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Abstract 

 

As Internet of Things (IoT) deployments grow across smart cities and critical 

infrastructures, ensuring the security and reliability of wireless communication becomes 

increasingly vital. LoRaWAN, being one of the popularly employed Low-Power Wide-

Area Network (LPWAN) protocols, is used extensively for low-energy and long-distance 

communication. Its unlicensed frequency utilization and centralized star topology, 

however, make it a particularly vulnerable protocol to jamming attacks. Despite 

numerous intrusion detection system (IDS) solutions, most do not address the spatial 

dimension of such attacks, leaving the source of disruption unlocalized. 

 

This study proposes a two-part framework dedicated to LoRaWAN networks: (i) a 

machine learning-oriented jamming classification system using features such as Packet 

Loss Ratio (PLR), Received Signal Strength Indicator (RSSI), and Signal-to-Noise Ratio 

(SNR) to classify jammed or normal intervals, and (ii) an ensemble localization 

framework that combines four methods, including an adapted version of the WSN-

oriented MMLAW algorithm for LoRaWAN's gateway architecture and the novel 

Jamming Impact Weighted Centroid (JIWC) method, to accurately estimate the jammer's 

location. 

 

Experimental results demonstrate that combining multiple features yields robust jamming 

detection, even against imbalanced datasets. The ensemble approach mitigates individual 

method weaknesses, while impact scoring and aggregation provide reliable estimates 

despite the absence of ground truth coordinates. This work contributes a practical solution 

for both detecting and localizing jamming threats in LoRaWAN systems, setting the 

foundation for enhanced security in low-power IoT networks. 
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Chapter 1 

 

Introduction 

 

 

 

1.1 Motivation            1 

1.2 Objective and Contribution         2 

1.3 Methodology                      2 

1.4 Thesis Organization            3 

 

 

1.1 Motivation 

 

The rise in Internet usage has prompted Internet of Things (IoT) protection companies to 

develop more advanced technologies and standard security practices to safeguard IoT 

devices from intrusions. Numerous methods have been proposed and discussed in  the 

literature for detecting anomalies in IoT and Wireless Sensor Networks (WSNs), 

highlighting the critical need for effective Intrusion Detection Systems (IDS). 

 

While many ML-based IDS solutions show high accuracy in detecting attacks, they 

frequently overlook the spatial aspect, i.e., the localization of the attacker or source of 

disruption, such as a jammer. In particular, indoor localization of attackers is 

underexplored, especially in LoRaWAN networks, despite its critical role in enabling 

effective mitigation strategies. This gap is primarily caused by LoRaWAN’s unique 

architecture, which makes it challenging to use traditional localization techniques, as it 

depends on centralized communication via gateways and lacks device-to-device 

interactions. 

Motivated by the shortcomings in current research, this thesis aims to bridge the identified 

gap, by providing a comprehensive review of state-of-the-art localization techniques and 
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proposing a framework for both jamming detection and jammer localization tailored 

towards LoRaWAN environments. Our interest in LoRaWAN is further motivated by its 

expanding worldwide popularity as well as its open and flexible deployment strategy. 

1.2 Objective and Contribution 

The main objective of this project is to investigate and implement a framework for the 

detection and localization of jamming attacks in LoRaWAN networks. One of the main 

challenges we faced was the limited availability of public datasets related specifically to 

LoRaWAN and jamming events. 

 

More precisely, this work provides a comprehensive review of existing localization 

technologies and detection methods applicable to LoRaWAN. We implemented and 

evaluated various machine learning models for jamming detection using a LoRaWAN 

dataset. Key network metrics, such as signal-to-noise ratio (SNR), received signal 

strength indicator (RSSI), and packet loss ratio (PLR) were carefully selected and 

processed to be combined in the jamming indicator (JI). 

 

Finally, despite the absence of ground truth location data, we developed an ensemble 

localization framework for a LoRa-based dataset. By analyzing consensus across methods 

and their convergence patterns, we hypothesized and validated the jammer's position at 

(0,0) through error metrics, demonstrating that our approach outperforms standalone 

methods in stability and precision. 

 

1.3 Methodology 

 

This thesis adopts a two-stage pipeline to address jamming in LoRaWAN networks: first, 

jamming detection is performed on a labeled LoRaWAN dataset using multiple machine 

learning (ML) models with features such as RSSI, SNR, and a carefully calculated Packet 

Loss Ratio (PLR) used to improve detection accuracy.  

 

For the second stage, jammer localization is carried out on a separate LoRa-based dataset 

using an ensemble of four different methods to mitigate individual weaknesses. One of 

the main approaches, MMLAW (Modified Multilateration Localization Algorithm with 
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Weights), was originally developed by Dr. Michalis Savva for WSNs, but was modified 

to suit LoRaWAN’s centralized gateway architecture. Additionally, this study proposes 

the Jamming Impact Weighted Centroid (JIWC) method, another localization solution.  

 

1.4 Thesis Organization  

 

Next, in Chapter 2 we provide the theoretical background on IoT, WSNs, LPWAN 

technologies, localization techniques, and jamming. Chapter 3 reviews related work on 

anomaly detection, jamming detection and localization in both WSN and LoRa-based 

networks. In Chapter 4, we include the detailed implementation of machine learning 

methods for our jamming detection framework, and accordingly, in Chapter 5 we present 

the design and application of multiple jammer localization methods on a separate LoRa 

dataset. Chapter 6 summarizes and discusses the results of both jamming detection and 

localization, including evaluation insights. Lastly, in Chapter 7 we provide conclusions, 

highlight key findings, limitations, and potential directions for future research. 
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Chapter 2 

 

Theoretical Background 

 

 

2.1 WSNs and IoT Networks        5 

2.2 Localization Technologies Overview      6 

2.3 LPWAN Technologies        12 

2.3.1 LoRa         13 

2.3.2 Sigfox         19 

2.3.3 NB-IoT         20 

2.4 Localization Techniques Overview      22 

2.4.1 A Broad Taxonomy of Localization Methods    22 

2.4.2 Detailed Overview of Localization Methods    26 

2.5 Machine Learning Algorithms in Localization     42 

2.6 Jamming Attacks in WSNs and LoRa      47 

2.7 Wi-Fi Jamming Limitations in LoRaWAN     56 

 

 

 

In this section, multiple key definitions will be provided along with the necessary 

theoretical background, information that is essential support the remainder of this study. 

First, all the relevant technologies for indoor localization will be presented, with 

particular emphasis on LoRaWAN. Then, an overview of the most relevant localization 

techniques will be exhibited, with a special sub-section dedicated to Machine Learning 

approaches. Following this, we will discuss possible attacks in IoT and WSN, focusing 

mostly on jamming, which is the central concern of this research. Finally, we explore 

jamming attacks in IoT and WSN networks to understand their impact on communication 

and localization performance. 
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2.1. WSNs and IoT Networks 

 

 

Figure 2.1.1: Number of Internet of Things (IoT) connections worldwide from 2022 to 

2023, with forecasts from 2024 to 2033 [1].  

A wireless sensor network (WSN) consists of hundreds to thousands of sensor nodes, 

each designed primarily for distributed data sensing. These nodes communicate 

wirelessly and send their collected data to a central base station for processing and 

analysis. However, they are limited by various constraints like power, energy, efficiency 

and deployment challenges [2]. 

Internet of Things (IoT) has gained substantial traction in the industrial and academic 

communities and extends this paradigm by building an intelligent, interconnected 

network through the combination of cyber and physical systems. This self-organized 

network involves sensors, actuators, and mobile devices (also referred to as “things”) that 

communicate data through standardized network protocols [3]. 

 

Healthcare applications, sensor networks, smart homes, smart cities, corporate networks, 

smart grid technologies, and web applications are just a few of the application areas that 

have made use of IoT technology. As these applications develop across various fields, 

they bring to the surface several challenges including  keeping devices and networks safe, 
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preventing attacks on IoT systems and managing networks that have limited resources 

[4]. 

 

The widespread deployment of IoT systems allows one to have increased data movement 

and more complex device-to-device interactions, creating new opportunities for 

cybercriminals [5]. There are plenty of advantages to using tiny internet-connected 

devices, such as helping individuals be more efficient, but they also introduce security 

risks. The sheer number of IoT devices enables malicious actors to seek new ways of 

exploiting vulnerable systems. Compounding these challenges is the inherent 

heterogeneity of IoT infrastructure, where the amalgamation of various technologies yield 

unique vulnerabilities in security that typical protection measures like access control, 

encryption, and authentication  often fail to adequately counteract [4]. 

 

Localization is a critical component in WSNs and IoT systems [5] and represents the 

process of determining the physical position of stationary or movable devices (e.g., 

smartphones, beacons, drones, etc.)  within a network. While the underlying concept of 

localization traces back to NASA's satellite-based tracking systems developed in the 

1960s [3], modern implementations go far beyond conventional navigation and object 

tracking. Of particular importance is localization's crucial role in cybersecurity 

frameworks, where Intrusion Detection Systems (IDS). Pinpointing an attacker’s location 

(e.g., a jammer) becomes essential for maintaining network integrity, especially in 

wireless environments that are susceptible to disruption [6]. 

 

Figure 2.1.2: Motivation for jammer localization in IoT environments. 

 

2.2 Localization Technologies Overview 

 

Global Navigation Satellite Systems (GNSS) are the cornerstone of outdoor positioning 

and offer worldwide coverage, with many GPS systems using this technology (United 
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States, Russia, China, European Union [5]). GNSS employs a triangulation technique to 

estimate location by receiving signals from multiple satellites. However, GNSS struggles 

significantly when applied to interior navigation due to the presence of signal distortions. 

Signal attenuation, multipath effects caused by objects (e.g., walls or roofs) and general 

environmental noise are some of the main issues that make standalone GNSS 

impractical for indoor settings.  

 

Nevertheless, GNSS can be used in conjunction with other technologies to enhance 

indoor positioning accuracy and availability. One solution, for instance, is GNSS/INS 

(Inertial Navigation System) integration, where inertial sensors (i.e., accelerometers and 

gyroscopes) compensate for GNSS signal dropouts by providing continuous motion 

tracking during indoor transitions [7]. 

 

Radio Frequency Technologies 

 

Radio frequency (RF) technology employs wireless communication through the use of 

electromagnetic waves spanning between 3 kHz to 300 GHz in the frequency spectrum. 

The corresponding radio waves are enabled to propagate through the medium, allowing 

data transmission and distance measurements to be taken, making them a foundational 

component of localization systems. The RF technology is widely used for location 

estimation because of rampant availability and inexpensive supporting hardware like Wi-

Fi access points (APs) and Bluetooth beacons [8].  

 

Indoor positioning relies heavily on an equally accessible technology, Wi-Fi (IEEE 

802.11) operating in 2.4 and 5 GHz bandwidths, also known as ISM (Industrial, 

Scientific, Medical) bands [5]. Wi-Fi chipsets are found in most modern devices, 

including computers, smartphones, smartwatches and other gadgets, which further 

contribute to the IoT infrastructure. Therefore,  localization becomes much more 

accessible and cost-effective. Essentially, the existing Wi-Fi infrastructure can be utilized 

for most indoor localization systems with no additional hardware needed, since APs 

provide signal measurements such as Received Signal Strength Indicator (RSSI), Channel 

State Information (CSI), and round-trip time (RTT), among others.  
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On top of that, Wi-Fi has been significantly extended and covers distances up to 1 km, a 

considerable improvement from its earlier 100m limit [8]. With its broader coverage area 

and higher throughput compared to Bluetooth, Wi-Fi enables faster data communication, 

making it more viable for most applications. Specific methods that use Wi-Fi technology 

will be presented in Section 2.1.2, but namely some main approaches include Geometric 

approaches (e.g., Angle of Arrival (AoA), Time of Flight (ToF), Round Trip Time 

(RTT)), RSSI fingerprinting, and Channel State Information (CSI)-based localization. 

 

Bluetooth, particularly its Low Energy variant (BLE), is a short-range wireless personal 

area network (WPAN) technology which relies on electromagnetic waves within the 

frequency range of 2.4-2.48 GHz  [9]. Similar to Wi-Fi, this technology is also prominent 

in localization systems because of its global availability and support by personal devices. 

Through the advancements introduced in Bluetooth 5.0, BLE has 

significantly augmented its range functionalities. In an ideal scenario, the operating range 

can be up to 40 meters indoors and 200 meters outdoors. 

 

The main advantage of Bluetooth is its very low power consumption permitting months 

of operation on a single charge [5], which makes it an excellent fit for power-limited IoT 

devices. Additionally, features like adaptive frequency hopping help mitigate interference 

from other wireless signals. 

 

However, Bluetooth does have shortcomings when it comes to indoor localization 

performance. Aside from the common challenges which all RF signals experience, i.e. 

multipath and signal attenuation, it typically provides sub-meter accuracy and latency of 

several seconds. If centimeter-level precision or instantaneous updates are desired for the 

localization system, Bluetooth alone is insufficient. Furthermore, due to Bluetooth’s 

limited range in indoor environments, it is generally not preferred for localization across 

large-scale areas [8].  

 

These constraints render Bluetooth ideal for proximity-based applications in retail, 

healthcare, airports and transportation stations, where localization is performed using 

BLE technology installed integrated into smartphones (e.g., iBeacons for Apple and 

Eddystone for Google) [8]. 
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Ultra-Wideband (UWB) is a highly suitable technology for indoor localization due to 

its wide bandwidth (over 500 MHz) and low-power operation, with carrier frequencies 

above 2.5GHz. Because of its extremely low energy usage, UWB results in such a large 

bandwidth [5]. 

 

Some of the key advantages of UWB technology include high data rates and remarkable 

resistance to multipath fading because of the technology’s distinct spectrum [8]. UWB's 

high time resolution and short pulse duration are fully utilized by techniques such as Time 

of Arrival (ToA), Time Difference of Arrival (TDoA), and Angle of Arrival (AoA) to 

achieve centimeter-level accuracy, outperforming RSSI-based methods. All the above 

characteristics make UWB a strong candidate for high-precision indoor localization in 

IoT and WSN applications. 

 

Zigbee is a popular low-power, low-data-rate wireless communication technology built 

on the IEEE 802.15.4 standard and commonly used in the IoT era. It operates in the 868 

MHz, 915 MHz and 2.4 GHz unlicensed ISM bands [5] with a maximum data rate of 250 

kilobits per second and a range of up to 30 meters. Multiple topologies are supported by 

Zigbee such as tree, star and mesh. Even in intricate indoor environments, mesh 

networking enables devices to efficiently forward data through intermediate nodes to 

reach their destination. Because it operates in unlicensed ISM bands, it is prone to 

interference from other signals in the same spectrum, a shared vulnerability with both Wi-

Fi and Bluetooth. 

 

In indoor localization using Zigbee deployments, while RSSI is also the most widely 

adopted metric, alternative indicators like Link Quality Indication (LQI) can be used to 

reduce noise in ML-based localization and improve accuracy in dense, dynamic 

environments [3]. Although Zigbee’s accuracy is generally lower than that of Wi-Fi or 

UWB, it can be an excellent choice for large-scale, low-power localization systems where 

strict precision is not critical, and energy efficiency is highly desired. 

 

RFID (Radio-Frequency Identification) is a wireless radio wave-based technology that 

is used for object identification and tracking via tags with unique IDs [5]. The specific 

tags come in three types: active, passive, and semi-active.  
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Active RFID tags, powered by an internal battery, enable detection  up to 100 meters and 

operate in the UHF (Ultra-high frequency) and SHF (Super high frequency) bands. 

However, they are not appropriate for sub-meter accuracy and are not usually integrated 

into personal mobile devices, limiting their use in user-side indoor localization [8]. 

 

Conversely, passive RFID tags are battery-free and very popular across multiple use cases 

due to their low cost, small size, and  easy deployment.. Passive tags typically operate in 

the UHF band (860–960 MHz)  and have a smaller range of 10 meters but are capable of 

sub-meter level detection under ideal conditions. 

 

The way RFID systems operate, includes backscattering communication between 

mentioned RFID tags and RFID readers, with middleware for the data processing [8]. By 

employing multiple reference tags which act as a transmitter, RSSI values from nearby 

readers are used to estimate the position of a target tag by comparing signal similarities. 

In indoor localization, RFID systems are valued for their low cost, scalability, and 

resistance to occlusion and environmental interference. 

 

Optical-based Technologies 

 

Optical-based indoor localization techniques offer an alternative to radio frequency (RF) 

systems, particularly in RF-sensitive environments (e.g., hospitals). Optical technology 

uses visible or infrared light to fulfill specific functions, and in this case, aid in 

localization. Two of the well-known technologies under this category are Infrared (IR) 

and Visible Light Communication (VLC). 

 

IR systems rely on line-of-sight (LoS) communication using IR-emitting devices (e.g., 

LEDs) and IR sensors (e.g., photodiodes). IR emitting devices send a signal with a unique 

ID which the sensor can detect to determine the target’s location [5]. The benefits of this 

technology lie in its immunity to electromagnetic interference, a characteristic not 

applicable to RF-based systems. However, IR systems are sensitive to fluorescent light 

and sunlight interference and involve relatively costly hardware [8].  
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On the contrary, VLC systems determine position by using modulated visible lights (e.g., 

LEDs) and a sensor (smartphone camera, photodiode) to determine position. In fact, in 

many scenarios, VLC systems have better accuracy than Wi-Fi and benefit from LEDs' 

low power consumption, long lifespan, and immunity to sunlight interference.  

Both VLC and IR, however, require line-of-sight (LoS) conditions between the 

transmitter and receiver in order to successfully estimate the location. 

 

Inertial Sensors (Dead Reckoning) 

 

Inertial sensors, which are commonly embedded in smartphones and IoT devices, use a 

technique often referred to as dead reckoning or Pedestrian Dead Reckoning (PDR) in 

order to enable relative indoor localization [5]. Inertial measuring units (IMU) include, 

among others: accelerometers (distance estimation via step counts), gyroscopes (angle or 

direction measurements), magnetometers (magnetic field measurements), pressure 

sensors (elevation estimation). However, localization accuracy degrades over time due to 

these sensors' susceptibility to drift and noise, particularly indoors.  

 

To counteract this, inertial systems are typically paired with other technologies such as 

Wi-Fi, Bluetooth, GNSS, or UWB, and filtered with the use of Kalman or particle filters 

to improve position estimates [8]. 

 

Cellular-based Technologies 

 

5G networks revolutionize cellular-based localization by leveraging advanced 

technologies which contribute to ultra-low latency (1-10ms), high throughput and sub-

meter (or even centimeter-level) accuracy . The co-existence of IoT and 5G networks led 

to multiple adaptation technologies, such as mMIMO (massive multiple-input multiple-

output) and mmWave (millimeter-wave) [10].  

 

5G’s high bandwidth and strict synchronization improve Time-of-Arrival 

(ToA) and Angle-of-Arrival (AoA) estimations which are ideal for IoT and WSN 

applications. Recent studies show (ML)-enhanced ToA tracking with 5G downlink 
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signals, providing 0.5-meter accuracy indoors by eliminating multipath effects via 

Kalman filtering [11].  

 

With speeds 20 times faster than 4G, 5G allows mass and simultaneous device 

connections with real-time localization [10], and forms the backbone for industrial 

automation, emergency response systems, and smart cities.  

 

Challenges remain, including hardware complexity as components of this network 

include 5G base stations (gNBs) and small cells, but despite their higher cost, offer more 

scalable solutions for large IoT deployments. Moreover, it is needed to strike a balance 

in power consumption for battery-powered IoT nodes and ensure privacy in location-

based applications. Nevertheless, with edge computing and AI-driven analytics, 5G 

cellular localization is poised to underpin the next generation of IoT innovations. 

 

2.3 LPWAN Technologies 

 

Low-Power Wide Area Networks have emerged as a group of communication 

technologies and protocols, offering innovative solutions in IoT. As the name suggests, 

LPWAN technologies cover a very large area (kilometers level)  through base stations 

while keeping the power usage and throughput of the end devices minimum [12]. They 

achieve this by performing adjustments  to transmission rate, signal power, and intervals 

of communication, resulting in very little energy consumption.  

 

While short-range applications frequently employ GHz-based technologies (Wi-Fi, 

Bluetooth, ZigBee), long-range communications require more energy-efficient solutions, 

with LPWANs operating in the MHz band [13].These networks are particularly suited for 

IoT deployments in smart cities, industrial IoT, and other large-scale applications where 

devices must operate for extended periods on battery power.  

LoRa, SigFox and NB-IoT fall under the category of LPWAN technologies, each with 

distinct communication features and trade-offs. NB-IoT operates typically in licensed 

bands, while LoRa and SigFox operate on unlicensed industrial, scientific, and medical 

(ISM) bands. 
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2.3.1 LoRa (Long Range) 

LoRa, short for "Long Range," is a wireless communication system designed to support 

long-range data transmission with ultra-low power consumption and is promoted by the 

LoRa Alliance. Since LoRa can offer long-distance communication (~15 km 

outdoors) at minimal power usage, it has been one of the most adopted LPWAN 

technologies so far. This makes it a well-suited technology to a broad set of applications, 

including industrial automation, smart cities, agriculture, environmental monitoring and 

urban infrastructure. LoRa is built on two layers: (i) Physical Layer (PHY) and (ii) MAC 

layer, also known as LoRaWAN [14].  

LoRa Physical Layer (PHY) is the lower layer of the protocol stack and is responsible 

for the data transmission, i.e. the actual radio communication. The LoRa PHY is 

proprietary technology owned by Semtech Corporation [14]. It’s closed source, meaning 

its core modulation technology is not publicly open. 

LoRa’s physical layer employs Chirp Spread Spectrum (CSS) Modulation,  spreading the 

signal across a wide bandwidth  (e.g., 125–500 kHz). Specifically, information is encoded 

in radio sinusoidal waves called “chirps”, which are signals that linearly increase or 

decrease in frequency over time. As a result, the CSS method provides resilience against 

effects like multipath fading, Doppler effects, and interference, enabling reliable long-

range communication in the presence of a significant amount of channel noise [15].  

LoRaWAN MAC Layer is the upper layer built on top of the physical layers designed 

mainly for sensor networks, and it defines how devices organize communication in a 

shared radio environment by coordinating the access to the medium. Unlike the 

proprietary PHY, LoRaWAN is open and maintained by the LoRa Alliance and it was 

first introduced in 2015 [12].  

As of 2025, LoRa Alliance allows public, private and hybrid networks to be 

deployed  catering to various use cases and locations [16]. The Alliance has expanded to 

nearly 200 LoRaWAN network operators, providing coverage in almost every country 

worldwide. Moreover, the Alliance has emphasized the growth and variety of LoRaWAN 

network models, pointing out that during a three-year period, public LoRaWAN networks 



14 

 

increased by 66%, mostly due to the deployment of new LPWAN IoT infrastructure by 

satellite, community, and license-exempt network operators [17]. 

LoRaWAN Architecture 

A typical LoRaWAN network consists of several key components working in concert to 

enable low-power, wide-area communication, and is usually organized in a star-of-stars 

topology [12]. Some of the key components are the end-devices, the gateways, the 

network server and the application server. 

End devices,  most commonly sensors or actuators, collect data or perform actions and 

communicate wirelessly with one or multiple gateways. These 

gateways subsequently forward the arriving frames to a network 

server, the network's central point of intelligence, which manages devices and forwards 

data to the appropriate application server for processing. The network server is 

responsible for removing duplicate messages, decoding the data and sending the messages 

back to the end-devices [14]. The communication between end devices and gateways uses 

the LoRa physical layer, which employs Chirp Spread Spectrum (CSS) modulation [15]. 

LoRa devices are not connected with only a single gateway, they simply broadcast their 

data and any nearby gateways that are within range can forward the packets to the network 

server where all the decision-making takes place. It must be highlighted that device-to-

device communication is not supported by LoRaWAN, meaning that any packet from one 

device to another must be relayed via the network server.  

