher they

were assigned to.

Secretary of the Department — Thesis Coordinator of the Department:

For presentation purposes, I will refer to this user as the ‘secretary’, who will potentially be
using the system together with the Thesis Coordinator. The secretary will be able to view
the preferences submitted so far by both the teachers and the students. Additionally, they
will be able to view the assignment section, which, if the algorithm for the pairing has not
run yet, will display the ‘run’ button, and in case the algorithm has ran and assignments
have been made, they will see the assignments made so far, along with the button to re-run
the algorithm. Moreover, they will be able to see a summary of the assignments, the

students who have remained unassigned so far, and the remaining capacities of the teachers.

5.3 System Architecture

For the system, a 3-layer system architecture was used. This architecture separates the
system into: Presentation Layer, Application Layer, and Data Access Layer. This
architecture provides a clean approach for systems that require to have a front-end UI
interface that interacts with a database to access and display data. This architecture provides

easier maintenance and scalability.

Presentation Layer:

This layer consists of the front-end of the system (user interfaces). It handles the interfaces
that the users use to interact with the system. The technologies used for this layer are:

HTML, CSS, and JavaScript.

Application Laver:

This layer, logically, sits between the presentation and the data access layers. It processes

the data, enforces rules, and coordinates the behavior of the application. In this layer, we

35

define the different API endpoints of the application and how the system should react when
those endpoints are triggered by the front-end. Once the endpoint completes its task, it
sends a response back to the front-end, which contains the requested data or an error
message.

After the front-end receives the response from the application layer, it can display the data
received to the user. If the call was successful, it will display the data in a formatted way, or
if an error occurred, it will display the error to the user.

The technology used for this layer is the Express framework that works on Node.js, which is

a JavaScript runtime environment that allows server-side execution of JavaScript.

Data Access Layer:

The database of the system. In the database, tables were created to store the credentials of the
users, the preferences of the students, the preferences of the teachers, the capacities of the
teachers, and the assignments of the students. For the management of the database, MySQL
was used because it is supported by the university’s infrastructure, along with the DBeaver

database client, which supports MySQL databases.

5.4 Implementation Tools
This section describes in detail the technologies used to implement the system.

5.4.1 Front-end Web Development
Front-end web development refers to the creation of the interface through which users

interact with the system. The first technology used to build the front-end was HyperText
Markup Language (HTML) [1], specifically HTMLS, which is the fifth and most recent
version of the language. HyperText Markup Language is the foundational language used to
create and structure content on the web. It is not a programming language, but rather a
descriptive language that instructs the web browsers on how to display various elements
(images, text, links, etc.) on a page. Every visible component of a webpage is defined using

HTML. At its core, HTML uses tags to wrap content, the different elements, and assign

36

semantic meaning to them. For example, a paragraph is marked with <p>, an image with
, and a form with <form>. These tags allow web browsers to interpret the role of each

element and render it accordingly.

To style the pages and control their visual appearance, Cascading Style Sheets (CSS) [2] was
used. CSS is the language responsible for defining the appearance and layout of webpages.
While HTML provides the structural framework, CSS enhances it by specifying design
attributes such as colors, fonts, spacing, and positioning. CSS rules can be written within an
HTML file using <style> tags, but for projects that require more complex styling, they are
typically placed in separate .css files and linked to the HTML. When a browser loads a
webpage, it first reads the HTML to determine what content to display, and then applies the
CSS rules to style the content accordingly. In CSS, the different elements defined in the
HTML file can be referenced using their HTML tags or certain attributes assigned to them
in HTML.

The last technology used for the front-end web development is JavaScript [3]. JavaScript is
used in front-end web development to add interactivity and dynamic behavior to websites.
While HTML defines and structures the content, and CSS styles it, JavaScript makes it
dynamic by allowing the page to respond to user actions in real time. For instance, when a
user presses a button, fills out a form, or hovers over an element, JavaScript can detect these
events and trigger changes such as showing a pop-up window, updating part of the page
content without needing to reload the page, or even validating user input. JavaScript runs on
the client side, meaning it executes directly in the user’s browser rather than on the server,
which allows for fast and responsive interactions. It also provides access to the Document
Object Model (DOM) [12], which is the browser’s internal representation of the page. By
manipulating the DOM, JavaScript can dynamically make changes such as changing text,
hiding or showing elements, etc., after the page has loaded and without needing to reload it.
In this thesis project, JavaScript was extensively used to display user-specific information
and enhance the interactivity of the interface, contributing to a more intuitive and engaging
user experience. Additionally, JavaScript was chosen for its ability to handle asynchronous

operations. Specifically, the Fetch API was utilized, which provides the fetch() function for

37

making HTTP requests directly from the browser. This function was used to communicate
with the endpoints defined in the Application Layer, allowing the system to retrieve or store

data in the database without requiring a full page reload.

5.4.2 Back-end Development

Back-end development refers to the creation of the server-side logic that powers the system,
processes data, and communicates with the database. It operates behind the scenes to ensure
that the front-end interface receives the correct information and behaves as expected in
response to user actions.

The back-end of the system was implemented using the Express framework [5] on top of
Node.js [4], forming the core of the Application Layer in the 3-layer architecture. Node.js
provides the runtime environment that allows JavaScript to be executed on the server side,
while Express offers a lightweight and flexible framework for building web applications and
defining HTTP endpoints.

In this layer, a set of RESTful API endpoints [6] was created that handle requests from the
front-end and interact with the database. Each endpoint is responsible for a specific operation,
such as retrieving user preferences, submitting preferences, or validating credentials. These
endpoints serve as the bridge between the user interface and the underlying data, ensuring
the system responds appropriately to user actions.

The central file in the backend is server.js, which initializes the Express application,
configures the middleware, and mounts the various route modules. It begins by importing
dependencies, including Express, dotenv for environment variable management, and route
handlers for different user roles (authRoutes, studentRoutes, teacherRoutes, etc.). The
Express app is configured to parse incoming JSON [7] requests and serve static files (HTML
files) from the public directory.

The database connection is managed in a separate file, database.js, which uses the mysql2
library to create a connection pool to the MySQL database. This pool is configured using the
database credentials to gain access to the database, which are stored in environment variables
and exported for use across the backend. This modular approach ensures the database access

1s centralized and reusable.

38

To protect sensitive routes, a middleware function in auth.middleware.js was implemented
called requireAuth. This middleware verifies the presence of a valid JSON Web Token
(JWT) [8] in the request’s Authorization header. If the token is valid, the decoded user
information (id, username, role) is attached to the request object, allowing downstream route
handlers to personalize or restrict access based on user roles. If the token is missing or invalid,
the middleware responds with a 401 [9] Unauthorized error.

In many cases, the logic within the endpoints depends on information provided in the
requests, such as credentials, identifiers, or form data. For example, when a user logs in or
submits their preferences form, the system extracts relevant data from the request body or
headers and uses it to query the database.

