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Abstract

Rapid advancement in the field of Unmanned Aerial Vehicles (UAVs) has significantly
expanded their use in critical real-world applications, including infrastructure inspection,
search and rescue operations, and environment monitoring. Their ability to navigate com-
plex environments and operate autonomously has made them ideal candidates for in-
specting large-scale or hazardous 3D structures. However, autonomous inspection in un-
known and cluttered spaces remains a challenging problem, particularly when coordina-
tion among multiple heterogeneous UAVs is required.

This work introduces a cooperative inspection system that efficiently controls and coordi-
nates a swarm of distributed UAV agents to perform autonomous 3D infrastructure inspec-
tion in unknown environments. The proposed system employs a two-stage methodology.
In the first stage, UAVs collaboratively map the environment using their complementary
sensing capabilities. In the second stage, optimized collision-free inspection paths are
generated for each agent to ensure full surface coverage of the target structure.

The system was developed using the Robot Operating System (ROS) and was imple-
mented entirely in Python. Integrates autonomous exploration, real-time mapping, and
trajectory generation modules that allow each UAV to operate without human interven-
tion. The system was tested in realistic simulation environments created with the Gazebo
simulator. The evaluation was performed both qualitatively and quantitatively, demon-
strating the effectiveness of the system in terms of inspection completeness, safety, and
swarm coordination. The general goal of this work is to increase the autonomy and effi-
ciency of UAV swarms in complex inspection scenarios.
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1 Chapter 1

Introduction

• Purpose of this work

• Problem structure

• Thesis structure

1.1 Purpose of this work

In recent years, the need for fast, reliable and safe environment inspection and monitoring
has become more urgent than ever. Whether it is after a natural disaster, such as an earth-
quake or a wildfire, or during routine infrastructure maintenance, there are many situations
where accessing a damaged or complex area is either extremely difficult or dangerous for
human operators. Traditional inspection methods often require physical access through
scaffolding, cranes, or manned vehicles, which is time consuming, costly, and poses seri-
ous safety risks.

This problem becomes even more critical when dealing with large-scale or complex 3D
environments like collapsed buildings, bridges, power plants, or industrial zones, where
visibility is limited, the environment may still be unstable, and fast response is essential.
In such conditions, deploying human teams to perform manual inspection or search and
rescue is not only inefficient but can also put lives at further risk.

To address these challenges, UAVs have emerged as an essential technological solution.
Equipped with sensors, cameras, and wireless communication, UAVs can quickly nav-
igate and explore hazardous or hard to reach areas from above. They are lightweight,
autonomous, and can provide real-time data.

This work focuses on building a cooperative system that uses multiple UAVs working to-
gether to inspect complex 3D environments. The proposed system is developed in Python
using the ROS framework, enabling each drone to autonomously explore, map the envi-
ronment, and carry out efficient inspection tasks while sharing information with the rest
of the swarm. Given the importance of safety and the need to avoid inter-agent collisions,
it is essential to build an accurate and complete map of the environment. Proper environ-
ment mapping allows each UAV to plan safe and efficient flight paths, ensuring thorough
area coverage while minimizing the risk of accidents
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1.2 Problem structure

This work is inspired by the Cooperative Aerial Robot Inspection Challenge (CARIC),
which took place during the IEEE Conference on Decision and Control (CDC) in 2023.
The goal of the challenge was to provide a simulation-based benchmark for evaluating
multi-UAV infrastructure inspection methodologies under realistic conditions.

Despite the numerous advantages that UAV swarms offer for infrastructure inspection,
several challenges remain unresolved. These include the difficulty of navigating complex
and partially unknown indoor and outdoor environments filled with static or dynamic ob-
stacles, as well as the need to inspect structures of high geometric complexity. Further-
more, ensuring real-time coordination and efficient utilization of multiple UAVs espe-
cially when they are equipped with heterogeneous sensing capabilities, adds another layer
of complexity to the problem.

However, during testing and evaluation using predefined simulation scenarios such as the
MBS, hangar, and crane environments, frequent UAV collisions were observed at var-
ious time intervals. These collisions occurred both during the first stage, where UAVs
collaboratively map the environment using their complementary sensing capabilities, and
during the second stage, in which optimized, collision-free inspection paths are generated
for each agent to ensure full surface coverage of the target structure.

As a result, the swarm was often unable to fully explore the environment or achieve com-
plete inspection coverage, leading to reduced overall scores and several missed points of
interest.

Figure 1.1: Example of UAV collisions during the inspection process.
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1.3 Thesis structure

The rest of our work is structured as follows. Chapter 2 is a literature review that summa-
rizes other previous works on UAVs and similar problems that has been studied. Chapter
3 presents the various problems identified during the execution and testing of the ini-
tial implementation, and Chapter 4 is a detailed review of the changes that were made to
eliminate the problems. Furthermore, Chapter 5 analyzes the results and compares sys-
tem performance before and after the applied changes. Finally, Chapter 6 concludes this
work.
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2 Chapter 2

Literature Review

• Related Work

• How this work differs from related work

2.1 Related Work

• [1] CARIC Challenge – Cooperative Aerial Robot Inspection.

The CARIC Challenge, organized during the IEEE Conference on Decision and
Control (CDC) in 2023, provides a standardized, simulation-based benchmark for
evaluating cooperative aerial robot inspection strategies in complex 3D environ-
ments. The challenge focuses on assessing the ability of multi-UAV systems to
perform accurate environmental mapping and structure inspection under realistic
constraints, including limited sensor ranges, partial observability, and the need for
autonomous coordination between heterogeneous UAVs.

Participants are evaluated over two mission stages: Environmental Mapping and
Cooperative Inspection. During the first stage, UAVs must build a global occu-
pancy map using onboard sensors (i.e., LiDAR, RGB-D), while in the second stage,
they must inspect specific regions of interest using vision-based coverage. The
challenge emphasizes real-time decision-making, effective task allocation, collision
avoidance, and full 3D coverage.

• [2] Towards Automated 3D Search Planning for Emergency Response Mis-
sions.

This paper presents a unified framework for automating collision-free UAV search
trajectories in fully 3D environments. The approach formulates the problem as a
Mixed Integer Quadratic Programming (MIQP) model that incorporates UAV dy-
namics, sensor limitations (e.g. field of view, probabilistic detection), obstacle
avoidance, energy constraints, and mission-specific objectives such as time and cost
minimization.

One of the key contributions is the integration of a probabilistic sensing model that
ensures a guaranteed level of detection for potential targets. The planner takes into
account both static and dynamic constraints and produces globally optimal trajec-
tories with respect to energy and coverage objectives.
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The authors validate their approach inGazebo-based simulation environments, closely
replicating post-disaster scenarios with partially known or cluttered terrain. The
evaluation demonstrates that the proposed planner can significantly improve mis-
sion efficiency by reducing the total execution time while ensuring sufficient area
coverage and detection success rates. The results highlight the potential of using
optimization-based techniques for real-time, risk-aware UAV deployment in emer-
gency response applications.

• [3] Uav autonomous indoor exploration and mapping for sar missions:
Reflections from the icuas 2022 competition

This paper presents a comprehensive perception-aware autonomous exploration frame-
work tailored for indoor Search and Rescue (SAR) operations using UAVs. The pro-
posed system is designed to operate in GPS-denied environments, where rapid and
safe exploration is vital to locate victims and deliver emergency payloads. The UAV
operates without prior knowledge of the environment, utilizing onboard perception
to dynamically build a map, avoid collisions, and identify targets using fiducial
markers. A key feature of this framework is the integration of real-time exploration
andmapping using a 2D SLAM-based approach, which enables the UAV to navigate
through unknown, cluttered environments while optimizing its search trajectory.

One of the most practical contributions of the paper is the incorporation of a pay-
load delivery mechanism, which simulates the drop of medical supplies upon de-
tecting a target. The UAV performs a full pipeline of tasks: autonomous takeoff,
map building, exploration, target detection, and safe payload deployment. This
closed-loop system is tightly coupled with obstacle avoidance logic that reacts to
both static and dynamic hazards, ensuring reliable operation even in unpredictable
environments. The architecture also considers hardware limitations and real-world
constraints, aiming to deploy the solution on compact and lightweight aerial robots
suitable for indoor use.

The results highlight strong performance in exploration coverage, target localiza-
tion accuracy, and mission execution under time and resource constraints. The pa-
per also offers a detailed discussion of the lessons learned from the competition,
identifying practical limitations of onboard processing, challenges with fiducial de-
tection in poor lighting conditions, and potential areas for improving robustness and
reliability.

• [4] UAV Intelligent Path Planning for Wilderness Search and Rescue:

In this paper, the authors propose a path planning framework for UAVs in the context
of wilderness search and rescue (WiSAR) missions. The approach is motivated
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by the need to maximize the cumulative probability of finding a missing person,
based on a predefined probability distribution over the search area. The problem
is formalized as a variant of the Orienteering Problem, which balances the trade-
off between maximizing information collection and respecting time constraints. To
address this, several algorithms are proposed.

A key contribution is the integration of ”search effectiveness” into the cost model.
Instead of simply using Euclidean distance or travel time, the cost function incor-
porates a penalty for proximity to previously visited points, encouraging the UAV
to prioritize unexplored or less-covered areas. This modification helps to avoid re-
dundancy and promotes information gain. The Evolutionary Algorithms include
crossover and mutation operators specifically designed for path evolution, ensuring
feasible and efficient path generation under time constraints.

• [5] Detecting, Localizing, and Tracking an Unknown Number of Moving Tar-
gets Using a Team of Mobile Robots.

This paper addresses the challenge of tracking an unknown number of moving tar-
gets using a team of mobile robots operating in uncertain environments. The au-
thors propose a decentralized algorithm that enables each robot to detect, localize,
and track targets autonomously, while sharing information with teammates to im-
prove the overall effectiveness of the group. This approach enhances scalability and
robustness compared to traditional centralized methods.

The system combines particle filtering with cooperative decision-making and a hy-
brid communication model, allowing robots to adapt their actions based on target
dynamics and environmental changes. The proposed method is validated through
both simulations and real-world experiments, demonstrating strong tracking per-
formance, even in cluttered scenarios and high target mobility. This work is highly
relevant to search and rescue, surveillance, and other real-time multi-robot applica-
tions.

• [6]Re-routingUAVs in theWild: Preemptive Path Planning forEfficientWilder-
ness Search:

This paper builds upon previous work in UAV-based WiSAR, introducing an online
rerouting mechanism that enhances the adaptability of UAV path planning to dy-
namic mission updates. The system enables the UAV to preemptively interrupt its
current plan in favor of a more promising one, based on evolving knowledge about
the environment or updated probability maps. By leveraging an efficient rerout-
ing strategy that evaluates potential gains from switching paths, the authors aim to
improve mission success while minimizing redundant coverage.
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The planner relies on a modified version of the Orienteering Problem formulation,
where the UAV must maximize information gain under time constraints. A key
feature is the use of penalty-based cost functions for the evaluation of the path.
Specifically, paths that revisit areas already covered by the UAV or that are deemed
less probable to contain the target are penalized, allowing the planner to favor more
informative routes. The rerouting mechanism triggers when the expected gain of
a new candidate path, after accounting for switching costs, exceeds a predefined
threshold, ensuring that the UAV does not overreact to small changes, but remains
responsive to significant updates.

Experimental simulations show that rerouting improves overall search efficiency,
especially in environments with nonuniform or changing probability distribution.

• [7] Rapid exploration with multi-rotors: A frontier selection method for high
speed flight:

This paper introduces a novel frontier-based exploration strategy tailored for high-
speed navigation with quadrotors. Traditional frontier-based methods tend to mini-
mize the path length by directing the robot to the nearest unexplored frontier, often
resulting in stop-and-go movement that limits velocity. In contrast, this paper in-
troduces a reactive frontier selection approach that prioritizes frontiers within the
current field of view and aligned with the robot’s direction of motion. This min-
imizes abrupt changes in velocity and allows continuous high-speed exploration.
Although the traveled path may be longer, the overall exploration time is signifi-
cantly reduced.

