
Bachelor’s thesis

The CountaBLEAttendance System using Bluetooth Low Energy

(BLE)

Yiannis Hadjiyiannis

UNIVERSITYOF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2025



UNIVERSITYOF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

The CountaBLEAttendance System using Bluetooth Low Energy(BLE)

Yiannis Hadjiyiannis

Supervisor

Prof. Demetris Zeinalipour

The thesis was submitted in partial fulfillment of the requirements for obtaining the

undergraduate degree in Computer Science from the Department of Computer Science of

the University of Cyprus.

May 2025



Acknowledgments

First, I would like to express my gratitude to my supervisor Prof. Demetris Zeinalipour for

his continuous guidance throughout the year. The communication between us consistently

provided me with valuable feedback, pushing me to achieve great results.

I also would like to express my gratitude to my friends and family for providing me with

continuous unconditional love and support throughout this journey. Having them by my

side, helped me maintain a clear and sharp mind by keeping me motivated. I could not

have done this without them.

i



Abstract

Attendance tracking in educational and organizational environments remains a big concern

throughout the years, where accuracy and reliability matters. In modern days, the classic

pen­and­paper solutions have proved to be inconvenient for both organizers and participants,

leading to the development of various attendance systems utilizing different technologies

with the goal of automating the process for greater reliability and convenience. Attendance

systems using different technologies have been proposed and used, including manual sign­

ins, QR Codes, RFID tags and Wi­Fi signal based where each system introduces different

levels of automation and accuracy, but eventually suffer from common drawbacks such as,

requiring additional hardware, relying on existing infrastructure, user inconvenience and

fraudulent behavior.

In this thesis, the CountaBLE system is proposed looking to offer an automated solution to

address these limitations by leveraging Bluetooth Low Energy (BLE) technology, supported

by the majority of modern smartphone devices. The system, by utilizing BLE’s power

efficient technology along with the Generic Attribute Profile (GATT), it enables a peer­

to­peer device discovery and data communication between an Organizer and multiple

Participants. By following this approach, the system not only operates fully without

internet connection, but also guarantees that attendance messages can only be exchanged

through the user’s personal smartphone device to significantly reduce the risk of remote

attendance fraud. The use of a unique per­app device identifier during communication,

enhances the reliability in recurring attendance tracking sessions allowing a consistent

recognition of participants without the use of any device sensitive data, ensuring user

privacy.

The system developed was built using a cross­platform approach in Ionic Framework, to

ensure consistent user experience across different platforms while also minimizing the

development costs. With full native Android functionality developed, the architecture of

the system is in place for future iOS compatibility. For android platforms, the system

makes use of Android’s foreground service model allowing BLE operations to actively

work in the background ensuring minimal user interaction.

ii



Contents

1 Introduction 1

1.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work and Background 7

2.1 Related Attendance Systems . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Attendance Systems using WiFi (RSS) . . . . . . . . . . . . . . . 8

2.1.2 Attendance Systems using QR Codes . . . . . . . . . . . . . . . 8

2.1.3 Attendance Systems using RFID . . . . . . . . . . . . . . . . . . 9

2.2 LTE Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Comparison of Different Technologies . . . . . . . . . . . . . . . . . . . 10

2.4 Security Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . . . 12

2.5.2 Ionic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



3 Communication Layer 17

3.1 Introduction to the Communication Layer . . . . . . . . . . . . . . . . . 17

3.2 Messages Exchanged Between Organizer and Participant . . . . . . . . . 19

3.2.1 Advertising Packet . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Client Payload (Write Request) . . . . . . . . . . . . . . . . . . 19

3.2.3 Acknowledgment (Write Response) . . . . . . . . . . . . . . . . 19

3.3 Communication Overview . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Layers Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Ionic with Capacitor . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Native BLEAPI . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.3 GATT &ATT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.4 L2CAP & HCI . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.5 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Data Layer 25

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 SQLite Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Entity­Relationship Diagram . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Relational Schema . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.3 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.4 Data Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 User Interface & Ionic Layer 35

5.1 Navigation and Menu Drawer . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Login & Select Mode Pages . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Organizer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Class Page Code Snippets . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Advertisement Page Code Snippets . . . . . . . . . . . . . . . . 45

5.4 Participant Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Scanning Page Code Snippets . . . . . . . . . . . . . . . . . . . 49

5.4.2 Auto­Join Page Code Snippets . . . . . . . . . . . . . . . . . . . 50

iv



6 Native Layer (implemented for Android) 52

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Foreground Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Code Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Experimental Evaluation 57

7.1 Evaluating the Communication Layer . . . . . . . . . . . . . . . . . . . 57

7.2 Evaluating the Data Layer . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Evaluating Battery Consumption . . . . . . . . . . . . . . . . . . . . . . 62

8 Conclusions and Future Work 64

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

v



Chapter 1

Introduction

1.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Attendance tracking has been a concern in institutional and organizational environments,

especially in academic contexts where accurate records are important for various reasons,

including compliance, statistical reasons, but also performance evaluation. The process of

tracking attendance has relied on many forms such as manual sign­ins or even pen­and­

paper evaluation by the organizer of the specific environment. While simple in theory,

these attendance tracking techniques can often prove unreliable due to inaccuracies and

inefficiencies since they are prone to human error, especially when an Organizer is control­

ling a large amount of participants. As a result, the need for automated attendance systems

has gained increasing attention, mainly in scenarios where mobile computing and Internet

of Things (IoT) technologies are involved.

Over the years, several technologies have been proposed and used in order to make atten­

dance tracking less intrusive but also more reliable. This includes technologies that are

based on RFID Tags, QR Code scanning or even Wi­Fi RSS (Received Signal Strength)

where each technology presented partial solutions, making the attendance tracking process

far more simple. However, these technologies inevitably address some limitations and

introduce new challenges. For instance, RFID Attendance Systems ­ a solution seen in

various Universities, requires specialized hardware and infrastructure, both for the Univer­

1



sity and each Student. QR Code based attendance systems, while affordable, suffer from

inaccuracies since they rely on camera quality and can sometimes suffer from visibility

issues. WiFi RSS techniques, even though they may be less intrusive for the user, can

suffer from an unstable signal and require constant calibration. All these systems, carry

trade­offs in terms of scalability, hardware requirements and user efforts.

Another big challenge in many automated attendance systems solutions is the vulnerability

to fraudulent behavior. From the technologies referred such as the use of RFID and QR

Codes, while they are widely adopted, they often face the problem of not enforcing the true

presence of the participant. For instance, when considering RFID solutions, a participant

can easily share their personal RFID Tag which serves as their personal identification

with another Participant in order to register attendance on their behalf. Similarly, when

considering QR code solutions, the organizer will often share a static QR Code on a screen

to the participants. These QR codes can be captured and then easily shared amongst other

participants that are not truly present. These limitations pose a big threat in reliably tracking

a participant’s presence.

In this thesis, an automated attendance system is proposed using Bluetooth Low Energy

(BLE). BLE is a modern, standardized wireless communication protocol available on

most of the smartphone devices on the market including both Android and iOS devices.

The system, called CountaBLEAttendance System, leverages the benefits of using BLE

Technology to tackle the various limitations exposed by other solutions in order to provide

a robust, reliable system to enhance the attendance tracking process for both Participant

and Organizer. Given the widespread adoption of smartphone devices in modern society,

the system proposed can be considered infrastructure free since it requires no additional

hardware. Moreover, it requires no internet access and supports power­efficient device

discovery and communication over short distances.

The system leverages each participant’s personal device as the BLE medium used for sub­

mitting attendance, requiring their true presence. This significantly reduces the feasibility

of remote attendance. To strengthen this, the system employs the use of a unique per­app

identifier that is generated per app signing key, making it a practical choice for identifying

participants in a consistent manner while also avoiding any privacy and security issues that

could arise during the communication of the organizer with a participant. In a scenario

where recurring attendance sessions take place, this implies that when a participant submits

2



their attendance to an organizer, the same identifier will be expected in every session

allowing the system to uniquely identify valid participant devices.

Bluetooth Low Energy (BLE) along with the use the Generic Attribute Profile (GATT)

plays a central role in enabling the design and functionality of the proposed attendance

system. When using GATT, one central device called the GATT server, takes the role

of the Organizer where it broadcasts advertisement packets while several other devices

take the role of GATT Client which represent the Participants, and actively listen to those

advertisement packets used to initiate an actual connection between them for data exchange,

allowing a seamless peer to peer device discovery and communication.

The system developed, adopts a cross­platform development approach to reduce the com­

plexity of the development process but also to increase user experience. By doing so, we

avoid maintaining separate codebases for different platforms, enabling the development of

just a single codebase that compiles to both Android and iOS platforms, leveraging the

use of standard web technologies to create the user interface, and reducing the costs of the

development needed for native functionalities. The system presented in this thesis supports

full native functionality for Android platforms, but due to the nature of the cross­platform

approach, future support for iOS platforms can be done by just developing the native

functionalities using the Core Bluetooth iOS API.

Lastly, to achieve the goal of requiring minimal user effort to record attendance, the system

developed makes use of Android’s foreground service model, allowing BLE operations to

persist in the background in a power­efficient manner, allowing continuous, uninterrupted

communication between organizer and participant devices without user interaction.

3



1.1 Architecture Overview

Figure 1.1: System Diagram

The proposed system is realized through a mobile application developed to operate in two

modes: Organizer and Participant. These two modes represent the two entities interacting

in an attendance marking scenario to facilitate an automated attendance system. In each

session, an Organizer operates in Organizer Mode to initiate the process of broadcasting

advertisement packets, used for participants to identify the correct session. Upon rec­

ognizing the appropriate packet, Participants may choose to establish a connection and

transmit their attendance payload to the Organizer. Once the Organizer receives the payload

from a Participant, it responds with an acknowledgment message to confirm the received

attendance. The exchange of these messages, allows for both Organizer and Participant to

store their events in a local database. This is done offline where both Organizer and Partic­

4



ipant use an internal SQLite database embedded in the application. The communication

between devices operating in the two distinct modes relies on a multi­layered abstraction

that integrates front­end logic, native Android BLE APIs, and the low­level Bluetooth

protocol stack.

The communication begins at the top User Interface layer which uses the Ionic Framework

which uses Angular, allowing the use of standard web technologies for rapid UI develop­

ments while also maintaining a consistent, native­like user experience. In the Organizer

Mode, users interact with the application to create different group sessions and, initiate and

attendance sessions. In Participant Mode, users can scan for attendance group sessions and

view the results in real time. Navigational structures such as drawers, stacks, and modals

are used to create a user­friendly and intuitive experience while effectively managing the

state of the application.

The NativeAndroid layer handles the core BLE operations by interacting with theAndroid’s

Bluetooth stack. These commands are eventually expressed over low­level Bluetooth Pro­

tocols such as L2CAP, Attribute Protocol (ATT) and the Generic Attribute Profile (GATT)

which is built on top of ATT. The User Interface Layer passes the appropriate parameters to

the Native Layer through Capacitor, a cross­platform runtime that enables communication

between web code and native code. Using these parameters, BLE operations are offloaded

to native Android Java classes, which interact with the Android BLEAPIs.

To ensure the persistence of attendance data on both the organizer and participant devices,

the system implements a lightweight SQLite database embedded in the application. This

database manages information for groups, participants, and attendance record, with data

consistency enforced through foreign key constraints. For the Organizer, this ensures that

each group is stored successfully on the device, with the relevant participants showing

in each group session. For the Participant, when acknowledgments are received from

an Organizer for an attendance session, it saves locally the attendance information for

evaluation and organization. Additionally, user preferences such as username or selected

mode, are saved and managed via a separate preference storage component.

5



1.2 Thesis Structure

In the Related Work and Background section, we first introduce different attendance

tracking systems using different technologies, for the purpose of recognizing the limitations

and challenges that can arise and understand the need for a different system. Then, we

introduce basic concepts of Bluetooth Low Energy and Cross­Platform Development to

understand the components presented in this thesis.