Once the necessary operations are performed (querying the database, validating input), the
endpoint sends a structured response back to the front-end. This response may contain
requested data, confirmation of a successful operation, or an error message if the request
could not be fulfilled. The front-end then uses this response to update the user interface
accordingly (e.g., display the preferences submitted by the logged-in user).

This modular and event-driven approach allowed for a clean separation of concerns, efficient
handling of asynchronous operations, and scalable integration with the database. The use of

Express on top of Node.js makes the back-end adaptable to future enhancements.

39

router.post('/login', async (req, res) => {
try{
const { username, password } = req.body

if (lusername || !password)d{
| return res.status(400).json({ error : 'Missing credentials'})
¥

const [rows] = await pool.execute(
“SELECT id, name, username, user_role, password_hush
FROM usersTest
WHERE username = ?
LIMIT 1°,
[username]
)

if(rows.length === 0){
| return res.status(401).json({error : 'Invalid Credentials'})
¥

const user = rows[0]
const ok = await bcrypt.compare(password, user.password_hush)

if(tok){
| return res.status(401).json({error : 'Invalid password — recheck credentials'})

¥

const token = jwt.sign(
{id : user.id, username : user.username, role : user.user_role},
process.env.JWT_SECRET,
{expiresIn: '2h'}

Figure 1: ‘/auth/login’ endpoint that is called when a user clicks the login button in the

login page, in order to log in.

return res.json({
ok : true,
token,
user : {
id : user.id,
name : user.name,
username : user.username,

role : user.user_role

})
catch (err) {
console.error("Login Error: ", err)
return res.status(500).json({error : 'Server Error'})

Figure 2: What the ‘/auth/login’ endpoint returns as a response in case of success and in

case of error.

40

5.5 Database Section

This presents the tables created and used in the database to store the relevant data for the

system.

Users Table
The department already has a table to store the credentials of the users, so the user table that
was created for this thesis had to match the schema of the existing table to allow for seamless

integration.

Column Name #| Data Type Not Null | Auto Increment |Key

id 1 int [v] PRI
name 2 varchar(200) [1]
username 3 varchar(50) [1] UNI
user_role 4 enum('Student''Faculty''Admin') [1]
password_hush 5 varchar(255) [1]

Figure 3: Users table schema ([v] means true)

This table stores the database ID of each user, which is a unique identifier for each user in
the database, their full name, username, their user role, and their hashed password. To

populate this table, I used fake data for teachers (faculty), students, and the admin.

name username user_role password_hush

Panos Kourkoulis pkourk02 Student $2b$12$0YyH6mMbRFQjINh.FENPAG.vbzfPj9dLHfwdbJGLV3S
Yiannis Dimopoulos yiannisdim Faculty $2b$12$dOmMPNQCT85F02Ybirb09s04iLkeKSCp0aGnPZAC
Panagiotis Kolios pkolios Faculty $2b$12$UY4t8GXnIKvPwpY5Fw2DjeOMsOnY4f2fKOb9aEEps/
Yiannos Sazeidis yiannossaze Faculty $2b$12$nNuhcmB72kiOX5fwuZ4tbe8gC8aptgxtA5s9OFYhJ5f
Vasos Vasileiou vasosvas Faculty $2b$12$mcGDOrTrti. TGW3D6GgBOuBVuUoHxpzeKmZ4fNvu

Demitriana Georgiou dgeorg04 Student $2b$12$RvDBtrHCRVHPolraA3JseOUJELZ2x95JQj.xn0.PRmMX
Alexis Andreou aandre06 Student $2b$12$TO80KNupMBKIOEx282A0CuPbgk8R5xAvHgamZ0€
Kyriakos Poyiadjis kpoyia01 Student $2b$12$90g0oM.7j6YuY50/L9gCoaOm26s.2Tejmu3LzgEFLOsI
Dora Georgiou addora Admin $2b$12$ugot9mx7kiqj07pBCEhNJu4f7aEqgvmulKyOk4A7Lu(
Georgia Eirini Papadopoulou gpapad01 Student $2b$12$6V6xp3MSpUqqC.qT6Z7Sh.dm/oON.EPSvWOLRN/uS
Georgia Kourkouli gkourk01 Student $2b$12$TXriPNGkZp4IT5GyZPkrdOY4P9jF/I7mmdg/KxxiMk9

© 0O NOOA WN =
© 0O NO O~ W=

Figure 4: Subset of the users created to populate the users table

41

Student Preferences Table

Currently, the department does not use a table to store the preferences of the students, as they

are sent in forms, and then the matching is completed manually.

olumn Name #|Data Type | Not Null I Auto Increment |Key

id 1 int [v] PRI
student_id 2 int [] UNI
preference1 3int

preference2 4 int

preference3 5 int

preference4 6 int

created_at 7 timestamp

Figure 5: student_preferences table schema ([v] means true)

This table stores the database ID of the submitted preference, which is just an identifier of
the entry, the student id, which is the database ID from the users table of the student who
has submitted the preferences, along with the 4 database IDs of the teachers they selected,

and the timestamp of when the preferences were submitted.

<id student_id preferencel preference2 preference3 preferenced created_at
2025-10-02 17:44
2025-10-02 17:5(
2025-10-02 17:52

2025-10-02 17:59
2025-10-02 18:0(
2025-10-02 18:01

1
2
3
4
5
6
7
8
9

Figure 6: Subset of data stored in the student preferences table, based on preferences

created for a subset of the student users.

Teacher Preferences Table

Similar to the student preferences table, a table to store the teacher preferences is not

currently used by the department. The teacher preferences table was created to store the

42

preferences submitted by the teachers, with a similar structure to the student preferences

table, as the logic is the same.

Column Name #|Data Type | Not Null | Auto Increment |Key

id 1 int [v] PRI
teacher_id 2 int [] UNI
preferencel 3 int [1]
preference2 4 int []
preference3 5 int [1]
preference4 6 int [1]
created_at 7 timestamp [1]

Figure 7: teacher preferences table schema ([v] means true)

This table stores the database ID of the submitted preference, which is just an identifier for
the entry, the teacher id, which is the database ID from the users table of the teacher who
submitted the preferences, along with the 4 database IDs of the 4 students they selected, and

the timestamp of when the preferences were submitted.

teacher_id I EEE preference2 preference3 preferenced created_at

2025-10-03 11:55
2025-10-03 11:57
2025-10-03 11:59
2025-10-03 12:05
2025-10-03 12:07
2025-10-0312:09
2025-10-03 12:11

1
2
3
4
5
6
7
8
9

Figure 8: Subset of data stored in the teacher preferences table, based on preferences

created for a subset of the teacher/faculty users.