The paper evaluates this method through both simulation and real-world experi-
ments, comparing it against classical frontier-based exploration and NBV planning.
The results show that the proposed method consistently achieves lower exploration
times, particularly in 3D environments or scenarios requiring frequent directional
changes. The authors also derive an optimal flight velocity that maximizes en-
ergy efficiency for multirotors and integrate this model into their planning strategy.
Overall, the work demonstrates how local, reactive planning aligned with visibility
constraints can yield global performance benefits for fast and efficient exploration.

• [8] The determination of next best views:

In this foundational work, Connolly introduces the concept of determining the NBV
for constructing complete 3D models from range images. The paper presents two
algorithms that utilize partial octree models to compute viewpoints that maximize
visibility of unseen regions. The first algorithm, termed the ”Planetarium Algo-
rithm,” samples a spherical shell around the object and identifies the viewpoint that
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exposes the largest unseen volume. The second, called the ”Normal Algorithm,”
uses exposed faces between unseen and empty nodes to rapidly estimate optimal
view directions.

The key objective of this work was to automate the selection of camera views in 3D
reconstruction tasks by proposing heuristics for maximal information gain. Con-
nolly’s approach laid the groundwork for later developments in active vision and
robotic exploration, where determining efficient sensor placements is critical. Al-
though the algorithms assume idealized conditions (e.g., free camera placement,
sensor always pointing at the origin), they highlight the fundamental trade-off be-
tween computational cost and completeness in model acquisition.

• [9] Occlusions as a Guide for Planning the Next View:

This paper presents the problem of acquiring complete 3D data from unknown
scenes using a laser range sensor. Their strategy focuses on intelligently planning
sensor movements by analyzing occlusions detected in range images. The core idea
is that occluded regions, which appear as gaps in the acquired data, provide valuable
guidance for selecting the next best viewpoint. The authors divide the data acqui-
sition task into two stages based on two types of occlusions: one caused by lack of
visibility to the camera, and the other by lack of illumination.

The main goal of the work is to exploit occlusion information, along with knowl-
edge of the sensor’s geometry, to compute new scanning directions that maximize
data completeness while minimizing unnecessary scans. The proposed algorithms
are based on a two-phase process: first rotating the sensor within the scanning plane
to resolve camera occlusions, and then planning perpendicular scans to capture parts
of the scene hidden due to illumination constraints. The research contributes signif-
icantly to the field of active vision by demonstrating how purposive sensing strate-
gies can lead to efficient 3D scene reconstruction without needing full a priori mod-
els.

• [10] Navigation Strategies for Exploring Indoor Environments:

In this paper, the authors investigate strategies for building accurate and complete
maps of unknown indoor environments using a mobile robot with imperfect sensing
and control. While prior approaches such as SLAM focus on integrating sensor data
into a coherent map, this work addresses the often-overlooked challenge of deciding
where the robot should move next to acquire the most useful information. The paper
introduces the concept of a ”safe region,” which defines the largest area guaranteed
to be free of obstacles based on current sensor readings. This notion forms the basis
of a next-best-view (NBV) algorithm that iteratively guides the robot to explore new
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areas while maintaining alignment with the existing map and ensuring collision-free
navigation.

The key contribution is a unified framework that combines map-building, viewpoint
planning, and safe motion. The NBV algorithm selects candidate positions within
the safe region based on expected information gain, required overlap with the cur-
rent map for alignment, and motion cost. Through both simulation and real-world
experiments, the authors demonstrate that their method enables efficient, automatic
construction of polygonal maps, reducing the number of sensing operations while
maintaining mapping accuracy. This work significantly bridges the gap between
SLAM and active sensing by offering a principled way to choose sensor placements
in an exploratory context.

• [11] Planning Exploration Strategies for Simultaneous Localization and Map-
ping:

This paper presents a planning framework for guiding mobile robots during the con-
struction of environmental maps, particularly in the context of SLAM. Unlike tradi-
tional SLAM approaches which mostly emphasize estimation and sensor fusion, the
focus here is on *where* the robot should go next to maximize mapping efficiency.
To this end, the authors introduce a novel utility function that balances information
gain, localization accuracy, motion cost, and visibility of features such as corners
and landmarks.

The utility function considers a variety of factors including proximity to unexplored
frontiers (free edges), probability of landmark recognition, expected localization un-
certainty based on trajectory shape, and distance from obstacles. A multiplicative
formulation ensures that configurations with poor scores on any one dimension are
automatically penalized, thereby guiding the robot to paths that are both informa-
tive and robust. The paper further proposes a randomized sampling algorithm that
enables multi-step lookahead planning without incurring excessive computational
cost.

The framework is implemented in both single- and multi-robot scenarios. Exper-
iments with real robots and simulations demonstrate the efficacy of the approach
in producing reliable, feature-rich maps. The strategy supports dynamic replan-
ning, backtracking, and landmark-based registration using partial Hausdorff dis-
tance. Overall, the work bridges motion planning and active perception in SLAM,
offering a flexible system that adapts to robot sensing capabilities and uncertainty
constraints.

9



• [12] A Frontier-Based Approach for Autonomous Exploration:

This paper introduces the concept of *frontier-based exploration*, where a mobile
robot incrementally explores unknown environments by navigating to the bound-
aries (frontiers) between known free space and unexplored regions. These frontiers
are detected within occupancy (evidence) grids, allowing the robot to always target
the most promising regions for acquiring new information. The method effectively
balances exploration and safety, as it guides the robot through accessible routes
without relying on prior maps.

A key innovation is the integration of laser-limited sonar, a sensor fusion technique
that uses laser range readings to correct errors from sonar reflections, significantly
improving the accuracy of the evidence grids. Frontier detection is achieved by
classifying each cell based on its occupancy probability and identifying open cells
adjacent to unknown ones. The robot then autonomously selects and navigates to the
nearest accessible frontier, updating its map upon arrival and repeating the process.

The method was tested on a real Nomad 200 robot in complex office environments
filled with irregular obstacles, such as furniture and narrow passages. The results
demonstrate that the approach can handle both cluttered and open spaces efficiently,
outperforming previous reactive methods limited by rigid environmental assump-
tions (e.g., right-angled walls).

• [13] Frontier-Based Exploration Using Multiple Robots:

This paper extends the concept of frontier-based exploration to multi-robot systems.
Each robot builds its own global evidence grid, detects frontiers at the boundaries
between known and unexplored areas, and navigates independently to these fron-
tiers. Although robots maintain separate decision-making processes, they share lo-
cal perceptual data, allowing them to avoid redundant exploration and achieve better
overall coverage. This decentralized and cooperative approach enhances robust-
ness: if a robot fails, the others can continue exploring without interruption. The
strategy relies on laser-limited sonar for accurate environment mapping, minimizing
errors caused by specular sonar reflections.

Through experiments in real office environments using Nomad 200 robots, the sys-
tem demonstrated effective and efficient multi-robot exploration. The robots ex-
plored independently but merged local information to improve each other’s maps,
using a log-odds fusion technique for efficient evidence grid integration. The study
highlights that even with minimal coordination, multiple robots can cooperatively
explore complex spaces with arbitrary wall orientations, adapting dynamically to
discovered frontiers and robot failures. This work laid groundwork for decentral-
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ized robotic exploration with shared environmental understanding.

• [14] Coordinated Multi-Robot Exploration:

This paper presents a decision-theoretic approach for coordinating a team of mo-
bile robots to efficiently explore unknown environments. The key idea is to assign
frontier cells (i.e., the borders between known and unknown space) to robots by
maximizing the expected utility and minimizing travel cost. Utility is reduced for
frontiers already assigned to other robots or likely to be covered by their sensors,
thus promoting spatial distribution of exploration tasks. The authors also consider
real-world limitations such as sensor noise and communication range, and incorpo-
rate path planning based on occupancy grid maps using a smoothed value iteration
algorithm.

The system supports both unlimited and limited communication scenarios. In limited-
range settings, robots locally coordinate in sub-teams and retain memory of others’
last known targets to minimize redundant exploration. The approach was validated
through extensive simulations and real-world experiments, demonstrating superior
performance compared to uncoordinated or greedy strategies. The authors show
that even partial coordination enabled by intermittent communication is sufficient
to achieve exploration efficiency near that of fully connected systems.

• [15] Evaluating the Efficiency of Frontier-Based Exploration Strategies:

This paper provides a thorough analysis and enhancement of frontier-based explo-
ration strategies, which are widely used in mobile robotics for autonomous mapping
of unknown environments. The authors begin by reviewing the classical closest-
frontier approach, where the robot always navigates toward the nearest boundary
between explored and unexplored space. While this method is simple and efficient,
it has known drawbacks such as redundant movement and inefficient revisiting of
already explored areas, particularly in indoor, room-structured environments.

To address these issues, the authors introduce two lightweight but impactful exten-
sions. The first is *repetitive re-checking*, a mechanism that continuously monitors
whether the robot’s current frontier target is still valid as the map updates. If the
targeted frontier becomes obsolete before arrival, due to new sensor information,
the robot re-evaluates its goal in real-time. This technique minimizes wasted mo-
tion toward irrelevant locations. The second improvement is *map segmentation*,
which aims to restrict exploration within the currently occupied room or region be-
fore moving to others. This is achieved through Voronoi-based segmentation of the
occupancy grid, enabling more coherent and efficient room-wise exploration.

The authors conduct an extensive evaluation of these strategies inmultiple simulated
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environments, including open spaces and office-like indoor layouts. Metrics such
as total path length are used to assess exploration efficiency. The study shows that
the enhanced frontier-based strategies are applied more complex decision-theoretic
strategies and significantly outperform random frontier selection. In structured set-
tings, segmentation prevents unnecessary revisits, while re-checking improves reac-
tivity without adding computational burden. In less structured, open environments,
repetitive re-checking still offers benefits, while segmentation has a more neutral or
even slightly negative effect.

• [16] A Comparison of Path Planning Strategies for Autonomous Exploration
and Mapping of Unknown Environments:

This paper offers a comprehensive review and empirical comparison of several
widely used exploration strategies in autonomous robotics, focusing on how these
strategies balance exploration efficiency and mapping quality. The authors first
outline the theoretical background of path planning in unknown environments, in-
cluding non-coordinated and coordinated methods, as well as those that incorporate
SLAM into the planning process. They highlight that while many strategies exist,
few have been systematically compared under a unified framework, which moti-
vates the study.

The authors implement and evaluate seven distinct strategies, ranging from the clas-
sic nearest frontier and cost-utility methods to market-based and hybrid coordinated
approaches, using a common simulation platform. Metrics such as total exploration
time, landmark-based SLAM map accuracy, and occupancy grid consistency are
used to assess performance across different environments and team sizes. The re-
sults show that techniques integrating SLAM uncertainty, such as the hybrid inte-
grated coordinated strategy, tend to yield higher map quality, although they often
incur longer exploration times. In contrast, cost-focused approaches are more time-
efficient but may sacrifice mapping accuracy.

Importantly, the paper emphasizes that no single strategy is optimal in all scenarios;
instead, the best choice depends on application-specific requirements such as the
need for rapid deployment, high-fidelity mapping, or robustness in multi-robot co-
ordination. The study also notes the importance of scalability, revealing that central-
ized coordination becomes computationally expensive as team sizes grow, whereas
distributed models like market-based strategies offer a balance between coordina-
tion and efficiency. This comprehensive evaluation provides valuable insight into
the design of exploration systems for real-world robotic deployments.