 

 

 

 

 

Figure 2.3.1.1: LoRaWAN architecture design 
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Furthermore, LoRaWAN end-devices are separated into three different classes:  

Class A devices are the most energy efficient. They are bi-directional and can send data 

(uplink) whenever needed and open two short downlink receive windows afterwards to 

listen for replies. This class is ideal for battery-powered devices since downlink messages 

can only be sent right after an uplink, with the tradeoff of limited responsiveness. 

Class B devices add scheduled receive windows, allowing the server to send data at 

specific times. These schedules are synced using beacons from the gateway, offering a 

balance between power use and downlink flexibility. 

Class C devices keep their receive window open continuously, allowing for immediate 

downlink communication. This makes them highly responsive but it also results in 

maximum power usage, making them mostly suitable for plugged-in devices. 

 

Figure 2.3.1.2: LoRaWAN Protocol Stack 

 

Key Transmission Parameters 

• Carrier Frequency 

LoRa mostly operates in sub-GHz ISM bands (e.g., 868 MHz in Europe, 915 MHz in 

North America), where lower frequencies offer better penetration and range, but lower 

data rates [13]. Regional regulations dictate channel plans, for example, EU LoRaWAN 

uses 863–870 MHz with duty cycle restrictions (1% for most channels) to minimize 

interference [18]. 
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• Duty Cycle 

LoRaWAN operates in unlicensed ISM bands, and thus is subject to regional regulatory 

constraints, with one being the duty cycle. The duty cycle defines the maximum 

percentage of time a device is allowed to transmit on a given channel within a specific 

time period [12]. After each transmission, the device must wait for the remainder of the 

duty cycle window before it can transmit again, contributing to a fair channel utilization 

and reduced collision risks. Although this mechanism supports spectrum sharing and 

scalability, it also limits throughput in dense deployments. 

• Coding Rate (CR) 

The CR (e.g., 4/5, 4/6, 4/7, or 4/8) determines the ratio of error-correction bits to payload 

data. In simpler words, CR in regulates the number of extra bits used for error correction. 

For example, i) a CR of 4/5 means: for every 4 bits of actual data, 1 extra bit is added for 

error correction (total 5 bits sent), ii) a CR of 4/8 means: for every 4 bits of data, 4 extra 

bits are added (total 8 bits sent), and so on. 

The tradeoff is that higher CRs (e.g., 4/8) are more reliable because they are better at 

handling noise, but at the cost of reduced throughput (more redundant bits transmitted). 

Accordingly, lower CRs have higher throughput, thereby are faster, but less reliable. This 

trade-off is critical for battery-constrained IoT devices [19]. 

• Spreading Factor (SF) 

SF (ranging from SF7 to SF12) controls the number of chirps per symbol and directly 

affects range and data rate. LoRa's SF essentially defines the duration of the 

signal being stretched over time i.e. how slowly or quickly data is being transmitted. 

Higher SFs (e.g., SF12) increase sensitivity (up to −148 dBm) and support longer 

communication range, but reduce throughput (slower) and increase air time, making them 

vulnerable to prolonged jamming attacks [19]. In contrast, lower SFs (e.g., SF7) use fewer 

chirps per symbol, resulting in faster data transmission, shorter airtime, and hence, 

reduced jamming exposure. 
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Spreading 

Factor (SF) 
Data Rate Range Air Time 

Power 

Consumption 

Jamming 

Vulnerability 

SF7 High Short 
Very Low (~50 

ms) 
Low Low 

SF8 
Medium-

High 

Short-

Medium 
Low (~100 ms) Medium Medium 

SF9 Medium Medium 
Moderate (~200 

ms) 
Medium Medium 

SF10 
Medium-

Low 

Medium-

Long 
High (~400 ms) High High 

SF11 Low Long 
Very High 

(~800 ms) 
High High 

SF12 Very Low Very Long 
Extremely High 

(~1000+ ms) 
Very High Very High 

Table 2.3.1.1: Comparison of LoRa spreading factors and their trade-offs. 

• Bandwidth (BW) 

LoRa’s BW (typically 125, 250, or 500 kHz) affects both data rate and spectral efficiency 

[19]. Narrow BWs enhance receiver sensitivity for longer communication distances and 

tolerance to noise at the cost of lower data rate. On the other hand, wider bandwidths offer 

the potential for higher data rates at the cost of lower coverage range and link budget due 

to increased power consumption and susceptibility to co-channel interference. Adaptive 

BW selection takes advantage of real-time SNR measurements to adaptively select 

bandwidth, i.e., automatically switch to 125 kHz in interference-heavy environments or 

500 kHz when handling time-sensitive sensor data [20]. 

• Adaptive Data Rate (ADR) 

Adaptive Data Rate (ADR) is another vital component of LoRaWAN 

that accommodates dynamic adaptation of several transmission parameters, including the 

spreading factor (SF), bandwidth (BW), and coding rate (CR). The rationale behind this 

mechanism is to optimize energy efficiency, maximize network capacity and reliability 

based on the existing state of the network. For instance, when the devices are near a 
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gateway and the signal strength is high the ADR mechanism may decrease the 

SF but increase the data rate in order to minimize air-time and power usage. Conversely, 

during poor signal conditions  ADR may increase the SF at the expense of lower data 

rates to guarantee reliability. This flexibility of LoRaWAN can significantly contribute 

to large-scale IoT deployments, where varying distances and environmental noise 

demand dynamic optimization for high performance and battery life. 

Limitations in LoRaWAN 

 

While LoRaWAN offers great advantages such as long-range communication and low 

power consumption, it also suffers from certain inherent drawbacks due to design trade-

offs [21]. A primary limitation is that it operates at a low bit rate and, as a result, messages 

experience long air-time, increasing their susceptibility to collisions, especially in dense 

network deployments. Since the protocol does not use carrier sensing (like CSMA) 

or timing synchronization to prevent overlaps, it relies mainly on the inherently low end-

device transmission rate to reduce the chances of collision. Bi-directional 

communication further increases packet loss. This is not only due to collisions but also 

because acknowledgment messages (ACKs) can quickly exhaust a device’s duty cycle 

limit, limiting further communication. [21] 

 

Thanks to LoRa’s Chirp Spread Spectrum (CSS) modulation, not all simultaneous 

transmissions lead to data loss. Gateways can successfully decode overlapping packets if 

they are sent using different Spreading Factors (SFs) and have similar RSSI. However, 

issues arise in two main scenarios: i) When two messages collide using the same SF, they 

interfere destructively resulting in loss of both. ii) When two messages have unequal 

signal strengths, i.e., if one message is significantly stronger, it can drown out the weaker 

one, even if the SFs are different, so only the stronger signal is successfully received. 

 

Beyond these, LoRa's limited bandwidth and payload size constrain its use in applications 

that require high data throughput or real-time performance. Operating in unlicensed 

frequency bands also raises the risk of interference from external interference (non-LoRa 

devices). Lastly, deploying a LoRaWAN network may involve considerable setup 

complexity and cost. 
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2.3.2 Sigfox 

Sigfox is a French LPWAN technology which has rapidly expanded its global footprint, 

used in more than 70 countries and has a coverage of 40 kilometers [22]. Although Sigfox 

and LoRaWAN both make use of license-free bands, their operation modes differ [23]. 

Sigfox operates as a centralized global network provider, managing infrastructure and 

services centrally, whereas LoRaWAN supports a 

decentralized  topology supporting public, private, and hybrid network deployments. 

Sigfox is based on a one-hop star topology and Aloha as its medium access protocol [22], 

relying on the backhaul connectivity of mobile operators. This solution simplifies end-

user deployment but diminishes network flexibility and management of the infrastructure. 

Additionally, it employs Ultra NarrowBand (UNB) technology that can offer long-range 

communication, minimal power consumption and limits the number of dense base station 

(BS) placements in the area [23]. Modulation schemes include Differential Binary Phase 

Shift Keying (DBPSK) for uplink and Gaussian Frequency Shift Keying (GFSK) for 

downlink.  

Nodes are constrained to send a maximum of 140 messages daily, which can’t exceed 12 

bytes (uplink communication). For downlink communication, devices can receive up to 

4 messages per day, each limited to 8 bytes in size [22] and can only be received after the 

device prompts the network to deliver a downlink message (downlink request flag = 1). 

Key benefits of Sigfox include low hardware and infrastructure costs, as well as extremely 

low power consumption with data rates of approximately 100 bps, enabling devices to 

last for years on a single battery. Lastly, Sigfox offers flexibility in hardware selection as 

it supports chipsets of various manufacturers, as opposed to LoRaWAN [23]. 

Sigfox has a number of drawbacks despite its benefits. Its centralized operational model  

restricts user control and requires registration and service fees. Moreover, given that all 

data are stored on Sigfox servers, privacy issues are raised [23]. While UNB technology 

reduces BS density and installation costs, it also restricts localization accuracy as higher 

BS density typically improves positioning capabilities. Finally, because Sigfox has 

limited downlink connection, it is best suited for applications where devices 

predominantly send data to the cloud with little need to receive data. 
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2.3.3 NB-IoT  

Narrowband Internet of Things (NB-IoT) is a 3GPP-standardized Low Power Wide Area 

(LPWA) technology included in the LTE standard [24], which starter later than 

LoRaWAN and Sigfox. It uses the same licensed frequency bands as LTE, as opposed to 

LoRa and Sigfox which both use license-free bands. NB-IoT can operate under three 

modes: i) stand-alone ii) guard-band and iii) in-band. It is specifically designed to enable 

large-scale connectivity for IoT devices by decreasing deployment costs and battery 

usage. In order to achieve the aforementioned goals, it omits several LTE features (e.g., 

handover*, carrier aggregation, dual connectivity) [24]. 

 

The NB-IoT architecture is typically structured into three main layers: the perception 

layer, the network layer, and the application layer. The perception layer consists primarily 

of NB-IoT devices (sensors, actuators, or other IoT nodes) whose role is to capture data 

from the physical environment. The network layer serves as the communication 

backbone, comprising cellular base stations (eNBs) and core network entities to transmit 

and process the captured data. Finally, the application layer provides specific services and 

applications tailored to end-user needs, by using the processed data that was delivered by 

the network layer. 

 

NB-IoT is strongly promoted by telecommunication operators and can be supported by 

existing telecommunication base stations (BSs). The technology also benefits from the 

security and quality guarantees of licensed spectrum [23]. However, due to the use of 

licensed bands it is more expensive to develop. 

 

*Handover refers to the process of transferring a connection from one node or technology 

to another without disrupting the user experience. 
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LPWAN Technologies Comparison 

 

Feature LoRaWAN Sigfox NB-IoT 

Frequency 

Band 

Unlicensed ISM (e.g., 

868/915 MHz) 

Unlicensed ISM 

(e.g., 868/902 MHz) 
Licensed LTE bands 

Modulation 

Scheme 

Chirp Spread Spectrum 

(CSS) 

DBPSK (uplink), 

GFSK (downlink) 

OFDMA/SC-FDMA 

(LTE-based) 

Network 

Model 

Decentralized (supports 

public, private, hybrid) 

Centralized global 

network provider 

Fully centralized 

(operated by telecom 

providers) 

Data Rate 0.3–50 kbps (adaptive) ~100 bps ~20–250 kbps 

Topology 
Star-of-stars topology 

One-hop star 

topology 

Cellular star 

topology 

Localization 

Suitability 

Moderate (multiple 

gateways can enhance 

accuracy) 

Limited (low BS 

density reduces 

accuracy) 

Good (dense cellular 

infrastructure = 

higher accuracy) 

Table 2.3.1: LPWAN Technologies Comparison Table 

 

 

Figure 2.3.1: Localization Technologies by Range and Power Consumption 
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2.4 Localization Techniques Overview 

Localization in the context of Wireless Sensor Networks (WSN) and IoT, refers to the 

process of determining the precise or approximate geographical coordinates of a device 

or a sensor [2]. Accurate localization is essential to a multitude of applications, 

including environmental monitoring, asset tracking, health care, security systems etc. 

The substantial amounts of data collected by sensor nodes, regardless of their quality, 

lack the critical spatial context which is needed for informed decision-making. In cases 

where an attacker wants to target the security of the network (e.g., via jamming), 

pinpointing its position in the area is crucial.  

Although localization mechanisms are indispensable in both traditional WSN and 

LoRaWAN networks, their methodologies and requirements differ significantly due to 

differences in operational conditions, e.g., communication coverage, energy demand, 

and hardware capability. Therefore, this chapter aims to focus on the available indoor 

localization methods in LoRaWAN and WSN/IoT networks and address the complexities 

of jamming localization. 

 

 

 

 

 

 

Figure 2.1.4: Classification of localization techniques 

 

2.4.1 A Broad Taxonomy of Localization Methods 

Localization methods in WSN and IoT networks can generally be classified along several 

characteristics [2]. By categorizing these techniques, our goal is to understand the 

LOCALIZATION

CENTRALIZED DISTRIBUTED

RANGE-BASED RANGE-FREE
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underlying principles related to each strategy and their suitability in various application 

settings. 

Classification based on architecture 

One primary way to classify localization methodologies is by the architecture of the 

localization process: centralized vs. distributed [2]. 

i) Centralized localization 

In centralized localization, a designated central entity, normally a base station or a 

network server, gathers measurement data from all sensor nodes within the network.  This 

central entity then processes the global information collected from the nodes using 

sophisticated algorithms to determine between-node distances [2].  

One of the main benefits of centralized algorithms is that they possess a comprehensive 

global view of the network, which could potentially make them more accurate in location 

estimation. However, a centralized model can pose some problems concerning scalability 

and increasing computational complexity, because of the additional overhead placed on 

the central base station. All these factors reduce the practicability of centralized 

approaches on extremely large-scale sensor networks [2]. 

Furthermore, the reliance on one central anchor automatically introduces a single point 

of failure, which can influence the system’s robustness. Consequently, recovery 

mechanisms must be employed to mitigate this risk. 

ii)  Distributed localization 

In distributed localization we can observe a more autonomous approach, where each 

sensor node independently estimates its own position based on information obtained from 

its immediate neighbors or a limited set of reference points. Unlike centralized 

approaches, each node calculates the distances to neighbors and anchors by collecting 

measurements with different methods [2]. 

A prominent example of distributed localization is the Bayesian filter localization, which 

utilizes noisy measurements for determining the location of a sensor. More specifically, 
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this algorithm outputs probabilities of each predicted location commonly referred to as 

"beliefs." These algorithms iteratively refine these beliefs through repeated interactions 

among sensor nodes, a mechanism known as belief propagation [2]. 

Another simple method used within distributed localization is particle filtering. Particle 

filters, known for their effectiveness in handling non-Gaussian noise and providing 

quantifiable location uncertainties, are especially suitable for distributed 

implementations. They require fewer computational resources and iterations to converge 

and can easily handle dynamic and noisy environments, thus improving accuracy and 

reliability in location predictions. 

Distributed localization algorithms have greater robustness than centralized algorithms, 

mainly because there is no single point of failure. Additionally, they easily scale to larger 

networks since computations are performed locally at each node rather than relying on a 

central anchor. Lastly, this peer-to-peer approach has reduced communication overhead 

and power consumption since nodes only exchange information with neighbors and 

communication is primarily localized. 

On the other hand, distributed algorithms pose greater complexity in terms of local 

interactions compared to centralized algorithms. In order to achieve global consistency in 

location predictions, multiple iterations of message exchange are required among nodes. 

That happens because distributed methods rely on single-hop communication, whereas 

centralized algorithms use multi-hop communication. As a result, the accuracy of 

distributed localization can be lower compared to centralized methods due to the potential 

accumulation of errors as location estimates propagate through the network.   

Distributed localization techniques are commonly further categorized into range-based 

and range-free methods, each suitable for different scenarios, as detailed further in this 

section. 

 Classification based on type of information 

Another fundamental classification of localization techniques revolves around the type of 

information used to estimate the location: range-based vs. range-free. The choice of a 

suitable IoT localization method depends on the specific requirements of the application. 
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The description along with the benefits and drawbacks of each category will be discussed 

in the following section.  

i)  Range-based localization  

Range-based localization methods rely on directly estimating the distance or angle 

between sensor nodes, typically to a set of anchor nodes whose positions are known. 

These distance or angle measurements can be determined using a range of methods such 

as Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of Arrival (AoA), 

and Received Signal Strength Indicator (RSSI) [25]. Once these measurements are 

acquired, geometric principles i.e. trilateration, triangulation, or multilateration, are 

employed to calculate the position of the unknown node. For instance, LoRaWAN 

topologies often utilize TDoA because of their gateway-centric structure, leveraging 

synchronized timestamps across many gateways to triangulate device positions with 

meter-grade precision [26]. 

Range-based methods are typically more precise in location estimation [27], but they 

often require additional hardware (e.g., antennas, infrared sensors, etc.), strict time 

synchronization (for ToA/TDoA) or are affected by environmental variability (e.g. RSSI) 

[27]. In addition, range-based methods can cause higher energy consumption and 

typically require a more complicated implementation [26], with the lack of reference 

points also being an issue that affects the accuracy of calculations. 

ii)  Range-free localization  

Range-free localization techniques do not depend on direct distance or angle 

measurements. Instead, these methods utilize different types of information regarding the 

network’s topology in order to estimate the position of a node. For example, they take 

into consideration information such as the connectivity between nodes, the number of 

hops to anchor nodes, power of the wireless signal or patterns in the device’s data [26], 

[27]. 

Range-free localization methods are typically more cost and energy efficient, simpler to 

use and easier to deploy due to the fact that they do not need specialized hardware to 

function. However, they generally offer lower accuracy compared to range-based 
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methods [26], and their performance is often influenced by the density and distribution 

of nodes in the network.   

iii) Hybrid localization  

The research community is showing strong interest in hybrid localization techniques, 

as they combine the strengths of both range-based and range-free methods in 

order to alleviate the limitations of standalone approaches and aiming for an enhanced 

performance and accuracy [28]. Beyond combining various estimation techniques, hybrid 

localization may also include scenarios where different technologies (e.g. Wi-Fi, 

Bluetooth) are integrated together into a single localization system. In the detailed 

overview (Section 2.4.2), two types of hybrid approaches will be discussed: the Joint 

technique, which aims to combine different localization methods and Data fusion, which 

mainly leverages a single method while integrating many communication technologies. 

A key advantage of hybrid methods is their ability to mitigate environmental challenges. 

In the dynamic settings of IoT environments, machine learning (ML) algorithms are 

increasingly used to harmonize heterogeneous data streams.  For instance, neural 

networks and deep learning models can handle a set of metrics such as RSSI, CSI, and 

hop-count to eliminate signal distortions caused by obstacles or interference, aiming to 

improve accuracy and energy efficiency [27].  

Despite their benefits, hybrid approaches are fraught with challenges. Calibrating 

conflicting measurements from different modalities (e.g., RSSI vs. hop count) requires 

robust algorithms, and system complexity increases as it requires advanced hardware or 

synchronized protocols [29].  

2.4.2 Detailed Overview of Localization Methods 

i) Range-based localization techniques 

Range-based localization methods achieve location estimation by using measurements 

such as distances or angles between end devices and anchors. These measurements are 

then used in several techniques to geometrically calculate the location of the unknown 

node. Some of the most common techniques will be listed below: 
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Time-based techniques 

Time of Arrival (ToA), which is also referred to as Flight Time, is a technique that 

estimates the distance between a transmitter and a receiver by precisely measuring the 

time it takes for a signal to propagate from one to the other [2]. By knowing the travelling 

speed of the signal (typically the speed of light for radio waves, c=3×108m/s), the distance 

can be directly estimated by multiplying the travel time by the speed.  

Formula: 

T = t1 – t0 

 d=c×T 

where: 

• t0 = timestamp when the sender sends the signal 

• t1 = timestamp when the receiver receives the signal 

• d = estimated distance (meters) 

• c = speed of light (approximately c=3×108m/s) 

• T = time of flight (seconds) 

Although ToA can offer high accuracy in clear line-of-sight scenarios, there are some key 

limitations to address. First, the two nodes (receiver and sender of the signal) must be 

precisely aligned, thus, time synchronization for both nodes is crucial [2]. Furthermore, 

especially in indoor settings, ToA can be highly influenced by obstacles that deflect the 

emitted signals [26] and multipath propagation, which can cause signals to travel longer 

distances or arrive at different times. These issues can affect distance calculations and 

lead to inaccurate predictions. 

It must be noted that accurate localization requires measurements from at least three base 

stations (anchor nodes) [5]. 

Time Difference of Arrival (TDoA) is slightly more flexible than ToA, as it overcomes 

the need for strict synchronization between the transmitter and the receiver nodes. TDoA 

requires synchronization only between base stations, because this method uses only the 
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difference in arrival times of a signal received at multiple geographically dispersed 

receivers [2]. By obtaining these measurements the location of a node can be determined 

by methods such as multilateration [26], which is based on the geometry of the hyperbolas 

formed by the constant time differences. Thus, TDoA does not require knowledge of the 

exact transmission time from the sender [5], as the ToA method does.  

Formula: 

ΔTij = tj − ti 

Δdij = c × ΔTij 

where: 

• ti = timestamp when receiver i receives the signal 

• tj= timestamp when receiver j receives the signal 

• ΔTij = time difference of arrival between receivers i and j (seconds) 

• Δdij = distance difference between the transmitter to receivers i and j (meters) 

• c = speed of light (approximately c=3×108m/s) 

The drawbacks of the TDoA method are similar to those described for the ToA method. 

While TDoA eliminates the strict clock synchronization requirement between the target 

and anchors—a  crucial requirement for the aforementioned ToA approach, it still 

necessitates accurate time synchronization among the fixed stations (e.g. gateways) [5]. 

Moreover, the accuracy of both ToA and TDoA can be influenced by noise, multipath 

propagation and interference.  

In the context of LoRaWAN, TDoA is a commonly employed network-based localization 

method, which offers a lower power consumption profile for the end devices compared 

to GPS, but comes with the tradeoff of lower accuracy [30]. 

Angle-based techniques 

Angle of Arrival (AoA) is a directional localization technique that estimates the angle at 

which a signal arrives at a receiver [2]. To be precise, AoA localization estimates the 

location at the center of gravity within the intersection which was created by the sight 
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triangles between the anchors and the target [26]. This method utilizes directional 

antennas to measure angles from transmitters to receivers, in order to determine the 

direction of the incoming signal. Then, triangulation can be used to approximate the 

location of the target, thus, at least two fixed positioned anchors are necessary. 

Although AoA provides reasonable accuracy, it requires specialized hardware (e.g. 

antenna arrays) which increases the cost and complexity of the infrastructure. Moreover, 

this method is also affected by environmental limitations (e.g. shadowing, multipath) [2] 

and its accuracy is highly dependent on the directionality of the antennas. Therefore, AoA 

typically demands a clear Line-of-Sight (LOS) area for achieving optimal results. 

RSSI radio propagation technique  

Received Signal Strength Indicator (RSSI) is perhaps one of the most widely used 

signal metrics in localization techniques due to its simplicity and low hardware cost. More 

specifically, RSSI is readily available in most wireless communication devices/sensors, 

and no additional hardware is required to obtain it. The main idea behind RSSI is that the 

strength of a radio signal becomes weaker as the distance from the transmitter increases 

[2].  

RSSI-based radio propagation techniques estimate the position of a device by first 

measuring the RSS from multiple base stations or wireless access points [5]. Then, path 

loss models use the collected measurements to calculate the distance between the target 

and reference point. After estimating distances, localization algorithms such as 

multilateration or trilateration can determine the coordinates of the target. 