Teacher Capacity Table

No table exists to store the capacity of the teachers. A table was created to store the initial
capacity of the teachers, which was four for all teachers, along with the remaining capacity
of each teacher, which depended on the number of students they were assigned (

remaining_capacity = total capacity - # of assigned students).

43

Column Name #|Data Type ’ Not Null | Auto Increment ‘Key

teacher_id 1 int [v] [] PRI
capacity_total 2 int [v] []
capacity_remaining 3 int \ []

Figure 9: teacher capacity table schema ([v] means true)

This table stores the teacher id, which is the database ID of the teacher, along with their total

capacity (capacity_total), and their remaining capacity (capacity remaining).

Assignments Table

No table exists to store the assigned teachers to students. The pairings table was created to

store the assigned teacher for each student after the matching algorithm produces its results.

Column Name #|Data Type | Not Null | Auto Increment |Key

id 1 int [v] [v] PRI
student_id 2 int [] UNI
teacher_id 3 int []
created_at 4 timestamp

Figure 10: pairings table schema ([v] means true)

This table stores the database ID of the assignment, which is just an identifier for the entry,
the database ID of the student (student id), along with the database ID of the teacher that the
student was assigned to (teacher id), and the timestamp of when the assignment was made.
If a student is assigned to a teacher, then the teacher id column for the row that concerns the
student will be populated with the database ID of the teacher they were assigned to. But if

the student remained unassigned, the value of the teacher id will be NULL.

44

student_id teacher_id created_at

2025-10-03 19:41:10
2025-10-03 19:41:10
2025-10-03 19:41:10
2025-10-03 19:41:10
2025-10-03 19:41:10
2025-10-03 19:41:10
2025-10-03 19:41:10
2025-10-03 19:41:10
2025-10-03 19:41:10
2025-10-03 19:41:10
2025-10-03 19:41:10

1
72
3
4
5
6
7/
8
9

Figure 11: Subset of data stored in the pairings table after running the matching algorithm.

45

Chapter 6

User Interfaces

6.1 Introduction

This chapter presents the user interfaces designed for the different user groups within the
system. It provides a detailed overview of all the pages implemented for each role, illustrating
how these interfaces support the specific functions required to complete the assignment

process efficiently and intuitively.

6.2 Student Interface
This section will present all the pages implemented for the student interface. These pages

cover all the functions needed for the students to submit their preferences, along with

summaries to help them visualize and track their submitted preferences and their assignment.

6.2.1 Teacher Selection Page

On this page, the student can see the form where they will select the four teachers they would
prefer to be supervised by. The section is made using dropdowns that list all the teachers who
are available, meaning they have remaining capacity and can take on more students. This

page is visible if the student has not submitted any preferences yet.

46

Student Dissertation Portal

Welcome, Eleni Loizou

Select Teachers

Preference 1

[Select a teacher VI

Preference 2

[Select a teacher v]

Preference 3

[Select a teacher VI

Preference 4

[Select a teacher v]

Save preferences

Figure 1: The teacher selection page in the student interface (before they have submitted

any preferences).

Student Dissertation Portal

Welcome, Eleni Loizou
Logout

Select Teachers

Preference 1

Andreas Aristidou
Andreas Pieris

Anna Philippou
Chris Christodoulou
Chryssis Georgiou
Costas Pattichis
Demetris Zeinalipour
Eleni Constantinou
Elpida Keravnou
George Pallis

George Papadopoulos

Georgia Kapitsaki

Haris Volos

llias Athanasopoulos
Marios Dikaiakos
Melinos Averkiou
Panagiotis Kolios
Vasos Vasileiou
Yiannis Dimopoulos
Yiannos Sazeidis

Yiorgos Chrysanthou

Figure 2: The dropdown to select a teacher from the list of teachers with remaining

capacity.

47

After the student has selected teachers in all four fields, they submit their preferences by
pressing the ‘Save Preferences’ button. After successful submission, the student will see a

pop-up message from the browser noting the successful submission.

localhost:3000 says

Preferences saved!

Figure 3: Pop-up message to confirm successful submission after selecting four teachers

and pressing the ‘Save Preferences’ button.

6.2.2 Submitted Preferences Summary Page

Once the student submits their preferences, the form is hidden, and they can view a summary

of their submitted preferences, which includes the name of each choice along with its rank.

48

Student Dissertation Portal

Welcome, Eleni Loizou

Logout | | Edit preferences

Your submitted preferences

Rank Teacher
1 George Pallis

Panagiotis Kolios

w oo

Costas Pattichis

IS

Chryssis Georgiou

Figure 4: The summary of the submitted preferences of the student.

In this page, the user has the option to edit their preferences by pressing the ‘Edit Preferences’
button found on the page. Once pressed, the form for submitting preferences reappears, but
in each selection field, the name of the existing preference is shown instead of the ‘Select a

Teacher’ text placeholder.

Student Dissertation Portal

Welcome, Eleni Loizou

Logout Cancel

Select Teachers

Preference 1

George Pallis ~

Preference 2

Preference 3

Costas Patichis =

Preference 4

Chryssis Georgiou -

Save preferences

Figure 5: The form with the pre-filled choices, which the user sees when pressing the ‘Edit

Preferences’ button to edit their preferences.

49

If the user presses cancel, then the summary table of the submitted preferences reappears
unchanged, but if the user makes changes and presses the ‘Save Preferences’ button, the
confirmation pop-up reappears before showing again the table of the submitted preferences,

which reflects the changes made in the last submission.

6.2.3 Student Assignment Page

After the matching algorithm has been run by the administrator, if the student was assigned
to a teacher, they will see the teacher they were assigned to, but if the student remained

unassigned, they will see the pages mentioned above (page to select teachers, page to view

submitted preferences)

Student Dissertation Portal

Welcome, Panos Kourkoulis

Logout Edit preferences

Your assignment

You've been assigned to:

Yiannis Dimopoulos

Figure 6: The page that the student sees after being assigned to a teacher.

50

6.3 Teacher Interface

This section will present all the pages implemented for the teacher interface. These pages
cover all the functions needed for the teachers to view the students who have selected them,
submit their preferences, and view summaries to help them visualize and track their

submitted preferences and their assignments.

6.3.1 Student Preferences Page

On this page, the teacher can view the names and usernames of all the students who have
selected them in their submitted preferences, along with the rank that each of those students

selected the teacher in.

Teacher Portal Logout
‘Welcome, Yiannis Dimopoulos

PickedMe Student Selection My Preferences My Assigned Students

Student Name Username Rank
Georgia Kourkouli gkourk01 1
Ioannis Antoniou ianton05 1
Nikolas Kolokotronis nkolok01 1
Panos Kourkoulis pkourk02 1

4

Vasilis Petrou vpetro01

Figure 7: The page with the summary of the students who have selected the teacher.

The students on this page are sorted based on the ranking they gave the teacher. The

students who ranked the teacher higher in their preferences appear first.