• [17] A Hybrid Solution to the Multi-Robot Integrated Exploration Problem:
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This paper presents a fully hybrid reactive/deliberative architecture for solving the
integrated exploration problem in multi-robot systems. Unlike prior methods that
give precedence to either reactive or deliberative planning, this approach assigns
equal importance to both layers. The architecture is built upon the concepts of the
expected safe zone and gateway cells. The reactive layer allows robots to safely
explore locally visible regions, while the deliberative planner builds an exploration
decision tree to decide whether the robot should remain within its current safe zone,
navigate to a gateway to explore a new zone, or revisit known areas to reduce lo-
calization uncertainty. This ensures robust and efficient behavior in environments
with potential navigation traps, like local minima.

The model is particularly notable for introducing a localized, map-limited reactive
process that avoids local minima by ignoring unreachable areas behind obstacles.
It also supports decentralized execution, which increases robustness and scalabil-
ity. The deliberative layer, on the other hand, makes strategic decisions using an
exploration tree structure that balances information gain, localization accuracy, and
multi-robot coordination. Robots share information through a centralized SLAM
system but rely primarily on local maps for reactive behavior. This division reduces
computational load while preserving the benefits of global planning.

Experimental results in simulation with up to eight robots across multiple environ-
ments demonstrate that the hybrid approach improves exploration efficiency and
localization quality over traditional methods, especially in cluttered or structurally
complex environments. Compared to classic frontier-based methods, the proposed
model yields better performance in both exploration time and mapping error. More-
over, the architecture’s flexibility and robustness make it a strong candidate for real-
time, scalable robotic deployments in indoor scenarios.

• [18] Vision-Based Autonomous Mapping and Exploration Using a Quadrotor
MAV:

This paper presents a fully autonomous quadrotor system capable of mapping and
exploring unknown environments using only vision-based sensors. The platform
relies on a front-facing stereo camera for visual odometry and 3D perception, com-
bined with a downward-looking camera for optical flow-based motion estimation.
A key contribution is the integration of all critical components pose estimation,
local navigation using the VFH+ algorithm, frontier-based exploration, and even
wall-following behavior via the Bug algorithm, making the system suitable for
GPS-denied environments. For large-scale mapping, image data is streamed to a
ground station where loop-closure detection and pose-graph SLAM are performed
off-board.
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The authors demonstrate that the system can navigate autonomously through struc-
tured indoor corridors and generate accurate 3D occupancy maps. The fusion of
visual odometry with optical flow improves pose robustness, while the ability to
switch between frontier-based and wall-following strategies ensures adaptability to
both dense and sparse environments. Experimental results show effective explo-
ration and large-scale SLAM, with re-localization capabilities using a visual vo-
cabulary tree for loop detection. The work highlights the potential of lightweight
camera-based solutions for fully autonomous MAV operation without reliance on
heavy or infrastructure-dependent sensors like laser scanners or motion capture sys-
tems.

• [19] OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees:

This paper introduces OctoMap, an open-source 3D mapping framework designed
to create compact, probabilistic volumetric representations of the environment using
octrees. OctoMap explicitly models free, occupied, and unknown space, which
is essential for autonomous navigation, exploration, and manipulation tasks. By
relying on a probabilistic occupancy estimation and efficient memory usage, the
framework allows robots to maintain consistent and updateable maps while coping
with noisy sensor data. Key features include multi-resolution queries, lossy and
lossless map compression, and support for dynamic environments.

A core innovation of OctoMap lies in its use of bounded confidence (clamping) in
occupancy probabilities, which enables compression through pruning of homoge-
neous map regions without significantly sacrificing accuracy. The framework can
incorporate data from various types of range sensors, and supports incremental map
updates using raycasting. Its probabilistic formulation ensures consistent integra-
tion of multiple uncertain measurements, and the log-odds representation simplifies
updates while allowing for fusion from different sources and even multiple robots.

The authors validate OctoMap across a diverse set of real-world datasets, demon-
strating scalability, accuracy, and efficiency. They also show how OctoMap outper-
forms traditional grid-based and point cloud methods in memory usage while retain-
ing high fidelity and navigational relevance. Integration into ROS and widespread
adoption across robotics tasks like 3D SLAM, humanoid navigation, and mobile
manipulation highlight the versatility of the framework. Overall, OctoMap repre-
sents a significant contribution to the field of 3D mapping in mobile robotics.

• [20] Fast Frontier-based Information-driven Autonomous Exploration with an
MAV:
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This paper presents a hybrid exploration strategy designed for fast, onboard com-
putation by Micro Aerial Vehicles (MAVs). The approach combines frontier-based
and sampling-based planning by selecting candidate next-views directly from fron-
tier voxels and evaluating them using a utility function based on map entropy and
estimated travel time. Unlike conventional frontier methods, this strategy avoids
computationally expensive voxel clustering by leveraging the octree map structure,
treating voxel blocks as implicit clusters. Information gain is approximated effi-
ciently via sparse raycasting, removing the need for full map updates or heavy com-
putation.

The system runs entirely onboard the MAV and uses the ‘supereight‘ octree-based
volumetric mapping framework to build and maintain the occupancy map in real-
time. Candidate viewpoints are sampled uniformly from updated frontier voxel
blocks and evaluated based on their expected entropy contribution. Optimized yaw
angles for each candidate are computed using 360° sparse raycasting to maximize
visible uncertainty, resulting in a utility-driven path planner that selects informative
viewpoints while minimizing time. The MAV follows full computed paths (rather
than just initial segments), which avoids oscillatory behavior common in receding-
horizon strategies.

Simulation results acrossmultiple 3D environments, including an apartment, amaze,
and a powerplant. Proposed method significantly reduces both computation time
and exploration duration compared to the widely used NBVP planner. A real-world
experiment with a DJI hexacopter further confirms feasibility, showing onboard
real-time performance using only RGB-D sensing. This work offers an efficient
and scalable solution to autonomous 3D exploration for MAVs operating in real-
time and computationally constrained conditions.

• [21] Adaptive-Resolution Octree-Based Volumetric SLAM:

This paper proposes a dense SLAM pipeline capable of integrating depth data into
a volumetric map at adaptive resolutions, addressing issues such as aliasing, mem-
ory inefficiency, and detail loss inherent in single-resolution systems. The system
dynamically selects the appropriate integration scale depending on the sensor’s dis-
tance from the scene, and fuses information using a hierarchical octree-based repre-
sentation. Built upon the ‘supereight‘ framework, it supports real-time performance
on CPUs and enables scale-consistent up- and down-propagation of voxel informa-
tion. A key innovation is the lazy propagation mechanism, which ensures consistent
map updates across scales only when needed for tracking or rendering, significantly
reducing computational overhead.

The authors demonstrate that their approach improves both runtime and reconstruc-
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tion quality, especially in cluttered environments. Compared to voxel hashing and
fixed-resolution octrees, the adaptive-resolution method achieves up to 6× speed-
ups and superior reconstruction accuracy on standard SLAM benchmarks. Fine
scene details are better preserved at close range, while faraway surfaces are mapped
more efficiently, enabling scalable dense SLAMsuitable formobile robotics, AR/VR,
and aerial exploration tasks.

• [22] An Improved Frontier-Based Approach for Autonomous Exploration:

This paper presents a refined frontier-based exploration method that improves effi-
ciency in cluttered environments, such as office spaces with narrow corridors and
cubicles. The authors enhance the classic utility function used for selecting frontiers
by integrating a new rotation cost component that considers the robot’s current head-
ing. This encourages exploration in the direction the robot is already facing, mini-
mizing unnecessary turning and improving coverage speed. The method combines
robot odometry with a topological graph of previously visited frontiers, allowing
the robot to both prioritize reachable unexplored areas and backtrack systematically
when needed.

Real-world experiments conducted in a complex office environment demonstrate
the superior performance of the proposed method over conventional frontier selec-
tion. The robot autonomously maps the environment using SLAM and ROS nav-
igation tools, while dynamically updating a topological graph to track visited and
unvisited nodes. Compared to the baseline, the improved utility function leads to
faster completion times, avoids localminima, and ensuresmore consistent coverage.
The study highlights the importance of heading-awareness andmemory-based back-
tracking in enhancing the autonomy and efficiency of frontier-based exploration
systems.

• [23] Applying Frontier Cells Based Exploration and Lazy Theta* Path Plan-
ning over SingleGrid-BasedWorldRepresentation forAutonomous Inspection
of Large 3D Structures with an UAS:

This paper proposes a lightweight, unified framework for autonomous 3D inspec-
tion using unmanned aerial systems (UAS), specifically designed for large-scale and
GPS-denied environments like offshore platforms. The authors combine frontier-
based exploration with the Lazy Theta* path planning algorithm, both implemented
over a single sparse octree structure (OctoMap). This design choice allowsmemory-
efficient representation and planning within large volumes, without falling back on
local 2D grids or requiring downsampling of 3D data. The system emphasizes mod-
ularity and test-driven development, enabling repeatable experiments and facilitat-
ing debugging through unit test automation.
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The exploration algorithm identifies frontier cells (free cells adjacent to unknown
space) directly on the octree structure, and benefits from the ability to skip over
unknown nodes, significantly reducing computational cost. For path planning, Lazy
Theta* is adapted to work directly on the sparse grid, avoiding unnecessary line-of-
sight checks and taking advantage of the multi resolution hierarchy of the octree.
The authors also present enhancements to the heuristic for path-finding, ensuring
more efficient traversal even in sparsely mapped or partially known spaces. The
same world model is shared between both exploration and planning components,
reducing data redundancy and system complexity.

Experimental results on both simulated and real-world datasets, including complex
offshore-like structures, demonstrate notable improvements in runtime, memory us-
age, and exploration efficiency when compared to regular grid-based methods. The
octree-based approach required one to two orders of magnitude fewer iterations to
detect frontiers and significantly reduced execution times in 3D planning. The Lazy
Theta* planner showed robust obstacle avoidance and path optimality under tight
memory constraints.

• [24] Multi-robot Exploration and Coverage: Entropy-based Adaptive Maps
with Adjacency Control Laws:

This paper introduces a novel framework for multi-agent exploration and coverage
(E-C) missions that combines three key elements: entropy-based world modeling,
adaptive occupancy grids, and adjacency-aware control laws. The authors design
a system where agents use local sensor data to construct a shared entropy grid that
reflects spatial uncertainty, guiding the group toward regions with high informa-
tion gain. The grid structure adapts in real-time using a quadtree representation,
dynamically refining resolution in areas of high entropy and coarsening it where
uncertainty is low. This enables memory-efficient mapping with minimal loss of
environmental detail.

A critical contribution of the work is the integration of the adaptive entropy grid with
decentralized control laws that consider both local and neighboring agent states.
The proposed TVD-D1 (time-varying density, 1-hop) controller enables each agent
to compute control inputs based on the density and centroid of its Voronoi region, as
well as those of adjacent agents. This leads to more coordinated agent movement,
avoids redundant exploration, and allows the system to converge toward a target
agent distribution in environments with time-varying density functions. The entropy
grid itself is generated using Shannon entropy derived from occupancy probabilities,
and drives both control and discretization.

The system is evaluated in large-scale simulations with up to 75 agents operat-
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ing in an unknown environment. Results show that the agents successfully ex-
plore and cover the space while maintaining grid adaptivity and communication
efficiency. The approach achieves near-optimal coverage with reduced computa-
tional cost compared to constant-resolution occupancy grids. The modular design
and demonstrated scalability make the method well-suited for real-time multi-robot
deployments in tasks such as search and rescue, surveillance, and environmental
monitoring.

• [25] Effective Exploration forMAVs Based on the Expected Information Gain:
This paper presents an autonomous exploration strategy for MAVs that selects the
next-best-view by maximizing expected information gain while minimizing flight
cost. The approach accounts for sensor uncertainty, abrupt motion changes, and
safety concerns such as battery life and predictable flight paths. A utility function
balances the expected reduction in 3D model uncertainty with the cost of reaching
candidate viewpoints, factoring in path smoothness and proximity to the mission’s
endpoint. A key novelty is the time-dependent cost that ensures the MAV returns
safely to its starting point before battery depletion, without sacrificing exploration
performance.