The Communication Layer follows, where the communication between organizer and

participants is decomposed into structured, multi­layered abstraction to understand the flow

of the proposed system. Then, the Data Layer discusses the data management strategies,

explaining the use of SQLite database and preferences storage with details.

The next two chapters, User Interface and Native Layers, include technical details and

implementation of the proposed system.

In Experimental Evaluation, we conduct a series of experiments to evaluate the efficiency

and performance of the proposed system.

Finally, in Conclusions and Future Work, after concluding the proposed system, we discuss

some further enhancements that can be applied to the proposed system.

6



Chapter 2

Related Work and Background

2.1 Related Attendance Systems . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Attendance Systems using WiFi (RSS) . . . . . . . . . . . . . 8

2.1.2 Attendance Systems using QR Codes . . . . . . . . . . . . . 8

2.1.3 Attendance Systems using RFID . . . . . . . . . . . . . . . . 9

2.2 LTE Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Comparison of Different Technologies . . . . . . . . . . . . . . . . 10

2.4 Security Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . 12

2.5.2 Ionic Framework . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Related Attendance Systems

The attendance system that was developed utilizes Bluetooth Low­Energy technology

with a Generic Attribute Server (GATT). In the following sub­chapters, references are

made to attendance systems that use different technologies for comparison purposes and

understanding the need for a different system.

7



2.1.1 Attendance Systems using WiFi (RSS)

A system developed by Khan, Haque, Tabassum, and Rahman in 2014 leverages existing

Wi­Fi infrastructure to reduce implementation costs and provide an effective alternative to

traditional attendance methods, such as handwritten lists or biometric systems, which are

expensive and complex.

Rather than trying to locate the exact location of users, the system relies on zone detection,

where the room is divided into a grid of zones, and for each point, Wi­Fi signal strength

data from multiple access points (APs) is collected. This data is used to create a ”radio

map” (fingerprint) during the preparation phase. Then, when a student or teacher uses the

application to record their attendance, the current Wi­Fi data is compared to the map, and

the system decides whether the device is inside or outside the boundaries of a room.

Figure 2.1: Radio Map (Fingerprint) [1]

2.1.2 Attendance Systems using QR Codes

WeConnect is an attendance recording system for classrooms, developed for the National

University Laguna (NU Laguna) with the aim of automating the attendance tracking process.

The system uses mobile­tethering technology between smart devices and QR codes, for

practicality and economy compared to more traditional methods (e.g., RFID, Barcode

Scanners) where these require additional hardware.

The system was implemented as an Android application that allows attendance recording

either through a tethering connection with the teacher’s device or by scanning unique

QR codes that are created uniquely for each course. The users of the application, namely

teachers and students, have different levels of access: teachers can manage courses and

8



export files, while students can view and be informed about their attendance.

2.1.3 Attendance Systems using RFID

Meili Liu and Yongge Yao propose an attendance recording system using radio frequency

identification (RFID) technology to automate attendance recording in university classrooms.

The system is based on RFID for rapid identification and recording of attendance, combining

microprocessor, communications and data analysis technology, offering efficiency and

time saving during teaching. The system includes three main functions: data collection,

attendance data analysis and information extraction. The student has an RFID card with

a unique identifier, which he scans when entering the classroom and a microprocessor

controls the process, while the system integrates an LCD screen to display the recorded

attendance data.

Figure 2.2: RFID Tag & Reader [4]

2.2 LTE Direct

LTE Direct is a device­to­device communication protocol that was designed for LTE

operated devices to discover and communicate with each other by leveraging the existing

LTE radio interface of mobile devices, allowing devices to broadcast and scan for discovery

messages. LTE Direct was designed to operate in two different modes. The Network­

Assisted Mode which involves a central LTE base station like eNodeB where it schedules

and authorizes transmitted messages on active time slots . Direct mode on the other

hand, allows devices to communicate without relying on existing networks infrastructure,

meaning no device is connected to LTE base stations. Devices in this mode must be pre­

configured with the appropriate parameters in order to be able to communicate without the

9



assistance of the network. This mode was mainly designed for public safety communication

in environments where connection to a LTE base station was not available.

2.3 Comparison of Different Technologies

Each technology discussed that is used in the various systems has unique advantages, but

also presents specific challenges. Understanding the different approaches to attendance

systems helps us understand which approach is appropriate depending on the needs of the

system.

A system using RFID technology, provides a good degree of reliability and practicability. It

doesn’t rely on any network infrastructure like Internet access, but solely on the hardware

equipment needed like an RFID reader and tag. It is also easy to use, as you do not handle

any installation by the user (only by the administrator to configure the card). However, this

makes the need for hardware equipment essential, making it a more expensive solution.

On top of that, in scenarios where accuracy and true presence matter, it allows easily for

fraudulent behavior since participants can hand around their unique identification tags.

Using QR Code technology also has its own advantages. It has very little setup and instal­

lation cost, especially on the participant side. The organizer is provided with a QR Code

for an attendance session, which is then shared to participants who use their mobile devices

to scan and submit the attendance. This means that no existing hardware infrastructure is

required at all by the participant. Nevertheless, this means that it relies on Internet access

to be available for both organizer and participant to access the online resource used to

submit the attendance. In terms of attendance fraud when considering large crowds since

participants can easily share the QR Codes provided.

When it comes toWiFi­based attendance systems, fraudulent behavior is much harder since

it uses the WiFi RSS data of a participant to determine wether they are truly present in the

room. However, it relies heavily on existing network infrastructures and requires constant

calibration for each room to create the radio map.

The attendance recording process using BLE tackles most of the drawbacks found in

other technologies. It requires no additional hardware infrastructure given the widespread

adoption of smartphone devices in modern society therefore, Participants and Organizers

can use their own personal mobile devices. Fraudulent behavior is also harder to achieve,

10



since it requires the true presence of the participant in order to submit their attendance

through BLE. On top of that, it can be implemented to require minimal user input from the

participant by developing BLE operations as background services.

Table 2.1: Comparison of Attendance Tracking Technologies

Technology Power Consump­

tion

Reliability Accuracy Implementation

Cost

Wi­Fi RSS Moderate Moderate Floor­level Low but heavy

calibration

needed

QR Codes Very Low Low Line­of­sight only Very Low

RFID Very Low High Moderate Medium (tags and

readers)

LTE Direct High Low Low High

BLE Low High Room­level Low (mobile de­

vices)

2.4 Security Concerns

The paper ”MiniBLE: Exploring Insecure BLEAPI Usages in Mini­Programs” examines

the security issues associated with the use of BLEAPIs in mini­programs. In this paper,

the researchers deal with the WeChat platform. Mini­programs, which are lightweight

applications that run within larger applications, offer convenience and functionality, but

also bring with them serious security issues, especially when it comes to interacting with

IoT devices via BLE.

To detect insecure uses of BLEAPIs, the research develops the MiniBLE tool, which is a

static contamination analysis tool that evaluates mini­programs to identify BLE­related

security issues. MiniBLE was analyzed on more than 41,000 real mini­programs and

proved effective in identifying potential vulnerabilities.

The researchers identified particular security issues in BLE connections, especially regard­

ing the pairing process. A critical issue identified was the use of the wx.makeBluetoothPair

11



API, which allows developers to set a fixed PIN without user input, which reduces the

security of the connectivity and introduces security risks later on. This reduces security

at the pairing level, facilitating man­in­the­middle (MITM) attacks, as data can be inter­

cepted or modified while traveling between devices. In addition, systems that use the

BLEAPI primarily use simple registration and recognition of BLE characteristics, without

proper encryption. This means that while a characteristic may be readable or writable,

the transmission of the data may not be encrypted. The lack of encryption allows data

sent to and from a BLE device to be vulnerable to being read or modified, especially in a

man­in­the­middle (MITM) attack scenario.

The research emphasizes the importance of improving security methods in the use of

BLE in mini­programs and suggests the development and implementation of more secure

methods for managing communication and device pairing via BLE.

2.5 Background

2.5.1 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE), was introduced in 2010 as part of the Bluetooth 4.0 specifi­

cation in 2010, to meet the need for a wireless technology, capable of exchanging small

amounts of data in a way that is power efficient. BLE devices, most of the time, are idle

and only wake up for short amount of time in order to either broadcast its presence which

is called advertising or listen to others which is called scanning. If necessary, it is also

capable of establishing a short­lived connection, where small data exchanges happen.

Therefore, two main modes form the basis of how BLE operates. Advertising and Scanning.

2.5.1.1 Bluetooth Classic vs Bluetooth Low Energy (BLE)

When it comes to Bluetooth technology there are 2 main variants. One is Bluetooth Classic

which is often referred to simply as ”Bluetooth” and then we have the newer Bluetooth

Low Energy(BLE). Both of these technologies share most of their core principles. Both

operate within dedicated 2.4 GHz ISM band channels but have quite different use cases.

Bluetooth Classic was designed for continuous, high­throughput data exchange. Therefore

it is ideal for purposes that demand continuous data exchange such as streaming audio

12



to wireless headphones, file transfers between devices or for connecting peripharls such

as bluetooth mice and keyboards. This model maintains persistent, high­bandwidth con­

nections between devices, which inevitably leads in high power consumption. Hence,

Bluetooth Classic works best for applications where the need for power efficiency is not a

primary concern.

Bluetooth Low Energy on the other hand, was introduced as part of the Bluetooth 4.0 specifi­

cation tomeet the growing demand for ultra­low­power and burst communication­especially

relevant in battery­operated and mobile devices. BLE emphasizes quick connections, short

data packets, and minimal power drain. It is optimized for scenarios such as transmitting

sensor data, sending small status updates, or triggering remote functions—all without

requiring a continuous data stream.

BLE achieves its efficiency through a fundamentally different communication model that

includes advertising, scanning, and a connection phase that centers around a lightweight

Attribute Protocol (ATT) and a structured Generic Attribute Profile (GATT). This model

allows for simple, structured, and minimalistic communication between devices.

2.5.1.2 Advertising

When a device operates BLE in advertising mode, it broadcasts short packets on three

dedicated 2.4 GHz channels. These packets are called ”Advertisement Packets” and

contains just enough information to serve as the basic “hello” that allows scanning devices

to discover and identify the advertiser. This includes a 128­bit service UUID­an identifier

used to uniquely identify a service that the advertiser serves, optional data fields and flags.

Because these broadcasts are brief and infrequent­often just a few hundred microseconds

every 100 ms or more, they serve as very power consumption friendly. An advertiser can

operate either as not­connected when its sole purpose is to broadcast information—or as

connected that allows a listening peer to establish a direct link for message exchange.

2.5.1.3 Scanning

When a device operates in BLE scanning mode, it passively listens on the three dedicated

2.4 GHz advertising channels for advertisement packets (broadcast by nearby devices

running in advertising mode as explained in section 2.5.1.2. This allows a scanning device

13



to discover advertisers in its area. During scanning, the device does not exchange any

data but simply monitors and identifies the advertising packets. However, upon receiving

an advertisement packet, it can process the contained data such as service UUIDs, flags,

and optional payloads, and may choose to initiate a connection based on its relevance.

This scanning mode in BLE is highly configurable, allowing developers to specify scan

intervals (meaning how often the device listens) and scan windows (how long it listens

during each interval). Because scanning is designed to take place in irregular intervals and

the radio remains off between scan windows, the process remains highly power efficient.

This efficiency enables continuous or periodic background scanning without significant

battery drain, making it well­suited for mobile applications.

2.5.1.4 Power Consumption

Bluetooth Low Energy was designed for minimal power draw, making it an ideal choice

for smartphone­based IoT tasks. Rather than keeping the radio turned on continuously,

a BLE peripheral spends most of its time in a low­power sleep state and wakes only for

brief advertising events—often just a few milliseconds every 100–500 ms. Likewise, a

central device only opens its receiver for short scan windows at configurable intervals,

rather than maintaining an always­on listening state. This duty­cycling approach means

that, in practice, BLE operations add only a few percent to a phone’s overall battery drain,

far less than Wi­Fi, GPS, or Bluetooth Classic.

