
i

Thesis Dissertation

IMPLEMENTING AND EXPERIMENTING WITH INDOOR

LOCALIZATION IN WSN AND IOT NETWORKS

Styliana Maria Zymara

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2025

ii

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Implementing and Experimenting with Indoor Localization in WSN and IoT

Networks

Styliana Maria Zymara

Supervisor

Dr. Vasos Vassiliou

A thesis submitted in partial fulfilment of the requirements for the award of a Bachelor's

degree in Computer Science at the University of Cyprus

May 2025

iii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor

Associate Professor Dr. Vasos Vassiliou for his invaluable guidance, insightful feedback,

and continuous support throughout the process of writing this thesis. His encouragement

and expertise have been instrumental in helping me navigate challenges and grow

academically. I am also sincerely thankful to my family for their unwavering support and

encouragement throughout the years of my studies at the University of Cyprus.

iv

Abstract

As Internet of Things (IoT) deployments grow across smart cities and critical

infrastructures, ensuring the security and reliability of wireless communication becomes

increasingly vital. LoRaWAN, being one of the popularly employed Low-Power Wide-

Area Network (LPWAN) protocols, is used extensively for low-energy and long-distance

communication. Its unlicensed frequency utilization and centralized star topology,

however, make it a particularly vulnerable protocol to jamming attacks. Despite

numerous intrusion detection system (IDS) solutions, most do not address the spatial

dimension of such attacks, leaving the source of disruption unlocalized.

This study proposes a two-part framework dedicated to LoRaWAN networks: (i) a

machine learning-oriented jamming classification system using features such as Packet

Loss Ratio (PLR), Received Signal Strength Indicator (RSSI), and Signal-to-Noise Ratio

(SNR) to classify jammed or normal intervals, and (ii) an ensemble localization

framework that combines four methods, including an adapted version of the WSN-

oriented MMLAW algorithm for LoRaWAN's gateway architecture and the novel

Jamming Impact Weighted Centroid (JIWC) method, to accurately estimate the jammer's

location.

Experimental results demonstrate that combining multiple features yields robust jamming

detection, even against imbalanced datasets. The ensemble approach mitigates individual

method weaknesses, while impact scoring and aggregation provide reliable estimates

despite the absence of ground truth coordinates. This work contributes a practical solution

for both detecting and localizing jamming threats in LoRaWAN systems, setting the

foundation for enhanced security in low-power IoT networks.

v

Contents

Chapter 1 Introduction…………………………………..............................… 1

 1.1 Motivation 1

 1.2 Objective and Contribution 2

 1.3 Methodology 2

 1.4 Thesis Organization 3

Chapter 2 Theoretical Background ……………………………….…. 4

 2.1 WSNs and IoT Networks 5

 2.2 Localization Technologies Overview 6

 2.3 LPWAN Technologies 12

 2.3.1 LoRa 13

 2.3.2 Sigfox 19

 2.3.3 NB-IoT 20

 2.4 Localization Techniques Overview 22

 2.4.1 A Broad Taxonomy of Localization Methods 22

 2.4.2 Detailed Overview of Localization Methods 26

2.1.5 Machine Learning Algorithms in Localization 42

2.1.6 Jamming Attacks in WSNs and LoRa 47

 2.1.7 Wi-Fi Jamming Limitations in LoRaWAN 56

Chapter 3 Literature Overview and Related Work…................................… 59

 3.1 Anomaly Detection in WSN and IoT 59

 3.2 Anomaly Detection in LoRa 60

 3.3 Jamming Detection in LoRaWAN 62

 3.4 Jamming Detection and Localization in WSNs and IoT 63

Chapter 4 Jamming Detection Implementation ………………………….. 66

 4.1 Dataset Description 66

 4.2 Packet Loss Ratio (PLR) Calculation 67

 4.3 Jamming Detection Methods 70

vi

Chapter 5 Jamming Localization Implementation ..…………….……………. 76

5.1 Dataset Description 76

5.2 Localization Algorithms 77

 5.2.1 Random Forest (RF) Regression with Weighted

Centroid 78

 5.2.2 XGBoost Regression with Weighted Centroid 79

 5.2.3 Modified Multilateration with Weights (MMLAW) 81

 5.2.4 Jamming Impact Score Weighted Centroid (JIWC) 83

 5.3 Ensemble Localization Framework 85

Chapter 6 Results and Evaluation 87

6.1 Jamming Detection Results 87

6.2 Jamming Detection Evaluation 91

6.3 Jamming Localization Results 98

6.4 Jamming Localization Evaluation 110

Chapter 7 Conclusion…………………………………………………….. 114

 7.1 Summary 114

 7.2 Challenges 114

 7.3 Future Work 115

References ………………………………………………………………. 116

1

Chapter 1

Introduction

1.1 Motivation 1

1.2 Objective and Contribution 2

1.3 Methodology 2

1.4 Thesis Organization 3

1.1 Motivation

The rise in Internet usage has prompted Internet of Things (IoT) protection companies to

develop more advanced technologies and standard security practices to safeguard IoT

devices from intrusions. Numerous methods have been proposed and discussed in the

literature for detecting anomalies in IoT and Wireless Sensor Networks (WSNs),

highlighting the critical need for effective Intrusion Detection Systems (IDS).

While many ML-based IDS solutions show high accuracy in detecting attacks, they

frequently overlook the spatial aspect, i.e., the localization of the attacker or source of

disruption, such as a jammer. In particular, indoor localization of attackers is

underexplored, especially in LoRaWAN networks, despite its critical role in enabling

effective mitigation strategies. This gap is primarily caused by LoRaWAN’s unique

architecture, which makes it challenging to use traditional localization techniques, as it

depends on centralized communication via gateways and lacks device-to-device

interactions.

Motivated by the shortcomings in current research, this thesis aims to bridge the identified

gap, by providing a comprehensive review of state-of-the-art localization techniques and

2

proposing a framework for both jamming detection and jammer localization tailored

towards LoRaWAN environments. Our interest in LoRaWAN is further motivated by its

expanding worldwide popularity as well as its open and flexible deployment strategy.

1.2 Objective and Contribution

The main objective of this project is to investigate and implement a framework for the

detection and localization of jamming attacks in LoRaWAN networks. One of the main

challenges we faced was the limited availability of public datasets related specifically to

LoRaWAN and jamming events.

More precisely, this work provides a comprehensive review of existing localization

technologies and detection methods applicable to LoRaWAN. We implemented and

evaluated various machine learning models for jamming detection using a LoRaWAN

dataset. Key network metrics, such as signal-to-noise ratio (SNR), received signal

strength indicator (RSSI), and packet loss ratio (PLR) were carefully selected and

processed to be combined in the jamming indicator (JI).

Finally, despite the absence of ground truth location data, we developed an ensemble

localization framework for a LoRa-based dataset. By analyzing consensus across methods

and their convergence patterns, we hypothesized and validated the jammer's position at

(0,0) through error metrics, demonstrating that our approach outperforms standalone

methods in stability and precision.

1.3 Methodology

This thesis adopts a two-stage pipeline to address jamming in LoRaWAN networks: first,

jamming detection is performed on a labeled LoRaWAN dataset using multiple machine

learning (ML) models with features such as RSSI, SNR, and a carefully calculated Packet

Loss Ratio (PLR) used to improve detection accuracy.

For the second stage, jammer localization is carried out on a separate LoRa-based dataset

using an ensemble of four different methods to mitigate individual weaknesses. One of

the main approaches, MMLAW (Modified Multilateration Localization Algorithm with

3

Weights), was originally developed by Dr. Michalis Savva for WSNs, but was modified

to suit LoRaWAN’s centralized gateway architecture. Additionally, this study proposes

the Jamming Impact Weighted Centroid (JIWC) method, another localization solution.

1.4 Thesis Organization

Next, in Chapter 2 we provide the theoretical background on IoT, WSNs, LPWAN

technologies, localization techniques, and jamming. Chapter 3 reviews related work on

anomaly detection, jamming detection and localization in both WSN and LoRa-based

networks. In Chapter 4, we include the detailed implementation of machine learning

methods for our jamming detection framework, and accordingly, in Chapter 5 we present

the design and application of multiple jammer localization methods on a separate LoRa

dataset. Chapter 6 summarizes and discusses the results of both jamming detection and

localization, including evaluation insights. Lastly, in Chapter 7 we provide conclusions,

highlight key findings, limitations, and potential directions for future research.

4

Chapter 2

Theoretical Background

2.1 WSNs and IoT Networks 5

2.2 Localization Technologies Overview 6

2.3 LPWAN Technologies 12

2.3.1 LoRa 13

2.3.2 Sigfox 19

2.3.3 NB-IoT 20

2.4 Localization Techniques Overview 22

2.4.1 A Broad Taxonomy of Localization Methods 22

2.4.2 Detailed Overview of Localization Methods 26

2.5 Machine Learning Algorithms in Localization 42

2.6 Jamming Attacks in WSNs and LoRa 47

2.7 Wi-Fi Jamming Limitations in LoRaWAN 56

In this section, multiple key definitions will be provided along with the necessary

theoretical background, information that is essential support the remainder of this study.

First, all the relevant technologies for indoor localization will be presented, with

particular emphasis on LoRaWAN. Then, an overview of the most relevant localization

techniques will be exhibited, with a special sub-section dedicated to Machine Learning

approaches. Following this, we will discuss possible attacks in IoT and WSN, focusing

mostly on jamming, which is the central concern of this research. Finally, we explore

jamming attacks in IoT and WSN networks to understand their impact on communication

and localization performance.

5

2.1. WSNs and IoT Networks

Figure 2.1.1: Number of Internet of Things (IoT) connections worldwide from 2022 to

2023, with forecasts from 2024 to 2033 [1].

A wireless sensor network (WSN) consists of hundreds to thousands of sensor nodes,

each designed primarily for distributed data sensing. These nodes communicate

wirelessly and send their collected data to a central base station for processing and

analysis. However, they are limited by various constraints like power, energy, efficiency

and deployment challenges [2].

Internet of Things (IoT) has gained substantial traction in the industrial and academic

communities and extends this paradigm by building an intelligent, interconnected

network through the combination of cyber and physical systems. This self-organized

network involves sensors, actuators, and mobile devices (also referred to as “things”) that

communicate data through standardized network protocols [3].

Healthcare applications, sensor networks, smart homes, smart cities, corporate networks,

smart grid technologies, and web applications are just a few of the application areas that

have made use of IoT technology. As these applications develop across various fields,

they bring to the surface several challenges including keeping devices and networks safe,

6

preventing attacks on IoT systems and managing networks that have limited resources

[4].

The widespread deployment of IoT systems allows one to have increased data movement

and more complex device-to-device interactions, creating new opportunities for

cybercriminals [5]. There are plenty of advantages to using tiny internet-connected

devices, such as helping individuals be more efficient, but they also introduce security

risks. The sheer number of IoT devices enables malicious actors to seek new ways of

exploiting vulnerable systems. Compounding these challenges is the inherent

heterogeneity of IoT infrastructure, where the amalgamation of various technologies yield

unique vulnerabilities in security that typical protection measures like access control,

encryption, and authentication often fail to adequately counteract [4].

Localization is a critical component in WSNs and IoT systems [5] and represents the

process of determining the physical position of stationary or movable devices (e.g.,

smartphones, beacons, drones, etc.) within a network. While the underlying concept of

localization traces back to NASA's satellite-based tracking systems developed in the

1960s [3], modern implementations go far beyond conventional navigation and object

tracking. Of particular importance is localization's crucial role in cybersecurity

frameworks, where Intrusion Detection Systems (IDS). Pinpointing an attacker’s location

(e.g., a jammer) becomes essential for maintaining network integrity, especially in

wireless environments that are susceptible to disruption [6].

Figure 2.1.2: Motivation for jammer localization in IoT environments.

2.2 Localization Technologies Overview

Global Navigation Satellite Systems (GNSS) are the cornerstone of outdoor positioning

and offer worldwide coverage, with many GPS systems using this technology (United

7

States, Russia, China, European Union [5]). GNSS employs a triangulation technique to

estimate location by receiving signals from multiple satellites. However, GNSS struggles

significantly when applied to interior navigation due to the presence of signal distortions.

Signal attenuation, multipath effects caused by objects (e.g., walls or roofs) and general

environmental noise are some of the main issues that make standalone GNSS

impractical for indoor settings.

Nevertheless, GNSS can be used in conjunction with other technologies to enhance

indoor positioning accuracy and availability. One solution, for instance, is GNSS/INS

(Inertial Navigation System) integration, where inertial sensors (i.e., accelerometers and

gyroscopes) compensate for GNSS signal dropouts by providing continuous motion

tracking during indoor transitions [7].

Radio Frequency Technologies

Radio frequency (RF) technology employs wireless communication through the use of

electromagnetic waves spanning between 3 kHz to 300 GHz in the frequency spectrum.

The corresponding radio waves are enabled to propagate through the medium, allowing

data transmission and distance measurements to be taken, making them a foundational

component of localization systems. The RF technology is widely used for location

estimation because of rampant availability and inexpensive supporting hardware like Wi-

Fi access points (APs) and Bluetooth beacons [8].

Indoor positioning relies heavily on an equally accessible technology, Wi-Fi (IEEE

802.11) operating in 2.4 and 5 GHz bandwidths, also known as ISM (Industrial,

Scientific, Medical) bands [5]. Wi-Fi chipsets are found in most modern devices,

including computers, smartphones, smartwatches and other gadgets, which further

contribute to the IoT infrastructure. Therefore, localization becomes much more

accessible and cost-effective. Essentially, the existing Wi-Fi infrastructure can be utilized

for most indoor localization systems with no additional hardware needed, since APs

provide signal measurements such as Received Signal Strength Indicator (RSSI), Channel

State Information (CSI), and round-trip time (RTT), among others.

8

On top of that, Wi-Fi has been significantly extended and covers distances up to 1 km, a

considerable improvement from its earlier 100m limit [8]. With its broader coverage area

and higher throughput compared to Bluetooth, Wi-Fi enables faster data communication,

making it more viable for most applications. Specific methods that use Wi-Fi technology

will be presented in Section 2.1.2, but namely some main approaches include Geometric

approaches (e.g., Angle of Arrival (AoA), Time of Flight (ToF), Round Trip Time

(RTT)), RSSI fingerprinting, and Channel State Information (CSI)-based localization.

Bluetooth, particularly its Low Energy variant (BLE), is a short-range wireless personal

area network (WPAN) technology which relies on electromagnetic waves within the

frequency range of 2.4-2.48 GHz [9]. Similar to Wi-Fi, this technology is also prominent

in localization systems because of its global availability and support by personal devices.

Through the advancements introduced in Bluetooth 5.0, BLE has

significantly augmented its range functionalities. In an ideal scenario, the operating range

can be up to 40 meters indoors and 200 meters outdoors.

The main advantage of Bluetooth is its very low power consumption permitting months

of operation on a single charge [5], which makes it an excellent fit for power-limited IoT

devices. Additionally, features like adaptive frequency hopping help mitigate interference

from other wireless signals.

However, Bluetooth does have shortcomings when it comes to indoor localization

performance. Aside from the common challenges which all RF signals experience, i.e.

multipath and signal attenuation, it typically provides sub-meter accuracy and latency of

several seconds. If centimeter-level precision or instantaneous updates are desired for the

localization system, Bluetooth alone is insufficient. Furthermore, due to Bluetooth’s

limited range in indoor environments, it is generally not preferred for localization across

large-scale areas [8].

These constraints render Bluetooth ideal for proximity-based applications in retail,

healthcare, airports and transportation stations, where localization is performed using

BLE technology installed integrated into smartphones (e.g., iBeacons for Apple and

Eddystone for Google) [8].

9

Ultra-Wideband (UWB) is a highly suitable technology for indoor localization due to

its wide bandwidth (over 500 MHz) and low-power operation, with carrier frequencies

above 2.5GHz. Because of its extremely low energy usage, UWB results in such a large

bandwidth [5].

Some of the key advantages of UWB technology include high data rates and remarkable

resistance to multipath fading because of the technology’s distinct spectrum [8]. UWB's

high time resolution and short pulse duration are fully utilized by techniques such as Time

of Arrival (ToA), Time Difference of Arrival (TDoA), and Angle of Arrival (AoA) to

achieve centimeter-level accuracy, outperforming RSSI-based methods. All the above

characteristics make UWB a strong candidate for high-precision indoor localization in

IoT and WSN applications.

Zigbee is a popular low-power, low-data-rate wireless communication technology built

on the IEEE 802.15.4 standard and commonly used in the IoT era. It operates in the 868

MHz, 915 MHz and 2.4 GHz unlicensed ISM bands [5] with a maximum data rate of 250

kilobits per second and a range of up to 30 meters. Multiple topologies are supported by

Zigbee such as tree, star and mesh. Even in intricate indoor environments, mesh

networking enables devices to efficiently forward data through intermediate nodes to

reach their destination. Because it operates in unlicensed ISM bands, it is prone to

interference from other signals in the same spectrum, a shared vulnerability with both Wi-

Fi and Bluetooth.

In indoor localization using Zigbee deployments, while RSSI is also the most widely

adopted metric, alternative indicators like Link Quality Indication (LQI) can be used to

reduce noise in ML-based localization and improve accuracy in dense, dynamic

environments [3]. Although Zigbee’s accuracy is generally lower than that of Wi-Fi or

UWB, it can be an excellent choice for large-scale, low-power localization systems where

strict precision is not critical, and energy efficiency is highly desired.

RFID (Radio-Frequency Identification) is a wireless radio wave-based technology that

is used for object identification and tracking via tags with unique IDs [5]. The specific

tags come in three types: active, passive, and semi-active.

10

Active RFID tags, powered by an internal battery, enable detection up to 100 meters and

operate in the UHF (Ultra-high frequency) and SHF (Super high frequency) bands.

However, they are not appropriate for sub-meter accuracy and are not usually integrated

into personal mobile devices, limiting their use in user-side indoor localization [8].

Conversely, passive RFID tags are battery-free and very popular across multiple use cases

due to their low cost, small size, and easy deployment.. Passive tags typically operate in

the UHF band (860–960 MHz) and have a smaller range of 10 meters but are capable of

sub-meter level detection under ideal conditions.

The way RFID systems operate, includes backscattering communication between

mentioned RFID tags and RFID readers, with middleware for the data processing [8]. By

employing multiple reference tags which act as a transmitter, RSSI values from nearby

readers are used to estimate the position of a target tag by comparing signal similarities.

In indoor localization, RFID systems are valued for their low cost, scalability, and

resistance to occlusion and environmental interference.

Optical-based Technologies

Optical-based indoor localization techniques offer an alternative to radio frequency (RF)

systems, particularly in RF-sensitive environments (e.g., hospitals). Optical technology

uses visible or infrared light to fulfill specific functions, and in this case, aid in

localization. Two of the well-known technologies under this category are Infrared (IR)

and Visible Light Communication (VLC).

IR systems rely on line-of-sight (LoS) communication using IR-emitting devices (e.g.,

LEDs) and IR sensors (e.g., photodiodes). IR emitting devices send a signal with a unique

ID which the sensor can detect to determine the target’s location [5]. The benefits of this

technology lie in its immunity to electromagnetic interference, a characteristic not

applicable to RF-based systems. However, IR systems are sensitive to fluorescent light

and sunlight interference and involve relatively costly hardware [8].

11

On the contrary, VLC systems determine position by using modulated visible lights (e.g.,

LEDs) and a sensor (smartphone camera, photodiode) to determine position. In fact, in

many scenarios, VLC systems have better accuracy than Wi-Fi and benefit from LEDs'

low power consumption, long lifespan, and immunity to sunlight interference.

Both VLC and IR, however, require line-of-sight (LoS) conditions between the

transmitter and receiver in order to successfully estimate the location.

Inertial Sensors (Dead Reckoning)

Inertial sensors, which are commonly embedded in smartphones and IoT devices, use a

technique often referred to as dead reckoning or Pedestrian Dead Reckoning (PDR) in

order to enable relative indoor localization [5]. Inertial measuring units (IMU) include,

among others: accelerometers (distance estimation via step counts), gyroscopes (angle or

direction measurements), magnetometers (magnetic field measurements), pressure

sensors (elevation estimation). However, localization accuracy degrades over time due to

these sensors' susceptibility to drift and noise, particularly indoors.

To counteract this, inertial systems are typically paired with other technologies such as

Wi-Fi, Bluetooth, GNSS, or UWB, and filtered with the use of Kalman or particle filters

to improve position estimates [8].

Cellular-based Technologies

5G networks revolutionize cellular-based localization by leveraging advanced

technologies which contribute to ultra-low latency (1-10ms), high throughput and sub-

meter (or even centimeter-level) accuracy . The co-existence of IoT and 5G networks led

to multiple adaptation technologies, such as mMIMO (massive multiple-input multiple-

output) and mmWave (millimeter-wave) [10].

5G’s high bandwidth and strict synchronization improve Time-of-Arrival

(ToA) and Angle-of-Arrival (AoA) estimations which are ideal for IoT and WSN

applications. Recent studies show (ML)-enhanced ToA tracking with 5G downlink

12

signals, providing 0.5-meter accuracy indoors by eliminating multipath effects via

Kalman filtering [11].

With speeds 20 times faster than 4G, 5G allows mass and simultaneous device

connections with real-time localization [10], and forms the backbone for industrial

automation, emergency response systems, and smart cities.

Challenges remain, including hardware complexity as components of this network

include 5G base stations (gNBs) and small cells, but despite their higher cost, offer more

scalable solutions for large IoT deployments. Moreover, it is needed to strike a balance

in power consumption for battery-powered IoT nodes and ensure privacy in location-

based applications. Nevertheless, with edge computing and AI-driven analytics, 5G

cellular localization is poised to underpin the next generation of IoT innovations.

2.3 LPWAN Technologies

Low-Power Wide Area Networks have emerged as a group of communication

technologies and protocols, offering innovative solutions in IoT. As the name suggests,

LPWAN technologies cover a very large area (kilometers level) through base stations

while keeping the power usage and throughput of the end devices minimum [12]. They

achieve this by performing adjustments to transmission rate, signal power, and intervals

of communication, resulting in very little energy consumption.

While short-range applications frequently employ GHz-based technologies (Wi-Fi,

Bluetooth, ZigBee), long-range communications require more energy-efficient solutions,

with LPWANs operating in the MHz band [13].These networks are particularly suited for

IoT deployments in smart cities, industrial IoT, and other large-scale applications where

devices must operate for extended periods on battery power.

LoRa, SigFox and NB-IoT fall under the category of LPWAN technologies, each with

distinct communication features and trade-offs. NB-IoT operates typically in licensed

bands, while LoRa and SigFox operate on unlicensed industrial, scientific, and medical

(ISM) bands.

13

2.3.1 LoRa (Long Range)

LoRa, short for "Long Range," is a wireless communication system designed to support

long-range data transmission with ultra-low power consumption and is promoted by the

LoRa Alliance. Since LoRa can offer long-distance communication (~15 km

outdoors) at minimal power usage, it has been one of the most adopted LPWAN

technologies so far. This makes it a well-suited technology to a broad set of applications,

including industrial automation, smart cities, agriculture, environmental monitoring and

urban infrastructure. LoRa is built on two layers: (i) Physical Layer (PHY) and (ii) MAC

layer, also known as LoRaWAN [14].