The MAV’s movement is constrained to a dynamically refined “hull” around the
region of interest, allowing uniform sampling of candidate viewpoints. Each voxel
in the octree-based map stores uncertainty estimates, and measurement updates are
performed via covariance intersection from stereo or monocular observations. The
system uses a probabilistic model of the environment and computes the information
gain through an approximation based on camera geometry. Efficient online evalua-
tion of candidate poses is performed using sparse raycasting. The algorithm avoids
abrupt turns by penalizing sharp directional changes, aiding human supervision in
legal scenarios where manual oversight is required.

Extensive simulation and real-world experiments validate the proposed method.
Compared to state-of-the-art alternatives, it yields better uncertainty reduction and
safer paths, and faster planning times. In a realistic building-scale scenario, the
system produced accurate 3D reconstructions with significantly lower voxel uncer-
tainty. Real-time capability was demonstrated using a stereo camera on an MAV
running the algorithm onboard.

• [26] Autonomous Quadrotor 3DMapping and Exploration Using Exact Occu-
pancy Probabilities:

This paper proposes a framework for 3D mapping and autonomous exploration us-
ing quadrotors, which combines an exact inverse sensor model with entropy-based
exploration. Unlike conventional occupancy grid mapping methods that use ap-
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proximate inverse sensor models, the proposed approach computes exact Bayesian
occupancy probabilities for each voxel by fully integrating prior beliefs and sensor
characteristics. This allows the robot to make more accurate probabilistic estimates
of unknown environments while fusing data frommultiple depth sensors of different
types and accuracy levels.

To manage the computational burden of 3D exploration, the authors project key
aspects of the 3D map into 2D planes for planning purposes. Specifically, en-
tropy and collision maps are generated in 2D to guide motion while maintaining
a full-resolution 3D map for mapping. The robot selects exploration poses by max-
imizing expected information gain, using predicted entropy updates from simu-
lated rays. The system also incorporates real-time constraints, sensor synchroniza-
tion, and computational limitations through ROS-based modular software and ex-
ternal computing resources, enabling flexible deployment on resource-constrained
quadrotors.

The framework is validated through both simulation and real-world experiments us-
ing an Asus Xtion, Hokuyo lidar, and onboard Nvidia Jetson computing. Results
show effective 3D reconstruction, safe collision avoidance, and successful entropy-
driven exploration in cluttered environments. The authors also explore the tradeoffs
between map completeness and exploration efficiency, showing that careful inte-
gration of planning heuristics and map projections can improve both. This work
demonstrates how exact probabilistic mapping can be scaled to real-time robotic
systems in practical 3D navigation scenarios.

• [27]AComparison of Volumetric Information GainMetrics for Active 3D Ob-
ject Reconstruction:

This paper presents a detailed comparison of different volumetric information gain
(IG) metrics used for selecting the next best view in 3D reconstruction tasks. The
authors focus on dense camera-based sensors and probabilistic voxel-based map-
ping frameworks. They propose several new IG formulations—such as Occlusion
Aware, Unobserved Voxel, Rear Side Voxel, Rear Side Entropy, and Proximity
Count—each capturing different aspects of how visibility and uncertainty influence
the informativeness of a viewpoint. These are evaluated against existing state-of-
the-art metrics from Kriegel et al. (2015) and Vasquez-Gomez et al. (2014).

The evaluation is performed in simulation using 11 different object models and a
static candidate viewspace around eachmodel. The authors isolate the effect of each
IG formulation by using idealized sensors and environments, ensuring the only vary-
ing factor is the metric itself. Performance is assessed based on surface coverage,
map entropy reduction, and computational cost. Results indicate that the Proximity
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Count VI and Vasquez-Gomez’s Area Factor VI consistently achieve higher surface
completion in fewer views, while the Average Entropy VI excels at reducing global
map uncertainty, though this doesn’t necessarily correlate with reconstruction com-
pleteness.

The proposed metrics are implemented in a modular ROS-based software frame-
work, which the authors release as open source. The system is hardware-agnostic
and easily extensible, enabling integration with real-world platforms for tasks such
as object modeling and inspection. The findings show that no single VI metric is
best for all objectives, but that task-specific choices e.g., prioritizing surface cover-
age vs. entropy minimization, can significantly influence reconstruction efficiency
and quality. This work provides the first systematic comparison of IG formulations
in active 3D reconstruction and establishes useful guidelines for selecting appropri-
ate metrics in practice.

• [28]Autonomous 3D Exploration of Large Structures Using an UAVEquipped
with a 2D LIDAR:

This paper proposes a deterministic and modular system for fully autonomous 3D
exploration using an unmanned aerial vehicle (UAV) equipped with a 2D laser scan-
ner. By leveraging the lightweight and cost-effective nature of 2D LIDAR, the au-
thors introduce a flyby sampling manoeuvre that extends its capability for 3D map-
ping. The system uses an OctoMap-based sparse volumetric representation and in-
tegrates frontier-based exploration, the Lazy Theta* path planner, and local/global
switching strategies. A key contribution is the generation of safe, smooth flight
paths that obey sensor visibility and obstacle clearance constraints, while allowing
the UAV to operate entirely onboard and online.

The framework was validated through extensive Hardware-in-the-Loop simulations
using flight-ready components. The results demonstrate that the system can ex-
plore up to 93% of the predefined search volume in under 30 minutes, while gen-
erating non-repetitive, efficient paths. Compared to nearest-neighbor and surface-
frontier heuristics, the proposed octomap-based frontier selection strategy achieved
higher space coverage and lower final map entropy. The architecture is ROS-based,
reusable across UAV and AUV platforms, and requires minimal operator input.

• [29] Efficient 3D Exploration with Distributed Multi-UAV Teams: Integrating
Frontier-Based and Next-Best-View Planning:

This paper proposes a distributed framework for 3D exploration using multiple
UAVs equipped with LiDAR, combining frontier-based and NBV planning. Each
UAV independently builds and updates a local OctoMap, detects frontiers, and eval-
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uates candidate viewpoints based on information gain and distance metrics. A sim-
plified auction-based assignment strategy coordinates exploration targets among
UAVs to minimize redundancy. The system emphasizes adaptability and computa-
tional efficiency by using adaptive Octree depth for frontier detection and a mod-
ified A* planner for safe and responsive path planning. Real-time collaboration is
achieved through OctoMap sharing and log-odds map fusion among UAVs.

The proposed framework is validated in ROS-based simulation environments, in-
cluding urban and forest settings, using one to threeUAVs. Extensive benchmarking
shows that the method achieves superior exploration rates and path efficiency com-
pared to classical frontier-based and greedy information-gain approaches. Ablation
studies demonstrate the importance of tuning key parameters such as Octree depth,
distance-weighting constant λ, and clustering bandwidth to balance accuracy and
performance. Overall, the method shows strong scalability, efficient coordination,
and adaptability across a range of environments, providing a practical solution for
real-time, cooperative 3D exploration.

• [30] Fast Multi-UAV Decentralized Exploration of Forests:

This paper introduces a decentralized exploration strategy tailored for multi-UAV
teams operating in dense and occlusion-heavy environments such as forests. The
method allows each UAV to switch dynamically between two operational modes,
Explorer and Collector, based on the structure of the surrounding frontier clusters.
While Explorers aim to cover large unknown regions, Collectors are tasked with
clearing narrow, occlusion-induced trails left behind. This switching mechanism
ensures high-speed exploration with minimal need for costly revisits and signifi-
cantly improves overall mission efficiency. Coordination is achieved via peer-to-
peer communication, and a cost-based assignment function ensures effective region
partitioning among the robots without relying on centralized infrastructure.

The proposed framework is evaluated in both simulated and realistic forest envi-
ronments, including high-fidelity 3D reconstructions. Experiments with up to ten
UAVs show that the system consistently outperforms both centralized and decen-
tralized frontier-based approaches in terms of mission completion time and average
UAV velocity. Even under limited communication ranges, the method maintains its
advantage by optimizing exploration based on localmaps and area assignments. The
results confirm the scalability, robustness, and high-speed capability of the system,
making it suitable for complex missions such as disaster response and large-area
inspection in unstructured terrains.
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• [31] Automated Real-Time Inspection in Indoor and Outdoor 3D Environ-
ments with Cooperative Aerial Robots:

This work presents a robust and integrated real-time framework for infrastructure
inspection using a team of cooperative heterogeneous UAVs operating in complex
3D indoor and outdoor environments. The proposed methodology follows a two-
stage approach: The first stage involves environmental mapping based on the com-
plementary sensing capabilities of UAV agents, some equipped with LiDAR and
gimballed cameras, while the second stage focuses on the generation and execution
of collision-free cooperative inspection paths.

As illustrated in Figure 3.1, during the first stage, all UAV agents, regardless of sen-
sor type, are tasked with visiting scenario-dependent fixed exploration waypoints
aligned along the longest axis of the environment. This strategy enables efficient
spatial coverage and initial map construction, which forms the basis for the subse-
quent inspection planning.

Experimental evaluations conducted in simulation environments closely similar to
real-world scenarios, including building and crane inspections, demonstrate the ef-
fectiveness of the system in achieving high inspection quality and full surface cov-
erage under communication and time constraints.

2.2 How This Work Differs From Related Work

A large body of research has been conducted in the area of 3D exploration using aerial
robots, focusing on efficient path planning, environment representation, collision avoid-
ance and coordinated multi-agent behavior. The following section outlines and reflects on
the research we reviewed, highlighting how it contributed to shaping and optimizing our
implementation.

Several works have adopted frontier-based exploration to incrementally expand the map
by directing UAVs toward the boundary between known and unknown space. Some of
these focus purely on classical frontier algorithmswithout integrating higher-level decision-
making, such as those in [7],[12],[13] which emphasize efficient expansion and coverage.
Other approaches combine frontier-based strategies withmore advancedmechanisms such
as utility scoring and cost-aware planning. Theseworks [15],[20],[22],[23] aim to improve
exploration efficiency and data quality.

Other research efforts adopt Next-Best-View (NBV) strategies[8],[9] to guide UAVs to-
wards viewpoints that are expected to maximize information gain or inspection quality.

Efficient 3D environment representation is also a core aspect of UAV exploration systems.
Works such as [19],[21] utilize OctoMap or Octree-based mapping techniques to build
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memory-efficient occupancy grids in real-time.

Path optimization is frequently modeled as a Traveling Salesman Problem (TSP) or its
variants[4],[6]. In this work, a cost-aware variant of the TSP is employed, where the
path planning strategy penalizes revisits to previously explored areas in order to enhance
overall route efficiency.

Our implementation focuses primarily on the use of the frontier algorithm combined with
a customized variation of the TSP algorithm. This approach aims to produce an efficient
solution that satisfies the constraints defined in Chapter 3. By adapting the underlying
heuristics, we seek to improve resource utilization.
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3 Chapter 3

Problem Statement

• Environmental Mapping and Pre-Inspection Collisions

• Traveling Salesman Problem Limitations in Inspection Task

3.1 Environmental Mapping and Pre-Inspection Collisions

The UAV Fleet:

The mission configuration consists of a fleet of five UAVs and one centralized Ground
Control Station (GCS). The fleet is divided into two categories: two Explorer drones
(named jurong and raffles) and three Photographer drones (named changi, sentosa, and
nanyang). Each UAV type is tailored for a specific role within the cooperative inspection
process.

Explorers are larger and heavier than Photographers, which allows them to carry a rotating
LiDAR sensor in addition to a gimballed camera. Their primary task is to generate an
initial map of the environment using the LiDAR, although their increased mass results in
slower flight speeds.

In contrast, Photographer UAVs are more lightweight and agile, equipped solely with gim-
balled cameras. Their higher speed makes them well suited for covering large, previously
mapped regions in less time, enabling efficient image capture for inspection.

The Ground Control Station (GCS) acts as the central processing unit for evaluating col-
lected data. As each interest point may be inspected multiple times by different UAVs, the
GCS selects the highest-quality image captured for each location to assign a score. This
centralized comparison ensures that the final inspection score reflects the best available
observations for each point of interest.