2.5.1.5 ATTribute Protocol & General ATTribute Profile (ATT & GATT)

The core of Bluetooth Low Energy’s structured communication model is governed by two

elements: the Generic Attribute Profile (GATT) and the Attribute Protocol (ATT). These

are the elements that define how the data should be organized, accessed, and exchanged

when a connection is established between two peripherals running BLE

The Attribute Protocol (ATT) provides a simple and efficient method to store and retrieve

data in the form of attributes. Each attribute is uniquely identified by a handle and may

represent things such as a sensor reading, a configuration parameter, or a user­defined

piece of data. ATT is lightweight and designed to minimize overhead as much as possible

making it highly suitable for devices where power is quite a concern.

14



Built on top of ATT is the Generic Attribute Profile (GATT), which defines how the data

are grouped into meaningful services and characteristics. A service is a logical grouping

of related data (e.g., an attendance service), and a characteristic represents an individual

data item within that service (e.g., the timestamp of attendance). GATT defines how

clients (typically scanning devices) can discover available services on a server (typically

advertising devices), and how they can read from, write to, or subscribe to changes in those

characteristics.

2.5.1.6 Connection Phase

When a scanning device identifies an advertising device of interest, it can initiate a con­

nection, marking the start of a more sustained and interactive communication phase. This

connection is point­to­point and allows for reliable two­way data transfer between the two

devices.

In this connected state, the GATT client (usually the scanner) and the GATT server (usually

the advertiser) establish a communication session where the client can query the server’s

available services and interact with its characteristics. This interaction is made possible

through the Attribute Protocol (ATT), which manages all data as discrete attributes with

associated permissions and types.

The connection phase enables operations such service discovery where The client queries

the server to retrieve a list of services it offers, reading/writing Characteristics so the

client write data to the GATT server. Behind the scenes, this exchange is handled over

BLE’s connection­oriented channels, with attention to maintaining low latency and minimal

power usage. Parameters such as connection interval, supervision timeout, and MTU size

determine the frequency and size of data packets, striking a balance between performance

and energy efficiency.

2.5.2 Ionic Framework

2.5.2.1 Ionic Framework vs. Native Development

There are mainly two design approaches that can be followed when developing a mobile

application­Native or Cross­Platform. Native Development is the approach that uses

15



Native Components and Frameworks provided by the device’s manufacturer such as

Swift for iOS Development or Java/Kotlin for Android Development. However, a Cross­

Platform framework abstracts away platform­specific details. The Ionic Framework falls

into this category of Cross­Platform where it allows deveopers to create optimized mobile

applications using standard web technologies i.e HTML, CSS and JavaScript.

Native Development by nature, requires developers to maintain separate codebases for

Android and iOS since the tools used for Native Development are completely different

since they are platform­specific. Ionic, on the other hand, enables a single codebase that

compiles into Native Apps for both platforms where it displays the content in a native web

layer(e.g., WebView for Android). This grants a great advantage in terms of development

efficiency. Nonetheless, developing natively offers direct integration with device hardware

and more control. Still, a cross­platform framework such as Ionic uses bridges to access

native device features, achieving a balance between functionality and portability.

2.5.2.2 Capacitor and Plugins

Ionic’s ability to interact with native device components is achieved using Capacitor which

is Ionic’s official native runtime. Capacitor Plugins act as a bridge between the Web Layer

of the application­written in TypeScript with the Native Layer­written in platform­specific

programming languages like Java or Swift.

Therefore, these Capacitor Plugins serve as the main mechanism for accessing native

functionality such as Bluetooth, Geolocation, Sensors etc.. which is then exposed in the

Web Layer of Ionic. There are quite a few plugins ranging from Official, Developed by

Community or even Custom­built for more specific requirements. Along with Plugins,

Capacitor offers event listeners which serve a critical role in communication between the

Ionic and Native Layers, where an important event, for instance a GATT Server receiving

a write on its characteristics, the Native Layer notifies the Ionic Layer to send the data in

the Web Layer to be processed and then rendered in the User Interface.

16



Chapter 3

Communication Layer

3.1 Introduction to the Communication Layer . . . . . . . . . . . . . 17

3.2 Messages Exchanged Between Organizer and Participant . . . . . 19

3.2.1 Advertising Packet . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Client Payload (Write Request) . . . . . . . . . . . . . . . . 19

3.2.3 Acknowledgment (Write Response) . . . . . . . . . . . . . . 19

3.3 Communication Overview . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Layers Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Ionic with Capacitor . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Native BLEAPI . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.3 GATT &ATT . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.4 L2CAP & HCI . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.5 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Introduction to the Communication Layer

In the CountaBLEAttendance System, the two devices—what is called the “Organizer”

and the “Participant” —play complementary roles in a classic client–server exchange. The

Organizer acts as the Server whereas the Participant acts as the client. This end­to­end

communication is realized over Bluetooth Low Energy and is decomposed into five distinct

layers of responsibility:

17



1. Ionic/Angular with Capacitor

2. Native Android BLEAPI

3. GATT &ATT

4. L2CAP & HCI

5. Physical Layer

When a message is exchanged, each layer contributes its part in turn. The Ionic Typescript

code calls the Capacitor plugin through a bridge which ­> invokes Native Android’s BLE

API’s methods which then­> structures the write as an ATTWrite Request under the GATT

profile, ­> hands it off to L2CAP and the HCI interface for transport ­> and finally the

Physical layer deliver the packet over the 2.4 GHz radio. Figure 3.1 illustrates how data

and control flow through these layers to achieve an acknowledged message transaction.

Figure 3.1: Communication Stack

18



3.2 Messages Exchanged Between Organizer and Participant

In the CountaBLE attendance system, three distinct kinds of BLE messages flow between

the Organizer and the Participant:

3.2.1 Advertising Packet

As soon as the Organizer taps “Start Advertising,” the Organizer’s device begins broad­

casting BLE advertising Protocol Data Units (PDU) packets. Each packet consists of

a) The 128­bit Service UUID CountaBLEAttendance System Service and (b) include a

small “service data” field. This field is used for identifying the advertising code of a group

such as <epl400>—so that Participant Devices can display and identify human­readable

information before connecting.

3.2.2 Client Payload (Write Request)

When a Participant selects an Organizer device and successfully connects, it writes a

string to the Organizer’s write­only characteristic. This string follows the format <user­

name:deviceId> (e.g., johndoe:ABC123DEF456). Under the hood Android issues an ATT

Write Request PDU, which encapsulates that byte sequence along with the handle of the

characteristic.

3.2.3 Acknowledgment (Write Response)

The Participant (GATT Client) uses the default write type (WRITE_TYPE_DEFAULT).

This write type is a ATTWrite­With­Response Message, indicating that it requests and

expects an acknowledgment from the Organizer (GATT Server). In response to the Write

Request, the Organizer’s GATT server emits an ATT Write Response PDU. This small

packet carries no extra data beyond a status code :

1. GATT_SUCCESS –which indicates a successful communication

2. ERROR <status_code> –which indicates an error in communication with a status

code

19



3.3 Communication Overview

When the Organizer enters “broadcast” mode, it becomes a BLE GATT Server. Behind

the scenes, it configures the local radio to emit advertising packets on the three standard

BLE advertising channels, carrying a 128­bit Service UUID that uniquely identifies the

CountaBLEAttendance System Service. At the same time, it opens a GATT server interface,

publishing a single write­only characteristic under that service UUID.

On the Participant side, the system invokes a BLE scanner and watches for any advertise­

ment whose Service UUID matches the CountaBLEAttendance System Service UUID. If it

matches, the system on the Participant side, initiates the GATT connection stack: negotiate

link parameters, discovers services, and then hands control back so the app can locate

the specific characteristic and then writes the payload i.e. < johndoe:ABC123DEF456>.

Once the write completes, the Organizer’s GATT Server receives that request, stores the

attendance record, and sends back an ATT Write Response, which acts as an acknowl­

edgment back to the Participant to confirm that the attendance is received. This entire

exchange—from packet on the air to application callback—happens in a matter of tens of

milliseconds.

3.4 Layers Breakdown

3.4.1 Ionic with Capacitor

The topmost layer of the stack is the Ionic/Angular front­end, augmented by Capacitor to

bridge into native functionality. At this level the application is oblivious of Bluetooth Low

Energy internals. It exists solely to render UI components, display information, respond to

user input and communicate and transfer data to and from the native layer. For example, on

the Organizer side, the “Start Advertising” button is implemented in anAngular component.

when tapped the component’s TypeScript method “startAdvertising()” is executed:

20



1 async s t a r tAdve r t i s i n g ( ) {

try {

3 await t h i s . r eque s tPermi s s i ons ( ) ;

await B l eAdver t i s e r . s t a r tAdve r t i s i n g ({ className :

t h i s . c l a s sObj . advertcode }) ;

5 conso l e . l og ( ”BLE Adver t i s ing s t a r t ed ! ” ) ;

} catch ( e r r o r ) {

7 conso l e . e r r o r ( ” Fa i l ed to s t a r t BLE adv e r t i s i n g : ” , e r r o r ) ;

}

9 }

This method eventually calls BleAdvertiser.startAdvertising() which is essentially the

bridge to call the NativeAndroid startAdvertising() method in the BleAdvertiser Java Class,

which starts BLEAdvertising by sharing Advertising PDU’s as explained in section 3.2.1

The Native Plugin’s existence is revealed by exposing the Native’s plugin public methods

in an interface and then by Registering the Plugin with a specific name, e.g., BleAdvertiser.

1 // BLE Adver t i s e r p lug in ( nat ive )

export i n t e r f a c e BleAdver t i s e rP lug in extends Plugin {

3 s t a r tAdve r t i s i n g ( opt ions : { className : s t r i n g }) : Promise<{ value :

s t r i n g }>;

s topAdver t i s ing ( opt ions : {}) : Promise<{ value : s t r i n g }>;

5 }

7 const B leAdver t i s e r = r eg i s t e rP lug i n <BleAdvert i se rPlug in >( ’

B l eAdver t i s e r ’ ) ;

The Ionic Layer with the Native Layer communicate using an event­listener pattern. On

the Organizer side, as soon as the BLE GATT server processes an incoming attendance

write, the plugin calls notifyListeners(’onDataReceived’, payload) to emit a JavaScript

event containing the new data.

21



In the Ionic front­end a listeners is registered so that when the Native layer fires notifyLis­

teners, the Ionic callback receives the attendance record and can format it and update the

UI.

1 t h i s . da taL i s t ene r = BleAdver t i s e r . addLis tener ( ’ onDataReceived ’ , (

data : any ) => {

th i s . ngZone . run ( ( ) => {

3 // Pass the raw payload to our handler ; i t w i l l s p l i t i t .

t h i s . onDataReceived ( data . data ) ;

5 }) ;

}) ;

This approach cleanly decouples the low­level BLE logic from the display code, turning

each native event into an asynchronous update in the Ionic/Angular component.

3.4.2 Native BLEAPI

In this layer reside all the Native Code required to handle BLE Operations in Android’s

terms. Here, the actual methods that were invoked by the Ionic capacitor bridge are

executed using Android’s Bluetooth LE framework.

The @CapacitorPlugin(name=””) is used to register the Class as a Capacitor Plugin. This

is what creates the “bridge” between the Ionic front­end Layer and the Native Code Layer

@CapacitorPlugin (name = ” BleAdver t i s e r ” )

2 pub l i c c l a s s B leAdver t i s e rP lug in extends Plugin {

. . .