LoRa Physical Layer (PHY) is the lower layer of the protocol stack and is responsible

for the data transmission, i.e. the actual radio communication. The LoRa PHY is

proprietary technology owned by Semtech Corporation [14]. It’s closed source, meaning

its core modulation technology is not publicly open.

LoRa’s physical layer employs Chirp Spread Spectrum (CSS) Modulation, spreading the

signal across a wide bandwidth (e.g., 125–500 kHz). Specifically, information is encoded

in radio sinusoidal waves called “chirps”, which are signals that linearly increase or

decrease in frequency over time. As a result, the CSS method provides resilience against

effects like multipath fading, Doppler effects, and interference, enabling reliable long-

range communication in the presence of a significant amount of channel noise [15].

LoRaWAN MAC Layer is the upper layer built on top of the physical layers designed

mainly for sensor networks, and it defines how devices organize communication in a

shared radio environment by coordinating the access to the medium. Unlike the

proprietary PHY, LoRaWAN is open and maintained by the LoRa Alliance and it was

first introduced in 2015 [12].

As of 2025, LoRa Alliance allows public, private and hybrid networks to be

deployed catering to various use cases and locations [16]. The Alliance has expanded to

nearly 200 LoRaWAN network operators, providing coverage in almost every country

worldwide. Moreover, the Alliance has emphasized the growth and variety of LoRaWAN

network models, pointing out that during a three-year period, public LoRaWAN networks

14

increased by 66%, mostly due to the deployment of new LPWAN IoT infrastructure by

satellite, community, and license-exempt network operators [17].

LoRaWAN Architecture

A typical LoRaWAN network consists of several key components working in concert to

enable low-power, wide-area communication, and is usually organized in a star-of-stars

topology [12]. Some of the key components are the end-devices, the gateways, the

network server and the application server.

End devices, most commonly sensors or actuators, collect data or perform actions and

communicate wirelessly with one or multiple gateways. These

gateways subsequently forward the arriving frames to a network

server, the network's central point of intelligence, which manages devices and forwards

data to the appropriate application server for processing. The network server is

responsible for removing duplicate messages, decoding the data and sending the messages

back to the end-devices [14]. The communication between end devices and gateways uses

the LoRa physical layer, which employs Chirp Spread Spectrum (CSS) modulation [15].

LoRa devices are not connected with only a single gateway, they simply broadcast their

data and any nearby gateways that are within range can forward the packets to the network

server where all the decision-making takes place. It must be highlighted that device-to-

device communication is not supported by LoRaWAN, meaning that any packet from one

device to another must be relayed via the network server.

Figure 2.3.1.1: LoRaWAN architecture design

15

Furthermore, LoRaWAN end-devices are separated into three different classes:

Class A devices are the most energy efficient. They are bi-directional and can send data

(uplink) whenever needed and open two short downlink receive windows afterwards to

listen for replies. This class is ideal for battery-powered devices since downlink messages

can only be sent right after an uplink, with the tradeoff of limited responsiveness.

Class B devices add scheduled receive windows, allowing the server to send data at

specific times. These schedules are synced using beacons from the gateway, offering a

balance between power use and downlink flexibility.

Class C devices keep their receive window open continuously, allowing for immediate

downlink communication. This makes them highly responsive but it also results in

maximum power usage, making them mostly suitable for plugged-in devices.

Figure 2.3.1.2: LoRaWAN Protocol Stack

Key Transmission Parameters

• Carrier Frequency

LoRa mostly operates in sub-GHz ISM bands (e.g., 868 MHz in Europe, 915 MHz in

North America), where lower frequencies offer better penetration and range, but lower

data rates [13]. Regional regulations dictate channel plans, for example, EU LoRaWAN

uses 863–870 MHz with duty cycle restrictions (1% for most channels) to minimize

interference [18].

16

• Duty Cycle

LoRaWAN operates in unlicensed ISM bands, and thus is subject to regional regulatory

constraints, with one being the duty cycle. The duty cycle defines the maximum

percentage of time a device is allowed to transmit on a given channel within a specific

time period [12]. After each transmission, the device must wait for the remainder of the

duty cycle window before it can transmit again, contributing to a fair channel utilization

and reduced collision risks. Although this mechanism supports spectrum sharing and

scalability, it also limits throughput in dense deployments.

• Coding Rate (CR)

The CR (e.g., 4/5, 4/6, 4/7, or 4/8) determines the ratio of error-correction bits to payload

data. In simpler words, CR in regulates the number of extra bits used for error correction.

For example, i) a CR of 4/5 means: for every 4 bits of actual data, 1 extra bit is added for

error correction (total 5 bits sent), ii) a CR of 4/8 means: for every 4 bits of data, 4 extra

bits are added (total 8 bits sent), and so on.

The tradeoff is that higher CRs (e.g., 4/8) are more reliable because they are better at

handling noise, but at the cost of reduced throughput (more redundant bits transmitted).

Accordingly, lower CRs have higher throughput, thereby are faster, but less reliable. This

trade-off is critical for battery-constrained IoT devices [19].

• Spreading Factor (SF)

SF (ranging from SF7 to SF12) controls the number of chirps per symbol and directly

affects range and data rate. LoRa's SF essentially defines the duration of the

signal being stretched over time i.e. how slowly or quickly data is being transmitted.

Higher SFs (e.g., SF12) increase sensitivity (up to −148 dBm) and support longer

communication range, but reduce throughput (slower) and increase air time, making them

vulnerable to prolonged jamming attacks [19]. In contrast, lower SFs (e.g., SF7) use fewer

chirps per symbol, resulting in faster data transmission, shorter airtime, and hence,

reduced jamming exposure.

17

Spreading

Factor (SF)
Data Rate Range Air Time

Power

Consumption

Jamming

Vulnerability

SF7 High Short
Very Low (~50

ms)
Low Low

SF8
Medium-

High

Short-

Medium
Low (~100 ms) Medium Medium

SF9 Medium Medium
Moderate (~200

ms)
Medium Medium

SF10
Medium-

Low

Medium-

Long
High (~400 ms) High High

SF11 Low Long
Very High

(~800 ms)
High High

SF12 Very Low Very Long
Extremely High

(~1000+ ms)
Very High Very High

Table 2.3.1.1: Comparison of LoRa spreading factors and their trade-offs.

• Bandwidth (BW)

LoRa’s BW (typically 125, 250, or 500 kHz) affects both data rate and spectral efficiency

[19]. Narrow BWs enhance receiver sensitivity for longer communication distances and

tolerance to noise at the cost of lower data rate. On the other hand, wider bandwidths offer

the potential for higher data rates at the cost of lower coverage range and link budget due

to increased power consumption and susceptibility to co-channel interference. Adaptive

BW selection takes advantage of real-time SNR measurements to adaptively select

bandwidth, i.e., automatically switch to 125 kHz in interference-heavy environments or

500 kHz when handling time-sensitive sensor data [20].

• Adaptive Data Rate (ADR)

Adaptive Data Rate (ADR) is another vital component of LoRaWAN

that accommodates dynamic adaptation of several transmission parameters, including the

spreading factor (SF), bandwidth (BW), and coding rate (CR). The rationale behind this

mechanism is to optimize energy efficiency, maximize network capacity and reliability

based on the existing state of the network. For instance, when the devices are near a

18

gateway and the signal strength is high the ADR mechanism may decrease the

SF but increase the data rate in order to minimize air-time and power usage. Conversely,

during poor signal conditions ADR may increase the SF at the expense of lower data

rates to guarantee reliability. This flexibility of LoRaWAN can significantly contribute

to large-scale IoT deployments, where varying distances and environmental noise

demand dynamic optimization for high performance and battery life.

Limitations in LoRaWAN

While LoRaWAN offers great advantages such as long-range communication and low

power consumption, it also suffers from certain inherent drawbacks due to design trade-

offs [21]. A primary limitation is that it operates at a low bit rate and, as a result, messages

experience long air-time, increasing their susceptibility to collisions, especially in dense

network deployments. Since the protocol does not use carrier sensing (like CSMA)

or timing synchronization to prevent overlaps, it relies mainly on the inherently low end-

device transmission rate to reduce the chances of collision. Bi-directional

communication further increases packet loss. This is not only due to collisions but also

because acknowledgment messages (ACKs) can quickly exhaust a device’s duty cycle

limit, limiting further communication. [21]

Thanks to LoRa’s Chirp Spread Spectrum (CSS) modulation, not all simultaneous

transmissions lead to data loss. Gateways can successfully decode overlapping packets if

they are sent using different Spreading Factors (SFs) and have similar RSSI. However,

issues arise in two main scenarios: i) When two messages collide using the same SF, they

interfere destructively resulting in loss of both. ii) When two messages have unequal

signal strengths, i.e., if one message is significantly stronger, it can drown out the weaker

one, even if the SFs are different, so only the stronger signal is successfully received.

Beyond these, LoRa's limited bandwidth and payload size constrain its use in applications

that require high data throughput or real-time performance. Operating in unlicensed

frequency bands also raises the risk of interference from external interference (non-LoRa

devices). Lastly, deploying a LoRaWAN network may involve considerable setup

complexity and cost.

19

2.3.2 Sigfox

Sigfox is a French LPWAN technology which has rapidly expanded its global footprint,

used in more than 70 countries and has a coverage of 40 kilometers [22]. Although Sigfox

and LoRaWAN both make use of license-free bands, their operation modes differ [23].

Sigfox operates as a centralized global network provider, managing infrastructure and

services centrally, whereas LoRaWAN supports a

decentralized topology supporting public, private, and hybrid network deployments.

Sigfox is based on a one-hop star topology and Aloha as its medium access protocol [22],

relying on the backhaul connectivity of mobile operators. This solution simplifies end-

user deployment but diminishes network flexibility and management of the infrastructure.

Additionally, it employs Ultra NarrowBand (UNB) technology that can offer long-range

communication, minimal power consumption and limits the number of dense base station

(BS) placements in the area [23]. Modulation schemes include Differential Binary Phase

Shift Keying (DBPSK) for uplink and Gaussian Frequency Shift Keying (GFSK) for

downlink.

Nodes are constrained to send a maximum of 140 messages daily, which can’t exceed 12

bytes (uplink communication). For downlink communication, devices can receive up to

4 messages per day, each limited to 8 bytes in size [22] and can only be received after the

device prompts the network to deliver a downlink message (downlink request flag = 1).

Key benefits of Sigfox include low hardware and infrastructure costs, as well as extremely

low power consumption with data rates of approximately 100 bps, enabling devices to

last for years on a single battery. Lastly, Sigfox offers flexibility in hardware selection as

it supports chipsets of various manufacturers, as opposed to LoRaWAN [23].

Sigfox has a number of drawbacks despite its benefits. Its centralized operational model

restricts user control and requires registration and service fees. Moreover, given that all

data are stored on Sigfox servers, privacy issues are raised [23]. While UNB technology

reduces BS density and installation costs, it also restricts localization accuracy as higher

BS density typically improves positioning capabilities. Finally, because Sigfox has

limited downlink connection, it is best suited for applications where devices

predominantly send data to the cloud with little need to receive data.

20

2.3.3 NB-IoT

Narrowband Internet of Things (NB-IoT) is a 3GPP-standardized Low Power Wide Area

(LPWA) technology included in the LTE standard [24], which starter later than

LoRaWAN and Sigfox. It uses the same licensed frequency bands as LTE, as opposed to

LoRa and Sigfox which both use license-free bands. NB-IoT can operate under three

modes: i) stand-alone ii) guard-band and iii) in-band. It is specifically designed to enable

large-scale connectivity for IoT devices by decreasing deployment costs and battery

usage. In order to achieve the aforementioned goals, it omits several LTE features (e.g.,

handover*, carrier aggregation, dual connectivity) [24].

The NB-IoT architecture is typically structured into three main layers: the perception

layer, the network layer, and the application layer. The perception layer consists primarily

of NB-IoT devices (sensors, actuators, or other IoT nodes) whose role is to capture data

from the physical environment. The network layer serves as the communication

backbone, comprising cellular base stations (eNBs) and core network entities to transmit

and process the captured data. Finally, the application layer provides specific services and

applications tailored to end-user needs, by using the processed data that was delivered by

the network layer.

NB-IoT is strongly promoted by telecommunication operators and can be supported by

existing telecommunication base stations (BSs). The technology also benefits from the

security and quality guarantees of licensed spectrum [23]. However, due to the use of

licensed bands it is more expensive to develop.

*Handover refers to the process of transferring a connection from one node or technology

to another without disrupting the user experience.

21

LPWAN Technologies Comparison

Feature LoRaWAN Sigfox NB-IoT

Frequency

Band

Unlicensed ISM (e.g.,

868/915 MHz)

Unlicensed ISM

(e.g., 868/902 MHz)
Licensed LTE bands

Modulation

Scheme

Chirp Spread Spectrum

(CSS)

DBPSK (uplink),

GFSK (downlink)

OFDMA/SC-FDMA

(LTE-based)

Network

Model

Decentralized (supports

public, private, hybrid)

Centralized global

network provider

Fully centralized

(operated by telecom

providers)

Data Rate 0.3–50 kbps (adaptive) ~100 bps ~20–250 kbps

Topology
Star-of-stars topology

One-hop star

topology

Cellular star

topology

Localization

Suitability

Moderate (multiple

gateways can enhance

accuracy)

Limited (low BS

density reduces

accuracy)

Good (dense cellular

infrastructure =

higher accuracy)

Table 2.3.1: LPWAN Technologies Comparison Table

Figure 2.3.1: Localization Technologies by Range and Power Consumption

22

2.4 Localization Techniques Overview

Localization in the context of Wireless Sensor Networks (WSN) and IoT, refers to the

process of determining the precise or approximate geographical coordinates of a device

or a sensor [2]. Accurate localization is essential to a multitude of applications,

including environmental monitoring, asset tracking, health care, security systems etc.

The substantial amounts of data collected by sensor nodes, regardless of their quality,

lack the critical spatial context which is needed for informed decision-making. In cases

where an attacker wants to target the security of the network (e.g., via jamming),

pinpointing its position in the area is crucial.

Although localization mechanisms are indispensable in both traditional WSN and

LoRaWAN networks, their methodologies and requirements differ significantly due to

differences in operational conditions, e.g., communication coverage, energy demand,

and hardware capability. Therefore, this chapter aims to focus on the available indoor

localization methods in LoRaWAN and WSN/IoT networks and address the complexities

of jamming localization.

Figure 2.1.4: Classification of localization techniques

2.4.1 A Broad Taxonomy of Localization Methods

Localization methods in WSN and IoT networks can generally be classified along several

characteristics [2]. By categorizing these techniques, our goal is to understand the

LOCALIZATION

CENTRALIZED DISTRIBUTED

RANGE-BASED RANGE-FREE

23

underlying principles related to each strategy and their suitability in various application

settings.

Classification based on architecture

One primary way to classify localization methodologies is by the architecture of the

localization process: centralized vs. distributed [2].

i) Centralized localization

In centralized localization, a designated central entity, normally a base station or a

network server, gathers measurement data from all sensor nodes within the network. This

central entity then processes the global information collected from the nodes using

sophisticated algorithms to determine between-node distances [2].

One of the main benefits of centralized algorithms is that they possess a comprehensive

global view of the network, which could potentially make them more accurate in location

estimation. However, a centralized model can pose some problems concerning scalability

and increasing computational complexity, because of the additional overhead placed on

the central base station. All these factors reduce the practicability of centralized

approaches on extremely large-scale sensor networks [2].

Furthermore, the reliance on one central anchor automatically introduces a single point

of failure, which can influence the system’s robustness. Consequently, recovery

mechanisms must be employed to mitigate this risk.

ii) Distributed localization

In distributed localization we can observe a more autonomous approach, where each

sensor node independently estimates its own position based on information obtained from

its immediate neighbors or a limited set of reference points. Unlike centralized

approaches, each node calculates the distances to neighbors and anchors by collecting

measurements with different methods [2].

A prominent example of distributed localization is the Bayesian filter localization, which

utilizes noisy measurements for determining the location of a sensor. More specifically,

24

this algorithm outputs probabilities of each predicted location commonly referred to as

"beliefs." These algorithms iteratively refine these beliefs through repeated interactions

among sensor nodes, a mechanism known as belief propagation [2].

Another simple method used within distributed localization is particle filtering. Particle

filters, known for their effectiveness in handling non-Gaussian noise and providing

quantifiable location uncertainties, are especially suitable for distributed

implementations. They require fewer computational resources and iterations to converge

and can easily handle dynamic and noisy environments, thus improving accuracy and

reliability in location predictions.

Distributed localization algorithms have greater robustness than centralized algorithms,

mainly because there is no single point of failure. Additionally, they easily scale to larger

networks since computations are performed locally at each node rather than relying on a

central anchor. Lastly, this peer-to-peer approach has reduced communication overhead

and power consumption since nodes only exchange information with neighbors and

communication is primarily localized.

On the other hand, distributed algorithms pose greater complexity in terms of local

interactions compared to centralized algorithms. In order to achieve global consistency in

location predictions, multiple iterations of message exchange are required among nodes.

That happens because distributed methods rely on single-hop communication, whereas

centralized algorithms use multi-hop communication. As a result, the accuracy of

distributed localization can be lower compared to centralized methods due to the potential

accumulation of errors as location estimates propagate through the network.

Distributed localization techniques are commonly further categorized into range-based

and range-free methods, each suitable for different scenarios, as detailed further in this

section.

 Classification based on type of information

Another fundamental classification of localization techniques revolves around the type of

information used to estimate the location: range-based vs. range-free. The choice of a

suitable IoT localization method depends on the specific requirements of the application.

25

The description along with the benefits and drawbacks of each category will be discussed

in the following section.

i) Range-based localization

Range-based localization methods rely on directly estimating the distance or angle

between sensor nodes, typically to a set of anchor nodes whose positions are known.

These distance or angle measurements can be determined using a range of methods such

as Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of Arrival (AoA),

and Received Signal Strength Indicator (RSSI) [25]. Once these measurements are

acquired, geometric principles i.e. trilateration, triangulation, or multilateration, are

employed to calculate the position of the unknown node. For instance, LoRaWAN

topologies often utilize TDoA because of their gateway-centric structure, leveraging

synchronized timestamps across many gateways to triangulate device positions with

meter-grade precision [26].

Range-based methods are typically more precise in location estimation [27], but they

often require additional hardware (e.g., antennas, infrared sensors, etc.), strict time

synchronization (for ToA/TDoA) or are affected by environmental variability (e.g. RSSI)

[27]. In addition, range-based methods can cause higher energy consumption and

typically require a more complicated implementation [26], with the lack of reference

points also being an issue that affects the accuracy of calculations.

ii) Range-free localization

Range-free localization techniques do not depend on direct distance or angle

measurements. Instead, these methods utilize different types of information regarding the

network’s topology in order to estimate the position of a node. For example, they take

into consideration information such as the connectivity between nodes, the number of

hops to anchor nodes, power of the wireless signal or patterns in the device’s data [26],

[27].

Range-free localization methods are typically more cost and energy efficient, simpler to

use and easier to deploy due to the fact that they do not need specialized hardware to

function. However, they generally offer lower accuracy compared to range-based

26

methods [26], and their performance is often influenced by the density and distribution

of nodes in the network.

iii) Hybrid localization

The research community is showing strong interest in hybrid localization techniques,

as they combine the strengths of both range-based and range-free methods in

order to alleviate the limitations of standalone approaches and aiming for an enhanced

performance and accuracy [28]. Beyond combining various estimation techniques, hybrid

localization may also include scenarios where different technologies (e.g. Wi-Fi,

Bluetooth) are integrated together into a single localization system. In the detailed

overview (Section 2.4.2), two types of hybrid approaches will be discussed: the Joint

technique, which aims to combine different localization methods and Data fusion, which

mainly leverages a single method while integrating many communication technologies.

A key advantage of hybrid methods is their ability to mitigate environmental challenges.

In the dynamic settings of IoT environments, machine learning (ML) algorithms are

increasingly used to harmonize heterogeneous data streams. For instance, neural

networks and deep learning models can handle a set of metrics such as RSSI, CSI, and

hop-count to eliminate signal distortions caused by obstacles or interference, aiming to

improve accuracy and energy efficiency [27].

Despite their benefits, hybrid approaches are fraught with challenges. Calibrating

conflicting measurements from different modalities (e.g., RSSI vs. hop count) requires

robust algorithms, and system complexity increases as it requires advanced hardware or

synchronized protocols [29].

2.4.2 Detailed Overview of Localization Methods

i) Range-based localization techniques

Range-based localization methods achieve location estimation by using measurements

such as distances or angles between end devices and anchors. These measurements are

then used in several techniques to geometrically calculate the location of the unknown

node. Some of the most common techniques will be listed below:

27

Time-based techniques

Time of Arrival (ToA), which is also referred to as Flight Time, is a technique that

estimates the distance between a transmitter and a receiver by precisely measuring the

time it takes for a signal to propagate from one to the other [2]. By knowing the travelling

speed of the signal (typically the speed of light for radio waves, c=3×108m/s), the distance

can be directly estimated by multiplying the travel time by the speed.

Formula:

T = t1 – t0

 d=c×T

where:

• t0 = timestamp when the sender sends the signal

• t1 = timestamp when the receiver receives the signal

• d = estimated distance (meters)

• c = speed of light (approximately c=3×108m/s)

• T = time of flight (seconds)

Although ToA can offer high accuracy in clear line-of-sight scenarios, there are some key

limitations to address. First, the two nodes (receiver and sender of the signal) must be

precisely aligned, thus, time synchronization for both nodes is crucial [2]. Furthermore,

especially in indoor settings, ToA can be highly influenced by obstacles that deflect the

emitted signals [26] and multipath propagation, which can cause signals to travel longer

distances or arrive at different times. These issues can affect distance calculations and

lead to inaccurate predictions.

It must be noted that accurate localization requires measurements from at least three base

stations (anchor nodes) [5].

Time Difference of Arrival (TDoA) is slightly more flexible than ToA, as it overcomes

the need for strict synchronization between the transmitter and the receiver nodes. TDoA

requires synchronization only between base stations, because this method uses only the

28

difference in arrival times of a signal received at multiple geographically dispersed

receivers [2]. By obtaining these measurements the location of a node can be determined

by methods such as multilateration [26], which is based on the geometry of the hyperbolas

formed by the constant time differences. Thus, TDoA does not require knowledge of the

exact transmission time from the sender [5], as the ToA method does.

Formula:

ΔTij = tj − ti

Δdij = c × ΔTij

where:

• ti = timestamp when receiver i receives the signal

• tj= timestamp when receiver j receives the signal

• ΔTij = time difference of arrival between receivers i and j (seconds)

• Δdij = distance difference between the transmitter to receivers i and j (meters)

• c = speed of light (approximately c=3×108m/s)

The drawbacks of the TDoA method are similar to those described for the ToA method.