Although the RSSI measurement is easily available, its accuracy is largely sensitive to 

environmental factors. Physical obstacles that create Non-Line-Of-Sight conditions, such 

as walls, can cause signal fluctuations due to attenuation, reflection, diffraction, and 

scattering. These limitations lead to significant variations in the received signal strength 

that do not solely depend on distance. Additionally, noise and external interference from 

other wireless devices will distort RSSI readings as well, which makes it an unreliable 

standalone metric—especially for indoor environments. 
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Another primary challenge of this technique is that it requires prior knowledge of the 

environment’s path loss behavior, typically determined by offline calibration. More 

specifically, in order to apply this technique successfully, parameters like the path loss 

exponent, the reference RSSI value at a known distance, and environmental propagation 

factors must be carefully tuned to the deployment conditions.  

The inverse relationship between the strength of the signal and the distance can be 

expressed by a path loss model, which takes into account characteristics of the 

propagation environment.  

Path Loss Model Formula: 

RSSI(d)=RSSI(d0)−10nlog10(d/d0) 

where: 

• RSSI(d) = received signal strength (dBm) at distance d 

• RSSI(d0) = reference RSSI (dBm) at known distance d0 (usually 1 meter) 

• n = path loss exponent (depends on environment, e.g. 2 for free space, 3–4 

indoors) 

• d = distance between transmitter and receiver (meters) 

• d0 = reference distance (meters) 

In LoRaWAN networks, RSSI-based propagation models are most suited for outdoor 

localization, where the surroundings are stable and signal fading is more predictable. 

Simple path loss models may limit the effectiveness of localization in LoRaWAN indoor 

environments, therefore, fingerprinting and hybrid methods are generally preferred in the 

literature, with ML-based solutions increasingly gaining attention [31]. 

Geometric-based Algorithms 

Once distance or angle measurements have been obtained using range-based techniques 

(e.g., ToA, TDoA, AoA, or RSSI), the next step usually involves the application of 

geometric methods to estimate the position of the target node. The three most widely used 

approaches are trilateration, multilateration, and triangulation.  
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Trilateration calculates a node’s position by measuring its distance from at least three 

anchor nodes with known coordinates. After determining the distances, which are also 

referred to as the circle radii, the intersection of spheres (or circles) can estimate the 

location of the target [2]. 

 

 Given distances 𝑑𝑖 to anchors at (𝑥𝑖,𝑦𝑖,𝑧𝑖) the system solves: 

 

2-D Trilateration: √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 = 𝑑𝑖   

 

3-D Trilateration: √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 = 𝑑𝑖  

 

Trilateration can be reliable about predicting correct locations when precise information 

is provided. However, that is not always the case in practical scenarios  (e.g. RSSI 

fluctuations or ToA inaccuracies), and the circles might not intersect to any point. To 

address this, the mathematical approach of Least-Squares Estimation (LSE) can often be 

used to linearize this nonlinear system above.[5] 

 

Multilateration (Hyperbolic Positioning) can be used with more than three nodes using 

the distance estimates via Time Difference of Arrival (TDoA) [2]. It locates a device by 

comparing time differences of signals received at multiple anchors, forming hyperbolic 

curves (2D) or surfaces (3D). For anchors 𝑖 and 𝑗 the TDoA equation defines hyperbolic 

position solutions: 

𝑐 ⋅ (𝑡𝑖 − 𝑡𝑗) = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 − √(𝑥 − 𝑥𝑗)
2

+ (𝑦 − 𝑦𝑗)
2
 

 

tan(θ𝑖) =
𝑦 − 𝑦𝑖

𝑥 − 𝑥𝑖
 

where: 

• 𝑐: Signal propagation speed (e.g., 3×10⁸ m/s for radio waves) 

• 𝑡ᵢ, 𝑡ⱼ: Signal arrival times at anchors i and j (seconds) 

• (𝑥, 𝑦): Unknown target coordinates 

• (𝑥ᵢ, 𝑦ᵢ), (𝑥ⱼ, 𝑦ⱼ): Known positions of anchors i and j 
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As discussed in the TDoA description, this approach depends only on anchor nodes 

synchronization instead of demanding synchronization between anchors and end devices. 

Advanced solvers such as Maximum Likelihood Estimation (MLE), are commonly 

employed to mitigate nonlinearity and noise. 

 

Triangulation is a geometric localization technique which uses angle measurements 

collected from at least two known anchors (in 2D) or three (in 3D). The target node 

calculates its location by determining the AoA from each anchor [2]. As a result, lines 

radiating from each anchor are formed and the location of the target node corresponds to 

where these bearing lines intersect. The mathematical model for each anchor 𝑖 is given: 

tan(θ𝑖) =
𝑦 − 𝑦𝑖

𝑥 − 𝑥𝑖
 

where: 

• θ𝑖 is the measured angle at anchor 𝑖, 

• (𝑥𝑖, 𝑦𝑖) is the coordinate of anchor 𝑖, 

• (𝑥, 𝑦) is the unknown target position. 

There are a few practical considerations, which involve the efficiency of the necessary 

specialized hardware (e.g. directional antennas or antenna arrays), as antenna 

misalignment in indoor settings can drastically influence the performance of the 

localization. These hardware requirements, although essential for accurate angle 

estimation, increase both the complexity and the cost of deployment. Moreover, the 

triangulation technique is particularly vulnerable to environmental distortions in indoor 

spaces, just like the other geometric-based methods. There is a requirement of clear line-

of-sight (LoS), as multipath interference and shadowing can potentially degrade the 

accuracy of the system. 

  



33 

 

ii) Range-Free Localization Techniques 

Range-free localization methods present an alternative strategy to determining the 

location of nodes in WSN and IoT networks. The primary distinction between range-

based and range-free localization methods is their reliance on physical distance or angle 

measurements. The former requires precise signal-based metrics (e.g., RSSI, ToA, or 

AoA) to estimate positions, while the latter uses network connectivity and proximity data 

(e.g., hop counts or anchor node positions) without direct distance calculations [26]. 

Fingerprinting method 

Extensive research and implementations have been undertaken concerning location 

estimation with Fingerprinting methods because RSSI measurements can be easily 

obtained [5].  

 

The term “fingerprint-based” localization derives from the concept of human fingerprints, 

which are always unique to an individual, just as a signal fingerprint is intended to be 

unique to a specific point in space within a building. A core foundation of this localization 

method involves the mapping of the fingerprints with their corresponding physical 

coordinates within the indoor space.  

 

Creating unique fingerprints entails considering the specific signal features, which are 

measurable properties. The most common signal feature, as previously discussed, is the 

Received Signal Strength Indicator (RSSI) used to represent the power of a wireless 

signal arriving at a device. RSSI is easy to retrieve with minimal hardware requirements, 

making it a practical choice for most indoor localization systems.  

 

However, since RSSI also suffers from indoor interference, multipath effects and all the 

noise in indoor dynamic environments, advancements in wireless technology have 

enabled the use of more sophisticated features, such as Channel State Information (CSI) 

[32]. CSI provides richer information about the wireless channel, including amplitude and 

phase information across multiple subcarriers, which can enable more precise 

localization. [33] 
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Another challenge with fingerprinting is the requirement for a large number of 

measurements  to build the database. On top of that, any changes in the environment may 

have an impact on the recorded signal properties, meaning the database must be updated 

regularly which takes extra effort and time. 

 

Figure 2.4.2.1: Fingerprinting Localization 

 

Traditional vs AI-Based Fingerprinting  

 

Fingerprinting methods can be further categorized into traditional approaches and 

artificial intelligence approaches [34]. Both categories consist of two operational stages: 

(i) the offline phase, also referred to as training, and (ii) the online phase, also referred to 

as localization stage. The main difference lies in how they process acquired fingerprints: 

traditional approaches estimate the target’s position based on the closest reference points 

collected during the offline phase, while AI-based approaches use ML to train models 

and estimate the target node’s position  [34]. 

Once RSSI is combined with ML algorithms the impact of environmental factors can be 

mitigated. This is relevant also for LoRaWAN setups, which normally utilize RSSI 

metrics in conjunction with ML for fingerprint-based localization. For instance, a study 

in [12] achieved 98.8% accuracy in indoor localization using LoRaWAN RSSI and SNR 

data via neural networks.  The study demonstrates how ML converts noisy 
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RSSI readings into precise location estimates, minimizing the signal fluctuations caused 

by environmental factors (e.g. multipath). 

The result of the offline phase is the creation of a fingerprint database, also known as a 

radio map. This database serves as the foundational reference for the entire localization 

system, as it stores the collected signal features (the fingerprints) along with the precisely 

known coordinates (or labels) of their corresponding reference points RPs.  

 

Moving on to the online phase, once the fingerprint database has been established, the 

system can be used to determine the location of a device in real-time. This real-time 

measurement of the device generates a new fingerprint at its current unknown location, 

which will be compared with the rest of the collected values in the database.  

 

Lastly, the density of RPs within the environment presents a trade-off: higher density 

requires longer data collection efforts but can possibly capture finer-grained variations in 

the signal environment and thus result in more accurate location estimates. In contrast, 

lower density reduces the data collection burden but can lead to a less precise localization 

capability [35].   

Below, a comparison of the main characteristics of RSSI-based fingerprinting and RSSI 

radio propagation techniques will be presented. 

Aspect Fingerprinting Method 

(Range-Free) 

RSSI Radio Propagation Method 

(Range-Based) 

Principle Matches measured RSSI values 

to a pre-collected database 

(radio map) 

Uses path loss models to convert 

RSSI to distance and applies 

trilateration/multilateration 

Main Calculation 

Approach 

Pattern matching or ML 

classification 

Analytical distance estimation via 

formula 

Environmental 

Sensitivity 

High (Updates required if the 

environment changes 

significantly) 

High (Errors if path loss 

parameters are misestimated) 
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Complexity Medium to high (especially 

with AI-based methods) 

Low to medium (simpler 

implementation but depends on 

accurate modeling) 

Adaptability Better with AI-based systems 

(can adapt to noise/variations) 

Less adaptable 

Use Cases Common in indoor positioning 

systems (Wi-Fi, LoRaWAN, 

Bluetooth) 

Used in simpler setups  

Table 2.4.2.1: Comparison between RSSI fingerprinting (range-free) and RSSI propagation 

model (range-based) localization techniques across key aspects. 

Range-Free Localization Techniques (cont.) 

Proximity-based localization does not determine the precise location of a device. 

Instead, it estimates the position of an end device according to a predefined area [5] by 

relying on metrics that indicate whether a device is within a specific radius 𝑅 of an anchor 

(coverage-based) or within direct communication range (connectivity-based) [26]. When 

a device is detected by an anchor, it is concluded that the specific device is inside the 

detector’s proximity region.  

Although it cannot provide relative or absolute location estimations, the proximity-based 

localization technique has been used extensively in IoT and WSN literature because of its 

simple implementation, minimal energy and computational requirements. It has also been 

widely used in most of GSM-based localization systems [5]. 

The DV-Hop (Distance Vector Hop) algorithm is a prominent range-free technique 

which uses a hop-based propagation model [26]. This algorithm estimates the distance 

between anchor and sensor nodes based on the number of hops in the shortest path 

between them and an average hop size [2]. 

The algorithm typically operates in three phases: First, anchor nodes broadcast their 

location information throughout the network, each node begins with a hop count set to 

zero and records the number of hops to reach each anchor node. During this iterative 

process, nodes update their tables as packets are received and replace their hop count 

values with lower ones [26]. As a result, all nodes will have the minimum hop count 
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recorded for each anchor (HopCounti ). Second, each anchor node calculates its average 

hop size (HopSizei) by dividing the actual distance to other anchor nodes by the number 

of hops between them. This average hop size is then broadcast to all other neighbor nodes 

in the network. Finally, each target node uses the following formula in order to determine 

its distance from each anchor node based on the received information: 

 di = HopCounti×HopSizei  

Where: 

• di  = estimated distance to anchor node i 

• HopCounti = number of hops from the target node to anchor i 

• HopSizei  = average physical distance per hop for anchor i 

Once these estimated distances to several anchor nodes have been established, 

the position of an unknown node can be determined using geometric methods like 

trilateration or multilateration. 

DV-Hop is known for its simplicity and scalability, as it does not require specialized 

ranging hardware. It is also particularly useful for constrained nodes which cannot 

process the entire network [25] and can localize a node with less than 3 neighbor anchors 

[36].  

A limitation of DV-Hop is the assumption that all hops have a uniform distance (same 

physical length), which may not always be true in real-world networks with irregular 

topologies or obstructions.    

 

 

 

 

Figure 2.4.2.2: DV-Hop Localization Algorithm with Example Hop Count Propagation 
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The Centroid method is another simple range-free localization technique utilized in 

WSN and IoT networks. It estimates the location of an unknown node as the 

geometrical center (or centroid) of all neighboring in-range anchor nodes, averaging 

their known (x, y) coordinates [25]. 

Centroid-based localization has two main variations:  

i. Simple centroid, which computes the arithmetic mean of anchor node 

coordinates, treating all anchors with equal importance.  

 

For a node 𝑀 with 𝑁 adjacent anchors at positions (𝑥𝑖, 𝑦𝑖), its estimated 

position (xcentroid,ycentroid) is: 

𝑥centroid =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

,  𝑦centroid =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

 

Example: If three anchors 𝐴1, 𝐴2, 𝐴3 have coordinates (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) 

the centroid is: (
𝑥1+𝑥2+𝑥3

3
,

𝑦1+𝑦2+𝑦3

3
) 

 

ii. Weighted Centroid Localization algorithm (WCL), which allocates weights 

as a function of proximity of the node to critical network entities (e.g. jamming 

attacks) [25] in order to attract the estimated position to close reference points. 

This weighting approach helps to mitigate errors caused by environmental 

interference and is capable of achieving more accurate results compared to the 

standard WCL method [37]. 

𝑥WCL =
∑ 𝑤𝑖𝑥𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

, 𝑦WCL =
∑ 𝑤𝑖𝑦𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 

The weights wi can be derived from various proximity or quality metrics. 

Common choices include: 
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• Inverse Distance Models: 

𝑤𝑖 =
1

𝑑𝑖
 or 𝑤𝑖 =

1

𝑑𝑖
𝑘  (𝑘 = 1,2) 

where: di is the estimated distance to anchor i. 

 

• RSSI-Based Models:  

𝑤𝑖 = RSSI𝑖 or 𝑤𝑖 = RSSI𝑖
𝑝 (𝑝 = 1,2) 

where: RSSI is the received signal strength from anchor i. 

While centroid methods are computationally very simple and cost-effective, they are 

highly dependent on anchor density and distribution in the area, thus, it is prone to 

significant localization errors. 

 

Figure 2.4.2.3: DV-Hop Localization Algorithm with Example Hop Count Propagation 

Approximate Point in Triangle (APIT) works by having every unknown node 

determine its location relative to three anchors forming a triangle. The node checks 

whether it lies inside or outside of the formed triangle by comparing signal strength 

indicators from nearby non-anchor nodes. This process is repeated for every triplet of 
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neighboring anchors and by aggregating results from multiple triangles, the node 

estimates its position as the intersection of feasible regions.  

APIT performs well in irregular network topologies and as a range-free method it does 

not require any distance measurements. Nevertheless, its performance still depends on 

the density of anchor nodes and the communication range of the anchors. 

Amorphous localization shares similarities with DV-Hop in terms of its approach to 

location estimation. Similar to DV-Hop, Amorphous typically comprises an initial phase 

in which anchor  flood both their location information and hop counts to the entire 

network. The key difference, however, is that Amorphous uses a probabilistic model to 

manage varying node densities, whereas the DV-Hop uses a uniform hop distance. More 

precisely, amorphous uses the neighbor connectivity to improve positions 

iteratively, limiting errors and resulting in better accuracy than DV-Hop in non-uniform 

settings.  

Similar to the other range-based methods, its performance strongly depends on network 

density and anchor distribution. Although Amorphous requires higher computational 

overhead than DV-Hop, the trade-off is improved positioning accuracy, making it a 

preferable solution for real world applications where node distribution becomes irregular. 

Virtual Force Iterative Localization (VFIL) is a range-free algorithm that 

utilizes virtual forces to estimate node positions in WSNs and IoT deployments. The 

method works by simulating attractive and repulsive forces between anchor nodes 

(known positions) and unknown nodes while refining positions iteratively to minimize 

localization errors. Furthermore, VFIL has been used as an enhancement of the Centroid 

Localization method in jamming scenarios in wireless networks  [38].  

This algorithm is effective in large-scale, low-power LoRaWAN networks, where sparse 

anchor distribution and RSSI variability challenge traditional methods. It can also be 

useful in scenarios where nodes are spread out uneven in the area and balance is desirable 

[25]. Ultimately, the underlying principle of using virtual forces is to optimize the 

network organization and lead to more energy-efficient communication solutions, a 

critical achievement for IoT resource-constrained environments. 
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iii) Hybrid localization techniques: 

The joint technique in hybrid localization systems attempts to combine two or more 

distinct methods, such as proximity or multilateration. By leveraging the strengths of each 

method, hybrid systems can become more robust under varying network conditions. 

A notable example is the Hybrid DV-Hop algorithm which was proposed in [29]. It  

improves the system’s accuracy by combining RSSI (for one-hop neighbors) and hop-

count (for multi-hop nodes). However, this approach introduces added computational 

complexity and demands careful fine-tuning. 

The second approach involves integrating multiple types of sensor data or communication 

technologies (e.g., Wi-Fi, Bluetooth, Zigbee) into a unified localization framework, also 

referred to as “data fusion” [26]. An effective hybrid system must fuse diverse 

measurements from one or multiple devices to enable seamless localization and adaptive 

services. The most widespread technology in IoT deployments is without a doubt Wi-Fi, 

and thus, it can be integrated with more available technologies.  

An example of a data-fusion framework is presented in [39], and is tailored for Wi-Fi, 

Bluetooth, Zigbee and UWB protocols.  The system offers high accuracy because it takes 

into account the best features of each technology, such as Wi-Fi’s broad coverage, UWB’s 

precision, and Bluetooth’s low energy consumption, while compensating for their 

respective weaknesses.  
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Figure 2.4.2.4: Indoor Localization Taxonomy 

2.5 Machine Learning Algorithms in Fingerprint-Based Localization 

 

Fingerprint-based indoor positioning systems have been increasingly making use of 

machine learning methodologies to deliver accurate and reliable indoor localization, in 

environments where GPS signals are either attenuated or completely unavailable. The 

initial attraction of the fingerprinting approach stemmed from its capacity to operate 

without a strict line of sight (LoS) between the receiver and the source of the signal, which 

presented a significant benefit compared to traditional GPS in indoor environments. 

 

Along with the development of the Internet of Things (IoT) and wireless sensor networks 

(WSNs), machine learning (ML) technology has been applied to indoor localization 

systems more and more markedly. Recent advancements in ML have enabled more 

sophisticated algorithms to be used in fingerprint-based systems, which facilitate better 

handling of signal noise, dynamic environmental conditions, and device heterogeneity. In 

the following sections, we will explore various ML algorithms that are widely mentioned 

in the literature. 

 

Supervised learning is a machine learning paradigm where models are trained on labeled 

datasets, that is, input data (e.g. RSSI , CSI etc.) are paired with known ground-truth 

coordinates. The goal is to learn a mapping function that accurately predicts locations for 
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unseen sensor data. This approach is widely used in fingerprint-based localization due to 

its high accuracy in structured environments, though it requires extensive labeled 

datasets, which can be costly to collect [40] 

The key supervised learning methods used in indoor localization systems will be 

discussed below. 

 

A fundamental technique employed in fingerprint identification is the K-Nearest 

Neighbor (KNN) algorithm, which is a supervised learning method. This specific 

algorithm operates by selecting the K-nearest annotated measurements from an offline 

radio map and using a weighted average of their location coordinates to approximate an 

unknown location of a target. To achieve that, the algorithm calculates the inverse of the 

Euclidean distance between the observed RSS (Received Signal Strength) and its K-

nearest training samples as weights [41]. Despite its simplicity, the KNN algorithm 

necessitates the maintenance of a massive radio map, as it must store all the RSS training 

values for frequent calculations [42]. 

 

The estimated position 𝑝̂ of the target is calculated as the weighted average of the 

positions of the 𝐾 nearest neighbors: 

 

𝑝̂ =
∑ 𝑤𝑖

𝐾
𝑖=1 ⋅ 𝑝𝑖

∑ 𝑤𝑖
𝐾
𝑖=1

 

Where: 

• 𝑝𝑖 is the position of the 𝑖𝑡ℎ neighbor, 

• 𝑤𝑖 =
1

𝑑𝑖
 is the weight (inverse of Euclidean distance), 

• 𝑑𝑖 = |𝑟 − 𝑟𝑖| is the distance between the observed RSS vector r and the 𝑖𝑡ℎ stored RSS 

vector 𝑟𝑖. 
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Figure 2.5.1: K-Nearest Neighbor (KNN) Algorithm Example 

Support Vector Machines (SVM) are also conventionally used for classification 

problems within this domain. As stated in [43], the kernel approach within SVM allows 

for enhanced generalization in modeling both linear and non-linear interactions between 

fingerprint classes. By using the kernel functions, the SVM method aims to solve the 

randomness and incompleteness of the RSS measurements but has a limitation of high 

computing complexity [42]. 

 

A Multi-Layer Perceptron (MLP)  is a type of feedforward artificial neural network 

(ANN) inspired by biological neural networks [44] and composed of an input layer, one 

or more hidden layers, and a target output layer. Each layer is made up of interconnected 

neurons that enable the network to understand complicated patterns by applying nonlinear 

transformations to the input data. More specifically, resilient fingerprint features are 

extracted through the training MLPs with backpropagation. Backpropagation is an 

optimization algorithm that minimizes prediction errors by tuning or changing synaptic 

weights via gradient descent. Generally, the hierarchical nature of the MLP makes it 

inherently well suited for Wi-Fi fingerprinting for complex and indoor environments 

where signal variance due to interference and moving objects poses major challenges 

[44]. 
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Figure 2.5.2: Multi-Layer Perceptron (MLP) Architecture 

 

However, all of the above models may risk overfitting when trained on limited annotated 

fingerprint data  [43]. 

 

Unsupervised learning has been explored to automatically learn meaningful 

representations from unlabeled data, often for dimensionality reduction or clustering in 

fingerprint-based localization systems [33]. The purpose of simplifying the data by 

identifying natural groupings or similar signal patterns (clustering) offers more efficient 

processing and storage of the data, which is crucial for IoT environments. Some 

commonly used unsupervised learning techniques are Autoencoders and Principal 

Component Analysis (PCA).  

 

More specifically, autoencoders are neural networks that compress input data into a 

lower-dimensional latent space (encoder) and reconstruct it (decoder) in order to preserve 

essential features for tasks like Wi-Fi fingerprint denoising or feature extraction. For 

instance, [45] employs an autoencoder to transform sparse Wi-Fi RSSI measurements 

into compact, trainable feature sets. 
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Principal Component Analysis (PCA) is a linear transformation that projects high-

dimensional data into orthogonal components while retaining the highest variance values. 

As highlighted by Alhmiedat [34], PCA helps localization minimize storage costs while 

still providing the discriminative accuracy needed for accurate positioning. Overall, these 

methods strike a balance between computational costs and localization precision 

for scalable deployment across resource-constrained IoT networks. 

 

Semi-supervised learning offers a promising solution to localization by bridging the gap 

between supervised and unsupervised learning approaches, while using small sets of 

labeled data together with larger sets of unlabeled data. In the majority of indoor 

localization scenarios, collecting accurate labeled location data (i.e., sensor readings 

paired with precise coordinates) can be expensive and usually very time-consuming [45] 

[40]. 

 

However, this is the case where unlabeled data can be useful (e.g. raw sensor 

measurements without location tags), which are readily available and often easier to 

acquire. By incorporating the acquired unlabeled data into the training process, semi-

supervised learning can help to uncover underlying patterns and structures that might not 

be apparent from the labeled data alone, as demonstrated in fingerprint-based indoor 

positioning systems [40].  