4 }

Then, functions that are going to be invoked by the Ionic Layer, are registered as a @Plug­

inMethod. These are the same methods exposed in the Interface in the Ionic frontend, as

explained in section 3.4.1

22



@PluginMethod

2 pub l i c void s t a r tAdve r t i s i n g ( P lug inCa l l c a l l ) {

…

4 }

Methods such as startAdvertising(), startScan(), openGattServer(), connectGatt(), and

writeCharacteristic() invoke the corresponding classes—BluetoothLeAdvertiser, Blue­

toothLeScanner, BluetoothGattServer, and BluetoothGatt—to carry out the actual radio

operations, service publication, and attribute exchanges. All permission checks, callback

registrations, MTU negotiations, and error­handling logic reside here, fully encapsulated.

This is why the upper Ionic layer remains oblivious of the underlying Native BLE operations.

As explained in section 3.4.1, when these native operations complete or generate events

(for example, an incoming attendance write or a discovered peripheral), this layer uses

Capacitor’s notifyListeners(...) mechanism to emit events back into the Ionic front­end.

i n s t ance . n o t i f yL i s t e n e r s ( ” onDataReceived ” , data ) ;

3.4.3 GATT &ATT

ATTribute Profile (ATT) defines the procedure for reading, writing, notifying, and handling

every request or response, including the all­important Write Request / Write Response

handshake that we use to guarantee that each attendance marker is reliably received. GATT

builds on ATT by laying out how services, characteristics, and optional descriptors are

organized: A service UUID tells the client ’this is the Attendance Service’, and each

characteristic UUID in it represents a single data channel for writing student credentials.

The Organizer Native side, uses BluetoothGattService and BluetoothGattCharacteristic

objects, register them with BluetoothGattServer.addService(...), and implement onChar­

acteristicWriteRequest(...) to capture each write. The Participant Native side invokes

discoverServices(), fetches the exact service and characteristic by UUID, sets the charac­

23



teristic’s write type to WRITE_TYPE_DEFAULT so that Android issues an ATTWrite

Request, meaning it expects an Acknowledgment.

The GATT server’s subsequent sendResponse(..., GATT_SUCCESS, ...) call not only ac­

knowledges the write at theATT level but also triggers the client’s onCharacteristicWrite(...)

callback, giving a clear end­to­end confirmation of attendance mark success.

3.4.4 L2CAP& HCI

When using calls on Android’s BLE API high­level methods—startScan(), startAdver­

tising(), connectGatt()—the system translates them into HCI commands and sends them

to the Device’s Bluetooth controller. For example, startAdvertising() maps to an HCI

LE_Set_Advertising_Enable command; connectGatt() becomes an HCI LE_Create_Con­

nection. Likewise, when the controller firmware detects an advertisement or establishes

a link, it generates HCI events that Android’s stack converts back into your callbacks:

onScanResult() or onConnectionStateChange().

L2CAP lives above that link, multiplexing the single BLE connection into logical chan­

nels, fragmenting and reassembling ATT Protocol Data Units when messages exceed the

negotiated MTU.

Although the application code never speaks L2CAP directly, the choice of MTU size (via

requestMtu()) and reliance on write­with­response messages implicitly rely on L2CAP’s

ability to carry those larger packets end­to­end.

3.4.5 Physical Layer

In the Physical Layer the messages exchanged between the Organizer and the Participant

become radio waves and vice versa, which of course, is completely invisible to the user.

It leverages the device’s 2.4 GHz transceiver to modulate and demodulate data across

predefined advertising and data channels and by hopping frequencies to avoid interference.

Although there is no interaction with it directly, this layer is the ultimate medium that

carries every attendance­marking packet through the air.

24



Chapter 4

Data Layer

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 SQLite Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Entity­Relationship Diagram . . . . . . . . . . . . . . . . . . 27

4.2.2 Relational Schema . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.3 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.4 Data Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Overview

The Data Layer in the CountaBLE Attendance System ensures that the application can

retrieve, and process data efficiently and consistently. It is responsible for storing both

persistent data as well as small configuration parameters like as attendance records, class

records, user preferences or selected application mode.

Data in the CountaBLEAttendance System are stored locally in a SQLite database ­ a very

lightweight relational database that allows for structured and reliable data management

offline. Therefore, the system has the ability to operate without Internet connection.

The structure of the database is formed by relationships between core entities such as

Classes, Attendances, and Participants, and is captured formally in the application’s entity­

relationship diagram and relational schema.

25



For managing lightweight user preferences and configurations, the system also uses a

simple key­value system called Preference Storage. These are handled separately from

the SQLite relational database. Such preferences are selected User­mode and Auto­Join

preferences on specific classes when opearting as a Participant.

The system was designed to maintain a clean architecture, by abstracting the data layer

entirely from the user interface logic. With this approach, the code that is responsible for

managing the User Interface can interact with the data layer by utilizing a controlled set of

public methods, without being exposed to the underlying storage mechanics.

4.2 SQLite Database

The SQLite local database acts as the core storage mechanism for the CountaBLEAtten­

dance System, since data must be persistent ­ meaning they must ”saved” even when the

application closes. It stores data for when operating in both Participant and Organizer

modes.

26



4.2.1 Entity­Relationship Diagram

Figure 4.1: Entity­Relationship Diagram

4.2.2 Relational Schema

The relational schema of the CountaBLEAttendance System is designed to reflect the logi­

cal structure needed for an attendance tracking system. Four core tables are used which are

represented visually in Figure 4.2, showing the relationships that exists between them­the

foreign key constraints that enforce data integrity and consistency between attendance

records with their associated classes and participants.

27



Figure 4.2: Relational Schema Diagram

The classes table defines each individual group that a user running in Organizer mode

can create. It is uniquely identified by an auto­incremented ID and referenced by a user­

defined name that the Organizer inputs upon creation. Each class is also associated with

an advertisement code used during the Bluetooth communication between Organizers and

Participants so that Participants can identify the desired group to connect to.

The participants table records hold information about each participant device, including a

username and a device identifier. These entries represent unique users who can connect to

the Organizer’s device during a session.

The attendance_records table is a linking table that holds information about which par­

28



ticipant has attended which class, along with a timestamp, recorded at the moment of

attendance. This table holds foreign key constraints to both classes and participants tables.

Lastly, the attendance_marked table is distinct fully from the rest of the tables as it serves

solely the Participant. It stores a local history of attendance timestamps by class name,

used for displaying information in Participant’s calendar view.

29



4.2.3 Queries

4.2.3.1 Tables Creation

1 CREATE TABLE IF NOT EXISTS c l a s s e s (

id INTEGER PRIMARY KEY AUTOINCREMENT,

3 name UNIQUE TEXT NOT NULL UNIQUE,

advertcode TEXT NOT NULL CHECK (LENGTH( advertcode ) <= 6)

5 ) ;

7

CREATE TABLE IF NOT EXISTS pa r t i c i p an t s (

9 id INTEGER PRIMARY KEY AUTOINCREMENT,

username TEXT NOT NULL CHECK (LENGTH( username ) <= 14) ,

11 dev i c e i d TEXT NOT NULL CHECK (LENGTH( dev i c e i d ) <= 16)

) ;

13

CREATE TABLE IF NOT EXISTS attendance_records (

15 id INTEGER PRIMARY KEY AUTOINCREMENT,

par t i c ipant_ id INTEGER NOT NULL,

17 c l a s s_ id INTEGER NOT NULL,

timestamp TEXT NOT NULL,

19 FOREIGN KEY( par t i c ipant_id ) REFERENCES pa r t i c i p an t s ( id ) ,

FOREIGN KEY( c l a s s_ id ) REFERENCES c l a s s e s ( id ) ON DELETE CASCADE

21 ) ;

23 CREATE TABLE IF NOT EXISTS attendances_marked (

id INTEGER PRIMARY KEY AUTOINCREMENT,

25 classname TEXT NOT NULL,

timestamp TEXT NOT NULL

27 ) ;

30



4.2.3.2 Creating a Group as an Organizer

When Creating a new Group as an Organizer, a TypeScript Method in the Ionic Front­end

is called with the parameters

1 ( className : s t r i ng , advertcode : s t r i n g )

1 INSERT OR IGNORE INTO c l a s s e s (name , advertcode ) VALUES (? , ?)

4.2.3.3 Retrieving all Groups as Organizer

1 SELECT id , name , advertcode FROM c l a s s e s

4.2.3.4 Renaming a Group as Organizer

When renaming an existing Group as an Organizer, a TypeScript Method in the Ionic

Front­end is called with the parameters

1 ( oldName : s t r i ng , newName : s t r i ng , newAdvertcode : s t r i n g )

1 UPDATE c l a s s e s SET name = ? , advertcode = ? WHERE name = ?

4.2.3.5 Marking Attendance as Organizer

When Marking an attendance, a TypeScript Method in the Ionic Front­end is called with

the parameters

1 ( className : s t r i ng , username : s t r i ng , d ev i c e i d : s t r i ng , timestamp :

s t r i n g )

31



These are used to query the appropriate tables in order to mark the attendance of a Participant

using the CapacitorSQLite Plugin.

1 - - F i r s t f i n d s the c l a s s id us ing the <className> paramater

SELECT id FROM c l a s s e s WHERE name = ?

3 - - Checks and f i n d s i f p a r t i c i p an t e x i s t s in the pa r t i c i p an t s t ab l e

us ing the <username , dev i ce id> parameters

SELECT id FROM pa r t i c i p an t s WHERE username = ? AND dev i c e i d = ?

5 - - I f p a r t i c i p an t doesn ’ t e x i s t (meaning i t s a new pa r t i c i p an t that hasn

’ t connected be f o r e ) , then s t o r e s the record in the pa r t i c i p an t

tab l e us ing <username , dev i ce id> parameters . Then i t s e l e c t s that

pa r t i c i p an t to r e t r i e v e the id

INSERT INTO pa r t i c i p an t s ( username , d ev i c e i d ) VALUES (? , ?)

7 SELECT id FROM pa r t i c i p an t s WHERE username = ? AND dev i c e i d = ?

- - F ina l ly , i n s e r t s the attendance record in the attendance_records

t ab l e us ing the r e t r i v e d c l a s s and pa r t i c i p an t s IDs and the <

timestamp> parameter

9 INSERT INTO attendance_records ( part i c ipant_id , c las s_id , timestamp )

VALUES (? , ? , ?)

4.2.3.6 Retrieving all Participants in a Group as Organizer

When Retrieving all Particiapnts in a Group, a TypeScript Method in the Ionic Front­end is

called with the parameter

1 ( className : s t r i n g )

This is used to query and retrieve all the Participants that have previously attended a specific

Group to display them in the Organizer’s UI.

1 SELECT DISTINCT p . username , p . d ev i c e i d

FROM attendance_records ar

3 INNER JOIN pa r t i c i p an t s p ON ar . pa r t i c ipant_ id = p . id

WHERE ar . c l a s s_ id = ?

5 ORDER BY ar . timestamp DESC

32



4.2.3.7 Inserting attendance in the Calendar as Participant

When an attendance is acknowledged by the Organizer, the Participant’s side code, inserts

a record in the attendances_marked table.

This is done by again, calling a TypeScript Method with the parameters

1 ( c lassname : s t r i ng , timestamp : s t r i n g )

1 INSERT INTO attendances_marked ( classname , timestamp ) VALUES (? , ?)

4.2.3.8 Retrieving unique attendance dates for the Calendar as Participant

When a Participant wishes to view their Calendar, all dates within the attendance_marked

table are marked in the Participant’s UI. This is done by retrieving all their attendance

dates, and acknowledging the day of the retrieved records.

1 SELECT DISTINCT subs t r ( timestamp , 1 , 10) AS attendanceDate

FROM attendances_marked

3 ORDER BY attendanceDate DESC;

4.2.3.9 Retrieving attendance records on a specific date for the Calendar as Partici­

pant

When a Participant selects a specific date (specifically, a day) on the Calendar, all the

records that match the desired day are retrieved and shown in the Participants UI.

A TypeScript Method in the Ionic Front­end is called with the parameter

1 ( date : s t r i n g )

1 SELECT * FROM attendances_marked

WHERE timestamp LIKE ?