While TDoA eliminates the strict clock synchronization requirement between the target

and anchors—a crucial requirement for the aforementioned ToA approach, it still

necessitates accurate time synchronization among the fixed stations (e.g. gateways) [5].

Moreover, the accuracy of both ToA and TDoA can be influenced by noise, multipath

propagation and interference.

In the context of LoRaWAN, TDoA is a commonly employed network-based localization

method, which offers a lower power consumption profile for the end devices compared

to GPS, but comes with the tradeoff of lower accuracy [30].

Angle-based techniques

Angle of Arrival (AoA) is a directional localization technique that estimates the angle at

which a signal arrives at a receiver [2]. To be precise, AoA localization estimates the

location at the center of gravity within the intersection which was created by the sight

29

triangles between the anchors and the target [26]. This method utilizes directional

antennas to measure angles from transmitters to receivers, in order to determine the

direction of the incoming signal. Then, triangulation can be used to approximate the

location of the target, thus, at least two fixed positioned anchors are necessary.

Although AoA provides reasonable accuracy, it requires specialized hardware (e.g.

antenna arrays) which increases the cost and complexity of the infrastructure. Moreover,

this method is also affected by environmental limitations (e.g. shadowing, multipath) [2]

and its accuracy is highly dependent on the directionality of the antennas. Therefore, AoA

typically demands a clear Line-of-Sight (LOS) area for achieving optimal results.

RSSI radio propagation technique

Received Signal Strength Indicator (RSSI) is perhaps one of the most widely used

signal metrics in localization techniques due to its simplicity and low hardware cost. More

specifically, RSSI is readily available in most wireless communication devices/sensors,

and no additional hardware is required to obtain it. The main idea behind RSSI is that the

strength of a radio signal becomes weaker as the distance from the transmitter increases

[2].

RSSI-based radio propagation techniques estimate the position of a device by first

measuring the RSS from multiple base stations or wireless access points [5]. Then, path

loss models use the collected measurements to calculate the distance between the target

and reference point. After estimating distances, localization algorithms such as

multilateration or trilateration can determine the coordinates of the target.

Although the RSSI measurement is easily available, its accuracy is largely sensitive to

environmental factors. Physical obstacles that create Non-Line-Of-Sight conditions, such

as walls, can cause signal fluctuations due to attenuation, reflection, diffraction, and

scattering. These limitations lead to significant variations in the received signal strength

that do not solely depend on distance. Additionally, noise and external interference from

other wireless devices will distort RSSI readings as well, which makes it an unreliable

standalone metric—especially for indoor environments.

30

Another primary challenge of this technique is that it requires prior knowledge of the

environment’s path loss behavior, typically determined by offline calibration. More

specifically, in order to apply this technique successfully, parameters like the path loss

exponent, the reference RSSI value at a known distance, and environmental propagation

factors must be carefully tuned to the deployment conditions.

The inverse relationship between the strength of the signal and the distance can be

expressed by a path loss model, which takes into account characteristics of the

propagation environment.

Path Loss Model Formula:

RSSI(d)=RSSI(d0)−10nlog10(d/d0)

where:

• RSSI(d) = received signal strength (dBm) at distance d

• RSSI(d0) = reference RSSI (dBm) at known distance d0 (usually 1 meter)

• n = path loss exponent (depends on environment, e.g. 2 for free space, 3–4

indoors)

• d = distance between transmitter and receiver (meters)

• d0 = reference distance (meters)

In LoRaWAN networks, RSSI-based propagation models are most suited for outdoor

localization, where the surroundings are stable and signal fading is more predictable.

Simple path loss models may limit the effectiveness of localization in LoRaWAN indoor

environments, therefore, fingerprinting and hybrid methods are generally preferred in the

literature, with ML-based solutions increasingly gaining attention [31].

Geometric-based Algorithms

Once distance or angle measurements have been obtained using range-based techniques

(e.g., ToA, TDoA, AoA, or RSSI), the next step usually involves the application of

geometric methods to estimate the position of the target node. The three most widely used

approaches are trilateration, multilateration, and triangulation.

31

Trilateration calculates a node’s position by measuring its distance from at least three

anchor nodes with known coordinates. After determining the distances, which are also

referred to as the circle radii, the intersection of spheres (or circles) can estimate the

location of the target [2].

 Given distances 𝑑𝑖 to anchors at (𝑥𝑖,𝑦𝑖,𝑧𝑖) the system solves:

2-D Trilateration: √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 = 𝑑𝑖

3-D Trilateration: √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 = 𝑑𝑖

Trilateration can be reliable about predicting correct locations when precise information

is provided. However, that is not always the case in practical scenarios (e.g. RSSI

fluctuations or ToA inaccuracies), and the circles might not intersect to any point. To

address this, the mathematical approach of Least-Squares Estimation (LSE) can often be

used to linearize this nonlinear system above.[5]

Multilateration (Hyperbolic Positioning) can be used with more than three nodes using

the distance estimates via Time Difference of Arrival (TDoA) [2]. It locates a device by

comparing time differences of signals received at multiple anchors, forming hyperbolic

curves (2D) or surfaces (3D). For anchors 𝑖 and 𝑗 the TDoA equation defines hyperbolic

position solutions:

𝑐 ⋅ (𝑡𝑖 − 𝑡𝑗) = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 − √(𝑥 − 𝑥𝑗)
2

+ (𝑦 − 𝑦𝑗)
2

tan(θ𝑖) =
𝑦 − 𝑦𝑖

𝑥 − 𝑥𝑖

where:

• 𝑐: Signal propagation speed (e.g., 3×10⁸ m/s for radio waves)

• 𝑡ᵢ, 𝑡ⱼ: Signal arrival times at anchors i and j (seconds)

• (𝑥, 𝑦): Unknown target coordinates

• (𝑥ᵢ, 𝑦ᵢ), (𝑥ⱼ, 𝑦ⱼ): Known positions of anchors i and j

32

As discussed in the TDoA description, this approach depends only on anchor nodes

synchronization instead of demanding synchronization between anchors and end devices.

Advanced solvers such as Maximum Likelihood Estimation (MLE), are commonly

employed to mitigate nonlinearity and noise.

Triangulation is a geometric localization technique which uses angle measurements

collected from at least two known anchors (in 2D) or three (in 3D). The target node

calculates its location by determining the AoA from each anchor [2]. As a result, lines

radiating from each anchor are formed and the location of the target node corresponds to

where these bearing lines intersect. The mathematical model for each anchor 𝑖 is given:

tan(θ𝑖) =
𝑦 − 𝑦𝑖

𝑥 − 𝑥𝑖

where:

• θ𝑖 is the measured angle at anchor 𝑖,

• (𝑥𝑖, 𝑦𝑖) is the coordinate of anchor 𝑖,

• (𝑥, 𝑦) is the unknown target position.

There are a few practical considerations, which involve the efficiency of the necessary

specialized hardware (e.g. directional antennas or antenna arrays), as antenna

misalignment in indoor settings can drastically influence the performance of the

localization. These hardware requirements, although essential for accurate angle

estimation, increase both the complexity and the cost of deployment. Moreover, the

triangulation technique is particularly vulnerable to environmental distortions in indoor

spaces, just like the other geometric-based methods. There is a requirement of clear line-

of-sight (LoS), as multipath interference and shadowing can potentially degrade the

accuracy of the system.

33

ii) Range-Free Localization Techniques

Range-free localization methods present an alternative strategy to determining the

location of nodes in WSN and IoT networks. The primary distinction between range-

based and range-free localization methods is their reliance on physical distance or angle

measurements. The former requires precise signal-based metrics (e.g., RSSI, ToA, or

AoA) to estimate positions, while the latter uses network connectivity and proximity data

(e.g., hop counts or anchor node positions) without direct distance calculations [26].

Fingerprinting method

Extensive research and implementations have been undertaken concerning location

estimation with Fingerprinting methods because RSSI measurements can be easily

obtained [5].

The term “fingerprint-based” localization derives from the concept of human fingerprints,

which are always unique to an individual, just as a signal fingerprint is intended to be

unique to a specific point in space within a building. A core foundation of this localization

method involves the mapping of the fingerprints with their corresponding physical

coordinates within the indoor space.

Creating unique fingerprints entails considering the specific signal features, which are

measurable properties. The most common signal feature, as previously discussed, is the

Received Signal Strength Indicator (RSSI) used to represent the power of a wireless

signal arriving at a device. RSSI is easy to retrieve with minimal hardware requirements,

making it a practical choice for most indoor localization systems.

However, since RSSI also suffers from indoor interference, multipath effects and all the

noise in indoor dynamic environments, advancements in wireless technology have

enabled the use of more sophisticated features, such as Channel State Information (CSI)

[32]. CSI provides richer information about the wireless channel, including amplitude and

phase information across multiple subcarriers, which can enable more precise

localization. [33]

34

Another challenge with fingerprinting is the requirement for a large number of

measurements to build the database. On top of that, any changes in the environment may

have an impact on the recorded signal properties, meaning the database must be updated

regularly which takes extra effort and time.

Figure 2.4.2.1: Fingerprinting Localization

Traditional vs AI-Based Fingerprinting

Fingerprinting methods can be further categorized into traditional approaches and

artificial intelligence approaches [34]. Both categories consist of two operational stages:

(i) the offline phase, also referred to as training, and (ii) the online phase, also referred to

as localization stage. The main difference lies in how they process acquired fingerprints:

traditional approaches estimate the target’s position based on the closest reference points

collected during the offline phase, while AI-based approaches use ML to train models

and estimate the target node’s position [34].

Once RSSI is combined with ML algorithms the impact of environmental factors can be

mitigated. This is relevant also for LoRaWAN setups, which normally utilize RSSI

metrics in conjunction with ML for fingerprint-based localization. For instance, a study

in [12] achieved 98.8% accuracy in indoor localization using LoRaWAN RSSI and SNR

data via neural networks. The study demonstrates how ML converts noisy

35

RSSI readings into precise location estimates, minimizing the signal fluctuations caused

by environmental factors (e.g. multipath).

The result of the offline phase is the creation of a fingerprint database, also known as a

radio map. This database serves as the foundational reference for the entire localization

system, as it stores the collected signal features (the fingerprints) along with the precisely

known coordinates (or labels) of their corresponding reference points RPs.

Moving on to the online phase, once the fingerprint database has been established, the

system can be used to determine the location of a device in real-time. This real-time

measurement of the device generates a new fingerprint at its current unknown location,

which will be compared with the rest of the collected values in the database.

Lastly, the density of RPs within the environment presents a trade-off: higher density

requires longer data collection efforts but can possibly capture finer-grained variations in

the signal environment and thus result in more accurate location estimates. In contrast,

lower density reduces the data collection burden but can lead to a less precise localization

capability [35].

Below, a comparison of the main characteristics of RSSI-based fingerprinting and RSSI

radio propagation techniques will be presented.

Aspect Fingerprinting Method

(Range-Free)

RSSI Radio Propagation Method

(Range-Based)

Principle Matches measured RSSI values

to a pre-collected database

(radio map)

Uses path loss models to convert

RSSI to distance and applies

trilateration/multilateration

Main Calculation

Approach

Pattern matching or ML

classification

Analytical distance estimation via

formula

Environmental

Sensitivity

High (Updates required if the

environment changes

significantly)

High (Errors if path loss

parameters are misestimated)

36

Complexity Medium to high (especially

with AI-based methods)

Low to medium (simpler

implementation but depends on

accurate modeling)

Adaptability Better with AI-based systems

(can adapt to noise/variations)

Less adaptable

Use Cases Common in indoor positioning

systems (Wi-Fi, LoRaWAN,

Bluetooth)

Used in simpler setups

Table 2.4.2.1: Comparison between RSSI fingerprinting (range-free) and RSSI propagation

model (range-based) localization techniques across key aspects.

Range-Free Localization Techniques (cont.)

Proximity-based localization does not determine the precise location of a device.

Instead, it estimates the position of an end device according to a predefined area [5] by

relying on metrics that indicate whether a device is within a specific radius 𝑅 of an anchor

(coverage-based) or within direct communication range (connectivity-based) [26]. When

a device is detected by an anchor, it is concluded that the specific device is inside the

detector’s proximity region.

Although it cannot provide relative or absolute location estimations, the proximity-based

localization technique has been used extensively in IoT and WSN literature because of its

simple implementation, minimal energy and computational requirements. It has also been

widely used in most of GSM-based localization systems [5].

The DV-Hop (Distance Vector Hop) algorithm is a prominent range-free technique

which uses a hop-based propagation model [26]. This algorithm estimates the distance

between anchor and sensor nodes based on the number of hops in the shortest path

between them and an average hop size [2].

The algorithm typically operates in three phases: First, anchor nodes broadcast their

location information throughout the network, each node begins with a hop count set to

zero and records the number of hops to reach each anchor node. During this iterative

process, nodes update their tables as packets are received and replace their hop count

values with lower ones [26]. As a result, all nodes will have the minimum hop count

37

recorded for each anchor (HopCounti). Second, each anchor node calculates its average

hop size (HopSizei) by dividing the actual distance to other anchor nodes by the number

of hops between them. This average hop size is then broadcast to all other neighbor nodes

in the network. Finally, each target node uses the following formula in order to determine

its distance from each anchor node based on the received information:

 di = HopCounti×HopSizei

Where:

• di = estimated distance to anchor node i

• HopCounti = number of hops from the target node to anchor i

• HopSizei = average physical distance per hop for anchor i

Once these estimated distances to several anchor nodes have been established,

the position of an unknown node can be determined using geometric methods like

trilateration or multilateration.

DV-Hop is known for its simplicity and scalability, as it does not require specialized

ranging hardware. It is also particularly useful for constrained nodes which cannot

process the entire network [25] and can localize a node with less than 3 neighbor anchors

[36].

A limitation of DV-Hop is the assumption that all hops have a uniform distance (same

physical length), which may not always be true in real-world networks with irregular

topologies or obstructions.

Figure 2.4.2.2: DV-Hop Localization Algorithm with Example Hop Count Propagation

38

The Centroid method is another simple range-free localization technique utilized in

WSN and IoT networks. It estimates the location of an unknown node as the

geometrical center (or centroid) of all neighboring in-range anchor nodes, averaging

their known (x, y) coordinates [25].

Centroid-based localization has two main variations:

i. Simple centroid, which computes the arithmetic mean of anchor node

coordinates, treating all anchors with equal importance.

For a node 𝑀 with 𝑁 adjacent anchors at positions (𝑥𝑖, 𝑦𝑖), its estimated

position (xcentroid,ycentroid) is:

𝑥centroid =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

, 𝑦centroid =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

Example: If three anchors 𝐴1, 𝐴2, 𝐴3 have coordinates (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3)

the centroid is: (
𝑥1+𝑥2+𝑥3

3
,

𝑦1+𝑦2+𝑦3

3
)

ii. Weighted Centroid Localization algorithm (WCL), which allocates weights

as a function of proximity of the node to critical network entities (e.g. jamming

attacks) [25] in order to attract the estimated position to close reference points.

This weighting approach helps to mitigate errors caused by environmental

interference and is capable of achieving more accurate results compared to the

standard WCL method [37].

𝑥WCL =
∑ 𝑤𝑖𝑥𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

, 𝑦WCL =
∑ 𝑤𝑖𝑦𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

The weights wi can be derived from various proximity or quality metrics.

Common choices include:

39

• Inverse Distance Models:

𝑤𝑖 =
1

𝑑𝑖
 or 𝑤𝑖 =

1

𝑑𝑖
𝑘 (𝑘 = 1,2)

where: di is the estimated distance to anchor i.

• RSSI-Based Models:

𝑤𝑖 = RSSI𝑖 or 𝑤𝑖 = RSSI𝑖
𝑝 (𝑝 = 1,2)

where: RSSI is the received signal strength from anchor i.

While centroid methods are computationally very simple and cost-effective, they are

highly dependent on anchor density and distribution in the area, thus, it is prone to

significant localization errors.

Figure 2.4.2.3: DV-Hop Localization Algorithm with Example Hop Count Propagation

Approximate Point in Triangle (APIT) works by having every unknown node

determine its location relative to three anchors forming a triangle. The node checks

whether it lies inside or outside of the formed triangle by comparing signal strength

indicators from nearby non-anchor nodes. This process is repeated for every triplet of

40

neighboring anchors and by aggregating results from multiple triangles, the node

estimates its position as the intersection of feasible regions.

APIT performs well in irregular network topologies and as a range-free method it does

not require any distance measurements. Nevertheless, its performance still depends on

the density of anchor nodes and the communication range of the anchors.

Amorphous localization shares similarities with DV-Hop in terms of its approach to

location estimation. Similar to DV-Hop, Amorphous typically comprises an initial phase

in which anchor flood both their location information and hop counts to the entire

network. The key difference, however, is that Amorphous uses a probabilistic model to

manage varying node densities, whereas the DV-Hop uses a uniform hop distance. More

precisely, amorphous uses the neighbor connectivity to improve positions

iteratively, limiting errors and resulting in better accuracy than DV-Hop in non-uniform

settings.

Similar to the other range-based methods, its performance strongly depends on network

density and anchor distribution. Although Amorphous requires higher computational

overhead than DV-Hop, the trade-off is improved positioning accuracy, making it a

preferable solution for real world applications where node distribution becomes irregular.

Virtual Force Iterative Localization (VFIL) is a range-free algorithm that

utilizes virtual forces to estimate node positions in WSNs and IoT deployments. The

method works by simulating attractive and repulsive forces between anchor nodes

(known positions) and unknown nodes while refining positions iteratively to minimize

localization errors. Furthermore, VFIL has been used as an enhancement of the Centroid

Localization method in jamming scenarios in wireless networks [38].

This algorithm is effective in large-scale, low-power LoRaWAN networks, where sparse

anchor distribution and RSSI variability challenge traditional methods. It can also be

useful in scenarios where nodes are spread out uneven in the area and balance is desirable

[25]. Ultimately, the underlying principle of using virtual forces is to optimize the

network organization and lead to more energy-efficient communication solutions, a

critical achievement for IoT resource-constrained environments.

41

iii) Hybrid localization techniques:

The joint technique in hybrid localization systems attempts to combine two or more

distinct methods, such as proximity or multilateration. By leveraging the strengths of each

method, hybrid systems can become more robust under varying network conditions.

A notable example is the Hybrid DV-Hop algorithm which was proposed in [29]. It

improves the system’s accuracy by combining RSSI (for one-hop neighbors) and hop-

count (for multi-hop nodes). However, this approach introduces added computational

complexity and demands careful fine-tuning.

The second approach involves integrating multiple types of sensor data or communication

technologies (e.g., Wi-Fi, Bluetooth, Zigbee) into a unified localization framework, also

referred to as “data fusion” [26]. An effective hybrid system must fuse diverse

measurements from one or multiple devices to enable seamless localization and adaptive

services. The most widespread technology in IoT deployments is without a doubt Wi-Fi,

and thus, it can be integrated with more available technologies.

An example of a data-fusion framework is presented in [39], and is tailored for Wi-Fi,

Bluetooth, Zigbee and UWB protocols. The system offers high accuracy because it takes

into account the best features of each technology, such as Wi-Fi’s broad coverage, UWB’s

precision, and Bluetooth’s low energy consumption, while compensating for their

respective weaknesses.

42

Figure 2.4.2.4: Indoor Localization Taxonomy

2.5 Machine Learning Algorithms in Fingerprint-Based Localization

Fingerprint-based indoor positioning systems have been increasingly making use of

machine learning methodologies to deliver accurate and reliable indoor localization, in

environments where GPS signals are either attenuated or completely unavailable. The

initial attraction of the fingerprinting approach stemmed from its capacity to operate

without a strict line of sight (LoS) between the receiver and the source of the signal, which

presented a significant benefit compared to traditional GPS in indoor environments.

Along with the development of the Internet of Things (IoT) and wireless sensor networks

(WSNs), machine learning (ML) technology has been applied to indoor localization

systems more and more markedly. Recent advancements in ML have enabled more

sophisticated algorithms to be used in fingerprint-based systems, which facilitate better

handling of signal noise, dynamic environmental conditions, and device heterogeneity. In

the following sections, we will explore various ML algorithms that are widely mentioned

in the literature.

Supervised learning is a machine learning paradigm where models are trained on labeled

datasets, that is, input data (e.g. RSSI , CSI etc.) are paired with known ground-truth

coordinates. The goal is to learn a mapping function that accurately predicts locations for

43

unseen sensor data. This approach is widely used in fingerprint-based localization due to

its high accuracy in structured environments, though it requires extensive labeled

datasets, which can be costly to collect [40]

The key supervised learning methods used in indoor localization systems will be

discussed below.

A fundamental technique employed in fingerprint identification is the K-Nearest

Neighbor (KNN) algorithm, which is a supervised learning method. This specific

algorithm operates by selecting the K-nearest annotated measurements from an offline

radio map and using a weighted average of their location coordinates to approximate an

unknown location of a target. To achieve that, the algorithm calculates the inverse of the

Euclidean distance between the observed RSS (Received Signal Strength) and its K-

nearest training samples as weights [41]. Despite its simplicity, the KNN algorithm

necessitates the maintenance of a massive radio map, as it must store all the RSS training

values for frequent calculations [42].

The estimated position 𝑝̂ of the target is calculated as the weighted average of the

positions of the 𝐾 nearest neighbors:

𝑝̂ =
∑ 𝑤𝑖

𝐾
𝑖=1 ⋅ 𝑝𝑖

∑ 𝑤𝑖
𝐾
𝑖=1

Where:

• 𝑝𝑖 is the position of the 𝑖𝑡ℎ neighbor,

• 𝑤𝑖 =
1

𝑑𝑖
 is the weight (inverse of Euclidean distance),

• 𝑑𝑖 = |𝑟 − 𝑟𝑖| is the distance between the observed RSS vector r and the 𝑖𝑡ℎ stored RSS

vector 𝑟𝑖.

44

Figure 2.5.1: K-Nearest Neighbor (KNN) Algorithm Example

Support Vector Machines (SVM) are also conventionally used for classification

problems within this domain. As stated in [43], the kernel approach within SVM allows

for enhanced generalization in modeling both linear and non-linear interactions between

fingerprint classes. By using the kernel functions, the SVM method aims to solve the

randomness and incompleteness of the RSS measurements but has a limitation of high

computing complexity [42].

A Multi-Layer Perceptron (MLP) is a type of feedforward artificial neural network

(ANN) inspired by biological neural networks [44] and composed of an input layer, one

or more hidden layers, and a target output layer. Each layer is made up of interconnected

neurons that enable the network to understand complicated patterns by applying nonlinear

transformations to the input data. More specifically, resilient fingerprint features are

extracted through the training MLPs with backpropagation. Backpropagation is an

optimization algorithm that minimizes prediction errors by tuning or changing synaptic

weights via gradient descent. Generally, the hierarchical nature of the MLP makes it

inherently well suited for Wi-Fi fingerprinting for complex and indoor environments

where signal variance due to interference and moving objects poses major challenges

[44].

45

Figure 2.5.2: Multi-Layer Perceptron (MLP) Architecture

However, all of the above models may risk overfitting when trained on limited annotated

fingerprint data [43].