 

Techniques like pseudo-labeling and self-training have shown promising results in indoor 

positioning tasks, such as higher localization accuracy, robustness to noise and an overall 

improvement of model generalization. The effectiveness of semi-supervised learning can 

be observed particularly in wireless signal-based localization, where the propagation of 

signals is governed by the physical environment [40].  

 

In indoor positioning systems which use Wi-Fi or Bluetooth signals, obtaining labeled 

data typically involves recording signal strength and manually annotating these values 

with their corresponding coordinates. To address this problem, the author of [45] 

introduces a Semi-Supervised Generative Adversarial Network (SSGAN) that generates 

synthetic labeled Wi-Fi fingerprint data, improving landmark localization accuracy by 

35% compared  to a supervised deep neural network when labeled data is scarce. 
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To address the above issue, Ensemble learning methods have emerged as a solution by 

combining multiple models, often termed “weak learners” (e.g. decision trees, k-NN) to 

achieve a high-accuracy meta-model, a superior predictor also known as a "strong 

learner" [43]. Considering the strengths of different algorithms, ensemble methods aim 

to reduce both bias and variance in order to produce reliable predictions [46]. 

 

Recent trends highlight two prominent ensemble approaches, bagging (e.g. Random 

Forest) and boosting (e.g. AdaBoost, XGBoost). The general principle of bagging (short 

for Bootstrap Aggregating) is training multiple base learners in parallel and independently 

on different samples of the data, getting multiple predictions at the same time, and then 

aggregating them into a final prediction [47]. Boosting is another prominent ensemble 

learning technique that focuses on creating a strong predictive model. Unlike bagging, 

which trains base learners in parallel, boosting training process happens sequentially. 

More specifically, each new model attempts to correct the errors made by previous 

models in the sequence. Similarly to the bagging method, the final prediction of the 

boosted ensemble occurs after combining all the predictions of the models in a weighted 

approach [46]. 

 

Several studies have explored the use of Random Forest classifiers to improve 

localization accuracy for fingerprint-based localization. Random Forest ensures 

robustness to noise and outliers, which are common in wireless signal measurements, 

especially in indoor environments [48]. 

 

Similarly, AdaBoost has been applied to Wi-Fi fingerprint indoor localization systems to 

enhance precision, particularly in conjunction with noise-reduction techniques such 

as Probability-One (PONE) Access Point filtering [49]. The results of the study in [49] 

show a clear improvement of the localization performance with 95.5% accuracy  and 

lowering the 2D errors to 0.25 meters in multi-floor buildings. 

 

It must be noted that, since the deployment of machine learning on resource-constrained 

IoT edge devices has been rapidly increasing, it is a necessity to focus on computational 

efficiency as well. Ensemble learning methods, although they tend to provide superior 
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accuracy, their computational demands could be a challenge. Nevertheless, certain 

ensemble techniques, particularly gradient boosting frameworks like LightGBM and 

XGBoost, have been optimized for efficiency and are being explored for use in IoT 

environments.  

 

LightGBM is designed to be a fast and efficient framework, especially 

in the case of large datasets. It employs a leaf-wise growth strategy and histogram-based 

techniques to limit memory usage and accelerate training, as demonstrated in  [50]. 

Similarly, parallel processing and regularization in XGBoost enable the detection of 

attacks in real time without compromising performance [50]. Thus, these optimizations 

are suitable for the continuous data generated by IoT devices as they reduce the 

computational burden while maintaining accuracy. 

 

Deep learning techniques have demonstrated a strong ability to fuse multi-dimensional 

data sources (such as RSSI, CSI and inertial sensor data) to improve localization accuracy. 

This ability to fuse heterogeneous streams of information allows for a more 

comprehensive understanding of the environment, especially in challenging indoor 

settings. Due to the fact that deep learning architectures can capture spatial and temporal 

dependencies, they are particularly suitable for fingerprinting-based localization methods 

[10]. When trained on these spatial fingerprints (e.g. RSSI or CSI values at various 

reference points), the models learn to associate certain patterns of a signal with particular 

locations. 

 

Reinforcement learning (RL) has also gained attention for its potential to support 

autonomous navigation and location prediction. This approach learns a set of behaviors 

to achieve a specific objective, and it does that by using information about its current state 

and the environment [43]. Consequently, RL-based systems can provide localization 

strategies without solely relying on labeled datasets, unlike supervised methods. 

Traditional supervised learning approaches require large collections of sensor 

readings and their associated ground truth locations, which can be often costly and time-

consuming to acquire.  
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On the contrary, an RL-based system will learn optimal policies through trial-and-error 

interactions with the surrounding environment, making it adaptable to real-world 

uncertainties like multipath effects and variability. In this way, RL can address the main 

challenge for resource-constrained IoT edge devices by avoiding data labeling, a time 

consuming and costly process [51]. Consequently, this makes RL particularly valuable in 

the dynamic environments of IoT and WSN network settings that are either expensive to 

get labeled data from or have none at all. 

 

For instance, Deep Q-Networks (DQNs) being a specific type of deep reinforcement 

learning algorithm have been used to dynamically fuse multi-modal sensor data (e.g., 

RSSI, AoA, PDR) with respect to the environment dynamics and interference.  In the 

context of localization, state space can include the sensor readings and the agent's current 

position estimate, whereas actions might involve refining the position estimate or 

deciding on the next move. The RL-IFF framework employed in [51] depicts improved 

accuracy by optimizing fusion weights via Q-learning,  achieving a mean squared error 

(MSE) of <0.01m in hybrid BLE-based systems, outperforming standalone AoA, RSSI, 

and PDR methods. 

 

Transfer learning is a robust approach in machine learning whereby models trained in 

one environment (the source domain) can be adapted and employed in another 

environment (the target domain) with minimal labeled data [52]. Among the advantages 

of using Transfer Learning in localization is the reduction in effort in data collection. 

Instead of needing to build a complete fingerprint database from scratch in a new 

environment, it is possible to transfer a pre-trained model in another but comparable 

environment using only partial data. This is particularly beneficial in dynamic indoor 

settings where conditions such as furniture arrangements cause signal variations and 

lead to domain shifts that degrade traditional localization models. 

 

Therefore, maintaining localization systems becomes cheaper and requires less time, 

especially in applications that change frequently, which highlights the practical value of 

Transfer Learning in real-world localization tasks (e.g. smart homes and industrial IoT) 

[52]. Furthermore, Transfer learning has proved to be particularly effective in cross-

domain RSSI-based positioning systems, whereby the environmental characteristics can 
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vary considerably. RSSI-based localization, although widely used due to its reliance on 

existing Wi-Fi infrastructure has been shown to be environment-sensitive, such as 

variations in furniture layout and the presence of people [53]. This limitation can lead to 

significant differences in the RSSI signal distributions, which 

further complicates the process of directly applying a trained model in one environment 

to another.  

 

One of the ways to address this problem is using Transfer Learning, which as previously 

stated, offers a way to fine-tune models trained in a source environment to that of a target 

environment with different RSSI behaviors. For example, a framework outlined in [53] 

relies on transferring generic RSSI data between different homes, even when the data 

collection protocols vary, which showcased improved indoor localization performance. 

 

More specifically, the framework proposes a Conditional Generative Adversarial 

Network (ConGAN)-based augmentation in combination with a transfer learning 

framework (T-ConGAN). Their approach entails pre-training the model with RSSI 

samples from multiple houses and subsequently focusing on a ‘target’ house. By doing 

so, this method uses general knowledge to generate room-specific signals. 

Their work demonstrates a remarkable 51%  improvement in accuracy of room-level 

localization around some of the most difficult areas like the staircases, which is 

particularly useful in the context of healthcare. 

 

This systematic understanding of various algorithms and learning methods illustrates the 

breadth of research in fingerprint-based indoor localization systems and serves as a 

reference for future works in this domain. 

 

2.6 Jamming Attacks in WSNs and LoRa 

 

Radio jamming is defined as the deliberate act of transmitting signals on the same radio 

frequencies used by a target network with the intention of disrupting or preventing 

legitimate communication. A jamming source can disrupt an entire network or a smaller 

portion, depending on how powerful is the attacker [25]. Wireless networks are 

particularly vulnerable to radio jamming attacks due to their straightforward nature, and 
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also because a jammer can easily launch an attack without any specialized hardware or 

detailed knowledge of the control system [54].  

 

Jamming is well studied in many radio technologies, such as Wi-Fi, Bluetooth, Zigbee, 

etc., however, LoRaWAN jamming in particular hasn’t been studied for long. This type 

of attack can undermine multiple IoT applications, such as alarm systems, fire detection, 

and environmental monitoring. [13] 

 

LoRa jamming refers to the intentional disruption of LoRaWAN communications by 

exploiting vulnerabilities, with jammers targeting specific channels or spreading factors 

(SF) in the protocol’s physical and MAC layers. Moreover, research has shown that 

synchronized jamming can negatively affect LoRa communications by flooding the 

gateway with interference, which leads to a drastic reduce in network throughput [13].  

 

Another consideration when jamming attacks occur in a LoRa network is that the gateway 

can become a single point of failure. A LoRa gateway can be jammed by malicious 

attackers making it unable to receive any packets from devices that are connected to the 

network. [15] 

 

2.6.1 Common Jamming Attack Types 

 

Continuous jamming is a brute-force attack in which an attacker repeatedly floods the 

channel with high-power noise to keep it busy and completely disrupt all communications 

in the network by overwhelming legitimate signals.  In LoRa networks, this attack is 

highly effective due to the low data rates and long-range transmission supported by the 

protocol, as the constant noise blocks both uplink and downlink messages, rendering the 

network unusable [55].  

 

Unlike selective or triggered jamming, continuous jamming is readily detectable via 

energy detection mechanisms [25] but poses a serious threat because of its simplicity and 

catastrophic impact on network availability. Previous research reports that there is around 

55% throughput drop when continuous jamming occurs in a LoRaWAN environment 
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[56]. The simplicity of this attack makes it a common threat in both LoRaWAN and WSN 

deployments. 

 

Triggered jamming occurs when a malicious node will selectively disrupt 

communication only upon detecting specific packet signatures or protocol patterns, 

and hence minimizes its energy expenditure while maximizing interference [57]. For IoT 

networks, such an attack in most cases targets LoRaWAN gateways by intercepting 

preamble signals or MAC commands, then flooding the channel with noise in order to 

corrupt authentic transmissions [58]. Unlike constant jamming, triggered jamming evades 

simple energy detection countermeasures, and hence is a stealthy threat to low-power 

networks [59]. Malicious devices can detect the start of a legitimate transmission and 

quickly transmit interfering signals, jamming only specific parts of the message. This 

makes the attack more energy-efficient and harder to detect. 

 

Triggered jamming has been studied in [59] and it demonstrated how the long-air time of 

LoRa messages made this specific type of jamming possible and effective. More 

specifically, when the trigger jammer was active, only 0.5% of the messages managed to 

reach the gateway. The energy efficiency of triggered jamming makes it a significant 

concern in energy-constrained deployments, like IoT networks. 

 

A random jammer disrupts network communications by transmitting packets containing 

unrecognizable data, and in random moments. They can attack either by using  (i) specific 

signal shape i.e. following a specific sequence or (ii) an arbitrary signal shape, as it was 

discussed by M. Savva [25]. For example,  a random jammer can follow a sequence of 

jamming for x milliseconds, sleep for y milliseconds and repeat. Whereas random 

jammers that follow the (ii) approach create jamming signals completely randomly and 

unplanned. One limitation of these type of jammers is that they cannot jam during 

sleeping mode, thus, they may have the lowest accuracy. In essence, a random jammer 

introduces unpredictability into the communication channel, so that legitimate nodes 

struggle to establish or maintain stable connections. 

 

Selective jamming is a sophisticated attack where an adversary targets specific “high” 

importance packets or messages in a wireless network, by analyzing protocol headers or 
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payload content to disrupt critical communications [60]. Selective jamming conserves the 

attacker's energy and reduces the likelihood of detection, making it particularly dangerous 

for resource-constrained networks like LoRaWAN [61]. For example, the attacker can 

corrupt key bits during transmission, which can lead to failure in cyclic redundancy check 

(CRC) validation, causing the gateway to drop the message entirely. 

 

It must be noted that selective jamming makes the detection very challenging for the 

operator, because it jams only specific devices or messages, leaving the rest of the 

network untouched. In contrast, triggered and continuous jamming affects all the devices 

at a certain frequency uniformly, which can easily be marked as jamming, and thus take 

action (e.g. channel hopping) [21].  

 

Reactive jamming is an advanced form of jamming where an attacker dynamically 

disrupts communications only upon detecting active transmissions. So, if an action is 

identified by the jammer, it immediately sends a signal in order to collide with the existing 

signal that was identified [25]. Moreover, a reactive jammer adapts its strategy based on 

the network’s response to interference, making its detection more challenging with 

additional effort required [13]. Unlike continuous or selective jamming, reactive jammers 

monitor the wideband spectrum in real-time in order to emit high-power noise precisely 

when legitimate signals are detected. As a result, reactive jammers increase their chances 

and effectiveness of interference because they target frequencies that are currently in use. 

 

In LoRaWAN networks, this attack exploits the protocol's long preamble and CSS 

modulation, in a way that once a transmission is detected, the jammer rapidly aligns its 

interference to the same frequency and SF, causing significant packet loss. Unlike 

RTS/CTS or ACK-targeting reactive jammers used in other wireless networks like Wi-Fi 

[25], this jammer leverages the extended preamble duration and deterministic nature of 

LoRa modulation to disrupt communication effectively. 

 

Synchronized jamming attacks represent a potentially more damaging threat to 

LoRaWAN networks, as they directly exploit the fundamental signal processing 

mechanisms at the physical layer. In this type of attack, the attacker transmits jamming 

chirps that are precisely aligned in both time and frequency with the legitimate LoRa 
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chirps, making it extremely difficult for the LoRaWAN gateway to separate between the 

intended signal and the interference [15]. One reason why synchronized jamming is 

effective relies on the ability of jamming chirps to arrive at the gateway with higher power 

than the legitimate signal, leading the gateway to demodulate the stronger jamming signal 

instead of the intended data.  

 

Moreover, this technique can bypass .existing collision recovery mechanisms that rely on 

the misalignment of chirp boundaries in the time or frequency domain. Ultimately, one 

of the most concerning aspects of synchronized jamming is its ability to create a single 

point of failure in the LoRaWAN network specifically targeting the gateway. Research 

has empirically demonstrated the effectiveness of synchronized jamming attacks in 

significantly degrading the performance of LoRa communication, even in the presence of 

prior countermeasures [15]. 

 

Deceptive jamming involves transmitting signals designed to appear as authentic packets 

to the receiving system, with the primary goal being introducing false information causing 

the victim to make incorrect conclusions [62]. A modified deceptive jammer has been 

described by M. Savva [25], which employes an ON-OFF pattern. When in the ON state, 

the jammer emits interference signals, but unlike a constant jammer, it transmits a specific 

data sequence, allowing nodes to transfer packets during the OFF state. This approach is 

still simple to implement, but the deceptive jammer is more challenging to detect than a 

constant jammer, as it transmits seemingly legitimate packets instead of random bits. 

Lastly, similar to the constant jammer, the deceptive jammer is energy-inefficient due to 

its continuous transmission [25]. 

 

Advanced Jamming Attack Strategies 

 

The aforementioned jamming techniques, ranging from straightforward continuous 

interference to more sophisticated deceptive strategies, represent common attack vectors 

explored in literature. Building upon these fundamental concepts, several studies have 

tried to create more advanced and adaptive jammers to evaluate their effectiveness in 

jamming the network.  
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M. Savva [25] introduces the complex jammer which encompasses four jamming 

behaviors: Constant, Deceptive, Random and Reactive, and can successfully switch 

between them during attacks. The key findings of the proposed approach conclude that 

the increased complexity of the jammer makes it much more challenging to detect, as it 

demonstrated the lowest detection accuracy in experiments. Besides detection, complex 

jammer’s mobility-like behavior of switching strategies has also complicated the 

localization algorithm (MMLAW) used in the research. 

 

A wormhole attack is a network-layer attack where two or more malicious nodes collude 

to secretly relay packets between distant parts of a network. One of the malicious devices 

receives normal messages and sends them over to the second device though a low-latency 

link. To carry out an attack, the second device is responsible to replay them in a different 

area of the network [21]. 

 

In traditional wireless sensor networks (WSNs), this attack creates fake short-cut routes, 

leading to routing loops, energy depletion, man-in-the-middle attacks or can also be used 

simply to convince two distant nodes that they are neighbors by relaying packets between 

the two of them [63].  

 

However, in LoRaWAN, which uses a star-of-stars topology, classic wormhole attacks 

are ineffective due to the lack of multi-hop routing and replay attack protection via 

Message Integrity Codes (MICs). Instead, a novel wormhole-based selective jamming 

attack was investigated and executed by Aras et al. (2017) [21] : one malicious node 

(a sniffer) captures legitimate LoRa transmissions while another (a jammer) 

simultaneously blocks them at the gateway, allowing delayed replay of recorded 

messages to manipulate sensor data undetected. By replaying normal messages during a 

jamming attack, the attacker can simultaneously  block alerts and make the system appear 

normal. 
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Table 2.6.1 Overview of Jamming Attack Types and Their Characteristics in LoRaWAN 

 

2.7 Wi-Fi Jamming Limitations in LoRaWAN 

Although numerous studies have already been conducted on jamming attacks in 

traditional Wireless Sensor Networks (WSNs) and there are a lot of common 

vulnerabilities that overlap with LoRaWAN, many Wi-Fi jamming techniques often 

prove ineffective against LoRaWAN due to key architectural and protocol-level 

differences.  

 

Wi-Fi depends on mechanisms like carrier-sense multiple access with collision avoidance 

(CSMA/CA),  orthogonal frequency-division multiplexing (OFDM), Direct Sequence 

Spread Spectrum (DSSS) and Frequency Shift Keying (FSK). However, LoRaWAN takes 

a fundamentally different approach and uses a simple ALOHA-based random access 

mechanism [19] in conjunction with Chirp Spread Spectrum (CSS) modulation. In 

addition, LoRaWAN utilizes the adaptive data rate (ADR) function to dynamically adjust 

Attack Type Description Impact on LoRa 
Detection 

Difficulty 

Energy 

Efficiency 

Continuous 

Jamming 

Repeatedly floods 

channel with noise. 

Blocks all communication 

(uplink/downlink), high 

throughput drop. 

Easy Low  

Triggered 

Jamming 

Disrupts on specific 

signal pattern or event 

(e.g., preamble) 

Corrupts selective 

transmissions, often targets 

gateways. 

Hard Medium  

Random 

Jamming 
Unpredictable noise. 

Causes unstable links, 

irregular interference. 
Medium 

Variable 

(depends on ON-

OFF pattern) 

Selective 

Jamming 

Targets important 

packets. 

Corrupts key data, affects 

specific devices/messages. 
Very Hard High  

Reactive 

Jamming 

Dynamically jams any 

ongoing transmissions. 

Exploits LoRa preamble and 

CSS modulation, causes high 

packet loss. 

Hard High  

Synchronized 

Jamming 

Attacks 

Transmits precisely 

aligned jamming chirps. 

Can be indistinguishable 

from legitimate signals, may 

lead to gateway failure. 

Hard Medium - High 

Deceptive 

Jamming 

Transmits ‘fake’ 

authentic signals. 

Injects false data, doesn’t 

fully block real traffic. 
Medium Low – Medium  
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spreading factors (SFs) and maintain connectivity in noisy environments. Added on the 

previous features, LoRaWAN’s heavy reliance on uplink traffic and duty-cycle 

restrictions may complicate jamming attacks and detection mechanisms even more [19]. 

 

An example of a specific-function jammer that was described in [25] for Wi-Fi (IEEE 

802.11) networks is the channel-hopping jammer. Frequency hopping is a common anti-

jamming technique, but its implementation might be more straightforward in some WSN 

protocols compared to standard LoRaWAN [64]. This jammer relies on MAC-layer 

mechanisms (e.g. CSMA) which are typical in Wi-Fi but largely absent in LoRaWAN. 

 

Finally, the network topology can play a role. LoRaWAN typically uses a star topology, 

where all devices communicate with a central gateway [15]. In contrast, traditional WSNs 

can use more complex topologies like mesh networks, that might offer some resilience to 

jamming because data can be sent through alternative routes if a node is attacked. 

Therefore, some adaptations and redefinitions of jamming attacks in Wi-Fi networks 

along with their detection strategies, must be taken into consideration to fit the unique 

characteristics of low-power wide-area networks (LPWAN). 

 

Table 2.7.1: Comparative Overview of Key Characteristics Between LoRaWAN and Traditional 

WSN Technologies 

Feature LoRaWAN Traditional WSNs  

Frequency Bands 
Sub-GHz ISM bands (regional 

variations)  

2.4 GHz ISM band, Sub-GHz (protocol 

dependent)  

Modulation  CSS DSSS, FSK, GFSK, O-QPSK 

Typical Data Rates Low (0.3 kbps to 50 kbps)  
Higher (~250 kbps for Zigbee, up to 2 Mbps 

for BLE) 

Typical Transmission 

Range 

Several kilometers (urban), up 

to 15 km (rural)  
Shorter range (tens to hundreds of meters)  

Network Topology Star (mostly)  Star, Mesh, Tree  

Susceptibility to Long 

On-Air Time Attacks 
Higher (longer airtime)  Lower generally (shorter airtime) 

Energy Constraints 
High (battery-powered 

devices common)  
High (sensor nodes often battery-powered)  
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Chapter 3 delves into the existing literature that has been published over the past decade, 

focusing on the growth of WSN and IoT technologies in the context of indoor localization 

and their associated security issues. Emphasis is placed on jamming detection and 

localization, but also broader anomaly detection. This review specifically refers to studies 

about LoRaWAN, examining this technology’s current state with respect to jamming 

detection and localization. 

 

While numerous papers have broached anomaly and jamming detection in both WSN 

and IoT networks, the available literature on explicit jamming localization remains 

insufficient. The majority of such studies utilize machine learning-based frameworks to 

demonstrate high accuracy in detecting anomalies or generic attacks, yet they do not 

extend to physically localizing the attacker. This limitation is even more evident in LoRa 

and LoRaWAN-based systems, where research on indoor localization has primarily been 

focused on improving the accuracy of positions through RSSI fingerprinting or ensemble 

learning/hybrid methods, while attack-specific localization is rarely explored. This 

represents a significant research gap that my study will attempt to address: implementing 

and experimenting with jamming localization techniques in LoRa-based IoT and WSN 

environments. 
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Yang et al. (2021) [65] provide a comprehensive survey of indoor localization in WSN 

and IoT networks. The authors highlight that ML algorithms, particularly deep learning, 

improve localization accuracy under NLOS conditions, while filter-based, such as 

Kalman Filters, contribute to real-time tracking. They verify that hybrid methods (e.g., 

CNN-LSTM) provide sub-meter localization errors in indoor environments, mitigating 

multi-path effects. However, the survey does not address any security threats and focuses 

solely on benign environments.  

 

3.1 Anomaly Detection in WSN and IoT 

 

Several attempts have been made which aim to explore more advanced security measures 

since the escalating threat of cyberattacks on IoT networks. Ullah and Mahmoud [66] 

propose a deep learning-based anomaly detection model for IoT networks, focusing on 

identifying cyberattacks such as DDoS, malware, and data theft. They argue that 

traditional methods struggle with unpredictable network technologies, 

and hence they propose multiclass classification model with CNNs, by utilizing 1D, 2D, 

3D configurations along with transfer learning.  Model validation is performed using 

multiple open-source IoT datasets, such as BoT-IoT [67] and IoT-23 [68], achieving a 

high accuracy in detecting anomalies, up to 99.97% and a low false alarm rate. Although 

the paper’s framework demonstrates robust anomaly detection for network and 

application-layer attacks, it does not address physical-layer attacks such as jamming 

attacks, nor does it investigate localization-based intrusions. 