3 ORDER BY timestamp DESC;

33



4.2.4 Data Integrity

The CountaBLEAttendance System, maintains Data Integrity with the use of foreign key

constrains as defined in the relational schema in Section 4.2.2. To maintain relational

consistency, we use ON DELETE CASCADE clauses applied to the class_id foreign key

in the attendance_records table to ensure that when a Group is deleted from the classes

Table (i.e, a Group), all records for that specific Group in the attendance_records Table,

are automatically deleted as well. This is done to ensure that no orphaned rows remain in

the database.

4.3 Preferences

The Preferences Storage is used mainly for storing user preferences. In the case of the

CountaBLE system, it holds the Group ID set by the user when logging in at the begining,

the Usermode selected and the Auto­Join Preferences for Groups used in the Participant

side code to Auto Join desired groups.

34



Chapter 5

User Interface & Ionic Layer

5.1 Navigation and Menu Drawer . . . . . . . . . . . . . . . . . . . . 35

5.2 Login & Select Mode Pages . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Organizer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Class Page Code Snippets . . . . . . . . . . . . . . . . . . . 44

5.3.2 Advertisement Page Code Snippets . . . . . . . . . . . . . . 45

5.4 Participant Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Scanning Page Code Snippets . . . . . . . . . . . . . . . . . 49

5.4.2 Auto­Join Page Code Snippets . . . . . . . . . . . . . . . . . 50

5.1 Navigation and Menu Drawer

In the application, Navigation and Routing is mainly managed through Ionic’s routing

system, which allows navigating between the pages based on the application’s state and

the user’s actions. The app features a contextual side menu drawer as shown in Figures 5.1

and 5.2 where it offers different choices based on the selected user mode ­ Participant or

Organizer.

Since the development of this project was done in Ionic powered by Angular, the use of

the application component allows us to set global content such as the Header, User Mode

Ribbon, and drawer side menu, which stay persistent across all pages. The drawer serves as

a navigational aid for session­level actions like changing modes or logging out to re­enter

35



a different Group ID. It becomes available only when one of the two modes is selected in

the Select Page (Section 5.1) and remains fixed when navigating between pages within that

mode. The ”Change Mode” option in the drawer is the only way that the user can navigate

back to the Select Mode Page ­ a restriction done intentionally using Navigation guards

and by resetting the Navigation’s Root to set the desired page as the head of the Navigation

Stack. This is done to prevent users from accidentally navigating backwards to ensure a

predictable behavior when navigating backwards

Figure 5.1: Drawer when in Partici­

pant Mode

Figure 5.2: Drawer when in Orga­

nizer Mode

For these functionalities, Ionic provides different modules like MenuController for the

Menu Drawer, CanDeactivateGuards that are fired on specific pages when trying to exit

the page.

Code Snippet of Menu Controller

First the IonMenu component is imported from Ionic’s Angular Modules

36



1 import { IonMenu , . . . } from ’ @ionic / angular / standa lone ’ ;

which then allows the use of the IonMenu element in the application’s component HTML

File. By also importing Angular’s CommonModule, we can use Ng Standard Directives in

the HTML. This allows us to create contextual side menus by using NgIf directive which

checks wether to display the parent HTML tag based on the condition provided.

1 <ion - l i s t>

<ion -menu - t ogg l e>

3 <ion - item ( c l i c k )=” se t t ingsAutoJo in ( ) ” * ng I f=” t h i s . usermode

===’par t i c i pan t ’ ”}>

<ion - i con name=” opt ions ” s l o t=” s t a r t ” c o l o r=”white ”></ ion -

i con>

5 Auto - Join S e t t i n g s

</ ion - item>

7 </ ion -menu - t ogg l e>

. . .

9 . . .

</ ion - l i s t>

Code Snippet of CanDeactivateGuard

CanDeactivate Guards code fires when trying to exit a specific page. This is done by

creating separate TypeScript files in the project and importing the CanDeactive Module

fromAngular’s libraries

import { CanDeactivate } from ’ @angular/ route r ’ ;

Then, the class must implement the CanDeactive interface which overrides the canDeactive

function, where the logic of exiting a page takes place.

1 export c l a s s ExitAdvertismentGuard implements CanDeactivate<

CanAdvert iseDeact ivate> {

. . . .

37



3 async canDeact ivate ( component : CanAdvert iseDeact ivate ) : Promise<

boolean> {

i f ( ! component . i sAdve r t i s i n g ) {

5 re turn true ;

}

7 // otherwise , prompt the user with an a l e r t

const a l e r t = await t h i s . a l e r tC t r l . c r e a t e ({

9 header : ’ S t i l l Adver t i s ing ’ ,

message : ’You are s t i l l a dv e r t i s i n g . Do you want to stop

and l eave ? ’ ,

11 . . . .

) }

13

}

15 }

In Angular’s application routes typescript file, we declare with the canDeactivate directive

which Guard should take place when exiting the page

1 export const route s : Routes = [

{

3 path : ’ a dv e r t i s e ’ ,

loadComponent : ( ) => import ( ’ . / adv e r t i s e / adv e r t i s e . page ’ ) . then (

m => m. Advert isePage ) ,

5 canDeact ivate : [ ExitAdvertismentGuard ]

} ,

7 . . .

]

38



Figure 5.3: Organizer Prompt when trying to Navigate Back while Scanning

5.2 Login & Select Mode Pages

The Login Page provides a simple Alert Dialog prompting the user to enter their Group

Identification name (such as johndoe@ucy.ac.cy) used when communicating with BLE.

Even though a CONTINUEWITH GOOGLE button is shown in the Login page, this system

focuses more on local device­based attendance, therefore no authentication mechanism

such as email/password or OAuth were implemented. The user simply provides a Group

ID and then is redirected to the Select Mode Page.

39



Figure 5.4: Login Page Figure 5.5: Select Mode Page

The Select Mode Page is where the user decides where they should enter in Organizer or

Participant mode. This determines the behavior of the application for the rest of the session

or until the user decides to Change Mode using the Menu Drawer. When Selecting one

of the two modes, it saves the decision of the user in the Preferences Storage, and then a

CanActivateGuard fires which then decides wether the app should navigate to the Classes

Page when selecting the Organizer Mode, or to the Scanning Page when selecting the

Participant Mode.

Code Snippet of HTML& TypeScript Method when Clicking the Login with Group

ID Button

By including an attribute ”(click)= functionName()” in an HTML tag in Angular, we can

declare which function to execute from the Component’s TypeScript file.

<ion - button c l a s s =’manual ’ f i l l =” c l e a r ” s i z e=” smal l ” ( c l i c k )=”

loginManualDev ( ) ”>

2 Manual Group ID Reg i s t e r

40



</ ion - button>

1 async loginManualDev ( ) {

. . .

3 }

Code Snippet of HTML& TypeScript Method when Clicking the Mode Buttons

The function selectMode() is used when either the Participant or the Organizer buttons are

clicked

1 <ion - button f i l l =” c l e a r ” ( c l i c k )=” selectMode ( ’ o rgan i ze r ’ ) ”>

. . .

3 </ ion - button>

<ion - button f i l l =” c l e a r ” ( c l i c k )=” selectMode ( ’ pa r t i c i pan t ’ ) ”>

5 . . .

</ ion - button>

And by then importing and using the Ionic’s Navigation Controller we can set the root of

the navigation stack according to the user’s selection

import { NavContro l ler } from ’ @ionic / angular ’ ;

2

async se lectMode (mode : ’ o r gan i z e r ’ | ’ p a r t i c i p an t ’ ) {

4 t h i s . u s e rS e r v i c e . setUsermode (mode) ;

i f (mode === ’ o rgan i z e r ’ )

6 t h i s . navCtrl . nav igate ( [ ”/ c l a s s e s ” ] ) ;

e l s e

8 t h i s . navCtrl . nav igate ( [ ”/ connect ” ] ) ;

}

41



5.3 Organizer Mode

As explained in previous sections, when Organizer Mode is selected from the Select

Mode Page the application’s context is tailored for organizing and managing attendance

sessions. This means that the device takes the role of Bluetooth Low Energy Advertsier

where the Organizer is responsible for creating attendance sessions for advertising to nearby

Participant devices running in Participant Mode, and then handling the data received.

As the User is redirected to the Classes Page, all the Groups created by an Organizer

previously are shown in a list. This is done by retrieving a list of all classes as shown

previously in the Data Layer Chapter in Section 4.2.3.2. These list items represent distinct

attendance groups or sessions such as courses for University Classes or Events. A user

operating in Organizer Mode has the ability to create, rename, or delete a group. Each group

holds a unique advertisement code identifier (i.e., <advertcode>) used in the advertisement

packet as explained in the Communication Layer in Section 3.2.1.

When the user finally selects a specific group from the list, the application navigates to the

Advertisement Page. This page starts the BLE advertising using custom Capacitor Plugins

in the Native Layer (explained in the Native Layer Chapter 6) and listens for incoming

data from participant using event listeners. Once a participant devices (running a GATT

Client) successfully connects to the Organizer’s device, this event listener is notified and

receives the Participants payload (as explained in the Communication Layer Chapter in

Section 3.2.2) and stores it in the SQLite database, as explained in Data Layer Chapter in

Section 4.2.3.4.

42



Figure 5.6: Groups List Figure 5.7: Creating a new Group

Figure 5.8: Advertising Page

Figure 5.9: Change ofAdvertise but­

ton to indicate that Organizer is Ad­

vertising

43



5.3.1 Class Page Code Snippets

All functionalities provided on the Class Page such asViewing a list of all Groups, Creating a

new Group, Renaming a Group etc., are operations that communicate with the application’s

SQLite Database. A custom SQLite Service (a TypeScript file) was created, and then each

function in the Organizer’s code calls the appropriate function from the SQLite Service.

Retrieving and Displaying all Groups from the table

1 // c l a s s e s . pages . t s

async ionViewWillEnter ( ) {

3 t ry { .

t h i s . c l a s s e s = await t h i s . s q l i t e S e r v i c e . g e tA l lC l a s s e s ( ) ;

5 } catch ( e r r o r ) {

conso l e . e r r o r ( ” Error l oad ing c l a s s e s : ” , e r r o r ) ;

7 }

}

Each function in the the SQLite Service, runs the appropriate query (as shown in the Data

Layer Chapter in Section 4.2.3), and then returns an array of objects based on the results

form the SQLite Database.

// s q l i t e . s e r v i c e . t s

2 // Retr i eve a l l c l a s s e s – r e tu rn ing an array o f ob j e c t s { id , name ,

advertcode }

async g e tA l lC l a s s e s ( ) : Promise<{ id : number ; name : s t r i n g ; advertcode :

s t r i n g }[] > {

4 await t h i s . ensureDBReady ( ) ;

t ry {

6 const r e s = await t h i s . db . query ( ”SELECT id , name , advertcode FROM

c l a s s e s ” ) ;

r e turn r e s . va lue s | | [ ] ;

8 } catch ( e r r o r ) {

conso l e . e r r o r ( ” Error f e t c h i n g c l a s s e s : ” , e r r o r ) ;

10 re turn [ ] ;

}

12 }

44



5.3.2 Advertisement Page Code Snippets

Similarly to the Class Page, the functionalities of the Advertisement Page such as Loading

Attendees List for a selected Group or Marking Attendances for Incoming Attendances

from Participants, relies on communicating with the application’s SQLite database. It

follows exactly the same logic as explained in Section 5.3.1.