51

6.3.2 Student Selection Page
On this page, the teacher can see the form where they will select the four students they would

prefer to supervise. The section is made using dropdowns that list all the students who are
available, meaning they have not been assigned to a teacher yet, and who have submitted

preferences.

Teacher Portal [rogout
‘Welcome, Demetris Zeinalipour

Picked Me Student Selection My Preferences My Assigned Students.

Select Students

Preference 1| Select a student .
Preference 2| Select a student]
Preference 3| Select a student ~
Preference 4| Select a student ~

Save

Figure 8: Student selection page in the teacher interface (before they have submitted any

references).

Teacher Portal Logout
‘Welcome, Demetris Zeinalipour

Picked Me Student Selection My Preferences My Assigned Students.

Select Students

Figure 9: The dropdown to select a student from the students who have not been assigned

to a teacher yet and who have submitted preferences.

52

After the teacher has selected students in all four fields, they submit their preferences by
pressing the ‘Save’ button. After successful submission, the teacher will see a pop-up

message from the browser noting the successful submission.

localhost:3000 says

Preferences saved!

Figure 10: Pop-up message to confirm successful submission, after choosing 4 students and

pressing the ‘Save’ button.

After the teacher has submitted preferences, the form will be visible, but instead of the ‘Select
a Student’ placeholder text in each field, they will view the student they selected in their last
submission in that field. They can then make changes and press the ‘Save’ button again to
resubmit and update their preferences. On successful resubmission, the confirmation pop-up

message will show again.

53

Teacher Portal Logout
‘Welcome, Demetris Zeinalipour

Picked Me Student Selection My Preferences My Assigned Students.

Select Students

Preference 1| Marios Georgiou ~
Preference 2| lasonas Georgiou -
Preference 3| Anna Vasileiou ~

Preference 4| Eleni Loizou ~

Save

Figure 11: The form for the teacher to resubmit preferences, after they have already

submitted preferences.

6.3.3 Submitted Preferences Summary Page

On this page, the teacher can see the students who they have selected in their latest
preferences submission.

If the teacher has not submitted any preferences yet, nothing shows on this page.

Teacher Portal Logout
‘Welcome, Demetris Zeinalipour

Picked Me StudentSelection My Preferences My Assigned Students

Your Submitted Preferences

Figure 12: The submitted preferences summary page, before the teacher submits

preferences for the first time.

Once the teacher submits their preferences, they can see the students they selected.

54

Teacher Portal

Welcome, Demetris Zeinalipour

Logout

Picked Me Student Selection My Preferences My Assigned Students

Your Submitted Preferences

Rank Student

1 Marios Georgiou

2 Tasonas Georgiou
3
a

Figure 13: The submitted preferences summary page, after the teacher has submitted

preferences.

6.3.4 Assigned Students Summary Page

On this page, the teacher can view all the students they were assigned.
If the algorithm to match the students with the teachers has not run yet, or if the teacher has

not been assigned any students, this page will display no assigned students, along with the

appropriate message.

Teacher Portal Logout
Welcome, Demetris Zeinalipour

Picked Me StudentSelection My Preferences My Assigned Students

Your Assigned Students

You have been assigned 0 students

No students assigned yet

Figure 14: The Assigned Students Summary Page if the teacher has not been assigned any

students.

55

Teacher Portal Logout
‘Welcome, Yiannis Dimopoulos

Picked Me Student Selection My Preferences My Assigned Students

Your Assigned Students
You have been assigned 3 students

Student Name Username

Georgia Kourkouli gkourk01
Nikolas Kolokotronis nkolokO1

Panos Kourkoulis pkourk02

Figure 15: The Assigned Students Summary Page after the teacher has been assigned

students.

6.4 Administrator Interface

This section presents the administrator interface of the system. It describes all the pages
implemented for administrative use, covering all the functions required to manage the
matching process. Specifically, the interface enables the administrator to run the matching
algorithm, review the preferences submitted by both the teachers and the students, and view
comprehensive summaries of the results. These summaries include the final assignments, the
students who remain unassigned, and the remaining capacity of each teacher. Moreover, it
allows the user to edit the remaining capacities of the teachers and also reset the system after

the process has been completed.

6.4.1 Submitted Preferences Overview Page

On this page, the administrator can view an overview of all the preferences submitted by the
students and the teachers. The submissions are separated into two tables, one for the teacher

preferences and one for the student preferences, to make reviewing easier.

56

Admin Portal | teeou
Welcome, Dora Georgiou

Overview Matchings Admin Panel

Student Preferences Submitted Teacher Preferences Submitted
download .csv download .csv
Student P 1 P 2 P 3 P 4 Teacher P 1 P 2 P 3 P 4
Alexis Andreou Melinos Averkiou Marios Dikaiakos Yiannos Sazeidis Chryssis Georgiou Andreas Aristidou Marios Georgiou Vasilis Petrou Panos Kourkoulis ~ Alexis Andreou

Tlias Stylianos Christodoulos Ramon

Andreas Hadjoulis Chryssis Georgiou George Pallis Elpida Keravnou Andreas Pieris Andreas Pericleous

Athanasopoulos Panayiotou Klirides Papaioannou
. N Eleni as o s iy 2 Pt - Kyriakos Stylianos PR Despina
Andreas Markou Elpida Keravnou Constantinou Georgia Kapitsaki ~ Anna Philippou Anna Philippou Antonoudiou ‘Antonoudiou Anna Vasileiou Andreou
. . _ George . . I Chris Christodoulos
Andreas Pericleous Panagiotis Kolios Papadopoulos Chryssis Georgiou Andreas Pieris Christodoulou Klirides Spyros Drousiotis Maria Georgiou Markos Iliades
Anna Vasileiou Haris Volos Chryssis Georgiou Anna Philippou Panagiotis Kolios Chryssis George Soffoniou loanna Hadjipolla Maria Andreo Andreas
Georgiou Hadjoulis
hristodoulos hri: Yi . Sa -
E]i‘:i:ies oo gh::lodoulou C;ﬁ;’gs::\lhou Yiannos Sazeidis | Andreas Pieris Constantinos
Costas Pattichis K Spyros Drousiotis Eleni Loizou Maria Andreou
aramanos
Constantinos Costas Pattichis Yiannos Sazeidis Marios Dikaiakos Elpida Keravnou "
Karamanos Demetris o "
PR Marios Georgiou Iasonas Georgiou Anna Vasileiou Eleni Loizou
Zeinalipour
- . Eleni Tlias . .
Demitriana Georgion Constantinou Athanasopoulos Vasos Vasilclon Anna Philippou Eleni Demitriana . Kyriakos
S ! Andreas Markou Despina Andreou 3oL
Constantinou Georgiou Poyiadjis
. Tlias Eleni e "
Despina Andreou . Anna Philippou Vasos Vasileiou . .
Athanasopoulos Constantinou Elpida Keravnou Andreas Markou Kyriakos) §lyllanos) Ram9n
Eleni Loizou George Pallis Panagiotis Kolios ~ Costas Pattichis Chryssis Georgiou
" — " ... Nikolas
George Markides ~ Panagiotis Kolios ~ Melinos Averkiou ~ Georgia Kapitsaki Vasos Vasileiou Gearge Pallis Eleni Loizou Markos liades Andreas Hadjoulis | o)) orronis

Figure 16: The tables (parts of them) in the submitted preferences overview page, where the

administrator can review all the submitted preferences and download the tables as .csv files.