Unsupervised learning has been explored to automatically learn meaningful

representations from unlabeled data, often for dimensionality reduction or clustering in

fingerprint-based localization systems [33]. The purpose of simplifying the data by

identifying natural groupings or similar signal patterns (clustering) offers more efficient

processing and storage of the data, which is crucial for IoT environments. Some

commonly used unsupervised learning techniques are Autoencoders and Principal

Component Analysis (PCA).

More specifically, autoencoders are neural networks that compress input data into a

lower-dimensional latent space (encoder) and reconstruct it (decoder) in order to preserve

essential features for tasks like Wi-Fi fingerprint denoising or feature extraction. For

instance, [45] employs an autoencoder to transform sparse Wi-Fi RSSI measurements

into compact, trainable feature sets.

46

Principal Component Analysis (PCA) is a linear transformation that projects high-

dimensional data into orthogonal components while retaining the highest variance values.

As highlighted by Alhmiedat [34], PCA helps localization minimize storage costs while

still providing the discriminative accuracy needed for accurate positioning. Overall, these

methods strike a balance between computational costs and localization precision

for scalable deployment across resource-constrained IoT networks.

Semi-supervised learning offers a promising solution to localization by bridging the gap

between supervised and unsupervised learning approaches, while using small sets of

labeled data together with larger sets of unlabeled data. In the majority of indoor

localization scenarios, collecting accurate labeled location data (i.e., sensor readings

paired with precise coordinates) can be expensive and usually very time-consuming [45]

[40].

However, this is the case where unlabeled data can be useful (e.g. raw sensor

measurements without location tags), which are readily available and often easier to

acquire. By incorporating the acquired unlabeled data into the training process, semi-

supervised learning can help to uncover underlying patterns and structures that might not

be apparent from the labeled data alone, as demonstrated in fingerprint-based indoor

positioning systems [40].

Techniques like pseudo-labeling and self-training have shown promising results in indoor

positioning tasks, such as higher localization accuracy, robustness to noise and an overall

improvement of model generalization. The effectiveness of semi-supervised learning can

be observed particularly in wireless signal-based localization, where the propagation of

signals is governed by the physical environment [40].

In indoor positioning systems which use Wi-Fi or Bluetooth signals, obtaining labeled

data typically involves recording signal strength and manually annotating these values

with their corresponding coordinates. To address this problem, the author of [45]

introduces a Semi-Supervised Generative Adversarial Network (SSGAN) that generates

synthetic labeled Wi-Fi fingerprint data, improving landmark localization accuracy by

35% compared to a supervised deep neural network when labeled data is scarce.

47

To address the above issue, Ensemble learning methods have emerged as a solution by

combining multiple models, often termed “weak learners” (e.g. decision trees, k-NN) to

achieve a high-accuracy meta-model, a superior predictor also known as a "strong

learner" [43]. Considering the strengths of different algorithms, ensemble methods aim

to reduce both bias and variance in order to produce reliable predictions [46].

Recent trends highlight two prominent ensemble approaches, bagging (e.g. Random

Forest) and boosting (e.g. AdaBoost, XGBoost). The general principle of bagging (short

for Bootstrap Aggregating) is training multiple base learners in parallel and independently

on different samples of the data, getting multiple predictions at the same time, and then

aggregating them into a final prediction [47]. Boosting is another prominent ensemble

learning technique that focuses on creating a strong predictive model. Unlike bagging,

which trains base learners in parallel, boosting training process happens sequentially.

More specifically, each new model attempts to correct the errors made by previous

models in the sequence. Similarly to the bagging method, the final prediction of the

boosted ensemble occurs after combining all the predictions of the models in a weighted

approach [46].

Several studies have explored the use of Random Forest classifiers to improve

localization accuracy for fingerprint-based localization. Random Forest ensures

robustness to noise and outliers, which are common in wireless signal measurements,

especially in indoor environments [48].

Similarly, AdaBoost has been applied to Wi-Fi fingerprint indoor localization systems to

enhance precision, particularly in conjunction with noise-reduction techniques such

as Probability-One (PONE) Access Point filtering [49]. The results of the study in [49]

show a clear improvement of the localization performance with 95.5% accuracy and

lowering the 2D errors to 0.25 meters in multi-floor buildings.

It must be noted that, since the deployment of machine learning on resource-constrained

IoT edge devices has been rapidly increasing, it is a necessity to focus on computational

efficiency as well. Ensemble learning methods, although they tend to provide superior

48

accuracy, their computational demands could be a challenge. Nevertheless, certain

ensemble techniques, particularly gradient boosting frameworks like LightGBM and

XGBoost, have been optimized for efficiency and are being explored for use in IoT

environments.

LightGBM is designed to be a fast and efficient framework, especially

in the case of large datasets. It employs a leaf-wise growth strategy and histogram-based

techniques to limit memory usage and accelerate training, as demonstrated in [50].

Similarly, parallel processing and regularization in XGBoost enable the detection of

attacks in real time without compromising performance [50]. Thus, these optimizations

are suitable for the continuous data generated by IoT devices as they reduce the

computational burden while maintaining accuracy.

Deep learning techniques have demonstrated a strong ability to fuse multi-dimensional

data sources (such as RSSI, CSI and inertial sensor data) to improve localization accuracy.

This ability to fuse heterogeneous streams of information allows for a more

comprehensive understanding of the environment, especially in challenging indoor

settings. Due to the fact that deep learning architectures can capture spatial and temporal

dependencies, they are particularly suitable for fingerprinting-based localization methods

[10]. When trained on these spatial fingerprints (e.g. RSSI or CSI values at various

reference points), the models learn to associate certain patterns of a signal with particular

locations.

Reinforcement learning (RL) has also gained attention for its potential to support

autonomous navigation and location prediction. This approach learns a set of behaviors

to achieve a specific objective, and it does that by using information about its current state

and the environment [43]. Consequently, RL-based systems can provide localization

strategies without solely relying on labeled datasets, unlike supervised methods.

Traditional supervised learning approaches require large collections of sensor

readings and their associated ground truth locations, which can be often costly and time-

consuming to acquire.

49

On the contrary, an RL-based system will learn optimal policies through trial-and-error

interactions with the surrounding environment, making it adaptable to real-world

uncertainties like multipath effects and variability. In this way, RL can address the main

challenge for resource-constrained IoT edge devices by avoiding data labeling, a time

consuming and costly process [51]. Consequently, this makes RL particularly valuable in

the dynamic environments of IoT and WSN network settings that are either expensive to

get labeled data from or have none at all.

For instance, Deep Q-Networks (DQNs) being a specific type of deep reinforcement

learning algorithm have been used to dynamically fuse multi-modal sensor data (e.g.,

RSSI, AoA, PDR) with respect to the environment dynamics and interference. In the

context of localization, state space can include the sensor readings and the agent's current

position estimate, whereas actions might involve refining the position estimate or

deciding on the next move. The RL-IFF framework employed in [51] depicts improved

accuracy by optimizing fusion weights via Q-learning, achieving a mean squared error

(MSE) of <0.01m in hybrid BLE-based systems, outperforming standalone AoA, RSSI,

and PDR methods.

Transfer learning is a robust approach in machine learning whereby models trained in

one environment (the source domain) can be adapted and employed in another

environment (the target domain) with minimal labeled data [52]. Among the advantages

of using Transfer Learning in localization is the reduction in effort in data collection.

Instead of needing to build a complete fingerprint database from scratch in a new

environment, it is possible to transfer a pre-trained model in another but comparable

environment using only partial data. This is particularly beneficial in dynamic indoor

settings where conditions such as furniture arrangements cause signal variations and

lead to domain shifts that degrade traditional localization models.

Therefore, maintaining localization systems becomes cheaper and requires less time,

especially in applications that change frequently, which highlights the practical value of

Transfer Learning in real-world localization tasks (e.g. smart homes and industrial IoT)

[52]. Furthermore, Transfer learning has proved to be particularly effective in cross-

domain RSSI-based positioning systems, whereby the environmental characteristics can

50

vary considerably. RSSI-based localization, although widely used due to its reliance on

existing Wi-Fi infrastructure has been shown to be environment-sensitive, such as

variations in furniture layout and the presence of people [53]. This limitation can lead to

significant differences in the RSSI signal distributions, which

further complicates the process of directly applying a trained model in one environment

to another.

One of the ways to address this problem is using Transfer Learning, which as previously

stated, offers a way to fine-tune models trained in a source environment to that of a target

environment with different RSSI behaviors. For example, a framework outlined in [53]

relies on transferring generic RSSI data between different homes, even when the data

collection protocols vary, which showcased improved indoor localization performance.

More specifically, the framework proposes a Conditional Generative Adversarial

Network (ConGAN)-based augmentation in combination with a transfer learning

framework (T-ConGAN). Their approach entails pre-training the model with RSSI

samples from multiple houses and subsequently focusing on a ‘target’ house. By doing

so, this method uses general knowledge to generate room-specific signals.

Their work demonstrates a remarkable 51% improvement in accuracy of room-level

localization around some of the most difficult areas like the staircases, which is

particularly useful in the context of healthcare.

This systematic understanding of various algorithms and learning methods illustrates the

breadth of research in fingerprint-based indoor localization systems and serves as a

reference for future works in this domain.

2.6 Jamming Attacks in WSNs and LoRa

Radio jamming is defined as the deliberate act of transmitting signals on the same radio

frequencies used by a target network with the intention of disrupting or preventing

legitimate communication. A jamming source can disrupt an entire network or a smaller

portion, depending on how powerful is the attacker [25]. Wireless networks are

particularly vulnerable to radio jamming attacks due to their straightforward nature, and

51

also because a jammer can easily launch an attack without any specialized hardware or

detailed knowledge of the control system [54].

Jamming is well studied in many radio technologies, such as Wi-Fi, Bluetooth, Zigbee,

etc., however, LoRaWAN jamming in particular hasn’t been studied for long. This type

of attack can undermine multiple IoT applications, such as alarm systems, fire detection,

and environmental monitoring. [13]

LoRa jamming refers to the intentional disruption of LoRaWAN communications by

exploiting vulnerabilities, with jammers targeting specific channels or spreading factors

(SF) in the protocol’s physical and MAC layers. Moreover, research has shown that

synchronized jamming can negatively affect LoRa communications by flooding the

gateway with interference, which leads to a drastic reduce in network throughput [13].

Another consideration when jamming attacks occur in a LoRa network is that the gateway

can become a single point of failure. A LoRa gateway can be jammed by malicious

attackers making it unable to receive any packets from devices that are connected to the

network. [15]

2.6.1 Common Jamming Attack Types

Continuous jamming is a brute-force attack in which an attacker repeatedly floods the

channel with high-power noise to keep it busy and completely disrupt all communications

in the network by overwhelming legitimate signals. In LoRa networks, this attack is

highly effective due to the low data rates and long-range transmission supported by the

protocol, as the constant noise blocks both uplink and downlink messages, rendering the

network unusable [55].

Unlike selective or triggered jamming, continuous jamming is readily detectable via

energy detection mechanisms [25] but poses a serious threat because of its simplicity and

catastrophic impact on network availability. Previous research reports that there is around

55% throughput drop when continuous jamming occurs in a LoRaWAN environment

52

[56]. The simplicity of this attack makes it a common threat in both LoRaWAN and WSN

deployments.

Triggered jamming occurs when a malicious node will selectively disrupt

communication only upon detecting specific packet signatures or protocol patterns,

and hence minimizes its energy expenditure while maximizing interference [57]. For IoT

networks, such an attack in most cases targets LoRaWAN gateways by intercepting

preamble signals or MAC commands, then flooding the channel with noise in order to

corrupt authentic transmissions [58]. Unlike constant jamming, triggered jamming evades

simple energy detection countermeasures, and hence is a stealthy threat to low-power

networks [59]. Malicious devices can detect the start of a legitimate transmission and

quickly transmit interfering signals, jamming only specific parts of the message. This

makes the attack more energy-efficient and harder to detect.

Triggered jamming has been studied in [59] and it demonstrated how the long-air time of

LoRa messages made this specific type of jamming possible and effective. More

specifically, when the trigger jammer was active, only 0.5% of the messages managed to

reach the gateway. The energy efficiency of triggered jamming makes it a significant

concern in energy-constrained deployments, like IoT networks.

A random jammer disrupts network communications by transmitting packets containing

unrecognizable data, and in random moments. They can attack either by using (i) specific

signal shape i.e. following a specific sequence or (ii) an arbitrary signal shape, as it was

discussed by M. Savva [25]. For example, a random jammer can follow a sequence of

jamming for x milliseconds, sleep for y milliseconds and repeat. Whereas random

jammers that follow the (ii) approach create jamming signals completely randomly and

unplanned. One limitation of these type of jammers is that they cannot jam during

sleeping mode, thus, they may have the lowest accuracy. In essence, a random jammer

introduces unpredictability into the communication channel, so that legitimate nodes

struggle to establish or maintain stable connections.

Selective jamming is a sophisticated attack where an adversary targets specific “high”

importance packets or messages in a wireless network, by analyzing protocol headers or

53

payload content to disrupt critical communications [60]. Selective jamming conserves the

attacker's energy and reduces the likelihood of detection, making it particularly dangerous

for resource-constrained networks like LoRaWAN [61]. For example, the attacker can

corrupt key bits during transmission, which can lead to failure in cyclic redundancy check

(CRC) validation, causing the gateway to drop the message entirely.

It must be noted that selective jamming makes the detection very challenging for the

operator, because it jams only specific devices or messages, leaving the rest of the

network untouched. In contrast, triggered and continuous jamming affects all the devices

at a certain frequency uniformly, which can easily be marked as jamming, and thus take

action (e.g. channel hopping) [21].

Reactive jamming is an advanced form of jamming where an attacker dynamically

disrupts communications only upon detecting active transmissions. So, if an action is

identified by the jammer, it immediately sends a signal in order to collide with the existing

signal that was identified [25]. Moreover, a reactive jammer adapts its strategy based on

the network’s response to interference, making its detection more challenging with

additional effort required [13]. Unlike continuous or selective jamming, reactive jammers

monitor the wideband spectrum in real-time in order to emit high-power noise precisely

when legitimate signals are detected. As a result, reactive jammers increase their chances

and effectiveness of interference because they target frequencies that are currently in use.

In LoRaWAN networks, this attack exploits the protocol's long preamble and CSS

modulation, in a way that once a transmission is detected, the jammer rapidly aligns its

interference to the same frequency and SF, causing significant packet loss. Unlike

RTS/CTS or ACK-targeting reactive jammers used in other wireless networks like Wi-Fi

[25], this jammer leverages the extended preamble duration and deterministic nature of

LoRa modulation to disrupt communication effectively.

Synchronized jamming attacks represent a potentially more damaging threat to

LoRaWAN networks, as they directly exploit the fundamental signal processing

mechanisms at the physical layer. In this type of attack, the attacker transmits jamming

chirps that are precisely aligned in both time and frequency with the legitimate LoRa

54

chirps, making it extremely difficult for the LoRaWAN gateway to separate between the

intended signal and the interference [15]. One reason why synchronized jamming is

effective relies on the ability of jamming chirps to arrive at the gateway with higher power

than the legitimate signal, leading the gateway to demodulate the stronger jamming signal

instead of the intended data.

Moreover, this technique can bypass .existing collision recovery mechanisms that rely on

the misalignment of chirp boundaries in the time or frequency domain. Ultimately, one

of the most concerning aspects of synchronized jamming is its ability to create a single

point of failure in the LoRaWAN network specifically targeting the gateway. Research

has empirically demonstrated the effectiveness of synchronized jamming attacks in

significantly degrading the performance of LoRa communication, even in the presence of

prior countermeasures [15].

Deceptive jamming involves transmitting signals designed to appear as authentic packets

to the receiving system, with the primary goal being introducing false information causing

the victim to make incorrect conclusions [62]. A modified deceptive jammer has been

described by M. Savva [25], which employes an ON-OFF pattern. When in the ON state,

the jammer emits interference signals, but unlike a constant jammer, it transmits a specific

data sequence, allowing nodes to transfer packets during the OFF state. This approach is

still simple to implement, but the deceptive jammer is more challenging to detect than a

constant jammer, as it transmits seemingly legitimate packets instead of random bits.

Lastly, similar to the constant jammer, the deceptive jammer is energy-inefficient due to

its continuous transmission [25].

Advanced Jamming Attack Strategies

The aforementioned jamming techniques, ranging from straightforward continuous

interference to more sophisticated deceptive strategies, represent common attack vectors

explored in literature. Building upon these fundamental concepts, several studies have

tried to create more advanced and adaptive jammers to evaluate their effectiveness in

jamming the network.

55

M. Savva [25] introduces the complex jammer which encompasses four jamming

behaviors: Constant, Deceptive, Random and Reactive, and can successfully switch

between them during attacks. The key findings of the proposed approach conclude that

the increased complexity of the jammer makes it much more challenging to detect, as it

demonstrated the lowest detection accuracy in experiments. Besides detection, complex

jammer’s mobility-like behavior of switching strategies has also complicated the

localization algorithm (MMLAW) used in the research.

A wormhole attack is a network-layer attack where two or more malicious nodes collude

to secretly relay packets between distant parts of a network. One of the malicious devices

receives normal messages and sends them over to the second device though a low-latency

link. To carry out an attack, the second device is responsible to replay them in a different

area of the network [21].

In traditional wireless sensor networks (WSNs), this attack creates fake short-cut routes,

leading to routing loops, energy depletion, man-in-the-middle attacks or can also be used

simply to convince two distant nodes that they are neighbors by relaying packets between

the two of them [63].

However, in LoRaWAN, which uses a star-of-stars topology, classic wormhole attacks

are ineffective due to the lack of multi-hop routing and replay attack protection via

Message Integrity Codes (MICs). Instead, a novel wormhole-based selective jamming

attack was investigated and executed by Aras et al. (2017) [21] : one malicious node

(a sniffer) captures legitimate LoRa transmissions while another (a jammer)

simultaneously blocks them at the gateway, allowing delayed replay of recorded

messages to manipulate sensor data undetected. By replaying normal messages during a

jamming attack, the attacker can simultaneously block alerts and make the system appear

normal.

56

Table 2.6.1 Overview of Jamming Attack Types and Their Characteristics in LoRaWAN

2.7 Wi-Fi Jamming Limitations in LoRaWAN

Although numerous studies have already been conducted on jamming attacks in

traditional Wireless Sensor Networks (WSNs) and there are a lot of common

vulnerabilities that overlap with LoRaWAN, many Wi-Fi jamming techniques often

prove ineffective against LoRaWAN due to key architectural and protocol-level

differences.

Wi-Fi depends on mechanisms like carrier-sense multiple access with collision avoidance

(CSMA/CA), orthogonal frequency-division multiplexing (OFDM), Direct Sequence

Spread Spectrum (DSSS) and Frequency Shift Keying (FSK). However, LoRaWAN takes

a fundamentally different approach and uses a simple ALOHA-based random access

mechanism [19] in conjunction with Chirp Spread Spectrum (CSS) modulation. In

addition, LoRaWAN utilizes the adaptive data rate (ADR) function to dynamically adjust

Attack Type Description Impact on LoRa
Detection

Difficulty

Energy

Efficiency

Continuous

Jamming

Repeatedly floods

channel with noise.

Blocks all communication

(uplink/downlink), high

throughput drop.

Easy Low

Triggered

Jamming

Disrupts on specific

signal pattern or event

(e.g., preamble)

Corrupts selective

transmissions, often targets

gateways.

Hard Medium

Random

Jamming
Unpredictable noise.

Causes unstable links,

irregular interference.
Medium

Variable

(depends on ON-

OFF pattern)

Selective

Jamming

Targets important

packets.

Corrupts key data, affects

specific devices/messages.
Very Hard High

Reactive

Jamming

Dynamically jams any

ongoing transmissions.

Exploits LoRa preamble and

CSS modulation, causes high

packet loss.

Hard High

Synchronized

Jamming

Attacks

Transmits precisely

aligned jamming chirps.

Can be indistinguishable

from legitimate signals, may

lead to gateway failure.

Hard Medium - High

Deceptive

Jamming

Transmits ‘fake’

authentic signals.

Injects false data, doesn’t

fully block real traffic.
Medium Low – Medium

57

spreading factors (SFs) and maintain connectivity in noisy environments. Added on the

previous features, LoRaWAN’s heavy reliance on uplink traffic and duty-cycle

restrictions may complicate jamming attacks and detection mechanisms even more [19].

An example of a specific-function jammer that was described in [25] for Wi-Fi (IEEE

802.11) networks is the channel-hopping jammer. Frequency hopping is a common anti-

jamming technique, but its implementation might be more straightforward in some WSN

protocols compared to standard LoRaWAN [64]. This jammer relies on MAC-layer

mechanisms (e.g. CSMA) which are typical in Wi-Fi but largely absent in LoRaWAN.

Finally, the network topology can play a role. LoRaWAN typically uses a star topology,

where all devices communicate with a central gateway [15]. In contrast, traditional WSNs

can use more complex topologies like mesh networks, that might offer some resilience to

jamming because data can be sent through alternative routes if a node is attacked.

Therefore, some adaptations and redefinitions of jamming attacks in Wi-Fi networks

along with their detection strategies, must be taken into consideration to fit the unique

characteristics of low-power wide-area networks (LPWAN).

Table 2.7.1: Comparative Overview of Key Characteristics Between LoRaWAN and Traditional

WSN Technologies

Feature LoRaWAN Traditional WSNs

Frequency Bands
Sub-GHz ISM bands (regional

variations)

2.4 GHz ISM band, Sub-GHz (protocol

dependent)

Modulation CSS DSSS, FSK, GFSK, O-QPSK

Typical Data Rates Low (0.3 kbps to 50 kbps)
Higher (~250 kbps for Zigbee, up to 2 Mbps

for BLE)

Typical Transmission

Range

Several kilometers (urban), up

to 15 km (rural)
Shorter range (tens to hundreds of meters)

Network Topology Star (mostly) Star, Mesh, Tree

Susceptibility to Long

On-Air Time Attacks
Higher (longer airtime) Lower generally (shorter airtime)

Energy Constraints
High (battery-powered

devices common)
High (sensor nodes often battery-powered)

58

Chapter 3

Literature Review and Related Work

3.1 Anomaly Detection in WSN and IoT 59

3.2 Anomaly Detection in LoRa 60

3.3 Jamming Detection in LoRaWAN 62

3.4 Jamming Detection and Localization in WSNs and IoT 63

Chapter 3 delves into the existing literature that has been published over the past decade,

focusing on the growth of WSN and IoT technologies in the context of indoor localization

and their associated security issues. Emphasis is placed on jamming detection and

localization, but also broader anomaly detection. This review specifically refers to studies

about LoRaWAN, examining this technology’s current state with respect to jamming

detection and localization.