However, the core functionality of the Advertisement Page lies in communicating with the

Native Layer to start the Advertising BLE Operation (where the Oeganizer acts as a GATT

Server), and set up an event listener for incoming attendance packets from Participants, as

explained in the Communication Layer Chapter in Section 3.4.1)

Code Snippet of the function executed upon receiving an attendance packet from a

Participant

We set up an event listener upon receiving participant packets from the Native Layer

(explained later in Chapter 6)

// L i s t en f o r BLE data r e c e i v ed . The nat ive s i d e sends payloads in the

form ”username : d ev i c e i d ”

2 t h i s . da taL i s t ene r = BleAdver t i s e r . addLis tener ( ’ onDataReceived ’ , ( data :

any ) => {

th i s . ngZone . run ( ( ) => {

4 t h i s . onDataReceived ( data . data ) ;

}) ;

6 }) ;

The data received from the Native Layer are automatically converted into JavaScript

Objects which are then used to mark the Participant’s attendance

async onDataReceived ( payload : s t r i n g ) {

2 . . .

await t h i s . s q l i t e S e r v i c e . markAttendance (

4 t h i s . c l a s sObj . name , // cur rent c l a s s name

receivedUsername , // ext rac t ed username from the payload

6 rece ivedDev ice Id , // ext rac t ed dev i c e i d from the payload

timestamp // cur rent timestamp

8 ) ;

45



l e t attendanceRecord = { username : receivedUsername , d ev i c e i d :

r ece ivedDev ice Id , timestamp : timestamp } ;

10 t h i s . removeAttendeesAddAttended ( attendanceRecord ) ; //Adds the

Attended Par t i c i pan t in the t h i s . attended l i s t f o r d i s p l ay i ng in

the UI

}

Code Snippet of the HTML displaying the contents of the received data list

Using the CommonModule’s NgFor directive, we can display all the Participant information

received

1 <ion - l i s t l i n e s=”none”>

<ion - item *ngFor=” l e t attendee o f t h i s . attended ”>

3 <ion - l a b e l>

<h3>{{ attendee . username }}</h3>

5 <h4>ID : <i>{{ attendee . d ev i c e i d }}</ i></h4>

</ ion - l a b e l>

7 </ ion - item>

</ ion - l i s t>

5.4 Participant Mode

Like Organizer Mode, when Participant Mode is selected from the Select Mode Page the

application’s context is tailored for joining attendance sessions hosted by a device running

in Organizer Mode. This means that the device takes the role of Bluetooth Low Energy

Scanner to identify valid attendance group/sessions and submitting attendance data

This page starts the BLE advertising using custom Capacitor Plugins in the Native Layer

(explained in the Native Layer Chapter 6) where it filters and detects only advertisements

packets holding a specific BLE Service UUID ­ the one that matches the CountaBLE

Attendance Service UUID. This is pre­configured in the Native Layer. Once the scanning

operation successfully detects an Organizer’s device, it presents the data in a list in the

Ionic Layer using event listeners. The data presented hold the Advertisement Code as

46



explained in Section 5.2 so that the Participant can spot the correct Group to join.

When finally selecting a Group session hosted by an Organizer, the Connection Phase begins

where the Native Layer uses the BLEAPI to initiate a GATT connection, and upon success,

transmits the payload in the form of <username:deviceId> to the Organizer’s Device,

as explained in the Communication Layer Chapter in Section 3.2.2. Upon successful

communication, the Organizer’s devices issues a Write Response which is basically an

Acknowledgment that the attendance has been received, as explained in the Communication

Layer in Section 3.2.3. Then and only then, the Participant’s device issues an Alert

Controller to the user, to prompt them wether they want this class to Auto­Join next time it

is encountered while scanning, meaning the Participant doesn’t need to interact with the

UI to mark the attendance. Along with the prompt, the application records a local copy

of the attendance in the SQLite Database of the Participant’s logic as shown in the Data

Layer Chapter in Section 4.2.3.7. This is then presented visually on a separate Attendance

Calendar Page.

Overall, the Participant Mode is designed to require minimal manual input from the user by

automating the scanning process, matching only with valid Participant’s device running the

app and by giving the option to Auto­Join Group sessions hosted by Organizers to achieve

the goal of low­effort attendance registration.

47



Figure 5.10: Searching for Groups Figure 5.11: Group Found

Figure 5.12: Prompt for Auto­

Joining Figure 5.13: Calendar Page

48



Figure 5.14: Auto Join Page

Figure 5.15: Add Manual Auto­Join

Setting

5.4.1 Scanning Page Code Snippets

Code Snippets for Event Listeners when Acknowledgment has been received from

Organizer

BleConnect . addLis tener ( ’ onAckReceived ’ , ( c lassname : {” advertcode ” :

s t r i n g }) => {

2 t h i s . ngZone . run ( ( ) => {

const timestamp = new Date ( ) . toISOStr ing ( ) ;

4 f o r ( l e t dev i c e o f t h i s . d i s cove r edDev i c e s ) {

i f ( dev i c e . c lassname === classname . advertcode )

6 dev i c e . j o i n ed=true ;

}

8 t h i s . s q l i t e S e r v i c e . markAttendanceForPartic ipant ( classname .

advertcode , timestamp ) ;

t h i s . presentToast ( ”Connected to ”+classname . advertcode ) ;

49



10 }) ;

}) ;

5.4.2 Auto­Join Page Code Snippets

Code Snippets for Retrieving, Displaying and Changing Auto­Join Settings

async l o adSe t t i n g s ( ) {

2 const a l l S e t t i n g s = await t h i s . au toJo inSe rv i c e . g e tA l lAutoJo inSe t t ing s

( ) ; .

t h i s . ngZone . run ( ( ) => {

4 t h i s . s e t t i n g s = a l l S e t t i n g s ;

}) ;

6 }

8 async ge tA l lAutoJo inSe t t ing s ( ) : Promise<{ className : s t r i n g ; au to j o in :

boolean }[] > {

const keysResu l t = await Pr e f e r enc e s . keys ( ) ;

10 const keys : s t r i n g [ ] = keysResu l t . keys ;

const s e t t i n g s : { className : s t r i n g ; au to j o in : boolean } [ ] = [ ] ;

12 f o r ( const key o f keys ) {

i f ( key . s tartsWith ( ’ autojoin_ ’ ) ) {

14 const { value } = await Pr e f e r enc e s . get ({ key }) ;

// remove p r e f i x to get raw c l a s s name

16 const className = key . sub s t r i ng ( ’ autojoin_ ’ . l ength ) ;

s e t t i n g s . push ({

18 className ,

au to j o in : va lue === ’ true ’

20 }) ;

}

22 }

return s e t t i n g s ;

24 }

26 async onToggleChange ( className : s t r i ng , event : any ) {

const newValue : boolean = event . d e t a i l . checked ;

28 await Pr e f e r enc e s . s e t ({

50



key : ‘ autojoin_${className } ‘ ,

30 value : newValue . t oS t r i ng ( )

}) ;

32 //update l o c a l s t a t e

t h i s . s e t t i n g s = th i s . s e t t i n g s .map( s => {

34 i f ( s . className === className ) {

return { . . . s , au to j o in : newValue } ;

36 }

return s ;

38 }) ;

}

51



Chapter 6

Native Layer (implemented for Android)

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Foreground Services . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Code Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Overview

The Native Layer implemented in the system is responsible for all the critical Bluetooth

Low Energy (BLE) operations that are used in the system ­ ScanningAndAdvertising using

the Generic Attribute Profile (GATT). These operations are written in Native Programming

Language Code and are then exposed to the higher­level Ionic Layer through Capacitor

Plugins, that otherwise wouldn’t be possible from Ionic alone.

In this Layer, Capacitor, Ionic’s native runtime, communicates with the Native Code using

bridges. For Android, the implementation is done in Java Classes that extend the Capacitor

Plugin base class and exposes methods that are annotated with the @PluginMethod de­

claretive, as explained in the Communication Layer Chapter in Section 3.4.2. This is what

creates the bridge between the two layers.

The BLE operations for Advertising and Scanning ­ including the correct initialization and

startup of the GATT Server and Client, is handled by the Android’s BLE API, by using

classes such as BluetoothLeAdvertiser, AdvertiseCallback, BluetoothLeScanner, Scan­

52



Callback etc. These APIs offer reliable control over advertisement settings (e.g., transmit

power, advertising intervals), advertising payloads (e.g., service UUIDs, custom data), and

scan filters.

6.2 Foreground Services

In order to minimize the user interaction with the application, the Native Layer written

in Java for Android leverages the foreground services model. This allows Scanning and

Advertising to run even when its not actively in use or when the device enters a low­power

state like locking the screen. Implementing the BLE operations as a foreground service,

allows us to execute them in the background since otherwise the Operating System might

block background execution.

Foreground services are instantiated through a standard Android procedure and always

needs to be accompanied by a visible notification.

6.3 Code Snippets

To start a foreground service, the Ionic front­end calls the relevant function from the

Native Layer, annotated by the @PluginMethod declarative. For instance, for starting the

Advertising Foreground service: Starting and Stopping the Advertising Foreground

Service

@CapacitorPlugin (name = ” BleAdver t i s e r ” )

2 pub l i c c l a s s B leAdver t i s e rP lug in extends Plugin {

. . .

4 // s t a r t the foreground adv e r t i s i n g s e r v i c e

@PluginMethod

6 pub l i c void s t a r tAdve r t i s i n g ( P lug inCa l l c a l l ) {

St r ing className = c a l l . g e tS t r i ng ( ” className” , ” d e f au l t ” ) ;

8 In tent s e r v i c e I n t e n t = new Intent ( getContext ( ) ,

B l eAdve r t i s i ngSe rv i c e . c l a s s ) ;

s e r v i c e I n t e n t . putExtra ( ” className” , className ) ;

10 i f ( Bui ld .VERSION.SDK_INT >= Build .VERSION_CODES.O) {

getContext ( ) . s ta r tForeg roundServ i c e ( s e r v i c e I n t e n t ) ;

12 }

c a l l . r e s o l v e ( ) ;

53



14 }

}

This starts the service where the actual BLEAPI provided by Android is used. First,

we configure the advertisement packet. Using the Android’s BLE’s API for Advertising

1 . . .

// Conf igure Advertisement Packet

3 Adve r t i s eS e t t i ng s s e t t i n g s = new Adve r t i s eS e t t i ng s . Bui lder ( )

. setAdvert iseMode ( Adve r t i s eS e t t i ng s .ADVERTISE_MODE_LOW_LATENCY)

5 . setTxPowerLevel ( Adve r t i s eS e t t i ng s .ADVERTISE_TX_POWER_HIGH)

. setConnectab le ( t rue )

7 . bu i ld ( ) ;

Advert iseData data = new Advert iseData . Bui lder ( )

9 . setIncludeDeviceName ( true )

. addServiceUuid (new ParcelUuid (SERVICE_UUID) )

11 // Inc lude the className in the s e r v i c e data .

. addServiceData (new ParcelUuid (SERVICE_UUID) , className .

getBytes ( StandardCharsets .UTF_8) )

13 . bu i ld ( ) ;

If Advertising started successfully, the GATT Server is configured and then started. An

Abstract Class called BluetoothGattServerCallback is implemented. The onCharacter­

isticWriteRequest(onCharacteristicWriteRequest(BluetoothDevice device, byte[] value,

booleanResponseNeeded, ...)) fires when a GATT Client send their data, meaning a Partic­

ipant has submit their attendance. The responseNeeded boolean parameter specifies if this

is a Write­With­Response request, meaning it expects and acknowledgment back from the

GATT Server.

1 BluetoothGattServ ice s e r v i c e = new BluetoothGattServ ice (SERVICE_UUID,

BluetoothGattServ ice .SERVICE_TYPE_PRIMARY) ;

B lue too thGat tCharac t e r i s t i c c h a r a c t e r i s t i c = new

Blue too thGat tCharac t e r i s t i c (

3 CHARACTERISTIC_UUID,

B lue too thGat tCharac t e r i s t i c .PROPERTY_WRITE,

5 Blue too thGat tCharac t e r i s t i c .PERMISSION_WRITE

54



) ;

7 s e r v i c e . addCharac t e r i s t i c ( c h a r a c t e r i s t i c ) ;

ga t tSe rve r . addServ ice ( s e r v i c e ) ;

9

gat tSe rve r = bluetoothManager . openGattServer ( th i s , new

BluetoothGattServerCal lback ( ) {

11 onCharacter i s t i cWri teRequest ( BluetoothDevice device , byte [ ] value ,

booleanResponseNeeded , . . . ) {

i f ( responseNeeded ) {

13 //Send GATT_SUCCESS code which s e r v e s as Acknowledgment

boolean ok = gat tSe rve r . sendResponse ( device , request Id ,

BluetoothGatt .GATT_SUCCESS, 0 , nu l l ) ;

15 }

Finally, we construct the payload to be then sent back to the Ionic Layer by notifying

the event listener.