 

Boush et al. (2025) [4]  tackle this issue by presenting an efficient IoT attack detection 

system, "IoT-SecureNet" which includes efficient feature extraction and ensemble 

machine learning (ML) algorithms, i.e., XGBoost, LightGBM, and CatBoost. The 

ensemble technique leverages the strengths of each model while efficient feature 

extraction ensures that the model is trained only on the most crucial features in order to 

optimize detection accuracy. To combine all the models’ detection results (attack vs. no 

attack), two methods are outlined: i) Majority voting technique, which for binary 

classification jobs is the simplest and ii) Weighted Averaging, which assigns weight to 

each model based on its performance during the training process. Overall, this study 
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demonstrates the potential of ensemble ML techniques for enhancing security 

in IoT networks. 

 

3.2 Anomaly Detection in LoRa 

 

Although indoor localization is not specifically covered by Babazadeh (2020) [69], their 

edge-based anomaly detection method for LoRa-based WSNs includes useful details 

regarding resource-efficient signal processing. The study's approach to timestamped 

event logging and compression-rate thresholds (e.g. filtering compression rate, 

FCR<50% → anomaly) demonstrates how edge devices can preprocess data to reduce 

bandwidth overhead. With the aid of RSSI/CSI measures, this technique may be 

potentially modified and adaptable for indoor interference detection. This study, 

however, prioritizes broad anomaly detection in environmental monitoring  rather than 

specific jamming detection or localization, which differs from my thesis’ scope. 

Regardless, their application of Channel Activity Detection (CAD) towards packet 

collision reduction draws attention to trade-offs between real-time responsiveness vs. 

detection accuracy, a consideration equally relevant to dense indoor IoT deployments. 

 

Kurniawan & Kyas (2022) [70] suggested a ML-based system for generic anomaly 

detection in LoRaWAN gateways, evaluating 11 algorithms (including CBLOF, PCA, 

and Isolation Forest) on real-world network traffic. Their methodology focuses 

on packet-level analysis (join-request and data-request patterns) using RSSI/LSNR 

features to identify threats like DoS, replay attacks, and MITM. The main results of their 

work indicated that CBLOF achieved the highest performance scores when detecting 

anomalies, whereas PCA and HBOS were computationally efficient when working with 

large datasets. Their work differs from my thesis focus as it examines general network 

anomalies rather than specifically targeting jamming signals or localizing the jammer.  

 

Ensemble learning techniques have also been explored in the field of indoor localization. 

K. Hettiarachchige [43] reviews the application of ensemble machine learning 

techniques to improve LoRa-based indoor localization systems by using RSSI data.  More 

specifically, the study revolves around optimizing localization accuracy and predictive 

performance by evaluating several supervised ensemble methods (Random Forest, 
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Gradient Boosting, LightGBM, Bayesian post-hoc regularization). The methodology 

involves testing and evaluating the mentioned algorithms under different 

hyperparameters, which leads to the proposed model: an ensemble model combining 

Gradient Boosting and LightGBM with a Voting Classifier. By achieving accuracy at 

around 91%, the ensemble approach outperformed individual novel models and 

harmonizes the strengths of both models, leading to a more robust and resilient predictive 

tool.  

 

Senol et al. (2024) [71] tackle the critical challenge of securing LoRa-based IoT networks 

by detecting tampered radio-frequency transmissions using ML strategies. The study 

detects generic signal tampering (jamming, spoofing, replay, unspecified distortions etc.) 

but does not provide granular classification. Their approach uses image-based anomaly 

detection, converting frequency signals into visual representations to recognize deviations 

in frequency patterns. They employ five algorithms commonly used in image processing 

and computer vision: Local Outlier Factor (LOF), Isolation Forest, Autoencoder, 

Variational Autoencoder (VAE), and Principal Component Analysis (PCA) on a dataset 

of real-world transmission recordings of normal and abnormal signal images.  

 

LOF achieves the highest accuracy (97.78%) while Isolation Forest is the least reliable 

with 84.49% accuracy. The strong performance of LOF validates the broader 

effectiveness of density-based outlier detection in RF anomaly detection, aligning with 

previous findings from Kurniawan & Kyas (2022) [70], where CBLOF, a clustering-

enhanced LOF variant, also performed well. 

 

Their use of image-based data distinguishes their work, as it captures subtle anomalies 

often missed by traditional signal analysis when complex patterns are present. Potential 

limitations of this framework, as stated by the authors, can be the dependence of most 

algorithms on the quality and quantity of the training dataset. The research also omits 

real-time deployment challenges, such as computational latency in resource-constrained 

IoT devices, a critical factor for indoor localization systems. 
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3.3 Jamming Detection in LoRaWAN 

 

Aras et. al [21] in their paper "Selective Jamming of LoRaWAN using Commodity 

Hardware" empirically prove that LoRaWAN’s design choices i.e. long packet air-time 

(due to CSS modulation) and unencrypted MAC-layer headers, enable practical, low-cost 

jamming attacks. The authors demonstrate how to exploit these characteristics of LoRa 

while using low-cost hardware for three attack variants: triggered jamming, selective 

jamming, and a combined selective jamming-wormhole attack. The key findings of their 

study reveal that LoRaWAN is extremely vulnerable to jamming, achieving over 98% 

success rates of selective jamming over spreading factors (SFs). A notable discovery is 

the inverse relationship between SF and jamming effectiveness, i.e., higher SFs (e.g., 

SF12) are easier to jam (longer air-time) but require stronger jamming signals. Similarly, 

lower SFs (e.g., SF7) which have shorter air-time, evade jamming if the attacker’s 

reaction is too slow. Although this paper does not address jamming detection or 

localization, it has proven exploitable weaknesses in LoRaWAN and validated jamming 

attacks in real-world testing. 

 

The first official work on jamming detection for LoRaWAN, was conducted by Danish 

et al. (2018) [72], who focused on the join procedure, and proposed a Network Intrusion 

Detection System (NIDS) which uses the Hamming distance between consecutive join-

request messages. Hamming distance is a metric that counts the differences between bit 

positions in two equal-length binary strings and thus can point out anomalies that signal 

jamming events. As a result, their system attains 98% accuracy with a 5% false alarm 

rate. 

 

In a similar manner, Martinez (2021) [73] focuses on jamming attacks in LoRaWAN 

networks and addresses the problem from a more holistic point of view. The author 

suggests two primary tools: i) a mathematical model to estimate the impact of jamming 

on LoRaWAN performance and ii) an extended ns-3 simulation module for evaluating 

realistic scenarios. Key findings of the study reveal that jamming severely degrades 

network performance and interferes communication, especially in terms of throughput 

and energy usage. Retransmission mechanisms can be applied to mitigate some impacts, 

but for IoT networks which rely on battery-powered nodes, the retransmission-energy 
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tradeoff must also be taken into account.  An interesting proposition is the use of LSTM 

networks for jamming detection, achieving high performance in identifying anomalies, 

and which will be evaluated on our approach later. This thesis does not go a step further 

to address jamming localization, a gap my research aims to tackle. 

 

3.4 Jamming Detection and Localization in WSNs and IoT 

 

In contrast to the limited research on jamming detection in LoRa-based systems, in the 

realm of ‘traditional’ Wireless Sensor Networks (WSNs), much work has been carried 

out on the potential of jamming detection. Upadhyaya et al. (2019) [74] evaluated several 

Machine Learning algorithms (decision tree, random forest, SVM) for jamming detection 

in WSNs, relying primarily on RSSI.  

 

In the domain of Vehicular Ad-Hoc Networks (VANETs), the author in [75] also utilized 

a ML approach (Random Forest) for detecting jamming by analyzing metrics such as 

Channel Busy Ratio (CBR), Packet Delivery Ratio (PDR), and Inactivity Time (IT). 

Given the highly mobile and dynamic nature of VANETs, the suggested technique 

demonstrated excellent efficacy with an accuracy of up to 97%. 

 

Another study carried out by Osanaiye et. al (2018) [76] presents a statistical 

methodology by implementing the Exponentially Weighted Moving Average (EWMA) 

algorithm to detect jamming attacks in WSNs. The key benefit of EWMA is that it 

uses aggregation of recent data and historical (past) data and can easily identify 

small changes in time-series. The proposed algorithm monitors the Inter-Arrival Time 

(IAT) of packets as an evaluation metric to identify abnormalities caused by jamming 

with a 100% detection rate, according to the authors. This result highlights the 

effectiveness of lightweight statistical techniques in physical-

layer interference detection in WSNs, though such methods remain underexplored in 

more complex LPWAN settings like LoRaWAN. 

M. Savva (2024) [25] addresses the critical need for practical anti-jamming methods and 

proposes a comprehensive framework for detecting, localizing, and recovering from 

jamming attacks in WSN and IoT networks. He focuses on enhancing security against 
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intelligent jammers (constant, deceptive, random, reactive) that employ more advanced 

ML algorithms to attack a network. A notable contribution is the introduction of a novel 

adaptive behavior “complex jammer” which highlights the system’s ability to handle 

evolving attack strategies.  

Concerning the detection part, the author employs a lightweight fuzzy logic intrusion 

detection system (FLIDS) specifically designed to detect jamming attacks. During the 

localization phase, the modified Multilateration Localization Algorithm with Weights 

(MMLAW) combines metrics from the data link and network layers, such as Expected 

Transmission Count (ETX) and retransmissions in order to pinpoint the attacker’s 

location. Lastly, the recovery phase includes network-layer rerouting techniques and node 

blacklisting within the affected area. However, the author explicitly excludes LoRa and 

LoRaWAN from the scope of the study, which my thesis’ scope explicitly includes.  

Acronyms for Table 3.1 columns:     IL – Indoor Localization 

AD – Anomaly Detection 

JD – Jamming Detection 

     JL – Jamming Localization 

Authors Technology Technique Key Finding Methodology Limitations IL AD JD JL 

Yang et al. 

(2021) 

[65] 

WSN/IoT 

Networks 

Survey of 

ML/filter-based 

methods 

ML and filters 

improve accuracy 

in NLOS/dynamic 

environments 

Survey 1. No security 

threats 

mentioned 

    

Ullah et al. 

(2021) 

[66] 

IoT 

Networks 

Convolutional 

Neural Networks 

(1D, 2D, 3D), 

Transfer Learning 

Achieved 99.97% 

accuracy in 

multiclass attack 

detection. 

Feature selection, 

CNN training, 

transfer learning 

on merged IoT 

datasets. 

No physical-

layer attacks 

(e.g., 

jamming).  

    

Boush et al. 

(2025) 

[4] 

IoT  Ensemble ML 

(XGBoost, 

LightGBM, 

CatBoost)  

Ensemble model 

achieved 96.2% 

accuracy in attack 

detection 

Supervised ML on 

IoT network traffic 

data with ensemble 

learning and 

feature extraction 

 No real-time 

evaluation.  

    

Babazadeh 

(2020) 

[69] 

LoRa WSN Edge analytics + 

CAD scheduling 

Achieved 50% 

bandwidth 

reduction via 

compression-rate 

thresholds 

Sensor-side data 

compression,  

Centralized 

anomaly 

reconstruction 

1. No 

multipath 

analysis. 

2.Scalability 

constraints in 

dense networks 

    
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Table 3.1: Literature Review Summary 

(FCR<50% = 

anomaly) 

Kurniawan & 

Kyas (2022) 

[70] 

LoRaWAN Various ML 

algorithms  

CBLOF achieved 

the highest F1 

(0.92)  PCA most 

efficient 

Packet-level 

RSSI/LSNR 

analysis and  11 

ML models 

No multipath 

tests 

    

K. Hettiarach-

chige (2024) 

[43] 

LoRa Ensemble ML 

(Gradient 

Boosting, 

LightGBM, 

VotingClassifier) 

Achieved 91% 

accuracy for 

localization 

Supervised ML on 

RSSI data with 

extensive 

hyperparameter 

tuning 

No real-world 

evaluation 

    

Senol et al. 

(2024) 

[71] 

LoRa  

 

Machine Learning 

(LOF, VAE, PCA, 

Autoencoder, 

Isolation Forest) 

Achieved ~ 98% 

accuracy 

 (LOF) in 

detecting 

tampered RF 

signals. 

Image-based ML 

(LOF, VAE, PCA) 

on spectrograms 

from 

HackRF/MKRWA

N1310 testbed. 

1. No real-time 

evaluation. 

2. No attack-

type 

granularity  

    

Danish et al. 

(2018) 

[72] 

LoRaWAN Hamming 

distance-based 

NIDS 

98% detection 

accuracy with 5% 

false alarms 

Analyzing bit 

differences in join-

request messages 

Only detects 

join-request 

jamming  

 

    

Martinez 

(2021) 

[73] 

LoRaWAN Mathematical 

modeling & 

LSTM detection 

 LSTM achieved 

high detection 

accuracy 

Simulation-based 

evaluation with ns-

3 module 

No real-world 

validation  

 

    

Upadhyaya et 

al. (2019) 

[74] 

WSN ML (DT, RF, 

SVM) 

Comparative 

performance 

evaluation of ML 

classifiers 

RSSI-based 

feature analysis 

Limited 

adaptability to 

new 

environments. 

    

VANETs 

study) 

[75] 

VANET Random Forest 97% detection 

accuracy 

CBR, PDR, IT 

metrics analysis 

1. Vehicle-

specific 

dynamics  

2. High 

mobility focus 

    

Osanaiye et al. 

(2018) 

[76] 

WSN EWMA statistical 

method 

100% detection 

rate (claimed) 

IAT monitoring 

for anomalies 

No real-world 

validation  

 

    

Savva (2024) 

[25] 

WSN / IoT 

Networks 

FLIDS + 

MMLAW (using 

ETX, 

retransmissions)+ 

recovery routing 

Proposed full 

framework 

(detection-

localization-

recovery) for 

jamming,  

Fuzzy Logic IDS 

for detection, 

Multilateration 

with Weights for 

localization, 

Recovery via 

rerouting/blacklisti

ng 

LoRaWAN 

explicitly 

excluded 

✔ ✔ ✔ ✔ 
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Chapter 4 

 

Jamming Detection Implementation 
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4.2 Packet Loss Ratio (PLR) Calculation         67 

4.3 Jamming Detection Methods        70 

 

 

This section presents the implementation of several Machine Learning and Deep Learning 

methods for performing jamming detection on a LoRa-based dataset. The dataset is public 

and can be accessed on GitHub [77]. The goal is to detect and analyze jamming attacks 

in LoRa networks using network metrics like PLR, RSSI and SNR. The dataset is 

described in Table 4.1.1: 

 

4.1 Dataset Description 

 

Total Samples 31,919 

Time Range February 2, 2023 - February 9, 2023 

Recording 

Interval 

Every minute 

Data Format CSV 

Devices 5 static LoRa end devices (Mote01 – Mote05) 

Features 14 total (including LoRa PHY settings, RSSI, SNR, Jamming label, 

FCnt) 

Jamming Label Binary label: 1 = Normal , -1 = Jamming 

Jamming Period 14:15 until 17:00 on February 8, 2023 

Table 4.1.1: Chirp Dataset Overview 
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Dataset Limitations: 

While the dataset provides essential communication metrics like RSSI, SNR, and frame 

counters (fcnt), it lacks location coordinates, or any location information at all, which 

makes localization of jamming sources infeasible. Therefore, on this dataset only 

jamming detection can be performed, which is later evaluated on the ground truth values 

(known jamming period). Additionally, the dataset is highly imbalanced, with the 

jamming event occurring for only a few hours on a single day, while the remaining data 

reflects normal operation.  

 

4.2 Packet Loss Ratio (PLR) Calculation  

 

Despite that the dataset contains RSSI and SNR which can be used for identifying 

possible attack patterns, those metrics weren’t enough for accurate results. Therefore, it 

was necessary to determine PLR through the frame counter (fcnt) values. 

 

PLR was chosen as a key measure for jamming detection because it directly measures the 

reliability of communication, which is severely impacted by jamming attacks. Since 

jammers disrupt transmissions and cause more packet loss, the measure is a good 

indicator of the malicious interference, complementing RSSI and SNR for increased 

accuracy in detection. 

PLR is defined as the ratio of lost packets to the total expected packets (over a given 

period): 

 

𝑃𝐿𝑅 =
Expected Packets − Received Packets

Expected Packets
 𝑥 100 

 

The calculation of this metric was initially per-device over fixed time intervals. Then, 

PLR was calculated for the whole system (aggregating PLR across all motes) which 

yielded to better results. This might happen because per-device PLR can be prone to 

outliers from transient local interference, whereas combining data from all motes can 

amplify the persistent signal of jamming and average out random noise.  
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The other two metrics considered for detecting jamming are the Signal-to-Noise Ratio 

(SNR) and Received Signal Strength Indicator (RSSI). SNR quantifies signal quality by 

measuring how much the desired signal stands out from noise. We expect SNR to drop 

when jamming interference is active. 

SNR (dB) = 10 × log10 (
𝑃signal

𝑃noise
) 

 

Where: 

• 𝑃signal is the received signal power 

• 𝑃noise is the background noise power.  

RSSI measures absolute received power, including both signal and noise. While useful 

for detecting overpowering jammers, it cannot distinguish intentional jamming from 

natural signal attenuation, and it must be integrated with other metrics for reliable 

detection. 

RSSI (dBm) = 10 × log10(𝑃received) 

 

As discussed, the PLR was calculated initially per device. However, it was later 

concluded that using the collective data of all devices provided a better approximation. 

The reasoning behind the calculation of PLR is identical in both approaches, differing 

only in the dataset split utilized: per-device vs. system-wide aggregated data. 

 

The process begins by reading and pre-processing an aggregated data set of time-stamped 

transmission logs of all the devices involved. The data is sorted chronologically and 

grouped by device within each interval of fixed duration (15 minutes). For every such 

interval, the algorithm extracts the minimum and maximum frame counter (𝑓𝑐𝑛𝑡) values 

for each device to estimate the number of packets that should have been transmitted. The 

expected packet count for a device in a given interval is calculated as: 

 

Expected𝑖 = Last_fcnt𝑖 − First_fcnt𝑖 + 1 

 

The actual received packets are counted directly from the data, and lost packets are 

calculated as: 

Lost𝑖 = Expected𝑖 − Received𝑖 
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The expected and received counts are then accumulated across all devices to obtain a total 

expected and total received value for that interval. The system-wide PLR is calculated 

using the following formula: 

 

PLRsystem = (
∑ Lost𝑖

𝑁
𝑖=1

∑ Expected𝑖
𝑁
𝑖=1

) × 100 

Where:  

• 𝑁 is the number of active devices in the interval. 

For example, assume that during a 15-minute interval, a device had a first frame counter 

of 102 and a last frame counter of 108. If only 5 packets were actually received during 

this interval, the calculations would be as follows: 

 

Expectedi = 108 − 102 + 1 = 7 

Losti = Expectedi − Receivedi = 7 − 5 = 2 

PLRi = (
2

7
) × 100 ≈ 28.57% 

This process is repeated per device, and system-wide PLR (for that interval) is computed 

by summing expected and received packets across all devices. 

 

ALGORITHM 4.2.1: SYSTEM-WIDE PLR CALCULATION 

 Input: Chirp dataset df, interval duration Δt (in minutes) 

 Output: Packet Loss Ratio (PLR) for each interval 

1 Initialize start_time ← first timestamp, end_time ← start_time + Δt 

2 while start_time < last timestamp do 

3  interval_data ← filter entries with Local Time ∈ [start_time, end_time) 

4  total_expected, total_received ← 0 

5  for each device in interval_data: 

6   Calculate expected = max(fcnt) − min(fcnt) + 1 

7   Calculate received = number of packets 

8   Accumulate total_expected and total_received 

9  end for 

10  PLR ← $\left( \frac{\text{total_expected} - 

\text{total_received}}{\text{total_expected}} \right) \times 100$ 

11  Store [start_time, end_time, PLR] 

12  start_time ← end_time; end_time ← start_time + Δt 

13 end while 

14 Return PLR values 
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RSSI and SNR preprocessing 

 

For each interval, in addition to PLR, the average Received Signal Strength Indicator 

(RSSI) and Signal-to-Noise Ratio (SNR) are computed by averaging all values recorded 

during that time. Each interval is then labeled as either jamming (-1) or normal (1) based 

on whether its start time falls within the known jamming period (in this case, between 

14:15 and 17:00 on February 8, 2023). 

Avg_RSSI =
1

𝑀
∑ RSSI𝑗

𝑀
𝑗=1  Avg_SNR =

1

𝑀
∑ SNR𝑗

𝑀
𝑗=1  

Finally, the results consisting of the interval start and end times, total expected and 

received packets, PLR percentage, average RSSI and SNR, and the jamming label are 

written to a CSV file.  

 

4.3 Jamming Detection Methods: 

 

Several machine learning models were employed for jamming detection, with the LSTM 

Autoencoder pseudocode described in more detail due to its sequence-based architecture. 

For the remaining models, a similar detection pipeline was followed, and only the key 

differences in parameters are summarized in their corresponding pseudocodes. 

 

1. LSTM Autoencoder 

The LSTM Autoencoder was utilized to detect jamming by learning normal 

patterns from the multivariate time series data of RSSI, SNR and PLR. Training was 

done using non-jamming periods, and instances of jamming were used for the testing part. 

The data was normalized and split into overlapping sequences of length T=10, which 

were used as input to the model. After training the model for 100 epochs with MSE and 

Adam optimizer, it reconstructed all input sequences. Anomalies were identified based 

on high reconstruction error, calculated as: 

[MSEi =
1

𝑇 ⋅ 𝐹
∑ ∑ |𝑥𝑡,𝑓

(𝑖)
− 𝑥𝑡,𝑓

(𝑖)̂
|]

𝐹

𝑓=1

𝑇

𝑡=1
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Where: 

• 𝑖 is the index for the sequence (i.e., the i-th time window). 

• 𝑇 is the number of time steps in the sequence (10 if the sequence length is 10). 

• 𝐹 is the number of features (RSSI, SNR, PLR → F = 3). 

A threshold set at the 98th percentile of these errors was used to flag jamming events. 

 

ALGORITHM 4.3.1:  LSTM AUTOENCODER FOR JAMMING DETECTION 

 Input: Chirp dataset df, interval duration Δt (in minutes) 

 Output: Packet Loss Ratio (PLR) for each interval 

1 Normalize PLR, RSSI, and SNR using MinMaxScaler 

2 Define jamming_start and jamming_end timestamps 

3 Split data: 

4  train_data ← entries outside jamming period 

5  full_data ← entire dataset 

6 Create train_sequences: 

7  for i in 0 to len(train_data) − T: 

8  sequence ← train_data[i : i+T] 

9  append to train_sequences 

10 Define LSTM Autoencoder: 

11  Encoder: LSTM(64) → LSTM(32) 

12  Decoder: RepeatVector(T) → LSTM(32) → LSTM(64) → 

TimeDistributed(Dense(3)) 

13 Train model on train_sequences 

14 Create all_sequences from full_data using sliding window of length T 

15 Reconstruct all_sequences using trained model 

16 Compute reconstruction error (MSE) for each sequence 

17 Set anomaly threshold ← 98th percentile of training MSE 

18 Detect anomalies: 

19  for each sequence error 𝑚𝑠𝑒𝑖: 

20   if 𝑚𝑠𝑒𝑖 > threshold: flag as anomaly 

21   else: flag as normal 

22 Return anomaly labels 

 

 

2. One-Class Support Vector Machine (SVM) 

The One-Class SVM was applied as an unsupervised anomaly detector trained 

exclusively on non-jamming data. The input consisted of normalized PLR, RSSI, and 



72 

 

SNR values. The model used an RBF kernel with parameters 𝛾 =  1 and 𝑛𝑢 =  0.01 to 

learn the distribution of normal data. Once trained, the model predicted on the entire 

dataset, assigning +1 to normal points and −1 to anomalies. Predictions were converted 

to binary labels (0 for normal, 1 for anomaly). 