While numerous papers have broached anomaly and jamming detection in both WSN

and IoT networks, the available literature on explicit jamming localization remains

insufficient. The majority of such studies utilize machine learning-based frameworks to

demonstrate high accuracy in detecting anomalies or generic attacks, yet they do not

extend to physically localizing the attacker. This limitation is even more evident in LoRa

and LoRaWAN-based systems, where research on indoor localization has primarily been

focused on improving the accuracy of positions through RSSI fingerprinting or ensemble

learning/hybrid methods, while attack-specific localization is rarely explored. This

represents a significant research gap that my study will attempt to address: implementing

and experimenting with jamming localization techniques in LoRa-based IoT and WSN

environments.

59

Yang et al. (2021) [65] provide a comprehensive survey of indoor localization in WSN

and IoT networks. The authors highlight that ML algorithms, particularly deep learning,

improve localization accuracy under NLOS conditions, while filter-based, such as

Kalman Filters, contribute to real-time tracking. They verify that hybrid methods (e.g.,

CNN-LSTM) provide sub-meter localization errors in indoor environments, mitigating

multi-path effects. However, the survey does not address any security threats and focuses

solely on benign environments.

3.1 Anomaly Detection in WSN and IoT

Several attempts have been made which aim to explore more advanced security measures

since the escalating threat of cyberattacks on IoT networks. Ullah and Mahmoud [66]

propose a deep learning-based anomaly detection model for IoT networks, focusing on

identifying cyberattacks such as DDoS, malware, and data theft. They argue that

traditional methods struggle with unpredictable network technologies,

and hence they propose multiclass classification model with CNNs, by utilizing 1D, 2D,

3D configurations along with transfer learning. Model validation is performed using

multiple open-source IoT datasets, such as BoT-IoT [67] and IoT-23 [68], achieving a

high accuracy in detecting anomalies, up to 99.97% and a low false alarm rate. Although

the paper’s framework demonstrates robust anomaly detection for network and

application-layer attacks, it does not address physical-layer attacks such as jamming

attacks, nor does it investigate localization-based intrusions.

Boush et al. (2025) [4] tackle this issue by presenting an efficient IoT attack detection

system, "IoT-SecureNet" which includes efficient feature extraction and ensemble

machine learning (ML) algorithms, i.e., XGBoost, LightGBM, and CatBoost. The

ensemble technique leverages the strengths of each model while efficient feature

extraction ensures that the model is trained only on the most crucial features in order to

optimize detection accuracy. To combine all the models’ detection results (attack vs. no

attack), two methods are outlined: i) Majority voting technique, which for binary

classification jobs is the simplest and ii) Weighted Averaging, which assigns weight to

each model based on its performance during the training process. Overall, this study

60

demonstrates the potential of ensemble ML techniques for enhancing security

in IoT networks.

3.2 Anomaly Detection in LoRa

Although indoor localization is not specifically covered by Babazadeh (2020) [69], their

edge-based anomaly detection method for LoRa-based WSNs includes useful details

regarding resource-efficient signal processing. The study's approach to timestamped

event logging and compression-rate thresholds (e.g. filtering compression rate,

FCR<50% → anomaly) demonstrates how edge devices can preprocess data to reduce

bandwidth overhead. With the aid of RSSI/CSI measures, this technique may be

potentially modified and adaptable for indoor interference detection. This study,

however, prioritizes broad anomaly detection in environmental monitoring rather than

specific jamming detection or localization, which differs from my thesis’ scope.

Regardless, their application of Channel Activity Detection (CAD) towards packet

collision reduction draws attention to trade-offs between real-time responsiveness vs.

detection accuracy, a consideration equally relevant to dense indoor IoT deployments.

Kurniawan & Kyas (2022) [70] suggested a ML-based system for generic anomaly

detection in LoRaWAN gateways, evaluating 11 algorithms (including CBLOF, PCA,

and Isolation Forest) on real-world network traffic. Their methodology focuses

on packet-level analysis (join-request and data-request patterns) using RSSI/LSNR

features to identify threats like DoS, replay attacks, and MITM. The main results of their

work indicated that CBLOF achieved the highest performance scores when detecting

anomalies, whereas PCA and HBOS were computationally efficient when working with

large datasets. Their work differs from my thesis focus as it examines general network

anomalies rather than specifically targeting jamming signals or localizing the jammer.

Ensemble learning techniques have also been explored in the field of indoor localization.

K. Hettiarachchige [43] reviews the application of ensemble machine learning

techniques to improve LoRa-based indoor localization systems by using RSSI data. More

specifically, the study revolves around optimizing localization accuracy and predictive

performance by evaluating several supervised ensemble methods (Random Forest,

61

Gradient Boosting, LightGBM, Bayesian post-hoc regularization). The methodology

involves testing and evaluating the mentioned algorithms under different

hyperparameters, which leads to the proposed model: an ensemble model combining

Gradient Boosting and LightGBM with a Voting Classifier. By achieving accuracy at

around 91%, the ensemble approach outperformed individual novel models and

harmonizes the strengths of both models, leading to a more robust and resilient predictive

tool.

Senol et al. (2024) [71] tackle the critical challenge of securing LoRa-based IoT networks

by detecting tampered radio-frequency transmissions using ML strategies. The study

detects generic signal tampering (jamming, spoofing, replay, unspecified distortions etc.)

but does not provide granular classification. Their approach uses image-based anomaly

detection, converting frequency signals into visual representations to recognize deviations

in frequency patterns. They employ five algorithms commonly used in image processing

and computer vision: Local Outlier Factor (LOF), Isolation Forest, Autoencoder,

Variational Autoencoder (VAE), and Principal Component Analysis (PCA) on a dataset

of real-world transmission recordings of normal and abnormal signal images.

LOF achieves the highest accuracy (97.78%) while Isolation Forest is the least reliable

with 84.49% accuracy. The strong performance of LOF validates the broader

effectiveness of density-based outlier detection in RF anomaly detection, aligning with

previous findings from Kurniawan & Kyas (2022) [70], where CBLOF, a clustering-

enhanced LOF variant, also performed well.

Their use of image-based data distinguishes their work, as it captures subtle anomalies

often missed by traditional signal analysis when complex patterns are present. Potential

limitations of this framework, as stated by the authors, can be the dependence of most

algorithms on the quality and quantity of the training dataset. The research also omits

real-time deployment challenges, such as computational latency in resource-constrained

IoT devices, a critical factor for indoor localization systems.

62

3.3 Jamming Detection in LoRaWAN

Aras et. al [21] in their paper "Selective Jamming of LoRaWAN using Commodity

Hardware" empirically prove that LoRaWAN’s design choices i.e. long packet air-time

(due to CSS modulation) and unencrypted MAC-layer headers, enable practical, low-cost

jamming attacks. The authors demonstrate how to exploit these characteristics of LoRa

while using low-cost hardware for three attack variants: triggered jamming, selective

jamming, and a combined selective jamming-wormhole attack. The key findings of their

study reveal that LoRaWAN is extremely vulnerable to jamming, achieving over 98%

success rates of selective jamming over spreading factors (SFs). A notable discovery is

the inverse relationship between SF and jamming effectiveness, i.e., higher SFs (e.g.,

SF12) are easier to jam (longer air-time) but require stronger jamming signals. Similarly,

lower SFs (e.g., SF7) which have shorter air-time, evade jamming if the attacker’s

reaction is too slow. Although this paper does not address jamming detection or

localization, it has proven exploitable weaknesses in LoRaWAN and validated jamming

attacks in real-world testing.

The first official work on jamming detection for LoRaWAN, was conducted by Danish

et al. (2018) [72], who focused on the join procedure, and proposed a Network Intrusion

Detection System (NIDS) which uses the Hamming distance between consecutive join-

request messages. Hamming distance is a metric that counts the differences between bit

positions in two equal-length binary strings and thus can point out anomalies that signal

jamming events. As a result, their system attains 98% accuracy with a 5% false alarm

rate.

In a similar manner, Martinez (2021) [73] focuses on jamming attacks in LoRaWAN

networks and addresses the problem from a more holistic point of view. The author

suggests two primary tools: i) a mathematical model to estimate the impact of jamming

on LoRaWAN performance and ii) an extended ns-3 simulation module for evaluating

realistic scenarios. Key findings of the study reveal that jamming severely degrades

network performance and interferes communication, especially in terms of throughput

and energy usage. Retransmission mechanisms can be applied to mitigate some impacts,

but for IoT networks which rely on battery-powered nodes, the retransmission-energy

63

tradeoff must also be taken into account. An interesting proposition is the use of LSTM

networks for jamming detection, achieving high performance in identifying anomalies,

and which will be evaluated on our approach later. This thesis does not go a step further

to address jamming localization, a gap my research aims to tackle.

3.4 Jamming Detection and Localization in WSNs and IoT

In contrast to the limited research on jamming detection in LoRa-based systems, in the

realm of ‘traditional’ Wireless Sensor Networks (WSNs), much work has been carried

out on the potential of jamming detection. Upadhyaya et al. (2019) [74] evaluated several

Machine Learning algorithms (decision tree, random forest, SVM) for jamming detection

in WSNs, relying primarily on RSSI.

In the domain of Vehicular Ad-Hoc Networks (VANETs), the author in [75] also utilized

a ML approach (Random Forest) for detecting jamming by analyzing metrics such as

Channel Busy Ratio (CBR), Packet Delivery Ratio (PDR), and Inactivity Time (IT).

Given the highly mobile and dynamic nature of VANETs, the suggested technique

demonstrated excellent efficacy with an accuracy of up to 97%.

Another study carried out by Osanaiye et. al (2018) [76] presents a statistical

methodology by implementing the Exponentially Weighted Moving Average (EWMA)

algorithm to detect jamming attacks in WSNs. The key benefit of EWMA is that it

uses aggregation of recent data and historical (past) data and can easily identify

small changes in time-series. The proposed algorithm monitors the Inter-Arrival Time

(IAT) of packets as an evaluation metric to identify abnormalities caused by jamming

with a 100% detection rate, according to the authors. This result highlights the

effectiveness of lightweight statistical techniques in physical-

layer interference detection in WSNs, though such methods remain underexplored in

more complex LPWAN settings like LoRaWAN.

M. Savva (2024) [25] addresses the critical need for practical anti-jamming methods and

proposes a comprehensive framework for detecting, localizing, and recovering from

jamming attacks in WSN and IoT networks. He focuses on enhancing security against

64

intelligent jammers (constant, deceptive, random, reactive) that employ more advanced

ML algorithms to attack a network. A notable contribution is the introduction of a novel

adaptive behavior “complex jammer” which highlights the system’s ability to handle

evolving attack strategies.

Concerning the detection part, the author employs a lightweight fuzzy logic intrusion

detection system (FLIDS) specifically designed to detect jamming attacks. During the

localization phase, the modified Multilateration Localization Algorithm with Weights

(MMLAW) combines metrics from the data link and network layers, such as Expected

Transmission Count (ETX) and retransmissions in order to pinpoint the attacker’s

location. Lastly, the recovery phase includes network-layer rerouting techniques and node

blacklisting within the affected area. However, the author explicitly excludes LoRa and

LoRaWAN from the scope of the study, which my thesis’ scope explicitly includes.

Acronyms for Table 3.1 columns: IL – Indoor Localization

AD – Anomaly Detection

JD – Jamming Detection

 JL – Jamming Localization

Authors Technology Technique Key Finding Methodology Limitations IL AD JD JL

Yang et al.

(2021)

[65]

WSN/IoT

Networks

Survey of

ML/filter-based

methods

ML and filters

improve accuracy

in NLOS/dynamic

environments

Survey 1. No security

threats

mentioned

   

Ullah et al.

(2021)

[66]

IoT

Networks

Convolutional

Neural Networks

(1D, 2D, 3D),

Transfer Learning

Achieved 99.97%

accuracy in

multiclass attack

detection.

Feature selection,

CNN training,

transfer learning

on merged IoT

datasets.

No physical-

layer attacks

(e.g.,

jamming).

   

Boush et al.

(2025)

[4]

IoT Ensemble ML

(XGBoost,

LightGBM,

CatBoost)

Ensemble model

achieved 96.2%

accuracy in attack

detection

Supervised ML on

IoT network traffic

data with ensemble

learning and

feature extraction

 No real-time

evaluation.

   

Babazadeh

(2020)

[69]

LoRa WSN Edge analytics +

CAD scheduling

Achieved 50%

bandwidth

reduction via

compression-rate

thresholds

Sensor-side data

compression,

Centralized

anomaly

reconstruction

1. No

multipath

analysis.

2.Scalability

constraints in

dense networks

   

65

Table 3.1: Literature Review Summary

(FCR<50% =

anomaly)

Kurniawan &

Kyas (2022)

[70]

LoRaWAN Various ML

algorithms

CBLOF achieved

the highest F1

(0.92) PCA most

efficient

Packet-level

RSSI/LSNR

analysis and 11

ML models

No multipath

tests

   

K. Hettiarach-

chige (2024)

[43]

LoRa Ensemble ML

(Gradient

Boosting,

LightGBM,

VotingClassifier)

Achieved 91%

accuracy for

localization

Supervised ML on

RSSI data with

extensive

hyperparameter

tuning

No real-world

evaluation

   

Senol et al.

(2024)

[71]

LoRa

Machine Learning

(LOF, VAE, PCA,

Autoencoder,

Isolation Forest)

Achieved ~ 98%

accuracy

 (LOF) in

detecting

tampered RF

signals.

Image-based ML

(LOF, VAE, PCA)

on spectrograms

from

HackRF/MKRWA

N1310 testbed.

1. No real-time

evaluation.

2. No attack-

type

granularity

   

Danish et al.

(2018)

[72]

LoRaWAN Hamming

distance-based

NIDS

98% detection

accuracy with 5%

false alarms

Analyzing bit

differences in join-

request messages

Only detects

join-request

jamming

   

Martinez

(2021)

[73]

LoRaWAN Mathematical

modeling &

LSTM detection

 LSTM achieved

high detection

accuracy

Simulation-based

evaluation with ns-

3 module

No real-world

validation

   

Upadhyaya et

al. (2019)

[74]

WSN ML (DT, RF,

SVM)

Comparative

performance

evaluation of ML

classifiers

RSSI-based

feature analysis

Limited

adaptability to

new

environments.

   

VANETs

study)

[75]

VANET Random Forest 97% detection

accuracy

CBR, PDR, IT

metrics analysis

1. Vehicle-

specific

dynamics

2. High

mobility focus

   

Osanaiye et al.

(2018)

[76]

WSN EWMA statistical

method

100% detection

rate (claimed)

IAT monitoring

for anomalies

No real-world

validation

   

Savva (2024)

[25]

WSN / IoT

Networks

FLIDS +

MMLAW (using

ETX,

retransmissions)+

recovery routing

Proposed full

framework

(detection-

localization-

recovery) for

jamming,

Fuzzy Logic IDS

for detection,

Multilateration

with Weights for

localization,

Recovery via

rerouting/blacklisti

ng

LoRaWAN

explicitly

excluded

✔ ✔ ✔ ✔

66

Chapter 4

Jamming Detection Implementation

4.1 Dataset Description 66

4.2 Packet Loss Ratio (PLR) Calculation 67

4.3 Jamming Detection Methods 70

This section presents the implementation of several Machine Learning and Deep Learning

methods for performing jamming detection on a LoRa-based dataset. The dataset is public

and can be accessed on GitHub [77]. The goal is to detect and analyze jamming attacks

in LoRa networks using network metrics like PLR, RSSI and SNR. The dataset is

described in Table 4.1.1:

4.1 Dataset Description

Total Samples 31,919

Time Range February 2, 2023 - February 9, 2023

Recording

Interval

Every minute

Data Format CSV

Devices 5 static LoRa end devices (Mote01 – Mote05)

Features 14 total (including LoRa PHY settings, RSSI, SNR, Jamming label,

FCnt)

Jamming Label Binary label: 1 = Normal , -1 = Jamming

Jamming Period 14:15 until 17:00 on February 8, 2023

Table 4.1.1: Chirp Dataset Overview

67

Dataset Limitations:

While the dataset provides essential communication metrics like RSSI, SNR, and frame

counters (fcnt), it lacks location coordinates, or any location information at all, which

makes localization of jamming sources infeasible. Therefore, on this dataset only

jamming detection can be performed, which is later evaluated on the ground truth values

(known jamming period). Additionally, the dataset is highly imbalanced, with the

jamming event occurring for only a few hours on a single day, while the remaining data

reflects normal operation.

4.2 Packet Loss Ratio (PLR) Calculation

Despite that the dataset contains RSSI and SNR which can be used for identifying

possible attack patterns, those metrics weren’t enough for accurate results. Therefore, it

was necessary to determine PLR through the frame counter (fcnt) values.

PLR was chosen as a key measure for jamming detection because it directly measures the

reliability of communication, which is severely impacted by jamming attacks. Since

jammers disrupt transmissions and cause more packet loss, the measure is a good

indicator of the malicious interference, complementing RSSI and SNR for increased

accuracy in detection.

PLR is defined as the ratio of lost packets to the total expected packets (over a given

period):

𝑃𝐿𝑅 =
Expected Packets − Received Packets

Expected Packets
 𝑥 100

The calculation of this metric was initially per-device over fixed time intervals. Then,

PLR was calculated for the whole system (aggregating PLR across all motes) which

yielded to better results. This might happen because per-device PLR can be prone to

outliers from transient local interference, whereas combining data from all motes can

amplify the persistent signal of jamming and average out random noise.

68

The other two metrics considered for detecting jamming are the Signal-to-Noise Ratio

(SNR) and Received Signal Strength Indicator (RSSI). SNR quantifies signal quality by

measuring how much the desired signal stands out from noise. We expect SNR to drop

when jamming interference is active.

SNR (dB) = 10 × log10 (
𝑃signal

𝑃noise
)

Where:

• 𝑃signal is the received signal power

• 𝑃noise is the background noise power.

RSSI measures absolute received power, including both signal and noise. While useful

for detecting overpowering jammers, it cannot distinguish intentional jamming from

natural signal attenuation, and it must be integrated with other metrics for reliable

detection.

RSSI (dBm) = 10 × log10(𝑃received)

As discussed, the PLR was calculated initially per device. However, it was later

concluded that using the collective data of all devices provided a better approximation.

The reasoning behind the calculation of PLR is identical in both approaches, differing

only in the dataset split utilized: per-device vs. system-wide aggregated data.

The process begins by reading and pre-processing an aggregated data set of time-stamped

transmission logs of all the devices involved. The data is sorted chronologically and

grouped by device within each interval of fixed duration (15 minutes). For every such

interval, the algorithm extracts the minimum and maximum frame counter (𝑓𝑐𝑛𝑡) values

for each device to estimate the number of packets that should have been transmitted. The

expected packet count for a device in a given interval is calculated as:

Expected𝑖 = Last_fcnt𝑖 − First_fcnt𝑖 + 1

The actual received packets are counted directly from the data, and lost packets are

calculated as:

Lost𝑖 = Expected𝑖 − Received𝑖

69

The expected and received counts are then accumulated across all devices to obtain a total

expected and total received value for that interval. The system-wide PLR is calculated

using the following formula:

PLRsystem = (
∑ Lost𝑖

𝑁
𝑖=1

∑ Expected𝑖
𝑁
𝑖=1

) × 100

Where:

• 𝑁 is the number of active devices in the interval.

For example, assume that during a 15-minute interval, a device had a first frame counter

of 102 and a last frame counter of 108. If only 5 packets were actually received during

this interval, the calculations would be as follows:

Expectedi = 108 − 102 + 1 = 7

Losti = Expectedi − Receivedi = 7 − 5 = 2

PLRi = (
2

7
) × 100 ≈ 28.57%

This process is repeated per device, and system-wide PLR (for that interval) is computed

by summing expected and received packets across all devices.

ALGORITHM 4.2.1: SYSTEM-WIDE PLR CALCULATION

 Input: Chirp dataset df, interval duration Δt (in minutes)

 Output: Packet Loss Ratio (PLR) for each interval

1 Initialize start_time ← first timestamp, end_time ← start_time + Δt

2 while start_time < last timestamp do

3 interval_data ← filter entries with Local Time ∈ [start_time, end_time)

4 total_expected, total_received ← 0

5 for each device in interval_data:

6 Calculate expected = max(fcnt) − min(fcnt) + 1

7 Calculate received = number of packets

8 Accumulate total_expected and total_received

9 end for

10 PLR ← $\left(\frac{\text{total_expected} -

\text{total_received}}{\text{total_expected}} \right) \times 100$

11 Store [start_time, end_time, PLR]

12 start_time ← end_time; end_time ← start_time + Δt

13 end while

14 Return PLR values

70

RSSI and SNR preprocessing

For each interval, in addition to PLR, the average Received Signal Strength Indicator

(RSSI) and Signal-to-Noise Ratio (SNR) are computed by averaging all values recorded

during that time. Each interval is then labeled as either jamming (-1) or normal (1) based

on whether its start time falls within the known jamming period (in this case, between

14:15 and 17:00 on February 8, 2023).

Avg_RSSI =
1

𝑀
∑ RSSI𝑗

𝑀
𝑗=1 Avg_SNR =

1

𝑀
∑ SNR𝑗

𝑀
𝑗=1

Finally, the results consisting of the interval start and end times, total expected and

received packets, PLR percentage, average RSSI and SNR, and the jamming label are

written to a CSV file.

4.3 Jamming Detection Methods:

Several machine learning models were employed for jamming detection, with the LSTM

Autoencoder pseudocode described in more detail due to its sequence-based architecture.

For the remaining models, a similar detection pipeline was followed, and only the key

differences in parameters are summarized in their corresponding pseudocodes.

1. LSTM Autoencoder

The LSTM Autoencoder was utilized to detect jamming by learning normal

patterns from the multivariate time series data of RSSI, SNR and PLR. Training was

done using non-jamming periods, and instances of jamming were used for the testing part.

The data was normalized and split into overlapping sequences of length T=10, which

were used as input to the model. After training the model for 100 epochs with MSE and

Adam optimizer, it reconstructed all input sequences. Anomalies were identified based

on high reconstruction error, calculated as:

[MSEi =
1

𝑇 ⋅ 𝐹
∑ ∑ |𝑥𝑡,𝑓

(𝑖)
− 𝑥𝑡,𝑓

(𝑖)̂
|]

𝐹

𝑓=1

𝑇

𝑡=1

71

Where:

• 𝑖 is the index for the sequence (i.e., the i-th time window).

• 𝑇 is the number of time steps in the sequence (10 if the sequence length is 10).

• 𝐹 is the number of features (RSSI, SNR, PLR → F = 3).

A threshold set at the 98th percentile of these errors was used to flag jamming events.