The administrator has the ability to download the data as a CSV file by pressing the

‘download .csv’ button to download each table individually.

6.4.2 Matching Algorithm Page
On this page, before the matching algorithm has been run, the administrator will see a

message saying that the algorithm has not run yet, along with the button to run the algorithm

to create the assignments.

57

Admin Portal | tesu
‘Welcome, Dora Georgiou

Overview Matchings Admin Panel

Pairing algorithm not run yet
Run the algorithm to get pairs

Run Pairing

Figure 17: Matching algorithm page before the algorithm has been run.

After pressing the ‘Run Pairing’ button, the system will run the algorithm to create the
assignments. If the algorithm runs successfully, a success message will appear in green color,
indicating that the matching has completed, along with the number of rows that were inserted
in the pairings table in the database. In case of an error, a message in red will appear stating

the error.

6.4.3 Assignments Summary Page
On this page, the administrator will be able to view all the assignments made so far in a table.

Each row on the table depicts one assignment. The rows where the name of the teacher is

missing indicate that the student whose name is on that row has remained unassigned.

58

Admin Portal | teeout
Welcome, Dora Georgiou

Overview Matchings Admin Panel

Matching complete. Inserted 30 rows

Current Pairs Re-Run Pairing
Student Teacher
Alexis Andreou Melinos Averkiou
Andreas Hadjoulis Tlias Athanasopoulos
Andreas Markou Elpida Keravnou
Andreas Pericleous Panagiotis Kolios
Anna Vasileiou Haris Volos
Christodoulos Klirides Chris Christodoulou
Constantinos Karamanos Costas Pattichis
Demitriana Georgiou Eleni Constantinou
Despina Andreou Ilias Athanasopoulos
Eleni Loizou George Pallis
George Markides Panagiotis Kolios
George Sofroniou Chryssis Georgiou
Georgia Eirini Papadopoulou Vasos Vasileiou
Georgia Kourkouli Yiannis Dimopoulos
Iasonas Georgiou Yiorgos Chrysanthou
Toanna Hadjipolla Chryssis Georgiou

Figure 18: Assignment Summary Page after the algorithm has ran and produced
assignments. Also, the text to indicate a successful run of the algorithm is present because
the screenshot was taken immediately after running the algorithm; if the page refreshes, the

text will disappear.

Also, the administrator has the option to re-run the pairing algorithm, which can be used for

the second assignment round to assign the students who have remained unassigned.

6.4.4 Administrator Control Page

On this page, the administrator will be able to view, in separate tables, the students who have
been assigned to teachers, along with the teacher they have been assigned to, the students
who have remained unassigned, and the remaining capacity of all the teachers. Moreover, the
administrator will be able to (a) clear all the assignments made and reset the capacities of the
teachers to four (4) by pressing the “Clear Pairings” button and (b) change the capacity of
each teacher individually by pressing the “Edit Capacities” button. Upon clicking the “Clear
Pairings” button or the “Edit Capacities” button, a confirmation message will appear. If the
user presses cancel in the confirmation pop-up, then nothing will happen, but if the user

presses “confirm,” then the action triggered by the button will be completed.

59

Admin Portal

Welcome, Dora Georgiou

Overview Matchings Admin Panel

Assigned Students Unassigned Students Teacher Capacities
Student Username Teacher Student Username Teacher Capacity Remaining
Alexis Andreou aandre06 Melinos Averkiou Ioannis Antoniou ianton05 Andreas Aristidou 2
Andreas Hadjoulis ahadjo01 Ilias Athanasopoulos Andreas Pieris 4
Andreas Markou amarko01 Elpida Keravnou Anna Philippou 2
Andreas Pericleous aperic0l Panagiotis Kolios Chris Christodoulou 2
Anna Vasileiou avasil0S Haris Volos Chryssis Georgiou 1
Christodoulos Klirides ckliri02 Chris Christodoulou Costas Pattichis 3
Constantinos Karamanos ckaram02 Costas Pattichis Demetris Zeinalipour 4
Demitriana Georgiou dgeorgd4 Eleni Constantinou Eleni Constantinou 3
Despina Andreou dandre01 Ilias Athanasopoulos Elpida Keravnou 3
Eleni Loizou eloizo05 George Pallis George Pallis 2
George Markides gmarkiOl Panagiotis Kolios George Papadopoulos 4
George Sofroniou gsorfo01 Chryssis Georgiou Georgia Kapitsaki 4
Georgia Eirini Papadopoulou gpapad0l Vasos Vasileiou Haris Volos 3
Georgia Kourkouli gkourkO1 Yiannis Dimopoulos Tlias Athanasopoulos 1

Tasonas Georgiou igeorg01 Yiorgos Chrysanthou Marios Dikaiakos 4

Figure 19: Administrator Control Page, where the admin can see the assigned students, the
unassigned students, and the remaining capacities of the teachers, and download the tables

as .csv files.

localhost:3000 says

D reset the

Cancel

Figure 20: The confirmation pop-up message when the user presses the “Clear Pairings”

button.

60

Admin Portal | tosou

‘Welcome, Dora Georgiou

Overview Matchings Admin Panel

Assigned Students Unassigned Students Teacher Capacities
download .csv download .csv download .csv] [Cancel
Student Username Teacher Student Username Teacher Capacity Remaining
Alexis Andreou aandreD6 Melinos Averkiou loannis Antoniou ianton05 Andreas Aristidou 2
Andreas Hadjoulis ahadjo01 Ilias Athanasopoulos Andreas Pieris [4
Andreas Markou amarko01 Elpida Keravnou Anna Philippou P
Andreas Pericleous aperic0l Panagiotis Kolios Chris Christodoulou 2
Anna Vasileiou avasil0S Haris Volos Chryssis Georgiou 1
Christodoulos Klirides ckliri02 Chris Christodoulou Costas Pattichis 3
Constantinos Karamanos ckaram02 Costas Pattichis Demetris Zeinalipour 4
Demitriana Georgiou dgeorgd4 Eleni Constantinou Eleni Constantinou [3
Despina Andreou dandre01 Ilias Athanasopoulos Elpida Keravnou 3
Eleni Loizou eloizo05 George Pallis George Pallis 2
George Markides gmarki0l Panagiotis Kolios George Papadopoulos ' 4
George Sofroniou gsorfo0l Chryssis Georgiou Georgia Kapitsaki P

Figure 21: When the user presses the “Edit Capacities” button. The fields of the capacities

change background color to signify they are editable. If the user presses the “Cancel”

button, then nothing happens and the view is restored. If the user presses “Save”, then a

confirmation message appears.

localhost:3000 says

Are you u want to save the changes to the capacities?