 

ALGORITHM 4.3.2:  SVM FOR JAMMING DETECTION 

 Input: Normal training data X_train, full dataset X_full   

 Output: Anomaly labels (0 = normal, 1 = anomaly) 

1 Define One-Class SVM with kernel = 'rbf', gamma = 1, nu = 0.01 

2 Train SVM model on X_train 

3 Predict labels on X_full: +1 = normal, −1 = anomaly   

4  Convert predictions: anomaly = 1 if label == -1 else 0 

5  Return anomaly labels 

 

3. Binary Logistic Regression (BLR) 

Binary Logistic Regression was employed as a supervised classification model to separate 

jamming and non-jamming intervals based on PLR, RSSI, and SNR. The features were 

normalized, and jamming periods were labeled as 1, and the rest as 0. The model was 

trained with class balancing using a regularization parameter 𝐶 = 0.5 and a maximum of 

500 iterations. Predictions were made as probabilities, and a decision threshold of 0.8 was 

applied to classify jamming.  

 

ALGORITHM 4.2.3: BLR FOR JAMMING DETECTION 

 Input: Normalized dataset X, ground truth labels y 

 Output: Anomaly labels (0 = normal, 1 = anomaly) 

1 Define logistic regression with class_weight = 'balanced', C = 0.5, max_iter = 500 

2 Train model on X, y 

3 Predict probability scores 𝑝𝑖 for each sample 

4 Set threshold τ =  0.8, classify: anomaly𝑖 = 1 if 𝑝𝑖 > τ, else 0 

5  Return anomaly labels 

 

4. Extreme Gradient Boosting (XGBoost) 

XGBoost gradient boosting classifier was used to classify jamming with normalized 

multivariate input of PLR, RSSI, and SNR. The classifier used 100 trees with a learning 

rate of 0.05, max depth of 6, and class balancing weight of 100 to counter label imbalance. 

The classifier was trained over the full labeled dataset and predicts probabilities, which 
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were thresholded at 0.5 for anomaly detection. Anomalies corresponded to high predicted 

probability of class 1 (jamming). 

 

ALGORITHM 4.3.4: XGBOOST FOR JAMMING DETECTION 

 Input: Normalized dataset X, ground truth labels y 

 Output: Anomaly labels (0 = normal, 1 = anomaly) 

1  Define XGBoost classifier with scale_pos_weight = 100, max_depth = 6, 

n_estimators = 100, learning_rate = 0.05 

2  Train model on X, y 

3  Predict probability scores 𝑝𝑖 for each sample 

4 Set threshold 𝜏 =  0.5, classify: anomaly𝑖 = 1 if 𝑝𝑖 > 𝜏, else 0 

5  Return anomaly labels 

 

5. K-Means Clustering 

K-Means was applied in an unsupervised setting to cluster normalized data into groups 

based on similarity in PLR, RSSI, and SNR. 10 clusters were created using the k-means++ 

initialization. The least occurring cluster was considered to represent jamming conditions, 

while the most frequent cluster corresponded to normal behavior.  

 

ALGORITHM 4.3.5: K-MEANS FOR JAMMING DETECTION 

 Input: Normalized dataset X 

 Output: Anomaly labels (0 = normal, 1 = anomaly) 

1  Define K-Means with n_clusters = 10, init = 'k-means++', max_iter = 300, tol = 1e-4 

2  Train model on X 

3  Predict cluster labels for each sample 

4  Identify anomaly cluster as the one with the fewest members 

5  Assign anomaly = 1 if in anomaly cluster, else 0 

6 Return anomaly labels 

 

6. Random Forest (RF) 

Random Forest was used as a supervised ensemble classifier to detect jamming using the 

same three features. The model was trained with 100 decision trees using 

𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 = ′𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑′ to handle class imbalance. Input features were normalized, 

and the jamming interval was labeled with ‘1’. The model output was class probabilities, 

and samples with probability > 0.5 were classified as jamming. 
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ALGORITHM 4.3.6: RF FOR JAMMING DETECTION 

 Input: Normalized dataset X, ground truth labels y 

 Output: Anomaly labels (0 = normal, 1 = anomaly) 

1  Define Random Forest with n_estimators = 100, class_weight = 'balanced', 

random_state = 42 

2  Train model on X, y 

3  Predict probability scores 𝑝𝑖 for each sample 

4  Set threshold 𝜏 = 0.5; classify: anomaly𝑖 = 1 if 𝑝𝑖 > 𝜏, else 0 

5  Return anomaly labels 

 

7. 1D Convolutional Neural Network (1D-CNN) 

The 1D Convolutional Neural Network was trained to detect jamming patterns by 

learning temporal dependencies in overlapping sequences of length 𝑇 = 10. The CNN 

architecture included stacked Conv1D and MaxPooling1D layers followed by fully 

connected layers, which were trained employing binary cross-entropy loss and Adam 

optimizer. The model predicted binary labels on all the sequences, with high confidence 

jamming labels being labelled as “jamming”. 

Figure 4.3.1 : 1-D CNN Architecture 

ALGORITHM 4.3.7: 1D CNN FOR JAMMING DETECTION 

 Input: Normalized dataset X, ground truth labels y 

 Output: Anomaly labels (0 = normal, 1 = anomaly) 

1 Create multivariate sequences of fixed length T from X and y 

2 Split sequences into training and testing sets 

3 Define CNN model: Conv1D(128) → MaxPooling1D → Conv1D(64) → 

MaxPooling1D → Flatten → Dense(100) → Dense(1, sigmoid) 

4 Train CNN using binary crossentropy and class weights 

5 Predict anomaly probabilities and apply threshold 𝜏 = 0.5: 

 anomaly
𝑖

= 1 if 𝑝𝑖 > 𝜏, else 0 

6 Return anomaly labels 

 

A trial-and-error procedure was used to select all the jamming detection models' 

hyperparameters. Each method was tuned individually to identify the parameter 

combination that yielded the highest performance metrics during evaluation. The final 

selected parameters for each algorithm are summarized in Table 4.3.1. 
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Table 4.3.1: Jamming Detection Methods and Their Parameters 
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Chapter 5 
 

Jamming Localization Implementation 

 

 

5.1 Dataset Description        76 

5.2 Localization Algorithms        77 

5.2.1 Random Forest (RF) Regression with Weighted Centroid  78 

 5.2.2 XGBoost Regression with Weighted Centroid    79 

 5.2.3 Modified Multilateration with Weights (MMLAW)   81 

 5.2.4 Jamming Impact Score Weighted Centroid (JIWC)   83 

5.3 Ensemble Localization Framework      85 

 

This chapter presents the implementation of four jammer localization methods developed 

using LoRa-based drone communication data. This study utilizes the “Drone 

Communication Dataset” which is publicly available [78] and designed for research 

purposes in areas such as anomaly detection and cybersecurity in drone networks. The 

data was collected from a simulated drone communication network spanning from 

November 1, 2019 to December 31, 2024, with data recorded on an hourly basis.  

 

5.1 Dataset Description 

 

Total Samples 44,016 

Time Range November 1, 2019 - December 31, 2024 

Recording 

Interval 

Hourly 

Data Format CSV 

Features 26 input features, 8 multilabel anomaly labels 

Table 5.1.1: Dataset Overview 

For the objective of this study, a subset of relevant features was used primarily to 

achieve jammer localization. The columns (features) that were considered are 

summarized below. 
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Feature Name Description Unit / Type 

signal_strength Received Signal Strength 

Indicator (RSSI) 

dBm (decibels) 

packet_loss_rate Percentage of lost 

communication packets 

% 

signal_noise_ratio Signal-to-Noise Ratio 

(SNR) of the received signal 

dB (decibels) 

drone_gps_coordinates Geographic location of the 

drone (latitude, longitude) 

Tuple (float, float) 

drone_identification Unique id for each drone Integer 

communication_protocol Communication protocol 

filtered for LoRa only 

Categorical (LoRa) 

label_jamming Binary indicator 

(1 = jammed, 0 = normal) 

Binary (0 or 1) 

Table 5.1.2: Relevant Extracted Features from the Dataset 

 

The dataset contains several labels for network anomalies such as jamming, spoofing, 

MITM attack etc. The primary target variable was 𝒍𝒂𝒃𝒆𝒍_𝒋𝒂𝒎𝒎𝒊𝒏𝒈 and the data was 

filtered for detected jamming events, i.e. 𝑙𝑎𝑏𝑒𝑙_𝑗𝑎𝑚𝑚𝑖𝑛𝑔  = 1. Therefore, only 

localization was performed on this dataset, considering we have the jamming detection 

by the flag. 

 

5.2 Localization Algorithms 

 

Each method estimates the jammer's location using different principles, ranging from 

machine learning predictions to signal degradation analysis.  

The four implemented methods are: 

1. Random Forest Regression with KMeans Centroid 

2. XGBoost Regression with KMeans Centroid 

3.  Modified Multilateration with Weights (MMLAW) 

4. Jamming Impact Score Weighted Centroid (JIWC) 
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Machine Learning Methods (1. RF and 2. XGB) 

The following two methods both use the same input features, which were chosen 

considering they are all relevant metrics to network conditions. 

Input features:  

• Signal Strength (RSSI) 

• Signal-to-Noise Ratio (SNR) 

• Packet Loss Rate (PLR) 

• Sequence Number Gap 

• Base Station Load 

• Transmission Power 

• Uplink/Downlink Quality 

The models take as input physical and network features above which reflect signal 

conditions under jamming and output the predicted jammer’s location. 

𝑥(𝑖) = [𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥7
(𝑖)

],  𝑦(𝑖) = [lat(𝑖), lon(𝑖)] 

 

5.2.1 Random Forest (RF) Regression with Weighted Centroid 

This method uses a trained Random Forest (RF) regression model to predict the jammer’s 

location from the perspective of each affected drone.  

 

A Random Forest is an ensemble of M decision trees. Each tree is trained on a random 

subset of the data and outputs its own prediction: 

 

𝑦𝑗̂ = 𝑇𝑗(𝑥),  for 𝑗 = 1,2, … , 𝑀 

 

The final RF prediction is the average of all trees, which produces a 2D coordinate 

(𝑙𝑎𝑡, 𝑙𝑜𝑛) representing where the jammer is likely located from that drone’s point of 

view. 

 

𝒚̂ =
1

𝑀
∑ 𝑇𝑗(𝒙)

𝑀

𝑗=1
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Lastly, after all predicted locations are collected {(lat 𝑖̂, lon𝑖
̂ )}

𝑖=1

𝑁
from N jammed drones, 

they are aggregated using a weighted centroid, where each prediction is weighted based 

on a composite jamming indicator score derived from PLR, RSSI, and SNR. (Localization 

Step). This technique gives higher influence to drones more strongly affected by the 

jammer. 

 

The RF prediction centroid is then: 

𝑦̂ =
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ 𝑦𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

 

 

5.2.2 XGBoost Regression with Weighted Centroid 

This method follows the same pipeline as the Random Forest approach but uses XGBoost 

(Extreme Gradient Boosting) as the underlying regression model. XGBoost is a gradient 

boosting algorithm that builds ensemble of regression trees 𝑓𝑘  trained sequentially to 

minimize error using gradient descent. 

𝒚̂ = ∑ 𝑓𝑘(𝒙)

𝐾

𝑘=1

,  𝑓𝑘 ∈ ℱ 

Where:  

• 𝑓𝑘 is the 𝑘-th regression tree 

• ℱ is the space of all possible regression trees 

• 𝒚̂ is the predicted output (latitude, longitude) 

Each tree 𝑓𝑘 is trained to minimize the residual error of the previous prediction. The 

model optimizes the following regularized objective function: 

 

ℒ = ∑ l(𝑦(𝑖), 𝑦(𝑖)̂)

𝑖

+ ∑ Ω(𝑓𝑘)

𝑘

 

Where: 

• l(. ) is a differentiable loss function, such as mean squared error, 

• Ω(𝑓𝑘) is a regularization term that penalizes tree complexity. 

 

Lastly, after making per-drone predictions, the estimated jammer location is computed 

using the same weighted formulation: 
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𝑦̂ =
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ 𝑦𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

 

 

 

ALGORITHM 1 & 2: RANDOM FOREST AND XGBOOST JAMMER LOCALIZATION 

 Input: Jammed drone dataset df_jam 

 Output: Trained RF_Model and XGB_Model ready for prediction 

1 Normalize PLR, RSSI, SNR in df_jam → plr_n, rssi_n, snr_n 

2 Compute jamming_indicator = 0.4 * plr_n + 0.3 * (1 - rssi_n) + 0.3 * (1 - snr_n) 

3 Define features ← [ 

      signal_strength, signal_noise_ratio, packet_loss_rate, 

      sequence_number_gap, base_station_load, 

      transmission_power, uplink_downlink_quality 

] 

 

4 Define target ← [lat, lon] 

5 X ← extract features from df_jam 

6 y ← extract target from df_jam 

7 Initialize RF_Model with n_estimators = 200 and random seed 

8 Train RF_Model using (X, y) 

9 Initialize XGB_Model with n_estimators = 200 and random seed 

10 Train XGB_Model using (X, y) 

11 For each jammed drone i: predict lat/lon using RF_Model and XGB_Model 

12 Compute RF weighted centroid:   

(latRF̂, lonRF̂) = (
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ latRF

(𝑖)̂

∑ 𝑤𝑖
𝑁
𝑖=1

,
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ lonRF

(𝑖)̂

∑ 𝑤𝑖
𝑁
𝑖=1

) 

13 Compute XGB weighted centroid:   

(latXGB̂, lonXGB
̂ ) = (

∑ 𝑤𝑖
𝑁
𝑖=1 ⋅ latXGB

(𝑖)̂

∑ 𝑤𝑖
𝑁
𝑖=1

,
∑ 𝑤𝑖

𝑁
𝑖=1 ⋅ lonXGB

(𝑖)̂

∑ 𝑤𝑖
𝑁
𝑖=1

) 

14 Return (latRF̂, lonRF̂) and (latXGB̂, lonXGB
̂ )   

 

Jamming Impact Methods (3. MMLAW and 4. JIWC) 

To support jammer localization, a composite impact score was defined to quantify how 

severely each drone was affected by jamming. This score combines three physical-layer 

metrics that are sensitive to signal disruption: i) Packet Loss Rate (PLR), ii) RSSI (signal 

strength), and iii) SNR (signal-to-noise ratio). Each metric is min-max normalized to a 

[0, 1] scale, and then weighted based on its relative importance. 
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Impact Score𝑖 = 𝑤plr ⋅ PLRnorm,𝑖 + 𝑤rssi ⋅ (1 − RSSInorm,𝑖) + 𝑤snr ⋅ (1 − SNRnorm,𝑖) 

where: 𝑤plr = 0.4,  𝑤rssi = 0.3,  𝑤snr = 0.3 

 

PLR was given the highest weight (0.4), as it directly reflects transmission failure, while 

RSSI and SNR were each weighed at 0.3. Inverted forms of RSSI and SNR are used to 

ensure that lower values (indicating worse signal quality) correspond to higher impact.  

The resulting impact score provides a unified measure of signal degradation and is used 

in both the MMLAW (as a proxy for distance) and JIWC (as a weight in centroid 

estimation).  

 

5.2.3 Modified Multilateration with Weights (MMLAW) 

 

The MMLAW algorithm applied in my solution is a modified version of the localization 

algorithm proposed by M. Savva in his dissertation [25]. The original MMLAW 

algorithm was designed for wireless sensor networks using Contiki OS and Cooja, 

making use of network-layer metrics such as Retransmissions or ETX (Expected 

Transmission Count) as a basis for making distance estimates in multilateration. 

 

In contrast, my implementation targets LoRa networks, where such network-layer 

metrics used here aren't present or even defined. Consequently, I replaced them with 

physical-layer jamming indicators (impact scores) better applicable to LoRa: RSSI, SNR, 

and Packet Loss Rate (PLR).  These were min-max normalized and inverted to simulate 

distances, maintaining the underlying assumption that 

higher effect indicates closeness to the jammer. 

 

Impact Score𝑖 = 0.4 ⋅ PLRnorm,𝑖 + 0.3 ⋅ (1 − RSSInorm,𝑖) + 0.3 ⋅ (1 − SNRnorm,𝑖) 

 

In summary, while the initial algorithm made use of ETX-weighted distance, my 

implementation maintains the same formulation using least-squares multilateration but 

adjusts the input metric in accordance with LoRa's communication characteristics. 
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Step 1: Simulated Distance Calculation 

Each drone is assigned a simulated distance 𝑑𝑖 based on its jamming indicator value. The 

indicator is min-max normalized and inverted, so that higher impact corresponds to a 

shorter distance. 

𝑑𝑖 = 1 −
𝑧𝑖 − 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛
,  for 𝑖 = 1,2, … , 𝑁 

 

Where: 

• 𝑧𝑖  is the jamming indicator for drone 𝑖 

• 𝑑𝑖  is the simulated distance 

• 𝑁 is the number of affected drones 

 

Step 2: Multilateration Setup 

Let (𝑥𝑖, 𝑦𝑖) be the GPS coordinates of drone 𝑖, and assume the jammer is located at (𝑥, 𝑦). 

We define the system of equations based on differences of squared distances between the 

first drone (reference) and the others: 

 

𝐴𝑖 = 2(𝑥𝑖 − 𝑥1) 2(𝑦𝑖 − 𝑦1), for 𝑖 = 2, … , 𝑁 

𝐵𝑖 = 𝑑1
2 − 𝑑𝑖

2 − 𝑥1
2 + 𝑥𝑖

2 − 𝑦1
2 + 𝑦𝑖

2 

 

This yields a linear system in matrix form: 

𝐴 ⋅ [𝑥𝑦] = 𝐵 

Where: 

• 𝐴 ∈ 𝑅(𝑁−𝟙)×𝟚,  

• 𝐵 ∈ 𝑅𝑁−𝟙 

 

Step 3: Least-Squares Estimation 

We solve for the jammer coordinates (𝑥, 𝑦) using the least-squares solution: 

[𝑥̂𝑦̂] = arg min
𝑥,𝑦

|𝐴 ⋅ [𝑥𝑦] − 𝐵 |2 

 

Which is computed using the pseudo-inverse or via: 

[𝑥̂𝑦̂] = (𝐴⊤𝐴)−1𝐴⊤𝐵 
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The final estimated jammer location is: 

(latest, lonest) = (𝑥̂, 𝑦̂) 

 

ALGORITHM 3: MMLAW JAMMER LOCALIZATION (MODIFIED MULTILATERATION 

WITH WEIGHTS) 

 Input: Jammed drone dataset sample_df, jamming indicator column indicator_col 

 Output: Estimated jammer coordinates (𝑥̂, 𝑦̂) 

1 Extract coordinates ← sample_df[['lat', 'lon']] 

2 Extract indicator ← sample_df[indicator_col] 

3 Normalize and invert indicator to simulate distances: 

d ← 1 − MinMaxScaler().fit_transform(indicator) 

4 if number of coordinates < 3, then 

5  Return None, None 

6 x ← latitude values, y ← longitude values 

7 Initialize matrix A of size (N − 1) × 2 

8 Initialize vector B of size (N − 1) 

9 for i = 1 to N − 1 do 

10  A[i−1, 0] ← 2 × (x[i] − x[0]) 

11  A[i−1, 1] ← 2 × (y[i] − y[0]) 

12  B[i−1] ← d[0]² − d[i]² − x[0]² + x[i]² − y[0]² + y[i]² 

13 end for 

14 Estimate jammer coordinates using least-squares: (𝑥̂, 𝑦̂)← lstsq(A, B) 

15 Return (𝑥̂, 𝑦̂) 

 

5.2.4 Jamming Impact Score Weighted Centroid (JIWC) – Proposed method 

 

The Jamming Indicator Weighted Centroid (JIWC) method is proposed and developed as 

part of this thesis and was designed specifically to suit the characteristics of LoRa 

networks. JIWC is a signal-impact-based localization approach and estimates the 

jammer’s location by computing a weighted average (centroid) of drone coordinates, 

where each drone is weighted based on how severely it was affected by the jamming 

signal. 

 

The key idea of this approach is that drones with higher jamming impact scores are most 

likely closer to the jammer. Therefore, the jammer position is estimated closer to drone 
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with higher jamming indicators. To summarize, JIWC provides a simple yet effective 

geometric estimation without distance computation and iterative solving. 

 

Step 1: Jamming Impact Score Calculation 

As mentioned earlier, a composite jamming impact score is computed as a function 

of three physical-layer measures for each drone: Packet Loss Rate (PLR), RSSI 

(Received Signal Strength), and SNR (Signal-to-Noise Ratio). These are initially min-

max normalized: 

PLRnorm,  RSSInorm,  SNRnorm ∈ [0,1] 

 

The impact score 𝑠𝑖 for each drone 𝑖 is then calculated as: 

𝑠𝑖 = 𝑤plr ⋅ PLRnorm + 𝑤rssi ⋅ (1 − RSSInorm) + 𝑤snr ⋅ (1 − SNRnorm) 

Where: 

𝑤plr = 0.4,  𝑤rssi = 0.3,  𝑤snr = 0.3 

 

This reflects that higher PLR, lower RSSI, and lower SNR contribute more strongly to 

jamming impact. 

 

Step 2: Impact Weight Normalization 

The impact scores 𝑠𝑖 are min-max normalized to produce weights 𝑤𝑖 ∈ [0,1] for each 

drone: 

𝑤𝑖 =
𝑠𝑖 − 𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
 

Where: 

• 𝑤𝑖 is the normalized weight used in the centroid, 

• 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are the minimum and maximum impact scores across all jammed 

drones. 

 

Step 3: Weighted Centroid Calculation 

Let (𝑥𝑖, 𝑦𝑖)  be the GPS coordinates of drone 𝑖 . The estimated jammer position is 

computed as a weighted centroid: 
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𝑥est =
∑ 𝑥𝑖

𝑁
𝑖=1 ⋅ 𝑤𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

, 𝑦est =
∑ 𝑦𝑖

𝑁
𝑖=1 ⋅ 𝑤𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

 

Where: 

• 𝑁 is the number of jammed drones, 

• (𝑥est, 𝑦est) is the estimated jammer location. 

The final estimated jammer location in geographic coordinates is: 

(latest,  lonest) = (𝑥est,  𝑦est) 

 

ALGORITHM 4: JAMMING IMPACT WEIGHTED CENTROID (JIWC) 

 Input: Jammed drone dataset df_jam 

 Output: Estimated jammer coordinates (latest, lonest) 

1 Define features ← [packet_loss_rate, signal_strength, signal_noise_ratio] 

2 Min-max normalize each feature → plr_norm, rssi_norm, snr_norm 

3 Compute impact score for each packet: 

impact_score = 0.4 × plr_norm + 0.3 × (1 - rssi_norm) + 0.3 × (1 - snr_norm) 

4 Group by drone ID and compute average of: latitude, longitude, impact score 

5 Min-max normalize the average impact scores → impact_weight 

6 Let 𝑁 be the number of jammed drones 

7 Initialize total weight 𝑊 ←  0 

8 Initialize sums: 𝑠𝑢𝑚_𝑙𝑎𝑡 ← 0, 𝑠𝑢𝑚_𝑙𝑜𝑛 ← 0 

9 for 𝑖 = 1 to 𝑁 do 

10  Retrieve drone latitude 𝑥𝑖 , longitude 𝑦𝑖, and weight 𝑤𝑖 

11  sum_lat ← sum_lat + 𝑥𝑖 ⋅ 𝑤𝑖 

12  sum_lon ← sum_lon + 𝑦𝑖 ⋅ 𝑤𝑖 

13  𝑊 ← 𝑊 + 𝑤𝑖 

14 end for 

 Return latest ←
sum_lat

𝑊
, lonest ←

sum_lon

𝑊
 

 

5.3 Ensemble Localization Framework 

 

Methodology 

Since the dataset lacks ground truth jammer coordinates, direct evaluation of localization 

accuracy was infeasible. To address this, we adopted an aggregation-based approach to 

assess consensus among four distinct localization methods: RF (Random 
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Forest), XGB (XGBoost), MMLAW, and JIWC. Since these methods each rely on 

different localization principles, combining them forms an ensemble localization 

framework that leverages the strengths of each technique to produce more robust jammer 

position estimates. The goal was to determine whether the methods converge toward a 

consistent estimate as the number of observed jammed devices increases. 