ALGORITHM 4.3.1: LSTM AUTOENCODER FOR JAMMING DETECTION

 Input: Chirp dataset df, interval duration Δt (in minutes)

 Output: Packet Loss Ratio (PLR) for each interval

1 Normalize PLR, RSSI, and SNR using MinMaxScaler

2 Define jamming_start and jamming_end timestamps

3 Split data:

4 train_data ← entries outside jamming period

5 full_data ← entire dataset

6 Create train_sequences:

7 for i in 0 to len(train_data) − T:

8 sequence ← train_data[i : i+T]

9 append to train_sequences

10 Define LSTM Autoencoder:

11 Encoder: LSTM(64) → LSTM(32)

12 Decoder: RepeatVector(T) → LSTM(32) → LSTM(64) →

TimeDistributed(Dense(3))

13 Train model on train_sequences

14 Create all_sequences from full_data using sliding window of length T

15 Reconstruct all_sequences using trained model

16 Compute reconstruction error (MSE) for each sequence

17 Set anomaly threshold ← 98th percentile of training MSE

18 Detect anomalies:

19 for each sequence error 𝑚𝑠𝑒𝑖:

20 if 𝑚𝑠𝑒𝑖 > threshold: flag as anomaly

21 else: flag as normal

22 Return anomaly labels

2. One-Class Support Vector Machine (SVM)

The One-Class SVM was applied as an unsupervised anomaly detector trained

exclusively on non-jamming data. The input consisted of normalized PLR, RSSI, and

72

SNR values. The model used an RBF kernel with parameters 𝛾 = 1 and 𝑛𝑢 = 0.01 to

learn the distribution of normal data. Once trained, the model predicted on the entire

dataset, assigning +1 to normal points and −1 to anomalies. Predictions were converted

to binary labels (0 for normal, 1 for anomaly).

ALGORITHM 4.3.2: SVM FOR JAMMING DETECTION

 Input: Normal training data X_train, full dataset X_full

 Output: Anomaly labels (0 = normal, 1 = anomaly)

1 Define One-Class SVM with kernel = 'rbf', gamma = 1, nu = 0.01

2 Train SVM model on X_train

3 Predict labels on X_full: +1 = normal, −1 = anomaly

4 Convert predictions: anomaly = 1 if label == -1 else 0

5 Return anomaly labels

3. Binary Logistic Regression (BLR)

Binary Logistic Regression was employed as a supervised classification model to separate

jamming and non-jamming intervals based on PLR, RSSI, and SNR. The features were

normalized, and jamming periods were labeled as 1, and the rest as 0. The model was

trained with class balancing using a regularization parameter 𝐶 = 0.5 and a maximum of

500 iterations. Predictions were made as probabilities, and a decision threshold of 0.8 was

applied to classify jamming.

ALGORITHM 4.2.3: BLR FOR JAMMING DETECTION

 Input: Normalized dataset X, ground truth labels y

 Output: Anomaly labels (0 = normal, 1 = anomaly)

1 Define logistic regression with class_weight = 'balanced', C = 0.5, max_iter = 500

2 Train model on X, y

3 Predict probability scores 𝑝𝑖 for each sample

4 Set threshold τ = 0.8, classify: anomaly𝑖 = 1 if 𝑝𝑖 > τ, else 0

5 Return anomaly labels

4. Extreme Gradient Boosting (XGBoost)

XGBoost gradient boosting classifier was used to classify jamming with normalized

multivariate input of PLR, RSSI, and SNR. The classifier used 100 trees with a learning

rate of 0.05, max depth of 6, and class balancing weight of 100 to counter label imbalance.

The classifier was trained over the full labeled dataset and predicts probabilities, which

73

were thresholded at 0.5 for anomaly detection. Anomalies corresponded to high predicted

probability of class 1 (jamming).

ALGORITHM 4.3.4: XGBOOST FOR JAMMING DETECTION

 Input: Normalized dataset X, ground truth labels y

 Output: Anomaly labels (0 = normal, 1 = anomaly)

1 Define XGBoost classifier with scale_pos_weight = 100, max_depth = 6,

n_estimators = 100, learning_rate = 0.05

2 Train model on X, y

3 Predict probability scores 𝑝𝑖 for each sample

4 Set threshold 𝜏 = 0.5, classify: anomaly𝑖 = 1 if 𝑝𝑖 > 𝜏, else 0

5 Return anomaly labels

5. K-Means Clustering

K-Means was applied in an unsupervised setting to cluster normalized data into groups

based on similarity in PLR, RSSI, and SNR. 10 clusters were created using the k-means++

initialization. The least occurring cluster was considered to represent jamming conditions,

while the most frequent cluster corresponded to normal behavior.

ALGORITHM 4.3.5: K-MEANS FOR JAMMING DETECTION

 Input: Normalized dataset X

 Output: Anomaly labels (0 = normal, 1 = anomaly)

1 Define K-Means with n_clusters = 10, init = 'k-means++', max_iter = 300, tol = 1e-4

2 Train model on X

3 Predict cluster labels for each sample

4 Identify anomaly cluster as the one with the fewest members

5 Assign anomaly = 1 if in anomaly cluster, else 0

6 Return anomaly labels

6. Random Forest (RF)

Random Forest was used as a supervised ensemble classifier to detect jamming using the

same three features. The model was trained with 100 decision trees using

𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 = ′𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑′ to handle class imbalance. Input features were normalized,

and the jamming interval was labeled with ‘1’. The model output was class probabilities,

and samples with probability > 0.5 were classified as jamming.

74

ALGORITHM 4.3.6: RF FOR JAMMING DETECTION

 Input: Normalized dataset X, ground truth labels y

 Output: Anomaly labels (0 = normal, 1 = anomaly)

1 Define Random Forest with n_estimators = 100, class_weight = 'balanced',

random_state = 42

2 Train model on X, y

3 Predict probability scores 𝑝𝑖 for each sample

4 Set threshold 𝜏 = 0.5; classify: anomaly𝑖 = 1 if 𝑝𝑖 > 𝜏, else 0

5 Return anomaly labels

7. 1D Convolutional Neural Network (1D-CNN)

The 1D Convolutional Neural Network was trained to detect jamming patterns by

learning temporal dependencies in overlapping sequences of length 𝑇 = 10. The CNN

architecture included stacked Conv1D and MaxPooling1D layers followed by fully

connected layers, which were trained employing binary cross-entropy loss and Adam

optimizer. The model predicted binary labels on all the sequences, with high confidence

jamming labels being labelled as “jamming”.

Figure 4.3.1 : 1-D CNN Architecture

ALGORITHM 4.3.7: 1D CNN FOR JAMMING DETECTION

 Input: Normalized dataset X, ground truth labels y

 Output: Anomaly labels (0 = normal, 1 = anomaly)

1 Create multivariate sequences of fixed length T from X and y

2 Split sequences into training and testing sets

3 Define CNN model: Conv1D(128) → MaxPooling1D → Conv1D(64) →

MaxPooling1D → Flatten → Dense(100) → Dense(1, sigmoid)

4 Train CNN using binary crossentropy and class weights

5 Predict anomaly probabilities and apply threshold 𝜏 = 0.5:

 anomaly
𝑖

= 1 if 𝑝𝑖 > 𝜏, else 0

6 Return anomaly labels

A trial-and-error procedure was used to select all the jamming detection models'

hyperparameters. Each method was tuned individually to identify the parameter

combination that yielded the highest performance metrics during evaluation. The final

selected parameters for each algorithm are summarized in Table 4.3.1.

75

Table 4.3.1: Jamming Detection Methods and Their Parameters

76

Chapter 5

Jamming Localization Implementation

5.1 Dataset Description 76

5.2 Localization Algorithms 77

5.2.1 Random Forest (RF) Regression with Weighted Centroid 78

 5.2.2 XGBoost Regression with Weighted Centroid 79

 5.2.3 Modified Multilateration with Weights (MMLAW) 81

 5.2.4 Jamming Impact Score Weighted Centroid (JIWC) 83

5.3 Ensemble Localization Framework 85

This chapter presents the implementation of four jammer localization methods developed

using LoRa-based drone communication data. This study utilizes the “Drone

Communication Dataset” which is publicly available [78] and designed for research

purposes in areas such as anomaly detection and cybersecurity in drone networks. The

data was collected from a simulated drone communication network spanning from

November 1, 2019 to December 31, 2024, with data recorded on an hourly basis.

5.1 Dataset Description

Total Samples 44,016

Time Range November 1, 2019 - December 31, 2024

Recording

Interval

Hourly

Data Format CSV

Features 26 input features, 8 multilabel anomaly labels

Table 5.1.1: Dataset Overview

For the objective of this study, a subset of relevant features was used primarily to

achieve jammer localization. The columns (features) that were considered are

summarized below.

77

Feature Name Description Unit / Type

signal_strength Received Signal Strength

Indicator (RSSI)

dBm (decibels)

packet_loss_rate Percentage of lost

communication packets

%

signal_noise_ratio Signal-to-Noise Ratio

(SNR) of the received signal

dB (decibels)

drone_gps_coordinates Geographic location of the

drone (latitude, longitude)

Tuple (float, float)

drone_identification Unique id for each drone Integer

communication_protocol Communication protocol

filtered for LoRa only

Categorical (LoRa)

label_jamming Binary indicator

(1 = jammed, 0 = normal)

Binary (0 or 1)

Table 5.1.2: Relevant Extracted Features from the Dataset

The dataset contains several labels for network anomalies such as jamming, spoofing,

MITM attack etc. The primary target variable was 𝒍𝒂𝒃𝒆𝒍_𝒋𝒂𝒎𝒎𝒊𝒏𝒈 and the data was

filtered for detected jamming events, i.e. 𝑙𝑎𝑏𝑒𝑙_𝑗𝑎𝑚𝑚𝑖𝑛𝑔 = 1. Therefore, only

localization was performed on this dataset, considering we have the jamming detection

by the flag.

5.2 Localization Algorithms

Each method estimates the jammer's location using different principles, ranging from

machine learning predictions to signal degradation analysis.

The four implemented methods are:

1. Random Forest Regression with KMeans Centroid

2. XGBoost Regression with KMeans Centroid

3. Modified Multilateration with Weights (MMLAW)

4. Jamming Impact Score Weighted Centroid (JIWC)

78

Machine Learning Methods (1. RF and 2. XGB)

The following two methods both use the same input features, which were chosen

considering they are all relevant metrics to network conditions.

Input features:

• Signal Strength (RSSI)

• Signal-to-Noise Ratio (SNR)

• Packet Loss Rate (PLR)

• Sequence Number Gap

• Base Station Load

• Transmission Power

• Uplink/Downlink Quality

The models take as input physical and network features above which reflect signal

conditions under jamming and output the predicted jammer’s location.

𝑥(𝑖) = [𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥7
(𝑖)

], 𝑦(𝑖) = [lat(𝑖), lon(𝑖)]

5.2.1 Random Forest (RF) Regression with Weighted Centroid

This method uses a trained Random Forest (RF) regression model to predict the jammer’s

location from the perspective of each affected drone.

A Random Forest is an ensemble of M decision trees. Each tree is trained on a random

subset of the data and outputs its own prediction:

𝑦𝑗̂ = 𝑇𝑗(𝑥), for 𝑗 = 1,2, … , 𝑀

The final RF prediction is the average of all trees, which produces a 2D coordinate

(𝑙𝑎𝑡, 𝑙𝑜𝑛) representing where the jammer is likely located from that drone’s point of

view.

𝒚̂ =
1

𝑀
∑ 𝑇𝑗(𝒙)

𝑀

𝑗=1

79

Lastly, after all predicted locations are collected {(lat 𝑖̂, lon𝑖
̂)}

𝑖=1

𝑁
from N jammed drones,

they are aggregated using a weighted centroid, where each prediction is weighted based

on a composite jamming indicator score derived from PLR, RSSI, and SNR. (Localization

Step). This technique gives higher influence to drones more strongly affected by the

jammer.

The RF prediction centroid is then:

𝑦̂ =
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ 𝑦𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

5.2.2 XGBoost Regression with Weighted Centroid

This method follows the same pipeline as the Random Forest approach but uses XGBoost

(Extreme Gradient Boosting) as the underlying regression model. XGBoost is a gradient

boosting algorithm that builds ensemble of regression trees 𝑓𝑘 trained sequentially to

minimize error using gradient descent.

𝒚̂ = ∑ 𝑓𝑘(𝒙)

𝐾

𝑘=1

, 𝑓𝑘 ∈ ℱ

Where:

• 𝑓𝑘 is the 𝑘-th regression tree

• ℱ is the space of all possible regression trees

• 𝒚̂ is the predicted output (latitude, longitude)

Each tree 𝑓𝑘 is trained to minimize the residual error of the previous prediction. The

model optimizes the following regularized objective function:

ℒ = ∑ l(𝑦(𝑖), 𝑦(𝑖)̂)

𝑖

+ ∑ Ω(𝑓𝑘)

𝑘

Where:

• l(.) is a differentiable loss function, such as mean squared error,

• Ω(𝑓𝑘) is a regularization term that penalizes tree complexity.

Lastly, after making per-drone predictions, the estimated jammer location is computed

using the same weighted formulation:

80

𝑦̂ =
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ 𝑦𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

ALGORITHM 1 & 2: RANDOM FOREST AND XGBOOST JAMMER LOCALIZATION

 Input: Jammed drone dataset df_jam

 Output: Trained RF_Model and XGB_Model ready for prediction

1 Normalize PLR, RSSI, SNR in df_jam → plr_n, rssi_n, snr_n

2 Compute jamming_indicator = 0.4 * plr_n + 0.3 * (1 - rssi_n) + 0.3 * (1 - snr_n)

3 Define features ← [

 signal_strength, signal_noise_ratio, packet_loss_rate,

 sequence_number_gap, base_station_load,

 transmission_power, uplink_downlink_quality

]

4 Define target ← [lat, lon]

5 X ← extract features from df_jam

6 y ← extract target from df_jam

7 Initialize RF_Model with n_estimators = 200 and random seed

8 Train RF_Model using (X, y)

9 Initialize XGB_Model with n_estimators = 200 and random seed

10 Train XGB_Model using (X, y)

11 For each jammed drone i: predict lat/lon using RF_Model and XGB_Model

12 Compute RF weighted centroid:

(latRF̂, lonRF̂) = (
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ latRF

(𝑖)̂

∑ 𝑤𝑖
𝑁
𝑖=1

,
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ lonRF

(𝑖)̂

∑ 𝑤𝑖
𝑁
𝑖=1

)

13 Compute XGB weighted centroid:

(latXGB̂, lonXGB
̂) = (

∑ 𝑤𝑖
𝑁
𝑖=1 ⋅ latXGB

(𝑖)̂

∑ 𝑤𝑖
𝑁
𝑖=1

,
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ lonXGB

(𝑖)̂

∑ 𝑤𝑖
𝑁
𝑖=1

)

14 Return (latRF̂, lonRF̂) and (latXGB̂, lonXGB
̂)

Jamming Impact Methods (3. MMLAW and 4. JIWC)

To support jammer localization, a composite impact score was defined to quantify how

severely each drone was affected by jamming. This score combines three physical-layer

metrics that are sensitive to signal disruption: i) Packet Loss Rate (PLR), ii) RSSI (signal

strength), and iii) SNR (signal-to-noise ratio). Each metric is min-max normalized to a

[0, 1] scale, and then weighted based on its relative importance.

81

Impact Score𝑖 = 𝑤plr ⋅ PLRnorm,𝑖 + 𝑤rssi ⋅ (1 − RSSInorm,𝑖) + 𝑤snr ⋅ (1 − SNRnorm,𝑖)

where: 𝑤plr = 0.4, 𝑤rssi = 0.3, 𝑤snr = 0.3

PLR was given the highest weight (0.4), as it directly reflects transmission failure, while

RSSI and SNR were each weighed at 0.3. Inverted forms of RSSI and SNR are used to

ensure that lower values (indicating worse signal quality) correspond to higher impact.

The resulting impact score provides a unified measure of signal degradation and is used

in both the MMLAW (as a proxy for distance) and JIWC (as a weight in centroid

estimation).

5.2.3 Modified Multilateration with Weights (MMLAW)

The MMLAW algorithm applied in my solution is a modified version of the localization

algorithm proposed by M. Savva in his dissertation [25]. The original MMLAW

algorithm was designed for wireless sensor networks using Contiki OS and Cooja,

making use of network-layer metrics such as Retransmissions or ETX (Expected

Transmission Count) as a basis for making distance estimates in multilateration.

In contrast, my implementation targets LoRa networks, where such network-layer

metrics used here aren't present or even defined. Consequently, I replaced them with

physical-layer jamming indicators (impact scores) better applicable to LoRa: RSSI, SNR,

and Packet Loss Rate (PLR). These were min-max normalized and inverted to simulate

distances, maintaining the underlying assumption that

higher effect indicates closeness to the jammer.

Impact Score𝑖 = 0.4 ⋅ PLRnorm,𝑖 + 0.3 ⋅ (1 − RSSInorm,𝑖) + 0.3 ⋅ (1 − SNRnorm,𝑖)

In summary, while the initial algorithm made use of ETX-weighted distance, my

implementation maintains the same formulation using least-squares multilateration but

adjusts the input metric in accordance with LoRa's communication characteristics.

82

Step 1: Simulated Distance Calculation

Each drone is assigned a simulated distance 𝑑𝑖 based on its jamming indicator value. The

indicator is min-max normalized and inverted, so that higher impact corresponds to a

shorter distance.

𝑑𝑖 = 1 −
𝑧𝑖 − 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛
, for 𝑖 = 1,2, … , 𝑁

Where:

• 𝑧𝑖 is the jamming indicator for drone 𝑖

• 𝑑𝑖 is the simulated distance

• 𝑁 is the number of affected drones

Step 2: Multilateration Setup

Let (𝑥𝑖, 𝑦𝑖) be the GPS coordinates of drone 𝑖, and assume the jammer is located at (𝑥, 𝑦).

We define the system of equations based on differences of squared distances between the

first drone (reference) and the others:

𝐴𝑖 = 2(𝑥𝑖 − 𝑥1) 2(𝑦𝑖 − 𝑦1), for 𝑖 = 2, … , 𝑁

𝐵𝑖 = 𝑑1
2 − 𝑑𝑖

2 − 𝑥1
2 + 𝑥𝑖

2 − 𝑦1
2 + 𝑦𝑖

2

This yields a linear system in matrix form:

𝐴 ⋅ [𝑥𝑦] = 𝐵

Where:

• 𝐴 ∈ 𝑅(𝑁−𝟙)×𝟚,

• 𝐵 ∈ 𝑅𝑁−𝟙

Step 3: Least-Squares Estimation

We solve for the jammer coordinates (𝑥, 𝑦) using the least-squares solution:

[𝑥̂𝑦̂] = arg min
𝑥,𝑦

|𝐴 ⋅ [𝑥𝑦] − 𝐵 |2

Which is computed using the pseudo-inverse or via:

[𝑥̂𝑦̂] = (𝐴⊤𝐴)−1𝐴⊤𝐵

83

The final estimated jammer location is:

(latest, lonest) = (𝑥̂, 𝑦̂)

ALGORITHM 3: MMLAW JAMMER LOCALIZATION (MODIFIED MULTILATERATION

WITH WEIGHTS)

 Input: Jammed drone dataset sample_df, jamming indicator column indicator_col

 Output: Estimated jammer coordinates (𝑥̂, 𝑦̂)

1 Extract coordinates ← sample_df[['lat', 'lon']]

2 Extract indicator ← sample_df[indicator_col]

3 Normalize and invert indicator to simulate distances:

d ← 1 − MinMaxScaler().fit_transform(indicator)

4 if number of coordinates < 3, then

5 Return None, None

6 x ← latitude values, y ← longitude values

7 Initialize matrix A of size (N − 1) × 2

8 Initialize vector B of size (N − 1)

9 for i = 1 to N − 1 do

10 A[i−1, 0] ← 2 × (x[i] − x[0])

11 A[i−1, 1] ← 2 × (y[i] − y[0])

12 B[i−1] ← d[0]² − d[i]² − x[0]² + x[i]² − y[0]² + y[i]²

13 end for

14 Estimate jammer coordinates using least-squares: (𝑥̂, 𝑦̂)← lstsq(A, B)

15 Return (𝑥̂, 𝑦̂)

5.2.4 Jamming Impact Score Weighted Centroid (JIWC) – Proposed method

The Jamming Indicator Weighted Centroid (JIWC) method is proposed and developed as

part of this thesis and was designed specifically to suit the characteristics of LoRa

networks. JIWC is a signal-impact-based localization approach and estimates the

jammer’s location by computing a weighted average (centroid) of drone coordinates,

where each drone is weighted based on how severely it was affected by the jamming

signal.

The key idea of this approach is that drones with higher jamming impact scores are most

likely closer to the jammer. Therefore, the jammer position is estimated closer to drone

84

with higher jamming indicators. To summarize, JIWC provides a simple yet effective

geometric estimation without distance computation and iterative solving.

Step 1: Jamming Impact Score Calculation

As mentioned earlier, a composite jamming impact score is computed as a function

of three physical-layer measures for each drone: Packet Loss Rate (PLR), RSSI

(Received Signal Strength), and SNR (Signal-to-Noise Ratio). These are initially min-

max normalized:

PLRnorm,  RSSInorm,  SNRnorm ∈ [0,1]

The impact score 𝑠𝑖 for each drone 𝑖 is then calculated as:

𝑠𝑖 = 𝑤plr ⋅ PLRnorm + 𝑤rssi ⋅ (1 − RSSInorm) + 𝑤snr ⋅ (1 − SNRnorm)

Where:

𝑤plr = 0.4, 𝑤rssi = 0.3, 𝑤snr = 0.3

This reflects that higher PLR, lower RSSI, and lower SNR contribute more strongly to

jamming impact.

Step 2: Impact Weight Normalization

The impact scores 𝑠𝑖 are min-max normalized to produce weights 𝑤𝑖 ∈ [0,1] for each

drone:

𝑤𝑖 =
𝑠𝑖 − 𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛

Where:

• 𝑤𝑖 is the normalized weight used in the centroid,

• 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are the minimum and maximum impact scores across all jammed

drones.

Step 3: Weighted Centroid Calculation

Let (𝑥𝑖, 𝑦𝑖) be the GPS coordinates of drone 𝑖 . The estimated jammer position is

computed as a weighted centroid:

85

𝑥est =
∑ 𝑥𝑖

𝑁
𝑖=1 ⋅ 𝑤𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

, 𝑦est =
∑ 𝑦𝑖

𝑁
𝑖=1 ⋅ 𝑤𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

Where:

• 𝑁 is the number of jammed drones,

• (𝑥est, 𝑦est) is the estimated jammer location.

The final estimated jammer location in geographic coordinates is:

(latest,  lonest) = (𝑥est,  𝑦est)

ALGORITHM 4: JAMMING IMPACT WEIGHTED CENTROID (JIWC)

 Input: Jammed drone dataset df_jam

 Output: Estimated jammer coordinates (latest, lonest)

1 Define features ← [packet_loss_rate, signal_strength, signal_noise_ratio]

2 Min-max normalize each feature → plr_norm, rssi_norm, snr_norm

3 Compute impact score for each packet:

impact_score = 0.4 × plr_norm + 0.3 × (1 - rssi_norm) + 0.3 × (1 - snr_norm)

4 Group by drone ID and compute average of: latitude, longitude, impact score

5 Min-max normalize the average impact scores → impact_weight

6 Let 𝑁 be the number of jammed drones

7 Initialize total weight 𝑊 ← 0

8 Initialize sums: 𝑠𝑢𝑚_𝑙𝑎𝑡 ← 0, 𝑠𝑢𝑚_𝑙𝑜𝑛 ← 0

9 for 𝑖 = 1 to 𝑁 do

10 Retrieve drone latitude 𝑥𝑖 , longitude 𝑦𝑖, and weight 𝑤𝑖

11 sum_lat ← sum_lat + 𝑥𝑖 ⋅ 𝑤𝑖

12 sum_lon ← sum_lon + 𝑦𝑖 ⋅ 𝑤𝑖

13 𝑊 ← 𝑊 + 𝑤𝑖

14 end for

 Return latest ←
sum_lat

𝑊
, lonest ←

sum_lon

𝑊

5.3 Ensemble Localization Framework

Methodology

Since the dataset lacks ground truth jammer coordinates, direct evaluation of localization

accuracy was infeasible. To address this, we adopted an aggregation-based approach to

assess consensus among four distinct localization methods: RF (Random

86

Forest), XGB (XGBoost), MMLAW, and JIWC. Since these methods each rely on

different localization principles, combining them forms an ensemble localization

framework that leverages the strengths of each technique to produce more robust jammer

position estimates. The goal was to determine whether the methods converge toward a

consistent estimate as the number of observed jammed devices increases.