Environmental Mapping and Pre-Inspection Collisions:

The CARIC is structured in two primary stages: the first focuses on Environmental Map-
ping, while the second emphasizes Cooperative Inspection. As illustrated in Figure 3.1,
during the first stage, all UAV agents, regardless of their sensor types, are assigned to visit
fixed exploration waypoints that are scenario-dependent and distributed along the longest
axis of the environment. The purpose of this stage is to build an initial occupancy map
that identifies a high percentage of traversable, inspection-relevant voxels. Let Vvalid de-
note the set of valid voxels for inspection, and Vtotal be the total number of voxels in the
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environment; the objective is to maximize the mapping ratio |Vvalid|
|Vtotal| prior to the inspection

stage.

The rationale is that by generating a detailed map during Stage 1, the UAVs, particularly
the Photographer agents that are not equipped with LiDAR and therefore lack the abil-
ity to sense their surroundings, will benefit from a preprocessed map that allows them to
navigate safely and inspect structures without relying on local obstacle detection. This ini-
tial mapping should allow UAVs to operate without collisions during Stage 2, leveraging
shared information to reduce spatial uncertainty.

However, through extensive empirical testing across all provided simulation scenarios
(i.e. MBS, hangar, crane), a persistent issue was observed: UAVs, and especially the
Photographer agents, frequently experience collisions even before the inspection phase has
been fully initiated. These collisions occur despite the existence of a partial environment
map and result in the early loss of agents that would otherwise contribute significantly to
the efficiency and completeness of the inspection task. An example of this behavior is
illustrated in Figure 1.1, where a Photographer UAV collides with surrounding geometry
due to a lack of accurate obstacle information in its vicinity.

This recurring issue highlights the need for a more robust and strategic approach to stage 1,
particularly in terms of how waypoints are selected and how shared mapping information
is utilized by agents with limited sensing capabilities.

Figure 3.1: Stage 1 Environmental Mapping Process
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Problem Constraints and Environmental Structure

Let V ⊂ R3 denote a bounded 3-dimensional volume, discretized into voxels, each as-
sociated with an occupancy probability Po(v) for all points v ∈ V . Initially, all voxels
are assumed unknown, therefore Po(v) is not defined or neutral, and UAV agents must
actively explore the environment to classify voxels into occupied, free, or unobservable
categories. The goal of autonomous exploration during the Environmental Mapping stage
can therefore be formulated as the process of constructing an occupancy map M of the
observable subset of voxels within V . It’s worth noting that there might be some voxels
that can’t be observed due to practical limitations, such as hollow spaces or narrow pock-
ets. The exploration process is regarded as complete when there are no ”unknown” voxels
left in the observable section of the space.

The status of each voxel M(v) is categorized based on its occupancy probability Po(v),
into:

M(v) =


free, Po(v) = 0.1

unknown, 0.1 < Po(v) < 0.98

occupied, Po(v) = 0.98

Acore component of themapping task is the notion of frontiers. Frontiers represent bound-
aries between the known free space and unknown space regions:

F = {v ∈ V : v is a free cell and has at least one neighboring cell that is unknown}

Frontiers are critical to exploration as they identify regions that, when visited, can maxi-
mize the information gained about the environment. The autonomous exploration process
continues iteratively until no frontiers remain:

F = ∅

During this process, UAV explorers equipped with LiDAR sensors generate partial occu-
pancy mapsMi:

Mi : V → {occupied, free, unknown}, i = 1, 2, . . . , Ne

where Ne denotes the number of explorer UAVs participating in the mapping task.
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These individual occupancy maps are merged into a global initial occupancy map:

Minit =
Ne∪
i=1

Mi

This merging process is not performed only once, but occurs continuously during the mis-
sion. As long as exploration is ongoing and UAVs come into communication range or
line-of-sight with one another, their local occupancy maps are synchronized in real-time.
This dynamic fusion contributes to a progressively more complete and up-to-date version
of Minit. Once the frontier-based exploration is concluded and the environment has been
fully mapped, further merging becomes unnecessary, as no new information is generated.

The problem arises when UAV agents, especially those without local sensing capabili-
ties (i.e., Photographer UAVs), utilize Minit for path planning without adequate collision
checking, resulting in frequent collisions. Hence, our problem formulation improves both
the accuracy and completeness of the occupancy map, as well as efficient frontier-based
exploration, to reduce collisions and enhance mission efficiency.
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3.2 Traveling Salesman Problem Limitations in Inspection Task

Before introducing the travel salesman problem limitations, it is important to first explain
how the overall mission score is calculated, as this metric serves as the foundation for
evaluating inspection performance.

Explanation of the mission score

Let us denote the set of the interest point as I, and the set of UAVs as N . At each simu-
lation update step k, we denote qi,n,k as the score of the interest point i captured by UAV
n. Specifically qi,n,k is calculated as follows:

qi,n,k =

0, if (k = 0) or (qseen · qblur · qres < 0.2),

qseen · qblur · qres, otherwise.

where qseen ∈ {0, 1}, qblur ∈ [0, 1], qres ∈ [0, 1] are the LOS-FOV, motion blur, and reso-
lution metrics, which are elaborated in the subsequent sections. The above equation also
implies that an interest point is only detected when its score exceeds a threshold, which is
chosen as 0.2 in this case.

At the GCS, the following will be calculated:

qi,gcs,k = max
[
max
n∈Ngcs

(qi,n,k), qi,gcs,k−1

]
,

where Ngcs is the set of UAVs that have LOS to the GCS. This reflects the process that
the GCS receives the images captured by the drones and selects the one with the highest
score and keeps that information in the memory. Moreover, the stored data will also be
compared against the future captures.

The score of the mission up to time k is computed as follows:

Qk =
∑
i∈I

qi,gcs,k.

Hence, the mission score will be Qk at the end of the mission.
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The Traveling Salesman Problem

During the second stage Cooperative Inspection, the UAV agents utilize path-planning
strategies inspired by variations of the TSP. In our current implementation, the selection of
the next inspection point is determined solely by a cost function that prioritizes minimizing
the distance from the UAV’s current position to available inspection points. Specifically,
if we denote the current UAV position as Upos and a set of candidate inspection points as
Pinspect, the existing cost function is formulated as:

Ccurrent = min
p∈Pinspect

d(Upos, p) (3.1)

where d(Upos, p) denotes the Euclidean distance between the UAV position and each po-
tential inspection point.

However, extensive experimentation during simulation scenarios has highlighted a criti-
cal limitation with this approach. Often, UAV agents repeatedly select inspection points
surrounded by regions of interest points with high scores, thereby neglecting other in-
spection points with potentially higher cumulative value that remain unexplored. As a
consequence, towards the end of the inspection stage, UAVs frequently face scenarios in
which numerous critical inspection points-those with initially high-value points of interest
around them-remain unattended, severely limiting the final overall score and effectiveness
of the inspection mission.

The underlying reason for this issue is the inadequacy of the current cost function defi-
nition. The current implementation fails to incorporate information regarding the interest
points’ potential inspection value in the decision-making process, thus causing suboptimal
resource allocation and reduced coverage quality.

To address this limitation, an additional criterion should be introduced to enhance the
decision-making process during inspection point selection. This new criterion should fac-
tor into the cost function not only the spatial proximity but also the potential inspection
value of nearby points of interest around each inspection candidate. By integrating such a
measure, UAV agents could dynamically prioritize inspection points that maximize both
spatial and informational coverage, significantly improving overall inspection efficiency
and mission outcomes.

Details about the specific method chosen for integrating this additional criterion into the
TSP-based selection process are discussed comprehensively in the subsequent chapter,
where our proposed approach is outlined and validated.

29



4 Chapter 4

Proposed Approach / Solution

• Frontier-Based Exploration Algorithm

• Traveling Salesman Problem Limitations in Inspection Task

• General Modifications for Enhanced Performance

4.1 Frontier-Based Exploration Algorithm

Frontier-based exploration arises from the necessity to autonomously investigate environ-
ments that are hazardous, inaccessible, or simply unexplored by humans. These environ-
ments may include deep-sea regions, outer space, or areas affected by natural disasters
on Earth. Key challenges in this domain involve constructing accurate maps of the area,
determining optimal exploration paths, and dynamically adjusting strategies in response
to evolving and uncertain conditions

A key challenge in exploration lies in how an autonomous agent determines its next
movement in order to maximize knowledge of the environment. Frontier-based explo-
ration focuses on detecting and analyzing the boundaries between known free space and
yet-unexplored regions-commonly referred to as ”frontiers.” These frontiers represent
zones with partial or uncertain information, which may potentially include important fea-
tures, obstacles, or areas of interest. The core objective of frontier exploration is to au-
tonomously investigate these uncertain boundaries, progressively expanding the mapped
area and uncovering useful environmental insights.

4.1.1 Virtual Boundary Generation

Initially, the GCS constructs a conceptual “visual boundary” (illustrated in Figure 4.3)
comprised entirely of occupied cells, which encloses the boundaries of the given explo-
ration scenario. This virtual boundary effectively transforms any open environment into
a closed, finite region. The occupied cells defining this boundary correspond to the outer-
most coordinates of the environment along the X-axis (Xmin, Xmax), the Y-axis (Ymin, Ymax),
and the upper limit along the Z-axis (Zmax). The lower limit of the Z-axis, denoted as Zmin,
naturally represents the ground level, which is inherently occupied.

Upon generating this virtual boundary, the GCS publishes these boundary points as a
PointCloud2 message to the topic /$(explorer_namespace)/cloud_in. This topic
serves as an input channel where LiDAR-equipped UAV explorers continuously publish
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detected occupied points during their mission. Hence, this boundary seamlessly integrates
into the exploration data flow, acting as a predefined occupied boundary layer.

The motivation behind the construction of this virtual boundary stems from a fundamental
limitation inherent to LiDAR sensors. Specifically, if a LiDAR sensor ray passes through
free (unoccupied) voxels without eventually encountering an occupied voxel, all points
detected along the ray path may be considered uncertain or invalid, thereby causing valu-
able environmental data to be disregarded. By introducing this occupied boundary, each
LiDAR sensor ray is guaranteed to intersect with at least one occupied voxel, regardless of
the scenario or environment type. Thus, each sensor measurement is effectively validated,
ensuring maximum utilization of sensor data for accurate and comprehensive environment
mapping.

Mathematically, let r be a ray originating from the LiDAR sensor position psensor. The
presence of the virtual boundary ensures that, for any direction vector d⃗, the ray defined
by:

r(t) = psensor + td⃗, t ≥ 0

will always intersect with at least one occupied voxel (voccupied) within the predefined vir-
tual boundary limits:

∃ t′ ≥ 0 : r(t′) ∈ voccupied

This ensures consistent and accurate frontier determination throughout the exploration
process.
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Figure 4.1: Illustration of the virtual occupied boundary used for frontier exploration.

4.1.2 Occupied and Free Space Integration

The next stage in the Frontier-Based Exploration Algorithm involves handling data acqui-
sition and integration from LiDAR-equipped UAV explorers. The algorithm utilizes two
primary ROS subscribers:

• occupied_Callback: This subscriber receives PointCloud2 messages from the
topic /$(explorer_namespace)/octomap_point_cloud_centers. The points
received represent voxels detected by the UAV’s LiDAR as occupied.

• free_Callback: Similarly, this subscriber handles messages from the topic
/$(explorer_namespace)/free_cells_vis_array. The received points indi-
cate voxels detected by the LiDAR as free. To ensure reliability, only free voxels
within a certain proximity radius r = γ × area_details.resolution.data are
considered, where γ is a user-defined constant.

The role of γ is to scale the observation radius according to the voxel resolution of
each scenario. Since resolution defines the size of each voxel, using a multiplicative
factor allows us to adapt the effective sensing radius proportionally.