 

ENSEMBLE LOCALIZATION FRAMEWORK 

 Input: Jammed drone dataset sample_df, jamming indicator column indicator_col 

1 Define scenario_groups ← [(10,10), (5,20), (3,33), (2,50)] 

2 Initialize intermediate_centers ← [] 

3 for each (num_scenarios, num_devices) in scenario_groups do 

4  Generate random_scenarios ← draw num_scenarios subsets of size num_devices from 

unique drone IDs 

5  Initialize scenario_estimates ← [] 

6  for each scenario in random_scenarios do 

7   Extract sample ← entries in df_jam from scenario's drone IDs 

8   Compute: 

9    JI_Centroid ← weighted average of coordinates using jamming indicator 

10    MMLAW ← least-squares multilateration based on inverted indicator 

11    RF ← KMeans centroid of RF predictions 

12    XGB ← KMeans centroid of XGB predictions 

13   Collect estimates ← [JI_Centroid, MMLAW, RF, XGB] 

14   Compute scenario_center ← mean of estimates 

15   Compute scenario_radius ← max distance of any estimate to center 

16   Append estimates to scenario_estimates 

17  end for 

18  Compute group_center ← mean of all scenario_estimates 

19  Compute group_radius ← max distance from group_center to any estimate 

20  Append (group_center, group_radius) to intermediate_centers 

21 end for 

22 Compute final_center ← mean of all group_centers 

23 Compute final_radius ← max distance from final_center to any group_center 

24 Return final_center, final_radius 
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Chapter 6 

 

Results and Evaluation for Jamming Detection and Localization 
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6.1 Jamming Detection Results  

 

To visualize the network’s data, we first plotted RSSI over Time (Figure 6.1.1) for each 

device. It can be determined from the plot that RSSI data suddenly changes during the 

middle of 08/02/2023, which is also the known jamming period time. 

 

 

Figure 6.1.1:  RSSI over Time for Mote01 – Mote05. 
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After calculating the new metric of Packet Loss Ratio (PLR) as described in Chapter 5, 

we also plot the PLR over time for the whole network in one plot (Mote01 – Mote05). 

 

Figure 6.1.2: Network’s PLR over time 

 

A clear rise in PLR values during the defined jamming period (February 8th, 14:15–

17:00) can be observed, confirming the correlation between jamming and packet 

disruption. 

 

ML Methods Results (Plots) 

Machine learning-based detection methods were visualized with anomaly scatter plots 

and evaluated against ground truth labels and confusion matrices. Each model 

successfully detected a significant portion of the jamming period (which is shadowed 

with grey in scatter plots). All anomalies are marked considering the 20-minute intervals 

that were used for the PLR estimation and visualized as red dots (Figures 6.1.4 – 6.1.10).  

 

 

 

 

 

 

 

 

 

Figure 6.1.3: LSTM jamming detection across dataset 
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Figure 6.1.4: SVM jamming detection across dataset 

 

 

 

 

 

 

 

 

 

Figure 6.1.5: BLR jamming detection across dataset 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.6: Random Forest jamming detection across dataset 
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Figure 6.1.7: CNN 1-D jamming detection across dataset 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.8: XGBoost jamming detection across dataset 

 

 

 

 

 

 

 

 

 

Figure 6.1.9: K-Means jamming detection across dataset 
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6.2 Jamming Detection Evaluation  

Confusion matrices showed each model's predictive performance and can be easily 

compared to determine the most effective ML technique. In these matrices, the true 

positives (TP) represent correctly identified jamming intervals, while true negatives 

(TN) correspond to correctly identified normal periods. In contrast, false positives (FP) 

showcase incorrect jamming detection instances (i.e., false alarms) and false negatives 

(FN) correspond to incorrectly identified normal events (i.e., real attacks that are 

overlooked). 

Term Meaning 

True Positive (TP)

  

Jamming occurred and was correctly predicted by the model 

True Negative (TN)

  

No jamming occurred and was correctly predicted as normal by 

the model  

False Positive (FP)

  

No jamming occurred, but the model incorrectly predicted it as 

jamming (false alarm). 

False Negative (FN)

  

Jamming occurred, but the model failed to detect it and predicted 

normal (missed attack). 

Table 6.2.1: Classification Terms Explanation in Jamming Detection 

 

A high number of TP and TN indicates accurate detection, which is important for 

minimizing both missed jamming events (FN) and false alarms (FP).  

Essentially, for effective jamming detection, both FN and FP should be low FN, with 

FN being more important (thus, must be minimized) to ensure real attacks are not 

overlooked.  

 

Figure 6.2.1: Confusion Matrix Representation for Jamming Detection 
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1. LSTM Autoencoder 2.  SVM 

3. BLR 4. Random Forest 
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Figure 6.2.2: Confusion Matrices across all methods 

 

Method TP TN FP FN 

LSTM 9 644 4 3 

SVM 8 642 6 4 

BLR 9 647 1 3 

RF 12 648 0 0 

1D-CNN 11 635 3 1 

XGBoost 12 647 1 0 

K-Means 9 647 1 3 

 

Table 6.2.2: Classification Results for all Machine Learning techniques. 

 

Among all methods, Random Forest achieved perfect results (TP = 12, FP = 0) and 

XGBoost near-perfect results  (TP = 12, FP = 1) both correctly identifying all jamming 

5. CNN 1-D 6. XGBOOST 

7. K-MEANS 
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instances and minimizing false predictions. These models achieved the highest overall 

reliability, with no false negatives, ensuring no jamming events were missed.  

Conversely, One-Class SVM and LSTM exhibited higher false positive and false negative 

rates, indicating lower sensitivity and more frequent misclassifications. For instance, 

One-Class SVM missed 4 jamming periods (FN) and incorrectly flagged 6 normal periods 

as jamming (FP).  

 

Evaluation Metrics Overview 

 

Accuracy measures the overall correctness of a model by evaluating how many 

predictions were correct over the total number of predictions. It can be misleading in 

imbalanced datasets, as it may remain high even if the model fails to detect rare classes 

(in our case, jamming events). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Precision quantifies how many of the instances predicted as positive (jamming) were 

actually correct. It is especially important to be considered when false alarms (false 

positives) need to be minimized. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall, also known as sensitivity or true positive rate, measures how well the model 

detects actual positive cases (jamming intervals). A high recall means fewer jamming 

events are missed. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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Specificity measures how well the model identifies negative cases correctly. It 

complements recall by focusing on the true negative rate. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Lastly, the F1-score which is defined as the harmonic mean of precision and recall, 

provides a balanced metric especially useful for imbalanced datasets. It is more 

informative than accuracy when class distributions are uneven. 

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

The F1-score is a crucial evaluation metric in this study because the dataset is imbalanced, 

with jamming events occurring during only a small portion of the total monitoring period. 

This imbalance was further emphasized when the data was split into short time intervals 

for PLR calculation. 

 

In such cases, relying on metrics like accuracy alone can be misleading, therefore the F1-

score attempts to address this issue by combining both precision and recall. It provides a 

balanced view of the model's performance, especially on the minority class (jamming). 

 

Method Accuracy Precision Recall 

(Sensitivity) 

Specificity F1-Score 

RF 100.00% 100.00% 100.00% 100.00% 100.00% 

XGBoost 99.85% 92.31% 100.00% 99.85% 96.00% 

1D-CNN 99.38% 78.57% 91.67% 99.53% 84.62% 

BLR 99.39% 90.00% 75.00% 99.85% 81.82% 

K-Means 99.39% 90.00% 75.00% 99.85% 81.82% 

LSTM 98.94% 69.23% 75.00% 99.38% 72.00% 

SVM 98.48% 57.14% 66.67% 99.07% 61.54% 

Table 6.2.3: Evaluation metrics ranked by F1-score for all techniques. 

 

The table above (Table 6.2.3) shows all the evaluation metrics for each method, ranked 

by the F1-score, as it’s the most reliable performance metric for imbalanced datasets.  
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Based on the evaluation metrics, Random Forest (RF) achieved perfect performance 

across all indicators. This suggests it is the most reliable model for jamming detection in 

this study, with no false positives (FP) or false negatives (FN). XGBoost also performed 

exceptionally well, achieving high recall (100%) and precision (92.31%), indicating that 

it successfully identified all jamming instances with minimal false alarms. 1D-CNN 

showed strong generalization with high recall (91.67%) and a balanced F1-score 

(84.62%), making it a solid deep learning alternative. 

 

On the other hand, SVM and LSTM underperformed compared to the other methods, 

particularly in precision and F1-score, suggesting a tendency to misclassify normal data 

as jamming. 

 

Overall, tree-based models like Random Forest and XGBoost provided the best trade-off 

between detection accuracy and false alarm reduction, making them the most suitable for 

this specific deployment in LoRaWAN jamming detection. 

 

Figure 6.2.3: Bar chart evaluation metrics comparison across models 

It must be highlighted that accuracy which remains high across all models, might not be 

the most reliable performance metric in this case. This is due to the imbalanced nature of 

the dataset, where normal (non-jamming) intervals significantly outnumber jamming 

ones.  

 



97 

 

Lastly, because this dataset lacks geographic coordinates for each mote and the jammer, 

no direct localization can be applied.  However, the jamming impact (JI) score can still 

be calculated for each mote. The Jamming Impact (JI) score is the key metric used for the 

second part of the thesis’ implementation, i.e. the localization part on another dataset. 

 

The JI score for each mote is calculated using a weighted combination of the change in 

Packet Loss Ratio (PLR), RSSI deviation, and SNR drop between the pre-jamming and 

jamming periods: 

 

𝐽𝐼 = 𝑤𝑝𝑙𝑟 × (PLR𝑗𝑎𝑚𝑚𝑖𝑛𝑔 − PLR𝑛𝑜𝑟𝑚𝑎𝑙) + 𝑤𝑟𝑠𝑠𝑖 × (RSSI𝑛𝑜𝑟𝑚𝑎𝑙 − RSSI𝑗𝑎𝑚𝑚𝑖𝑛𝑔)

+ 𝑤𝑠𝑛𝑟 × (SNR𝑛𝑜𝑟𝑚𝑎𝑙 − SNR𝑗𝑎𝑚𝑚𝑖𝑛𝑔) 

Where: 

𝑤𝑝𝑙𝑟 =  0.4, 𝑤𝑟𝑠𝑠𝑖 =  0.3, 𝑤𝑠𝑛𝑟  =  0.3 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2.4: Jamming Impact Scores per Mote 

 

 
Figure 6.2.4: Bar Chart Comparison of Jamming Impact Scores per Mote 

Mote Impact Score 

Mote3 8.60 

Mote4 5.39 

Mote1 4.55 

Mote2 3.45 

Mote5 0.62 
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In conclusion, Mote3 experienced the highest impact (JI = 8.60), followed by Mote4 and 

Mote1, indicating proximity to or stronger exposure from the jammer. This scoring 

approach serves as a proxy for impact-based localization, since the absence of coordinate 

data prevents the application of more precise localization techniques (e.g. trilateration). 

 

6.3 Jamming Localization Results  

 

Experimental Design 

Our approach applies all four implemented localization algorithms (RF, XGB, MMLAW, 

JIWC) across controlled subsets of jammed devices. The dataset was first filtered to 

include only communication entries corresponding to the LoRa protocol, with a jamming 

label of 1. From the filtered dataset, 100 unique jammed drone identifiers were available 

for experimentation. These were partitioned into progressively larger groups to analyze 

scalability (Table 6.3.1). For each scenario, all four methods were applied to the same 

subset of devices, generating independent jammer coordinate estimates. 

 

Figure 6.3.1: Geographic locations of jammed drone devices participating in the LoRa network. 
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Scenario Definition 

The scenario design process involved dividing the dataset into five progressively larger 

groups to observe how localization performance scales with increased data availability.  

The following scenario configurations were used:  

 

Configuration Number of 

scenarios 

Number of devices  

(in each scenario) 

1 10 10 

2 5 20 

3 3 33 

4 2 50 

5 1 100 

Table 6.3.1: Groups of random data splits for the 100 unique drones 

 

For each configuration, the drone IDs were selected randomly using a random seed. 

Within each scenario, all four localization methods were applied independently on the 

same subset of drones to generate four distinct (latitude, longitude) estimates representing 

the predicted jammer position. In the following section, we provide the results with all 

the plots required. Before showing all the plots, we will present the two types of plots 

along with some explanations.  

 

Scenario-Level Aggregation (Plot Type 1) 

For every scenario (e.g., a group of 10 devices), all four localization methods (RF, XGB, 

MMLAW, JIWC) were applied independently, yielding four predicted jammer 

coordinates.  This set of predictions is then processed using ensemble logic by averaging 

the coordinates, allowing us to reduce method-specific bias and isolate the most probable 

jammer location per scenario. The results are visualized in Plot Type 1 (Fig. 6.3.2), which 

shows: 

 

1. Jammed Drones: Plotted with color intensity based on their jamming impact 

score (darker red indicates stronger impact), a metric used by the methods. 

2. Method Estimates: Each of the four methods' predictions shown as distinct 

markers. 
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3. Scenario Center: Computed as the mean of all method estimates (gray dot). 

4. Estimation Radius: The maximum Euclidean distance from any method's 

estimate to the center (dashed gray circle), quantifying the worst-case dispersion 

of predictions. 

 

Figure 6.3.2: Example of Plot Type 1 

 

Configuration-Level Aggregation (Plot Type 2) 

Plot Type 2 (Fig. 6.3.3) synthesizes intermediate results across all scenarios within a 

configuration (e.g., five 20-device groups) to reveal system-level trends. More 

specifically, it superimposes all scenario estimation circles and centers (gray dots) from 

Type 1 plots and displays the final configuration-level jammer position (black dot) as the 

average of all scenario centers. 

 

Figure 6.3.3: : Example of Plot Type 2 
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Configuration 1: 10 scenarios x 10 devices 
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Figure: 6.3.4: 10 Scenario Plots for 10x10 Configuration (Type 1) 

 

 

 
Figure: 6.3.5: Intermediate Result Plot  for 10x10 Configuration (Type 2) 
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Configuration 2: 5 scenarios x 20 devices 

 

Figure: 6.3.6: 5 Scenario Plots for 5x20 Configuration (Type 1) and Intermediate Result Plot 

(Type 2) 
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Configuration 3: 3 scenarios x 33 devices 

Figure: 6.3.7: 3 Scenario Plots for 3x33 Configuration (Type 1) 

 

 

 

Figure: 6.3.8: Intermediate result plot  for 3x33 configuration (Type 2) 



105 

 

Configuration 4: 2 scenarios x 50 devices 

 

 Figure: 6.3.9: 3 Scenario Plots for 3x33 Configuration (Type 1) 

 

Figure: 6.3.10: Intermediate result plot  for 2x50 configuration (Type 2) 
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Configuration 5: 1 scenario x 100 devices  
 

 
 

Figure: 6.3.11: 1 Scenario Plot for 1x100 Configuration (Type 1) 

 
Figure: 6.3.12: Intermediate result plot  for 1x100 configuration (Type 2) 

 

Devices Latitude Longitude Radius (degrees) 

10 11.243996 -12.138278 64.82 

20 0.524562 -1.187424 39.81 

33 -0.929483 -0.002457 22.13 

50 1.540155 1.641561 12.88 

100 -1.958810 -0.064555 13.02 

Table 6.3.2: Intermediate results after execution of the four configurations 
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Figure 6.3.13: Impact of Device Count on Localization Accuracy (Estimation Radius) 

 

The figure 6.3.13 demonstrates that as the number of jammed devices per scenario 

increases, the estimation radius consistently decreases. The estimation radius decreases 

from 64.82° (10 devices) to 13.02° (100 devices) - an 80% reduction in dispersion. This 

indicates improved localization accuracy with larger device groups, suggesting that a 

higher number of input data points leads to more consistent and convergent jammer 

predictions. In other words, more devices lead to greater agreement among localization 

methods and more reliable jammer detection. 

 

For the final jammer localization, all previous intermediate results are aggregated 

together. The final plot (Figure 6.3.12) presents the overall results from all four groups 

(10x10, 5x20, 3x33, 2x50 and 1x100 groups), showing their estimated jammer positions. 

Based on the four results, final location is approximated by the mean center. Table 6.3.3 

shows all the coordinates used for the plot and table 6.3.4 shows the final jammer 

estimation coordinates (grey dots). 
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Devices in Each 

Scenario 

Latitude Longitude 

10 11.2440 -12.1383 

20 0.5246 -1.1874 

33 -0.9295 -0.0025 

50 1.5402 1.6416 

100 -1.9588 -0.0646 

 

Table 6.3.3: Jammer Localization Estimates by Scenario 

 

 

Figure 6.3.14: Final Jammer Location Estimation (including 10x10 Configuration) 

 

Figure 6.3.15: Final Jammer Location Estimation (excluding 10x10 configuration) 
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Hence, since Figure 6.3.13 evidently shows a radius of dispersion decreasing with 

increasing device groups per scenario, it can be concluded that larger device groups lead 

to more consistent and reliable jammer localization. Furthermore, the final plots in 

Figures 6.3.14 and 6.3.14 show that the estimated jammer locations for each of the four 

different group configurations are closely clustered around a common center. This 

convergence indicates that despite the absence of ground truth coordinates, the 

localization methods and aggregation strategy point to a consistent region, which is an 

internal consistency of the proposed approach. 

 

While the final mean jammer position was initially calculated including all 

configurations, we observed that the 10x10 configuration exhibited the largest dispersion 

radius and highest inconsistency. For completeness, we also computed the mean center 

excluding the 10x10 configuration.  

 

Final Mean Center 

Estimation 

Latitude Longitude 

Mean center (incl. 

10x10 scenario) 

2.084084 -2.350231 

Mean center (excl. 

10x10 scenario) 

-0.205894 0.096781 

Table 6.3.4: Final Mean Center Estimates 

 

Notably, all configurations converge toward (0,0), with 33-device scenarios averaging (-

0.93, -0.002) and 100-device scenarios reaching (-1.96, -0.065). This consistent 

progression strongly suggests the jammer was intentionally placed at the origin (0,0) 

during data collection. Additionally, as shown in Table 6.3.4, the exclusion leads to a 

mean estimate much closer to the origin (0,0). This further strengthens our conclusion 

regarding the jammer's true position. 

  

We will use this hypothesis as a reference point to evaluate localization accuracy and 

method performance in Section 6.4, where we analyze and compare the estimated jammer 

positions against the assumed true location.  
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 6.4 Jamming Localization Evaluation 

 

Since the dataset used in this study does not give ground truth coordinates for the actual 

position of the jammer, direct error-based evaluation, i.e., estimation of localization 

accuracy or distance to true point, is not feasible. In the absence of labeled coordinates, 

we rely instead on internal consistency indicators to assess the effectiveness of the 

proposed localization techniques. These indicators include agreement among different 

methods, reduction in dispersion (i.e., estimation radius), and convergence toward a stable 

center as the number of jammed devices increases. 

 

To overcome the lack of ground truth, we introduced a hypothesis based on observed 

convergence patterns: the jammer was likely positioned at the origin (0,0) during data 

collection. This assumption is supported by consistent localization trends across all 

configurations that were described in Section 6.3. Using this hypothesis, we can evaluate 

each method’s performance by comparing estimated coordinates against the (0,0) 

reference and measuring their Euclidean distance. This strategy enables relative error 

calculations and facilitates ranking of methods across different device group sizes. 

 

The following figures and tables present the evaluation results based on this hypothesis. 

 

Configuration Latitude Longitude Lat 

Distance (°) 

Lon 

Distance (°) 

Euclidean 

Distance (°) 

10 Devices 11.2440 -12.1383 11.2440 12.1383 16.4643 

20 Devices 0.5246 -1.1874 0.5246 1.1874 1.3005 

33 Devices -0.9295 -0.0025 0.9295 0.0025 0.9295 

50 Devices 1.5402 1.6416 1.5402 1.6416 2.2522 

100 Devices -1.9588 -0.0646 1.9588 0.0646 1.9599 

Mean  

(incl. 10×10) 

2.0841 -2.3502 2.0841 2.3502 3.1493 

Mean  

(excl. 10×10) 

-0.2059 0.0968 0.2059 0.0968 0.2280 

Table 6.4.1: Localization Estimates and Distances from Jammer Position (0,0) 
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Figure 6.4.1: Latitude and Longitude  Error of Jammer Location Estimates Across 

Configurations and Aggregated Mean Centers (Including and Excluding the 10x10 Scenario) 

 

Figure 6.4.2: Euclidean Error of Jammer Location Estimates Across Configurations and 

Aggregated Mean Centers (Including and Excluding the 10x10 Scenario) 

 

The quantitative analysis demonstrates significant convergence of localization estimates 

toward the hypothesized jammer position at (0,0). The 10-device scenario shows the 

highest deviation (16.46° error) and was previously shown to have the largest estimation 

radius, therefore its outlier behavior justifies treating it separately in the final analysis. 

Nevertheless, all larger device groups achieve sub-2° accuracy, with the 33-device 

configuration yielding the most precise estimate (0.93° error). This progression further 

confirms that increased data availability improves localization reliability.  
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The final mean center estimates, computed by aggregating results across configurations, 

further confirm the impact of noisy scenarios. When all configurations are included, the 

mean center deviates by approximately 3.15° from the origin. In contrast, excluding the 

10-device configuration yields a final mean center with a remarkably low error of just 

0.23°. 

 

Method Evaluation 

 

To assess the performance of the four proposed jammer localization methods (JIWC, 

MMLAW, RF, and XGBoost) we calculated their average Euclidean error across the five 

different scenario configurations (10x10, 5x20, 3x33, 2x50, and 1x100). For each 

configuration, the predicted jammer location by each method was compared against  our 

hypothesized ground truth at the origin (0,0), and the Euclidean distance in degrees 

serving as our accuracy metric. 

 

Table 6.4.2 presents the average Euclidean errors for each method across the five 

configurations and Table 6.4.3 calculates the aggregated average error for each method. 

As expected, all methods generally improve with larger device groups. Notably, RF 

achieved the lowest average error (11.2°), followed closely by JIWC (12.5°) and 

XGBoost (13.2°) also performing reliably. MMLAW demonstrated the highest average 

error (22.44°), suggesting that geometric localization may be more sensitive to 

distribution or noise in the input dataset. 

 

Configuration RF XGB MMLAW JIWC 

10x10 24.188 28.529 40.539 30.187 

5x20 12.535 13.442 23.191 10.494 

3x33 7.249 12.855 21.183 10.465 

2x50 7.508 8.220 12.889 8.007 

1x100 4.525 2.993 14.421 3.329 

Table 6.4.2: Average Euclidean Errors (°) per Method and Configuration 
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Rank Method Avg. Error (°) 

1 RF 11.201 

2 JIWC 12.496 

3 XGB 13.208 

4 MMLAW 22.444 

Table 6.4.3: Average Method Performance Ranking Across All Configurations  
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Chapter 7 

 

Conclusion 

 

 

7.1 Summary           114 
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7.3 Future Work          115 

            

 

7.1 Summary 

This project explored the intersection of indoor localization and machine learning with a 

keen interest in jamming detection and localization in LoRaWAN IoT networks. A  

thorough literature review outlined the evolution of wireless technologies, fingerprinting 

methods, and security concerns across WSN, IoT, and LPWAN systems. Several 

supervised, unsupervised, and ensemble machine learning models were evaluated for 

anomaly detection, showing varied performance based on the nature of the data and model 

complexity. The framework’s implementation provided a multi-step process, from 

jamming detection via PLR/SNR/RSSI anomalies to estimating attacker location using 

an ensemble approach. Evaluation results confirmed the effectiveness of machine 

learning and deep learning models for accurate detection, while simpler scoring methods 

provided a practical approach for estimating jamming impact without device coordinates. 