1 //Send the Received data back to the I on i c Frontend

St r ing rece ivedData = new St r ing ( value , StandardCharsets .UTF_8)

;

3 JSObject re sponse = new JSObject ( ) ;

r e sponse . put ( ” dev i c e ” , dev i c e . getAddress ( ) ) ;

5 re sponse . put ( ” data ” , rece ivedData ) ;

B l eAdver t i s e rP lug in . broadcastDeviceReceivedData ( re sponse ) ;

7

}

9 }) ;

55



6.4 Threat Model

In a real­world scenario, different threat cases can occur, which could potentially cause

confusion or disruption in the attendance tracking process. When designing the CountaBLE

Attendance System, some of these threats were considered, therefore different features

were implemented to ensure the system remains functional and reliable while also offering

a smooth experience when using the system.

AParticipant doesn’t own a Mobile Device

In the case where a participant does not own a mobile device to run the mobile application,

the system offers a fallback mechanism in the Organizer Mode. In the Group Page where

the Organizer can view all the participants and their status, an ”Add Person” button allows

manual registration, prompting the Organizer for the participant’s name and generates

a random UUID to be used instead of an actual device identifier. This ensures that a

participant who doesn’t know a mobile device, is still included in the attendance records.

Device Changed

If a participant has changed their device, the unique identifier that is tied with them will

also change. To address this, the participant can simply reconnect using their new device.

This will result in creating a new entry on the organizer’s device. The organizer then, can

simply select the old entry from the participants list of that particular group and remove it

using the 3 dotted menu context menu.

Incorrect Group Connection

In a real­world scenario, for instance in an institutional organization, many rooms are

located close to each other. This means that if multiple organizers advertise at the same

time, participants could possibly connect to the wrong attendance session. In this case, the

organizer can identify the wrongfully submitted attendance and remove them directly from

the user interface using the 3 dotted menu context menu.

Forgotten Device Scenario

If a participant forgets their smartphone on the day of attendance, the system provides a

feature to manually set the particular participant as attended. The organizer can locate the

participant in the group list and, via the 3 dotted context menu, manually mark them as

present.

56



Chapter 7

Experimental Evaluation

7.1 Evaluating the Communication Layer . . . . . . . . . . . . . . . . 57

7.2 Evaluating the Data Layer . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Evaluating Battery Consumption . . . . . . . . . . . . . . . . . . . 62

In this chapter, a series of evaluations conducted are presented to assess the practical

performance of the developed attendance system. To validate the system’s performance,

experiments were designed around three key aspects. First, the performance of the local data

layer (meaning the SQLite Database), in executing the appropriate queries and returning the

responses back to the user interface. Then, the energy consumption profile of continuous

BLE operations that run uninterrupted in the background and lastly, the communication

layer is evaluated in a real pilot with 4 smartphones, designed to reflect a real world

attendance scenario.

7.1 Evaluating the Communication Layer

To evaluate the practical viability and responsiveness of the communication layer, a real­

world pilot experiment was conducted with four smartphone devices. One device was

operating in Organizer Mode while the other three in Participants Mode, allowing the

experiment to focus on measuring the peer discovery, connection establishment, and data

exchange between Organizer and Participants using BLE.

In this experiment, the Organizer device was configured to start advertising a group session

57



called ”EPL400”, to simulate the beginning of an attendance tracking session.

Here, the time needed from the moment that the advertising begun, up until all three

participant devices successfully joined the attendance session was measured.

1 i f ( t h i s . i sAdv e r t i s i n g ) {

t h i s . startTime=performance . now( ) ;

3 t h i s . s tartBackgroundAdvert i s ing ( ) ;

}

5 async onDataReceived ( payload : s t r i n g ) { // executed when r e c e i v i n g an

attendance

. . .

7 i f ( t h i s . k==3) //k i n d i c a t e s number o f attendances r e c e i v ed

t h i s . endTime=performance . now( ) ;

9 conso l e . l og ( ”Total time to d i s c ove r 3 dev i c e s : ”+( t h i s . endTime -

t h i s . startTime ) )

}

The Participant devices were running with the Auto­Join feature enabled, meaning it

required no user interaction after initiating the scanning. Then, for each participant de­

vice, the time needed starting from when the Start Scan button was pressed up until an

acknowledgment has been received from the Organizer, was also measured.

i f ( t h i s . i sScann ing ) {

2 t h i s . startTime=performance . now( ) ;

t h i s . startBackgroundScanning ( ) ;

4 }

BleConnect . addLis tener ( ’ onAckReceived ’ , ( c lassname : {” advertcode ” :

s t r i n g }) => {

6 . . . . .

t h i s . endTime=performance . now( ) ;

8 conso l e . l og ( ”Total time f o r sending attendance message : ”+( t h i s

. endTime - t h i s . startTime ) ) ;

}

The pilot experiment was successfully completed, validating the end­to­end communication

between the organizer and all participant devices. Each device operating in Participant

58



Mode, was able to successfully detect the Organizer’s device, establish a connection,

transmit the attendance payload and finally receive an acknowledgment without requiring

any manual intervention, other than initiating the scanning process. At the same time, the

device operating in Organizer Mode, received all of the attendance records from Participant

devices and updated its local user interface in real time.

Screenshots captured from all four devices, illustrate the correctness of this experiment,

confirming that all devices running in the appropriate mode, function as intended. To further

verify the system’s robustness, the experiment was repeated using different smartphones as

the organizer device, always achieving the same results.

Figure 7.1: Searching for Groups Figure 7.2: Group Found

Figure 7.3: Prompt for Auto­Joining Figure 7.4: Calendar Page

59



In terms of performance for the Participant, the whole process, starting from when the Start

Scan button was clicked up to when the Acknowledgment was received back from the

Organizer, was notably short. Across all tests, the average time per device was on average

1.60 seconds.

Figure 7.5: Execution time for Participant

For the Organizer, the whole process, starting from when the Start Advertising button was

clicked up to when attendance has been received from all three participants, was on average

3.36 seconds.

Figure 7.6: Execution time for Organizer

These results show that the system can effectively support simultaneous discovery and data

exchange in realistic conditions, ensuring the viability of the communication layer.

7.2 Evaluating the Data Layer

To evaluate the system’s local data layer performance, simulations were run on a physical

Google Pixel 6 device operating in Organizer Mode. Specifically, a script was used, which

inserts participants in a specific group, starting from 10 participants up to 150, increment­

ing the amount of participants by 10 each time, to assess the time needed for the whole

operation to be completed.

60



1 async onTestSe l ec t ( va lue : s t r i n g ) {

const i t e r a t i o n s = par s e In t ( value , 10) ;

3 l e t totalExecut ionTime = 0 ;

f o r ( l e t i = 0 ; i < i t e r a t i o n s ; i++) {

5 const s t a r t = performance . now( ) ;

await t h i s . onDataReceived ( t e s t u s e r $ { i } : t e s t d e v i c e $ { i }) ;

7 const end = performance . now( ) ;

const i t e ra t i onTime = end - s t a r t ;

9 totalExecut ionTime += ite ra t i onTime ;

}

11 conso l e . l og ( Total execut ion time f o r ${ i t e r a t i o n s } i t e r a t i o n s : ${

totalExecut ionTime . toFixed (2 ) } ms) ;

}

When running this simulation test, the physical Google Pixel device was connected with a

Windows machine running the native android project in Android Studio, allowing the view

of the ”Logcat” that displays any console logs from the ionic front end.

Figure 7.7: Screenshot of the Logcat displaying the console.log command

The resulting execution times that were measured in milliseconds, were plotted against the

number of participants inserted into the database in each test.

61



Figure 7.8: Plot for SQLite Database response time based on the amount of participants

As shown in the figure above, the insertion time increases gradually as the participant count

increases from 10 to 150. Even though SQLite is optimized for embedded applications, it

works as a single­threaded architecture, where it stores data on the device’s internal storage

making its performance sensitive to the quantity of the write operations. Therefore this is

an expected behavior.

The highest recorded time sits at around 4,5 seconds for 150 participant insertions which

still falls within an acceptable threshold for our system since these operations are infrequent

and usually occur during setup rather than in real­time interaction.

After inserting the 150 participants, the execution time of loading all the participants was

also measured in a similar manner, by measuring the time needed to execute the load

participants query. The execution time sits at around tenths of a milliseconds, meaning

0.0001 seconds, proving SQLite’s efficiency.

Figure 7.9: Caption

7.3 Evaluating Battery Consumption

To confirm the low­energy expectations of the BLE operations, scanning and advertising

in the background continuously, a long­duration power consumption test was performed

62



on a Google Pixel Android device. The device was configured to maintain the scanning

process for 6 hours uninterrupted.

Figure 7.10: Battery Usage Profile

The screenshot captured above, illustrates the battery usage profile of the Google Pixel

device, where it was actively scanning, running in the background as a foreground service.

During this test, the device’s screen activity was minimized and no additional apps were

running, to isolate the energy impact of the BLE scanning process.

The battery usage profile shows that the CountaBLE application, consumed less than

%1 battery over 6 hours. This result, validates and highlights the efficiency of the BLE

technology, confirming that it is suitable for prolonged background operations without

affecting the overall battery life of the device.

63



Chapter 8

Conclusions and Future Work

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.1 Conclusions

In this thesis, the CountaBLEAttendance System was proposed which utilizes BLE tech­

nology to tackle the various limitations exposed by other attendance methods ­ both manual

or technology­assisted. It offer a power­efficient attendance tracking solution that requires

no infrastructure or hardware, other than a modern smartphone, also without relying on

internet connection. The system leverages each participant’s personal device as the BLE

medium used for exchanging attendance messages, and, along with the use of a unique

per­app identifier that is generated for each user, it ensures that recurring attendance records

can be reliably associated with the correct device without storing sensitive information.

With the use of the Generic Attribute Profile (GATT), the Organizer of an attendance ses­

sion acts as a GATT Server, broadcasting attendance information under a specific service

UUID and characteristic, where Participants who act as GATT Clients, discover, establish

a communication, and exchange data with the Server by writing on its characteristics. With

the use of Write­With­Response writes in the GATT communication, a Participant receives

an acknowledgment from the Organizer, indicating that the attendance was successfully

received, ensuring a reliable exchange of attendance messages.

64



The system was implemented as a cross­platform mobile application to prioritize devel­

opment efficiency but also to enhance user experience by maintaining consistency across

Android and iOS platforms. This was possible through the use of Ionic Framework which

uses standard web technologies, combined with custom native plugins for BLE operations.

In this way, the system achieves a balance between portability and native performance.

Furthermore, to achieve the goal of requiring minimal user effort to record attendance, the

developed system uses the foreground service model of Android, allowing BLE operations

to persist in the background in a power­efficient way.

The experiments conducted to evaluate the system, proved that the proposed architecture

is reliable across all core layers. The evaluation of the data layer showed that even when

the attendance session consists of a high number of participants, the embedded SQLite

database handles data operations at an acceptable time frame, confirming its suitability

for real­world scenarios. For energy consumption, the experiment where a Google Pixel

device was configured to operate a prolonged scanning BLE operation uninterrupted for

six hours, resulted in draining less than 1% of the device’s battery, proving its suitability

for prolonged background usage.

Lastly, the communication layer was evaluated through a real­word scenario involving one

organizer and three participant devices. Each device operating in Participant mode was able

to successfully detect and exchange attendance messages with the Organizer without any

manual intervention. The experiment was repeated using a different device as the organizer

device, where the communication still works as expected. The average time needed for an

Organizer device to receive attendance from all three participant devices proved to be on

average 3.66 seconds, while for a Participant, it took on average 1.6 seconds to discover,

connect, exchange data, and finally receive an acknowledgment from the Organizer.