Cancs “

Figure 22: Confirmation pop-up message after the user presses the “Save” button to make

changes to the capacities of the teachers.

The user can download the tables as separate .csv files by pressing the ‘download .csv’ button

on each table.

61

Chapter 7

Conclusions

7.1 System Overview
The current procedure followed to assign supervisor teachers to students for their Individual

Thesis Project is done manually by the secretary of the department. Currently, the secretary
of the department, after receiving all the preference lists of the students and the teachers, has
to manually match each student to a teacher in a way that satisfies the preferences of both
parties, and simultaneously maximizes the satisfaction of the student rankings. This is a very
time-consuming and error-prone process that can lead to mismatches or unfair assignments.
Moreover, the lists are transferred via email, which makes it harder for the teachers and the
students to fill out their lists, and also makes it more complex for the secretary to track all
the replies in their inbox, considering that they also get other emails. Finally, after the
secretary completes the manual assignment process, they have to then manually calculate the
remaining capacity of each teacher as well as find which students have remained unassigned,
which again poses risks for errors and is also time-consuming.

With the implementation of this system, the students and the teachers will be able to submit
their preferences from the platform without having to fill out forms manually and send them
via email. Also, they will have the option to make changes to their preferences if they so
wish, which they are currently not able to do since they can only send the form once.
Moreover, the teachers will be able to view, in real time, the students who have selected them
in order to make more informed decisions about their preferences. Then, the secretary will
be able to see all the submitted preferences and run the matching algorithm to make the
assignments by just clicking a button. After the algorithm runs successfully, the secretary
will be able to view all the students who have been assigned and to which teacher, the students
who have remained unassigned, and the remaining capacity of each teacher without needing
to perform any further actions or calculations. It is also worth mentioning that the system is
able to support not just the first assignment round, but also any additional rounds that may

follow.

62

In conclusion, this system significantly simplifies, streamlines, and automates the assignment
process. By leveraging the constraint satisfaction algorithm, it eliminates the risk of human
error and ensures fair and optimal matches. The entire procedure is completed within the
system, removing the need for email communication and manual tasks.

The system has undergone extensive testing and has consistently produced correct results.
The constraint satisfaction algorithm was validated using manually solved cases, confirming
its accuracy and correctness. In a benchmark test where the dataset involved 80 students and
30 teachers, the algorithm completed the matching process in just 446 milliseconds,

demonstrating both efficiency and scalability.

7.2 Instructions
In order for the system to work, Node.js should first be installed. Then the Express framework

should be installed. This installation for the framework can be performed using npm, the
built-in package manager of Node.js. Additionally, Minizinc has to be installed. Also, Python
has to be installed along with the minizinc-python library.

For the database, assuming that the table which stores the user credentials exists, tables
should also be created to store the following data: student preferences, teacher preferences,

teacher capacities, assignments.

7.3 Restrictions

The system redirects the user, upon successful login, to the appropriate page by taking into
account the role of the user found in the table which stores the user credentials. In order for
a user to access the administrator portal, their role should be set to ‘Admin’ in the
aforementioned table. The Thesis Coordinator, being a selected academic member of the
department, will not have access to this portal since their role is set to ‘Faculty’. A possible
solution to bypass this would be to create an additional user for the selected teacher, whose
role will be set to ‘Admin’, and keep the existing ‘Faculty’ account of the teacher as is. Also,
in order for the system to run correctly, all teachers who have remaining capacity (>0) should
submit preferences. Additionally, when the administrator changes the remaining capacity of

a teacher (thereby logically modifying the default total capacity of four), the change only

63

applies to the current matching round. In the following round, the capacities are automatically
recalculated based on the existing assignments, again assuming each teacher’s total capacity
is four. Therefore, if the administrator intends to maintain a changed capacity for a teacher
in future rounds, they must manually adjust the teacher’s capacity again before executing the

next matching algorithm.

7.4 Future System Enhancements
In the future, the user interfaces could be enhanced with improved styling to increase

usability, making them more intuitive, visually appealing, and engaging for all user groups.

64

Bibliography

[1] MDN Web Docs. “HTML: HyperText Markup Language,” Mozilla Developer
Network [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/HTML.
[Accessed: 25-Oct-2025]

[2] MDN Web Docs, “CSS: Cascading Style Sheets,” Mozilla Developer Network
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/CSS. [Accessed: 25-
Oct-2025]

[3] MDN Web Docs, “JavaScript,” Mozilla Developer Network [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/JavaScript. [Accessed: 25-Oct-2025]

[4] Node.js, “Node.js v25.0.0 documentation,” Node.js [Online]. Available:
https://nodejs.org/api/all.html. [Accessed: 25-Oct-2025]

[5] Express.js, “Express — Node.js web application framework,” Express.js [Online].

Available: https://expressjs.com. [Accessed: 25-Oct-2025]

[6] Lokesh Gupta, “REST API Tutorial,” RESTfulAPLnet [Online]. Available:
https://restfulapi.net. [Accessed: 25-Oct-2025]

[7] MDN Web Docs, “JSON,” Mozilla Developer Network [Online]. Available:
https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global Objects/JSON. Accessed [25-Oct-2025]
[8] AuthO Contributors, “Introduction to JSON Web Tokens,” JWT.io [Online].

Available: https://www.jwt.io/introduction#what-is-json-web-token. [Accessed: 25-Oct-

2025]

65

https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://nodejs.org/api/all.html
https://expressjs.com/
https://restfulapi.net/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://www.jwt.io/introduction#what-is-json-web-token

[9] MDN Web Docs, “HTTP response status codes,” Mozilla Developer Network
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Status
[Accessed: 25-Oct-2025].

[10] MiniZinc, “The MiniZinc Handbook 2.9.4,” MiniZinc [Online]. Available:
https://docs.minizinc.dev/en/stable/index.html. [Accessed: 25-Oct-2025].

[11] MiniZinc, “MiniZinc Python 0.10.0 documentation,” MiniZinc Python [Online].
Available: https://python.minizinc.dev/en/latest/getting_started.html. [Accessed: 25-Oct-
2025].

[12] MDN Web Docs, “Document Object Model (DOM),” Mozilla Developer Network
[Online].

Available: https://developer.mozilla.org/en-US/docs/Web/API/Document_Object Model
[Accessed: 25-Oct-2025].