 

7.2 Challenges 

Some of the challenges we encountered during the development of the suggested jammer 

detection-localization framework: 

 

• Dataset Inconsistency and Missing Location Data 

It was not possible to directly apply localization algorithms on the initial dataset of 

jamming events, since it lacked location (coordinates) information of both gateways and 
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end devices. That didn’t affect the anomaly detection part, which was originally 

implemented with various ML and DL models on the initial dataset.  

 

• Selection of machine learning algorithms and optimization of hyperparameters 

The dataset properties and localization requirements should be considered when 

selecting the best machine learning methods and hyperparameters. Finding the most 

suitable method requires choosing a model based on performance indicators and cross-

validation. 

 

7.3 Future Work 

Future work could expand on this study by applying the proposed methods to datasets 

that include ground-truth coordinates, allowing for direct localization performance 

comparisons. It should also be considered extending the classification of jamming types 

(e.g., reactive, random) and introducing mobile attackers to enhance the robustness and 

realism of future indoor localization and security systems. 

  



116 

 

References  

 

[1] “Number of Internet of Things (IoT) connections worldwide from 2022 to 2023,” 

Statista. Accessed: May 19, 2025. [Online]. Available: 

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ 

[2] V. Sneha and M. Nagarajan, “Localization in Wireless Sensor Networks: A 

Review,” Cybern. Inf. Technol., vol. 20, no. 4, pp. 3–26, Nov. 2020, doi: 

10.2478/cait-2020-0044. 

[3] T. Ahmad, X. J. Li, M. Ashfaq, M. Savva, I. Ioannou, and V. Vassiliou, “Location-

enabled IoT (LE-IoT): Indoor Localization for IoT Environments using Machine 

Learning,” in 2024 20th International Conference on Distributed Computing in 

Smart Systems and the Internet of Things (DCOSS-IoT), Abu Dhabi, United Arab 

Emirates: IEEE, Apr. 2024, pp. 392–399. doi: 10.1109/DCOSS-

IoT61029.2024.00065. 

[4] Mawahib Sharafeldin Adam Boush, “Enhancing IoT Network Attack Detection 

with Ensemble Machine Learning and Efficient Feature Extraction,” J. Inf. Syst. 

Eng. Manag., vol. 10, no. 20s, pp. 288–298, Mar. 2025, doi: 

10.52783/jisem.v10i20s.3054. 

[5] S. M. Maghdid and H. Maghdid, “A Comprehensive Review of Indoor/Outdoor 

Localization Solutions in IoT era: Research Challenges and Future Perspectives,” 

Aug. 13, 2021. doi: 10.36227/techrxiv.15138609. 

[6] M. Savva, I. Ioannou, and V. Vassiliou, “Evaluating Localization Algorithms in 

IoT Networks Under Jamming Attacks,” in 2024 IFIP Networking Conference 

(IFIP Networking), Thessaloniki, Greece: IEEE, Jun. 2024, pp. 627–633. doi: 

10.23919/IFIPNetworking62109.2024.10619065. 

[7] V. Di Pietra, P. Dabove, and M. Piras, “Loosely Coupled GNSS and UWB with 

INS Integration for Indoor/Outdoor Pedestrian Navigation,” Sensors, vol. 20, no. 

21, p. 6292, Nov. 2020, doi: 10.3390/s20216292. 

[8] H. Obeidat, W. Shuaieb, O. Obeidat, and R. Abd-Alhameed, “A Review of Indoor 

Localization Techniques and Wireless Technologies,” Wirel. Pers. Commun., vol. 

119, no. 1, pp. 289–327, Jul. 2021, doi: 10.1007/s11277-021-08209-5. 

[9] M. Rahman, M. NagshvarianJahromi, S. S. Mirjavadi, and A. M. Hamouda, 

“Compact UWB Band-Notched Antenna with Integrated Bluetooth for Personal 



117 

 

Wireless Communication and UWB Applications,” Electronics, vol. 8, no. 2, p. 

158, Feb. 2019, doi: 10.3390/electronics8020158. 

[10] S. F. Ahmed et al., “Toward a Secure 5G-Enabled Internet of Things: A Survey on 

Requirements, Privacy, Security, Challenges, and Opportunities,” IEEE Access, 

vol. 12, pp. 13125–13145, 2024, doi: 10.1109/ACCESS.2024.3352508. 

[11] Z. Liu, L. Chen, X. Zhou, Z. Jiao, G. Guo, and R. Chen, “Machine Learning for 

Time-of-Arrival Estimation With 5G Signals in Indoor Positioning,” IEEE Internet 

Things J., vol. 10, no. 11, pp. 9782–9795, Jun. 2023, doi: 

10.1109/JIOT.2023.3234123. 

[12] T. Perković, L. Dujić Rodić, J. Šabić, and P. Šolić, “Machine Learning Approach 

towards LoRaWAN Indoor Localization,” Electronics, vol. 12, no. 2, p. 457, Jan. 

2023, doi: 10.3390/electronics12020457. 

[13] J. Šabić, T. Perković, D. Begušić, and P. Šolić, “Practical Realization of Reactive 

Jamming Attack on Long-Range Wide-Area Network,” Sensors, vol. 25, no. 8, p. 

2383, Apr. 2025, doi: 10.3390/s25082383. 

[14] A. Augustin, J. Yi, T. Clausen, and W. Townsley, “A Study of LoRa: Long Range 

& Low Power Networks for the Internet of Things,” Sensors, vol. 16, no. 9, p. 

1466, Sep. 2016, doi: 10.3390/s16091466. 

[15] N. Hou, X. Xia, and Y. Zheng, “Jamming of LoRa PHY and Countermeasure,” in 

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, 

Vancouver, BC, Canada: IEEE, May 2021, pp. 1–10. doi: 

10.1109/INFOCOM42981.2021.9488774. 

[16] “LoRa Alliance,” LoRa Alliance®. Accessed: Apr. 14, 2025. [Online]. Available: 

https://lora-alliance.org/ 

[17] “Network Options.” Accessed: Apr. 14, 2025. [Online]. Available: 

https://resources.lora-alliance.org/private-vs-public-networks 

[18] “RP002-1.0.4 Regional Parameters,” LoRa Alliance®. Accessed: Apr. 14, 2025. 

[Online]. Available: https://resources.lora-alliance.org/technical-

specifications/rp002-1-0-4-regional-parameters 

[19] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. 

Watteyne, “Understanding the Limits of LoRaWAN,” IEEE Commun. Mag., vol. 

55, no. 9, pp. 34–40, 2017, doi: 10.1109/MCOM.2017.1600613. 



118 

 

[20] Y. Yu et al., “Adaptive Multi-Channels Allocation in LoRa Networks,” IEEE 

Access, vol. 8, pp. 214177–214189, 2020, doi: 10.1109/ACCESS.2020.3040765. 

[21] E. Aras, N. Small, G. S. Ramachandran, S. Delbruel, W. Joosen, and D. Hughes, 

“Selective Jamming of LoRaWAN using Commodity Hardware,” in Proceedings 

of the 14th EAI International Conference on Mobile and Ubiquitous Systems: 

Computing, Networking and Services, Nov. 2017, pp. 363–372. doi: 

10.1145/3144457.3144478. 

[22] H. Alqurashi, F. Bouabdallah, and E. Khairullah, “SCAP SigFox: A Scalable 

Communication Protocol for Low-Power Wide-Area IoT Networks,” Sensors, vol. 

23, no. 7, p. 3732, Apr. 2023, doi: 10.3390/s23073732. 

[23] Y. Li et al., “Location-Enabled IoT (LE-IoT): A Survey of Positioning 

Techniques, Error Sources, and Mitigation,” IEEE Internet Things J., vol. 8, no. 6, 

pp. 4035–4062, Mar. 2021, doi: 10.1109/JIOT.2020.3019199. 

[24] R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on LPWA technology: LoRa 

and NB-IoT,” ICT Express, vol. 3, no. 1, pp. 14–21, Mar. 2017, doi: 

10.1016/j.icte.2017.03.004. 

[25] M. Savva, “A Framework for the Detection, Localization, and Recovery from 

Jamming Attacks in the Internet of Things,” University of Cyprus, Nicosia, 

Cyprus, 2024. doi: 10.13140/RG.2.2.35507.95525. 

[26] G. Pettorru, V. Pilloni, and M. Martalò, “Trustworthy Localization in IoT 

Networks: A Survey of Localization Techniques, Threats, and Mitigation,” 

Sensors, vol. 24, no. 7, p. 2214, Mar. 2024, doi: 10.3390/s24072214. 

[27] R. Shahbazian, G. Macrina, E. Scalzo, and F. Guerriero, “Machine Learning 

Assists IoT Localization: A Review of Current Challenges and Future Trends,” 

Sensors, vol. 23, no. 7, p. 3551, Mar. 2023, doi: 10.3390/s23073551. 

[28] G. Oguntala, R. Abd-Alhameed, S. Jones, J. Noras, M. Patwary, and J. Rodriguez, 

“Indoor location identification technologies for real-time IoT-based applications: 

An inclusive survey,” Comput. Sci. Rev., vol. 30, pp. 55–79, Nov. 2018, doi: 

10.1016/j.cosrev.2018.09.001. 

[29] O. Cheikhrouhou, G. M. Bhatti, and R. Alroobaea, “A Hybrid DV-Hop Algorithm 

Using RSSI for Localization in Large-Scale Wireless Sensor Networks,” Sensors, 

vol. 18, no. 5, p. 1469, May 2018, doi: 10.3390/s18051469. 



119 

 

[30] N. Podevijn et al., “LoRaWAN Geo-Tracking Using Map Matching and Compass 

Sensor Fusion,” Sensors, vol. 20, no. 20, p. 5815, Oct. 2020, doi: 

10.3390/s20205815. 

[31] T. Perković, L. Dujić Rodić, J. Šabić, and P. Šolić, “Machine Learning Approach 

towards LoRaWAN Indoor Localization,” Electronics, vol. 12, no. 2, p. 457, Jan. 

2023, doi: 10.3390/electronics12020457. 

[32] T. Yang, A. Cabani, and H. Chafouk, “A Survey of Recent Indoor Localization 

Scenarios and Methodologies,” Sensors, vol. 21, no. 23, p. 8086, Dec. 2021, doi: 

10.3390/s21238086. 

[33] J. Jiao, X. Wang, and C. Han, “Robust Indoor Localization in Dynamic 

Environments: A Multi-source Unsupervised Domain Adaptation Framework,” 

Feb. 11, 2025, arXiv: arXiv:2502.07246. doi: 10.48550/arXiv.2502.07246. 

[34] T. Alhmiedat, “Fingerprint-Based Localization Approach for WSN Using Machine 

Learning Models,” Appl. Sci., vol. 13, no. 5, p. 3037, Feb. 2023, doi: 

10.3390/app13053037. 

[35] X. Yu, H. Wang, and J. Wu, “A method of fingerprint indoor localization based on 

received signal strength difference by using compressive sensing,” EURASIP J. 

Wirel. Commun. Netw., vol. 2020, no. 1, p. 72, Dec. 2020, doi: 10.1186/s13638-

020-01683-8. 

[36] L. Gui, T. Val, A. Wei, and R. Dalce, “Improvement of range-free localization 

technology by a novel DV-hop protocol in wireless sensor networks,” Ad Hoc 

Netw., vol. 24, pp. 55–73, Jan. 2015, doi: 10.1016/j.adhoc.2014.07.025. 

[37] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann, “Weighted 

Centroid Localization in Zigbee-based Sensor Networks,” in 2007 IEEE 

International Symposium on Intelligent Signal Processing, Alcala de Henares, 

Spain: IEEE, 2007, pp. 1–6. doi: 10.1109/WISP.2007.4447528. 

[38] H. Liu, Z. Liu, Y. Chen, and W. Xu, “Determining the position of a jammer using 

a virtual-force iterative approach,” Wirel. Netw., vol. 17, no. 2, pp. 531–547, Feb. 

2011, doi: 10.1007/s11276-010-0295-6. 

[39] X. Guo, N. Ansari, L. Li, and L. Duan, “A Hybrid Positioning System for 

Location-Based Services: Design and Implementation,” IEEE Commun. Mag., vol. 

58, no. 5, pp. 90–96, May 2020, doi: 10.1109/MCOM.001.1900737. 



120 

 

[40] P. Chen et al., “Semi-Supervised Learning-Enhanced Fingerprint Indoor 

Positioning by Exploiting an Adapted Mean Teacher Model,” Electronics, vol. 13, 

no. 2, p. 298, Jan. 2024, doi: 10.3390/electronics13020298. 

[41] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of Wireless Indoor Positioning 

Techniques and Systems,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 

37, no. 6, pp. 1067–1080, Nov. 2007, doi: 10.1109/TSMCC.2007.905750. 

[42] X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based Fingerprinting for Indoor 

Localization: A Deep Learning Approach,” IEEE Trans. Veh. Technol., pp. 1–1, 

2016, doi: 10.1109/TVT.2016.2545523. 

[43] V. S. Kulathunga Hettiarachchige, “Ensemble Machine Learning Techniques for 

LoRa-based Wireless Indoor Localization Systems,” Dissertation, Uppsala 

University, 2024. [Online]. Available: https://uu.diva-

portal.org/smash/get/diva2:1901610/FULLTEXT01.pdf 

[44] Q. Zhu, Q. Xiong, K. Wang, W. Lu, and T. Liu, “Accurate WiFi-based indoor 

localization by using fuzzy classifier and mlps ensemble in complex environment,” 

J. Frankl. Inst., vol. 357, no. 3, pp. 1420–1436, Feb. 2020, doi: 

10.1016/j.jfranklin.2019.10.028. 

[45] J. Yoo, “Wi-Fi Fingerprint Indoor Localization by Semi-Supervised Generative 

Adversarial Network,” Sensors, vol. 24, no. 17, p. 5698, Sep. 2024, doi: 

10.3390/s24175698. 

[46] Encord, “What is Ensemble Learning?,” Encord Blog. Accessed: Apr. 07, 2025. 

[Online]. Available: https://encord.com/blog/what-is-ensemble-learning/ 

[47] IBM, “What Is Bagging? | IBM,” IBM. [Online]. Available: 

https://www.ibm.com/think/topics/bagging 

[48] Y. Wang, C. Xiu, X. Zhang, and D. Yang, “WiFi Indoor Localization with CSI 

Fingerprinting-Based Random Forest,” Sensors, vol. 18, no. 9, p. 2869, Aug. 2018, 

doi: 10.3390/s18092869. 

[49] S. Jin and D. Kim, “WiFi Fingerprint Indoor Localization Employing Adaboost 

and Probability-One Access Point Selection for Multi-Floor Campus Buildings,” 

Future Internet, vol. 16, no. 12, p. 466, Dec. 2024, doi: 10.3390/fi16120466. 

[50] Mawahib Sharafeldin Adam Boush, “Enhancing IoT Network Attack Detection 

with Ensemble Machine Learning and Efficient Feature Extraction,” J. Inf. Syst. 



121 

 

Eng. Manag., vol. 10, no. 20s, pp. 288–298, Mar. 2025, doi: 

10.52783/jisem.v10i20s.3054. 

[51] M. Salimibeni and A. Mohammadi, “Hybrid Indoor Localization via 

Reinforcement Learning-based Information Fusion,” 2022, arXiv. doi: 

10.48550/ARXIV.2210.15132. 

[52] J. Wang, Y. Fu, H. Feng, and J. Wang, “Transfer Learning for Indoor Localization 

Algorithm Based on Deep Domain Adaptation,” Sensors, vol. 23, no. 23, p. 9334, 

Nov. 2023, doi: 10.3390/s23239334. 

[53] T. Suwannaphong, R. McConville, and I. Craddock, “Transfer Learning of RSSI to 

Improve Indoor Localisation Performance,” 2024, arXiv. doi: 

10.48550/ARXIV.2412.09292. 

[54] H. Pirayesh and H. Zeng, “Jamming Attacks and Anti-Jamming Strategies in 

Wireless Networks: A Comprehensive Survey,” IEEE Commun. Surv. Tutor., vol. 

24, no. 2, pp. 767–809, 2022, doi: 10.1109/COMST.2022.3159185. 

[55] J. Petajajarvi, K. Mikhaylov, M. Hamalainen, and J. Iinatti, “Evaluation of LoRa 

LPWAN technology for remote health and wellbeing monitoring,” in 2016 10th 

International Symposium on Medical Information and Communication Technology 

(ISMICT), Worcester, MA, USA: IEEE, Mar. 2016, pp. 1–5. doi: 

10.1109/ISMICT.2016.7498898. 

[56] I. Martinez, P. Tanguy, and F. Nouvel, “On the performance evaluation of 

LoRaWAN under Jamming,” in 2019 12th IFIP Wireless and Mobile Networking 

Conference (WMNC), Paris, France: IEEE, Sep. 2019, pp. 141–145. doi: 

10.23919/WMNC.2019.8881830. 

[57] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and 

detecting jamming attacks in wireless networks,” in Proceedings of the 6th ACM 

international symposium on Mobile ad hoc networking and computing, Urbana-

Champaign IL USA: ACM, May 2005, pp. 46–57. doi: 10.1145/1062689.1062697. 

[58] T.-H. To and A. Duda, “Simulation of LoRa in NS-3: Improving LoRa 

Performance with CSMA,” in 2018 IEEE International Conference on 

Communications (ICC), Kansas City, MO: IEEE, May 2018, pp. 1–7. doi: 

10.1109/ICC.2018.8422800. 

[59] E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes, “Exploring the 

Security Vulnerabilities of LoRa,” in 2017 3rd IEEE International Conference on 



122 

 

Cybernetics (CYBCONF), Exeter, United Kingdom: IEEE, Jun. 2017, pp. 1–6. doi: 

10.1109/CYBConf.2017.7985777. 

[60] A. Proano and L. Lazos, “Selective Jamming Attacks in Wireless Networks,” in 

2010 IEEE International Conference on Communications, Cape Town, South 

Africa: IEEE, May 2010, pp. 1–6. doi: 10.1109/ICC.2010.5502322. 

[61] J. M. Marais, R. Malekian, and A. M. Abu-Mahfouz, “LoRa and LoRaWAN 

testbeds: A review,” in 2017 IEEE AFRICON, Cape Town: IEEE, Sep. 2017, pp. 

1496–1501. doi: 10.1109/AFRCON.2017.8095703. 

[62] H. C. Yildirim, M. F. Keskin, H. Wymeersch, and F. Horlin, “Deceptive Jamming 

in WLAN Sensing,” Jan. 02, 2024, arXiv: arXiv:2401.01101. doi: 

10.48550/arXiv.2401.01101. 

[63] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: attacks and 

countermeasures,” in Proceedings of the First IEEE International Workshop on 

Sensor Network Protocols and Applications, 2003., Anchorage, AK, USA: IEEE, 

2003, pp. 113–127. doi: 10.1109/SNPA.2003.1203362. 

[64] C. Del-Valle-Soto, L. J. Valdivia, R. Velázquez, J. A. Del-Puerto-Flores, J. Varela-

Aldás, and P. Visconti, “Adaptive Jamming Mitigation for Clustered Energy-

Efficient LoRa-BLE Hybrid Wireless Sensor Networks,” Sensors, vol. 25, no. 6, p. 

1931, Mar. 2025, doi: 10.3390/s25061931. 

[65] F. Yang, N. Shu, C. Hu, J. Huang, and Z. Niu, “Jammer Location‐Aware Method 

in Wireless Sensor Networks Based on Fibonacci Branch Search,” J. Sens., vol. 

2023, no. 1, p. 2261730, Jan. 2023, doi: 10.1155/2023/2261730. 

[66] I. Ullah and Q. H. Mahmoud, “Design and Development of a Deep Learning-

Based Model for Anomaly Detection in IoT Networks,” IEEE Access, vol. 9, pp. 

103906–103926, 2021, doi: 10.1109/ACCESS.2021.3094024. 

[67] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the 

development of realistic botnet dataset in the Internet of Things for network 

forensic analytics: Bot-IoT dataset,” Future Gener. Comput. Syst., vol. 100, pp. 

779–796, Nov. 2019, doi: 10.1016/j.future.2019.05.041. 

[68] S. Garcia, A. Parmisano, and M. J. Erquiaga, “IoT-23: A labeled dataset with 

malicious and benign IoT network traffic.” Zenodo, Jan. 20, 2020. doi: 

10.5281/ZENODO.4743746. 



123 

 

[69] M. Babazadeh, “LoRa-Based Anomaly Detection Platform: Center and Sensor-

Side,” IEEE Sens. J., vol. 20, no. 12, pp. 6677–6684, Jun. 2020, doi: 

10.1109/JSEN.2020.2976650. 

[70] A. Kurniawan and M. Kyas, “Machine Learning Models for LoRa Wan IoT 

Anomaly Detection,” in 2022 International Conference on Advanced Computer 

Science and Information Systems (ICACSIS), Depok, Indonesia: IEEE, Oct. 2022, 

pp. 193–198. doi: 10.1109/ICACSIS56558.2022.9923439. 

[71] N. S. Senol, A. Rasheed, M. Baza, and M. Alsabaan, “Identifying Tampered 

Radio-Frequency Transmissions in LoRa Networks Using Machine Learning,” 

Sensors, vol. 24, no. 20, p. 6611, Oct. 2024, doi: 10.3390/s24206611. 

[72] S. M. Danish, A. Nasir, H. K. Qureshi, A. B. Ashfaq, S. Mumtaz, and J. 

Rodriguez, “Network Intrusion Detection System for Jamming Attack in 

LoRaWAN Join Procedure,” in 2018 IEEE International Conference on 

Communications (ICC), Kansas City, MO: IEEE, May 2018, pp. 1–6. doi: 

10.1109/ICC.2018.8422721. 

[73] I. Martinez, “(PDF) Jamming on LoRaWAN Networks : from modelling to 

detection,” Institut National des Sciences Appliquées de Rennes, 2021. Accessed: 

Apr. 11, 2025. [Online]. Available: 

https://www.researchgate.net/publication/350939008_Jamming_on_LoRaWAN_N

etworks_from_modelling_to_detection 

[74] B. Upadhyaya, S. Sun, and B. Sikdar, “Machine Learning-based Jamming 

Detection in Wireless IoT Networks,” in 2019 IEEE VTS Asia Pacific Wireless 

Communications Symposium (APWCS), Singapore: IEEE, Aug. 2019, pp. 1–5. doi: 

10.1109/VTS-APWCS.2019.8851633. 

[75] O. Punal, I. Aktas, C.-J. Schnelke, G. Abidin, K. Wehrle, and J. Gross, “Machine 

learning-based jamming detection for IEEE 802.11: Design and experimental 

evaluation,” in Proceeding of IEEE International Symposium on a World of 

Wireless, Mobile and Multimedia Networks 2014, Sydney, Australia: IEEE, Jun. 

2014, pp. 1–10. doi: 10.1109/WoWMoM.2014.6918964. 

[76] O. Osanaiye, A. S. Alfa, and G. P. Hancke, “A Statistical Approach to Detect 

Jamming Attacks in Wireless Sensor Networks,” Sensors, vol. 18, no. 6, p. 1691, 

May 2018, doi: 10.3390/s18061691. 



124 

 

[77] Srichard2, Srichard2/LoRa-Jamming-Dataset. (Mar. 16, 2023). [Online]. 

Available: https://github.com/Srichard2/LoRa-Jamming-Dataset 

[78] Zenodi, “Drone Communication Dataset.” Kaggle, 2025. doi: 

https://www.kaggle.com/dsv/10702965. 

  