ENSEMBLE LOCALIZATION FRAMEWORK

 Input: Jammed drone dataset sample_df, jamming indicator column indicator_col

1 Define scenario_groups ← [(10,10), (5,20), (3,33), (2,50)]

2 Initialize intermediate_centers ← []

3 for each (num_scenarios, num_devices) in scenario_groups do

4 Generate random_scenarios ← draw num_scenarios subsets of size num_devices from

unique drone IDs

5 Initialize scenario_estimates ← []

6 for each scenario in random_scenarios do

7 Extract sample ← entries in df_jam from scenario's drone IDs

8 Compute:

9 JI_Centroid ← weighted average of coordinates using jamming indicator

10 MMLAW ← least-squares multilateration based on inverted indicator

11 RF ← KMeans centroid of RF predictions

12 XGB ← KMeans centroid of XGB predictions

13 Collect estimates ← [JI_Centroid, MMLAW, RF, XGB]

14 Compute scenario_center ← mean of estimates

15 Compute scenario_radius ← max distance of any estimate to center

16 Append estimates to scenario_estimates

17 end for

18 Compute group_center ← mean of all scenario_estimates

19 Compute group_radius ← max distance from group_center to any estimate

20 Append (group_center, group_radius) to intermediate_centers

21 end for

22 Compute final_center ← mean of all group_centers

23 Compute final_radius ← max distance from final_center to any group_center

24 Return final_center, final_radius

87

Chapter 6

Results and Evaluation for Jamming Detection and Localization

6.1 Jamming Detection Results 87

6.2 Jamming Detection Evaluation 91

6.3 Jamming Localization Results 98

6.4 Jamming Localization Evaluation 110

6.1 Jamming Detection Results

To visualize the network’s data, we first plotted RSSI over Time (Figure 6.1.1) for each

device. It can be determined from the plot that RSSI data suddenly changes during the

middle of 08/02/2023, which is also the known jamming period time.

Figure 6.1.1: RSSI over Time for Mote01 – Mote05.

88

After calculating the new metric of Packet Loss Ratio (PLR) as described in Chapter 5,

we also plot the PLR over time for the whole network in one plot (Mote01 – Mote05).

Figure 6.1.2: Network’s PLR over time

A clear rise in PLR values during the defined jamming period (February 8th, 14:15–

17:00) can be observed, confirming the correlation between jamming and packet

disruption.

ML Methods Results (Plots)

Machine learning-based detection methods were visualized with anomaly scatter plots

and evaluated against ground truth labels and confusion matrices. Each model

successfully detected a significant portion of the jamming period (which is shadowed

with grey in scatter plots). All anomalies are marked considering the 20-minute intervals

that were used for the PLR estimation and visualized as red dots (Figures 6.1.4 – 6.1.10).

Figure 6.1.3: LSTM jamming detection across dataset

89

Figure 6.1.4: SVM jamming detection across dataset

Figure 6.1.5: BLR jamming detection across dataset

Figure 6.1.6: Random Forest jamming detection across dataset

90

Figure 6.1.7: CNN 1-D jamming detection across dataset

Figure 6.1.8: XGBoost jamming detection across dataset

Figure 6.1.9: K-Means jamming detection across dataset

91

6.2 Jamming Detection Evaluation

Confusion matrices showed each model's predictive performance and can be easily

compared to determine the most effective ML technique. In these matrices, the true

positives (TP) represent correctly identified jamming intervals, while true negatives

(TN) correspond to correctly identified normal periods. In contrast, false positives (FP)

showcase incorrect jamming detection instances (i.e., false alarms) and false negatives

(FN) correspond to incorrectly identified normal events (i.e., real attacks that are

overlooked).

Term Meaning

True Positive (TP)

Jamming occurred and was correctly predicted by the model

True Negative (TN)

No jamming occurred and was correctly predicted as normal by

the model

False Positive (FP)

No jamming occurred, but the model incorrectly predicted it as

jamming (false alarm).

False Negative (FN)

Jamming occurred, but the model failed to detect it and predicted

normal (missed attack).

Table 6.2.1: Classification Terms Explanation in Jamming Detection

A high number of TP and TN indicates accurate detection, which is important for

minimizing both missed jamming events (FN) and false alarms (FP).

Essentially, for effective jamming detection, both FN and FP should be low FN, with

FN being more important (thus, must be minimized) to ensure real attacks are not

overlooked.

Figure 6.2.1: Confusion Matrix Representation for Jamming Detection

92

1. LSTM Autoencoder 2. SVM

3. BLR 4. Random Forest

93

Figure 6.2.2: Confusion Matrices across all methods

Method TP TN FP FN

LSTM 9 644 4 3

SVM 8 642 6 4

BLR 9 647 1 3

RF 12 648 0 0

1D-CNN 11 635 3 1

XGBoost 12 647 1 0

K-Means 9 647 1 3

Table 6.2.2: Classification Results for all Machine Learning techniques.

Among all methods, Random Forest achieved perfect results (TP = 12, FP = 0) and

XGBoost near-perfect results (TP = 12, FP = 1) both correctly identifying all jamming

5. CNN 1-D 6. XGBOOST

7. K-MEANS

94

instances and minimizing false predictions. These models achieved the highest overall

reliability, with no false negatives, ensuring no jamming events were missed.

Conversely, One-Class SVM and LSTM exhibited higher false positive and false negative

rates, indicating lower sensitivity and more frequent misclassifications. For instance,

One-Class SVM missed 4 jamming periods (FN) and incorrectly flagged 6 normal periods

as jamming (FP).

Evaluation Metrics Overview

Accuracy measures the overall correctness of a model by evaluating how many

predictions were correct over the total number of predictions. It can be misleading in

imbalanced datasets, as it may remain high even if the model fails to detect rare classes

(in our case, jamming events).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision quantifies how many of the instances predicted as positive (jamming) were

actually correct. It is especially important to be considered when false alarms (false

positives) need to be minimized.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall, also known as sensitivity or true positive rate, measures how well the model

detects actual positive cases (jamming intervals). A high recall means fewer jamming

events are missed.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

95

Specificity measures how well the model identifies negative cases correctly. It

complements recall by focusing on the true negative rate.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Lastly, the F1-score which is defined as the harmonic mean of precision and recall,

provides a balanced metric especially useful for imbalanced datasets. It is more

informative than accuracy when class distributions are uneven.

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The F1-score is a crucial evaluation metric in this study because the dataset is imbalanced,

with jamming events occurring during only a small portion of the total monitoring period.

This imbalance was further emphasized when the data was split into short time intervals

for PLR calculation.

In such cases, relying on metrics like accuracy alone can be misleading, therefore the F1-

score attempts to address this issue by combining both precision and recall. It provides a

balanced view of the model's performance, especially on the minority class (jamming).

Method Accuracy Precision Recall

(Sensitivity)

Specificity F1-Score

RF 100.00% 100.00% 100.00% 100.00% 100.00%

XGBoost 99.85% 92.31% 100.00% 99.85% 96.00%

1D-CNN 99.38% 78.57% 91.67% 99.53% 84.62%

BLR 99.39% 90.00% 75.00% 99.85% 81.82%

K-Means 99.39% 90.00% 75.00% 99.85% 81.82%

LSTM 98.94% 69.23% 75.00% 99.38% 72.00%

SVM 98.48% 57.14% 66.67% 99.07% 61.54%

Table 6.2.3: Evaluation metrics ranked by F1-score for all techniques.

The table above (Table 6.2.3) shows all the evaluation metrics for each method, ranked

by the F1-score, as it’s the most reliable performance metric for imbalanced datasets.

96

Based on the evaluation metrics, Random Forest (RF) achieved perfect performance

across all indicators. This suggests it is the most reliable model for jamming detection in

this study, with no false positives (FP) or false negatives (FN). XGBoost also performed

exceptionally well, achieving high recall (100%) and precision (92.31%), indicating that

it successfully identified all jamming instances with minimal false alarms. 1D-CNN

showed strong generalization with high recall (91.67%) and a balanced F1-score

(84.62%), making it a solid deep learning alternative.

On the other hand, SVM and LSTM underperformed compared to the other methods,

particularly in precision and F1-score, suggesting a tendency to misclassify normal data

as jamming.

Overall, tree-based models like Random Forest and XGBoost provided the best trade-off

between detection accuracy and false alarm reduction, making them the most suitable for

this specific deployment in LoRaWAN jamming detection.

Figure 6.2.3: Bar chart evaluation metrics comparison across models

It must be highlighted that accuracy which remains high across all models, might not be

the most reliable performance metric in this case. This is due to the imbalanced nature of

the dataset, where normal (non-jamming) intervals significantly outnumber jamming

ones.

97

Lastly, because this dataset lacks geographic coordinates for each mote and the jammer,

no direct localization can be applied. However, the jamming impact (JI) score can still

be calculated for each mote. The Jamming Impact (JI) score is the key metric used for the

second part of the thesis’ implementation, i.e. the localization part on another dataset.

The JI score for each mote is calculated using a weighted combination of the change in

Packet Loss Ratio (PLR), RSSI deviation, and SNR drop between the pre-jamming and

jamming periods:

𝐽𝐼 = 𝑤𝑝𝑙𝑟 × (PLR𝑗𝑎𝑚𝑚𝑖𝑛𝑔 − PLR𝑛𝑜𝑟𝑚𝑎𝑙) + 𝑤𝑟𝑠𝑠𝑖 × (RSSI𝑛𝑜𝑟𝑚𝑎𝑙 − RSSI𝑗𝑎𝑚𝑚𝑖𝑛𝑔)

+ 𝑤𝑠𝑛𝑟 × (SNR𝑛𝑜𝑟𝑚𝑎𝑙 − SNR𝑗𝑎𝑚𝑚𝑖𝑛𝑔)

Where:

𝑤𝑝𝑙𝑟 = 0.4, 𝑤𝑟𝑠𝑠𝑖 = 0.3, 𝑤𝑠𝑛𝑟 = 0.3

Table 6.2.4: Jamming Impact Scores per Mote

Figure 6.2.4: Bar Chart Comparison of Jamming Impact Scores per Mote

Mote Impact Score

Mote3 8.60

Mote4 5.39

Mote1 4.55

Mote2 3.45

Mote5 0.62

98

In conclusion, Mote3 experienced the highest impact (JI = 8.60), followed by Mote4 and

Mote1, indicating proximity to or stronger exposure from the jammer. This scoring

approach serves as a proxy for impact-based localization, since the absence of coordinate

data prevents the application of more precise localization techniques (e.g. trilateration).

6.3 Jamming Localization Results

Experimental Design

Our approach applies all four implemented localization algorithms (RF, XGB, MMLAW,

JIWC) across controlled subsets of jammed devices. The dataset was first filtered to

include only communication entries corresponding to the LoRa protocol, with a jamming

label of 1. From the filtered dataset, 100 unique jammed drone identifiers were available

for experimentation. These were partitioned into progressively larger groups to analyze

scalability (Table 6.3.1). For each scenario, all four methods were applied to the same

subset of devices, generating independent jammer coordinate estimates.

Figure 6.3.1: Geographic locations of jammed drone devices participating in the LoRa network.

99

Scenario Definition

The scenario design process involved dividing the dataset into five progressively larger

groups to observe how localization performance scales with increased data availability.

The following scenario configurations were used:

Configuration Number of

scenarios

Number of devices

(in each scenario)

1 10 10

2 5 20

3 3 33

4 2 50

5 1 100

Table 6.3.1: Groups of random data splits for the 100 unique drones

For each configuration, the drone IDs were selected randomly using a random seed.

Within each scenario, all four localization methods were applied independently on the

same subset of drones to generate four distinct (latitude, longitude) estimates representing

the predicted jammer position. In the following section, we provide the results with all

the plots required. Before showing all the plots, we will present the two types of plots

along with some explanations.

Scenario-Level Aggregation (Plot Type 1)

For every scenario (e.g., a group of 10 devices), all four localization methods (RF, XGB,

MMLAW, JIWC) were applied independently, yielding four predicted jammer

coordinates. This set of predictions is then processed using ensemble logic by averaging

the coordinates, allowing us to reduce method-specific bias and isolate the most probable

jammer location per scenario. The results are visualized in Plot Type 1 (Fig. 6.3.2), which

shows:

1. Jammed Drones: Plotted with color intensity based on their jamming impact

score (darker red indicates stronger impact), a metric used by the methods.

2. Method Estimates: Each of the four methods' predictions shown as distinct

markers.

100

3. Scenario Center: Computed as the mean of all method estimates (gray dot).

4. Estimation Radius: The maximum Euclidean distance from any method's

estimate to the center (dashed gray circle), quantifying the worst-case dispersion

of predictions.

Figure 6.3.2: Example of Plot Type 1

Configuration-Level Aggregation (Plot Type 2)

Plot Type 2 (Fig. 6.3.3) synthesizes intermediate results across all scenarios within a

configuration (e.g., five 20-device groups) to reveal system-level trends. More

specifically, it superimposes all scenario estimation circles and centers (gray dots) from

Type 1 plots and displays the final configuration-level jammer position (black dot) as the

average of all scenario centers.

Figure 6.3.3: : Example of Plot Type 2

101

Configuration 1: 10 scenarios x 10 devices

102

Figure: 6.3.4: 10 Scenario Plots for 10x10 Configuration (Type 1)

Figure: 6.3.5: Intermediate Result Plot for 10x10 Configuration (Type 2)

103

Configuration 2: 5 scenarios x 20 devices

Figure: 6.3.6: 5 Scenario Plots for 5x20 Configuration (Type 1) and Intermediate Result Plot

(Type 2)

104

Configuration 3: 3 scenarios x 33 devices

Figure: 6.3.7: 3 Scenario Plots for 3x33 Configuration (Type 1)

Figure: 6.3.8: Intermediate result plot for 3x33 configuration (Type 2)

105

Configuration 4: 2 scenarios x 50 devices

 Figure: 6.3.9: 3 Scenario Plots for 3x33 Configuration (Type 1)

Figure: 6.3.10: Intermediate result plot for 2x50 configuration (Type 2)

106

Configuration 5: 1 scenario x 100 devices

Figure: 6.3.11: 1 Scenario Plot for 1x100 Configuration (Type 1)

Figure: 6.3.12: Intermediate result plot for 1x100 configuration (Type 2)

Devices Latitude Longitude Radius (degrees)

10 11.243996 -12.138278 64.82

20 0.524562 -1.187424 39.81

33 -0.929483 -0.002457 22.13

50 1.540155 1.641561 12.88

100 -1.958810 -0.064555 13.02

Table 6.3.2: Intermediate results after execution of the four configurations

107

Figure 6.3.13: Impact of Device Count on Localization Accuracy (Estimation Radius)

The figure 6.3.13 demonstrates that as the number of jammed devices per scenario

increases, the estimation radius consistently decreases. The estimation radius decreases

from 64.82° (10 devices) to 13.02° (100 devices) - an 80% reduction in dispersion. This

indicates improved localization accuracy with larger device groups, suggesting that a

higher number of input data points leads to more consistent and convergent jammer

predictions. In other words, more devices lead to greater agreement among localization

methods and more reliable jammer detection.

For the final jammer localization, all previous intermediate results are aggregated

together. The final plot (Figure 6.3.12) presents the overall results from all four groups

(10x10, 5x20, 3x33, 2x50 and 1x100 groups), showing their estimated jammer positions.

Based on the four results, final location is approximated by the mean center. Table 6.3.3

shows all the coordinates used for the plot and table 6.3.4 shows the final jammer

estimation coordinates (grey dots).

108

Devices in Each

Scenario

Latitude Longitude

10 11.2440 -12.1383

20 0.5246 -1.1874

33 -0.9295 -0.0025

50 1.5402 1.6416

100 -1.9588 -0.0646

Table 6.3.3: Jammer Localization Estimates by Scenario

Figure 6.3.14: Final Jammer Location Estimation (including 10x10 Configuration)

Figure 6.3.15: Final Jammer Location Estimation (excluding 10x10 configuration)

109

Hence, since Figure 6.3.13 evidently shows a radius of dispersion decreasing with

increasing device groups per scenario, it can be concluded that larger device groups lead

to more consistent and reliable jammer localization. Furthermore, the final plots in

Figures 6.3.14 and 6.3.14 show that the estimated jammer locations for each of the four

different group configurations are closely clustered around a common center. This

convergence indicates that despite the absence of ground truth coordinates, the

localization methods and aggregation strategy point to a consistent region, which is an

internal consistency of the proposed approach.

While the final mean jammer position was initially calculated including all

configurations, we observed that the 10x10 configuration exhibited the largest dispersion

radius and highest inconsistency. For completeness, we also computed the mean center

excluding the 10x10 configuration.

Final Mean Center

Estimation

Latitude Longitude

Mean center (incl.

10x10 scenario)

2.084084 -2.350231

Mean center (excl.

10x10 scenario)

-0.205894 0.096781

Table 6.3.4: Final Mean Center Estimates

Notably, all configurations converge toward (0,0), with 33-device scenarios averaging (-

0.93, -0.002) and 100-device scenarios reaching (-1.96, -0.065). This consistent

progression strongly suggests the jammer was intentionally placed at the origin (0,0)

during data collection. Additionally, as shown in Table 6.3.4, the exclusion leads to a

mean estimate much closer to the origin (0,0). This further strengthens our conclusion

regarding the jammer's true position.

We will use this hypothesis as a reference point to evaluate localization accuracy and

method performance in Section 6.4, where we analyze and compare the estimated jammer

positions against the assumed true location.

110

 6.4 Jamming Localization Evaluation

Since the dataset used in this study does not give ground truth coordinates for the actual

position of the jammer, direct error-based evaluation, i.e., estimation of localization

accuracy or distance to true point, is not feasible. In the absence of labeled coordinates,

we rely instead on internal consistency indicators to assess the effectiveness of the

proposed localization techniques. These indicators include agreement among different

methods, reduction in dispersion (i.e., estimation radius), and convergence toward a stable

center as the number of jammed devices increases.

To overcome the lack of ground truth, we introduced a hypothesis based on observed

convergence patterns: the jammer was likely positioned at the origin (0,0) during data

collection. This assumption is supported by consistent localization trends across all

configurations that were described in Section 6.3. Using this hypothesis, we can evaluate

each method’s performance by comparing estimated coordinates against the (0,0)

reference and measuring their Euclidean distance. This strategy enables relative error

calculations and facilitates ranking of methods across different device group sizes.

The following figures and tables present the evaluation results based on this hypothesis.

Configuration Latitude Longitude Lat

Distance (°)

Lon

Distance (°)

Euclidean

Distance (°)

10 Devices 11.2440 -12.1383 11.2440 12.1383 16.4643

20 Devices 0.5246 -1.1874 0.5246 1.1874 1.3005

33 Devices -0.9295 -0.0025 0.9295 0.0025 0.9295

50 Devices 1.5402 1.6416 1.5402 1.6416 2.2522

100 Devices -1.9588 -0.0646 1.9588 0.0646 1.9599

Mean

(incl. 10×10)

2.0841 -2.3502 2.0841 2.3502 3.1493

Mean

(excl. 10×10)

-0.2059 0.0968 0.2059 0.0968 0.2280

Table 6.4.1: Localization Estimates and Distances from Jammer Position (0,0)

111

Figure 6.4.1: Latitude and Longitude Error of Jammer Location Estimates Across

Configurations and Aggregated Mean Centers (Including and Excluding the 10x10 Scenario)

Figure 6.4.2: Euclidean Error of Jammer Location Estimates Across Configurations and

Aggregated Mean Centers (Including and Excluding the 10x10 Scenario)

The quantitative analysis demonstrates significant convergence of localization estimates

toward the hypothesized jammer position at (0,0). The 10-device scenario shows the

highest deviation (16.46° error) and was previously shown to have the largest estimation

radius, therefore its outlier behavior justifies treating it separately in the final analysis.

Nevertheless, all larger device groups achieve sub-2° accuracy, with the 33-device

configuration yielding the most precise estimate (0.93° error). This progression further

confirms that increased data availability improves localization reliability.

112

The final mean center estimates, computed by aggregating results across configurations,

further confirm the impact of noisy scenarios. When all configurations are included, the

mean center deviates by approximately 3.15° from the origin. In contrast, excluding the

10-device configuration yields a final mean center with a remarkably low error of just

0.23°.

Method Evaluation

To assess the performance of the four proposed jammer localization methods (JIWC,

MMLAW, RF, and XGBoost) we calculated their average Euclidean error across the five

different scenario configurations (10x10, 5x20, 3x33, 2x50, and 1x100). For each

configuration, the predicted jammer location by each method was compared against our

hypothesized ground truth at the origin (0,0), and the Euclidean distance in degrees

serving as our accuracy metric.

Table 6.4.2 presents the average Euclidean errors for each method across the five

configurations and Table 6.4.3 calculates the aggregated average error for each method.

As expected, all methods generally improve with larger device groups. Notably, RF

achieved the lowest average error (11.2°), followed closely by JIWC (12.5°) and

XGBoost (13.2°) also performing reliably. MMLAW demonstrated the highest average

error (22.44°), suggesting that geometric localization may be more sensitive to

distribution or noise in the input dataset.

Configuration RF XGB MMLAW JIWC

10x10 24.188 28.529 40.539 30.187

5x20 12.535 13.442 23.191 10.494

3x33 7.249 12.855 21.183 10.465

2x50 7.508 8.220 12.889 8.007

1x100 4.525 2.993 14.421 3.329

Table 6.4.2: Average Euclidean Errors (°) per Method and Configuration

113

Rank Method Avg. Error (°)

1 RF 11.201

2 JIWC 12.496

3 XGB 13.208

4 MMLAW 22.444

Table 6.4.3: Average Method Performance Ranking Across All Configurations

114

Chapter 7

Conclusion

7.1 Summary 114

7.2 Challenges 114

7.3 Future Work 115

7.1 Summary

This project explored the intersection of indoor localization and machine learning with a

keen interest in jamming detection and localization in LoRaWAN IoT networks. A

thorough literature review outlined the evolution of wireless technologies, fingerprinting

methods, and security concerns across WSN, IoT, and LPWAN systems. Several

supervised, unsupervised, and ensemble machine learning models were evaluated for

anomaly detection, showing varied performance based on the nature of the data and model

complexity. The framework’s implementation provided a multi-step process, from

jamming detection via PLR/SNR/RSSI anomalies to estimating attacker location using

an ensemble approach. Evaluation results confirmed the effectiveness of machine

learning and deep learning models for accurate detection, while simpler scoring methods

provided a practical approach for estimating jamming impact without device coordinates.