66

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Status
https://docs.minizinc.dev/en/stable/index.html
https://python.minizinc.dev/en/latest/getting_started.html

Appendix

Appendix A

Constraint Satisfaction Algorithm written in MiniZinc that assigns supervisor teachers to

students for their Individual Thesis.

numStudents; %The number of students
numTeachers; %The number of teachers

Students
: Teachers

= 1..numStudents;

= 1..numTeachers;

%Array that holds the preferences of each student
[Students, 1..4] : studentsPreferences;

%Array that holds the preferences of each teacher
[Teachers, 1..4] : teacherPreferences;

%sArray that holds the capacity of each teacher
[Teachers] : teacherCapacity;

%Array that stores wether a students has selected a
teacher in their list

%studentPrefers[s,t] = true if student s has selected
teacher t in their preferences, false if otherwise

[Students, Teachers] : studentPrefers =
array2d(Students, Teachers,
[exists(i 1..4) (studentsPreferences[s,i] = t) | s

Students, t Teachers]);

%Array that stores wether a teacher has selected a

student in their list

%teacherPrefers[t,s] = true is teacher t has selected

student s in their preferences, false if otherwise
[Teachers, Students] : teacherPrefers =

A-1

array2d(Teachers, Students,
[exists(j in 1..4)(teacherPreferences[t,j] =5s) | t
in Teachers, s in Students]);

%Array that stores wether a pair is allowed
%allowed[s,t[= true is student s selected teacher t and
teacher t selected student s. otherwise false
array[Students, Teachers] of bool: allowed =
array2d(Students, Teachers,
[studentPrefers([s,t] /\ teacherPrefers[t,s] | s in
Students, t in Teachers 1);

%Array that stores in what rank studentt has chosen a
teacher
%rankS[s,t] = x means that student s ranked teacher t as
X (1-4) in their preferences
%1if the student s didn't select the teacher t in their 4
preferences then rankS[s,t] =5
array[Students, Teachers] of int: rankS =
array2d(Students, Teachers,
[et {
set of int: hits = { 1 | 1 in 1..4 where
studentsPreferences[s,i] = t }
} in if card(hits) > @ then min(hits) else 5 endif
| s in Students, t in Teachers 1);

%Decision Variable 1: [Array] stores the assignments -
x[s,t] = 1 if student s is assigned to teacher t. xI[s,t]
= 0 if otherwise

array[Students, Teachers] of var 0..1: x;

%Decision Variable 2: [Array] stores the supervisor of
each student

%supervisor[s] = t means that student s is
supervised/assigned to teacher t

%supervisor[s] = @ if the student s is unassigned
array[Students] of var @..numTeachers: supervisor;

%Constraint 1: coherence constraint supervisor[s] = @ or
supervisor[s] = t since x[s,t] =0 || 1
constraint forall(s in Students) (

supervisor[s] = sum(t in Teachers)(t * x[s,t])

A-2

);

%Constraint 2:

%if allowed[s,t] = false then bool2int(false) = 0 =>
x[s,t]<=0 => x[s,t] = 0 otherwise x[s,t] can be 1

%so only allowed assignment of student s to teacher t if
allowed

constraint forall(s in Students, t in Teachers) (

x[s,t] <= bool2int(allowedl[s,t])

);

%Constraint 3: a student can only be assigned to at most
one teacher
%they are either assigned to one teacher or no teacher
constraint forall(s in Students) (

sum(t in Teachers)(x[s,t]) <=1

);

%Constraint 4: the number of assigned students to a
teacher cannot exceed the capacity of the teacher
constraint forall(t in Teachers) (

sum(s in Students)(x[s,t]) <= teacherCapacity[t]

);

%sConstraint 5: assigned each student to their most
preferred teacher if allowed and if the teacher has
capacity
constraint forall(s in Students, t in Teachers where
rankS[s,t] <= 4)(
(x[s,t] = 1) —> forall(b in Teachers where rankSIs,bl

< rankSls,t])(

(not allowedl[s,bl) \/ (sum(ss in
Students) (x[ss,b]) >= teacherCapacity([bl)

)
);

%Decision Variable 3: tthe number of unassigned students
— used to minimize the unassigned students => maximize
the assignments

%0therwise many will be left unassigned and the solution
would still fill the constraints

A-3

: unassigned_count = (s Students) (1 - (t
Teachers) (x[s,t]));

unassigned_count;

A4

Appendix B

Python code that runs the MiniZinc model and returns the supervisor array.

from dataclasses import dataclass, InitVar
from typing import List, Optional, Any

from minizinc import Model, Instance, Solver
import json, sys

from pathlib import Path

@dataclass

class MatchSolution:
supervisor: List[int]
x: Optional[Any] = None
unassigned_count: Optionall[int] = None
objective: Optionallint] = None
__output_item: InitVar[str] = None

main():

raw = sys.stdin.read()

if not raw.strip():
print(json.dumps({"ok": False, "error': "No input"}))
return

payload = json.loads(raw)

here = Path(__file_).resolve().parent
model_path = here / "minizincModel.mzn"

model = Model(str(model_path))
model.output_type = MatchSolution
solver = Solver. lookup("gecode")
inst = Instance(solver, model)

inst["numStudents"] = payload['numStudents"]
inst["numTeachers"] = payload['numTeachers"]
inst["studentsPreferences"] = payload["student_prefs"]
inst["teacherPreferences"] = payload["teacher_prefs"]
inst["teacherCapacity"] = payload["teacher_capacity"]

res = inst.solve()
sol res.solution

if sol is None:

B-1

print(json.dumps({"ok": False, "error": f'"No solution: {res.status}"}))
return

assignments = list(sol.supervisor)

print(json.dumps({"ok": True, "assignments'": assignments}))

if __name__ == "__main__":
main()

B-2

Appendix C

Express endpoint in the admin routes module (admin.routes.js) that creates the mappings and
calls the Python script for Appendix B in order to create the assignments. When the Python
program returns, it takes the array returned (supervisor), unmaps the IDs, and updates the

relevant tables.