Altogether, the system proposed in this thesis, proves to be a practical attendance system

that is infrastructure­free and energy­efficient, designed with cross­platform compatibility

in mind.

65



8.2 Future Work

To further improve the proposed system, various possible enhancements can be done

to improve the system’s capabilities, performance, robustness and reliability. First, the

Organizer Mode can be improved by providing a reliable way to export attendance session

data, allowing integration with a Learning Management System (LMS) like Moodle. This

would provide an easy way for Organizers working in a institutional environment to keep

track of each attendance session in a the main centralized LMS that the institution uses,

further increasing the automation of the CountaBLE system.

In addition, since the developed system was implemented in a cross­platform manner,

currently it supports full functionality for Android devices. However, iOS compatibility

can be supported by simply developing native functionality using theApple Core Bluetooth

BLEAPI.

Another direction for future development is the integration of BLE 5.0, which introduces

significant improvements in the advertising and broadcasting capabilities. BLE 5.0 supports

larger advertisement packets where the payload is increased from 31 bytes up to 255 bytes.

With this improvement, the initial advertising message exchanged by Organizers could be

enriched to include more data used for uniquely identifying attendance sessions.

66



Bibliography

[1] M. Liu andY.Yao, “Design of IntelligentAttendance System Based on RFTechnology,”

in Proc. 2nd Int. Conf. on Artificial Intelligence and Information Systems (ICAIIS

2021), New York, NY, USA: ACM, 2021, Art. no. 254, pp. 1–7. [Online]. Available:

https://doi.org/10.1145/3469213.3470687

[2] A. D. D. Bayani, M. G. Fabra, V. M. C. Joseph, C. J. A. Pelayo, M. A. Diloy, and E. M.

Esberto, “WeConnect: Class Attendance Monitoring System with the use of Mobile

Tethering,” in Proc. 2023 8th Int. Conf. on Information and Education Innovations

(ICIEI ’23), New York, NY, USA: ACM, 2023, pp. 126–129. [Online]. Available:

https://doi.org/10.1145/3594441.3594462

[3] Z. Zhang, J. Du, W. Diao, and J. Wu, “MiniBLE: Exploring Insecure BLEAPI Usages

in Mini­Programs,” in Proc. ACM Workshop on Secure and Trustworthy Superapps

(SaTS ’24), New York, NY, USA: ACM, 2024, pp. 18–22. [Online]. Available: https:

//doi.org/10.1145/3689941.3695774

[4] S. M. Khan, M. T. Maliha, M. S. Haque, and A. Rahman, “WiFi Received Signal

Strength (RSS) Based Automated Attendance System for Educational Institutions,” in

Proc. 11th Int. Conf. on Networking, Systems, and Security (NSysS ’24), New York,

NY, USA: ACM, 2025, pp. 172–180. [Online]. Available: https://doi.org/10.1145/

3704522.3704523

[5] A. Barua, M. A. A. Alamin, M. Hossain, and E. Hossain, “Security and Privacy

Threats for Bluetooth Low Energy in IoT and Wearable Devices: A Comprehen­

sive Survey,” IEEE Open J. Commun. Soc., vol. 3, pp. 1–1, 2022. doi: 10.1109/OJ­

COMS.2022.3149732.

67

https://doi.org/10.1145/3469213.3470687
https://doi.org/10.1145/3594441.3594462
https://doi.org/10.1145/3689941.3695774
https://doi.org/10.1145/3689941.3695774
https://doi.org/10.1145/3704522.3704523
https://doi.org/10.1145/3704522.3704523


[6] J. Stevenson, “Android Unique Identifiers,” in Pro Android Privacy, 1st ed., Berkeley,

CA, USA: Apress, 2021, pp. 85­89. doi: 10.1007/978­1­4842­6914­5_7.

[7] S. Farooq, S. Riaz, A. Alvi, A. Ali, and I. Rehman, “Cross­Platform Mobile Devel­

opment Approaches and Frameworks,” VFAST Trans. Softw. Eng., vol. 10, no. 2, pp.

79–93, 2022. doi: 10.21015/vtse.v10i2.978.

[8] D. H. Morais, “Bluetooth LE Overview,” in 5G NR, Wi­Fi 6, and Bluetooth LE 5,

Cham, Switzerland: Springer, 2023. doi: 10.1007/978­3­031­33812­0_10.

[9] Bluetooth SIG, “Logical Link Control and Adaptation Protocol Speci­

fication,” Bluetooth, [Online]. Available: https://www.bluetooth.com/

wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/

logical-link-control-and-adaptation-protocol-specification.html

[10] Sphero Team, “Bluetooth Low Energy vs. Bluetooth: What’s the Difference?,”

Sphero, Nov. 7, 2022. [Online]. Available: https://sphero.com/blogs/news/

bluetooth-low-energy-vs-bluetooth

[11] Texas Instruments, “Generic Attribute Profile (GATT),” SimpleLink CC2640R2

SDK Documentation, [Online]. Available: https://software-dl.ti.com/lprf/

simplelink_cc2640r2_sdk/1.35.00.33/exports/docs/ble5stack/ble_user_guide/

html/ble-stack/gatt.html

[12] Adafruit, “Introduction to Bluetooth Low Energy: GATT,” [Online].Available: https:

//learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt

[13] Argenox, “BLE Advertising Primer,” [Online]. Available: https:

//argenox.com/library/bluetooth-low-energy/ble-advertising-primer#:~:

text=BLE%20Advertising%20Packets&text=The%20Packet%20data%

20unit%20for,of%20the%20Advertising%20Channel%20PDU

[14] M. Cunche, A. Boutet, C. Castelluccia, C. Lauradoux, and V. Roca, “On us­

ing Bluetooth­Low­Energy for contact tracing,” Inria Grenoble Rhône­Alpes and

INSA de Lyon, Research Report, 2020. [Online]. Available: https://hal.science/

hal-02878346v5

68

https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://sphero.com/blogs/news/bluetooth-low-energy-vs-bluetooth
https://sphero.com/blogs/news/bluetooth-low-energy-vs-bluetooth
https://software-dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.35.00.33/exports/docs/ble5stack/ble_user_guide/html/ble-stack/gatt.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.35.00.33/exports/docs/ble5stack/ble_user_guide/html/ble-stack/gatt.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.35.00.33/exports/docs/ble5stack/ble_user_guide/html/ble-stack/gatt.html
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://argenox.com/library/bluetooth-low-energy/ble-advertising-primer#:~:text=BLE%20Advertising%20Packets&text=The%20Packet%20data%20unit%20for,of%20the%20Advertising%20Channel%20PDU
https://argenox.com/library/bluetooth-low-energy/ble-advertising-primer#:~:text=BLE%20Advertising%20Packets&text=The%20Packet%20data%20unit%20for,of%20the%20Advertising%20Channel%20PDU
https://argenox.com/library/bluetooth-low-energy/ble-advertising-primer#:~:text=BLE%20Advertising%20Packets&text=The%20Packet%20data%20unit%20for,of%20the%20Advertising%20Channel%20PDU
https://argenox.com/library/bluetooth-low-energy/ble-advertising-primer#:~:text=BLE%20Advertising%20Packets&text=The%20Packet%20data%20unit%20for,of%20the%20Advertising%20Channel%20PDU
https://hal.science/hal-02878346v5
https://hal.science/hal-02878346v5


[15] U. Çabuk, G. Kanakis, and F. Dalkılıç, “LTE Direct as a Device­to­Device Network

Technology: Use Cases and Security,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 5,

p. 401, 2016. doi: 10.17148/IJARCCE.2016.5779.

[16] Qualcomm Technologies Inc., “Expanding Your Horizons with

LTE Direct,” Qualcomm Incorporated, White Paper, 2014. [On­

line]. Available: https://www.qualcomm.com/media/documents/files/

srg-whitepaper-expanding-your-horizons-with-lte-direct.pdf

[17] MOKOSmart, “LTE Beacons vs. Bluetooth Beacons: What’s the Differ­

ence?,” MOKOSmart, [Online]. Available: https://www.mokosmart.com/

lte-beacons-vs-bluetooth-beacons/

[18] C. Laoudias, M. Raspopoulos, S. Christoforou, andA. Kamilaris, “Privacy­Preserving

Presence Tracing for Pandemics Via Machine­to­Machine Exposure Notifications,” in

Proc. 23rd IEEE Int. Conf. Mobile Data Management (MDM), Paphos, Cyprus, 2022,

pp. 355–360. doi: 10.1109/MDM55031.2022.00080.

[19] ‘Android Open Source ­ accessory­samples Peripheral Activity’

Java2s, [Online]. Available: http://www.java2s.com/Open-Source/

Android_Free_Code/Example/code/com_example_android_

bluetoothgattperipheralPeripheralActivity_java.htm

[20] Android Developers, “Bluetooth,” Android Developer Documentation, [Online].

Available: https://developer.android.com/develop/connectivity/bluetooth/

[21] Ionic Framework, “Ionic Documentation,” [Online]. Available: https://

ionicframework.com/docs

[22] Capacitor, “Capacitor Documentation,” [Online]. Available: https://capacitorjs.

com/docs

[23] Angular Team, “Angular Overview,” [Online]. Available: https://angular.dev/

overview

69

https://www.qualcomm.com/media/documents/files/srg-whitepaper-expanding-your-horizons-with-lte-direct.pdf
https://www.qualcomm.com/media/documents/files/srg-whitepaper-expanding-your-horizons-with-lte-direct.pdf
https://www.mokosmart.com/lte-beacons-vs-bluetooth-beacons/
https://www.mokosmart.com/lte-beacons-vs-bluetooth-beacons/
http://www.java2s.com/Open-Source/Android_Free_Code/Example/code/com_example_android_bluetoothgattperipheralPeripheralActivity_java.htm
http://www.java2s.com/Open-Source/Android_Free_Code/Example/code/com_example_android_bluetoothgattperipheralPeripheralActivity_java.htm
http://www.java2s.com/Open-Source/Android_Free_Code/Example/code/com_example_android_bluetoothgattperipheralPeripheralActivity_java.htm
https://developer.android.com/develop/connectivity/bluetooth/
https://ionicframework.com/docs
https://ionicframework.com/docs
https://capacitorjs.com/docs
https://capacitorjs.com/docs
https://angular.dev/overview
https://angular.dev/overview


Appendix

70



71


	Introduction
	Architecture Overview
	Thesis Structure

	Related Work and Background
	Related Attendance Systems
	Attendance Systems using WiFi (RSS)
	Attendance Systems using QR Codes
	Attendance Systems using RFID

	LTE Direct
	Comparison of Different Technologies
	Security Concerns
	Background
	Bluetooth Low Energy (BLE)
	Ionic Framework


	Communication Layer
	Introduction to the Communication Layer
	Messages Exchanged Between Organizer and Participant
	Advertising Packet
	Client Payload (Write Request)
	Acknowledgment (Write Response)

	Communication Overview
	Layers Breakdown
	Ionic with Capacitor
	Native BLE API
	GATT & ATT
	L2CAP & HCI
	Physical Layer


	Data Layer
	Overview
	SQLite Database
	Entity-Relationship Diagram
	Relational Schema
	Queries
	Data Integrity

	Preferences

	User Interface & Ionic Layer
	Navigation and Menu Drawer
	Login & Select Mode Pages
	Organizer Mode
	Class Page Code Snippets
	Advertisement Page Code Snippets

	Participant Mode
	Scanning Page Code Snippets
	Auto-Join Page Code Snippets


	Native Layer (implemented for Android)
	Overview
	Foreground Services
	Code Snippets
	Threat Model

	Experimental Evaluation
	Evaluating the Communication Layer
	Evaluating the Data Layer
	Evaluating Battery Consumption

	Conclusions and Future Work
	Conclusions
	Future Work