The exploration algorithm employs two primary threads to manage continuous and effi-
cient processing:

1. merge_map Thread

2. published_cells Thread
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merge_map Thread Operation

The merge_map thread runs continuously until the Frontier-Based Exploration process is
complete. Initially, it updates an adjacency data structure based on occupied voxel in-
formation acquired from occupied_Callback. Subsequently, when a UAV explorer has
line-of-sight (LOS) to another UAV, the thread performs a real-time merging of occu-
pancy information. This coordination is realized through the published_cells thread,
which is responsible for broadcasting the local occupancy data including occupied and free
cells to neighboring agents within the communication range. This continuous exchange
ensures that each UAV maintains an up-to-date map by integrating the observations of
other agents in real time, thus improving global spatial awareness and reducing the set of
unknown voxels in the environment.

Following this integration step, frontier points are computed. The frontier detection is
executed via the following steps:

1. Frontier Detection: A voxel is classified as a frontier if it is adjacent to at least one
unknown voxel and at least one free voxel. Mathematically, for each voxel v ∈ Vfree

(set of free voxels), if there exists a neighboring voxel v′ ∈ Vunknown, then voxel v is
marked as a frontier:

F = {v ∈ Vfree | ∃v′ ∈ Vunknown, v
′ is neighbor of v}

Figure 4.2: Detected frontier voxels visualized after each call to the Frontier
Detection function.
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A pseudocode representation of Frontier Detection approach follows:

function FindFrontiers(FreeCoords, UnknownCoords, NeighborOffsets):
FrontierList = []
for each coord in FreeCoords:

for each offset in NeighborOffsets:
neighbor = coord + offset * resolution
if InBounds(neighbor) and neighbor in UnknownCoords:

FrontierList.append(coord)
break

return FrontierList

2. Frontier Clustering: Detected frontier voxels are clustered using a MeanShift al-
gorithm to group spatially adjacent frontiers, reducing the computational load and
improving path planning efficiency:

Fclusters = MeanShiftCluster(F, bandwidth)

Figure 4.3: Visualization of clustered frontier regions used for target selection.
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A pseudocode representation of Frontier Clustering function follows:

function ClusterFrontiers(FrontierCells, Bandwidth):
if FrontierCells.empty():

return []
if FrontierCells.size() == 1:

return [FrontierCells[0]]
# Build a search tree over frontier points
Tree = KDTree(FrontierCells)
# Run Mean Shift clustering with given bandwidth
Clustering = MeanShift(Bandwidth)
Clustering.fit(FrontierCells)

ClusterCenters = Clustering.cluster_centers_
for center in ClusterCenters:

_, idx = Tree.query(center)
SnappedCenters.append(FrontierCells[idx])

return SnappedCenters

3. Optimal Frontier Selection:

To ensure efficient exploration in a multi-UAV environment, an optimal frontier
selection strategy is employed. This strategy selects the next best cluster of frontier
points for exploration based on a utility-based approach that balances information
gain and distance cost, while also taking into account inter-UAV coordination.

The process begins by evaluating all available frontier clusters. For each candi-
date cluster, the algorithm computes an information gain value, representing the
expected number of unknown voxels around the cluster. This value is estimated by
sampling the cluster’s neighboring cells using a predefined offset pattern and check-
ing against a list of currently unknown cells in the 3D map representation.
Next, a utility score is computed for each cluster, which is a function of the follow-
ing:

• The distance from the current UAV to the cluster (self-distance)

• The information gain around the cluster

• A penalty if the cluster is closer to another UAV than to the current one (to
avoid redundant effort)
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The utility score is calculated using the formula:

utility = −(wd · dself − wg · IG+ γ ·max(0, dself − dother)) (4.1)

where wd and wg are the weights for distance and information gain respectively, γ
is a penalty multiplier, dself is the distance from the UAV to the cluster, IG is the
information gain, and dother is the distance from the other UAVs to the cluster.

Once all candidate clusters are scored, the one with the highest utility score is se-
lected. If this target has already been selected multiple times consecutively, indicat-
ing a possible deadlock or poor utility landscape, the algorithm attempts to choose
an alternative cluster from the remaining top candidates. This ensures robustness
against repetitive or suboptimal target selections.

After a best frontier is selected, it is not immediately assigned as the next target. In-
stead, a stabilization mechanism is introduced to avoid frequent switching between
similar frontier candidates. The algorithm checks if the newly selected frontier dif-
fers from the currently assigned target. If a new best frontier is selected repeatedly
over several cycles (specifically, three times), it is then accepted as the new target.
This delay acts as a temporal filter, allowing the UAV to begin approaching the pre-
viously selected target without unnecessary re-planning due to minor fluctuations in
utility values. This logic ensures that transient changes in utility do not cause abrupt
target updates, contributing to smoother and more stable UAV movement planning.

Figure 4.4: Exploration scenario with clustered frontiers shown in green and the chosen
frontier highlighted in red, indicating the UAV’s next navigation target.
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Apseudocode representation of Optimal Frontier Selection function follows:

function SelectBestFrontier(Clusters, UAVPos, OtherUAVs, Tree, Threshold):
if Clusters.isEmpty():

return None

Scores = []
for each cluster in Clusters:

IG = ComputeInformationGain(cluster, Tree)
U = ComputeUtility(cluster, UAVPos, OtherUAVs, IG)
Scores.append((U, cluster))

best = argmax(Scores)

if best == LastTarget:
RepeatCount += 1

else:
LastTarget = best
RepeatCount = 0

Alternatives = [(s, c) for (s, c) in Scores if c != LastTarget]
best = argmax(Alternatives)
LastTarget = best
RepeatCount = 0

return best

This approach facilitates cooperative and efficient exploration by guiding each UAV
to informative and non-redundant regions in the 3D environment.

4.1.3 Publishing Occupied and Free Cells

In a multi-agent exploration setting, coordination between UAVs is crucial. One such
mechanism of coordination involves the continuous exchange of spatial information be-
tween agents, specifically, the occupied and free cells observed by each UAV. The thread
serves this purpose by broadcasting spatial data to the other UAV in real-time.

The thread works as follows:

• It publishes the current lists of occupied and free grid cells using ROS topics:
/namespace/occupied_coords and /namespace/free_coords, respectively.

• This transmission occurs repeatedly as long as the flag remains False, implying
that the other UAV still requires updates.

• Once the other UAV completes its frontier-based exploration phase, it sends a flag
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signal back (via a namespace-specific topic), which terminates this broadcast loop.

This thread-like mechanism ensures that data sharing remains consistent even under inter-
mittent communication or temporary signal loss, while also allowing the receiving UAV
to terminate the synchronization process once it no longer needs spatial updates.

occupied_Callback

free_Callback

merge_map

published_cells explorer_traj_script

free cells

occupied cells target point
other UAV data

occupied cells

free cells

Figure 4.5: Dependency graph among the exploration routines.

4.2 Proposed TSP-based Inspection Path Refinement

To address the limitations previously discussed regarding the TSP formulation ( 3.1) for
inspection planning, we introduce an enhanced strategy that incorporates both spatial cost
and inspection value around each candidate point. This approach aims to mitigate the ten-
dency of UAVs to overlook high-value inspection points that are not immediately adjacent
to other clusters of interest.

Our solution modifies the cost matrix used in TSP-based path planning by assigning dy-
namic penalties to specific inspection points based on their contextual value. The method
begins with evaluating the average interest score around each candidate inspection point,
as computed by the find_avg_score() function. For each inspection point p ∈ Pinspect,
the function uses a KD-Tree to identify all nearby interest points i ∈ Pinterest that lie within
a radius r, where:

r = area_details.resolution.data

Let N (p) ⊂ Pinterest be the set of interest points within this radius. Each interest point
i ∈ N (p) carries a scalar score value si ∈ [0, 1]. The average score for the inspection
point p is then computed as:

avg_score(p) =


0, if |N (p)| = 0

1
|N (p)|

∑
i∈N (p)

si, otherwise
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Finally, the average score is compared to a threshold. A point is considered important
(score = 1) if its average score exceeds this threshold, and unimportant (score = 0) other-
wise:

binary_score(p) =

1, if avg_score(p) > threshold

0, otherwise

The logic behind this adjustment is that high-value points, while important, should not be
prioritized. The penalty defers their selection, allowing the UAV to initially cover less
important points and leaving the high-value regions for more optimized integration later
in the route.

Then, calculateCircuits() function, builds per-UAV inspection circuits. The function
assigns targets to UAVs based on the minimum cost to unvisited points, while updating the
source and destination sets for each UAV accordingly. The algorithm continues until all
inspection points have been assigned, now taking into account both distance and interest-
aware penalties.

This method results in more balanced and strategically valuable coverage patterns, avoid-
ing the early exhaustion of high-value targets and increasing the total number of inspection
points.

Key Enhancements:

• Spatial context of inspection points is captured via average interest score.

• A binary scoring mechanism flags high-value targets (score > threshold).

• Penalties are added to discourage premature selection of critical points.

• UAV circuits are computed using an enhanced greedy assignment algorithm.
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A pseudocode representation of calculateCircuits() function follows:

function CalculateCircuits(Positions, NumNodes, CostMatrix, InspectPoints):

Scores = FindAvgScore(InterestPoints, InspectPoints)
Penalty = 50

for i, score in enumerate(Scores):
if score > 0.65:

CostMatrix[:, i + NumUAVs] += Penalty

// Initialize circuit data structures
CircuitSources = [ [] for each UAV ]
CircuitDests = [ [] for each UAV ]
CircuitCosts = [ [] for each UAV ]
Visited = mark start Positions as visited

// Greedy assignment until all nodes covered
while not all Visited:

for each UAV i:
node = argmin_j (CostMatrix[Positions[i]][j], for j unvisited)
mark Visited[node] = true
CircuitSources[i].append(Positions[i])
CircuitDests[i].append(node)
CircuitCosts[i].append(CostMatrix[oldPos][node])
Positions[i] = node

return CircuitSources, CircuitDests, CircuitCosts
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4.3 General Modifications for Enhanced Performance

To further improve the overall performance and responsiveness of the multi UAV ex-
ploration and inspection framework, we incorporated several general optimizations and
architectural refinements:

Modifications to gcs.py

• Removed the unnecessary publication of static area details inside a loop, as this
message only needs to be sent once.

• Resolved a critical type comparison error involving rospy.Time objects. All time
variableswere converted to seconds using .to_sec() for reliable comparison. Type
checks were also added to ensure correct conversions, preventing runtime excep-
tions.

Modifications to traj and path script

• Dijkstra Enhancements:

– Re-enabled arrival message publishing for unreachable inspection points.

– Introduced a rate.sleep() delay after publishing the arrived message to
ensure synchronization with the trajectory planner thread.

• Adjacency Graph Construction:

– Replaced linear nearest-neighbor search with a KDTree-based query in
construct_adjacency(), significantly reducing the runtime of adjacency
updates.

– Removed redundant enumerate() since indices were not utilized.

• Collision Risk Mitigation:

– Removed the condition that waits for more than 20 occupied cells before up-
dating adjacency. This change allows faster reaction to obstacles and reduces
collision probability.
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Modifications to photographer script

• Removed the continuous loop that repeatedly fetched updatedmaps from the explorer
nodes. In the previous implementation, the photographer continuously queried the
latest map state throughout the exploration phase, resulting in unnecessary process-
ing overhead and redundant data access.

• Instead, the updated map is now retrieved only once-at the end of the frontier ex-
ploration phase-when the UAV has completed mapping and is ready to initiate the
inspection stage. This significantly reduces communication traffic and improves
CPU utilization during runtime.

• This change assumes that the explorer has already constructed a sufficiently com-
plete map before handing it over to the inspection module, thus allowing a one-time
snapshot to suffice for the needs of the photographer.

Modifications to run_solution.launch

Grid Resolution Adaptations:

• The value of grid_resolution was updated to 8 (instead of 6) for general sce-
narios, and to 4 (instead of 5) specifically for the hangar scenario, enabling finer
sampling and improved spatial representation.