7.2 Challenges

Some of the challenges we encountered during the development of the suggested jammer

detection-localization framework:

• Dataset Inconsistency and Missing Location Data

It was not possible to directly apply localization algorithms on the initial dataset of

jamming events, since it lacked location (coordinates) information of both gateways and

115

end devices. That didn’t affect the anomaly detection part, which was originally

implemented with various ML and DL models on the initial dataset.

• Selection of machine learning algorithms and optimization of hyperparameters

The dataset properties and localization requirements should be considered when

selecting the best machine learning methods and hyperparameters. Finding the most

suitable method requires choosing a model based on performance indicators and cross-

validation.

7.3 Future Work

Future work could expand on this study by applying the proposed methods to datasets

that include ground-truth coordinates, allowing for direct localization performance

comparisons. It should also be considered extending the classification of jamming types

(e.g., reactive, random) and introducing mobile attackers to enhance the robustness and

realism of future indoor localization and security systems.

116

References

[1] “Number of Internet of Things (IoT) connections worldwide from 2022 to 2023,”

Statista. Accessed: May 19, 2025. [Online]. Available:

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[2] V. Sneha and M. Nagarajan, “Localization in Wireless Sensor Networks: A

Review,” Cybern. Inf. Technol., vol. 20, no. 4, pp. 3–26, Nov. 2020, doi:

10.2478/cait-2020-0044.

[3] T. Ahmad, X. J. Li, M. Ashfaq, M. Savva, I. Ioannou, and V. Vassiliou, “Location-

enabled IoT (LE-IoT): Indoor Localization for IoT Environments using Machine

Learning,” in 2024 20th International Conference on Distributed Computing in

Smart Systems and the Internet of Things (DCOSS-IoT), Abu Dhabi, United Arab

Emirates: IEEE, Apr. 2024, pp. 392–399. doi: 10.1109/DCOSS-

IoT61029.2024.00065.

[4] Mawahib Sharafeldin Adam Boush, “Enhancing IoT Network Attack Detection

with Ensemble Machine Learning and Efficient Feature Extraction,” J. Inf. Syst.

Eng. Manag., vol. 10, no. 20s, pp. 288–298, Mar. 2025, doi:

10.52783/jisem.v10i20s.3054.

[5] S. M. Maghdid and H. Maghdid, “A Comprehensive Review of Indoor/Outdoor

Localization Solutions in IoT era: Research Challenges and Future Perspectives,”

Aug. 13, 2021. doi: 10.36227/techrxiv.15138609.

[6] M. Savva, I. Ioannou, and V. Vassiliou, “Evaluating Localization Algorithms in

IoT Networks Under Jamming Attacks,” in 2024 IFIP Networking Conference

(IFIP Networking), Thessaloniki, Greece: IEEE, Jun. 2024, pp. 627–633. doi:

10.23919/IFIPNetworking62109.2024.10619065.

[7] V. Di Pietra, P. Dabove, and M. Piras, “Loosely Coupled GNSS and UWB with

INS Integration for Indoor/Outdoor Pedestrian Navigation,” Sensors, vol. 20, no.

21, p. 6292, Nov. 2020, doi: 10.3390/s20216292.

[8] H. Obeidat, W. Shuaieb, O. Obeidat, and R. Abd-Alhameed, “A Review of Indoor

Localization Techniques and Wireless Technologies,” Wirel. Pers. Commun., vol.

119, no. 1, pp. 289–327, Jul. 2021, doi: 10.1007/s11277-021-08209-5.

[9] M. Rahman, M. NagshvarianJahromi, S. S. Mirjavadi, and A. M. Hamouda,

“Compact UWB Band-Notched Antenna with Integrated Bluetooth for Personal

117

Wireless Communication and UWB Applications,” Electronics, vol. 8, no. 2, p.

158, Feb. 2019, doi: 10.3390/electronics8020158.

[10] S. F. Ahmed et al., “Toward a Secure 5G-Enabled Internet of Things: A Survey on

Requirements, Privacy, Security, Challenges, and Opportunities,” IEEE Access,

vol. 12, pp. 13125–13145, 2024, doi: 10.1109/ACCESS.2024.3352508.

[11] Z. Liu, L. Chen, X. Zhou, Z. Jiao, G. Guo, and R. Chen, “Machine Learning for

Time-of-Arrival Estimation With 5G Signals in Indoor Positioning,” IEEE Internet

Things J., vol. 10, no. 11, pp. 9782–9795, Jun. 2023, doi:

10.1109/JIOT.2023.3234123.

[12] T. Perković, L. Dujić Rodić, J. Šabić, and P. Šolić, “Machine Learning Approach

towards LoRaWAN Indoor Localization,” Electronics, vol. 12, no. 2, p. 457, Jan.

2023, doi: 10.3390/electronics12020457.

[13] J. Šabić, T. Perković, D. Begušić, and P. Šolić, “Practical Realization of Reactive

Jamming Attack on Long-Range Wide-Area Network,” Sensors, vol. 25, no. 8, p.

2383, Apr. 2025, doi: 10.3390/s25082383.

[14] A. Augustin, J. Yi, T. Clausen, and W. Townsley, “A Study of LoRa: Long Range

& Low Power Networks for the Internet of Things,” Sensors, vol. 16, no. 9, p.

1466, Sep. 2016, doi: 10.3390/s16091466.

[15] N. Hou, X. Xia, and Y. Zheng, “Jamming of LoRa PHY and Countermeasure,” in

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications,

Vancouver, BC, Canada: IEEE, May 2021, pp. 1–10. doi:

10.1109/INFOCOM42981.2021.9488774.

[16] “LoRa Alliance,” LoRa Alliance®. Accessed: Apr. 14, 2025. [Online]. Available:

https://lora-alliance.org/

[17] “Network Options.” Accessed: Apr. 14, 2025. [Online]. Available:

https://resources.lora-alliance.org/private-vs-public-networks

[18] “RP002-1.0.4 Regional Parameters,” LoRa Alliance®. Accessed: Apr. 14, 2025.

[Online]. Available: https://resources.lora-alliance.org/technical-

specifications/rp002-1-0-4-regional-parameters

[19] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T.

Watteyne, “Understanding the Limits of LoRaWAN,” IEEE Commun. Mag., vol.

55, no. 9, pp. 34–40, 2017, doi: 10.1109/MCOM.2017.1600613.

118

[20] Y. Yu et al., “Adaptive Multi-Channels Allocation in LoRa Networks,” IEEE

Access, vol. 8, pp. 214177–214189, 2020, doi: 10.1109/ACCESS.2020.3040765.

[21] E. Aras, N. Small, G. S. Ramachandran, S. Delbruel, W. Joosen, and D. Hughes,

“Selective Jamming of LoRaWAN using Commodity Hardware,” in Proceedings

of the 14th EAI International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services, Nov. 2017, pp. 363–372. doi:

10.1145/3144457.3144478.

[22] H. Alqurashi, F. Bouabdallah, and E. Khairullah, “SCAP SigFox: A Scalable

Communication Protocol for Low-Power Wide-Area IoT Networks,” Sensors, vol.

23, no. 7, p. 3732, Apr. 2023, doi: 10.3390/s23073732.

[23] Y. Li et al., “Location-Enabled IoT (LE-IoT): A Survey of Positioning

Techniques, Error Sources, and Mitigation,” IEEE Internet Things J., vol. 8, no. 6,

pp. 4035–4062, Mar. 2021, doi: 10.1109/JIOT.2020.3019199.

[24] R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on LPWA technology: LoRa

and NB-IoT,” ICT Express, vol. 3, no. 1, pp. 14–21, Mar. 2017, doi:

10.1016/j.icte.2017.03.004.

[25] M. Savva, “A Framework for the Detection, Localization, and Recovery from

Jamming Attacks in the Internet of Things,” University of Cyprus, Nicosia,

Cyprus, 2024. doi: 10.13140/RG.2.2.35507.95525.

[26] G. Pettorru, V. Pilloni, and M. Martalò, “Trustworthy Localization in IoT

Networks: A Survey of Localization Techniques, Threats, and Mitigation,”

Sensors, vol. 24, no. 7, p. 2214, Mar. 2024, doi: 10.3390/s24072214.

[27] R. Shahbazian, G. Macrina, E. Scalzo, and F. Guerriero, “Machine Learning

Assists IoT Localization: A Review of Current Challenges and Future Trends,”

Sensors, vol. 23, no. 7, p. 3551, Mar. 2023, doi: 10.3390/s23073551.

[28] G. Oguntala, R. Abd-Alhameed, S. Jones, J. Noras, M. Patwary, and J. Rodriguez,

“Indoor location identification technologies for real-time IoT-based applications:

An inclusive survey,” Comput. Sci. Rev., vol. 30, pp. 55–79, Nov. 2018, doi:

10.1016/j.cosrev.2018.09.001.

[29] O. Cheikhrouhou, G. M. Bhatti, and R. Alroobaea, “A Hybrid DV-Hop Algorithm

Using RSSI for Localization in Large-Scale Wireless Sensor Networks,” Sensors,

vol. 18, no. 5, p. 1469, May 2018, doi: 10.3390/s18051469.

119

[30] N. Podevijn et al., “LoRaWAN Geo-Tracking Using Map Matching and Compass

Sensor Fusion,” Sensors, vol. 20, no. 20, p. 5815, Oct. 2020, doi:

10.3390/s20205815.

[31] T. Perković, L. Dujić Rodić, J. Šabić, and P. Šolić, “Machine Learning Approach

towards LoRaWAN Indoor Localization,” Electronics, vol. 12, no. 2, p. 457, Jan.

2023, doi: 10.3390/electronics12020457.

[32] T. Yang, A. Cabani, and H. Chafouk, “A Survey of Recent Indoor Localization

Scenarios and Methodologies,” Sensors, vol. 21, no. 23, p. 8086, Dec. 2021, doi:

10.3390/s21238086.

[33] J. Jiao, X. Wang, and C. Han, “Robust Indoor Localization in Dynamic

Environments: A Multi-source Unsupervised Domain Adaptation Framework,”

Feb. 11, 2025, arXiv: arXiv:2502.07246. doi: 10.48550/arXiv.2502.07246.

[34] T. Alhmiedat, “Fingerprint-Based Localization Approach for WSN Using Machine

Learning Models,” Appl. Sci., vol. 13, no. 5, p. 3037, Feb. 2023, doi:

10.3390/app13053037.

[35] X. Yu, H. Wang, and J. Wu, “A method of fingerprint indoor localization based on

received signal strength difference by using compressive sensing,” EURASIP J.

Wirel. Commun. Netw., vol. 2020, no. 1, p. 72, Dec. 2020, doi: 10.1186/s13638-

020-01683-8.

[36] L. Gui, T. Val, A. Wei, and R. Dalce, “Improvement of range-free localization

technology by a novel DV-hop protocol in wireless sensor networks,” Ad Hoc

Netw., vol. 24, pp. 55–73, Jan. 2015, doi: 10.1016/j.adhoc.2014.07.025.

[37] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann, “Weighted

Centroid Localization in Zigbee-based Sensor Networks,” in 2007 IEEE

International Symposium on Intelligent Signal Processing, Alcala de Henares,

Spain: IEEE, 2007, pp. 1–6. doi: 10.1109/WISP.2007.4447528.

[38] H. Liu, Z. Liu, Y. Chen, and W. Xu, “Determining the position of a jammer using

a virtual-force iterative approach,” Wirel. Netw., vol. 17, no. 2, pp. 531–547, Feb.

2011, doi: 10.1007/s11276-010-0295-6.

[39] X. Guo, N. Ansari, L. Li, and L. Duan, “A Hybrid Positioning System for

Location-Based Services: Design and Implementation,” IEEE Commun. Mag., vol.

58, no. 5, pp. 90–96, May 2020, doi: 10.1109/MCOM.001.1900737.

120

[40] P. Chen et al., “Semi-Supervised Learning-Enhanced Fingerprint Indoor

Positioning by Exploiting an Adapted Mean Teacher Model,” Electronics, vol. 13,

no. 2, p. 298, Jan. 2024, doi: 10.3390/electronics13020298.

[41] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of Wireless Indoor Positioning

Techniques and Systems,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol.

37, no. 6, pp. 1067–1080, Nov. 2007, doi: 10.1109/TSMCC.2007.905750.

[42] X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based Fingerprinting for Indoor

Localization: A Deep Learning Approach,” IEEE Trans. Veh. Technol., pp. 1–1,

2016, doi: 10.1109/TVT.2016.2545523.

[43] V. S. Kulathunga Hettiarachchige, “Ensemble Machine Learning Techniques for

LoRa-based Wireless Indoor Localization Systems,” Dissertation, Uppsala

University, 2024. [Online]. Available: https://uu.diva-

portal.org/smash/get/diva2:1901610/FULLTEXT01.pdf

[44] Q. Zhu, Q. Xiong, K. Wang, W. Lu, and T. Liu, “Accurate WiFi-based indoor

localization by using fuzzy classifier and mlps ensemble in complex environment,”

J. Frankl. Inst., vol. 357, no. 3, pp. 1420–1436, Feb. 2020, doi:

10.1016/j.jfranklin.2019.10.028.

[45] J. Yoo, “Wi-Fi Fingerprint Indoor Localization by Semi-Supervised Generative

Adversarial Network,” Sensors, vol. 24, no. 17, p. 5698, Sep. 2024, doi:

10.3390/s24175698.

[46] Encord, “What is Ensemble Learning?,” Encord Blog. Accessed: Apr. 07, 2025.

[Online]. Available: https://encord.com/blog/what-is-ensemble-learning/

[47] IBM, “What Is Bagging? | IBM,” IBM. [Online]. Available:

https://www.ibm.com/think/topics/bagging

[48] Y. Wang, C. Xiu, X. Zhang, and D. Yang, “WiFi Indoor Localization with CSI

Fingerprinting-Based Random Forest,” Sensors, vol. 18, no. 9, p. 2869, Aug. 2018,

doi: 10.3390/s18092869.

[49] S. Jin and D. Kim, “WiFi Fingerprint Indoor Localization Employing Adaboost

and Probability-One Access Point Selection for Multi-Floor Campus Buildings,”

Future Internet, vol. 16, no. 12, p. 466, Dec. 2024, doi: 10.3390/fi16120466.

[50] Mawahib Sharafeldin Adam Boush, “Enhancing IoT Network Attack Detection

with Ensemble Machine Learning and Efficient Feature Extraction,” J. Inf. Syst.

121

Eng. Manag., vol. 10, no. 20s, pp. 288–298, Mar. 2025, doi:

10.52783/jisem.v10i20s.3054.

[51] M. Salimibeni and A. Mohammadi, “Hybrid Indoor Localization via

Reinforcement Learning-based Information Fusion,” 2022, arXiv. doi:

10.48550/ARXIV.2210.15132.

[52] J. Wang, Y. Fu, H. Feng, and J. Wang, “Transfer Learning for Indoor Localization

Algorithm Based on Deep Domain Adaptation,” Sensors, vol. 23, no. 23, p. 9334,

Nov. 2023, doi: 10.3390/s23239334.

[53] T. Suwannaphong, R. McConville, and I. Craddock, “Transfer Learning of RSSI to

Improve Indoor Localisation Performance,” 2024, arXiv. doi:

10.48550/ARXIV.2412.09292.

[54] H. Pirayesh and H. Zeng, “Jamming Attacks and Anti-Jamming Strategies in

Wireless Networks: A Comprehensive Survey,” IEEE Commun. Surv. Tutor., vol.

24, no. 2, pp. 767–809, 2022, doi: 10.1109/COMST.2022.3159185.

[55] J. Petajajarvi, K. Mikhaylov, M. Hamalainen, and J. Iinatti, “Evaluation of LoRa

LPWAN technology for remote health and wellbeing monitoring,” in 2016 10th

International Symposium on Medical Information and Communication Technology

(ISMICT), Worcester, MA, USA: IEEE, Mar. 2016, pp. 1–5. doi:

10.1109/ISMICT.2016.7498898.

[56] I. Martinez, P. Tanguy, and F. Nouvel, “On the performance evaluation of

LoRaWAN under Jamming,” in 2019 12th IFIP Wireless and Mobile Networking

Conference (WMNC), Paris, France: IEEE, Sep. 2019, pp. 141–145. doi:

10.23919/WMNC.2019.8881830.

[57] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and

detecting jamming attacks in wireless networks,” in Proceedings of the 6th ACM

international symposium on Mobile ad hoc networking and computing, Urbana-

Champaign IL USA: ACM, May 2005, pp. 46–57. doi: 10.1145/1062689.1062697.

[58] T.-H. To and A. Duda, “Simulation of LoRa in NS-3: Improving LoRa

Performance with CSMA,” in 2018 IEEE International Conference on

Communications (ICC), Kansas City, MO: IEEE, May 2018, pp. 1–7. doi:

10.1109/ICC.2018.8422800.

[59] E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes, “Exploring the

Security Vulnerabilities of LoRa,” in 2017 3rd IEEE International Conference on

122

Cybernetics (CYBCONF), Exeter, United Kingdom: IEEE, Jun. 2017, pp. 1–6. doi:

10.1109/CYBConf.2017.7985777.

[60] A. Proano and L. Lazos, “Selective Jamming Attacks in Wireless Networks,” in

2010 IEEE International Conference on Communications, Cape Town, South

Africa: IEEE, May 2010, pp. 1–6. doi: 10.1109/ICC.2010.5502322.

[61] J. M. Marais, R. Malekian, and A. M. Abu-Mahfouz, “LoRa and LoRaWAN

testbeds: A review,” in 2017 IEEE AFRICON, Cape Town: IEEE, Sep. 2017, pp.

1496–1501. doi: 10.1109/AFRCON.2017.8095703.

[62] H. C. Yildirim, M. F. Keskin, H. Wymeersch, and F. Horlin, “Deceptive Jamming

in WLAN Sensing,” Jan. 02, 2024, arXiv: arXiv:2401.01101. doi:

10.48550/arXiv.2401.01101.

[63] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: attacks and

countermeasures,” in Proceedings of the First IEEE International Workshop on

Sensor Network Protocols and Applications, 2003., Anchorage, AK, USA: IEEE,

2003, pp. 113–127. doi: 10.1109/SNPA.2003.1203362.

[64] C. Del-Valle-Soto, L. J. Valdivia, R. Velázquez, J. A. Del-Puerto-Flores, J. Varela-

Aldás, and P. Visconti, “Adaptive Jamming Mitigation for Clustered Energy-

Efficient LoRa-BLE Hybrid Wireless Sensor Networks,” Sensors, vol. 25, no. 6, p.

1931, Mar. 2025, doi: 10.3390/s25061931.

[65] F. Yang, N. Shu, C. Hu, J. Huang, and Z. Niu, “Jammer Location‐Aware Method

in Wireless Sensor Networks Based on Fibonacci Branch Search,” J. Sens., vol.

2023, no. 1, p. 2261730, Jan. 2023, doi: 10.1155/2023/2261730.

[66] I. Ullah and Q. H. Mahmoud, “Design and Development of a Deep Learning-

Based Model for Anomaly Detection in IoT Networks,” IEEE Access, vol. 9, pp.

103906–103926, 2021, doi: 10.1109/ACCESS.2021.3094024.

[67] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the

development of realistic botnet dataset in the Internet of Things for network

forensic analytics: Bot-IoT dataset,” Future Gener. Comput. Syst., vol. 100, pp.

779–796, Nov. 2019, doi: 10.1016/j.future.2019.05.041.

[68] S. Garcia, A. Parmisano, and M. J. Erquiaga, “IoT-23: A labeled dataset with

malicious and benign IoT network traffic.” Zenodo, Jan. 20, 2020. doi:

10.5281/ZENODO.4743746.

123

[69] M. Babazadeh, “LoRa-Based Anomaly Detection Platform: Center and Sensor-

Side,” IEEE Sens. J., vol. 20, no. 12, pp. 6677–6684, Jun. 2020, doi:

10.1109/JSEN.2020.2976650.

[70] A. Kurniawan and M. Kyas, “Machine Learning Models for LoRa Wan IoT

Anomaly Detection,” in 2022 International Conference on Advanced Computer

Science and Information Systems (ICACSIS), Depok, Indonesia: IEEE, Oct. 2022,

pp. 193–198. doi: 10.1109/ICACSIS56558.2022.9923439.

[71] N. S. Senol, A. Rasheed, M. Baza, and M. Alsabaan, “Identifying Tampered

Radio-Frequency Transmissions in LoRa Networks Using Machine Learning,”

Sensors, vol. 24, no. 20, p. 6611, Oct. 2024, doi: 10.3390/s24206611.

[72] S. M. Danish, A. Nasir, H. K. Qureshi, A. B. Ashfaq, S. Mumtaz, and J.

Rodriguez, “Network Intrusion Detection System for Jamming Attack in

LoRaWAN Join Procedure,” in 2018 IEEE International Conference on

Communications (ICC), Kansas City, MO: IEEE, May 2018, pp. 1–6. doi:

10.1109/ICC.2018.8422721.

[73] I. Martinez, “(PDF) Jamming on LoRaWAN Networks : from modelling to

detection,” Institut National des Sciences Appliquées de Rennes, 2021. Accessed:

Apr. 11, 2025. [Online]. Available:

https://www.researchgate.net/publication/350939008_Jamming_on_LoRaWAN_N

etworks_from_modelling_to_detection

[74] B. Upadhyaya, S. Sun, and B. Sikdar, “Machine Learning-based Jamming

Detection in Wireless IoT Networks,” in 2019 IEEE VTS Asia Pacific Wireless

Communications Symposium (APWCS), Singapore: IEEE, Aug. 2019, pp. 1–5. doi:

10.1109/VTS-APWCS.2019.8851633.

[75] O. Punal, I. Aktas, C.-J. Schnelke, G. Abidin, K. Wehrle, and J. Gross, “Machine

learning-based jamming detection for IEEE 802.11: Design and experimental

evaluation,” in Proceeding of IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks 2014, Sydney, Australia: IEEE, Jun.

2014, pp. 1–10. doi: 10.1109/WoWMoM.2014.6918964.

[76] O. Osanaiye, A. S. Alfa, and G. P. Hancke, “A Statistical Approach to Detect

Jamming Attacks in Wireless Sensor Networks,” Sensors, vol. 18, no. 6, p. 1691,

May 2018, doi: 10.3390/s18061691.

124

[77] Srichard2, Srichard2/LoRa-Jamming-Dataset. (Mar. 16, 2023). [Online].

Available: https://github.com/Srichard2/LoRa-Jamming-Dataset

[78] Zenodi, “Drone Communication Dataset.” Kaggle, 2025. doi:

https://www.kaggle.com/dsv/10702965.