//Function to call python as a child process
function runPython(pythonFile, payloadPython){
return new Promise((resolve, reject) => {
const process = spawn(PYTHON_BIN, [pythonFile], { stdio: ['pipe', 'pipe’,
'pipe'l, env: CHILD_ENV })
let stdout = "'
let stderr t

process.stdout.on('data', (c) => (stdout += c.toString()))
process.stderr.on('data', (c) => {

const s = c.toString()

console.error('[pyl", s.trim())

stderr += s

})
process.on('error', (err) => reject(err))
process.on('close', (code) => {
if(code !== 0){
return reject(new Error(Python exited with code ${code}. stderr:

${stderr || '(empty)'}"))
¥
try{
const json = JSON.parse(stdout)
if (json && json.ok === false) {
json._stderr = stderr
}
resolve(json)
Ycatch (err){
reject(new Error(Failed to parse Python
JSON.\nstdout:\n${stdout}\n\nstderr:\n${stderr}"))
¥

})
//Send the payload to the child process (the python script)

process.stdin.write(JSON.stringify(payloadPython))
process.stdin.end()

C-1

/*x POST /admin/run-matching
* fetches the data: ids of the students and the teachers and the preferences
list of both
* creates mappings to have continuous indexes for the students and the teachers.
Maps the user ids
* calls the python code as a child process which in turn runs the minizinc model
*/
router.post('/run-matching', requireAuth, async (req, res) => {
try {
if (req.user.role !== 'Admin') {
return res.status(403).json({ error: 'Forbidden' });

// Fetch the students who have submitted preferences and are not assigned
to a teacher
const [studentIdsRows] = await pool.execute(

SELECT sp.student_id

FROM student_preferences sp

LEFT JOIN pairings p ON p.student_id = sp.student_id
WHERE p.student_id IS NULL OR p.teacher_id IS NULL
ORDER BY sp.student_id

)

const studentIds = studentIdsRows.map(r => r.student_id)

//Fetch the teachers
const [teacherIdsRows] = await pool.execute(

SELECT u.id

FROM usersTest u

JOIN teacher_capacity tc ON tc.teacher_id = u.id

WHERE u.user_role = 'Faculty' AND tc.capacity_remaining > 0
ORDER BY wu.id

const teacherIds = teacherIdsRows.map(r => r.id)

if (studentIds.length === 0) {
return res.status(400).json({ error: 'Could not fecth students from
student_preferences who are unassigned' })
I
if (teacherlds.length === 0) {

return res.status(400).json({ error: 'Could not fetch teachers with
left capacity' })
I

//Fetch the preferences of the teachers and the students
const [studentPrefsRows] = await pool.execute(

SELECT student_id, preferencel, preference2, preference3, preference4d
FROM student_preferences

WHERE student_id IN (${studentIds.map(()=>'?"').join("',"')})

ORDER BY student_id

’

studentIds

const [teacherPrefsRows] = await pool.execute(

SELECT teacher_id, preferencel, preference2, preference3, preference4
FROM teacher_preferences

WHERE teacher_id IN (${teacherIds.map(()=>'?").join("',")})

ORDER BY teacher_id

’

teacherlds

//Fetch the capacities of the teachers from the teacher_capacity table
const [capacityRows] = await pool.execute(

SELECT teacher_id, capacity_remaining

FROM teacher_capacity

WHERE teacher_id IN (${teacherIds.map(() => '?').join("',"')})
ORDER BY teacher_id

’

teacherlds

//Build the map: teacher_id —> capacity_remaining
const capacityMap = new Map(capacityRows.map(r => [r.teacher_id,
r.capacity_remainingl))

//Capacity array that will give to minizinc (Ordered based on teacherIds)
const teacher_capacity = teacherIds.map(id => {
if (!capacityMap.has(id)) {
throw new Error('No capacity entry found for teacher_id ${id}")
}
return capacityMap.get(id)
)

//Create the mappings for the teachers and the students (starting from 1)
- key = DB id, value = index 1..N

const studentMap = new Map(studentIds.map((id, i) => [id, i + 11))

const teacherMap = new Map(teacherIds.map((id, i) => [id, i + 11))

//Check that all users have submitted their preferences so no error will
occur with minizinc model
const teacherSet = new Set(teacherlIds)
const badTeacherRefs = []
for (const row of studentPrefsRows) {
for (const tId of [row.preferencel, row.preference2, row.preference3,
row.preference4]) {
//1if a student has picked a teacher that does not exist then put
the id of the teacher in the bad teachers list
if (!teacherSet.has(tId)){
badTeacherRefs.push(tId)

//If missing teachers exist return an error
if (badTeacherRefs.length) {
const missing = Array.from(new Set(badTeacherRefs)).sort((a,b)=>a-b)
return res.status(400).json({
error:
“Student prefs reference teacher_ids without submissions:
${missing.join(', ")}. = +
"Either collect those teachers’ prefs or change the teachers
fethced. ,

}

//Make sure the index given is correct based on the filtering
function toValidIndex(val, max) {
return (Number.isInteger(val) && val >= 1 && val <= max) ? val :

//Building the preference arrays with the mappings
const student_prefs = studentPrefsRows.map(row => {

const prefs = [row.preferencel, row.preference2, row.preference3,
row.preference4]

return prefs.map(tId => toValidIndex(teacherMap.get(tId),
teacherIds. length))

}

const teacher_prefs = teacherPrefsRows.map(row => {

const prefs = [row.preferencel, row.preference2, row.preference3,
row.preference4]
return prefs.map(sId => toValidIndex(studentMap.get(sId),
studentIds.length))
})

const payloadPython = {
numStudents: studentIds.length,
numTeachers: teacherIds.length,
student_prefs,
teacher_prefs,
teacher_capacity

//Call the function to run the python code

const result = await runPython(PY_PATH, payloadPython)

console.timeEnd('phase:python-solve') //DEBUGGING

console. log('python result ok?', !!'result?.ok, 'assignments len:',
result?.assignments?.length) //DEBUGGING

if(!result || !'result.ok || !Array.isArray(result.assignments)){

return res.status(500).json({ error: "Solver error", details:

result})

//Clear all the data in pairings table - this is just for the tests can
delete later
//await pool.execute(DELETE FROM pairings”)

let inserted = 0
// studentIds are sorted by student_id; assignments are in that same

for (let sIdx = 0; sIdx < studentIds.length; sIdx++) {
const student_id = studentIds[sIdx]
const teacherIndex = result.assignments[sIdx] // 0..T
const teacher_id = (Number.isInteger(teacherIndex) && teacherIndex >=
1 && teacherIndex <= teacherIds.length) ? teacherIds[teacherIndex - 1] : null

await pool.execute(

INSERT INTO pairings (student_id, teacher_id)

VALUES (?, ?)
ON DUPLICATE KEY UPDATE teacher_id = VALUES(teacher_id)

’

[student_id, teacher_id]

)

inserted++

//Recompute capacities of teachers
await pool.execute(

UPDATE teacher_capacity tc
LEFT JOIN(
SELECT p.teacher_id, COUNT(x) AS assigned
FROM pairings p
WHERE p.teacher_id is not null
GROUP BY p.teacher_id
) x ON x.teacher_id = tc.teacher_id
SET tc.capacity_remaining = GREATEST(tc.capacity_total -

IFNULL(x.assigned, 0), 0)

)

//Clear the preferences arrays (both) to prepare for the second draw
await pool.execute(DELETE FROM student_preferences)
await pool.execute(DELETE FROM teacher_preferences)

return res.json({
ok: true,
numStudents: studentIds.length,
numTeachers: teacherIds.length,
rowsInserted: inserted

}

Ycatch (err){
console.error('Error running the pairing algorithm', err)
return res.status(500).json({error: 'Server error', details:
String(err)})
}

})

C-6

C-7