Octomap Configuration Improvements:

• The resolution of the octomap_server was set to grid_resolution/2 instead
of a fixed value of 4, making the resolution dynamic and dependent on the grid
configuration.

• The flags publish_point_cloud_centers and publish_free_space were en-
abled to provide both occupied and free-space data.

• The sensor model parameters were adjusted as follows:

– hit probability: from 1.0 to 0.75,

– miss probability: from 0.3 to 0.49,

– min: from 0.3 to 0.10,

– max: from 1.0 to 0.98,

aiming for a more realistic representation of measurement uncertainty.
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5 Chapter 5

Simulation Results

• Simulation Scenarios

• Coverage comparison

5.1 Simulation Scenarios

The simulation phase was designed to evaluate the system’s performance across three dis-
tinct inspection scenarios, each representing different real-world environments. The pri-
mary objectives were: (i) to assess the coverage capabilities of the UAV team across vary-
ing geometric and semantic contexts, and (ii) to evaluate the impact of the proposed co-
ordination and path-planning strategies on execution time, collision avoidance, and score
efficiency.

Each scenario was simulated in Gazebo using a voxelized 3D environment managed by
Octomap, and the UAVs operated via ROS-based multi-agent coordination modules. The
simulation was visualized in real-time using RViz, allowing observation of UAV trajecto-
ries, frontier updates, and inspection progress. The three evaluation environments are:

• Building Inspection (MBS): A vertical structure composed of three 60-meter tow-
ers connected at the top via a void deck. The full fleet of 5 UAVs was deployed to
inspect both facades and connecting decks, as illustrated in Figure 5.1.

Figure 5.1: MBS Scenario
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• Crane Inspection: A complex industrial scenario consisting of two construction
cranes (60m and 80m tall) and a 50m gantry crane, emulating a seaport layout.
The full 5-UAV fleet was deployed here, aiming to maximize coverage of structural
elements from multiple angles, as illustrated in Figure 5.2.

Figure 5.2: Crane Scenario
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• Hangar Inspection: An aircraft placed at the entrance of a hangar served as the in-
spection target. The airplane dimensions are approximately 20m (height) and 70m
(length). Due to the more constrained environment and reduced inspection volume,
a smaller fleet of 3 UAVs (1 explorer and 2 photographers) was deployed, as illus-
trated in Figure 5.3.

Figure 5.3: Hangar Scenario

Each simulation was run using a fixed number of UAVs per scenario, reflecting realistic
task loads. No randomized trials were applied; instead, each environment was simulated
using a deterministic setup to allow consistent evaluation of path strategies, target selec-
tion, and runtime behavior. The analysis in the following subsections presents metrics on
inspection score, inter-agent collision rate, and total mission duration for both the baseline
and improved implementations.

5.2 Coverage Comparison

To systematically evaluate the quality of exploration coverage across different implemen-
tations, we tested all three scenarios (MBS, Crane, Hangar) under four distinct execution
durations: 250s, 320s, 500s, and 650s. Themost notable improvements inmapping quality
and final inspection readiness were observed after implementing a series of deeper archi-
tectural changes, such as the implementation of the Frontier-Based Exploration Algorithm
and the inspection path planner (TSP refinement).

The observed improvements can be attributed to the ability of the proposed Frontier-Based
Exploration Algorithm to allow each UAV to generate a more comprehensive and accurate
environmental map prior to entering the inspection phase. By maintaining an up-to-date
representation of free and occupied voxels, the UAVs are able to plan trajectories that
avoid occupied areas more effectively, thus significantly reducing inter-agent collisions.
Furthermore, the improved TSP inspection path planner prioritizes inspection points with
lower average interest scores in the early stages. This scheduling defers high-value targets
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to later phases of the mission when the UAVs are better positioned and the map is more
complete, leading to more efficient coverage and better allocation of inspection efforts
across the fleet.

5.2.1 From Baseline to Optimized: A Performance Evaluation

Before integrating the proposed improvements to frontier selection and TSP-based path
planning, a set of general performance optimizations (as described in Section 4.3) had
already been applied. These changes introduced both architectural and communication-
level efficiencies, leading to observable improvements in overall mission performance. In
particular:

• Inter-agent collisions continued to occur, but with slightly lower frequency com-
pared to the baseline implementation.

• The final inspection score demonstrated noticeable improvement in nearly all tests
conducted within our scenarios

• The number of interest points successfully visited per mission increased signifi-
cantly, indicating better path planning effectiveness.

• The total time required to complete stage 1 (collaborative mapping) remained ef-
fectively unchanged.

These results indicate that even without modifying the core exploration and inspection
algorithms, system-level optimizations contributed positively to mission outcomes.

However, in order to provide a complete understanding of the effects of the general opti-
mizations, it is important to separately analyze their impact on computational performance
and execution time.

Execution Time Improvements from General Optimizations

The modifications applied to the gcs.py script primarily improved communication stabil-
ity and consistency, but did not introduce any measurable change in the execution times
of the mission stages.

Similarly, changes made to the Dijkstra planning routine enhanced the synchronization
performance between the trajectory and path planners, yet had no significant impact on
raw computational times.

The most substantial improvement was observed in the adjacency graph construction
phase. Specifically, by replacing the nearest-neighbor search with a KD-Tree-based struc-
ture, the runtime for adjacency constructionwhenn = 3000 nodeswas reduced from 12.86
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seconds to only 2.4 seconds. This optimization significantly accelerated the environment
mapping phase and reduced delays in updating the local navigation graph, thereby im-
proving the responsiveness of the exploration system.

Comparison of Final Inspection Score

The following tables summarize the average final inspection scores, comparing the base-
line implementation with the optimized one.

Table 5.1: Average Inspection Score before General Performance Optimizations

Scenario 250s 320s 500s 650s
MBS 525 610 750 800
Crane 437 478 500 500
Hangar 330 402 420 485

Table 5.2: Average Inspection Score after General Performance Optimizations

Scenario 250s 320s 500s 650s
MBS 581 640 760 790
Crane 810 1000 1200 1230
Hangar 423 478 540 576

Comparing the scores before and after applying general performance optimizations, sig-
nificant improvements are evident across all tested scenarios (MBS, Crane, and Hangar).
Specifically, the optimized implementation consistently achieved higher final inspection
scores.

• MBS scenario: There is a modest improvement in the average inspection scores,
particularly noticeable at shorter execution durations (250s and 320s). However,
the improvement diminishes slightly at longer durations (500s and 650s), indicating
diminishing returns from optimizations in scenarios already performing well.

• Crane scenario: Exhibited the most pronounced improvement, with substantial
score increases observed across all durations. Particularly, at 500 seconds, scores
improved dramatically from 500 points before optimization to 1200 points after
optimization. This highlights the impact of the optimizations in geometrically com-
plex environments, where UAVs benefited significantly from better navigation and
collision avoidance.
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• Hangar scenario: Although the environment was relatively simpler, the optimized
implementation still resulted in consistent performance enhancements. Inspection
scores steadily increased, for example from 420 to 540 at 500 seconds, demonstrat-
ing improved overall system efficiency even in less challenging environments.

These results underline that the applied general performance optimizations substantially
enhanced exploration efficiency, mission reliability, and final inspection outcomes across
diverse scenarios, highlighting their critical role in improving UAV fleet effectiveness in
practical applications.

To complement the tabular data, Figure 5.4 presents a visual comparison of the average
inspection scores across all scenarios and execution durations. Each line represents one
scenario (MBS, Crane, Hangar), while dashed lines correspond to the baseline implemen-
tation and solid lines to the optimized one. The improvements are particularly pronounced
in the Crane scenario, where the optimized system shows significantly higher scores at
longer durations.

Figure 5.4: Comparison of inspection scores before and after general performance
optimizations.
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Comparison of Detected Interest Points

The following tables summarize the number of detected interest points successfully cov-
ered by the UAVs at each execution duration. The comparison includes both the baseline
implementation and the optimized system that incorporates interest-aware planning strate-
gies.

Table 5.3: Detected Interest Points before General Performance Optimizations

Scenario 250s 320s 500s 650s
MBS 860 1036 1176 1280
Crane 688 787 820 820
Hangar 587 689 720 779

Table 5.4: Detected Interest Points after the General Performance Optimizations

Scenario 250s 320s 500s 650s
MBS 1002 1128 1247 1260
Crane 1398 1826 2050 2100
Hangar 661 728 800 886

The results demonstrate a consistent increase in the number of detected interest points suc-
cessfully covered by the UAVs after the application of general performance optimizations.
These gains are evident across all scenarios and execution durations.

• MBS Scenario: The number of detected interest points improved modestly across
all durations. While the pre-optimization performance was already relatively high,
the optimized system offered noticeable gains e.g., from 1176 to 1247 at 500s. In-
terestingly, a small performance plateau is observed at 650s, suggesting that most
interest points had already been covered by that stage.

• Crane Scenario: This scenario shows the most substantial improvement. The
optimized implementation significantly outperformed the baseline, particularly at
longer durations. For instance, the number of detected points increased from 820 to
2050 at 500s. This sharp increase illustrates the benefit of enhanced navigation and
interest-aware planning in more complex geometries.

• Hangar Scenario: Improvements were moderate but consistent across all dura-
tions. The number of detected points rose from 720 to 800 at 500s and from 779 to
886 at 650s. This suggests that even in relatively simpler environments, the opti-
mizations yielded tangible benefits.
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In summary, the integration of general performance optimizations especially those target-
ing interest-aware planning resulted in more effective and efficient coverage of relevant
areas, enhancing the UAVs’ mission outcomes in both complex and simple scenarios.

To complement the tabular data, Figure 5.5 presents a visual comparison of the detected
interest points across all scenarios and execution durations. Each line represents one sce-
nario (MBS, Crane, Hangar), with dashed lines corresponding to the baseline implemen-
tation and solid lines to the optimized one.

Figure 5.5: Comparison of detected interest points before and after general performance
optimizations.
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Comparison of UAV Collisions

The following tables summarize the number of UAV collisions recorded during each ex-
ecution duration. Since collisions represent failures in coordination or spatial planning,
fewer collisions generally indicate better system performance, improved trajectory plan-
ning, and more effective inter-agent cooperation.

Table 5.5: UAV Collisions before General Performance Optimizations

Scenario 250s 320s 500s 650s
MBS 1 1 1 1
Crane 2 3 5 5
Hangar 1 1 1 2

Table 5.6: UAV Collisions after General Performance Optimizations

Scenario 250s 320s 500s 650s
MBS 1 1 1 1
Crane 0 0 0 0
Hangar 0 1 1 1

The results indicate that the optimized implementation significantly reduced the number
of UAV collisions, particularly in more complex environments.

• MBS Scenario: The number of collisions remained stable at one across all dura-
tions, both before and after the optimizations. This suggests that the scenario al-
ready had relatively low conflict potential due to open space or good baseline path
planning.

• Crane Scenario: This environment showed the most dramatic improvement. Col-
lisions dropped from as high as five (at 500s and 650s) to zero after optimizations.
This clearly demonstrates the effectiveness of improved inter-agent coordination
and collision avoidance strategies in complex geometries.

• Hangar Scenario: A moderate reduction in collisions was observed, especially
in shorter durations. While some collisions still occurred at 320s and beyond, the
overall reduction indicates more efficient spatial coordination among UAVs.

Overall, the reduction in collisions across scenarios confirms that the applied performance
optimizations significantly enhanced the robustness and safety of multi-agent exploration
missions.
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To better illustrate the impact of the general performance optimizations on inter-agent
coordination, Figures 5.6 and 5.7 show the number of UAV collisions per scenario, across
all tested execution durations. Each scenario (MBS, Crane, Hangar) is represented with
a different color, allowing for a clear comparison between the pre- and post-optimization
states.

Figure 5.6: UAV collisions per scenario before applying performance optimizations.

Figure 5.7: UAV collisions per scenario after applying performance optimizations.
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Overall Conclusion

The comparative evaluation across all key performance indicators-final inspection scores,
detected interest points, and number of UAV collisions-demonstrates that the applied gen-
eral performance optimizations led to substantial improvements. Specifically, the opti-
mized implementation consistently achieved higher inspection coverage, successfully de-
tected more points of interest, and significantly reduced the number of collisions among
UAVs. These enhancements confirm the effectiveness of the optimization strategies in in-
creasing mission efficiency, safety, and coordination across diverse operational scenarios.
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5.2.2 Exploration Optimized Planning Results

This section presents a comparison between the general performance optimized version
and a more advanced implementation that integrates frontier-based exploration and an up-
dated TSP algorithm. While the general optimization focused on improving system-level
efficiency and coordination, the advanced planning version aims to enhance decision-
making at the local exploration level through strategic goal selection and path refinement.

In the frontier-based approach, the main objective is to improve full-space coverage by
selecting exploration goals at the boundary between known and unknown areas. This
results in more accurate and complete mapping of the environment, enabling each UAV
to better identify which voxels are free and which are occupied. Such enhanced spatial
awareness significantly reduces the likelihood of collisions between agents, especially in
cluttered or partially observable environments.

Moreover, the updated TSP algorithm prioritizes regions with higher potential for infor-
mation gain, allowing UAVs to detect more interest points within the same execution du-
ration. This planning refinement translates into better resource utilization and mission
efficiency, especially when detecting sparse or scattered targets.

The following comparison evaluates the two approaches across multiple performancemet-
rics including final inspection scores, detected interest points, andUAV collisions to assess
the effectiveness of high-level planning enhancements on mission performance.

Comparison of Final Inspection Score

The following tables summarize the average final inspection scores reached per execution
duration, comparing the general optimized implementationwith the exploration-optimized
planning approach that integrates frontier-based exploration and an improved TSP algo-
rithm.

Table 5.7: Average Inspection Score with General Performance Optimizations

Scenario 250s 320s 500s 650s
MBS 581 640 760 790
Crane 810 1000 1200 1230
Hangar 423 478 540 576
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Table 5.8: Average Inspection Score with Exploration-Optimized Planning Approach

Scenario 250s 320s 500s 650s
MBS 606 650 780 780
Crane 760 866 1020 1180
Hangar 527 545 597 627

The comparison between the general optimized version and the exploration-optimized
planning approach reveals a mixed performance pattern across different scenarios.

• MBS Scenario: The inspection score remains relatively stable across all durations,
with a small variation between the two approaches. This outcome is expected, as the
frontier-based approach focuses more on accurate and safe exploration rather than
aggressive coverage. In some cases, certain areas may be marked as unsuitable or
unreachable due to strict voxel classification, which limits full inspection.

• Crane Scenario: The general optimized version outperforms the exploration-optimized
approach inmost durations. However, this difference can be attributed to the conser-
vative nature of the frontier planner, which may avoid risky paths that the general
version might take. Despite this, the exploration approach maintains competitive
scores, while significantly improving safety and coordination.

• Hangar Scenario: Interestingly, the exploration-optimized approach surpasses the
general one in all durations. This indicates that in simpler environments with less
obstruction, the benefits of better spatial understanding and path selection lead to
more effective inspection.

Overall, although the exploration-optimized approach may result in slightly lower or sim-
ilar scores in some complex environments, this trade-off is justified by its emphasis on
safety, structured exploration, and long-term coordination benefits.

To visually support the numerical comparison, Figure 5.8 presents the final inspection
scores achieved by both the general optimized version and the exploration-optimized plan-
ning approach across all scenarios and durations. Dashed lines represent the general im-
plementation, while solid lines correspond to the exploration-enhanced version. The com-
parison highlights how the exploration-focused strategy balances inspection performance
with safer and more structured coverage.
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Figure 5.8: Comparison of final inspection scores between the general optimized ver-
sion and the exploration-optimized planning approach.

It is also important to emphasize that although the inspection scores of the exploration-
optimized approach are often comparable to those of the general optimized version, they
are still significantly higher than the scores recorded before any optimizations were ap-
plied. This highlights the fact that the exploration-optimized planning not only preserves
the benefits of the general improvements but also builds upon them, offering a safer and
more structured exploration process without compromising overall mission performance.
This observation is further supported by Figure 5.9, which presents a direct comparison
between the baseline system and the exploration-optimized approach across all test sce-
narios and durations.
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Figure 5.9: Comparison of final inspection scores between the baseline system (before
optimization) and the exploration-optimized planning approach.
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Comparison of Detected Interest Points

The following tables summarize the number of detected interest points successfully cov-
ered by the UAVs at each execution duration. The comparison is made between the general
optimized implementation and the exploration-optimized planning approach, which inte-
grates frontier-based mapping and an improved TSP algorithm to enhance coverage of
high-interest areas.

Table 5.9: Detected Interest Points with General Performance Optimizations

Scenario 250s 320s 500s 650s
MBS 1002 1128 1247 1260
Crane 1398 1826 2050 2100
Hangar 661 728 800 886

Table 5.10: Detected Interest Points with Exploration-Optimized Planning Approach

Scenario 250s 320s 500s 650s
MBS 1118 1206 1280 1310
Crane 1684 2045 2336 2522
Hangar 920 963 1029 1034

The comparison highlights a significant improvement in the number of detected interest
points when using the exploration-optimized planning approach, especially in the Crane
and Hangar scenarios.

• MBS Scenario: Amoderate improvement is observed across all durations, with the
exploration-optimized version slightly outperforming the general one. This shows
that even in relatively open environments, the advanced planning was able to target
additional interest points.

• Crane Scenario: The largest gain is observed here, with over 400 additional points
detected at 650 seconds compared to the general version. This considerable im-
provement is directly attributed to the integration of the upgraded TSP algorithm,
which prioritized unexplored or high-interest areas more effectively, enabling UAVs
to capture new data that was previously unreachable or deprioritized.

• Hangar Scenario: Similarly, a notable increase is recorded, particularly in longer
durations. The improved path planning helped the UAVs systematically cover more
interest-rich areas without overlapping paths.
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Overall, these results confirm that the enhanced interest-aware planning and the refined
TSP algorithm significantly boosted the UAVs’ ability to detect more points of interest
across diverse environments.

To support the tabular data, Figure 5.10 illustrates the detected interest points achieved by
each method across all scenarios and durations. Dashed lines indicate the general opti-
mized version, while solid lines represent the exploration-optimized planning approach.

Figure 5.10: Comparison of detected interest points between the general optimized
version and the exploration-optimized planning approach.

59



Comparison of UAV Collisions

The following tables summarize the number of UAV collisions recorded during each exe-
cution duration. The comparison is made between the general optimized implementation
and the exploration-optimized planning approach, which leverages frontier-based map-
ping for safer navigation and an updated TSP algorithm for structured path planning. Re-
ducing collisions is critical for ensuring mission reliability and safe multi-agent coordina-
tion.

Table 5.11: UAV Collisions with General Performance Optimizations

Scenario 250s 320s 500s 650s
MBS 1 1 1 1
Crane 0 0 0 0
Hangar 0 1 1 1

Table 5.12: UAV Collisions with Exploration-Optimized Planning Approach

Scenario 250s 320s 500s 650s
MBS 0 0 0 0
Crane 0 0 0 0
Hangar 0 0 0 0

The collision data highlights a clear advantage of the exploration-optimized planning ap-
proach in ensuring safer navigation and improved inter-agent coordination.

• MBS Scenario: While the general optimized version recorded a constant one colli-
sion across all durations, the exploration-optimized approach managed to eliminate
collisions entirely. This improvement demonstrates how even in relatively open
environments, precise spatial reasoning can enhance safety.

• Crane Scenario: Both versions resulted in zero collisions, indicating that the en-
vironment itself may have been well-suited to the agents’ paths. However, it is
important to note that the exploration-optimized approach maintained this safety
margin even while covering more interest points.

• Hangar Scenario: The most notable improvement is observed here. The gen-
eral version showed occasional collisions, particularly at higher durations, while
the exploration-optimized approach achieved complete elimination. This result is
strongly linked to the frontier-based exploration method, which enabled more accu-
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rate environmental mapping. By maintaining a clear distinction between free and
occupied voxels, UAVs avoided potentially risky paths that could lead to conflicts.

In summary, the complete elimination of UAV collisions in the exploration-optimized ap-
proach confirms the effectiveness of frontier-based spatial awareness in enabling safer
multi-agent operation.

Figure 5.11: Number of UAV collisions per scenario using the general optimized ver-
sion.

Overall Conclusion

The comparison between the General Optimized Version and the Exploration-Optimized
Planning Approach highlights clear advantages introduced by the latter. Notably, the
Exploration-Optimized approach achieved a substantial increase in the number of detected
interest points and a significant reduction in UAV collisions. These improvements are pri-
marily attributed to the integration of a frontier-based exploration strategy combined with
a refined TSP solver for path planning. In addition, the overall inspection score experi-
enced a slight but consistent improvement, reinforcing the effectiveness of the exploration-
driven optimization in enhancing mission awareness, safety, and spatial coverage during
inspection tasks.
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6 Chapter 6

Conclusion

• Thesis Overview and Results

• Future work

6.1 Thesis Overview and Results

In this thesis, we addressed critical challenges in the efficient operation of UAV swarms
for inspection and exploration missions. Initially, the implemented system exhibited con-
siderable performance bottlenecks, characterized by prolonged execution times in critical
functions and relatively low inspection scores, especially noticeable in geometrically com-
plex scenarios. These inefficiencies significantly limited the UAVs’ ability to complete
missions effectively.

To overcome these issues, we introduced general performance optimizations aimed at re-
fining system efficiency, improving computational resource management, and enhanc-
ing multi-agent coordination. These optimizations successfully addressed execution time
problems and significantly boosted inspection scores across all scenarios. Notably, the
Crane scenario experienced dramatic score improvements, highlighting the optimizations’
effectiveness in challenging environments.

Further, recognizing persistent issues with UAV collisions and insufficient detection of in-
terest points, we implemented a comprehensive exploration-optimized planning approach.
This approach combined frontier-based exploration techniques with an upgraded TSP al-
gorithm. The frontier-based method improved the accuracy and completeness of environ-
ment mapping, thereby dramatically reducing collision incidents by clearly distinguishing
occupied and free voxels. Concurrently, the enhanced TSP algorithm strategically guided
UAVs towards areas with higher interest point densities, significantly increasing the num-
ber of detected points compared to previous implementations.

These improvements not only optimized mission outcomes regarding data acquisition and
safety but also ensured more reliable and systematic UAV swarm operations. By effec-
tively eliminating collisions and enhancing inspection performance, the final system rep-
resents a robust and scalable solution for complex exploration missions involving multiple
UAVs.
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6.2 Future Work

Future work will focus on further enhancing and validating the current system through
several key improvements and extensions:

• Scalability assessment of the system with a larger number of UAVs and extended
operational areas. Further experimentation with additional environmental complex-
ities and multi-sensor integration should be conducted to validate and improve ro-
bustness.

• Incorporating UAVs with different flight dynamics and sensor payloads in testing to
refine the system’s behavior and improve generalization across hardware platforms.

• Making the source code and system documentation publicly available, including
detailed installation and setup guides, to facilitate community engagement and col-
laborative improvements.

These future enhancements will further establish the system as a practical, efficient, and
widely applicable tool for UAV-based exploration and inspection missions.

Finally, the source code for the implementations developed in this thesis is available at the
following Git repository:

• https://github.com/zinonas79/diplomatic.git

The repository contains three distinct branches, each corresponding to a different stage of
the development process:

• version1 – This branch includes the baseline implementation, which serves as the
reference version without performance enhancements.

• version2 – This branch incorporates general performance optimizations.

• master – The main branch contains the final version of the code, featuring the
optimized planning strategy.
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